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Abstract. In this paper, we deal with the problem of computing the
stresses in stationary loaded journal bearings. A method to obtain the
pressure in the lubrication fluid, which is given as a solution of Reynolds’s
differential equation, is presented. Furthermore, using the theory of plain
stress, the stresses in the bearing shell are described by derivatives of bi-
harmonic functions. A spline interpolation method for computing these
functions is developed and an estimate for the error on the boundaries is
presented. Finally the described methods are tested theoretically as well
as with real examples.

Introduction

This paper is concerned with the computation of stresses in stationary loaded, hydro-
dynamic journal bearings. This type of bearing is used, wherever highly loaded axes
have to be rested almost free of friction. Examples are axes in turbines and genera-
tors or crankshafts in combustion engines. The layout of such components with regard
to the permissible stresses and the stability is one of the main tasks during the con-
struction. In order to save time and costs, engineers at the department for mechanical
engineering of the university in Kaiserslautern try to do simulations to compute the
stress distribution in such bearings. Knowing the stresses, they are able to predict the
lifetime and the necessary dimensions of their constructions without testing them in
reality. A contribution to that aim should be given in this work.



The computation of the stresses is divided into two parts. First the pressure in the
lubrication fluid, which consists most times of oil, has to be computed. The necessary
physical principles are well-known. Assumed that the pressure over the thickness of
the lubrication film is constant, it follows the so called Reynolds’s differential equation
(cf. Lang[14]). The resulting free boundary value problem can be transformed into
a linear complementarity problem (cf. Cimatti[2]), which can be solved with a point
SOR-method (cf. Pang[17]). Knowing the pressure distribution in the lubrication fluid,
the stress acting on the inner wall of the bearing shell is known. It is used to solve the
second problem, which is concerned with the calculation of the stresses in the bear-
ing shell. Because the maximum forces appear in the middle of the element, we can
restrict the computation on a section through the bearing, which has the shape of a
circular ring. If the material of the bearing shell is homogeneous and isotropic and if
only small deformations are considered, Hooke's law can be used and the problem can
be solved using the theory of linear elasticity (cf. Goeldner[8]). Mathematically this
leads to the problem of finding a solution of the Bi-Laplace equation AAF =0, from
which the desired stresses can be obtained by applying certain differential operators
(cf. Leipholz[13]).

While in the literature the solutions are only described by Fourier series, where the
coeflicients are obtained by comparison with the coefficients of the series representa-
tions of the boundary functions, in this work the computation will be done with help
of a spline interpolation method (cf. Freeden[5]). Discretly given boundary values are
interpolated in such a way, that the interpolant minimizes a given norm. Because this
norm has some free parameters, it is possible to adapt the interpolation method to the
given problem by choosing special norms. Beside this, there exists another significant
difference between the spline interpolation and the Fourier method, namely the fact,
that in the here used technique all frequencies are represented, whereas otherwise the
series representation is cutted after a certain number of terms and the high frequency
parts are lost.

The paper is organized as follows:

in the first chapter the principle structure and function of the machine element journal
bearing is described. The problem of computing the oil pressure is treated, a solution
method is described and demonstrated on two real examples. In Chapter 2 a short
introduction to theory of linear elasticity is given. The third chapter is concerned with
the main problem of the work, the computation of the stresses in the bearing shell.
It is formulated from a physical, as well as from a mathematical point of view. In
the fourth chapter basic settings and notations for the spline theory are presented,
theorems about the representation of harmonic and biharmonic functions defined on
circular areas are proved, the spline interpolation method is described theoretically and
an estimate for the error on the boundaries is proved. A survey about the practical
aspects of the method is following in the fifth chapter, where the choice of the norm is
discussed, the method is tested with some theoretical examples and it is applied to one
of the real configurations of Chapter 1. Finally a possibility for smoothing the result
by a least square technique is described, where beside the boundary forces some more
informations are used.




1 Hydrodynamic Lubrication

1.1 Description of the Pressure Build-Up

In order to compute the stresses in journal bearings, it is necessary to understand the
principle structure and function of this machine element. The two following pictures
are showing a three-dimensional representation and a section through the middle of
such a bearing.
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Picture 1: three-dimensional representation of a journal bearing
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Picture 2: section through the middle of a journal bearing

Hydrodynamic working journal bearings are used to reduce the friction between two ro-
tating machine parts. As shown in the pictures, oil is pumped into the bearing through
a hole at the top. Due to the rotating journal, the oil is forced to run with high veloc-
ity in angular direction before it leaves the bearing at the endings. By the weight of
the axis and additional outer forces, there is an excentricity between the journal and
the bearing shell, that means that their rotation axes are parallel but don’t coincide.
Because of that, in the narrow gap between the journal and the bearing shell the oil
is compressed and in the stationary case this pressure compensates the forces acting
on the journal. It is ’swimming’ on the lubrication fluid and the friction is drastically
reduced.

In order to compute the stresses in the bearing shell, it is necessary to know the pressure
distribution in the oil, which causes these stresses. As the thickness of the oil film is
very small, the pressure can be assumed to be constant in radial direction. Thus it is a



function defined on the inner side of the bearing shell depending on v and 2, that means

P:[0,27] x [~1,1] - R, (1.1.1)

where the width of the bearing has been transformed on the intervall [~1, 1].
The pressure can be described by the so called Reynolds’s differential equation (cf.
Lang[14]):

d ol DN\?* 0 on oH
.[3___> (..) - ( 3__> =6 — 1.1.2
D (1 D + B/ 0z a 0z 0 do ( )
where the following notations have been used: Il = Pn ‘f}zy for the pressure index,
H= R’ir =1+ ecos(¢) for the relative height of the gap, ¥ = RI;T the relative bearing

e
R—r

the inner diameter of the bearing shell, B the width of the bearing, » the radius of the

clearance, € = the relative excentricity, R the inner radius of the bearing shell, D
journal , 7 the viscosity of the lubrication fluid, w the effective angular velocity and e
the excentricity. "

If 11 is replaced by I = IIH %, we get another form of Reynolds’s differential equation,
namely:

0% —  (D\? 9* .. _
aﬁn t <7§> Fazll ta(@ll+b(p) = 0 (1.1.3)
cos(p) — €2 2 2
with a(p) = g_ 2¢co (g)+€cot(?03 );:os(so)
(1.1.4)
6esin(¢p)
d b = ——
" () (1 + ecos(p))2
(1.1.5)

In order to compute the pressure distribution we have to solve this differential equation,
where the solution has to fulfill the following conditions:

L. P(p,£1)=0 Ve e R

2. P(p,z) = P(p+ 27, 2) Voe R,z¢€[~1,1]

3. (.%P(go, 2) lpma(zy = P(©:2) lymp(y = 0 for a regular curve ¢(z)
4. P(g,2) >0 Voe R, z€[~1,1]

A complete derivation of this problem can be found in the book of Lang[14], with the
only difference that he used the condition

P0,2)=0 Vze[-1,1] (1.1.6)




instead of the periodicity in angular direction. The condition was changed in this work,
because equation (1.1.6) (‘zm" be p‘rqummd without loss of generality, and therefore
this condition is not representing the most general case.

To solve the problem, a molhnd due to Christoffersen can be used (ef. Cimatti[2]).
Coming f‘m'm a finite difference scheme, we have to solve a linear complementarity
problem of the form:

hddp > 0 (1.1.7)

po> 0 (1.1.8)

P4 Ap) = 0, (1.1.9)

where A is the matrix and b the "ig‘]xt hand side of the difference scheme, and the vector
porepresents the pressure valn the grid points. This problem can be solved with
a modified point-SOR-method (ﬁi(‘t'. Pang[17]). The vector p is computed iteratively by

the following iteration scheme;

1.10)

1o IS

pt = a0, pF o - by (1.1.11)

-

where ©
A, it s only necessary to store the diagonal of A. The other not vanishing entries

are limited to a few constants, which will be used directly by the specially developed
k41

(0,2) 05 a free parameter. Because of the special structure of the matrix

algorithm. The iteration is stopped, il the difference between two vectors p* and p
in the infinity-norm is less than a given number e,

1.2 Examples

I this section, the above described method for computing the pressure distribution in
a stationary loaded journal bearing will be applied to the real configurations given by:

) we=2000 e=08, W =000l £=1.0
b) w = e=06, W=0001, 2=08

The computation was done with the following parameters:

The grid for the finite difference scheme was divided in angular direction into sixty and
m radial divection into forty equidistant intervals, the parameter & was set to 1.8. The
computation was done with a machine accuracy of 1071 and the iteration was stopped,
it the difference befween two pressure vectors in the infinity- Bt was
less than 1071 The resulting pressure distributions are illustrated on the next pages
as three-dimensional plots as well as contonr plots. The results were used in the further

work as bonndary values for computing the stresses in the bearing shell.
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2 Basic Theory of Linear Elasticity

Linear elasticity is concerned with the deformations of solids under the influence of
inner and outer forces. For simplicity we presume, that the material of the body is
homogeneous and isotropic, and that only small deformations are considered.

In this chapter some basic results of linear elasticity are given, which will be used in
this work. For a detailed explanation see the books of Leipholz[13] or Goeldner[8].

If a body is rested without motion, the sum of all acting forces has to be zero. Hence,
if no outer forces are occuring, the so called equilibrium conditions

0 1o 0 by +lpp
o trr + y o Iry + 3 bps = 0 (2.1)
ij 10 i} 2ty ‘
57: t,r@ 4+ ; 5;—9 t(/JSO -+ 5;: th - =0 (22)
i3} J d by .
ar tpy -+ 5—9; lys + s tar -+ el 0 (2.3)

can be deduced, where t denote the stresses. Analising the displacements v, the distor-
tions € and the angular deformations v, the following geometric relations can be shown:

0 ) 12 J Vip ;
i (24) e = Tgp it ey (0
v L0 i 19
Qp == —7:‘— 4 -7*: —6*;; ?)@ (25) sz = éwZ“ 'U(p w{» '; 5“(; Vy (28)
0 o 0 0 .
& = - (2.6) Yo = o + 5 Vs (2.9)

which are connected with the equilibrium conditions by Hooke’s law:

1 ‘ 1 :

& = 77—(0@ - vioc,+0;))  (2.10) Yo = G Tre (2.13)
1 . 1 o

Cp = E(UW ~v(oy +o02))  (2.11) Yoz = T Tes (2.14)
1 1

€ = E(UZ —v(o,+0y)) (2.12) Yor = G T (2.15)

E denotes the modulus of elasticity, G = 55%57 the shear modulus and v the number
of lateral deformation. It is possible to determine the elastic state of a body with this
fifteen equations, but it can be shown, that in-some cases the number of unknowns and
equations can be reduced. This leads to the theory of plain stress, which is charac-
terised by the assumption that o,, 7., and 7, are identically zero, and that the other
components are independent of z. This can be assumed if the body has the shape of
a thin plate and the forces are acting only at the boundaries, parallel to the plate, as
shown in Picture 7. In this case the system of equations can be simplified, and we have
to solve the following equations:

0 1 0 Op = Oy
— o DR Su - | 2.16
{)TUT+T (9(,0TW+ T ( )
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Picture 7: forces in the case of plain stress

Given the functions o, and 7, on the boundaries, it can be proved that this sys-
tem has a unique solution. To find this solution, a so called Airy stress function F 1s
introduced by the following equations:

1o 1 0°
— TR AR B - 2.24
7 (7* ar + r2 8(,92> 4 ( )
{)2 al G rs r
(Tw = 5"‘3 l (ZZJ)

a /1 9

Rl HESC=rl L N 2.26
Tre Jar (r dy l) ( )

It is easy to see, that these equations fulfill the equilibrium conditions identically. In
view of Hooke’s law and the geometric conditions, it can be shown that I has to be
bitharmonic, that means:

AAF = 0. (2.27)




Consequently the elastic state of a body can be determined by solving the following
problem: Find a solution F' of the Bi-Laplace equation, from which the stress functions
can be obtained by equations (2.24) to (2.26) and the distortions and displacements by
equations (2.18) to (2.23). If the functions o, and 7., are given on the boundaries, the
solution of this problem is not unique. To achieve unigeness it is necessary, that every
function of the elastic state is 27-periodic and that the angular deformations v, given
by equation (2.20) and (2.23) are the same.

3 Formulation of the Problem

3.1 Physical Formulation of the Problem

The theory of plane stress, mentioned in the last chapter, is now used in order to
compute the stresses in the shell of a journal bearing. The shell has the shape of
a thick-walled pipe and in the easiest case it counsists of a single homogeneous and
isotropic material. From the pressure distribution of the oil, which is given by the
solution of Reynolds’s differential equation, as shown in Chapter 1, the normal resp.
the radial stress o, at the inner side of the bearing shell is known. The shearing stress
T = Tr, at the inner side is zero, because the adherence of the oil at the surface can be
neglected. The stresses at the outer side of the bearing are unknown. Sometimes these
stresses are set to zero, in other papers a linear dependence to the stresses at the inner
side is used, that means 7(ry, )= 0 and o, (ry, )= c o(r;, ), with a constant c.
From the pressure distribution in the oil it can be deduced, that the maximum forces
appear in the middle of the bearing. Therefore in order to estimate the stress in the
bearing shell, it is sufficient. to compute the stresses in a section through the middle
of the machine element. Such a section is shown in the following picture, where the
distribution of the oil pressure is illustrated with arrows.

Picture 8: distribution of the oil pressure

Because of the symmetric form of the bearing, the stresses vanish in axial direction
and the requirements for using the plain stress theory are fulfilled. The stresses can be
derived from a solution F of the Bi-Laplace equation AAF = 0, where the resulting
stresses o, and 7 have to fulfill the above described boundary conditions.

10




3.2 Mathematical Formulation of the Problem

Let 7; and 7, be two positive and real numbers greater than zero with »; < r,. Let
the circles I',, and I';, be defined by

[, ={e e R*, |z[|=r) and ={ze R, |z| =7}, (3.2.1)

the circular ring £ by
Q={zec R, < lz]] < 74}, (3.2.2)
and the operators By and By by
R L OF 1 9*F
WE(r o) = = —(r , 3.2.3
Bl (7»5’) roor (7790)+72 ()992( 5") ( )
and 9 | o1
. L oF 1 OF
SE(r. o) = o — 3.2.4
By (1, ) r Ordg (r ) + 2 de (%) ( )

for any sufficiently often differentiable function /' : Q — R.

Further let o0m9(z) , 7092, at(2") and 709(27") be some known values

from the unknown functions o9 00 ' s R and o0, 79 T\, — R with
LeX'cTly,efe X"l , o/ e X" CT,, and &€ X" CT,, for some fini-

te sets X/, X", X" and X" of points.

Our task is to find an approximation Sy of a function F': @ — R, with:
L. AAF =0 in §
2. B1I‘.’|pri = glnt) N

Py = O,(e.rr) , ‘BZI;A’IIV‘YY - T(im) ; BQ]’ ll“ - wrt)

Ta
3. I fulfills the conditions of 2r-periodicity and of unique angular deformations.

The function Sy should be biharmonic, it should deliver unique angular deformations
and 2x-periodic functions and it should interpolate the boundary values:

11

BiSx(z;) = o"9(a;) Vo, e X' By Sx(z;) = o (x;) Va;
l;zb‘}((fl:j) = T“""”(IJ‘) Va; ¢ X" ng\ T 7) ”) ) VZL‘»;]' - Gl

451

4 The Spline Interpolation Method

4.1 Basic Settings and Notations

Let 2 and Z be points of the two-dimensional Fuclidean space. In cylindrical coordinates
they have the representations:

= (v cos(y), r sin(p))’ (4.1.1)

and
&= (¥ cos(@), i sin(@)) . (4.1.2)



For simplicity in the sequel the cartesian as well as the cylindrical coordinates will be
used. As usual every polynomial P, : R? — R of the form

Pu(z) = Y cpa® (4.1.3)

[o]=n

is called homogeneous polynomial of degree n. a = (ay, a;)" denotes a multiindex, that
means a pair of non-negative integers al and ay. [a] = @y + @y is the absolute value of
the multiindex and z% is defined by 2 = 2! 232.
Obviously the set of monomials of degree n is a basis for the space of homogeneous
polynomials of degree n. The number of such monomials is precisely the number of
ways a pair of numbers oy and a3 can be chosen with [a] = n, namely n + 1.

In the last chapter the Laplace operator A was introduced. In cartesian coordinates it
has the representation:

0? 0?

D=gt g (4.1.4)

in cylindrical coordinates:

2 149 19 82 19 1 .,
S TR A R A R (4:1.5)

where A* = 92 /0¢? defines the Beltrami-operator of the unit circle. We say a homoge-
neous polynomial P, is harmonic, if it fulfills Laplace’s differential equation AP, =0.
The restriction of a harmonic polynomial of degree n to a circle I, is. called circular
function of degree n and is denoted with Y,,, the set of all circular functions of degree
n by V,. As it is well known for n > 0 there exist precisely two linearly independent

circular functions Y,,; and Y, ¢ of degree n. If the system Y, ; is orthonormalized in the
sense:

/nw Yo i(2) de = 6, | (4.1.6)

they have the following representation:

1

2rw
Yii(e) = \/}r—wsm(@) Yia(p) = ’\/jr—wcos(@)

Yo(e) =

Ya(e) = sin2e) Yaay) = == cos(2p)

Yoalp) = —sin(np) Vialp) = = cos(np)

The circular functions of degree n have the property, that they are the infinitely of-
ten differentiable eigenfunctions of the Beltrami-operator A* to the eigenvalues A, =
n? (n=0,1,2,..),ie.

AY () + 02V, (p) =0  Veel0,27],n>0. (4.1.7)
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As it is commonly known, for every n > 0 the Y,,; satisfy the addition theorem

2 :
. 1
37 V(@) Vg (@) = = cos (n(io — ). (4.1.8)
j=1 e
Using the circular functions the outer harmonics HJ. are defined by
o W " (1) - ;
H(r, o) = (—7-> Y (@) for r>a>w, ¢el0,2n], (4.1.9)

where the ),S) are orthonormalized in the sense of £*(T',,). They are dense in the
space of all harmonic functions u which are defined on Q, = {2 € R?, o < ||2]] < o0}
and fulfill some conditions describing the behaviour at infinity. This means for every
€ > 0 there exist coefficients C'¢. and a N = N(€) with

ny

sup |u(z) }:Z(‘,OLJHSI (z)] <e. (4.1.10)

vell, n=0 j

Furthermore, inner harmonics H} . are defined with £*(I',, )-orthonormalized circular

functions Y ' by
3 (r, ):<l>)“km for 7 < B < wy, @cl0,2r]. (4.1.11)
Wy

They are dense in the space of all in Q; = {& € R?, [lz|| < 8} harmonic functions u,
that means for every ¢ > 0 there exist coefficients C},; and a N = N(¢) with

N

sup |u( )“ZZ(” Hm(z <. (4.1.12)

2ELY n=0 3

For the representation of harmonic and biharmonic functions on a circular ring we have
the following theorems:

Theorem.
Let Q= {2 ¢ R?, o < 2| < 3} be acircular ring and F: Q — R a harmonic function.
Then there exist constants 7, (g, Cj”» and 7, such that:
oo 2
Z : A
zwuﬂMm+ZL%m@+ZLqmp (4.1.13)
n=1 y=1 =1 5=1
Proof,
In view of the maximum principle it remains to show the above representation for the
boundaries |z| = « and |¢| = 8. As it is known, the circular functions are dense in the

space of all continuous functions defined on a circle. Thus there are constants d,,; and
€n; such that

oo 2
Flo, @) = Z Z dy; Yo (@) + dy {4.1.14)

n=l g=1

13



and
oo 2

=2 eniYai(9) + o - (4.1.15)

n=1 j3=1

Neglecting orthonormalization constants and comparing the coefficients of the equa-
tions (4.1.13), (4.1.14) and (4.1.15) we obtain:

Cé+C8ln(a) = dy ci +C;;] o :dm-

Ci+C8m(B) = e C"—*‘%ﬂ =i

From these equations the coefficients C§, Cg, C’ and C7; can be uniquely determined.

Theorem.

Let @ = {z € R?, a < |z| < B} be a circular ring and F : @ — R a biharmonic
function. Then there exist harmonic functions f and g as well as constants ¢; and ¢y,
such that

F(z) =1"f(2) + g(z) +

sin(¢) In(r). (4.1.16)

ar cos(p)In(r) + car
£/ T 14 4/ T
Proof.

Because I is biharmonic, AF is harmonic and there exist constants C'5, C'§, C} . and
C; such that

AF(z) = C + CIn(r +ZZC’ H(2) + ZZCZJ HE, (4.1.17)

n=1j5=1 n=1g=1

Replacing r%f(z) by

oo 2
r?f(z) = r2dé + v In(r)d$ + r* (Z > diH( z)+22d0 H 2 ) (4.1.18)
n=15=1 n=1j5=1
we get:
9 cir Col N
l -
AN (r f+g+ mcos(cp)ln(r)-{— msm(gp) n(r))

2
4di + do(41n(r) + 4) + Z Z (44 4n)d} H;;

n=1 j=1
E 33— A 5 cos() 4 2 sin()
— 4n . . C 1 .
oy I e AW S\ T/ 14
Comparison of the coeflicients yields:
YO CO
¢y = 1 w1 Cy = 12 Wiy

2

14




0 ¥ ol
o . Lo o

dy = 1 0= 1
: cr .
dpj = = for m=1,2,3,...
IT dddn 49
: co.
Jt e g s e ) A
dy; = =i for m=2,3,4,...

With these equations the function f and the constants ¢y and ¢y are fixed and
g(z) = F(z) = r2f(z) = eyrcos(@) In(r) — eyrsin(¢) In(r) (4.1.19)

1s a harmonic function.

4.2 Restriction of the Space of Solutions

As mentioned in Chapter 2, the biharmonic solutions of our problem have to deliver
unique angular deformations and 27-periodic functions. Inserting the representation
(4.1.16) in the equations (2.18) to (2.26) we find, that all harmonic functions and all
harmonic functions times r?, apart from 72In(r), which gives no 2r-periodic distor-
tions in angular direction, satisfy these properties. As the functions rcos()In(r) and
rsin(¢)In(r) are in contradiction to the uniqueness of the angular deformation, our
problem has to be solved in the space of all functions F(z) = f(2)+r?g(z), where f(z)
and g(«) are harmonic functions and g(x) consists of non term of the form In(r).

4.3 Spline Interpolation

The purpose of this section is to develop a spline interpolation method, based on the
space described in the last section.

Let ¢ IN—R n+ ¢ and ¢ : IN—R nw ¢ be two positive sequences, which
satisfy for every 0 < s <1 the following inequalities:

O | ot
Z W 5T < oo resp. Z q@ ST (4_3.]‘)
n=1 17 n=1 4n

By QUY,; = ¢PY,; resp. QY. = ¢P'Y,; YnelV, j=1,2, two invariant pseudo-
differential operators Q) and Q® are defined on the circles 'y, resp. 'y, . Further-
more let

1 . ;
- {f e 4 | (2(1)2f S ﬁz(ljfm)} (4.3.2)
and ,
W= A{f el QW f e £3(Ty,)) (4.3.3)

be the spaces of all distributions f for which Q" f resp. Q®* f are square-integrable
with respect to I'y, resp. I'y,. A" and h(® equipped with the inner products

A E e i
(fLg)hm = / QM2 QM gldx (4.3.4)

o



and

1 1
(e = [ 102 711Q* gl (4.3.5)
Ty
define two Sobolev-like Hilbert spaces and it can be easily shown, that a circular func-
tion

F(p) = ZZ i Vi () (4.3.6)

n=1j=1

is in A resp. in ht®, if and only if the constants CF, satisfy

nj

ZZI g < oo resp. EZ;@ 24 < oo, (4.3.7)

n=1 7=1 n=1 j=1

For numerical reasons we will now define separable spaces, based on the Hilbert spaces
R and r®.
Definition.

Let ¢ and ¢ be two sequences with the properties described above and let « and Jéi
be two real numbers with w; < o < 8 < wy. By

oo 2
{Fx> S50 () Ve, asrep Sy ”}
n=1j=1 n=1 j=1
oo 2 2n—2 .
qum( > (B Y3 erra (G Vo)) e
n=1j5=1

Hy = {F(X> Z ZCHJ (8)—1> Y“)(‘P) a<r<f, E chl ay’ < }

n=1 j=1

. & o o\ 26 y
E =3 @ () BYDor,) (@Yo,

H3: {F(X) ZZ(JD] <:) 1(3)(99)7 O’<I‘<ﬁ, ZLCHJ q(2)<00}

n=1j=1 n=1 j=1

2n4-2
Fam = 2% o (2)" (YD @700

n=17=1

H4:{F(X):§Ecnj G;)n Y (p), a<r<p, ZZCmq(”<OO}

n=1j=1 n=1)=1

oo 2 2n+6
(B, = >3 ¢ < ) (B Y ) 2 (GLY) oy

n=1 7=1
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Hs = {I(X) = ag + ajr’ + azln(r), ;€ B, a;< o0, a<r< ﬂ}

2
B =3 ai b
1=20

the spdces Ha, Ha2, Hs, H4 and ‘Hy with their corresponding inner products are defined.
Again }m resp. YS denote the circular functions orthonormalized in the sense of
L3(Ty,) and £3(T,).

It is easy to see, that the h®-norm of a circular function corresponds to the Hy- resp.
the Hg-norm of this function. The same is true for A®-norm and the Has- resp. the

Hs-norm. Furthermore we obtain the following theorem:

Theorem.
H defined by H = Hy & Ha & Hz © Hy & Hs and the inner product
5
(1:17 (?>H = Z('FHi 3 G’Hi)Hia
1=1

where [, and Gy, denote the projections of F' and ( into the space H; is a separable
Hilbert space with the reproducing kernel

Ko =3 5 (2" (2) e (14 55 +

nl]ll“ “1

' 22 =5 (5) e ><;+ifl‘f>

n=1j= 19 2 Wy

+ 14257 £ In(r) In(F) (4.3.8)
Proof.
a) K{x,-)e H:
This follows easily by the representation of the kernel function.

b) (F(). K(x, ) = F(x):

(F(),K(x, ) )H
- s (2T (T () () e @
s 1T @ ,q , T g’ i ™
n,j n',y' in L2(Ty)

’

(@) Y (). v
& Z (n, 7 T n 7 ((f/) ’Il] ( ) +
n'\j [’Q(F"‘)
o\ 28 1 /uy n W 1 o - xr 3
> (:> Z i <—> (T) Y@V (e), Y ()

: r
I 0o £2(Ta)
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TL’ ,’-:
(chpfzj' (%) <;;> Yol @), Yii (@ )) +
' C2(Fa)
wy \ 2 1 /7 \™ /7 \™
2 () (Zv(a;) (&) rere.rse >)
e qn/ 2 EQ(FB)

o FNY v s @)~
(ZCW}, (*) Yo (@), Yy (so)) +
LT p)

o (W 2n+6 1 rN AN , i
24 (%) (Z:ﬁf(a;) (&) rerie Mé?(w)
n n'it Ant £2(Tg)

3J L
F 7: n’ ,,*: 2 2

S (D) (D) vaeee|

gt w2 w2 2

, L2(Tg) |
(a0 + @7 + @ In(m), 1+ %2 4 n(r) In(7),

. &
n (W ; o n
- s () o s e () o

.7 n,J

Yok () v ren (D) vie +

n,7 n,g

ag + a17® 4 azIn(r) = F(z)
¢) [F]< oo YFeH:

Applying Cauchy’s inequality we get:  [F|> = (F(-),K(x,)3, < [[F||4 [IKIS

In view of [|F[|3; < oo, it remains to prove that | K||2 is bounded.

1K1 = (K, Ky =
2
o\ 212 1 w n' w n'
m(?) > (71) (?l) Y)Y (0), YD (2) +
1 nt g q, (Ta)
2
o\ 26 1 fwr\™ fwp\™ r2i2 ) ey
e (G) (Sa () () raengerse)
n',j' n! 1 CQ(FC‘)
2
2n42 n' oy oo
w2 1 T T
(2)<_[;> Z — <;_) <w—) Yﬁ},(ga)Y(,z ,(<P),Y7S)(‘P)> +
n' 3 q, 2 2 CQ(Fﬁ)
2
w 2n4-6 1 P n'! 7 n' 7,2?2 - R
e (5) (@) @) trseserse)
n',5 qn’ 2 2 2 £? (F/i)
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2n 1 2n 4

( )’2 ) l Wi r ( )2

Vi @)+ - < . ) <;;1"> Yo (o) +
L N R

Vi @)+ 3 (w) (-») Y () +

Observing that the circular functions Y, and Y.\, as well as the series

L (o \ 1 (7*)2”
Z <7> and Z @ \ o

(1)
n an n qn

are bounded and that 14+7*+In%(r) < oo for @ < r < G, we have proved that [|K|jy < oo
and consequently |F| is bounded. This is a necessary condition on the space M to be

separable (cf. Davis[3]). B

In view of Section 4.1 and 4.2 we have now a separable Hilbert space ‘H, consisting
of all biharmonic functions, which fulfil the conditions of 27-periodicity and unique
angular deformation.

For simplicity let Ky and K5 be the derivatives of K given by Ki(z,z) = B1K(x,%)
and Ky(z,7) = ByK(x,X), where the operators By and B; are applied to the second
variable z.

Lemma,
For any function F of the Hilbert space H we have the following representations:

BF() = (Ky(2,), F()n (4:8.9)

ByF(z) = (Kaf,), F())n. (4.3.10)

Proof.

The functions Ky(x, &) and Ky(z,Z) can be written as

KNy(z,3) = ;\; qi’) (%)7 <L‘;—l>n ’f-j cos(n(p — @))(—n — 72,2)7?1;; +
Z 5 (2 (42)" L costuto = 2 ==t
Y (&) (5 sremsntom entn-nt o
2r? 4 -;lrz-ln(r)
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Ky(z,2) = i_:l q;}) (ETL)” <%>” — sin(n(p — Lp))(nJrng);E .
5;1 *q—(i;;- (%> n (%>n _;_ sin(n(e = @))(—n(2 - n) + n);r—c;; +
g’: ;‘7% <£;>“ (L%)n =z sin(n(p - @))(n - nz)m +

With these representations it is easy to see that the functions are elements of the Hilbert
space H. In view of

x T ;
N W Wy, 1 2

BEE) = L0 (F) Y@ Hn -
B (91)" oy L 2
By (T ey L 2
0 () Y@=t
>k (L) Y20+ n -+
R i A 2

1
a12+a2;_—5
and

00 - w mn _

BaF(@) = 30 (L) V9@t a)-1 +
n=1
e wi\" 1
>0l (1) Y@ g (on -1 4
n=1 1
>l (L) v @ k- w1y +
gt nj Wy njg fZ
B (TN v L ey
;Cﬂ'] <w2> Yn] (‘P) %( n TI,)( 1) )

the proof follows easily by a simple calculation. B

In the sequel we use K{**9 resp. K% for the outer and K™ resp. K™ for the inner
q 1 p. £y 1 p. Ity
part of Ky resp. K,. In detail this means:

(int <1 r\"/ 7\ 1 _ 1
K = 3 (5) (L) Feostote - )n—n) =+

n=1 Qn LU2 CU2

g | r\"*/ F\" r? 1
Ty Ly o — 24 n — n2)——

Yo (5) () Seostato-enean -+
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2
e ¢] —
: 1 r\"/r
- £
T,Z;:qﬁf) wy /) \wy
L)
n=1 (151,2) Wy W2
1 - (1) r F
n=1 qn
i}L(;Y(;>
n=1 q’gll) r T
Koo = 3 L@y e
2 - AN 7
n=1 In

i sin(n(p = @))(=n? = n)—
T gy 1
> cos(n(p — @))(2=n - n°)—

L sin(n(p = @)(n? —n)—
Wy

Using these notations we define spline functions as follows:

Definition.

Llet X =(efel,, i=l..N:

4

N .l P
.’Li 617\" l-‘l.ﬁ,

TR e ATt
el e=1,...,N";

Her al Fo—
e el ye=1,...,

be a system of points. X is called admissible, if the matrix

(B K (5l
(B Ix('”) (z! ,m
]l

L >,.
")

(B ]\% ’”t) Lt

(B Ko (o o ))

|

),
) )
iy

<B2[\(‘—‘“ L ’am/>
I

ji

Is invertible.

2. A function of the form

(Bv ]\-’(i"t)(fl:(”,njj))
(nxt) /
(ot )
(Bl[ ('"‘)(xm ) ;//)

([32[‘5'"‘)(1:;!4’ x}/”)

gt
g
))ji

It

N N
: " \ .
S(z) = Z ; [s et ) + Za”] “m
=1 i=1
]\]/H N’I/I

2 :(l-;",}(gm” m
1==1

«-~sm(n(<p @))(n— 71‘)’)--- +

1
Wy

]. « 1
= cos(n(p = @))(=n = n')——+

V%1

Tl

L. _ oy 1
= sin(n{e = @))(n+n );;_;. +

T

"o,
SN

Nm/}

<B‘1\ mt)( o
B, I\(‘”t) R

. l

(B 1\("’")(1 -

(B h('"t) ml nu)

L)+

+ Z (1"”1 mr) /m .’I?)

(4.3.11)
(4.3.12)

(4.3.13)

),
),
),

j!

J
m

7%

(4.3.15)

is called spline function with respect to X. 'Ihe space of all spline functions with

respect to X is denoted by Sx.
For spline functions we obtain:
Lemma.

Let & ¢ &Sy and F ¢
and a outer space part Flet),

]\Il

(S = S E )+ Y

i=1

H. Furthermore let I be splitted into a inner space part F
Then we have:

z) +

D(int)



N/N NIIII

Za?’BIF(Mt)(fE%’,) + Z a;"l,BQF(irlt)(III;-'I’) ’ (4316)
— =1
Proof.
N
0 = (D)4 Sk
N N
Zamlv('nt)(xm + Z a;l“]"(mt)( nn ) F()
=1 H
N
— Z(I (]r(efct) X ) + Z " (IV(FTt) ) 1«( ))'H +
N"' N””

Zam( K™ (22, F(+) ) + Za”"( K§™(i",), F(- ))

NI NN
= Y @B P (2)) + ) al B e (af) +

=1 i=1

NIII . NII/I .

Z a;//B1 F(;nt)(m;//) + Z a;;”’BQF(mt)(.’E;I")

i=1 =1

||
As usual for a system of points X the set of all interpolants Zx is defined by
Ix ={F € H mit B F(z})= af‘”') fore=1,...,N’
ByF(z!) =" fori=1,...,N"
() ’ (4.3.17)

BiF(z!") = o™  fori=1,...,N"
ByF(a!™) = 7™ fori=1,...,N"™},

with given real numbers g{'"™", 700 gleet) ple=n),

7
1 ’ 7 L4
exists a unique interpolant in the space Sy.

As shown in the next lemma, there

Lemma. 7

Let X be an admissible system, Zx the set of all interpolants and Sx the space of all
spline functions relative to X. Then there exists a unique Sy € Ix N Sx.

Proof.

Every spline function contains a total of N = N' 4+ N” + N" 4+ N"" free coeflicients.
We have N’ conditions of the form

N N
BiSx(e}) = Y aiBiK{™ (2,2 + Y afBi K™ (2}, 2)) +
=1 =1
N N
Z a///B I»(:nt) ;//’ CC + Z agmBl I(Snt)(aji-m, ZE;) — O;mt)
=1
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e

N’ conditions of the form

BySx(e)) =

N’ N

ZGB [*(ert ”/ n +Z(L”B ]r(mz)( //)+

N conditions of the form

By Sx (")

N/// NHII
V(mt) s(int) L m 1Y o ae(tnt)

ZamB K ( L 1/ + Z (]H/!B ]‘ r ( I .'I';) - 7_7
=1

]\I NI/

= Y @B K (e al) ) al Bi K (2], 2) +

1=1 =1

N N

Zamb) ]*(ml)( m /n + L (lm,B A*(mt)( ””,IEI'N> . U(cht)

Ty 7 2
1=1 =1

and N"" conditions of the form

BZ ‘/\’( I//I) —

)V)’II
Z(ZQB?}(]QM)([';' L + Z(l”f)) K (ert)(l, I}W) +
=1 =1
]\V'/l NIIII
. o (int) N " 1 r(int) s 2 = (ext)
X ot B a) + 3 Bk et ) = 7}

These conditions can be written in the form of a system of linear equations Aa = b
with a coefficient matrix A =

(BII\'('}‘”)(Q:’»,@' ))
<B K (g LJ))

It

It

ByEL) (2l i)
! Ty -
1

(le\(»n :’. 1”")>.
7

and a vector

{int)

b= (o™, ..o

<81] (e m) l‘ ’T > <Bl[\(mt)( oz ) (B1Kgmt)(-’17:/”,1‘;)> '
I g
(Bg[\ P”)(lu © )) (B (mt) m ,‘1 ) (B« I\",(Mt)(a:'-”',ar;-’))
)ﬁ ( i

B11\ m B1Ix ”1“ S 1/)) <B ]\(””) i ity
F ' T
J g

( )
(le\.() xt) !, rm ) <B21\ mt) :u m/ > (le (mt) ””,:v’-’”))
) 7¥ i 3

(int) int (int) (ext (ext) -(ext) (ext)Nt
TN ,7'{ )"“*UN” y 71 ),,.., N””Tl ""’TN”” .

Because X is an admissible system, the matrix A is invertible and the system of equa-
tions can be solved uniquely.

If for any function G € Iy the set I% is defined by

1% = {F ¢ H with

1}11“ (tnt) .I;) s
) =

13

BiGO™(at)  ByFCes(a)) = BiGU™(2))  Vi=1,..., N’

B("”‘”( ') BoFem(al) = ByGe(af)  Vi=1,..., N

Bll“‘”’ 2y = ByGOro(aty By Fem () = ByGetO(z) Yi=1,...,N"
B Funt\ lmr) — B (mnt}( /m) HZF(»N)( ////) . [)) (v(fn]( NH) v1 — 1’ o N”“},

(
mﬂ(r

(.

(
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we obtain the following lemmata:

Lemma.

Let Sx be the unique interpolating spline
I)S(x. Then we get:

Proof.
1FI13 = (F(), F())y

(l

(5x() =

and F any interpolating function of the space

(Sx = F,Sx)n = (4.3.18)
Proof.
N’ N’
(Sx = F,Sx)n = Y ai(Sx (), K{™ ek )n = Y al(F(-), K™ (2l ))n +
=1 1=1
NI/ NII
Z a;’(SX Ixéc“) % ’ Z CL"(F I(émt)(fvi',y ))'H +
=1
N N"'
Zam I((mt) m Zam F( [‘(mt)( ;//’ ))H+
N!HI N/III
Z a//// X() [1(mt) :m’ Ea/m F( I((mt)( 1 ))'H
=1
= Z(L Bls(en ’ ZG/BF(mt) +‘
=1
N N”
Z(L”B S(emt) ZG”B F(m::)( n)+
=1 1=1
NIII NIII
ZamB S(mt m ZO,I“B F(mt)( m)+
i=1
N/IH NIIH
Z am/B S(mt) m/ Z G,”HB F(;nt)(mlﬂl —
121 =1
Lemma.
Let Sx and F be defined as above. Then: [|F||}, = ||Sx||?

(Sx() = F()), Sx() = (Sx () = F())x

= (5x(),9x( )y + (Sx () = (), 9x() = F())n
= NISx I+ [15x ~ Fli3 -
Summarizing our results we find the following theorem:
Theorem.
The spline interpolation problem: Find a function Sx € Tx N Sx with
15xll% = inf |Flin (4.3.19)
eTyX

X

is well-posed in the sense that its solution exists, is unique and depends continuously

on the given data.
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For this solution an estimate for the error on the boundaries I',, and [',, can be proved.
[} a

Lemma.

Let X be an admissible system and Sy € Zx NSy the solution of the spline interpolation
problem with the interpolation values:

int) oo ; .
o fori=1,...,N' ri(””) for2=1,...,N"
cr,i»”"r') fori=1,...,N" ; 7 fori=1,...,N".

- o - Sx
For any F' € 7" we have:

sup |ByF(2) = By Sx(2)| < AvV0 || Flln (4.3.20)
z €T, resp. Ty,
sup | BaF(2) = BySx(z)) < gV (| Flln (4.3.21)
z €Iy, resp. I“',\‘
with
f = max min | ~ @] , (4.3.22)
e e
L i\ L ==t pR(2-n—n?)
Ay = 8; <:]"g§ (T) ;;—1“ < 2 + o +
2n _n2 274 R 2
_]_<_7:_> 1 (n-n +7‘(2+7: n®) (4.3.23)
¢t \wo Twy 72 wy
and
, R R L N O N e )
noe Py (‘r () = ( )t
1
2

. (4.3.24)

1 ( r >2“ 1 [n-n? N r?(—n—n?)
g \w2 Ty r? w3

where ¢ € [0,27] and ¢ is the angle corresponding to a point Z of X', X", X" resp.
X" depending on the boundary operator.

Proof.

For any = € ', resp. T, we get:
By F(2) = BiSx(a)] = | By F(z) = ByF() + By Sx(#) ~ By Sx(2))
< ey ) = B () POy L+ TR (250) = K@), Sx () |
< (B, ) = Ki(#,0), Koz, ) = Ka (&, Ve |2 (1% e+ 1F )

where the point & € X' resp. X" is chosen such that |¢ — ¢| < 6.

As |

Sxlln < | Fl|#, we obtain:

|B1E(2) = BiSx(a)] <2|Kq(z,2) = 2K(2,2) + [\-1(57,:;3)‘%”1;1“}{ .

25
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The proof of the first estimate follows by observing

|Ky(z,2) - 2Ky (z,%) + K1(2,2)|

> 2(1 = cos(n(e — $)) %(ﬂ)Qn ﬂ_l (“n—~n2+ TZ(Q—ZMTLQ)>)+

Il

n=1 g’ \ T wi r? wi
L /7 \™ 1 [n-~n? 7%2+4n—n?
2(1 - =
Z cos(n(p — ) ( = (=) ( e

(AN

20

L S\ L [—n—n?  rY(2-n-n?)
FORWS ;7 t 4
¢\ Twy T W]

1 (7‘)2" I (n—-n? 724 n-n?
el Two 2T w;

where |1 — cos(n(e — @))| < |n(p — @)| is used. The second estimate can be shown
analogously. B

5 Application

In this chapter a solution of the boundary value problem described in Section 3.2 will
be computed using the spline interpolation method presented in the last chapter. First
of all we have to choose a Hilbert space ‘H with an associated inner product (-,-)x.

5.1 Choice of the Norm

The inner product (-,-)y of the space H is defined by the sequences ¢*) and ¢®, as
well as by the free parameters wy and w,. From the theoretical point of view one
may assume, that for every admissible wy, wq, ¢V and ¢® the desired result can be
achieved, because the absolute error on the boundaries tends to zero as the number
of interpolation points increases. From a practical point of view, that means from
numerical reasons, the result depends essentially on the choice of the norm. This leads
to the problem to adapt the norm to the physical problem. For example, in view of

32

2 L
w i = 5

Yo, (5.1.1)
the sequence ¢ with ¢, = n? for n € IN symbolizes the negative derivative of a func-
tion. As this is a measure for the curvature of the belonging curve, by the norm-
minimalisation-property of the spline interpolation, the integral over the second deriva-
tive, i.e. the total curvature, is minimized.

Another important criterion, which should be used for choosing the sequences ¢*) and
q® should be, that the kernel functions

Keen) = 33 (D) (2) vaenien <1+£)+

n=1j= 1(1n

14+ 7272 4 In(r) In(7) (5.1.2)

26




and

Ko, 3) = 305 b () () v ye < ' -f;i)‘«)

n=1 5=1 n 7 ! 1

can be repnwonfcd as elementary fun ctiorm This is the case for the sequences ¢;, = n,
gn = 1/n, g, = n! and ¢, = 1 forall n € IV. The first sequence gives the representation

" 1 P2 ri 72
K2,z - In {1 - 2— cos(p — @ L +
(e, k) Sroon ( + s 2 cos( )) ( + ot

i

| 1 3 e
A_v(g,xt)(m’i) — ,..:2*_»«-——- In <1 + ;‘Z‘;‘: - Zil——L(OS((rQ - )) (l +- 7w? ) )

1

the second one

‘ | ((os((,: - @)+ T(os(
K9(a2,8) = —

2 (142——(0&(30~<,5) -7;—L)“)

L+ 727 4 In(r) In(7)

4 '2 ) «
. 1 cos + 5 cos(p — @) — 27L) r2y?
KU (z, 3 = ( - w 2 o8 (::’ Sl VU sl I
T (1~ )"L cos(p — @) + 2k )* 1

the third one

B el e (B 252
crimt) s = I Sxcos(e—p) r¥ Py
K92, 2) = ———e cos | —sin(@ ~ @) + |+
2 w
2

T wz

.
@

P4 () In(F)

1« . w? P2F2
K (2, 7) = = = cos | Lgin(p - @) | [ 1+ —
/ Wy T wi

and the fourth one

| 1 - %icos(cp - ) 252
KO(2,3) = —— R 1+ )
Twy 1 4 - r 275 cos(p — @)
U?_

+ In(r) In(7)

e 1 - i cos(ip -~ @ Pyt
KO 7) = Al 2(& o) (1 + I )

non] wt Tt
UL b ok - 2=k cos(p — @)

|3
-



Of course it is also possible to use other sequences. In this case it is necessary to abort
the series representation after a sufficiently big number of terms, what results in an
inevitable error. Furthermore, because of the enormous work for computing the kernel
functions, one has to put up with long running times of the program. For this reasons
it is better to work with kernels, which can be represented by elementary functions.

5.2 Implementation of the Method

The necessary derivatives have been computed with the programming package Mathe-
matica. In the case ¢{) =¢{? =1 Vn € IN we obtain the following functions:

B K™ (2,%) =
(—1407575%w3 + 407474ws + 1207272012 + 4wib4
cos(p — @) 76777 w2 — 140r373wi0 — 56riwlt)+
cos(2(¢p — @))(—16r878 4 84785603 + 1407474 w8 — 207272012 + 4wi®)+
cos(3(p = @))(—20r"F w? — 84r°75w§ — 44r3F3wI0 4 1677w+
cos(4(p — @))(167°75w] + 20r*71ws + 4r?7%w]?)—
cos(5(y — @))4r5Fws) /(r3r? + wd ~ 2r7w3 cos(¢ — 3))° + 4 + ;2%5

BiK{™(2,%) =
(—4719710 — 1007878w] — 54078750 — 360r174w]? + 20r272w 164
cos(p — @) (407w} + 4767777 w? + 800r57°w 10 + 2607 3wl — 1677018+

)

(

cos(2(¢ — @) —96r8780 4 — 3167%7%w 8~260T4 Fiw 12 — 1007272 16+4w20+

cos(3(¢ — @)

?))
)

(-

(60777 w$ + 1167°7wi® 4 3637wl +- 1677w %)~
— )=

cos(5( — ¢))4rSFwl?) /

= 2475780 — 200474 w12 4 422 20184

(=727 — wi + 2rFw? cos(p — ?))°)

B1K§™(2,7) =
(=16777 w3 + 1847°75w§ + 128737%w]10 — §riwld4
cos(ip — @)(16r878 — 1767575w] — 120r474wh — 112r272w1? + 8wl)+
cos(2(p — @))(40r" 7T w2 + 487%F5w§ — 24r373wI0 4 32r7wlt)+
cos(3(ip = @))(—8r°7°wj + 8riF?wy?) sin( — @) /

(P22 + wi — 2riwd cos(p — @))°
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By K™ (2,2) =
(16777 wE — 184757°w§ — 128r373w10 4 8rrwlt4
cos(p — @) (= 167878 + 17600700 + 120047408 + 112027207 — 8wl6)+
cos(2(p — @N(=40rTF7w? — 487r°F%w] 4 247373010 — 32rrLl )4
053¢ — (80w — 872l sin(p — )/

(r27? + wi — 2riw? cos(p — ¢))°

BoK{™(2,2) =
(16777 w? ~ 184r°7°w8 — 1281373wl0 + 8rrw)t+
cos(p — @)= 167878 4 176757008 4+ 1200474w8 + 1127237 2w]? — 8w]®)+
cos(2( — N(=4077F w2 — 487575w5 4+ 247373010 — 32r7wit)+
cos(3(¢p — @) (8r07%w] — 8r*F2wi?) sin(yp — @) /

(TQi:Z + wg — 27”}(_,05 COS((,Q - LF))V)

By K\ (2, 2) =
(= 16777 7w? + 1847°7%wf + 128737 3w]® — 8riw]*+
cos(ip = @) 16787 — 176757501 — 120r474w8 = 1120%7720w]% + 8w]®)+
cos(2(¢ — B)(A0rTFTwE 4+ 48957505 — 247373010 4 Bariw] )+
cos(3(¢ — @)(=8r%70wi + 8272wl %) sin( ~ @) /

('.,"2;2 + (_,_,‘11 — ‘27*?“@‘? (‘,()S(iﬁ - ‘;7))%

By ]\'%‘"”(37,5‘) =

(4r?7? — dwd) (5riitwd + Sririwi+

cos(p — @)(~=4r°Fiw? 4 16r973ws — drrwlf)+

cos(2(w — PN (r%% — 15riFtwd — 15727208 + wih)+

cos(3(p = )N (4r°r0wi + driwy”) 4 cos(4(p — @) (r'Ftwy + rirtwy) /
2

(=122 — wd 4 20702 cos(p — ))°



By K™ (2, %) =
(47202 — 4w}) (5riFtof + 5r2rtwl+
cos(p — @)(—4r®rwi + 167373 wf — driwl®)+
cos(2(p — @) (r67° — 157170t — 15727208 + wi?)+
cos(3(¢p ~ @))(dr*rPwi + 4riw]®) + cos(d(p ~ @))(r'Ftw] + r¥7wf) /
(r2r? + w} — 2rrw? cos(p — @))°

Using these functions, the spline interpolation method has been implemented on a PC
in the programming language PASCAL. First of all, the matrix A=

(BkiGsn) (BRI E) (Bm“"’)(x"' 0) (Blzw"” 7,2

Jt I It ];

(o) (o ton) (k) ()
It It It

(B K(e“)(n;:, //1)) ) (B1I\’£Mt)(rtc',m;-”)) (B k('m)(:z:”' /n)) (B [\('”t)(lm/ m)
a I )

(B Ix(”t)( ;//r)) (szfgemf)(‘,v:/7 a:;'”)) (B Ix('m)(a,"' un
J¥ ‘

7t

7

7t )]I
(B A(mt) it m/)

gt I

and the vector

(ext) (ert) (Mct) t

. (int) (int) (tnt) (tnt) (ertt)
b—(O’l -~ 1 g e N””l ""N“” 3

N s e, O O

are built up. For solving the linear system of equations, an elimination method with
pivoting or an orthogonalisation method due to Householder can be used. Several other
procedures have been tested, but because of the ill conditioned matrices, they turned
out to be unsuitable.

With help of the solution vector @, the stresses o, and 7 can be computed at any point
x by

NI
ECL B I'(r"t! 7 +Z(L”B Ir(ert) ./’$)+
=1
N N
> alBiE{™ (2 2)+ Y af By Ky (2], @) (5.2.1)
=1 =1
and
NII
r(z) = Ea BoK{™(zhz) + Y af ByK ™ (], ) +
1=1
N , Nt
Za;//BZI(gcnt)( " .'I?) + E a////B Ir(mt)( ’/L//I’x)‘ (522)
=1 i=1

Testing the program, one observes, that the parameters wy and wy have a strong influ-
ence on the result. The quality of the interpolation on the inner boundary is essentially
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determined by wq, the quality on the outer boundary by w,. Regarding the residuum
r = Aa—b, it turns out, that the linear system becomes more stable, if the parameters
wy and wy are chosen close to the boundaries of the circular ring, but that at the same
time oscillations in the solution functions are increasing. In the reverse case, that means
with increasing distance of the parameters from the boundaries, the solution becomes
more and more smoother, but the system of equations is very instable, and for some
values wy and w,, because of the big residuum, the solution is useless. Consequently, in
the practice we have to find a compromise between a stable system of linear equations
with small residuums on one side, and a smooth solution on the other side.

5.3 Examples

In order to assess the quality of the method, in this section we apply it to three examples.
For 1 <r <2and 0 < ¢ < 2n we define the following biharmonic functions:

filrye) = rPeos®(p) (5.3.1)

sin(dg)  cos(3 ‘
iy = Sl ot 532
fa(ryp) = o (cos(cp)w 3(:032(99)sir12(c,9)>. (5.3.3)

Applying the operators By and By, the corresponding radial stresses are given by:

Bifi(r,) = 67cos(e)sin(e) (5.3.4)
v 10 cos(3 18 sin(4¢) .

Bifa(rye) = - 7‘3( o) ,,«1( (5.3.5)

By fa(r,p) = —6r2cos(4¢p) (5.3.6)

and the shearing stresses by:

Bafi(r,) = 6rcos*(e)sin(e) (5.3.7)
Boa(rg) = 2eie) bointde) (5.3.8)
Byfs(rye) = 3r%(sin(2p) 4+ 2sin(4e)) . (5.3.9)

These stresses have been evaluated at n equidistant distributed points on the circles
given by ||z]| = r; = 1 and ||z|] = r, = 2 to get some interpolation values. After that,
the interpolation functions have been computed with several parameters wy and wy. As
kernel functions the sequences ¢'* = ¢'¥) = ¢ with ¢, = 1 for n = 1,2,3,... have been
used, which are described in the last section. Finally the resulting interpolants have
been compared with the original functions on a grid T, which was divided in angular
direction in 27 and in radial direction in 17 points, i.e. on a grid consisting of a total
of 459 points. Tables of the maximum error are shown on the next pages, where the
following notations are used:




FTCL

a™ = max [BiSx(e) = Bif(o)] (5.3.10)
I-‘ri -

o=, xRS (@)~ Bif(e)| (5.3.11)

= max, [BiSx(a) = By f(x) (5.3.12)

for the maximum error of the radial stress on the inner boundary, the outer boundary
and the whole circular ring and

FTG.

= - <
€= max  |BaSx(e) = Byf(z)| (5.3.13)
_rri — : — 5
@" = max |BySx(z)~ Byf(s)| (5.3.14)
¢ = max_|BySx(z) - Baf(x) (5.3.15)

for the corresponding errors of the shearing stress.

From the tables can be deduced, that the maximum error occures most times on the
boundaries, but that there are also some counterexamples as function fo with w; = 0.4,
wp = 7 and n = 35 (cf. table 1). Using more interpolation points (n > 40) didn’t
improve the result. The reason for this is the mentioned increasing condition number
of the matrices and the corresponding problem solving the system of linear equations.

e\ n 15 20 25 30 35 40
ere 1275107 | 4.80107° | 5461071 | 1.751071° | 1.61 1071° | 4.88 10716
a™ | 1791075 [ 4.4710713]2.3410°1 [ 1.4210-"6 [ 1.20 101 | 3.00 10~ 1°
fi] € |2.756107%| 4.80107° | 5.4610711]2.431071% | 1.621071° | 6.05 10 1°
ere 1285107 4.701077 1 5431071 | 1.841071% | 1.2510716 | 3.891071¢
6" [ 1.44107° [ 1.50 107 [ 2.20 10~ [ 1.56 10~ | 1.08 107 ° | 2.01 10776
€2 1285107 | 4701077 [ 5.4310~" | 2.60 106 | 1.3310~'° [ 3.89 1016
elva 12.33107° | 1.8610710 | 1.841071° | 1.3010-16 | 1.1510~16 | 1.3210~16
a” 2591072 1.25107° | 4.05107° | 1.0010°12 [ 3.1210° 16 [ 1.4210"°
f| € 2591072 1.25107° | 4.05107° [ 1.00107 "2 | 1.18 10~ 14 [ 1.16 10~
e 11.40107° 116910710 | 1.71107"° | 5.0910777 | 2.34 1017 [ 1.29 10716
e | 2.131072] 1.16 107 | 3.74107° [ 8.8510- 3| 2.86 1017 | 7.8910~17
€ 121310721 1.16107° | 3.74107% [ 8.85107 13| 1.28 10~ % | 1.25 10~ 14
efre 18311077 [ 1.161071 | 1.46 10716 | 1.1710~17 | 1.73 10717 | 1.5210~17
a6 [6.96107°[3.77107° [ 6.50 107 [ 1.44 10717 | 1.4310°7 [ 1.74 1017
Ll € 18311077 1.16107" [ 1.4610~1° [ 1.6010°17 | 1.73 10717 | 2.14 10~ 1"
elve | 8.591077 | 1.40 10~ | 1.58 10716 | 1.30 10717 | 1.56 10~ 17 | 1.19 10~ 7
6" [ 4.61107°(3.93107°16.4510718 [2.0810°177 | 954107 | 1.3210°17
€2 18591077 | 1.4010711 | 1.58 1010 | 2.6010~17 | 1.56 1017 | 1.90 10~ "7

Table 1: error for wy = 0.4 and wy = 7
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e\ n 15 20 25 30 35 40
e 15201070 | 3.58107° | 1.17107° | 2121078 [ 4.21107'% | 8.88 10~
e 1511077 | 1.09107° | 1.1410°1° | 1.8210-1 | 1.56 10~17 [ 9.10 10~ '®
fil & | 5291071 | 3581073 | 1.17107° | 2.121078 [ 2.64 10711 | 8.88 10714
ere [75.65107T [ 3.391077 | 1.14107% | 2.691078 [ 5491011 1 9.0210~1*
e | 1.381077 [ 9.22107° {6.70107 1] 9.61 10" | 1.34 10717 | 1.25 1017
¢ 15651070 | 339107 | 1.1410°° | 2.69107% | 5.4910-11 [ 9.0210~ !
e 2901072 | 1.88107% [2.0510711{3.991071% | 2.60 10717 | 2.28 107
e | 3661071 | 2771073 | 8.79107% | 2.02107% | 4101071 [ 6.70 10714
Ll € 3661077 | 2771077 | 8.7910°° | 2.02107% [4.1010- T 6.70 10~
e [ 2771072 | 1.88107° | 1.3410- [ 1.56 107 1° [ 3.36 1018 | 4.58 10~ °
er | 2871077 | 2.70107° | 8.1910°° | 1.7110°% [ 3.4810"12 [ 6.60 10~
@ | 2871071 [ 2701073 | 8.19107% | 1.71107% | 1.2910~ " | 6.60 L0~
erre [ 250102 | 1.0510°% | 3.261077 | 7.281010 | 1.3210712 | 2.15 10~
e | 2911073 | 6.0510°% | 7.7810° 1 ]22510° 77 | 2.16 10718 | 4.11 107 1%
fil € [ 2501072 [ 1.0510°F [ 3261077 | 7.2810° 1] 1.3210~ 1 [ 2.1510~ "
era | 2891072 | 1.3410-% | 3.781077 [ 4.2510°10 [ 9.6710° 13 | 2.2510~1
e | 253107 | 6491078 [ 250107 [8.99107 8| 3.36 10718 | 3.03 10 1®
¢l 2801072 | 1.3410°F | 3781077 [4.251071° [9.67107 13 [ 2.2510°"°
Table 2: error for wy = 0.5 and wy = 4
e\ n 15 20 25 30 35 40
"re [ 1.87107° 9141073 [ 1.551071° | 1.28 10~1° | 6.42 10715 | 5.321071°
& | 3771077 | 2.8510-15 | 2.16 10715 | 1.86 10~ | 7.44107 1% | 7.50 10~ 1°
Al @ [187107° [9.1410° 7 [2.3810715 [ 2.01107 1 [ 7.44 10~ | 8.53 10~ 1°
efre [ 1.90107° [9.06 1071 [2.0710-1° [ 1.2510~1° | 1.89 10~1 | 4.021071°
e 3611079 [ 210107 [ 1.17107 15 [8.15610°16 [ 2.0510~1° [ 3.30 10~ 1°
T 11.90107% [9.0610° 712431075 1.2510~° [ 3.071071° | 4.16101°
e 181910770 16.01107 M [ 4121071 ] 243107 [ 1.091071% | 2.78 1071°
e [ 1.64107% [ 7.46 10713 [ 5.2110° 7 [ 2101071 [ 1.5710713 | 3.34 10713
fol € 1 1.64107° [ 7461073 [7.4910- ] 2.68 10713 | 1.79 10713 | 3.90 10~
e 164410770 13.671077 [3.93107 1 [ 1.38 10719 [ 3.53 10~ [ 1.671071°
e [ 1.36107° [6.5710° 2 [2.8710° | 1.84 107 [ 2.6010- 14 | 1.47 10713
e | 1.36107° [6.5710°13[5.56 10~ [2.0310717 [ 8.3210711 | 1.691071°
¢"ra | 1.31107% | 5.451071% [4.87107'7 | 1.3510717 | 1.831071% [ 4.571017
e 11.2710712[1.29107"6 1 5.9610-17 | 1.6510717 | 2.54 10-16 | 7.01 10717
fol € 11311077 [5.45107° [6.7910717 [ 1.65 10717 [ 2.54 10~ 1° [ 7.01 107
era | 1331079 [6.89107 10 [4.8510717 [9.32107 1% [ 4.4710717} 2.08 10~
e 1 1.20107 2 19.08107 7 [3.20107 17 [ 1.18 1017 | 7.24 10717 | 2.40 10717
€T | 1.33107° [6.8010° 1% [ 6411017 | 1.1810-17 | 7.6210~17 | 3.23 1017

Table

3: error for wy = 0.2 and wy = 10
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15

20

25

30

35

40

hi

2.37107°

1.96 10~ 7

1.04 10711

4.44 10716

4.9210°16

6.59 10717

1.35107°

1.18 10711

4.9410°17

4.8510°17

3.09 1016

3.2310°17

2.37107°

1.96 10~7

1.04 1011

4.4410716

4921016

7.3710717

249103

1.8910°7

1.03 10711

4.7310716

2.3010°16

8.5010°17

2.9410°°

1.16 10711

6.76 10717

5.0310°17

4.4110716

42910717

2.491073

1.8910°7

1.0310° 11

4.7310716

4.8010-16

8.5010~17

e

1.26107°

1.8810713

1.8810715

22010718

1.76 10713

1.4210-15

4.851074

122108

2.1810°13

1.98 10~1°

1.851071°

1.06 1071

4.8510~¢

1.2210°8

2.18 1013

4.65101°

3.8110°15

4.06 10715

819107

1.6510°13

3.4910°16

1.07 107 1%

1.1410°15

5.35 1016

4.021074

1.111078

2.0110° 13

8.18 1016

6.79 10716

3.3310°16

4.0210~4

1.111078

2.0110713

5.06 1015

4.091016

3.9210°1°

s

1.38 105

9.0510~10

5.1710~14

1.08 1017

1.18 1016

7.8010718

1.441078

2.58 1014

3.4610718

6.6110°18

9.1510-17

42210718

1.3810~°

9.05 1010

51710~

1.17 1017

1.66 10716

9.54 1018

1.44107°

1.101079

5.60 10~ 14

6.28 10718

1.6510716

7.2010-18

1.151078

3.2310°14

4.7710718

5.96 10~18

1.1310°18

4.98 1018

1.44107°

1.10107°

5.60 10~ 14

6.50 10713

25510718

7.2010°18

Table 4: error for wy = 0.3 and wy = 6

15

20

25

30

35

40

fi

3.96 10~

1.6310°7

5.66 10~11

1.40 10~ 14

6.93 10718

3.1910°17

2211074

9.56 1077

6.3510~ 14

3.80 10718

23810718

2.3910717

3.96 1074

1.63107

5.66 1011

1.4010~14

7.1510718

4.95 1017

4.28 104

2.0210°7

6.27 10~ 11

7.4910°1°

6.28 1018

5.4410~17

1.96 10~1

1.1210°8

6.23 10714

2.9210°18

3.0310°18

3.291017

4.28 1071

2.021077

6.27 10711

7.86 107 1%

6.9910°18

5.64 10~17

fa

1.3310°7

3.97107°

2.09107°

8.971071°

3.4910°16

3.6810°17

1.36 10Y

2.141071

5.06 107>

7.2910°°

9.0310°7

9.05107°

1.36 10°

2.14 101

5.06103

7.29107°

9.03 10~

9.05107?

1.1910°%

1.2210°°

1.85107°

7.5310713

3.16 10~17

3.2210°17

1.0910°

2.101071

4.78 1073

5.7010~°

1.4510~7

8.91107°

1.09 10°

2.101071

4.781073

5.70107°

2.9710°7

8.911077

fs

2.9210~2

1.5910°

5.371079

1.20 1012

4.3310°17

1.50 10716

1.5810~*

1.8010°

1.3110711

6.20 1017

2.8610°17

9.3210-17

2.92 1072

1.5910~°

5.37107°

1.2010°12

1.6810716

1.901016

3.191072

1.48107°

5.2910~7

1.3310°12

3.3310°16

2131016

1.491077

1.56 10~°

1.19 10711

4.8510°17

3.64 10717

1.0110°1

3.191072

1.48107°

5.29 1079

1.3310°12

3.3310°1¢

2.4110-18

Table
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5.4 Application to the Journal Bearing

The spline interpolation method is now applied to the second of the bearing config-
urations of Section 1.2. The necessary radial stress function on the inner boundary
(r; = 1 em) of the bearing shell is illustrated in the next picture (cf. page 7).

saof o~

P in bar ./ \

601

/

T

.

20t /

0 1 2 3 4 5 6
phi

Picture 9: radial stress on the inner side of the bearing shell

Section 3.1). On one side the stress is assumed to be zero (case 1) and on the other
side it is set to a third of the inner pressure (case 2). As described in Section 3.1, the
shearing stress is zero on both boundaries. For the interpolation we used the following
parameters: As in Section 5.3, we took the sequences ¢i = ¢!» =1 Vn & IN for the
Hilbert space, because compared with the other elementary representable kernels, they
delivered the best results. On the inner side of the bearing shell we used 60 equidistand
distributed points for the radial stress and 40 points for the shearing stress, on the outer
side 30 resp. 25 points. The parameters wy and wy had to be chosen very carefully as
the results react very sensitive to modifications. The best results have been achieved
with the values wy = 0,309 and wy = 11.4. Using them, the maximum error on the
boundaries was about 0.1 bar, resp. one thousandth of the maximum stress of the
houndaries.

For the radial stress on the outer boundary (r, = 2 em) we consider two cases (cf.

The computed radial and shearing stresses are illustrated on the following pages as
three-dimensional as well as contour plots. Especially at the places signed by arrows,
stresses can be observed, which can not be interpreted physically. Thus it can be
assumed, that there are undesired oscillations in the solution, which could not been
eliminated, neither by changing the parameters wy or wy, nor by using other kernel
functions.



P in bar

Picture 11: radial stress for case 1
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P in bar

Picture 13: shearing stress for case 1

37




P in bar

Picture 14: radial stress for case 2

Picture 15: radial stress for case 2
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P in bar

Picture 17: shearing stress for case 2
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A possibility to reduce these oscillatious is to force the elimination of the stresses at
the noted places explicitly in the computation. This can be done by adding equations
of the form

. - Nt
BiSx(3) = Y alByK{(a}, &)+ Y al Bk (), d) +
=3 =1
N N
Z U’”B ]*(mt) ;u s + Z am/B ](gmt)(x;m! W) =0
1=1
~and
N' N
BaSx(z) = Y alBaK{™ (2}, 2)+ Y al By K™ (o], 2) +
1==1 1=1
N W
Z(I,HIB Iv(mt) + Z an//B Ilgm)<$;/”, —) - 0

=1

tothe N (N = N'4+ N"”+ N 4+ N"") equations used up to now (cf. page 23). They
assure that the radial stresses in the points Z, and the shearing stresses in the points z
are vanishing.

With this additional equations the N x N matrix A of the pure interpolation is replaced
by a M x N matrix A with M > N. As the resulting system of linear equations is
not solvable in general, it is desired to get a solution as good as possible. This means
for example the minimization of the Euclidean norm of the residuum vector ||b — Aal|.
One way to solve such a least square problem is to apply Householder transformations
Py, Py, ..., Py to the matrix A in order to get the form

PPy PyA = (1(?),

where R denotes a right upper triangular matrix (cf. Stoer[19]). Because the matrices
Py, Py, ..., Py are unitary transformations, which keep the length {ju|| of a vector u

invariant, we get
. hy R
b— Aal|| = - z

,?,:<h> PIPQ Pb
ha

hy tepresents the first N and hy the remaining components of h. Consequently the
norm ||b —~ Aa[| is minimized, if and only if @ is chosen so, that Ay is equal to Ra. This
method has been integrated into the program and the stresses of the first example of
this section have been computed once more: The distribution of the additionally used
points (106 for the radial and 226 for the shearing stress) is shown on the next page.
The undesired oscillations are reduced, as can be taken from the pictures one the pages
42 and 43, where the newly computed stresses are presented. On the other hand this
method has of course the disadvantage, that the errors on the boundaries are bigger
then before, because the given values are now approximated and not interpolated.

Y

where
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Picture 18: 5

dditional points for the radial stress

Picture 19: additional points for the

shearing stress




P in bar

Picture 21: radial stress for case 1
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6 Summary

In this work methods have been developed to compute the stresses in stationary loaded,
hydrodynamic journal bearings. In the first part a special point-SOR-algorithm for
solving linear complementarity problems, which appear in connection with Reynolds’s
differential equation, has been described. With help of its implementation the pressure
distribution in the lubrication fluid can be computed. The program has approved at
the department of mechanical engineering in Kaiserslautern, the desired results can be
quickly achieved on any PC.

The second and main task of the work was concerned with the computing of the stresses
in the bearing shell, using the theory of linear elasticity. A solution of the Bi-Laplace
equation has to be found, which has to fulfill certain boundary, as well as some addi-
tionally conditions. Because of these extra conditions, the problem is not a boundary
value problem in the classical sense, and standard methods like series expansions with
multipoles or fundamental solutions don’t work. The solution method presented here
uses a Hilbert space in which the extra conditions are fulfilled automatically. The spline
interpolation has been choosen instead of a Fourier method based on the same Hilbert
space, because it has the advantage, that here the high frequency parts in the solution
are included, while they are neglected otherwise.

About the practical application one has to remark, that the optimal values for the
parameters wy and wy have te be found anew for every configuration, that means for
any radii r; and r,. Because of the sensitivity of the method with regard to these
parameters, this may be a tricky work. But on the other hand, if parameters for a con-
figuration have been found, they can be used for many different boundary functions, if
the dimensions of the bearing are constant. A better accuracy of the method may be
obtained by improving the condition of the matrix, what could be done unsing kernel
functions with smaller support, so that the number of the essential entries in the matrix
is reduced. But the construction of such Hilbert spaces will again lead to the problem
of integrating the extra conditions, which have to be fulfilled by the solution.

Finally one has to remark, that the model of a journal bearing described in this work
is a simplification of the presently in mechanical engineering used bearings. These are
consisting of several layers of different materials. In this case, for every layer a special
stress function has to be used and the boundary conditions have to be replaced by
some transition conditions. A treatment of this general case was left undone, because
it would have broken up the frame of this work.

I would like to seize the opportunity to expresss my gratitude to Prof. Dr. W. Freeden
from the department of mathematics of the university of Kaiserslautern for his guid-
ance and helpful advices. Farther on I would like to thank Dipl.-Ing. J. Koch from
the department of mechanical engineering of the university of Kaiserslautern for his
interesting formulation of the problems.
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