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On the Computation of Stress 
in Stationary oaded 

Thomas Griinholz 

Abstract. In this paper, we deal with the problem of computing the 
stresses in stationa,ry loaded .journal bearings. .A tnct,hod to obtain the 
pressure in the lubrication fluid, which is given aa a! solution of Reynolds’s 
differential equat,ion, is presented. Fnrthermorc, using the theory of pla,in 
stress, the stresses in the bearing shell a,re described by tleriva,tives of bi- 
harmonic functions. ,1 spline ini,erpola.tion met hod for computing these 
functions is developed and an Psi,imate for the error on the bounda.ries is 
presented. Fina,lly the described melhods a,re t csted theorelica.lly a.s Well 
;IS with real examples. 

Introduction 

This paper is concerned with the cottlputation of st;resses iti stationary loa,dcd, hydro- 
dynamic ,journal bearings. This type of bearing is used, wlit~r(~ver highly loaded axes 
have to be rested almost free of friction. Examples are ~,XES in turbines aaid genera.- 
tars or crankshafts in cotnbust,ion engines. The layout; of srich components with regard 
to the permissible st,resses and the stabilit;y is one of the main t,asks during the cm- 

strnction, In order to save time and cost,s, engineers at t.hc: depa.rtment for mechatiic~al 
engineering of the university in Iiaiserslauterti try to do simitla,tions to compute the 
stress distribution in such bearings. Knowing the stresses: t.hry are able to predict the 
lifetimrl atid the nrcrssary dimensions of their constructions without testing them in 
reality. I\ c‘ontribnt ion to that. aim sl~or~ld hc given in this work. 
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The computation of the stresses is divided into two parts. First the pressure in the 
lubrication fluid, which consists most times of oil, has to be computed. The necessary 
physica. principles are well-known, Assumed that the pressure over the thickness of 
the lubrication film is constant, it follows the so called Reynolds’s differential equation 
(cf. La,ng[lil]). Th- e resulting free boundary value problem can be tiansformed into 
a. linear cornplementarity problem (cf. Cimatti[2]), which can be solved with a point 
SOR.-method (cf. Pang[l7]). K nowing the pressure distribution in the lubrication fluid, 
the stress acting on the inner wall of the bearing shell is known. It is used to solve the 
second problem, which is concerned with the calculation of the stresses in the bear- 
ing shell. Beca,use the maximum forces appear in the middle of the element, we can 
restrict the computation on a section through the bearing, which has the shape of a, 
circular ring. If the material of the bearing shell is homogeneous and isotropic and if 
only sma,ll deformations are considered, Hooke’s law can be used and the problem can 
be solved using the theory of linear elasticity (cf. Goeldner[8]). Ma,thematically this 
leads to the problem of finding a solution of the Bi-Laplace equation AA.F = 0, from 
which the desired stresses can be obtained by applying certain differential operators 
(cf. Leipholz[13]). 
While in the literature the solutions are only described by Fourier series, where the 
coefficients a,re obtained by comparison with the coefhc,ients of the series representa- 
tions of the boundary functions, in this work the computation will be done with help 
of a spline interpolation method (cf. Freeden[Fi]). 1) iscretly given boundary values are 
interpola,ted in such a wa,y, that the interpolant minimizes a given norm. Because this 
norm has some free para,meters, it is possible to adapt the interpolation method to the 
given problem by choosing special norms. Beside this, there exists a,nother significant 
difference between the spline interpolation and the Fourier method, na,mely the fact, 
that in the here used technique all frequencies are represented, whereas otherwise the 
series representation is cutted after a certain number of terms and the high frequency 
pa,rts are lost. 

The pa,per is orga.nized as follows: 
in the first chapter the principle structure and function of the ma.chinc clement journal 
bearing is described. The problem of computing the oil pressure is treated, a. solution 
method is described and demonstrated on two real examples. In Cha.pter 2 a, short 
introduction to theory of linear elasticity is given. The third chapter is concerned with 
the main problem of the work, the computation of the stresses in the bearing shell. 
It is formulated from a. physical, as well as from a mathematical point of view. In 
the fourt;h chapter basic settings and notations for the spline theory a,re presented, 
theorems about the representation of harmonic and biharmonic functions defined on 
circular areas are proved, the spline interpolation method is described theoretically and 
an estimate for the error on the boundaries is proved. A survey about the practical 
aspects of the method is following in the fifth chapter, where the choice of the norm is 
discussed, the method is tested with some theoretical examples and it is applied to one 
of the real configurations of Chapter 1. Finally a possibility for smoothing the result 
by a least square technique is described, where beside the bounda.ry forces some more 
informations are used. 
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1 Hydrodynamic Lubrication 

1.1 Description of the Pressure Build-lL.Tp 

In order to compute the stresses in journal bearings, it is necessary to understand the 
principle structure and function of this machine element. The two following pictures 
arc showing am three-dimensiorlal representation md a section through the middle of 
such a bearing. 

rnal 

I shell 

Picture 2: section through the middle of a ,journn,l beaCng 

Hydrodynamic working journal beaaings are used to redtlce the friction between two ro- 
tating machine parts. As shown in the pictures, oil is pumped into the bea.ring through 
a hole at t,hc top. Due to the rotating journal, the oil is forced to run with high veloc- 
it,y in angular direction before it leaves the bea.ring at the endings. By the weight of 
t,he axis and additional outer forces, there is an exc,entricity between the .journad and 
t,he bearing shell, that, means t,hat their rotation axes are para.llel but don’t coincide. 
&cause of that, in the narrow ga,p between the journa.l and the bearing shell the oil 
is con~pressed a.nd in the stationuy case this pressure compensates the forces acting 
on the journal. It is ‘swimming on the lubrication fluid and the friction is drastically 
reduced. 
In order to compute the stresses in the bearing shell, it, is necessary to know the pressure 
distribution in the oil, which causes these stresses. As the thickness of the oil film is 
very small. thtt pressure can be assumed to be constant in radial direction. Thus it is a. 



function defined on the inner side of the bearing shell depending on 63 and 2, that means 

Y : [o, 27r] x [-1, l] -+ R, (1.1.1) 

where the width of the bearing has been transformed on the intervalI [-1, l]. 
The pressure can be. described by the so called Reynolds’s differential equation (cf. 
Lang[l4]): 

(1.1.2) 

where the following notations have been used: II = s for the pressure index, 
H=j&=l+FCOS((P) for the relative height of the gap, !P = F the relative bearing 

clearance, E = & the relative excentricity, R the inner radius of the bearing shell, D 
the inner dia.meter of the bearing shell, B the width of the bearing, r the radius of the 
journal , 7 the viscosity of the lubrication fluid, w the effective angular velocity and e 

the excentricity. 

If II is replaced by II = IIn;, we get another form of Reynolds’s differential equation, 
namely: 

(l.l.3) 

with 44 3 2e = cos(‘p) - 2 -i- 362 cos($q 
4 (1 + 6 cos((p))2 

(1.1.4) 

and @P) = 
Gsin((13) 

(1+ mos(cp)): * 
(1.1.5) 

In order to compute the pressure distribution we have to solve this differential equation, 
where the solution has to fulfiIl the following conditions: 

1. P(v, rfil) = 0 Vcp E R 

2. qp, 4 = fyy f 2n, 2) Vp E R, z E [--I, l] 

3. &P(p) z) (cPz+(t) = P(p, 2) (Vp=a(Z) = 0 for a regular curve p(z) 

A complete derivation of this problem can be found in the book of Lang[l4], with the 
only difference that he used the condition 

P(O,z) = 0 vz E [A, l] (1.1.6) 
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Picture 3: three dimensional plot of the pressure for configuration a 
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Picture 4: contour plot of the pressure for configuration a 
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ask r-y of Li ar ast kit 

Linear elasticity is concerned with the deformations of solids under the influence of 
inner and outer forces. For simplicity we presume, that the material of the body is 
homogeneous and isotropic, and that only small deformations are considered. 
In this chapter some basic results of linea,r elasticity are given, which will be used in 
this work. For a detailed explanation see the books of I,eipholz[l3] or @oeldner[S]. 
If a body is rested without motion, the sum of all acting forces has to be zero. Hence, 
if no outer forces are occuring, the so called equilibrium conditions 

(2.2) 

can be deduced, where t denote the stresses. Analising the displa,cements 11, the distor- 
tions t and the afngular deformations y, the following geometric rela,tions can be shown: 

which are connected with the equilibrium conditions by Hooke’s la,w: 

$“T - +c+ t a,>> (2.10) 
1. 

E, = Yrcp = - TT(p G 
(2.13) 

cz = -&5 - V((rT t qJ> (2.12) 
1 

%T = 2 TZT -  (2.15) 

E denotes the modulus of ela.sticity, G = qE+ the sheaa modulus and v the number 
of lateral deformation. It is possible to determine the elastic state of a body with this 
fifteen equations, but it can be shown, that in some cases the number of unknowns and 
equations can be reduced. This leads to the theory of plain stress, which is charx- 

terised by the assumption that (T,, T,., aad 7;~~ are identically zero, a,nd tha,t the other 
components aae independent of z. This can be assumed if the body ha.s the sha,pe of 
a thin pla,te and the forces are acting only at the boundaries, para,llel to the plate, as 
shown in Picture 7. In this case the system of equations can be simplified, and we have 
to solve the following equations: 

(2.16) 
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(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 



Consequently the elastic state of a body can be determined by solving the following 
problem: Find a solution F of the Bi-Laplace equation, from which the stress functions 
can be obtained by equations (2.24) to (2.26) and the distortions and displa,cements by 
equations (2.18) to (2.23). If the functions err and rryo are given on the boundaries, the 
solution of this problem is not unique. To a,chieve uniqeness it is necessary, that every 
function of the elastic state is 2n-periodic and that the angular deformations yr,+, given 
by equation (2.20) and (2.23) are the same. 

3 Formulation of the Problem 

3.1 Physical Formulation of the Problem 

The theory of plane stress, mentioned in the last chapter, is now used in order to 
compute the stresses in the shell of a journal bearing. The shell has the shape of 
a thick-walled pipe and in the easiest case it consists of a single homogeneous and 
isotropic material. From the pressure distribution of the oil, which is given by the 
solution of Reynolds’s differential equation, as shown in Chapter 1, the normal resp, 
the radial stress (or at the inner side of the bearing shell is known, The shearing stress 
T = rrP at the inner side is zero, because the adherence of the oil at the surface can be 
neglected. The stresses at the outer side of the bearing are unknown. Sometimes these 
stresses are set to zero, in other papers a linear dependence to the stresses at the inner 
side is used, that means r(r,, 97) = 0 and (T,.(T~, QQ) = c (T,(T;, ‘p) , with a constant c. 
From the pressure distribution in the oil it can be deduced, that the maximum forces 
appear in the middle of the bearing. Therefore in order to estimate the stress in the 
bearing shell, it is sufficient to compute the stresses in a section through the middle 
of the ma,chine element. Such a section is shown in the following picture, where the 
distribution of the oil pressure is illustrated with arrows. 

Picture 8: distribution of the oil pressure 

Because of the symmetric form of the bearing, the stresses vanish in axial direction 
and the requirements for using the plain stress theory are fulfilled. The stresses can be 
derived from a solution F of the Bi-Laplace equation AM = 0, where the resulting 
stresses err and r have to fulfill the above described boundary conditions. 
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(32.3) 

(3.2.4) 

4 The Spline Interpolation Method 



For simplicity in the sequel the Cartesian as well as the cylindrical coordinates will be 
used. As usual every polynomial P, : R2 -+ R of the form 

P&E) = c c,xa (4.1.3) 
[a]=n 

is called homogeneous polynomial of degree n. o = (a-1, ~2)~ denotes a multiindex, that 
means a pair of non-negative integers ~1 and CQ. [D] = oi + ~22 is the absolute value of 
the multiindex and 2” is defined by zcy = z5y’ x;*. 
Obviously the set of monomials of degree n is a basis for the space of homogeneous 
polynomials of degree n. The number of such monomia.ls is precisely the number of 
ways a pair of numbers ~1 and cy2 can be c,hosen with [o] = w, namely n + 1. 
In the last cha,pter the Lapla,ce operator n was introduced. In caatesia,n coordinates it 
has the representation: 

A=&+&, 
in cylindrical coordinates: 

(4.1.4) 

(4.1.5) 

where A* = d2/dp2 defines the Beltrami-operator of the unit circle. We say a homoge- 
neous polynomial r>, is harmonic, if it fullills Laplace’s differential equa,tion LIP, = 0. 
The restriction of a harmonic polynomial of degree n to a. circle Iw is, called circular 
function of degree n and is denoted with Y,, the set of all circular functions of degree 
72 by ym. As it is well known for n > 0 there exist precisely two lineaaly independent 
circula,r functions Y, r aad Yn2 of degree n, If the system Y,j is orthonormalized in the 
sense: 

they ha,ve the following representation: 

The circular functions of degree n have the property, that they are the infinitely of- 
ten differentiable eigenfunctions of the Beltrami-operator A* to the eigenvalues X,, = 
n2 (n=O,1,2,...), i.e. 

n*K(y~) -I- n2Yn(y) = 0 v p E [0,2T], 71 > 0. (4.1.7) 
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As it is commonly known, for every n > 0 the Y,j satisfy the addition theorem 

(41.8) 

(4.l.9) 

whcrc the ,;it’ are ortllonornlalized in the scnsc of C2(rijl ). They xc dense in the 
spare of all h&nonic functions ‘TV which arc defined on (2, = (2; E R2, cy < 1)21/ < cm} 
and fulfil1 some conditions describing the behaviour a.t infinit.y. This mems for every 
c > 0 there mist coefficients CA; and a il’ = N(t) with 

l+rthermorr, inner harmonics H~j art’ dt4ncxf with ,C”( rtiL2 )-ort,llotlorrna.lized circular 
funcl,ions 12:’ 1)~ 

For the representa.tion of ha.rmonic and I)ih;jrtnonic, functims on a. circulx ring we have 
the following theorems: 

Theorem. 

Proof.. 



and 

F(P, cp> = $fJ 5 enjYnj(cp) -I- e0 . 
n=l j=l 

Neglecting orthonormalization constants and comparing the coefficients of the equa- 
tions (4.1.13), (4.1.14) and (4.1.15) we obtain: 

C~tC~ln(a) = do 

From these equations the coefficients Ci, Coo, C~j and Cij can be uniquely determined, 

Theorem. 

Let R = {x E R2 , Q < 1x1 < p} be a circular ring and F : s2 -+ R a. biharmonic 
function. Then there exist harmonic functions f and g as well as constants cl and 9, 
such that 

F(X) = r2f(2)tg(2)t -$J&cos(y)ln(r)t 2T-sin(p)ln(r). 
m 

(4.1.16) 

Proof. 

Beca.use 1;’ is biharmonic, AF is harmonic and there exist constants Ci, Coo, C:~j and 
Czj such that 

cm 2 00 2 

AF(5) = Ci f C,O In(r) f C C CljH~j(s) f C C CijHlj(Z) . (4.1.17) 
n=l i=l w=lj=l 

Replacing r2f(z) by 

we get: 

A r2f + g + -!i2C- cos(p) In(r) + c2T sin(p)Zn(r) = 
+=l @T 

4di + d,0(4 In(r) + 4) f 2 f’(4 f 4n)d$& 
n=lj=l 

+ ~ ~(4 - 4n)d~jH~j + 2c1 - cos('p) t 
2c2 

r@fGi 
~ sin(p). 

n=l j=l T@=i 

Comparison of the coefficients yields: 



is a llarrnonic function. 



and 

(.fJ) h(2)  = IQ’“‘“fllQ’“‘+.gldz 
I (4.3.5) 

cd2 

define two Sobolev-like Hilbert spxes and it can be easily shown, that a circular func- 
tion 

JyP) = 2 ~C$Y;zi(P) (4.3.6) 
n=l j=l 

is in h(l) rcsp. in hc2), if and only if the constants C’$ satisfy 

For numericad reasons we will now define separable spaces, based on the Hilbert spaces 
h(l) and h(‘). 

Definition. 
Let g(l) and (I(‘) be two sequences with the properties described above and let c~ and /I? 
be two real numbers with w1 < cy < /3 < ~2. By 

Xl = 
/ 

“(x)=-f$ycnj( 
n=l i= 

Xl = 
{ 

F(x) = 5 5 cnj ( yY;i)(p), 
n=lj=1 n=lj=l 

00 2 , \ 3n-3 

(K G)Hl = fy & d?’ (3 2n-2 (F, Y&2(17 (G, Y$)cP(r*) 
n=lj=l 



t,he spaces ‘HI, 1-12, X:3, ‘FLr and ‘Hs with their corresponding inner products are defined. 
Again I;$! rcsp. I$:) denote the circu1a.r functions orthonormalized in the sense of 
L2(r,,) and P(r,, ja 
It is C%Sy t#o See, that the h(l)-norm of a, circular function corresponds to the TL~- req. 
the ‘Filz-nom of this function. The same is true for hC2)-norm and the ‘&- resp. the 
‘Nd-nortn. F’urthcrmore we obta,in the following theorem: 

Theorem. 

i=l 

where 1;:~; and G’wi denote the pro,jections of F a.nd G into the space ‘Hi is a8 separable 
Hilbert space with the reproducing kernel 

+ I. f T”? + In(r) in(?) . (4.3.8) 

Proof. 

it) hI(X, .) E ‘MN: 



(pY? (5)“’ (~)zY~~~~i,i,il:‘i-l!L2(rp) + 
(a0 + UI~” + ~2 h(F), 1 f r2r2 + In(r) ln(~))~, 

Applying Cauchy’s inequality we get: IFI2 = UT>> @% .))k I PII& 11~11~ 

In view of IIE’II& < 00, it remains to prove that IlJ<[jg is bounded. 

llql& = (6 oi = 



1 + ~~ + ln2(r) = 

Observing that the circular functions 1:;’ and I<!:‘, as well as the series 

I$ (T)‘” Xld c$ (;)“” 

iMY? hOllIldcd ilIld that, l$~“$lll”(r) < cm for cy < ?‘ 2 /J, We 1lnVe proved that Ij/c‘llx < CC 
and consequently /F is lmunded. This is a necessary condition on the space ?-I to be 
separable (cf. l>avis[3]). 

111 view of Section 4. 1. and 4.2 we ha,vr now a separable Hilbert space ‘FL, consisting 
of all biharmonic functions, which fulfill the conditions of ‘Lr-periodicity and unique 
angular deforrna,tion. 

For simplicity let A”, a.nd A”2 be the derimtives of K given by Kl(:c, Z) = NlK(x,%) 
and li,(.x~.?) = B,X(x,>o, where the operators B1 a,nd Bz are applied to the second 
va.ria.hle Z. 

Lemma, 

For a,ny function F of the Hilbert space ‘H we have the following representations: 

(4.3.9) 

(4.3.10) 



With these representations it is easy to see that the functions are elements of the Hilbert 
space 7-L. In view of 

a.nd 

B2F(Z) = fJ Cz (f$-)“Y~:‘(p)$(n + n2)(-1)” $ 
?G=l 

2 Cfj (~)^Y$)($Y)-$-n f n2)(-1)’ -j- 

g Cfj (&)” YA:‘(p)$n - n”)(-l)j + 

-j$: ($)” 
7L=l 

Y$‘(vi-$(-n - n2)(-1)” , 

the proof follows easily by a simple calculation. 

In the sequel we use Kiezf) resp. K.$““” for the outer and .Kiint) resp. KyfLf) for the inner 
part of K1 resp. K2. In detail this means: 

.@int) = g $ (iJn (6> n k cos(n(cp - p))(n - n2)$ + 
\ 

~~(~)n(~)n~cos(n(~-y))(2tn--2)~t 
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Definition. 

1. Let .T = {:I$ E I’,, > i = I,. . . , N’ ; 2; E rr, ) % = I?. . . , N” ; 

be a system of points. X is called admissible, if the nmtrix 

is invertible, 



N’ N” 

= 
c 

up, nezt) (xi) + z up?~F(e~t) (2$) f 

i=l i=l 

N”’ N”” 

c 
a;‘B1p(inf)(z;‘) + C a~~2~(i~f)(s~~~) 

i=l i=l 

As usual for a system of pojnts X the set of all interpolants Zx is defined by 

Zx = {F E ti mit Br F($) = o,!‘“~) for i = 1,. . . , N’ 

&qq) = TyQ) for i = 1, . . . , N” 

231 F(zC:,‘) = ajest) for i = 1,. . . , N”’ 
(4.3.17) 

132F(2r”) = 7jezt) for i = 1,. . . , N”“} , 

with given real numbers CT~“‘~), T:~“~), criezt), rjezt). As shown in the next lemma, there 
exists a unique interpola,nt in the space SX. 

Lemma. 

Let X be an a,dmissible system, Zx the set of all interpolants and Sx the space of all 
spline functions relative to X. Then there exists a unique SX E Zx n SX. 

Proof. 

Every spline function contains a total of N = N’ + N” + N”’ + N”” free coefficients, 
We have N’ conditions of the form 





we obtain the following lemmata: 

Lemma. 

Let 5’~ be the unique interpolating spline and F any interpolating function of the space 
TF. Then we get: 

(Sx-F,SX)~=O. (4.3.18) 

Proof. 

(Sx - 4 Sx)?i = -&(Sx(.), Ky’(z;, .))H - fy aQ.y.), Kyty2~~ .))E + 
i=l i=l 

N” N” 

c cq(Sx(.), 1i”yy2;, .))‘FI - c a:‘(F(.), Kyya;, .))H + 

i=l i=l 
NW NW 

c u::“(Sx(.), 1i;jinty2::l), .))H - c a::“(F(.), .Jiy)(5;‘, .))x + 

i=l i=l N”” N”,, 
c a:“‘(S,y(.), Ayyzy, .))E - c uI”‘(F(*), Jiy)(ZI)“, .))x 
i=l i=l 

Lemma. 

Let 5’~ and F be defined as above. Then: jj.Fllk = IISxlJ& t 115'~ - s;l(l& . 

Proof. 

IlmL = UT>1 w>Ti = (Sx(.) - (Sx(*) - q.>>, SXC) - (SXC) - F(.)))‘H 
= (SXC), Sx(.))ti + (FIX - W), Sx(.) - W)), 

= llsxl12 + IlSx - qlg 

Summarizing our results we find the following theorem: 

Theorem. 

The spline interpolation problem: Find a function 5’~ E Zx n Sx with 

lISx(l7t = inf IlJWi 
FE Z;X 

(4.3.19) 

is well-posed in the sense that its solution exists, is unique and depends continuously 
on the given da.ta, 
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For this solution an estimate for the error on the boundaries I’,., and I‘,, can be proved. 

Lemma. 

with 
0 = n1,:x “$1 19 - @I ) (4.3.22) Y 



The proof of the first estimate follows by observing 

00 
c 2(1- cos(n(cp - $3)) J-” 7L=l (,:) Qz’$ (G+ r2(2t;-n2)))l 

~(J;)2”;rz(~+r2(2+~-n2)))l) 

where 11 - cos(n(p - 3))) < In(cp - (13)j is used. The second estimate ca,n be shown 
analogously. 

5 Application 

In this chapter a, solution of the boundaay value problem described in Section 3.2 will 
be computed using the spline interpolation method presented in the last cha,pter. First 
of all we have to choose a Hilbert space ‘FI with an associated inner product (a, .)w. 

5.1 Choice of the Norm 

The inner produd; (a, .)H of the space ‘Ft is defined by the sequences q(l) and qc2), as 
well a,s by the free parameters wr and ~2. From the theoretical point of view one 
ma,y assume, that for every admissible wr, ~2, g(l) and q(2) the desired result can be 
achieved, because the absolute error on the boundaries tends to zero as the number 
of interpolation points increases. From a practical point of view, tha,t means from 
numerical reasons, the result depends essentially on the choice of the norm. This lea,ds 
to the problem to adapt the norm to the physical problem. For example, in view of 

n2 Y,j = - - I32 Y (392 n.i) 

the sequence q with qn = n2 for n E lN symbolizes the negative derivative of a func- 
tion. As this is a, measure for the curvature of the belonging curve, by the norm- 
minimalisation-property of the spline interpolation, the integral over the second deriva- 
tive, i.e. the total curvature, is minimized. 
Another importa,nt criterion, which should be used for choosing the sequenc.es q(l) and 
~(~1 should be, that the kernel functions 

l-j- r2F2 + In(r) In(F) (5.1.2) 
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Of course it is also possible to use other sequences. In this case it is necessary to abort 
the series representation after a sufficiently big number of terms, what results in an 
inevitable error. Furthermore, because of the enormous work for computing the kernel 
functions, one has to put up with long running times of the program. For this reasons 
it is better to work with kernels, which can be represented by elementary functions. 

5.2 Implementation of the Method 

The necessary derivatives have been computed with the programming package Mathe- 
mntica. In the case qc) = qg) = 1 Vn E IN we obtain the following functions: 

(-140r6F6w,4 + 40r4F4wi f 120r2F2wi2 + 4wi6+ 

cos(p- p)(7Sr7F7wz - 140r3P3w,Io - 5SrrW,14)+ 

cos(2(p - (;i))(-1s rsF8 f 84r6F6w,4 t 140r4F4w,8 - 20r2F2wi2 + 4wi6)f 

cos(3(p- $5))(-20r7F7w,2 - 84r5F5w,6 - 44r3FJwio + 16rCd~")f 

COS(~(V - d)W r”F6w: + 20r4F4w,S + 4r2F2wi2)- 

cos(5(y - ‘p))4r5F5w!j) /(r2T2 + wt - 2ri;w,2 cos(cp - $3))” f 4 f -j$ 

B&“yz, 2) zz 

(-q,lO,-10 - 100r8Fsw~ - 540r6F"iwf - 360r4F4w12 + 20r2~2u~fif 

cos(p- (Fi)(40 rgFgwf f 476r7F7wf + 800r5F5w:' + 260r3F3wf4 - 16rFw~8)+ 

cos(2(y-- (;i))(-96r8F8wi - 316r6?wf - 260r4F4wf2 - 100r2?2w16 +40t"+ 

cos(3(ct, - $S))(60 r7F7wf + 116r5f5~~0f 36r3F3wi4 -j- 16rFu~")- 

cos(4(p- p))(-24r"@wf - 20r4r4w;2 -+4r27;2w;6)$ 

cos(5(y - $5))4r5F5w:O)/ 

(wf(-r2F2 -0: + 2rCd~cos(p- 9))") 

(-16r7F7w~+184r5F5u$ +128r3r"wio - 8rFwi4+ 

cos(cp - $9(16 r8F8 - 176r6F6w$ - 120r4F4w; - 112r2F20i2 + 8wi6)f 

cosw- P))(40 2 r7F7w2 f 48r5F5w6 2 - 24r3F3wao + 32ri;wi")t 

cos(3(9- d)(-8 r6F6w$ f 8r2F2wi2) sin(p - up)) / 

(r2F2 f w$ - 2rFwz cos(cp - $5))” 
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B&y’(z, 2) = 

(4r2F2 - 4~:) (5r4F4w,4 + 5r2T2wf+ 

cos(p - p)( -4 r5F5wt f 16r3F3wf - 4rGi”)f 

cos(2(cp - (Fj))(P+ - 15r4p4w: - 15r2p2w,S + Gj2)f 

N3(P - F)>(4 r”F5wf -+ 4rTw~“) + cos(4(cp - (p))(r4F4w: + r2F2wf) / 

(r2F2 + to: - 2ri?d,2 cos(p - (Fi))5 

Using these functions, the spline interpolation method has been implemented on a PC 
in the programming language PASCAL. First of all, the matrix A= 

and the vector 

are built up. For solving the linear system of equations, an elimination method with 
pivoting or an orthogonalisation method due to Householder can be used. Several other 
procedures have been tested, but because of the ill conditioned matrices, they turned 
out to be unsuitable. 
With help of the solution vector u, the stresses u, and T can be computed at any point 
ZJ by 

i=l i=l 

i=l i=l 

Testing the program, one observes, that the parameters 01 and w2 have a, strong influ- 
ence on the result. The quality of the interpolation on the inner boundary is essentially 
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determined by ~1, the quality on the outer boundary by ~2. Regarding the residuum 
r‘ = ,-In - b ! it turns out, tha.t the linear system becomes more stable, if the parameters 
WI a.nd wz are chosen close to the boundaries of the circuia,r ring, but tha.t. at t,he same 
time oscillations in f h(> solution functions are increasing. In the reverse case, that means 
with increasing distanct> of the parameters from the boundaries, the solution becomes 
more and more smoot,her, but the system of equations is very instable, and for some 
values WI and ~2~ because of the big residuum, the solution is useless. Consequently, in 
the pra,ct,ice we have to find a compromise between a stable system of linear equations 
with sma.11 residuums on one side, and a. smooth solut.ion on the other side. 

5.3 Examples 

In order t,o assess the qua,lity of the method, in this section we apply it to three examples. 
For 1 2 T 5 2 and 0 5 9 5 2n we define the following biharmonic functions: 

f3(7-, $4 = 7‘.* (xv(p) “- 3 cos”(q7) sii(p)) 1 (5.3.3) 

Applying the opera,tors III’, a.nd Nz! t,he corresponding radial stresses are given by: 

ll,fl(r,cp) = 67‘cos(p)sin2(~) (5.3.4) 

ll,f:&, p) = -6r" cos(4p) 

and the shca.ring st,rcsscs by: 

(5.3.6) 

B,ft( r, p) = (jr co?(p) sin(p) (5.3.7) 

12 cosj4$9) 
112fi~(I‘.c') = - 

ti sin( 3~) - _l_--l 
1‘3 +< (5.3.8) 

H:,f:3(r, p) = 3r” (sin(2p) + 2 sin(49)) ” (53.9) 

These stresses havt~ been evalua,ted at 71 equidista.nt distributed points on the circles 
given by 11:r11 = r1 = 1 and I~T(] = ?‘(I = 2 t,o get some int,c>rpolation values. After that, 
the interpolation functions have been computed with several pazameters WI and ~2. As 
kernel functio,ns the sequences Q(I) = (I(~) = (I wit,h CJ,?, = I for n = 1,2,3, . . . ha.vc been 
used, which are described in the last, section. Finally the resulting interpolants have 
been compared wit,11 the original functions on a grid T, which was divided in angular 
direction in 27 and in radial direction in 17 points, i.e. on a. grid consisting of a, total 
of 459 points. Tables of tht‘ maximum error a.lc shown on that next [)il,gC2S, where the 
following not at ions arc used: 



(5.3.10) 

(5.3.11) 

(5.3.12) 

for the maximum error of the radial stress on the inner boundary, the outer boundary 
a,nd the whole circular ring and 

rta I 
t2 - a:EyF;xnT PzSx(4 - hf(d (5.3.13) 

(5.3.14) 

for the corresponding errors of the shearing stress. 
From the tables can be deduced, that the maximum error occures most times on the 
boundaries, but that there are also some counterexamples as function f;! with wr = 0.4, 
w2 = 7 and n = 35 (cf. table 1). Using more interpolation points (n > 40) didn’t 
improve the result. The reason for this is the mentioned increasing condition number 
of the matrices and the corresponding problem solving the system of linear equations. 

Table 1: error for wr = 0.4 a.nd wg = 7 
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i 

15 20 25 30 35 4n I 

’ ri % 1.15 l.Os 3.23 IO-l4 4.77 lo--” 5.96 10-l’ 1.13 lo-‘8 4.98 lo-l8 
c 1.44 1O-5 1.10 lo-” 5.60 lo-l4 6.50 10-l’ 2.55 10-l’ 7.20 1O-i8 

Table 4: error for w1 = 0.3 and q = 6 

TaBle 5: error for WI = 0.6 and w2 = 5 
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Picture 10: mdia.1 stress for case 1 
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Picture II: radial stress for case 1 
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A possibility to reduce these oscillations is to force the elimina,tion of the stresses at 

the noted places explicitly in the computation. This can be done by adding equations 
of the form 

i=l i=l 

and 

i=l ix.1 

to the N (N = N’ + N” + N”’ $ N”“) equations used rrp to now (cf. page 23). They 
assure that the radial stresses in the points 2, and the shearing stresses in the points n: 
are vanishing. 
With this additional equations the N x N matrix A of the pure interpolation is replaced 
by a M x N matrix 2 with M > N. As the resulting system of linear equa.tions is 
not solvable in general, it is desired to get a, solution as good a,s possible. This means 
for example the minimization of the Euclidean norm of the residuum vec,tor (jb - Aall. 
One way to solve such a, least squaae problem is to apply Householder transformations 
P*, PJ, . . . , PN to the matrix A in order to get the form 

P,P2 .n+.PNA = R - 0 0 ’ 

where R denotes a right upper triangular matrix (c,f. Stoer[lg]). Because the matrices 
P*, Pz, . . . , PN are unitary tra,nsformations, which keep the length ()u[I of a vector 11 
invariant, we get 

where 

1~1 represents the first N and hz the remaining components of h,. Consequently l,be 
norm (lb - Aa(l is minimized, if and only if a is chosen so, that hr is equal to Ra, This 
method has been integrated into the progra,m and the stresses o-f the first example of 
this section ha,ve been computed once more. The distribution of the additionally used 
points (106 for the radial and 226 for the shearing stress) is shown on the next page. 
The undesired oscillations are reduc,ed, as can be taken from the pictures one the pages 
42 and 43, where the newly computed stresses are presented. On the other hand t.his 
method has of course the disa,dvantage, that the errors on the boundaries are bigger 
then before, because the given values aae now a.pproximated and not interpolated. 
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Pictilre 20: mtlial stress for exe 1 

Picture 21: ra.dial stress for case 
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6 Summary 

In this work methods have been developed to compute the stresses in stationary loaIded, 
hydrodynamic journal bearings. In the first paat a special point-SOR-algorithm for 
solving linear complementarity problems, which appear in connection with Reynolds’s 
differential equation, has been described. With help of its implementation the pressure 
distribution in the lubrication fluid can be computed. The program has approved at 

the department of mechanical engineering in Kaiserslautern, the desired results can be 
quickly achieved on any PC. 
The second and main ta,sk of the work was concerned with the computing of the stresses 
in the bearing shell, using the theory of linear elasticity. A solution of the Bi-La,place 
equation ha,s to be found, which has to fulfil1 certain boundary, as well as some addi- 
tionally conditions. Recause of these extra conditions, the problem is not a, boundary 
value problem in the classical sense, and standard methods like series expansions with 
multipoles or fundamental solutions don’t work. The solution method presented here 
uses a Hilbert space in which the extra conditions are fulfilled automatically. The sphne 
interpolation has been choosen instead of a. Fourier method based on the same Hilbert 
space, because it has the advantage, that here the high frequency parts in the solution 
are included, while they a,re neglected otherwise. 
About the practical application one has to remark, that the optimal values for the 
parameters wr and wz have to be found anew for every configuration, that means for 
any radii r; and r,. Because of the sensitivity of the method with rega,rd to these 
parameters, this may be a tricky work. But on the other hand, if parameters for a! con- 
figuration hame been found, they can be used for many different bounda,ry functions, if 
the dimensions of the bearing are constant. A better a,ccuracy of the method may be 
obtained by improving the condition of the matrix, wha,t could be done using kernel 
functions wjth smaller support, so that the number of the essential entries in the matrix 
is reduced. But the construction of such Hilbert spaces will again lead to the problem 
of integrating the extra conditions, which ha,ve to be fulfilled by the solution. 
Finally one has to remark, that the model of a journal bearing described in this work 
is a simplification of the presently in mechanical engineering used bearings. These are 
consisting of several layers of different materials. In this case, for every layer a special 
stress fun&ion has to be used and the boundary conditions have to be replaced by 

some transition conditions. A treatment of this general case was left undone, because 
it would ha,ve broken up the frame of this work. 
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