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Abstract
Road accidents remain as one of the major causes of death and injuries globally. Several
million people die every year due to road accidents all over the world. Although the number
of accidents in European region have reduced in the past years, road safety still remains
a major challenge. Especially in case of commercial trucks, due to the size and load of
the vehicle, even minor collisions with other road users would lead to serious injuries or
death. In order to reduce number of accidents, automotive industry is rapidly developing
advanced driver assistance systems (ADAS) and automated driving technologies. Efficient
and reliable solutions are required for these systems to sense, perceive and react to different
environmental conditions. For vehicle safety applications such as collision avoidance with
vulnerable road users (VRUs), it is not only important for the system to efficiently detect
and track the objects in the vicinity of the vehicle but should also function robustly.

An environment perception solution for application in commercial truck safety systems and
for future automated driving is developed in this work. Thereby a method for integrated
tracking and classification of road users in the near vicinity of the vehicle is formulated. The
drawbacks in conventional multi-object tracking algorithms with respect to state, measure-
ment and data association uncertainties have been addressed with the recent advancements
in the field of unified multi-object tracking solutions based on random finite sets (RFS).
Gaussian mixture implementation of the recently developed labeled multi-Bernoulli (LMB)
filter [RSD15] is used as the basis for multi-object tracking in this work. Measurement from
an high-resolution radar sensor is used as the main input for detecting and tracking objects.

On one side, the focus of this work is on tracking VRUs in the near vicinity of the truck.
As it is beneficial for most of the vehicle safety systems to also know the category that
the object belongs to, the focus on the other side is also to classify the road users. All
the radar detections believed to originate from a single object are clustered together with
help of density based spatial clustering for application with noise (DBSCAN) algorithm.
Each cluster of detections would have different properties based on the respective object
characteristics. Sixteen distinct features based on radar detections, that are suitable for
separating pedestrians, bicyclists and passenger car categories are selected and extracted
for each of the cluster. A machine learning based classifier is constructed, trained and
parameterised for distinguishing the road users based on the extracted features.

The class information derived from the radar detections can further be used by the tracking
algorithm, to adapt the model parameters used for precisely predicting the object mo-
tion according to the category of the object. Multiple model labeled multi-Bernoulli filter
(MMLMB) is used for modelling different object motions. Apart from the detection level,
the estimated state of an object on the tracking level also provides information about the
object class. Both these informations are fused using Dempster-Shafer theory (DST) of evi-
dence, based on respective class probabilities Thereby, the output of the integrated tracking
and classification with MMLMB filter are classified tracks that can be used by truck safety
applications with better reliability.

The developed environment perception method is further implemented as a real-time pro-
totypical system on a commercial truck. The performance of the tracking and classification
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approaches are evaluated with the help of simulation and multiple test scenarios. A compar-
ison of the developed approaches to a conventional converted measurements Kalman filter
with global nearest neighbour association (CMKF-GNN) shows significant advantages in
the overall accuracy and performance.



Kurzfassung
Verkehrsunfälle bleiben weltweit eine der Hauptursachen für Tod und Verletzungen. Mehrere
Millionen Menschen sterben jedes Jahr aufgrund von Verkehrsunfällen auf der ganzen Welt.
Obwohl sich die Zahl der Unfälle in Europa in den letzten Jahren reduziert hat, bleibt
die Sicherheit im Straßenverkehr noch eine große Herausforderung. Besonders im Nutz-
fahrzeugsegment führen, aufgrund der Größe und Masse des Fahrzeugs selbst geringfügige
Kollisionen mit anderen Verkehrsteilnehmern zu schweren Verletzungen oder zum Tod. Um
die Anzahl der Unfälle zu reduzieren, werden neue ADAS-Funktionen und automatisierte
Fahrtechnologien entwickelt. Für diese Systeme sind effiziente und zuverlässige Lösungen er-
forderlich, um unterschiedliche Umgebungsbedingungen zu erfassen, wahrzunehmen und zu
reagieren. Für Fahrzeugsicherheitsanwendungen wie die Kollisionsvermeidung bei gefährde-
ten Verkehrsteilnehmern ist es nicht nur wichtig, dass das System die Objekte in der Nähe
des Fahrzeugs effizient erfasst und verfolgt, sondern auch robust funktioniert.

In dieser Arbeit wird eine Umgebungswahrnehmungslösung für die Anwendung in LKW-
Sicherheitssystemen und für zukünftiges automatisiertes Fahren entwickelt. Dabei wird
ein Verfahren zur integrierten Verfolgung und Klassifizierung von Verkehrsteilnehmern im
Nahbereich des Fahrzeugs formuliert. Die Nachteile herkömmlicher Multi-Objekt Verfol-
gungsalgorithmen bezüglich Zustands-, Mess- und Datenassoziations unsicherheiten wurden
mit den Fortschritten auf dem Gebiet Random Finite Set (RFS) basierten Multi-Objekt
Verfolgungsmethoden gelöst. Gaussian mixture implementierung des jüngst entwickelten
labeled multi-Bernoulli (LMB) Filters [RSD15] wird in dieser Arbeit als Grundlage für die
Multi-Objekt Verfolgung verwendet. Die Messung von einem hochauflösenden Radarsensor
dient als Hauptdatenquelle zur Erkennung und Verfolgung von Objekten.

Auf der einen Seite liegt der Fokus dieser Arbeit auf der Verfolgung von Verkehrsteilnehmer
in der Nähe des LKWs. Da es für die meisten Fahrzeug-Sicherheitssysteme vorteilhaft
ist, auch den Objekttyp zu wissen, liegt der Fokus auf der anderen Seite auch darin, die
Verkehrsteilnehmer zu klassifizieren. Alle Radarmessungen, die wahrscheinlich von einem
einzigen Objekt stammen, werden mit Hilfe von density based spatial clustering for appli-
cation with noise (DBSCAN) gruppiert. Jeder solche Cluster hätte unterschiedliche Merk-
male basierend auf den jeweiligen Objekteigenschaften. Sechzehn verschiedene Merkmale
basiert auf den Radarmessungen werden für jeden Cluster ausgewählt und extrahiert. Die
extrahierte Merkmale dienen als Basis zur Klassifizierung von Fußgänger, Radfahrer und
Personenkraftwagen. Zur Klassifikation wird ein maschinelles Lernverfahren verwendet,
trainiert und parametrisiert, um die Verkehrsteilnehmer basierend auf den extrahierten
Merkmalen zu unterscheiden.

Die von den Radarerfassungen abgeleiteten Klasseninformationen können weiter inner-
halb des Tracking-Algorithmus verwendet werden, um die Parameter des Bewegungsmod-
ells anzupassen. Ein Multiple model multi-Bernoulli (MMLMB) Filter wird zur Model-
lierung verschiedener Objektbewegungen verwendet. Neben der Erkennungsebene liefert
der geschätzte Zustand eines Objekts auf der Verfolgungsebene auch Informationen über die
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Objektklasse. Beide Informationen werden unter Verwendung der Dempster-Shafer Eviden-
ztheorie fusioniert. Die Ausgabe der integrierten Multi-Objekt Verfolgung und Klassifika-
tion mit demMMLMB-Filter sind dabei klassifizierte Tracks, die für LKW-Sicherheitsanwendungen
mit höherer Zuverlässigkeit verwendet werden können.

Die entwickelte Umgebungswahrnehmungsmethode wird im Echtzeit-prototypisches System
auf einem Nutzfahrzeug implementiert. Die Performance der Tracking- und Klassifikation-
sansätze wird mit Hilfe von Simulation und mehreren Testszenarien ausgewertet. Ein Ver-
gleich der entwickelten Ansätze zu einem konventionellen converted measurements Kalman
filter mit global nearest neighbour Assoziierung (CMKF-GNN) zeigt signifikante Vorteile
hinsichtlich der Gesamtgenauigkeit und Leistung.
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Chapter 1

Introduction

Safety has always been the major concern in the automotive industry. With increasing
number of vehicles, size and power, safety of the driver as well as the road users need to be
improved. The Federal Statistical Office in Germany ("Statistiches Bundesamt") releases
yearly a report containing the statistics of road accidents. According to the 2015 report,
totally around 2.52 million road accidents were recorded by the police in Germany, out
of which almost 0.39 million people have been injured. The number of deaths from these
accidents is reported as 3459, out of which almost 23% of the deaths involved atleast one
commercial vehicle.

Total:
21531

Passenger car: 60%

Others: 1.7%

Bicylist: 15%

Bus: 1.1%

Motorcycle: 8.6%

Commercial vehicle: 6.5%
Pedestrian: 7.1%

Figure 1.1: Commercial trucks accident statistics according to [Sta15].

In 2015, totally 21531 accidents between commercial vehicles and other road users have
been reported. The fatality risk of other road users when involved in an accident with
the commercial truck is four times higher than the fatality risk of the truck driver himself
[Sta15]. This is majorly due to the size and load of a truck and the accident risk increases
with increase in fleet. Figure 1.1 depicts the statistics of different road users involved in an
accident with a commercial vehicle for the year 2015. Almost 60% of commercial vehicle
accidents occurred with passenger car, followed by bicyclists at 15% and pedestrians at
7.1%. However, when involved in an accident with commercial vehicles, the death rate
of pedestrians and bicyclists is higher than that of the occupants of a passenger car, as
depicted in Figure 1.2.

Moreover, 49.1% of the accidents are reported to have occurred within the urban area
compared to 27.1% in B-roads and 23% on the highways. The major cause of accidents is
due to the error of commercial vehicle drivers by not maintaining a proper safety distance
to the road users. The second major accident scenario, especially in urban conditions is
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Figure 1.2: Death rate of road users when met with an accident against a
commercial vehicle[Sta15].

during turning, reversing or driving in and out of the main street. Figure 1.3 depicts the
various driving scenarios during which the error of the commercial vehicle driver causes
accidents leading to injury and death of road users. One of the major reasons for higher

20.2%

Distance
17.2%

Turning and Reversing etc.

11.8%

Priority

2.6%Overtaking

10.2%

Speed 5.3%

Close driving

4.9%

Wrong lane

27.8%

Others

Figure 1.3: Driving scenarios causing major accident of trucks with road
users [Sta15].

collision risk of commercial vehicles with road users in urban areas is due to the limited
surrounding visibility for the truck drivers. Compared to the passenger car, the commercial
truck drivers have a larger blind spot area surrounding the truck. The truck driver from
his seating position or through the side mirrors cannot see most of the objects present in
these close surrounding areas. Thereby the risk of accident is very high when a road user is
present within any of the so called blind spot region. These problems motivate the need for
developing safety systems which can avoid accidents of commercial vehicles involving other
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road users, majorly pedestrians and bicyclists in urban scenarios. The safety systems in
such cases help to avoid accidents by detecting and perceiving objects in the near vicinity of
truck through sensors, which can otherwise not be seen by the driver himself. From vehicle
stability systems like anti-lock braking systems (ABS) and electronic stability program
(ESP) to recent innovations in the field of advanced driver assistance systems (ADAS), the
aim has been to reduce the number of accidents and improve traffic safety. As accidents
are majorly caused due to human errors, many automotive manufacturers and suppliers are
actively involved in research towards autonomous driving vehicles. New sensor technologies
and intelligent algorithms play a vital role in achieving autonomous driving.

Figure 1.4: A typical hazardous situation between bicyclist and truck dur-
ing a turning maneuver.

An ADAS application or an autonomous driving vehicle need to perform multiple tasks
that a human would otherwise perform with errors. However, for achieving these tasks
different functionalities need to be realised. One such high-level function is the environ-
ment perception which itself involves further low-level modules. Multi-object tracking is
one of the important modules of the vehicle environment perception. Different aspects of
multi-object tracking and classification required for realising vulnerable road user (VRU)
safety applications in commercial trucks and future autonomous vehicles is the main focus
area of this thesis. The aim of multi-object tracking in general is to estimate the number
of objects in the environment and also their states, with uncertain sensor measurements
as input. The estimation of object state is conventionally realised with the help of Bayes
filters. Kalman filter is a well known example of the recursive Bayes filter. In case of
single-object Bayes filter, an assumption of a single target and a corresponding single mea-
surement is made. In order to track multiple objects, a bank of single-object Bayes filters
are used. Additionally, which measurement arises from which object is not directly evident
anymore. Therefore explicit track-to-measurement association is required. Data association
algorithms are used to associate a track with a measurement, which would also consider the
case that the measurement is just a clutter and does not belong to any real object or the ob-
ject is not detected by sensor. In case of vehicle environment perception scenarios, typically
many objects are present in the environment which means a complete consideration of all
the possible track-to-measurement association hypotheses is not computationally tractable.
Also, the tracker of an object doesn’t directly have information about the tracker of an-
other object and the interactions are often based on different heuristics. In the past decades,



4 Chapter 1. Introduction

various advancements have been made in the field of multi-object tracking. Global nearest-
neighbour (GNN), joint probabilistic data association (JPDA), joint integrated probabilistic
data association (JIPDA) and multi-hypothesis tracking (MHT) are some of the prominent
classical methods that have been developed to address the problem of data association and
state estimation in target tracking.

Random Finite Sets (RFS) based multi-object tracking, since been proposed by Mahler,
has seen many developments. The multi-object Bayes filter elaborated in [Mah07b], based
on finite set statistics (FISST), extends the single-object distribution with multi-object
distribution representing the uncertainty in the number of objects and their states. Many
moment and parameter approximations of the Random Finite Set based multi-object Bayes
filter have been derived. Probability hypothesis density (PHD) filter is an approximation of
the multi-object Bayes filter which propagates only the first order moment of the unlabeled
target RFS. A shortcoming of the PHD filter is the unstable cardinality estimation, which is
improved in the cardinalized probability hypothesis density (CPHD) filter, which propagates
the cardinality distribution along with the first order moment of the RFS. In contrast to
the PHD and CPHD filters, the class of multi-Bernoulli filters propagates the parameters
of the multi-Bernoulli distribution. Cardinality balanced multi-target multi-Bernoulli (CB-
MeMBer) filter is once such implementation of multi-object Bayes recursion, where the
multi-object posterior is approximated by the multi-Bernoulli distribution.

A drawback of the unlabeled RFS is the missing explicit consideration of the target identity.
In order to address this, the labeled Random Finite Sets is introduced in [VV13a], where the
object states are augmented with a label. Based on this, generalized labeled multi-Bernoulli
(GLMB) filter and δ-generalized labeled multi-Bernoulli (δ-GLMB) filter are derived. La-
beled multi-Bernoulli (LMB) filter introduced in [RVVD14] reduces the computational com-
plexity of the δ-GLMB in the prediction step, but still maintaining the same update as in
δ-GLMB. In LMB, the prior and posterior of the labeled RFS is approximated by a single
hypothesis for each cardinality. In [Reu14] the performance of LMB is argued to be better
than PHD and CPHD filters. Multiple model version of LMB (MMLMB) filter is derived
in [RSD15] based on the Jump-Markov System.

In [MRSD14], the object class information is integrated into the multiple model PHD (MM-
PHD) filter and proposes the classifying MMPHD (CMMPHD) filter. A Gaussian Mixture
implementation of the CMMPHD is used for tracking road users using laser scanner and
video camera at intersections. Dempster-Shafer theory is used for calculating certainty val-
ues of object classes, as it can effectively handle fuzzy data. The object class is updated in
parallel to the PHD filter estimation. A similar approach is formulated in this work for the
class of MMLMB filter. A method to integrate the object class information in the MMLMB
filter is proposed and the feasibility is studied as an application for tracking road users in the
near vicinity of the truck. Distinct object features are extracted from high-resolution radar
detections. Machine learning based classifier is constructed with the help of object features,
in order to classify different road users. The developed methods are further implemented in
a prototype framework and evaluated with various test scenarios, with the focus of realising
environment perception for ADAS applications and extending it to autonomous driving in
the future.
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Chapter 2

State-of-art

2.1 ADAS and Automated Driving

The introduction chapter reflects the increase in vehicle traffic since the advent of motor
vehicles and the accident statistics of different driving and environment scenarios. On the
other hand, it is also very important to find solutions to reduce accidents and improve
overall road safety. Since the past decade, although the trend in traffic accidents has been
downward, there is a constant need of new innovative electronic systems, not only to protect
the vehicle passengers but also other road users. Passive safety systems like airbag and
seatbelt protect the vehicle passengers by reducing the impact of collision on them, when
the vehicle meets with an accident. Active safety systems like anti-lock braking system
(ABS) and electronic stability program (ESP) significantly reduces the risk of accidents
due to loss of vehicle stability, caused by environmental conditions and physical limits of
vehicle dynamics. ABS supports the driver in maintaining the stability of the vehicle during
braking, even in wet and icy road conditions. It operates mainly based on the wheel speed
sensors, which indicate possible wheel lock during braking. ESP system on the other hand
gets input from yawrate, lateral acceleration and steering sensors in addition to the wheel
speed sensors, in order to detect the vehicle stability state. When the ESP system senses
the instability of the vehicle, it brakes the wheels individually in order to correct under or
overseer conditions and helps the driver to make the vehicle stable again.

However, the concept of ADAS came increasingly into safety applications, once the percep-
tion of the vehicle environment by sensors was made possible. By perception, one under-
stands the ability of the system to detect, track and classify various objects in the vehicle
environment. This information about the environment can then be used by the system to
analyse the situation and react by warning the driver or intervening through actuators.

2.1.1 Categorisation of ADAS and automated systems

Based on the functionality, ADAS can further be grouped into three elementary categories:

• Comfort and Efficiency enhancing systems: ADAS which improves the driving com-
fort or helps in achieving better energy and fuel efficiency come under this category.
Adaptive headlights is an example of a comfort system, which increases the visibility
around curves by automatically redirecting the headlight beams based on the vehicle
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direction. ADAS like high-way truck platooning enables the trucks to drive one be-
hind the other in a close distance, which results in an overall increase in fuel efficiency
due to reduced air drag.

• Driver information systems: Systems which can provide information or warning to
the driver, based on which the driver can react or control the vehicle come under this
category. Lane departure warning system (LDWS), attention assist and blind spot
detection (BSD) are some of the examples of this category of ADAS, where the driver
is informed about the risks through flashing signals or acoustic warning.

• Autonomous safety systems: ADAS like advanced emergency braking (AEB), lane
keeping assist (LKA) and city turning assist (CTA) with braking intervention are ex-
amples of systems that come under this category. When a collision or risk is predicted,
the system can autonomously take over the control from the driver and react to the
situation by braking or steering, in order to avoid accident.

Given the already high complexity of some of the ADAS, many automotive companies
aim to make their vehicles fully autonomous in the coming decade. Autonomous driving
is currently one of the hot research topics, as it involves many technical and scientific
challenges, in order to be made a reality. Starting right from the PROMOTHEOUS project
(PROgraMme for a European Traffic of Highest Efficiency and Unprecedented Safety) in
the eighties, the idea of autonomous driving is driven forward by many initiatives like
DARPA (Defense Advanced Research Projects Agency) urban driving challenge, HAVEit
and interactIVe research projects, to name a few. According to European Road Transport
Research Advisory Council (ERTRAC), the main drivers of higher levels of automated
driving given in [Dri17] are:

• Safety: Reduce accidents caused due to human errors.

• Efficieny and environmental objectives: Ensure smoother traffic by reducing traffic
congestion and increase transport system efficiency by decreasing emissions and energy
consumptions of vehicles.

• Comfort: The driver can spend time on other activities when the vehicle drives au-
tonomously.

• Social inclusion: Ensure mobility for all, including elderly and impaired people.

• Accessibility: Improved access to urban areas and city centers.

In 2014, a new SAE international standard J3016: Taxonomy and Definitions for Terms Re-
lated to On-Road Motor Vehicle Automated Driving Systems was established, defining levels
of automation and common terminology for automated driving. Six levels of automation
are defined from level 0 indicating "no automation" to level 5 indicating "full automation".
A summary of SAE International’s levels of driving automation for on-road vehicles is given
in Table 2.1. Based on the J3016 levels of driving automation, Figure 2.1 shows the cat-
egorisation of different ADAS applications according to their respective automation level
and the road map for complete autonomous driving of commercial trucks, as presented by
ERTRAC [Dri17].
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Automation
Level

Established 2018 2020 2022 2024 2026 2028 2030 · · ·

Level 5: Full
Automation

Level 4: High
Automation

Level 3: Con-
ditional
Automation

Level 2: Par-
tial
Automation

Level 1:
Driver
Assistance

Level 0: No
Automation

ABS, ESC,
LDWS,
BSW,

FCW, EB

ACC, LKA,
Stop&Go,

LCA

C-ACC Truck
Platooning

Traffic
Jam Assist

Automated
Truck Platooning

Traffic Jam
Chauffeur

Highway
Chauffeur

HAV in con-
fined areas

HAV on ded-
icated roads

Highway Pi-
lot Platooning

HAV on
open roads

Fully
Automated
Vehicles

Figure 2.1: Categorisation of ADAS applications and roadmap for fully au-
tomated driving of commercial trucks according to ERTRAC
[Dri17].
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2.1.2 General system architecture

An autonomous driving system in general consists of many layers of modules based on
different functionalities. A general architecture of an autonomous driving system consisting
different functional modules is illustrated in Figure 2.2. Sensors and digital maps serve
as the input to the system, containing information about the objects, obstacles in the
vehicle environment and the geographical location. HMI module serves as an interface
between the passenger and the vehicle. The perception layer is responsible for sensing and
understanding of the environment, so that the host vehicle can know what are present in
it’s surrounding. Then the localisation module helps the host vehicle to know it’s own
position with respect to the extracted surroundings. The output of the fusion layer is well
defined list of detected and tracked objects with their kinematic states like position and
velocity, along with the kinematic states of the host vehicle itself. Based on the output of
the perception and localisation modules, the motion planning layer generates a behaviour
the host vehicle should follow. Moreover, a maneuverable trajectory is generated by the
trajectory planner, considering the occupancy by objects and obstacles in the host vehicle’s
surrounding. The lowest layer is the motion control, where the controller tries to follow the
generated trajectory from the previous layer, as close as possible. The motion controller
comprises of the trajectory controller module responsible for the lateral and longitudinal
control of the vehicle, as well as a reactive module responsible of brake functions.

HMI GPS Map Sensors

Signal
processing

Object
detection

Object
tracking

Pe
rc
ep

tio
n

SLAM

Visual
odometry

Occupancy
grid

Lo
ca
lis
at
io
n

Behaviour planner

Trajectory generator

lateral & longitudinal control brake control
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in
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Fu
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n
M
ot
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n
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ng

M
ot
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n
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nt
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l

Figure 2.2: Modules of a typical autonomous driving system.
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For partial automation systems and ADAS applications, the architecture need not contain
all of the above mentioned functional modules. For example, a LDWS application which
comes under SAE level 0 automation does not necessarily need behaviour or motion planing
function. Therefore, a modular approach to the system and software development provides
higher flexibility for realising various applications. Model-based development methods are
being widely used in automotive system and embedded software development. This allows
for a higher abstraction of various functionalities and formalises the development by use of
models. Moreover the relationship between requirements, architecture and testing is made
more transparent.

2.1.3 Safety and Legal Regulations

With the increasing complexity of systems from ADAS to automated driving, there is also
a higher need to address the safety of these autonomous systems. The three levels of safety
according to [MTBW17] are:

• Safety level 1: Safety with respect to product liability required for getting permission
to launch a product in specific customer market.

• Safety level 2: Functional safety of mechatronic systems and mechanical parts.

• Safety level 3: Functional safety with respect to electrical and electronic (E/E) sys-
tems.

ISO 26262 Road Vehicles-Functional Safety, defined in 2011 is an international standard for
functional safety of E/E systems in production automobiles. ISO 26262 standard defines
guidelines regarding requirements and recommendations to reduce systematic development
failures and handle the complexity of E/E systems [MTBW17]. Automotive safety integrity
level (ASIL) is a risk classification scheme defined by ISO 26262 for E/E systems, based on
the hazard level. ASIL is determined based on hazard analysis and risk assessment. Four
categories of ASIL are ASIL A, ASIL B, ASIL C and ASIL D, with ASIL A representing the
lowest integrity requirements and ASIL D representing the highest integrity requirements.
Although ISO 26262 was initially defined for passenger car segment, it is being adapted
in the commercial truck segment as well. Due to higher complexity of automated driving
systems, enhancements are required to the existing ISO 26262 standards [MTBW17]. A
newer version of the standard is expected to be officially released in 2018, addressing several
aspects of autonomous driving.

2.2 Sensors

On of the main requirements to realise ADAS and automated driving functions is the ability
to sense and gain detailed information about the vehicle surroundings. This is realised by
using different sensors, with varying measurement techniques and capabilities. Based on the
fundamental measurement principle, the sensors can be categorised as distance based sensors
and image based sensors. While LIDAR, RADAR and Ultrasonic sensors are examples of
distance based sensors, mono and stereo vision cameras rely on video and image processing.
Each sensor has it’s own advantages and disadvantages and therefore in order to be efficient,
the system should use the best combination of the sensors.
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2.2.1 Camera

Cameras can capture high level of details about the surrounding. With camera, it is also
possible to extract the color, contrast and texture of objects in the vehicle environment.
Cameras are already widely used for realising many of the ADAS applications. From simple
applications like LDWS, where a single front looking camera is mounted on the windshield,
to advanced applications like 360° surround view, where multiple cameras are placed around
the corners of the vehicle, cameras are vital for vehicle environment perception. Image
formation in camera is achieved by it’s photosensitive sensor. Light photons are converted
into electrical charge, proportional to the intensity of light. Basically two types of sensors
are used for this purpose, the charge-coupled device (CCD) and complementary metal oxide
semiconductor (CMOS). In CCD sensor, the accumulated charge of a cell is read at one
corner of the array, whereas in CMOS sensor the charge of each pixel is amplified by a
transistor and is read individually. CCD sensors generally create high-quality images with
low-noise compared to CMOS, but is highly sensitive to light. However, the CCD sensor
consumes higher power and are costlier to produce, the CMOS sensor on the contrary
requires lesser operating power and are cheaper to produce.

For automotive applications, both monocular and stereo vision cameras are used. A monoc-
ular camera captures the environment as a 2D image, either as a grayscale or color image.
The grayscale camera in general has a better resolution than the color camera, as a sep-
arate red, blue and green color based filter for each pixel, called Bayer-matrix is required
in color image. A monocular camera can be used for detecting objects based on template
matching, pattern recognition or motion properties. The distance to the object is not given
directly and is estimated by additional object model assumptions. A stereo camera has
two mono-cameras placed with a small horizontal separation, which can be compared to
the construction of an human eye. Both the cameras capture images of the environment
separately, which can then be compared and synchronised to get depth information directly
by means of disparity map. This also helps in a 3D representation of the environment.

Figure 2.3: Example of image based bicyclist detection dataset [LFY+16]

Some of the important properties to be considered for the selection of a right camera and
lens for an application are the focal length, resolution and frame-rate. Normal lenses on
an average have a FoV of ≈ 45° and wide-angle lenses can have FoV > 100°. Although
wide-angle lenses can cover a larger surrounding area around the vehicle, they have higher
image distortion and poor resolution at farther distances, compared to normal lenses. In
general, the camera resolution, usually represented in mega-pixels (MP), decides the dis-
tance upto which an object can be detected and extracted. Resolutions of 1MP and 2MP
are widely used in automotive applications, with latest systems extending upto 8MP. While



12 Chapter 2. State-of-art

applications like forward collision warning (FCW) require lenses with narrower FoV and
better resolution at higher distances, a Parking Assist (PA) application requires wide-angle
or fish-eye lenses with a wider FoV. Similarly, frames per second (FPS) varies typically from
25 to 80 FPS, where an higher FPS is desirable for safety-critical systems like collision avoid-
ance than for simple assisting systems. Another factor proportional to resolution and FPS
is the computational effort. Higher data rate and resolution needs higher processing power.
A constant development in the state-of-art system-on-chip (SoC) vision solutions would
enable the usage of multiple cameras for future automated driving applications. Objects
are detected by camera sensors based on various real-time image processing algorithms
and corresponding object hypotheses. The object hypotheses are either based on object
appearance characteristics like texture, edges, corners and shape, or based on motion char-
acteristics extracted by optical flow algorithms. Further, constructing classifiers based on
object characteristics, with the help of statistical and deep learning methods enable image
based classification of objects. However, in case of extreme weather conditions like fog and
heavy rain, it is difficult to detect objects and extract information about the environment.
The functionality of the system will not be available in such conditions, if only camera
is used. Therefore other variants of sensors and information sources are also required, to
improve the system availability.

2.2.2 Laserscanner

Lidar is an acronym of light detection and ranging, where the distance to the object is
measured with the help of laser light. The lidar sensor sends out pulsed laser light, part
of which is then reflected back by objects and obstacles in the environment. The reflected
pulse is then detected by the receiving diode. The distance to the object is then calculated
by considering the time duration between transmission of the laser pulse and the reception
of the corresponding pulse reflection from the object. If ∆t is considered to be the time
difference and c as speed of light, the distance to the object d can then be calculated with

d = ∆t · c
2 (2.1)

In a typical lidar sensor operating with infrared wavelength, the laser pulse is sent at a
frequency of ≈ 900 nm. However, for calculating the object relative velocity based on
Doppler frequency shift, high-frequency components and techniques are required, incurring
high costs. Therefore lidar sensor based relative velocity measurement is not done for au-
tomotive applications [Ohl14]. Based on the operating principle, lidar sensors are basically
categorised into two types as multibeam lidar and laserscanner. In a multibeam lidar, sev-
eral photo diodes are arranged in parallel and are fixed. Whereas in a laserscanner, the laser
beam from one or more diodes are dispersed in different directions by a rotating mirror.
Laserscanners typically sends out laser beams in both horizontal and vertical directions.
The horizontal angle is controlled by the rotation of the mirror and the elevation angle
is controlled by tilt of the mirror. The laser beams can be ordered as several layers with
angular offset as less as 0.1°. In general, laserscanners can have a horizontal FoV of more
than 200°. High definition laserscanners with a rotating housing containing the diodes can
reach FoV upto 360°. Therefore, lidar sensors in general have a higher angular resolution
and therefore the form and shape of objects can be extracted very well. However, due to
optical measurement principle of lidar sensors, they are very sensitive to rain, snow and
fog, which leads to false sensor measurements in such climatic conditions. Also, objects or
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(a) Velodyne HDL-64-E laserscanner (b) Sensor raw data

Figure 2.4: An high-definition laser scanner from the company Velodyne
and the corresponding raw point cloud data of the laserscanner
(source: Velodyne product website)

.

obstacles with transparent surface cannot be detected by lidar sensors, as the light would
pass through the object and will not be reflected back to the receiver diode. Moreover,
due to bigger sizes of laserscanner, they can be mounted only in certain positions on the
vehicle. The bigger size of laserscanner is mainly due to the housing required to contain
it’s spinning mechanical parts. This highly affects the practical integration of laserscanner
into series systems. In order to overcome this disadvantage, newer lasercanner technolo-
gies with electronically steered laser beams instead of rotating mirrors are in development.
Many companies like Velodyne and Quanergy have already showcased their prototypes of
compact solid-state lidars, which are expected to be used in future ADAS and automated
driving systems.

2.2.3 Radar

Radar (radio detection and ranging) is in use from as early as 1900s for marine and military
applications for measuring distance. Radar works based on the principle of electro magnetic
radiations for measuring the distance. Radar sensors for automotive applications typically
sends out electromagnetic radiations in the frequency range of gigahertz. The transmitted
electromagnetic radiations when reflected by an object or obstacle are absorbed back by
a receiving antenna of the radar, also called as echo. The reflected wave absorbed by the
receiver of the radar, contains a part of the transmitted wave energy, as some of the energy
is absorbed by the air medium and the object itself. The relation between the transmitted
power Ps and the received power after reflection from the object Pr can be given as [Ung94]

Pr = G · σ ·A
(4π)2 ·R4

· Ps (2.2)

where R is the distance to reflecting surface, G gain of transmitting antenna, A the effec-
tive area of receiving antenna and σ the radar cross section (RCS) of the object. RCS is
typically the measure of object detectability. RCS of an object depends on it’s size, type of
surface material and reflective property. Generally, strongly reflecting objects like car and
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metal doors have higher RCS values than bicyclists and pedestrians. Distance measure-
ment with automotive radar sensor is similar to the principle of lidar sensors as described in
the previous section, but operates at a higher wavelength of electromagnetic spectrum. In
addition to the range measurement, radar is also used for measuring angular position and
relative velocity of the object. The relative velocity of the object is measured based on the
Doppler effect. In automotive field, frequencies of 24 GHz, 77GHz and 79 GHz are used for
various applications. However, as the 24 GHz frequency range is also used in astronomical
applications, it is slowly getting outdated in automotive applications. Therefore new gen-
eration sensors use a frequency band of 76-77 GHz for long range applications and 77-81
GHz frequency band for short range applications.

Based on the functioning principle, radar can be separated into two categories as pulse-
Doppler-radar and frequency modulated continuous wave (FMCW) radar.

2.2.3.1 Pulse-Doppler-Radar

In pulse-Doppler radars, the transmission antenna sends out high-frequency impulses pe-
riodically. When an object is present in the sensor FoV, the transmitted electromagnetic
pulses hit the surface of the object and is reflected back to the radar. Figure 2.5 depicts the
working principle of a pulse-Doppler-radar. By repeatedly switching the electromagnetic

t

u(t)

ts

Tp

f0

transmitter
v

t

u(t)

tr

Tr > Tp

f0 − fD

receiver
v

Figure 2.5: Transmitted and received signals in a pulse-Doppler radar
[Bü08].

wave transmitter on and off, short pulses of frequency f0 and time period Tp are sent out
for every Tr time interval. The sent impulse is then reflected back after hitting the object.
With ts denoting the starting time of transmission and tr as the time of reception of the
reflected wave, the range R to the object can be calculated similar to 2.1 as

R = (ts − tr) · c
2 (2.3)

The parameter Tp influences the range resolution of the radar. Two objects at different
distances can be detected as separate objects only if the reflected signals do not overlap.
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The interval parameter Tf decides the maximum range of the radar. Following [Fö06], the
range resolution ∆R and maximum range of the radar can be given as

∆R = c · Tp
2

Rmax = c · Tf
2

(2.4)

Moreover, the impulse reflected back from a moving object would have a shift in frequency
fD, with a difference from the actual transmitted frequency f0 due to the Doppler effect.
The relative velocity vr of the object can then be calculated by

vr = −1
2 · c ·

fD
f0

(2.5)

Instead of a direct measurement of ts and tr, the transmitted and received signals are
mixed, transformed and filtered as a matched filter and processed based on the in-phase
and quadrature components.

In addition to the range and relative velocity, the azimuthal angular position of the object
can also be extracted from the radar. In case of multiple radars, the azimuth of the object
can be derived by trilateration method. On the other hand, azimuth can also measured
with a single radar, which transmits multiple beams or contains multiple receiver antennas.
When the transmitting antenna sends multiple beams, the azimuth can be calculated based
on the amplitude difference in their corresponding echo signals. Each beam has different
orientation angle with respect to the object and therefore has a difference in the reflected
amplitude. Azimuth is then derived by considering the quotient of sum and difference of the
amplitudes [Bü08]. In case, the radar contains multiple receiving antennas closely placed
to each other, the echo signal received by each antenna would have the same amplitude
but different phase. Azimuth in this case is calculated based on the phase difference. The
difference in phase of echo signal between antennas depend on the distance between them
and the signal wavelength.

2.2.3.2 FMCW-Radar

In contrast to the impulse signal transmitted in a pulse-Doppler-radar, linear frequency
modulated continuous wave signal is transmitted in a FMCW-radar. The range R and
relative velocity vr of the object are then derived based on the frequency difference between
the transmitted and received signals. The advantage of FMCW-radar is the continuous
availability of measurements, compared to the pulsed signals sent in certain time intervals.
Figure 2.6 depicts a linear frequency modulated signal with a single ramp. The solid red
line represents the transmitted signal. The dotted black line represents the frequency of the
received signal reflected back from a stationary object and the dashed red line illustrates
the received signal reflected back from a moving object. TR denotes the duration of the
ramp and fhub the frequency hub. The slope of the ramp signal is then sR = fhub/TR. The
reflected signal from a stationary object is received after a time τ since the transmitted
signal and has a frequency shift ∆fs. In case of moving object, there is an additional shift
in frequency fD, due to the Doppler effect. The total shift in frequency is then given by

∆f = ∆fs − fD = 2
c

(sR ·R+ f0 · vr) (2.6)
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Figure 2.6: Transmitted and received signals in a linear FMCW radar
[Bü08].

where the frequency shift is dependent both on the R and vr.

τ fD

∆f1
∆f2

t

f

Figure 2.7: Two frequency ramps with different slopes

In a so called R-v diagram as in Figure 2.8a, a single ramp is not sufficient to estimate both
range and relative velocity simultaneously from the frequency shift, as many combinations
of range and relative velocity can be calculated for the same frequency shift. Therefore, an
additional frequency ramp is required as illustrated in Figure 2.8b. Both the ramp signals
with slopes sR1 and sR2 then would have corresponding echo signals with a frequency shift
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of ∆f1 and ∆f2 respectively as [Bü08]

∆f1 = 2
c

(sR1 ·R+ f0 · vr)

∆f2 = 2
c

(sR2 ·R+ f0 · vr)
(2.7)

Solving the above equations, the range and relative velocity values are extracted from the

R

v

(a) Extraction of R and v not possible with
single ramp.

R

v

v̂r

R̂

(b) Extraction of R and v with two ramps of
different slopes.

Figure 2.8: R-v diagram for a single object case

intersection point of the two slopes in the R-v diagram. However with the above solution,
when there are for example two objects in the sensor FoV, four intersection points would
be possible in the R-v diagram. In that case, which values of range and relative velocity
actually belongs to the objects is not direct anymore. In order to overcome this problem,
multiple ramps with different slopes are used. For example, a linear frequency modulated
signal with four ramps would result in distinct intersection points and the object individual
measurements can be extracted from the intersections of all the ramps as illustrated in
Figure 2.9. The range and relative velocity resolution of FMCW-radar depends on how well
two frequency peaks in FFT can be separated.

Many companies like Delphi and Continental are offering multimode radars, where the
radar can operate in both short and long range mode simultaneously. This is achieved by
the concept of electronic beam scanning. This enables the usage of a single radar for many
applications like ACC and FCW. It can detect vehicles at long range as well as vehicles and
even pedestrians at short range simultaneously Also, the concept of pulse-compression-radar
overcomes the disadvantages of classical pulse-Doppler and FMCW radars. Combining both
the concepts, chirps with a certain time interval are transmitted in a pulse-compression-
radar. Compared to the classical pulse-Doppler-radar, the pulse-compression-radar has a
better overall signal-to-noise ratio (SNR) due to large duty cycle. Compared to the FMCW-
radar it is easier in a pulse-compression-radar to separate the range and relative velocity
information. In general, unlike camera or lidar sensors, radar sensors are robust against
weather effects like rain, snow and fog.
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Figure 2.9: R-v diagram for multiple object detection with a 4-Chirp linear
FMCW radar.

2.2.4 Ultrasonic sensor

Ultrasonic sensor measures distance to the object based almost on the same principle as
radar. However, instead of electromagnetic waves, sound waves are transmitted and re-
ceived. This means a medium, in this case air, is required for transporting the waves.
Again, distance is measured by recording the time elapsed between the transmission and
reception of the sound wave after being reflected back by the obstacle or object and con-
sidering the speed of sound as 344 m/s. Ultrasonic sensors mainly find their application
in park assistance systems. Although ultrasonic sensors are cheaper in price, they have a
very limited range. Moreover, the measurement quality is highly affected by temperature
and weather conditions. Also, some objects cannot be detected as they could absorb most
of the sound energy or their if they are small in size to reflect back enough energy.

2.3 State-of-art perception scheme

As stated in the previous sections, environment perception serves as the basis for ADAS
and automated driving applications. For realisation of any vehicle safety application, in-
formation about the vehicle environment is essential. Objects are detected, followed and
classified in the environment perception layer of the system architecture. Vehicle environ-
ment perception in general involves multiple steps. Figure 2.10 illustrates a typical sensor
based vehicle environment perception.

The basis for further stages of processing is the sensor data. Raw detections in case of radar
and lidar, and raw images in case of camera are the output of the respective sensors. These
raw sensor signals are initially preprocessed, for example multiple reflections of a radar
believed to be from the same object are filtered out or measurements can be transformed to
another coordinate system. For distance based sensors, depending on the spatial closeness
and characteristics, individual detections are grouped together as a cluster. This process
is known as data clustering. Each object has it’s own features and it is reflected in their
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Figure 2.10: One of the typical vehicle environment perception schemes

detections cluster. A car has higher width and length than a pedestrian, and a pedestrian
can show higher Doppler variance compared to bicyclist due to swinging arms. These
features are extracted from the clusters based on a process called feature extraction. Objects
can then be classified based on the extracted features from the detection clusters.

Apart from detection, each object needs to be tracked continuously so that application can
use the object information. This is termed in general as object tracking. The state of each
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object like it’s position and velocity are also to be estimated, which is required for further
analysis and control functions. The object tracking step itself involves many intermediate
steps. Object hypotheses and motion models serve as the basis for estimating the object
state with the help of estimation algorithms. Sensor detections with similar characteristic
for many time steps infers a strong evidence about an object existence and the object is
initialised. After the object initialisation, the sensor detections need to be associated with
the respective objects for every time step. This process is called data association and is one
of the difficult and computationally demanding steps. Because, a sensor delivers typically
hundreds of detections every time step and the source of the detection is not straight forward.
Moreover, a detection maybe from the actual object or even a clutter measurement.

An optimal data association algorithm should associate the detections to the actual object
that caused them. Mis-association or error in the data association step would affect the
whole object tracking procedure, giving false information to the application layer. In addi-
tion to object appearance and association, confirmation of the object presence and object
disappearance situations should also be considered. The object management step addresses
this problem, where the object is confirmed or deleted based on evidence of existence. The
required degree of object existence evidence depends on the false alarm rate acceptable for
the application. For example, a safety critical application like emergency braking system
(EBS) should have a lesser false alarm rate than a comfort application, where false alarm
can be tolerated compared EBS [Mun11].

2.4 Related work

Radar and thermopile sensors’ data are fused in [Lin06] for detecting pedestrians in real-
time from a moving vehicle. Kalman filter and weighting technique are used for the fusion
of object states and the object category is fused separately using DST. In [FC08] a generic
multi-sensor fusion method for tracking pedestrians is presented. A standard Kalman filter
with NN data association is used for tracking and the track management is based on Sit-
tler’s score [Sit64]. Moreover the detection and recognition confidences are combined using
evidential fusion.They evaluate their approach only based on synthetic sensor data, however
shows the advantage of considering the reliability of the information source.

Methods for improving the detection and tracking of moving objects, by including the
class information at detection and tracking levels are presented in [Gar14]. Two different
approaches are presented: in the first approach, the object class information from radar,
lidar and mono-camera tracks are used for fusion at tracking level and in the second approach
the class information from detections are used for fusion on the detection level. Pedestrian,
bicyclist, car and truck object classes are considered and multi-sensor class information is
derived based on evidential combination. However the existence information of the objects
useful for adaptation in different application scenarios is not addressed.

A generic sensor fusion framework based on joint integrated probabilistic data association
(JIPDA) filter is presented in [Mun11], where the existence of an object is also estimated
simultaneously along with the object state. The JIPDA method is extended in [Ott13], for
pedestrian tracking solutions in truck ADAS applications. Pedestrians are detected and
tracked from a moving truck based on radar and mono-camera sensors. Data association is
based on several heuristics and is solved by enumerating the association hypotheses using
graph-based hypotheses tree. The posterior of the object state is however approximated by
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Figure 2.11: Development of RFS based tracking methods

a unimodal Gaussian distribution. Moreover, the object class information is not considered
in the tracking framework.

Random Finite Set (RFS) based object tracking methods are being further developed in
order to overcome the disadvantages of the conventional tracking methods and improve
state estimation. A Gaussian mixture probability hypothesis density (GM-PHD) filter for
tracking extended targets is presented in [GLO10]. The results of tracking pedestrians with
GM-PHD filter and laser scanner are presented. However, the results are provided as a
simple proof of concept and is not evaluated for further complex test scenarios. Meissner
in [Mei15] develops a method for tracking road users at intersections with classifying mul-
tiple model probability hypothesis density (CMMPHD) filter. He presents an approach for
joint tracking and classification using multiple sensors and uses DST for combining class
evidences. Additionally, the class information is also used for selecting the suitable motion
model for a particular object. However, the involved application has stationary sensors
mounted at intersections rather than a moving vehicle. In [Reu14], Reuter presents the
labeled multi-Bernoulli (LMB) filter and compares it’s performance to cardinalized prob-
ability hypothesis density (CPHD) and cardinality balanced multi-target multi-Bernoulli
(CBMeMBer) filters. It is shown with the example of a passenger car automatic cruise con-
trol application that the LMB filter performs identical to the JIPDA filter in basic scenarios
and at certain situations outperforms it. The object class information and extension of the
approach to commercial truck applications for tracking VRUs are however not presented.
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Chapter 3

Objectives

As presented in Chapter 1, the increase in vehicle traffic and freight increases the number of
accidents caused due to trucks. This clearly motivates the need for highly efficient vehicle
safety systems in order to improve road safety. One of the important aspects is to reduce
truck accidents with vulnerable road users (VRU), where the survival rate of the VRU is
very less when involved in an accident with truck.

A foremost requirement of a system for improving the safety of VRU would be it’s ability
to detect, localise and follow the VRU precisely, so that the safety application can take
decisions based on these informations. Moreover with the advancement of autonomous
driving concepts and sensor technologies as presented in Chapter 2, the need of robust
methods for sensing, understanding and following objects in the vehicle environment clearly
serves as a motivation for this work.

The main objective of this thesis is to develop an approach for reducing the number of
commercial truck accidents involving collision with VRUs, especially in urban scenarios.
Thereby, the particular aim is to develop robust environment perception solutions for detect-
ing and tracking VRUs in the near vicinity of truck, based on which the safety application
can then react to avoid collision.

A typical vehicle perception environment in urban scenario is highly dynamic, where dif-
ferent class of objects like pedestrians and bicyclists appear simultaneously in the sensor
field-of-view (FoV). Each class of object has different characteristics and motion attributes.
For example, a straight walking pedestrian can be assumed to move with constant velocity
whereas a constant turn rate and velocity model would be more suitable for representing
the motion of a car. Consequently, it is beneficial to integrate the class knowledge of the
object into the tracking algorithm, in order to use a suitable motion model for object state
estimation. Also, it is essential in most of the ADAS applications to know the class of the
object, in order to adapt the system parameters and to use a suitable intervention strategy.
Therefore an additional aim of the work is to classify the objects in the vehicle environment
and to fuse the class information with the object tracker and the intervention strategy.

Further on the practical side, the aim is to implement a prototype of the developed ap-
proaches and to evaluate their performance and accuracy with the help of a series of real-
time test scenarios.
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Chapter 4

Technical Preliminaries and
Methodology

4.1 Approach and Structure

The high-level goals stated in Chapter 3 can be translated into series of technical and scien-
tific research questions that need to be answered. The technical questions to be answered
from the system realisation point of view are:

• What are the available sensor technologies and how can the objects in the near vicinity
of truck be sensed and detected?

• What are the technical preliminaries, measurement and communication techniques
required for efficient transfer of data between sensors and the computation module?
How can the data be processed, stored and analysed?

• How should the system and software be designed considering different levels of object
information such as detection, tracking and classification? Which software tools and
methods are to be used for implementation of algorithms?

The research questions to be answered from the scientific point of view, in order to develop
a feasible solution are:

• What are the available mathematical methods and approaches to address the problem
of multi-object tracking and classification?

• How well do the existing approaches satisfy the requirements of tracking and classi-
fying VRUs in the near vicinity of truck?

• How to develop a robust approach for tracking and classifying objects in highly dy-
namic urban scenarios, considering random object appearance and disappearance,
maneuvering objects, varying observability and uncertain sensor measurements. How
to qualitatively and quantitatively evaluate the developed approaches, in order to im-
prove and mature them for implementation in series development of truck ADAS and
autonomous driving ECUs?

The main contribution of this work is the development of solutions to the above questions,
by formulating systematic methods and novel approaches built on existing theoretical con-
cepts, that can be implemented for VRU protection applications in trucks. The sensor
used for object detection is an high-frequency radar with a frequency range of 77-81 GHz.
Random Finite Set (RFS) based object tracking methods are used as a base for the tracker
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Figure 4.1: Structure of the dissertation
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development. Recently developed multiple model labeled multi-Bernoulli filter (MMLMB)
[RSD15] is used for considering different motion models in object tracking. Another aspect
of this work is the development of a machine learning based classifier for classifying differ-
ent objects in the environment of the truck, based on high-resolution radar detections. The
constructed classifier is trained and tested with data from multiple measurement sequences.
Moreover, an approach to integrate the derived class information within the MMLMB track-
ing algorithm is formulated, in order to adapt the tracking parameters based on the object
class for improving estimation robustness. For this, the solution proposed in [MRSD14] for
multiple model probability hypothesis density (MMPHD) filter is adapted to be used with
the MMLMB filter. Further, an own implementation and parametrisation of the conven-
tional converted measurements Kalman filter (CMKF) with global nearest neighbour (GNN)
data association method is used to compare the performance of the developed approach.

The structure of this dissertation is illustrated in Figure 4.1. After a brief introduction
in Chapter 1, the state-of-art ADAS and autonomous driving technologies along with the
sensor measurement principles were outlined in Chapter 2. Subsequently, the objectives of
the dissertation were stated in Chapter 3.

The methodological approaches for achieving the stated objectives, system setup and tech-
nical preliminaries required for communication, data acquisition and concept realisation are
described in this Chapter. The basics of finite set statistics (FISST), multi-object Bayes fil-
ters and RFS based object tracking methods as alternative to the conventional multi-object
tracking methods based on bank of single-object Bayes filters, are presented in first part of
Chapter 5. The second part of Chapter 5 presents the LMB filter proposed in [RVVD14]
based on the labeled RFS, along with it’s multiple model version. Chapter 5 concludes with
the presentation of an approach to integrate the object class information into object track-
ing, based on Dempster-Shafer theory (DST) of evidence. Chapter 6 explains the concepts
of segmentation, feature extraction and machine learning based object classification. The
choice of motion models, sensor model and filter parameters required for prototypical real-
isation of the developed methods and approaches as a truck safety application is presented
in Chapter 7. Chapter 8 begins with the definition of metrics for evaluation of the devel-
oped object tracking and classification methods and concludes by presenting the evaluation
results according to different test scenarios. Chapter 9 concludes the dissertation, providing
a summary of the work and directions for future research.

4.2 Test vehicles and system setup

The test vehicles used for experiments in this work is shown in Figure 4.2. The vehicle in
Figure 4.2a is MAN TGX series tractor unit. The vehicle has a 4x2 axle configuration with
a total length 5.88 m and width 2.44 m. The unladen weight of the tractor unit is 7400 kg.
The vehicle is equipped with a 6-cylinder 520 PS engine. Another test vehicle is a DAF
XF series tractor unit, shown in Figure 4.2b. It also has a 4x2 axle configuration and total
mass of 7500 kg. The DAF tractor unit has a total length of 5.96 m and width 2.55 m. It
is pulled by a 6-cylinder 483 PS engine. Both vehicles have 24V power supply. The radar
sensor is mounted on the right side corner of the vehicles with it’s axis tilted ≈ 30 °towards
the rear of the vehicle.
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(a) Test vehicle - MAN TGX (b) Test vehicle - DAF XF

Figure 4.2: Both the test vehicles are installed with sensors and measure-
ment equipments. The radar sensor mounting is as represented
in Figure (A), enclosed by a green circle.

4.2.1 Coordinate systems

The vehicle and sensor coordinate systems are defined according to the DIN 70,000. The
origin of the Cartesian vehicle coordinate system is at the center of rear axle of the truck
represented by xV , yV and zV . The coordinate system has it’s x-axis pointing in the
longitudinal direction towards the vehicle front, y-axis pointing in the lateral left direction
and z-axis in the upward direction.

The origin of the radar sensor cartesian coordinate system is at the right corner of the ve-
hicle and is represented by xS and yS . Figure 4.3 depicts the vehicle and sensor coordinate
systems. As the radar has no elevation measurement, only the two-dimensional x and y
axes are considered. Radar sensor delivers the azimuth angle, range and Doppler velocity
of the target in polar coordinates. Therefore the measurements are transformed into sensor
Cartesian coordinates and then to the vehicle coordinate system with the transformation
matrices defined in equation 4.1. A point psensor = (xsensor, ysensor)> in the sensor coordi-
nate system is transformed as a point pveh = (xveh, yveh)> into vehicle coordinate system
by

pveh = RS2V · psensor + tS2V (4.1)

where the rotation matrix RS2V is calculated from the yaw mounting angle ψsensor of the
sensor, which is the rotation around z-axis and tS2V is translational x and y mounting
positions of the sensor with respect to the vehicle coordinate system.

RS2V =
[
cos(ψsensor) − sin(ψsensor)
sin(ψsensor) cos(ψsensor)

]
(4.2)

4.2.2 On-board sensors

Apart from the high-resolution short range radar sensor, the vehicles are also equipped with
a front looking camera sensor and long range radar sensor. Only the high-resolution radar
sensor is primarily use for this work. Additionally, the vehicles are also equipped with on-
board wheel speed and yaw-rate sensors. Wheel speed sensors in MAN TGX and in DAF
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Figure 4.3: Figure at the top depicts the vehicle Cartesian coordinate sys-
tem and Figure at the bottom illustrates the radar sensor co-
ordinate system with respect to the vehicle coordinate system.

XF 460 are from the company Knorr-Bremse. The wheel speed sensors are used as part
of series ABS and ESP systems. A wheel speed sensor installed in each of the four wheels
of the truck and measures the wheel rotations per minute based on induction principle.
Figure 4.4a shows one of the wheel speed sensors used in the test vehicles. The host vehicle
speed is estimated based on the wheel speed sensor measurements. Another important
sensor for measuring the angular velocity around the vertical zV axis of the vehicle is the
yaw-rate sensor. It is actually part of a sensor cluster required for the ESP system, which
can also measure lateral and longitudinal acceleration of the truck. The used sensor is
DRS MM 3.R8k from Bosch. In a micromechanical type gyroscopic yaw-rate sensor, yaw-
rate measurement is based on the Coriolis-principle. The Coriolis acceleration is measured
by micro-mechanical capacitive acceleration sensor placed on an oscillating element. The
generated acceleration is proportional to the product of vehicle yaw-rate and the oscillatory
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(a) Wheel-speed sensor (b) Steering angle sensor

Figure 4.4: Used wheel-speed and steering angle sensors.

velocity. Additionally the steering wheel angle is also measured and is available as input
signal to the model functions. MAN TGX test vehicle is equipped with a steering angle
sensor from the company Knorr-Bremse and DAF XF 460 is equipped with a Takata steering
angle sensor. All the on-board sensor signals are available through the J1939 vehicle CAN
bus.

4.3 Radar Sensor

4.3.1 Properties

A prototype radar sensor with a carrier frequency of the range 77-81 GHz is used in this
work. The range and Doppler of a target are measured by FMCW principle. Theoretically
the radar has an opening angle ±75°. The sensor specifications are summarized in Table
4.1. The radar sensor delivers measurements in polar coordinates with azimuth, range and
relative velocity values of objects. The FoV of the radar sensor as mounted on the right
corner of the vehicle is illustrated in Figure 4.5.
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Figure 4.5: Illustration of field of view of the used radar sensor.
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Property Specification

Radar measurement principle FMCW

Frequency / GHz 77-81

Maximum detection range / m 30

Range accuracy / m 0.028

Range resolution / m 0.1

Horizontal opening angle / deg 150

Angular accuracy / deg 2.61

Angular resolution / deg 1

Relative velocity accuracy / m/s 0.1

Relative velocity resolution / m/s 0.3

Table 4.1: Specifications of the used radar sensor.

4.3.2 Calibration

The orientation angle of the sensor with respect to the vehicle longitudinal axis is calibrated
by series of tests. A corner reflector of know radar cross section (RCS) is placed at reference
x and y positions in the FoV as shown in Figure 4.6, and the Cartesian position of the
measured target point is calculated. The test is repeated with different reference positions
and the sensor orientation angle is calibrated until the root mean-squared error (RMSE) in
position is minimized.

Figure 4.6: Setup with corner reflector for sensor position calibration and
estimation of measurement characteristics.

4.4 Software framework

Algorithms for vehicle environment perception in this work are implemented and tested
according to model-based software development methods. Matlab/Simulink, it’s toolboxes
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along with some hand coded C-functions are used for implementation. Matlab and Simulink
Coder enables the code generation from the models. Prototypical VRU protection system
is realised in real-time on the test vehicles with help of rapid prototyping (RPT) method
and Micro Autobox (MABX) from the company dSpace. Rapid prototyping is a develop-
ment method enabling quick prototypical implementation, testing and iteration of real-time
functions and control strategies. With RPT, new functions can be integrated to the system
in real-time even in the early stages of development, with the help of prototype hardware.
MABX is one of the prototype hardwares used for the deployment and testing of software
code in real-time. The initial step of RPT method is to build software functions by means
of graphical models. Matlab/Simulink is used for this purpose in this work. In the context
of model-based development methods, the developed functions as models can be iteratively
tested as Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop
(HIL) solutions. MIL and SIL testing do not need a real-time hardware for implementation,
whereas HIL is more complex, which also requires the actual ECU or actuators within the
testing loop. As the actual ECU is not available during the early development phases of
the system, RPT facilitates the testing of software functions in real-time at early devel-
opment stage, however with a prototype hardware. This helps in quick optimisation and
improvement of functions. The RPT structure used in this work is illustrated in Figure 4.7
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Figure 4.7: Rapid prototyping framework with corresponding signal flow.

Apart from implementation, various test scenarios are also defined in this work for testing
the functionality of various software modules. Test data are logged with help of CANape
measurement environment from the company Vector Informatik, to facilitate offline sim-
ulation and analysis of the developed algorithms. For visualisation and analysis, an own
implementation of GUI based on Matlab, ControlDesk software from dSpace as well as
Python based analysis tool "MASS" from Knorr-Bremse are used.
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4.5 CAN bus structure
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Figure 4.8: CAN bus structure

The communication and data transfer between sensor modules, processor and measurement
computer is through a bunch of CAN buses. The CAN bus structure of the test vehicles
are illustrated in Figure 4.8. J1939 is the transmission protocol defined by SAE, used for
communication of ECUs in commercial vehicles. The vehicle signals like speed, steering
wheel angle and yaw-rate are made available to the MABX and CANape through J1939
vehicle CAN 1 bus at a baud rate of 250 kB. The radar sends detections through the
private CAN 2 at a baud rate of 1000 kB according to the radar manufacturer’s protocol.
The radar additionally requires some of the vehicle CAN 1 signals for it’s functionality.
But the radar CAN 2 cannot be directly connected to the vehicle CAN 1, as they both
have different network protocols and baud rates. Moreover, J1939 protocol typically uses
29 bit extended CAN-identifier whereas the network protocol of the radar uses 11-bit CAN-
identifier. Therefore a gateway is required for communication between the vehicle CAN
1 and radar CAN 2. The CAN-gateway is realised with a CANlog 3 datalogger from the
company G.i.N. The datalogger can be programmed with Log Task Language (LTL) using
configuration software GiNConf, provided by the company G.i.N.
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4.6 Measurement techniques

The vehicle and radar signals from CAN 1 and CAN 2 are connected to CANcase XL and
are logged with CANape software running on a measurement PC. Measurement PC is a
Panasonic Toughbook. Additionally, internal signals and parameters of the model running
on the MABX can be directly sent to the CANape measurement environment through
the XCP protocol. XCP is the Universal Measurement and Calibration Protocol defined
by the Association for Standardization of Automation and Measuring System (ASAM) in
2003. The RTI XCP on Ethernet blockset provided by dSpace enables the model data from
MABX to be sent directly to the measurement system through ethernet connection. The
RTI XCP blocksets are used to configure and setup XCP on Ethernet services and also
to capture model data. When the blocksets are placed and setup in the Matlab/Simulink
model, an A2L file is generated during the model build process. The measurement system
then reads this A2L file generated for the MABX and configures the XCP on Ethernet
Real-Time Service to acquire data from the memory of MABX. This on the other hand also
helps in easier model debugging and offline resimulation. The communication structure of
the Matlab/Simulink model with the CANape measurement environment through XCP on
Ethernet is depicted in Figure 4.9. The measurement PC running CANape measurement
software is additionally connected with a LifeCam Studio from Microsoft. The webcam has
a 1080p-HD sensor, mounted with wide-angle lens having a 75° diagonal FoV. The webcam
is capable of recording video sequences upto 30 frames per second (FPS). The webcam is
primarily used for video recording of the test scenarios, which are then used for detailed
analysis of the developed algorithms based on the actual scene. Moreover the webcam is also
calibrated with a checker board for ground truth projection. The ground truth projected
images are then used for detecting relevant objects in the scene with openCV libraries,
thereby serving as a source of reference measurement.

Vector CANape
(XCP master)

Simulink
(XCP server) functions

Simulink model (XCP slave)

A2L file

XCP
on Ethernet

Figure 4.9: XCP communication structure (source: Vector Informatik
GmbH product website).

4.7 System and Software Schema

The objectives stated in Chapter 3 are transformed into system and software solutions.
They are realised with the help of different modules, each satisfying different functional
requirements. Radar is the primarily used sensor used for object detection. Range, azimuth
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and Doppler measurement of objects in polar coordinates is the first level of input. Apart
from the radar detections, vehicle speed, yaw-rate, steering angle are also some of the
additionally required input signals, in order to estimate the host vehicle’s state. Figure
4.10 depicts the software modules, scheme and data flow used in this work. The complete
software scheme is divided into following modules:

Radar detection: The interface between radar and the model running in MABX is
realised by using RTI CAN MultiMessage blockset from dSpace, which can handle
complex CAN setups and high number of messages. The blocksets are placed within
the Matlab/Simulink models and are configured with the corresponding CAN database
configurations. Both receive and transmit signals from the model can be configured
within the RTI CAN MultiMessage blockset. The raw detections delivered by the
radar are thereby directly integrated into the software running on prototype hardware
and made available for other modules.

Measurement pre-processing: Apart from coordinate transformations, additional pre-
processing of raw detections is also required. If the reflected electromagnetic wave
from the object is again reflected back from the host vehicle surface, it could act in a
same way as a signal transmitted by radar. When this wave hits the object again and
reflects back with enough power, it would be detected as an additional object. This
multiple reflection from a same object would create ghost objects and therefore need
to be pre-processed.

Detections clustering: The used radar is capable of detecting multiple points of an
extended object. The aim of clustering module is to segment detections believed to be
from the same object as distinct group. DBSCAN algorithm proposed in [EKSX96]
is used in this work for detections clustering.

Shape fitting and feature extraction: Each group of detections have certain features,
depending on the object they originated from. Various features are then extracted
from the clustered groups. The features that are looked for in each group are defined
and analysed in Chapter 6.

Measurement based classification: A machine learning based method to classify ob-
jects, based on the extracted features of the detection clusters is implemented in this
module.

Object reference point: Although the detections from an extended object are clustered
as a group, the object is tracked only with reference to a single point. This point
representing the object should be stable and invariant to the object direction of motion
with respect to the sensor. Different choices of object reference point are made,
depending on the spatial extension of the detections cluster, result of shape fitting
module as well as the position of the object.

Object state estimation and tracking: Information about object position and velocity
are essential for situation analysis and vehicle intervention strategies. These entities
are in general called object states and the method to calculate them is called state esti-
mation. Object tracking is the process to properly predict and correct their movement
and position using motion and measurement models, with assumed object hypotheses
[TBF05]. As motion models are required for predicting the object states, measure-
ment models are required for correcting the predicted object states based on actual
sensor measurements. Therefore for tracking an object, it is required to associate the
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Figure 4.10: Proposed system scheme for tracking and classification of ob-
jects using radar sensor.
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actual radar measurement with that object at each time step. This process is called
data association. All the above steps are related to each other and are implemented
within this module. For object tracking, a Gaussian mixture MMLMB filter based on
RFS approach is implemented. Due to the implicit data association step of MMLMB
filter, a separate data association sub-module is not required. Disadvantages of the
state-of-art tracking methods, motivation, principles and development of RFS based
tracking concepts, and implementation details of this module are further detailed in
Chapter 5.

Ego-motion compensation: Apart from the motion of the objects in the environment,
the ego-vehicle itself is in motion. This movement of the ego-vehicle should be con-
sidered in prediciting the object states and is realised within this module. Vehicle
speed, steering angle and yaw-rate are available as input signals to the model again
with the help of RTI CAN MultiMessage blockset and J1939 vehicle CAN database.
Based on these signals and a kinematic single track model of the truck, the motion of
ego-vehicle is predicted.

Integrating object class information: The output of measurement based classification
module are confidence values for each of the object classes. These confidence values are
merged with the output of the object state estimation, specifically the object velocity,
with the help of Demspter-Shafer theory of evidence. Further, the weight for motion
models in MMLMB are adapted according to predicted object class.

Track management: Object birth, confirmation and death are handled in track man-
agement module. Decision within track management module are based on evidence
levels supporting object existence.

Interface to safety application: Output of the above processing steps is a list of estab-
lished tracks. Each track has it’s identity along with it’s estimated state and class.
These tracks can further be used by ADAS applications, based on situation and ap-
plication dependent track selection criteria. The list of tracks are made available on
the CAN bus through the transmit configurations of the integrated dSpace RTI CAN
MultiMessage blocksets and can further be used by the application.
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Chapter 5

Random Finite Sets based
Multi-Object Tracking

A sensor delivers observation of certain properties of an object, based on it’s measurement
principle and capabilities. In order to be usable, the properties and characteristics of the
object need to be continuously estimated over time, based on the uncertain sensor measure-
ments. This process of continuous estimation of object state such as location and velocity,
typically of one or more objects based on one or more sensors, together with the estimation
of number of objects is called as object or target tracking. Additionally, the estimation
process requires assumptions about the motion properties of the object which is governed
by uncertain motion models, as well as sensor measurement characteristics which is modeled
by corresponding sensor measurement models.

The theoretical foundations of the conventional multi-object tracking concepts are sum-
marised in Appendix A. These methods use multiple instances of a single-object Bayes
filter. Which means, the multi-object tracking problem is not exactly considered as a single
closed entity, but is based on chain of separate single-object statistics. The independent
single-object filters require an explicit association of the measurement data to each object.
Moreover the conventional target tracking methods handle the estimation of object states
and the estimation of number of actual objects separately. The data association and track
management steps are only suboptimal as they are often based on assumptions.

Although multiple solutions for improving multi-object tracking with parallel single-object
filters have been developed, increased complexity of these algorithms can lead to poor
behaviour traceability [Mah04]. Therefore a systematic unification of object detection,
tracking, classification, management and evaluation, based on finite set statistic (FISST) is
proposed by Mahler. A generalisation of the single-object Bayesian methods to the multi-
object tracking problem is facilitated by modeling the object states and measurements
as random finite set (RFS), rather than individual random vectors. The motivation for
multi-object RFS based target tracking approaches compared to the classical single-object
Bayesian approaches according to [Mah03, Mah07b] are

• An unified approach for the estimation of the object states as well as the number of
objects.

• A finite set approach unlike the vector representation can represent all possible oc-
currences of multi-object states, including the case where no objects are present, in
which case the set will be empty.
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• An explicit consideration of measurement-to-track association is not required as it is
unified within the multi-object Bayesian formalisation.

This chapter is divided into six sections. The sections 5.1-5.3 presents the basics of RFS
and various multi-object probability distributions. Also, the concepts of labeled RFSs from
[VV13a] are presented. Section 5.4 introduces the multi-object Bayesian recursion with the
help of multi-object Markov densities and multi-object Likelihood functions. The compu-
tationally tractable approximation of the multi-object Bayes filter, namely the probability
hypothesis density (PHD) filter and it’s variants are introduced in section 5.5. Section 5.6
describes the labeled multi-Bernoulli filter (LMB) introduced in [RVVD14] and the following
section 5.7 presents the multiple model version of the LMB filter proposed in [RSD15] along
with it’s Gaussian mixture implementation. The last section 5.8 begins with the description
of Demspter-Shafer theory (DST) of evidence. It also presents a method on how to further
extend the MMLMB filter proposed in [RSD15], in order to enable the integration of class
information into the tracking framework and to track VRUs.

5.1 Random Finite Sets

In general, every object state is modeled as a random vector, which is typical in the case of
single-object Bayes filter. A set of individual single-object Bayes filters, for example Kalman
filter, are used to estimate each of these state vectors. But the notion of random number
of objects is missing in this representation, which is also essential for multi-object tracking,
given the fact that objects can appear or disappear from time to time. This is made pos-
sible by the Random Finite Set representation of the object states. Compared to random
vector representation, the advantage of RFS is that the number of objects at any time step
can be random, unordered and distinct. The definition of RFS according to [Vo08] is given as

Definition 5.1.1. random finite set: A random finite set is simply a random variable
that take values as (unordered) finite sets, i.e. a finite-set-valued random variable. The
essential difference between an RFS and a random vector is that: for an RFS the number of
constituent points is random and the points themselves are random, distinct and unordered;
whereas for a random vector there is exactly one constituent point which is random.

In the context of multi-object tracking, all the object together can be represented in RFS
form as

X = {x(1), x(2), x(3), . . . x(n)} (5.1)

where |X| = n ≥ 0 gives the number of objects and x(1) . . . x(n) the individual random object
state vectors. Similarly, all the measurements observed by a sensor can be written as the
RFS

Z = {z(1), z(2), z(3), . . . z(n)} (5.2)

where |Z| = m ≥ 0 gives the number of measurements and z(1) . . . z(m) the random mea-
surement vectors. The term ≥ 0 in both state and measurement sets thus represents the
possibility of considering the case where there are no objects and the case of missed de-
tection or clutter respectively. In other words, the multi-object state X can take different
instantiations according to number of objects as

X = ∅ there are no objects present
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X =
{
x(1)

}
one object with state vector x(1) is present

X =
{
x(1), x(2)

}
two objects with state vector x(1) 6= x(2) are present

...

and the measurement set Z can take different instantiations according to number of mea-
surements as

Z = ∅ there are no sensor measurements

Z =
{
z(1)

}
single measurement z(1) is available

Z =
{
z(1), z(2)

}
two measurements with vectors z(1) 6= z(2) are available

...

The representation of states and measurements as RFS in the corresponding state and
observation space are illustrated in Figure 5.1. This representation of RFS is used through
out this work, for describing the RFS based multi-object Bayes filters in the following
sections. Further in this work, similar notations and abbreviations as in [VV13a] and

Xk Xk+1

Zk Zk+1

multi-object
motion

measurement space

state space

Figure 5.1: Illustration of RFS based multi-object tracking.

[RVVD14] are used. Single-object states are denoted by lower case letters (e.g. x), multi-
object states represented as RFSs are denoted by upper case letters (e.g. X) and multi-object
probability distribution is denoted by π. Spaces are denoted with blackboard upper case
letters, as X for state space with object state vectors x ∈ X and as Z for measurement
space with measurement vectors z ∈ Z. In case of labeled RFS, which is briefly presented in
the following sections, multi-object state is denoted by bold face upper case letter X, state
vector augmented with label as x = (x, l). Moreover, as proposed in [VV13a, Mah14], inner
product of continuous functions are denoted by

〈f, g〉 =
∫
f(x)g(x)dx (5.3)

and the multi-object exponential notation of a real valued function h(x) is given as

hX =
∏
x∈X

h(x) (5.4)
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which means the function has to be evaluated for all the vectors x in the RFS X and hX = 1
if X = ∅. The generalized Kronecker delta function and the inclusion function (which
denotes if a set is a subset of another set) are given by

δY(X) ∆=
{

1, if X = Y
0, otherwise

(5.5)

1Y
∆=
{

1, if X ⊆ Y
0, otherwise

(5.6)

5.2 Statistics and Classes of RFS

The three fundamental statistical descriptors described in [Mah07b] for specifying the statis-
tics of an RFS Ψ are

• belief-mass function βΨ(T ) - basis for deriving multi-object Markov densities and
likelihood functions.

• multiobject probability density function π(Y ) - fundamental concept for multi-object
Bayes filtering.

• probability generating functional GΨ(h) - basis for deriving approximate multi-object
Bayes filter variants.

The belief measure of the RFS Ψ ⊆ Y, also called as belief-mass function is the generalisation
of probability-mass function, given in [Mah07b] as

βΨ(T ) = Pr(Ψ ⊆ T ) (5.7)

The multi-object probability density can be then derived based on the belief-mass function
with the relation [Mah07b]

π(Y) = δβΨ
δY (∅) (5.8)

For the multi-object tracking problem, considering all the possible number of elements the
multi-object state X can have, the multi-object probability distribution π(X) can take the
forms

π(X) =



π (∅) , if X = ∅
π
({
x(1)

})
, if X =

{
x(1)

}
π
({
x(1), x(2)

})
, if X =

{
x(1), x(2)

}
...

...

(5.9)

with ∫
π(X)δX = 1 (5.10)

The integration of the above equation however involves a set integral and can be represented
considering all the possible events, i.e. summing over all the possible number of objects as∫

π(X)δX = π(∅) +
∞∑
i=1

1
i!

∫
π
({
x(1), . . . , x(i)

})
dx(1) . . . dx(i) (5.11)
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which is computationally intractable [Mah07b]. In order to compute the set integral, the
number of elements (vectors) n in the set should theoretically be < ∞. In that case, the
cardinality distribution, i.e. the probability that there are n vectors in the RFS X is given
as

ρ(n) = Pr(|X| = n) = 1
n!

∫
π
({
x(1), . . . , x(n)

})
dx(1) . . . dx(n) (5.12)

which is used for estimating the number of objects in the context of multi-object tracking.
The probability generating functional of an RFS Ψ is the functional defined as the expected
value and can be derived for the multi-object state X [Mah14] as

GΨ(h) = E[hΨ] =
∫
hX · π(X)δX (5.13)

where hX is the multi-object exponential notation of a test function h(x) in equation 5.4
and 0 ≤ GΨ(h) ≤ 1.

In [Mah07b] the above statistics of RFS are expressed with an example of a single twinkling
star. Assuming that the twinkling star is observable with a probability r and has a spatial
distribution p(x), the belief-mass function can be given as

β(T ) = Pr(X = ∅) + Pr(X = {x}) · Pr(x ∈ T )
= 1− r + r · pX(T )

(5.14)

The multi-object probability density for the twinkling star can then be derived as

π(X) =


δβ
δ∅ (∅) = 1− r, if X = ∅
δβ
δx (∅) = r · p(x), if X = {x}
0, if |X| ≥ 2

(5.15)

and the probability generating functional as

G(h) =
∫
hX · π(X)δX

= 1 · π(∅) +
∫
h(x) · π ({x}) dx+ 0

= 1− r + r

∫
h(x) · p(x)dx

(5.16)

Based on these statistical properties, the RFS can further be categorised into different
classes. These classes serve as the main foundations for the derivation of various RFS based
multi-object filters.

1. Poisson RFS - foundation for the probability hypothesis density (PHD) filter.

2. Identical Independently Distributed Cluster RFS - foundation for the cardinalised
probability hypothesis density (CPHD) filter.

3. Multi-Bernoulli RFS - basis for the multi-Bernoulli filters

4. Labeled RFS - basis for the class of labeled multi-Bernoulli filters.
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5.2.1 Poisson Random Finite Set

In the context of representing the RFS X = {x(1), x(2), x(3), . . . x(n)} in Poisson notation, if
the expected number of objects can be considered as λ and spatial distribution of ith object
as p(x(i)), then the multi-object distribution of the Poisson RFS is given by

π(X) = e−λ · λn . p(x(1)) . . . p(x(n)) (5.17)

In many implementations of multi-object tracking, the clutter process is modeled as Poisson
distribution with λc expected clutter measurements per time step and a uniform clutter
spatial distribution c(z). The clutter density is then given as

k(z) = λc · c(z) (5.18)

5.2.2 Identical Independently Distributed Cluster Random Finite Set

A RFSX is an identical independently distributed cluster (i.i.d.c) RFS if it has the following
two properties [Mah14]

1. The RFS has n ≥ 0 number of objects, where n is an integer value drawn from the
probability distribution ρ(n) on the number of objects.

2. The objects of the RFS are spatially distributed according to a distribution pX(·),
where X =

{
x(1), . . . , x(n)

}
.

The multi-object probability density of the i.i.d.c RFS X is then given as

π(X) = n! · ρ(n) · p(x(1)) . . . p(x(n)) (5.19)

where p(x(i)) represents the spatial distribution of the ith object. Therefore, the i.i.d.c
RFS can be understood as a generalisation of the Poisson RFS in which the cardinality
distribution ρ(n) is represented by a Poisson distribution.

5.2.3 Bernoulli Random Finite Set

A Bernoulli RFS X is characterised by spatial probability density pX(.) as well as the
probability of existence r. The probability that the Bernoulli RFS X is a singleton with
an element x is given by the existence probability r and the probability that it is empty is
given by 1− r. The spatial distribution is then given by the spatial distribution p(x) of the
object x. Therefore the parameters (r, p) completely define a Bernoulli RFS and it is used
for representing a single object. The probability distribution of Bernoulli RFS is given as
[Mah14]

π(X) =


1− r, if X = ∅
r · p(x), if X = {x}
0, if |X| ≥ 2

(5.20)
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5.2.4 Multi-Bernoulli Random Finite Set

A multi-Bernoulli RFS is the union of fixed number of independent Bernoulli RFS [Mah14].
In case of multi-object tracking, if every object can be described as an individual Bernoulli
RFS, then the multi-Bernoulli RFS of the complete state space X can be given as union of
these independent Bernoulli RFSs. Suppose there are N objects, each represented by its
individual Bernoulli RFS X(i), then the multi-Bernoulli RFS is given as

X =
N⋃
i=1

X(i) (5.21)

Corresponding to the parameter representation of a Bernoulli RFS, the multi-Bernoulli RFS
can be represented by combining the individual object parameters as

{(
r(i), p(i)

)}M
i=1

. The
multi-Bernoulli multiobject probability density is given by [Mah14]

π(x(1) . . . x(n)) =
N∏
j=1

(1− r(j))
∑

1<i1 6=···6=in<N

n∏
j=1

r(ij)p(ij)(x(j))
(1− r(ij))

(5.22)

and the cardinality distribution [Mah14]

ρ(n) =
N∏
j=1

(1− r(j))
∑

1<i1 6=···6=in<N

n∏
j=1

r(ij)

(1− r(ij))
(5.23)

5.3 Labeled Random Finite Set

In multi-object tracking applications, it is mostly essential to have unique identities for
each of the tracks. It is required for estimating object trajectories and know which track at
time tk+1 was same as at time tk, for association. The RFS classes and their multi-object
probability distributions presented in previous section although covers the multi-object state
estimation problem, do not explicitly consider a label (identity) for each object. In [VV13a]
the class of Labeled RFS is proposed, where each object state is augmented with a distinct
label ` ∈ L. The labels are drawn from a discrete label space L = {αi : i ∈ N}, where N is
a set of positive integers and αi’s are distinct [VV13a].

The multi-object labeled RFS can therefore be written as

X = {(x(1), `(1)), (x(2), `(2)), . . . (x(n), `(n))} ⊆ X× L (5.24)

Moreover, each object should have an unique identity. Therefore a set of track labels
L(X) = {L(x, `) : (x, `) ∈ X} of the labeled multi-object state X is introduced in [VV13a].
L(x, `) = ` is then the projection of labeled state (x, `) on the space X×L to the label space
L denoted as L : X × L 7→ L. Also, each object label should be distinct, which means two
different objects cannot have the same label. A label can be assigned exactly to one object
only if the condition |L(X)| = X and the distinct label indicator is given as

∆(X) = δ|X|(L(|X|)) (5.25)
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which takes the value one if the object labels are distinct, zero otherwise. More detailed
derivation and properties of labeled RFS are presented in [VV13a]

5.3.1 Labeled Multi-Bernoulli Random Finite Set

Augmenting each object of a multi-Bernoulli RFS with a distinct label gives the labeled
multi-Bernoulli (LMB) RFS defined by the existence and spatial parameters of each object
represented by it’s corresponding label

π(X) =
{

(r(`), p(`))
}
`∈L

(5.26)

The multi-object probability density of LMB RFS on X× L is given by [VV13a]

π((x(1), `(1)), . . . (x(n), `(n))) = δn(|l1, . . . , ln|)×
∏
i∈L

(1− r(i))
n∏
`=1

1Lr(`)p(`)

1− r(`) (5.27)

A compact notation of the LMB RFS as given in [VV13a] and [Reu14] using the multi-object
exponential notation

π(X) = ∆(X)w(L(X))pX (5.28)

where

w(L) =
∏
i∈L

(1− r(i))
∏
`∈L

1L(`)r(`)

1− r(`) ,

p(x, `) = p(`)(x).
(5.29)

The multiple model version of the LMB filter derived in [RSD15] and used in this work is
based on the LMB RFS.

5.3.2 Generalised Labeled Multi-Bernoulli RFS

The generalised labeled multi-Bernoulli (GLMB) RFS is a generalisation of the LMB RFS
with the multi-object probability density given by [VV13a]

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))[p(c)]X (5.30)

where C is a discrete index set enabling multiple hypotheses of a set of track labels, weights
w(c) and spatial distributions p(c) satisfy∑

L⊆L

∑
c∈C

w(c)(L) = 1, (5.31)

∫
p(c)(x, `)dx = 1. (5.32)

In GLMB RFS the tracks are statistically dependent unlike the LMB RFS. The sum compo-
nent in equation 5.30 infers that in contrast to the LMB RFS, in the GLMB RFS multiple
hypotheses of a set of track labels are considered facilitating arbitrary weights and cardi-
nality distributions. In other words, a LMB RFS is a special case of GLMB RFS, where
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only one component c for each realisation of X is considered and weights depend on track
existence probabilities r(`). As multiple hypotheses are considered for a set of track labels,
with each hypothesis representing possible track to measurement associations, the data
association uncertainty is directly included in the filter update [Reu14].

5.3.3 δ-Generalised Labeled Multi-Bernoulli RFS

The δ-Generalised Labeled Multi-Bernoulli (δ-GLMB) RFS is a special case of GLMB RFS,
where an hypothesis or component c is represented by the association history ξ of a set of
track labels I. The δ-GLMB RFS is realised from the GLMB RFS with the parameters,

C = F(L)× Ξ
w(c)(L) = w(I,ξ)(L) = w(I,ξ)δI(L)

p(c) = p(I,ξ) = pξ

where Ξ denotes a discrete space. The probability density of δ-GLMB is given as [VV13a]

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ
w(I,ξ)(L(X))[p(ξ)]X (5.33)

The update step of the LMB filter in section 5.6 uses the δ-GLMB representation of the
multi-object state, to consider different association hypotheses. Further, the probability of
number of objects n is obtained by summing all the weights of the hypotheses in which the
number of tracks is |I| = n. The cardinality distribution as derived in [VV13a] is given by

ρ(n) =
∑

(I,ξ)∈F(L)×Ξ

∑
L∈Fn(L)

w(I,ξ)δI(L) =
∑

(I,ξ)∈F(L)×Ξ
w(I,ξ) (5.34)

The PHD of the unlabeled version of δ-GLMB RFS is shown in [VV13a] to be

v(x) =
∑

(I,ξ)∈F(L)×Ξ

∑
l∈L

p(ξ)(x, `)L ⊆ L1L(`)w(I,ξ)δI(L)

=
∑
l∈L

∑
(I,ξ)∈F(L)×Ξ

w(I,ξ)1I(`)p(ξ)(x, `)
(5.35)

The existence probability r(`) of each track in the context of multi-object tracking can then
be extracted from the PHD of the δ-GLMB RFS, by considering the sum of weights of all
the hypotheses that contain that particular track with label ` and is given by,

r(`) =
∑

(I,ξ)∈F(L)×Ξ
w(I,ξ)1I(`) (5.36)

5.4 Multi-Object Bayes Filter

As in case of a single-object Bayes filter, the multi-object Bayes filter can also be realised
with a recursion of prediction and update steps. But the difference is, in case of multi-object
Bayes filter, the multi-object likelihood function and multi-object Markov density need to be
formulated. Mahler proposed the top-down formulation of the multi-object Bayes filtering
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based on the FISST. An object state represented as a random variable x in a single-object
Bayes filter is a RFS X with set of target states in multi-object Bayes filter. The multi-object
Bayes filter prediction and update according to [Mah07b] are:

π+(X|Zk) =
∫
f+(X+|X)π(X|Zk)δX, (5.37)

π(X+|Zk+1) = g(Z|X+)π+(X|Zk)∫
g(Z|X+)π+(X|Zk)δX . (5.38)

in which the multi-object Markov transition density is f+(X+|X) and the multi-object Like-
lihood function is g(Z|X+). Compared to the single-object Bayes filter, the multi-object
Bayes filter recursion can be given as,

. . . → π(X|Z1:k)
predict−→ π+(X+|Z1:k)

correct−→ π(X+|Z1:k+1) → . . .

↑ ↑
multi-object

Markov density
f+(X+|X)

multi-object
likelihood function

g(Z|X+)

↑ ↑
multi-object
motion model

X+ = T (X)︸ ︷︷ ︸
surviving objects

∪ B︸︷︷︸
birth

objects

multi-object
measurement model
Z = Υ(X+)︸ ︷︷ ︸

detections

∪ C︸︷︷︸
clutter

Various approximations of the multi-object Bayes filter are realised based on the statistics of
different RFS distributions as described in section 5.2. The probability hypothesis density
(PHD) filter is realised by propagating the first order moment of the multi-object proba-
bility density. The cardinalised probability hypothesis density (CPHD) filter additionally
approximates the second order moment in order to propagate the cardinality distribution.
Cardinality balanced multi-Bernoulli (CB-MeMBer) filter is an approximation based on the
statistics of the multi-Bernoulli RFS. [VV13a] proposed a closed form solution of the multi-
object Bayes filter by introducing the generalised labeled multi-Bernoulli (GLMB) filter
and the δ-generalised labeled multi-Bernoulli (δ-GLMB) filter, based on the statistics of the
labeled RFS described in section 5.3. In order to address the computational complexity
of the GLMB filter, labeled multi-Bernoulli (LMB) filter is introduced in [RVVD14] and
is used as a basis in this work. After presenting the multi-object likelihood functions and
multi-object Markov densities, concepts of the various multi-object Bayes filters are briefly
presented and compared in the following sections.

5.4.1 Multi-Object Likelihood Functions

In contrast to the single-object measurement likelihood g(z|x+), which only represents the
distance based closeness of a measurement to a track considering measurement uncertain-
ties, the multi-object likelihood g(Z|X+) also considers the characteristics of the sensor like
FoV, probability of detection, clutter etc. The multi-object measurement model introduced
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Figure 5.2: Multi-Object Likelihood [Mah07b]

in [Mah07b] is based on various assumptions. Every object is assumed to generate one de-
tection and is detected by the sensor with a single-object measurement likelihood g(z|x+).
As described in the Bernoulli RFS statistics, each object is assumed to be detected with a
probability pD(x+) and not detected with a probability 1−pD(x+). Moreover, clutter mea-
surement is assumed to be Poisson distributed with λc number of clutter measurements and
spatial density c(z). The measurements are also assumed to be independent of the object’s
actual state. Thus if each object generates one measurement which can be represented as
RFS Υ(x+), it will be a singleton set with

Υ(x+) =
{
∅ if undetected (probability 1− pD(x+))
{z} if detected (probability pD(x+)),

(5.39)

which is a Bernoulli distribution as in (5.20). Therefore the RFS measurement model,
assuming all the objects’ measurement and clutter measurements to be statistically inde-
pendent is given as [Mah07b]

Z = Υ(x(1)
+ ) ∪ · · · ∪Υ(x(n)

+ ) ∪ C, (5.40)

with Υ(x(1)
+ )∪ · · · ∪Υ(x(n)

+ ) = Υ(X+) representing the detections from the predicted multi-
object state X+, which is a multi-Bernoulli RFS and C the clutter RFS with Poisson dis-
tribution. Different possible hypothesis of the measurement source are considered in the
multi-object measurement modeling, as illustrated in Figure 5.2. The source of a measure-
ment can be either an object or clutter and additionally the object may even be missed.
Therefore the multi-object likelihood considers all the measurement-to-track associations
between sets of measurements and tracks, including clutter and missed detection. The
multi-object likelihood in [Mah07b] thus averages over all the measurement hypotheses and
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is given as

g(Z|X+) = πC(Z)π(∅|X+)
∑
θ

∏
i:θ(i)>0

pD(x(i)
+ ) · g(zθ(i)|x

(i)
+ )

(1− pD(x(i)
+ )) · λcc(zθ(i))

, (5.41)

π(∅|X+) =
n∏
i=1

(1− pD(x(i)
+ )), (5.42)

πC(Z) = e−λC
∏
z∈Z

λcc(z). (5.43)

where θ represents all the possible measurement-to-track association hypotheses, π(∅|X+)
the probability that all detections are missed and πC(Z) the probability all measurements
are clutter.

5.4.2 Multi-Object Markov Densities
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Figure 5.3: Multi-Object Markov Densities [Mah07b]

As the multi-object likelihood function considers the clutter and missed detections, appear-
ance and disappearance of objects are considered in multi-object Markov density derived
in [Mah07b]. Every object at the time step k is assumed to survive into time k + 1 with a
probability pS(x) or disappear with a probability 1−pS(x). Also, each object is assumed to
evolve independent of other objects with a single-object Markov transition density f+(x+|x).
Assuming the transition of each object into a RFS state T (x), such that [Mah07b]

T (x) =
{
∅ if disappears (probability 1− pS(x))
{x+} if survives (probability pS(x)),

(5.44)
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which is again a Bernoulli RFS as in 5.20. Additionally, considering B as the RFS of new
born objects at time k + 1, the predicted RFS can be given as,

X+ = T (x(1)) ∪ · · · ∪ T (x(n)) ∪B, (5.45)

with T (x(1))∪· · ·∪T (x(n)) = T (X) representing the multi-object state X as multi-Bernoulli
RFS and B the birth RFS, which can be modeled with Poisson distribution. Similar to the
case of a measurement likelihood, different prediction hypotheses are considered for multi-
object Markov density as shown in Figure (5.3). An object a time step k can either evolve
to survive or disappear at k+ 1. A new object may also appear at k+ 1, which denotes it’s
birth. Additionally, an object can spawn other new objects as well, which is however not
considered in this work. The multi-object Markov density must consider all these object
prediction hypotheses θ and is given by [Mah07b] as

f+(X+|X) = πB(X+)π+(∅|X)
∑
θ

∏
i:θ(i)>0

pS(x(i)) · f+(xθ(i)+ |x(i))
(1− pS(x(i))) · λBb(xθ(i)+ )

, (5.46)

π(∅|X) =
|X|∏
i=1

(1− pS(x(i))), (5.47)

πB(X+) = e−λB
|X+|∏
i=1

λBb(x(i)
+ ). (5.48)

where λB is the expected number of new born objects distributed according to probability
density b(·). π+(∅|X) represents the probability that none of the objects survive and πB(X+)
the probability that all the objects are newly born.

5.5 Probability Hypothesis Density Filter

An approximation of the multi-object Bayes filter by propagating only the first order mo-
ment of the multi-object probability density π(X) was first proposed in [Mah03], called the
probability hypothesis density (PHD) filter. In a single-object case, first order moment of
the probability density function is the mean or the expected value of the object state. The
object state is estimated by propagating the first order moment in time, like in the case of
constant gain Kalman filter as given in (A.2.1).

The PHD filter can be considered as the multi-object counterpart of the constant gain
Kalman filter, in which the first order moment of the multi-object probability density is
propagated The first order moment of the multi-object probability density is called as the
PHD D(x) [Mah03], derived from the concept of intensity density in point process theory
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[DVJ88, DVJ03]. The multi-object Bayes filter recursion in correspondence to the single-
object Bayes filter can then be realised propagating the PHD as:

. . . → π(X|Z1:k)
predict−→ π+(X+|Z1:k)

correct−→ π(X+|Z1:k+1) → . . .

↓ ↓ ↓

Dk|k(x|Z1:k)
predict−→ Dk+1|k(x|Z1:k)

correct−→ Dk+1|k+1(x|Z1:k+1)

The naive definition of the expected value of the multi-object RFS X with multi-object
probability density π(X) can be given as

E[X] =
∫

X · π(X)δX (5.49)

However, the above integral is not mathematically defined. But by substituting the RFS
X with the Dirac delta function concentrated at X, the expected value for the multi-object
case can be given as

D(x) =
∫
δX(x) · π(X)δX (5.50)

Considering a two dimensional multi-object state space, the PHD can therefore be visualised
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Figure 5.4: Visual illustration of probability hypothesis density.

as the expected value in Figure 5.4, where the peaks having the highest density denote the
expected object locations. Consequently, the expected number of objects in the region S
can be given based on the PHD as

N̂S =
∫
S

D(x)dx (5.51)

The PHD filter is realised as an approximation of the multi-object Bayes filter with recur-
sive prediction and correction of multi-object PHD. The prediction step of the PHD filter
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proposed in [Mah03] considers the motion of surviving objects, object disappearance, birth
of new objects as well as spawning of new objects from existing objects. Object spawning
is however not considered in this work. The prediction of the prior PHD is given by

D+(x) =
∫

pS(ξ)︸ ︷︷ ︸
probability
of survival

f+(x|ξ)︸ ︷︷ ︸
Markov

transition density

D(ξ)︸ ︷︷ ︸
prior PHD

dξ + b(x)︸︷︷︸
object

birth density

(5.52)

The update step of the PHD filter considers the measurement likelihood, clutter and missed
detection. The likelihood that an object generates a measurement is considered as g(z|x),
as in the standard measurement model. The object is assumed to be detected with a
probability pD(x) and missed with a probability 1 − pD(x). Clutter is assumed to be
Poisson distributed with λc number of clutter measurements and a spatial distribution c(z).
Moreover, it is assumed that the milt-object prediction is Poisson distributed. The update
of the predicted PHD is then given as

D(x) ≈ 1− pD(x)D+(x)︸ ︷︷ ︸
missed detection

+
∑
z∈Z

pD(x)g(z|x)D+(x)
λcc(z) +

∫
pD(ξ)g(z|ξ)D+(ξ)dξ︸ ︷︷ ︸

update predicted PHD
with all |Z| measurements

(5.53)

A computationally tractable PHD filter can mainly be implemented using two methods, ei-
ther as sequential Monte Carlo (SMC) approximation as in [Mah07b, SW03] or as Gaussian
mixture implementation (GM-PHD) proposed in [VM06], which is based on the Gaussian
sum filters in [SA71, AS72]. In case of SMC implementation the posterior density is ap-
proximated by sampling certain number of particles as

D(x) =
v∑
i=1

w(i)δx(i)(x) (5.54)

In case of GM-PHD filter, the PHDs are approximated by Gaussian mixtures as

D(x) =
J∑
i=1

w(i)N (x; x̂(i),P(i)), (5.55)

where the statistics of each Gaussian component is given by it’s mean x̂(i) and covariance
P(i), w(i) represents the weight of each Gaussian component and J the number of Gaussian
components. The weights of particles in SMC and weights of Gaussians in GM implemen-
tation are not normalised, as the integral over the PHD denotes the number of objects.
Compared to the SMC implementation of the PHD filter, the GM-PHD filter is easier to
implement and computationally light. The filter recursion of GM-PHD can be given as

. . . → Dk|k(x|Z1:k)
predict−→ Dk+1|k(x|Z1:k)

correct−→ Dk+1|k+1(x|Z1:k+1)

↓ ↓ ↓

. . . →
Jk|k∑
i=1

w(i)N (x; x̂,P(i))predict−→
Jk+1|k∑
i=1

w
(i)
+ N (x; x̂(i)

+ ,P(i)
+ )correct−→

Jk+1|k+1∑
i=1

w
(i)
+ N (x; x̂(i)

+ ,P(i)
+ )
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Although the PHD filter is easy to implement, it produces an unstable estimate of number of
objects, as only the first order moment of the multi-object distribution is propagated in time
[EWBS05a]. In order to improve the estimation of the number of objects, the cardinalised
probability hypothesis density (CPHD) filter was introduced by Mahler [Mah07b], which
is a partial second-order moment filter. In CPHD filter, along with the PHD D(x), the
cardinality distribution ρ(n) of the multi-object density π(x) is also propagated. Similar
to the PHD filter, the CPHD filter can also be realised either with SMC or Gaussian
mixture implementation. Further details and implementation of CPHD filter can be found
in [Mah07b] and [VVC07]. Also a multiple model probability hypothesis density (MMPHD)
is proposed in [VPT06], in which multiple object motion models are used in filter prediction,
to address the motion of maneuvering objects. Various applications of the MMPHD can be
found in literature, for example in [MRD13] the MMPHD filter is used for tracking road
users in intersection scenarios, using laserscanners and camera.

5.6 Labeled Multi-Bernoulli Filter

As the PHD filter approximates the multi-object Bayes filter by propagating only the first
order moment of the multi-object density, the CPHD filter also propagates it’s cardinality
distribution. Unlike the PHD and CPHD filters, the multi-object Bayes filter can also be
realised by approximating the multi-object density by multi-Bernoulli distribution as in
5.22. The cardinality balanced multi-target multi-Bernoulli (CB-MeMBer) filter [VVC09]
is one such filter, which propagates the parameters of multi-Bernoulli distribution in time.
Details and implementations of the CB-MeMBer filter are described in [VVC09]. How-
ever, the CB-MeMBer filter can overestimate the number of objects if the clutter rate is
high and requires a high detection probability [Reu14]. An exact closed form solution of
the multi-object Bayes filter is proposed in [VV13a] on the basis of labeled RFS. Vo and
Vo introduced the generalised labeled multi-Bernoulli (GLMB) filter and it is shown that
the δ-generalised labeled multi-Bernoulli (δ-GLMB) density is closed under multi-object
prediction and update. In case of δ-GLMB, both the prediction and update of tracks re-
quires generating all the possible hypothesis, which means with the increase in number of
objects and measurements, the computational complexity increases exponentially in both
prediction and update. Reuter in [RVVD14] suggested the labeled multi-Bernoulli (LMB)
filter, where multi-object posterior and prediction in δ-GLMB are approximated by LMB
RFS. This approximation reduces the total required hypotheses in the prediction step. It is
shown in [RVVD14] that the LMB reduces the computational complexity by approximation
of posterior, but still produces identical results of δ-GLMB filter in many scenarios.

5.6.1 Prediction

In the multi-object Bayesian recursion implementation of LMB filter, the multi-object pos-
terior density of the previous time step is an approximated LMB RFS as in (5.26) of the
form

π(X) = ∆(X)w(L(X))pX (5.56)
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where

w(L) =
∏
i∈L

(1− r(i))
∏
`∈L

1L(`)r(`)

1− r(`) ,

p(x, `) = p(`)(x).
(5.57)

Also the multi-object birth intensity is considered to be an LMB RFS of the form

πB(X) = ∆(X)wB(L(X))[pB]X (5.58)

where

wB(I) =
∏
i∈B

(1− r(i)
B )

∏
`∈I

1B(`)r(`)
B

1− r(`)
B

, (5.59)

pB(x, `) = p
(`)
B (x). (5.60)

with the labels l ∈ B of the new born objects distinct and doesn’t have the same labels as
the surviving objects i.e. L ∩ B = ∅.

The prediction density in a current time step is union of the surviving tracks of the previous
time step in a label space L and the newly born tracks in current time step in label space B.
The tracks from previous time step are considered to survive with a probability of pS(x, `)
and evolve according to a standard Markov transition density f+(x|x′, `) or disappear with
a probability qS(x, `) = 1− pS(x, `). The predicted LMB distribution in label space L+ =
L ∪ B is [RVVD14]

π+ =
{

(r(`)
+,S , p

(`)
+,S)

}
`∈L
∪
{

(r(`)
B , p

(`)
B )
}
`∈B

. (5.61)

with
r

(`)
+,S = ηS(`)r(`), (5.62)

p
(`)
+,S = 〈pS(·, `)f+(x|·, `), p(·, `)〉 /ηS(`), (5.63)

ηS(`) =
∫
〈pS(·, `)f+(x|·, `), p(·, `)〉 dx. (5.64)

SMC and Gaussian mixture implementation of the LMB filter are presented in [RVVD14].
The GM implementation of LMB filter is used in this work and is therefore described briefly
here. In a GM implementation, the posterior of the tracks are represented by mixture of
Gaussian distributions. Posterior density p(`)(·) of each track ` ∈ L is given by a mixture
of Gaussians

p(`)(x) =
J(`)∑
j=1

w(`,j)N (x; x̂(`,j),P(`,j)) (5.65)

where J denotes the number of Gaussian components, w(`,j) is the weight of the jth Gaussian
component, which needs to be normalized, x̂(`,j) is the mean value and P(`,j) the respective
error covariance of the Gaussian component. For the filter prediction in GM-LMB imple-
mentation, each Gaussian component is predicted with Kalman filter prediction equations

x̂
(`,j)
+ = Fx̂(`,j), (5.66)

P(`,j)
+ = FP(`,j)F> + Q. (5.67)



56 Chapter 5. Random Finite Sets based Multi-Object Tracking

LMB prediction

birth model

gating & grouping

. . .LMB → δ-GLMB LMB → δ-GLMB

. . .δ-GLMB update δ-GLMB update

. . .δ-GLMB → LMB δ-GLMB → LMB

π̃(1) ∪ · · · ∪ π̃(N)

track management

π

π+

Z

L(1)
+ ,M(1) L(N)

+ ,M(N)

π
(1)
+ π

(N)
+

π(1) π(N)

π̃(1) π̃(N)

π̃

π̃

X̂

Figure 5.5: LMB filter algorithm (cf. [RVVD14])

with linear transition matrix F of a single motion model and process noise Q. In case
non-linear motion models are used for prediction, the EKF or UKF versions of the Kalman
filter can be implemented. The survival probability of a track is considered as pS for it’s
the existence prediction. The predicted existence probability and spatial distribution of a
track are derived in [RVVD14] as

r
(`)
+,S = r(`)pS , (5.68)

p
(`)
+,S(x) =

J(`)∑
j=1

w
(`,j)
+ N (x; x̂(`,j)

+ ,P(`,j)
+ ) (5.69)

Similar to the surviving tracks, |B| number of new new born tracks ` ∈ B at current time
step are also assumed to be a mixture of Gaussian components

p
(`)
B (x) =

J
(`)
B∑
j=1

w
(`,j)
B N (x; x̂(`,j)

B ,P(`,j)
B ) (5.70)

where JB denotes the number of birth Gaussian components, w(`,j)
B is the weight of the jth
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birth Gaussian component, x̂(`,j)
B is the mean value and P(`,j)

B the respective error covariance
of the birth Gaussian component, which are all specified in the birth model.

5.6.2 Update

It is shown in [RVVD14] that the LMB is not closed under update operation and the
predicted LMB density needs to be expressed in δ-GLMB form. Therefore before the update
step, the predicted LMB density (5.61) needs to be represented in δ-GLMB form and is given
by [VV13a, RVVD14]

π+(X+) = ∆(X+)
∑

I+∈F(L+)
w

(I+)
+ δI+(L(X+)) [p+]X+ (5.71)

where I+ denotes a hypothesis containing a set of track labels and for representing the
LMB RFS in δ-GLMB form all the possible hypotheses corresponding to the permutations
of track labels need to be generated. With the new set of measurements Z and no history
of association maps available, the δ-GLMB posterior can then be given according to the
δ-GLMB update from [VV13a] and [RVVD14] as

π+(X+|Z) = ∆(X)
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)δI+(L(X))
[
p(θ))(.|Z)

]X
. (5.72)

where θ denotes the measurement to track association map for the track labels in each of the
hypothesis I+. The posterior weight for each of the hypothesis w(I+,θ) with the measurement
set M, the measurement updated posterior spatial distribution of each track p(θ)(x, `|Z) and
likelihoods η(θ)

Z (`) are given by [VV13a]

w(I+,θ)(Z) =
δθ−1({0∪M})(I+)w+(I+)[η(θ)

Z ]I+∑
(I+,θ)∈F(L+)×ΘI+

δθ−1({0∪M})(I+)w+(I+)[η(θ)
Z ]I+

, (5.73)

p(θ)(x, `|Z) = p+(x, `)ψZ(x, `; θ)
η

(θ)
Z (`)

, (5.74)

η
(θ)
Z (`) = 〈p+(·, `), ψZ(·, `; θ)〉 , (5.75)

ψZ(·, `; θ) = δ0(θ(`))(1− pD)(x, `) + (1− δ0(θ(`)))
pD(x, `)g(zθ(`)|x, `)

κ(zθ(`))
(5.76)

In case of GM implementation as in [RVVD14], p+(x, `) is the predicted density (5.69)
with mean (5.66) and covariance (5.67). The association likelihood of a track to single
measurement or missed detection then becomes

ψZ(x, `; θ) =


pD

κ(zθ(`))
N (zθ(`); Hx,R) if θ(`) > 0

(1− pD) if θ(`) = 0.
(5.77)

where H is the measurement matrix and R the measurement noise covariance matrix from
the standard Kalman filter. Multiplying spatial distribution of the track (5.69) with the
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likelihood in (5.77) gives

p+(x, `)·ψZ(x, `; θ) =


pD

κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N (zθ(`); z

(`,j)
+ ,S(`,j)) · N (x; x̂(`,j,θ),P(`,j)), if θ(`) > 0

(1− pD) ·
J

(`)
+∑
j=1

w
(`,j)
+ N (x; x̂(`,j)

+ ,P(`,j)
+ ), if θ(`) = 0.

(5.78)
which in case a measurement is associated with the track (θ(`) > 0) follows the innovation
equations of Kalman filter with

z
(`,j)
+ = Hx̂(`,j)

+ , (5.79)

S(`,j) = HP(`,j)
+ H> + R, (5.80)

K(`,j) = P(`,j)
+ H>[S(`,j)]−1, (5.81)

x̂(`,j,θ)(Z) = x̂
(`,j)
+ + K(`,j)(zθ(`) − z

(`,j)
+ ), (5.82)

P(`,j) = P(`,j)
+ −K(`,j)S(`,j)[K(`,j)]>. (5.83)

and the updated state and covariances are same as the predicted mean and covariances in
case of missed detection (θ(`) = 0). Then the normalization constant is given as

η
(θ)
Z (`) =


pD

κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N (zθ(`); z

(`,j)
+ ,S(`,j)) if θ(`) > 0

(1− pD) if θ(`) = 0.
(5.84)

Substituting the above equations in (5.74) gives the updated posterior spatial distribution
of a track if θ(`) > 0 as

p(θ)(x, `|Z) =

pD
κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N (zθ(`); z

(`,j)
+ , S(`,j)) · N (x; x̂(`,j,θ),P(`,j))

pD
κ(zθ(`))

J
(`)
+∑
j=1

w
(`,j)
+ N (zθ(`); z

(`,j)
+ ,S(`,j))

(5.85)

and if θ(`) = 0 as

p(θ)(x, `|Z) =
J

(`)
+∑
j=1

w
(`,j)
+ N (x; x̂(`,j)

+ ,P(`,j)
+ ) (5.86)

In case of higher number of tracks and measurements, the computational complexity in-
volved in the calculation of the above update step increases exponentially. In order to
reduce the computational effort in such cases, a method for gating and grouping measure-
ments and tracks is proposed in [RVVD14]. By gating, only the most relevant measurements
Z(`) for a track ` are considered. In case of GM implementation, the relevancy, i.e. whether
a measurement zθ(`) lies within the gate of a track ` is found based on the statistical Ma-
hanalobis distance (MHD) given as

d2
MHD(`) , min

j∈J(`)

[(
zθ(`) − z

(`,j)
+

)>
S(`,j)

(
zθ(`) − z

(`,j)
+

)]
(5.87)
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The measurement zθ(`) is considered to lie within the gate of the track `, if any of the
Gaussian component of the track among J (`) components satisfy the condition d2

MHD(`) <
ϑ. The gating threshold ϑ can be chosen based on the application scenario. Grouping of
predicted tracks is then done by considering the set of measurements that are commonly
relevant to those tracks i.e. if atleast one of the measurements in the set lies within the gate
of all those tracks. If there are N number of groups formed by the above grouping method,
the predicted LMB distribution in (5.61) can then be partitioned as

π+ =
N⋃
i=1

{(
r

(`)
+,i, p

`
+,i

)}
l∈L(i)

+
(5.88)

with L(i)
+ representing the track labels present in a group G(i) and L+ = L ∪ B .

Now each of the group G(i) containing predicted tracks with labels L(i)
+ is converted into

δ-GLMB RFS representation equivalent to (5.71) as

π
(i)
+ (X̃(i)

+ ) = ∆(X̃(i)
+ )

∑
I+∈F(L(i)

+ )

w
(I+)
+,i δI+(L(X̃(i)

+ )) [p+]X̃
(i)
+ (5.89)

On the other hand, with the increase in the number of tracks
∣∣∣L(i)

+

∣∣∣ in a group G(i), the
number of hypotheses |I+| that need to be generated also increases, which should ideally
cover all the possible combinations of predicted labels L(i)

+ . In order to ensure computa-
tional tractability, the maximum number of hypotheses should not exceed a certain limit,
depending on the used computing platform. Which means the LMB RFS can be converted
into an approximate δ-GLMB representation, covering only the prediction hypotheses I+
with highest weights w(i)

+ (I+). For this approximation, k-shortest path algorithm [Epp98]
and hypotheses sampling methods are suggested in [RVVD14]. With the LMB predicted
density for each group G(i) being represented as δ-GLMB distribution, the update step for
each group can be performed in parallel considering only the subset Z(i) relevant to that
group, out of the new set of measurements Z. Therefore, equivalent to (5.72), the δ-GLMB
posterior for each group G(i) can be given as

π(i)(X̃(i)
+ |Z(i)) = ∆(X̃(i))

∑
(I+,θ)∈F(L(i)

+ )×Θ(i)
I+

w(I+,θ)(Z)δI+(L(X̃(i)))
[
p(θ))(.|Z(i))

]X̃(i)

(5.90)

where the posterior weight w(I+,θ) for the set of track labels I+ contained in the group is
given by

w(I+,θ)(Z(i)) =
δθ−1({0∪M(i)})(I+)w(i)

+ (I+)[η(θ)
Z(i) ]I+∑

(I+,θ)∈F(L(i)
+ )×Θ(i)

I+

δθ−1({0∪M(i)})(I+)w(i)
+ (I+)[η(θ)

Z(i) ]I+
, (5.91)

As the association map θ contains measurement to track association only for the subset
Z(i), it is shown in [RVVD14] that the association likelihood ηθZ(i) and the posterior spatial
density pθ(x, `|Z(i)) of the group G(i) are equivalent to the case in (5.75) and (5.74), respec-
tively. Further, if the number of track labels in I+ and measurements in Z(i) are high, the
calculation of weights w(I+,θ)(Z(i)) of the association hypotheses becomes computationally
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very expensive. Therefore the usage of Murty’s algorithm [Mur68] is suggested in [VV13a]
and [RVVD14] in order to truncate the posterior distribution by choosing only the most
significant hypotheses. A cost matrix for the track labels in the predicted hypotheses I+
and the measurements in Z(i) is constructed based on statistical distance and the weights
of only the optimal association hypotheses are further considered.

5.6.3 LMB Approximation and Track Management

The δ-GLMB measurement updated posterior (5.72) needs to be again represented in LMB
RFS, so that it can be predicted again in the next time step. The posterior is approximated
by the existence and spatial parameters of all the tracks in X, with a matching PHD and
mean cardinality [RVVD14]

π(X|Z) =
{

(r(`), p(`))
}
`∈L+

(5.92)

where the posterior existence probability r(`) and posterior spatial distribution p(`) of each
track is given as

r(`) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`) (5.93)

p(`)(x) = 1
r(`)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`)p(θ)(x, `) (5.94)

The inclusion function 1I+(`) in the above equations infers that only the hypotheses I+
which contains the track label ` in it are considered for calculating the posterior existence
and posterior spatial distribution of that track. Therefore, the existence probability of a
track r(`) is obtained by summing up the weights of all the association hypotheses that
contains that track label. In case of GM implementation, the spatial distribution p(`)(x)
of a track, is then a mixture of Gaussians. In case of gating and grouping of the tracks
and measurements, the multi-object posterior density is approximated as a union of the
individual posterior densities of each of the group G(i) : i = 1, . . . , N , and is given as
[RVVD14]

π(·|Z) ≈ π̃(·|Z) =
N⋃
i=1

{
(r(`), p(`))

}
`∈Li+

(5.95)

As an additional maintenance of individual tracks, Gaussians with weights lesser than a
threshold can be pruned and Gaussians with close mean values can be merged similar
to the GM-PHD filter, in order to reduce computational complexity. Two ways of track
extractions are proposed in [Reu14]. Tracks can be extracted either based on the maximum
a posterior (MAP) estimate of cardinality distribution or by selecting only the tracks which
have a probability of existence higher than a certain threshold given by

X̂ =
{

(x̂, `)|r(`) > e
}

(5.96)

where the threshold e can be parametrised based on the application. By this, the existence
probability can also be used for track management in the LMB filter. Tracks can be ini-
tialised if their existence probability increases a birth threshold parameter or be deleted if
their existence probability falls below the death threshold parameter.
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5.6.4 Adaptive Birth Density

The birth distribution needs to be defined for every prediction step in the LMB filter
recursion. An intuitive way is to define the spatial birth distribution concentrated at the
edges of the sensor FoV, where the objects would appear and disappear. But in case
of vehicle perception systems, the environment is highly dynamic and locations of object
birth are uncertain. Moreover, a prior defined object birth distribution does not support
reinitialisation of lost tracks in other regions of the sensor FoV. In order to address this,
an adaptive birth model is suggested in [RVVD14]. The distribution of newly born tracks
used for prediction to time instance k+ 1 is based on the measurements Zk at time instance
k. The adaptive LMB birth distribution for each of the measurements is represented in
[RVVD14] as

πB,k+1 =
{
r

(αi)
B,k+1(zi), p(αi)

B,k+1(x|zi)
}|Zk|

i=1
(5.97)

The birth track is assigned with the label αi in accordance to the order i of the respective
measurement zi in the measurement set Zk. The spatial component pαiB,k+1(x|zi) of the
birth track is initialised by converting the measurement values from measurement space
into state space. Generaly speaking, the measurement has a high probability of belonging
to a new object if it is spatially far away from any of the existing tracks. So the probability of
existence of the birth component rαiB,k+1 should be high if the measurement zi is spatially well
separated from other existing track and should be low in other case. The spatial closeness
of the measurement zi to all the existing tracks can be inferred by summing up weights of
all the hypotheses in which that measurement was associated to any of the tracks. This
association probability can then be used for initialising the existence probability of the birth
track from measurement zi, where the existence probability should be high if the association
probability is high and vice-versa. With λB expected number of new objects, maximum
existence probability capping parameter rmax

B and the association probability rA,k(zi), the
existence probability of birth component is given as [Reu14]

rB,k+1(zi) = min

rmax
B,k+1,

1− rA,k(zi)∑
ξ∈Zk

1− rA,k(ξ)
· λB

 (5.98)

5.7 Multiple Model Labeled Multi-Bernoulli Filter

In a typical multi-object tracking application scenario, many classes of objects appear in the
sensor’s FoV. Especially in urban scenarios, the object can be a pedestrian, bicyclist or even
other vehicles. For predicting the motion of the object, using a single motion model for all
the scenarios and all the object classes would be a wrong assumption. Pedestrians walking
straight along a road for example can be assumed to move with constant velocity, whereas
bicyclists and other vehicles can also make turn and accelerate rapidly. Therefore it makes
sense to consider more than one motion model for different scenarios and object classes.
Classically interacting multiple model (IMM) filters are used for this purpose, where the
estimated state is from a mixture of all the motion models. Multiple model versions for
the class of RFS filters based on jump Markov system (JMS), specifically for PHD filter
is proposed as in [Mah12]. The basic idea in JMS is to append a discrete mode variable
o ∈ O to the kinematic state x, giving an augmented state of the single-object x = (x, o),
with x ∈ X. The discrete mode variable represents the different motion models considered
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for modeling the object motion with O representing the discrete space of all the possible
motion models. The prediction of the augmented state of the previous time step (x′, o′) to
the current time step (x, o) according to the Bayes’ rule can be factorised as in [Mah14] by

f+(x, o|x′, o′) = χo,o′ · f+(x|x′, o′) (5.99)

with f+(x|x′, o′) representing the Markov transition density corresponding to the mode
variable o′ and χo,o′ is the Markov transition matrix for the Markov chain defined by the
jump variable o = 1, . . . , O. Consequently, the multi-object state of a JMS is defined in
[Mah14] as a finite set of augmented states, given by

X = {(x(1), o(1)), . . . , (x(n), o(n))} ⊆ X×O (5.100)

A closed form GM solution of MMPHD is presented in [PVTM09], which is shown in [Mah12]
to be the only mathematically correct implementation of MMPHD.

In [RSD15] the multiple model labeled multi-Bernoulli (MMLMB) filter is introduced, based
again on JMS. It uses the same architecture as the LMB filter, but the spatial distribution of
each track is given by joint distribution from all the considered motion modes. The multiple
model representation for the labeled RFS case is then given by additionally including the
object’s label ` in the augmented state as [RSD15]

X = {(x(1), `(1), o(1)), . . . , (x(n), `(n), o(n))} ⊆ X× L×O (5.101)

The elements to,o′ of the Markov transition matrix χ
o,o′

models the transition probability
from modes o′ to o. In comparison to a single model LMB filter, the difference in the
MMLMB filter is that the spatial distribution of each track is given by the joint distribution,
augmenting the kinematic state with the motion model as

p(`)(x, o) = p(`)(o)p(`)(x|o) ∀o ∈ O (5.102)

Consequently, the multiple model representation multi-object probability density of the
LMB RFS (5.26) is given in as [RSD15]

π(X) =
{

(r(`), p(`)(o)p(`)(·|o)
}
`∈L

(5.103)

and the birth distribution corresponding to the form in (5.58) as,

πB(X) =
{

(r(`)
B , p

(`)
B (o)p(`)

B (·|o)
}
`∈B

(5.104)

where the spatial distribution of the tracks is a joint distribution defined in the space X×O
and the labels of surviving and birth tracks are distinct such that the property L ∩ B = ∅
holds.

5.7.1 Prediction

The prediction step of MMLMB filter follows the prediction of the single model LMB filter,
but the spatial distribution of the tracks is a joint distribution conditioned on all the motion
models present in the system, i.e. the objects’ state are predicted with all the considered
motion models. The predicted density with respect to the prior in (5.103) and birth density
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in (5.104) is therefore given by

π+ =
{

(r(`)
+,S , p

(`)
+,S(o)p(`)

+,S(·|o))
}
`∈L
∪
{

(r(`)
B , p

(`)
B (o)p(`)

B (·|o))
}
`∈B

. (5.105)

where the spatial density of the surviving tracks is predicted in line with (5.63) by [RSD15]

p
(`)
+,S(x, o) =

∫
p

(`)
S (x′)f(x, o|x′, o′)p(`)(x′, o′)d(x′, o′)

ηS(`) (5.106)

=

∑
o′∈O

∫
p

(`)
S (x′)to,o′f(x, o|x′, o′)p(`)(x′, o′)p(`)(o′)dx′

ηS(`) (5.107)

=
∑
o′∈O

to,o′p
(`)(o′)

∫
p

(`)
S (x′)f(x|x′, o′)p(`)(x′|o′)dx′

ηS(`) , (5.108)

with the survival probability of the tracks p(`)
S (x′, o′) is assumed to be independent of the

current motion model and therefore represented only as p(`)
S (x′). Further the above equation

(5.106) can be factorized into the probability p
(`)
+,S(o) that track ` is in mode o and the

corresponding predicted spatial distribution p(`)
+,S(x|o) conditioned on mode o as

p
(`)
+,S(o) =

∑
o′∈O

f(o|o′)p(`)(o′) (5.109)

p
(`)
+,S(x|o) =

∫
p

(`)
S (x′)f(x|x′, o′)p(`)(x′|o′)dx′

ηS(`) (5.110)

and the normalisation constant is given as

ηS(`) =
∫
p

(`)
S (x′)p(`)(x′, o′)d(x′, o′)

=
∑
o′∈O

p(`)(o′)
∫
pS(x′)p(`)(x′, o′)dx′

(5.111)

Consequently the predicted existence probability of the track ` is given as

r
(`)
+,S = ηS(`) · r(`) (5.112)

A GM implementation of the MMLMB is primarily used in this work. In case of GM
implementation, assuming the survival probability pS of the track to be independent of it’s
state, the normalisation constant and the corresponding predicted spatial density of a track
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` are of the form

ηS(`) =
∑
o′∈O

p(`)(o′)
∫
pS

J(`)(o′)∑
j=1

w(`,j)(o′)N
(
x; F(o)x̂(`,j),F(o)P(`,j)F(o)> + Q(o)

)
dx

=
∑
o′∈O

p(`)(o′)pS
J(`)(o′)∑
j=1

w(`,j)(o′)
∫
N
(
x; F(o)x̂(`,j),F(o)P(`,j)F(o)> + Q(o)

)
dx

= pS
∑
o′∈O

p(`)(o′)
J(`)(o′)∑
j=1

w(`,j)(o′)
∫
N
(
x; F(o)x̂(`,j),F(o)P(`,j)F(o)> + Q(o)

)
dx

= pS
(5.113)

p
(`)
+,S(x, o) =

∑
o′∈O

to,o′p
(`)(o′)pS

J(`)∑
j=1

w(`,j)N
(
x; F(o)x̂(`,j),F(o)P(`,j)F(o)> + Q(o)

)
pS

=
pS

∑
o′∈O

to,o′p
(`)(o′)

J(`)∑
j=1

w(`,j)N
(
x; F(o)x̂(`,j),F(o)P(`,j)F(o)> + Q(o)

)
pS

=
∑
o′∈O

to,o′p
(`)(o′)

J(`)∑
j=1

w(`,j)N
(
x; F(o)x̂(`,j),F(o)P(`,j)F(o)> + Q(o)

)
(5.114)

which can then be factorised into two parts according to (5.109) and (5.110) as

p
(`)
+,S(o) =

∑
o′∈O

to,o′p
(`)(o′) (5.115)

p
(`)
+,S(x|o) =

J(`)∑
j=1

w(`,j)N
(
x; F(o)x̂(`,j),F(o)P(`,j)F(o)> + Q(o)

)
(5.116)

5.7.2 Update

The conversion of the LMB RFS into δ-GLMB representation and the update procedure
is same as that of the LMB filter explained in the previous section. The updated multiple
model multi-object posterior is [RSD15]

π(·|Z) =
{

(r(`), p(`)(o)p(`)(·|o)
}
`∈L

(5.117)

with the parameters

r(`) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`) (5.118)

p(`)(x|o) = 1
r(`)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`)p(`,θ)(x|o) (5.119)

p(`)(o) = 1
r(`)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z)1I+(`)p(`,θ)(o). (5.120)
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The updated spatial distribution and measurement likelihood are similar to that of the LMB
filter (5.74) and (5.75), but are conditioned on the mode o [RSD15]

p(`,θ)(x|o) =
p

(`)
+ (x|o) · ψZ(x, `; θ)

η
(θ)
Z (`|o)

(5.121)

η
(θ)
Z (`|o) =

∫
p

(`)
+ (x|o) · ψZ(x, `; θ)dx (5.122)

The likelihood ψZ of a measurement to track is same as that in (5.76). The updated
probability of the track ` being in mode o is derived in [RSD15] by marginalizing state x
out of the updated joint probability density p(`,θ)(x, o)

p(`,θ)(o) =
∫
p

(`)
+ (x|o)p(`)

+ (o) · ψZ(x, `; θ)dx
η

(θ)
Z (`)

(5.123)

=
p

(`)
+ (o)η(θ)

Z (`|o)
η

(θ)
Z (`)

(5.124)

The normalisation constant required in the above equation, for the probabilities of individual
motion modes to sum up to one is given as

η
(θ)
Z (`) =

∑
o∈O

η
(θ)
Z (`|o)p`+(o) (5.125)

The updated component weights are then given similar to the form in (5.73), but using the
normalisation constant in the above equation (5.125).

In case of GM implementation assuming state independent detection probability pD, the
update likelihood of the measurement zθ(`) for the track ` conditioned on mode o, in case
the object being detected (θ(`) > 0) is of the form

η
(θ)
Z (`|o) =

∫
pD

κ(zθ(`))

J
(`)
+ (o)∑
j=1

w
(`,j)
+ (o)N

(
zθ(`); z

(`,j)
+ , S(`,j)

)
N
(
x; x̂(`,j,θ),P(`,j)

)
dx

= pD
κ(zθ(`))

J
(`)
+ (o)∑
j=1

w
(`,j)
+ (o)N

(
zθ(`); z

(`,j)
+ , S(`,j)

) ∫
N
(
x; x̂(`,j,θ),P(`,j)

)
dx

= pD
κ(zθ(`))

J
(`)
+ (o)∑
j=1

w
(`,j)
+ (o)N

(
zθ(`); z

(`,j)
+ , S(`,j)

)
,

(5.126)

where the innovation of the predicted Gaussian distribution conditioned on mode o is given
according to the Kalman filter equations as

z
(`,j)
+ = H(o)x̂(`,j)

+ , (5.127)

S(`,j) = H(o)P(`,j)
+ H>(o) + R, (5.128)

K(`,j) = P(`,j)
+ H>(o)[S(`,j)]−1, (5.129)

x̂(`,j,θ)(Z) = x̂
(`,j)
+ + K(`,j)(zθ(`) − z

(`,j)
+ ), (5.130)
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P(`,j) = P(`,j)
+ −K(`,j)S(`,j)[K(`,j)]>. (5.131)

The updated posterior spatial density of the track ` conditioned on mode o is then given
for the case θ(`) > 0 as,

p(`,θ)(x|o) =

pD
κ(zθ(`))

∑J
(`)
+ (o)
j=1 w

(`,j)
+ (o)N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
N
(
x; x̂(`,j,θ),P(`,j)

)
pD

κ(zθ(`))
∑J

(`)
+ (o)
j=1 w

(`,j)
+ (o)N

(
zθ(`); z

(`,j)
+ ,S(`,j)

) (5.132)

=
J

(`)
+ (o)∑
j=1

w
(`,j,θ)
Z (o)N

(
x; x̂(`,j,θ),P(`,j)

)
(5.133)

with the posterior weights of the Gaussian components given as

w
(`,j,θ)
Z (o) =

pD
κ(zθ(`))

w
(`,j)
+ (o)N

(
zθ(`); z

(`,j)
+ ,S(`,j)

)
η

(θ)
Z (`|o)

(5.134)

In case the object is not detected (θ(`) = 0), the likelihood is of the form

η
(θ)
Z (`|o) =

∫
(1− pD)

J
(`)
+ (o)∑
j=1

w
(`,j)
+ (o)N

(
x; x̂(`,j,θ),P(`,j)

)
dx (5.135)

= (1− pD)
J

(`)
+ (o)∑
j=1

w
(`,j)
+ (o)

∫
N
(
x; x̂(`,j,θ),P(`,j)

)
dx (5.136)

= (1− pD)
J

(`)
+ (o)∑
j=1

w
(`,j)
+ (o) (5.137)

= (1− pD), (5.138)

and the corresponding posterior spatial density is same as the prediction, given as

p(`,θ)(x|o) =
J

(`)
+ (o)∑
j=1

w(`,j,θ)(o)N
(
x; x̂(`,j,θ),P(`,j)

)
(5.139)

where

w(`,j,θ)(o) = w
(`,j)
+ , (5.140)

x̂(`,j,θ) = x̂
(`,j)
+ , (5.141)

P(`,j) = P(`,j)
+ . (5.142)
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From the relations (5.125), (5.126) and (5.138), the normalisation constant considering the
measurement likelihood for track ` averaged over all the motion modes o ∈ O is given as

η
(θ)
Z (`) =


∑
o∈O

p
(`)
+ (o) pD

κ(zθ(`))

J
(`)
+ (o)∑
j=1

w
(`,j)
+ (o)N

(
zθ(`); z

(`,j)
+ , S(`,j)

)
, if θ(`) > 0

(1− pD), if θ(`) = 0,
(5.143)

which is then used for calculating the updated weight wI+,θ(Z) of the hypothesis component
used in (5.118)-(5.120), and to represent the joint probability density p(θ)(x, `|Z) of the track
`, considering all the motion models.

5.8 Integrating Class Information into MMLMB Filter

There exists a number of state-of-art methods to derive or predict the class information
of an object, depending on the sensor used. An object’s class can be extracted based on
the features of the measurements they generate or their states or a combination of both.
For example, a video sensor can extract the edge and contour features of the object from
the image, a laser scanner provides a point cloud which can be analysed to derive the class
information based on extracted shapes or a radar sensor measures the frequency pattern of
an object which can be used to differentiate the object classes. The basis of object state
estimation is an assumption that the object follows a particular motion model, like Constant
Velocity (CV), Constant Acceleration (CA) or Constant Turn Rate and Velocity (CTRV)
models, to name a few. But not all objects have the same motion behaviour. As described
in section 5.7, the motion characteristics vary depending on the class of object. The motion
of a passenger car is different from that of a pedestrian. Therefore in multi-object tracking
it is beneficial to know the class of the object in order to use an appropriate motion model,
to predict it’s motion.

The idea of integrating class information into the object state estimation has been proposed
widely, for example in [GW12, Mei15, Mun11]. In [GW12] a classification aided CPHD is
introduced, where the class information is used for data association in the update step of the
filter. The mode variable in the likelihood function is replaced with a class variable and the
confusion matrix from the classifier models the class probabilities. In [Mun11], the JIPDA
filter is combined with Dempster-Shafer Theory (DST) of evidence, in order to predict and
update the existence probability of an object along with it’s state. The considered class
of objects in [Mun11] are rather categorized as "relevant" or "not-relevant" objects for the
application, although not the actual type of the object. Similarly, [Mei15] proposes the
GM-CMMPHD filter, where each Gaussian mixture component (GMC) is augmented with
an object class information derived from a laser scanner measurements based classifier and
DST. The object classes are categorized as pedestrian, bicyclist, car and truck. The prior
class information is used together with the object state estimation step, for adapting the
transition probabilities of the object’s motion models. The predicted class information is
then updated using both the measurement based features and state of the object, following
the update step. The class information is used only in parallel to the filter itself and doesn’t
affect the state estimation procedure [MRSD14, Mei15].

A similar approach is proposed in this work, but for the class of MMLMB filter explained in
section 5.7. In GM-MMLMB filter, the distribution of each track is represented by a mixture
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of many Gaussian components, which is based on the consideration of different cardinality,
different motion models as well as different measurement to track association hypotheses.
The updated state of the object as well as it’s existence probability are extracted from the
parameters of multi-Bernoulli distribution. In the following sections, an introduction to
the DST of evidence and a method to integrate the class information of the object into
the GM-MMLMB filter using DST, in parallel to the state prediction and update steps,
is described. As in [MRSD14], the class information is used, for adapting the transition
probabilities of the considered motion models as well as to classify the object based both
on it’s state and measurement features.

5.8.1 Dempster-Shafer Theory of Evidence

The Dempster-Shafer-Evidence Theory (DST) is generalised probability theory, which de-
fines the occurrence of an event as combination of evidences from many sources, rather
than individual probability constituents. The DST provides a framework for reasoning un-
certainty with the help of belief functions. The set of all the states or hypotheses under
consideration is represented by a finite set of n elements, called the frame of discernment
(FOD)

Ω = {e1, e2, . . . , en} (5.144)

The occurrence of an event is then calculated from the power set P(Ω) of the order 2Ω,
consisting all the elements and subsets of the elements in FOD, including the null-set. A
belief for each element in the power set, expressing the evidence from different sources, is
given as a basic belief mass (BBM) m(Ei) ≥ 0. Every E ∈ Ω with m(E) > 0 is called the
focal hypotheses. The masses of all the subsets of power set equals to 1 and is defined by
the basic belief assignment (BBA) function given as:

m(∅) = 0∑
E∈P(Ω)

m(E) = 1 (5.145)

Unlike the probability theory based approaches where the masses can be given only to the

bel(E) Uncertainity 1-pl(E)

0 0.2 0.4 0.6 0.8 1

Figure 5.6: Visualisation of belief, uncertainty and plausibility of a BBA
(cf. [Mun11])

elements of Ω, in DST the masses can be given to any subsets of Ω. Moreover, the BBA in
(5.145) can support a set E, without supporting any of it’s subsets, which represents the
limited knowledge capacity of DST. The mass function m(E) is called a categorical mass
function in case there is only one focal set, such that m(E) = 1 with E ⊆ Ω. If E = Ω
in the above case, then the condition m(Ω) represents the state of total ignorance, which
means none of the individual subsets of Ω are supported with an evidence.



5.8. Integrating Class Information into MMLMB Filter 69

The degree of belief bel(E) is defined in the transferable belief model (TBM) in [SK94] as
the lower bound of the probability interval, which is the sum of all masses that support E

bel : 2Ω 7→ [0, 1]
bel(E) =

∑
∅6=X⊆E

m(X) (5.146)

Moreover, a concept on reliability of an evidence is proposed, in which the masses for
evidences from less reliable sources are multiplied with a discounting factor, to represent a
lesser weight for those unreliable sources. The degree of plausibility pl(E) is given in [SK94]
as the total amount of belief that supports E

pl : 2Ω 7→ [0, 1]
pl(E) =

∑
X∩E 6=∅

m(X) (5.147)

The degree of plausibility represents the upper bound of the uncertainty and therefore it is
given as

bel(E) ≤ u(E) ≤ pl(E) (5.148)

Demspter’s rule of combination provides a basis for the combining the masses of different
pieces of evidence. The combination is given as:

(m1 ⊕m2)(E) =


0 if E = ∅∑
X∩Y=E

m(X)m(Y )

1−
∑

X∩Y=∅
m(X)m(Y ) ∀E ∈ 2Ω if E 6= ∅ (5.149)

The method of discounting in the TBM enables to model the reliability of BBA from a
particular source. If the belief masses in BBA are considered to be coming from impre-
cise source, they should be used only with a certain degree of confidence. Consequently,
discounting of a BBA with a parameter d depending on it’s source can be given as

md(E) =
{
d ·m(E), ifE 6= ∅
1− d+ d ·m(E), ifE = Ω.

(5.150)

In the TBM in [SK94], two levels are defined as the credal level and the pignistic level.
The formulation of belief functions and combination of evidences from many sources are
all said to be in the so called credal level. Then the actual decisions based on the belief
functions in the credal level are made in the so called pignistic level. Further, the pignistic
transformation is given as:

BetPm(E) =
∑

B⊆Ω,B 6=∅

|E ∩B|
|B|

m(B) (5.151)

where only the BBMsm(B) that do not contradict E are considered for calculatingBetPm(E).
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5.8.2 GM-MMLMB Filter with Classification

Every track in the GM-MMLMB filter realisation described in section 5.7 is augmented
with the motion mode o along with it’s label ` and state x. Moreover, in the GM imple-
mentation, the density of each track is represented by a mixture of Gaussians. With the
aim of integrating object class information into the GM-MMLMB filter, let each track be
additionally augmented with the class information of the track. Thereby, a track ` which
has state x, motion mode o and class-BBA m

(`)
C , can be represented as

(
x, `, o,m

(`)
C

)
and

the ith Gaussian mixture component (GMC) of it as(
w(i)(o),N (x; x̂(i),P(i)),m(`)

C

)
(5.152)

where it holds the class-BBA of it’s parent track. The class-BBA m
(`)
C of a track represents

the certainty values of different object classes that are in question. The focal elements of
the FOD Ω used in the DST are then the considered object classes. Therefore, the surviving
tracks and the birth tracks contain their class-BBA along with their joint probability density.
Figure 5.7 illustrates the method for integrating the class information alongside the multi-
object filter recursion with the GM-MMLMB filter. Following [Mun11] and [Mei15], the
prediction and update steps are divided into state and class levels, with interactions in
between both the levels. The class-BBA information from time k is used by the state level
for adapting parameters of multiple model object state prediction into time k + 1 and the
measurement updated object state information is used for the posterior class-BBA at time
k + 1. Consequently, the interactions denotes that the class-BBA is used for two purposes
as in [Mei15]: to adapt the mode transition probabilities and to classify the object based
on both measurement and track features.

Prediction

In the track prediction step of the GM-MMLMB filter, mean and covariance of each of the
track’s GMC is predicted, for each of the considered motion mode o ∈ O, thereby new
GMCs are generated. The weight of the predicted GMC is obtained by multiplying the
weight of it’s parent GMC with the transition and model probabilities of the parent track.
The state prediction step follows the prediction equations of the GM-MMLMB filter, as in
(5.114). The difference here is, instead of a fixed value, the model transition probabilities
to,o′ used for the track prediction in GM-MMLMB filter are adapted in every time step,
according to the posterior class-BBA of the track. Therefore, the class-BBA m

(`)
C of the

track should represent the likelihood of a motion model oi ∈ O, that is more suitable for
the class of the object. In order to obtain the probability for each of the classes in the FOD
Ω, the class-BBA needs to be transformed from it’s credal level to the pignistic level as in
(5.151). As in case of the general Markov transition matrix, with each row covering all the
motion models, the transformed probabilities in each row must sum to one. The Markov
transition matrix χ

o,o′
used for track ` is therefore recalculated with each update and is

given as

χ
(`)
o,o′ =


BetP

m
(`)
C

(E(`)
o1 ) . . . BetP

m
(`)
C

(E(`)
oN )

... . . . ...

BetP
m

(`)
C

(E(`)
o1 ) . . . BetP

m
(`)
C

(E(`)
oN )

 (5.153)
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As illustrated in [Mei15], the class hypotheses E(`)
oi in the above transition probability ma-

trix should cover atleast one of the object classes which follow the same motion model
oi(i ∈ {1, . . . , No}) and all the considered classes need to be covered by the hypotheses{
E

(`)
oi , . . . , E

(`)
oj

}
with E(`)

oi ∩ E
(`)
oj = ∅ for i 6= j.

The class-BBA of the track on the other side is predicted from time k to k+ 1 independent
of the state of the track, by discounting with a parameter d as

m
(`)
C+

(E) =
(
m

(`)
C (E)

)d
(5.154)

state
prediction

measurement
update θ(`)

track
extraction

class-BBA
prediction

class-BBA
measurement

update
updated
class-BBA
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. . . . . .

. . . . . .

State level

Class level

k k + 1

x
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k|k

x
(`)
k+1|k

x
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m
(`)
C
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Figure 5.7: Integrating class information into tracking framework. The
state of the track is predicted and updated with GM-MMLMB
filter equations on the upper state level. The class-BBA is pre-
dicted and updated in the lower class level. Object class is then
derived by fusing BBAs from both the levels.

Update

As described in section 5.7.2, the update step of the GM-MMLMB filter considers the
various measurement to track association hypotheses, where an hypothesis is given by the
mapping θ : I+ 7→ {0, 1, . . . , |Z|}, with I+ representing a predicted set of track labels and
Z the measurement set. The update of a track ` therefore involves innovations with all the
measurements available at time k+ 1. The likelihoods of assignment of a measurement zθ(`)
to a track ` (given by the case θ(`) > 0) and also association of the track to a missed detection
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(given by the case θ(`) = 0) are considered. For track innovation, each measurement along
with it’s Gaussian distribution also contains the measurement based class-BBA m

zθ(`)
C of

the object, delivered by the classifier which can be given as

z(i) =
(
N (z; z(i)

+ ,R(i)),mz(i)
C

)
, i ∈ {1, . . . , |Z|} (5.155)

On the state level, the measurement zθ(`) updates the spatial distribution of a track ` for an
association θ(`) by innovation of each of the predicted GMCs of that track. The equations
used for state and weight update of GMCs are same as (5.132) and (5.134). Additionally,
on the class level, the predicted class-BBA m

(`)
C+

(E) is updated by the measurement based
class-BBA for an association θ(`) according to the DST rule of combination in (5.149) as

m
(`,θ)
C (E) = m

(`)
C+
⊕mzθ(`),α

C

=

∑
S+∩Sz=E

m
(`)
C+

(S+)mzθ(`),α
C (Sz)

1−
∑

S+∩Sz=∅
m

(`)
C+

(S+)mzθ(`),α
C (Sz)

∀E ∈ 2Ω
(5.156)

The measurement based class-BBA is discounted with a factor α before being fused with
the predicted class-BBA of the track. This discounting facilitates the consideration of
confidence in classification output by the classifier. Each update hypothesis therefore has
a corresponding updated class-BBA for the track. Further, the weights of the hypotheses
w(I+,θ)(Z) are updated according to update step of GM-MMLMB described in section 5.7.2.
On the state level, the posterior existence probability, posterior spatial density and model
probabilities of a track are calculated according to the equations (5.118) to (5.120), which
means the posterior of a track is from various hypotheses which include that track in them.
On the class level, the class-BBA of a track ` is obtained by combining the updated class-
BBA from the hypotheses that contains that track. Before combining, the class-BBA from
an hypothesis is discounted with the normalised updated weight of that hypothesis and the
combination of BBAs is given as

m
(`)
C =

(
m

(`,θ)
C

)w̃(I+,θ)
1 (Z)

⊕
(
m

(`,θ)
C

)w̃(I+,θ)
2 (Z)

· · · ⊕
(
m

(`,θ)
C

)w̃(I+,θ)
N (Z)

, (5.157)

where (I+, θ) ∈ F(L+) × ΘI+and ` ∈ I+. The track extraction step follows that of the
standard LMB filter family, based on MAP estimate of cardinality distribution or track
existence probabilities. The state estimates of a track can be approximated by the mean of
it’s GMC which has the highest weight. Therefore, this estimated state of the track from
the state level can also be used to further update the class-BBA of the track, apart from
the update by measurement based class-BBA. One of the track features which can be used
to classify the object is it’s velocity. The class-BBA can then be constructed based on the
velocity of the track and be fused in the same way as the measurement based class-BBA in
order to get a posterior class-BBA of the track on the class level.

The updated class-BBA from the above steps is further used for estimating the class of the
track. For this the class-BBA of the track needs to be transformed to the pignistic level
according to (5.151). The object class and the corresponding class probability can then be
derived as

C(`) = max
e=Ω

BetP
m

(`)
C

(e) (5.158)
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p
(`)
C = BetP

m
(`)
C

(C(`)). (5.159)
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Chapter 6

Radar based Feature Extraction
and Classification

High-frequency radars in the frequency range 77-81 GHz are recently developed for usage
in many automotive applications. With an increased resolution, multiple reflection points
are detected from an extended object. Therefore the usual assumption of an object as point
target is not valid anymore and the spatial extent of the object also needs to be considered.
Many methods have been developed for considering the multiple reflections of an object.
The basic idea is to segment the detection points as sets of clusters, based on heuristics
exploring the similarity between the detection points. Each cluster is then believed to
belong to a particular object. Consequently, each cluster contains information regarding
the class of the object persistent to that particular cluster.

Every object has it’s own distinct features. For example, a pedestrian walks with a velocity
which is very distinct from the velocity of a car, or a dimensions of a cyclist are narrower
compared to a truck. Extracting such features out of the measurement clusters of an object
would help to classify that object. Vast number of methods have already been proposed
for detecting and classifying object based on range sensors. Objects can be detected and
classified based on shape models [Stü06, Mun11], measurement characteristics [SKFM14,
Fö06, PLN09] or formal hypothesis [ZZC+09]. Distance based clustering of detections and
fitting one of the pre-defined shape models to the cluster to infer the object type is proposed
in [Kä07]. In [ZSKS06] a method for joint object tracking and classification based on laser
scanner is proposed, where the defined object classes are 0-axis, 1-axis or 2-axis objects.
A Markov chain based on different observation positions of the object is constructed. The
transition probabilities are defined based on the object maneuver and the corresponding
observation of the sensor. In [PLN09], a method for segmentation of measurements from
laser scanner and consecutive feature extraction from these segments is proposed. The
extracted features are then used for training different machine learning based classifiers to
detect pedestrians.

In this work, density based spatial clustering of applications with noise (DBSCAN) [EKSX96]
algorithm is used for segmenting high-resolution radar detections into distinct clusters. The
radar sensor setup in the ego-vehicle and it’s measurement properties are as described in
Chapter 4. Methods for extracting related features from clusters, are explained in section
6.2. Object classification is achieved by training a support vector machine (SVM) with
the defined features of different moving object classes - pedestrians, cyclists and other ve-
hicles. Libsvm [CL13] is used for implementation of the SVM classifier. The object class
information based on the estimated object velocity is fused with the measurement based



76 Chapter 6. Radar based Feature Extraction and Classification

classification output of the SVM. For this, DST as explained in section 5.8.1 is used. Con-
sequently the tracker’s frame of discernment (FOD) according to the considered classes can
be given as

Ω = {P,B,C} (6.1)

where P denotes pedestrian, B bicyclist and C passenger car.

6.1 Segmentation

The aim of segmentation is to divide the raw radar reflections into distinct groups. Each
group or cluster can then be represented by a reference point and would have certain proper-
ties relevant to the object they belong to. The following subsections describe the procedures
used for segmenting the radar detections.

6.1.1 Pre-processing

The radar sensor outputs detection points from the objects after internal signal processing.
Each detection point has a range, azimuth and Doppler velocity values extracted according
to the FMCW detection principle presented in section 2.2.3.2. As multiple detection points
can originate from an extended object, the segmentation algorithm tries to group the de-
tection points as clusters. Ideally each cluster should contain all the detections belonging
to a single object. A typical problem with radar sensor is the so called double reflection,
where the electro-magnetic waves from the radar reflected by the object surface is strong
enough to be reflected back again by the radar mounting or the ego-vehicle surface. These
reflections would create the notion of ghost objects by causing a peak in the FFT, if their
amplitude are high enough. Before clustering, the detection points due to double reflections
from the same object need to filtered out, in order to avoid false objects. The azimuth
measured in the case of double reflection would be nearly same, but the range would have
values in multiples of two

θdouble ≈ θsingle
rdouble = 2 · rsingle

(6.2)

Additionally, detection points which have an unrealistic Doppler velocity values are filtered
out before clustering. These are typically clutter measurements which is prevalent with
radar sensors.

6.1.2 DBSCAN Clustering

After the pre-processing of reflections, the remaining detection points can be understood as
belonging to the objects in the environment, either pedestrians, bicyclists, vehicles or other
infrastructures. The basic concept of the DBSCAN algorithm is that, any point in a cluster
should contain a certain number of other points within a particular defined radius. Which
means, a group of points make a cluster if their density is higher than particular threshold.
The distance between two points p and q can basically be described by any distance function
dist(p, q). Euclidean distance function is used in this work. Basic definitions are made in
[EKSX96] which defines Eps, MinPts, core point and border points.
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Eps is defined as the threshold radius which represents the neighbourhood of a point.
The Eps-neighbourhood of a point p denoted as NEps(p) is defined by NEps(p) = [q ∈
D|dist(p, q) ≤ Eps]. Further as illustrated in the Figure 6.1, the point p is a core point
if it has atleast MinPts number of points in it’s neighbourhood and also those neighbour-
ing points are directly density-reachable from p. If there is a point q1 within the Eps-
neighbourhood of p but do not have MinPts number of points that are directly density-
reachable from it, then q1 would be a border point. q1 is directly density-reachable from
p but not the other way, as directly density-reachable is defined to be symmetric only for
the connections between the core points. Considering another point r in the figure (db-
scan), q1 is said to be density-reachable from r through the path of points p1, . . . pn, with
p1 = r, pn = q1, and rest of the points pi+1 also being core points. The definition of
density-connected connects two border points q2 and q1 through the point r as they are
both density-reachable from the core point r. Now starting from point p, including all the
core points that directly density-reachable from p and the border points q1 and q2 that are
density-connected between them and density-reachable from p form a cluster.

q1

p

r

n

q2

Figure 6.1: Illustration of the DBSCAN algorithm

The parameters Eps and MinPts need to be selected based on the application. The k-
dist graph method is proposed in [EKSX96] for the selection of these parameters from the
thinnest cluster of points. However, the suggestion is mainly for unknown situations. In our
case, the objects in the environments are more or less known, which of all the pedestrian
class has the least spatial extension. Another factor in selecting the parameter is that, the
density and number of points reflected from an object depends strongly on the position of
the object with respect to sensor. When the object is closer to the radar sensor it generates
more reflection points, whereas when it is detected at the farthest position in the FoV,
generates only a point. From many measurements it was noted that all the object classes
generated as less as one detection point at the edge of FoV. At closer positions to the sensor,
pedestrians generated upto six detections, bicyclists upto seven detection points and a pas-
senger car upto twenty detection points. Intuitively, for urban scenario safety systems, the
area very close to the ego-vehicle is of high relevance and the clustering in that area needs
to be reliable, than at a higher distance. The range and azimuth resolution of the radar
sensor used for this work is 0.028 m and 1°respectively. Considering these, Eps is chosen to
be 0.05 m and MinPts as 3. However, single reflection points are not rejected after cluster
formation and are still considered to cover the case when an object is at a higher distance
from the sensor. A snapshot of the scenario for testing detections clustering is shown in
Figure 6.2. In the shown test scenario, a bicyclist moves parallel to the ego-vehicle. The
sequence is recorded in the yard, where a large wall and metal doors are also detected and
grouped as distinct clusters.
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Figure 6.2: Snapshot of a test sequence showing the results of detections
clustering with DBSCAN. In the top Figure the cluster detec-
tions belonging to bicyclist are indicated by red markers, clus-
ter detections belonging to corner of building are indicated in
blue markers and unclustered individual detections in yellow.
Bottom Figure is the corresponding web-cam snapshot.

Although the radar delivers only lesser detection points compared to other high resolution
sensors like laser scanner, the results show that the clustering is still feasible with effective
heuristics. Distinction of objects when they are too close to each other is possible only to a
certain extent using a single radar sensor. Also, when a poor reflecting class like pedestrian
is very close to other object class with high reflectivity like a passenger car, it may happen
that the interference is high and the pedestrian may not be detected atall. In addition to
the radar sensor, using multiple sensors like camera or laser scanner and fusion of detections
from these multiple sensors would improve the object distinction. However, these effects
are not in the focus of the work and is recommended for improvement in the future.

6.2 Feature Extraction

The output of segmentation is well defined distinct clusters, each representing a distinct
object. The feature extraction step searches for defined object hypotheses in each segment.
The first hypothesis is made regarding the shape of the object. Pedestrians are considered
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in this work to have a circular extension, bicyclists stick extension and other vehicles as
rectangular boxes. Therefore three shape model assumptions are made with L-shape rep-
resenting two sides of vehicle, I-shape representing one side of vehicle and bicyclist and
O-shape representing pedestrians. Similar kind of approach is used in many of the earlier
works [Kä07, Pie15]. The parameters of the shape feature are then extracted by fitting the
detection points in each cluster to one of the above defined models sequentially.

6.2.1 Model Pre-selection

In [Kä07] a method to reduce the computational effort of model fitting is proposed and the
same is used here. Principal component analysis (PCA) is applied on every segment. It
is to check whether the points are scattered only in one direction or both x- and y- axis
directions. The covariance Cov of the Cartesian x- and y- coordinates of N radar detection
points in that segment are calculated according to

Cov = 1
N − 1

N∑
i=1

xi − x̄
yi − ȳ

 [xi − x̄ yi − ȳ] (6.3)

The ratio of eigen values λ1
λ2

of the covariance matrix Cov, where λ1 ≥ λ2 denotes the
spread of the data in x- and y- coordinate directions. If λ1

λ2
is greater than a certain

threshold parameter, it means only one of the corresponding eigenvectors is dominating
and therefore only I-shape is considered further for that segment. If the ratio λ1

λ2
is lesser

than the threshold parameter, both L-shape and I-shape are considered. Additionally, if
there are not enough number of points Nmin in the segment, it is then assumed to have
only O-shape. The minimum required number of points and the threshold value for the
eigenvalue ratio are tuned empirically as 3 and 10, respectively.

6.2.2 Geometric Shape Fitting

The aim of fitting a shape to the points in an segment is to overlay a bounding box or fit a
line, in order to estimate the orientation of the object and to chose a reference measurement
point for that segment. There are many methods and algorithms available from the field of
robotics for extracting lines from a set of points. Some important methods are summarized
in [NMTS05]. If the model pre-selection denotes that a segment must be tested for both L-
shape and I-shape, iterative end point fit (IEPF) algorithm is first applied on that segment.
The algorithm is also known in literature under the variants Ramer-Douglas-Peucker (RDP)
algorithm or split-and-merge algorithm. The basic idea is to fit a line with first and the last
point of the segment and find a point which has the maximum orthogonal distance to this
line. This point intuitively is the corner point and the set is split into two individual set
of points at this point. Lines are then fit individually to these sets of points. Now we are
left only with the segments that need to be looked for I-shape. Similar methods of shape
fitting are used in many previous works [Mun11, Kä07, Wen08], to list a few.

Hough-Transform introduced by Richard Duda and Peter Hart is a widely used method in
the field of computer vision for extracting line segments out of images. The key idea is to
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represent a line in it’s Hesse normal form

r = x cos θ + y sin θ (6.4)

where r is the perpendicular distance from origin to the line and θ the angle made by the
line with x-axis. The line is represented in the above normal form instead of general form
y = mx + b because in case of vertical line the slope parameter would lead to singularity.
Whereas a vertical line in normal form can be represented with θ = 90°and r equal to the
x-axis intercept. The parameter space or Hough space is given by (r, θ). Generally speaking,
any number of lines can be drawn through a given point in xy-plane. This would mean a
sinusoidal curve for each point on the Hough-space with varying θ and r. Such sinusoidal
segment is constructed for all the points in the cluster. Then the value of r′ and θ′ in the
Hough-space, where the sinusoidal curves of all points intersect would give the line in the
xy-plane, which passes through all those points or in other words a line which fits the points
in the cluster.

However due to highly varying detections and noise in the measurement, finding an inter-
section point in the Hough-space for a best line fit is not direct. Therefore the uncertainty
in the x and y positions, correspondingly the uncertainty in r and θ values should also be
considered. An alternative method to handle uncertainty for line fitting in the weighted
least squares sense is proposed in [Arr03] and also used in [Mun11]. Weight for each point
is determined based on the uncertainty in range σ2

r,i and angle σ2
θ,i. It is further suggested

in [Arr03] that the implementation complexity is lower if the line parameters θ′ and r′ are
calculated in terms of Cartesian coordinates as:

tan 2θ′ = −2
∑
wi(ȳw − yi)(x̄w − xi)∑

wi [(ȳw − yi)2(x̄w − xi)2] (6.5)

r′ = x̄w cos θ′ + ȳw sin θ′ (6.6)

where x̄w = 1∑
wi

∑
wiri cos θi and ȳw = 1∑

wi

∑
wiri sin θi are the weighted means. In order

to give higher weights to the points with lesser deviation, the weights are chosen inversely
proportional to the variances σ2

r,i and σ2
θ,i

wi = 1
σ2
r,i + σ2

θ,i

(6.7)

Additionally the covariance equations are derived in [Arr03] from Taylor expansion of the
equations for r and θ in polar coordinate forms

σθ′θ′ = 1
D2 +N2

∑
w2
i [N(x̄w cos θi − ȳw sin θi − ri cos 2θi)

−D(x̄w sin θi − ȳw cos θi − ri sin 2θi)]2σ2
ri

(6.8)

σr′r′ =
∑

[ wi∑
wi

cos(θi − θ′) +∇fr′(θ′)(ȳw cos θ′−x̄w sin θ′)]2

· σ2
ri

(6.9)

σθ′r′ =
∑
∇fr(θ′)fr(r′)σ2

ri (6.10)

where N and D are the numerator and denominator in equation (6.5). After fitting a
line to the points, the clusters which showed a possibility of L-shape are checked for line
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(a) L-shape (b) I-shape (c) O-shape

Figure 6.3: Considered geometric shapes for detection clusters. The black
color cross represents the corresponding reference point (RP)
chosen for the fitted shape

segments which are almost perpendicular to each other. In that case, the line segments are
merged to fit the L-shape and a rectangular bounding box covering the nearest and farthest
coordinate in the cluster is overlayed on the cluster as represented in Figure 6.3 to represent
it’s shape hypothesis. The orientation of the cluster is calculated by PCA. The covariance
and eigenvectors are calculated as described in section 6.2.1. The orientation of the cluster
is then given by the direction of the eigenvector v1 with highest eigenvalue λ1

ψL = tan−1
(v1(y)

v1(x)

)
(6.11)

In order to calculate the four corner points of the bounding box, all the points in the cluster
are first rotated by the orientation angle, so that the eigen vector v1 is parallel to the
x-axis. After rotation, the maximum and minimum values of the x and y coordinates in
the cluster represent the length BBl and width BBw of the bounding box. The coordinates
of the corner points (p1, p2, p3, p4) representing the bounding box are finally calculated by
again rotating the points of the cluster by it’s orientation angle in the opposite direction.
The corner point of the bounding box closest to the sensor is then chosen as reference
measurement point for the cluster. If there are no perpendicular line segments that are to
be merged, the cluster is then denoted with I-shape hypothesis and the middle point of the
line is chosen as the reference point. The orientation of the I-shape is then same as the
estimated angle θ′. As mentioned in the previous section, if there are not enough points for
both of the L-shape and I-shape, the cluster is denoted with O-shape and the center point
is chosen as reference and the orientation is set to zero. Figure 6.4 depicts a measurement
sequence with a shape fitted for each of the detection clusters, belonging to different object
classes.

6.2.3 Characteristic Feature Selection

Apart from the geometric features, each cluster basically contains other characteristics
features as well, which is representative of the actual object class that the cluster belongs to.
Extraction of characteristic features from measurement clusters and using these features as
a basis for object classification has previously been studied in many works [AMB07, PLN09,
Pie15, Fö06]. Most of the features that are searched for in each of the cluster are derived
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Figure 6.4: Example measurement scenario illustrating geometric shape fit.
The green bounding boxes belong to the passenger car, blue
to the bicyclist and magenta to the pedestrian. For clarity
purpose, the shape fit of pedestrian and bicyclist are shown
only for their forward motion.

from [AMB07], in addition to radar specific features. The features that are extracted for
each cluster C are:

1. Number of points: denotes the total number of detection points in that cluster

NumOfPoints = |Ci| (6.12)

2. Standard deviation: The standard deviation of the position of points is given by

Compactness =
√√√√ 1
n− 1

∑
j

‖xj − x̄‖2 (6.13)

where x̄ is the centroid of the cluster and xj the positions of each point.

3. Linearity: This feature denotes the residual sum of squares between the cluster points
and a line fitted to the cluster points [AMB07]. The parameters of the fitted line are
calculated similar to the equations (6.5) and the linearity is given as

Linearity =
∑
j

(xj cos(θ′) + yj sin θ′ − r′)2 (6.14)

4. Circularity: The residual of sum of squares to a circle fitted for points in the cluster
is denoted by this feature. If a circle of radius R and center (xc, yc) is fitted to the
points by least squares method, then the circularity of the cluster is given by [AMB07]

Circularity =
n∑
j=1

(
R−

√
(xc − xj)2 + (yc − yj)2

)2
(6.15)
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with (xj , yj) denoting the positions of detection points in Cartesian coordinates.

5. Radius: Denotes the radius R of the circle fitted to the cluster for calculating circu-
larity feature.

6. Length of assumed bounding box: The length of a bounding box BBLength that would
cover the points in the cluster is calculated as explained in section 6.2.2. For perfect
lines, this value would be zero.

7. Width of assumed bounding box: This feature represents the width of the assumed
bounding box BBWidth, again as calculated in section 6.2.2.

8. Circumference of assumed bounding box: Circumference of the bounding box

BBCircum = 2 · (BBLength+BBWidth) (6.16)

9. Area of assumed bounding box: The area of the rectangluar bounding box is calculated
as

BBArea = BBLength ·BBWidth (6.17)

10. Density of assumed bounding box: Density of the bounding box is the ratio of number
of points in the cluster n to its area areaBB

BBDensity = NumOfPoints

BBArea
(6.18)

11. Length of the boundary: The length of the contour formed by connecting the points
in a cluster is calculated by

BoundaryLength =
∑
j

d(pj , pj−1)

d(pj , pj−1) =
√

(xj − xj−1)2 + (yj − yj−1)2
(6.19)

12. Boundary regularity: The standard deviation of the distances d(pj , pj−1) [AMB07].

13. Polygon Area: The area of the polygon fitted to the cluster of detection points.

14. Doppler variance: This feature denotes the variance of the Doppler velocity within
a cluster. Due to the movement of the arms and legs, the Doppler variance of the
pedestrian class is expected to be higher than other classes.

15. Range weighted mean power: The amplitude of electro-magnetic wave reflected from
metal surfaces, as in case of vehicles, is expected to be higher than that of weak
reflecting surfaces like pedestrian body. This feature is therefore used for representing
the reflection characteristic of an object. However, the reflection power of objects
that are in a closer range to the sensor is greater than that of the object at a higher
range. In order to consider this range dependency, a weight is given to the power of
a reflection point in the cluster. The weight should be inversely proportional to the
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range

RangeWgdPower =

∑
j
wjA(j)

n

wj = 1
rj

(6.20)

16. Power variance: This feature represents the variance of reflection power in a cluster
and is denoted by PowerDBvar. Objects with regular reflecting surfaces like passen-
ger car is expected to have a lesser variance of the reflected power through out it’s
contour, whereas a bicycle for example can have a higher variance.

The system setup, for measuring the representative features of each object class, is same as
described in Chapter 4. The object classes of interest are pedestrian, bicyclist and passenger
car. All the features need to be calculated for every cluster. The cluster should be labeled
in order to know which class of object the features belong to. In order to make this labeling
task easier, separate measurements are made for each class. Many sets of measurement are
made for each object class, with different maneuvers, in order to capture a wide spread of
feature data. A bigger test area of radius more than 60 m is chosen in order to avoid the
reflections that could come from other objects in the test area, which would cause a bias
in feature extraction. However, sensor clutter cannot be avoided explicitly but are removed
from measurements similar to the preprocessing method explained in section 6.1. After
these preprocessing steps, a total of 2658 labeled cluster samples are considered further
for feature extraction and also for the classifier construction, described in the following
section. Boxplot is a convenient tool for representing the distribution of data which shows
the minimum value in the data set, first quartile, median, third quartile and the maximum
value. The distribution of each extracted feature for each class is represented and compared
as boxplot in Figure 6.5. It shows the possibility of distinguishing object classes based on
the extracted features.

The relevance of all the features for class separation is usually not known explicitly. PCA is a
widely used method in machine learning field, to analyse the contribution of each feature to
the classification problem and subsequently for dimension reduction [LCZT07]. The feature
vectors are projected onto a lower dimension with the help of the principal components
(PC). The so called PCs are the vectors that capture the highest variance of the data.
Figure 6.6 shows the biplot with corresponding data projected onto the first three PCs
and also the coefficients representing the variance contribution. The features BBDensity
and PowerDBvar dominates the first two PCs and other features are entangled in the
subsequent higher dimensional PCs. The feature number of points NumOfPoints and the
features representing dimensions, area and density are highly correlated, pointing in similar
direction in the biplot. A biplot illustrating the contribution of these features, neglecting
the BBDensity and PowerDBvar is given in Figure 6.7.

However, many of the features like NumOfPoints are dependent on the actual position of
the object with respect to sensor. Consequently many features like circularity, radius and
area depend on the NumOfPoints in the cluster. But at a higher distance from sensor, as
even a passenger car may only show same characteristic features as a pedestrian, considering
these features in such conditions would cause a bias in class separability. Therefore, the
classification is divided into two separate methods, considering the position dependability
of the features. As the radar can measure the Doppler velocity of the object, it could
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Figure 6.8: 16-D feature data set scaled onto 3-D space

be used for class-BBA in cases where the main classifier cannot give class probabilities
based on all the defined features. But in conditions where the object moves with the same
velocity as the ego-vehicle, this would cause a higher bias in class-BBA. Therefore the
condition with NumOfPoints < 3 is synonymous to total ignorance of the classifier and
full mass is given to m(Ω) = 1. In that case, the class-BBA is dependent mainly on the
estimated velocity of the tracked object. In other cases, the classification is based on the
combination of assignments from track velocity as well as the output of the classifier. Design
and implementation of the object classifier based on measurements and track attributes are
described in the following sections.

6.3 Classification

For the given sensor characteristics and system setup, an object is expected to be in the
sensor FoV for only a relatively shorter time interval. Which means, in order to have many
training samples, many hours of test data needs to be logged. Support vector machine
(SVM) is one of the classification methods least affected by the training data sample size
[LWW+14]. Therefore for object classification, SVM is used in this work. As mentioned in
the previous section, the validity of feature extraction depends highly on the position of the
object in the sensor’s FoV. The azimuth separation for the classifier is empirically selected
at −60°and +60°, based on many measurement observations.
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6.3.1 Support Vector Machine

SVM is one of the well known supervised learning methods used for object classification.
Since it’s introduction in [CV95] it has been widely used in vehicle environment perception
applications like image based detection of objects, vehicle maneuver prediction [Ott13] etc.
SVM is a maximum margin classifier, which is able to derive a decision boundary between
various classes in question. Basically the boundary is an hyperplane, calculated by mapping
the inputs to higher dimensional feature space. More formally the problem can be stated
as, given a set of training data {(x1, y1), . . . (xn, yn)} with xi ∈ X as input data and yi ∈
C = {−1, 1} the class labels, the SVM calculates a decision function F (x), which can then
be used for predicting the value yk for an input xk at the time k [BGV92]. If the data in
x are linearly separable, the decision boundary separating the classes would be the optimal
hyperplane in the input space X , which is given by the decision function

F (x) =
N∑
i=1

wi(xi) + b = 0 (6.21)

where the parameters w and b are the parameters to be determined by an optimisation
problem. The distance between the origin and the optimal hyperplane is then given by b

‖w‖2
with ‖w‖2 representing the least-squares norm of w. As the hyperplane is the boundary
that separates the two classes, the condition satisfying each of the class can be written as

w>xi + b ≥ +1, for yi = +1
w>xi + b ≤ −1, for yi = −1

(6.22)

which can be combinedly written as an inequality

yi(w>xi + b) ≥ 1 (6.23)

Intuitively, for a well distinction of the classes, the margin between two classes separated by
the optimal hyperplane need to be maximized. The distance between the optimal hyperplane
and x is yi(w>x+b)

‖w‖2
. Therefore the margin distance between the two classes from (6.22) are

M = 1
‖w‖2

− −1
‖w‖2

⇒ 2
‖w‖2

(6.24)

The optimisation problem for linear case is then to maximize the margin M or in other
words to minimize ‖w‖22, which is formulated as [BGV92]

min
w

1
2‖w‖

2
2

subject to yi(w>xi + b) ≥ 1
i = 1, 2, . . . N

(6.25)

The above problem is called the hard-margin SVM. However, in many cases there is no
direct linear separability of the classes. In that case the problem is solved by including a
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Figure 6.9: Linear SVM.

slack variable ξi representing the margin failure and regularisation constant C

min
w

1
2‖w‖

2
2 + C

N∑
i=1

ξi

subject to yi(w>xi + b) ≥ 1− ξi
ξi ≥ 0, i = 1, 2, . . . N

(6.26)

and is called as soft-margin SVM. Moreover, when the classes are not linearly separable
in the input space X , they can however be mapped using to a higher dimensional feature
space F by the mapping Φ : X 7→ F . The classes are then again linearly separable in the
higher dimensional feature space F as illustrated in Figure 6.10.

y

x

Φ : X 7→ F

x

y

z

Figure 6.10: Non-linear SVM with kernel trick.

In [CV95], Lagrangian method to solve the above optimisation problem (6.26) in the dual
space is derived. With Lagrangian multipliers αi and βi, the Lagrange functional is given
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as

L = 1
2‖w‖

2
2 + C

N∑
i=1

ξi −
N∑
i=1

αi(yi(w>`(xi)) + b)−
∑
i

βiξi (6.27)

and hyperplane is the solution of the optimisation problem in it’s dual form

max
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjφ(xi)>φ(xj)

subject to
∑
i=1

Nαiyi = 0 and 0 ≤ αi ≤ C
(6.28)

The mapping and the dot product computation is realised using a kernel functionK(xi,xj) =
φ(xi)>φ(xj). There are many kernel functions that can be used for SVM [Hof06]. Radial
basis function (RBF) kernel is used in this work. Therefore, the classification decision
function is given as

F (x) = sgn
(

n∑
i=1

αiyie
−γ‖xi−x‖2

+ b

)
(6.29)

So for the implementation of the above formulated SVM problem, two parameters need to
found: C which controls the softness of the margin and γ which controls the hyperplane
curvature for non-linearity. In order to build the classifier, the SVM needs to be trained
first. The entire feature data with 2658 samples is scaled to the range [0, 1] as recommended
by the authors of libsvm [CL13]. 66.6% of the data set is divided as training data and the
remaining 33.3% as testing data. The multi-class classification problem is solved as one-vs-
rest classification problem in libsvm. Before the actual training of classifier, the parameters
need to be estimated by cross-validation method. Cross-validation is the method of dividing
the training set into certain fold of subsets, train the classifier with a set of subsets and
sequentially test the classifier with one subset which was not used in training.

Grid-search on C and γ using cross-validation is recommended in [CL13] and used so in
this work. Sequences of (C, γ) are tried and the one with the best cross-validation ac-
curacy is selected. Initially a rough grid-search with 3-fold cross-validation and step-size
2 is made with broad (C, γ) ranges C = 2−20, 2−18, . . . , 220 and γ = 2−20, 2−18, . . . , 220.
This is to roughly find the parameter regions where the cross-validation accuracy is high.
As depicted in Figure 6.11, the best pair obtained is (218, 22) with cross-validation accu-
racy of 84.3115% and the regions bounded by C = 2−4, . . . , 220 and γ = 2−12, . . . , 212 has
higher cross-validation accuracy. However, the number of support vectors (SV) increases by
increasing the slack value i.e. C. This consequently increases the prediction complexity be-
cause for every test point, a dot product with each SV needs to be computed. On the other
hand, a very low value of C would increase misclassification. A higher value for γ would
result in overfitting and a very low value would not reflect the non-linearity in the decision
boundary. Therefore a trade-off is to be made between the cross-validation accuracy and
kernel parameters. So in the second medium-scale grid-search the scale of (C, γ) is reduced
to the range C = 2−2, 2−1, . . . , 218 and γ = 2−6, 2−5, . . . , 28 with a step-size 1. The best pair
from medium scale search is (216, 23), with cross-validation accuracy of 84.0293%, as shown
in Figure 6.12. Finally, the search is narrowed down to the region C = 24, 23.75, . . . , 213 and
γ = 2−2, 2−1.75, . . . , 26 with a step-size 0.25, as depicted in Figure 6.13 and the best param-
eter is found to be (213, 23.5) with a cross-validation accuracy of 82.9007%. Considering the
trade-off, the parameter pair (210.5, 24.25) providing a cross-validation accuracy of 81% is
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Figure 6.11: Rough RBF-Kernel parameter search by cross-validation with
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Figure 6.12: Medium scale RBF-Kernel parameter search by cross-
validation with step-size 1.

chosen for training the model, along the direction of best parameter in the grid.

The evaluation of the trained SVM classifier is presented in section 8.3. The SVM outputs
the class of the object and the decision or confidence values for each of the classes. But
however it does not directly give the probabilities for each of the class. As the confidence
values would be used in combination with the DST, they need not necessarily be probability
values. In [Pla99] a method termed as ’Platt Scaling’ is proposed which fits the confidence
output of SVM onto a sigmoid function, in order to approximate the confidence values as
probabilities. The probability is calculated as an optimisation problem with two parameters
A and B to be minimised and the probability for positive class is given as

P (y = 1 | f) = 1
1 + e(Af+B) (6.30)

However the above method is proposed mainly for two class problems and do not directly ad-
dress multiclass problems. A method for transforming the confidence values output of SVM
into accurate multiclass probability estimates is proposed in [ZE02]. The idea is to break
the multiclass problem into many binary problems. Then each of them is calibrated sepa-
rately into probabilities and their probabilities are combined. In case of one-vs-all method,
the probabilities are normalised to 1. For one-vs-one method, a code matrix denoting the
positive, negative and not considered classes of each binary classifier is constructed and the
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Figure 6.13: Small scale RBF-Kernel parameter search by cross-validation
with step-size 0.25.

probabilities are calculated either by least-squares method or an iterative log-loss minimi-
sation method called coupling.

6.3.2 Class probabilities based on track velocity

Apart from the measurement features based class probability estimation with SVM, the
velocity information from the object tracks can also be used for estimating the class of the
object. According to the experiments and studies in [KR10], pedestrians are expected to
walk with mean velocity of ≈ 1.42 m/s. The characteristics of bicyclists’ speed is studied in
[JROR10] and states that the average daytime speed of a bicyclist is ≈ 4 m/s. However the
speed of a bicyclist can vary between a lower speed of ≈ 2.5 m/s to higher speed of ≈ 5.6
m/s, making them difficult to differentiate from a slow moving passenger car. Considering
theses studies, the belief masses based on track velocities can assigned to the elements of
the power set according to the assumed function illustrated in Figure 6.14. This is based on
the similar method proposed in [Gar14] and in [MRSD14] for combining measurement and
track based class information. The combination of class information based on measurement
features and track attributes is then realised by the integrated tracking and classification
method presented in section 5.8.
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Chapter 7

Application and Realisation of
Environment Perception for Truck
ADAS

As described in Chapter 5, the recursive Bayesian state estimators require a motion model
representing the movement of the object and a measurement model representing the sensor
observations. Moreover, the estimators also require the knowledge of sensor measurement
characteristics, in order to parameterise the measurement noise distribution. Measurement
analysis, object motion models, sensor and ego-vehicle model assumptions, that are required
in addition to the object classification techniques described in section 6.3 for the realisation
of vehicle environment perception are described in this Chapter. The analysis of sensor mea-
surement characteristics by means of experiments is presented in section 7.1. Assumptions
about object motion models and the sensor measurement models are described in sections
7.2 and 7.3. A method for compensating the ego-vehicle motion from object motion is de-
scribed in section 7.4. The Chapter concludes by describing a scheme for implementing the
DST required to integrate the class information into the tracking framework.

7.1 Measurement Characteristics

The measurement characteristics of the used radar sensor are also evaluated experimentally.
Thereby, the variances of azimuth σ2

θ , range σ2
r and Doppler velocity σ2

ṙ measured by the
radar are estimated. The measurement setup is similar to the calibration setup described in
section 4.3.2. The corner reflector of a known RCS value is placed along various coordinate
positions in the FoV and the corresponding reflections are measured. Additionally mea-
surement sequences of a pedestrian walking with predefined velocity are also recorded. The
variances are calculated from many measurement samples and the corresponding reference
position of the target. Figure 7.1 depicts the sensor measurement characteristics correspond-
ing to different positions of the target. The radar has higher variance in measured values
along the border areas of the FoV, especially for the azimuth angle. This can understood as
due to the side lobe characteristics of the radar antenna. Note that the variance of Doppler
velocity is estimated only from the tests where the target is stationary or moves radially
to the sensor at zero azimuth. This is because the reference Doppler velocity is same as
the target velocity only for these two conditions and the Doppler reference for other target
maneuvers is not available. Thereby the variance of Doppler velocity is estimated as 0.055
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m/s. Also from the various measurements through the detection area, the opening angle of
the radar sensor is experimentally verified to be approximately 140°.

7.2 State Models

For the application of MMLMB filter, multiple state models are required for modeling
the motion characteristics of different objects. CV and CTRV models are used in this
work where the CV model represents the pedestrian motion and CTRV model represents
bicyclists and cars.

CV model

In a CV model the object is assumed to move with a constant linear velocity. The state-space
constitutes the object longitudinal and lateral positions (x, y) and corresponding velocities
(vx, vy) in the Cartesian vehicle coordinates. The states and the corresponding covariance
matrix at any time instance k are given as,

xcvk =



x

y

vx

vy


(7.1)

Pcvk =



σ2
x σxy 0 0

σxy σ2
y 0 0

0 0 σ2
vx σvxvy

0 0 σvxvy σ2
vy


(7.2)

The states are then predicted with a discrete time step T according to the equation

xcvk+1 = Fcvxk + wk (7.3)

Pcvk+1 = FcvPcvk F>cv + Qcv
k

(7.4)

where the state transition matrix Fcv and the process noise matrix Qcv according to the
Wiener-sequence acceleration model are given as

Fcv =



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


(7.5)
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(b) Cartesian coordinates
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(c) Polar coordinates
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(d) Cartesian coordinates

Figure 7.1: Variance of the radar azimuth angle and range measurement
with respect to the polar azimuth and range values are shown
in Figure (A) & (C). Azimuth and range variance overlayed on
the Cartesian x and y coordinates, with the sensor mounted
looking towards rear is shown in Figure (B) & (D). The figure
depicts the higher variance of the azimuth measurement along
the border area of FoV, due to side lobes of the antenna.
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Qcv = σ2
a



T 4

4 0 T 3

2 0

0 T 4

4 0 0
T 3

2 0 T 2 0

0 T 3

2 0 T 2


(7.6)

CTRV model

In case of a CTRV model, in addition to a constant velocity, the object is also assumed
to have a constant turn rate ω. The state therefore consists of the positions and velocities
denoted in Cartesian vehicle coordinates as in CV model, additionally augmented with the
turn rate ω and can be given as

xctrvk =



x

y

vx

vy

ω


(7.7)

Pctrvk =



σ2
x σ2

xy 0 0 σxω

σ2
xy σ2

y 0 0 σyω

0 0 σ2
vx σ2

vxvy σvxω

0 0 σ2
vxvy σ2

vy σvyω

σxω σyω σvxω σvyω σ2
ω


(7.8)

Consequently the states are predicted for a discrete time step T as

xcvk+1 =

Fctrv(ω) 0

0 e
−T
τω

xk +

wk 0

0 wω,k

 (7.9)

Pctrvk+1 =

Fctrv(ω) 0

0 e
−T
τω

Pctrvk

Fctrv(ω) 0

0 e
−T
τω


>

+

Qctrv
k

0

0 T 2σ2
ω


(7.10)

where the turn rate ω is predicted with an assumption of first-order Markov process model
and τω is the corresponding correlation time constant for the turn rate. The transition
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matrix Fctrv(ω) in terms of turn rate and the process noise matrix Qctrv are given as

Fctrv(ω) =



1 0 sinωT
ω

1−cosωT
ω

0 1 1−cosωT
ω

sinωT
ω

0 0 cosωT − sinωT

0 0 sinωT cosωT


(7.11)

Qctrv = σ2
a



T 4

4 0 T 3

2 0

0 T 4

4 0 0
T 3

2 0 T 2 0

0 T 3

2 0 T 2


(7.12)

Turn rate in the current time step ωk is used for calculating the matrix Fctrv(ω) [LJ03].

For the implementation of the GM-MMLMB filter with integrated classification described in
section 5.8, each track, thereby their GMCs are predicted with respect to each motion model
oi(i ∈ {1, . . . , No}). Also, in order to reduce the computational complexity, GMCs of a track
with close mean values are merged as described in section 5.6.3. Consequently, for predicting
each GMC of a track with both the motion models and also for merging the GMCs of a track
conditioned on different motion models, the transformation of the states and covariances
between both the motion models should be realisable. The transformation of the states from
CTRV model to the CV model is achieved by augmenting the CV state space additionally
with zero and also setting the corresponding element of the process transformation and
covariance matrices as zero. The CV model is transformed into CTRV model where ω
is initialised as zero and is propagated with help of a noise model. Additionally, all the
objects are initialised with a higher probability for the CV model and the transition occurs
by eventually updating the class-BBAs.

7.3 Measurement Model

The radar delivers the measurements in polar coordinates. Azimuth angle, range and
Doppler velocity of a point target are measured and transmitted through CAN interface ac-
cording to the system setup in Chapter 4. The measurements are transformed into Cartesian
coordinates along with it’s uncertainties. The measurement vector and it’s noise covariance
matrix in it’s polar form is given as

zp =


θ

r

ṙ

 (7.13)

Rp =


σ2
θ 0 0

0 σ2
r 0

0 0 σ2
ṙ

 (7.14)
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The measurement vector and noise covariance matrix transformed into Cartesian coordi-
nates at any time step k from the relation

r =
√
x2 + y2 (7.15)

θ = arctan(y
x

) (7.16)

ṙ =
√
v2
x + v2

y (7.17)

and is given as

zk =



x

y

vx

vy


=



rk cos θk
rk sin θk
ṙk cos θk
ṙk sin θk


(7.18)

Rk =



σ2
x σ2

xy 0 0

σ2
xy σ2

y 0 0

0 0 σ2
vx σ2

vxvy

0 0 σ2
vxvy σ2

vy


(7.19)

The elements of the converted covariance matrix corresponding to the Cartesian positions
are considered as derived in [LBS93] as

σ2
x = σ2

rcos2θk + σ2
θr

2
ksin2θk (7.20)

σ2
y = σ2

r sin2θk + σ2
θr

2
kcos2θk (7.21)

σ2
xy = 1

2 sin 2θk
(
σ2
r − r2

kσ
2
θ

)
(7.22)

and the elements corresponding to the velocity components σ2
vx and σ2

vy are approximated
with the constant value of 0.05 m/s derived from experiments in section 7.1. The observation
matrix for the filter update for both the models can then be given as

H =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


(7.23)

However, the radar can measure only the radial component of the object’s velocity. The
Doppler velocity measured by the radar would be same as the object velocity only when
it is moving radially to the ego-vehicle as in case of a car driving in a straight highway.
But for the given application setup in this work, the sensor is mounted on the side of the
ego-vehicle and oriented towards the rear. Given typical scenarios where the object would
mostly move parallel to the ego-vehicle, the velocity of the object is not always directly
observable, especially when the object is closer to the sensor normal axis. In [APA04]
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a method to use the decoupled double filter (DDF) from [BP99] is suggested, where the
radial and tangential motion of the object are tracked separately with two filters. The
tangential component and radial component of the object velocity are then estimated by
an assumption that the object moves with constant azimuthal acceleration. This method is
situation specific and is not generic and requires additional association step. In [KBD+13],
[FR06] a method to estimate a mean velocity based on best fit of the Doppler velocities of
all the reflection points of the object is presented. However, the method is only suitable for
large object like car which could give many reflection points. Therefore the Doppler velocity
is used only in the regions of FoV away from normal axis of the sensor and is otherwise
derived from the position. This is a loss of advantage of the radar sensor, but still the
Doppler velocity can be used to initialise the state vector. The measurement vector and the
observation matrix in that case are reduced to

zrk =

x
y

 =

rk cos θk
rk sin θk

 (7.24)

Hr =

1 0 0 0 0

0 1 0 0 0

 (7.25)

Further, the transformation of measurement to the vehicle Cartesian coordinates is calcu-
lated as described in section 4.2.1, according to the mounting position of the sensor.

7.4 Ego-motion Compensation

yV (t)

xV (t)

yV (t+ ∆t)

xV (t+ ∆t)

∆ψego

∆yego

∆xego

Figure 7.2: Ego-motion Compensation

As the ego-vehicle carrying the sensor itself is moving, the object motion should be compen-
sated with the motion of the ego-vehicle. The object states predicted from time instance
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k to k + 1 with respect to the vehicle coordinates should be compensated with the respec-
tive motion of the ego-vehicle from k to k + 1. As the radar sensor measures only in the
azimuthal direction, it is sufficient to consider only the two-dimensional components of the
ego-motion. The translational position change (∆xego,∆yego) and the rotational position
change (∆ψego) of the ego-vehicle between two time steps are calculated by using a kine-
matic single track model, neglecting the drift and wheel-slip. Therefore additional inputs
required for the object state prediction are the change in ego-vehicle positions and the re-
spective covariances. With a simple kinematic model assumption, the change in positions
and yaw can be calculated from the tangential velocity vego and yaw-rate ψ̇ego signals of the
ego-vehicle which are received through the J1939 vehicle CAN interface.

∆xego = vego,k

ψ̇ego,k
· sin

(
ψ̇ego · T

)
∆yego = vego,k

ψ̇ego,k
·
(
1− cos(ψ̇ego · T

)
∆ψego = ψ̇ego,k · T

(7.26)

Considering uego,k+1 = [∆x,∆y,∆ψ]> as the additional input to the object state prediction
from the ego-vehicle, the state prediction in equations (7.3) and (7.9) becomes

x(·)
comp,k+1 = fego(x(·)

k+1,uego,k+1) (7.27)

where the function fego represents the transformation of the predicted object states into the
new ego-vehicle coordinate frame at k+ 1, with translation t = (∆xego,∆yego) and rotation
matrix

Rego =

 cos(∆ψego) sin(∆ψego)

− sin(∆ψego) cos(∆ψego)

 (7.28)

Both the positions and velocities are transformed, giving the ego-motion compensated pre-
dicted state of object as

x(·)
comp,k+1 =



cos(∆ψego)x+ sin(∆ψego)y −∆xego
− sin(∆ψego)x+ cos(∆ψego)y −∆yego

cos(∆ψego)vx + sin(∆ψego)vy
− sin(∆ψego)vy + cos(∆ψego)vy

ω


(7.29)

with ∆xego ∆yego and ∆ψego from equation (7.26). Apart from the object states, the
predicted state covariances of equations (7.10) and (7.4) should also compensated with the
tangential velocity and yaw-rate uncertainties of the ego-vehicle Pego,k+1. Therefore the
transformed state covariance matrix is given as

P(·)
comp,k+1 = Fego

P(·)
k+1 0

0 Pego,k+1

F>ego (7.30)
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where Fego is the Jacobian of fego calculated by partial differentiation

Fego = ∂fego
∂(x, y, vx, vy, ω)

∣∣∣
xk+1,vego,ψ̇ego

(7.31)

and the covariance matrix Pego,k+1 depends on the uncertainties of the vehicle ESP sensors,
given as

Pego,k+1 =

 σ2
vego σvegoσψ̇ego

σvegoσψ̇ego σ2
ψ̇ego

 (7.32)

7.5 Implementation of DST

As the above sections described the assumptions and model characteristics used in this
work for object state estimation, this section describes a method to implement DST used
for realising integrated tracking and classification according to the method presented in 5.8.
The numerical operations involved in implementing DST are usually of high computational
complexity. Binary representation of the elements in the power set 2Ω is one of the methods
to implement DST, in order to realise the combination rule [Lin06, Mun11]. Based on the
three considered object classes - pedestrians, bicyclists and passenger cars, the corresponding
power set can be given as

2Ω = {∅, {P} , {B} , {P,B} , {C} , {P,C} , {B,C} , {P,B,C}}

The basic idea is then to represent all the elements of the power set with a binary value
corresponding to the decimal value representing it’s position order in the power set, in this
case 0 to 7. The combination rule can then be realised by binary AND operation, which is
equivalent to the union function ∩ and can be represented as [Mun11]

S1 ∩ S2 = (S1)2&(S2)2 (7.33)

The binary representation is given in Table (7.1). The rule of combination is therefore
implemented by calculating the equation (5.149) as

m
(i)
C (E) =

∑
(S1+ )2&(S1)2=(E)2

m
(i)
C+

(S1+)m(i)
C (S1)

1−
∑

(S1+ )2&(S1)2=∅
m

(i)
C+

(S1+)m(i)
C (S1)

(7.34)

The subset and non-empty intersection functions required for calculating the belief and
plausibility as in equations (5.146) and (5.147) are realised as

(X ⊆ E)⇔ ((X)2&(E)2 = (X)2) , (7.35)

(X 6= ∅)⇔
(∑

(X)2 > 0
)

(7.36)
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22 21 20

{C} {B} {P}

0 0 0 ∅

0 0 1 {P}

0 1 0 {B}

0 1 1 {P,B}

1 0 0 {C}

1 0 1 {P,C}

1 1 0 {B,C}

1 1 1 {P,B,C}

Table 7.1: Binary representation of the elements in the power set according
to their order.

where the operation
∑

(X)2 is the sum of all the bits of X represented in it’s binary form.
The pignistic transformation is realised by using the relation

|X| =
∑

(X)2 (7.37)
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Chapter 8

Evaluation

The results of the proposed tracking and classification methods are presented in this section.
Metrics for the evaluation of tracking and classification performance are defined in the first
section. Performance of the tracker is evaluated first with synthetic radar measurements
as simulation and is also evaluated with real-world radar measurements. Different real-
time test scenarios of object motion are defined and an analysis of object tracking and
classification for these scenarios are presented in sections 8.2 and 8.3.

8.1 Tracker Evaluation Metrics

A reliable reference ground truth data is required for the evaluation of the tracking per-
formance. A DGPS reference would provide a good ground truth reference, but as the
object in most of the scenarios moves very close to the truck, the DGPS signal appeared
very unstable. A high resolution camera mounted on the top right side of the truck is
used for recording the test scenarios. The camera is calibrated in order to get the ground
truth projection of the image. The test bicycle is attached with vivid color markers, which
can be explicitly detected in the image. The markers, thereby their positions are detected
with image processing algorithms, using the openCV libraries. The calibration setup and
detection process are detailed in Appendix B. However, the camera has a narrow FoV than
the used radar sensor, therefore the ground truth values are available only for a certain
region of the radar FoV. Apart from the bicyclist, a dedicated ground truth reference is not
available for the car and pedestrian class. Therefore additional markings for pre-defined
object trajectory were made in the test area before making measurements and the reference
markings were followed as close as possible.

8.1.1 RMSE

The difference between the estimated state value and it’s corresponding reference value is
called the error in state estimation and is given as

x̃k = x̂k − xk (8.1)
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Considering N samples in the complete measurement sequence, the RMSE based on 2D
Euclidean distance is given by

RMSE =

√√√√ 1
N

N∑
i=1

(x̂(i)− x(i))2 + (ŷ(i)− y(i))2

2 (8.2)

The equation (8.2) is general form of RMSE and is calculated separately for position, velocity
and other estimated states.

8.1.2 Filter Consistency

Apart from the error in state-estimation, the consistency of the filter also serves as an
important performance measure. Conditions for filter consistency are given in [BSWT11]
and the first condition is that the state errors should be acceptable as zero mean and the
covariance should match the mean square error. This is defined by means of the measure
normalised state estimation error squared (NEES), given as

εe = x̃>P−1x (8.3)

The second condition is that the innovation error should also have the same property as
above and is defined by normalised innovation square (NIS), given as

εv = v>S−1v (8.4)

where v = ẑk − zk is the innovation error. Moreover, NIS has an advantage that it can
be used for filter consistency check, even in cases where the reference state value is not
available. In order for the filter to be consistent, the NEES and NIS being chi-squared
distributed with n degrees of freedom, should lie within a certain acceptance interval [r1, r2]
which is determined based on a certain significance level α and is given by

P
{
ε(·) ∈ [r1, r2]

}
= 1− α (8.5)

If the NEES value for example is larger than the upper bound r2, it denotes the possibility
that the considered process or measurement noise covariances could be lower than the actual
noise values. In case NEES is smaller than the lower bound r1, it could denote that the
noise covariances are over estimated.

The third condition is that the innovation should be white and is checked through auto-
correlation statistics given by

ρ̃(k − a, k) =
a∑
i=1

v(k − a)>v(k)
[
a∑
i=1

v(k − a)>v(k − a)
a∑
i=1

v(k)>v(k)
]−1

2

(8.6)

ρ̃ is white if it has zero mean and variance of 1
a , where a is the number of accumulated

time steps. In order for the filter to be consistent, ρ̃ should also be within the acceptance
interval [−r, r], where r is determined from the condition

P

{
ρ̃ ∈

[
−r · (1

a
), r · (1

a
)
]}

= 1− α (8.7)
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8.1.3 Optimal Subpattern Assignment Metric

The metrics defined above are useful for determining the deviation and consistency of the
tracker only with respect to the state estimation. But in multi-object tracking applications,
a metric also for evaluating the cardinality estimate is required. The optimal subpattern
assignment metric (OSPA) is proposed in [SVV08]. The distance between two state vectors
x and y in the context of OSPA metric is calculated by

dc(x, y) = min(c, d(x, y)) (8.8)

where c > 0 is the cut-off parameter. In order to represent the OSPA metric for two sets
X =

{
x(1), . . . , x(m)

}
and Y =

{
y(1), . . . , y(m)

}
additionally an order parameter p is used

and the OSPA distance is given as [SVV08]

dcp(X,Y) =
(

1
n

(
min
π∈Πn

m∑
i=1

dc(x(i), y(π(i)))p + cp(n−m)
)) 1

p

(8.9)

where m,n ∈ N0 = {0, 1, 2, . . . }, Πk is the set of permutations on {1, 2, . . . , k} for any
k ∈ N = {0, 1, 2, . . . }. In the above equation the given condition is m < n. In case m > n
then the representation becomes dcp(Y,X). The function dcp is then the OSPA metric of order
p ∈ [1;∞] and cut-off c > 0 [SVV08]. The first term in the summation of equations (8.9)
is representation of the error in target state and the second term the error in cardinality.
As stated in [SVV08] the cut-off parameter c mitigates the effect of higher OSPA distances
resulting from state errors due to an higher value of p and adds weight to OSPA distances
from the cardinality error. To evaluate the OSPA distances due to cardinality error and
state error separately, the equation (8.9) can be split into two parts as

dc,locp (X,Y) =
(

1
n

( min
π∈Πn

m∑
i=1

dc(x(i), y(π(i)))p
) 1
p

(8.10)

dc,cardp (X,Y) =
( 1
n
cp(n−m)

) 1
p

(8.11)

with equation (8.10) representing the localisation error and equation (8.11) representing the
cardinality error.

8.2 Example Tracking Scenarios and Results

8.2.1 Simulation

The results of the developed tracking approaches are first illustrated in simulation with
GM implementation. Totally 6 objects are simulated out of which 1 object is a car, 1
bicyclist and 4 pedestrians. The synthetic ground truth trajectories of the objects are
shown in Figure 8.1. The objects are defined within the region of the radar FoV. The car
moves with a constant velocity and turns in towards the ego-vehicle. The bicyclist moves
parallel to the ego-vehicle with constant velocity. 2 pedestrians move parallel to the ego-
vehicle starting from the rear end, 1 pedestrian moves from front end towards rear and 1
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Figure 8.1: Simulated object trajectories withing the sensor FoV region.
The mounting position of the sensor is assumed to be same as
in section 4.2. The start positions of the objects are marked by
a triangle and end positions by cross.

pedestrian moves forth and back orthogonal to the ego-vehicle. Two motion models, CV and
CTRV are defined with standard deviation of the process noise in longitudinal x and lateral
y directions as σa = 1 m/s2. The standard deviation of the turn rate noise for CTRV is
σω = π/180 rad/s. The radar measurements are simulated as reference points of the object
with measurement variances σ2

θ , σ2
r and σ2

ṙ as identified in section 7.1. The measurements
and covariances are converted into Cartesian coordinates according to equations (7.18) to
(7.19) and the sample time is T = 0.08 s. The survival probability of the tracks ps = 0.99
and the detection probability of the sensor pD = 0.98 are assumed to be state independent.
The clutter measurements follow Poisson distribution with intensity κ(z) = 1.3 · 10−3, with
average rate of λc = 2 clutter measurements per scan. The belief mass for the objects are
defined with higher values for elements supporting their actual class and lower values are
assigned for other elements of the power set. The belief mass of the clutter measurements
are assumed with equal value for all the elements.

The objects are usually expected to appear only on the edges of the FoV. But in order to
allow for a generic object initialisation throughout the FoV, an adaptive LMB birth intensity
as described in section 5.6.4 is used. Moreover it allows re-initialisation of the lost tracks
at any arbitrary region in the FoV [Reu14]. The LMB birth intensity is then defined by
the parameters

{
r

(i)
B , p

(i)
B (·, o)

}|Zk|,|O|

i=1,o=1
, where the existence probabilities r(i)

B are calculated
as in equation (5.98). The measurements are initialised with higher probability of existence
only if they have a higher Mahalanobis distance to any of the existing tracks. The spatial
distribution p

(i)
B (·, o) is defined by a Gaussian distribution N

(
x; x̂(i)

B ,PB
)
conditioned on
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Figure 8.2: Cardinality estimate of the filter for the simulated object tra-
jectories as in Figure 8.1.

each of the motion model, with it’s mean position equal to converted x and y positions of
the measurement. The turn rate is set to zero and the velocity is initialised with the x and
y components of the Doppler velocity if the measurement has an absolute value of azimuth
greater than 60°, else set to zero. The uncertainties of the position and velocities of the
Gaussian PB are initialised with the Cartesian converted covariances of the measurements
and the variance of turn rate is set as (π/180)2. The initial model probabilities are set
as [p(o)] = [0.9 0.1]. The class-BBAs of the birth tracks are set to the class-BBAs of the
measurement and the model transition probabilities are calculated from these class-BBAs.
Additionally the track management parameters are defined such that all the tracks with
existence probabilities r < 0.001 are pruned. For reducing the computational complexity
all the Gaussian components of the track which have weights w < 1 · 10−4 are pruned and
Gaussian components with a Mahalanobis distance dMHD < 0.2 are merged.

The cardinality estimates of the filter is shown in Figure 8.2. The estimated cardinality
overall matches the true cardinality very well. The cardinality is overestimated at k = 31
and k = 75 due to initialisation of a false track from clutter. The pedestrian moving
orthogonal to the ego-vehicle is lost at k = 132 due to simulated instantaneous change
of direction, but is re-initialised again k = 136. Figure 8.3 shows the estimated x and y
positions of the objects along with their true values. The simulated radar measurements
and the clutter are also plotted. The OSPA distances of the filter are shown in Figure
8.4. The peaks in the OSPA distance are mainly due to cardinality changes and overall the
OSPA distance is well under 0.5 m, which shows that the filter performs well. Moreover
the CV and CTRV model probabilities of one of the pedestrians moving orthogonal to the
ego-vehicle is illustrated in Figure 8.5. The pedestrian is assumed to be classified correctly
by the classifier and the correct CV model is chosen all the time by updating the model
transition probabilities according to the class-BBAs. The following subsections present the
evaluation of the tracker with real-time sensor measurements. The test setup is same as
described in Chapter 4.
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Figure 8.3: The top plot shows the x position estimates of the filter and the
bottom plot shows the y position estimates for the simulation
scenario. Simulated sensor measurements along with clutter
are also plotted
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Figure 8.4: The first plot shows the OSPA distance with cut-off c = 3 m
and order p = 1 for the simulated scenario. The second plot
depicts the corresponding OSPA localisation and the third plot
the OSPA cardinality.
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Figure 8.5: Probabilities of the CV and CTRV motion models for a pedes-
trian target moving away orthogonally from the ego-vehicle cor-
responding to the simulated scenario.
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Figure 8.6: Radar detections from pedestrian, bicyclist and passenger car
corresponding to the test sequence 1.

8.2.2 Test Scenario 1

In the first test scenario, a pedestrian, a bicyclist and a passenger car move in the sensor
FoV area according to predefined trajectories. The passenger car is driven towards the
ego-vehicle at a velocity of around 2.8 m/s, starting from a lateral distance of around 12 m
and stops at front end of the FoV for a few time steps, before moving out. A bicyclist drives
parallel to the ego-vehicle at a lateral distance of 5 m at a velocity of 2 m/s. A pedestrian
moves in a straight line at a lateral distance of 1.5 m trying to maintain a constant velocity
of approximately 1.5 m/s. Both the pedestrian and the bicyclist first move from the rear
end of the ego-vehicle towards the front, exit the sensor FoV from the front end of the
ego-vehicle and return back to move from the front towards the rear end. The test was
performed in an area, where other static objects were also present in the background. The
detections from the background static objects are pre-filtered before forming clusters. The
raw background subtracted detections of the radar evolve as shown in Figure 8.6.

As described in the introduction of this Chapter, the ground truth reference is available
only for certain area of the radar FoV, where it is overlapped by the FoV of the camera and
the bright marker is detected. The reference for other time instances are approximated by
predefined trajectory ground markings and velocity. Although not accurate, this would help
in an overall analysis of the tracker performance through out the radar FoV. Moreover, the
objects are defined to move in such a way that there is almost no occlusion of an object by
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Figure 8.7: OSPA distance and cardinality estimate. The first plot shows
the OSPA distance of scenario 1 with cut-off c = 3 m and or-
der p = 1. The gray background in the plot illustrates time
instances when the camera ground truth for bicyclist is not
available. The second plot depicts the corresponding cardinal-
ity estimate.

another object, as this needs further considerations in the detections clustering and thereby
makes the tracker analysis not straightforward.

The filter parameters used are same as in the simulation scenario and uses an adaptive
birth distribution. The model probabilities for the CV and CTRV models are initialised
as [p(o)] = [0.5 0.5]. The class-BBAs are discounted with a factor of 0.95, based on the
class confidence estimates of the classifier. Figure 8.7b shows the cardinality estimate of
the filter for the defined scenario. Cardinality ground truth is approximated by looking into
measurements along with a synchronised video recording at every time step, for detections
from the car, pedestrian and the bicyclist. According to the defined trajectory, if the car,
pedestrian and the bicyclist are detected, the detections should lie within a lateral distance
of 15 m. The car was always moving longitudinaly ahead of the bicyclist, and the bicyclist
was always moving longitudinaly ahead of the pedestrian. Therefore, when there are no
detections available for certain time steps from the objects, it can be approximated that the
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Figure 8.8: Top plot shows the estimated x positions of the objects and
the bottom plot shows the estimated y positions corresponding
to the test scenario 1. Radar detections and the approximated
ground truth are also shown

target was not within the sensor FoV. Considering such an approximation, the cardinality
estimate very well follows the true expected number of targets. At time step k ≈ 200,
k ≈ 270 and k ≈ 470 the cardinality deviation is due to a false track initialised from a
clutter measurement, which is later terminated. The other deviations in cardinalities are
due delayed track initialisation and termination, in either case as the probability of existence
increases or reduces through certain time steps. The position and velocity estimates of the
tracks are depicted in Figure 8.8 and 8.9 respectively. The corresponding OSPA distance
for the scenario is shown in Figure 8.7a. The peaks in the OSPA distance are mainly due to
cardinality errors. As the ground truth reference is only known approximately, the OSPA
localisation is also an approximation. The time instances when the camera ground truth
for bicyclist is not available are illustrated with a gray background in the plot. The ground
truth values for these time instances are approximated based on the known test sequence.
The OSPA distance is well below 1.5 m for most of the time instances.
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Figure 8.9: Top plot shows the estimated longitudinal relative velocities
and the bottom plot shows the estimated lateral relative veloc-
ities corresponding to the test scenario 1.
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8.2.3 Test Scenario 2

In the second test scenario, the ego-vehicle moves at a speed of 2.8 m/s, starting from a
stationary position at the beginning of the test. The objects that move in the sensor FoV
are a pedestrian and a bicyclist. Compared to the previous test scenarios, this test scenario
is more challenging as it was performed in a yard, where there were also other large objects
like door and container present in the background. The detections from the background
are filtered out from the detections of the bicyclist and the pedestrian, before clustering.
Figure 8.10 illustrates the radar detections of the pedestrian and bicyclist projected on to
the calibrated camera image for the time instance k = 16 and the corresponding clusters.
The pedestrian starts from the rear end of the truck and the bicyclist has a longitudinal
and lateral separation of more than 3 m from the pedestrian. The filter parameters are the
same as used for the previous test scenario.

The pedestrian is initially detected by the radar for certain time steps, but exists the
FoV at around time step k = 37 as the vehicle moves forward faster than the pedestrian.
The pedestrian starts walking faster and catches up with the ego-vehicle at k = 83 and
starts walking again with almost constant velocity of 1.85 m/s. The bicyclist is within
the sensor FoV for the complete test sequence and is tracked continuously. The OSPA
distance and cardinality estimate are shown in Figure 8.11. Reference positions for the
bicycle are available for the majority of the sequence. The reference for the pedestrian is
not available. However based on the defined trajectory, at the time instances when the
pedestrian is detected, the longitudinal positions are approximated by considering a nearly
constant relative speed of 0.93 m/s with respect to the ego-vehicle and the lateral position
at 1.5 m. The time instances when the reference values from the camera were not available
are illustrated again by gray background in the plot.

Peaks and higher deviations in OSPA distances are due to the change in cardinality and
approximated reference for the pedestrian. The estimated positions of the objects as they
start moving are depicted in Figure 8.12 and the relative velocities in Figure 8.13. The strong
deviation of the bicyclist track at k = 72 is due to the imprecise clustering of detections.
The reflections from a metal container in the background at this time point is not separable
from the bicyclist detection resulting in a wandering RP. The RMSE values of the bicyclist
using the camera detection as reference is shown in 8.14. The reference velocity is derived
from the camera reference positions by smoothing. The ground truth point, when available,
is transformed to the object RP for calculating the RMSE. Time instances when the ground
truth were not available are again indicated by a gray background in the RMSE plot as well.
Apart from the higher values due to approximated ground truth and imprecise clustering
at k = 72, the RMSE are low with a mean position error of 0.896 m and mean velocity
error of 0.5644 m/s. As the pedestrian most of the time remains towards the rear end of
the truck, generates only one or two detection points and it’s class-BBA is majorly from the
track velocity part. Consequently, the pedestrian track is smoother than the bicyclist track
as it is most of the time tracked as a point target in this scenario. The model probabilities
of the bicyclist track are depicted in Figure 8.15.

8.2.4 Test Scenario 3

The third test scenario involves two pedestrians walking in the sensor FoV. Two pedestrians
walk in opposite direction repeatedly towards and away from the ego-vehicle. The scenario
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(a) Background subtracted detections projected on to the ground truth camera image.
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Figure 8.10: Figure (A) depicts the detections of the pedestrian and the bi-
cyclist projected on to the camera image depicted by magenta
points corresponding to test scenario 2. Green cross illustrates
the marker position detected from the camera. The right top
corner of the image is the origin of the radar. All the de-
tections, including also the ones from background objects are
shown in Figure (B). The origin of the radar in Figure (B) is
(0,0). The cluster of bicyclist and pedestrian are illustrated
as blue bounding box and circle, respectively.
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Figure 8.11: Figure (A) shows the OSPA distance. Again the gray back-
ground in the plot illustrates time instances when the camera
ground truth for bicyclist is not available. Figure (B) shows
the cardinality estimates corresponding to test scenario 2.
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Figure 8.12: Top plot shows the estimated x positions of the objects and the
bottom plot shows the estimated y positions corresponding to
the test scenario 2. Radar detections and the approximated
ground truth are also shown.
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Figure 8.13: Top plot shows the estimated longitudinal relative velocities
and the bottom plot shows the estimated lateral relative ve-
locities corresponding to the test scenario 2.
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Figure 8.14: RMS position and velocity errors of bicyclist corresponding to
test scenario 2.
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Figure 8.15: Model probabilities of the bicyclist track corresponding to test
scenario 2.
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Figure 8.16: Radar detections from two pedestrians corresponding to the
test sequence 3.

involves occlusion of a pedestrian by another pedestrian for a short time, when they cross
each other. The pedestrians exit and enter the FoV several times. There were also other
objects like metal doors, container and other trucks present in the sensor FoV during the test.
Time evolution of the raw radar detections are illustrated in Figure 8.16. The parameters
of the filter are same as of test scenario 1. As no ground truth reference for object states
and cardinality are available, they are approximated by labeling the detections synchronised
with the video recorded during the test.

Figure 8.17b depicts the estimated and approximated expected cardinality of the test sce-
nario. The deviation in the estimated cardinality is mainly due to two reasons. First, when
the pedestrians are too close to each other, detections belonging to each of the pedestrians
are clustered together as a single cluster. This causes a deviation in the estimated cardi-
nality, for example between k = 220 to k = 233, which is mainly due to the disadvantage
of detections clustering. The pedestrians could not be spatially separated as two individual
clusters. Another cause of deviation in the estimated cardinality is due to the occlusion of
a pedestrian by another pedestrian when crossing each other, which can be observed in the
same plot from k = 234 to k = 246. As the GM implementation does not facilitate the usage
of state dependent detection and survival probabilities, track of the occluded pedestrian is
deleted in case the occlusion lasts for certain number of time steps. However, the lost track
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Figure 8.17: OSPA distance and cardinality estimate corresponding to test
scenario 3.

is re-initialised, once the detection clusters are spatially well separable again.

Figure 8.17a depicts the OSPA distance with respect to the approximated ground truth
values. Estimated position and velocities of the tracks are shown in Figure 8.18 and Figure
8.19 respectively. The major peaks in OSPA distances are mainly due to the cardinality
errors. Apart from the cardinality errors due to occlusion and unresolved detection clusters,
the pedestrians are tracked continuously.

8.2.5 Performance Evaluation

As the ground truth solution is directly available only for the bicyclist class, the overall
performance of the designed tracker is evaluated from test scenarios involving bicyclist.
However, the camera based ground truth is not available at all time steps. Therefore only
the time instances where the reference ground truth from the camera were available are
considered for the performance evaluation. As described in section 8.1.2, the consistency
of the filter can be evaluated with the NEES metric. Figure 8.20 shows the NEES in
estimated position and velocities from a certain time sequence of test scenario 2 for the
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Figure 8.18: Top plot shows the estimated x positions of the objects and
the bottom plot shows the estimated y positions corresponding
to the test scenario 3.
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Figure 8.19: Top plot shows the estimated longitudinal relative velocities
and the bottom plot shows the estimated lateral relative ve-
locities of the pedestrians corresponding to the test scenario
3.
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implemented GM-MMLMB filter with integrated classification. Subsequently, the NEES
can be compared to a χ2 distribution with 4 degrees of freedom. Considering a significance
level of α = 0.05, the filter can be understood to be consistent as NEES majorly lies within
the interval [0.48, 11.14] corresponding to the χ2 distribution table.
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Figure 8.20: NEES consistency metric for a bicyclist state estimation se-
quence.

Additionally, the accuracy of state estimation is analysed with the help of multiple test
scenarios. Different tests with varied maneuvers, distances and conditions were performed
with the bicyclist. The tests covered the relative distances of the bicyclist to the ego-vehicle
from 0.5 m to 8 m and velocities upto 5.6 m/s. The tests also covered both the parallel
and radial movement of the bicyclist with respect to the ego-vehicle. Moreover, the basic
performance of the filter for these scenarios in terms of state estimation is compared with an
own implementation of converted measurements Kalman filter (CMKF) considering a CV
model and GNN algorithm for data association. RMSE of position and velocity estimates
are computed for all the tests and time instances when the reference ground truth from the
camera are available. Figure 8.21 depicts the box-plot of RMSE position and velocity values
of different tests scenarios. Given the simplicity of the test scenarios in which there were no
additional objects and the limited availability of reference values, the estimation of the filters
appear to be same. For the GM-MMLMB filter with integrated classification, the deviation
in the estimated position has a median value of 0.345 m and the deviation in estimated
velocity has a median value of 0.377 m/s, demonstrating good accuracy. The extremities in
the deviation values can be understood as the effect of improper clustering and imprecise
reference values. However, the deviation in CMKF-GNN filter is higher with a median of
0.88 m for position and 0.846 m/s for velocity. The higher deviation at some instances
with CMKF-GNN filter are when the track gets associated with clutter measurement and
subsequently resulting in track discontinuities. Also due to usage of basic M/N rule for
track management, the number of false tracks initialised in the CMKF-GNN filter is more,
causing the measurement actually belonging to a confirmed track being stolen by the false
track, resulting in track loss.
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Figure 8.21: RMSE values for bicyclist test scenarios corresponding to the
GM-MMLMB filter with integrated classification and CMKF-
GNN filter.

8.3 Classification Evaluation

The metrics used to analyse the classification performance are described in the first part of
this section. The second part presents the evaluation of object classification based on SVM
and DST combination of track velocity described in section 6.3.

8.3.1 Metrics

A very well known representation of the classifier performance is the class confusion matrix.
Before constructing the confusion matrix, defining other metrics like true positive (TP),
true negative (TN), false positive (FP) and false negative (FN) are essential. TP is the case
when the predicted object class and the actual object class are the same. TN is the case
where the object actually doesn’t belong to a particular class and is correctly classified as
not belonging to that class. FP is when the the object is classified as belonging to a certain
class, when it actually doesn’t belong to that class. FN is the case where the object belongs
to a certain class but is not classified as belonging to that class. A confusion matrix is then
constructed with these values for the different object classes in consideration. Additional
metrics which can be used for evaluating the performance of a classifier are

1. Accuracy: Denotes the the probability of correct classification and is given by

Accuracy =
∑
TP +

∑
TN

P +N
(8.12)

2. Sensitivity: Represents the true positive rate (TPR) of the classifier and is given by

Sensitivity(TPR) =
∑
TP

TP + FN
(8.13)
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3. Fall-out(1−specificity): Represents the false positive rate (FPR) of the classifier and
is given by

Fall-out(FPR) =
∑
TP

FP + TN
(8.14)

The above defined metrics are basically for binary classification problem. In case of mul-
ticlass problem, the positive statistics are calculated by summing over the rows and the
negative statistics by summing over the columns of the confusion matrix.

8.3.2 Classification Performance

More than 8000 samples of labeled cluster data are used for the purpose of classifier eval-
uation. Apart from clustering and feature extraction, the reference points of the cluster
samples were also tracked by the designed filter, which enables the integration of the track
velocity by DST. The confusion matrix of the classifier for the pedestrian, bicyclist and car
classes are depicted in Figure 8.22. The rows of the confusion matrix represent the true
class of the object and the columns represent the predicted class. The diagonal elements
of the confusion matrix represent the TPs of that specific class and the corresponding row
elements represent the FNs.
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Figure 8.22: Confusion Matrix representing the results of radar measure-
ment and track based object classification. Numbers represent
the probability values.
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The car class has the highest probability of TPs, where it is classified correctly for 90.4%
of the time. The confusion of the car class with pedestrian class is 0 %, whereas there is
a small confusion of 9.6 % with the bicyclist class because the bicyclist samples include
velocities overlapping with the car class. The pedestrian class is classified correctly 81.17 %
of the time and the bicyclist is classified correctly 75.55 % of the time. There is relatively
larger confusion between the pedestrian and the bicyclist class because many of the features
from radar detections are identical to both of the classes, although the velocity difference
is wider. As both pedestrians and bicyclists are relevant objects for most of the accident
avoidance applications like an urban turning assist, it is important to reduce the false alarms
due to irrelevant objects like a passenger car. This requirement can very well be satisfied
by the developed classifier. The accuracy, sensitivity and fall-out of the classifier for each
of the class are given in Table 8.1.

Class Accuracy Sensitivity Fall-out

Pedestrian 0.8306 0.8117 0.1584

Bicyclist 0.8092 0.7555 0.1533

Car 0.9783 0.9040 0

Table 8.1: Classification performance for each class based on accuracy, sen-
sitivity and fall-out.





131

Chapter 9

Conclusion

9.1 Summary

Because of the size and load of a commercial truck, an accident involving trucks even at low
speeds can cause severe impacts. Compared to a passenger car, a truck driver usually has
bigger blind spot areas around the truck. In urban scenarios, the collision risk of a truck
with bicyclist or pedestrian is higher especially during turning or reversing maneuvers The
survival rate of bicyclists and pedestrians is very low when met with an accident against the
truck. Moreover the environment surrounding the truck in such situations are very complex
where different categories of object move with different characteristics.

Environment perception solutions for application in commercial truck accident avoidance
systems and future automated driving is developed in this work. The objective of the work
was to develop robust methods for tracking and classification of VRUs in the near the vicin-
ity of the truck, based on which the safety system can react to prevent accidents. In a first
step to satisfy this objective, analysis of state-of-art multi-object tracking methods and their
drawbacks along with related works in the field of vehicle environment perception has been
performed. The unified approach in multi-object tracking based on RFS, expected to over-
come the data association uncertainties in conventional target tracking methods have been
studied and presented. The recently developed LMB filter based on labeled RFS has been
used as the basis for tracking VRUs around the truck. Gaussian mixture implementation
of MMLMB filter has been parametrised with multiple motion models to track pedestrians
and bicyclists in the surrounding of the truck. High-resolution radar has been used as the
primary sensor for detecting objects. The radar measurement characteristics are analysed
in detail for a better parametrisation of the state estimator.

A rapid prototype system is setup on the truck for a real-time realisation of the developed
approaches. Thereby, communication structure for transmission of radar detections, vehicle
signals and measurement acquisition have been defined based on CAN and ethernet net-
works. A method for integrating radar detections based class information into MMLMB
tracking framework is presented. High-resolution radar is capable of detecting multiple
points of an object. As an initial step for deriving the object class based on radar mea-
surements, density based clustering method has been used to group the radar detections
originating from the same object. The cluster groups contain many useful informations
about the object properties, like the number of reflection points, dimensions and Doppler
variance etc. Machine learning based classifier has been constructed by training it with
different features of the detection clusters, belonging to different classes of objects like
pedestrian, bicyclist and passenger car. The trained classifier is able to predict the class of
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an object in the environment, whose identity is not known beforehand. The measurement
based class information of the object helps in selecting an appropriate motion model for it,
so that it can be tracked precisely. The model probabilities for predicting the motion of an
object in MMLMB filter are adapted according to the measurement based predicted class of
the object. Fusion of information from estimated state of the track with the measurement
based class knowledge using DST helps in a reliable prediction of the objects’ class. The
safety application can then warn the driver or take decisions based on these classified tracks.
For example, in a city turning assist application for trucks, the driver will be warned if the
object in the blind spot is a pedestrian or bicyclist and other objects can be suppressed
to reduce false warning rate. In the end, the developed approaches have been evaluated
with simulation and various real-time test scenarios which show promising results. Also, it
shown that the presented methods have better performance and accuracy compared to a
conventional CMKF-GNN filter in similar environment scenarios.

9.2 Future Work

In order to mature the environment perception method presented in this work for implemen-
tation in series commercial vehicle safety systems, further intensive testing and validation
are required. Collection of many relevant measurement sequences from public roads through
durability runs, especially from dense urban scenarios are needed for analysis and improve-
ment of tracking and classification performance. Moreover, the developed tracking and
classification method depends highly on the efficiency of detections clustering. A geometric
model is fitted to each of the cluster and a reference point for the object is chosen based
on the best fitting shape. In situations when the object is far away from the ego-vehicle,
the radar sensor is not capable of capturing the extension of the object and the number of
detections received would be very less to extract object properties by clustering. Also in
case of higher clutter measurements, clustering would give unreliable information about ob-
ject extent. This has a higher influence on the object classification and eventually tracking
itself. Therefore alternative methods for modeling extended objects are required. Meth-
ods to address this problem are already proposed in [Koc08, GLO10, GLO11, LGO13] and
[SGM+14, SKRD16]. Observation models for a passenger car are proposed in [SKRD16] and
methods for assuming number of detection points from a target are suggested in [GLO10].
However, efficient implementation for a wider class of objects indicate an essential direc-
tion for future research. Another typical problem in tracking multiple objects is the object
occlusion. Robust approaches for handling occlusion of objects by other moving or sta-
tionary objects would improve the overall tracking stability. Further, the integrated class
information can also be used to make more accurate assumptions on number of detections
returned by the object and also to adapt the parameters of measurement models, according
to the class of the object. Also with the development of advanced sensor and mapping tech-
nologies, development of consistent methods for fusion of information from various sources
would increase the overall stability and robustness of the ADAS and automated driving
systems.
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Appendix A

Fundamentals of State Estimation
and Conventional Object Tracking

The theoritical foundations of object state estimation and multi-object tracking are pre-
sented in this Appendix, which can be further referred in detail in [BP99, BSWT11, Mah07b,
Reu14]. The concepts of Bayesian state estimation and the recursive Bayes filter for single-
object tracking are presented in section A.1. The section following that presents the Kalman
filter, which is a linear closed-form implementation of the recursive Bayes filter based on
Gaussian distribution. Various versions of the Kalman filter which can handle non-linear
object motions and assumptions of different motion models and are presented from sections
A.2.2 through A.2.3. Section A.3 describe approaches for realising multi-object tracking
based on single-object Bayes filter and the additionally required data association methods.
The last section of this Appendix outlines the methods for integrated object existence and
state estimation.

A.1 Bayes Filter

According to the probability theory, the probability that a random variable X takes a value
x can be denoted as P (X = x). In other words, it can be denoted as the probability of
occurence of the event x given as p(x). Consequently, the probability of non-occurence of
the event x is given as 1 − p(x). Considering a range of values x1 to x2 the continuous
random variable X can take, the probability can then given by the integral over a function
of the variable X called the probability density function (PDF).

Considering two random variables X and Y , the joint probability distribution can be given
as

p(x, y) = P (X = x, Y = y) (A.1)

In case X and Y are independent random variables, i.e. if the events X = x and Y = y are
independent events for all x and y, the joint probability distribution takes the form

p(x, y) = P (X = x)P (Y = y) = p(x)p(y) (A.2)

Moreover the probability that the event X = x occurs, given the event Y = y has already
occured and the probability P (Y = y) 6= 0 can be given by the relation of conditional
probability as

p(x|y) = P (X = x)P (Y = y)
P (Y = y) = p(x)p(y)

p(y) (A.3)
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Given the commutative property p(x, y) = p(y, x), and substituting the relation of condi-
tional probability p(y|x) in (A.3) with the condition p(y) 6= 0, gives the Bayes’ theorem

p(x|y) = p(y|x)p(x)
p(y) (A.4)

The above equation means that, given a prior probability p(x) and a likelihood function
p(y|x), the posterior probability p(x|y) can be calculated.

xk−1. . . xk xk+1 . . .

zk−1 zk zk+1

states

measurements

Figure A.1: Dynamic Bayesian Network.

The Bayes’ theorem can be applied to the problem of state estimation by considering the
object state x and the corresponding sensor measurements z as the random variables. In
case of a dynamic system, the object state changes with time and so as the measurement
originating from it. Therefore a time index k can be given to the state xk and measurement
zk. For a discrete case, the motion of the object between two time steps k and k+ 1 can be
modeled with a transition function as

xk+1 = f(xk, vk) (A.5)

where vk denotes the process noise representing uncertainity of the motion model. The
measurement can be represented by a function which transforms the corresponding object
state into measurement space as

zk+1 = h(xk+1, wk+1) (A.6)

where wk+1 represents the measurement noise. The probability density of a state xk+1 at
time k+1, given the states from previous time steps x0:k and the sequence of measurements
z1:k can be expressed by the transition density p(xk+1|x0:k, z1:k). Similarly, the probabil-
ity density of a measurement zk+1, given the time sequence of object states x0:k+1 and
measurements z1:k can be given by the likelihood p(zk+1|x0:k+1, z1:k). Assuming the state
x to be an unobserved Markov process and measurements z as observed states of hidden
Markov model (HMM) as depicted in Figure A.1, the probability of the current state xk+1
would only depend on the previous state xk and the probability of current measurement
zk+1 would only depend on the current object state xk+1. Therefore the corresponding
probability densities can be given as

p(xk+1|x0:k, z1:k) = f(xk+1|xk) (A.7)
p(zk+1|x0:k+1, z1:k) = g(zk+1|xk+1) (A.8)
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which are called as Markov transition density and measurement likelihood function respec-
tively.

The continuous estimation of the object state through time is then achieved by recursive
prediction and update, which forms the Bayes filter. The posterior or updated probability
density of the object state xk+1 at time k+ 1 can be given as the probability density of the
state after considering also the measurement zk+1 and is given as

pk+1(xk+1) , pk+1(xk+1|z1:k+1) (A.9)

When the measurement zk+1 was not yet available, the above probability density of the
object state xk+1 is then called as the a priori or predicted probability density, where the
prediction is given by Chapman-Kolmogorov equation. Consequently, the prediction and
update equations of the Bayes filter are given as

pk+1|k(xk+1|z1:k) =
∫
fk+1|k (xk+1|xk) pk(xk|z1:k)dxk (A.10)

pk+1(xk+1) =
g(zk+1|xk+1) · pk+1|k(xk+1)∫

g(zk+1|xk+1) · pk+1|k(xk+1)dxk+1
(A.11)

Therefore the recursion of a single-object Bayes filter can be illustrated as

. . . → pk|k(xk|z1:k)
predict−→ pk+1|k(xk+1|z1:k)

correct−→ pk+1|k+1(xk+1|z1:k+1) → . . .

↑ ↑
Markov transition density

fk+1|k(xk+1|xk)
likelihood function

g(zk+1|xk+1)

↑ ↑

motion model
xk+1 = f(xk, vk)

measurement model
zk+1 = h(xk+1, wk+1)

A.2 Kalman Filter

The Kalman filter derived in [Kal60] by R.E.Kalman is one of the widely used methods
for state estimation, which is based on the least-squares. The Kalman filter enables a
closed-form implementation of the recursive Bayes filter. In the Kalman filter, the process
and measurement models are assumed to be linear, with Gaussian distributed signals and
probability densities. A Gaussian density can be completely parametrised by the mean (first
order moment) and covariance (second order moment) which can be written of the form

N (x; x̂,P) = 1√
det(2πP )

· exp
(
−1

2(x− x̂)>P−1(x− x̂)
)

(A.12)

The basic idea in the Kalman filter is to achieve the Bayesian recursion by only propogating
the mean and covariance of the Gaussian densities through time. The recursion of the
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Kalman filter corresponding to the Bayesian recursion is given as

. . . → N (x; x̂k|k,Pk|k)
predict−→ N (x; x̂k+1|k,Pk+1|k)

correct−→ N (x; x̂k+1|k+1,Pk+1|k+1) → . . .

↑ ↑
Markov

transition density
N (xk+1; Fxk,Qk

)
likelihood function
N (zk+1; Hxk+1,Rk+1)

↑ ↑

motion model
xk+1 = Fxk + vk

measurement model
zk+1 = Hxk+1 + wk+1

where F denotes the linear motion model and H the linear measurement model. The process
noise v and the measurement noise w are assumed to be white noise with zero mean and
covariance matrices Q and R respectively. Moreover, the Gaussian distribution of the
object state is represented with it’s mean x̂ and covariance P. Based on these properties,
the recursion in the Kalman filter can be implemented with repeated prediction and update
steps as given in Algorithm 1.

Algorithm 1 Linear Kalman filter
Prediction

1: x̂k+1|k = Fx̂k|k + Bkuk
2: Pk+1|k = FPk|kF> + Q

k

Update
3: ẑk+1 = Hx̂k+1|k
4: γ = zk+1 − ẑk+1
5: S = HPk+1|kH> + Rk+1
6: x̂k+1|k+1 = x̂k+1|k + Kγ
7: Pk+1|k+1 = (I−KH) Pk+1|k

In the prediction step of the Kalman filter algorithm, the object state from a previous time
step k is predicted into the time step k+ 1 by using the linear motion model F. Along with
the mean value of the state, it’s covariance is also predicted according to

x̂k+1|k = Fx̂k|k (A.13)
Pk+1|k = FPk|kF> + Q

k
(A.14)

After the state prediction, an expected value for the measurement based on the predicted
state is calculated in the innovation step. The expected measurement ẑk+1 according to the
predicted state, the residual γ between predicted and actual measurement at time k + 1,
the corresponding innovation covariance S of the residual based on the predicted covariance
Pk+1 and the actual measurement noise covariance matrix Rk+1 are given by

ẑk+1 = Hx̂k+1|k (A.15)
γ = zk+1 − ẑk+1 (A.16)



A.2. Kalman Filter 137

S = HPk+1|kH> + Rk+1 (A.17)

The Kalman gain K is then calculated as

K = Pk+1|kH>S−1 (A.18)

The updated estimate of the object state x̂k+1|k+1 and the corresponding updated covariance
Pk+1|k+1 are then given based on the predicted state and the uncertainities in the prediction
and innovation steps, weighted by the Kalman gain K as

x̂k+1|k+1 = x̂k+1|k + Kγ (A.19)
Pk+1|k+1 = Pk+1|k −KHPk+1|k (A.20)

= Pk+1|k −KSK> (A.21)
= (I−KH)Pk+1|k(I−KH)> + KRk+1K> (A.22)

where I denotes the identity matrix. In the above equations, the Kalman gain regulates the
contribution of the current measurement and the predicted object state to the calculation
of the posterior object state. In case the measurement is believed to be more accurate
i.e. the measurement has a low error covariance Rk+1, more weight is given to current
measurement’s contribution in calculating the posterior state and covariance. On the other
hand, if the prediction is believed to more accurate i.e. if the predicted state covariance
Pk+1|k approaches low value, more weight is given to the predicted state’s contribution. The
filter recursion is initialised with an assumption of the initial object state x0, which is also
Gaussian distributed, represented by it’s mean value x̂0 and corresponding covariance P0.

A.2.1 Constant Gain Kalman Filter

In the general form of the Kalman filter explained in the previous section, the Kalman gain
K is recalculated at every time step according to (A.18). This recalculation of the Kalman
gain is computationally expensive due to the required matrix inversion. On the contrary,
the computational effort can be reduced if the Kalman gain is considered to be constant for
all time steps, which gives the constant gain Kalman filter [Mah07b]. As the Kalman gain
is assumed to be constant, only the posterior object state in (A.19) needs to be calculated
and the covariance update step (A.20) is not required. Therefore the Bayesian recursion
is achieved by only propagating the first order moment, i.e. the mean value of the object
state x̂ through time. The corresponding Bayesian recursion can be approximated as

. . . → p(xk|z1:k)
predict−→ p(xk+1|z1:k)

correct−→ p(xk+1|z1:k+1) → . . .

↓ ↓ ↓

x̂k|k
predict−→ x̂k+1|k

correct−→ x̂k+1|k+1

As only the object state is propagated in time, the performance of the constant gain Kalman
filter is lower than the Kalman filter and are suitable only for applications where the un-
certainities in the process and measurements models are lesser [Mahler07]. One of the well
known constant gain Kalman filter is the α-β-γ filter [HM04a, Kal84].
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A.2.2 Extension of Kalman Filter for Non-Linear Systems

In case the process model (A.5) and the measurement model (A.6) used in the Kalman
filter cannot be represened as linear functions, the essential assumptions of the Kalman
filter explained in above sections does not hold anymore. Therefore in such cases, the
extended Kalman filter is used, which includes the same prediction and update steps of the
general Kalman filter but involves an additional step of linearising the non-linear process
and measurement models. The linear approximation of the non-linear functions f(x) and
h(x) are obtained by the Taylor series expansion around the current state estimate. Due
to the computational complexity usually only a first order term of the Taylor expansion
is considered, however in case required by the application even higher order terms can be
included [BSF88, BP99]. For a first order approximation, the linear process matrix F is
derived from the Jacobian of the function f(x) as

FJ = ∂f

∂x

∣∣∣∣
x=x̂k

=


∂f1
∂x1

. . . ∂f1
∂xn

... . . . ...
∂fn
∂x1

. . . ∂fn
∂xn


∣∣∣∣∣∣∣∣∣∣
x=x̂k

(A.23)

and the linear measurement matrix H is approximated with the Jacobian of the measurement
function h(x) as

HJ = ∂h

∂x

∣∣∣∣
x=x̂k+1

=


∂h1
∂x1

. . . ∂h1
∂xn

... . . . ...
∂hn
∂x1

. . . ∂hn
∂xn


∣∣∣∣∣∣∣∣∣∣
x=x̂k+1

(A.24)

In case a second order EKF is required, additionally the Hessian of the functions FH =
∂2f

∂xi∂xj

∣∣∣
x=x̂k

should also be computed. Recursion of the EKF with the filter prediction and
update is given in Algorithm 2.

Algorithm 2 Extended Kalman filter
Prediction

1: x̂k+1|k = f(x̂k|k, uk)
2: Pk+1|k = FPk|kF> + Q

k
with F = ∂f

∂x

∣∣∣
x=x̂k

Update
3: ẑk+1 = h(x̂k+1|k)
4: γ = zk+1 − ẑk+1
5: S = HPk+1|kH> + Rk+1 with H = ∂h

∂x

∣∣∣
x=x̂k+1

6: x̂k+1|k+1 = x̂k+1|k + Kγ
7: Pk+1|k+1 = (I−KH) Pk+1|k

An alternative filter method to handle non-linear functions is the unsceneted Kalman filter
(UKF) proposed in [JUDW95, JUDW00]. Instead of linearising the functions f(x) and h(x)
as in the case of EKF, the UKF works by approximating the probability density function
with the help of unscented transformation. The probability distribution N (x; x̂,P) is ap-
proximated by selecting a symmetric set of points called sigma points χ. These sigma points
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are then transformed using the non-linear process and measurement equations and the mean
and covariance of the distribution are derived from this transformation. The sigma points χ
are chosen in a way that they represent the essential statistics of the Gaussian distribution,
i.e. the mean and variance of the sample points should represent the expected value of
the state x̂ and the covariance P respectively. The different possibilities of choosing sigma
points are presented in [JU04]. One of the possibilities is to choose 2nx + 1 sigma points,
out of which one sigma point is at the mean of the Gaussian distribution x̂ and the other
2nx symmetric sigma points on the level curve of the Gaussian distribution representing
the covariance P. Additionally each sigma point carries a weight wi to it. In [JU04] a value
of 1 − nx

3 is recommended for the weight w(0) of the mean sigma point and the weights of
other sigma points are calculated based on this. Consequently, the sigma points χx,(i),k at
a time k along with their weights can be given as

χ0 = x̂k w(0) = 1− nx
3 (A.25)

χx,(i),k = x̂k +
(√

nx
1− w(0)

Pk

)
i

w(i) =
1− w(0)

2nx
(A.26)

χx,(i+nx),k = x̂k −
(√

nx
1− w(0)

Pk

)
i

w(i+nx) =
1− w(0)

2nx
(A.27)

where i = 1, . . . , nx and
(√

nx
1−w(0)

Pk
)
i
is the ith column from the square root of the

matrix
(

nx
1−w(0)

Pk
)
. The matrix square root can be determined by Cholesky decomposition.

Once the sigma points are calculated, the propagation of the Gaussian distribution can be
performed by the non-linear transformation of the set of sigma points and the linearisation
of the non-linear functions f(x) and h(x) are not required anymore. The set of state sigma
points χx,(i),k|k from previous time step k are transformed into the set of sigma points
χx,(i),k+1|k at time step k + 1 corresponding to the non-linear equation in (A.5) with the
relation

χx,(i),k+1|k = f(χx,(i),k|k) (A.28)

The mean and covariance of the state xk+1|k are then calculated from the transformed set
of sigma points as

x̂k+1|k =
2nx∑
i=0

w(i)χx,(i),k+1|k (A.29)

Pk+1|k =
2nx∑
i=0

w(i)
(
χx,(i),k+1|k − x̂k+1|k

) (
χx,(i),k+1|k − x̂k+1|k

)>
(A.30)

Similar to the state prediction, the distribution of the predicted measurement is computed
from non-linear transformation of the set of state sigma points χx,(i),k+1|k from state space
to the measurement space, given by the relation

χz,(i),k+1 = h(χx,(i),k+1|k) (A.31)
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Consequently the mean and covariances of the expected measurement distribution can be
calculated from sigma points as

ẑk+1 =
2nx∑
i=0

w(i)χz,(i),k+1 (A.32)

Pẑz =
2nx∑
i=0

w(i)
(
χz,(i),k+1 − ẑk+1

) (
χz,(i),k+1 − ẑk+1

)>
(A.33)

Pxz =
2nx∑
i=0

w(i)
(
χx,(i),k+1 − x̂k+1

) (
χz,(i),k+1 − ẑk+1

)>
(A.34)

and the update of the state corresponding to the equations (A.19) and (A.20) are given as

x̂k+1|k+1 = x̂k+1|k + PxzP−1
ẑz γ (A.35)

Pk+1|k+1 = Pk+1|k − PxzP−1
ẑz P>xz (A.36)

With the above update, accuracies equivalent to second order EKF can be reached but
with even lesser computational effort [VdM04]. Further details of the UKF can be found in
[JU04] and in general the UKF outperforms the first order EKF [JUDW95].

The EKF and UKF are suitable for applications where the process and measurement models
are moderately non-linear. Also for the Kalman filters it is prerequiste that the probability
density can be parameterised by it’s first and second order moments. In case of strong non-
linearities and non-parametric representation of the probability density, the particle filter
also known as the sequential Monte-Carlo (SMC) method can be used [GSS93, DdFG01].
In contrast to Kalman filter, the particle filter is a non-parametric implementation of the
Bayes filter in which the probability distributions are approximated with a certain number
of samples called particles

{
x(i)

}N
i=1

carrying individual weights as

p(x|z1:k) ≈
N∑
i=1

w(i) · δx(i)(x), (A.37)

where Kronecker delta function is given as

δx(i)(x) =
{

1 if x = x(i)

0 otherwise
(A.38)

For additional details and implementation of particel filter, refer [GSS93, DdFG01, RAG04].

A.2.3 Interacting Multiple Model Kalman Filter

The filter methods explained in the above sections uses only a single motion model to
represent the motion behaviour of the object. This assumption that the object motion
can always be represented by a single motion model is not true in all situations. In the
real world scenario different motion assumptions are required to model the movement of
manuevering objects. Moreover, different types of objects would be present in the vehicle
surrounding like a pedestrians, bicyclists, infrastructure or other passenger cars. Each of
the objects would exhibit different motion characteristics and therefore depending on the
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scenario a motion model f(x, v) should be selected from a set of motion models, which would
then best describe the object movement. This consideration of different motion models like
constant velocity (CV), constant acceleration (CA) and constant turn (CT) etc. is achieved
with the interacting multiple-model (IMM) Kalman filter [Blo84]. The basic concept in the
IMM filter is to run multiple filters in parallel, which use different object motion models.
The object states estimated by each of the individual filters are then mixed, where each
of them are given different weights according to the validity of the motion model for the
current scenario. The structure of IMM filter for the case with two Kalman filters with the
corresponding motion models o1 and o2 is illustrated in Figure A.2.

interaction

combination
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(01)
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x̂
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k+1|k+1,P
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x̂k+1|k+1,Pk+1|k+1

µ(i,j)

Λ(j)
k+1

µ
(j)
k+1|k+1

Figure A.2: IMM filter with two motion models

The object state estimation with IMM filter involves three sequential steps. The first step
handles interaction between the filters based on predicted model probabilities also called as
initial condition mixing. Based on the output of the interaction step, in the second step
each of the filter predicts the object state according to it’s motion model. The innovation
of the predicted states with the received measurement in the current time step is then used
for the update of the model probabilities and finally the estimated posterior object state is
obtained as a combination of all the filters, based on the updated model probabilities.

Interaction

In the initial step of the IMM filter cycle, as illustrated in Figure A.2, the posterior
state of each filter (x̂(i)

k|k,P
(i)
k|k) from previous time step k are transformed into mixed state
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(x̂(0j)
k|k ,P

(0j)
k|k ) by mixing the estimates from all the filters, each representing different models.

The mixing step is established by computing the mixing probabilties µ(i,j) representing the
weights with which the estimates from the previous time step of ith filter are given to new
mixed state of jth filter as

µ(i,j) =
tj,iµ

(i)
k|k

c̄(j) , (A.39)

where c̄(j) is the normalisation factor given by

c̄(j) =
∑
i

tj,iµ
(i)
k|k, (A.40)

representing the predicted model probability µ
(j)
k+1|k. The transition probabilities tj,i are

the elements of the Markov transition matrix χj,i corresponding to No number of motion
models given as

χj,i =


t1,1 . . . t1,No
... . . . ...

tNo,1 . . . tNo,No

 (A.41)

Then the mixed states that goes into the jth filter can be given as

x̂
(0j)
k|k =

∑
i

µ(i,j)x̂
(i)
k|k (A.42)

P(0j)
k|k =

∑
i

µ(i,j)
(
P(i)
k|k + (x̂(i)

k|k − x̂
(0j)
k|k )(x̂(i)

k|k − x̂
(0j)
k|k )>

)
(A.43)

Prediction and Update

Once the mixed states are computed in the interaction step for all the filters, the rep-
sective state is predicted by each filter according to it’s motion model. The predicted
state (x̂(j)

k+1|k,P
(j)
k+1|k) is then updated with the arrival of a measurement zk+1. In case of

IMMKF, the innovation of the predicted state in each filter follows the update equations of
the Kalman filter (A.15)-(A.20). The model probabilities are updated based on the current
measurement likelihood Λ(j)

k+1 by

µ
(j)
k+1|k+1 =

Λ(j)
k+1µ

(j)
k+1|k∑

i
Λ(i)
k+1µ

(i)
k+1|k

(A.44)

where the likelihood is calculated based on the measurement residual and innovation co-
variance of the Kalman filter as

Λ(j)
k+1 = 1√

(2π)m
∣∣∣S(j)
k+1

∣∣∣exp
(
−1

2

(
(γ(j)
k+1)

>
(S(j)
k+1)−1γ

(j)
k+1

))
(A.45)
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Combination

In the final step of the IMM filter cycle, the output state estimate of the object is obtained
by combining the updated estimates (x̂(j)

k+1|k+1,P
(j)
k+1|k+1) from each of the filter, weighted

with the respective model probabilities

x̂k+1|k+1 =
∑
j

µ
(j)
k+1|k+1x̂

(j)
k+1|k+1 (A.46)

Pk+1|k+1 =
∑
j

µ
(j)
k+1|k+1

(
P(j)
k+1|k+1 + (x̂k+1|k+1 − x̂

(j)
k+1|k+1)(x̂k+1|k+1 − x̂

(j)
k+1|k+1)>

)
(A.47)

A.3 Multi-object Tracking

The estimation methods presented in the previous sections so far considered the presence
of only a single object and assumed that this object gives rise to a single sensor detection.
However, in the real world scenarios, multiple objects would be present in the vehicle en-
vironment. Therefore it is required to simultaneously estimate the states of all the objects
present in the surrounding of the vehicle. Apart from the object states, the number of
objects present should also be estimated. In comparison to the tracking of a single-object,
multi-object tracking is more complicated because of the need to address the following
issues:

• The number of objects present in the vehicle environment changes from time to time,
because of the appearance of new objects or disappearance of already tracked objects.
Also the number of objects varies according to the traffic scenarios.

• Due to the presence of multiple objects, although it can be assumed that each object
would give rise to a sensor detection, the source of the detection is not evident anymore
i.e. it is not known directly which measurement belongs to which object. Therefore
additional data association approaches need to be used in multi-object tracking.

• In case of high-resolution sensors, multiple detections can originate from an object.
Moreover, there may even be clutter measurements from the sensor or the object
may not be detected despite it’s presence. Such additional aspects also need to be
considered in multi-object tracking algorithms.

An example scenario illustrating the change in number of objects with the evolution of
objects in the state space X and the corresponding measurements in the measurement space
Z are shown in Figure A.3. In convential multi-object tracking algorithms a bank of single-
object Bayes filters (Kalman filters for example) run in parallel, where each filter instance
is used for estimating the state of an individual object. The issue of estimating the number
of objects, i.e. birth, confirmation and death of objects are handled separately by track
management algorithms, which are usually based on evidences. Also for state estimation,
the filter needs the measurement associated to that object. The most important part of the
multi-object tracking algorithms is the data association, as wrong associations usually lead
to erroneous estimations and track losses. The following sections describe different data
association algorithms that are used for multi-object tracking since many years.
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Figure A.3: Multi-object tracking scenario with a bank of single-object
state estimators.

A.3.1 Gating

The data association step in general involves higher computation, especially when the num-
ber of of measurements and tracks are higher. In order to reduce it’s computation effort,
only the measurements which are within the gate of the track i.e. which are within a certain
statistical distance to the track are considered for the update of that track. Therefore gat-
ing eliminates the unlikely measurement-to-track pairings going into the data association
algorithm. Many techniques for constructing a gate around the predicted measurement are
available (refer [BP99]). The gate is defined in such a way that it can be interpreted as
the probability pG that a measurement falls within the validation or gating region of the
track. Utilising the assumption of Gaussian distribution in case of Kalman filter, ellipsoidal
gate can be used, which is based on the statistical Mahalanobis distance dMHD between the
predicted measurement ẑk+1 of a track and the received measurement zk+1 given as

dMHD =
√
γ>S−1γ (A.48)

where γ = zk+1 − ẑk+1 is the measurement residual and S the innovation covariance as in
Kalman fiter equations (A.16)-(A.17). Given the residual γ is also Gaussian, the square of
Mahalanobis distance dMHD would be χ2 distributed as represented in Figure A.4. Based
on this relation, the gating threshold υ denoting the maximum distance a measurement can
be from the track in order to be considered lying within the gating region of the track is
derived by defining the gate probability pG. The gating threshold υ is therefore obtained
from the inverse cumulative χ2 distribution according to the defined probability pG and the
dimension of measurement vector nz by

υ = F−1
χ2 (pG|nz) (A.49)

Considering all the tracks N and measurements M at a given time step, a N ×M binary
matrix called the gating matrix Gij can be constructed. An element gij representing ith
track and jth measurement would have the form

gij =

1, if d2
MHD(ij)

≤ υ
0, otherwise.

(A.50)



A.3. Multi-object Tracking 145

υ d2
MHD(ij)

p
(
d2
MHD(ij)

)

pG

Figure A.4: chi-square distribution.

For each track, only the measurements corresponding to it’s non-zero column elements
would then be further considered as candidates for that track’s update.

A.3.2 Nearest Neighbour Data Association

The simplest approach to associate a measurement to a track is the nearest-neighbour
(NN). Out of all the measurements that are within the gating region of a track, the closest
measurement with the shortest Euclidean or Mahalanobis distance is assigned to that track.
But a problem here is, a measurement can be present within the gating region of multiple
tracks which means there is a possibility that the same measurement can be assigned to
many tracks as illustrated in Figure A.5. This would mean that the measurement belongs
to all those objects, which is not true.

⊗

⊗

T (1)

T (2)

z(1)

z(2)

z(3)

Figure A.5: Example of an association conflict situation where the mea-
surement z(2) lies within the gating region of both the tracks
T (1) and T (2).

The erroneous association in NN approach can be overcome by the global nearest-neighbour
(GNN) approach [BP99], in which scores for all the measurements to track associations are
computed and only the best association hypothesis out of them is selected. The association
problem is solved in GNN method with help of constructing an assignment matrix Aa, with
each of it’s element aij representing the association of ith track to jth measurement. Also, the
score for a measurement-to-track association is computed which can be based on d2

MHD(ij)
.
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The best association hypothesis is then found by solving the assignment problem using
optimal assignment algorithms like the auction algorithm [Ber88, Ber90], the Hungarian
method [Kuh55], Munkres algorithm [Mun57], etc. The track mangement in such cases can
be implemented with a M/N rule, meaning that a track is confirmed if it’s measurement is
prevelant for M times out of N time steps and similarly the confirmed track can be deleted
if it does not get associated to a measurement for M times out of N tme steps.

A.3.3 Probabilistic Data Association Methods

Due to the hard association decision of NN approaches, where only a single association
hypothesis is considered, the performance of data association would degrade in the presence
of high clutter. The probabilistic data association (PDA) approach presented in [BSF88]
makes a soft association decision, by considering all the measurement-to-track associations
for each track individually. Thereby, all the measurements Zk+1 = {z1, . . . , zM} that are
present within the gate of a track at a given time step influences the state update of that
track with a certain weight. The weighted state update is performed by determining associ-
ation probabilites β(i,j) for each track i with all the measurements j = 1, . . . ,M . Therefore
an element ai,j of the assignment matrix A would contain the association probability β(i,j)

between track ith track and jth measurement. The probability of missed detection is rep-
resented by β(i,0). The association probabilities for each track should sum up to one. The
posterior density of a track x(i) can therefore be given as

p(x(i)|z1, . . . zM ) =
M∑
j=0

β(i,j)p(x(i)|zj), (A.51)

where p(x(i)|zj) represents the posterior of the state x(i) updated by the measurement zj .
In case of missed detection the posterior of the state is same as the predicted state. The
multi-modal density in (A.51) is not Gaussian anymore. Therefore, the posterior density
needs to be approximated by a single Gaussian distribution in order to propagate Kalman
filter recursion. The approximation is achieved by weighted innovation of each association
hypothesis and computing the properties of a unimodal Gaussian distribution from these
individual innovations. The posterior state of each association hypothesis is given according
to (A.19) as

x̂
(i,j)
k+1|k+1 = x̂

(i)
k+1|k + K(i,j)(zj,k+1 − ẑ

(i)
k+1) (A.52)

where i = 1, . . . , N and j = 1, . . . ,M . For the case of missed detection hypothesis (j = 0)
the Kalman gain and residual are zero and the posterior state is same as the predicted state

x̂
(i,0)
k+1|k+1 = x̂

(i)
k+1|k. (A.53)

The posterior object state x̂(i)
k+1|k+1 is then approximated as weighted mean of the individual

innovations

x̂
(i)
k+1|k+1 =

M∑
j=0

β(i,j)x̂
(i,j)
k+1|k+1 (A.54)
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The corresponding covariance matrix is updated by

P(i)
k+1|k+1 =

M∑
j=0

β(i,j)
(

P(i)
k+1|k −K(i,j)S(i,j)(K(i,j))>

+ (x̂(i,j)
k+1|k+1 − x̂

(i)
k+1|k+1)(x̂(i,j)

k+1|k+1 − x̂
(i)
k+1|k+1)>

)
(A.55)

In PDA, the basic assumption is the presence of only a single object in clutter and there-
fore the presence of multiple objects is not considered in the data association. As in the
case of NN data association, this would have degraded performance in a conflict situation
when a measurement lies within the gating region of multiple tracks. Therefore the PDA
method was extended to joint probability data association (JPDA), in which the association
probabilites β(i,j) are computed using all measurements and all tracks [FBSS83, BSWT11].
In case of a conflict situation as in Figure A.5, all the tracks that have common measure-
ments in their gate are grouped into a cluster, including the respective measurements. The
posterior of the tracks are then determined by enumerating all the possible measurement-to-
track association hypotheses of that cluster group including the cases of missed detection.
The probability of each association hypothesis influencing the state update of the tracks
need to be determined. A possible method to put down all the association hypotheses is
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Figure A.6: JIPDA hypotheses tree for two measurements and two tracks.

by constructing a hypotheses tree. If the hypotheses are represented in such a tree like
structure, each node in the tree would represent an elementary association e and each path
starting from the root node e0 till it’s end node eL would denote an association hypothesis
constituting a particular set of elementary associations as E = {e0, . . . , eL}, which could
also include the case of missed detection and clutter.

However, an assumption in PDA and JPDA methods is that the object already exists. The
joint integrated probabilistic data association (JIPDA) introduced in [ME04a] extends the
JPDA approach by explicitly considering the object existence. In JIPDAmethod, along with
the data association probabilites, the probability of object existence p(∃) is also calculated
at every time step. The object existence is modeled as a Markov chain and is predicted and
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updated like the states of a Kalman filter. Other than the object existence consideration,
the data association step of the JIPDA uses the enumeration of all association hypotheses
like the JPDA filter. One such enumeration of all association hypotheses for the case of
two measurements and two tracks is illustrated in Figure A.6. Along with the case of a
object not being detected �, the case of non-existence of the object @ is also considered
for track association. Similarly the case of a detection being a clutter © is also considered.
Consequently the measurement set can be augmented as Z∗k+1 = {z1, z2,�, @} and the state
set as X∗k+1|k =

{
x(1), x(2),©

}
. Subsequently, the probability of an association hypothesis

E can be calculated by considering the set of objects Xna(e) that have not been detected
and set of objects Xa(e) that are assigned with a measurement as

p(E) = η−1 ∏
x(i)∈Xna(e)

(
1− pD(x(i))pGpk+1|k(∃x(i))

)

·
∏

x(i)∈Xa(e)

(
V

m̂c
Λ(zi,k+1|x(i))pD(x(i))pGpk+1|k(∃x(i))

)
(A.56)

where η is the normalisation constant which ensures that the probability of all the hypothe-
ses sum up to one, V the gating volume of the cluster and m̂c the number of false alarms.
Further pD denotes the detection probability of the object, zi,k+1 denotes the measurement
associated to track x(i) in the hypothesis E and Λ(zi,k+1|x(i)) the likelihood of measurement.
Further details of the derivation can be found in [ME04a, BSWT11]. Going back to the tree
based hypotheses represention, the probability of an association hypothesis corresponding
to (A.56) can be determined from the individual node probabilities of the path as

p(E) =
∏
e∈E

p(e) (A.57)

After computing the probabilities of all the association hypotheses E, the existence prob-
ability p(∃)k+1|k+1 of the track x(i) can be extracted from the sum of probabilities of the
hypotheses which say that the object exists, normalised by the sum of probabilities of all
the association hypotheses. Similarly, the association probability β(i,j) of a track x(i) to
the measurement zj can be extracted from the sum of probabilities of hypotheses in which
the jth measurement is actually associated to track ith, normalised by the sum of probabil-
ities of the hypotheses which say that the object exists. Therefore the posterior existence
probability of the object can be given as [Mä09]

pk+1|k+1(∃x(i)) =

∑
E∈E(i)

p(E)∑
E∈E

p(E) (A.58)

and the association probability of measurement j to track i as

β(i,j) =

∑
E∈E(i,j)

p(E)∑
E∈E(i,∃)

p(E) (A.59)

The updated posterior state of the track x̂(i)
k+1|k+1 is then approximated as a single Gaussian
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distribution as in the case of PDA according to (A.54), by substituting the value of β(i,j)

obtained from the above equation (A.59). The state covariance update follows (A.55). The
computational complexity for enumerating all the association hypotheses in the hpotheses
tree clearly increases with the increase in the number of measurements and tracks. Methods
to ensure computational tractability of the JIPDA filter in such cases by extensive gating
techniques and calculating a upper limit on the number of hypotheses are proposed in
[Mä09, Mun11].
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Appendix B

Ground truth solution

B.1 Camera calibration

In order to evaluate the tracker, image based ground truth reference solution is used. During
the test sequences, webcam video is recorded along with the radar measurements with their
respective timestamps. The recorded images are synchronised by associating the timestamps
and are then processed offline to extract the ground truth information. The derived ground
truth is then used for evaluating the tracker performance and accuracy. However, image
based reference data is designed only for the bicyclist class of objects. For this, four bright
red colored markers(pallets) are attached on either sides of the front and rear wheels of the
bicycle used for testing purposes. OpenCV libraries in Python are used for calibration and
offline image processing to extract position of the bright red colored pallet.

Before the reference could be extracted from the webcam images, the camera needs to be
spatially calibrated for ground truth projection, thereby the intrinsic and extrinsic camera
parameters need to determined. Checkerboard method [Zha00] is used for this purpose. The
instrinsic camera matrix is first calculated by capturing various images of a checkerboard,
from different orientations as shown in Figure B.1a. Then during the test sequences, a large
checker board with each box size 17x17 cm is spread in the test area as shown in Figure
B.1b, for calculating the homography matrix.

(a) (b)

Figure B.1: Camera calibration with checker board
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Figure B.2: Ground projected camera image. To be seen are the bright red
markers attached to the wheels of the bicyle

B.2 Marker detection

Once the camera is calibrated, further steps are required to find the position of the bright
red markers in the ground projected image. The marker detection for all the test sequences
involving bicyclists are performed offline. The recorded and eventually ground projected
image is first read in. Then the image is smoothened using the median blur. The smoothened
images are then converted from RGB to HSV color-space. After the conversion step, a
lower and upper threshold values of [0,140,120] and [180,255,255] respectively are applied
for the seeking the red markers. The next step is to find the contours in the image and
the corresponding minimum enclosing circle for those contours. The red marker positions
are finally extracted from the center points of the enclosing circles. The position of the
front right corner of the checker board is also measured with respect to the radar mounting
coordinates, in order to find the transformation between radar and image coordinates.
Finally, the transformed marker positions are used as the reference ground truth values.
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Figure B.3: Steps invovlved in detection of red marker positions attached
to the bicycle
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Appendix C

DBSCAN algorithm

Algorithm 3 DBSCAN Clustering
1: procedure DBSCAN(SetOfPts, Eps, MinPts)
2: initialise C = 0
3: for i from 1 to size(SetOfPts) do
4: if point P is unvisited then
5: mark P as visited
6: NeighPts = regionQuery(SetOfPts, P, Eps)
7: if size(NeighPts) < MinPts then
8: mark P as Noise
9: else

10: C = C + 1
11: expandCluster(SetOfPts, P, NeighPts, C, Eps, MinPts)
12: end if
13: end if
14: end for
15: end procedure
16: procedure expandCluster(SetOfPts, P, NeighPts, C, Eps, MinPts)
17: add P to cluster C
18: for i from 1 to size(NeighPts) do
19: if point P’ ∈ NeighPts is unvisited then
20: mark P’ as visited
21: NeighPts’ = regionQuery(SetOfPts, P’, Eps)
22: if size(NeighPts’) ≥ MinPts then
23: NeighPts = NeighPts ∪ NeighPts’
24: end if
25: if P’ /∈ any cluster then
26: include P’ in cluster C
27: end if
28: end if
29: end for
30: end procedure
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31: procedure regionQuery(SetOfPts, P, Eps)
32: initialise NeighPts = ∅
33: for ∀ Q ∈ SetOfPts do
34: if dist(P, Q) ≤ Eps then
35: NeighPts = NeighPts ∪ {Q}
36: end if
37: end for
38: return NeighPts
39: end procedure
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Appendix D

Zadeh’s Paradox in Dempster’s
rule of combination

The Dempster’s rule of combination in regard to strong conflicting evidences has been
highly critisized mainly based on the "Zadeh’s Paradox" [Zad84]. Zadeh’s paradox is given
as: Assuming two doctors, Dr. A and Dr. B, independently examining a patient for
symptoms of meningitis (µ), brain tumor (τ) or concussion (χ). Dr. A is almost sure
that it is meningitis with a slight possibility of also being a brain tumor but definitely not
concussion. Whereas Dr. B contradicts Dr. A’s belief saying that is almost concussion
with a slight possibility of being a brain tumor, but is definitely not meningitis. The
corresponding BBAs according to Dr. A and Dr. B for the elements Ω = {µ, τ, χ} can be
given as

mA(µ) = 0.99, mA(τ) = 0.01, mA(χ) = 0.0
mB(µ) = 0.0, mB(τ) = 0.01, mB(χ) = 0.99

(D.1)

with the belief for all the other elements considered as zero. The combination of the above
stated BBAs according to Dempster’s rule of combination can be given as [Mah07b]

mA ⊕mB(µ) = mA(µ) ·mB(µ)
mA(µ)mB(µ) +mA(τ)mB(τ) +mA(χ)mB(χ) = 0.0 (D.2)

mA ⊕mB(τ) = mA(τ) ·mB(τ)
mA(µ)mB(µ) +mA(τ)mB(τ) +mA(χ)mB(χ) = 1.0 (D.3)

mA ⊕mB(χ) = mA(χ) ·mB(χ)
mA(µ)mB(µ) +mA(τ)mB(τ) +mA(χ)mB(χ) = 0.0 (D.4)

(D.5)

The result out of the above combination implies that the patient definitely has brain tumor.
This is contradicting as both Dr. A and Dr. B gave only a very small support for the
possibility of brain tumor. This contradictory result was majorly accepted as the main
argument against the validity of Dempster’s rule of combination. Mahler in [Mah07a] argues
that the Zadeh’s paradox is an unknowing criticism and states that the Demspter’s rule of
combination in the above example can be represented equivalent to the Bayes’ rule, as the
belief is concentrated only the elementary hypotheses. Further Mahler claims that it is
unwise to assign zero probability to any of the state. In that way, the paradox can be
resolved by assigning a very small non-zero values to the not supported states. Therefore
in the above stated doctors example, considering a reliability of α = 0.99, very small values
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are also assigned to mA(χ) and mB(µ) and the discounted BBAs can be given as

mA(µ) = 0.99, mA(τ) = 0.009, mA(χ) = 0.001
mB(µ) = 0.001, mB(τ) = 0.009, mB(χ) = 0.99

(D.6)

Now combining the above BBAs according to the Bayes’ rule gives

mA ⊕mB(µ) = 0.48, mA ⊕mB(τ) = 0.04, mA ⊕mB(χ) = 0.48 (D.7)

which infers equal possibility for both meningitis and concussion and least possibility of
brain tumor. Thereby, discounting the BBAs according to it’s reliability helps in a correct
combination of contradicting evidences.
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