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Abstract 

Increasing costs due to the rising attrition of drug candidates in late developmental phases 

alongside post-marketing withdrawal of drugs challenge the pharmaceutical industry to 

further improve their current preclinical safety assessment strategies. One of the most 

common reasons for the termination of drug candidates is drug induced hepatotoxicity, which 

more often than not remains undetected in early developmental stages, thus emphasizing 

the necessity for improved and more predictive preclinical test systems. One reason for the 

very limited value of currently applied in vitro test systems for the detection of potential 

hepatotoxic liabilities is the lack of organotypic and tissue-specific physiology of hepatocytes 

cultured in ordinary monolayer culture formats. 

The thesis at hand primarily deals with the evaluation of both two- and three-dimensional cell 

culture approaches with respect to their relative ability to predict the hepatotoxic potential of 

drug candidates in early developmental phases. First, different hepatic cell models, which are 

routinely used in pharmaceutical industry (primary human hepatocytes as well as the three 

cell lines HepG2, HepaRG and Upcyte hepatocytes), were investigated in conventional 2D 

monolayer culture with respect to their ability to detect hepatotoxic effects in simple 

cytotoxicity studies. Moreover, it could be shown that the global protein expression levels of 

all cell lines substantially differ from that of primary human hepatocytes, with the least 

pronounced difference in HepaRG cells.  

The introduction of a third dimension through the cultivation of spheroids enables 

hepatocytes to recapitulate their typical native polarity and furthermore dramatically 

increases the contact surface of adjacent cells. These differences in cellular architecture 

have a positive influence on hepatocyte longevity and the expression of drug metabolizing 

enzymes and transporters, which could be proven via immunofluorescent (IF) staining for at 

least 14 days in PHH and at least 28 days in HepaRG spheroids, respectively. Additionally, 

the IF staining of three different phase III transporters (MDR1, MRP2 and BSEP) indicated a 

bile canalicular network in spheroids of both cell models. A dose-dependent inducibility of 

important cytochrome P450 isoenzymes in HepaRG spheroids could be shown on the 

protein level via IF for at least 14 days. CYP inducibility of HepaRG cells cultured in 2D and 

3D was compared on the mRNA level for up to 14 days and inducibility was generally lower 

in 3D compared to 2D under the conditions of this study. In a comparative cytotoxicity study, 

both PHH and HepaRG spheroids as well as HepaRG monolayers have been treated with 

five hepatotoxic drugs for up to 14 days and viability was measured at three time points 

(days 3, 7 and 14). A clear time- and dose-dependent onset of the drug-induced hepatotoxic 

effects was observable in all conditions tested, indicated by a shift of the respective EC50 

value towards lower doses by increasing exposure. The observed effects were most 
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pronounced in PHH spheroids, thus indicating those as the most sensitive cell model in this 

study. Moreover, HepaRG cells were more sensitive in spheroid culture compared to 

monolayers, which suggests a potential application of spheroids as long-term test system for 

the detection of hepatotoxicities with slow onset. Finally, the basal protein expression levels 

of three antigens (CYP1A2, CYP3A4 and NAT 1/2) were analyzed via Western Blotting in 

HepaRG cells cultured in three different cell culture formats (2D, 3D and QV) in order to 

estimate the impact of the cell culture conditions on protein expression levels. In the QV 

system enables a pump-driven flow of cell culture media, which introduces both mechanical 

stimuli through shear and molecular stimuli through dynamic circulation to the monolayer. 

Those stimuli resulted in a clearly positive effect on the expression levels of the selected 

antigens by an increased expression level in comparison to both 2D and 3D. In contrast, 

HepaRG spheroids showed time-dependent differences with the overall highest levels at day 

7. 

The studies presented in this thesis delivered valuable information on the increased 

physiological relevance in dependence on the cell culture format: three-dimensionality as 

well as the circulation of media lead to a more differentiated phenotype in hepatic cell 

models. Those cell culture formats are applicable in preclinical drug development in order to 

obtain more relevant information at early developmental stages and thus help to create a 

more efficient drug development process. Nonetheless, further studies are necessary to 

thoroughly characterize, validate and standardize such novel cell culture approaches prior to 

their routine application in industry. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung  VII 
 

Zusammenfassung 

Steigende Kosten aufgrund der zunehmenden Terminierung von Wirkstoffkandidaten in 

späten Entwicklungsphasen sowie der Marktrücknahme von Arzneimitteln stellen die 

pharmazeutische Industrie vor die Herausforderung, ihre üblichen standardisierten 

Sicherheitsprüfungen weiterzuentwickeln. Dabei stellt Arzneimittel-induzierte Hepatotoxizität 

einen der Hauptgründe für das Scheitern neuer Wirkstoffkandidaten dar, weswegen die 

Notwendigkeit zur Entwicklung prädiktiver Modelle unumgänglich ist.  Ein Grund für die sehr 

limitierte Aussagekraft der herkömmlichen in vitro Testsysteme zur Erfassung potentieller 

Hepatotoxizität besteht darin, dass die organ- und gewebespezifischen Eigenschaften in 

gewöhnlichen Zellkulturformaten nahezu gänzlich verloren gehen.  

Die vorliegende Arbeit beschäftigt sich mit der Bewertung zwei- und dreidimensionaler 

Zellkulturmodelle mit Bezug auf deren jeweilige Aussagekraft auf potentielle hepatotoxische 

Effekte von Wirkstoffen im Rahmen der frühen Arzneimittelentwicklung hinweisen zu können. 

Dabei wurden zunächst verschiedene hepatische Zellmodelle (Primäre humane Hepatozyten 

(PHH) sowie die drei Zelllinien HepG2, HepaRG und Upcyte Hepatozyten) in der üblichen, 

zweidimensionalen Zellrasen-Konfiguration auf ihre Fähigkeit untersucht, in einfachen 

Zytotoxizitätsstudien hepatotoxische Effekte zu detektieren. Darüber hinaus zeigten 

Proteomanalysen der vier Zellmodelle, dass die Proteinexpression der Zelllinien erheblich 

vom Expressionsmuster primärer Hepatozyten abweicht, wobei der geringste Unterschied in 

HepaRG Zellen zu sehen war.  

Die Einführung einer dritten Dimension durch die Kultivierung von Späroiden ermöglicht den 

Hepatozyten die Ausbildung einer zelltypischen Polarität sowie eine enorme Vergrößerung 

der Interaktionsfläche zwischen benachbarten Zellen. Diese Veränderungen der zellulären 

Architektur haben einen positiven Einfluss auf die Langlebigkeit der Zellen mit einer stabilen 

Expression wichtiger fremdstoffmetabolisierender Enzyme und Transporter, was mittels 

Immunfluoreszenzfärbungen über einen Zeitraum von mindestens 14 Tagen in PHH 

Sphäroiden und 28 Tagen in HepaRG Sphäroiden gezeigt werden konnte. Des Weiteren 

deuteten die Färbungen dreier Phase III Transporter (MDR1, MRP2 und BSEP) auf ein 

kanalikuläres Netzwerk in den Sphäroiden beider Zellmodelle hin. Eine dosisabhängige 

Induzierbarkeit wichtiger Cytochrom P450 Isoenzyme konnte zudem in HepaRG Sphäroiden 

auf Proteinebene mittels IF gezeigt werden, die jedoch auf mRNA Ebene im Vergleich zur 

Zellrasenkultivierung überwiegend geringer ausfiel. In einer vergleichenden 

Zytotoxizitätsstudie wurden HepaRG und PHH Sphäroide sowie HepaRG Zellrasen für 

maximal 14 Tage mit fünf hepatotoxischen Arzneimitteln behandelt und die Viabilität wurde 

and drei Zeitpunkten bestimmt (3, 7 und 14 Tage). Eine deutliche Zeitabhängigkeit der 

zytotoxischen Effekte konnte in allen getesteten Bedingungen dahingehend beobachtet 



VIII  Zusammenfassung 

werden, dass der EC50 Wert mit längerer Behandlungsdauer deutlich sank. Die beobachteten 

Effekte waren am deutlichsten in PHH Sphäroidkultur, die somit das sensitivste 

Zellkultursystem darstellte. Des Weiteren zeigten sich HepaRG Zellen in Sphäroidkultur 

sensitiver als in Zellrasenkultur, was wertvolle Hinweise auf die potentielle Anwendung von 

Sphäroiden als Langzeitkultur-Modell lieferte. Letztlich wurde die Proteinexpression dreier 

Antigene (CYP1A2, CYP3A4 und NAT 1/2) mittels der Western Blot Methode durchgeführt, 

um die basale Expression Dieser in drei verschieden Zellkulturformaten (2D, 3D und QV) in 

HepaRG Zellen über einen Zeitraum von 14 Tagen zu vergleichen. Das QV Zellkulturformat 

ermöglicht einen pumpenbetriebenen Fluss des Zellkulturmediums, welcher dem Zellrasen 

mechanische Stimuli durch Scherkräfte sowie molekulare Stimuli durch die dynamische 

Zirkulation zuführt. Diese Stimuli zeigten einen deutlich positiven Effekt auf die Expression 

der untersuchten Antigene; zu jedem Zeitpunkt (Tag 3, Tag 7 und Tag 14) zeigten HepaRG 

Zellen im QV Format eine deutlich erhöhte Expression im Vergleich zur Kultivierung in 2D 

und 3D. Die Expression in HepaRG Sphäroiden zeigte zeitliche Schwankungen mit der 

generell höchsten Expression an Tag 7.  

Die in dieser Arbeit durchgeführten Studien liefern wertvolle Hinweise auf die erhöhte 

physiologische Relevanz in Abhängigkeit des Zellkulturformats: Dreidimensionalität sowie die 

Zirkulation des Zellkulturmediums führen zu einem physiologisch relevanteren Phänotyp der 

hepatischen Zellmodelle. Diese Zellkulturformate können in der präklinischen 

Arzneimittelentwicklung eingesetzt werden, um zu früheren Zeitpunkten humanrelevantere 

Informationen zu erhalten und somit den Entwicklungsprozess effizienter gestalten. Weitere 

Studien sind jedoch nötig, um ein neues Zellkulturformat umfangreich zu charakterisieren, zu 

validieren und zu standardisieren, damit Dieses Anwendung in der industriellen Routine 

finden kann.  
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1 Introduction 

1.1 Toxicology  

The interdisciplinary scientific field of toxicology, named from the Greek toxicon = poison and 

logos = science, concerns adverse effects of chemical, biological or physical agents on living 

organisms.  

Paracelsus (Philippus Theophrastus Aureolus Bombastus von Hohenheim, 1493 – 1541), a 

physician who introduced chemicals to medicine (Borzelleca, 2000), defined a statement on 

poisonous effects of things, which today is still a fundamental toxicological concept: 

„All things are poison and nothing is without poison, only the dose permits something not to 

be poisonous “ 

Paracelsus stated that the dose makes the poison, which is today defined as the dose-

response relationship. Over time, toxicology emerged from basic observational practice of 

potential adverse outcomes after contact of organisms with agents towards a highly 

sophisticated field in science, which becomes more and more evident since the exposure to 

agents, especially in the context of industrialization, grows steadily. The progress of scientific 

methods alongside advanced knowledge in all scientific fields has enabled a revelation in our 

understanding of underlying mechanisms that may lead to adverse outcomes (Milles, 1999).  

Today, toxicology is essential in many industries, e.g. pharmaceutical, food, cosmetic, 

environmental and forensic toxicology; and it is always focused on the adverse effect an 

agent may cause to people, animals and environment. The focus is driven by the definition of 

an agent’s dose that is “safe” and toxicity studies are required before bringing a product on 

the market. In the pharmaceutical industry, those assessments are often conducted using a 

battery of in vitro and in vivo experiments, being required by law before any exposure to 

humans. 

For pharmaceutical development, animal experiments are required by law and are used to 

help understand potential adverse outcomes of a drug candidate. However, they are limited 

predictors of what happens in humans, since the non-clinical species used in drug 

development have many known differences to humans (e.g. different substrate specificities 

of enzymes or different anatomic features like absence of gall bladder in rats).  

In 1959, the scientists William Russell and Rex Burch published ‚The Principles of Humane 

Experimental Technique’ which proposed the concept of 3Rs – which aims to Reduce, 

Refine and Replace animal experiments whenever possible. This will only be possible 
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through conscious planning and maximization of information that can be generated as well 

as development and consideration of alternative test strategies, which are able to cover 

endpoints without the necessity of animal models. The use of animal models can be reduced 

by covering the maximum feasible number of endpoints in a single experiment. Secondly, 

continuous progress has been made in gathering a maximum of information via in vitro and 

in silico methods prior to animal testing since more information means refined planning of 

animal studies and reduced suffering to those animals within a study. Finally, replacement 

evolves from the progress of alternative methods, such as novel in vitro and in silico models, 

which optimally are able to cover endpoints reliably without the use of in vivo studies.  

The 3R principle is widely accepted as an ethical code in chemical, pharmaceutical and 

cosmetics industries as they permanently strive to develop and validate novel alternatives for 

the accurate prediction of potential adverse outcomes in humans, animals and the 

environment. 

Those progresses are actively supported by the European Union and the European Union 

Reference Laboratory for alternatives to animal testing (EURL ECVAM), funded in 1991 by 

the Joint Research Centre (Institute for Health and Consumer Protection), which aims to 

assist and promote the development and promotion of alternative test methods and further 

coordinates the evaluation of those at the European level.  

1.1.1 Toxicology in drug development  

Drug discovery and development describes the process a new molecular (chemical or 

biological) entity must pass through before eventually being marketed. This process is time 

and cost intensive and takes on average 10 – 15 years from discovery to the market and the 

estimated costs for research and development are about 1.2 billion US dollars per drug 

(EFPIA, 2014). Drug discovery and development is a tiered process by which the number of 

drug candidates decreases with every tier, as unfavorable candidates are sorted out (figure 

1.1).  
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This process starts within basic research, in which a solid knowledge base is built to 

understand the molecular mechanisms underlying a certain disease and thus enabling the 

elucidation of potential biological targets (usually a protein or a gene, referred to as “pre-

discovery in figure 1.1) that are manipulatable by a potential new drug candidate. Thereby, 

the targets need to be validated and their distinct involvement in the disease must be proven 

and subsequently, test molecules must be tested for their ability to interact with the target 

depending on how it needs to be altered in order to ameliorate or eliminate the outcome of 

the disease.  

A common way to select compounds in those early stages is the screening of large 

compound libraries for their potential ability to interact with the drug target of interest. This 

process is known as Hit Discovery and often results in lists of more than 1,000 compounds. 

In order to narrow the number of hits, in silico methods are used, which sort out unfavorable 

compounds by physicochemical properties given by a compound’s structure (SAR = 

structure activity relationship). Subsequently, the compounds are ranked according to their 

potency for target activity and the effective concentration should be relevant to achievable 

plasma concentrations. Early tests of drug efficacy (in vivo) as well as absorption, 

distribution, metabolism, excretion (ADME, in vitro and in vivo) and toxicity (in vitro) are 

conducted to identify the most valuable lead compounds and eventually the preclinical 

candidates (1- 5 candidates) for regulatory preclinical testing.  

During the preclinical phase, the compounds must pass a battery of tests including efficacy, 

formulation analysis/optimization, drug metabolism and pharmacokinetics (DMPK) toxicity 

Figure 1.1: Drug discovery and development process from discovery to marketing. The discovery phase 
can be further divided into lead discovery (LD), le ad optimization (LO) and exploratory development 
(ED), in which supportive in vitro test batteries are implied, but may vary across co mpanies (adapted 
from PhRMA 2015, modified) .  
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and safety pharmacology (in vitro and in vivo). This battery ensures that a drug candidate is 

appropriate for entering clinical trials.   

In phase I clinical trials, the drug candidate is either tested in healthy volunteers or patients 

(first in human), depending on the severity of the targeted disease – e.g. therapeutics that 

are developed for the life-prolongation of severe, life-threatening diseases such as late stage 

cancer medication are tested in patients as the severity of expected side effects is accepted 

for the patient population but not for healthy volunteers, whereas drug candidates for the 

therapy of non-life-threatening diseases, for which no severe side effects are expected, are 

tested in volunteers. The major aims of phase one clinicals trials are to address the 

tolerability, side effects and pharmacokinetics. If phase I is passed by a candidate, it enters 

phase II clinical trial, in which it is administered to a small group of patients (100 – 500) 

depending on the intended indication. Phase II studies are considered as proof of concept 

trials, in which the therapeutic efficacy of the candidate is confirmed. Following phase II, a 

larger group of patients are exposed during phase III in order to assess the candidate’s 

safety, dose-response relationship and risk-benefit analyses. After the successful completion 

of all phases and approval of the marketing application by the regulatory authorities, the new 

drug is launched onto the market, where it enters phase IV (post-marketing phase or 

pharmacovigilance) in which adverse effects of either very low incidence or in specific 

subpopulations may be monitored.  
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1.1.2 Strategies of early safety assessment 

During pre-clinical drug development, a potential drug candidate is assessed in terms of 

safety via a battery of in vitro and in vivo tests to deliver a comprehensive toxicological 

profile. Already during lead discovery, in silico toxicology is used to enable toxicity 

prediction(s) (Simon-Hettich et al., 2006) based on the chemical structure, which helps to 

prioritize compounds and/or optimize high throughput hit. Subsequently, in vitro and in vivo 

toxicity studies are conducted in order to support candidate selection. These later stage 

studies are performed in accordance with the recommendations of regulatory authorities (e.g. 

U.S. Food and Drug Administration (FDA)), which are responsible for the approval of clinical 

trials and marketing authorization of new drugs. Many guidelines exist that describe the 

safety testing strategies required during development, with two major sources: The 

International Conference on Harmonization of Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH) and the Organization for Economic Co-operation and 

Development (OECD). Guidelines exist that cover all safety aspects, e.g. carcinogenicity, 

genotoxicity, safety pharmacology etc. All studies that are required for approval are 

performed according to accepted guidelines under Good Laboratory Practice and/or other 

company-specific quality management procedures in order to guarantee a study´s quality.  

Overall, toxicology in the pharmaceutical industry aims to a) characterize a drug’s safety 

profile, b) assess the risk associated with drug intake and c) comply with regulatory 

requirements.  

However, attrition of drug candidates cannot be fully eliminated, either due to poor efficacy or 

safety issues, which account for a high percentage of failures in later stages of drug 

development (Arrowsmith, 2011a/b, Kola and Landis, 2004, Kenna et al., 2018). This puts 

pressure on the pharmaceutical industry to improve their strategies of early non-clinical 

safety assessment, including the development of advanced in vitro approaches with higher 

physiological relevance.  
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1.2 Drug-induced liver injury 

1.2.1 Morphology and physiology of the liver 

 

The liver is the largest gland in the human organism and manages a variety of different 

functions. In addition to the utilization of nutritional components and the generation of 

essential proteins, it produces bile in order to emulsify nutritional lipids for a more efficient 

gastrointestinal absorption. It is localized in the right upper abdomen below the diaphragm 

and it can be defined macroscopically into four lobes. The blood supply is supplied by two 

different vessels: the hepatic artery transports blood with high oxygen content from the lungs 

to the liver whereas the portal vein supplies nutritional components absorbed by the 

intestines. 

Microscopically, two different unique units exist, of which the lobule represents the structural 

unit and the acinus represents the functional unit. The lobule consists of the central vein at 

the center of the structural unit and portal triads build the border to the next lobules and 

hepatocytes radiate in cords from the central vein to the perimeter of the lobule (figure 1.2).  

Figure 1.2: Schematic overview of hepatic microarch itecture. A: Hepatocytes are arranged in radial 
chords from central veins to portal triads, separat ed from one another by sinusoidal capillaries. Bili ary 
system between hepatocytes is separated from capill ary system by various junctions. B: schematic 
description of lobules (hexagonal) as structural un it and acini (oval) as functional unit showing 
hepatic zonation (Figure taken from Hitachi Medical  Systems America Inc., modified).  

A B 
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In contrast, the functional unit is based on the microcirulation and is limited peripherally by 

the central veins. Within the acinus, the molecular environment changes from the centre to 

the periphery, including various physiological gradients, resulting in three distinct zones in 

which hepatocytes are metabolically adapted (table 1.1) (Probst and Jungermann 1983, Reid 

et al., 1992, Turner et al., 2011). 

 

Table 1.1: Microenvironment differences and main he patocyte functions in zones 1, 2 and 3 
Zone Microenvironment Primary function 

1- periportal O2�, CO2�, P-450� Oxidative metabolism, 
Gluconeogenesis, Ureagenesis 

2- midlobular Mixture of zones 1 and 3 Mixture of zones 1 and 3 

3- pericentral O2�, CO2�, P-450� Glycolysis, Liponeogenesis, 
Xenobiotic metabolism 

 

These zonal differences consequently result in different gene expression patterns and also 

susceptibilities to injury may vary (Black et al., 1984). For example, xenobiotics such as 

Acetaminophen, which are metabolized to reactive species by CYP enzymes, often produce 

zone 3 hepatotoxicity due to the higher P-450 expression that subsequently leads to 

enhanced generation of reactive species (Zimmerman, 1999).  

 Microstructure and cell types 

Hepatocytes are arranged in cords, which are commonly one hepatocyte thick and separated 

from one another by sinusoids, the hepatic capillaries. The exchange of substances takes 

place through the generously fenestrated endothelium of the sinusoids, whereby molecules 

up to 250kDa can easily pass into the interstitial space, called space of Disse (figure 1.3).  

About 70% of the hepatocyte surface is exposed to the space of Disse and exchange takes 

place in both ways, via both active and passive transport mechanisms (figure 1.3).  

           

Figure 1. 3: Schematic overview of sinusoidal architecture in cluding the major cell 
types. Endothelial cells are generously fenestrated  and line the space of Disse. Bile 
canaliculi are junctionally separated from the sinu soidal domain. (Figure ta ken from 
Yamada and Utoh et al., 2012)  
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Table 1.2: Overview of metabolic functions performe d in the liver. Hepatocytes account for a 
variety of metabolic turnover tasks 

Carbohydrate metabolism • Providing constant blood glucose 
• Gluconeosynthesis-glucogenolysis-

gluconeogenesis-glycolysis 
• Recycling of fructose and galactose 

Protein metabolism • Synthesis of liver-specific plasma proteins 
• Modification and degradation of amino acids and 

proteins 
• Urea synthesis 

Lipid metabolism • De novo synthesis of fatty acids from glucose 
• Synthesis of triglycerides and lipoproteins  
• Synthesis and ester interchange of cholesterol 
• Synthesis of bile acids 
• Degradation of lipids and fatty acids 

Biliary excretion • Bile production 
• Heme synthesis 
• Glucuronidation of bilirubin 

 

Hepatocytes (parenchymal) account for 80% of total liver mass and the majority of the liver´s 

physiological functions, including xenobiotic transformation and elimination of metabolites 

(Rhodes et al., 2011). Hepatocytes are of cuboidal shape and are generally rich in 

mitochondria, both smooth and rough endoplasmic reticulum as well as lysosomes as a 

result of the broad spectrum of metabolic tasks, which are briefly listed in table 2. Based on 

the zonal microenvironment, hepatocytes are very heterogeneous in both functional and 

morphological aspects (Traber et al., 1988, Gebhardt et al., 1992, Lindros et al., 1997). 

Under normal conditions, parenchymal cell size increases from zone 1 to 3 in addition to 

distinct zonal variation of cellular components, including endoplasmic reticulum, mitochondria 

and glycogen storage as a consequence of the higher metabolic capacity (Michaels et al., 

1984, Ferri et al., 2005).  

Given the unique microenvironment, hepatocytes are highly polarized cells with two distinct 

domains, separated from one another by junctional complexes (figure 1.3). These membrane 

domains exhibit structural, functional and thus compositional differences and are essential for 

the overall metabolic function (van Montfoord et al., 2003).  

Under physiologic conditions, hepatocytes are responsible for the efficient transport of 

endogenous and exogenous substrates from blood into bile (Klaassen and Watkins, 1990). 

Bile production is primarily concerned with the delivery of components to the gastrointestinal 

system that are essential for fat absorption (Rhodes et al., 2007); but bile also contains 

metabolites from endo- and exogenous transformation processes that need to be excreted. 

This requires a coordinated transport machinery for both biliary and sinusoidal domain and 

perturbation of these can lead to intrahepatic cholestasis (Hubbard et al., 1985, Simons and 

Fuller, 1985, Klaassen and Aleksunes, 2010). 
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Although hepatocytes account for the majority of liver mass, various other hepatic cell types 

exist, which are much lower in percentage but are physiologically essential. 

Liver sinusoidal endothelial cells (LSEC) line the walls of hepatic sinusoids and are flattened 

and elongated cells with fenestrations of 50-200nm. They allow free diffusion of many 

substances resulting in enhanced hepatocyte exposure to soluble components (Braet and 

Wisse, 2002, Cogger et al., 2010, DeLeve et al., 2007a). LSEC play an important role as 

they serve as a ‘selective sieve’ for substances passing from blood to hepatocytes and vice 

versa; they act as a ‘scavenger system’ by clearing the blood of macromolecular waste 

products (DeLeve et al., 2007a) and contribute to hepatic immunity (DeLeve et al., 2004; 

Perri and Shah, 2005). 

LSEC are also capable for biotransformation and thus are a potential target for some types of 

chemical-induced toxicities (Deaciuc et al., 2001, Xie et al., 2010). Although metabolic 

capacity is below one tenth of that of hepatocytes, their role in clearance has been 

underestimated (Schrenk et al., 1991, Sacerdoti et al., 2003, Wu et al., 2008). 

Hepatic stellate cells (HSC), also known as Ito-cells, reside in the space of Disse and show 

extensive dendrite-like structures actually “embracing” the sinusoids enabling intensive 

intercellular communication through soluble mediators (Asahina et al., 2009, Friedmann et 

al., 2008). HSC also store vitamin A, control turnover and production of extracellular matrix 

components such as collagens, elastin and proteoglycans (Wang et al., 2010, Parola and 

Pinzani, 2009). During liver injury, HSC are activated and produce both cytokines and growth 

factors, which can contribute to both the inflammatory response and regeneration (Ramadori 

et al., 2008, Parola and Pinzani, 2009).  

Kupffer cells (KC) are resident hepatic macrophages with a pronounced endocytotic capacity 

(Jaeschke et al., 2007; Roberts et al., 2006). They play a crucial role in immune surveillance 

by being able to control immune responses to infections via antigen presentation and 

impacting the activation and proliferation of T-cells (Kolios et al., 2006). During liver injury, 

KC have been found to stimulate liver regeneration and are also able to modulate hepatocyte 

metabolism by downregulation of xenobiotic metabolism (Sunman et al., 2004, Higuchi et al., 

2007, Morgan et al., 2009). 

Cholangiocytes are biliary epithelial cells lining the bile ducts and account for ~5% of the 

hepatic cell population. They are heterogenous in morphology, expression and secretion 

patterns, as well as in the response to hormones, cytokines, bile acids and toxins (Marzioni 

et al., 2002, Glaser et al., 2006). Functionally, cholangiocytes have an important impact on 

regulating hepatic immune responses through cytokine secretion and are also capable of 

direct interaction with immune cells through expression of adhesion molecules (Fava et al., 

2005, Glaser et al., 2009). Cholangiocytes are actively involved in various absorption and 

secretion processes and bile secretion is initiated by the release of bicarbonate that 
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generates bile salt independent flow (Tietz and LaRusso, 2006, Xia et al., 2006). In diseased 

states, the role of these cells has been underestimated regarding the large number of injuries 

for which cholangiocytes are the primary target (Glaser et al., 2009, Strazzabosco and 

Fabris, 2008).  

Hepatic progenitor cells (HPC) are bipotential stem cells that are responsible for the 

enormous hepatic regenerative capacity and reside in the most peripheral hepatic branches, 

called canals of Hering (Gaudio et al., 2009, Turner et al., 2011). Under normal conditions 

HPC remain quiescent and serve as a reserve compartment, which is only activated when 

continuous damage and/ or severe cell loss occurs by expanding and maturation to either 

hepatocytes or cholangiocytes (Vig et al., 2006, Santoni-Rugiu et al., 2005, Libbrecht et al., 

2001, Bird et al., 2008).  

Both the biotransformation of xenobiotics and the high exposure level of the liver to orally 

administered foreign substances makes the liver one of the major organs of toxicological 

interest. 

1.2.2 Xenobiotic metabolism 

A critical task of the liver is to enzymatically transform toxic or potentially toxic compounds 

into harmless and excretable molecules. While hydrophilic and volatile substances are more 

likely to get rapidly eliminated via bile/ urine and exhalation, respectively, the elimination of 

lipophilic substances requires them to undergo transformation into more hydrophilic 

derivates, which can then be excreted. This transformation process is covered by a large 

variety of xenobiotic metabolizing enzymes and is as an evolutionary necessity to cover the 

large number of foreign chemical structures that can enter the human body. The effective 

and fast elimination of molecules depends on the following: 

• Metabolites should be sufficiently water soluble 

• Metabolites should not have biological activity that could cause toxic effects  

• The substrate specificity of the enzyme system should be sufficiently broad in order to 

enable metabolism of all xenobiotics 

It is almost impossible to fulfil all of these attributes since increased hydrophilic properties 

could generate metabolites being more reactive than their parent compounds, which is called 

toxification.  

The metabolism of xenobiotics and the better understanding of its mechanisms is an 

essential part of drug development. A clear understanding of the pharmacokinetics of drugs 

can help in the understanding of unexpected toxicological effects or reveal differences 

between species and individuals. 
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Biotransformation occurs generally in three different phases, each of them composed of a 

specialized enzymatic or transport machinery. Phase one is a functionalizing step in which 

enzymes catalyze the insertion of a functional group into the substrate in order to facilitate 

the reactions taking place in phase two (members of the Cytochrome-P450 (CYP) family). 

One feature of CYP enzymes is their overlapping substrate specificity whereby a low 

turnover is implied and a total of over hundred different enzymes are involved in xenobiotic 

metabolism whereof a majority is manipulatable by substrates (Sipes and Gandolfi, 1991, 

Klaassen and Rozman, 1991). The division into subfamilies occurs by sequence affinity of 

the isoenzymes. CYPs are membrane bound enzymes, localised in the smooth endoplasmic 

reticulum and are associated with CYP-reductase when activated. The following table gives 

an overview of the enzymes involved in drug metabolism in phases I and II.  

 

 

Table 1.3: Most important enzymes for functionaliza tion (Phase I) and conjugation (phase II) 
reactions in drug metabolism.  

Phase I Phase II 

Cytochrome P450 monooxygenases (CYP) Glutathione-S-transferases (GST) 

Monoamineoxidases (MAO) UDP-glucuronosyl-transferases (UGT) 

Cyclooxygenases (COX) Sulfotransferases (SULT) 

Flavin-dependent monooxygenases (FMO) Acetyltransferases (AT) 

Hydrolases  

Reductases  
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Most oral xenobiotics, among them potential toxins, are absorbed by the intestines and 

absorbed into the blood from where they enter the liver via the portal vein. In general, the 

metabolism of a lipophilic substance starts with functionalization by phase I enzymes, which 

either transfer oxygen or remove electrons from the molecule. Enzymes of phase I are 

mainly oxidoreductases and hydrolases or dehydrogenases, which either remove or insert 

hydrogen into their substrate. Generally, CYPs transfer single oxygen atoms from molecular 

oxygen to their substrates (Sipes and Gandolfi, 1991; Ziegler, 1988; Armstrong, 1987).  

Most important for drug metabolism are the CYP families 1 to 3 (Ingelmann-Sundberg, 2001 

and 2003). The CYP1 isoenzymes transform planar lipophilic substances and their 

expression is inducible via the AhR (arylhydrocarbon receptor). The CYP2 isoenzymes are 

numerous and many are involved in drug metabolism (e.g. CYPs 2B6, 2D6 and 2C9), 

whereas CYP3 isoenzymes represent 30% of hepatic CYP and have a broad and diverse 

spectrum of substrates (Ingelmann-Sundberg, 2001 and 2003; Sipes and Gandolfi, 1991). 

CYP3A4 accounts for the metabolism of approximately 50% of the marketed drugs, thus 

Figure 1. 4: Overview of metabolic possibilities a drug can u ndergo. Depending on the 
physicochemical properties of the mother compound, metabolism via phase I or direct 
conjugation through phase II is possible as w ell as the generation of reactive metabolites, 
which can be deactivated in several ways. P-450 = C ytochrome P-450; FMO = Flavin-
dependent monooxygenase; MAO = Monoamineoxidase; EH  = Epoxidhydrolase; UGT = UDP-
glucuronosyltransferase; SULT = Sulfotransferase; G ST = Glutathione-S- transferase; NAT = 
N-acetylatransferase, GSH = Glutathion; SOD = Super oxide- dismutase; PRX = Peroxiredoxin; 
MRP = Multidrug resistance related protein; MDR = M ultidrug resistance protein; BSEP = Bile 
salt export pump.  
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playing an important role in the hepatotoxicity assessment applications in early drug 

development (Ingelmann-Sundberg 2001 and 2003). 

Following phase I transformation, three different fates can occur. First, a direct excretion of 

the product is possible or second, the intermediate enters phase II. The third option occurs in 

cases where phase I metabolism generates reactive species with either electrophilic or 

nucleophilic properties. These reactive intermediates can bind to endogenous 

macromolecules such as proteins, DNA or lipids and thus may have an important impact on 

cell function and viability (Goldstein and Faletto, 1993; Guengerich and Liebler, 1985). 

Phase II metabolism has the aim to add hydrophilic groups to the products of phase I by 

conjugation with a hydrophilic endogenous molecule, such as glutathione or glucuronic acid 

in order to facilitate effective elimination (figure 1.4). The fact that phase II reactions require 

both energy and valuable molecules emphasizes the importance of this step. The 

conjugation with endogenous agents facilitates an effective excretion by increasing water 

solubility. One of the most important phase II reactions is conjugation to glutathione, a 

detoxification reaction that not only enhances hydrophilic properties but also acts as a 

scavenger for electrophilic metabolites that would otherwise react with cellular 

macromolecules (Goldstein and Faletto, 1993; Guengerich and Liebler, 1985). In summary, 

phase II enzymes conjugate drug metabolites with body-own molecules in order to facilitate 

excretion via transporters in phase III.  

Phase III metabolism is concerned with an effective excretion of drug metabolites and can 

take place via kidney (urine) or liver (bile), depending on the metabolite’s physicochemical 

properties. If sufficiently water soluble, metabolites diffuse into blood and are filtrated in the 

kidney, whereas hepatobiliary excretion occurs by active transport from the hepatocyte into 

the bile canaliculus. The transporters are members of the ABC-binding cassette transporter 

family, called multidrug resistance proteins (MRPs) and multidrug resistance-associated 

proteins (MDRs).  

1.3 Hepatotoxicity in drug development 

Besides drug-mediated cardiotoxicity, drug-induced liver injury (DILI) has emerged as a 

frequent cause of drug withdrawal in late developmental stages or even post marketing 

(Kenna et al., 2018). This points to serious limitations in the current preclinical in vitro and in 

vivo testing strategies. There is a broad spectrum of DILI manifestations, ranging from a 

variety of metabolic diseases and jaundice to acute liver failure due to massive hepatocyte 

necrosis. The reason for this is given by the unique role of the liver as the central organ for 

both nutrient and xenobiotic metabolism, which gives evidence that the liver is often the 

primary target organ for chemical insult.  

Generally, DILI can be separated into two fundamental classes: 
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1. Dose-dependent hepatotoxicity, which is defined by adverse effects due to drug 

intake beyond pharmacological doses, appears in a dose-dependent fashion and is 

typically reproducible in various commonly used animal models such as rat or dog. 

2. Human-specific adverse drug reactions, which cannot be easily predicted in animal 

models. These idiosyncratic reactions can occur at therapeutic exposure levels and 

are usually very rare, ranging from 1 in 10,000 to 1 in 100,000 patients treated. 

For the latter several reasons exist explaining the inability to fully cover those events during 

preclinical and even clinical phases: 

• Human specificity cannot be fully modelled in the commonly used animal models due 

to substantial inter-species differences in physiology and drug metabolism. 

• Human in vitro models lack physiological integration and are mostly composed of 

single cell types, which do not mimic the in vivo microenvironment. This is emphasized 

by the fact that in a variety of adverse effects both homogenous and heterogenous 

cross-talk is required for a toxic insult to emerge to overt hepatotoxicity. 

• Idiosyncratic reactions have generally low incidences and the relatively small number 

of participants in clinical phases I and II make the detection very unlikely.  

• Preclinical test strategies are not capable of covering risk factors that may contribute 

to DILI development in individuals. These factors include genetic (e.g. CYP 

polymorphisms), as well as lifestyle aspects and predisposition (e.g. nutritional state, 

co-morbidity and co-administered drugs or alcohol intake). 

There is an urgent need for more predictive test systems to elucidate potential risks in man 

or in susceptible subpopulations. Regarding the many facets of DILI in man, it is important for 

innovative applications to focus on the underlying mechanisms and to not only predict 

hepatotoxicity so that the pattern and severity of the outcome can be better understood. In 

the following, the five main mechanisms of hepatotoxicity are briefly described.  

1.3.1 Reactive metabolites 

Although the human detoxification system is exceedingly efficient in the elimination of large 

numbers of different chemical structures due to overlapping substrate specificities, it is 

feasible that a compound can be metabolized into a more reactive derivate. Reactive 

metabolites are mostly electrophilic and may react with a variety of subcellular structures, 

such as proteins, membranes or nucleic acids and thus inactivate or destroy them. The most 

prominent example for this is acetaminophen, also known as (Paracetamol), which leads to 

metabolite-mediated severe acute liver failure when taken at very high doses. 

Acetaminophen is metabolized to N-acetyl-p-benzo-quinoneimine (NAPQI) by CYP2E1, 
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which is strongly electrophilic and normally quenched by conjugation to glutathione (GSH). In 

the case of acetaminophen overdose, the intracellular scavenger GSH depletes and NAPQI 

then covalently binds to cellular proteins, leading to multiple scenarios, e.g. oxidative stress 

or mitochondrial dysfunction (Mitchell et al., 1973; Donnelly et al., 1994; Meyers et al., 1988).  

 

1.3.2 Inhibition of bile salt transporters 

Bile formation is an essential hepatic function for both an efficient digestion of nutrients as 

well as for the elimination of metabolites with less hydrophilic properties. The perturbation of 

bile secretion can lead to retention of bile within the liver and subsequently to an impaired 

gastrointestinal performance and also hepatocyte apoptosis and/or necrosis due to bile salt 

intoxication (Patel et al., 1998). Although cholestatic pathogenesis is multifactorial, 

hydrophobic bile acids are especially cytotoxic and the failure to secrete them results in liver 

injury, cirrhosis and death from liver failure (Rodrigues et al., 1998; Strautnieks et al., 1998). 

Bile acids are actively secreted by the bile salt export pump (BSEP), which displays a hepatic 

target for drugs or their respective metabolites via blocking or covalent binding and thus 

impairing or inhibiting BSEP performance. This subsequently leads to a toxic 

intrahepatocellular retainment of bile salts, which can manifest as cholestasis. 

 

1.3.3 Mitochondrial dysfunction 

Since the liver is a versatile organ, which requires high energy levels, hepatocytes are 

densely packed with mitochondria in order to sufficiently supply ATP. However, mitochondria 

also fulfil a variety of functions to maintain cellular homeostasis, including fatty acid oxidation, 

steroid- and heme synthesis, thermogenesis and apoptosis signalling. Furthermore, 

mitochondria contain their own set of organelle-specific genes, called mitochondrial DNA 

(mtDNA). Due to this complex panel of different functions, mitochondria are a common target 

of drugs, which can cause disturbed function. Regarding only the mitochondrial respiratory 

chain, which contains five different complexes in order to produce ATP through electron 

transport, it becomes very clear that mitochondria has many possible action points where 

drugs can have an impact on the function of mitochondria.  

Another mechanism is related to the onset of mitochondrial permeability transition (MPT), 

caused by opening of permeability transition pores in the inner mitochondrial membrane. 

Permeability transition pore opening subsequently causes mitochondrial depolarization, as 

well as swelling and can lead to both, apoptosis and necrosis (Lemasters et al., 1998; 

Pessayre et al., 1999; Berson et al., 2001). Mitochondrial swelling often causes ruptures in 

the outer membrane and thus precedes the release of cytochrome c, which can initiate 

apoptosis via activation of cytosolic caspases (Haouzi et al., 2000; Hatano et al., 2000). 
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Generally, microvesicular steatosis is the histological hallmark of severe metabolic 

perturbations due to mitochondrial dysfunction, leading to energy shortage and decreased 

delivery of energy substrates, which can also lead to impairments of other organs, e.g. 

hepatic and renal failure or pancreatitis (Fromenty and Pessayre, 1995).  

 

1.3.4 Lysosomal dysfunction 

Lysosomes are important intracellular vesicles that are responsible for the degradation of the 

major groups of macromolecules, which are taken up by endocytosis, by various hydrolytic 

enzymes. This enzymatic machinery only works in the acidic lysosomal microenvironment, 

which prevents uncontrolled cytosolic (pH neutral) digestion in the case of lysosome rupture. 

Perturbation of these catabolic centres by drugs can result in e.g. phospholipidosis, which is 

characterized by the formation of lamellar bodies (Robinson et al., 1985; Anderson and 

Borlak, 2006). Lamellar bodies can be described as cytosolic inclusions consisting of 

concentric structures of non-degraded phospholipids and are commonly induced by cationic 

amphiphilic drugs like amiodarone (Kodavanti and Mehendale, 1990; Halliwell et al., 1997). 

These drugs bind to phospholipids, which then become undegradable and can lead to 

immune reactions after uptake by marcophages (Halliwell et al., 1997). Drugs can also inhibit 

phospholipases, which also results in lamellar bodies (Reasor and Kacew, 2001).  

 

1.3.5 Immune-mediated liver injury 

Drug hypersensitivity reactions are of idiosyncratic nature and they remain challenging to 

detect before a new drug enters the market. Regarding the uniqueness of every individual’s 

immune composition, drugs can induce hypersensitivity reactions in single patients and the 

outcome is broad, ranging from anaphylactic effects restricted to cutaneous reactions to 

severe effects on the respiratory or cardiovascular system (Moebs and Pfuetzner, 2017).  

Generally, two concepts exist that describe how a certain drug can elicit immune effects 

within the liver, namely the hapten concept and the p-i concept. 

• The hapten concept postulates that drugs with a molecular weight below 1,000 Da 

are too small to initiate an immune response per se, so that those compounds can 

covalently bind to proteins or peptides and thus a so called neoantigen is formed, 

which can cause response of both the innate and the specific immune system 

(Naisbitt et al., 2000; Pichler, 2002; Padovan et al., 1997).  

• In contrast, the “p-i” concept stands for “direct pharmacological interaction of drugs 

with immune receptors” and states that small molecules can specifically and 

reversibly bind to some highly variable antigen specific receptors and may cause 
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inflammatory reactions of different types (Pichler, 2002 and 2008; Naisbitt et al., 

2003).  

1.4 EU Project MIP-DILI 

The work carried out for this thesis was part of the IMI (Innovative Medicines Initiative) EU 

funded project MIP-DILI (‘Mechanism-based Integrated systems for the Prediction of Drug-

Induced Liver Injury’). The IMI’s overarching aim is the improvement of patient health by 

speeding up the development process and also patient access to innovative medicines, 

especially in therapeutic areas with an unmet need. 

The major focus of MIP-DILI was the improvement and further development of preclinical 

testing strategies for the prediction of drug-induced liver injury in man. MIP-DILI is a 

collaboration between industrial EFPIA (European Federation of Pharmaceutical Industries 

and Associations), SME’s (small and medium-sized enterprises) and academic partners. 

Drug-induced liver injury has emerged as the most common cause of liver failure and post-

marketing withdrawal of drugs in western countries (Kenna et al., 2018). Thus, predicting 

DILI in early drug developmental stages remains challenging and the project consortium 

attempted to address this issue focusing on the five main mechanisms leading to DILI (see 

1.2.3).  

The project aims to first deepen the understanding of the underlying scientific background of 

DILI and use this knowledge to both evaluate current standard approaches as well as to 

develop improved test methods (figure 1.5). This also implies that the inter-individual 

differences among patients are considered and implemented in emerging test systems for 

the better elucidation of differences in susceptibility towards chemical insults.  

The information generated will also add massive value on the development of mathematical 

modelling approaches for an improved predictivity by in silico tools.  
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MIP-DILI aims to identify and validate an improved panel of in vitro best practice assays for 

predicting DILI in the human population. This will be achieved by an iterative tiered approach 

with respect to test compounds and test systems with the background that DILI manifests as 

a broad spectrum of biological processes that range from effects on single pathways in single 

cells to complex multi-cellular processes. By integration of bioanalysis, modelling and 

systems biology at every tier, both current and emerging in vitro and in vivo test systems will 

be reflected with respect to: 

• Human hepatic physiology 

• Adaptive hepatic response 

• Changes in liver cell populations following drug exposure 

• Complex multi-cellular and time-dependent events in the liver associated with DILI 

This strategy is underpinned by the selection of appropriate reference compounds, including 

model hepatotoxicants, that selectively target specific pathways, drugs that address specific 

forms of DILI as well as drugs that cause DILI in man but not in preclinical test systems. 

Negative controls are also included, of which several have structural similarity to 

hepatotoxicants but are not associated with DILI. Based on these aspects, a training 

compound set was defined, which is described in table 1.4.  

 

Figure 1.5: Schematic overview of the MIP- DILI project strategy. The approach concerns three aspects, 
in vitro and in vivo systems as well as mechanism addressing compound se ts. The currently used test 
systems are assessed at first and subsequently refi ned and further developed towards enhanced human 
relevance. (figure taken from the MIP-DILI project consortium, 2012) 
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Table 1.4: MIP-DILI training compound set.  Drugs that have been associated with at least one 
DILI mechanism as well as DILI negative compounds . 

Compound Therapeutic function Postulated 
mechanisms 

References 

Acetaminophen Analgesic Reactive metabolite Court et al., 2001; 
Laine et al., 2009 

Amiodarone Antiarrythmic Mitochondrial/lysosomal 
dysfunction 

Elsherbiny et al., 2008; 
Shayeganpour et al., 
2006; Ohyama et al., 
2000; Zahno et al., 
2011; Hosomi et al., 
2011 

Bosentane Antihypertensic BSEP inhibition Weber et al., 1999; 
Dingemanse et al., 
2004 

Buspirone Anxiolytic Negative Zhu et al., 2005 
Diclofenac Analgesic Mitochondrial 

dysfunction/reactive 
metabolite/BSEP 

inhibition 

Kumar et al., 2002; 
Darnell et al, 2012; 
Kumar et al., 2002; 
Naisbitt et al., 2007; 
Shen et al., 1999; 
Kishida et al., 2012 

Entacapone Parkinson’s disease Negative Lautala et al., 2000 
Fialuridine Hepatitis B therapy Mitochondrial 

dysfunction 
Govindarajan et al., 
2008; Lai et al., 2004 

Metformin Antidiabetic Negative Tzvetkov et al., 2009 
Nefazodone Antidepressant Reactive metabolite/ 

BSEP inhibition 
Von Moltke et al., 
1999; Kalgutkar et al., 
2005; Hosomi et al., 
2011 

Perhexiline Antianginal Lysosomal dysfunction/ 
BSEP inhibition 

Davies et al., 2005 

Pioglitazone Antidiabetic Negative Jaakola et al., 2006; 
Banghman et al., 
2005; Alvarez-
Sanchez et al., 2006 

Tolcapone Parkinson’s disease Reactive metabolite/ 
BSEP inhibition 

Lautala et al., 2000; 
Smith et al., 2003 

Troglitazone Antidiabetic Mitochondrial/ 
lysosomal dysfunction/ 

reactive metabolite/ 
BSEP inhibition 

Saha et al., 2010; 
Yamamoto et al., 
2002; Yoshikawa et 
al., 2009; Hosomi et 
al., 2011; Vignati et al., 
2005 

Ximelagatran Anticoagulant Immune-mediated Clement et al., 2003; 
Darnell et al., 2010 

 

The work described in this thesis is part of the in vitro work package, which focuses on the 

assessment of: 

• How the current, routinely used in vitro test systems physiologically compare to each 

other as well as to human liver 
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• How emerging in vitro approaches add value to the current status  

• How these novel approaches can be applied to routine preclinical safety assessment, 

as well as to what purpose they may contribute 

1.5 Hepatic cell systems 

1.5.1 Primary human hepatocytes  

Primary human hepatocytes (PHH) are considered to be the gold standard for the majority 

hepatic in vitro applications, due to their high physiological relevance. Because of their origin, 

PHH retain much of their in vivo functionality and provide valuable results in pharmacological 

and toxicological in vitro research (Godoy et al., 2013; Gerets et al., 2012). Additionally, the 

fact that each PHH preparation is obtained from a different donor offers the possibility to 

investigate a limited range of genetic polymorphisms. However, donor-variability is also a 

challenge since inter-individual differences, as well as alterations due to isolation procedure 

cause variations in experimental results, thus hampering the standardization of PHH in vitro 

models (Rogue et al., 2012). However, PHH also suffer from other limitations since it is 

known that the cells quickly lose their metabolic capacity when cultured as conventional 2D 

monolayers, so that physiologically relevant hepatotoxicity testing is only possible in short-

term applications (Godoy et al., 2013; Gerets et al., 2012). The fact that many drugs as well 

as most drug-induced toxicities are characterized by chronic intake emphasizes the need for 

a culture system that allows prolonged repeat dose testing. Advanced culturing methods, like 

the collagen sandwich culture approach, allow PHHs to maintain their physiological functions 

for up to two weeks (Tuschl and Müller, 2005). In this format, cells keep their native shape 

thus essential polarity, however, this format is only applicable in larger culture dimensions 

and requires high cell numbers so that upscaling towards higher throughput screening 

remains difficult. PHH from one donor are limited in number, so that on the one hand large-

scale use is often limited and on the other hand every batch needs to be validated. The 

consequence for the pharmaceutical industry is that PHH are, despite their high metabolic 

capacity, not easily applicable at high throughput screening or subchronic to chronic risk 

assessment and are relatively expensive especially for very early stages of drug 

development. 

 

1.5.2 HepG2 cells 

HepG2 cells are a hepatic cell line obtained from a human hepatoma and is widely used in in 

vitro culture models, mainly due to their unlimited availability. They are a highly proliferative 

cell line with an average doubling time of approximately 33 hours and display a variety of 

physiological functions, such as albumin and Urea synthesis and glycogen storage. Although 
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HepG2 cells are often the first choice in early screening assays due to easy handling and low 

cost, they lack physiological relevance in terms of hepatic drug metabolism (Sison-Young 

and Mitsa et al., 2015). It is well known that tumour derived cells undergo reprogramming, 

leading to uncontrolled growth and thus often dedifferentiate. In addition, artificial 

environment of plastic dishes and high-sugar culture media, results in very low drug 

metabolising activities. However, HepG2 cells are still a useful tool for early screenings or 

cytotoxicity assessment due to the stable phenotype as well as the resulting reproducibility 

(Gerets et al., 2012). Their lack of metabolic capacity makes this cell line unattractive to more 

in-depth investigations of DILI prediction and mechanism analysis.  

 

1.5.3 HepaRG® 

HepaRG is a cell line derived from human hepatoma progenitor cells, which can differentiate 

in the presence of DMSO (Dimethylsulfoxide) into two different lineages namely hepatocytes 

and cholangiocytes. The differentiated cells are equally composed of both cell types, 

hepatocyte-like cells and cholangiocyte-like cells, which are microscopically distinguishable 

due to their shape and appearance (Aninat et al., 2006; Gunguen-Guillouzo et al., 2004). 

Fully differentiated, HepaRG cells have several advantages in comparison to other cell lines, 

such as HepG2. The cells show a high degree of differentiation and stably maintain various 

hepatic functions of toxicologic interest, including CYP-dependent metabolism, CYP 

inducibility and expression of phase III transporters. Alongside with those enhanced functions 

related to xenobiotic metabolism, HepaRG already display a well-defined co-culture and thus 

heterogenous communication as well as the cell line related benefits of good reproducibility 

and easy handling. Overall, HepaRG cells are a promising in vitro model that, under properly 

defined culture conditions, can serve as an attractive surrogate model for primary human 

hepatocytes.  

 

1.5.4 Upcyte® hepatocytes 

Upcyte hepatocytes are a relatively new cell model developed by viral transduction of 

primary human hepatocytes with genes that upregulate proliferation (Braspenning et al., 

2010). The basal expression levels of drug metabolising enzymes (Phase I and II) have been 

reported comparable to 5-day cultures of primary human hepatocytes and that CYP 

inducibility of important CYPs is reported (Burkard et al., 2012). These features should mean 

that these cells have the advantages of PHH regarding metabolism and the limitless 

availability of cell lines, therefore displaying an attractive tool for early stages of drug 

development. Within the MIP-DILI project upcyte hepatocytes were only included in the initial 

cytotoxicity assessment of cell models. After the proteomic analysis revealed that upcyte 
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hepatocytes express drug metabolising enzymes at much lower levels, comparable to that of 

HepG2, they were dropped from further studies (Sison-Young and Mitsa et al., 2015). 
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1.6 Personal contributions 

This thesis was embedded in the EU-funded project MIP-DILI, which represents a 

collaboration of both industrial and academic partners with diverse scientific expertise. All 

generated data in this multidisciplinary team belongs to the MIP-DILI consortium. With the 

consent of the consortium, internal and external generated data of the cell models and the 

training compounds was used for this thesis. An overview of my personal contributions is 

given in the following paragraphs.  

 

Comprehensive multi-site cytotoxicity assessment 

Training compound selection was performed by AstraZeneca, based on literature search with 

focus on well studied compounds that cover the main DILI mechanisms.  

I performed cytotoxicity experiments for the 13 training compounds in HepG2, HepaRG and 

Upcyte cells including two time points (24h and 72h) and two endpoints (ATP and 

Resazurin). Furthermore, I was mainly involved in the data collection from all participants as 

well as in the statistical analysis and the preparation of the publication manuscript. 

Interpretation of results and literature search was performed by Rowena Sison-Young 

(University of Liverpool), Volker Lauschke (Karolinska Institutet Stockholm) and myself. 

 

Proteomic comparison of cell models 

Cell culture and protein sample processing for HepG2, HepaRG and Upcyte cells was 

performed by myself. Protein samples were shipped to one partner (University of Liverpool), 

where further processing, analysis and statistical analysis was performed. Interpretation of 

results was performed by the University of Liverpool and discussed by all participating 

partners. 

 

Spheroid cell culture 

I performed the complete cell culture work (seeding, medium change and dosing for up to 28 

days) as well as sample processing (viability measurement, preparation of paraffin-

embedded and cryo microdissections, H&E staining and immunofluorescent staining, 

imaging and image analysis) on my own responsibility. I was responsible for image 

generation, analysis and biological interpretation of results. Results obtained in H&E stained 

microdissections were evaluated and discussed by Dr. Anja Knippel and myself. Statistical 

analysis, interpretation including literature search and discussion of the results were 

performed by myself.  

Sample preparation (cell culture and lysis) and processing (hybridization, labelling and 

amplification) for the CYP induction study via branched DNA in HepaRG cells cultured in 2D 

and 3D were performed by myself. Yvonne Walter performed the measurement itself as well 
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as the primary raw data analysis; figure generation, data interpretation, literature search and 

discussion were performed by myself.   

 

Comparison of cell culture formats 

I performed the complete cell culture for each format as well as the protein isolation and 

further processing (protein quantification, SDS-PAGE Gel electrophoresis and western 

blotting). Moreover, literature seach, biological interpretation and discussion of the results 

was performed on my own responsibility.  
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2 Materials and Methods 

2.1  Materials  

2.1.1  Consumables 

Name Manufacturer, Corporate headquarters  
15mL tubes, BD Falcon™ Becton Dickinson GmbH, Heidelberg, 

Germany 
50mL tubes, BD Falcon™ Becton Dickinson GmbH, Heidelberg, 

Germany 
24-well cell culture plates, clear BD Falcon Becton Dickinson GmbH, Heidelberg, 

Germany 
96-well cell culture plates, clear BD Falcon Becton Dickinson GmbH, Heidelberg, 

Germany 
96-well cell culture plates, black/clear BD 
Falcon 

Becton Dickinson GmbH, Heidelberg, 
Germany 

96-well cell culture plates, white/clear BD 
Falcon 

Becton Dickinson GmbH, Heidelberg, 
Germany 

96-well ultra-low attachment plates, round 
bottom  

Corning Inc., Corning (NY), USA 

96-well ultra-low attachment plates, round 
bottom, Nunclon sphera 

Thermo Fisher Scientific, Waltham (MA), 
USA 

Adhesive PCR foil seals, ABgene® Thermo Fisher Scientific, Waltham (MA), 
USA 

ART 10 REACH, disposable tips Molecular BioProducts, San Diego (CA), 
USA 

ART 20, disposable tips Molecular BioProducts, San Diego (CA), 
USA 

ART 100, disposable tips Molecular BioProducts, San Diego (CA), 
USA 

ART 200, disposable tips Molecular BioProducts, San Diego (CA), 
USA 

ART 1000E, disposable tips Molecular BioProducts, San Diego (CA), 
USA 

ART 1000G, disposable tips Molecular BioProducts, San Diego (CA), 
USA 

Bis-Tris gels for SDS-Page, 4-12% Thermo Fisher Scientific, Waltham (MA), 
USA 

Bottle Top Filters Nalgene, Rochester (NY), USA 
Cell counting chamber (Fuchs-Rosenthal) LO-Laboroptik, Lancing, UK 
CellStar cell culture flasks, 75cm2 Greiner bioOne GmbH, Frickenhausen, 

Germany 
CellStar cell culture flasks, 175cm2 Greiner bioOne GmbH, Frickenhausen, 

Germany 
Cell scrapers Iwaki® cell biology, Asahi Techno Glass 

Corporation, Chiba, Japan 
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Coverslips, precoated Roche Diagnostics GmbH, Mannheim, 
Germany 

Coverslips, round  VWR International GmbH, Darmstadt, 
Germany 

Cryomolds biopsy Sakura Finetek Japan Co., Ltd., Tokyo, 
Japan 

ECL Hyperfilm GE Healthcare UK Ltd., Buckinghamshire, 
UK 

Glass vials, brown, 1.5mL VWR International GmbH, Darmstadt, 
Germany 

HistBond +S adhesion glass slides Marienfeld 
iBlot, dry blot stacks mini Thermo Fisher Scientific, Waltham (MA), 

USA 
Parafilm, M Bemis® Company Inc., Neenah (WI), USA 
PCR tubes Thermo Fisher Scientific, Waltham (MA), 

USA 
Pipette tips 0.5 – 10µL  Brand GmbH&Co. KG, Wertheim, Germany 
Pipette tips, 2 – 200µL Brand GmbH&Co. KG, Wertheim, Germany 
Pipette tips, 5 – 300µL Brand GmbH&Co. KG, Wertheim, Germany 
Pipette tips, 50 – 1000µL Brand GmbH&Co. KG, Wertheim, Germany 
Pipette tips, 12,5 µL, sterile, filter Integra Biosciences AG, Zizers, Switzerland 
Pipette tips, 125µL, sterile, filter Integra Biosciences AG, Zizers, Switzerland 
Pipette tips, 300µL, sterile, filter Integra Biosciences AG, Zizers, Switzerland 
Pipette tips, 1,250µL, sterile, filter Integra Biosciences AG, Zizers, Switzerland 
QV 900 6-well plates Kirkstall Ltd, Rotherham, UK 
QV 900 tubing 16” Kirkstall Ltd, Rotherham, UK 
QV 900 tubing 32” Kirkstall Ltd, Rotherham, UK 
QV 900 luerlocks female 16” Kirkstall Ltd, Rotherham, UK 
QV 900 luerlocks female 32” Kirkstall Ltd, Rotherham, UK 
QV 900 luerlocks male 16” Kirkstall Ltd, Rotherham, UK 
QV 900 luerlocks male 32” Kirkstall Ltd, Rotherham, UK 
QV 900 reservoir bottles, 25mL Kirkstall Ltd, Rotherham, UK 
QV 900 sterile filter, 0.2µm Kirkstall Ltd, Rotherham, UK 
Safe lock tubes, 1.5mL Eppendorf KG, Hamburg, Germany 
Safe lock tubes, 2mL Eppendorf KG, Hamburg, Germany 
Safe lock tubes, 5mL Eppendorf KG, Hamburg, Germany 
Serological pipettes, 1mL Corning Inc., Corning (NY), USA 
Serological pipettes, 5mL Corning Inc., Corning (NY), USA 
Serological pipettes, 10mL Corning Inc., Corning (NY), USA  
Serological pipettes, 25mL Corning Inc., Corning (NY), USA 
Serological pipettes, 50mL Corning Inc., Corning (NY), USA 
Superfrost glass slides Thermo Fisher Scientific, Waltham (MA), 

USA 
Superfrost plus adhesion glass slides Thermo Fisher Scientific, Waltham (MA), 

USA 
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2.1.2 Chemicals and Reagents 

Name Manufacturer, Corporate headquarters  
2-propanol Merck KGaA, Darmstadt, Germany 
Acetic acid, 96% Merck KGaA, Darmstadt, Germany 
Accutase cell dissociation reagent Thermo Fisher Scientific, Waltham (MA), 

USA 
Adefodur developer Adefo Chemie GmbH, Dietzenbach, 

Germany 
Adefodur fixer Adefo Chemie GmbH, Dietzenbach, 

Germany 
Antioxidant Thermo Fisher Scientific, Waltham (MA), 

USA 
Bradford reagent BioRad Laboratories Inc., Hercules (CA), 

USA 
BSA standard, 2mg/mL Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Collagen, from rat tail Roche Diagnostics GmbH, Mannheim, 

Germany 
Cytobuster protein extraction reagent, 
Calbiochem® 

Merck KGaA, Darmstadt, Germany 

DEPC treated water, Ambion® Thermo Fisher Scientific, Waltham (MA), 
USA 

Dexamethasone Sigma-Aldrich (part of Merck KGaA), 
Munich, Germany 

D-Glucose Sigma-Aldrich (part of Merck KGaA), 
Munich, Germany 

D-Galactose Sigma-Aldrich (part of Merck KGaA), 
Munich, Germany 

DMEM Thermo Fisher Scientific, Waltham (MA), 
USA 

DMEM/F-12 Thermo Fisher Scientific, Waltham (MA), 
USA 

DMSO Sigma-Aldrich (part of Merck KGaA), 
Munich, Germany 

DPBS -/- Thermo Fisher Scientific, Waltham (MA), 
USA 

DPBS +/+ Thermo Fisher Scientific, Waltham (MA), 
USA 

ECL Western Blot detection kit GE Healthcare UK Ltd., Buckinghamshire, 
UK 

Ethanol, 96% Sigma-Aldrich (part of Merck KGaA), 
Munich, Germany 

Epidermal growth factor Thermo Fisher Scientific, Waltham (MA), 
USA 

FBS, Fetal bovine serum Thermo Fisher Scientific, Waltham (MA), 
USA 

Formalin solution 4% Merck KGaA, Darmstadt, Germany 
Gentamicin  Thermo Fisher Scientific, Waltham (MA), 

USA 
HCl, 1N Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
HepaRG induction supplement Thermo Fisher Scientific, Waltham (MA), 

USA 
HepaRG metabolism supplement Thermo Fisher Scientific, Waltham (MA), 

USA 
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HepaRG thaw, plate & general-purpose 
supplement 

Thermo Fisher Scientific, Waltham (MA), 
USA 

HepaRG tox supplement Thermo Fisher Scientific, Waltham (MA), 
USA 

Hepatocyte growth factor Thermo Fisher Scientific, Waltham (MA), 
USA 

Hoechst 33342 Thermo Fisher Scientific, Waltham (MA), 
USA 

Insulin-transferrin-selenium Thermo Fisher Scientific, Waltham (MA), 
USA 

L –glutamine Thermo Fisher Scientific, Waltham (MA), 
USA 

Lysis Mixture Affymetrix®, Santa Clara (CA), USA 
Matrigel Corning Inc., Corning (NY), USA 
Matrigel high concentration  Corning Inc., Corning (NY), USA 
Methanol  Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Normal goat serum Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
O.C.T. compound VWR International GmbH, Darmstadt, 

Germany 
Penicillin/ Streptomycin Thermo Fisher Scientific, Waltham (MA), 

USA 
Phosphatase inhibitor cocktail set II, 
Calbiochem® 

Merck KGaA, Darmstadt, Germany 

Protease inhibitor cocktail set III, 
Calbiochem® 

Merck KGaA, Darmstadt, Germany 

Proteinase K Affymetrix®, Santa Clara (CA), USA 
Protein ladder, prestained Thermo Fisher Scientific, Waltham (MA), 

USA 
Pura matrix Corning Inc., Corning (NY), USA 
Resazurin sodium salt Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
RNAse away Molecular BioProducts, San Diego (CA), 

USA 
Rhodamine - Phalloidine Thermo Fisher Scientific, Waltham (MA), 

USA 
Triton x-100 Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Trypan blue solution Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Trypsin EDTA Thermo Fisher Scientific, Waltham (MA), 

USA 
Tween-20 Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Williams medium E, no glutamine Thermo Fisher Scientific, Waltham (MA), 

USA 
Williams medium E, no sodium bicarbonate, 
powder 

Sigma-Aldrich (part of Merck KGaA), 
Munich, Germany 

Xylene Merck KGaA, Darmstadt, Germany 
 

2.1.3 Test compounds 

Name Manufacturer, Corporate headquarters  
Acetaminophen Sigma-Aldrich (part of Merck KGaA), 
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Munich, Germany 
Amiodarone  Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Bosentane  Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Buspirone  Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Chlorpromazine Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Diclofenac Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Entacapone Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Metformin Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Nefazodone  Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Perhexiline Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Pioglitazone Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Tolcapone  Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Troglitazone  Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
Ximelagatran AstraZeneca, Cambridge, UK 
 

2.1.4 Cells  

Name Manufacturer, Corporate headquarters  
HepG2, cryopreserved European collection of cell lines, Salisbury, 

England 
HepaRG, cryopreserved Thermo Fisher Scientific, Waltham (MA), 

USA 
Upcyte hepatocytes, cryopreserved Medicyte GmbH, Heidelberg, Germany 
Primary human hepatocytes, cryopreserved Thermo Fisher Scientific, Waltham (MA), 

USA 
Primary human hepatocytes, cryopreserved KaLy cell, Plobsheim, France 

 
 

2.1.5  Kits  

Name Manufacturer, Corporate headquarters  
CellTiter-Glo® Promega, Fitchburg, USA 
ECL Western Blot Detection kit GE Healthcare UK Ltd., Buckinghamshire, 

UK 
HyStem® cell culture scaffold kit Sigma-Aldrich (part of Merck KGaA), 

Munich, Germany 
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QuantiGene human 10-plex kit Affymetrix®, Santa Clara (CA), USA 
QuantiGene human single plex kit miRNA-
122 

Affymetrix®, Santa Clara (CA), USA 

 

2.1.6  Antibodies  

Antigene, host  Manufacturer, Corporate headquarters  
Albumin, mouse monoclonal SantaCruz biotechnologies 
AlexaFluor 488 goat anti-mouse Thermo Fisher Scientific, Waltham (MA), 

USA 
AlexaFluor 488 goat anti-rabbit Thermo Fisher Scientific, Waltham (MA), 

USA 
CYP 1A2, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
CYP 2B6, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
CYP 2C9, rabbit polyclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
CYP 2D6, rabbit polyclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
CYP 3A4, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
BSEP, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
GPx-4, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
Lamp-1, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
NAT 1/2, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
SULT-1, mouse monoclonal SantaCruz biotechnologies, Santa Cruz 

(CA), USA 
 

2.1.7 Equipment  

Name Manufacturer, Corporate 
headquarters  

Centrifuge 5415R Eppendorf, Hamburg, Germany 
Centrifuge, Megafuge 1.0R, Heraeus®  Thermo Fisher Scientific, Waltham (MA), 

USA 
Centrifuge, Multifuge 3 S-R, Heraeus® Thermo Fisher Scientific, Waltham (MA), 

USA 
Cryostat  Leica Camera AG, Wetzlar, Germany 
Embedding station Leica Camera AG, Wetzlar, Germany 
Eppendorf pipettes (10µL, 100µL, 200µL, 
300µL, 1000µL) 

Eppendorf, Hamburg, Germany 

Film processor  GE Healthcare UK Ltd., Buckinghamshire, 
UK 
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Fume hood Thermo Fisher Scientific, Waltham (MA), 
USA 

iBlot® dry blotting system Thermo Fisher Scientific, Waltham (MA), 
USA 

Incubator, Heraeus® HeraCell® Thermo Fisher Scientific, Waltham (MA), 
USA 

Integra viaflo electronic pipettes Integra Biosciences AG, Zizers, Switzerland 
Luminex  Luminex corporation, Austin (TX), USA 
Lumistar luminometer BMG labtech, Ortenberg, Germany 
Microtome  Leica Camera AG, Wetzlar, Germany 
Microscope IX10 OlympusDeutschland GmbH, Hamburg, 

Germany 
Microscope camera OlympusDeutschland GmbH, Hamburg, 

Germany 
Pipet boy VWR International GmbH, Darmstadt, 

Germany 
Power pack BIORAD Medical Diagnostics GmbH, 

Dreieich, Germany 
SDS Page gel chamber Thermo Fisher Scientific, Waltham (MA), 

USA 
Shaker Titramax 101 Heidolph Instruments GmbH & Co. KG, 

Schwabach, Germany 
Phero-Shaker  Biotec-Fischer GmbH, Reiskirchen, 

Germany 
Sterile bench, Heraeus® HeraSafe® Thermo Fisher Scientific, Waltham (MA), 

USA 
Tecan infinite 500  Tecan Group Ltd., Maennedorf, Switzerland 
VorTemp 56 shaking incubartor Labnet International Inc., Ediaon (NJ), USA 
Ventana Symphony slide stainer Roche Diagnostics GmbH, Mannheim, 

Germany 
Vacuum pump Thermo Fisher Scientific, Waltham (MA), 

USA 
Vortex Genie 2 Scientific Industries Inc., Bohemia (NY), 

USA 
Waterbath 1002 GFL Gesellschaft für Labortechnik mbH, 

Burgwedel, Germany 
Weighing machine, special accuracy Sartorius AG, Goettingen, Germany 
 
 

2.1.8  Software  

Name Manufacturer, Corporate headquarte rs  
CellF Cell Software Services Ltd., Brighton, UK 
Graphpad Prism Graphpad Software Inc., San Diego (CA), 

USA 
icontrol Tecan Group Ltd., Maennedorf, Switzerland 
ImageJ Wayne Rasband (NIH) 
Lumistar Galaxy BMG labtech, Ortenberg, Germany 
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Luminex Luminex corporation, Austin (TX), USA 
Microsoft office  Microsoft Corporation, Redmont (WA), USA 
SnagIt TechSmith, Okemos (MI), USA 
 

2.2 Methods 

2.2.1 Cell culture techniques  

In the presented work different cell culture formats were used, namely 2D monolayers, 3D 

speroids as well as a pump-driven microfluidic system (Kirkstall Quasi-vivo). Since media 

formulations and thawing procedures as well as seeding procedures for monolayers did not 

differ so they are described first for each cell system used and subsequently the seeding 

procedures for 3D and the microfluidic format as well as media changes and treatments are 

described in separate subchapters.  

 Collagen-coating of cell culture surfaces 

Extracellular matrices such as collagen help cells maintaining overall health and enhanced 

functionality when compared to maintenance on plain plastic surfaces (Michalopoulos and 

Pitot, 1975). All experiments in this study using 2D monolayers and quasi-vivo were 

conducted on collagen-coated surfaces. Collagen type IV lyophilisate from rat tail was 

reconstituted overnight in 0.2% acetic acid in a stock concentration of 1mg/mL. The stock 

solution was further diluted to 50µg/mL in 0.2% acetic acid and transferred into the 

respective plastic ware at type specific volumes described in table 2.1. Plastic ware was 

incubated for 1h at RT and subsequently washed twice with PBS -/- before use.  

 

Table 2.1: Voumes used for collagen coating of cell   
culture surfaces. 
Surface type Coating volume [ µL] 
96-well plates 100 
24-well plates 500 
Glass coverslips* 500 
*Glass coverslips were placed separately in 24-well plates for collagen coating. 

  Determination of cell number and viability 

Determination of total cell number and percentage of viable cells was performed via trypan 

blue exclusion in a Fuchs-Rosenthal counting chamber. 50µL cell suspension were mixed 

with each 500µL of respective media and 0.5% trypan blue solution and incubated for 5min 

at RT. 20µL of the mixture were then loaded into each chamber and both total cells and dead 

cells, which appear blue were counted in at least 3 squares. The averages of both counts 
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were calculated and subsequently dilution factor (1:21) and square volume (0.2µL) were 

offset to the total number of cells per mL as follows:  

�����
�����

�	

 � ∗ 5000 ∗ 21 

Percentage of viability was calculated and suspensions below 80% viability were not used for 

further experiments.  

  Cryopreserved HepaRG cells 

2.2.1.3.1 Media formulations 

Cryopreserved HepaRG cells were used in all cell culture formats using the media 

formulations below. 

Table 2.2: Media formulations used for general Cell  Culture of HepaRG cells. 
Name Formulation  
HepaRG thaw/seed 500mL Williams Medium E 

5mL L-glutamine 
5mL Penicillin/Streptomycin  
67mL HepaRG thaw/seed supplement 
(proprietary formulation, standard serum) 
 

HepaRG TOX 500mL Williams Medium E 
5mL L-glutamine 
5mL Penicillin/Streptomycin  
67mL HepaRG tox supplement (proprietary 
formulation, standard serum) 

 
2.2.1.3.2 Thawing and 2D seeding 

HepaRG cells (10mio/vial) were taken out of the liquid nitrogen tank and thawed in a water 

bath until small ice crystals were left. The vial content was then transferred into 50mL of 

prewarmed thaw medium and the vial was rinsed twice with 1mL thawing medium each in 

order to maximize the yield. Cells were then centrifuged for five minutes at RT (500xg). The 

supernatant was aspirated except for about 500µL, in which the cell pellet was gently 

resuspended. Subsequently, 10mL of prewarmed thaw medium was added and total cells 

and viability was determined via Trypan blue exclusion as described in section 2.2.1.2 and 

further diluted according to the different culture formats (see sections 2.2.1.1, 2.2.1.6 and 

2.2.1.7). 

For monolayer cultures, cell suspension was diluted in thaw media according to the plate 

type/well surface as described in table 8 and subsequently precultured for 96h prior to 

treatments (37°C/5%CO 2). Monolayers were always seeded in collagen-coated plates 

(section 2.2.1.1). 
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Table 2.3: Seeding densities for HepaRG monolayers.   
Plate type Volume per well Cells per well 
96-well 100µL 70,000 
24-well 500µL 300,000 
 
 

 Cryopreserved primary human hepatocytes 

Primary human hepatocytes were thawed and maintained in the media below. 

Table 2.4: Media formulations used for PHH cell cul ture. 
Name Formulation  
Cryo hepatocyte recovery medium (CHRM) Proprietary (Invitrogen CatNo CM7000) 

 
PHH culture medium  500mL Williams Medium E 

(50mL fetal bovine serum (FBS))1) 
5mL L-glutamine 
5mL Penicillin/Streptomycin 
5mL Insulin-Transferrin-Selenium (ITS) 
0.5mL Dexamethasone 

1) FBS only supplemented during spheroid formation 
 

2.2.1.4.1 Thawing and 2D seeding  

Primary human hepatocytes (KaLy cell/ Invitrogen) were taken out of the liquid nitrogen tank 

and thawed in a water bath until small ice crystals were left. The vial content was then 

transferred into 50mL of prewarmed CHRM and the vial was rinsed twice with 1mL thawing 

medium each in order to maximize the yield. Cells were then centrifuged for five minutes at 

RT (100xg). The supernatant was aspirated except for about 500µL, in which the cell pellet 

was gently resuspended. Subsequently, 10mL of prewarmed culture medium was added and 

total cells and viability was determined via Trypan blue exclusion and further diluted 

according to the different culture formats. 

For monolayer cultures, cell suspension was diluted in culture medium according to the plate 

type/well surface as described in table 2.5 and subsequently precultured for 24h prior to 

treatments (37°C/5%CO 2). Monolayers were always seeded in collagen-coated plates. 

 

Table 2.5:  Seeding densities for PHH monolayers.  
Plate type Volume per well  Cells per well 
96-well 100µL 35,000 
24-well 500µL 150,000 
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 HepG2 cell line 

In this study, HepG2 cells were maintained and passaged in culture medium. Cytotoxicity 

assessment was performed in HepG2 TOX medium according to the media formulations 

below.  

 
Table 2.6: Media formulations used for HepG2 cell c ulture. 
Name  Formulation  
HepG2 culture 500mL DMEM  

50mL FBS 
5mL Penicillin/Streptomycin (100U/ 
100µg/mL) 
5mL L-Glutamine (200mM) 
5mL non- essential amino acids (NEAA) 
 

HepG2 TOX 500mL DMEM  
5mL Penicillin/Streptomycin (100U/ 
100µg/mL) 
5mL L-Glutamine (200mM) 
5mL non- essential amino acids (NEAA) 

 
 
2.2.1.5.1 Thawing, maintenance and passaging of HepG2 

HepG2 cells were taken out of the liquid nitrogen tank and thawed in a 37°C water bath until 

small ice crystals were left. The content was quickly transferred into a 175cm2 cell culture 

flask with 20mL prewarmed HepG2 culture medium. Cells were allowed to attach for 24h 

until media was renewed in order to remove the DMSO containing freezing medium. Cells 

were maintained until 75-90% confluency before passaging, thereby renewing the culture 

medium every 2-3 days.  

Passaging of HepG2 was performed by aspirating the medium, washing once with 10mL 

PBS -/- and adding 2.5mL trypsin-EDTA. Flasks were then gently rotated to distribute trypsin 

and subsequently incubated for 5 minutes at 37°C/5% CO2. The detached cells were then 

resuspended in culture medium into a fresh, prefilled cell culture flask in a splitting rate of 1:6 

to 1:10 depending on previous confluency.  

2.2.1.5.2 Seeding of HepG2 

HepG2 cells were seeded in white 96-well plates for every experiment conducted. Therefore, 

confluent cell culture flasks were trypsinized (section 2.2.1.5.1) and subsequently counted 

via Trypan blue exclusion and diluted in culture medium to a concentration of 200,000 

cells/mL. Cells were then seeded in 100µL per well (20,000 cells per well) into collagen-

coated 96-well plates and preincubated for 48h (37°C/5%CO2) to allow attachment and 

recovery prior to treatment.  
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 Spheroid cell culture 

Spheroid cell culture was conducted using 96-well ultra-low attachment plates (ULAP) with 

U-bottom. The surface of those plates is treated so that cells are not able to attach to the 

plastic and cells consequently attach to each other, thus forming a single spheroid per well in 

4 to 7 days. The seeding procedure is similar to that of monolayers, only the total cell number 

per well is much less. Additionally, the plates containing PHH were centrifuged in order to 

shorten spheroid formation time. Details for seeding both cell systems are listed in table 2.7.  

 

 

Table 2.7: Seeding densities, formation time and ce ntrifugation steps for HepaRG and PHH 
spheroid culture.  
Cell type  Cells/ well (spheroid)  Spheroid formation time  centrifugation  
HepaRG 1,800 4 days No 
PHH 1,500 4-10 days 10min, 90xg, RT 
 

 
 

Spheroid formation time was determined empirically for both cell systems by daily 

microscopy. Spheroids were ready to use as soon as the outer lining appeared tight and not 

bubbly. Before starting any experiment, every single spheroid was checked regarding gross 

morphology and shape and approved as either “valid” or “invalid”. For every experiment 5 

spare plates were seeded in order to replace invalid spheroids with valid ones. Therefore, all 

invalid spheroids were marked and aspirated and valid spare spheroids were transferred 

(100µL) into the empty wells. Spheroid formation as well as examples for valid/invalid 

spheroids is given in the following figures 2.1 and 2.2, respectively.  

 

Figure 2.2 : Examples of valid/ invalid HepaRG spheroids. A: v alid spheroid with distinct lining showing no 
visible inclusions. B+C: invalid spheroids due to f oreign material (e.g. fibres) leading to irregular shapes. 
D+E: invalid spheroids either without distinct lini ng (D) or too irregular in shape (E). 10x magnifica tion, 
bars = 100µm  

Figure  2.1: Microscopic overview of spheroid formation of PHH Lot HU41 97 over time. Single cells 
accumulate at the well bottom and form compact sphe roids within 5 days. 4x magnification, bars = 
200µm. 
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2.2.1.6.1 Medium change and compound treatment  

Medium change was not performed before day 4 after seeding in order to not perturb the 

aggregation/spheroid formation process. Depending on the aggregation state on day four 

post seeding, cells were either treated (HepaRG) or maintained longer until compact 

spheroids were obtained (PHH, up to 7 days).  

Medium change was performed by replacing 50µL of respective media (HepaRG thaw/ PHH 

culture medium) per well using an electronic pipet set to the lowest possible speed to avoid 

both spheroid aspiration and perturbation of the formation process. Once spheroids were 

compact and invalids were replaced, a medium change to HepaRG tox was performed twice 

before dosing HepaRG spheroids; PHH spheroids were kept in culture medium.  

Dosing solutions were prepared by further dilution of the 200x DMSO stock solutions in the 

respective media. Since it is not possible to remove the total volume in this culture format 

due to spheroid loss, two different approaches have been used for compound treatment.  

The first treatment was performed by diluting the 200x stocks in a 1:100 ratio resulting in 2x 

end concentration and replacement of 50µL leading to a further 1:2 dilution in the well.  

Every subsequent treatment was performed using washing steps with the final end 

concentrations (1:200 stock dilution) in order to keep the concentration bias as low as 

possible. Thereby, 90µL were replaced three times as slowly as possible, resulting in a 

1:1,000 dilution of the old dosing solution.  

Medium change and/or compound treatment were performed every 2 to 3 days and with 

every treatment, vehicle (DMSO) controls were carried out.  

 Quasi-vivo® 

The quasi-vivo system from Kirkstall Ltd. is a pump-driven microfluidics system that displays 

the option to manipulate the flow, thus enabling to setup the optimal flow rate for different cell 

systems. The introduction of flow to a cell population introduces shear forces and shear 

stress to the cells, which may enhance physiologically relevant functions in vitro. Additionally, 

the flow allows a more dynamic exchange capacity than under static culture conditions. 
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The 6-head pump allows testing six different conditions at a time, each head is connected to 

a reservoir bottle containing medium or dosing solution via tubing and pumps volume through 

the further connected cell culture chambers and finally back to the pump. Thereby, the 

amount of cell culture chambers per condition is variable and only limited by the incubator 

size. Figure 2.3 shows a picture of the system as well as schematic principle of how it works.  

2.2.1.7.1 Pump calibration 

Before any experiment, pump calibration was performed in order to validate the flow rate. For 

this, one head of the pump was connected to a reservoir bottle prefilled with water. An empty 

plastic weighing dish was weighed and subsequently the pump was started and let run for 

five minutes whereby the pumped water was collected in the dish and weighed again. The 

average in µL/min was calculated and adjustment was done if necessary, subsequently the 

procedure was repeated twice in order to ensure a constant flow rate. Note that the pump 

heads are not capable of independent flow rates since the peristaltic backbone of the pump 

is a single unit for all heads.  

2.2.1.7.2 Cell seeding and maintenance 

Since cells first need to attach before starting any flow, static preculture was required. Cells 

were seeded onto round, collagen-coated glass coverslips by transferring the single 

coverslips into the wells of a 24-well plate using sterile forceps. Cells were seeded according 

to monolayer protocol (section 2.2.2.3) and precultured for 96h (HepaRG) to allow 

attachment and recovery. On day 0, the coverslips were transferred into the QV 900 plates 

using sterile forceps and were directly covered with fresh medium or dosing solution to 

prevent drying out until all units were prepared. Subsequently, the culture chambers were 

closed connected using pre-sterilized tubing including luerlocks according to the scheme in 

Figure 2.3: Overview of the quasi- vivo system. Left: Representative picture of the re adily 
assembled system as it was used. Right: Schematic overview of the connecting tubing and flow 
direction (arrows) from reservoir (R) to plates and back. Interconnected luerlocks (black  cubes) 
allow to short ciruit during sampling without the n eed to disassemble the tubing. 
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figure 8. every condition thereby resembles one closed unit including one reservoir bottle and 

one pump head. Reservoir bottles were prefilled with 25mL of cell type dependent medium or 

dosing solution units were then connected with their respective reservoir and head.  All 

previous steps were performed under sterile conditions and as soon as every unit was closed 

the complete system was connected to the power supply and prefilled using the “prime” 

button, which pumps at maximum speed. After priming, the system was kept in an incubator 

at 37°C/5% CO 2.  

For medium change and re-dosing, the system was taken out of the incubator and tubing 

was emptied using both the “reverse” and “prime” button until the total volumes were in the 

reservoirs. The system was put under a sterile bench and the respective media was replaced 

by 25mL of fresh, pre-warmed medium or dosing solution without the need of opening 

chambers or disconnect tubing. Subsequently, the system was primed again and placed in 

the incubator as described above. Medium change was performed twice a week and the 

system was checked daily on any leaking.  

 
 

2.2.2 Molecular biological methods 

In this thesis, different cell culture formats were used and compared to each other as far as 

possible. The different formats show substantial differences in i.e. required cell amounts, 

treatment and maintenance time as well as applicability to molecular biological methods. In 

the following subchapter, the formats that were applied to each method are noted separately 

for each section and possible format-depending differences in processing are described in 

detail. 

 Experimental schedules 

Timeline for experiments with the endpoints viability, proteinalysis, and histopathological 
applications  
 
 

Figure 2.4: Timeline for long- term experiments in 2D, 3D and QV culture formats. Endpoints/ samples 
covered were viability, protein isolation and spher oid fixation for paraffin and cryoblocks.  
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Timeline for CYP induction experiments in HepaRG cells. 

 Compound concentrations 

In this study, 13 MIP-DILI training compounds as well as 4 model CYP inducers were used at 

various concentrations. Overall dose ranges of each compound are listed in table 2.8 and the 

compounds and concentrations for each experiment are listed in the respective subchapters 

of the results and discussion section. Compound concentrations for each experiment were 

defined depending on the compound-specific EC50 values as well as on experimental setup 

and duration.  

Generally, MIP-DILI training compounds were prepared as 200x stock solutions in DMSO or 

water, CYP inducers were prepared as 1,000x stock solutions in DMSO and stored as 

aliquots at -20°C until use. Each aliquot was thawed once to avoid stability issues by freeze-

thaw cycles.  

 

Table 2.8: Compounds and overall dose ranges that w ere used in this study.  
Specific dose ranges are described for each experiment in the results section. 
Compound name (code)  Dose range [ µM] Solvent  
Acetaminophen (APAP) 30.0 – 30,000 DMSO 
Amiodarone (AMI) 3.0 – 300  DMSO 
Bostentan (BOS) 3.0 – 300 DMSO 
Buspirone (BUS) 3.0 – 300 DMSO 
Diclofenac (DCF) 5.0 – 500  DMSO 
Entacapone (ENT) 10.0 – 1,000 DMSO 
Metformin (MET) 10.0 – 1,000 H2O 
Nefazodone (NEF) 3.0 – 300 DMSO 
Perhexiline (PER) 3.0 – 300 DMSO 
Pioglitazon (PIO) 3.0 – 300 DMSO 
Tolcapone (TOL) 10.0 – 1,000 DMSO 
Troglitazon (TRO) 3.0 – 300 DMSO 
Ximelagatran (XIM) 3.0 – 300 DMSO 
Omeprazole (OMEP) 1.55 – 100.0 DMSO 
Phenobarbital (PB) 31.0 – 1,000 DMSO 
Rifampicin (RIF) 0.1 – 50.0 DMSO 
Flumazenil (FLU) 0.003 – 30.0 DMSO 

Figure 2.5: Timeline for long term CYP induction st udies in both 2D and 3D cell culture in HepaRG cell s.
Samples covered by this schedule were RNA (for bran ched DNA) and spheroid fixation for cryoblocks 
(immunofluorescent staining).  
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 CellTiter-Glo® assay 

Viability was measured using CellTiter-Glo® assay, at which the total amount of ATP in the 

cell population disposes the limiting agent of a light emitting reaction described in figure 2.6. 

Emitted light was measured using a luminometer. 

 

 

Aliquoted CellTiter-Glo® substrate was dissolved in 10mL CellTiter-Glo® buffer and 

processed differently for 2D and 3D: 

 

Table 2.9: Format-specific differences for viabilit y measurements using CellTiter-Glo. 
Monolayer  Spheroids  

• 1part medium and 1part CellTiter-

Glo® solution were mixed  

• Every condition was conducted in 

triplicates 

• Medium was aspirated and 

100µL/well of the mixture was added 

• Plates were incubated protected from 

light for 2min while shaking and 

additional 10min without shaking 

• Luminescence was measured using 

a Luminometer 

• Every condition was conducted in 

hexaplicates 

• 75% Medium (75µL from 100µL) was 

removed using an electronic pipette 

set at very low speed 

• 25µL/well of the CellTiter-Glo® 

solution was added and mixed 

thoroughly by pipetting up and down 

10 times 

• Plates were incubated for 20min at 

37°C  

• Luminescence was measured using 

a Luminometer 

 
The raw data was analyzed by generating mean and standard deviation. After subtracting the 

blank mean, the values were divided by the control and displayed as percent of control. EC50 

values were calculated using non-linear regression analysis and plotted as mean and 

standard deviation summarizing the single experiments.  

Figure 2.6: Assay principle of CellTiter-Glo ®. Beetle luciferin undergoes 
oxidation to oxyluciferin in the presence of Mg 2+ and ATP, the reaction 
thereby emits light. ATP poses the limiting reagent  so that the amount of 
emitted light is directly proportional to the ATP c ontent of the sample 
(Figure taken from www.promega.de). 
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 Resazurin assay 

A second and multiplexable option for viability measurement was conducted by Resazurin or 

Alamar blue assay, at which viable cells reduce the blue, non-fluorescent Resazurin into pink 

and fluorescent Resorufin and viability can be measured either colorimetrically or 

fluorometrically. In this study, fluorescence was measured due to being the more sensitive 

option. 

 

A sterile 4.5 mM resazurin in PBS solution was added as 10% of total volume and incubated 

at 37°C for 1-2 hours. Subsequently, the supernatan t (100µL/well) was transferred into 

black/clear bottom 96-well plates and protected from light until measurement. Plates were 

measured using Tecan infinite F500 fluorescent reader (λ excitation: 571nm; λ emission: 

585nm). 

The raw data was analysed by generating mean and standard deviation. After subtracting the 

blank mean, the values were divided by the control and displayed as percent of control. 

  Isolation of total Protein  

Total protein from the different culture formats was isolated using CytoBuster Protein 

extraction reagent, freshly supplemented with protease inhibitor cocktail set III (dilution 

1:200) and phosphatase inhibitor set II (dilution 1:100) and chilled down to 4°C before use.  

QV samples were taken out of the system by emptying the system through reversing the 

flow, opening the chambers and transferring the glass coverslips into 24well plates using 

sterile forceps (triplicates per condition). Samples were the processed like static monolayers 

(duplicates per condition) and 3D samples were processed differently: 

 

Table 2.10: Format-specific differences for isolati on of total protein . Spheroids have to be 
treated with accutase in order to break up the tigh t structure and obtain higher yields. 

2D and QV 3D 
• Cells were washed twice with cold 

PBS and 400µL/well (2D) and 
• 480 spheroids per condition were 

harvested and pooled in an 2mL 

Figure 2.7: Resazurin assay principle. Blue and weakly 
fluorescent Resazurin is reduced by viable cells to  pink and 
strongly fluorescent Resorufin. (Figure taken from 
www.promega.de) 
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200µL/well (QV) of the supplemented 
Cytobuster reagent was added and 
incubated at RT for 10min 

• The well bottoms were gently 
scraped using a cell scraper in order 
to maximize the yield 

• The samples were transferred into 
reaction tubes and centrifuged at 4°C 
and 16,000rpm for 10min 

• The supernatants were transferred 
into fresh reaction tubes and either 
kept on ice until use or stored at -
80°C 

reaction tube 
• Medium was aspirated and the 

spheroid pool was washed twice with 
cold PBS by spinning down and 
resuspension 

• 2mL accutase was added and 
spheroids were incubated for 20min 
at 37°C 

• Spheroids were spun down and 
washed twice again with PBS 

• 400µL of supplemented Cytobuster 
was added and incubated for 15min 
at RT while vortexing quickly every 
few minutes 

• The samples were centrifuged at 4°C 
and 16,000rpm for 10 minutes 

• The supernatants were transferred 
into fresh reaction tubes and either 
kept on ice until use or stored at -
80°C 

 

 Determination of total Protein via Bradford 

The Bradford protein assay is a colorimetric method for the determination of total protein 

content of samples in a microgram range by an absorption shift of Coomassie brilliant blue 

G-250 when forming complexes with proteins in solution. The preparation of a standard 

curve was performed by diluting a 2mg/mL protein standard solution according to the 

scheme in table 16. Samples were thawed on ice and quickly vortexed before use. 10µL per 

well of either standard or sample was transferred in a clear 96-well plate in quadruplicates 

and 200µL per well of 1x Bradford Reagent was added. The plate was incubated while 

shaking for 10min and optical density was subsequently measured. 

 

Table 2.11: Preparation of Protein standard series for calculation of total protein in the 
samples. 
standard final concentration [µg/mL] Vol Cytobuster  

[µL]  
Vol standard 2mg/mL [µL] 

1 0 100 0 
2 100 950 50 
3 250 350 50 
4 400 200 50 
5 500 150 50 

 
OD means of the standards were plotted against the concentration and a linear trend line 

was added. The slope equation was used to determine the protein content [µg/mL] of the 

samples by resetting the equation to x and inserting the mean OD (= y) of each sample.  
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 SDS page gel-electrophoresis  

Samples were thawed on ice and 1x MES-SDS running buffer was prepared by diluting 

50mL 20x MES-SDS running buffer in 950mL deionized water. For all electrophoreses 

performed, 5µg total sample protein was loaded to the gels resulting in different sample 

volumes according to their respective concentration. Samples were prepared by adding 4x 

sample buffer and 10x reducing agent according to the desired total volume (adjustment to 

end volume with deionized water if needed). Table 2.12 exemplifies the preparation scheme 

using HepaRG day3 control samples of different culture formats. 

 

Table 2.12: Example of sample preparation for SDS-P age gel-electrophoresis . A total amount of 
5µg Protein per load was needed so that sample volu me varied depending on the amount of 
protein in each sample.  

Reagents Samples; total Volume= 200µL (10 loads) 

 HRG ctrl day3 2D HRG ctrl day3 3D HRG ctrl day3 QV 
10x5µg Sample [µL] 36 76 63 
10x reducing agent 
[µL] 

20 20 20 

4x sample buffer [µL] 50 50 50 
Deionized water [µL] 94 54 67 

 

The samples were subsequently denaturated for 10min at 70°C and stored on ice until use. 

Ready to use 4%-12% Bis-Tris gels were unpacked and fixed in an electrophoresis chamber, 

which were then filled with running buffer and combs were removed. The gel pockets were 

then loaded with either 20µL sample or 10µL pre-stained protein marker. Chamber lids were 

put on and connected with power supply set to 200V and 125mA for 45min. Gels were 

subsequently blotted onto nitrocellulose membranes. 

 Protein transfer via iBlot semi dry blotting system 

The iBlot device was opened and after removing the sealing, the anode stack was placed 

bottom with the tray directly on the blotting surface, nitrocellulose membrane facing up. The 

pre-run gel was taken out of its disposable plastic tray and transferred directly onto the 

membrane and the pre-soaked (deionized water) filter paper was placed on the gel and 

bubbles were gently removed using the Blotting Roller. Subsequently, the cathode stack was 

placed on top with the electrode side facing up and air bubbles were again rolled out. Lastly, 

the disposable sponge was placed into the lid with the metal contact in the upper right 

corner, the system was the closed and blotting was started (20V, 10min).  

After Blotting, the membrane was taken out carefully and stored dry and light protected until 

use (up to 4 weeks). 
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 Western Blotting  

Table 2.13: Buffers used for Western Blotting. 

Wash buffer 0.5% Triton x-100 in deionized 

water 

 

Blocking buffer 5% nonfat dried milk powder in 

wash buffer 

 
The membranes were placed in clean plastic trays and 15mL/ tray Blocking buffer was added 

and incubated at RT for one hour while shaking. Subsequently, the blocking buffer was 

discarded and respective antibodies were added (diluted in blocking buffer, 15mL per tray, 

dilutions see table 18) and incubated for 1-2 hours at RT while shaking. The antibody 

dilutions were then discarded and membranes were rinsed on with 25mL wash buffer per 

tray and then washed three times by adding 15mL wash buffer per tray and shaking for 

10min and discarding wash buffer.  

After washing, the respective secondary antibody (anti-mouse/anti-rabbit) was diluted 

1:2,000 in blocking buffer and 15mL per tray were added and membranes were again 

incubated at RT for 1h while shaking. Membranes were then rinsed and washed again as 

described above and transferred into clean trays. 

Western Blot detection reagents were mixed 1:2 and 2mL of the mixture was pipette directly 

on each membrane and incubated for 2min. excess detection reagent was carefully dripped 

off using a tissue and membranes were then transferred into a film cassette between two 

layers of transparent foil and air bubbles were removed. Further processing took place in a 

darkroom by putting the light sensitive film into the cassette and after an antibody-dependent 

exposure time (2-10min) the film was developed using the Amersham Hyperprocessor 

developer.  

 Preparation of Paraffin sections  

6-12 spheroids per condition were harvested in a reaction tube and as much medium as 

possible was removed before 500µL 4% Formaldehyde solution was added and incubated at 

RT for 30min. Subsequently, as much volume as possible was removed and spheroids were 

washed once with PBS and spheroids were processed through the alcohol series by each 

adding 500µL, incubating for 2min at RT and removing as much volume as possible 

(~480µL). Alcohol series was performed as follows:  

50% EtOH → 70% EtOH →96%EtOH →Isopropanol → Isopropanol: Xylene (1:2) → Xylene 

The spheroids were then aspirated using a pipette and after they settled down at the tip 

opening, spheroids were transferred into a biopsy cryomold by dipping the tip onto the mold. 
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Subsequently, one drop Paraffin was added and cooled down to fix the spheroids at the mold 

bottom before the mold was filled completely. Molds were then frozen at -20°C before 

sectioning. 

Sections were obtained by using a rotational microtome set to 1.5µm thickness and put onto 

glass slides after stretching in warm water (42°C).  Sections were stored at RT until use. 

 H&E staining 

The hematoxylin and eosin (H&E) staining is the gold standard histologic staining method for 

the pathological assessment of tissue samples. Since spheroids can be described as 

microtissues, they are applicable to histological tissue processing in a modified way as 

described in section 2.2.2.10.  

H&E staining of paraffin-embedded spheroid sections was performed as quality control to 

ensure general cell health and the absence of necrotic cores on the one hand as well as for 

histopathologic examination of treated spheroids to assess whether H&E stained sections 

pose a possible endpoint when using 3D cell culture for early safety assessment.  

Staining was performed using the Ventana Symphony automated stainer (Roche) with the 

staining program “C43”, which stains according to the following protocol: 

Table 2.14: Staining procedure for H&E staining of paraffin-embedded spheroid sections.  
Staining was performed using the Ventana Symphony a utomated stainer (protocol C43).  
Step Reagents and incubation t ime  
Deparaffinization  Xylene, 2x2min 
Rehydration Isopropanol, 3min 

96% EtOH, 3min 
70% EtOH, 3min 
50% EtOH, 3min 
dH2O, 3min  

Stain with hematoxylin Hematoxylin, 4min 
Wash Tap water, 3x2min 
Stain with eosin Eosin, 1min 
Dehydrate 96% EtOH 2x10sec 

Isopropanol, 2x1min 
Isopropanol/Xylene, 2min 
Xylene, 2x2min 

Mount Entellan 
 
The sections were subsequently evaluated microscopically and photos were taken 

exemplarily for each time point/ condition.  

  Preparation of cryosections 

6-12 spheroids per condition were harvested in a reaction tube and as medium as possible 

was removed before 500µL 4% Formaldehyde solution was added and incubated at RT for 

30min. Subsequently, as much volume as possible was removed and spheroids were 
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washed once with PBS before 500µL of a 30% (w/v) glucose solution was added and 

incubated for 30min. Spheroids were then aspirated in 20µL and transferred into the center 

of a biopsy cryomold and the mold was filled with O.C.T. compound and incubated for 1h at 

room temperature. After incubation, the samples were frozen and stored at -20°C. 

Sections were prepared using a cryostat precooled at -20°C and set to 3µm thickness and 

put onto glass slides by dipping the slide (RT) onto the section. Sections were stored at RT 

until use.  

 Immunofluorescent staining  

Table 2.15: Buffers used for immunofluorescent stai ning of spheroid  
cryosections . 
Blocking 
buffer 

PBS with calcium and 
magnesium  
0.3% Triton x-100 
7.5% normal goat serum 
 

Wash buffer PBS with calcium and 
magnesium  
0.02% Tween 20 

 
Specimen position on each slide was labeled using a hydrophobic barrier pen in order to 

both avoid drying and minimizing needed volumes. Specimen were permeabilized and 

blocked for 30 min at RT using blocking buffer. Blocking buffer was discarded and primary 

antibodies in the desired dilutions were added and incubated at RT in respective times. 

Subsequently, the slides were washed twice with washing buffer and the respective 

secondary antibody, depending on the host species of the primary antibody, was added in a 

1:2,000 dilution in blocking buffer supplemented with the counterstains Hoechst (nuclear 

stain, dilution 1:1,000) and Rhodamine-Phalloidin (membrane counterstain, dilution 1:100). 

Slides were incubated light protected for 1h at RT, washed twice in wash buffer and once in 

PBS and stored in PBS at 4°C protected from light u ntil microscopy.  

 CYP-450 induction 

The inducibility of specific CYP enzymes accounting for xenobiotic metabolism was used to 

characterize HepaRG per se as well as to compare CYP induction HepaRG cells in 2D and 

3D cell culture format by model inducers. The quantification of the different target mRNAs 

was performed with the QuantiGene Plex Assay from Panomics (Plex Set 11563, Affymetrix) 

containing a target-specific mixture of Probe Set and Capture beads was used to detect 10 

targets.  
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The assay is based on hybridization of the target sequence to magnetic beads (xMAP 

Luminex) and signal amplification via branched DNA technology. The technology principle is  

 

explained in figure 2.8 and signal detection was performed using the Luminex 200 system.  

HepaRG cells were seeded and precultured in 2D and 3D as described in sections 2.2.1.3 

and 2.2.1.6 and subsequently treated with three model inducers and one negative control, 

namely Phenobarbital (PB), Omeprazol (OMEP), Rifampicine (RIF) and Flumazenil (FLU) in 

7-8 different concentrations plus vehicle control (see table 2.7). Compound treatment was 

performed as described in 2.2.1.3 for 2D and 2.2.1.6 for 3D, using three replicates per 

condition for 2D and 12 spheroids per condition for 3D. In total, samples were taken at days 

3, 7 and 14 for both formats and compound treatment was performed twice before sample 

processing as described in figure 2.5. After 48h of compound treatment, the respective 

samples were lysed by replacing the medium with a working lysis mixture composed of 1 part 

lysis mixture supplemented with 5microL/mL proteinase K (both included in the QGP 2.0 kit) 

and 2 parts HepaRG tox medium. For 2D, medium was aspirated and replaced by 90µL of 

working lysis mixture per well, whereas for 3D, each spheroid was taken up in 12µL medium 

and spheroids were pooled in one well of a 96 well plate resulting in 12 spheroids in 144µL 

and 72µL of supplemented lysis mixture were added. Subsequently, the samples were 

incubated at 37°C/5%CO 2 for 1h, lysis was checked microscopically and samples were snap 

frozen at -80°C until further processing.  

 

Figure 2.8: principle of the measurement of two tar get genes using the 
QuantiGene Plex 2.0 assay . After sample preparation and hybridization of the 
bead-bound capture extender to the target sequence, the signal amplification 
tree is built in sequential hybridization steps (se e text for detailed description). 
Finally, phycoerythrin (SAPE) is exploited as fluor escence- based indicator for 
signal generation, which allows the quantification of target RNA present in the 
sample.  
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2.2.2.14.1 Hybridization (Day1) 

Samples were thawed at RT and stored on ice until use. The appropriate probe set was 

thawed on ice before denaturation at 95°C for 5min and put back on ice again. For the 

hybridization of the target RNAs to the corresponding capture beads, the working plex sets 

were prepared as described in table x for both samples and total liver RNA, which serves as 

quality control to confirm assay linearity. A standard curve of total liver RNA ranging from 

0.78ng/µL to 25ng/µL was prepared using nuclease free water in two-fold dilutions and six 

concentrations. A volume of 80µL working plex set for total liver RNA and 20µL of 

corresponding total liver RNA as well as 20µL of working plex set for samples and 80µL 

sample plus blank were added to each well of a 96 well round bottom plate. The plate was 

sealed using self-adhesion foil and incubated at 600rpm and 54°C for 16h using a VorTemp 

56 shaking incubator. 

 

2.2.2.14.2 Signal amplification (Day2) 

Following target-to-bead hybridization, sequential hybridization steps were performed to 

amplify the signal to enable detection of low abundance molecules via the branched DNA 

technology (Ureda et al., 1987). The wash buffer was prepared according to table 20 and 

prefilled into the 405TS microplate washer, which was set up by rinsing once with DEPC 

treated water.  

After hybridization, the adhesive foils were removed and plates were placed in the automated 

washer using the washing program (3x 200 µL wash buffer). The magnetic plate tray of the 

washer keeps the magnetic beads at the well bottom so that no losses occur during the 

washing step. The plates were then further processed by adding 100µL/well pre-Amplifier 

and sealed again before quickly shaken at 800rpm and RT to resuspend the beads. 

Subsequently, the plates were incubated for 1h at 50°C and 600rpm, washed again as 

described before and 100µL/well amplifier were added and plates were again resuspended 

and incubated at the same conditions.  

 

2.2.2.14.3 CYP induction data analysis 

The Luminex 200 measurement principle is comparable to FACS technology, only with 

beads instead of cells. The different target-specific beads contain different amounts of 

phycoerythrin, which result in a unique bead pigmentation for each target, thus allowing 

tracking of various analytes within one sample. The signal itself is fluorescent and the 

xPonent software calculates the median from the data range as “median fluorescence 

intensity (MFI)” values, which were used for further analysis. The assay quality was 

assessed by evaluating the housekeeping gene expression against the total liver RNA 
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standard curve. The blank-corrected averages of the measured duplicates were plotted 

against the applied total liver RNA concentrations.  
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3 Results and Discussion 

This thesis primarily deals with the assessment and comparison of HepaRG cells in various 

cell culture formats and was performed as part of the IMI MIP-DILI project. In this section, the 

results from different endpoints including viability, protein expression, morphology and CYP 

induction are presented and discussed. Data analysis, illustrations and comprehensive 

interpretation of the results represent my own work and results and interpretations from 

collaborative experiments within MIP-DILI are clearly labeled. A detailed overview of the 

personal contributions within the MIP-DILI project is given in section 1.6 personal 

contributions. 

3.1 Assessment of current hepatic cell culture models 

3.1.1 Multicenter cytotoxicity ring trial 

The starting point for MIP-DILIs in vitro work package was an unbiased assessment of 

hepatic cell culture models that are widely used in early safety assessment test batteries of 

the pharmaceutical industry. The focus was on whether simple cell models that are applied 

using simple endpoint measurements can distinguish between compounds that have the 

potential to cause DILI in man and those that are considered non-hepatotoxic.  

A ring trial among seven MIP-DILI partners was performed, in which a small panel of DILI (9) 

and non-DILI (4) compounds was tested in monolayers of four hepatic cells systems: PHH, 

HepaRG, HepG2 and Upcyte hepatocytes. The cells were treated with the 13 compounds at 

7 concentrations each (table 3.1) for 24h and 72h and two simple viability endpoints, ATP 

and Resazurin assay were conducted. Training compound selection was based on literature 

seach (performed by AstraZeneca) with focus on the selection of well-studied compounds 

that, taken together, sufficiently cover the five main mechanisms leading to DILI alongside 

four non-hepatotoxic compounds. Concentration ranges were selected on existing 

cytotoxicity data as well as on displaying a renge, which is broad enough to cover different 

increments on the severity of cytotoxic effects (performed by AstraZeneca and University of 

Liverpool). Detailed materials and methods are described in Sison-Young, Lauschke and 

Johann et al., 2016. 

Inter and intra-laboratory reproducibility was calculated as well as analysis of differences 

between the cell systems with respect to their ability to distinguish between DILI and non-

DILI compounds. Additionally, differences between fresh and cryopreserved cells of two cell 

types (PHH and HepaRG cells) and also differences between two HepG2 clones were 

investigated statistically. Assay performance, dose-response curves and calculation of EC50 

values was performed by each partner with the respectively generated data sets, final 
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analyses and statistics were performed at the University of Liverpool, Karolinska Institutet 

Stockholm and Merck KGaA Darmstadt.  

Due to the lack of significant variation between the ATP and Resazurin assay, only the ATP 

data is presented (Resazurin and ATP viability data see Appendix 1).  

 
Table 3.1: Selected training compounds and final do se ranges. 
Compound (code) Hepatotoxic/ non-hepatotoxic Final dose range [ µµµµM] 

Amiodarone (AMI) Hepatotoxic 3; 5; 10; 30; 50; 100; 300 

Bosentane (BOS) Hepatotoxic 3; 5; 10; 30; 50; 100; 300 

Buspirone (BUS) Non-hepatotoxic 3; 5; 10; 30; 50; 100; 300 

Diclofenac (DCF) Hepatotoxic 10; 30; 50; 100; 300; 500; 1000 

Entacapone (ENT) Non-hepatotoxic 10; 30; 50; 100; 300; 500; 1000 

Metformin (MET) Non-hepatotoxic 30; 50; 100; 300; 500; 1000; 

3000 

Nefazodone (NEF) Hepatotoxic 3; 5; 10; 30; 50; 100; 300 

Paracetamol (APAP) Hepatotoxic 30; 100; 300; 1000; 3000; 

10,000; 30,000 

Perhexiline (PER) Hepatotoxic 3; 5; 10; 30; 50; 100; 300 

Pioglitazone (PIO) Non-hepatotoxic 3; 5; 10; 30; 50; 100; 300 

Tolcapone (TOL) Hepatotoxic 10; 30; 50; 100; 300; 500; 1000 

Troglitazone (TRO) Hepatotoxic 3; 5; 10; 30; 50; 100; 300 

Ximelagatran (XIM) Hepatotoxic 3; 5; 10; 30; 50; 100; 300 

 
The EC50 values (effective concentration 50%) for the response in ATP content to each 

compound in the tested cell systems are shown in figure 21 for 24h (left) and 72h (right). The 

figure shows that none of the tested cell systems was able to reliably distinguish between 

DILI (red dots) and non-DILI (green dots) compounds at either time point. 
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When assessing the single EC50 values alone, as would occur in the early stages of drug  

discovery, these simple cell models were not able to predict a compound’s potential to cause 

hepatotoxicity based on the primary EC50 values alone. Therefore, the EC50 values were 

corrected with in vivo exposure levels by integrating the clinically relevant peak plasma 

concentrations (Cmax) for each compound in each cell model at both 24h and 72h as the 

EC50/Cmax ratio. Because no definite EC50/Cmax ratio is established as critical in the literature, 

a range of values has been tested in terms of how many hepatotoxicants are recognized.  

Using an EC50/Cmax value of 20, all DILI positive compounds with the exception of XIM were 

detectable as such in PHH after 72h. Eight out of 9 DILI risk compounds were detected in 

PHH after 72h, but not after 24h (figure 3.2). The only DILI compound that was not identified 

was XIM, which was negative across all cell models tested. Additionally, one DILI negative 

compound was identified as positive in PHH after 72h, namely ENT. HepG2 cells showed a 

similar profile to PHH by identification of 7 out of 9 DILI compounds after 72h (except for 

APAP and XIM). At 24h, both PHH and HepG2 also showed similar profiles detecting 4 

(PHH) and 3 (HepG2) out of 9 DILI compounds. In comparison, both HepaRG and Upcyte 

cells showed less accuracy for the indication of DILI risk at 24h (both 2 out of 9 

hepatotoxicants) or 72h (both 4 out of 9 hepatotoxicants).  

Figure 3.1: Scattergram of EC 50 values derived from ATP content measurements after  exposure to 
the training compounds of each cell type for 24h (l eft) or 72h (right). Data is expressed as mean 
from multiple measurements across test sites for ea ch compound. Hepatotoxicants (red dots) and 
non-hepatotoxicants (green dots) are not clearly se gregated in any of the cell models tested. 
(Figure taken from Sison-Young, Lauschke, Johann et  al., 2016) 
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Another aim of this ring trial was the assessment of differences at both the inter- and intra-

laboratory level, between fresh and cryopreserved cells (PHH and HepaRG) as well as 

between the two different HepG2 clones (the ECCAC1 clone that is used for all MIP-DILI 

studies and the TS2 clone, which is an in-house clone from one test site). Therefore, at least 

two different partners performed experiments for each cell system to allow pairwise 

comparison. Statistically significant inter-laboratory differences were detectable in the 

cytotoxic response of PHH, HepG2 and Upcyte hepatocytes, but not for HepaRG cells. The 

inter-laboratory differences range from minor variation in Upcyte cells (12.3%) to higher 

variation in HepG2 cells (23.4%) and PHH (48.5%) and also seems to be compound 
                                                
1 European Collection of Authenticated Cell Cultures 
2 Test Site 

Figure 3.2: A and B are clustered column plots show ing the EC 50/Cmax values for thirteen compounds 
tested, as detected by the four cell models that ha ve been tested by at least two partners (cryoPHH, 
HepG2 ECCAC, cryoHepaRG and Upcyte cells) after 24h  (A) and 72h (B). The cutoff value for the 
EC50/Cmax ratio of 20 is indicated as red dotted line (repre sents 2 4 on the y-axis). The four non-
hepatotoxic compounds are indicated as such. C and D show stacked column plots visualizing the 
number of compounds classified as toxic by the diff erent cell models with an EC 50/Cmax at or below 20 
after 24h (C) and 72h (D). Primary human hepatocyte s recognized more hepatotoxicants after both 
time points than the other cell systems tested, ind icated by the blue columns in C and D. Following 
72h, all cell models detected more DILI compounds a s such compared to 24h. (Figure taken from 
Sison-Young, Lauschke and Johann et al., 2016, modi fied) 
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dependent (except for XIM - data not shown, see Sison-Young, Lauschke and Johann et al., 

2016). Interestingly, intra-laboratory variations also occurred, especially in HepG2 (15.4%) 

and upcyte cells (11.5%), whereas differences in HepaRG (5.7%) and PHH (2%) were 

negligible. These intra-laboratory variations also seem to be compound-specific, i.e. varying 

from 21.1% for the replicates of PIO to no significant differences for APAP and DCF across 

the cell models. 

Furthermore, pairwise comparisons were also performed for fresh vs. cryopreserved 

HepaRG cells and statistically significant differences were found for only 3 of 13 compounds 

for both time points (TRO, AMI and TOL, data see Sison-Young, Lauschke and Johann et al., 

2016), showing that cryopreservation does not massively impact the cytotoxic response.  

Inter-donor variability between 5 donors of cryopreserved PHH was detected for 5 

compounds, of which 3 compounds showed differences at 24h (APAP, DCF and MET) and 4 

compounds varied at 72h (APAP, BOS, BUS and MET), resulting in an average of only 8.1% 

variation of the pairwise comparisons (Sison-Young, Lauschke and Johann et al., 2016). Two 

different HepG2 clones were compared, since clone dependent differences in basal 

expression of phase I and II DMEs have been reported (Hewitt and Hewitt, 2004). The 

HepG2/ECCAC clone is commercially available and was the clone that was used for all MIP-

DILI related HepG2 studies and was compared here with the HepG2/TS clone, which was 

routinely used in one participating laboratory. The pairwise comparison revealed statistically 

significant differences for 4 out of 13 compounds (AMI, NEF and TOL at 24h and NEF and 

BUS at 72h, data see Sison-Young, Lauschke and Johann et al., 2016).  

Predicting the hepatotoxic potential of drug candidates remains challenging and this short-

term toxicity comparison using i) the most widespread hepatic cell models and ii) a set of 

well-known DILI/non-DILI training compounds, was conducted to define the current status as 

a basis for how these cell systems can be further developed and improved with respect to 

their ability to predict hepatotoxicity. By the implication of a drug´s Cmax value, PHH and 

HepG2 were able to detect the majority of the used hepatotoxicants as such. 

However, none of the simple cell models could distinguish between DILI and non-DILI drugs 

when comparing the compound-specific EC50 values alone, concluding that simple 

monolayer cultures are not capable of predicting whether a new chemical entity (NCE) is 

likely to cause DILI in man in the absence of human exposure data. Generally, no human 

pharmacokinetic data is available at the early developmental stages of hit-to-lead and lead 

optimization phases and this study showed that in the absence of known human Cmax and 

area under curve (AUC) data, the basic cell models assessed here are unsuitable for DILI 

prediction, thus being limited to simple and rapid early discovery screens. Nevertheless, 

cytotoxicity screening remains an essential component at early developmental stages as the 

assessment of drug-induced changes on cell health are routinely used for a first-line ranking 
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of drug candidates (Weaver et al., 2017). Although viability displays the simplest endpoint, it 

indicates the potential of a drug candidate to elicit intrinsic toxicity, which helps to rank drug 

candidates according to the concentration at which cytotoxic effects occur and sort out 

compounds with unfavorable cytotoxicity profiles. Additionally, cytotoxicity assays pose 

essential advantages in terms of simplicity in both performance and analysis, low cost as well 

as rapid data generation according to the fast pace of early development (Benbow et al., 

2010).  

The importance of chronic exposure, which is more representative for the clinical setting in 

the majority of cases, was evident in this study. Following compound exposure for 72h, PHH 

could clearly segregate between DILI and non-DILI compounds, which was not observable 

following compound exposure for 24h. the time-dependent effects that were observable give 

evidence that it may be useful to include long-term studies in order to investigate whether the 

cell models tested here are able to better distinguish between hepatotoxicants and non-

hepatotoxicants under repeated exposure. This may also enable the detection of hepatotoxic 

events with a slow onset. 

The determination of variations at different levels, i.e. inter- and intra-laboratory variation, 

inter-donor and inter-clonal variation as well as variations between fresh and cryopreserved 

cells, enables to estimate the robustness of the generated dataset in order to use it as a 

reliable reference tool. Inter-laboratory variation was detected at different degrees across the 

cell types with the highest variation observed in PHH (48.5%), followed by HepG2/ECCAC 

(23.4%), whereas both Upcyte cells and HepaRG only showed marginal variations. PHH 

display the most complex, sophisticated and sensitive cell model used here, thus the high 

degree of variation between laboratories is not surprising, despite the use of harmonized 

protocols. In contrast, the high degree of variation in HepG2 is somewhat surprising, 

especially in the context of the reproducibility that cell lines offer in general and a notable 

intra-laboratory variation of 11.5 % under the conditions of this study. Those differences 

show that, although harmonized protocols have been used for each cell model, how 

important it is to work as stringently as possible according to a specific protocol. Despite 

relatively high degree of variation, both cell models were still relatively accurate in the 

discrimination of DILI risk when human exposure levels are taken into account.  

The analysis of variance between fresh and cryopreserved cells showed only marginal 

effects in the response of both HepaRG cells and PHH. Overall, the very low levels of the 

analyzed variances (inter- and intra-laboratory as well as between fresh and cryopreserved 

cells) that have been observed for HepaRG in this study suggest that this cell line delivers 

robust and reproducible data. The effects of cryopreservation in PHH observed here are in 

agreement with other reports (Richert et al., 2006), but more pronounced differences 

between fresh and cryopreserved PHH have been reported as well (Gouillouzo et al., 2007; 
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Madan et al., 2003). However, it is noteworthy that in this study only one donor of fresh PHH 

was included and that the effect of cryopreservation may also be secondarily related to the 

inter-donor variability of PHH. 

Finally, two different HepG2 clones (ECCAC and TS clone) have been compared in order to 

determine clonal differences in response to compound exposure, which have been reported 

in the literature (Hewitt and Hewitt, 2004; Gerets et al., 2012). The variations between the 

clones were only minor under the conditions of the study, but however, as only two different 

clones have been included here, no statement can be made regarding the inter-clonal 

differences of all available HepG2 clones.  

For the further improvement of the cell models tested here, it becomes evident that the cells 

should be cultured in a format that allows a stable and more physiologically relevant 

phenotype. In addition, the application and development of more sophisticated endpoints, 

which allow to monitor the initial events leading to specific forms of DILI outcome, is urgently 

needed. This however, requires the stable expression of physiologically relevant levels of 

drug metabolizing enzymes, thus emphasizing the indispensable necessity to improve cell 

culture conditions for each cell system.  

Several approaches are available in terms of improving hepatocyte physiology in vitro with 

regard to organ-specific microarchitecture: 

• First, a monolayer is very limited in terms of cell-cell contact, meaning that the contact 

surface of a cell to the surrounding cells is marginal when compared to the whole cell 

surface. This is given by the culture format itself as it forces a cell to attach and 

become more flattened, and this is clearly not the case in vivo where the cells are of 

cuboidal shape, thus resulting in an enormous discrepancy of the cytoskeletal 

organization. Improvements addressing this issue, such as the well-established 

sandwich culture method (Tuschl and Müller, 2005; Kienhuis et al, 2007; Rowe et al., 

2010) prove that cell physiology can be improved by improving the cell shape and 

enable increased cell-cell contact by culturing the cells between two hydrated layers 

of collagen. However, even though this cell culture method does improve a stable 

expression of drug metabolizing enzymes (DME) in hepatocytes and hepatocyte-like 

cells, it is not compatible to high throughput screening methods required in the early 

drug discovery phase. Therefore, improvement towards a three-dimensional cell 

culture format would greatly extend the cell-cell contact without the necessity of large 

cell numbers.  

• Second, when taking the sinusoidal microarchitecture into account, it becomes clear 

that flow and consequently shear forces are essential aspects which have an 

important impact on physiology, i.e. the zonal differences in hepatocyte performance 

due to flow-dependent gradients (nutrients, xenobiotics, gases and waste products). 
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This leads to the assumption that hepatocyte function may be improved in vitro when 

culturing cells under flow conditions.  

• Third, although hepatocytes account for about 80% of the total liver mass, other cell 

types, such as cholangiocytes, Kupffer cells and Ito cells, are crucial for hepatic 

physiology and by incorporation of these in to in vitro systems. For example, the 

involvement of an immune component (Kupffer cells) or the incorporation of bile duct 

cells (cholangiocytes) is suggested to improve the physiology of the model and 

subsequently an increased relevance for safety testing. The latter becomes especially 

clear in the case of XIM, which is known to elicit immune-mediated hepatotoxicity 

under long-term administration and was therefore withdrawn in 2006 (Keisin and 

Andersson, 2010). XIM was not recognized by any cell model in this study, thus 

emphasizing the need for co-cultures with non-parenchymal cells (NPCs). 

Taking the above aspects into account, a variety of options and combinations exist to 

develop more sophisticated hepatic in vitro models towards physiological relevance and thus 

potentially improving early safety assessment during drug development.  

3.1.2 Comparative proteomic characterization   

 
As the cytotoxicity ring trial revealed clear different sensitivities of the different cell models to 

be able to recognize potential DILI risk compounds, a global proteomic analysis was 

performed in order to determine whether these differences in sensitivity were related to a 

loss of hepatophysiologic function. The comparison of the proteomic profiles will enable to 

both understand what each model is able to perform and thus what each cell model is fit for.  

In this study, the global protein expression profiles of the human-derived hepatic cell lines 

HepG2, HepaRG and Upcyte hepatocytes were compared to cryopreserved PHH with a 

focus on proteins in drug metabolism as well as on the expression on cytoprotective proteins. 

The cell culture work for this experiment was performed by five MIP-DILI partners (University 

of Liverpool, KaLy-Cell, Servier, Merck and Karolinska Institutet) and both sample processing 

and measurement was conducted at the University of Liverpool (for detailed methods see 

Sison-Young and Mitsa et al., 2015). 

PHH, HepG2, Upcyte and HepaRG cells were thawed and seeded into collagen-coated 24-

well plates as monolayer culture in the cell type specific seeding density and media. Protein 

was isolated from 10 million cells each following a cell type specific pre-incubation period 

(24h for PHH and HepG2; 72h for HepaRG and Upcytes) and processed for nanoLCMS/MS 

measurement using the iTRAQ (isobaric tags for relative and absolute quantification) 

technology as described detail in Sison-Young and Mitsa et al., 2015.   
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 Global protein expression 

 
Protein profiles of the four cell types were generated for a total of 4696 proteins, of which 

2722 proteins were quantified in all cell types. The overall protein profile for PHH was clearly 

separated from all other cell types, the expression profiles for HepG2 and Upcyte cells 

showed the highest differences and the expression profile of HepaRG was closer to that of 

PHH. Hierarchical clustering of the 2722 common proteins indicates clearly that PHH 

separate from all cell lines (figure 3.3). the expression profile of HepaRG cells showed the 

least differences compared to PHH as indicated in the heat map (figure 3.3). Protein 

expression of both HepG2 and Upcyte cells cluster closely together and expression levels 

differ clearly to those of PHH.  A heat map was generated to compare the overall profile and 

a large number of proteins showed significantly lower expression in all cell lines compared to 

PHH, with differences being less pronounced in HepaRG compared to Upcyte and HepG2 

cells as indicated by the color increments in each row (figure 3.3).  

 
 
 
 
 

Figure 3.3: Heat map representation of the 2722 com mon proteins 
identified in all cell systems including hierarchic al clustering. Columns 
represent the different samples analyzed and rows r epresent protein 
IDs. Values range from low (red) to high (yellow). All three cell lines 
segregated from PHH with the least pronounced diffe rence in HepaRG 
cells. Figure taken from Sison-Young and Mitsa et al., 2015. 
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Table 3.2: Average magnitude of change in protein e xpression of the cell lines related to cryopreserve d 
PHH of the 20 top canonical pathways. 14 out of 20 p athways are downregulated across all cell lines, wi th 
the least difference in HepaRG cells. 

 HepG2 vs 
cPHH 

HepaRG vs 
cPHH 

Upcyte vs 
cPHH 

Pathway Mean Log2 Fold 
Change 

Mean Log2 Fold 
Change 

Mean Log2 Fold 
Change 

EIF2 signalling 1.54 0.68 1.12 
Mitochondrial Dysfunction  -2.92 -1.00 2.79 
Oxidative Phosphorylation  -2.89 -1.19 -3.06 
Regulation of elF4 and p70S6K 
Signalling 1.44 0.81 1.19 

tRNA charging  0.83 0.34 0.51 
Serotonin Degradation  -4.46 -1.79 -4.95 
Ethanol Degradation II -3.27 -1.41 -4.29 
mTOR Signalling  1.36 0.67 0.98 
Fatty acid β-oxidation  -3.57 -1.56 -3.6 
Noradrenaline and Adrenaline 
degradation  -3.85 -1.57 -4.46 

TCA Cycle II -3.4 -0.76 -3.29 
Xenobiotic metabolism signaling  -2.61 -0.97 -2.92 
Cholesterol biosynthesis -1.49 -0.16 -0.75 
Valine Degradation I -4.65 -1.56 -4.47 
Nrf-2-mediated oxidative stress 
response -1.18 -0.22 -1.32 

Nicotine Degradation II -5.37 -2.19 -5.20 
Methionine Degradation  -2.23 -1.20 -2.66 
Remodelling of epithelial 
adherens Junctions 0.69 0.61 1.28 

Bile acid Biosynthesis neutral 
pathway -4.30 -1.24 -5.04 

Protein ubiquitination pathway 0.84 0.12 0.40 
 

Table 3.2 shows the 20-top canonical based on the total protein group analyzed and includes 

the log2 fold change in expression for each of these pathways, of which 14 were 

downregulated in HepaRG, HepG2 and Upcyte cells in comparison to PHH (table 3.2), e.g. 

pathways involved in drug metabolism (xenobiotic metabolism signaling, table 3.2), 

mitochondrial metabolism (oxidative phosphorylation) and steroid metabolism (cholesterol 

biosynthesis).  

Few pathways also show a slight upregulation in the cell lines in when compared to PHH, i.e. 

proteins involved in cell motility and proliferation (Remodelling of epithelial adherens 

junctions). 

 

 Expression profiles of drug metabolizing enzymes 

 

The determination of expression levels of proteins that are involved in xenobiotic metabolism 

is of crucial value in the context of hepatotoxicity testing in vitro and helps to identify the 
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suitability of a cell model to a specific purpose. It is well-known that toxic effects are not only 

related to a parent compound but may also occur through the metabolic generation of 

reactive species, which is mainly mediated by CYP450 functionalization reactions (Antoine et 

al., 2008; McGill and Jaeschke, 2013). Therefore, a subset consisting of 128 drug 

metabolizing enzymes and transporter (DMET) proteins has been investigated and 

expression levels in HepG2, HepaRG and Upcyte cells were compared to expression in 

PHH. Figure 3.4 shows a heat map representing the expression levels of the DMET subset in 

the four cell models.  

 

 
 
This protein set is composed of 50 phase I, 51 phase II and 27 phase III proteins and in 

consistency with the global expression profile PHH were clearly segregated from the other 

cell systems, again with less divergence in HepaRG cells. Based on phase I enzyme 

Figure 3.4: Heat map representing the hierarchical clustering of the four 
cell models in the basal expression levels of drug metabolizing enzymes 
and transporters (DMET).  The colored side bar divides the heat map into 
phase I (yellow), phase II (grey) and phase III (pu rple) proteins. Upcytes 
and HepG2 cells cluster together whereas expression  levels of HepaRG 
and PHH differ less. The highest difference is give n for phase I 
expression levels and the least for phase III membe rs. Values range 
from low to high using colour increments of pink an d blue, respectively. 
Figure taken from Sison -Young and Mitsa et al., 2015, modified.  
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expression the cell types were ranked regarding their metabolic capacity. Analysis of 15 CYP 

members proteins showed lower expression in the HepG2, Upcyte and HepaRG cells 

compared to PHH with a less pronounced difference for HepaRG cells (figure 3.4). For 

HepaRG cells, one exception was observed with the expression level of CYP3A4, that was 

calculated as 2.5-fold higher in basal expression than in PHH, which is in agreement with 

previous reports (Guillouzo et al., 2007, Aninat et al., 2005). In contrast, Rogue et al. (2012) 

compared the gene expression levels of DMETs in HepaRG and PHH of six donors, four of 

which expressed higher levels of CYP 3A4 compared to HepaRG, thus emphasizing the 

importance of including several PHH donors in comparative studies, independent from the 

investigated endpoint.  

Regarding the expression of phase II enzymes, a lower expression of glutathione S-

transferases (GSTs) and uridine diphosphate glucuronosyltransferases (UDPGTs) was 

observed in HepG2, Upcyte and HepaRG cells in comparison to PHH (figure 3.4). HepaRG 

cells showed higher expression of 3 isoenzymes of the GST and UDPGT families when 

compared to PHH. HepG2 cells showed higher expression of 5 phase II enzymes, i.e. N-

acetyltransferase 10 (NAT10), glutathione S-transferase M3 (GSTM3), thiopurine S-

methyltransferase (TPMT) and sulfotransferases 1A3 and 1A4 (SULT1A3 and 1A4) (see 

Sison-Young and Mitsa et al., 2015). 

The cell lines also showed lower expression levels of phase III transporters when compared 

with PHH and again HepaRG expression levels were closer to those of PHH than HepG2 

and upcyte cells. All cell lines expressed higher levels of multidrug resistance protein1 

(MRP1) expression and expression of multidrug resistance protein 3 (MRP3) and P-

glycoprotein (P-gp, MDR1) was higher in HepaRG cells compared to PHH, which agrees with 

other studies (Jennen et al., Rogue et al., 2012). 

The closer similarity of HepaRG cells to PHH in the responsiveness of xenobiotic metabolism 

has also been reported on the gene expression level (Lambert et al., 2009; Jennen et al., 

2010; Rogue et al., 2012, Gerets et al., 2012).  

 

 Expression of cytoprotective proteins of the Nrf2/Keap1 pathway 

 
The outcome of a chemical insult is not only determined by the abundance and activity of 

DMETs, but also by the ability of a cell to defend itself against such insults, e.g. through the 

presence of antioxidants like glutathione or peroxiredoxins. A key regulator of the expression 

of proteins involved in the detoxification of reactive species is the Nrf2/Keap1 signaling 

pathway (Copple et al., 2010) and the expression levels of HepG2, HepaRG and Upcyte 

cells relative to PHH are summarized in figure 3.5. 
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As shown in figure 3.5, the majority of the Nrf-2 regulated proteins contributing to cellular 

defense showed lower expression in both HepG2 and Upcyte cells and, to a lesser extent in 

HepaRG cells, which showed a more uniform distribution of either lower or higher 

abundance. Additionally, the two cancer-derived cell lines HepG2 and HepaRG both have a 

higher proportion of proteins that are more highly expressed relative to PHH than in the PHH-

derived Upcyte cell line.  

Given the inherent limitations that are present in single cells models with respect to their 

ability to predict clinically relevant DILI, many different approaches in developing more 

complex and physiologically relevant models have been initiated. These include the 

incorporation of non-parenchymal cells, three-dimensional cell culture approaches such as 

Figure 3.5: Expression levels of Nrf2-regulated pro teins in HepG2 (blue), Upcyte (green) 
and HepaRG cells (yellow) relative to PHH expressed  as log2 fold change. HepG2 and 
Upcyte cells show both the highest degree of downre gulation, whereas in HepaRG cells 
the highest proportion of higher expression levels is observable, followed by HepG2. 
Figure taken from Sison-Young and Mitsa et al., 201 5. 
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spheroids or scaffold-based cultures, microfluidic and microphysiological models (Jiang et 

al., 2015; Bale et al., 2014; Brushan et al., 2013; Wu et al., 2010). However, independent 

from the complexity of those sophisticated in vitro approaches, they all rely on a hepatocyte 

or hepatocyte-like cell as the underlying basis. Indeed, the selection of a suitable cell model 

for the further development of liver cell models is of crucial importance as physiologically 

relevant cell-cell communication and -contact is likely to pose the fundament for the faithful 

development of a liver-like microarchitecture. It is therefore beneficial to characterize the cell 

models that are currently commonly used in early drug safety programmes with respect to 

the metabolic performance of each cell system and subsequently this helps to define suitable 

applications for each cell system.  

The proteomic analysis was performed to understand the differences between commonly 

used cell systems in order to define what cell system is fit for what purpose. Primary human 

hepatocytes are considered the “gold standard” in in vitro hepatotoxicity testing strategies 

due to the closest relation to their native counterparts. But, due to the scarce availability, 

donor-to-donor variability and high costs associated with PHH, they are commonly not used 

in early screening approaches. Cancer cell lines, such as HepG2 and HepaRG, are routinely 

used in the pharmaceutical industry for a first estimation of cytotoxicity in the very early 

phases of drug development. These cell systems, although limited in their predictive value, 

are still beneficial as they are low cost, easily available, and display good reproducibility in 

comparison to primary human hepatocytes. However, in order to further develop more 

physiologically relevant hepatic in vitro systems, the proteomic signatures that were 

generated here using PHH as comparator may help to decide the appropriate cell source for 

a certain purpose.  

In this comprehensive study, all tested cell systems clearly segregated from PHH in their 

protein expression profiles. The expression of key enzymes involved in xenobiotic 

metabolism is crucial for the assessment of hepatotoxic events that are not related to parent 

compounds. Therefore, the predictive value for hepatotoxicities that are mediated by reactive 

metabolites is limited in conventional monolayer cultures of cell lines. However, other phase I 

key enzymes were present in all cell lines but expressed significantly less when compared to 

PHH. It is known that manipulating the cell culture conditions, may lead to an enhanced 

expression of DMETs through a physiologically more appropriate microenvironment 

(Guillouzo and Guguen-Guillouzo, 2008; Prestwich et al., 2008). 

In addition to the overall low expression levels in the three cell lines compared to PHH, some 

proteins involved in cellular defense against toxic insults were expressed at higher levels. 

The Nrf2/Keap1 signalling pathway is a key pathway involved in the regulation of both 

constitutive and inducible cytoprotective proteins, such as peroxiredoxins and antioxidants, 

which are able to detoxify different reactive species. The expression of the Nrf2/Keap1 
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regulated cytoprotective proteins was the highest in the two cancer derived cell lines 

HepaRG and HepG2, which is in agreement with other studies that have shown the elevated 

cytoprotective capacity of cancer cells (Ganan-Gomez et al., 2013; Shibata et al., 2008; Ohta 

et al., 2008). In Upcyte hepatocytes, which have been induced the proliferation by the 

introduction of “proliferative genes” by a viral vector (Burkard et al., 2012), the expression of 

cytoprotective proteins was higher than in PHH, but less pronounced than in the cancer cell 

lines.  

The proteomics data revealed that HepaRG cells have less pronounced differences 

compared to PHH than HepG2 and Upcyte cells, thus making them the most attractive model 

for further development. Interestingly, although HepaRG cells were the closest to PHH in the 

proteomic assessment, they have been shown to be the least sensitive cell system in the 

simple viability measurements as reported in section 3.1. A possible explanation for this 

discrepancy may be related to the increased susceptibility in HepG2 as the only proliferating 

cell line used here. Moreover, HepaRG was the only cell model for which serum 

supplemented media was used, which may affect the actual compound concentration due to 

serum protein binding of compounds. 

The protein expression profile of Upcyte hepatocytes was closely to that of HepG2, thus not 

resembling the reported phenotype of 5-day old PHH (Burkhard et al., 2012) under the 

conditions of this study. However, a second generation of Upcytes have been reported to 

express CYP activities equivalent to PHH and high CYP inducibility in initial studies. 

(Ramachandran et al., 2015). Further studies, e.g. a genome-wide comparison between 

those cells and PHH or liver tissue would clarify the usefulness of 2nd generation upcytes in 

early drug safety assessment in vitro. 

Overall, the low protein expression levels of the majority of DMETs alongside the 

overexpression of protective proteins in the cell lines, compared to PHH, may explain the 

underlying lower sensitivity of these commonly used cell systems towards toxic insult 

(section 3.1.1).  

Moreover, it should be emphasized that only a small panel of hepatic cell models were 

included in this proteomic comparison and other hepatic cell lines that are in widespread use 

such as Hep3B, THLE or HuH-7 were not included. Additionally, the more and more 

emerging approach of stem cell derived hepatocytes, either from hESC3 or iPSCs4 have 

been shown to potentially provide a complementary tool to PHH (Chen et al., 2012; Ware, 

Berger and Khetani, 2015) and should be further included in such comparative studies. 

Taken together, the cell models tested do not reflect the native human liver physiology, but 

the possibility to improve this physiology by modulating cell culture conditions is worthwhile 

investigating. Due to the advantages of HepaRG cells in terms of protein expression levels 
                                                
3 Human embryonic stem cells 
4 Induced pluripotent stem cells 
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as well as HepaRG being a well-defined co-culture, this cell line, alongside PHH, was chosen 

for further studies.  
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3.2 Initial characterization of hepatic spheroids 

 
Hepatocyte cellular polarity and differentiation are lost when cells are removed from their 

native configuration and cultured as monolayers (Levine and Stockdale, 1985). One option to 

culture cells with a higher morphologic relevance to the in vivo state is by introducing three-

dimensionality, which dramatically changes cell shape in comparison to conventional 

monolayers. Three-dimensional cell culture (e.g. spheroids) is suggested to have a positive 

effect on overall cell health and physiologic functions since this culture format is more related 

to a native cell configuration. Spheroids display microtissues, thus they are amenable for 

histological applications enabling to get an overview of spheroid morphology.  

In this section, spheroids of both PHH and HepaRG cells were investigated by different 

histological methods in order to assess general cell health and expression of DMEs over 

time. Cell culture techniques, molecular biological techniques, the preparation and staining of 

sections as well as image analysis represent my own work unless otherwise stated. 

3.2.1 Spheroid morphology 

The H&E (hematoxylin and eosin) staining is the gold standard method in pathology and was 

used to initially investigate spheroids from two different cell sources. The focus was on the 

cellular organization and morphological features associated with health and physiological 

functions of the spheroids. Trained pathologists confirmed all observations that are described 

in the following. Additionally, ATP content as well as the presence of Albumin were 

investigated in order to estimate overall cell health and physiologic function. Spheroid 

formation is mediated by self-assembly and whereas HepaRG speroids were reproducibly 

formed within four days, the formation time for PHH varied markedly depending on the donor 

(figure 3.6). Therefore, a cutoff of 7 days for spheroid formation was used for PHH and 

spheroid culture was performed for 14 days. 

HepaRG and PHH spheroids were maintained in culture for 28 and 14 days, respectively, 

and samples were processed at days 3, 7, 14 and 28 for HepaRG spheroids and at days 3, 7 

and 14 for PHH spheroids. Paraffin-embedded sections were prepared and stained with H&E 

(see section 2.2.2.11) in order to assess overall health and reveal intra-spheroidal 

microarchitecture.  

Specific parameters were assessed, which are listed in table 3.3 and figure 3.7 shows an 

example of these parameters in a stained section. 
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Table 3.3: Characteristic parameters used for the d etermination of spheroid health using H&E stained, 
paraffin embedded microdissections .  

Parameter Observational focus 
General appearance 
 

Cell shape and size, differences between center and lining 

Nuclei 
 

Size and shape, visibility of nucleoli, appearance and number of diploid cells 

Glycogen 
 

Dimension of glycogen storage, localization of glycogen storing cells  

Cell death Condensed and/ or fragmented cells, localization of apoptosis/ necrosis 

Figure 3.7: Overview of an H&E stained HepaRG spher oid 
microdissection.  Arrows indicate the investigated 
parameters for basic cell health. HepaRG spheroid a t day 7, 
40x magnification , bar = 20 µm.  

Figure 3.6: Time-dependent spheroid formation of PH H from two different donors. Donor-specific 
differences in spheroid formation time were observa ble and whereas PHH from one donor formed 
compact spheroids within seven days (upper row), th ose of a second donor formed multiple small 
spheroids or even no spheroids or loose aggregates (lower row). 4x magnification, bars = 200µm. 
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 HepaRG spheroids 

 
 

 

Figure 3.8 shows representative images of H&E stained HepaRG spheroid sections over a 

cultivation period of 28 days. HepaRG spheroids showed well organized nuclei and 

cytoplasm without signs of necrotic or apoptotic centers (e.g. due to insufficient nutrition) at 

any time point. Intact nuclei are visible throughout the spheroid at every time point, defined 

by a regular purple staining and clearly visible nucleoli in the majority of cells. Differences in 

the shape of the nuclei were seen, ranging from spherical nuclei to more flattened and cigar-

shaped nuclei. The shape seemed to depend on the localization within the spheroid, 

indicated by the fact that spherical nuclei were mostly located centrally, whereas the 

flattened appearance was restricted to the peripheral cells that line the spheroid. This 

distribution was consistent over time as seen in figure 3.8. Diploid cells were observable in 

most of the sections, but with a low frequency of approximately three to five diploid cells per 

section.  

At the periphery, an irregular thickness of the lining layer was observed, ranging from one to 

five cell layers and characterized by small and flattened morphology in comparison to central 

cells with cuboidal shape. The lining was generally present at all time points in the complete 

Figure 3.8: Paraffin embedded, H&E stained microdis sections of HepaRG 
spheroids at different time points up to 28 days.  HepaRG spheroids stayed 
viable for up to 28 days and showed two distinct ce ll morphologies: 
central cells with cuboidal shape and glycogen stor age and flattened cells 
in the outer lining area. Additionally, overall sph eroid size enables 
nutrition of central cells, indicated by the absenc e of necrotic cores. 20x 
magnification, bars = 50 µm. 
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periphery and only a few single spots without this lining were observed (see fig 3.8, day 14 in 

the upper right quarter of the spheroid). Peripheral cells generally showed a different 

morphology, as well as much less glycogen storage capacity in comparison to central cells, 

suggesting two different cell types within the spheroid. As commercially available, 

differentiated HepaRG cells are a co-culture of hepatocyte-like cells and cholangiocyte-like 

cells (Jackson et al., 2016), the two morphologies suggest that the central cells represent the 

hepatocyte-like population and the lining cells represent the cholangiocyte-like population, 

indicating a certain degree of organization in HepaRG spheroids.  

An important function of hepatocytes in the liver is the storage of glycogen, which is essential 

for energy metabolism.  HepaRG spheroids showed a robust capacity for glycogen storage 

from day 3, characterized by white intracellular areas interstratified with pink cytoplasm, 

which is subsequently referred to as “cloddy”. Other studies have reported a positive staining 

with periodic acid-Schiff (PAS) in cryosections of HepaRG spheroids (Ramaiahgari et al., 

2017), which corroborates the observed appearance in the paraffin-embedded sections used 

here. Glycogen storage capacity seemed to be restricted more centrally to the cuboidal cells, 

whereas the flattened lining appeared to contain either no or very little glycogen, thus 

confirming the localization of cholangiocyte-like cells in the peripheral area. The amount of 

glycogen per cell increased over time in most of the sections and individual cells stored large 

amounts of glycogen, indicated by increased cell size and rather white than cloddy 

appearance of the cytosol.  

Condensed cytoplasm and chromatin, characterized by an increase of the staining intensity, 

and nucleic fragments indicate a poor health state that mostly results in cell death. These 

events were observable very infrequently and seemed to appear randomly distributed 

throughout the spheroids. This suggests that the apoptotic/ necrotic observed reflect a 

normal physiological turnover and were not a result of insufficient nutrient supply.  
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In order to estimate spheroid health on a molecular basis, HepaRG spheroid sections were 

additionally stained for Albumin and ATP content was measured in order to confirm the 

morphological results on a molecular level (figures 3.9 and 3.10). 

 
 
 

Figure 3.9: Expression of Albumin (green) in HepaRG  spheroids at days 3, 7, 14 and 28 including 
double counterstain of nuclei (blue) and cytoskelet on (red).  Albumin is clearly abundant  in HepaRG 
spheroids throughout all time points at comparable levels. Note that the smaller spheroid size is 
related to the section plane and not to the overall  spheroid size. 20x magnification, bars = 50µm. 

 

Figure 3.10: ATP (A) and Albumin (B) content in Hep aRG spheroids at days 3, 7, 14 
and 28.  Both ATP and  Albumin are clearly abundant  in HepaRG spheroids 
throughout all time points without statistically si gnificant differences.  RFU = 
relative fluorescent units. 
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Figure 3.9 shows the immunofluorescent staining of albumin in HepaRG spheroids at 

different time points. Albumin was detectable at every time point and visual differences 

between time points as well as between spheroids at one time point were observable in 

single sections (fig 3.9, day 3), but overall intensities were not significantly different in the 

image analysis data as shown in figure 3.10 B. Additionally, the ATP content was at 

comparable levels over time without significant differences, thus confirming the microscopic 

observations.   

 PHH spheroids 

Primary human hepatocytes spheroids were also investigated using the H&E staining and 

compared to HepaRG spheroids. Due to the extended spheroid formation time required for 

PHH, only three time points, namely days 3, 7 and 14, were compared. 

Figure 3.11 shows representative PHH spheroid sections at days 7 and 14 (H&E stained 

sample of day 3 is not available).  

 

In general, PHH were viable for at least 14 days and showed a more uniform appearance in 

comparison to HepaRG spheroids. The most obvious difference was the absence of lining 

cells and the outer cells appeared much less flattened and showed moderate to high  

glycogen contents. PHH spheroids had a lining that was not built up of flattened cells, but 

they seemed to have a thickened membrane, suggesting the production of extracellular 

matrix components of the peripheral cells, potentially in order to enhance stability of the 

microtissues. The uniform appearance was also visible by the morphology of the nuclei, 

which were observable as round nuclei with clearly visible nucleoli, similar to those observed 

for the hepatocyte-like cells in the centers of HepaRG spheroids.  

Figure 3.11: Paraffin-embedded, H&E stained microdi ssections of PHH spheroids at two 
different time points. The spheroids stayed viable for at up to 14 days showing one cell 
morphology as well as a thick lining which is sugge sted to be composed of extracellular 
matrix (ECM). 20x magnification, bars = 50 µm. 
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The glycogen content appeared to be uniform throughout the spheroid with the majority of 

cells showing moderate glycogen content. 

Interestingly, PHH spheroids seemed to store a noticeable amount of lipids, visible as round 

inclusions with sharp borders and no visible cytosolic fractions compared to the glycogen, 

indicated by the red arrows in figure 3.11. These lipid droplets were consistent at both time 

points, suggesting that there is no time-dependent accumulation. Cryopreservation of PHH 

has been reported to alter lipid metabolism (Godoy et al., 2013), which may be the 

underlying reason for this effect. 

Similar to HepaRG spheroids, cell death was observed infrequently and independent from 

any localization within the spheroid so that an insufficient nutritional state could be excluded. 

Although apoptosis was responsible for the majority of cell death events, few necrotic cells 

were observable, which could have an impact on the health state of surrounding cells. An 

example for this is given in the day 14 section in figure 3.11, indicated by the green arrows. 

Since necrosis is defined as an uncontrolled event at which cell death is not regulated, the 

necrotic cells burst and cellular content is released in the interstitial area. This affects the 

surrounding cells and may also lead to further necrotic, areas, indicated by amorphous 

structures and a pale pink staining in the size range of 2-5 cells. 

 

Figure 3.12: Expression of Albumin (green) in PHH s pheroids at days 3, 7 and 14 including double 
counterstain of nuclei (blue) and cytoskeleton (red ). Albumin is clearly abundant  in PHH spheroids 
throughout all time points at comparable levels. No te that differences in size are related to the sect ion 
plane. 20x magnification, bars = 50µm. 
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Next to the morphological checkpoints, the determinations of albumin and ATP content were 

used as molecular markers for overall cell health (ATP) and hepatocyte physiology (albumin). 

Figure 3.12 shows the immunofluorescent staining of albumin (green) in PHH spheroids at 

days 3, 7 and 14. Albumin was present at every time point in comparable intensities as 

shown in figure 3.13 B, indicating that hepatocyte-specific functions are maintained during 

prolonged culture. Secondly, cell viability was assessed by quantification of ATP levels, 

which remained constant over time as visible in fig 3.13 A, thus indicating no decrease in 

viability in long-term culture.  

The microscopic observation of spheroid sections over time showed that spheroids stay 

viable over a period of at least four weeks in HepaRG and two weeks in PHH spheroids, 

indicated by intact nuclei and membranes, storage capacity as well as the absence of 

necrotic areas. Additionally, the temporal stability of both albumin and ATP content further 

confirm the morphological observations. 

In HepaRG spheroids, the abundance of two different cell morphologies suggest a certain 

organization of cholangiocyte-like cells and hepatocyte-like cells within the spheroid. Indeed, 

Ramaiaghari et al. (2017) found that cytokeratin 19 (ck19), a cholangiocyte-specific marker, 

was only expressed in the lining cells in HepaRG spheroids. This organization does not 

reflect the hepatic microarchitecture in vivo and the impact of this morphology on the 

physiologic relevance of HepaRG spheroids needs to be further analyzed.  Visually, the 

lining cells were observed in a lower proportion as the central cells, which may hypothesize a 

potentially culture-dependent shift in the ratio of both cell types since the ratio commercially 

available HepaRG cells is approximately 1:1. In contrast, some reports with HepaRG 

spheroids generated in hanging-drop or spinner flask culture formats have observed an 

opposite localization, in which cholangiocyte-like cells were located centrally (Gunness et al., 

Figure 3.13: ATP (A) and Albumin (B) content in PHH  spheroids at days 3, 7 and 14.  Both 
ATP and  Albumin are clearly abundant  in PHH spheroids throughout all time points 
without statistically significant differences. RFU = relative fluorescent units. 
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2013; Leite et al., 2012). This emphasizes that further studies are required in order to 

understand the dynamics of cellular reorganization in three-dimensional space as well as the 

impact of culture conditions on cell signaling mechanisms in hepatic spheroid models. 

However, the simple H&E stain was an initial step to prove whether spheroid cell culture is 

capable of being cultivated for a certain period of time by monitoring cell health. But, 

obtaining organized, viable cells do not necessarily imply that the expression of DMETs is 

enhanced in this cell culture format or that this model has a higher physiological relevance.  

Moreover, it has to be noted that the single sections investigated here only represent 

snapshots and do not reflect the spheroid as a whole, which would be possible by confocal 

microscopy. 

However, the overall stable cell health and the maintenance of physiologic functions such as 

glycogen storage show a clear indication for long-term applications with a physiologically 

relevant hepatic in vitro model.  

As primary human hepatocytes show a wide inter-donor variability (Hewitt et al., 2015; Elaut 

et al., 2006), this variability somewhat seemed to be reflected in terms of the ability to form 

spheroids as well as the spheroid formation time, which varied markedly among donors 

(figure 3.6). This is currently hampering the applicability of PHH spheroids for routine use. A 

possible option to address this issue may be the use of pooled PHH, which has already been 

established by generating spheroids from 10 PHH donors (5 male and 5 female donors) 

(InSphero AG, Switzerland, www.insphero.com). Additionally, the optimization of protocols 

could also reduce spheroid formation time, e.g. by extending centrifugation steps in order to 

speed up cell aggregation. 

3.2.2 Expression of drug metabolizing enzymes 

As hepatocyte morphology and longevity in spheroid cultures was shown in the initial 

assessment, it was important to investigate whether spheroids have an improved metabolic 

capacity.  

H&E staining of paraffin-embedded spheroid sections is an attractive option to monitor 

spheroid health and quality over time, but this method does not allow any assessment of the 

expression of DMETs, which play a major role in the initiation of metabolite-metiated 

hepatotoxicity. To address this issue, immunofluorescent (IF) staining of cryosections were 

performed in order to assess the general expression of DMETs, as well as to monitor 

expression over time. Therefore, representative members of each phase of xenobiotic 

metabolism were chosen (table 3.4).  
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Table 3.4: selected antibodies against phase I, II and III DMETs for the  
initial assessment of spheroids over time with resp ect to metabolic capacity.  

Antigen, host, clonality  Dilution  
Phase I  
CYP1A2, mouse monoclonal 1:200 
CYP2B6, mouse monoclonal 1:200 
CYP3A4, mouse monoclonal 1:500 
Phase II   
NAT1/ 2, mouse monoclonal 1:200 
SULT1A1, rabbit polyclonal 1:200 
Phase III   
BSEP, rabbit polyclonal (ABCB11) 1:100 
Mdr1, mouse monoclonal (ABCB1) 1:200 
MRP2, rabbit polyclonal (ABCC2) 1:200 
 

 Expression of Phase I isoenzymes 

Phase I DMEs (e.g., CYPs) are the first step in drug metabolism and are responsible for the 

introduction of functional groups in to the molecular structure of a compound. Although the 

biological intention of this step is the detoxification of a parent compound, the generation of 

toxic metabolites may also occur. These are often not formed in early in vitro hepatic cell 

systems due to lacking Phase 1 DME expression, resulting in false negative results. Thus, it 

is important to investigate whether a hepatic cell system expresses these enzymes in order 

to be capable of xenobiotic metabolism.  

Figure 3.14 shows the localization of CYPs within the spheroids in detail using the example 

of CYP 3A4 and figures 3.15, 3.16 and 3.17 show the expression patterns of CYP1A2, 

CYP2B6 and CYP3A4, respectively, in HepaRG spheroids at days 3, 7, 14 and 28. 

CYP3A4 appeared as moderate to strong cytoplasmic staining with an overlap to the outer 

border of the nuclei (blue), which was observed as a white “halo” in the merged channels 

(figure 3.14). This overlap in the merged picture suggested that the white areas resemble the 

endoplasmic reticulum (ER), to which CYP enzymes integrate as transmembrane proteins. 

The cytoplasmic staining appeared cloddy, which was consistent with the observations of 

glycogen storage leading to a cloddy appearance of the cytoplasm in H&E stained sections.  
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Figure 3.15: Expression of CYP 1A2 (yellow) in Hepa RG spheroids at days 3, 7, 14 and 
28 including double counterstain of nuclei (blue) a nd cytoskeleton (red).  HepaRG 
spheroids express CYP 1A2 throughout all time point s with varying intensities 
amongst single cells, resulting in a patchy express ion pattern. 20x magnification, bars 
= 50µm. 

Figure 3.14: CYP3A4).  CYPs are located in the 
cytoplasm as well as in the endoplasmic reticulum 
around the nuclei (yellow/white). Cutout from CYP3A 4 
staining in HepaRG spheroids at day 3. 40x 
magnification, bar = 20 µm 
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Figure 3.16: Expression of CYP 2B6 (yellow) in Hepa RG spheroids at days 3, 7, 14 and 
28 including double counterstain of nuclei (blue) a nd cytoskeleton (red).  HepaRG 
spheroids weakly express CYP 2B6 throughout all tim e points. 20x magnification, bars 
= 50µm. 

Figure 3.17: Expression of CYP 3A4 (yellow) in Hepa RG spheroids at days 3, 7, 14 and 
28 including double counterstain of nuclei (blue) a nd cytoskeleton (red).  HepaRG 
spheroids express CYP 3A4 throughout all time point s with varying intensities 
amongst single cells, resulting in a patchy express ion pattern. A slight decrease in 
CYP 3A4 over time was observed. 20x magnification, bars = 50µm. 
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When looking at the overall distribution of both CYP 1A2 and CYP 3A4 expressing cells 

within the spheroid, it was observable that single cells expressed different enzyme levels, 

thus leading to a patchy appearance. It was also observed that the lining layers expressed 

no or very little levels of CYP 3A4.  

In figure 3.14, HepaRG spheroids clearly expressed CYP 3A4 at all time points but seemed 

to decrease slightly over time. Therefore, the mean “area x intensity” of at least 10 sections 

per target protein was calculated in order to reveal whether the observed differences were 

significant or not. Figure 3.18 shows scatter plots of the relative fluorescent units per 1,000 

pixels for all phase I enzymes investigated in HepaRG spheroids at all time points. 

 

The scatter plots revealed different expression levels for CYPs 1A2, 2B6 and 3A4 over time. 

The expression patterns also differed for each isoenzyme, showing increased expression of 

CYP1A2 at day 28, whereas the expression pattern of CYP2B6 was the highest at days 3 

and 28 and seemed to drop in between and also CYP3A4 showed a different pattern with the 

lowest expression at day 3. Statistically significant differences were not measurable, 

suggesting an overall temporal stability of the CYPs investigated here. The intensity 

measurements also revealed different basal expression levels between isoenzymes. The 

highest expression was observed for CYP3A4, ranging from 60,000 to 100,000 RFU/1,000 

pixels, whereas, in comparison, CYPs 1A2 (40,000-70,000 RFU) and 2B6 (20,000-40,000 

RFU) were significantly lower expressed.  

A second question that was addressed was the comparison of CYP expression levels in PHH 

compared to HepaRG spheroids. Figures 3.19, 3.20 and 3.21 show representative pictures 

of CYPs 1A2, 2B6 and 3A4 in PHH spheroids at days 3, 7 and 14, respectively.  

 

Figure 3.18: Scatter plots of CYP protein expressio n levels in HepaRG spheroids over time, 
expressed as the mean of area x intensity (relative  fluorescent units per 10,000 pixels) of CYP 1A2 
(left), CYP 2B6 (middle) and CYP 3A4 (right).  Time-dependent differences were observable for ever y 
CYP without any general trend observed. Relative fl uorescent unit values on the y-axis also indicate 
different basal expression levels for each isoenzym e with the highest expression levels for CYP 3A4. 
RFU = relative fluorescent units. (Turkey´s multipl e comparisons test; α = 0.05, no significant 
differences) 
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Figure 3.19: Expression of CYP1A2 (yellow) in PHH s pheroids at days 3, 7 and 14 including double 
counterstain of nuclei (blue) and cytoskeleton (red ). CYP1A2 expression was at comparable levels 
throughout all time points but differences between sections of one time point were observable as 
indicated at day 14, where spheroids showed differe nt expression levels. Overall, peripheral cells 
appeared to express higher CYP1A2 levels. 20x magni fication, bars = 50µm. 

Figure 3.20: Expression of CYP 2B6 (yellow) in PHH spheroids at days 3, 7 and 14 including double 
counterstain of nuclei (blue) and cytoskeleton (red ). CYP2B6 is weakly abundant  in PHH spheroids 
throughout all time points in a patchy distribution  pattern. Note that differences in size are related  
to the section plane. 20x magnification, bars = 50µ m. 
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In PHH spheroids, the CYP isoenzymes 1A2, 2B6 and 3A4 were expressed for at least 14 

days in culture. The overall distribution appeared consistent and in comparison to the 

majority of HepaRG sections, the peripheral cells also expressed CYPs. Interestingly, CYP 

expression levels differed less over time in PHH than in HepaRG spheroids. Furthermore, 

expression levels of CYP 1A2 and 2B6 were significantly (α = 0.05) higher in PHH compared 

to HepaRG, whereas CYP3A4 expression did not differ significantly between the cell models 

at either time point (Figure 3.21).  

 

Figure 3.21: Immunofluorescent staining of CYP 3A4 in PHH spheroids at days 3, 7 and 14.  CYP 
3A4 (yellow) was expressed at both time points in m ost of the cells, but at different levels and 
peripheral cells appeared to express higher CYP3A4 levels. 20x magnification, bars = 50 µm.  

Figure 3.22: Scatter plots of CYP protein expressio n levels in PHH spheroids over time, expressed as 
the mean of area x intensity (relative fluorescent units per 10,000 pixels) of CYP 1A2 (left), CYP 2B6  
(middle) and CYP 3A4 (right).  No time-dependent differences were observable for e very CYP 
isoenzyme. Relative fluorescent unit values on the y-axis also indicate different basal expression 
levels for each isoenzyme with the highest expressi on levels for CYP 3A4. RFU = relative fluorescent 
units. (Turkey´s multiple comparisons test; α = 0.05, no significant differences) 
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 Expression of Phase II isoenzymes  

Following the initiation of drug metabolism by phase I enzymes, phase II enzymes (mostly 

transferases) link drug metabolites to endogenous molecules in order to facilitate a more 

efficient excretion. HepaRG and PHH spheroids were immunofluorescently stained for two 

phase II enzymes, N-acetyltransferase 1/2 (NAT1/2) and sulfotransferase 1A1 (SULT1A1, 

only available for HepaRG) in order to assess their expression over time and also to 

Figure 3.23: Comparative scatter plots of the expre ssion levels of CYP 1A2 (top row), 2B6 (mid row) 
and 3A4 (bottom row) at days 7 (left) and 14 (right ) in PHH and HepaRG (HRG) spheroids, expressed 
as means of area x intensity (relative fluorescent units per 10,000 pixels). The expression levels of 
both CYP 1A2 and CYP 2B6 were lower in HepaRG spher oids compared to PHH spheroids at both 
time points. For CYP 3A4, the expression levels wer e comparable regardless of the time point. 
Additionally, CYP 3A4 showed a higher variance in b oth cell systems. (unpaired t-test ( α = 0.05; * = p < 
0.05; ** = p < 0.01; *** = p < 0.005; **** =  p <  0.0001). RFU = relative fluorescent units. 
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compare both spheroid models. Figures 3.24 and 3.25 show NAT 1/ 2 and SULT1A1 

expression in HepaRG spheroids over time.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.24: Expression of NAT 1/2 (yellow) in Hepa RG spheroids at days 3, 7, 14 and 28 
including double counterstain of nuclei (blue) and cytoskeleton (red). HepaRG spheroids 
weakly expressed NAT 1/ 2 at all time points, with the lowest level observed at day 14. NAT 1/2 
was expressed diffusely with few focal spots showin g a higher expression level. 20x 
magnification, bars = 50µm. 
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Figure 3.26: Scatter plots of phase II expression l evels in HepaRG spheroids 
over time, expressed as means of area x intensity ( relative fluorescent units 
per 10,000 pixels) of NAT 1/2 (left) and SULT 1A1 ( right).  Time-dependent 
differences were observable for both members withou t any general trend. 
RFU = relative fluorescent units. (Turkey´s multipl e comparisons test; α = 
0.05, no significant differences) 
 

Figure 3.25: Expression of NAT 1/2 (yellow) in Hepa RG spheroids at days 3, 7, 14 and 28 including 
double counterstain of nuclei (blue) and cytoskelet on (red). HepaRG spheroids weakly expressed 
NAT 1/ 2 at all time points, with the lowest level observed at day 14. NAT 1/2 was expressed 
diffusely with few focal spots showing a higher exp ression level. 20x magnification, bars = 50µm.  
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HepaRG spheroids expressed NAT 1/2 over a period of at least 28 days at equally low 

levels, showing diffuse cytoplasmic staining. At each time point, spots with a higher 

expression were visible, which appeared randomly distributed without any distinct distribution 

within the spheroid, as it was also observed for the CYP enzymes in spheroid centers. In 

contrast to the localization of the phase I members, both, NAT1/2 and SULT1A1 were 

detectable in HepaRG spheroid centers and linings at every time point investigated. When 

regarding the expression levels over time (figure 3.26), NAT 1/2 showed comparable levels 

at day 3 and 14, which were lower than those of day 7 and 28. In contrast, the expression of 

SULT 1A1 increases significantly over time until day 14 and slightly decreased at day 28, 

showing a similar level to day 7.  

 

 

In comparison to HepaRG, figure 3.27 shows NAT 1/2 expression in PHH spheroids at days 

7 and 14 (data on SULT1A1 expression is not available for PHH spheroids). The localization 

of NAT 1/2 was cytoplasmic and not restricted to any area within the spheroid and appeared 

higher at day 14, which suggests a time-dependent variation of NAT 1/2 expression in PHH 

spheroids and, to a lesser extent, in HepaRG spheroids.  

Intensity differences in PHH revealed a higher expression at day 14 so that time-dependent 

differences seemed to exist for both cell systems, but a different pattern was obtained 

Figure 3.27: Immunofluorescent staining of NAT 1/ 2  in PHH speroids at days 3, 7 and 14. NAT 1/ 2 
(yellow) was expressed at both time points in most of the cells, but at different levels and seemed 
to increase from day 7 to day 14. 20x magnification , bars = 50 µm.  
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comparted to HepaRG spheroids.  This time-dependent variation also seemed to vary for the 

different enzymes when comparing NAT 1/2 and SULT 1A1 expression patterns in HepaRG 

cells (figure 3.26). When comparing the expression levels of NAT 1/2 in PHH and HepaRG 

spheroids, a higher NAT 1/2 exppression was observable in PHH spheroids. It is well known 

that for both NAT isoenzymes (NAT1 and NAT2) as well as for SULT1A1 polymorphisms 

exist, which lead to slow, intermediate and rapid phenotypes of the respective catalyzed 

reactions, i.e. acetylation and sulfation (Wang et al., 2002; Nagar et al., 2006; Walker et al., 

2009; Hein et al., 2006). The differences in NAT 1/2 expression levels may therefore not 

necessarily be due to the higher complexity of primary cells per se, but could also be related 

to different polymorphisms of the donors. While the expression of GSTs and UGTs has been 

well studied in HepaRG cells (Aninat et al., 2005), the donor-specific polymorphisms of NATs 

and SULTs have not been addressed and were beyond the scope of this work. In general, 

the role of conjugating enzymes is underestimated in comparison to the functionalization 

enzymes of phase I (i.e. CYPs) and should be thoroughly investigated in the future as highly 

recommended by regulatory authorities (FDA, 2017). 

 Expression of Phase III transporters 

The final step for an effective hepatic clearance of xenobiotics is performed by phase III 

members, which are mostly transporters of the ABC binding cassette transporter family. 

Among these are so-called multidrug resistance proteins (MDRs) and multidrug resistance 

related proteins (MRPs), which facilitate the excretion of conjugated metabolites out of the 

hepatocyte. A total of three transporters of the ATP-binding cassette transporter superfamily, 

MDR1 (ABCB1), MRP-2 (ABCC2) and bile salt export pump BSEP (ABCB11) were 

investigated in spheroids of both cell types. Figure 3.28 shows MDR1 expression in HepaRG 

spheroids over time.  

MDR1 showed a high abundance in HepaRG spheroids at every time point investigated. Two 

different expression patterns were detectable: one fraction appeared yellow in the merged 

pictures, meaning that f-actin (red) and MDR1 (green) are co-localized, mostly restricted to 

cell borders in general, but not restricted to any specific area within the spheroid. This co-

localization was clearly visible at every time point investigated.  The second pattern 

appeared green without any co-localization and was located diffusely in the cytoplasm, but 

not restricted to any area within the spheroid. Whereas the expression of both the co-

localized and the cytoplasmic fraction did not differ significantly over time, suggesting a 

stable expression of MDR1 over the prolonged cultivation period.  

MDR1 staining in PHH spheroids led to similar observations, where also two different 

expression patterns were observed (figure 3.29). Neither fractions show any major 

differences between the time points, but clear differences in the co-localized fractions 
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between the two cell systems were observed. PHH spheroids showed a distinct co-

localization in the outer lining of the spheroid next to the cell borders, whereas MDR1 in 

HepaRG spheroids was localized with a higher abundance in the inner areas. A detailed 

comparison is given in figure 3.30. 

  
 

 
 
 

 

 

 

 

 

 

 

Figure 3.28: Expression of MDR1 (ABCB1, green) in H epaRG spheroids at days 3, 7, 14 and 28 
including double counterstain of nuclei (blue) and cytoskeleton (red), visualized by 
immunofluorescent staining. HepaRG spheroids expres sed MDR1 at all time points. MDR1 was 
expressed in two distinct patterns, which was obser ved as a green fraction as well as yellow 
fraction due to co-localization with the membranes (red) in the merged figures (right). 20x 
magnification, bars = 50µm.  
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Figure 3.31: Expression of MRP2 (ABCC2, green) in H epaRG spheroids at days 3, 7, 14 and 28 
including double counterstain of nuclei (blue) and cytoskeleton (red), visualized by 
immunofluorescent staining. HepaRG spheroids expres sed MRP2 at all time points. MRP2 was 
expressed in two distinct patterns, which was obser ved as a green fraction as well as yellow 
fraction due to co-localization with the membranes (red) in the merged figures (right). 20x 
magnification, bars = 50µm.  

Figure 3.30: Detailed view of the co-located staini ng of MDR1 (yellow) in PHH 
spheroids (A) and HepaRG spheroids (B) . In PHH spheroids, the co-localization was 
observable at the borders between cells as well as very distinct at the outer lining 
layer (arrows). In contrast, the yellow staining wa s only sporadically detectable in 
the lining cells and much more present between the cells. Frequently, a clear lumen 
was observable in HepaRG spheroids. Cutout from 40x  magnification, bar = 20 µm 
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 For MDR1, MRP-2 and BSEP expression in both cell systems, it is evident that the yellow 

fraction is functionally integrated in the membranes, as co-localization is expected for 

transmembrane proteins. In addition, the green fraction is suggested to be either MDR1 

substructures, e.g. single domains carrying the antigen or fully assembled MDR1, which is 

not yet integrated in to the membrane. Therefore, these fractions are non-functional as a 

result of either synthesis or degradation processes. The yellow fraction was detectable in two 

distinct areas: the border area between two or more cells and the outer lining. Whereas in 

HepaRG spheroids the majority of co-localized MDR1 was the borders between cells (figure 

3.30 A). Interestingly, the border areas between cells appeared frequently with a clearly 

visible lumen, suggesting that both PHH and HepaRG spheroids formed a type of canalicular 

system in order to facilitate excretion of waste products, in part due to active transport.  

Figures 3.33 and 3.34 show the expression and localisation of BSEP in HepaRG and PHH 

spheroids. As with MDR1, but to a lesser extent, BSEP was expressed as two different 

patterns, and the co-localization of transporter and membrane.  

 

Figure 3.32: Expression of MRP2 (ABCC2, green) in P HH spheroids at days 3, 7 and 14 including 
double counterstain of nuclei (blue) and cytoskelet on (red), visualized by immunofluorescent 
staining. PHH spheroids expressed MRP2 at all time points. Mdr-1 was expressed in two distinct 
patterns, which was observed as a green fraction as  well as yellow fraction due to co-localization 
with the membranes (red) in the merged figures (rig ht). 20x magnification, bars = 50µm. 
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Figure 3.34: Immunofluorescent staining of BSEP (AB CB11, green) in PHH spheroids at days 7 and 
14 (day 3 not available) including double counterst ain of nuclei (blue) and cytoskeleton (red), 
visualized by immunofluorescent staining. BSEP was expressed in two distinct patterns at both time 
points, which was observed as green fraction as wel l as yellow fraction due to co-localization with 
the membranes (red) in the merged figures (right). Thereby, the yellow fraction is suggested to be 
the fully integrated membrane protein whereas the g reen fraction is suggested to represent 
synthesis and/or degradation of BSEP. 20x magnifica tion, bars = 50µm.  

Figure 3.33: Expression of BSEP (ABCB11, green) in HepaRG spheroids at days 3, 7, 14 and 28 
including double counterstain of nuclei (blue) and cytoskeleton (red), visualized by immunofluorescent  
staining. HepaRG spheroids expressed BSEP at all ti me points, visible as spots. BSEP was expressed 
in two distinct patterns, which was observed as gre en fraction as well as yellow fraction due to co-
localization with the membranes (red) in the merged  figures (right). Thereby, the yellow fraction is 
suggested to be the fully integrated membrane prote in whereas the green fraction is suggested to 
represent synthesis and/or degradation of BSEP. 20x  magnification, bars = 50µm.  
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It is well established that cells adapt to their surrounding environment by responding to local 

signals and cues, which in turn has consequences for physiological parameters such as 

differentiation and function (Baker and Chen, 2012). One of the major differences is related 

to the shape that cells acquire when cultured in a certain format, thus impacting the 

cytoskeleton, which has been shown to alter gene expression (Vergani et al., 2004; Thomas 

et al., 2002). The cultivation in standard 2D monolayers is far from the complexity that cells 

encounter in native tissue, which is partially due to the altered shape. Consequently, the cell-

cell contacts are substantially reduced in monolayer culture. The introduction of a third 

dimension offers cells to retain a shape that is closer to that in vivo and dramatically 

increases cell-cell contact surface, which is suggested to improve intercellular signaling that 

allows a greater physiological relevance in comparison to 2D culture.  

In order to estimate whether spheroid cell culture has an influence on the metabolic capacity 

of both HepaRG cells and PHH, a selection of phase I, II and III members were chosen in 

order to visually monitor expression in this three-dimensional cell culture system. This study 

was conducted to address several questions: Firstly, do cell models express DMET when 

cultured three-dimensionally and if so, is the expression pattern stable or variable over time?  

Secondly, is there a specific expression pattern within the spheroid and thirdly, are there 

differences in the above aspects when HepaRG spheroids and PHH spheroids are 

compared?  

The immunofluorescent staining of the DMETs investigated showed overall stable expression 

levels of CYP isoenzymes that play major roles in drug metabolism (Zanger and Schwab, 

2013), over a prolonged cultivation period.  

For both phase I and II members, the overall expression was stable for the prolonged 

cultivation period in both cell systems, which is in agreement with other reports: Gunness et 

al (2013) observed a stable expression of CYP 2E1 and several UDP 

glucuronosyltransferases (UGTs) and the basal CYP activity of CYPs 1A2, 2B6 3A4 was 

found to be stable and far exceeded those observed in HepaRG monolayers (Ramaiaghari et 

al., 2017). For the sake of completeness, it should be noted that HepaRG monolayers are 

also capable of enhanced CYP expression when cultured under 2% DMSO (Cerec et al., 

2007; Jackson et al., 2016), but high DMSO concentrations cause i) cell death (Nibourg et 

al., 2012) and i) constitutively induce CYP expression, which may further limit inducibility 

during compound testing. The above aspects therefore limit the reliability of HepaRG 

monolayers in high-DMSO culture approaches and the HepaRG spheroid model offers the 

advantage to achieve high levels of metabolic competence without requiring high DMSO 

concentrations. This has also been reported for HepaRG cells cultured in a bioreactor 

approach (Hoekstra et al., 2012). The enhanced and stable metabolic phenotype in PHH 

spheroids was also observable in a proteomics approach, in which spheroids were compared 
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to liver tissue and 2D monolayers of the same donor (Bell et al., 2016). While massive 

rearrangements of the molecular signatures, including a significant reduction in DMET 

expression, were observed in monolayers, PHH spheroids maintained a phenotype that was 

close to the liver tissue. Although the overall expression levels of the DMETs investigated 

here can be considered stable, differences in spheroids of both cell systems were observable 

that were sporadically statistically significant. Those differences seemed to be isoenzyme-

dependent as the expression patterns did not reveal any general trend. This assumption is 

strengthened by other reports, e.g. Bell et. al (2016) found that the activities of most CYPs in 

PHH spheroids were overall stable over time, but differences were seen for CYP2C8, which 

significantly decreased over time as well as for CYP2C9, which showed a time-dependent 

increase in activity. Interestingly, whereas the expression levels of CYP2B6 were clearly 

lower than those of CYP1A2 and 3A4 in both cell systems, Ramaiaghari et al. (2017) 

reported the opposite observation in HepaRG spheroids, which showed higher abundance of 

CYP2B6 compared to CYP1A2. This, however, emphasizes the need for further studies that 

address the time-dependent differences in order to benchmark the metabolic performance a 

spheroid model is able to provide over a prolonged cultivation time. More time points need to 

be included to better understand the temporal dynamics of phase I and II expression patterns 

in hepatic spheroid models and thus help to define the purpose(s) for which they are 

applicable.  

In vivo, the apical surfaces of adjacent hepatocytes form luminal cavities called bile canaliculi 

into which the bile is secreted. In their native state, hepatocytes are arranged in chords and 

lumen from adjacent hepatocytes form canalicular networks that transport bile into bile ducts 

(Treyer and Musch, 2013). In order to visualize the extent to which spheroid cultures model 

these features, three members of the canalicular efflux transporters that are mainly involved 

in drug and bile salt/acid transport (Kullack-Ublick et al., 2002) have been fluorescently 

stained. MDR1, MRP2 and BSEP are apical surface markers located at the bile canalicular 

regions of hepatocytes and are involved in the secretion of bile acids as well as in 

detoxification of xenobiotics. Furthermore, the drug-induced inhibition of these transporters is 

known to cause cholestatic DILI as bile acids consequently accumulate in hepatocytes (Bell 

et al., 2017).  

All three transporters were expressed along the three-dimensional structures of both PHH 

and HepaRG spheroids in pockets and channel-like structures with the highest abundance of 

MDR1, followed by MRP2 and BSEP. Functional bile canalicular structures were also 

observed in bioreactor-generated PHH spheroids (Tostoes et al., 2012), which showed a 

pronounced intracellular bile acid accumulation following treatment with the known 

cholestatic drug chlorpromazine. In HepaRG spheroids, transporter activity was visualized by 

the transport of cholyl-lysyl-fluorescein (CLF), a fluorescent bile acid analogue, which was 
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localized in the bile canalicular regions at the luminal surface of the spheroids by live cell 

imaging (Ramaiaghari et al., 2017). Taken together, the consistent data clearly show the 

presence of extensive bile canalicular networks that are stably expressed over several 

weeks, indicating phase III metabolic competence and thus suggesting hepatic spheroids as 

a potential in vitro model for the prediction regarding the cholestatic potential of drug 

candidates in early drug development.  

In this study, the expression of DMETs in hepatic spheroids in prolonged cultivation periods 

could be shown for the first time using several time points throughout the cultivation time, 

which proves the usefulness of 3D cell culture as a model for long term toxicity testing, hence 

bridging the physiological gap of 2D in vitro models by regaining a stable steady-state of 

hepatocyte differentiation. Moreover, the abundance of a three-dimensional canalicular 

network could be shown in both PHH and HepaRG spheroids over prolonged cultivation 

times, which endorses hepatic spheroids as a useful model for transporter induction/ 

inhibition studies in vitro that are highly recommended by regulatory authorities (Zhang et al., 

2009). This is especially useful since the methods for in vitro evaluation of transporter 

induction are less well understood compared to e.g. CYP induction and are mainly evaluated 

in vivo, the use of spheroids would add great value to early drug developmental phases.  

3.2.3 CYP induction in HepaRG spheroids 

 
During drug development, it is essential to assess whether a drug candidate has the potential 

to impact drug metabolism by either inhibition or induction, which can have fundamental 

clinical consequences. The induction of drug metabolizing enzymes, such as the CYP family, 

is known to cause drug-drug interactions (DDIs) (Sinz, Wallace and Sahi, 2008). This 

interaction can have substantial effects on co-administered drugs or the inducer itself 

(autoinduction) and may lead to a decreased or complete loss of efficacy due to increased 

elimination (Hewitt, LeCluyse and Ferguson, 2007). Additionally, CYP inducers can lead to 

an increased bioactivation of drugs that are metabolized to reactive (adverse) intermediates 

and thus trigger adverse effects (Park et al., 2005). Due to the significance of such DDIs and 

the fact that multiple drug therapy is more prevalent nowadays (Zhang et al., 2009), the 

screening of drug candidates with respect to their ability to induce CYPs is required by 

regulatory authorities, usually prior to the start of clinical trials (Chu et al., 2009; EMA, 2012; 

FDA, 2017). Therefore, a hallmark of highly differentiated hepatocyte functionality in 

physiologically relevant hepatic cell culture models is the ability to respond to xenobiotic 

activation and induce liver enzyme expression. The most common mechanism of CYP 

induction is transcriptional gene activation, which is mediated by hepatic receptor activators 

such as Aryl-hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and 
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pregnane x receptor (PXR), which function as transcription factors (Levy et al., 2015; Mandal 

et al., 2005; Tirona and Kim, 2005; Honkakoshi et al., 1998).  

Therefore, the ability of HepaRG spheroids to respond to clinically relevant activators of AhR, 

CAR and PXR receptor pathways to induce expression of sentinel gene targets CYP 1A 

(AhR), 2B (CAR), 2C and 3A (PXR), respectively, is of major importance. 

 Immunofluorescence 

In this section, the inducibility of CYPs in HepaRG cells in the 3D configuration was 

assessed by two different methods, immunofluorescent staining and mRNA expression. 

Additionally, the CYP induction in HepaRG monolayers was investigated on the mRNA level 

in order to compare both culture formats. For this purpose, HepaRG spheroids and 

monolayers were exposed to three different model inducers: Omeprazole, Rifampicine and 

Phenobarbital. Omeprazole (OMEP) is a model inducer for the CYP1A family through the 

activation of the Aryl hydrocarbon receptor (AhR) (Yoshinari et al., 2008) and is in 

widespread use as positive control for CYP induction studies in preclinical drug development. 

Rifampicin (RIF) has been used as model inducer for both CYP 2B6 and CYP 3A4 and 

Phenobarbital (PB) was used to investigate the inducibility of two members of the CYP2C 

subfamily, namely CYPs 2C9 and 2C19. 

The induction of CYP1A2 and 3A4 at day 3 is shown in figures 3.35 and 3.36 and a summary 

is given in figure 3.37.  



Results and Discussion  95 
 

 
 

Figure 3.35: Induction of CYP 1A2 (yellow) in HepaR G spheroids treated with increasing 
concentrations of Omeprazole at day 3. By increasin g dose, the expression increased dose-
dependently in terms of both number of expressing c ells and intensity of the staining. 20x 
magnification, bars = 50 µ m. 
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Figure 3.35 shows the induction of CYP1A2 by Omeprazole at three different concentrations 

on day 3 and a clear concentration -dependent induction was observed. Already at 1.55 µM, 

which was the lowest concentration tested, randomly distributed single cells with a more 

intensive staining were detected at all time points investigated. With increasing 

concentration, the percentage of highly expressing cells increased markedly, with variable 

expression patterns. Whereas the intermediate concentration (12.5 µM) was characterized 

by an equally distributed and moderate CYP1A2 expression, the expression in the top 

concentration spheroids showed a more binary pattern with cells either highly expressing 

CYP1A2 and cells that express no or very low levels of CYP1A2. Interestingly, the 

percentage of induced cells in the top concentration was localized centrally, as it was 

observed in control spheroids. This effect was not observed at the intermediate concentration 

at any time point.  

Figure 3.36 shows the induction of CYP3A4 by Rifampicin at three concentrations on day 3 

CYP3A4 is known to have a high basal expression in HepaRG cells (Guillouzo et al., 2004), 

which was observed in the expression patterns of untreated HepaRG spheroids at all time 

Figure 3.36: Induction of CYP 3A4 (yellow) in HepaR G spheroids treated with increasing 
concentrations of Rifampicin at day 3. By increasin g dose, the expression increased dose-
dependently in terms of both, number of expressing cells and intensity of the staining. 20x 
magnification, bars  = 50 µm. 
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points tested. Rifampicin had a clear concentration-dependent effect on CYP3A4 expression 

in HepaRG spheroids. At the lowest concentration of 0.1 µM, induction was not detectable in 

comparison to the control spheroids. In contrast, the intermediate concentration of 5 µM and 

the top concentration of 50 µM led to a clear induction of CYP3A4, indicated by both the 

intensity of the staining and the percentage of intensively stained cells.  
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Figure 3.37: Column plots of CYP induction in HepaR G spheroid sections of CYPs 1A1, 1A2, 2B6 and 
3A4 at days 3 (left column), 7 (mid column) and 14 (right column), expressed as relative fluorescent 
units per 1,000 pixels. All CYPs were inducible in a dose-dependent manner, indicated as increased 
mean RFU by increasing dose. Significance levels re fer to control values. (Dunnett´s multiple 
comparisons test, α = 0.05; * = p < 0.05; ** = p < 0.01; *** = p < 0.0 05; **** = p <  0.0001; RFU = relative 
fluorescent units) 
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Figure 3.37 summarizes the induction of the four CYPs investigated at day 3 (left), day 7 

(middle) and day 14 (right). Overall, CYPs 1A1, 1A2, 2B6 and 3A4 were inducible in HepaRG 

spheroids in a concentration-dependent manner over a prolonged cultivation period of 14 

days. 

Although it could be clearly shown that CYP inducibility occurs in HepaRG spheroids, the 

stained sections only display snapshots of certain areas, meaning that it remains difficult to 

extrapolate the expression pattern of a section to that of a whole spheroid. Therefore, the 

inducibility of these CYP enzymes was investigated by a more sensitive method (mRNA 

expression) again comparing HepaRG spheroids and monolayers (method see section 

2.2.2.14). 

 mRNA levels 

The inducibility of CYP enzymes in HepaRG spheroids was clearly observed in a dose 

dependent manner by immunofluorescent staining. 

HepaRG cells cultured in 2D and 3D format have been treated for 3, 7 and 14 days with 

three model inducers (Omeprazole (OMEP), Rifampicin (RIF) and Phenobarbital (PB)) and 

one negative control (Flumazenil (FLU)) and CYP induction was investigated over time as 

well as both cultivation formats were compared to each other (induction levels see 

Appendixx).  

Figure 3.38 a) shows the induction profile of CYP 1A1 in OMEP-treated HepaRG cells 

cultured as monolayers (shades of red) and as spheroid (shades of blue) at three different 

time points. OMEP highly induced CYP 1A1 in both formats up to values of over 400-fold 

induction in a concentration-dependent fashion. The induction was clearly more pronounced 

in monolayer cultures across the time points investigated (shades of red). In HepaRG 

spheroids, the fold changes were low, but were comparable across the three time points 

investigated. For CYP 1A1, the OMEP-mediated inducibility did not decrease over the time of 

culture regardless of the culture format.  

The induction pattern of CYP 1A2 is shown in figure 3.38 b). Omeprazole-mediated CYP 1A2 

induction is higher in HepaRG spheroid cultures (shades of blue) in comparison to 

monolayers (shades of red) at every time point investigated. In both culture formats, the 

induction of CYP 1A2 was clearly concentration-dependent at every time point. In 

monolayers, the highest fold changes were observed at day 3 (light red) with a trend to 

decrease over time, indicated by the lowest fold change at day 14 (dark red). The same 

effect was observed in spheroid cultures but was less pronounced.  
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Figure 3.38: Grouped column plots of CYP induction in HepaRG cells cultured as monolayers (shades of r ed) and as spheroids (shades of blue) after treatme nt with 
prototypical inducers at days 3, 7 and 14. Data is expressed as fold change compared to normalized veh icle control. For CYP 1A1 (a), CYP 2C9 (e) and CYP 3A4 (f), the 
induction in HepaRG monolayers was detectable in a clearly concentration-dependent manner at every tim e point. In HepaRG spheroids, only the induction of  CYP 1A2 
was clearly observed, with a decreasing trend over time. All other CYP isoenzymes of the panel were no t substantially induced in HepaRG spheroids. 



Results and Discussion  101 
 

The induction of CYP 2B6 in HepaRG cells following RIF treatment is shown in figure 3.38 c), 

which generally showed a low to moderate induction in both culture formats. For both culture 

formats, dose dependency was less pronounced as was observed for OMEP. In spheroid 

cultures (shades of blue), the highest induction was observed at day 7 (blue). Interestingly, 

the inducibility of CYP 2B6 in monolayers was the highest on day 14 (dark red) and 

comparably lower on days 3 (light red) and 7 (red).  

Rifampicin-mediated induction of CYP 3A4 (figure 3.38 d)) was clearly dose-dependent in 

HepaRG monolayers (shades of red) compared to spheroids (shades of blue) which showed 

the strongest effect at day 7 (red). In HepaRG spheroids, the highest inducibility was 

observed at day 7 (blue) and the induction patterns at days 3 (light blue) and 14 (dark blue) 

were comparably low independent from the dose.  

As shown in figure 3.38 e), CYP 2C9 was only inducible in HepaRG monolayers on day 14 

(dark red), although not in a dose-dependent manner. No induction of CYP 2C9 above 2-fold 

was observed at any other condition.  

In contrast, PB clearly induced CYP 2C19 with a higher inducibility in monolayers than in 

spheroids. Regardless of the cell culture format, the inducibility was the highest at day 7 (red 

and blue) and both days 3 and 14 showed lower induction levels in 3D cultures (light blue 

and dark blue). In HepaRG monolayers, a concentration-dependent increase in CYP 2C19 

expression was present at all time points (shades of red), whereas in spheroids a clear dose-

dependency was only observed at day 7 (blue).  

The CYP induction study shows that the drug metabolizing enzymes CYP 1A1, 1A2, 2B6, 

2C19 and 3A4 are inducible in HepaRG cells in both culture formats investigated. 

CYP induction in HepaRG monolayers is known as an appropriate model for CYP induction 

studies routinely performed in early drug development with regulatory acceptance (Kanebratt 

and Andersson, 2007).  

Both CYP 1A1 and 1A2 were highly inducible in monolayer and spheroid cultures at every 

time point investigated, with a higher inducibility of CYP 1A1 and a lower inducibility of CYP 

1A2 in monolayers in comparison to spheroids, overall suggesting that HepaRG cells in both 

formats express a functional Aryl hydrocarbon receptor (Persson et al., 2006). CYP 2B6 as 

well as CYP 3A4 were moderately inducible by Rifampicin in both culture formats with a 

more pronounced effect in monolayers and a slight CYP 3A4 induction was also observable 

following PB treatment at higher doses (data not shown, see appendix 3). Rifampicin is 

considered to be a selective activator of PXR, whereas PB activates both PXR and CAR 

(Kanebratt and Andersson, 2007; Wang et al., 2004; Moore et al., 2000), thus suggesting 

that CYP induction in HepaRG cells occurs in a physiologically relevant fashion via receptor 

mediated induction.  
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The induction of CYP 2C19 by PB was also clearly observed in a dose-dependent fashion 

independent from the culture format but with a more pronounced effect in monolayers. In 

contrast, CYP2C9 was only inducible in monolayers at day 14. However, this effect is 

consistent with other reports stating that the induction of CYP2C9 occurs at very low levels in 

HepaRG as well as in PHH (Kanebratt and Andersson, 2007; Gerbal-Chaloin et al., 2001). 

In this study, HepaRG spheroids showed much lower inducibility in comparison to 

monolayers for most of the CYPs investigated, which could have several reasons.  

In spheroid cell culture, only a small proportion of cells are in direct contact with the 

surrounding media, whereas in monolayers each cell is in direct contact with the cell culture 

medium. This may result in lower exposure levels than desired, which would consequently 

lead to lower response levels in spheroids. Hampered compound transport has been 

reported as underlying reason for the lower sensitivity towards chemical insult of certain 

compounds (Walker et al., 2000). Secondly, the expression of the receptors could be lower in 

3D compared to 2D, which would explain the lower induction levels of 3D compared to 2D 

observed in the branched DNA approach although a dose dependent induction was 

observed in the IF staining. The very low induction levels of CYP 2C members could be 

explained by the low expression levels of CAR in HepaRG monolayers compared to PHH 

(Aninat et al., 2005). Additionally, both PXR and CAR are regulated by the glucocorticoid 

receptor (GR, Richert and Tuschl et al., 2009) and the investigation of GR expression in 

HepaRG 2D and 3D cultures may help to clarify the low inducibility of CAR and PXR-

regulated CYP subfamilies. GR itself can be upregulated by submicromolar concentrations of 

Dexamethasone and is routinely supplemented in PHH culture media (Richert and Tuschl et 

al., 2009) and could be also used to enhance GR expression in HepaRG cells.   

Other studies reported a clear concentration-dependent inducibility of CYPs in HepaRG 

spheroids (Gunness et al., 2013; Ramaiaghari et al., 2017), which is in agreement with the 

imaging data presented here. However, those studies were only conducted in 3D and no 

comparison to 2D was addressed. 

Although the dosing regimen was identical for both CYP induction studies, a certain 

discrepancy was also observable when comparing the OMEP-mediated CYP induction in 

HepaRG spheroids across both methods: whereas CYP 1A2 was strongly induced by OMEP 

in the branched DNA approach, showing values up to 100-fold over control (day 3, figure 

3.38), the imaging data only approximates a threefold induction as indicated by the RFU 

values (figure 3.36). For CYP 1A1, the dose-dependency was much less pronounced in the 

imaging data compared to the branched DNA data. These effects could be explained by the 

different methods per se: whereas the imaging data gives insight on a protein level, the 

branched DNA method monitors the induction on the mRNA level and the differences 

observed here may display a delayed induction on the protein level as mRNA needs to be 
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translated into protein first. Moreover, measuring CYP induction on the mRNA level is much 

more sensitive compared to the protein level (Richert and Tuschl et al., 2009; Zhang et al., 

2006). 

Additionally, the method used here is optimized for monolayers and requires further 

optimization for spheroid cultures. Therefore, an optimized robust protocol for spheroid 

samples, especially in terms of the low number of cells in comparison to 2D culture, needs to 

be established.  

However, those studies were only conducted in 3D and no comparison to 2D was addressed. 

The imaging data clearly evidences the overall stable concentration-dependent inducibility of 

CYP1A1, 1A2, 2B6 and 3A4 in HepaRG spheroids over several weeks in culture, but further 

studies are required in order to elucidate the underlying reasons for the lower inducibility in 

HepaRG spheroids compared to monolayers. Therefore, the usefulness of HepaRG 

spheroids in CYP induction studies remains questionable. 

Nonetheless, hepatic spheroids may display a useful tool in DDI studies, especially regarding 

their longevity that enables to investigate induction and inhibition processes with a slow 

onset and could help to predict potential DDIs of drugs intended for chronic administration, 

which is appreciated by regulatory authorities (FDA, 2017). 
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3.3 Comparative cytotoxicity study 

Many chemical entities are either detoxified or converted into toxic metabolites by xenobiotic 

metabolizing enzymes. Both PHH and HepaRG spheroids were proven to exhibit stable 

levels of pharmacologically important DMETs over a period of at least 14 and 28 days, 

respectively. Therefore, the utility of the spheroid cell culture model was tested by a simple 

viability assay following compound treatment to address whether spheroids exhibit greater 

sensitivity to chemical insult compared to the corresponding monolayers (described in 

section 3.1). The clinical outcome of a hepatotoxic response in humans is often observed 

following subchronic or chronic administration, which remains undetected in short-term in 

vitro testing strategies that are routinely used in early drug development, resulting in EC50 

values far exceeding Cmax levels that elicit toxic response in man.  

Therefore, HepaRG cells were cultured in both formats and treated with 6 of the MIP-DILI 

training compounds, five hepatotoxicants (APAP, BOS, DCF, FIA and TRO) and PIO (non-

hepatotoxic compound) (table 3.4). The cells were treated every other day at seven 

concentrations per compound and viability was assessed via ATP measurement on days 3, 7 

and 14.  

Additionally, spheroids of two different PHH donors were treated simultaneously in order to 

compare inter-donor variability in 3D culture (due to the limited availability of cells from both 

spheroid forming donors, PHH monolayers were not included in this study). The compounds 

display a subset of the training compound set and were chosen to cover the DILI 

mechanisms except immune-mediated DILI. Concentration ranges were selected in order to 

cover several increments of cytotoxic effects at each time point. 

PIO, however, could not be used as negative control due to heavy precipitation in 3D 

cultures because of the format-specific dosing procedure (no precipitation occurred in 2D 

monolayers). 

 
Table 3.4: Selected compounds and final concentrati on ranges for the cytotoxicity comparison 
of monolayers and spheroids. 
Compound  (Code)  Hepatotoxic/ non -hepatotoxic  Final concentration  range [µM]  
Acetaminophen (APAP) hepatotoxic 100, 200, 500, 1,000, 2,000, 5,000, 

10,000 

Bosentan (BOS) hepatotoxic 4, 10, 20, 40, 100, 200, 400 

Diclofenac (DCF) hepatotoxic 5, 10, 25, 50, 100, 250, 500 

Fialuridine (FIA) hepatotoxic 0.3, 1, 3, 10, 30, 100, 300 

Troglitazone (TRO) hepatotoxic 0.4, 1, 2, 4, 10, 20, 40 

Pioglitazone (PIO) Non-hepatotoxic 0.4, 1, 2, 4, 10, 20, 40 

 



Results and Discussion  105 
 

Dose-response curves have been generated for each compound/ time point and EC50 values 

were calculated as shown in the following.  

 
 
Table 3.5: Mean EC 50 values of cell models following APAP treatment for  up to 14 days 
generated from three independent experiments.  

Cell model 
EC50 [µM] 

Day 3 Day 7 Day 14 

HepaRG 2D 7,512 3,462 2,227 

HepaRG 3D 4,352 2,269 1,367 

PHH 3D donor 1 6,915 5,419 1,905 

PHH 3D donor 2 10,386 4,152 1,794 

 

Figure 3.39: Dose-response curves of APAP treated H epaRG cells in 2D and 3D culture (left) and PHH 
spheroids from two different donors (right) at days  3, 7 and 14.  Data expressed as nonlinear 
regression curves from mean viability values of thr ee independent experiments. HepaRG cells 
cultured in both formats showed both, a clear dose-  and time dependent response with a time-
dependent shift of the curve towards lower concentr ations. This effect was less clear in both PHH 
donors, especially in spheroids from donor 2. 
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A clear dose-dependent decrease in the ATP content was observed following APAP 

treatment in all conditions tested. Additionally, it was shown that the cytotoxic effects 

occurred in a time dependent manner, evident by the shift of the dose response curves 

towards lower concentrations by increasing treatment duration (table 3.5). APAP caused 

lower EC50 values after repeated exposures, indicated by and EC50 of 4 - 10 mM at day 3 

compared to 1.3 - 2.2 mM after 14 days. The latter is approximately tenfold of the clinically 

relevant Cmax (149 µM; Villeneuve, Gosselin and Whyte, 2014). Following APAP treatment, 

HepaRG spheroids were the most sensitive cell model and showed EC50 values that were 

approximately half of those in monolayers. Additionally, HepaRG spheroids were more 

sensitive in comparison to PHH spheroids on days 3 and 7, whereas EC50 values at day 14 

were in a comparable range for all spheroid models. PHH spheroids donor-to-donor 

variability was clearly present on day 3, indicated by the substantial difference in APAP 

induced EC50 values, but were comparable after 14 days. 

 
 
 
 
 
 
 
 
 
 

Figure 3.40: Dose-response curves of BOS treated He paRG cells in 2D and 3D culture (left) and PHH 
spheroids from two different donors (right) at days  3, 7 and 14.  Data expressed as nonlinear 
regression curves from mean viability values of thr ee independent experiments. HepaRG cells cultured 
in both formats showed a clear dose- and time depen dent response with a time-dependent shift of the 
curve towards lower concentrations. This effect was  less clear in both PHH donors, especially in 
spheroids from donor 2. 
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Table 3.6: Mean EC 50 values of cell models following BOS treatment for up to 14 days 
generated from three independent experiments.  

Cell model 
EC50 [µM] 

Day 3 Day 7 Day 14 

HepaRG 2D   >400 195.5 78.75 

HepaRG 3D >400 142.3 143.2 

PHH 3D donor 1 >400 144.9 29.11 

PHH 3D donor 2 >400 167.4 45.57 

 
Dose response curves following BOS treatment showed a clear time-dependent decrease in 

EC50 values. At day 3, BOS did not elicit cytotoxic response in any of the cell systems an 

EC50 values were not determinable. In contrast, EC50 values at day 7 were in a comparable 

range for all cell systems, which further decreased with increasing treatment duration in 

HepaRG 2D and PHH spheroids from both donors, whereas the EC50 value in HepaRG 

spheroids at day 14 was similar to that of day 7 (142.3 µM vs. 143.2 µM).  

 

 
 
 
 
 
 
 
 

Figure 3.41: Dose-response curves of DCF treated He paRG cells in 2D and 3D culture (left) and PHH 
spheroids from two different donors (right) at days  3, 7 and 14.  Data expressed as nonlinear 
regression curves from mean viability values of thr ee independent experiments. HepaRG cells 
cultured in both formats showed both, a clear dose-  and time dependent response with a time-
dependent shift of the curve towards lower concentr ations. This effect was less clear in both PHH 
donors but was still clearly detectable. 
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Table 3.7: Mean EC 50 values of cell models following DCF treatment for up to 14 days 
generated from three independent experiments.  

Cell model  
EC50 [µM] 

Day 3 Day 7 Day 14 

HepaRG 2D 427.8 298.5 274.8 

HepaRG 3D 229.0 207.6 50.58 

PHH 3D donor 1 89.38 101.0 32.69 

PHH 3D donor 2 181.9 71.68 63.97 

 
Following DCF treatment, EC50 values decreased in a time-dependent manner in all cell 

models. HepaRG were less sensitive in 2D than 3D, with the most pronounced effect at day 

14 as indicated by a fivefold higher EC50 value in 2D compared to 3D (274.8 µM vs. 50.58 

µM). Spheroids from both PHH donors were more sensitive in comparison to HepaRG 

spheroids at days 3 and 7, respectively, but EC50 values were in a comparable range after 14 

days of treatment. cell models and a greater sensitivity in HepaRG spheroids was observed 

(table 3.7).  

 

 
 
 
 

Figure 3.42: Dose-response curves of FIA treated He paRG cells in 2D and 3D culture (left) and PHH 
spheroids from two different donors (right) at days  3, 7 and 14.  Data expressed as nonlinear 
regression curves from mean viability values of thr ee independent experiments. HepaRG cells 
cultured in both formats as well as PHH spheroids s howed, a clear dose- and time dependent 
response with a time-dependent shift of the curve t owards lower concentrations.  
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Table 3.8: Mean EC 50 values of cell models following FIA treatment for up to 14 days generated 
from three independent experiments.  

Cell model 
EC50 [µM] 

Day 3 Day 7 Day 14 

HepaRG 2D >300 >300 17.5 

HepaRG 3D >300 95.69 5.54 

PHH 3D donor 1 >300 16.43 0.87 

PHH 3D donor 2 >300 13.69 0.51 

 

The effect of increased susceptibility upon repeated exposure was most prominent for FIA 

and whereas at day 3 no EC50 value could be established in any cell model, a strong 

cytotoxic effect was observable at day 14, indicated by the low EC50 values. Interestingly, 

HepaRG cell in both 2D and 3D showed a dose-dependent decrease in viability already at 

day 3, whereas in PHH spheroids, the overall viability was somewhat decreased independent 

from the dose. Again, HepaRG monolayers were much less sensitive compared to 

spheroids. EC50 values were very close in PHH spheroids of both donors at every time point.  

 

 

None of the cell models showed a clear response to the non-DILI compound PIO as 

expected (figure 3.43). However, in 3D culture models, precipitation was observed as a 

Figure 3.43: Dose-response curves of PIO treated He paRG cells in 2D and 3D culture (left) and PHH 
spheroids from two different donors (right) at days  3, 7 and 14.  Data expressed as nonlinear 
regression curves from mean viability values of thr ee independent experiments. No dose-dpendent 
cytotoxicity was observable in either condition, th e decrease in overall viability in spheroids refers  to 
compound precipitation. 
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consequence of the dosing regimen, which subsequently led to the inclusion of precipitate in 

spheroids, resulting in an overall decreased viability (figure 3.44). 

 

TRO-mediated cytotoxicity was clearly dose- and time dependent in PHH spheroids of donor 

1 as indicated by a time-dependent decrease of EC50 values (table 3.9). in contrast, 

spheroids of donor 2 showed similar EC50 values at day 3 and 7, but a clear decrease at day 

14. Interestingly, no cytotoxic effect of TRO was observable in HepaRG cells in either cell 

culture format at any time point. 

Figure 3.45: Dose-response curves of TRO treated He paRG cells in 2D and 3D culture (left) and PHH 
spheroids from two different donors (right) at days  3, 7 and 14.  Data expressed as nonlinear 
regression curves from mean viability values of thr ee independent experiments. HepaRG cells 
cultured in both formats showed no response to TRO at either time point in either format, whereas 
TRO clearly induced cytotoxicity in PHH spheroids o f both donors. 

Figure 3.44: Precipitation of PIO as a consequence of the 
dosing regimen in spheroid culture. Spheroids incor porated 
the precipitate, which led to an overall lower viab ility by 
increasing duration. HepaRG spheroid treated with 4 0 µM 
PIO at day 7. 10x magnification, bar = 100 µm. 
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Table 3.9: Mean EC 50 values of cell models following TRO treatment for up to 14 days 
generated from three independent experiments.  

Cell model 
EC50 [µM] 

Day 3 Day 7 Day 14 

HepaRG 2D >40 >40 >40 

HepaRG 3D >40 >40 >40 

PHH 3D donor 1 6.77 3.34 1.19 

PHH 3D donor 2 4.79 5.05 0.74 

 

 

Figure 3.46 shows the Cmax correction of the EC50 values, which was performed for the 2D 

multicenter ring trial data (section 3.1.1). Following 3 days of treatment, the majority of cell 

models could not detect hepatotoxicity. Spheroids from PHH (donor 1) detected both BOS 

and DCF with EC50/Cmax values below 20. Additionally, PHH spheroids (donor 2) detected 

DCF as hepatotoxic. 

After seven days of treatment, the EC50/Cmax ratio clearly decreased for all conditions, except 

for FIA in HepaRG monolayers, and no cell model could identify BOS as hepatotoxic.  

The results shown for the 14-day treatment indicate a dramatic decrease in the EC50/Cmax 

ratio, suggesting a greater sensitivity to predict hepatotoxicity. The overall trend is that 

HepaRG spheroids were more sensitive under these conditions than HepaRG monolayers 

with only one exception (BOS day 14). In addition, although spheroid cultures of HepaRG 

were less sensitive compared to PHH spheroids, the EC50 values of both spheroid models 

were overall in a comparable range over prolonged exposure times, which is in contrast to 

that observed in monolayers, which were the least sensitive cell model under the conditions 

of this study. However, although hepatic spheroids showed an overall greater sensitivity, 

Figure 3.46: Clustered column plots showing the EC 50/Cmax values for the four 
hepatotoxicants by measurement of the ATP content i n HepaRG (HRG) 2D (red), HepaRG 3D 
(blue) and PHH 3D in two different donors (shades o f green) after treatment for 3 (left), 7 
(middle) and 14 (right) days.  The time-dependent decrease of EC 50 values and thus the 
EC50/Cmax value was clearly observed for most condition s.  
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some exceptions were observable that appeared to be compound specific and are discussed 

in the following.  

Bosentan, a dual endothelin receptor antagonist which is known to cause hepatotoxicity 

(Simmoneau et al., 2014), did not show a time dependent decrease of the EC50 in HepaRG 

spheroids from day 7 to day 14, whereas in both HepaRG monolayers and PHH spheroids, 

the effective concentration markedly decreased upon repeated exposure. BOS is mainly 

metabolized by CYP 2C9 and 3A4 into three major metabolites: Ro 48-5033; Ro 64-1056 

and Ro 47-8634, of which Ro 47-8634 has been identified as hepatotoxic (Matsunaga et al., 

2015). The formation of Ro 47-8634 is mainly mediated via CYP 2C9, whereas the formation 

of both Ro-48-5033 and Ro 64-1056 is CYP 3A4 mediated. Additionally, BOS is also strongly 

inducing both enzymes (Matsunaga et al., 2015) and as CYP 2C9 inducibility was only 

observable following 14-day exposure in HepaRG monolayers as presented in section 

3.2.3.2 (figure 3.38), a possible explanation for the low cytotoxic effect in HepaRG spheroids 

could be the absence of CYP 2C9 induction that would consequently lead to a much lower 

CYP2C9-mediated formation of the toxic Ro-47-8634 in comparison to monolayers. 

Following DCF treatment, discrepancies in EC50 values were observable between HepaRG 

2D and 3D after 14 days as well as between PHH from both donors (table 3.7 and figure 

3.46). It is known that the metabolic activation of DCF to 5-hydroxy-DCF plays a major role in 

DCF-mediated DILI and both CYPs 2C8 and 3A4 are involved in the formation of 5-hydroxy-

DCF (Shen et al., 1999; Naisbitt et al., 2007; Kishida et al., 2012). Therefore, different 

expression levels of those enzymes between the two PHH donors as well as between 

HepaRG monolayers and spheroids may be the underlying reason for those differences. 

Another discrepancy that was observable was the absence of any TRO-mediated cytotoxicity 

in HepaRG cells of either format. TRO was approved for the treatment of type II diabetes by 

the FDA in 1997 and subsequently withdrawn from the market in 2000 due to severe 

hepatotoxicity in some patients (Gale, 2001). TRO elicited severe cytotoxicity in PHH 

spheroids from both donors as indicated by the very low EC50 values (4.79 µM, 5.05 µM and 

0.74 µM in donor 2 at day 3, 7 and 14, respectively), no effect was observable in the 

HepaRG cell models due to the following potential reasons: Firstly, TRO is known to strongly 

bind to plasma proteins (99%, Loi et al., 1999; Kawai et al., 1997) and all experiments in  

HepaRG cells were conducted in serum-containing TOX medium for the sake of 

comparability, which subsequently leads to a decrease in the effective dose. Indeed, 

cytotoxicity was observed in HepaRG spheroid cultures maintained under low-serum 

conditions (Bell et al., 2017). Secondly, the metabolism of TRO is complex and various 

intermediates are known, of which those generated by both CYP3A4 and SULT1A1 are 

associated with toxicity, but remain controversial. CYP 3A4 metabolizes TRO to a quinone, 

which is suggested to cause hepatotoxicity through oxidative stress and covalent binding to 
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subcellular molecules (Smith, 2003). The SULT-mediated formation of the TRO-sulfate is 

known to cause moderate cholestasis through the inhibition of bile acid export and was 

shown to be tenfold more potent than TRO itself (Funk et al., 2001). However, the TRO-

quinone was found to be less toxic than expected and Hewitt et al. (2002) found that high 

CYP 3A4 activity correlated with high EC50 values in TRO treated PHH of 27 donors. The 

combination of both, the serum-dependent decrease of the effective dose and the high 

expression level of CYP 3A4 alongside the low SULT1A1 levels as detected in section 

3.2.2.2 in HepaRG cells likely contribute to the absence of TRO-mediated toxicity, 

independent from the culture format.  

In the context of the observed lining morphology in HepaRG spheroids, an impaired drug 

uptake may also contribute to lower sensitivities compared to PHH in 3D. Although no TRO-

mediated toxicity was detected in HepaRG monolayers as well, an altered expression pattern 

of uptake transporters in 3D may contribute to the absence of toxicity when considering the 

overall higher sensitivity of HepaRG spheroids compared to their 2D counterparts. An 

efficient drug uptake mediates the initial step of hepatic elimination and for HepaRG 

monolayers functional levels of uptake transporters have been reported (Le Vee et al., 2006), 

but the expression of those needs to be set in relation to exporter expression. For example, 

as the investigated phase III transporters showed different expression levels in spheroid 

configuration as described in section 3.2.2.3, differences in the expression of uptake 

transporters such as OCTs5 or OATPs6 may contribute to a preferred or impaired uptake of a 

compound, depending on its physicochemical properties. Thus, it would be important to 

further investigate the expression and activities of both uptake and export transporters as 

well as the ratio between the respective capacities in HepaRG spheroid configuration in 

order to define the exact usefulness of this model for toxicity studies.  

The heavy precipitation that was observed for PIO addresses a question that is 

superordinated in terms of the shortcomings that are associated with spheroid cell culture: 

Due to the inability to remove the complete dosing solution in ultra-low attachment plates, in 

which spheroids are suspended, PIO precipitate residues could not be efficiently removed 

and with each subsequent dosing an increased amount of precipitate was observed. This 

finally led to the attachment of spheroids (and growth) to the precipitate. As a secondary 

effect, the overall health of PIO treated spheroids was impaired and PIO was excluded as a 

negative control under the conditions of this study. The effect that was seen for PIO 

visualizes the issue of inaccurate dosing in spheroid cell culture upon repeated dosing 

regimen, which is in fact mitigated by washing steps with the dosing solution but those 

inaccuracies cannot be fully avoided by the applied methodology, which may also be the 

underlying reason for the high standard deviations observed in spheroids from both PHH 
                                                
5 Organic cation transporter 
6 Organic anion transporting polypeptides 
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donors. This emphasizes the need for further studies in order to define a more robust and 

less error-prone 3D culture protocol that displays the premise for industrial routine use. 

DILI in humans at therapeutic doses often requires cumulative exposure to manifest clinical 

signs (Roberts et al., 2014). Consequently, common cell culture approaches in early drug 

development, which mostly include monolayer cultures and a maximum exposure time 

approximately 72 hours, are simply not able to predict a clinically relevant outcome that 

requires multiple doses. This was clearly shown by the data presented from the cytotoxicity 

ring trial (section 3.1). Although differences in the sensitivity towards chemical insult existed 

across the different cell models assessed, none were able to distinguish between 

compounds that are associated or not associated with DILI (Sison-Young, Lauschke and 

Johann et al., 2016).  

Spheroid cell culture offers the ability to maintain stable physiology and expression levels of 

DMETs for several weeks, which is consistent with other reports (Ramaiahgari et al., 2017, 

Noor et al., 2015, Gunness et al., 2013) and for PHH spheroids, a stable physiology has 

been reported for up to 35 days (Bell et al., 2016). Therefore, spheroids provide an 

appropriate basis for the application of multiple dosing that will enable investigations of 

repeated exposure scenarios that are more reflective of human exposures to assess 

cumulative and/ or slower developing adverse effects.  

In this work, long-term dosing enhanced the sensitivity of HepaRG cells to a panel of six 

hepatotoxicants in both cell culture formats, but with greater sensitivity in spheroids 

compared to monolayers. However, as only PHH spheroids were included, no conclusion on 

whether PHH spheroids are more sensitive compared to their 2D counterparts can be made 

for this study. This question was addressed by Bell et al. (2017), who compared PHH 

spheroids to 2D sandwich cultures of the same donors in a cytotoxicity study. In this study, 

PHH spheroids detected toxicity of all compounds at clinically relevant concentrations 

following repeated exposure, whereas PHH cultured in 2D sandwich configuration exhibited 

substantially lower sensitivities for most of the compounds.  

The study conducted here initially reflects the delayed onset of many DILI compounds in vivo 

(Kaplowitz, 2004), showing a significant reduction in the EC50 values for all compounds 

tested, which is in agreement with other studies (Bell et al., 2016 and 2017).  This effect was 

most prominent for fialuridine, for which cytotoxicity was exclusively detected upon long-term 

dosing (e.g. EC50 >300µM at day 3 vs. EC50 = 0.51 µM at day 14 for PHH spheroids from 

donor 2). Fialuridine caused severe hepatotoxicity in 7 of 14 patients in clinical trials, 5 of 

whom died, (McKensie et al., 1995) and no indication of fialuridine hepatotoxicity was 

observed in any preclinical testing strategy. FIA mediated DILI occurs via intrahepatic 

accumulation through hENT17 (Zhang et al., 2016), which accounts for the slow onset of 

                                                
7 Human equilibrative nucleoside transporter 1 
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cytotoxicity as observed in this study. For hENT1, different genetic variants exist (Zhang et 

al., 2016), which could be the underlying reason for the different sensitivities in HepaRG and 

PHH. In this study, it could be successfully shown that the ability to treat hepatic spheroids 

over prolonged cultivation periods can dramatically decrease the concentration at which 

chemical insult occurs, which would add great value in the development of drugs that are 

indicated for subchronic to chronic administrations. Whereas HepaRG showed some 

limitations (i.e. no TRO-mediated cytotoxicity), PHH spheroids were shown to display a very 

sensitive and useful in vitro tool for long-term cytotoxicity studies. 

But, although spheroids showed applicability for long-term testing as well as a greater 

sensitivity towards chemical insult in comparison to conventional monolayer cultures, only a 

small panel of compounds was tested and a proper validation using a large panel of both 

DILI and non-DILI compounds is necessary in order to benchmark spheroid cell culture 

applicability in the drug developmental process.  

Both, spheroid culture per se and repeated dosing regimens require much more resources 

than conventional short-term tests in monolayers, thus the application of spheroid cell culture 

as a screening tool is unlikely and spheroids will rather be applied in a tiered approach as a 

potential in vitro application for subsequent investigations. 
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3.4 Comparative protein expression in HepaRG cells cultured in three 

different formats 

Given the inherent deficiencies of organ-specific microenvironmental properties in 

conventional 2D monolayer culture, the possibilities to emulate relevant physiological 

aspects in hepatic in vitro systems are manifold. In the previous chapters, the effect of three-

dimensionality on hepatocyte longevity, DMET expression and CYP inducibility has been 

thoroughly investigated, but not compared to the respective levels in 2D. Moreover, spheroid 

cell culture displays only one option to modulate a hepatocyte´s phenotype towards higher 

physiological relevance. For example, the role of fluid transport is fundamental for cell 

signaling (Mammoto and Ingber, 2010) and physiologic patterns of organ function (Hahn and 

Schwartz, 2009; Hildebrandt et al., 2011). Living cells possess the ability to sense 

mechanical forces and transduce those into biological responses (Bao and Suresh, 2003; 

Freund et al., 2012) and the mechanisms that modulate cell behavior by fluid shear are 

diverse, e.g. through cell surface receptors (Tzima et al., 2005) and cell adhesion molecules 

(Tzima et al., 2005). In hepatocytes, shear stress has been reported to modulate viability 

(Park et al., 2008) and alter gene expression levels (Mufti et al., 1995; Mufti and Shuler, 

1996; Shvartsman et al., 2009; Vinci et al., 2011).  

One option to introduce shear stress to hepatocytes through medium flow is the pump-driven 

quasi-vivo (QV) system (Kirkstall Ltd., Sheffield, UK), which enables an adjustable medium 

flow over monolayer culture in a standard multiwell approach (detailed description in section 

2.2.1.7).  

In this section, the expression patterns of CYP1A2, CYP3A4 and NAT1/2 were compared in 

HepaRG cells cultured in 2D monolayers, 3D spheroids and QV flow culture over a 

prolonged cultivation period of 14 days in order to initially elucidate the effects that different 

environmental cues may have on the same cell model. An overview of the used culture 

system specific requirements is given in table 3.8.   

 

Table 3.10: Cell culture format specific parameters  for 2D monolayers, 3D spheroids and QV microfluidic  
cell culture system.  Substantial differences in seeding densities and sub sequently replicates for common 
applications impact the selection of feasible compa rative endpoints.   
 
HepaRG 2D monolayers 3D spheroids QV fluidic 

Plate format 96; 24 96 6 (48) 
Seeding densities 72,000; 300,000 1,800 300,0003)  

Required minimum replicates 

Viability  3 (96) 6 2 
Protein 2 (24) ≥500 2 
RNA 3 (96); 2 (24) ≥121); ≥5002) 2 (48) 
IF 3 (96) 8 (96) NA 
1) replicates required for Luminex branched DNA 
2) replicates for RNA isolation 
3) seeding and preculture in 24-well plates 
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The well-established protocols for monolayers needed modification to be applicable to the 

tight microtissues in 3D as well as of the relatively low cell number per spheroid. For 

example, standard lysis protocols are not applicable to the spheroids and therefore lysing of 

microtissue needs other requirements. In contrast, the QV system is designed in a 6-well 

plate format and each well has the growth surface of a well of a 48 well plate (0.75 cm2) and 

a static preculture on glass coverslips is required. The 6-well plate format of QV limits 

scalability and the six independent heads of the pump only allows testing of six conditions at 

once, thus only low throughput is possible using this system. 

Optimized protein isolation protocols for each cell culture format were established, therefore 

a comparison of the different cell models was performed via Western Blotting. Due to the 

large number of spheroids needed for protein isolation, as well as the limited number of 

conditions that can be tested in QV, only basal expression levels were investigated. 

Several DMETs were investigated previously in spheroids by immunofluorescent staining 

(section 3.2.2), but no comparison between the culture systems per se has been performed 

so far. Therefore, expression of CYP1A2, CYP3A4 (Phase I) and NAT 1/ 2 (Phase II) were 

compared in the three different cell culture formats.  

 
Figure 3.45A shows the expression levels of CYP1A2 in HepaRG cells cultured in the 

different formats on days 3, 7 and 14. At day 3, expression was generally low and no 

substantial difference in CYP1A2 expression was observed between 2D and 3D. In contrast, 

HepaRG cultured in the QV clearly showed a higher expression. Following 7 days of culture, 

the expression pattern changed and monolayers expressed very low CYP1A2 levels, 

Figure 3.47: Comparative protein expression levels of DMEs in HepaRG cells cultured in three different  
formats at three different time points. Both cultur e format and time-dependent differences in the expr ession 
of CYP 1A2 (A), 3A4 (B) and NAT 1/ 2 (C) were clear ly visible. A clear inducing effect of the flow con ditions 
was observed for QV. In contrast, only CYP 3A4 expr ession was higher in spheroids at all time points 
compared to 2D, whereas CYP 1A2 expression did not substantially differ from expression levels in 
monolayers. Interestingly, NAT 1/ 2 expression was only weakly visible in 3D at day 7 and was not expr essed 
at days 3 and 14, whereas NAT 1/ 2 was clearly expr essed in 2D and QV at all time points investigated.  As a 
quality control, D shows the expression of albumin,  which was not substantially affected by the cultur e 
format.  kDa = kilo Dalton.  
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whereas the expression in spheroids increased, again the highest expression level was 

observed under flow conditions, with increased expression observed compared to day 3. 

After 14 days of culture, CYP1A2 expression increased in 2D and decreased in 3D and 

observable under flow conditions, although expression was still higher in the QV format.  

In contrast, the expression pattern of CYP 3A4 was more consistent over time (fig 3.47 B). At 

every time point, HepaRG monolayers expressed lower levels compared to both 3D and QV 

culture conditions, but with an increased expression from day 3 to day 14. As observed for 

CYP 1A2, the expression levels under flow conditions were clearly the highest at each time 

point, with the lowest level at day 3 and the highest level at day 7. A similar pattern was 

observable in HepaRG spheroids, but at a lower level when compared to QV conditions. This 

comparative expression study shows that the expression of phase I enzymes (CYP1A2 and 

CYP3A4) is more stable when cultured in 3D and expression improved further under flow 

conditions. Interestingly the expression levels of both CYPs in 2D was the highest at day 14, 

suggesting that some degree of physiological recovery is happening and that standard 

monolayers may be applicable for specific subacute experiments. Although the expression 

patterns of HepaRG cultured in both 3D and QV were overall higher at time points, a 

decrease from day 7 to day 14 was observed for both CYPs investigated. This clearly shows 

that for any cell model applied to prolonged cultivation and treatment periods it is essential to 

investigate physiological function at more time points in order to generate a relevant profile 

over time.  

NAT 1/ 2 (Phase II) has been comparatively investigated across the three culture formats, 

and protein is shown in figure 3.30. 

Figure 3.47 C shows the expression patterns of NAT 1/ 2 in HepaRG cells cultured in the 

different formats. Here, the expression patterns were similar at days 3 and 14 with 

comparable bands for 2D and QV with a slightly higher expression in QV. Interestingly, 

HepaRG cells did not express NAT 1/ 2 at these time points in 3D culture. On day 7, both 2D 

and 3D cultured HepaRG expressed NAT 1/ 2 at a similar, low level, whereas the expression 

in QV was consistent over time.  

Additionally, as a technical control for total protein, albumin expression was compared across 

the culture formats (fig 3.47 B). No relevant difference in the expression pattern of albumin 

was observed between the culture formats or time points.  

These data clearly show that by modulating the cell culture conditions for the same cell, the 

degree of DME expression is highly manipulatable. The three DME proteins tested here 

showed different expression patterns at each time point investigated, thus not allowing a 

general statement of the influence of the cell culture system itself on DME expression. 

In HepaRG spheroids, the expression levels showed time-dependent differences with the 

highest levels at day 7, whereas those of both day 3 and 14 were comparably lower. In 
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spheroids, the degree of cell-cell interaction is much higher compared to 2D, and the 

abundance of various junctions is known to be beneficial on hepatocyte functionality and 

drug metabolism (Hamilton et al., 2001). A possible explanation for the lower expression 

levels at day 3 would be that the junctional network may be in a set-up period and thus not 

yet fully established, which may result in lower expression levels at day 3 and an enhanced 

expression at day 7 due to a higher degree of intercellular crosstalk.  

In contrast, the decreased expression levels at day 14 may relate to the diffusion-driven gas 

transport: A sufficient oxygen supply is crucial for hepatocyte functionality since a high 

metabolic capacity results in a high oxygen turnover (Cho et al., 2007). The transport of 

gases in spheroid configuration is mediated by passive diffusion due to the absence of a 

vascular system. This diffusion is directly linked to the spheroid diameter, which should not 

exceed 200 µm in order to prevent critical O2 concentrations in the spheroid core (Curcio et 

al., 2007). Although the spheroids generated here did not exceed this critical diameter, the 

oxygen supply may have an impact over prolonged cultivation time as the oxygen saturation 

in the surrounding media is decreased under static conditions (Vinci et al., 2011). 

Additionally, it has been suggested that the penetration of compounds is limited in spheroid 

configuration (Walker et al., 2000), an effect that can also occur for certain nutrients and 

subsequently may alter a spheroid´s expression DME pattern. As metabolism is in general a 

delicate interplay of nutrient uptake and waste product excretion, the above aspects are also 

applicable to the transport of CO2 and catabolites, which affect the microenvironment within 

the spheroid over time.  

Only the QV system showed an overall greater abundance of the investigated proteins, with 

the highest expression observed for CYP 3A4, followed by NAT 1/ 2 and CYP 1A2. This 

suggests that the introduction of flow and shear forces have a beneficial effect on the DME 

expression in HepaRG cells, which is in agreement with other reports: Vinci et al. (2011) 

evaluated the influence of medium flow in PHH in comparison to monolayers of the same 

donor and found a much higher expression of DMETs such as CYPs, UGTs and MRP2 in 

PHH exposed to shear stress. Additionally, CYP1A expression was increased by increasing 

flow rates, whereas the expression levels of other CYPs (2B6, 3A4) decreased again by 

increasing shear stress. This emphasizes how specific a certain stimulus influences 

expression of individual proteins. For example, both CYP1A1 and 1A2 are also highly 

expressed in arterial and venous endothelial cells (Han et al.,2008) which are continuously 

exposed to high shear stress in vivo, thus high flow rates may enhance their expression in 

hepatocytes under hydrodynamic culture conditions as well. In contrast, CYP3A4 expression 

is mostly restricted to liver (and gastrointestinal, the human protein atlas, 

www.proteinatlas.org) tissue and native hepatocytes are exposed to low shear stress due to 

the sinusoidal microarchitecture, which may lead to the guess that the stimuli to which a CYP 



120  Results and Discussion 

isoenzyme responds or not are a result of the stimuli that are given in the respective 

expressing tissues. Overall, the results obtained here alongside other studies demonstrate 

that hepatocytes and hepatocyte-like cells respond to hydrodynamic stimuli by greater 

metabolic capacity. But additionally, the indicated relation of CYP expression and flow rate 

(Vinci et al., 2011) emphasize how delicately the modulation of cell culture conditions affect 

the hepatocyte phenotype. This becomes especially clear by considering that a change in 

culture conditions reflects a multifactorial change on many levels. For example, when 

introducing medium flow, cells are not only exposed to the mechanical shear stimulus but 

also to convection-aided turnover in the form of increased oxygen and nutrient supply as well 

as a higher catabolite removal (Sbrana et al., 2010). Moreover, additional factors such as the 

choice of the construction material (e.g. polydimethylsiloxanes, silicones or Teflon) as well as 

the underlying technology to introduce flow (e.g. gravity-driven, pump-driven or syringe-

driven) highly contribute to the multitude of phenotype-affecting stimuli that cells perceive 

(Wu et al., 2010). To date, a myriad of publications on physiologically relevant improvements 

in cell culture exist, which all pursue the same goal, namely emulating liver biology, and all 

show evidence for improved hepatocyte phenotypes over conventional methods, they all 

differ in their respective setup, highlighting how difficult it remains to define an optimal culture 

condition for a specific purpose. From an industry perspective, the application of any novel in 

vitro approach remains a huge challenge since, despite the increased physiological 

relevance that those models offer, they have to be thoroughly benchmarked in order to be 

able to define the purpose each specific model is fit for and to find acceptance.  
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4 Conclusion and future perspectives 

Undetected drug-induced liver injury (DILI) displays one of the leading causes of drug 

candidate termination in late developmental phases and post-marketing withdrawal (Kenna, 

2018; Kaplowitz et al., 2013) and remains a serious challenge for the pharmaceutical 

industry given the limited predictive value of currently applied preclinical testing strategies. 

Whilst preclinical animal models are essential for the detection of adverse drug reactions 

(ADRs), species-specific differences in drug metabolism pathways and pharmacokinetics 

lead to a predictivity of only 50% for human DILI (Olson et al., 2000). Moreover, animal 

models are not capable of reflecting the broad diversity of human population including factors 

such as age, sex, co-morbidity and lifestyle since relatively low numbers of young animals 

with limited genetic diversity under standardized conditions are routinely used. The 

aforementioned factors contribute to the many cases of idiosyncratic DILI that occurs 

unpredictably in a small number of patients, which may be mediated by both the innate and 

adaptive immune system when triggered by hepatocyte injury. Eventually, the interplay 

between injurious and adaptive cellular response to chemical insult determines whether the 

liver of a certain patient adapts to a mild injury or proceeds to severe liver injury. The 

pharmaceutical industry is therefore seeking for well-characterized human hepatic in vitro 

models in order to reliably characterize a drug candidate for its potential to cause DILI in man 

at the earliest possible developmental stage. In this work, hepatic cell models have been 

assessed in different culture formats with respect to their ability to emulate relevant 

hepatophysiology in the context of possibly improving preclinical toxicity testing strategies. 

The usefulness, advantages and shortcomings as well as possible applications in the early 

drug development pipeline are summarized for each cell culture format in the following. 

4.1 Applicability of 2D monolayer cultures 

Hepatic cell models in simple 2D monolayer cultures are in routine use as first-line approach 

for the assessment of drug candidates, which directly injure hepatocytes in a dose-

dependent fashion without the contribution of external molecular factors that may be required 

for hepatotoxicity to occur.  This type of hepatotoxicity is commonly referred to as intrinsic 

hepatotoxicity and is often reliably detectable in preclinical in vitro and in vivo testing 

strategies. Two-dimensional hepatic monolayers have been successfully used for the 

detection and ranking of drug candidates that cause intrinsic cytotoxicity, which often occurs 

at very high doses, usually at the multiple of clinically relevant human plasma concentrations. 

The comprehensive cytotoxicity study described in section 3.1.1 emphasizes the 

shortcomings of 2D monolayers in terms of predicting DILI at relevant doses, which is due to 

several reasons:  
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• In early cytotoxicity studies, broad concentration ranges are used as a conservative 

approach since human pharmacokinetics data of newly synthesized drug candidates 

is yet unknown. The EC50/Cmax correction that was used in this study is therefore only 

useful as a validation approach for novel in vitro assays using well-studied training 

compound sets. Nonetheless, cytotoxic EC50 values initially enable a ranking of drug 

candidates according to unfavorable cytotoxicity profiles.  

• Cytotoxicity assays are not capable of providing any information on the underlying 

mechanisms leading to DILI. 

• Classic 2D cytotoxicity assays are, due to limited longevity in a differentiated state, 

normally performed in a short-term setup with incubation times between 24 and 72 

hours, thus they are not able to recognize hepatotoxicities with a slow onset. 

Despite the limitations described above, the usefulness of those assays is not negligible 

since cytotoxicity is in accordance with systemic tolerance and general organ toxicity in 

preclinical animal models (Benbow et al., 2010). Although these assays may not provide a 

mechanistic understanding of multifactiorial hepatotoxicity, the essential advantages are 

simplicity, low cost, rapid data generation and high throughput, which fits well to the fast 

paced early developmental stages. Taken together, these data can provide an estimation of 

potentially safe Cmax values by e.g. comparing the EC50 values of cytotoxicity to that of the in 

vitro pharmacologically effective dose at the target, which then helps to identify candidates 

with the widest margin between effectivity and toxicity. Ultimately, while lacking both 

complexity and sensitivity, simple cytotoxicity assays serve as an early filter for drug 

candidates or compound series due to inacceptable or unfavorable intrinsic toxicity profiles.  

Nevertheless, further improvement of cytotoxicity assessments may add essential value to 

the early ranking of drug candidates. For example, the short-term applicability of hepatic 

monolayer models is mostly due to the poor metabolic capacity in this culture format, either 

because cancer cell lines are inherently lacking physiological relevance as it was observable 

in the proteomic profiles compared to PHH in section 3.1.2, or because PHH suffer from 

rapid dedifferentiation when cultured as monolayers, thus hampering a physiologically 

relevant outcome with prolonged incubation times. The loss of hepatophysiologic functions in 

2D culture is mainly a consequence of the unphysiologic shape that cells acquire in 2D 

formats. The attachment on plasticware leads to a flattened cell morphology, which in turn 

has substantial consequences on cellular polarity on the one hand and leads to a massive 

decrease of intercellular contact surface on the other hand, both substantially contributing to 

altered cell signalling and loss of hepatocyte-specific functionality.  

Nonetheless, simple 2D monolayers are applicable to various other endpoints that further 

help to rank and flag compounds with respect to the underlying mechanisms of DILI, such as 

mitochondrial impairment. The primary function of mitochondria is the production of the cell´s 
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energy in the form of ATP alongside the regulation of major cellular functions including cell 

death signaling pathways (McBride et al, 2006). Given the myriad of metabolic tasks of the 

liver, hepatocytes have a high energy demand, thus they are rich in mitochondria rendering 

the liver more susceptible to mitochondrial toxicants. Mitochondrial dysfunction has become 

increasingly implicated in the etiology of drug-induced toxicities (Dykens and Will, 2007), 

which consequently increases the demand for preclinical mitochondrial toxicity assays. In 

order to avoid mitochondrial liabilities, routine screens can be performed in the drug 

discovery process and several in vitro models exist for the evaluation of mitochondrial 

toxicity, which differ in readout complexity (Dykens and Will, 2007). For example, the glucose 

galactose assay (glu-gal assay) compares the cytotoxicity profile of a compound in 

hepatocyte cell models, usually HepG2, when cultured in either glucose-rich or galactose-

rich media. HepG2 cells are able to cover their energy demand through glycolysis alongside 

oxidative phosphorylation (the crabtree effect, Marroquin et al., 2007), a metabolic feature 

which is not given in primary hepatocytes (Kamalian et al., 2015). When cultured under 

galactose-rich conditions, HepG2 cells metabolically switch to oxidative phosphorylation, 

which makes them more susceptible to mitochondrial impairment and the ratio of EC50 values 

of glucose and galactose conditions can indicate a compound´s potential to cause 

mitochondrial toxicity. This assay is applicable as an early screening approach in order to 

flag compounds, but it is not capable of revealing insight of the exact underlying mechanism. 

Another option that displays more mechanistic understanding, is the measurement of the 

oxygen consumption rate (OCR) and/or extracellular acidification rate (ECAR) with the XF96 

extracellular flux analyzer (Seahorse biosciences). Here, it is possible to measure specific 

mechanistic endpoints such as spare respiratory capacity, ATP production or uncoupling 

(Nadanaciva et al., 2012; Eakins et al., 2016). Moreover, since mitochondria contain their 

own genome, the measurement of drug-induced alterations of mtDNA also displays another 

option for the detection of mitochondrial toxicants, especially since certain liver pathologies 

such as diabetes or non-alcoholic fatty liver disease (NAFLD) are known to change mtDNA 

levels (Fromenty et al., 2013; Massart et al., 2012; Aubert et al., 2012), thus patients with 

preexisting indications may be more susceptible to mitochondrial toxicity. The development 

of in vitro disease models with clinically relevant alterations of mtDNA may therefore be 

useful to identify susceptible subpopulations. However, in currently applied short term 

assays, changes in mtDNA remain unrecognized and to date little is known about the in vitro-

in vivo correlation of mitochondrial toxicants, mostly due to the low specificity associated with 

high compound concentrations used in early toxicity studies.  

As the ultimate advantage of monolayer cultures is their ease of use alongside the 

applicability to high throughput and the rapid data generation, they are suitable for high 

content screening assays. High content screening (HCS) of multiplexed fluorescent readouts 
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can be used as a rapid approach to obtain an understanding of mechanisms underlying DILI 

at the organelle levels. HCS systems couple automated fluorescent microscopy with software 

for real-time analysis of fluorescent intensities and area measurements within individual cells. 

For example, Garside et al., (2014) used a 384-well plate format to investigate the effects of 

144 drugs on HepG2 cells cultured in the absence or presence of rat liver S9 mix to enhance 

drug metabolites as well as on PHH in a high content screening assay. The parameters 

assessed covered several mechanisms of DILI such as reactive oxygen species, 

mitochondrial membrane potential, apoptosis, cell cycle arrest cell stress response, 

phospholipidosis and neutral lipid accumulation. Persson et al. (2013) validated a 

multiparametric HCS method in HepG2 cells including six parameters (nuclei count, nuclear 

area, plasma membrane integrity, lysosomal activity, mitochondrial membrane potential and 

mitochondrial area) using a training set of 102 compounds and reported 50% sensitivity and 

90% specificity in DILI prediction. Despite the relatively low sensitivity, HCS approaches help 

in early hazard identification, risk assessment and -avoidance as HCS assays are cost-

effective and allow high throughput, which makes them amenable as a first-line safety 

screening assay in drug discovery projects that allows for decision making through enabling 

prioritization between compounds or compound series during the hit-to-lead process and to 

assess the DILI risk towards candidate selection and provide guidance of safe exposure 

levels in humans. Figure 4.1 summarizes the benefits, limitations and applications of hepatic 

monolayer models within the drug development pipeline.  

 

 

Figure 4.1: Summary of Benefits, limitations and ap plications of hepatic 2D monolayers in early drug 
development. Ease of use and screening applicabilit y enable monolayers to display the first-line 
screening for intrinsic toxicity, which allows a ra nking of compounds or compound series. 
Furthermore, HCS approaches enable the indication o f possible underlying mechanisms and 
compounds can be flagged. Due to the poor metabolic  capacity, monolayers are only applicable to 
short-term experiments, which in turn require high doses that may not reflect plasma concentrations 
in animal models and humans. HCS = high content scr eening; CYP = cytochrome P-450; Cmax = peak 
plasma concentration.  
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4.2 Applicability of 3D spheroid cell culture 

As the cellular microarchitecture is clearly connected to physiologic functionality and 

differentiation, the recapitulation of both cellular polarity and cell-cell contact surface would 

lead to an improved physiologic relevance in hepatic in vitro models. By introducing a third 

dimension to cell culture, a cell model is enabled to reconstitute a more native shape which 

allows cellular polarity and massively extended contact surface. HepaRG showed two distinct 

cell morphologies, which are believed to be the hepatocyte-like cell population in the 

spheroid centers and the cholangiocyte-like cell population in the periphery. Although a 

certain degree of organization is indicated, it does not necessarily reflect a liver-like 

organization and the exact role of this type of cell distribution in the context of physiological 

relevance is yet unknown and needs to be further investigated. Spheroids of both HepaRG 

cells and PHH have been shown to display longevity for several weeks (section 3.2.1) and 

display the expression of DMETs, which makes them amenable to prolonged cultivation and 

compound exposure times. In the context of cytotoxicity, it could be shown that EC50 values 

substantially decrease over time in both HepaRG and PHH spheroids as summarized in 

section 3.3. The same effect was observable in HepaRG monolayers, but to a lesser extent, 

initially showing that spheroids are more sensitive towards chemical insult compared to their 

monolayer counterparts. The time-dependent effect was especially observable for FIA, which 

was not detected as hepatotoxicant in any cell model after three days, whereas after 14 days 

the EC50 values decreased to levels comparable to human plasma concentrations. 

Fialuridine toxicity remained undetected in preclinical development, which is emphasizing the 

value that long-term compound exposure in vitro may add in early developmental stages, 

thus the application of prolonged compound exposure in hepatic spheroid models would 

further help to identifiy toxicities with a slow onset and the estimation of ‘safe’ Cmax values. 

However, although spheroids showed an overall higher sensitivity in the cytotoxicity 

assessment, further investigations are necessary to thoroughly estimate the usefulness of 

spheroids in the context of cytotoxicity assessment strategies. Following treatment with 

troglitazone, HepaRG cells did not show any response in either format, which may be due to 

serum containing media or high CYP3A4 activity or both, but also may indicate a decreased 

compound penetration. For example, Walker et al. (2000) found that hepatic spheroids did 

not respond to metothrexate treatment, whereas the corresponding monolayer did. 

Hampered compound penetration may also be the underlying reason why HepaRG 

spheroids responded less to some CYP model inducers in comparison to their 2D 

counterparts, suggesting that compound-specific penetration could display a potential 

drawback in the routine applicability of spheroids in the drug development pipeline. This 

effect may be more pronounced when regarding the morphology of HepaRG spheroids, 

which showed a tight lining layer that might have an isolating effect and such morphologies 
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have also been observed in PHH spheroids cocultured with non-parenchymal cells (NPC), 

thus emphasizing that the certain degree of organization in hepatic spheroids may neither 

necessarily reflect in vivo physiology nor that this type of organization is mandatory beneficial 

for the prediction of clinically relevant hepatotoxic outcomes. Additionally, the expression of 

DMETs was detectable over prolonged cultivation periods in 3D but showed time-dependent 

differences which were much more pronounced in the western blot analysis compared to IF 

stained sections (sections 3.2 and 3.4). The expression levels of DMETs in PHH spheroids 

observed in this study display a huge step towards the long-term use of primary cells in a 

physiological consensus, thus overcoming one major limitation of hepatic monolayer culture. 

However, the extension of culture duration also introduces time as parameter that needs to 

be addressed. Further investigation of the time-dependent dynamics on cell signaling in 3D 

configuration is therefore crucial for a proper validation process prior to industrial application 

as it defines what purpose hepatic spheroid models are fit for.  

Another outcome of drug-induced liver injury is cholestasis, which is defined as an 

impairment of bile flow that can manifest as jaundice or icterus. The detection of a 

compound´s potential to cause cholestasis remains challenging in preclinical species as it is 

mostly of slow onset and often occurs following (sub)chronic dosing and can be species-

specific (Hailey et al., 2014). Additionally, no reliable and well-correlating markers exist to 

date, hence drug-induced cholestasis is often only detected histopathologically in preclinical 

species. To date, no reliable in vitro test system exists that is able to identifiy cholestatic 

liabilities in early developmental stages and effective in vitro models of translational 

relevance would provide substantial advantages to the lead optimization process. On major 

issue in common 2D culture is the absence of an extensive canalicular system as a 

consequence of the limitations due to monolayer configuration, thus most 2D systems are 

not allowing the proper assessment of a drug´s cholestatic potential. Additionally, the various 

underlying mechanisms leading to cholestasis are poorly understood. Nonetheless, a 

number of in vitro approaches are available to study compound effects on hepatobiliary 

transporters and bile acid uptake and -excretion. For example, the HepaRG cell line displays 

several physiological characteristics of human hepatocytes that are essential for the study of 

hepatobiliary transporter function such as the polarity of transporters, well-defined bile 

canaliculi and bile acid production (Antherieu et al., 2006). The use of bile salt export pump 

(BSEP, ABCB11) inhibition has been proposed as a tool for detecting drug-induced 

hepatobiliary transport and may be employed in early development to identify cholestatic 

liabilities (Morgan et al., 2013; Atienzar et al., 2016). This approach, however, has been 

associated with a poor specificity when only screening BSEP inhibition (Atienzar et al., 2016) 

and improvements have been reported when other biliary transporter proteins such as MRPs 

and Mdrs are included (Köck et al., 2014; Morgan et al., 2013). Measuring transporter 
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inhibition displays only one mechanism associated with cholestasis and a deeper 

understanding of the manifold mechanisms that contribute to cholestasis is essential for the 

development of predicitive preclinical testing strategies. Recent development has been made 

using hepatocyte sandwich cultures, which allow a more comprehensive assessment of the 

cholestatic risk of drug candidates (Chatterjee et al., 2014; Oorts et al., 2016). Yet, 

hepatocyte sandwich cultures require complex handling and high cell numbers resulting in 

low-throughput applicability and high costs. Furthermore, drug exposure is generally limited 

to 72 hours, which is questioning the ability of sandwich cultures to assess the slow onset of 

most cholestatic liabilities. Both HepaRG and PHH spheroids express stable levels of the 

aforementioned transporters over prolonged cultivation periods (section 3.2.2.3) and 

additionally, the development of bile canalicular systems in three-dimensional space may 

better recapitulate the in vivo situation, thus suggesting that hepatic spheroid models may be 

amenable for studying cholestatic liabilities in vitro. Hendriks et al. (2016) repeatedly co-

exposed PHH and HepaRG spheroids to a non-toxic bile acid mixture and a set of cholestatic 

and non-cholestatic drugs for up to 14 days and reported a pronounced intracellular 

accumulation of bile acids when spheroids were treated with cholestatic drugs, whereas the 

non-cholestatic drugs did not lead to bile acid accumulation. Moreover, the ability to induce 

cholestatic events in spheroids might allow the further development of 3D cholestatic disease 

models and enable the assessment of DILI in the context of co-morbidity (Bell et al., 2016). 

Moreover, other pathologies such as steatosis and phospholipidosis may be integrated in the 

spheroid model in order to potentially investigate possible predisposisition to DILI in early 
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developmental phases prior to the clinic. Idiosyncratic DILI is often mediated through the 

immune system as it is highly implicated in most cases of unpredictable hepatotoxicities. In 

comparison to the intracellular events that contribute to the previously discussed DILI 

mechanisms, immune-mediated DILI (iDILI) is a complex association of both intra- and 

extrahepatic signaling (Stephens et al., 2014). Hepatocellular injury and the hepatic 

microenvironmental dysregulation are thus believed to play a crucial role in the initiation of an 

immune response. The progression of an immune response attributes to both resident innate 

immune cells and infiltrating lymphocytes (Racanelli and Rehermann, 2006). The contribution 

of the adaptive immune system is defined by a delayed onset of symptoms following first 

exposure and a rapid onset upon rechallenge (Papay et al., 2009), next to the clear 

association with certain human leukocyte antigens (HLAs) (Ogese et al., 2017). Certain HLA 

alleles have been identified to be associated as predisposition factor for establishing iDILI of 

drugs such as flucloxacillin and ximelagatran (Monshi et al., 2013; Daly et al., 2009; Keisu 

and Andersson, 2010). However, the exact mechanism by which the presence of certain HLA 

alleles may increase a patient’s susceptibility to iDILI remains poorly understood, which is 

further evidenced by the fact that some individuals that express the implicated HLA alleles do 

not develop iDILI. These gaps need to be investigated first before the application of HLA 

typing as potential predictive marker for the identification of susceptibilities. Given the 

unpredictable nature of immune-mediated idiosyncratic DILI, there is an urgent need for early 

in vitro and preclinical approaches for the detection of iDILI prior to clinical development and 

appropriate in vitro-based models are currently unavailable. In vitro models that identify 

Figure 4.2: Summary of benefits, limitations and ap plications of hepatic 3D cell culture formats in ea rly 
drug development. The introduction of a third dimen sion allows cells an improved phenotype through 
increased cell-cell contact surface and cellular po larity. This leads to longevity, which makes 3D cel l 
culture systems applicable for repeated dosing regi men to elucidate potential hepatotoxicities with a 
slow onset. Through co-cultivation with NPCs, the c ontribution of non-parenchymal factors to 
hepatotoxic events can be assessed and the developm ent of disease models may help to define 
susceptible subpopulations prior to clinical trials . Increased replicates and labor time suggest those  
culture formats to be applied as a second tier foll owing initial assessment in 2D. Moreover, the 
potentially hampered compound penetration as well a s time-dependent variability in DME expression 
levels need to be thoroughly investigated in order to define the exact performance of a certain model.  
NPC = non-parenchymal cells; DMET = drug metabolizi ng enzymes and transporters; iDILI = immune-
mediated drug-induced liver injury; Cmax = peak pla sma concentration.  
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potential chemical liabilities such as covalent binding or glutathione (GSH) depletion may 

help to sort out unfavorable candidates, but they are limited by poor sensitivity and low 

predictive value. The development of co-cultures with non-parenchymal cells (NPC) such as 

Kupffer cells or hepatic stellate cells is offering the potential to assess the role of innate 

immune response to chemical insult. Spheroid cultures of PHH and NPC have been shown 

an increased susceptibility towards DILI compounds, which are known to cause immune-

mediated hepatotoxicities (Bell et al., 2016).  Moreover, PHH spheroids could be efficiently 

infected by recombinant adenovirus prior to aggregation in order to mimic viral hepatitis in 

vitro. Subsequent treatment of infected PHH spheroids with trovafloxacin, whose 

hepatotoxicity is amplified by inflammatory stimuli, enhanced toxicity was observable, 

indicating that virus-mediated inflammatory responses are triggering the toxic response. 

Simultaneously, no response was observed following the treatment with the non-hepatotoxic 

analogue levofloxacin (Bell et al., 2016). However, the development of three-dimensional cell 

culture models, co-culture models and disease models has yet begun and further 

investigations and validation processes are necessary in order to properly understand those 

cell culture systems, which is the underlying basis for any purpose definition.  

 

4.3 Applicability of microfluidic cell culture  

Although hepatocytes cultured under flow conditions have only been initially investigated 

(section 3.4), some evidence is given that medium flow enhances the expression of DMETs, 

which is in agreement with other studies (Vinci et al., 2011; Rennert et al., 2015). Flow 

conditions introduce mechanical stimuli by shear force as well as molecular stimuli through 

the continuous supply of nutrients and removal of waste products, which impact cell 

signaling. The QV system used in this study is, due to the cell culture format and the need of 

an external pump, not applicable to higher throughput and initially showed higher metabolic 

capacity, but only three antigens were tested which do not allow an overall statement of the 

usefulness and possible applications of this system.  However, the possibilities to introduce 

flow to cell culture are manifold, therefore the applicability of (micro)fluidic approaches in 

general is discussed in the following. 

Even though hepatocytes are protected from flow induced shear stress by the endothelial 

fenestration in their native sinusoidal microenvironment, flow causes gradients of gases such 

as oxygen, nutrients and hormones, which have been shown to lead to zonation or 

differential functions in hepatocytes across the length of the sinusoid (Jungermann and 

Kietzmann, 1996). DILI can thus manifest with a zonal pattern dependent on the mechanism 

of action of a drug and its metabolism by specific isoenzymes within hepatocytes. The QV 

system used here introduces a pump-driven flow of culture media to monolayer cultures, 
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which resulted in a higher expression of some DMEs compared to both 2D and 3D spheroids 

over a cultivation period of 14 days (section 3.4). In addition to the mechanic stimuli that are 

introduced by medium flow, it has been postulated that flow can allow better nutrient 

exchange and removal of waste products, which may lead to higher hepatophysiologic 

functions compared to static cultures. Novik et al. (2010) observed higher rates of drug 

metabolite production in hepatocyte cultures subjected to flow in comparison to static 

cultures, which is further confirming the enhanced CYP expression observed in the QV 

model. Although enhanced expression of CYP1A2, 3A4 and NAT 1/2 was clearly detectable 

under flow conditions in comparison to both 2D and 3D, the applicability of the QV system 

remains questionable as it is of low throughput, requires high cell numbers and the need of 

an external pump. Moreover, the high media volume that is required in this system does not 

allow any metabolite profiling due to high dilution factors. Nevertheless, shear stress and 

medium flow have beneficial impact on hepatocyte physiology and recent advances of 

microscaled approaches offer several possibilities for DILI prediction in vitro. When 

downscaling the media to cell ration in microfluidic systems, very low media volumes can be 

used which then allow the analysis of metabolites and additionally, zonal hepatotoxicity 

patterns may be detectable. For example, a bioreactor plate with oxygen gradients has been 

used to introduce a zonal pattern of CYP450s in rat hepatocytes, which led to a zonal pattern 

of acetaminophen toxicity, particularly in low oxygen regions where CYP450 enzymes were 

expressed at higher levels than in regions with higher oxygen concentrations (Allen and  

 

Bhatia, 2003; Allen, Khetani and Bhatia, 2005). In addition to perfusion of culture medium, 

microfluidic models can also be utilized to control the arrangement of cells to yield a degree 

of microarchitecture with physiological relevance. For example, Kobayashi et al. (2013) used 

microfluidic devices to coculture HepG2 and Swiss 3T3 fibroblasts in a stripe-patterned 

Figure 4.3: Summary of benefits, limitations and ap plications of hepatic microfluidic systems in early  
drug development. The dynamic flow enables an impro ved nutrient and metabolite exchange, 
resulting in longevity and higher metabolic capacit y compared to static conditions. Depending on the 
device, the assessment of zonal hepatotoxicities, r eal time effects and the identification of potentia lly 
relevant metabolites may be possible. Nevertheless,  the diversity of microfluidic approaches is 
manifold, thus further, platform-specific investiga tions are needed to validate the usefulness of a 
certain system within the developmental pipeline. N PC = non-parenchymal cells; Cmax = peak plasma 
concentration  
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hydrogel, that enabled control for the formation of rod-like organoids inside the hydrogel. In 

another approach, HepG2 cells were mixed with a hydrogel that imitates extracellular matrix 

(ECM) and the mixture was then loaded into parallel channels of a microfluidic device. This 

model showed a greater sensitivity to ethyl alcohol-mediated effects in comparison to 

monolayers (Skardal et al., 2015). Ma et al. (2016) used a microfluidics-based method to 

generate a 3D liver lobule-like microtissue consisting of HepG2 and immortal human 

endothelial cell line to mimic the presence of liver endothelial cells. In this configuration, 

HepG2 cells were able to metabolize acetaminophen, isoniazid and rifampicin. 

Microfluidic devices are inherently of low throughput and are more difficult to set up and 

handle relative to standard multiwell plates commonly used in industry. Therefore, the 

incorporation of real-time monitoring of toxicity biomarkers in microfluidic devices can not 

only aid in ease of use, but also provide a more rapid assessment of drug effects in 

comparison to conventional assays. For instance, 3D aggregates of HepG2/C3A cells in a 

liver-on-a-chip device were exposed to rotenone and troglitazone for 24 hours (Bavli et al., 

2016). Real-time assessment of mitochondrial function and glucose metabolism was 

performed and oxygen uptake dropped within the first minutes upon drug exposure while the 

metabolic shift from oxidative phosphorylation to glycolysis was detected several hours later. 

Vernetti et al. (2016) co-cultured PHH, endothelial cells, monocytes and hepatic stellate cells 

in a continuously perfused device and the model was more sensitive when exposed to 

troglitazone, nimesulide and trovafloxacin. Moreover, susceptibility to trovafloxacin was 

further increased when cultures were coexposed to lipopolysaccharide (LPS) and the model 

also indicated fibrotic activation by an increase of stellate cell migration and expression of 

ECM components in response to metothrexate. All the aforementioned examples give 

evidence that multicellular cultures can greatly improve the outcome of more complex DILI 

events by allowing the cross-talk between hepatocytes and various NPCs that is necessary 

to elicit physiologically relevant responses.  

4.4 Future perspectives 

Drug-induced liver injury is a serious global health burden and the many late stage attritions 

and post-marketing withdrawals emphasize that current preclinical in vitro and in vivo test 

strategies are insufficient to fully predict and understand clinical outcomes (Olson et al., 

2000). Furthermore, the idiosyncratic nature of many DILI cases in the clinic is challenging 

the preclinical drug development even further (Kaplowitz, 2005). While the development of 

hepatic in vitro models was initiated many decades ago with the isolation and culture of PHH, 

the rapid functional decline of primary cells outside their native microenvironment 

substantially limits the prediction of human DILI (Xu et al., 2008; Khetani and Bhatia, 2008). 

Additionally, the development of cell lines, which are predominantly obtained from cancerous 
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tissue, enables screening approaches on the one hand but suffer from poor metabolic 

capacity on the other hand, which limits their applicability for more physiologically relevant 

questions. In the last decade, many efforts have been made towards improved in vitro tools 

that allow more complex cell culture conditions leading to stable hepatophysiologic functions 

over several weeks. Over many years of research, the field of engineered liver models was 

able to realize several important considerations in the design of such models: Hepatic cell 

models can be functionally stabilized for weeks without the necessity for an exact emulation 

of the microarchitecture or composition of the liver (i.e. peripheral cholangiocytes in HepaRG 

spheroids, co-cultures of human hepatic cells with rodent fibroblasts or endothelial cells etc.) 

(LeCluyse et al., 2012). Second, exercising control over cell-cell interactions, both homotypic 

or heterotypic with stromal cells in either cell culture format (monolayer, spheroids, bioprinted 

tissues etc.) is of utmost importance when recapitulating hepatophysiologic functions. 

Additionally, the incorporation of multiple liver cell types at physiological ratios in vitro can be 

useful for modeling certain types of DILI such as iDILI and fibrosis where heterotypic cell-cell 

communication between two or more liver cell types is important. For example, activation of 

Kupffer cells towards an inflamed state may downregulate certain CYPs in hepatic cell 

models, which can subsequently modulate the toxicity of drugs that are metabolized by those 

enzymes (Nguyen, Ukairo and Khetani, 2015). Additionally, drugs can activate hepatic 

stellate cells which can redifferentiate into myofibroblasts that deposit excessive amounts of 

ECM and secrete cytokines, thus impacting hepatocyte functions due to the changing 

microenvironment (Vernetti et al., 2016). The aforementioned technological developments 

have already and will continue to highly improve the sensitivity of human DILI detection in 

vitro and provide further insights into the underlying mechanisms of different types of DILI. 

However, with several models that are already commercially available (e.g. InSphero 

spheroid culture, Hµrel and Hepregen microfluidic devices or Organovo bioprinting 

approaches), selection criteria need to be defined in order to select appropriate models for 

specific phases within the drug development process. In this context, the choice of the 

culture model is dependent on the hypotheses being addressed and the confidence that a 

certain in vitro model has acceptable levels of sensitivity and specificity for the desired type 

of application. For example, hepatic cell models that recapitulate improved functionality when 

cultured under more sophisticated culture conditions as shown in this thesis can be used to 

identify unfavorable compounds very early in the drug development pipeline. These 

compounds can then be re-subjected to medicinal chemistry for structural modifications in 

order to reduce or even eliminate severe toxicity. In the absence of pharmacokinetic data for 

a compound, it is important to determine a safety margin using in vitro toxicity data and 

binding affinity of the compound to the respective molecular target. In later stages of drug 

development, 3D spheroids and/or micropatterned cocultures in multiwell plates can be used 
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to further probe the toxic effects of lead candidate compounds following chronic exposure. 

According to the 3R principle, those long-term systems can also be frontloaded to animal 

toxicity studies using primary hepatocytes from the respective species in order to aid the 

definition of appropriate dosing regimen. As a lead candidate progresses through the 

pipeline, organs on chip platforms could be used to determine how different tissue types 

interact to produce toxicity in one or more tissue types. A proposal for the potential 

implementation of advanced cell culture formats in early drug development as a tiered 

approach from simple 2D cell screenings to complex, low throughput applications is given in 

figure 4.4. 

If a low-throughput but highly complex model was used in the early stages of drug 

development, this may lead to bottlenecks in testing compound series in multiple 

concentrations. Thus, the needs for throughput and cost should be balanced with the 

sensitivity/specificity of the culture model applied. Even with the need for such a balance, the 

abovementioned iterative use of progressively more complex human liver models still 

provides a significantly faster and cheaper tiered testing strategy than afforded by the slow 

and sometimes misleading animal testing. Certainly, the expectation is that the integration of 

physiologically relevant models will reduce attrition in clinical trials, which constitute a main 

cost center that it takes to bring a successful drug to the market (Rawlins, 2004; Kaitin, 

Figure 4.4: proposed application of conventional an d novel in vitro assays in early drug development 
as a tiered approach. With progressing developmenta l stages, in vitro assays from simple to complex 
may be applied and tier 1 recapitulates simple, sho rt term screening approaches that help to prioritiz e 
compounds according to their toxicity profile and m ay give indications for tier 2 experiments. Tier 2 
applications increase in complexity and decrease in  throughput, help to elucidate potential 
mechanisms (if flagged in tier 1) and may contribut e to refine subsequent in vivo studies through the 
identification of hepatotoxicities upon repeated ex posure. When compounds enter phase 0 
development, sophisticated co-culture and disease m odels may be applied to define potentially 
susceptible subpopulations (preexisting disease) as  well as a possible role of immune-mediated 
effects. HCA = high content aanalysis; GLU-GAL = gl ucose-galactose assay; GSH = Glutathione; LDH 
= lactate dehydrogenase; CYP = Cytochrome P-450; DD I = drug-drug interactions; Cmax = peak 
plasma concentration; 3R = reduce, refine, replace;  MPS = microphysiological system; DILI = drug-
induced liver injury).  
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2010). Even with considerable progress in the development of increasingly complex human 

liver models, some key questions need to be addressed to move forward: 

It is important to harmonize endpoints and data normalization schemes (i.e. based on cell 

number, protein and/or RNA levels) when analyzing functionality and stability of a certain in 

vitro system so that the data can be compared across laboratories using the same system 

and between different types of sophisticated models. Common markers such as albumin or 

CYP3A4 are routinely employed for the assessment of hepatophysiology, but the industrial 

community needs to agree on which markers are appropriate for which application and how 

to demonstrate the phenotype of other hepatic cell types. 

It is important to compare gene expression profiles and functions of hepatocytes or 

hepatocyte-like cells in the different culture formats over time in order to determine the extent 

to which each culture format is impacting the expression signature of a certain cell model. In 

the case of PHH, it would be highly beneficial to compare the complex culture formats to 

fresh tissue or freshly isolated cell counterparts prior to plating from the same donors to 

determine deviations or similarities from the in vivo like phenotype and to elucidate pathways 

that are more affected by a certain culture configuration than others. 

A proper validation across laboratories using many model hepatotoxicants and non-

hepatotoxicants is of utmost importance in order to define the exact purpose of each system 

on the one hand and both the sensitivity and specificity each system is able to deliver within 

this purpose on the other hand.  

In the end, any in vitro liver culture, independent from the culture format per se, is unlikely to 

mimic the in vivo situation perfectly, but the degree to which each system is able to will 

determine its usefulness for testing specific hypotheses in drug development. The overall 

advantage would be to reach a consensus as to which biomarkers are useful for validating 

the specific use of a certain platform for predicting a certain DILI outcome. Typically, 

endpoints such as resazurin, albumin secretion or lactate dehydrogenase release (LDH) can 

be used to assess hepatic injury nondestructively over time in the same culture. It has been 

shown that a combination of these endpoints in stable PHH cultures can provide 

approximately 70% sensitivity for the identification of drugs from several different drug 

classes as “toxic” (Khetani, Kanchagar and Ukairo et al., 2013). High content approaches 

provide additional endpoints such as MMP 8 , ROS 9  formation, phospholipidosis or lipid 

accumulation to better elucidate the mechanisms underlying DILI, thus aiding to flag possible 

liabilities of compounds or compound series in early developmental stages (Persson et al., 

2013; Xu et al., 2008). Furthermore, -omics approaches can be used to provide indications of 

various molecular pathways that are affected by drug treatment prior to overt cell injury. 

However, which endpoints and data analysis strategies represents a reliable set for 
                                                
8 Mitochondrial membrane potential 
9 Reactive oxygen species 
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hepatotoxicity prediction in complex models during early drug development is not yet defined. 

By including more liver cell types in hepatic in vitro systems, a consensus also needs to be 

defined on cell-type specific endpoints that are important for the prediction of DILI forms in 

which heterotypic cell-cell communication plays an essential role. 

Several studies have shown that in vitro systems can detect certain so-called “idiosyncratic” 

toxins such as troglitazone and diclofenac following extended dosing regimen (e.g. viability in 

PHH spheroids, section 3.3) or zafirlukast and clozapine using cellular stress markers (Xu et 

al., 2008; O´Brien et al., 2006), potentially because hepatic stress resembles the first step in 

the cascade of mechanisms that cause overt liver injury in specific patients with one or more 

genetic (e.g. DMET polymorphisms) and environmental (e.g. coadministered drugs) factors. 

However, it is currently not possible to predict which specific individuals will go on to adapt to 

cell stress and which individuals will develop severe DILI by using in vitro approaches. The 

creation of patient-derived cell models may be essential to fully understand those 

interindividual variations in DILI outcomes due to those factors. In this context, the use of in 

vitro models that emulate different diseased backgrounds such as steatosis, cholestasis or 

preinflammation could display the first step to provide information on patient-specific DILI.  

Conclusively, the achievement of a productive drug discovery pipeline and addressing 

undesirable levels of safety-related, late stage attrition or withdrawal deserves continued 

efforts and resources to further develop predictive in vitro test systems for the hepatotoxic 

potential of NCEs will remain an essential part of this process. There is and obvious need for 

i) test systems with levels of sufficient sensitivity and specificity to detect compounds with the 

potential to induce moderate and low-level hepatotoxicities following prolonged exposure, ii) 

the definition of appropriate endpoints and data analysis strategies to obtain the highest 

possible predictive value of a certain model, and iii) a clear validation of existing systems 

robustly evaluated for performance. In early screenings, a stable cell phenotype permits 

consistent readouts which ensures that test systems are reproducibly applied within and 

across chemical series prior to preclinical candidate selection. Improvements in robustness 

and characterization of in vitro models are necessary alongside an in-depth mechanistic 

understanding and the identification of relevant biomarkers to define chemical risks and to 

use these for an accurate extrapolation to humans. The development and benchmarking of 

novel test systems for the risk assessment of drug candidates requires the selection of well-

studied compounds which can be used as reference chemicals to validate readouts properly. 

Furthermore, it is important to avoid the development of systems that do not clearly 

outperform over the simplest functional test systems for risk assessment. In this thesis, PHH 

spheroids were shown to clearly outperform over monolayer culture in terms of stable DMET 

expression for several weeks, which subsequently enables long-term testing approaches that 

have shown a clear approximation of EC50 values towards clinically relevant plasma 
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concentrations, thus emphasizing the potential of this cell culture system to substantially 

narrow the gap between in vitro short-term and in vivo repeated-dose studies. 
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Appendix 

 
Appendix 1A : Mean EC50 values [µM] from all cell systems in response to the training 
compounds 
 

 
 
 

A. ATP

24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h

Amiodarone 43.29 18.16 24.64 7.18 20.2 9.26 22.58 23.07 31.85 23.12 67.81 44.39 27.9 10.91

Buspirone 249.7 261.3 >300 193.4 >300 115.4 >300 >300 >300 >300 >300 >300 >300 >300

Entacapone 41.52 35.34 33.34 23.43 >1000 85.45 >1000 26.18 560.6 336.5 771.9 514.7 >1000 129.2

Metformin 1289 680.5 1176 625.5 >10000 3351 >10000 2734 >10000 >10000 >10000 >10000 >10000 >10000

Nefazodone 19.36 13.68 17.11 7.43 27.61 8.38 37.79 28.05 95.14 39.12 121.6 86.71 103.4 58.77

Paracetamol 4971 1343 10669 1363 >30000 3897 >30000 3898 >30000 10768 27162 6141 >30000 8454

Tolcapone 17.64 10.99 19.8 13.06 152.2 11.98 149.8 5.15 156.5 51.83 372.7 127.5 462.5 143.7

Diclofenac 235.6 68.32 233 66.7 828.1 99.09 >1000 89.56 770 333.8 >1000 262.2 >1000 854.1

Pioglitazone >1000 >1000 366.9 >1000 >1000 846 >1000 >1000 >1000 751.5 603.4 >1000 >1000 >1000

Ximelagatran 260.6 277.9 270.6 196 >300 217.9 >300 256 >300 >300 >300 243.1 >300 >300

Troglitazone 14.43 13.57 29.84 10.1 27.32 15.51 36.59 17.5 36.95 17.5 245.9 194.8 >300 204.7

Perhexiline 11.57 9.72 11.55 3.2 17.11 6.6 12.73 12.28 34.54 22.57 42.7 27.62 16.39 13.1

Bosentan 152.6 90.4 219 86.89 >300 149.3 >300 >300 >300 >300 >300 >300 >300 160

B. Resazurin

24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h 24 h 72 h

Amiodarone 62.52 16.05 30.78 8.96 39.28 15.24 33.21 22.8 41.29 24.62 228.6 91.34 75.92 14.43

Buspirone >300 >300 >300 230.4 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300

Entacapone 52.69 30.64 44.71 29.31 >1000 342.8 >1000 46.87 >1000 482 >1000 919.9 >1000 235.6

Metformin 9068 1268 4609 794.5 >10000 >10000 >10000 >10000 >10000 >10000 >10000 >10000 >10000 >10000

Nefazodone 40.74 21.37 39.51 7.37 80.55 18.4 35.32 29.61 164.1 90.4 191.2 100.6 224.4 58.77

Paracetamol 3127 779.3 5558 3278 18644 6336 16659 6378 >30000 11997 >30000 9534 >30000 5010

Tolcapone 24.95 17.22 20.72 11.96 104.1 12.83 51.8 4.5 465.3 82.07 >1000 249.8 >1000 242.5

Diclofenac 567.6 78.52 287.4 72.11 273 89.85 412.4 65.47 >1000 428.6 >1000 >1000 >1000 >1000

Pioglitazone >1000 >1000 >1000 >1000 >1000 718.1 >1000 >1000 >1000 >1000 >1000 >1000 >1000 >1000

Ximelagatran 251.6 216.2 243.8 154.6 >300 >300 >300 >300 >300 >300 >300 >300 >300 >300

Troglitazone 13.12 11.24 40.79 15.85 22.24 17.31 50.14 25.32 50.14 25.32 >300 >300 >300 289.8

Perhexiline 16.98 12.12 14.13 3.94 18.3 8.47 13.27 13.06 46.16 24.73 56.32 29.84 22.11 13.1

Bosentan 289.8 115.7 >300 159.3 >300 275.4 >300 >300 >300 >300 >300 >300 >300 232

HepaRG: Cryo Upcytes

HepaRG: Fresh HepaRG: Cryo Upcytes

HepG2: TS clone HepaRG: Fresh

HepG2: TS clone

COMPOUND
PHH: Fresh PHH: Cryo HepG2: ECACC

COMPOUND
PHH: Fresh PHH: Cryo HepG2: ECACC
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Appendix 1b: Cytotoxicity ring trial viability data, expressed as % of control 
APAP 24h 

APAP [µM]  24h ATP 24h Resazurin  

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 5.72 100.00 100.00 100.00 100.00 3.86 

30 109.40 114.94 104.00 109.45 4.47 102.66 99.24 103.29 101.73 1.78 
100 117.34 120.65 104.42 114.14 7.00 106.42 102.30 102.97 103.90 1.80 
300 109.44 116.73 107.80 111.32 3.88 101.99 100.12 100.05 100.72 0.90 

1,000 98.47 110.33 100.30 103.04 5.21 99.03 98.19 99.94 99.06 0.71 
3,000 87.05 92.34 89.50 89.63 2.16 95.90 89.91 96.30 94.04 2.92 

10,000 74.97 84.35 78.92 79.41 3.85 80.33 85.15 90.92 85.47 4.33 
30,000 110.22 121.44 108.57 113.41 5.72 96.19 94.52 103.42 98.04 3.86 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00  100.00 100.00 NA 100.00  

30 98.13 113.40 99.09 103.54 6.98 112.28 97.47 NA 104.88 10.47 
100 97.80 118.45 104.56 106.94 8.60 109.11 98.32 NA 103.72 7.63 
300 97.61 123.30 101.42 107.45 11.32 109.35 98.45 NA 103.90 7.71 

1,000 97.41 125.13 97.41 106.65 13.06 116.58 96.28 NA 106.43 14.35 
3,000 97.24 107.97 94.33 99.84 5.87 115.14 93.11 NA 104.12 15.58 

10,000 86.54 89.76 90.64 88.98 1.76 105.10 81.75 NA 93.43 16.52 
30,000 59.42 55.63 28.85 47.97 13.60 87.11 61.05 NA 74.08 18.43 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 75.68 87.16 100.00 81.42 8.11 92.88 103.29 NA 98.08 7.36 

30 78.24 87.16 87.16 83.33 6.63 98.97 101.39 NA 100.18 1.71 
100 78.16 94.33 94.33 88.97 9.29 89.92 110.30 NA 100.11 14.41 
300 82.05 101.94 101.94 94.01 13.73 92.53 104.27 NA 98.40 8.30 

1,000 73.50 98.41 98.41 92.96 9.45 112.60 107.53 NA 110.06 3.59 
3,000 64.43 102.14 102.14 92.59 16.53 112.02 104.33 NA 108.17 5.43 

10,000 51.66 74.87 74.87 71.39 6.03 132.46 93.68 NA 113.07 27.42 
30,000 75.68 59.32 59.32 56.77 4.42 92.88 103.29 NA 98.08 7.36 
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APAP 72h 

APAP [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

30 86.13 122.86 82.16 97.05 22.44 96.32 100.57 99.94 98.94 2.29 

100 118.30 119.25 108.47 115.34 5.97 106.87 99.17 103.71 103.25 3.87 

300 96.07 99.62 118.04 104.58 11.79 97.18 100.41 103.64 100.41 3.23 

1,000 88.41 81.26 105.52 91.73 12.47 96.38 96.57 102.67 98.54 3.58 

3,000 53.60 38.64 35.31 42.52 9.74 69.54 77.78 85.85 77.72 8.16 

10,000 36.48 33.60 29.21 33.10 3.66 49.76 53.27 64.47 55.83 7.68 

30,000 13.21 17.16 18.18 16.18 2.62 10.35 16.66 25.90 17.64 7.82 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

30 91.21 102.64 NA 96.92 8.08 97.95 91.45 NA 94.70 4.60 

100 99.28 137.62 NA 118.45 27.11 98.82 100.55 NA 99.68 1.23 

300 97.21 132.63 NA 114.92 25.05 98.45 100.26 NA 99.35 1.28 

1,000 94.27 124.69 NA 109.48 21.51 95.16 104.16 NA 99.66 6.37 

3,000 72.73 79.47 NA 76.10 4.76 78.18 80.52 NA 79.35 1.65 

10,000 35.44 35.23 NA 35.33 0.15 47.76 65.28 NA 56.52 12.39 

30,000 6.14 14.17 NA 10.16 5.68 1.54 10.93 NA 6.23 6.64 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

30 92.17 90.27 NA 91.22 1.34 77.51 89.21 NA 83.36 8.27 

100 102.31 113.55 NA 107.93 7.95 78.79 86.93 NA 82.86 5.76 

300 103.33 121.96 NA 112.65 13.17 94.81 88.93 NA 91.87 4.15 

1,000 100.69 131.48 NA 116.09 21.78 61.86 90.55 NA 76.21 20.29 

3,000 85.46 133.06 NA 109.26 33.66 66.65 86.63 NA 76.64 14.12 

10,000 28.35 58.30 NA 43.33 21.18 22.17 50.93 NA 36.55 20.34 

30,000 17.88 7.85 NA 12.86 7.09 2.68 11.79 NA 7.24 6.44 
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Amiodarone 24h 
AMI [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100 100 100 100.000 0.000 

3 109.71 78.21 54.33 80.75 22.68 105.91 96.68 100.65 101.08 3.78 

5 92.84 12.18 5.24 36.75 39.76 100.56 96.62 95.01 97.40 2.33 

10 38.78 0.66 0.55 13.33 17.99 81.44 59.83 59.24 66.83 10.33 

30 27.48 0.17 0.17 9.28 12.87 87.56 10.23 5.27 7.75 39.96 

50 8.97 0.01 0.04 3.00 4.22 81.44 6.10 1.03 3.57 38.99 

100 3.44 -0.32 -0.25 0.96 1.76 53.19 4.56 -1.14 1.71 25.84 

300 114.06 102.61 87.14 101.27 11.03 34.03 3.15 -3.06 0.04 17.18 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 102.84 118.13 98.88 106.62 8.30 108.95 100.00 NA 104.48 6.33 

5 102.21 116.41 103.27 107.30 6.46 115.01 103.52 NA 109.26 8.12 

10 99.76 119.80 104.84 108.13 8.51 118.12 107.87 NA 112.99 7.25 

30 94.26 113.83 89.76 99.29 10.45 118.28 110.46 NA 114.37 5.52 

50 69.13 95.83 56.05 73.67 16.56 119.21 107.63 NA 113.42 8.19 

100 1.18 0.73 0.21 0.71 0.40 30.09 5.65 NA 17.87 17.28 

300 -0.10 0.14 -0.22 -0.06 0.15 5.58 5.68 NA 5.63 0.07 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100 100 NA 100.00 0.00 

3 91.88 102.82 102.82 99.17 6.32 122.49 97.66 NA 110.08 17.56 

5 95.06 97.15 97.15 96.45 1.21 122.08 98.92 NA 110.50 16.38 

10 66.45 63.09 63.09 64.21 1.94 135.98 97.28 NA 116.63 27.37 

30 15.12 19.77 19.77 18.22 2.68 62.05 79.87 NA 70.96 12.60 

50 6.56 12.28 12.28 10.38 3.30 46.67 85.69 NA 66.18 27.59 

100 3.76 1.95 1.95 2.55 1.05 37.96 38.16 NA 38.06 0.14 

300 0.26 0.82 0.82 0.63 0.32 20.52 27.11 NA 23.81 4.66 
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Amiodarone 72h 

AMI [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 77.94 77.86 82.22 79.34 2.49 101.93 96.92 98.08 98.98 2.62 

5 70.95 102.24 63.51 78.90 20.55 107.50 97.77 100.18 101.81 5.07 

10 61.01 14.64 8.55 28.07 28.69 99.22 61.57 52.62 71.13 24.73 

30 33.18 0.70 0.53 11.47 18.80 58.42 -1.97 1.30 19.25 33.96 

50 40.80 0.31 0.37 13.82 23.36 75.60 -4.12 0.65 24.04 44.71 

100 43.55 0.22 0.24 14.67 25.01 83.57 -3.37 0.36 26.85 49.16 

300 43.00 0.33 0.35 14.56 24.63 73.21 -3.79 -0.33 23.03 43.49 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 96.43 134.25 NA 115.34 26.74 101.89 74.15 NA 88.02 19.62 

5 104.48 142.01 NA 123.25 26.54 102.13 88.26 NA 95.19 9.81 

10 103.76 144.37 NA 124.06 28.72 104.33 104.56 NA 104.45 0.16 

30 47.03 83.25 NA 65.14 25.61 100.66 117.85 NA 109.25 12.15 

50 3.27 2.87 NA 3.07 0.28 20.92 27.53 NA 24.23 4.67 

100 -0.09 0.06 NA -0.02 0.10 1.64 2.06 NA 1.85 0.30 

300 -0.29 -0.22 NA -0.26 0.05 -0.27 1.17 NA 0.45 1.02 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100 100 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 101.66 82.15 NA 91.90 13.79 75.37 90.13 NA 82.75 10.44 

5 103.54 58.56 NA 81.05 31.80 55.26 91.17 NA 73.22 25.39 

10 11.36 1.62 NA 6.49 6.89 14.98 7.43 NA 11.21 5.34 

30 0.28 0.55 NA 0.42 0.19 -6.20 1.91 NA -2.14 5.73 

50 -0.01 0.24 NA 0.12 0.17 -9.96 2.96 NA -3.50 9.13 

100 -0.22 -0.05 NA -0.14 0.12 -7.86 1.80 NA -3.03 6.84 

300 -0.44 -0.31 NA -0.37 0.09 -7.53 4.08 NA -1.73 8.21 

 



164  Appendix 
 

Bosentan 24h 
BOS [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 109.18 111.14 106.81 109.04 1.77 100.38 92.12 97.20 96.57 3.40 

5 108.84 109.87 103.37 107.36 2.85 102.54 98.36 100.20 100.37 1.71 

10 105.07 106.51 100.47 104.02 2.58 102.02 101.08 100.44 101.18 0.65 

30 101.19 100.78 98.09 100.02 1.37 101.28 99.88 103.19 101.45 1.35 

50 93.81 96.86 91.83 94.16 2.07 101.77 102.33 101.66 101.92 0.29 

100 78.14 86.10 81.20 81.82 3.28 101.26 101.82 102.25 101.78 0.41 

300 70.85 81.53 78.77 77.05 4.53 90.23 98.50 98.90 95.88 4.00 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 95.89 116.45 105.40 105.91 8.40 113.74 100.09 NA 106.91 9.65 

5 95.93 117.51 113.17 108.87 9.32 109.45 103.83 NA 106.64 3.97 

10 93.91 119.91 112.83 108.88 10.97 114.52 107.77 NA 111.14 4.77 

30 96.31 113.33 112.76 107.47 7.89 110.68 117.72 NA 114.20 4.97 

50 95.48 110.14 111.52 105.72 7.26 117.09 112.91 NA 115.00 2.95 

100 94.36 104.87 105.05 101.42 5.00 121.88 116.81 NA 119.34 3.59 

300 99.67 107.71 59.27 88.88 21.20 120.03 114.29 NA 117.16 4.06 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 107.88 113.42 NA 110.65 3.92 104.93 94.43 NA 99.68 7.43 

5 111.93 114.75 NA 113.34 1.99 98.05 98.19 NA 98.12 0.10 

10 114.85 114.93 NA 114.89 0.06 93.07 105.57 NA 99.32 8.83 

30 111.64 114.68 NA 113.16 2.15 93.79 105.30 NA 99.54 8.14 

50 105.29 112.25 NA 108.77 4.92 101.78 107.48 NA 104.63 4.03 

100 96.97 95.69 NA 96.33 0.90 134.40 108.79 NA 121.60 18.11 

300 68.65 76.84 NA 72.75 5.79 184.10 103.41 NA 143.75 57.05 
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Bosentan 72h 

BOS [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 114.23 116.41 114.79 115.14 1.13 100.50 98.96 105.47 101.64 3.41 

5 136.90 125.60 119.25 127.25 8.94 105.66 100.78 102.44 102.96 2.48 

10 132.80 112.11 120.08 121.66 10.44 106.50 99.47 103.78 103.25 3.54 

30 96.06 98.54 97.62 97.41 1.25 99.23 99.93 105.22 101.46 3.28 

50 110.17 65.52 79.47 85.05 22.84 101.03 91.84 98.45 97.10 4.74 

100 70.17 39.75 39.30 49.74 17.70 89.82 94.29 94.34 92.82 2.60 

300 45.36 26.26 22.77 31.46 12.16 64.85 69.82 67.98 67.55 2.51 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 103.75 103.06 NA 103.40 0.48 100.87 99.71 NA 100.29 0.82 

5 101.71 104.87 NA 103.29 2.24 102.14 106.57 NA 104.36 3.13 

10 103.74 101.46 NA 102.60 1.61 101.69 104.24 NA 102.96 1.80 

30 93.54 103.05 NA 98.29 6.72 103.20 116.19 NA 109.70 9.19 

50 91.89 108.04 NA 99.97 11.42 102.99 119.43 NA 111.21 11.62 

100 95.24 104.34 NA 99.79 6.43 103.49 120.86 NA 112.17 12.28 

300 92.62 94.26 NA 93.44 1.16 106.99 122.02 NA 114.51 10.62 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 102.83 100.00 NA 101.42 2.00 94.88 96.54 NA 95.71 1.18 

5 106.11 110.07 NA 108.09 2.80 79.72 99.29 NA 89.50 13.84 

10 108.99 115.92 NA 112.46 4.90 65.67 97.23 NA 81.45 22.31 

30 110.27 118.21 NA 114.24 5.61 68.46 98.38 NA 83.42 21.16 

50 105.27 107.92 NA 106.59 1.88 71.06 97.66 NA 84.36 18.81 

100 93.88 72.45 NA 83.16 15.16 61.62 95.61 NA 78.61 24.04 

300 15.20 13.60 NA 14.40 1.13 14.72 44.86 NA 29.79 21.31 
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Buspirone 24h 
BUS [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 106.75 115.19 107.53 109.82 3.81 99.97 101.71 103.99 101.89 1.65 

5 104.67 118.37 110.41 111.15 5.62 105.52 102.15 104.29 103.99 1.39 

10 108.12 110.41 110.27 109.60 1.05 103.93 101.10 100.91 101.98 1.38 

30 97.88 104.13 102.75 101.59 2.68 106.88 100.83 104.67 104.13 2.50 

50 92.65 94.21 98.53 95.13 2.49 108.08 100.86 103.47 104.14 2.98 

100 79.96 87.64 87.88 85.16 3.68 110.16 98.53 104.04 104.25 4.75 

300 72.86 77.96 87.31 79.38 5.98 98.36 94.10 98.78 97.08 2.12 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 97.38 116.36 112.47 108.74 8.19 114.37 94.41 NA 104.39 14.12 

5 94.70 108.60 120.32 107.88 10.47 114.77 105.50 NA 110.14 6.55 

10 98.90 115.15 116.94 110.33 8.11 109.07 102.70 NA 105.88 4.51 

30 99.16 112.05 122.17 111.13 9.42 116.92 106.11 NA 111.51 7.64 

50 84.99 111.05 121.47 105.83 15.34 117.08 102.83 NA 109.95 10.08 

100 104.22 98.46 120.46 107.71 9.32 122.89 94.26 NA 108.58 20.24 

300 91.28 99.44 97.34 96.02 3.46 113.56 96.45 NA 105.01 12.10 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 94.58 115.73 NA 105.16 14.95 103.87 96.84 NA 100.35 4.97 

5 97.79 109.98 NA 103.88 8.61 103.74 99.75 NA 101.74 2.82 

10 93.96 113.00 NA 103.48 13.47 98.82 98.40 NA 98.61 0.29 

30 99.49 108.32 NA 103.90 6.24 111.07 100.77 NA 105.92 7.28 

50 94.86 108.73 NA 101.79 9.81 134.96 98.26 NA 116.61 25.95 

100 95.31 98.42 NA 96.87 2.20 150.30 101.42 NA 125.86 34.56 

300 79.68 70.82 NA 75.25 6.26 181.17 95.81 NA 138.49 60.36 
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Buspirone 72h 

BUS [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 103.41 97.28 101.08 100.59 3.10 106.55 98.32 82.06 95.64 12.46 

5 119.56 100.77 95.16 105.16 12.78 112.53 99.34 95.53 102.47 8.92 

10 104.68 81.95 82.97 89.87 12.84 112.10 92.50 98.56 101.05 10.03 

30 60.67 47.05 39.60 49.10 10.68 114.15 93.92 99.41 102.49 10.46 

50 57.71 35.99 30.20 41.30 14.50 114.25 94.73 103.60 104.19 9.77 

100 55.20 24.99 23.02 34.40 18.04 113.99 97.46 106.98 106.14 8.30 

300 90.13 19.78 21.88 43.93 40.02 103.14 76.07 103.09 94.10 15.62 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 99.38 87.84 NA 93.61 8.16 101.65 61.08 NA 81.37 28.68 

5 103.18 108.34 NA 105.76 3.65 102.41 92.21 NA 97.31 7.21 

10 97.18 116.39 NA 106.79 13.58 102.00 83.22 NA 92.61 13.28 

30 99.94 122.18 NA 111.06 15.73 103.25 92.06 NA 97.66 7.92 

50 95.10 119.73 NA 107.42 17.42 103.65 109.66 NA 106.65 4.25 

100 95.47 97.99 NA 96.73 1.78 105.27 86.44 NA 95.86 13.32 

300 59.73 124.55 NA 92.14 45.84 86.36 109.34 NA 97.85 16.25 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 94.73 109.68 NA 102.20 10.57 75.95 100.48 NA 88.22 17.35 

5 105.06 113.74 NA 109.40 6.14 54.05 99.44 NA 76.75 32.10 

10 100.24 118.59 NA 109.42 12.97 59.73 98.97 NA 79.35 27.74 

30 104.62 118.79 NA 111.70 10.02 55.37 107.34 NA 81.36 36.75 

50 102.56 119.98 NA 111.27 12.32 62.22 104.03 NA 83.12 29.57 

100 99.34 125.09 NA 112.21 18.21 73.25 96.61 NA 84.93 16.52 

30.000 55.33 119.09 NA 87.21 45.09 55.56 105.41 NA 80.49 35.25 
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Diclofenac 24h 
DCF [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

10 116.06 90.21 80.84 95.70 14.89 94.54 97.04 95.16 95.58 1.06 

30 105.28 92.80 78.92 92.33 10.77 97.02 96.01 93.91 95.65 1.29 

50 84.56 92.42 79.53 85.50 5.30 94.65 93.73 92.94 93.77 0.70 

100 84.11 89.52 78.08 83.90 4.67 87.17 91.20 89.26 89.21 1.65 

300 65.28 82.34 66.53 71.38 7.77 70.52 83.89 82.42 78.94 5.99 
500 58.19 6.93 2.49 22.54 25.27 49.13 37.05 34.57 40.25 6.36 

1.000 126.79 103.30 83.77 104.62 17.59 99.86 99.04 98.77 99.22 0.46 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 91.26 111.07 95.61 99.31 8.50 105.16 82.38 NA 93.77 16.10 

30 89.18 123.73 100.45 104.46 14.39 105.44 111.64 NA 108.54 4.38 

50 91.39 114.60 101.18 102.39 9.51 108.87 126.10 NA 117.49 12.18 

100 100.94 122.48 102.35 108.59 9.84 106.73 138.79 NA 122.76 22.67 

300 97.57 112.62 99.95 103.38 6.61 108.05 124.90 NA 116.48 11.91 
500 78.35 69.01 83.94 77.10 6.16 107.09 106.06 NA 106.58 0.73 

1.000 49.62 64.11 42.12 51.95 9.13 89.14 67.94 NA 78.54 14.99 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 90.93 103.42 NA 97.18 8.83 100.34 96.61 NA 98.47 2.64 

30 84.07 100.49 NA 92.28 11.61 104.66 94.76 NA 99.71 7.00 

50 93.77 101.89 NA 97.83 5.74 103.64 105.93 NA 104.79 1.62 

100 83.73 99.73 NA 91.73 11.31 97.67 94.92 NA 96.30 1.94 

300 81.26 86.45 NA 83.85 3.67 99.44 95.20 NA 97.32 3.00 
500 57.08 68.63 NA 62.85 8.16 100.48 106.97 NA 103.72 4.59 

1.000 87.90 98.47 NA 93.19 7.47 82.72 101.73 NA 92.23 13.44 
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Diclofenac 72h 

DCF [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

10 92.42 124.90 113.48 110.27 16.47 81.20 97.76 100.77 93.24 10.54 

30 84.75 145.83 116.93 115.84 30.55 94.83 97.98 97.72 96.84 1.75 

50 51.22 87.70 86.19 75.04 20.64 76.34 92.80 93.75 87.63 9.79 

100 28.49 29.17 28.83 28.83 0.34 50.06 67.13 61.98 59.72 8.76 

300 24.36 22.35 21.48 22.73 1.48 34.28 50.46 43.53 42.76 8.12 
500 13.04 20.59 15.24 16.29 3.89 15.70 27.66 26.57 23.31 6.62 

1.000 0.25 6.73 6.67 4.55 3.72 0.09 14.11 10.46 8.22 7.27 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 109.41 95.63 89.36 98.13 10.26 95.44 95.17 NA 95.31 0.19 

30 115.10 100.00 95.31 103.47 10.34 95.53 100.00 NA 97.77 3.16 

50 111.16 96.41 91.26 99.61 10.33 95.14 103.36 NA 99.25 5.81 

100 108.57 94.20 90.48 97.75 9.55 102.00 102.04 NA 102.02 0.03 

300 106.87 86.60 86.42 93.30 11.76 98.26 104.56 NA 101.41 4.46 
500 61.86 30.52 46.95 46.44 15.68 74.93 77.25 NA 76.09 1.64 

1.000 16.52 4.57 8.11 9.73 6.14 29.04 24.05 NA 26.55 3.53 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 102.28 108.80 NA 105.54 4.61 113.98 100.39 NA 107.18 9.60 

30 113.14 118.13 NA 115.63 3.53 96.39 101.13 NA 98.76 3.36 

50 108.82 123.47 NA 116.15 10.36 97.04 103.56 NA 100.30 4.61 

100 116.21 128.94 NA 122.57 9.00 99.99 93.91 NA 96.95 4.30 

300 123.44 129.94 NA 126.69 4.60 104.19 97.36 NA 100.77 4.83 
500 80.14 99.91 NA 90.02 13.98 72.24 68.43 NA 70.34 2.70 

1.000 58.02 44.23 NA 51.13 9.75 108.85 98.60 NA 103.73 7.25 
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Entacapone 24h 
ENT [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

10 84.62 105.22 102.23 97.35 9.09 97.69 97.77 99.36 98.27 0.77 

30 81.64 97.65 92.54 90.61 6.68 99.46 98.89 98.89 99.08 0.27 

50 75.45 97.00 92.60 88.35 9.30 95.76 99.19 98.28 97.75 1.45 

100 71.60 93.36 81.66 82.21 8.89 98.92 96.80 96.17 97.30 1.18 

300 75.01 80.14 73.07 76.07 2.98 89.03 94.53 94.21 92.59 2.52 

500 65.70 70.62 61.99 66.11 3.54 78.17 84.46 88.36 83.66 4.20 

1.000 38.39 44.95 38.75 40.70 3.01 96.55 96.56 99.91 97.67 1.58 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 99.68 126.17 100.88 108.91 12.21 99.88 121.55 NA 110.72 15.33 

30 101.65 135.12 107.79 114.85 14.55 100.56 115.43 NA 107.99 10.51 

50 102.65 137.83 106.34 115.61 15.79 106.34 117.70 NA 112.02 8.03 

100 103.13 132.54 106.90 114.19 13.07 109.14 125.42 NA 117.28 11.51 

300 102.45 127.77 100.70 110.31 12.37 104.85 130.39 NA 117.62 18.06 

500 93.92 100.92 64.32 86.39 15.87 103.87 125.08 NA 114.48 15.00 

1.000 57.77 14.36 14.55 28.90 20.42 102.50 86.61 NA 94.55 11.23 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 101.73 100.36 NA 101.04 0.97 103.61 100.58 NA 102.09 2.14 

30 97.15 105.38 NA 101.27 5.82 92.63 101.61 NA 97.12 6.35 

50 98.62 102.36 NA 100.49 2.64 114.08 103.71 NA 108.89 7.34 

100 88.73 89.95 NA 89.34 0.86 106.71 100.14 NA 103.42 4.65 

300 64.72 61.91 NA 63.32 1.98 154.40 113.94 NA 134.17 28.61 

500 68.29 64.25 NA 66.27 2.86 164.77 106.58 NA 135.68 41.15 

1.000 54.18 53.82 NA 54.00 0.26 155.12 106.26 NA 130.69 34.55 
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Entacapone 72h 

ENT [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

10 30.58 63.03 59.45 51.02 17.79 59.63 89.20 93.27 80.70 18.36 

30 25.61 46.55 48.53 40.23 12.70 52.30 80.99 85.60 72.96 18.04 

50 19.80 10.68 12.54 14.34 4.82 42.07 41.76 38.46 40.76 2.00 

100 18.60 12.31 13.14 14.68 3.42 42.83 45.05 43.88 43.92 1.11 

300 19.02 13.10 14.22 15.45 3.14 41.08 48.34 43.91 44.44 3.66 

500 16.50 11.00 9.77 12.42 3.58 34.92 30.28 31.20 32.13 2.45 

1.000 4.03 6.32 6.60 5.65 1.41 9.12 20.70 18.25 16.02 6.10 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 109.88 100.00 103.76 104.55 4.99 100.53 90.86 NA 95.70 6.83 

30 114.07 101.69 100.07 105.27 7.66 101.63 94.32 NA 97.98 5.17 

50 114.09 107.91 98.90 106.97 7.64 101.29 99.47 NA 100.38 1.29 

100 105.60 105.43 97.18 102.73 4.81 99.55 96.79 NA 98.17 1.95 

300 105.44 97.26 93.18 98.63 6.25 102.06 103.40 NA 102.73 0.95 

500 6.96 9.24 14.97 10.39 4.13 93.27 61.32 NA 77.30 22.59 

1.000 1.09 0.07 0.28 0.48 0.54 6.25 11.74 NA 8.99 3.88 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 101.16 116.51 NA 108.84 10.86 96.27 91.80 NA 94.04 3.16 

30 100.30 121.67 NA 110.99 15.11 90.49 107.39 NA 98.94 11.95 

50 97.76 114.92 NA 106.34 12.13 74.06 100.11 NA 87.09 18.42 

100 44.52 71.65 NA 58.08 19.18 53.74 83.93 NA 68.84 21.35 

300 18.70 40.77 NA 29.73 15.61 21.67 53.85 NA 37.76 22.75 

500 9.72 8.67 NA 9.19 0.74 36.30 38.51 NA 37.40 1.57 

1.000 4.19 11.48 NA 7.83 5.15 24.13 44.64 NA 34.38 14.50 
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Metformin 24h 
MET [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 110.01 89.37 105.80 101.73 8.91 99.22 99.72 100.57 99.84 0.56 

5 105.22 92.51 110.83 102.85 7.66 101.35 100.83 102.45 101.54 0.67 

10 103.41 98.12 107.71 103.08 3.92 106.68 101.36 94.97 101.01 4.79 

30 111.72 94.11 104.55 103.46 7.23 103.45 100.73 101.64 101.94 1.13 

50 113.86 95.42 109.00 106.09 7.80 98.90 99.08 101.76 99.91 1.31 

100 118.51 92.76 109.07 106.78 10.64 102.76 98.75 100.59 100.70 1.64 

300 109.65 94.90 105.87 103.47 6.25 102.47 101.18 100.63 101.43 0.77 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 98.64 126.64 105.48 110.25 11.92 104.99 118.39 NA 111.69 9.47 

5 97.67 146.85 113.14 119.22 20.53 102.77 125.82 NA 114.30 16.30 

10 100.14 136.93 113.39 116.82 15.21 109.83 120.56 NA 115.19 7.59 

30 105.36 145.26 116.55 122.39 16.80 110.84 125.95 NA 118.39 10.69 

50 105.98 145.72 118.31 123.34 16.61 107.00 123.87 NA 115.43 11.93 

100 105.41 135.68 116.85 119.31 12.48 108.09 121.76 NA 114.92 9.66 

300 101.78 144.40 103.22 116.47 19.76 105.10 107.17 NA 106.14 1.46 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 86.50 108.88 NA 97.69 15.83 115.48 97.10 NA 106.29 13.00 

5 88.57 109.66 NA 99.12 14.91 121.27 94.56 NA 107.91 18.89 

10 90.84 111.74 NA 101.29 14.78 121.29 95.39 NA 108.34 18.31 

30 93.42 110.59 NA 102.01 12.14 139.97 96.53 NA 118.25 30.72 

50 97.92 107.64 NA 102.78 6.87 118.57 97.27 NA 107.92 15.06 

100 92.66 96.70 NA 94.68 2.86 151.68 94.04 NA 122.86 40.76 

300 92.83 91.67 NA 92.25 0.82 134.07 101.16 NA 117.61 23.27 
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Metformin 72h 

MET [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 57.09 82.04 54.62 64.58 15.17 86.84 96.78 93.17 92.26 5.03 

5 86.52 111.24 44.14 80.63 33.93 96.74 99.42 92.01 96.06 3.75 

10 81.40 89.87 47.53 72.93 22.41 96.66 96.09 93.20 95.31 1.86 

30 76.03 83.82 37.42 65.76 24.85 96.04 96.10 90.57 94.24 3.18 

50 82.25 84.18 53.60 73.35 17.13 91.58 99.02 94.37 94.99 3.76 

100 92.49 99.40 54.74 82.21 24.04 94.05 98.56 94.39 95.67 2.51 

300 99.77 93.58 47.68 80.34 28.45 98.28 97.95 93.78 96.67 2.51 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 116.22 104.61 104.48 108.44 6.74 101.68 71.04 NA 86.36 21.66 

5 122.25 115.76 105.08 114.36 8.67 102.99 96.83 NA 99.91 4.36 

10 124.01 106.20 104.30 111.50 10.87 102.43 98.25 NA 100.34 2.95 

30 124.37 113.32 103.44 113.71 10.47 103.20 99.09 NA 101.14 2.90 

50 114.01 89.38 105.59 102.99 12.52 103.59 94.02 NA 98.80 6.76 

100 117.28 100.20 105.45 107.65 8.75 104.07 98.61 NA 101.34 3.86 

300 97.03 120.70 103.89 107.21 12.18 103.32 68.24 NA 85.78 24.81 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 112.03 111.44 NA 111.74 0.42 100.06 89.28 NA 94.67 7.62 

5 116.33 128.72 NA 122.52 8.77 72.85 81.57 NA 77.21 6.17 

10 110.39 127.82 NA 119.11 12.32 55.08 95.35 NA 75.21 28.47 

30 115.02 125.55 NA 120.29 7.44 79.67 100.51 NA 90.09 14.74 

50 116.81 131.64 NA 124.22 10.49 69.90 93.52 NA 81.71 16.70 

100 122.29 137.06 NA 129.68 10.44 106.18 107.46 NA 106.82 0.90 

300 119.83 124.64 NA 122.24 3.40 73.50 95.81 NA 84.66 15.77 
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Nefazodone 24h 
NEF [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 88.09 103.73 99.93 97.25 6.66 97.11 98.54 100.55 98.73 1.41 

5 80.65 100.04 97.98 92.89 8.70 101.23 100.28 98.00 99.84 1.36 

10 66.18 94.94 89.72 83.62 12.51 96.72 98.23 99.18 98.04 1.01 

30 33.74 83.16 80.34 65.75 22.66 95.49 95.96 96.48 95.98 0.41 

50 7.00 63.77 56.53 42.43 25.23 93.57 93.91 94.46 93.98 0.37 

100 2.60 10.67 9.30 7.52 3.52 94.28 67.15 80.47 80.63 11.08 

300 -0.47 2.74 2.39 1.56 1.44 90.28 33.49 50.29 58.02 23.82 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 94.42 101.46 95.31 97.06 3.13 99.60 68.86 NA 84.23 21.73 

5 97.05 99.68 97.86 98.20 1.10 102.80 71.68 NA 87.24 22.01 

10 99.33 102.58 102.50 101.47 1.52 101.09 95.69 NA 98.39 3.81 

30 100.26 105.46 99.91 101.88 2.54 105.22 92.61 NA 98.91 8.92 

50 95.22 100.55 99.11 98.29 2.25 107.80 77.89 NA 92.85 21.15 

100 62.40 74.54 93.38 76.77 12.75 107.20 61.20 NA 84.20 32.53 

300 -0.21 -0.12 14.12 4.60 6.73 5.94 6.98 NA 6.46 0.73 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 84.24 93.58 NA 88.91 6.60 132.06 102.23 NA 117.15 21.09 

5 85.49 90.70 NA 88.09 3.68 127.73 101.21 NA 114.47 18.75 

10 81.07 80.99 NA 81.03 0.06 144.22 97.69 NA 120.96 32.91 

30 88.98 82.08 NA 85.53 4.88 121.76 103.31 NA 112.53 13.05 

50 74.33 72.41 NA 73.37 1.36 176.08 106.92 NA 141.50 48.90 

100 58.51 85.49 NA 72.00 19.08 163.94 107.73 NA 135.83 39.75 

300 -0.12 64.60 NA 32.24 45.76 20.41 104.36 NA 62.39 59.36 
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Nefazodone 72h 

NEF [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 94.95 71.20 95.15 87.10 13.77 79.01 93.62 95.30 89.31 8.96 

5 87.54 53.93 14.90 52.12 36.35 97.78 96.67 98.77 97.74 1.05 

10 52.16 14.56 5.13 23.95 24.88 91.70 87.79 87.70 89.07 2.29 

30 19.46 8.35 0.59 9.46 9.48 51.88 45.66 32.95 43.50 9.65 

50 10.73 0.91 -0.21 3.81 6.02 35.17 5.86 -1.05 13.33 19.23 

100 -0.46 -0.24 -0.20 -0.30 0.14 3.27 3.50 -4.26 0.83 4.41 

300 -0.57 -0.24 -0.16 -0.32 0.22 -0.31 3.90 -5.10 -0.50 4.51 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 105.47 91.02 99.82 98.77 7.28 101.40 56.43 NA 78.92 31.80 

5 109.00 102.83 103.70 105.18 3.34 105.37 83.30 NA 94.34 15.60 

10 113.25 109.11 103.31 108.56 5.00 105.69 87.65 NA 96.67 12.75 

30 104.98 111.18 103.40 106.52 4.11 110.06 85.35 NA 97.71 17.47 

50 111.26 107.54 105.69 108.16 2.84 110.23 84.34 NA 97.29 18.31 

100 83.07 75.13 98.37 85.52 11.81 96.11 61.52 NA 78.82 24.46 

300 -0.41 -0.37 19.81 6.34 11.66 0.62 0.79 NA 0.71 0.12 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 111.19 100.69 NA 105.94 7.43 135.99 96.51 NA 116.25 27.92 

5 108.56 107.58 NA 108.07 0.70 145.91 95.42 NA 120.66 35.70 

10 103.60 99.71 NA 101.65 2.75 138.22 92.58 NA 115.40 32.27 

30 112.24 102.50 NA 107.37 6.88 126.38 97.46 NA 111.92 20.45 

50 82.93 109.88 NA 96.41 19.06 144.74 92.49 NA 118.61 36.94 

100 0.54 104.70 NA 52.62 73.65 12.22 91.60 NA 51.91 56.13 

300 -0.60 78.56 NA 38.98 55.98 2.32 117.66 NA 59.99 81.56 
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Perhexiline 24h 
PER [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 104.58 99.27 96.89 100.25 3.21 91.99 94.42 97.60 94.67 2.30 

5 95.68 112.03 96.27 101.32 7.57 95.57 96.72 97.86 96.72 0.94 

10 16.88 101.72 84.07 67.55 36.55 6.07 91.96 93.72 63.92 40.91 

30 0.24 0.36 0.38 0.33 0.06 4.89 -1.60 3.18 2.16 2.75 

50 0.08 -0.09 -0.02 -0.01 0.07 5.49 -2.19 3.37 2.22 3.24 

100 0.12 -0.27 -0.20 -0.12 0.17 4.89 -3.56 1.87 1.07 3.50 

300 0.34 -0.43 -0.36 -0.15 0.35 4.28 -4.75 0.87 0.13 3.72 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 103.61 105.08 96.11 101.60 3.93 106.24 98.10 NA 102.17 5.75 

5 103.65 109.67 96.70 103.34 5.30 104.47 102.45 NA 103.46 1.43 

10 98.27 103.68 98.59 100.18 2.48 107.31 109.47 NA 108.39 1.53 

30 83.71 98.68 90.60 91.00 6.12 103.03 112.77 NA 107.90 6.89 

50 0.39 2.63 0.51 1.18 1.03 8.75 27.20 NA 17.98 13.05 

100 -0.04 1.09 0.03 0.36 0.52 5.75 19.18 NA 12.47 9.50 

300 -0.34 -0.10 -0.29 -0.24 0.10 2.48 2.78 NA 2.63 0.21 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 96.00 96.79 NA 96.40 0.56 80.80 99.27 NA 90.04 13.06 

5 91.97 93.65 NA 92.81 1.18 145.57 102.87 NA 124.22 30.19 

10 81.94 67.28 NA 74.61 10.36 125.07 89.45 NA 107.26 25.18 

30 0.48 0.22 NA 0.35 0.19 25.99 3.81 NA 14.90 15.68 

50 0.06 -0.04 NA 0.01 0.07 18.43 1.85 NA 10.14 11.73 

100 -0.14 -0.21 NA -0.17 0.05 23.67 1.92 NA 12.80 15.38 

300 1.15 -0.39 NA 0.38 1.09 15.61 -0.32 NA 7.65 11.26 
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Perhexiline 72h 

PER [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 22.92 54.43 68.77 48.71 23.45 41.60 98.03 101.05 80.23 33.49 

5 0.17 1.01 14.88 5.35 8.26 0.15 13.39 79.35 30.96 42.42 

10 0.21 0.26 0.24 0.24 0.03 0.12 -0.33 0.43 0.08 0.38 

30 0.11 0.03 0.07 0.07 0.04 0.09 0.88 -0.87 0.03 0.87 

50 -0.20 0.02 0.07 -0.04 0.14 0.08 1.08 -1.86 -0.23 1.49 

100 -0.31 0.11 0.05 -0.05 0.23 0.04 0.14 -1.90 -0.57 1.15 

300 -0.38 0.13 0.10 -0.05 0.28 0.29 -0.46 -3.34 -1.17 1.91 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 114.88 115.97 99.17 110.01 9.40 102.13 91.08 NA 96.60 7.82 

5 116.83 114.85 101.09 110.93 8.57 102.36 87.04 NA 94.70 10.83 

10 116.08 110.94 102.05 109.69 7.10 103.71 90.42 NA 97.07 9.39 

30 0.49 0.60 2.06 1.05 0.88 5.66 5.13 NA 5.39 0.38 

50 0.02 0.14 0.50 0.22 0.25 4.05 2.71 NA 3.38 0.95 

100 -0.22 -0.11 0.13 -0.07 0.18 5.37 1.84 NA 3.61 2.49 

300 -0.47 -0.39 -0.23 -0.36 0.12 1.27 0.94 NA 1.10 0.24 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 110.18 95.48 NA 102.83 10.39 112.41 99.58 NA 106.00 9.07 

5 109.83 93.80 NA 101.81 11.33 127.47 99.96 NA 113.71 19.46 

10 88.26 7.54 NA 47.90 57.08 113.25 15.92 NA 64.58 68.82 

30 0.49 0.11 NA 0.30 0.27 0.65 1.00 NA 0.82 0.25 

50 0.06 -0.02 NA 0.02 0.06 -3.03 0.33 NA -1.35 2.37 

100 -0.19 -0.13 NA -0.16 0.04 -0.72 0.55 NA -0.08 0.89 

300 -0.38 -0.35 NA -0.36 0.02 -3.62 2.11 NA -0.75 4.05 
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Pioglitazone 24h 
PIO [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 140.37 100.67 103.43 114.82 18.10 96.84 95.93 99.26 97.34 1.41 

5 128.29 105.58 109.23 114.37 9.96 102.11 96.48 93.47 97.35 3.58 

10 117.86 104.92 108.05 110.28 5.52 98.56 96.72 97.72 97.67 0.75 

30 138.92 112.50 107.84 119.75 13.69 98.64 94.72 95.46 96.27 1.70 

50 130.35 114.45 105.29 116.70 10.35 97.83 99.04 98.72 98.53 0.51 

100 122.31 110.73 105.33 112.79 7.09 98.78 100.77 98.18 99.24 1.11 

300 124.02 107.88 104.53 112.15 8.51 99.65 100.23 98.76 99.55 0.60 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 93.78 97.50 99.34 96.87 2.32 104.74 133.27 NA 119.00 20.17 

5 95.43 103.30 103.22 100.65 3.69 104.44 147.30 NA 125.87 30.31 

10 98.80 106.53 102.87 102.73 3.15 106.03 136.15 NA 121.09 21.30 

30 98.59 104.13 103.39 102.04 2.45 107.95 145.58 NA 126.76 26.61 

50 100.77 105.80 101.29 102.62 2.26 109.48 143.51 NA 126.50 24.06 

100 95.40 99.05 103.14 99.20 3.16 108.69 140.64 NA 124.66 22.59 

300 88.46 78.87 93.77 87.04 6.17 104.84 109.02 NA 106.93 2.96 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 88.43 97.10 NA 92.77 6.13 82.27 96.67 NA 89.47 10.18 

5 89.70 99.37 NA 94.53 6.84 85.02 89.46 NA 87.24 3.14 

10 90.57 98.39 NA 94.48 5.53 105.40 93.97 NA 99.69 8.08 

30 91.79 100.27 NA 96.03 6.00 154.69 95.01 NA 124.85 42.20 

50 91.64 98.88 NA 95.26 5.12 114.76 91.61 NA 103.19 16.37 

100 90.37 93.38 NA 91.88 2.13 138.25 103.96 NA 121.10 24.25 

300 80.09 91.40 NA 85.74 8.00 145.11 114.58 NA 129.85 21.59 
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Pioglitazone 72h 

PIO [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 71.97 83.87 71.21 75.69 7.10 90.68 100.24 97.39 96.10 4.91 

5 87.93 68.70 63.66 73.43 12.81 93.98 105.40 100.49 99.95 5.73 

10 73.88 77.24 79.95 77.03 3.04 88.57 103.60 101.29 97.82 8.09 

30 78.79 69.19 70.98 72.99 5.11 90.78 105.67 100.86 99.10 7.60 

50 72.70 91.19 73.82 79.24 10.36 89.90 104.97 98.37 97.74 7.55 

100 77.22 107.23 66.34 83.60 21.18 90.76 104.00 97.28 97.35 6.62 

300 70.68 57.81 58.37 62.29 7.27 85.35 105.43 98.88 96.55 10.24 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 105.93 115.04 97.88 106.28 8.59 102.66 92.12 NA 97.39 7.46 

5 108.52 114.40 100.21 107.71 7.13 104.86 94.13 NA 99.50 7.59 

10 117.17 114.84 101.41 111.14 8.51 105.29 96.03 NA 100.66 6.55 

30 109.47 119.04 100.06 109.52 9.49 107.00 96.35 NA 101.68 7.53 

50 108.44 110.40 99.89 106.24 5.59 109.54 96.34 NA 102.94 9.33 

100 97.72 103.32 97.38 99.47 3.34 108.39 98.33 NA 103.36 7.11 

300 95.34 39.71 101.38 78.81 34.00 113.56 86.01 NA 99.79 19.48 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 113.34 97.68 NA 105.51 11.08 88.08 102.67 NA 95.38 10.32 

5 114.65 105.78 NA 110.21 6.27 114.65 104.14 NA 109.40 7.43 

10 114.88 112.17 NA 113.52 1.92 109.26 104.23 NA 106.74 3.56 

30 113.18 121.92 NA 117.55 6.18 108.11 102.27 NA 105.19 4.13 

50 122.97 130.02 NA 126.50 4.99 113.19 101.68 NA 107.43 8.13 

100 118.61 135.32 NA 126.97 11.82 72.06 109.70 NA 90.88 26.62 

300 111.94 136.42 NA 124.18 17.31 78.63 103.91 NA 91.27 17.88 
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Tolcapone 24h 
TOL [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

10 89.65 85.80 80.97 85.47 3.55 94.04 90.62 89.19 91.29 2.03 

30 94.06 71.86 71.88 79.27 10.46 84.66 81.93 93.30 86.63 4.84 

50 77.91 69.44 71.68 73.01 3.58 86.26 89.05 92.57 89.30 2.58 

100 47.06 59.34 56.03 54.15 5.19 75.31 79.32 84.38 79.67 3.71 

300 22.68 36.85 34.16 31.23 6.14 59.46 80.49 73.94 71.30 8.79 

500 11.63 18.86 17.32 15.94 3.11 58.73 64.58 64.58 62.63 2.76 

1.000 1.88 1.39 1.07 1.45 0.33 28.20 14.74 21.39 21.44 5.49 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 93.62 96.17 98.60 96.13 2.03 106.41 143.02 NA 124.72 25.88 

30 93.21 100.76 99.68 97.88 3.33 107.25 144.15 NA 125.70 26.10 

50 93.54 89.37 101.57 94.83 5.07 109.94 142.66 NA 126.30 23.14 

100 95.44 85.65 97.32 92.80 5.12 107.81 144.37 NA 126.09 25.85 

300 74.86 77.54 100.93 84.45 11.71 109.10 134.05 NA 121.58 17.64 

500 21.06 18.65 21.19 20.30 1.17 106.66 124.81 NA 115.73 12.84 

1.000 4.56 0.62 1.10 2.10 1.75 61.67 28.32 NA 45.00 23.58 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 87.32 86.16 NA 86.74 0.82 73.25 88.67 NA 80.96 10.90 

30 84.45 88.30 NA 86.37 2.72 84.40 105.82 NA 95.11 15.15 

50 76.79 87.24 NA 82.02 7.39 84.53 97.12 NA 90.83 8.91 

100 49.13 54.95 NA 52.04 4.11 107.51 101.71 NA 104.61 4.10 

300 45.94 56.75 NA 51.34 7.64 114.84 100.22 NA 107.53 10.34 

500 12.57 30.24 NA 21.41 12.50 168.49 109.53 NA 139.01 41.70 

1.000 85.11 91.64 NA 88.37 4.62 114.54 103.03 NA 108.79 8.14 
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Tolcapone 72h 

TOL [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

10 28.51 28.30 18.19 25.00 5.90 52.10 71.31 56.62 60.01 10.05 

30 26.17 26.30 18.27 23.58 4.60 34.26 58.30 50.01 47.53 12.21 

50 25.68 25.56 12.76 21.33 7.43 35.03 58.82 38.82 44.22 12.78 

100 15.12 11.46 8.72 11.77 3.21 24.88 31.50 24.84 27.08 3.83 

300 0.53 0.63 0.47 0.55 0.08 0.56 4.26 -1.03 1.26 2.71 

500 -0.13 0.18 0.22 0.09 0.19 -1.01 2.64 -0.82 0.27 2.05 

1.000 -0.37 0.33 0.11 0.02 0.36 -1.61 1.49 -0.57 -0.23 1.58 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 103.44 111.46 101.10 105.33 5.44 102.04 88.25 NA 95.14 9.75 

30 107.70 115.86 104.55 109.37 5.83 102.47 86.41 NA 94.44 11.36 

50 110.32 114.46 99.72 108.17 7.60 102.41 86.04 NA 94.22 11.58 

100 115.14 120.63 96.47 110.74 12.66 103.03 87.45 NA 95.24 11.01 

300 8.24 2.31 10.89 7.15 4.39 77.39 36.74 NA 57.06 28.74 

500 0.44 0.30 0.64 0.46 0.17 7.59 14.88 NA 11.23 5.16 

1.000 -0.43 -0.44 -0.32 -0.40 0.07 2.39 3.21 NA 2.80 0.58 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

10 107.53 94.42 NA 100.98 9.27 77.97 91.79 NA 84.88 9.78 

30 105.85 95.13 NA 100.49 7.58 94.54 108.07 NA 101.30 9.57 

50 99.90 96.75 NA 98.33 2.23 99.55 98.78 NA 99.16 0.54 

100 71.60 76.53 NA 74.06 3.49 80.02 100.13 NA 90.07 14.22 

300 11.71 7.16 NA 9.43 3.21 42.67 35.83 NA 39.25 4.84 

500 11.18 13.39 NA 12.29 1.56 18.04 60.09 NA 39.07 29.73 

1.000 -0.12 -0.15 NA -0.13 0.03 2.24 7.34 NA 4.79 3.61 
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Troglitazone 24h 
TRO [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 138.76 111.84 102.40 117.67 15.41 97.42 96.37 96.14 96.65 0.56 

5 137.42 106.69 100.49 114.87 16.15 105.12 99.47 100.02 101.54 2.54 

10 106.53 101.60 96.77 101.63 3.98 97.51 96.43 96.22 96.72 0.57 

30 18.88 30.96 27.56 25.80 5.09 87.56 76.80 70.09 78.15 7.19 

50 7.30 17.38 12.33 12.34 4.11 76.80 67.38 40.36 61.51 15.44 

100 1.64 0.66 0.43 0.91 0.52 7.22 15.77 9.53 10.84 3.61 

300 -0.07 -0.42 -0.33 -0.27 0.15 4.30 -1.65 -0.13 0.84 2.53 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 96.57 102.88 100.45 99.96 2.60 91.71 122.01 NA 106.86 21.42 

5 93.53 104.74 105.28 101.18 5.42 107.74 120.47 NA 114.10 9.00 

10 94.54 108.12 104.57 102.41 5.75 109.29 116.65 NA 112.97 5.21 

30 94.58 102.83 105.82 101.08 4.76 100.80 126.82 NA 113.81 18.40 

50 94.15 100.04 99.67 97.95 2.69 105.95 123.64 NA 114.80 12.51 

100 94.55 90.43 101.79 95.59 4.70 100.27 121.44 NA 110.85 14.96 

300 85.56 15.46 9.91 36.98 34.43 108.75 92.60 NA 100.67 11.42 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 96.40 98.06 NA 97.23 1.17 121.16 106.43 NA 113.79 10.41 

5 93.07 103.56 NA 98.32 7.42 128.16 108.11 NA 118.13 14.17 

10 93.39 101.36 NA 97.37 5.64 155.25 103.98 NA 129.61 36.26 

30 92.38 101.83 NA 97.10 6.68 153.82 114.83 NA 134.33 27.57 

50 89.57 98.32 NA 93.95 6.18 147.66 112.82 NA 130.24 24.63 

100 82.98 92.49 NA 87.73 6.72 162.54 104.28 NA 133.41 41.20 

300 78.62 79.17 NA 78.89 0.38 194.07 112.51 NA 153.29 57.67 
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Troglitazone 72h 

TRO [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 66.80 93.21 81.25 80.42 13.22 79.80 97.00 97.13 91.31 9.97 

5 70.05 70.14 64.28 68.15 3.36 88.31 100.69 105.05 98.02 8.69 

10 33.44 25.61 25.30 28.12 4.61 74.25 103.80 104.46 94.17 17.26 

30 9.61 3.32 2.68 5.20 3.83 18.15 14.77 6.01 12.98 6.27 

50 0.14 0.16 0.00 0.10 0.09 -0.23 3.59 -2.94 0.14 3.28 

100 -0.31 -0.07 0.09 -0.10 0.20 -1.11 1.68 -2.75 -0.73 2.24 

300 -0.38 0.03 0.17 -0.06 0.28 -1.43 0.77 -2.78 -1.15 1.79 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 109.37 91.34 101.59 100.77 9.04 97.91 96.26 NA 97.09 1.17 

5 111.59 114.29 105.65 110.51 4.42 96.25 96.76 NA 96.51 0.36 

10 109.39 110.19 101.17 106.91 4.99 99.38 98.51 NA 98.94 0.61 

30 109.91 107.67 98.52 105.37 6.04 97.11 101.22 NA 99.17 2.91 

50 92.50 98.97 96.80 96.09 3.29 101.38 101.89 NA 101.63 0.36 

100 101.71 84.88 91.83 92.81 8.46 102.99 104.41 NA 103.70 1.01 

300 19.33 5.23 0.07 8.21 9.97 66.15 2.53 NA 34.34 44.99 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 101.70 100.50 NA 101.10 0.85 102.16 86.20 NA 94.18 11.28 

5 108.77 107.49 NA 108.13 0.91 116.69 92.44 NA 104.57 17.14 

10 108.38 111.76 NA 110.07 2.39 76.60 94.39 NA 85.50 12.58 

30 104.88 114.83 NA 109.86 7.04 96.76 91.88 NA 94.32 3.46 

50 103.10 126.91 NA 115.00 16.83 95.44 97.27 NA 96.36 1.29 

100 94.80 104.07 NA 99.44 6.56 104.91 98.98 NA 101.94 4.19 

300 93.75 45.43 NA 69.59 34.17 89.10 94.40 NA 91.75 3.75 
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Ximelagatran 24h 
XIM [µM] 24h ATP 24h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 125.40 114.30 108.61 116.10 6.97 100.75 100.74 98.74 100.08 0.95 

5 132.64 114.83 112.59 120.02 8.97 92.32 102.45 102.97 99.25 4.90 

10 131.24 116.77 116.26 121.42 6.95 97.84 101.22 102.28 100.44 1.89 

30 131.83 112.42 108.52 117.59 10.19 98.47 99.71 101.08 99.75 1.07 

50 127.47 117.74 111.82 119.01 6.45 99.76 100.39 99.66 99.93 0.32 

100 128.34 108.02 107.94 114.77 9.60 98.10 101.75 101.47 100.44 1.66 

300 92.55 99.73 105.57 99.29 5.32 98.56 100.88 97.33 98.92 1.47 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 106.31 109.93 103.74 106.66 2.54 108.64 119.68 NA 114.16 7.81 

5 108.64 108.67 102.66 106.66 2.83 112.40 123.63 NA 118.01 7.94 

10 109.47 106.14 105.40 107.00 1.77 111.81 119.63 NA 115.72 5.53 

30 108.86 105.43 104.80 106.36 1.79 115.10 119.87 NA 117.49 3.37 

50 108.47 106.64 104.95 106.68 1.44 115.64 121.91 NA 118.77 4.43 

100 107.66 99.32 105.19 104.05 3.50 115.59 118.26 NA 116.93 1.88 

300 29.43 87.28 79.66 65.46 25.66 96.97 110.71 NA 103.84 9.71 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 108.96 102.95 NA 105.96 4.25 84.23 102.95 NA 93.59 13.24 

5 105.42 105.58 NA 105.50 0.11 80.84 102.13 NA 91.49 15.06 

10 130.99 101.57 NA 116.28 20.80 84.40 107.25 NA 95.83 16.16 

30 129.98 104.09 NA 117.03 18.31 82.60 98.28 NA 90.44 11.09 

50 119.67 101.07 NA 110.37 13.15 83.21 102.48 NA 92.85 13.63 

100 135.88 105.69 NA 120.78 21.35 80.34 96.07 NA 88.21 11.12 

300 146.25 104.33 NA 125.29 29.64 78.41 85.74 NA 82.08 5.18 
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Ximelagatran 72h 

XIM [µM] 72h ATP 72h Resazurin 

HepG2 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

3 78.55 94.57 97.96 90.36 10.37 87.50 82.26 93.09 87.62 5.42 

5 92.17 100.58 108.45 100.40 8.15 90.82 101.67 106.81 99.77 8.16 

10 90.72 93.41 94.38 92.84 1.90 89.02 101.20 108.44 99.55 9.81 

30 82.96 99.61 90.06 90.88 8.36 85.64 100.29 108.01 97.98 11.36 

50 85.26 104.11 80.80 90.06 12.37 82.18 101.39 110.91 98.16 14.63 

100 70.20 93.15 82.52 81.96 11.49 75.29 100.45 111.73 95.82 18.66 

300 52.45 19.82 20.20 30.82 18.73 64.32 99.12 111.00 91.48 24.26 

HepaRG 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 103.30 100.36 101.60 101.75 1.47 98.89 92.77 NA 95.83 4.32 

5 111.85 101.69 105.03 106.19 5.18 97.01 86.57 NA 91.79 7.38 

10 111.56 107.91 102.16 107.21 4.74 98.54 94.52 NA 96.53 2.84 

30 107.16 105.43 97.84 103.48 4.96 93.81 93.07 NA 93.44 0.52 

50 100.08 97.26 99.43 98.92 1.48 93.71 92.37 NA 93.04 0.95 

100 99.01 92.39 96.24 95.88 3.32 101.32 92.48 NA 96.90 6.25 

300 0.43 0.07 5.10 1.87 2.81 69.35 82.23 NA 75.79 9.11 

Upcyte hepatocytes 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 NA 100.00 0.00 100.00 100.00 NA 100.00 0.00 

3 110.89 109.14 NA 110.02 1.24 75.16 90.58 NA 82.87 10.91 

5 113.76 115.10 NA 114.43 0.95 98.03 89.03 NA 93.53 6.36 

10 110.86 122.02 NA 116.44 7.89 91.42 98.41 NA 94.92 4.94 

30 109.29 126.18 NA 117.73 11.94 66.81 97.27 NA 82.04 21.54 

50 111.92 139.04 NA 125.48 19.18 84.99 105.75 NA 95.37 14.68 

100 112.68 132.94 NA 122.81 14.32 37.13 94.93 NA 66.03 40.87 

300 111.55 131.80 NA 121.67 14.32 48.69 115.87 NA 82.28 47.50 
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Appendix 2A:  mean flurescence intensities of IF sections per 1,000 pixels. 
 HepaRG PHH 

Albumin 

Day 3 Day 7 Day 14 Day 28 Day 3 Day 7 Day 14 Day 28 
61,159 41,290 58,739 66,478 61,804 60,372 58,739 NA 
63,100 51,772 53,865 61,059 53,408 63,638 66,478 NA 
64,733 47,228 54,034 63,638 66,478 63,529 61,059 NA 
69,350 47,215 62,294 63,529 52,726 61,744 63,638 NA 
59,025 51,471 49,296 62,175 69,631 66,164 63,529 NA 
66,219 52,880 61,804 51,070 66,219 60,263 61,159 NA 
59,917 44,692 53,408 57,858 62,175 57,858 63,100 NA 
54,444 37,676 51,936 61,741 51,070 61,741 64,733 NA 
65,854 46,109 52,726 52,385 65,854 65,971 69,350 NA 
66,561 58,711 69,631 56,707 66,561 56,707 59,025 NA 

Mean 63,036.2 47,904.4 56,773.3 59,664.0 61,592.6 61,798.7 63,081.0 NA 
StDev 4,200.1 5,762.5 5,898.7 4,780.9 6,398.8 2,978.2 3,117.2 NA 
 
 
 
 HepaRG PHH 

CYP 1A2 

Day 3 Day 7 Day 14 Day 28 Day 3 Day 7 Day 14 Day 28 
50,607 61,182 50,607 66,155 73,347 78,910 77,799 NA 
52,383 63,017 52,383 67,328 86,013 74,442 77,625 NA 
42,418 58,225 42,418 67,124 83,495 76,933 69,485 NA 
55,925 53,824 55,925 71,106 94,451 68,559 71,129 NA 
42,274 57,757 42,274 67,302 81,927 92,290 91,536 NA 
46,579 53,404 46,579 65,730 73,733 66,916 88,910 NA 
49,941 42,748 49,941 57,194 88,910 85,944 65,971 NA 
42,923 61,744 42,923 82,165 92,290 73,344 94,451 NA 
39,452 66,164 39,452 76,179 86,013 86,013 81,927 NA 
39,650 53,413 39,650 62,759 NA 83,495 73,733 NA 

Mean 46,215.2 57,147.8 46,215.2 68,304.2 84,464.3 78,684.9 79,256,6 NA 
StDev 5,433.8 6,332.8 5,433.8 6,563.3 6,925.6 7,780.0 9,248.3 NA 
 
 
 
 HepaRG PHH 

CYP 
2B6 

Day 3 Day 7 Day 14 Day 28 Day 3 Day 7 Day 14 Day 28 
35,842 18,164 24,859 37,207 45,971 48,217 43,420 NA 
39,782 31,451 23,788 34,124 62,973 45,827 43,946 NA 
34,737 29,543 23,200 42,537 52,898 64,900 52,189 NA 
47,434 35,492 25,713 33,120 44,856 49,560 51,170 NA 
34,672 22,318 23,080 30,997 53,604 49,079 53,477 NA 
44,783 23,790 23,691 37,617 51,326 45,971 51,326 NA 
36,355 20,794 26,174 37,856 46,583 62,973 46,583 NA 
35,618 26,961 28,072 38,364 47,337 52,898 47,337 NA 
31,795 29,983 26,273 34,979 51,170 44,856 45,633 NA 
37,467 25,639 22,128 36,778 37,467 53,604 46,290 NA 

Mean 37,848,5 26,413,5 24,697,8 36,357,9 49,418,5 51,788,5 48,137,1 NA 
StDev 4,598,9 5,045,0 1,743,8 3,050,4 6,387,2 6,663,6 3,418,4 NA 
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 HepaRG PHH 

CYP 
3A4 

Day 3 Day 7 Day 14 Day 28 Day 3 Day 7 Day 14 Day 28 
75,641 98,299 72,362 99,476 80,591 110,677 11,0759 NA 
63,247 96,044 91,077 86,998 111,496 96,232 9,4276 NA 
69,702 108,116 82,935 88,498 103,445 105,286 10,8445 NA 
67,478 109,347 77,663 73,575 93,927 101,101 12,3590 NA 
70,681 98,284 83,843 93,793 117,969 108,725 8,8038 NA 
66,899 99,821 75,075 103,502 89,206 80,591 8,3491 NA 
78,560 104,385 90,991 84,254 110,096 111,496 9,3146 NA 
62,338 98,978 79,024 91,744 110,759 103,445 11,7969 NA 
60,598 83,139 83,795 98,105 94,276 93,927 8,9206 NA 
53,413 92,049 87,397 88,874 NA  110,654 11,0096 NA 

Mean 66,855,7 98,846,2 82,416,2 90,881,9 101,307.2 10,2213,4 101,901,6 NA 
StDev 7,004,2 7,274,8 6,055,0 8,141,1 11,700.3 9,249,9 13,206,5 NA 
 
 HepaRG PHH 

NAT 1/2 

Day 3 Day 7 Day 14 Day 28 Day 3 Day 7 Day 14 Day 28 
51,505 73,084 50,164 64,940 94,976 93,671 102,553 NA 
48,539 56,324 54,599 59,419 84,217 86,598 75,056 NA 
58,383 60,271 57,383 71,325 92,904 95,183 87,961 NA 
48,877 59,197 60,766 68,096 87,961 70,867 85,711 NA 
44,725 60,263 53,962 68,722 85,711 69,528 76,895 NA 
45,481 72,315 47,891 61,513 76,895 94,976 116,756 NA 
46,844 60,372 60,593 64,348 116,756 84,217 96,384 NA 
50,543 71,389 53,959 59,547 96,384 92,904 116,804 NA 
54,648 70,992 54,996 56,931 98,396 73,920 98,396 NA 
44,629 58,392 50,915 65,045 81,026 93,814 81,026 NA 

Mean 49,417,4 64,259,9 54,522,8 63,988,6 91,522,6 85,567,8 93,754,2 NA 
StDev 4,260,2 6,394,8 4,010,8 4,379,5 10,702,4 9,901,5 14,354,0 NA 
 
 
 HepaRG PHH 

SULT 
1A1 

Day 3 Day 7 Day 14 Day 28 Day 3 Day 7 Day 14 Day 28 
40,379 64,103 80,123 59,448 NA NA NA NA 
40,585 51,991 81,103 66,804 NA NA NA NA 
34,579 53,026 58,388 47,745 NA NA NA NA 
46,136 58,891 74,209 51,445 NA NA NA NA 
37,832 55,207 80,119 57,995 NA NA NA NA 
36,056 54,201 72,387 54,050 NA NA NA NA 
43,652 61,922 60,851 56,169 NA NA NA NA 
36,881 53,191 71,506 52,502 NA NA NA NA 
33,579 46,405 73,569 62,096 NA NA NA NA 
45,491 54,148 62,396 67,759 NA NA NA NA 

Mean 39,517,0 55,308,5 71,465,1 57,601,3 NA NA NA NA 
StDev 4,241,4 4,862,8 7,883,3 6,223,7 NA NA NA NA 
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Appendix 2b) CYP induction in IF stained sections (HepaRG spheroids) 
CYP1A2 induction by Omeprazol 

 Day 3 Day 7 Day 14 
CYP1A2 ctrl  LD MD HD ctrl  LD MD HD ctrl  LD MD HD 

70,905 74,111 111,192 150,583 61,182 66,114 98,965 146,805 50,607 95,627 92,513 145,618 
62,926 119,728 104,477 163,687 63,017 64,052 108,721 159,395 52,383 102,226 154,696 113,723 
66,131 98,433 108,710 142,791 58,225 69,794 129,897 157,526 42,418 88,874 110,666 148,438 
74,110 86,847 107,213 146,823 53,824 59,247 98,197 145,109 55,925 72,223 121,925 136,325 
60,620 88,598 93,813 118,646 57,757 67,801 105,717 150,501 42,274 53,731 124,333 145,122 
72,308 113,408 112,043 155,671 53,404 63,472 98,026 141,634 46,579 51,342 75,397 154,600 
73,925 85,974 99,482 138,273 42,748 78,227 101,431 141,401 49,941 55,504 120,977 132,258 
66,630 119,539 105,277 141,551 61,744 63,393 107,157 138,671 42,923 78,854 123,724 105,238 
75,069 119,827 100,799 NA 66,164 69,511 100,148 137,353 39,452 65,493 101,250 133,104 
71,746 122,016 NA NA NA 71,970 108,237 139,370 39,650 62,316 81,693 166,239 

Mean 69,437.0 102,848.1 104,778.4 144,753.1 57562,8 67358,1 105649,6 145.777 46215,2 72619,0 110717,4 140627,6 
StDev 4,778.8 17,087.6 55,75.3 12,518.2 6545,0 5091,7 9015,3 7390,0649 5433,8 17229,4 22428,8 18425,9 

 
 

CYP 1A1 induction by Omeprazol 
 Day 3 Day 7 Day 14 

CYP1A1 ctrl  LD MD HD ctrl  LD MD HD ctrl  LD MD HD 
17,222 30,568 17,344 26,932 17,222 22,027 24,693 26,133 24,508 27,535 36,987 48,748 
17,281 28,195 19,113 31,112 17,281 22,869 29,632 26,340 19,112 30,712 37,435 39,432 
21,550 25,539 16,915 28,295 21,550 24,002 26,383 31,881 18,783 31,226 39,677 48,023 
20,495 30,266 18,531 28,303 20,495 22,372 27,518 29,611 21,874 31,296 34,745 39,911 
23,865 26,893 16,637 27,841 23,865 23,524 28,104 27,747 18,325 29,438 34,936 38,766 
18,382 25,372 19,205 28,998 18,382 19,805 28,460 25,602 23,403 37,167 43,977 43,706 
21,725 25,572 17,633 28,990 21,725 21,982 27,587 32,698 22,006 30,150 38,220 55,793 
22,295 25,156 18,400 27,221 22,295 24,321 23,630 31,809 22,915 28,539 36,153 52,895 
17,170 24,111 18,431 28,831 17,170 19,192 26,591 26,562 22,865 28,597 34,911 51,554 
25,086 26,244 17,268 29,462 25,086 23,129 24,787 30,624 20,231 37,367 34,654 53,218 

Mean 20,507,1 26,792 17,948 28,599 20,507 22,322 26,739 28,901 21,402 31,203 37,170 47,205 

StDev 2,736,1 2086,7 861,8 1133,9 2736,1 1598,5 1798,1 2591,0 2039,9 3246,2 2777,9 6011,1 
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 Day 3 Day 7 Day 14 
CYP2B6 ctrl  LD MD HD ctrl  LD MD HD ctrl  LD MD HD 

35,842 44,458 60,363 69,669 18,164 38,932 43,582 72,702 24,859 31,473 51,143 65,759 
39,782 40,160 55,131 60,748 31,451 35,425 39,726 59,549 23,788 35,373 46,015 69,946 
34,737 41,167 55,871 68,369 29,543 36,285 44,969 61,946 23,200 24,461 55,872 64,522 
47,434 41,972 52,328 67,614 35,492 44,628 36,249 71,090 25,713 32,176 49,342 60,539 
34,672 40,792 53,879 71,835 22,318 39,096 40,453 69,686 23,080 30,555 50,823 64,442 
44,783 40,996 56,599 67,441 23,790 37,106 40,517 72,172 23,691 38,759 52,606 67,307 
36,355 43,244 51,712 70,766 20,794 42,271 36,978 65,229 26,174 32,158 60,098 66,458 
35,618 42,265 54,919 66,956 26,961 37,839 41,053 60,856 28,072 37,226 48,632 68,747 
31,795 42,056 51,343 68,298 29,983 38,359 38,334 63,037 26,273 30,425 65,064 60,350 
37,467 43,063 57,457 64,131 25,639 43,055 45,480 71,900 22,128 35,911 54,244 59,508 

Mean 37.849 42.017 54.960 67.583 26.414 39.300 40.734 66.817 24.698 32.852 53.384 64.758 
StDev 4598,9 1238,4 2659,0 3045,3 5.045 2.888 2.997 4.945 1.744 3.926 5.421 3.438 

 
 

 Day 3 Day 7 Day 14 
CYP3A4 ctrl  LD MD HD ctrl  LD MD HD ctrl  LD MD HD 

98,299 132,887 133,569 165,568 75,641 89,342 119,627 150,589 72,362 107,177 119,627 134,674 
96,044 108,743 125,014 165,807 63,247 95,115 121,806 145,601 91,077 100,038 121,806 137,159 
108,116 104,839 146,598 144,037 69,702 99,387 110,379 140,613 82,935 94,174 110,379 146,799 
109,347 94,688 119,492 158,025 67,478 93,516 131,800 164,012 77,663 106,447 131,800 148,580 
98,284 126,277 143,214 161,260 70,681 92,051 129,476 155,137 83,843 94,046 129,476 143,485 
99,821 125,585 149,193 162,549 66,899 89,841 121,533 149,127 75,075 90,941 121,533 137,697 
104,385 86,489 155,632 163,866 78,560 100,423 119,644 162,038 90,991 112,525 119,644 153,287 
98,978 114,402 138,651 163,601 62,338 79,641 103,361 160,899 79,024 105,161 103,361 158,835 
83,139 133,672 134,482 156,263 60,598 111,036 128,955 158,296 83,795 93,354 128,955 157,901 
92,049 97,242 130,016 159,017 NA 102,402 109,619 163,074 87,397 106,447 109,619 164,206 

Mean 98,846 112,482 137,586 159,999 68,349 95,275 119,620 154,939 82,416 101,031 119,62 148,262 
StDev 7,275 15,900 10,691 6,119 5674,6 8156,5 8892,9 7686,7 6055,0 7093,3 8,892 9637,2 
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Appendix 2 C: CYP Induction HepaRG monolayer  Day 3 
N=1 

Flumazenil_3d   

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.6 0.6 0.6 0.5 0.7 0.7 1.2 

CYP1A2 0.7 0.6 0.6 0.7 0.6 0.7 0.8 

CYP2B6 1.0 1.2 1.0 1.1 1.1 1.2 1.0 

CYP2C9 1.0 1.0 1.0 1.2 1.1 1.0 0.9 

CYP2C19 1.0 1.0 0.9 1.0 0.9 0.9 0.9 

CYP3A4 0.8 0.9 0.8 0.9 0.9 1.1 1.0 

ABCB11 1.0 0.9 1.0 0.9 1.2 0.9 0.8 

Omeprazol_3d   

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 6.2 10.7 18.8 40.2 55.3 68.2 86.7 

CYP1A2 1.5 1.8 3.2 6.4 9.2 17.5 27.3 

CYP2B6 0.7 0.9 1.0 1.2 1.4 1.3 1.8 

CYP2C9 0.9 0.9 0.8 0.9 0.8 0.6 0.4 

CYP2C19 0.8 0.8 0.8 0.8 0.9 0.7 0.8 

CYP3A4 0.7 0.8 1.1 1.7 2.2 2.9 4.0 

ABCB11 0.9 0.6 0.7 0.8 0.7 0.7 0.7 

Rifampicine_3d  

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 0.9 0.5 0.3 0.4 0.3 0.2 0.2 

CYP1A2 0.8 0.7 0.6 0.8 0.4 0.5 0.6 

CYP2B6 1.3 1.5 2.3 2.7 2.8 3.1 2.8 

CYP2C9 1.1 1.3 1.4 1.4 1.3 1.5 1.3 

CYP2C19 1.1 1.5 1.5 1.6 1.8 1.9 1.6 

CYP3A4 2.1 4.7 7.4 9.0 10.4 11.6 12.7 

ABCB11 1.1 1.2 1.0 1.1 0.8 0.9 0.8 

Phenobarbital_3d  

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.4 0.4 0.3 0.5 0.5 0.6 1.2 

CYP1A2 0.8 0.7 0.7 0.8 0.6 0.6 1.2 

CYP2B6 1.0 0.9 1.6 2.3 3.8 3.5 4.8 

CYP2C9 1.1 1.0 1.2 1.5 1.5 1.8 1.9 

CYP2C19 0.9 0.9 1.0 1.5 1.9 1.9 2.9 

CYP3A4 0.9 0.8 2.0 4.0 7.6 7.5 12.6 

ABCB11 1.0 1.0 0.9 1.1 1.1 1.1 1.2 

 
N=2 

Flumazenil_3d 

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.6 0.7 0.7 0.4 0.7 1.1 * 

CYP1A2 0.8 1.4 1.0 1.2 1.5 1.6 * 

CYP2B6 1.1 1.4 1.1 1.1 1.1 1.2 * 

CYP2C9 1.0 1.2 0.9 1.0 1.0 1.2 * 

CYP2C19 0.9 1.1 0.8 0.8 0.8 1.0 * 

CYP3A4 1.2 1.3 1.0 1.0 1.0 1.3 * 



Appendix  191 
 

ABCB11 0.8 1.2 1.1 1.0 1.1 1.1 * 

Omeprazol_3d 

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 8.3 22.3 54.7 133.6 253.2 340.1 * 

CYP1A2 2.4 4.6 12.4 31.1 75.6 139.5 * 

CYP2B6 1.4 1.4 2.1 2.3 3.1 3.9 * 

CYP2C9 1.2 1.3 1.4 1.4 1.6 1.3 * 

CYP2C19 1.1 1.3 1.2 1.6 1.7 2.3 * 

CYP3A4 1.6 2.1 2.9 4.5 8.1 11.9 * 

ABCB11 1.1 1.1 1.4 1.3 1.5 1.1 * 

Rifampicine_3d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 0.6 0.4 0.1 0.4 0.7 0.6 1.2 

CYP1A2 1.0 1.0 0.8 0.9 1.5 1.5 2.6 

CYP2B6 1.6 1.8 2.6 3.8 4.1 4.4 3.9 

CYP2C9 1.4 1.6 1.9 2.0 2.1 1.7 1.8 

CYP2C19 1.2 1.5 1.8 1.9 2.3 2.1 2.1 

CYP3A4 5.0 11.4 18.1 20.5 22.0 22.2 26.5 

ABCB11 1.0 1.0 0.9 1.0 1.0 1.0 1.0 

Phenobarbital_3d 

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.2 0.3 0.3 0.6 0.5 0.5 0.8 

CYP1A2 0.9 0.8 1.1 1.6 1.6 1.5 1.8 

CYP2B6 1.9 3.0 3.7 5.5 6.9 8.5 5.1 

CYP2C9 1.2 1.4 1.7 2.0 1.9 2.0 1.7 

CYP2C19 1.1 1.3 1.4 1.8 2.3 2.8 2.5 

CYP3A4 2.4 4.2 6.9 12.1 18.7 22.2 17.7 

ABCB11 1.1 1.2 1.4 1.5 1.3 1.3 1.0 

 
CYP Induction HepaRG monolayer Day 7 

N=1 
Flumazenil_7d 

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.7 0.2 1.0 0.3 0.5 0.5 0.8 

CYP1A2 0.9 0.6 1.2 0.5 0.9 0.9 1.1 

CYP2B6 1.3 1.6 1.8 2.0 2.0 1.7 2.2 

CYP2C9 1.0 1.1 1.1 1.1 1.1 0.9 1.1 

CYP2C19 1.5 1.6 1.7 1.7 1.6 1.3 1.6 

CYP3A4 1.6 2.2 2.7 2.9 3.2 2.7 4.5 

ABCB11 1.1 1.0 1.0 0.7 0.8 0.7 0.8 

Omeprazol_7d 

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 12.5 17.6 39.2 73.4 141.3 246.8 225.4 

CYP1A2 2.1 2.5 2.5 4.0 8.0 27.6 23.1 

CYP2B6 1.3 1.1 1.3 1.3 1.8 2.8 2.0 

CYP2C9 0.8 0.7 0.8 0.8 0.9 0.8 0.6 

CYP2C19 1.1 0.9 1.0 1.0 1.0 1.2 0.9 

CYP3A4 0.6 0.5 0.6 0.7 1.2 2.2 1.9 
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ABCB11 1.1 1.1 1.0 0.9 0.9 0.9 0.9 

Rifampicine_7d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 1.3 0.8 1.1 0.6 0.7 0.8 0.5 

CYP1A2 1.1 0.8 1.0 0.9 0.9 0.7 0.8 

CYP2B6 0.7 1.1 1.0 0.8 0.8 1.0 0.9 

CYP2C9 0.9 0.8 0.8 0.7 0.6 0.7 0.7 

CYP2C19 0.7 1.0 1.0 0.9 1.0 0.9 0.9 

CYP3A4 0.4 0.4 0.3 0.2 0.2 0.2 0.2 

ABCB11 1.2 1.1 1.1 0.9 1.1 1.0 0.9 

Phenobarbital_7d 

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.7 0.6 0.5 1.4 0.6 1.0 0.8 

CYP1A2 0.9 0.8 0.8 1.0 0.7 1.3 0.8 

CYP2B6 1.0 0.9 1.6 2.3 3.1 3.3 5.0 

CYP2C9 0.8 0.7 0.9 1.1 1.2 1.2 1.6 

CYP2C19 1.1 1.2 1.4 1.4 1.8 1.8 2.5 

CYP3A4 0.3 0.3 0.9 0.9 1.8 2.0 4.5 

ABCB11 0.9 0.9 1.1 1.1 1.0 1.2 1.0 

 
N=2 

Flumazenil_7d 

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.6 0.6 0.8 1.3 0.8 2.0 * 

CYP1A2 1.2 0.8 0.9 1.0 1.0 1.4 * 

CYP2B6 1.3 1.5 1.5 1.5 1.9 1.7 * 

CYP2C9 1.0 1.1 1.0 0.9 1.1 1.1 * 

CYP2C19 1.1 1.1 1.1 1.0 1.1 1.2 * 

CYP3A4 1.1 1.3 1.5 1.5 1.6 1.3 * 

ABCB11 1.1 1.2 1.1 1.1 1.1 1.2 * 

Omeprazol_7d 

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 6.5 20.0 45.8 109.7 191.3 336.6 * 

CYP1A2 1.3 3.1 4.0 8.4 15.0 25.7 * 

CYP2B6 1.1 1.5 1.8 2.7 3.9 5.8 * 

CYP2C9 0.6 0.8 0.7 0.9 1.1 1.1 * 

CYP2C19 0.9 1.1 1.0 1.1 1.2 1.4 * 

CYP3A4 0.9 1.4 1.8 4.3 9.8 23.5 * 

ABCB11 0.8 0.9 0.9 1.1 1.6 1.8 * 

Rifampicine_7d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 2.9 0.9 0.7 0.9 0.9 1.5 0.8 

CYP1A2 0.8 0.8 0.7 1.0 0.7 1.1 1.0 

CYP2B6 2.0 2.2 3.3 3.5 4.1 5.7 6.2 

CYP2C9 1.0 1.2 1.3 1.6 1.7 1.6 1.8 

CYP2C19 0.9 1.0 1.2 1.3 1.4 1.4 1.2 

CYP3A4 2.8 8.5 23.4 34.9 50.3 71.0 79.4 
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ABCB11 0.8 0.9 0.8 0.7 0.8 0.8 0.6 

Phenobarbital_7d 

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.5 0.8 0.9 1.3 2.0 4.2 3.0 

CYP1A2 1.2 0.9 1.0 1.1 1.2 1.4 1.3 

CYP2B6 2.1 2.8 4.3 6.9 10.7 14.4 16.2 

CYP2C9 1.1 1.0 1.2 1.5 1.7 2.1 2.0 

CYP2C19 1.1 1.1 1.2 1.4 1.7 2.0 2.0 

CYP3A4 2.0 2.9 6.0 17.1 37.3 55.5 81.9 

ABCB11 1.0 1.0 1.0 1.3 1.3 1.5 1.5 

 
CYP Induction HepaRG monolayer Day 14 

N=1 
Flumazenil_14d   

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.2 0.2 0.0 0.0 -0.2 -0.2 0.3 

CYP1A2 0.4 0.7 0.6 0.7 0.4 0.5 0.5 

CYP2B6 0.4 0.5 0.5 0.7 0.5 0.9 3.4 

CYP2C9 0.9 0.9 1.1 1.1 0.9 1.3 2.4 

CYP2C19 1.2 1.2 1.3 1.2 1.0 1.1 1.7 

CYP3A4 1.1 1.2 2.7 4.5 3.8 6.4 20.4 

ABCB11 0.9 0.7 0.7 0.7 0.4 0.7 0.9 

Omeprazol_14d   

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 24.5 24.4 40.7 64.7 124.9 117.8 428.3 

CYP1A2 2.4 3.3 3.5 4.7 7.5 5.8 28.1 

CYP2B6 1.5 1.9 1.5 2.5 2.8 1.4 5.9 

CYP2C9 0.9 1.1 1.0 1.2 1.1 0.8 1.6 

CYP2C19 1.2 1.3 1.3 1.3 1.3 1.1 1.0 

CYP3A4 1.2 1.5 1.3 1.9 2.3 1.5 12.3 

ABCB11 2.1 2.2 2.0 2.0 2.2 1.8 3.0 

Rifampicine_14d   

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 0.9 1.2 0.4 0.9 0.4 0.6 0.9 

CYP1A2 0.8 0.8 0.7 0.7 0.8 0.8 0.7 

CYP2B6 1.0 1.7 1.3 0.8 0.8 0.6 1.3 

CYP2C9 0.9 1.2 1.0 0.9 0.8 0.8 1.1 

CYP2C19 0.7 1.1 1.1 1.1 1.0 1.0 1.1 

CYP3A4 0.7 1.0 0.7 0.6 0.7 0.6 0.9 

ABCB11 1.1 1.3 1.0 0.9 1.0 0.6 0.9 

Phenobarbital_14d   

 

31 62.5 125 250 500 750 1000 

CYP1A1 1.5 1.5 1.2 1.4 1.2 1.4 1.8 

CYP1A2 1.6 1.9 1.8 2.2 1.4 1.7 1.6 

CYP2B6 1.4 1.1 2.0 2.0 3.2 5.7 16.6 

CYP2C9 1.2 1.1 1.4 1.4 1.9 2.4 3.3 

CYP2C19 1.4 1.4 1.6 1.6 1.9 1.9 3.0 

CYP3A4 1.0 0.9 1.4 1.9 5.2 6.9 21.4 
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ABCB11 2.0 2.1 2.0 2.0 1.8 2.4 2.3 

 
N=2 

Flumazenil_14d 

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.3 0.3 0.2 0.4 0.8 0.6 2.1 

CYP1A2 0.6 0.5 0.4 0.7 0.7 0.8 0.9 

CYP2B6 4.5 5.9 5.6 4.5 5.0 4.4 4.4 

CYP2C9 3.1 3.3 3.5 3.1 2.9 3.2 2.4 

CYP3A4 3.5 4.0 3.6 3.4 3.5 3.5 2.2 

CYP2C19 1.4 1.9 1.8 1.5 1.5 2.0 1.7 

ABCB11 1.1 1.2 1.1 1.0 0.9 1.2 1.1 

Omeprazol_14d 

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 6.6 16.8 45.6 112.9 176.5 278.5 360.6 

CYP1A2 0.9 1.0 2.0 3.8 5.9 11.7 18.9 

CYP2B6 3.9 5.1 6.4 9.6 11.5 20.2 19.4 

CYP2C9 2.8 3.1 3.1 4.0 4.0 4.8 2.5 

CYP3A4 3.7 4.4 4.6 4.3 4.8 4.4 2.6 

CYP2C19 1.7 1.9 2.5 5.5 10.2 23.8 14.4 

ABCB11 1.0 1.2 1.6 1.7 1.7 3.1 2.3 

Rifampicine_14d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 0.6 0.7 0.5 0.4 1.1 1.9 0.7 

CYP1A2 1.0 0.9 0.8 1.0 1.4 3.2 0.7 

CYP2B6 2.1 6.0 8.1 10.9 12.1 17.9 17.3 

CYP2C9 1.0 3.2 4.3 5.3 5.6 6.1 6.6 

CYP3A4 0.8 2.4 3.0 3.4 3.4 3.9 3.6 

CYP2C19 2.3 6.2 11.0 18.1 20.5 29.7 44.5 

ABCB11 1.2 1.5 1.0 1.3 1.2 2.0 0.9 

Phenobarbital_14d 

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.7 0.7 0.6 0.6 1.0 0.9 3.9 

CYP1A2 1.1 1.0 0.9 1.1 1.0 1.0 1.4 

CYP2B6 6.9 8.5 9.6 16.4 27.0 39.2 26.8 

CYP2C9 4.0 5.0 4.6 6.3 7.3 8.0 6.4 

CYP3A4 5.0 4.9 4.8 5.3 6.1 6.6 4.4 

CYP2C19 3.1 3.9 6.5 14.1 27.8 42.1 33.3 

ABCB11 1.7 1.6 1.2 1.5 1.5 1.9 2.0 

 
CYP induction HepaRG 3D day 3 

N=1 
Flumazenil_3d 

 0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.5 0.5 0.5 0.5 0.5 0.6 1.0 

CYP1A2 0.9 0.8 0.8 0.9 0.9 0.8 1.4 

CYP2B6 0.7 0.6 0.6 0.6 0.6 0.6 1.2 

CYP2C9 1.1 1.1 1.0 1.1 1.1 1.0 1.4 
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CYP2C19 0.9 0.8 0.9 0.8 0.8 0.7 1.1 

CYP3A4 0.7 0.6 0.6 0.6 0.6 0.5 1.1 

ABCB11 0.7 0.8 0.8 0.8 0.9 0.7 1.0 

Omeprazol_3d 

 1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 7.0 9.8 12.1 16.5 16.0 19.7 18.2 

CYP1A2 4.6 8.7 15.4 27.6 39.5 49.8 49.5 

CYP2B6 1.0 1.1 0.9 1.0 1.4 1.4 1.1 

CYP2C9 1.1 1.0 0.9 0.8 0.9 0.7 0.4 

CYP2C19 1.1 1.2 1.2 1.1 1.6 1.0 0.9 

CYP3A4 0.9 1.1 1.1 1.1 1.1 1.0 0.8 

ABCB11 1.0 0.9 0.8 0.6 0.7 0.4 0.3 

Rifampicine_3d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 0.7 0.5 0.8 0.5 0.5 0.5 0.7 

CYP1A2 1.0 1.0 1.0 0.7 0.7 0.7 0.6 

CYP2B6 0.7 0.9 0.9 1.0 0.9 0.9 0.8 

CYP2C9 0.9 1.2 1.1 1.2 1.3 1.1 1.4 

CYP2C19 0.9 1.3 1.5 1.8 1.7 1.7 1.5 

CYP3A4 1.1 1.5 1.7 1.9 2.0 1.9 2.0 

ABCB11 0.8 0.9 1.0 0.6 0.7 0.6 0.5 

Phenobarbital_3d 

 31 62.5 125 250 500 750 1000 

CYP1A1 0.8 0.4 0.6 0.7 0.7 0.9 1.5 

CYP1A2 0.8 0.6 0.7 0.6 0.7 0.7 0.9 

CYP2B6 0.8 0.8 1.4 1.7 2.1 2.1 2.7 

CYP2C9 1.0 1.1 1.2 1.2 1.6 1.5 1.6 

CYP2C19 0.7 1.0 1.2 1.5 2.3 1.9 3.1 

CYP3A4 0.7 0.6 1.3 1.5 2.0 2.0 2.3 

ABCB11 0.8 0.7 1.0 0.9 0.7 0.7 0.7 

 
N=2 

Flumazenil_3d 

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.5 0.4 0.3 0.3 0.3 0.3 0.8 

CYP1A2 1.2 1.0 1.0 0.7 0.6 1.0 1.7 

CYP2B6 0.9 0.9 0.9 0.7 0.7 0.8 1.2 

CYP2C9 0.9 1.0 1.0 1.0 0.8 0.9 0.9 

CYP2C19 0.8 0.8 0.9 0.7 0.8 0.8 1.0 

CYP3A4 0.7 0.7 0.7 0.6 0.5 0.7 1.3 

ABCB11 1.0 0.8 1.0 0.9 0.9 1.2 1.1 

Omeprazol_3d 

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 4.9 7.2 9.6 9.4 13.1 12.7 19.7 

CYP1A2 6.9 14.2 26.2 56.3 93.5 108.5 123.2 

CYP2B6 1.1 1.0 1.1 1.2 2.0 2.3 1.8 

CYP2C9 0.9 1.0 0.9 0.9 0.8 0.5 0.2 
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CYP2C19 0.9 0.9 1.0 1.2 1.2 1.3 0.8 

CYP3A4 0.8 0.9 0.9 1.0 1.3 1.2 1.0 

ABCB11 1.1 0.9 1.0 0.9 0.6 0.5 0.6 

Rifampicine_3d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 2.4 0.4 0.5 0.4 0.4 0.5 0.5 

CYP1A2 1.7 1.1 1.1 1.0 1.4 1.4 1.1 

CYP2B6 1.1 1.2 1.7 2.1 2.5 2.3 2.6 

CYP2C9 1.0 1.3 1.3 1.4 1.6 1.4 1.3 

CYP2C19 1.1 1.6 2.0 2.2 2.8 2.7 2.3 

CYP3A4 1.6 2.5 3.2 3.5 4.4 4.0 4.0 

ABCB11 0.9 1.0 1.0 0.9 0.9 0.9 0.8 

Phenobarbital_3d 

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.4 0.4 0.3 0.7 0.4 0.4 4.9 

CYP1A2 0.7 0.7 1.1 2.5 1.1 1.5 5.4 

CYP2B6 1.4 1.9 1.8 2.7 3.6 4.2 4.1 

CYP2C9 1.1 1.3 1.4 1.6 1.8 1.7 1.5 

CYP2C19 1.0 1.2 1.4 2.1 2.8 3.7 3.2 

CYP3A4 1.0 1.4 2.0 2.6 3.8 3.7 4.2 

ABCB11 1.0 1.0 1.2 1.2 1.1 1.1 0.9 

 
CYP induction HepaRG 3D day 7 

N=1 
Flumazenil_7d 

 0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.7 0.7 0.7 0.7 0.6 0.7 1.0 

CYP1A2 0.8 0.8 1.0 0.8 0.8 0.8 1.1 

CYP2B6 1.5 1.4 1.5 1.5 1.3 1.5 2.0 

CYP2C9 1.4 1.3 1.4 1.4 1.3 1.4 1.9 

CYP2C19 1.5 1.5 1.6 1.6 1.4 1.6 2.1 

CYP3A4 1.2 1.2 1.2 1.3 1.1 1.2 1.7 

ABCB11 1.3 1.1 1.2 1.3 1.0 1.3 1.1 

Omeprazol_7d 

 1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 5.1 7.8 10.6 11.2 13.4 15.1 11.7 

CYP1A2 3.1 5.4 9.1 14.3 17.3 23.0 18.4 

CYP2B6 1.5 1.6 2.1 2.3 2.5 2.9 1.6 

CYP2C9 1.4 1.3 1.5 1.1 1.1 1.1 0.6 

CYP2C19 1.5 1.4 1.9 2.1 1.7 1.6 1.0 

CYP3A4 1.2 1.0 1.2 1.2 1.3 1.2 0.7 

ABCB11 1.1 0.9 1.0 0.7 0.5 0.4 0.4 

Rifampicine_7d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 1.0 0.8 0.8 0.7 0.6 0.7 0.8 

CYP1A2 1.1 0.8 0.7 0.7 0.5 0.5 0.6 

CYP2B6 1.6 2.0 2.3 2.7 2.8 3.0 2.7 

CYP2C9 1.5 1.7 1.9 1.9 2.1 2.0 1.8 
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CYP2C19 1.9 2.6 2.9 3.6 3.2 3.2 3.2 

CYP3A4 1.7 2.1 2.2 2.6 2.5 2.5 2.4 

ABCB11 1.5 1.4 1.2 1.3 0.9 0.9 0.9 

Phenobarbital_7d 

 31 62.5 125 250 500 750 1000 

CYP1A1 0.8 0.6 0.7 0.7 0.7 0.6 1.3 

CYP1A2 0.8 0.8 0.9 0.8 0.7 0.6 1.1 

CYP2B6 1.6 1.4 2.5 3.3 3.5 3.5 5.9 

CYP2C9 1.4 1.2 1.3 2.0 1.8 1.8 2.8 

CYP2C19 1.6 1.5 2.3 2.8 3.2 2.9 5.7 

CYP3A4 1.2 1.2 1.6 2.2 2.3 2.2 3.2 

ABCB11 1.3 1.2 1.2 1.0 0.8 0.8 1.2 

 
N=2 

Flumazenil_7d 

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.8 0.8 0.6 0.9 0.6 0.8 1.3 

CYP1A2 1.2 0.7 1.1 1.9 1.1 0.8 0.8 

CYP2B6 1.5 1.5 1.7 1.4 1.6 1.5 1.4 

CYP2C9 1.3 1.2 1.3 1.0 1.2 1.2 1.0 

CYP2C19 1.4 1.2 1.4 0.8 1.3 1.3 1.0 

CYP3A4 1.6 1.6 1.8 1.5 1.7 1.4 1.6 

ABCB11 1.2 1.0 1.2 1.5 1.1 1.4 0.9 

Omeprazol_7d 

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 6.5 11.5 16.7 15.2 27.6 34.1 32.5 

CYP1A2 3.0 6.0 12.5 14.5 44.9 71.0 100.0 

CYP2B6 1.7 1.7 2.1 1.1 4.2 4.9 3.9 

CYP2C9 1.2 1.1 1.2 0.8 0.9 1.0 0.6 

CYP2C19 1.2 1.4 1.3 0.8 1.6 1.8 1.1 

CYP3A4 1.3 1.5 2.1 1.9 3.3 4.4 3.6 

ABCB11 1.0 1.0 0.9 0.5 0.8 0.7 0.5 

Rifampicine_7d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 3.0 1.0 0.9 0.9 0.8 1.0 1.2 

CYP1A2 0.5 0.8 0.8 0.6 0.7 0.7 0.6 

CYP2B6 1.4 2.9 4.1 5.0 5.9 5.8 6.5 

CYP2C9 1.1 1.7 1.9 2.0 1.9 2.0 2.1 

CYP2C19 1.1 2.1 2.6 3.0 2.9 3.7 3.7 

CYP3A4 2.3 6.1 7.7 10.1 9.9 10.1 12.0 

ABCB11 1.0 1.0 0.9 0.9 0.9 0.7 0.9 

Phenobarbital_7d 

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.9 0.8 1.0 1.3 1.3 1.3 4.9 

CYP1A2 1.1 1.0 1.2 1.4 1.3 1.0 2.6 

CYP2B6 1.8 2.5 3.6 4.9 5.6 7.1 8.0 

CYP2C9 1.3 1.2 1.8 1.7 2.1 1.9 2.1 



198  Appendix 

CYP2C19 1.2 1.4 1.9 2.0 2.8 3.3 3.8 

CYP3A4 2.3 3.0 4.5 6.9 9.9 10.6 10.6 

ABCB11 0.9 1.0 1.2 1.7 1.1 1.0 1.2 

 
CYP induction HepaRG 3D day 14 

N=1 
Flumazenil_14d 

 0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.7 0.7 0.7 0.7 0.7 0.7 1.1 

CYP1A2 0.6 0.7 0.7 0.7 0.6 0.7 1.4 

CYP2B6 0.9 0.9 0.8 0.9 0.9 0.8 1.5 

CYP2C9 0.8 0.8 0.7 0.9 0.8 0.8 1.4 

CYP2C19 0.8 0.7 0.8 0.9 0.8 0.7 1.2 

CYP3A4 0.9 0.9 0.9 0.9 0.9 0.8 1.3 

ABCB11 0.8 1.0 0.9 1.2 0.9 0.8 1.0 

Omeprazol_14d 

 1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 5.0 4.8 8.9 11.6 16.9 14.0 21.0 

CYP1A2 2.7 3.0 6.4 9.2 17.7 13.5 42.9 

CYP2B6 1.0 0.9 1.4 1.7 2.0 1.5 2.0 

CYP2C9 0.9 0.8 0.8 0.9 0.9 0.8 0.6 

CYP2C19 0.9 0.9 1.0 1.0 1.2 1.1 1.2 

CYP3A4 1.1 0.9 0.9 1.2 1.2 1.0 0.9 

ABCB11 1.0 0.9 0.9 0.8 0.6 0.5 0.4 

Rifampicine_14d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 1.0 0.8 0.8 0.8 0.8 0.9 0.8 

CYP1A2 1.0 0.7 0.7 0.7 0.9 0.6 0.6 

CYP2B6 0.9 1.3 1.5 1.8 2.1 2.1 2.7 

CYP2C9 1.0 1.2 1.2 1.3 1.4 1.3 1.6 

CYP2C19 0.9 1.3 1.2 1.6 1.9 2.0 2.3 

CYP3A4 1.2 1.6 1.6 2.0 2.1 2.0 2.3 

ABCB11 1.0 1.1 1.0 1.1 1.0 0.8 0.9 

Phenobarbital_14d 

 31 62.5 125 250 500 750 1000 

CYP1A1 1.0 0.7 0.8 0.7 0.8 0.7 1.3 

CYP1A2 0.8 0.7 0.8 0.8 0.7 0.7 1.1 

CYP2B6 0.9 0.8 1.7 2.0 2.7 2.7 4.3 

CYP2C9 0.8 0.7 1.0 1.1 1.2 1.4 1.8 

CYP2C19 0.8 0.8 1.2 1.4 1.9 2.0 3.4 

CYP3A4 0.9 0.9 1.3 1.4 1.8 1.9 2.3 

ABCB11 1.0 1.1 1.1 0.9 1.0 0.9 0.9 

 
N=2 

Flumazenil_14d 

 

0.003 0.1 0.3 1 3 10 30 

CYP1A1 0.6 0.7 0.7 0.6 0.8 1.9 1.3 

CYP1A2 0.5 0.5 0.4 0.4 0.9 2.3 1.5 
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CYP2B6 1.0 1.0 0.8 0.8 1.3 1.3 1.1 

CYP2C9 1.0 0.9 0.8 0.8 1.1 0.8 0.8 

CYP2C19 0.9 0.9 0.8 0.7 1.0 1.1 0.9 

CYP3A4 1.1 1.2 1.2 1.5 1.8 1.4 1.5 

ABCB11 0.8 0.8 0.7 0.7 0.9 0.9 0.8 

Omeprazol_14d 

 

1.55 3.1 6.25 12.5 25 50 100 

CYP1A1 2.8 4.6 8.3 9.0 9.6 10.6 10.0 

CYP1A2 2.1 4.6 12.9 16.2 22.4 22.1 16.3 

CYP2B6 1.1 0.8 1.8 1.8 1.8 2.4 2.3 

CYP2C9 1.0 0.7 0.9 0.7 0.6 0.5 0.5 

CYP2C19 1.0 0.7 1.1 1.1 1.0 1.0 1.1 

CYP3A4 1.0 0.9 1.4 1.3 1.2 1.3 1.9 

ABCB11 0.8 0.4 0.6 0.4 0.5 0.4 0.4 

Rifampicine_14d 

 

0.1 0.5 1.25 2.5 5 10 25 

CYP1A1 1.1 0.7 0.6 0.6 0.7 0.6 0.7 

CYP1A2 1.2 1.0 0.7 0.5 0.7 0.5 0.7 

CYP2B6 1.5 1.3 1.7 1.8 2.4 3.5 3.4 

CYP2C9 1.2 1.1 1.4 1.3 1.4 2.1 1.6 

CYP2C19 1.2 1.5 1.5 1.7 2.0 2.9 2.9 

CYP3A4 1.8 3.1 2.9 2.7 3.6 4.9 3.9 

ABCB11 1.0 0.8 1.0 0.8 0.8 0.7 0.8 

        

Phenobarbital_14d 

 

31 62.5 125 250 500 750 1000 

CYP1A1 0.7 0.6 0.7 0.9 0.8 1.0 1.2 

CYP1A2 0.7 0.7 0.9 0.9 0.7 1.3 1.5 

CYP2B6 1.3 1.6 1.6 2.4 2.9 4.8 3.5 

CYP2C9 1.1 1.3 1.3 1.6 1.7 1.9 1.6 

CYP2C19 1.2 1.2 1.8 1.8 2.6 4.0 2.0 

CYP3A4 2.1 1.8 3.0 3.4 3.7 4.5 4.5 

ABCB11 1.0 0.9 0.8 0.8 0.8 0.9 1.4 
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Appendix 3a: Viability in HepaRG cells 2D vs. 3D at days 3. 7 and 14. Data expressed as % of control 
APAP [µM] DAY 3 

2D 3D 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

100 98.35 100.69 105.18 101.41 2.84 95.73 89.76 102.08 95.85 5.03 

200 99.38 100.27 106.17 101.94 3.02 95.92 85.87 99.89 93.89 5.90 

500 98.74 95.13 106.24 100.04 4.62 94.77 83.19 99.32 92.42 6.79 

1.000 91.79 85.41 97.34 91.51 4.87 76.63 74.22 88.88 79.91 6.42 

2.000 82.45 64.51 72.90 73.29 7.33 52.26 55.61 77.46 61.77 11.17 

5.000 52.60 20.05 57.34 43.33 16.58 29.22 32.32 63.26 41.60 15.37 

10.000 19.06 1.51 11.24 10.60 7.18 3.32 13.46 47.08 21.28 18.70 

DAY 7 
 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

100 100.69 88.72 100.92 96.78 5.70 95.73 86.92 98.99 93.88 5.10 

200 100.27 91.51 103.83 98.54 5.18 95.92 94.95 99.34 96.74 1.88 

500 95.12 88.16 96.70 93.33 3.71 94.77 91.39 81.51 89.22 5.63 

1.000 85.39 79.49 79.96 81.61 2.68 76.63 74.73 73.62 74.99 1.24 

2.000 64.46 68.29 43.31 58.69 10.99 52.26 56.85 53.24 54.12 1.97 

5.000 19.93 16.62 1.55 12.70 8.00 29.22 18.94 21.68 23.28 4.35 

10.000 1.37 2.19 0.16 1.24 0.83 3.32 6.97 9.59 6.63 2.57 

DAY 14 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

100 100.92 86.78 86.47 91.39 6.74 97.81 76.84 81.79 85.48 8.95 

200 103.83 84.85 85.37 91.35 8.83 96.90 71.32 76.17 81.46 11.09 

500 96.70 81.68 81.21 86.53 7.19 84.72 67.33 70.60 74.22 7.54 

1.000 79.96 66.93 69.53 72.14 5.63 68.85 48.88 53.86 57.20 8.49 

2.000 43.32 33.71 40.37 39.13 4.02 30.94 27.21 29.20 29.12 1.53 

5.000 1.58 0.71 0.94 1.08 0.37 3.04 2.29 3.09 2.81 0.37 

10.000 0.19 0.10 0.14 0.14 0.04 0.40 -0.37 0.33 0.12 0.35 
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BOS [µM] DAY 3 

2D 3D 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 100.74 105.18 100.69 102.20 2.11 102.32 95.47 95.77 97.85 3.16 

10 101.80 106.17 94.67 100.88 4.74 96.03 96.44 100.73 97.73 2.12 

20 102.97 106.24 94.60 101.27 4.90 83.32 100.82 100.80 94.98 8.24 

40 103.40 97.34 95.84 98.86 3.27 93.88 96.57 97.86 96.10 1.66 

100 96.74 72.90 92.94 87.53 10.46 66.07 94.12 82.43 80.87 11.50 

200 79.30 57.34 78.42 71.69 10.15 37.56 80.48 67.57 61.87 17.98 

400 54.01 11.24 57.54 40.93 21.04 8.70 38.73 58.79 35.41 20.58 

DAY 7 
 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 105.19 97.56 101.12 101.29 3.12 102.32 94.43 96.38 97.71 3.35 

10 106.18 107.36 102.85 105.47 1.91 96.03 108.57 95.17 99.92 6.12 

20 106.24 111.76 100.89 106.30 4.44 83.32 115.65 99.13 99.37 13.20 

40 97.33 99.83 79.94 92.37 8.85 93.88 110.11 94.63 99.54 7.48 

100 72.86 75.11 36.90 61.62 17.51 66.07 109.45 89.70 88.41 17.73 

200 57.27 59.99 11.75 43.00 22.12 37.65 38.727 60.96 45.75 10.77 

400 11.10 13.27 0.25 8.21 5.69 8.70 14.84 20.37 14.64 4.77 

DAY 14 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 101.12 103.06 98.13 100.77 2.03 108.24 87.63 87.21 94.36 9.82 

10 102.85 104.02 96.69 101.19 3.22 105.61 85.10 85.48 92.06 9.58 

20 100.89 102.20 98.36 100.48 1.59 98.72 75.71 75.48 83.30 10.90 

40 79.95 95.06 94.83 89.95 7.07 105.01 82.30 81.95 89.75 10.79 

100 36.92 46.83 48.06 43.93 4.99 76.94 67.10 66.95 70.33 4.67 

200 11.78 17.96 21.71 17.15 4.09 24.45 29.08 30.85 28.13 2.70 

400 0.29 0.35 0.42 0.35 0.06 0.53 -0.10 0.66 0.36 0.33 
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DCF [µM] DAY 3 

2D 3D 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

5 106.90 90.55 102.78 100.08 6.94 87.40 98.45 100.12 95.32 5.64 

10 107.72 96.00 102.83 102.18 4.80 86.11 102.93 98.92 95.99 7.17 

25 108.93 94.99 101.00 101.64 5.71 81.06 103.39 97.60 94.01 9.46 

50 109.97 92.10 95.46 99.18 7.75 79.15 102.34 98.83 93.44 10.21 

100 109.67 89.94 86.38 95.33 10.24 75.35 89.34 91.04 85.24 7.03 

250 103.26 80.16 82.30 88.57 10.42 60.94 72.30 84.80 72.68 9.74 

500 57.54 1.70 26.32 28.52 22.85 17.56 6.03 59.44 27.68 22.95 

DAY 7 
 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

5 90.53 101.15 95.14 95.61 4.35 98.67 79.12 85.86 87.88 8.11 

10 96.00 110.07 97.35 101.14 6.34 96.68 72.10 96.68 88.49 11.59 

25 94.98 111.12 95.46 100.52 7.50 93.50 74.25 93.57 87.11 9.09 

50 92.09 109.35 94.15 98.53 7.70 86.06 75.00 98.10 86.39 9.43 

100 89.92 101.32 91.45 94.23 5.05 86.71 68.33 85.33 80.13 8.36 

250 80.13 86.50 68.31 78.31 7.53 42.73 41.98 61.60 48.77 9.08 

500 1.56 2.19 0.34 1.36 0.77 0.96 0.85 20.08 7.30 9.04 

DAY 14 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

5 95.14 100.39 100.51 98.68 2.50 72.85 84.05 83.38 80.09 5.13 

10 97.36 101.89 101.78 100.34 2.11 60.60 81.05 82.58 74.74 10.02 

25 95.46 103.53 102.33 100.44 3.55 71.68 75.85 77.99 75.17 2.62 

50 94.15 97.83 103.00 98.33 3.63 60.51 77.75 77.35 71.87 8.04 

100 91.45 93.29 100.21 94.98 3.77 53.56 74.43 76.54 68.18 10.37 

250 68.32 75.69 88.86 77.62 8.49 14.83 27.85 29.75 24.15 6.63 

500 0.37 0.42 0.46 0.42 0.04 0.51 0.58 0.50 0.53 0.04 
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FIA [µM] DAY 3 

2D 3D 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

0.3 114.73 103.06 98.72 105.50 6.76 114.73 129.17 100.38 114.76 11.75 
1 96.69 104.02 96.33 99.01 3.55 131.03 133.48 94.80 119.77 17.68 
3 98.36 102.20 106.99 102.52 3.53 141.68 134.00 98.71 124.79 18.71 

10 103.40 95.06 97.75 98.74 3.48 136.41 116.06 95.54 116.00 16.69 
30 97.56 91.79 106.35 98.57 5.99 148.05 126.04 98.08 124.06 20.45 

100 95.62 71.59 3.87 57.03 38.85 95.62 71.59 92.13 86.45 10.60 
300 76.94 68.45 22.41 55.93 23.96 76.94 67.10 66.07 70.04 4.90 

DAY 7 
 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 
0.3 105.70 106.25 105.70 105.89 0.26 105.70 88.32 98.02 97.35 7.11 

1 104.22 111.14 104.22 106.53 3.26 104.22 85.74 98.59 96.18 7.73 
3 57.09 60.59 57.09 58.26 1.65 57.09 75.95 97.86 76.96 16.66 

10 86.22 108.14 86.22 93.53 10.33 86.22 82.65 88.02 85.63 2.23 
30 0.67 77.05 0.67 26.13 36.00 0.67 10.35 8.70 6.57 4.23 

100 0.11 0.43 0.11 0.22 0.15 0.11 0.32 1.58 0.67 0.65 
300 0.00 0.06 0.00 0.02 0.03 0.00 0.00 1.51 0.50 0.71 

DAY 14 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 
0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

0.3 93.19 104.34 101.02 99.52 4.68 93.19 81.16 81.14 85.16 5.67 
1 94.17 108.36 101.30 101.28 5.79 94.17 74.79 75.17 81.38 9.05 
3 78.66 106.21 104.32 96.40 12.57 78.66 37.56 53.61 56.61 16.91 

10 1.11 0.82 40.37 14.10 18.58 1.11 1.63 2.63 1.79 0.63 
30 0.37 0.29 0.59 0.42 0.13 0.37 5.63 22.35 9.45 9.37 

100 0.16 0.09 0.16 0.14 0.03 0.16 0.32 1.02 0.50 0.37 
300 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.23 0.33 
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PIO [µM] DAY 3 

2D 3D 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 NA 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 103.47 94.68 NA 99.07 4.40 94.76 103.19 97.27 98.41 3.54 

10 103.68 94.61 NA 99.14 4.54 97.57 109.08 91.68 99.44 7.23 

20 103.14 95.85 NA 99.49 3.65 95.95 96.71 89.90 94.19 3.05 

40 102.22 92.95 NA 97.59 4.64 87.05 90.80 93.64 90.50 2.70 

100 103.55 90.93 NA 97.24 6.31 81.30 86.78 101.49 89.86 8.52 

200 99.41 91.16 NA 95.28 4.13 79.35 79.73 87.92 82.33 3.95 

400 97.92 89.58 NA 93.75 4.17 77.54 61.81 92.61 77.32 12.58 

                      DAY 7 
 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 88.79 115.57 94.67 99.68 11.49 74.77 78.05 87.57 80.13 5.43 

10 90.60 112.16 94.60 99.12 9.36 66.42 84.47 86.43 79.11 9.01 

20 89.20 112.55 95.84 99.20 9.82 65.68 82.06 81.60 76.45 7.61 

40 88.38 110.17 92.94 97.17 9.38 65.89 81.84 62.39 70.04 8.47 

100 86.30 105.80 90.92 94.34 8.32 61.72 77.50 65.62 68.28 6.71 

200 81.70 110.25 91.14 94.36 11.88 53.71 63.57 62.13 59.80 4.35 

400 77.47 100.37 89.57 89.14 9.36 61.63 66.86 58.89 62.46 3.31 

                       DAY 14 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 88.79 101.17 97.24 95.73 5.16 62.98 75.54 82.48 73.66 8.07 

10 90.60 101.33 95.46 95.80 4.39 63.07 76.91 83.96 74.65 8.68 

20 89.21 97.85 95.34 94.13 3.63 59.15 67.46 73.73 66.78 5.97 

40 88.39 101.03 93.69 94.37 5.19 53.60 62.73 68.61 61.65 6.17 

100 86.30 93.26 91.26 90.28 2.93 52.39 54.96 59.76 55.70 3.05 

200 81.70 87.41 87.98 85.70 2.84 47.78 47.14 49.53 48.15 1.01 

400 77.47 81.15 81.99 80.20 1.96 58.70 38.87 42.78 46.78 8.57 

 
 
 



Appendix  205 
 
 
TRO [µM] DAY 3 

2D 3D 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 NA 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 103.31 94.60 NA 98.96 4.36 93.65 98.51 103.19 98.45 3.90 

10 102.83 98.48 NA 100.65 2.18 92.38 95.27 109.08 98.91 7.29 

20 99.77 101.31 NA 100.54 0.77 93.87 90.86 96.71 93.81 2.39 

40 98.01 98.30 NA 98.16 0.15 88.11 94.28 81.84 88.08 5.08 

100 103.86 96.54 NA 100.20 3.66 81.23 91.61 77.50 83.45 5.97 

200 93.00 95.57 NA 94.28 1.29 77.60 88.58 63.57 76.58 10.24 

400 93.54 89.56 NA 91.55 1.99 76.77 71.88 66.86 71.84 4.05 

                        DAY 7 
 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 85.44 111.04 94.59 97.02 10.59 76.34 82.48 86.99 81.94 4.36 

10 90.16 114.19 98.47 100.94 9.96 76.45 83.96 80.39 80.27 3.07 

20 94.80 121.79 101.32 105.97 11.50 75.36 75.85 77.53 76.24 0.93 

40 85.87 113.34 98.30 99.17 11.23 70.66 77.75 75.38 74.60 2.95 

100 92.92 115.72 96.53 101.72 10.01 62.02 74.43 61.87 66.11 5.88 

200 82.64 105.22 95.56 94.47 9.25 60.26 62.73 48.47 57.15 6.22 

400 76.75 92.33 89.54 86.21 6.78 64.37 54.96 36.14 51.82 11.74 

                        DAY 14 

 N=1 N=2 N=3 mean stDev N=1 N=2 N=3 mean stDev 

0 100.00 100.00 100.00 100.00 0.00 100.00 100.00 100.00 100.00 0.00 

4 85.45 105.04 103.67 98.05 8.93 64.81 72.52 72.61 69.98 3.65 

10 90.16 101.93 99.40 97.16 5.06 66.98 69.14 68.62 68.25 0.92 

20 94.80 103.02 103.34 100.39 3.95 63.06 61.48 61.38 61.97 0.77 

40 85.87 95.85 100.62 94.12 6.15 53.66 48.99 49.53 50.73 2.09 

100 90.07 88.37 93.69 90.71 2.22 51.63 32.15 32.43 38.73 9.12 

200 84.60 102.76 6.93 64.76 41.56 51.32 15.76 16.88 27.99 16.50 

400 78.42 102.23 18.16 66.27 35.38 53.23 7.37 8.22 22.94 21.42 
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Appendix 3b: Viability in PHH 3D from two donors at day 3, 7 and 14. Data expressed as % of control. 
Acetaminophen 

 
Donor 1 Donor 2 

cAPAP 
[µM] 

Day 3 Day 7 Day 14 Day 3 Day 7 Day 14 
% viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev 

0 100.00 24.63 100.00 17.74 100.00 13.18 100.00 21.32 100.00 25.99 100.00 25.00 

100 95.19 12.97 79.46 16.26 71.44 19.52 89.99 15.09 130.89 31.96 94.19 12.17 

200 115.40 17.68 89.74 15.06 76.90 22.08 78.28 18.35 103.94 13.46 85.08 15.97 

500 77.83 19.46 105.88 19.19 70.76 39.13 36.19 7.10 100.36 19.92 93.12 9.56 

1,000 91.71 14.34 94.68 11.46 93.38 34.55 71.25 8.30 92.13 13.25 91.42 27.06 

2,000 74.95 15.97 76.84 2.79 46.32 23.70 74.90 10.31 81.19 11.68 44.22 13.75 

5,000 61.43 22.49 38.58 4.29 8.26 2.03 59.03 13.44 45.22 7.69 8.90 0.54 

10,000 53.83 9.07 22.71 1.14 2.76 2.09 38.51 8.43 36.62 16.91 0.30 0.46 

 
 
 
 

Bosentane 
Donor 1 Donor 2 

cBOS 
[µM] 

Day 3 Day 7 Day 14 Day 3 Day 7 Day 14 
% viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev 

0 100.00 42.33 100.00 9.98 100.00 20.64 100.26 17.88 100.00 5.96 100.00 18. 03 

4 66.33 39.44 90.74 14.08 83.82 7.98 82.79 11.52 131.25 24.20 102.27 10.21 

10 58.36 41.18 89.42 11.29 75.42 9.14 98.87 15.34 109.79 25.40 88.30 15.09 

20 40.22 9.12 94.34 18.15 63.77 15.44 79.21 12.55 100.81 11.74 88.44 30.10 

40 36.76 12.67 63.03 37.93 50.69 16.80 78.85 20.35 87.46 3.64 59.88 12.87 

100 40.40 9.41 55.38 6.13 9.09 4.62 90.29 9.86 69.95 17.54 10.52 2.26 

200 65.96 39.08 58.94 13.42 0.45 0.01 76.41 8.85 51.78 8.63 1.18 0.35 

400 40.36 25.23 19.33 10.07 -0.34 0.41 51.40 14.00 1.34 1.51 -0.05 0.03 
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Diclofenac 

Donor 1 Donor 2 

cDCF 
[µM] 

Day 3 Day 7 Day 14 Day 3 Day 7 Day 14 
% viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev 

0 100.00 16.79 100.00 0.12 100.00 7.50 106.10 27.49 100.00 15.69 100.00 11.00 

5 112.57 27.38 107.83 6.71 111.27 14.05 89.30 28.51 174.48 46.03 91.55 23.52 

10 116.93 18.04 103.59 10.00 128.26 20.85 70.27 13.16 139.30 10.90 104.81 19.06 

25 123.26 47.25 78.09 18.75 108.24 10.88 67.36 16.82 132.53 38.36 66.26 12.21 

50 83.53 38.14 67.08 16.86 58.52 13.50 60.52 13.41 99.81 16.39 24.06 4.18 

100 73.55 14.07 41.00 6.26 27.76 1.46 61.13 20.74 52.13 2.40 4.38 0.25 

250 38.67 19.97 0.63 0.35 -0.29 0.11 43.03 6.74 1.14 0.79 -0.12 0.01 

500 9.38 3.39 -0.13 0.12 -0.28 0.02 4.41 1.02 -0.15 0.02 -0.13 0.01 

 
 
 
 

Fialuridine 
Donor 1 Donor 2 

cFIA 
 [µM] 

Day 3 Day 7 Day 14 Day 3 Day 7 Day 14 
% viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev 

0 100.00 11.10 100.00 12.32 100.00 13.48 100.00 14.29 100.00 41.79 100.00 36.00 

0.3 93.42 28.56 72.16 11.76 63.19 7.08 69.05 20.49 85.73 19.69 52.77 32.01 

1 90.59 18.18 65.15 9.29 44.68 4.25 90.32 6.99 81.09 18.33 47.11 9.84 

3 63.29 24.05 50.59 10.97 43.20 19.46 64.42 22.70 69.10 13.69 24.93 11.31 

10 78.52 39.49 74.57 11.93 14.17 4.07 72.80 21.30 51.24 17.42 13.18 4.28 

30 83.25 29.53 57.80 9.60 9.79 5.99 66.50 10.96 47.85 10.40 7.24 4.51 

100 84.86 22.44 42.07 7.80 3.41 0.16 71.55 14.75 29.93 9.39 0.20 0.32 

300 83.84 14.12 6.27 1.23 -0.22 0.75 72.41 23.69 2.01 1.28 -0.12 0.00 
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Pioglitazone 
Donor 1 Donor 2 

cPIO 
 [µM] 

Day 3 Day 7 Day 14 Day 3 Day 7 Day 14 
% viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev 

0 100.00 34.62 100.00 17.48 100.00 14.11 100.00 22.70 100.00 13.49 100.00 23.91 
0.4 98.29 26.07 99.29 21.41 111.76 7.20 70.97 21.23 100.00 15.08 79.31 18.86 

1 91.69 21.37 118.71 19.37 112.50 8.30 84.34 14.65 83.91 11.05 85.05 19.83 
2 84.58 20.67 83.25 23.18 85.70 14.84 83.95 11.86 86.93 20.74 81.37 25.46 
4 91.21 21.61 88.01 16.33 79.18 15.13 61.64 18.38 62.50 14.75 53.17 12.40 

10 104.05 11.12 62.83 8.10 51.41 14.30 38.94 15.98 60.89 3.96 49.62 13.39 
20 105.08 10.69 69.38 16.13 61.76 13.46 61.37 8.17 80.11 11.76 64.75 6.45 
40 -0.28 0.02 78.93 6.24 59.93 6.85 92.50 43.53 71.33 9.15 57.92 17.30 

 
 
 
 
 
 

Troglitazone 
Donor 1 Donor 2 

cTRO 
[µM] 

Day 3 Day 7 Day 14 Day 3 Day 7 Day 14 
% viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev % viability % StDev 

0 100.00 8.47 100.00 12.14 100.00 3.12 100.00 43.19 100.00 13.10 100.00 7.00 
0.4 80.10 34.11 84.12 17.06 76.93 25.48 163.28 49.68 99.12 21.83 72.60 15.68 

1 82.02 25.56 62.22 17.11 76.72 8.13 119.67 23.91 109.33 16.35 43.70 4.47 
2 59.92 16.17 67.79 21.32 2.38 0.00 119.61 22.37 93.64 32.22 -0.05 0.02 
4 70.74 17.90 72.66 27.11 -0.34 0.01 94.62 18.27 79.68 36.47 -0.09 0.01 

10 80.30 12.64 4.57 4.22 -0.33 0.01 74.34 19.19 0.80 0.99 -0.09 0.00 
20 -0.14 0.10 -0.07 0.15 -0.33 0.00 0.38 0.54 -0.14 0.01 -0.07 0.03 
40 -0.36 0.02 -0.19 0.10 -0.33 0.07 -0.21 0.05 -0.15 0.02 -0.04 0.07 
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