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Abstract

Tables or ranked lists summarize facts about a group of entities in a concise

and structured fashion. They are found in all kind of domains and easily com-

prehensible by humans. Some globally prominent examples of such rankings

are the tallest buildings in the World, the richest people in Germany, or most

powerful cars. The availability of vast amounts of tables or rankings from open

domain allows different ways to explore data. Computing similarity between

ranked lists, in order to find those lists where entities are presented in a sim-

ilar order, carries important analytical insights. This thesis presents a novel

query-driven Locality Sensitive Hashing (LSH) method, in order to efficiently

find similar top-k rankings for a given input ranking. Experiments show that the

proposed method provides a far better performance than inverted-index–based

approaches, in particular, it is able to outperform the popular prefix-filtering

method. Additionally, an LSH-based probabilistic pruning approach is proposed

that optimizes the space utilization of inverted indices, while still maintaining

a user-provided recall requirement for the results of the similarity search. Fur-

ther, this thesis addresses the problem of automatically identifying interesting

categorical attributes, in order to explore the entity-centric data by organizing

them into meaningful categories. Our approach proposes novel statistical mea-

sures, beyond known concepts, like information entropy, in order to capture the

distribution of data to train a classifier that can predict which categorical at-

tribute will be perceived suitable by humans for data categorization. We further

discuss how the information of useful categories can be applied in PANTHEON

and PALEO, two data exploration frameworks developed in our group.
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Zusammenfassung

Tabellen oder geordnete Listen sind generische und weit verbreitete Mittel, um

Informationen über Entitäten in einer prägnanten und strukturierten Form dar-

zustellen. Ranglisten, wie die höchsten Gebäude der Welt, die reichsten Personen

Deutschlands oder die leistungsstärksten Autos sind allgegenwärtige Beispiele.

Mit der Verfügbarkeit großer Mengen solcher Ranglisten, die Entitäten katego-

risiert nach speziellen Eigenschaften und geordnet anhand unterschiedlichster

Metriken in Relation zueinander setzen, können interessante Erkenntnisse her-

geleitet werden, in dem berechnet wird welche Ranglisten ähnliche Entitäten

ähnlich Ordnen – wobei Rangkriterium und Eigenschaften der Entitäten (stark)

unterschiedlich sein können. Dieser Berechnung liegt das Problem der Ähnlich-

keitssuche zugrunde. In dieser Arbeit wird dafür ein neuartiger anfragegetrie-

bener Ansatz basierend auf der Idee des Lokalitätssensitiven Hashverfahrens

(LSH) präsentiert. Experimente zeigen, dass dieser Ansatz eine weitaus besse-

re Performanz gegenüber herkömmlichen invertierten Indexen besitzt und auch

die populäre Prefix-Filtering Methode in den Schatten stellen kann. Basierend

auf dem neu entwickelten Ansatz werden nachfolgend verschiedene Möglich-

keiten betrachtet die Größe des Indexes zu beschneiden, bei gleichbleibender

oder garantierter Resultatsgüte, realisiert durch Anpassung der Anfrageverar-

beitung an die durchgeführte Indexreduktion. Im letzten Teil der Arbeit wird

das Problem der Erkennung von Attributen zur sinnvollen Kategorisierung von

Mengen von Entitäten. Der vorgestellte Ansatz basiert auf der Berechnung neu-

artiger statistischer Charakteristiken, ähnlich zur bekannten Entropie aus der

Informationstheorie, über den Häufigkeitsverteilungen der den Entitäten zuge-

ordneten Attributausprägungen. Ein Klassifikationsverfahren, über automatisch

extrahierten Trainingsdaten aus Wikipedia, wird anschließend benutzt, um voll-

automatisch entscheiden zu können, ob ein Attribut geeignet oder ungeeignet ist,

Entitäten zu kategorisieren. Benutzerstudien zeigen, dass dies in der Tat mög-

lich ist. Letztendlich wird in dieser Arbeit beschrieben wie und wo die zuvor

genannten Techniken in zwei in unserer Arbeitsgruppe entwickelten Datenex-

plorationssystemen, PANTHEON und PALEO, zum Einsatz kommen.
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Chapter 1

Introduction

The rapid advancement of new technologies and devices is allowing a large num-

ber of users to continuously publish digital content on the web. According to

a study from IBM1, 2.5 quintillion bytes of data are generated every day and

about 90% of these data are created since 2016—mostly in unstructured or

semi-structured formats. Exploiting such an enormous amount of web data

for harvesting knowledge is clearly not a trivial task, and inevitably opens a

wide range of research problems related to extracting, exploring, and learning

information. In order to succinctly summarize and make available factual in-

formation about real-world objects (aka. entities) and relations among them

from web data, Knowledge bases (KBs), such as Yago, DBpedia, and FreeBase

are created. For instance, FreeBase2 alone contains 1.9 billion facts in their

repository and Yago2 [HSBW13] contains hundreds of millions of facts about

9.8 million entities. Moreover, millions of web tables present facts from a widely

open domain in semi-structured data formats. To render such vast amounts of

data accessible, in this thesis we provide efficient and effective methods in order

to create and assess meaningful dimensions for data categorization. Such meth-

ods are not only applicable on table-style content in databases or the web, but

are also key ingredient to generate ranked lists of entities based on entity-centric

facts stored in knowledge bases. Organizing entities in ranked lists, based on

some measuring properties, is a traditional solution to present a succinct and

easy-to-grasp summary about the top performing members of a group of enti-

ties. Rankings are used in various applications in different domains. Examples of

such rankings include globally prominent ones, like the list of World’s wealthiest

persons or tallest buildings. Next to generic tables on the web and automat-

ically generating rankings based on KBs, there exist dedicated websites3 that

are publishing top-k entities every day from different domains. By performing

similarity over sets of rankings, with a query being itself a ranked list of entities,

users can explore data and acquire hidden insights about the query ranking. For

1blog.microfocus.com. Retrieved May 11, 2018.
2developers.google.com/freebase/
3www.nationmaster.com, www.forbes.com

1

https://blog.microfocus.com/how-much-data-is-created-on-the-internet-each-day/
https://developers.google.com/freebase/
http://www.nationmaster.com
https://www.forbes.com


2 1. Introduction

instance, a user gets to know which properties can also be used as criteria (e.g.,

gas per mile in the case of cars) in order to create roughly similar ranked lists

relative to the query or which ranking criteria for a set of entities in a given

query have positive correlation among them. Similarity search over ranked lists

is also extensively used in experimental studies. For instance, it is very common

to repeat an experiment multiple times in genetics or experimental physics to

understand the effect of a specific parameter by studying how often the same

experiment produces similar kinds of results.

The main goal of the similarity search over ranked lists is to find all similar

rankings to a query very efficiently. In order to be efficient, suitable methods

have to find ways to overcome the “curse of dimensionality” and to effectively

reduce the potentially very large search space during query processing. In order

to reduce the search space, different index structures are developed, such as K-d

tree [Ben90], X-tree [VBMS96], generally based on the concept of partitioning

or clustering a data space. However, using the idea of smart index structures

has no additional advantage over a linear scan, where the dimension of the data

becomes higher than ten, as shown by Weber et al. [WSB98]. In this thesis, we

deal with top-k lists, where the parameter k is not restricted to any such specific

dimension.

Moreover, top-k rankings are naturally incomplete, i.e., it does not rank the

entire domain of entities, just the top portion. Hence, in this thesis, we consider

the generalized Kendall’s Tau distance, defined by Fagin et al. [FKS03]. It is

an extension of the famous Kendall’s Tau distance, used to assess the similarity

between a pair of incomplete rankings. However, the generalized Kendall’s Tau

distance does not hold the metric property of distance function, and therefore,

tree structures like M-tree [CPZ97] that exploit metric property to reduce the

search space are not applicable in this work. Instead, inverted indices are deemed

to be very effective for efficient similarity search over a large data space, such

as text documents [ZM06]. In order to retrieve similar rankings for a user- or

application-provided input ranking, the natural idea is to find all those rankings

that have one or more entities in common, via an inverted index. Such method

retrieves a superset of the final results, i.e., it does not miss any valid answer,

but it is not very efficient. To deal with this problem, different prefix-filtering

methods [QWL+11, WLF12] are proposed that provide an upper bound on the

number of accesses to an inverted index during query processing. We made the

key observation that the prefix-filtering method accesses the inverted index far

more times than the number of accesses required to retrieve the actual results.

Thus, the challenge here is to find a strict upper bound on the number of accesses

in an inverted index to retrieve all the results, which directly affects the efficiency

of the similarity search. Following the definition of Kendall’s tau distance, we

can use pairs or even triplets of entities to create an inverted index. This helps

to improve the precision of the retrieved candidates significantly. But, as a side

effect, the index size and the number of index lookups during query processing

grow in an exponential rate, depending on the number of entities that have

been used together to create the index. Therefore, in order to optimize the
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space requirement, the challenge is to prune the index in a way that maintains

the quality of the search result.

The aim of the second part of the thesis is to understand which categorical

attributes of a specific entity-centric table will be perceived suitable by humans

for the task of defining meaningful subsets of the entity list. This problem can be

related to the works on data exploration using OLAP [SAM98] or the faceted ex-

ploration in RDF data [ODD06]. To discover interesting data within a database,

different OLAP operations are proposed in the literature [JGP16, DPD14],

where data experts predefine interesting dimensions in data for applying OLAP

operations like drill-down, in order to guide users to explore the data. How-

ever, as mentioned earlier, in an open domain scenario, it is impractical to

recruit experts to specify which attributes are interesting in a table, continu-

ously emerging in web or generated automatically from KB. Therefore, we want

to find the interesting dimensions for exploring data presented in a tabular form,

in an automated fashion.

In existing works, an interesting dimension is identified by finding excep-

tional aggregated result over a measuring attribute, grouped by that dimen-

sion [SAM98, THY+17]. We want to remove this constraint of having a mea-

suring attribute always associated with a dimension to capture its interesting-

ness. Therefore, our goal is to identify an interesting categorical attribute, in

a human perceived sense, by capturing different characteristics only from the

distribution of the categorical attribute. Here, the challenge is finding suitable

objective measures that can capture general interests or disinterests of humans

on a categorical attribute.

Measures, capturing diversity, unexpectedness, or conciseness of data, are

generally used as objective measures to define interestingness in a data. In

different contexts of data mining, such as itemset mining or clustering, different

interestingness measures [GH06] are used, which we found not directly applicable

in our context. Additionally, diversity measures for categorical attributes are

rarely discussed in literature. Hence, we need to find objective measures that

quantify the interestingness of a categorical attribute tailored to our objective.

Lastly, to the best of our knowledge, there is no catalog available that cap-

tures which categorical attributes are preferred by humans to categorize a spe-

cific table from all kind of domains. Therefore, we aim to collect such catalog

(aka. training data) automatically from web tables, in order to avoid human

interactions in building our automated framework of identifying interesting cat-

egorical attributes.

1.1 Problem Statement

This thesis deals with two different exploration methods for acquiring insights

from rankings or web tables. Here, we will specifically explain each of these

problems and the final goals that we want to achieve.
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Building City Country Height Year

Burj Khalifa Dubai UAE 828m 2009

Shanghai Tower Shanghai China 632m 2014

Abraj Al-Bait Clock Tower Mecca Saudi Arabia 601m 2011

Ping An Finance Centre Shenzhen China 599m 2017

Lotte World Tower Seoul South Korea 554.5m 2016

One World Trade Center NY City United States 541m 2014

Guangzhou CTFF centre Guangzhou China 530m 2016

Tianjin CTFF centre Tianjin China 530m 2018

Table 1.1: The World’s Tallest Buildings (Wikipedia)

Consider a table collection T , which comprises a set of ranked lists τi and

a distance function d. Each τi ∈ T contains k entities, associated with its rank

based on a criterion. At query time, a user provides a query ranking q of size

k and a distance threshold θ ∈ [0, 1]. In similarity search, our objective is to

find efficiently all the rankings from T that lie within the distance threshold θ

from the query q. For example, Table 1.1, showing a part of the top-30 tallest

buildings in the world. A user could post the ranking of buildings (the column

with the name), here sorted by height, as a query and the system would return

all rankings that are similar to this ranking. The user could then learn about

alternate criteria that bring rankings in a similar order. For this purpose, we

investigate smart lookup methods using index structures to achieve efficiency

in the similarity search, by reducing many unnecessary distance computations

between retrieved false positive candidates from the index and the query q.

However, the size of an index grows proportionally with the total number

of rankings and entities contained in the collection T . In order to optimize the

space utilization, we investigate probabilistic pruning methods to prune inverted

indices in a way that ensures the quality of the search results, in terms of recall

requirement %, given by the user.

Consider further that each τi contains additional information about categor-

ical attributes associated with the entities listed in τi. For example, Table 1.1

contains additional information such as the place (the country or the city) where

the buildings are situated or the year of completion of them. These attributes

can be used to categorize the list further. Our goal is to train a classifier that can

classify which attributes are meaningful to restrict users’ focus into a subset of

entities contained in a table τi, without any prior knowledge about the domain

of the entity list. In order to train the classifier, our first objective is to find

suitable statistical measures, such as information entropy, that can provide an

objective description (aka. features) of categorical attributes. Then, a machine

learning algorithm is applied on extracted features from categorical attributes

to train a classifier. Such a classifier can be applied to any table irrespective of

whether or not ranks are associated with the list of entities in a table.
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1.2 Contributions and Publications

Efficient Similarity search

In order to understand the behavior of the query processing in an inverted index

for tuning the retrieval performance, in terms of latency and quality, we relate

the inverted index to the concept of Locality Sensitive Hashing (LSH) [AI08].

It is another popular method for similarity search based on hash collisions of

similar items inside hash buckets.

We propose two LSH hash families for the generalized Kendall’s Tau dis-

tance. Using these hash families, we develop four query-driven LSH schemes.

For each of them, we derive automatic tuning of LSH parameters, based

on the user-defined distance threshold. Additionally, a selection strategy of

choosing hash functions for the proposed query-driven LSH schemes is pre-

sented. The proposed query-driven LSH schemes are compared to a state-of-

the-art method, adaptive prefix-filtering [WLF12], along with other baseline

approaches. The results of this work have been published in WebDB’14 [PM14]

and SSDBM’16 [PM16b].

• Koninika Pal and Sebastian Michel. An LSH index for computing Kendall’s

tau over top-k lists. In Proceedings of the 17th International Workshop

on the web and Databases (WebDB), 2014.

• Koninika Pal and Sebastian Michel. Efficient similarity search across top-k

lists under the Kendall’s tau distance. In Proceedings of the 28th Inter-

national Conference on Scientific and Statistical Database Management

(SSDBM), 2016.

To addresses the problem of optimizing the space requirement to store the

indices for the proposed LSH methods without compromising the quality of the

query results, we discuss three different pruning methods and propose two query

processing approaches over pruned indices.

A probabilistic analysis of the effect of index pruning on the quality of search

result is devised by modifying the collision probability of proposed LSH. Finally,

based on the probabilistic analysis, an optimization problem is formalized to

determine the optimal pruning factor, where a user-defined recall goal and the

cost of query processing for the similarity search are used as constraints. Besides

being used for the proposed LSH method under the Kendall’s Tau distance for

rankings, the quite generic optimization method can be applied to the case of

handling similarity search between sets using the Jaccard similarity.

Experiments show that the optimal pruning factor, derived from the opti-

mization problem, assures the user-defined recall requirement. A detailed study

among performances of query processing over each type of pruned indices is

discussed, in order to find the best way to process the query over the pruned

index. This work has been published in WebDB’17 [PM17].
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• Koninika Pal and Sebastian Michel. LSH-based probabilistic pruning of

inverted indices for sets and ranked lists. In Proceedings of the 20th

International Workshop on the web and Databases (WebDB), 2017.

Mining Interesting Categorical Attributes

We present an automated framework to identify interesting categorical at-

tributes to explore the data in a table. For this purpose, we create a training

dataset, where the categorical attributes are collected from Wikipedia tables,

and a label, “interesting” or “non-interesting”, is associated with each attribute,

following the proposed hypothesis. It finds which categorical attributes are

interesting for a specific entity type, based on presence or absence of tables in

web.

Then, we investigated existing objective measures for categorical attributes,

like entropy [SW49], unalikeablity [KP07], etc., which are used to extract fea-

tures from the training data, in order to train a classifier. Finally, the trained

classifier is validated by a user study. This work is presented in a short paper

in EDBT’16 [PM16a].

• Koninika Pal and Sebastian Michel. A data mining approach to choosing

categorical attributes for ranked lists. In Proceedings of the 19th Interna-

tional Conference on Extending Database Technology (EDBT), 2016.

Further, we extend the previous work by developing three novel objective

measures of interestingness for categorical attribute, called p-diversity, max-

info-gap, and p-peculiarity. Using these measures, as well as the existing ones

as features, a classification model is finally trained with a machine learning

algorithm ν-SVM [SSWB00]. A detailed study of the performance of the trained

classification models over all possible feature combinations are presented based

on a user study. Evaluations show the superiority of the proposed measures p-

diversity and max-info-gap over existing measures in capturing interestingness

of categorical attribute.

The training data, user study, and the proposed model are publicly avail-

able under http://dbis.informatik.uni-kl.de/catmining/. This work has been

accepted in SSDBM’18 [PM18].

• Koninika Pal and Sebastian Michel. Learning Interesting Categorical At-

tributes for Refined Data Exploration. In Proceedings of the 30th Inter-

national Conference on Scientific and Statistical Database Management

(SSDBM), 2018.

The trained classification model has been used in two different systems. The

system, PANTHEON that creates a ranking database automatically from the

facts in the Yago knowledge base, uses the classifier to filter the non-interesting

categories during the ranking generation process. The classifier has been also

http://dbis.informatik.uni-kl.de/catmining/
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used in a reverse engineering system for exploring databases, called PALEO, to

filter candidate queries that use non-interesting categories as constraints. This

demo has been presented at VLDB’16 [PMMP16].

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents an

overview of different index structures and distance measures for efficient simi-

larity search over ranked lists. It further discusses the frequently used statistical

measures for capturing different characteristics of the categorical data and a pop-

ular learning algorithm and the Support Vector Machine (SVM) for classifying

data. Chapter 3 provides a survey of existing literatures on index structures

for similarity search and meaningful ways to explore and categorize a list of

entities in a table. An efficient similarity search over Top-k rankings by using

query-sensitive LSH approach is proposed in Chapter 4. To optimize the space

requirement for the proposed approach, different index pruning methods and

their effects on the quality of the similarity search are discussed in Chapter 5.

A complete framework for training a classifier that identifies interesting cate-

gorical attributes for further focusing on a subset of an entity list is proposed

in Chapter 6. In Chapter 7, we discuss the applicability of the proposed clas-

sifier in two different prototypes, PANTHEON and PALEO, that are mainly

focused on the exploration of data. Finally, a summary of the complete thesis

is presented in Chapter 8.





Chapter 2

Background and

Preliminaries

This chapter presents the background of the basic ideas, methods, and algo-

rithms used in this thesis. It discusses briefly distance functions and index

structures commonly used in similarity search. The discussion continues further

over statistical measures and classification algorithms to present fundamental

concepts in the area of data mining related to this thesis.

2.1 Similarity Search

Information retrieval (IR) is a field of study, where the main focus is finding in-

formation from unstructured data to satisfy the information need of users. This

field of study intrinsically includes different searching methods and measures to

determine the quality of searched results. Here, we present a brief overview of

‘similarity search’ which covers a broad range of different searching methods,

such as range queries, near-proximity search, k-nearest-neighbor. The basic idea

is searching a large object space based on a specific measure of relatedness, which

acts as the comparator between a pair of objects, to determine the similarity

between them. In IR, the objects are often collected from the Internet and are

unstructured, e.g., web documents, web tables, weblogs, twitter data. These

data objects are represented in different formats based on the applications, for

example, documents are denoted as vectors of words in web search engines, en-

tities in a web table can be expressed as a list for the table search, etc. A range

query finds all the objects, where the comparison value between the query and

the object lies within the range mentioned by users. On the other hand, the

k-nearest-neighbor (k-NN) concept aims at finding the k most related objects

for a given query.

Consider a data collection S, comprising documents si and a distance func-

tion d as a comparator. Each set si ∈ S contains a set of words that describes

9
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the domain of the set si, represented as Dsi . The global domain of words is

D =
⋃
si∈S Dτi . At query time, a user provides a query document q and a

distance threshold θ ∈ [0, 1] for limiting the maximum comparator value or dis-

tance. Then, the range query returns all documents si ∈ S that lie within the

distance θ from the query. Therefore, the result set R of the query q can be

written as:

R := {τi | d(τi, q) ≤ θ, τi ∈ S}

In this thesis, we mainly focus on range queries or near-neighbor queries.

In the näıve approach, the result objects are found by comparing each object

in the collection with the query, which clearly is not efficient for a large data

collection. To avoid such linear scanning, various index structures have been

proposed to make the query processing more efficient.

2.1.1 Tree-based Index Structures

To deal with a multidimensional range query or a k-NN query, index structures

based on space partitioning such as k-d tree [Ben90], R-tree [Gut84] are an

efficient and a prominent solution.

The K-d tree is a k-dimensional binary tree that represents the data points

in k-dimensional space. It splits the data points based on one of its dimension,

at each level of the tree, where the median of data points of the corresponding

dimension is considered as the value of the splitting node, to make the tree

balance. Given a query q with a distance threshold for a specific dimension, the

searching method starts at the root node and prunes the subtrees that do not

have any intersection with the query range for that specific dimension.

The R-tree is another popular index structure to index the multi-dimensional

spatial data that cannot be well-presented by point data. This index structure

uses the principle of minimum bounding rectangles that represent the minimum

enclosing boxes containing a set of data points. The R-tree is a balanced tree

like the B-tree, where each node contains at least half of the maximum number

of entries that can be fitted into one node. At leaf level, each bounding rectangle

represents a single object. At higher level, it aggregates the objects from child

nodes. For range queries, starting from the root node, child nodes are visited

only if the bounding box at that node intersects the query region.

Unlike the index structure based on spatial access methods, where search

space is partitioned by the actual position of the object in multi-dimensional

space, the metric tree [Uhl91] was developed based on the concept of partitioning

the search space by the relative distance between objects, to the purpose of

reducing the number of distance computations at query time. The search space

is pruned by exploiting the triangle inequality property of the distance measure.

Combining the advantage of metric tree with dynamic spatial access methods,

Ciaccia et al. [CPZ97] proposed the M-tree. A node in the intermediate level

of an M-tree is called routing node Or that hold information about its distance

from its parent node Op and the covering radius r(Or). The covering radius of
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a routing node guarantees that the distance of all the nodes under its subtree

lies within its covering radius. Due to this property, at the time of range query

(q, θ), a subtree is pruned without computing the distance of the query with the

node if the the condition |d(Op, q)− d(Op, Or)| > θ + r(Or) holds.

2.1.2 Inverted Index

Another popular method which is commonly used in IR for document search is

the inverted index. An inverted index consists of two components—a dictionary

D of objects and the corresponding posting lists (aka. index lists) that record

information about the object’s occurrences in the relation for each objects in

the dictionary [ZM06]. For example, considering the set of text documents as

objects, the words from each document act as dictionary terms and correspond-

ing posting lists hold document identifiers where the terms appear as shown in

Figure 2.1.

Document id Document

1 The magic power.

2 Secret of the power.

3 Power of magic portion.

The 1 2

Magic 1 2

Power 1 2 3

Secret 2

Of 2 3

Portion 3

Figure 2.1: Example of inverted index

Depending on applications, posting lists also hold additional informations,

such as frequency of the term in the documents, the associated score based

on the importance of the term appearing in the documents. A simple filter

and validate method is used in the query processing to retrieve the results of

similarity search as explained in Algorithm 1.

In the filtering step, we access the index for each element from the query to

retrieve the candidates. The presence of an element from the query in the index

signifies that the objects in the corresponding posting list have an overlap with

the query for that very element. Consequently, these objects are considered to

be potential candidates to become similar to the query. And finally, candidates

are validated by calculating the actual distance to the query.
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Algorithm 1: Filter and Validate method

1 Procedure filter(Index I, query q)

2 Candidate C ← 〈 〉
3 for element e ∈ q do

4 if e ∈ I.keys then

5 C ∪ {I.postinglist(e)}
6 end if

7 end for

8 return C

9 Procedure validate(C, θ)

10 Resultset R ← 〈 〉
11 for element x ∈ C do

12 distance← d(x, q)

13 if distance ≤ θ then

14 R∪ x
15 end if

16 end for

1818 return R

2.1.3 Locality Sensitive Hashing

Locality sensitive hashing (LSH) is another approach that provides an efficient

solution to near-neighbor or c-approximated nearest-neighbor search in high-

dimensional data space. The key idea behind LSH is the existence of locality-

sensitive hash functions that ensure the property that similar objects have a

higher chance to collide (in the same bucket) than the dissimilar ones.

Definition 1 A Locality Sensitive Hashing scheme is a distribution on a family

H of hash functions, operating on a collection of objects T ∈ Rd. With a distance

function d, a distance threshold r, and an approximation factor c > 1, h ∈ H
satisfies the following conditions for any two objects o, q ∈ T :

• if d(o, q) ≤ r then PrH(h(o) = h(q)) ≥ P1

• if d(o, q) ≥ cr then PrH(h(o) = h(q)) ≤ P2.

The hash family H becomes effective for similarity search only when the prop-

erty, P1 > P2 is satisfied.

Based on the definition of locality sensitivity, Figure 2.2 shows an example

of how a query and objects are distributed over hash buckets according to the

distance between them.
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q
cr

r

Figure 2.2: Exemplary distribution of points in LSH buckets

Query Processing in LSH Methods

During query processing, a hash function h ∈ H is first chosen randomly to map

the query q to a hash bucket. All the objects that also are mapped into the

same bucket as the query, i.e., h(o) = h(q), are considered potential candidates

to be similar with the query. When the gap between the collision probabilities

P1 and P2 is small, the precision of the candidates becomes low. In order to

increase this gap, instead of using single random hash function to map the

query into the hash bucket, several random hash functions are concatenated

together to create a function family G, which is then used to map the query.

The number of concatenated hash functions is parameterized by m. Specifically,

with the parameter m, a function gj ∈ G is defined as gj = {h1,j , . . . , hm,j},
where 1 ≤ i ≤ m and hi,j is chosen randomly from H. Clearly, if the more

hash functions are concatenated to create gj , the fewer objects will collied into

the same bucket. To deal with this problem, l hash tables are created using

g1, g2, . . . , gl functions to map the query into l hash tables and candidates are

collected from all l hash tables to achieve higher recall in query processing.

Usually, m is smaller than the dimension of data objects.

Before starting the query processing, LSH requires a preprocessing step in

which l hash tables are constructed by mapping each object o from data space

to l hash tables by using the function gj(o) where gj ∈ G and j = 1, . . . , l.

Two objects o1 and o2 are placed into the same bucket in jth hash table, if

gj(o1) = gj(o2). Then, at query processing, the query q is also hashed to

the l hash tables using the same gj functions which were used at the time of

hash table generation. In Algorithm 2, we explain the query processing for the

randomized near-neighbor search problem using LSH as discussed by Andoni and

Indyk [AI08] .

According to Algorithm 2, after mapping the query to the hash buckets, all

data points that collide in the same bucket with q in any of the l hash tables

are considered as candidates for the query result. Subsequently, the candidates

are validated by calculating their distances to the query object.

Probabilistic analysis of LSH: With parameter m, the probability that

an object o collides with the query q into the same bucket of jth hash table, for

function gj , i.e., gj(o) = gj(q), is at least Pm1 . Therefore, the probability that
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Algorithm 2: LSH method for near-neighbor search

1 Procedure filter(Index I, query q)

2 Candidate C ← 〈 〉
3 for element e ∈ q do

4 if e ∈ I.keys then

5 C ∪ {I.postinglist(e)}
6 end if

7 end for

8 return C

9 Procedure validate(C, θ)

10 Resultset R ← 〈 〉
11 for element x ∈ C do

12 distance← d(x, q)

13 if distance ≤ θ then

14 R∪ x
15 end if

16 end for

1818 return R

gj(o) = gj(q) for some i = 1 . . . l is at least (1 − (1 − Pm1 )l). Hence, the error

probability, which is defined by the probability of having a near-neighbor of the

query that does not collide in any of l hash tables, is at most (1− Pm1 )l.

With parameters δ (the error probability), m, and l, the probability that a

true positive candidates is returned by LSH is given by:

1− δ ≥ 1− (1− Pm1 )
l
. (2.1)

1− δ in Equation 2.1 presents the recall function of the LSH method.

In contrast to the LSH, Lv et al. [LJW+07] propose multi-probe LSH that

retrieves the candidates from the bucket where the query is mapped and, addi-

tionally, probes multiple“close by”buckets to increase the precision of k-nearest-

neighbor search. These “close by” buckets are decided by a hash perturbation

vector, where the authors restricted the perturbed hash value within {−1, 0, 1}.
According to Figure 2.2, multi-probe LSH collects both the blue and the purple

object as candidates at filtering step during query processing, whereas the basic

LSH will consider only the purple object as the candidate.

2.1.4 Distance Measures for the Similarity Search

Depending on different application scenarios and the type of objects, differ-

ent distance functions or similarity measures are used as a comparator in the

similarity search. In web search engines, Euclidean distance or Jaccard Co-

efficient is commonly considered for finding similarities between documents,

whereas a distance such as Spearman’s footrule distance [Spe94], Kendall’s Tau
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distance [Ken38], Normalized discounted cumulative gain (NDCG) [JK02], or

ERR [Car09] is commonly used for determining similarities between rankings.

NDCG or ERR compares two ranked results, retrieved from different searching

methods, based on a pre-defined notion of relevance of the retrieved results.

Thus, these two measures can not capture the relative binary measure of dis-

tance between two ranked lists, consequently, are not suitable for the similarity

search problem, addressed in this thesis. In this section, we discuss the Kendall’s

Tau distance in details with some other distance functions that are considered

in this thesis, in order to find the similarity between two rankings or sets.

Kendall’s Tau Distance

The Kendall’s Tau distance measures the pairwise disagreement between ranking

lists. It is calculated over complete rankings that are considered to be permu-

tations over a fixed domain D. A permutation σ is bijection mapping from the

domain D = Dσ onto the set [n] = {1, . . . , n}, where n is the size of the domain

|D|. For a permutation σ, the value σ(i) denotes the rank of the element i.

An element i is said to be ahead of another element j in the permutation σ if

σ(i) < σ(j). For two different permutations σ1 and σ2 on the same domain D,

a pair of elements (i, j) is called discordant if i is ahead of j in exactly one of

the two permutations, i.e., either in σ1 or in σ2, as shown in Figure 2.3 for the

pair (1, 2). The Kendall’s Tau distance is the total number of discordant pairs

between two permutations.

Definition 2 Given two permutations σ1 and σ2 on D = Dσ1 = Dσ2 , the

Kendall’s Tau distance K(σ1, σ2) =
∑
i,j K̄i,j(σ1, σ2). For a pair (i, j) ∈ D×D,

where i 6= j, K̄i,j(σ1, σ2) is defined as follows:

• K̄i,j(σ1, σ2) = 0 if i and j are in the same order in σ1 and σ2.

• K̄i,j(σ1, σ2) = 1 if they are in reverse order.

1

σ1

2

3

2

σ2

3

1

K̄1,2(σ1, σ2) = 1

K(σ1, σ2) = 2

Figure 2.3: Kendall’s Tau Distance

The Kendall’s Tau distance holds the metric property and also provides a

bound for another popular distance measure, the Spearman’s footrule distance,

which is defined by the L1 distance between two permutations.
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Generalized Kendall’s Tau Distance

In real world scenarios, favorite/preference lists, i.e., top-k rankings are naturally

incomplete in nature, capturing only a few top elements of its domain, e.g., top-

10 movies or actors of all times. Formally, a top-k list τ is a bijection from

Dτ onto [k]. The key point is that individual top-k lists, say τ1 and τ2, do not

necessarily share the same domain, i.e., Dτ1 6= Dτ2 . In this case, we can simply

avoid the non-overlapping elements between lists and apply the distance measure

on only the overlapping elements. But, in this way, we may lose some useful

information for finding the relative comparison between ranked lists. To adapt

the incompleteness characteristic of top-k lists in Kendall’s Tau and Spearman’s

footrule distance, Fagin et al. [FKS03] propose the generalized Kendall’s Tau

and Spearman’s footrule distance. The basic idea behind the proposed definition

is that all the missing entities in a top-k list are considered to be appearing after

the end of the list, i.e., at the (k + 1)th position. Based on this assumption,

the discordant pairs appear in four different ways, considering the permutation

over the complete domain D, i.e., the union of the domain of all top-k lists. For

example, with D = Dτ1 ∪ Dτ2 , Fagin et al. [FKS03] define those four cases as

follows:

Definition 3 Given two top-k lists τ1 and τ2 that correspond to two permu-

tations σ1 and σ2 on Dτ1 ∪ Dτ2 , the generalized Kendall’s Tau distance with

penalty p, denoted as K(p)(τ1, τ2) =
∑
i,j K̄i,j(σ1, σ2) is defined as follows:

• Case 1: If i, j ∈ Dτ1 ∩ Dτ2 and their order is the same in both list then

K̄(p)(τ1, τ2) = 0 else K̄(p)(τ1, τ2) = 1.

• Case 2: If i, j ∈ Dτ1 and i or j ∈ Dτ2 , let i ∈ Dτ2 and τ1(i) < τ1(j) then

K̄(p)(τ1, τ2) = 0 otherwise K̄(p)(τ1, τ2) = 1.

• Case 3: If i ∈ Dτ1 and j ∈ Dτ2 or vice versa then K̄(p)(τ1, τ2) = 1.

• Case 4: If i, j ∈ Dτ1 and i, j /∈ Dτ2 or vice versa then K̄(p)(τ1, τ2) = p.

1

σ1

2

3

4

3

σ2

4

7

8

2

K̄2,3(σ1, σ2) = 1

(a) Case 2

1

σ1

2

3

4

7

3

σ2

4

7

8

1

K̄1,7(σ1, σ2) = 1

(b) Case 3

1

σ1

2

3

4

3

σ2

4

7

8

1 2

K̄1,7(σ1, σ2) = p

(c) Case 4

Figure 2.4: Generalized Kendall’s Tau Distance
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Case 1 of Definition 3 considers the intersection of the incomplete domain

of both lists, therefore, it is similar to the definition of the Kendall’s Tau dis-

tance, presented by Definition 2. The other three cases in the definition of the

generalized Kendall’s Tau distance consider the complete domain D. Figure 2.4

is showing how the missing elements are placed at the end of the lists according

to Definition 3. Unlike other cases, Case 4 in Definition 3 associates a distance

penalty p, where 0 ≤ p ≤ 1, to a discordant pair if both the elements of a pair

are absent from one of the lists. This property gives the distance measure the

flexibility to adapt different interpretations of the importance of the missing

elements for different applications.

Jaccard Similarity Coefficient

The Jaccard Coefficient [Jac12] is used to determine the similarity between two

sets by measuring their mutual overlap. The Jaccard coefficient between set A

and B is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

.

For empty sets, J(A,B) = 1. It is a symmetric distance measure, i.e., J(A,B) =

J(B,A). For multiple sets, Jaccard coefficient is calculated as follows:

J(A1, A2, . . . , An) =
| ∩ni=1 Ai|
| ∪ni=1 Ai|

.

The Jaccard distance which measures dissimilarity between sets is the comple-

ment of the Jaccard coefficient. It is given by:

dJ(A,B) = 1− J(A,B).

Hamming Distance

Hamming distance [Ham50] is mostly used as an edit distance to find the dis-

tance between two strings of equal length in IR systems. It measures the mini-

mum number of substitutions required to convert one string to other. In another

word, it counts the number of positions where the symbols between two strings

differ. For example, considering a word as an array of letters, ‘alice’ and ‘clare’

have different letters in the 1st, 3rd, and 4th position of the arrays. Hence,

• dhamming(alice, clare) = 3.

The hamming distance is extensively used in Information Theory to find the

error or distance between bit vectors. In the following example, the left bit

vector becomes same as the right bit vector by toggling 4 bits, in the 3rd, 5th, 6th,

and 7th position of the left bit vector. Hence,

• dhamming(10001011, 10100110) = 4.
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2.2 Classification of Data

Classification is extensively used in numerous applications, from scientific do-

mains to daily-life business applications, e.g., classifying shape of galaxies, sep-

arating normal cells from malignant ones, classifying spam emails. When class

labels are associated with training data, a supervised learning method such as

decision trees, Bayes classifiers, or support vector machines is used to learn a

classification model. On the other hand, when input data contain very few

or no information about class labels, semi-supervised or unsupervised learning

methods are employed, in order to train the classification model.

2.2.1 Support Vector Machine

Support Vector Machine (SVM) [Vap95] is a well-known supervised learning

method for classification, pattern recognition, and regression. The principal

idea behind SVM is constructing an optimal marginal hyperplane that separates

high-dimensional data into different classes and maximizes the gap between

classes, as shown in Figure 2.6(a). Support Vectors (SV) are the data points

that lie on the marginal hyperplane. Given the training data which comprises m

number of p-dimensional vectors xi associated with class labels yi = {−1,+1},
the task is to create a binary classifier that can predict whether a vector x

belongs to the class ‘+1’ or ‘-1’.

There exists a class of hyperplanes defined by (w · x) + b = 0,w ∈ Rp and

the corresponding decision function (aka. classifier) f is then defined as:

f(x) = sgn((w · x) + b), (2.2)

where x ∈ +1 if f(x) > 0, otherwise x ∈ −1. In the training phase, the

parameters w and b are estimated from the training samples that satisfy the

following conditions:

given: (x1, y1), (x2, y2), . . . , (xm, ym), (2.3)

where

{
(w · xi) + b ≥ 1 if yi = 1

(w · xi) + b ≤ 1 if yi = −1.

Now, the optimal hyperplane can be found by solving the following opti-

mization problem:

minimize
w,b

1

2
||w||2, (2.4)

subject to yi((w · xi) + b) ≥ 1, i = 1, . . . ,m.

In general, the dual form of the optimization problem in Equation 2.4 is

solved to determine the optimal hyperplane.

In practice, data cannot always be separated by a hyperplane due to the

presence of noise in the training data, as shown in Figure 2.6(b). To handle
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B1

B2

margin for B1

(a) Decision boundaries (b) non-separable data (c) non-linear data

Figure 2.5: Classifying data with SVM, (from [TSK05])

this limitation of the linear SVM, we can use soft-margin approaches which

introduce a positive-valued slack variable ξ in the optimization problem to learn

the decision boundary that is tolerable to small training errors. Cortes and

Vapnik [CV95] present C-SVM, a soft-margin approach with a regularization

parameter C > 0 to control the training error. A low C-value allows more

support vectors, which lie within wrong class, during learning procedure to make

the classification task easy. On the other hand, C =∞ makes the classification

problem strict. Replacing this free parameter C with the parameter ν, Schölkopf

et al. [SSWB00] propose ν-SVM to create a robust classification model from a

noisy training data. It modifies the optimization problem in Equation 2.4 as

follows:

minimize
w,ξ∈Rp,ν,b∈R

1

2
||w||2 − νρ+

1

2

m∑
i=1

ξi, (2.5)

subject to yi × ((w · xi) + b) ≤ ρ− ξi, i = 1, . . .m

and ξi ≥ 0, ρ ≥ 0.

Here, training points with ξi > 0 represent marginal errors, i.e., the training

points that lie either within the margin or the wrong side of the boundary.

Parameter ν lies in [0, 1]. It provides the lower bound on the fraction of support

vectors and an upper bound on the fraction of the marginal errors, i.e., the

number of points that are misclassified or lie within the margin. As ν increases,

the classifier allows more points to lie within the margins, and therefore, the

model can be underfitting the data. The optimization problem in Equation 2.5

is solved by the dual problem given in Equation 2.6 with the dual variable ααα;
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details can be found in [SSWB00]:

maximize
ααα∈Rm

W(ααα) =
1

2

m∑
i,j=1

αiαjyiyj(xi · xj), (2.6)

subject to 0 ≤ αi ≤
1

m
, ∀i

m∑
i=1

αiyi = 0,

m∑
i=1

αi ≥ ν.

The decision function in Equation 2.2 then becomes:

f(x) = sgn(
∑
i

αiyi(x · xi) + b). (2.7)

In SVM, the similarity between data is expressed in the inner product space

as it is a linear classifier. However, it is possible that the data may have non-

linear decision boundaries, as shown in Figure 2.6(c). In such cases, SVM can

employ a non-linear mapping that transforms the data x from original data space

to a higher dimensional space Φ(x) such that a linear decision boundary can

separate the data in the higher dimensional space. To implement the non-linear

classifier, we generally use kernel trick that measures the similarity between

data points in higher dimensional space using the original data space. Different

kernel methods are used in SVM to find the similarity in the feature space as

discussed in literature [SS01]. The radial basis function (RBF) is one of the

popular kernel methods, commonly used for non-linear SVMs [CHC+10]. It is

given by:

(Φ(x) · Φ(x′)) = K(x,x′) = exp(−γ‖x− x′‖2), γ > 0.

Here, γ is the free parameter in the RBF kernel, where it determines the influence

of a single support vector on decision making. A large γ-value signifies small

Gaussian variance, which implies that the radius of the area of influence of

a support vector only includes the support vector itself. Hence, the resulting

model can be overfitting the data. On the other hand, a very small γ-value

implies that the radius of the area of influence of a support vector is very large

and the resulting model can fail to capture the complexity of the data.

In this thesis, we use LIBSVM [CL11], a very popular library which pro-

vides implementations for different variations of SVM. It allows to plug in dif-

ferent kernel functions to SVM and provides a parameter-selection mechanism

for C-SVM. The library LIBSVM is used as back-end of many classification or

regression tools available, such as Weka [HFH+09].

2.2.2 Statistical Measures

Raw data are often expressed as records, vectors, lists of entities, etc., which

may need to be preprocessed to represent the data in a form that captures the
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(a) non-linear decision boundary in

the original data space

(b) linear decision boundary in the

higher dimensional space

Figure 2.6: Kernel trick for non-linear SVM1

characteristics of the data and can be accepted as an input to a classification

algorithm. Depending on the input data types, different statistical measures

can be used to capture the fundamental characteristics of the data. As we are

dealing with the classification of categorical data in this thesis, we discuss here

commonly used statistical measures for categorical data.

Entropy

One of the popular measures, used extensively in classification of categorical data

is information entropy. It was first introduced in the mathematical theory of

communication [SW49]. It is defined to measure the uncertainty of the outcome

of a discrete information source. Let us consider a random variable X, where

I(X) represents the information content of it. I(X) is defined by − logb(P (X)),

where P (X) presents the probability mass function of the random variable X.

Then, the entropy H(X) is defined by the expected value of I(X).

H(X) = E[I(X)] = −
∑
xi∈X

P (xi) logb P (xi)

Shanon entropy considers ‘bits’ as the unit of entropy, where the base b is set

to ‘2’. In data communication, entropy is used to find average length of com-

pressed message. Binary classifier uses entropy as an impurity measure. In

this thesis, we use entropy to express the average information content captured

by an attribute, where P (xi) is nothing but the frequency of a value xi of the

attribute.

Max-Coverage

For a categorical attribute, frequency is a basic building block to define differ-

ent measures to characterize the distribution of categorical values. Consider a

1https://www.hackerearth.com/blog/wp-content/uploads/2017/02/kernel.png
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categorical attribute X that can take n categorical values {x1, x2, . . . xn} for a

set of N objects. Then, the frequency of a categorical value xi is calculated as:

freq(xi) =
#(objects that hold attribute value xi)

N
.

freq(xi) is equivalent to the coverage of xi on a set of given objects. It is

frequently used in itemset mining to capture how often a item appears in a set of

transactions. It is also used to calculate mode of a categorical attribute, i.e., the

categorical value which has highest frequency. For a categorical attribute with

few categorical values, mode and frequency are considered important measures

for the exploration of data. Rather using mode, in this thesis, we use Max-

Coverage, which is the frequency of mode, given by:

mCov(X) = max
xi∈X

freq(xi).

Unalikeability

Variance is a common measure for describing the degree of diversity. Unlike

numeric data, the distance between two observations is always boolean for cat-

egorical data. If both observations hold the same categorical value then the

distance is 1 otherwise 0. Following this property, Kader and Perry [KP07] dis-

cuss a variation coefficient for categorical data, called unalikeability, denoted

by U(X) for a random variable X. Instead of measuring how much an observa-

tion of random variable differs, it measures how often observations of a random

variable differ from one another. For a random variable X, unalikeability is

calculated as:

U(X) = 1−
∑
xi∈X

freq(xi)
2.

The value of Unalikeability lies within [0,1]. Higher value of unalikeability sig-

nifies more diverse data.

Peculiarity

Another popular statistical measure that is discussed in various fields, such as

mathematical ecology, microbiology, or economics, is the Simpson index. It

captures the degree of concentration of categorical values which are associated

with a set of objects. It is defined by the probability of two objects being

associated with the same categorical value, where objects choose categorical

values randomly without replacement. The collection diversity is defined as

the complement of Simpson index. Let us consider a random variable X that

can take n categorical values, {x1, x2, . . . xn} for a set of N objects. Then, the

collection diversity, referred as peculiarity measure in this thesis, denoted as

D(X), is calculated as:

D(X) = 1−
∑
xi∈X

count(xi)(count(xi)− 1)

N(N − 1)
,
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where count(xi) = #(objects that hold attribute value xi). When data is very

large, D(X) becomes approximately identical to U(X), because the probability

of two objects that choose the same categorical value without replacement or

with replacement becomes almost equal.

2.3 Evaluation Measures

The efficiency of both retrieval and classification algorithms can be measured

easily by computing the response time for queries or space complexity of algo-

rithms. Nevertheless, an efficient method that produces useless results does not

satisfy the information need of users. Therefore, one of the main concerns in

both retrieval and classification algorithms is to measure the effectiveness of a

method, based on the quality of the produced results. The quality of IR-based

systems or classification models is generally quantified by the notion of user

utility and information need. Now, evaluating effectiveness can be critical as

the perception of the quality may differ among users.

The standard approach to measure the effectiveness of IR-based systems is

performing relevance assessment of the produced results. For the relevance as-

sessment, a ground truth for a query is created by marking each document either

relevant or non-relevant to the query in advance, according to the information

need of users. Similarly, the ground truth for the classification task holds the

true class label for the test samples. Given the ground truth, precision and re-

call are the most commonly used measures to evaluate the quality of produced

results in both areas.

Precision

In IR-based systems, when a query returns a set of documents, precision is

calculated by the fraction of retrieved documents that are relevant.

Precision =
#(relevant documents retrieved)

#(retrieved documents)

In classification tasks, for a specific class ci, the precision is the fraction correct

predictions over all the objects that are predicted to be in ci. Precision is

considered as class-specific accuracy in classification task.

Precision =
#(objects predicted to be in the true class ci)

#(objects predicted to be in class ci)

Recall

Recall is the fraction of relevant documents that are retrieved.

Recall =
#(retrieved relevant documents)

#(relevant documents)



24 2. Background and Preliminaries

For a specific class ci, recall is the fraction of correct predictions over all the

objects in class ci according to the ground truth. Recall is also called class-

specific coverage in classification.

Recall =
#(objects predicted to be in the true class ci)

#( objects in class cias per ground truth)

Accuracy

Accuracy is the fraction of objects that are correctly predicted its true class over

all objects.

Accuracy =

∑
ci

#( objects predicted to be in the true class ci)

#(All objects)

In another word, accuracy is the overall precision. Classification error is the

complement of classification accuracy.

In IR-based system, accuracy is calculated as:

Accuracy =
#(retrieved rel. doc. + non-retrieved non-rel. doc.)

#(All documents)
.

Accuracy is considered a less informative measure in both areas. Specifically,

in IR system, it is not considered as an appropriate effectiveness measure. Con-

sider a scenario, where very few documents are relevant. In this case, a searching

algorithm can reach a high accuracy by simply not retrieving any document.

F-measure

Depending on applications, a tradeoff between precision and recall is necessary.

We can retrieve all the documents or classify all the object to a specific class

to achieve 100% recall. Definitely, the precision will suffer in this scenario. On

the other hand, we can develop an algorithm that retrieves only highly relevant

documents to achieve high precision which will affect the recall of the system.

F-measure is a metric that tradeoff between precision and recall. It is nothing

but the weighted harmonic mean of precision and recall, defined as follows:

Fβ =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P +R
, where β =

1− α
α

.

Here, P and R represents precision and recall respectively, α ∈ [0, 1], and β2 ∈
[0,∞]. Hence, F1 measure balances precision and recall equally.

Fleiss Kappa

The ground truth, which is used to measure the quality of a IR-system or a

classification method, must be constructed by domain experts to reflect the
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Kappa Agreement

<0 Less than chance agreement

0.01 - 0.20 Poor agreement

0.01 - 0.20 Slight agreement

0.21 - 0.40 Fair agreement

0.41 - 0.60 Moderate agreement

0.61 - 0.80 Substantial agreement

0.81 - 0.99 Almost perfect agreement

Table 2.1: Interpretation of kappa values, from [VG05]

information needs at its best. After creating the test collection, relevance as-

sessments from humans are put together to create the ground truth. As the

perception of relevance may differs among humans, instead of using a single

assessor, assessments from many judges are considered as a reliable source to

generate the ground truth. In this scenario, it is also important to measure

the reliability of agreements in the assessments given by the judges. One such

common reliability measure is kappa statistics.

Fleiss’ kappa [Fle71] measures the degree of agreement present in judgements

compare to the agreements that would be expected by chance. It is computed

as:

kappa =
P (A)− P (E)

1− P (E)
,

where P (A) represents the fraction of the times when judges are agreed and

P (E) represents the fraction of the times the agreements would be expected

by chance. The value of kappa lies within the range [1,−1], where ‘1’ stands

for complete agreement among judges and ‘0’ indicates that the agreements

among judges happened by chance. An negative value of kappa indicates that

the agreements among judges worse than random or cab be biased. Viera and

Garrett [VG05] present a subjective interpretation of different ranges of kappa

values with the different level of agreements, as shown in Table 2.1.





Chapter 3

Related Work

This chapter presents an overview of the state-of-the-art in the vicinity of the

research problems addressed in this thesis. First, in Section 3.1, we review the

literature that discuss the applicability of different distance measures in rank

similarity and existing approaches for finding similar rankings efficiently. We

further continue the discussion of the existing works on pruning of index struc-

tures for optimizing the space requirement in similarity search, in Section 3.2.

After that, we discuss the existing works on identifying suitable attributes for

categorizing a list of entities present in a table. More specifically, we review

existing methods for exploring tables, extracting categorical attributes from ta-

bles, and quantifying interestingness of categorical data, in Section 3.3.

3.1 Similarity Search over top-k Lists

With the availability of billions of tables, different web search engines, and

crowdsourced information in web, the problem of effective and efficient compar-

ison of top-k lists can be associated with different applications and has been

addressed by many researchers. Few common application areas are diversify-

ing the results retrieved from a search engine [QYC12, AGHI09], comparing

the results retrieved from different search engines [BML06], rank aggregation

problem [SvZ09, DKNS01], k-nearest-neighbor search on rankings, etc. Depend-

ing on the application scenario and data type, different distance measures are

used to find the similarity between rankings, such as Jaccard Distance, Ham-

ming distance [Ham50], Spearman’s footrule distance [Spe94], Kendall’s Tau

distance [Ken38], Pearson correlation. As we are dealing with the problem of

similarity search on incomplete rankings in this thesis, we investigate specifically

the distance functions that provide correlation measures over incomplete top-k

lists [FKS03, BML06, WMZ10], such as generalized footrule or Kendall’s Tau

distance, rank-biased overlap.

It is difficult to single out one measure that is appropriate for different appli-

cations. To compare the applicability of these measures, Kumar et al. [KV10]

27
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discuss criteria that arguably should be fulfilled by a distance measure used

for comparining ranked lists. The criteria include properties like richness, sim-

plicity, generalization, scale-freeness, and correlation with other distance mea-

sures. With the generalization of the definition of the Spearman’s footrule and

Kendall’s Tau distances, they fail to meet the simplicity criteria. Nevertheless,

the generalized Kendall’s Tau distance can still bound loosely the generalized

footrule distance and an equivalence relationship between them is possible to

define [FKS03, KV10]. Another work by Sun et al. [SLC10] discuss five essential

properties for a distance measure to be effective for finding rank similarity in the

context of web search. According to these properties, a distance measure should

be—symmetric, applicable to incomplete list, flexible to adapt user’s preference

on top or bottom ranks, computationally efficient, and able to aggregate in-

formation from multiple queries for finding the final dissimilarity. Generalized

Kendall’s tau distance can capture all these properties except the third one.

Overall, Generalized Kendall’s tau distance becomes one of the most suitable

distance functions to be used in similarity search over rankings and is considered

as distance function in this thesis.

In the next section, we will review the available indexing methods, commonly

used for increasing the efficiency of the similarity search.

3.1.1 Index Structures for Similarity Search

In similarity search, retrieval is done based on the query’s items; the result is a

set of candidate rankings on which the distance function is applied to find the

similarity with the query. The main objectives are to avoid full scan through

all rankings and minimize the number of the distance computation, in order to

find the search results efficiently. In this section, we discuss existing works that

propose suitable index by exploiting the characteristics of the distance functions,

to find a reduced search space on which the actual comparison with the query

is performed to retrieve the results.

While using distance measures that satisfy the metric property, i.e., the

triangle-inequality property, we can use data-agnostic structures, like the met-

ric tree by Uhlmann [Uhl91], for partitioning the data. Optimizing the distance

computations by using properties of metric tree and the I/O access, Ciaccia

et al. propose the M-tree [CPZ97]. This tree structure is widely used in sim-

ilarity search [BFL+10] and clustering method [ZGZG11]. Further, Zezula et

al. [ZSAR98] present three algorithms for the k-nearest neighbor search using

M-tree by introducing the relative distance error, exploiting the distance distri-

bution from a object’s viewpoint, or finding potentially optimal point for perfor-

mance improvement. But, as mentioned earlier, top-k lists are incomplete, and

hence, measures like generalized footrule or the Kendall’s Tau distance can be

used in similarity search over incomplete top-k lists. Fagin et al. [FKS03] prove

that generalized footrule distance satisfy near-metric property, given that the

rank of missing elements must be bigger than k. Milchevski et al. [MAM15] con-

sider the generalized footrule distance in their proposed method for the efficient
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similarity search over incomplete rankings. They combine metric space indexing

with inverted indices for reducing the search space and the number of distance

computations during query processing. However, the generalized Kendall’s Tau

distance does not hold the metric property. Therefore, metric trees cannot be

used to index the data objects.

Besides tree-based index structures, the inverted index provides an effective

solution for indexing documents in text-based search engines, like Google or

Yahoo. Zobel and Moffat [WMZ10] present a detailed study on construction,

maintenance, and representation of an inverted index for keywords queries in

text search engine. The authors also discuss drawbacks of suffix arrays and sig-

nature files [CS88] for document search, which are also applicable for similarity

search over ranked lists. Additionally, existing works on set joins [CGK06] or

querying set-valued attributes [HM03], using inverted index, are also relevant

to discuss here, as top-k lists can be considered as plain sets. Helmer and Mo-

erkotte [HM03] discuss four index structures, sequential signature file, signature

tree, extendible signature hashing, and inverted files, which can be used for han-

dling queries on set-valued attributes. Through a comprehensive experimental

study, the authors also show that the performance of query execution over an

inverted file outperforms the other index structures. To optimize the perfor-

mance of set similarity join, the concept of prefix-filtering approach has been

first introduced for different edit distances and overlap-based distance functions,

by exploiting the similarity threshold [SK04, CGK06].

Similarity search using an inverted index follows a simple filter and vali-

date methods as shown in Algorithm 1. Exploiting the user given or system

specified similarity threshold, we can apply the concept of the prefix-filtering

method that finds a bound on the number of index scans during query pro-

cessing, and thus, can prune the search space in the first place, for the sim-

ilarity search. Xiao et al. [XWL+11] propose a position-based prefix-filtering

method for near-duplicate search, where they adapt the prefix-filter parameter

for Jaccard similarity, hamming distance, edit distance, and cosine similarity. In

this thesis, we discuss prefix-filtering parameters for generalized Kendall’s tau

distance and Jaccard similarity, which can also be seen as a position based a

prefix-filtering method. Qin et al. [QWL+11] present a signature-based filtering

method for the edit-similarity join problem, where they show that the lower

bound for the signature size is τ + 1, where τ is the edit distance threshold.

Wang et al. [WLF12] propose an adaptive prefix-filtering framework for similar-

ity joins, called SimJoin. They sorted the elements in each set according to a

global ordering of all elements, in order to generate the prefix-elements for each

set. Considering a overlapping threshold t, prefix elements of a set r are the

first |r| − t+ 1 elements of r, called the 1-prefix scheme. Generalizing the prefix

scheme, they discuss the l-prefix scheme that create prefix elements of a set of

r by using the first |r| − t+ l elements of r. They observed that the parameter

l has a significant effect on the performance in set similarity join, as shown in

Figure 3.1. They propose a cost model for variable-length prefix scheme and

a greedy algorithm to find optimal l-prefix scheme for a given query, based on
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Figure 3.1: Performance of different prefix-filtering schemes for overlap similar-

ity between sets, from [WLF12]

their observation. For adapting the variable-length prefix scheme, they also pro-

pose an incremental index structure, called the delta inverted index. According

to this work, the basic prefix-filtering method is a specific case of the proposed

adaptive prefix-filtering approach, where the tuning parameter l of the adaptive

prefix-filtering is set to 1. They found that often l ≥ 1 performs more efficiently

compare to basic prefix-filtering method. In this thesis, we use the adaptive

prefix-filtering method as a competitor to our proposed approach.

Continuing the discussion of existing approaches for efficient similarity

search, we review existing works on the another popular approach, Locality

Sensitive Hashing, in the next section.

3.1.2 Locality Sensitive Hashing

Wang et al. [WSSJ14] provide a detailed survey of mainly two kinds of hashing

methods, locality sensitive hashing (LSH) and learning to hash, applied in many

scenarios, such as similarity search, clustering. With the aim of reducing the

cost of similarity search, approximate similarity search, where the correctness

of the candidate set is relaxed with some error bound, is one of the solutions

provided by LSH [AI08, DWJ+08, DIIM04, GIM99]. Indyk and Motwani [IM98]

first introduce the concept of LSH for similarity search over high-dimensional

data. The key idea behind LSH is the use of locality-preserving hash func-

tions that map close objects to the same hash value (i.e., hash bucket) with

high probability, discussed in Section 2.1.3. The authors propose LSH fami-

lies for hamming distance and lp-norm, where p ∈ [1, 2]. They theoretically

establish that the time complexity is bounded by the exponential factor of 1/c

over the data points for c-approximate nearest-neighbor problem. Gionis et

al. [GIM99] show that the proposed LSH method in [IM98] significantly im-

proves the performance of similarity search and outperforms SR-tree that is

proposed by Katayama and Satoh [KS98] to handle the near-neighbor search

in high-dimensional data. Datar et al. [DIIM04] propose a hash family for lp
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distances in p-stable distributions, where p ∈ (0, 2]. For the Euclidean dis-

tance, the authors also show that the exponential factor in time complexity of

c-approximate near-neighbor problem for the proposed LSH family is strictly

less than 1/c. To detect near-duplicate web pages, Broder [Bro97] proposes an

LSH family, min-hash that approximates the Jaccard similarity between two

sets. For the angular distance between two vectors, Charikar [Cha02] defines

an LSH family that randomly chooses a unit-length vector from d-dimensional

space. Then, the chosen unit-length vector is used to divide the space into two

half spaces and projects any vector into one of these half spaces.

Different parameters of locality-preserving functions render LSH a paramet-

ric approach. Dong et al. [DWJ+08] present a performance model of multi-probe

LSH on gamma distributions, which tunes different LSH parameters, such as l

and m, to reach optimal average performance. It also determines the num-

ber of bucket to probe in a hash table adaptively in query time. Joly and

Buisson [JB08] propose another variant of multi-probe LSH where a posteri-

ori model is first learned from prior queries and results. Based on the learned

model, it detects which buckets to probe. Instead of using compound hash func-

tions or probing multiple buckets for one collision, Gan et al. [GFFN12] propose

Collision Counting LSH to ensure high recall for the searching method. The

proposed method choose a function base of some single hash functions from the

hash family and a collision threshold in a way such that if an object collides

with query more than the threshold times, the object becomes a good candi-

date. Bawa et al. [BCG05] propose the LSH Forest indexing method where the

labels in each hash table are presented by a prefix tree. According to different

queries, it determines the number of hash functions m it needs to access for

each table, in order to guarantee a certain level of search result quality. Satuluri

and Parthasarathy [SP12] propose the BayesLSH method based on Bayesian

statistics. It prunes the data points during candidate generation by inferring

the probability that the similarity between two data points lies above the given

distance threshold by comparing fewer hash functions. The authors discuss

BayesLSH approach for Jaccard and cosine similarity in all-pair similarity prob-

lem. Liu et al. [LCH+14] propose sorting-key LSH, a smart method to access the

page that holds candidate objects on the disk. They calculate the distance be-

tween two hash keys in a fashion that reflects the distance between two objects;

the closer the hash keys smaller the distance between objects. Therefore, they

keep the objects from close hash buckets locally in an index file, which helps to

reduce significantly the number of disk accesses to generate enough candidates

that ensure the result quality. Huang et al. [HFZ+15] propose a query-aware

LSH scheme for the hash family proposed in [DIIM04], where the partition of

the hash bucket is done based on the point where the query is mapped.

All the LSH families discussed above are defined for distance measures in

metric space. Athitsos et al. [APPK08] propose the distance-based hashing

scheme that is also applicable for non-metric distance measures. They propose

a hash family that projects a data point in binary space, based on the “line

projection” function, defined in the paper. The authors also present a cost
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model and an incremental way to find the LSH parameter k and l. Jégou et

al. [JASG08] present a query-adaptive LSH method where only the highest rele-

vant hash functions to the query are selected based on the E8 lattice formation of

them, to solve the nearest-neighbor problem. Gao et al. [GJLO14] present data-

sensitive hashing for c-approximate k-Nearest-Neighbor (k-NN) search. Their

proposed hash family is the trained binary linear classifiers that can classify the

k-NN data points from non-ck-NN ones. In this thesis, we are also working

with a non-metric distance function, the generalized Kendall’s Tau distance,

and propose two hash families that project the data points in binary space.

3.2 Index Pruning

The space requirement an inverted index is directly proportionate to the vocabu-

lary of the document collections or the number of objects in the data space. Ad-

ditionally, it is possible to index documents using k-shingling, pairs, or triplets

instead of single words from documents. This increases the precision of sim-

ilarity search as well as the space requirement to store the index. Similarly,

LSH methods maintain many hash tables to ensure a good result quality in

the approximate similarity search. Clearly, the space requirement increases due

to multiple replications of data objects in both the cases. As a consequence,

a compromise between the result quality and the space requirement comes to

the scenario. In this section, we briefly discuss existing works that address this

problem.

3.2.1 Optimizing Space Requirement in LSH

The previous section describes many variants of locality-sensitive hash families

for different metric, non-metric, and Euclidean distance functions. One princi-

pal drawback of the LSH method is maintaining a large number of hash tables to

reach a high result quality for the similarity search. To reduce the space require-

ment, Panigrahy [Pan06] proposes an entropy-based LSH approach. It creates

fewer hash tables by randomly choosing data points as additional queries with

the original query. Lv et al. [LJW+07] propose the multi-probe LSH method

that finds hash buckets near to the buckets where the query is mapped to using a

fixed sequence of perturbed vectors, and collects candidates from all of them to

reach the same result quality with fewer number of hash tables. Few variations

of multi-probe LSH are proposed in [DWJ+08, JB08], discussed in the previous

section, which also optimize the space requirement. Tao et al. [TYSK10] propose

a locality-sensitive B-tree structure using the Z-order value of the projection of

the data objects for compound hash functions, to avoid storing a single object

in multiple hash tables. All these proposed LSH approaches focus on optimiz-

ing the space requirement for LSH family for p-stable distribution [DIIM04],

where Euclidean distance is used as the distance measure. On the other hand,

query-aware LSH methods, discussed in [JASG08, HFZ+15] select hash func-
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tions during query time, which demands to keep most of the hash tables created

from the hash families, though very few of them are actually used at query time.

Such inefficient usage of space is also a drawback of our proposed query-driven

LSH method discussed in Chapter 5.

3.2.2 Index Pruning in Document Search

To optimize the space requirement in document search engine, different index

pruning methods are proposed in literature. Static pruning methods mainly

focus on pruning elements from an index in a way that can still capture the

top-k results for a query in document search. Carmel et al. [SCC+01] intro-

duce a term-based static index pruning method where index keeps only a few

top-scored documents in a posting list corresponding to a term. The authors

employ a tf × idf -based scoring function for the documents, where the cut-off

score for posting list is term-dependent. Modifying the method in [SCC+01], de

Moura et al. [dMdSF+05] propose a locality-based pruning approach by keeping

top documents for each term with top documents of its related terms. Büttcher

and Clarke [BC06] propose a document-centric index pruning method where

few top-scored terms from a document are kept in the index. The score of

the terms in a document is assigned by a feedback relevance method based on

Kullback-Liebler divergence of the documents in the collection. Nguyen [Ngu09]

proposes a posting-based pruning method which keeps only a few top-scored

postings. The score of a posting is calculated by combining the assigned weight

of the document and the term in the posting. There exist other static pruning

methods that consider additionally the distribution of query data in a term-

or document-centric pruning method [AOU12, JRS16]. These approaches are

fully orthogonal to our index pruning method and can be easily adopted in the

proposed optimization problem for pruning the LSH index, discussed in Chap-

ter 5. On the other hand, dynamic index pruning methods focus on reducing

query processing time by eliminating redundant operations and maintaining a

cache [BCH+03, AM06, TTZ07]. In this thesis, the access method of the inverted

index is derived from LSH, and hence, we leave out here the detail discussion of

dynamic index pruning.

3.3 Entity-centric Category Mining

The data we are dealing with in this thesis are rankings and tables in web,

capturing many entities and their properties in a semi-structured manner. Un-

derstanding and exploring such data is a primary necessity for scientific discov-

ery. In this section, we will review existing methods, frequently used by the

database community, for handling these two tasks. Additionally, the area of

data mining provides a large set of algorithms to discover hidden characteristics

and patterns of the data, used in different application scenarios to meet user

requirement [TSK05]. As rankings or web tables are very dynamic in nature, in
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this section, we will briefly cover the adaptation of data-driven approaches for

exploring data, in both of the database management and the data mining area.

In databases, the stored data normally less dynamic in nature, i.e., the data

do not change very often, allowing data analysts use OLAP cubes [GCB+97] that

provides a multi-dimensional view of the static data by aggregating attribute

over different dimensions, mentioned beforehand. This method immensely helps

to improve the efficiency of exploratory queries. It allows operations like drill-

down, roll-up, and selection over OLAP cube to navigate and identify the data of

users interests. Few more operators for OLAP cubes are introduced by Sarawagi

et al. [SAM98, SS00] to guide a user to explore interesting regions of data, by

highlighting the exceptions within it.

Further, to make OLAP smarter and more efficient for analyzing large dy-

namic data, different approaches that allow user interaction and feedback in

OLAP operations are proposed in literature. Dash et al. [DRM+08] propose a

dynamically faceted search system that automatically identifies a smaller subset

of facets and values from large query results which are considered to be inter-

esting to a user. Drosou and Pitoura [DP13] present a system, called YmalDB,

that recommends additional dimensions to navigate the data, which are highly

related to the original query given by users. The system first identifies inter-

esting attribute-value pairs based on a frequency-based scoring model from the

results of the initially-given user query. Then, these interesting pairs are used

for attribute expansion and recommendation. Dimitriadou et al. [DPD14] pro-

pose the Automatic Interactive Data Exploration (AIDE) framework that learns

interesting regions of the data from user feedback by using a decision tree. The

authors also discuss the optimal way to generate sample data by capturing all

relevant dimensions that are used to collect feedback from users. The work by

Li et al. [LHY+08] also addresses the problem of applying OLAP over sample

data. They present a framework, called Sampling Cube, that handle the er-

ror in result generation by intra- or inter-cuboid query expansion. Joglekar et

al. [JGP16] propose an interaction operator to extend the scope of drill-down

operations. It allows online user interaction and enables browsing the top-k

most interesting explorative facts about the data, based on the dimensions pre-

ferred by the data analyst. Few other works focus on efficiency in exploration,

by adopting distributed framework [KJTN14, AIP+12]. All these works, men-

tioned above, either collect hints from users to have a prior knowledge about

a user’s interest before initiating the exploration or collect statistics over the

measuring attributes used for aggregating data over different dimensions, to

identify interesting regions in data for the data exploration. In this thesis, we

propose a different approach to identify the interesting facets, independently of

the measuring attributes present in a table. Hence, our approach can be used

orthogonally as an enabling step to approaches discussed earlier by providing

recommendations of meaningful dimensions.

Wu et al. [WKQ+08] present an overview of ten extensively used mining al-

gorithms, covering the area of classification, clustering, statistical learning, as-
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sociation rule mining, and link mining. These algorithms use objective measures

to discover hidden characteristics or patterns in the underlying data. Objective

measures can efficiently identify the structural patterns of data, but fail to un-

derstand the interestingness of it. To deal with this problem, Silberschatz and

Tuzhilin [ST95] coined the term ‘subjective interestingness measures’ which is

expressed by two concepts, un-expectedness and actionability, and propose an

approach to measure the interestingness based on the belief system of users.

A mathematical framework, similar to the Bayesian inference model, is intro-

duced by Bie [Bie11, Bie13] to formalize interestingness of a pattern, mined from

the data. However, in this framework, user utility is considered an important

parameter. There exist another set of works that train a classification model

from training samples, collected from users feedbacks or query logs, in order to

capture the user’s interests in data exploration [DPD14, BLWJ15].

Avoiding direct user intervention, web data can be used to capture the

trends or general interests of users. Mining web tables is a common prac-

tice for extracting such information. Knowledge bases like YAGO and DB-

pedia are created based on Wikipedia. The general purpose knowledge base

ProBase [WLWZ12] is developed from web corpus based on a probabilistic ap-

proach that associates plausibility and typicality scores to every fact and rela-

tion. These knowledge bases facilitate a machine to understand human commu-

nication and concepts from the real world. Wang et al. [WWWZ12] present a

prototype to associate the most suitable concept with table entities and their at-

tributes by linking the entity with Probase. Cafarella et al. [CHW+08] present

a system, called WebTables, collecting 14.1 billion tables from web and en-

abling an effective search over the collected tables. Additionally, the authors

discuss a model, called attribute correlation statistics database, which is used

to provide facilities like schema auto-completion and attribute synonyms to ex-

plore the data. Yakout et al. [YGCC12] present a framework for augmenting

web tables automatically based on topic-sensitive PageRank over the schema-

matching graph on web tables, to reach higher coverage and discover important

attributes of an entity type. Considering Wikipedia tables as a rich source

of information, different question-answering frameworks are proposed in litera-

ture [SC14, BND13, CFWB17], for handling factoid questions. Bhagavatula et

al. [BND13] propose a prototype that joins relevant Wikipedia tables in order

to explore the correlation between attributes for an entity. As web tables are

presented in diverse schema representations, extracting semantic interpretation

of web table is a challenging task, addressed in [LSC10, RLB15, Zha17], and

very important for enabling applications on top of it. The works on effective

extraction of tables from web are orthogonal to the work present in this thesis,

but can be adapted.

Fatima et al. [FCS17] introduce an approach, called DBpedia Trivia Miner,

that can learn an interestingness model for a given domain. The approach

combines features like tf -idf , mean, entropy of categories, and the automatically

learned features using a neural network approach, to capture interesting facts

about an entity. They characterize the interestingness of data by unusualness,
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uniqueness and unexpectedness of the facts. The proposed model is trained

over a manually annotated subset of DBpedia data. In this thesis, we also

train a model that classifies interesting categorical attributes, where we harness

Wikipedia tables to incorporate humans’ perception of interestingness into our

training data. In prior work [RPM16], we develop a scoring model for finding

interesting rankings based on the statistics, computed over attributes that are

used to create the ranking. This ad-hoc model involves a component to classify

the interesting categorical attribute based on entropy gain measures, which is

subsumed by our proposed model present in Chapter 6. As our work focuses

only on the categorical attributes, we further discuss the literature on statistical

measures applicable for categorical attributes.

3.3.1 Statistical Measures for Assessing Categorical At-

tributes

The survey by Geng and Hamilton [GH06] discuss different statistical measures

that are used as metrics for describing ‘interestingness’ of a pattern discovered

from data by classification, association rule mining, and summarization. The

authors classified all state-of-the-art measures in three categories—objective,

subjective, and semantic-based. They also provide an overview of the strategies

of selecting measures for different applications. Both subjective and semantic-

based measures require user involvement for defining the interestingness of a

categorical attribute. Here, we discuss only the objective measures for cate-

gorical attributes as we aim to build a classification model that is capable of

identifying interesting categorical attribute for an entity type, without any hu-

man involvement.

Dang and Croft [DC12] propose a new measure, called diversity by pro-

portionality, that find diversity in the search results by comparing them to a

predefined range of topics, associated with the query and the relevance of the

results. In this thesis, we have adopted the similar concept of diversity, where

the diversity of a categorical attribute is measured by comparing it with a pre-

defined ideal distribution of an attribute. Different context-specific diversity

measures are proposed to find the diversity of the search results, by combining

relevance assessment of the results and its topic coverage [RBS10, AGHI09].

Schedl and Hauger [SH15] present a diversity measure, based on users profile of

listening music, for creating a music recommender systems. Henzgen and Hüller-

meier [HH14] present an analogy of support and interest measure from itemset

mining to the context of mining subrankings. Hilderman and Hamilton [HH01]

review thirteen diversity measures from different field of studies, for measuring

the usefulness of a ranking summarization, generated from a database. They

discuss five mathematical principles that can derive the usefulness of these in-

teresting measure. Based on these principles, a comparative study among these

diversity measures are presented in the paper. The study shows that only four

measures; Ivariance, Ishannon, Isimpson, and ImcIntosh fulfil all five principles. In

this thesis, we also use shannon and simpson index for capturing interestingness
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of a categorical attribute. Two other measures, unalikeability and peculiar-

ity, discussed by Kader and Perry [KP07], are defined to capture variability of

categorical data, used in this thesis.

3.3.2 Handling Imbalance Training Data using SVM

In this thesis, to create the classification model for identifying interesting cate-

gorical attributes, we employ an SVM over an automatically generated training

data, as mentioned earlier in Section 1.2. Here, we observed that the generated

training data is imbalance, i.e., the number of samples in one class are outnum-

bered by the other class. Many real-world classification applications in the area

of information retrieval, genetics, etc. deal with highly imbalance training data.

In this section, we briefly discuss existing methods to tackle this problem.

Schölkopf et al. [SPS+01] discuss a new approach of SVM, called one-class

SVM that can train a classification model from training data that either do not

have any class information or belong to only one specific class. The idea behind

one-class SVM is to find the decision function that returns ‘+1’ for a small region

capturing all points in the training set. They simply consider the origin as as

the only candidate for the second class and create the boundary that maximizes

the distance between origin and other data points. Manevitz and Yousef [MY01]

propose a document classifier by using one-class SVM and present a comparative

study of the performances among the proposed document classifier and other

outlier classifiers such as Rocchio’s algorithm, nearest neighbor, näıve Bayes,

and compression neural network over Reuters data set. The study shows that

the one-class SVM outperforms all other models except the neural network.

The performance of computationally intensive compression neural network is

comparable with one-class SVM in some scenarios. In this thesis, we also use

one-class SVM, separately over positive and negative training sample, to deal

with the imbalance training data.

Tax and Duin [AKJ04, TD01] present a support vector data description

method to separate outliers from the data. It obtains a spherical bound over

target data in a way that minimizes the outliers to be detected as target set.

Allowing outliers at training time, this approach can create a more flexible de-

scription of training data. Wu and Chang [WC03b] present existing methods

such as boundary movement, biased penalties [VCC99] to handle the problem

of imbalance training data. Additionally, the authors propose a new approach,

called class-boundary alignment, which tunes kernel functions in a way such

that it maximizes the influence on the class boundary for the minority sup-

port vectors. Akbani et al. [AKJ04] propose another approach to deal with

imbalanced training data, by combining biased penalties with oversampling of

minority class while rejecting the undersampling of the majority instances to

restrict the inherent loss due to undersampling. Tuning the cost of training

samples from each class is a common strategy to deal with imbalance data, pre-

sented in [MBJ99, WLMJ14]. Wu and Chang [WC03a] discuss that Gaussian

RBF kernel is a good choice for transforming data to feature space while using
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class-boundary alignment approach to learn a model from imbalanced training

data. In this thesis, we adopt the concept of undersampling method to work

with the imbalance training data.



Chapter 4

Similarity Search over

Rankings

4.1 Introduction

This chapter is based our own publications at WebDB 2014 [PM14] and SSDBM

2016 [PM16b]. In this chapter, we address the problem of performing efficient

similarity search over top-k rankings; for a user-provided query ranking and

similarity threshold. Finding similar rankings, in the sense that they report on

a similar set of entities in roughly the same order, carries valuable analytical

insights. The scope of similarity search over ranked lists is not only restricted

to the applications in the area of information systems, but it is also common in

other fields like behavioral studies in social sciences or studies on scientific data

in experimental science, as mentioned in Chapter 1.

There exist several prominent distance functions, such as Kendall’s Tau,

Spearman’s footrule distance, NDGC [JK02], the rank distance [Car09], and

ERR [CMZG09], mentioned in Chapter 2 and Chapter 3. Considering simplic-

ity, generalization, richness, and basic properties of these measures, the two

predominant distance measures in literature are Kendall’s Tau distance and

Spearman’s footrule distance, discussed in [KV10]. Both are originally defined

over a pair of rankings that capture the same (full) domain of elements. For

incomplete rankings of size k, Fagin et al. [FKS03] propose a generalization

of Kendall’s Tau and Spearman’s footrule distances to handle the incomplete-

ness of ranking domain within distance measures. However, Fagin et al. [FKS03]

show that the generalized Kendall’s Tau distance violates the triangle inequality

property, which eliminates the possibility of using metric-space index structures,

like the M-tree [CPZ97] in this work. There exist few spatial indexing methods

like the R-Tree [Gut84] and the K-D Tree [Ben90] that can produce exact re-

sults for the NN-search, but are not efficient for high-dimensional data. Weber

et al. [WSB98] show that the efficiency of NN-search using such structures be-

39



40 4. Similarity Search over Rankings

comes worse than a brute-force linear scan over all data when the dimensions

become higher than ten. Therefore, the similarity search over top-k lists with

the generalized Kendall’s Tau distance requires further investigations on index

structures.

In this chapter, we discuss the r-near-neighbor (r-NN) problem on top-k

rankings using generalized Kendall’s Tau distance. Harnessing the observation

that at least one element should be contained in two given rankings to have

a reasonable minimum similarity between them, one classical solution to r-NN

search is employing an inverted index over each element of the rankings. Such

an index is very efficient in answering set-containment queries [HM03]. As more

overlapping elements between rankings signifies more similarity between them,

we can use multiple elements together from rankings to create the inverted index.

Adapting to the characteristics of the Kendall’s Tau distance, we present

three different inverted index structures, using pairs or triplets of elements

from rankings as the indexing granularity. When analyzing the performance

of the query processing on a pairwise or triple index on real-world datasets,

we observe that it is often sufficient to query the index with a small subset of

the query’s items, hence, leading to an approximate but very efficient query

processing. To understand the reason behind this characteristics and theoreti-

cally derive the expected performance and the accuracy of the query processing

on pairwise or triple index, we relate the concept to locality sensitive hashing

(LSH). LSH is an efficient method for near-neighbor search (NN-search) [AI08]

over high-dimensional data, discussed in Section 2.1.3. There exist LSH fam-

ilies for different metric distances, such as l1, Euclidean, or Hamming dis-

tance [DIIM04, IM98]. Although the generalized Kendall’s Tau is not a metric

distance function, we observe that the generalized Kendall’s Tau distance can

be related to the Hamming distance and the Jaccard distance. Exploiting this

connection, we propose here two LSH families for the generalized Kendall’s Tau

distance.

Considering that the data are uniformly distributed, LSH methods com-

monly select random hash functions from an LSH family to map the query data

into the hash tables to find the similar objects. However, real-world data is prone

to having a non-uniform distribution and it is difficult to capture characteris-

tics of the query data without any prior knowledge or restrictive assumptions.

Hence, we propose query-driven LSH methods that use a query-specific selection

of hash functions to map the query into the hash table, to render LSH more

efficiently for similarity search—without prior knowledge of the query data dis-

tribution. We also establish a one-to-one mapping of the pairwise and the triple

index with the indices used in the proposed LSH methods. We compare the pro-

posed indices to plain inverted indices, a full linear scan, and the state-of-the-art

approach [WLF12] for querying for similar sets.
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4.1.1 Problem Statement and Setup

Consider a set of top-k rankings T , where each τi ∈ T has a domain Dτi and

|Dτi | = k. The global domain of items is then D =
⋃
τi∈T Dτi . We investigate

the impact of various choices of k on the query performance in the experiments.

Figure 4.1 shows three example rankings.

τ1 = [2, 5, 4, 3, 1]

τ2 = [1, 4, 7, 5, 2]

τ3 = [0, 8, 7, 5, 6]

Table 4.1: Example rankings

Rankings are represented as arrays or lists of items; where the left-most

position in the examples denotes the top-ranked item. The rank of an item i in

a ranking τ is given as τ(i).

At query time, a user provides a query ranking q, where |Dq| = k and

Dq ⊆ D, a distance threshold θd, and a distance function d. Our objective is to

find all rankings that belong to T and have a distance less than or equals to θd,

i.e.,

{τi|τi ∈ T ∧ d(τi, q) ≤ θd}.

Using the item from rankings, we can build an inverted index to look up

those rankings that have at least one item overlapping with the query’s items,

during query time. For the rankings found this way, the distance to the query

is compared to find the final result. Considering the example in Figure 4.1,

for a query ranking q = [8, 7, 0, 6], ranking τ1 does not overlap at all with the

query’s items, while τ2 and τ3 do overlap. Therefore, the Filter and Validate

algorithmpresented in Chapter 2 can find τ2 and τ3 from the inverted index.

According to the algorithm, the index is accessed for each of the query items to

find the candidates. Then, the distance between the query and the candidates

are calculated to retrieve the true results. Note that we assume the distance

threshold θd to be strictly smaller than the maximum possible distance, i.e., the

normalized maximum distance threshold θ < 1. Thus, the inverted index can

find all result rankings as all results need to have at least one overlapping item

with the query.

In this work, we use the generalized Kendall’s Tau distance as the distance

function to deal with incomplete rankings. Moreover, we consider the penalty

p = 0 for case 4 in Definition3 of the generalized Kendall’s Tau distance, mainly

because of two reasons—(1) it is difficult to predict the order of the missing

elements if they appear in the top-k list and (2) their absence from one of the

top-k list decreases their significance. We denote this distance function as K0.

Kendall’s Tau is defined as the pairwise disagreement, which suggests building

an inverted index using pairs of items as keys. Additionally, two ordered pairs

can be combined into a triplet that also carries information about pairwise
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disagreement. In this chapter, we present how exactly these indices are used

in the r-NN search by relating them to proposed query-driven LSH schemes.

We also show that they are in fact locality sensitive. Based on the proposed

query-driven LSH schemes, we derive theoretical bounds on the number of index

accesses that is required to reach a specific recall in the r-NN search.

4.1.2 Contributions and Outline

In this work, we make the following contributions:

• We first present ad-hoc similarity search over sets of top-k lists (aka. rank-

ings), considering inverted indices over single items, pairs, and triplets. For

every index structures, we derive how to find the minimum overlapping

bound for a given generalized Kendall’s Tau distance threshold based on

prefix-filtering approach, which is used as the pruning rule to improve the

efficiency of ad-hoc similarity search by eliminating false-positive results.

• We propose two different hash families for Kendall’s Tau distance that fa-

cilitate query-driven Locality Sensitive Hashing (LSH) for Near-Neighbor

search, resembling querying on pair- and triplet-based inverted index.

• We derive the theoretical bounds on the expected recall for the proposed

query-driven LSH methods. We also describe how to automatically tune

the number of hash table access in the proposed LSH schemes for a pre-

defined recall requirement in NN-search.

• We compare the performance of the proposed LSH schemes to traditional

inverted indices and to the SimJoin method—a competitor based on the

popular prefix-filtering framework.

The rest of this chapter is organized as follows. Section 4.2 discusses the

derivation of a distance bound for the plain inverted index. Section 4.3 shows

the consequences of interpreting rankings as sets of pairs and triplets, which mo-

tivates to proposing LSH schemes for Kendall’s Tau, discussed in Section 4.4.

Section 4.5 presents the query-driven LSH method for the proposed LSH schemes

and develops automated parameter tuning to increase the efficiency of similarity

search. Section 4.6 discusses the performance of proposed LSH schemes com-

pare to baseline approaches and presents the key findings. Finally, Section 4.7

summarizes the work of this chapter.

4.2 Inverted Index with Distance Bounds

As discussed earlier, it is possible to find similar rankings by retrieving all rank-

ings from the inverted index that overlap at least in one item with the query

items. We use such a basic inverted index on rankings, illustrated in Table 4.2

for Example rankings 4.1, as a baseline in the experimental evaluation.



4.2 Inverted Index with Distance Bounds 43

7→ 〈τ2〉, 〈τ3〉
5→ 〈τ1〉, 〈τ2〉, 〈τ3〉
4→ 〈τ1〉, 〈τ2〉
. . .

Table 4.2: Basic Inverted Index

(4, 5)→ 〈τ1〉, 〈τ2〉
(5, 7)→ 〈τ2〉, 〈τ3〉
(3, 4)→ 〈τ1〉
. . .

Table 4.3: Sorted Pairwise Index

Applying filter and validate approach (Algorithm 1 in Section 2.1.2) on

the basic inverted index, shown in Table 4.2, for a user-provided query ranking

q and a distance threshold θd, we retrieve the candidates and the final results

as follows:

• The inverted index is looked up for each element in Dq and a candidate

set C of rankings is generated by collecting all distinct rankings seen in

the accessed posting lists.

• For all such candidate rankings τ ∈ C, the distance function K(0)(τ, q) is

calculated and if K(0)(τ, q) ≤ θd then τ is added to the result set R.

Potentially, many of the candidate rankings in C are so-called false positives,

i.e., rankings that are found while accessing the posting lists but do not belong

to R. Each such false positive causes an unnecessary distance function compu-

tation. Intuitively, τ ∈ R should be found in at least a certain number of posting

lists for becoming a potential candidate, depending on the distance threshold

θd. In this section, we establish a criterion that allows removing some of the

false positives by computing the minimal number of posting lists that need to

be accessed, for the elements in Dq. This idea is similar to the prefix-filtering

method [CGK06].

Lemma 4.2.1 determines the prefix-filtering parameter, i.e., the minimum

overlap required between two rankings, so that the Kendall’s Tau distance be-

tween them must lie within the threshold θd. This result is then used to propose

Proposition 4.2.2 that derives the bound on the number of elements in Dq that

are required to be looked up in the inverted index to retrieve all true results.

Lemma 4.2.1 The minimum number of overlapping elements between

two rankings τ and q to have at most a Kendall’s Tau distance θd is given by

µ = (k −
√
θd), where |Dq| = k.

Proof : Let µ be the minimum number of overlapping elements between

two rankings q and τ . Then, the minimum possible distance K(0)(τ, q) with µ

overlapping elements can be found by considering the following conditions:

(i) All overlapping elements are in the same order in both q and τ , which

yields K̄
(0)
i,j (τ, q) = 0 for all i, j ∈ {Dτ ∩ Dq}, according to Case 1 in

Definition 3 of the generalized Kendall’s Tau distance.
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(ii) All non-overlapping elements i of the ranking appear at the bottom of

both lists, which yields K̄
(0)
i,j (τ, q) = 0 for all i /∈ {Dτ ∩ Dq} and j ∈

{Dτ ∩Dq}, according to Case 2 in Definition 3 of the generalized Kendall’s

Tau distance.

Considering the above conditions, all the pairs (i, j), where i ∈ Dτ , j ∈ Dq

causes K̄
(0)
i,j (τ, q) = 1, according to Case 3 in Definition 3 of the generalized

Kendall’s Tau distance. As each ranking has (k− µ) non-overlapping elements,

the total number of such pairs is (k − µ)2.

In this thesis, we consider the penalty p = 0 for case 4 in Definition 3 of

the generalized Kendall’s Tau as mentioned, earlier in Section 4.1.1. Therefore,

K̄
(0)
i,j (τ, q) = 0 for all pair i, j /∈ {Dτ ∪Dq}.

Hence, minimum K(0)(τ, q) = (k − µ)2. Now, bounding the minimum

distance between two rankings to the threshold distance θ, we can bound µ,

i.e., solving the equation (k − µ)2 = θd, we get µ = dk −
√
θde. Clearly, all

rankings with overlap n < µ will have K(0)(τ, q) > θd, and therefore, can be

immediately ignored. k2 is the maximum distance possible between two top-k

rankings, which we use to normalize the distance measure within [0,1], for ex-

ample, normalized distance threshold θ = θd/k
2. Thus, µ can be also expressed

by dk(1−
√
θ)e.

From the previous lemma, we can state that all result rankings must appear

in at least µ posting lists, which leads to the following proposition.

Proposition 4.2.2 For retrieving all rankings in R, it is sufficient to look up

the posting lists for only k − µ+ 1 elements from the query’s domain Dq.

Using Proposition 4.2.2 on the basic inverted index, we can perform a more

efficient r-NN search under the generalized Kendall’s Tau distance than the

simple filter and validate approach. However, the concept behind the definition

of Kendall’s Tau distance opens the discussion of having slightly different index

structures than the basic one, which we will introduce in next section.

4.3 Pairwise and Triple Index

Kendall’s Tau is defined by discordant pairs between two rankings, which im-

mediately suggests treating a ranking as a set of pairs. Further, we observe that

triplets of items can also provide information about the order among item pairs.

Therefore, we consider creating inverted indices using pairs and triplets as keys,

respectively, which is feasible as top-k rankings are usually short compared to

the potentially large global domain. In this section, we present three different

ways to represent the rankings and propose three index structures based on

those representations. Following the discussion from the previous section, we

will also derive the pruning rules that allow us to avoid accessing the index for

all pairs or triplets from the query’s items during query processing.
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4.3.1 Rankings as Sets of Pairs

Considering a ranking as a set of pairs allows us to directly compare overlapping

pairs between two rankings to determine the Kendall’s Tau distance. Represent-

ing a ranking τ as a set of sorted pairs τps , we define the sorted pairwise index

as follows.

Definition 4 The sorted pairwise index maps a pair (i, j) ∈ τps to a posting

list that holds all rankings (ids) that contain both elements i and j, where τps
represents all pairs of elements that occur in ranking τ , defined as:

τps = {(i, j)|(i, j) ⊆ Dτ ×Dτ ∧ i < j}.

The index structure is called sorted pairwise index because, according to the

definition of τps , each key (i, j) follows i < j, without reflecting the order of ap-

pearance of i and j in τ . For instance, τp1s = {(2, 5), (2, 4), (2, 3), (4, 5), (3, 5), . . .}
for the ranking τ1 from Figure 4.1. Due to the ordering, redundant indexing is

avoided. For clarification, Table 4.3 represents part of the sorted pairwise index

for the example rankings given in Section 4.1.

In the τps representation, in order to compute the Kendall’s Tau distance,

overlapping pairs between the rankings need to be further verified to check the

actual order of items in both rankings. Hence, we propose another pairwise

representation of rankings as a set of unsorted-pairs τpu , such that the order

between items appears in the ranking can be preserved.

Definition 5 The unsorted pairwise index maps each pair (i, j) ∈ τpu to a

posting list that holds all rankings (ids) that contain both elements i and j in

this order, where τpu represents all pairs of elements that occur in ranking τ ,

preserving their ranking order, defined as:

τpu = {(i, j)|(i, j) ⊆ Dτ ×Dτ ∧ τ(i) < τ(j)}.

The index structure is called unsorted pairwise index because, accord-

ing to the definition of τpu , the keys in this index are maintaining the order

in which the elements are appearing in the ranking. For example, τp1u =

{(2, 5), (2, 4), (2, 3), (5, 4), . . .} for the ranking τ1 from Figure 4.1. Hence, a

posting list for key (i, j) in the unsorted pairwise index holds all rankings where

i appears before j. Table 4.4 represents part of the unsorted pairwise index for

the example given in Section 4.1.1. The space and time complexity for building

both pairwise indices is O(|T |
(
k
2

)
).

The simple filter and validate approach, introduced earlier for the single-item

inverted index, can also be applied to process queries on these pairwise index

structures. Unlike using each element from query, here, we look up the sorted

or unsorted pairwise index for each pair (i, j) ∈ qps or qpu, respectively, to build

the candidate set C in the filter procedure, presented in Algorithm 1. Then the

retrieved candidates C are validated to find the result set R.
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(5, 4)→ 〈τ1〉
(7, 5)→ 〈τ2〉, 〈τ3〉
(4, 5)→ 〈τ2〉
. . .

Table 4.4: Unsorted Pairwise Index

(2, 4, 5)→ 〈τ1〉, 〈τ2〉
(2, 5, 7)→ 〈τ2〉
(4, 5, 7)→ 〈τ2〉
. . .

Table 4.5: Triple Index

We can generate
(
k
2

)
possible pairs of items from query ranking q of size k,

i.e., |qps | = |qpu| =
(
k
2

)
. However, instead of probing the pairwise index for all(

k
2

)
pairs generated from q, we can use the prefix-filtering approach, discussed

earlier. Now, we derive the minimum number of pairs from query, for which we

need to look up both pairwise index structures to find all results, by adopting the

Lemma 4.2.1 that state that a ranking needs minimum µ overlapping elements

with the query to be qualified as a candidate. For pairwise indices, such µ

elements generate
(
µ
2

)
pairs from a ranking. Therefore, all final results should

contain at least
(
µ
2

)
pairs from qps or qpu, respectively, for threshold θd. Hence,

we obtain the following proposition.

Proposition 4.3.1 For retrieving all rankings in R, it is sufficient to look up

the sorted or unsorted pairwise index for only
(
k
2

)
−
(
µ
2

)
+ 1 pairs of elements

from qps or qpu, for the given query q and similarity threshold θd.

4.3.2 Rankings as Sets of Triplets

Based on the representation of a ranking as a set of triplets, denoted as τ t for

ranking τ , we propose another index structure, called triple index.

Definition 6 The triple index maps a triplet (a, b, c) ∈ τ t to a posting list

that holds all rankings (ids) that contain all three elements a, b, and c, where τ t

represents all triplets of elements that appear in ranking τ , defined as:

τ t = {(a, b, c)|(a, b, c) ⊆ Dτ ×Dτ ×Dτ ∧ a < b < c}.

In this index, the elements in a key maintain the alphabetic order, and thus,

avoid redundant indexing. For instance, τ t1 = {(2, 4, 5), (2, 3, 4), (3, 4, 5), . . .}.
Table 4.5 represents a part of the index created from the example given in Sec-

tion 4.1. It is clear that the more elements are concatenated to create keys for

an inverted index, the smaller the average size of a posting list becomes. Con-

sequently, rankings mapped into the same posting list have a higher probability

to be in fact similar. Therefore, a significant number of false positive candidates

can be avoided by using larger keys. On the other hand, the number of generated

keys grows drastically with keys getting large. For the triplets index, a total of(
k
3

)
keys are possible to create from a top-k ranking ranking τ , i.e., |τ t| =

(
k
3

)
.

Hence, the space and building time complexity of triple index is O(|T |
(
k
3

)
).

Again, the simple filter and validate paradigm can be applied for query

processing in the triple index. Similarly to above, we can derive minimum
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θ 0.1 0.2 0.3

Access method PF M PF M PF M

Sorted Pairwise Index 25 3 31 4 36 6

Unsorted Pairwise Index 25 3 31 5 36 7

Triple Index 86 3 101 6 111 11

Table 4.6: Gap between prefix-filtering bound and manually tuned minimum

required accesses

number of triplets a the query ranking that need to be used for retrieving the

results R. Adapting Lemma 4.2.1, all final results must appear in at least(
µ
3

)
triplets from qt, for a specific threshold θd. Thus, we obtain the following

proposition.

Proposition 4.3.2 For retrieving all rankings in R, it is sufficient to look up

the posting lists for only
(
k
3

)
−
(
µ
3

)
+ 1 pair elements from qt for query q and

specific θd.

In practice, we can retrieve all results by accessing fewer pairs or triplets

than the established bound, respectively, based on Proposition 4.3.1 or Propo-

sition 4.3.2. For example, Table 4.6 shows a study on a real-world dataset of

top-10 rankings created from Yago. The column PF represents the number of

access derived by Proposition 4.3.1 and Proposition 4.3.2 for pairwise indices

and triple index. The column M represents the minimum number of accesses

required to retrieve all the results, tuned manually. From the Table 4.6, we can

observe the clear distinction between the prefix-filtering bound and manually

tuned number of accesses. For a small distance threshold (θ ≤ 0.3), in the

prefix-filtering method, the triple index is accessed at least ten times more than

the actual minimum access requirement. Similarly, the prefix-filtering method

accesses pairwise indices at least five times more than the actual minimum access

requirement to find all the results. According to the concept of prefix-filtering

method, if we access less number of index entries than the access bound pro-

posed by the approach, we will no longer guarantee the retrieval of 100% result,

i.e., the 100% recall. However, compromising the 100% recall requirement, we

can access less number of index entries and still hope that we will retrieve very

many results, not a scientific way to realize the problem. Hence, we want to find

out how the violation of prefix-filtering bound affects the recall of the similarity

search, which will help us to probe the fewer index entries while satisfying a

high recall. To understand this characteristic and derive a more strict bound on

the number of access for proposed index structures, we relate these indices with

LSH, discussed in the next Section 4.5 and verified by the experimental study

in Section 6.4.
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4.4 LSH Schemes for Kendall’s Tau

Candidate rankings fetched from the above indices are eventually evaluated

to reveal the actual results similar to the query. Particularly, the pairwise

and the triplet-based approach access the index far more times than the actual

accesses needed, depending on the value of k. On the other hand, larger keys

render the lookups more “precise”. In this section, we relax the problem of

r-NN search by adopting the concept of LSH to find a strict bound on the

number of required lookups that still allows achieving a high recall value close

to 100%. Here we present how exactly such an approximate querying can be

assessed by relating the discussed indices to LSH schemes. Specifically,

we propose two hash families for Kendall’s Tau distance and show that they are

in fact locality sensitive. For each of these families, we consider two hashing

schemes and theoretically evaluate their suitability to efficiently retrieve the

query results.

4.4.1 Hash Family 1

We introduce the first hash family, denoted as H1 that contains projections

respect to all distinct elements from the global domain D = ∪τ∈TDτ . Each

hash function divides the data space into two half spaces.

Definition 7 hi ∈ H1, with i ∈ D, is defined as

hi(τ) =

{
1, i ∈ Dτ

0, otherwise
(4.1)

Clearly, the hash functions from H1 project rankings to binary space based

on the presence of individual elements, e.g., h2(τ1) = 1, h2(τ3) = 0, considering

the example from Section 4.1.

For a distance threshold θd, if two objects lies within the distance θd, a LSH

family ensures that those two objects have higher probability to collide into the

same hash bucket than other objects that have distance strictly higher than θd,

according to Definition 1. Consider, P1 is the probability that similar objects

collide into the same bucket and P2 is the probability that two dissimilar objects

collide into the same bucket, according to H1. To show that the hash family H1

is locality sensitive, we have to prove that P1 > P2.

Locality Sensitivity of Hash Family 1

Each hi ∈ H1 maps τ, q ∈ T to {0, 1} according to the presence of i in τ and

q. A collision into bucket ‘1’ signifies the overlapping of one element between τ

and q. Hence, we can directly relate this hash family with the overlapped-based

distance measure like Jaccard distance . As this work considers Kendall’s Tau

distance, we first find the equivalent Jaccard distance threshold corresponding to

the Kendall’s Tau distance threshold. Then the approximated Jaccard distance
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threshold is used as r to find the collision probability P1 of hash family H1.

For the notation, throughout this chapter, P1, P2, c, and r refer directly to

Definition 1. In Section 4.2, we have already derived the required minimum

overlap µ for two rankings to have a chance to satisfy the Kendall’s Tau distance

threshold θd. Therefore, the Jaccard distance with minimum µ overlaps, i.e.,

1−µ/(2k−µ), becomes the approximated equivalent Jaccard distance threshold (r)

corresponding to the Kendall’s Tau threshold θd. Following the discussion, it is

clear that the probability Pr[hi(q) = hi(τ)] is the same as the Jaccard similarity

µ/(2k−µ), if i ∈ {Dq ∪Dτ}. As the H1 is defined over the global domain D, all

hash functions hi, where i /∈ Dq ∪Dτ , map q and τ to the same bucket (labeled

as ‘0’) as i /∈ Dq, Dτ . Let |Dq ∪Dτ | = λ, then, |D| = 2k − µ + λ, and the

collision probability is then P1 = (µ + λ)/|D|. More similar rankings will have

more overlapping elements than µ, which increases the collision probability P1,

i.e., more similar rankings have higher chance to be placed in the same bucket.

On the other hand, as long as the approximation factor1 c is strictly larger

than 1, rankings that have distance larger than cr, have strictly less than µ

overlapping elements. Hence, we can say P2 < P1. Thus, the locality sensitive

property holds for H1.

Function Families for Hash Family 1

Based on the hash family H1, we propose two LSH function families G1 and G2
in a way such that the implementation of hash tables for these function families

can directly use the proposed pairwise and triplets-based index.

Scheme 1 is based on function family G1, which is created by concatenating

two hash functions, defined as follows:

G1 = {(hi, hj)|(hi, hj) ∈ H1 ×H1 and i < j}

Hence, a function g ∈ G1, where g = (hi, hj), projects a ranking τ to the space

{0, 1}2. Using the example rankings from Table 4.1, let us consider a function

g1 = (h4, h5) ∈ G1, as 4 < 5. Hence, g1(τ3) = (0, 1), g1(τ1) = g1(τ2) = (1, 1).

Here, we notice that the bucket labeled as (1, 1) for g1 contains both τ2 and

τ3 which is similar with the bucket labeled (4, 5) in the sorted pairwise index

illustrated in Table 4.4. Clearly, the bucket label (1, 1) for a hash function

g = (hi, hj) is represented by the key (i, j) in the sorted pairwise index. Thus,

the sorted pairwise index contains all hash table entries with bucket label (1, 1)

from all the hash tables introduced by G1. Now, looking up the index for l pairs

(i, j) ∈ τps implies applying l different functions g ∈ G1 on τ .

Further, we define Scheme 2 with function family G2 by combining three hash

functions from H1, according to the following definition:

G2 = {(ha, hb, hc)|(ha, hb, hc) ∈ H3
1 and a < b < c}.

1A discussion on the value of c is out of scope for this work as this work does not address

the c-approximate nearest neighbor search problem.
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h2,5 h4,5 h3,4 h3,7 . . .

τ1 1 0 0 1 . . .

τ2 0 1 0 0 . . .

Table 4.7: Projections of rankings under H2

Here, g ∈ G2, where g = (ha, hb, hc), projects a ranking τ to {0, 1}3. Similar

to the case for G1, looking up a triplet from a ranking τ means accessing the

bucket with label (1, 1, 1) in the hash table of g = (ha, hb, hc), where a, b, c ∈ Dτ .

Therefore, it is clear that the triple index contains only (1, 1, 1) bucket labels

from all hash tables that are introduced by G2. Thus, looking up the triple index

for l triplets (a, b, c) ∈ τ t implies applying l different functions g ∈ G2 on τ .

The query performance for different values of l is investigated in the experi-

mental evaluation in Section 6.4, for both function families.

4.4.2 Hash Family 2

Instead of considering hash functions based on projections on individual ele-

ments, we now define a hash family H2 that contains all projections on DP ,

where DP = {(i, j)|(i, j) ∈ D×D and i < j}, i.e., all sorted ordered pairs over

D. Hence, H2 = {hi,j |(i, j) ∈ DP}.
Recall from Chapter 2 that the generalized Kendall’s Tau is defined by the

number of total discordant pairs in the domain Dτ ∪ Dq, for a ranking τ and

query ranking q. To resemble this definition/behavior via hash functions, we

define hash functions hij ∈ H2 that project τ on {0, 1} as follows:

Definition 8 hi,j ∈ H2, with (i, j) ∈ DP , is defined as

hi,j(τ) =


1, i, j ∈ Dτ and τ(i) < τ(j)

1, i ∈ Dτ and j /∈ Dτ

0, otherwise

(4.2)

Unlike H1, this hash family is reflecting the order of elements in a ranking

with respect to the order of elements in the domain DP . For example h1,4(τ1) =

0, h1,4(τ2) = 1, considering the example from Section 4.1.

Locality Sensitivity of Hash Family 2

After projecting a ranking on DP , the ranking can be represented as a string

of {0, 1}, where ‘0’ or ‘1’ represents the bucket label on which the ranking is

mapped by a specific hash function from H2. For clarification, such a represen-

tation for τ1 and τ2 under hash family H2 is shown in Table 4.7. Here, we can

see that the example rankings τ1 and τ2 from Table 4.1 are mapped into different

buckets for hash function h2,5, according to the first rule of the definition of H2
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(Definition 8). Relating this scenario to the generalized Kendall’s Tau distance,

K̄
(0)
2,5(τ1, τ2) = 1, according to Case 1 in Definition 3 as the ranking order of the

pair (2,5) is different in τ1 and τ2. Considering function h3,4, both rankings τ1
and τ2 are mapped to the same bucket with label ‘0’, according to the second

rule of the definition of H2. This scenario is identical to Case 2 in Definition 3,

which says K̄
(0)
3,4(τ1, τ2) = 0. Considering a scenario of Case 3 in Definition 3,

K̄
(0)
3,7(τ1, τ2) = 1 and we find that h3,7 also maps τ1 and τ2 into different buckets

using second and third rule of the definition ofH2, respectively. In summary, ac-

cording to the definition of H2, two rankings do not collide into the same bucket

for a hash function hi,j ∈ H2 if the pair (i, j) is a discordant pair according the

definition of generalized Kendall’s Tau. Hence, the generalized Kendall’s Tau

distance K(0)(τ1, τ2) is the hamming distance between the binary representation

of τ1andτ2, introduced by H2. Consequently, the probability that a query q and

ranking τ collide into the same bucket, i.e., Pr[h(q) = h(τ)], is the fraction of

projections on DP for which τ and q agree. Following the discussion above, two

rankings will not be projected into the same bucket if the rankings are projected

on those sorted pairs that are responsible for the distance. Hence, we obtain

the collision probability P1 = 1 − θd/|DP | considering r as θd. If the distance

between rankings is smaller than θd then P1 increases, i.e., if rankings are more

similar then the probability to project those ranking into same bucket is larger.

As long as c > 1, we have P1 > P2 and thus the property of locality sensitive

hashing holds for H2.

Function Families for Hash Family 2

Based on H2, we define two function families G3 and G4 that use the previously

introduced unsorted pairwise index. We propose Scheme 3 with function family

G3, defined by selecting any hash function over H2, i.e.,

G3 = {hi,j |hi,j ∈ H2}.

For a g ∈ G3, i.e., g = {hi,j}, the bucket labels ‘1’ and ‘0’ of g are represented

respectively by the key element (i, j) and (j, i) in the unsorted pairwise index.

According to this interpretation of hash bucket labels, the unsorted pairwise

index holds hash table entries for all hash functions in H2. Hence, the ranking

lists corresponding to a key (a, b) from the unsorted pairwise index is the same

as the bucket label ‘1’ for a function g = hi,j with {i, j} = {a, b}. Therefore,

looking up the unsorted pairwise index for l pairs from τpu implies applying l

different functions g ∈ G3 on the query ranking.

We define Scheme 4 with function family G4 by combining two hash functions

from H2, according to the following definition.

G4 = {(hi,j , hx,y)|(hi,j , hx,y) ∈ H2 ×H2,

(i, j), (x, y) ∈ DP and |{i, j} ∩ {x, y}| < 2}.

Hence, function g ∈ G4, with g = (hi,j , hx,y), projects a ranking τ to {0, 1}2.

From the discussion of Scheme 3, we know how the hash table for hi,j ∈ H2
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is related to the unsorted pairwise index. Following that discussion, we can

easily retrieve the entry of the hash table for g ∈ G4 by intersecting the posting

lists from the unsorted pairwise index for key-pair used in g. For example, if

g = (hi,j , hx,y) maps a ranking τ to (0, 1), we can retrieve the rankings appearing

in the same bucket with τ by intersecting the ranking lists retrieved for the keys

(j, i) and (x, y) from the unsorted pairwise index—note that here we scan key

(j, i) and not (i, j) as hi,j maps τ to 0. Applying l different g ∈ G4 functions

on the query element relates to looking up l different key pairs in the unsorted

pairwise index.

The impact of l on both function families are studied theoretically in the

following section and evaluated in the experiments in Section 6.4.

4.5 Query-Driven LSH

It is clear from the discussion in the previous section that both hash families

H1 and H2 contain a large number of hash functions. Both project a ranking

in binary space according to the presence or absence of an element (in case

of H1) or a pair of elements (in case of H2) in the ranking. Moreover, we

consider top-k rankings where k << |D|. Hence, µ << |D| and the Kendall’s

Tau distance threshold θd << |DP |. Consequently, the bucket that contains

rankings projected on the absence of an element or a pair of elements (i.e., a

bucket with label ‘0’) holds very many entries than the bucket that contains

rankings projected on the presence of an element or a pair of elements (i.e., a

bucket with label ‘1’). This non-uniform distribution of rankings in hash buckets

suggests to investigating how the selection of hash functions can optimize the

number of retrieved candidate rankings.

A prominent intuition is that a larger number of shared elements between

a ranking and a query increases the possibility of the ranking being similar

“enough” to the query. Hence, in practice, we consider those hash functions that

project the query only on the elements or pair of elements that are present in

the query. Using this strategy, we can avoid the projection of the query into less

informative and large hash buckets. Consequently, it helps to collecting fewer

number of candidates, and thus, increases the efficiency of the LSH method by

avoiding the validation of many false positives. As mentioned in the introduc-

tion of this chapter, real-world data are not always uniformly distributed over

rankings. Therefore, selectively choosing hash functions from the hash families,

based on the elements from queries can render the proposed LSH method more

efficient than a basic LSH method. Likewise, to improve the efficiency of our

proposed LSH methods, we propose a query-driven LSH method that choose

hash functions from proposed hash families, biased by the elements appeared in

the query, during query processing. Such adaptive nature of this strategy does

not require analyzing the distribution of elements in queries beforehand. In the

next section, we will discuss how exactly this biased choice of hash functions

affect the collision probability of the proposed LSH schemes.
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4.5.1 Refining the Collision Probability and Tuning l

According to query-driven LSH, forH1, all the hash functions which are selected

to map a query into hash tables during query processing are projections on the

elements from the query ranking. Similarly, for H2, all the hash functions

which are selected to map a query into hash tables during query processing

are projections on ordered pairs from the query ranking. Hence, the collision

probability changes for both proposed hash families.

The collision probability P1 for H1 becomes µ/k because any one of the

shared elements is drawn from a total of k query elements. Based on this

refined P1 values, the tuning of parameter l can be determined by fixing error

probability δ. According to the definition of G1 and G2, the parameter m is two

and three respectively for Scheme 1 and Scheme 2. By substituting P1 and m

in Equation 2.1, we obtain the recall functions for Scheme 3 and Scheme 4 with

error probability δ as follows.

1− δ ≥ 1− (1− (µ/k)2)l Scheme 1 (4.3)

1− δ ≥ 1−
(
1− (µ/k)3

)l
Scheme 2 (4.4)

For H2, all the pairs that are responsible for the θd distance between a rank-

ing and a query are drawn from a total of
(
k
2

)
ordered pairs from the query. It is

important to notice here that the discordant pairs between two lists according

to Case 3 in Kendall’s Tau Definition 3 include only single element from each

lists and such pairs are not contained in
(
k
2

)
pairs created from the query. Case

3 is responsible for (k − x)2 distance for x overlapping elements between two

rankings. According to Lemma 4.2.1, a minimum of µ overlapping elements are

required for the distance threshold θd. Therefore, the distance (k − µ)2 is not

introduced by the pairs possible to form using only the elements from a query.

Clearly, the pairs created only from the query’s elements can be responsible for

only (θd− (k−µ)2) distance. This distance is the lower bound of the number of

discordant pairs drawn from the query. As the number of overlapping elements

becomes more than µ, we can derive more than (θd− (k−µ)2) discordant pairs

solely based on the query. Let E(µ) denotes the expected number of overlapping

elements for a ranking that lies within θd distance from the query q. Then, for

hash family H2, the collision probability P1 becomes 1− (θd− (k−E(µ))2/
(
k
2

)
).

Based on this refined P1 value for hash family H2, we find the parameter

l by fixing error probability δ. According to the definition of G3 and G4, the

parameter m is one and two, respectively for Scheme 3 and Scheme 4. By sub-

stituting P1 and m in Equation 2.1, we obtain the recall functions for Scheme 3

and Scheme 4 as follows.

1− δ ≥ 1−

(
1−

(
1− θd − (k − E(µ))2(

k
2

) ))l
Scheme 3 (4.5)
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1− δ ≥ 1−

1−

(
1− θd − (k − E(µ))2(

k
2

) )2
l

Scheme 4 (4.6)

A comparison among the recall functions for all four schemes based on Equa-

tions 4.3–4.6 will not be appropriate as the distance threshold used in Scheme 1

and Scheme 2 is the Jaccard distance represented in terms of µ, where µ gives

the lower bound of overlapping elements required to meet Kendall’s tau distance

threshold θd. Therefore, to compare all schemes, we modify the recall functions

for Scheme 3 and Scheme 4 by expressing the collision probability P1 for H2 in

terms of µ. Hash family H2 projects rankings on ordered pair elements from

DP , explained in Section 4.4.2. In query-driven LSH, considering at least µ

overlapping elements exist between a ranking and a query, all the pairs that

disagree between them must be drawn from
(
k−µ
2

)
pairs from the query. So,

the probability that a pair of elements, appearing in both rankings, becomes

(1 − (k−µ2 )/(k2)). But these pairs have 50% chance to be appeared in the same

order in both rankings. Hence, for H2, the collision probability P1 can also be

represented by 0.5(1−(k−µ2 )/(k2)). Using this P1, the recall functions for Scheme 3

and Scheme 4, presented by Equation 4.5 and 4.6, are reformulated and given

by Equation 4.7 and 4.8, in terms of µ.

1− δ ≥ 1−

(
1− 0.5

(
1−

(
k−µ
2

)(
k
2

) ))l Scheme 3 (4.7)

1− δ ≥ 1−

1− 0.25

(
1−

(
k−µ
2

)(
k
2

) )2
l

Scheme 3 (4.8)

Figure 4.1 shows the comparison among the four LSH Schemes, given by

Equations 4.3, 4.4, 4.7, and 4.8. It presents how recall increases as l increases,

for threshold θ = 0.1 and k = 10.

A predefined recall value (1 − δ), determined by given error probability δ,

for all proposed schemes can be reached by varying m and l. In our proposed

schemes, as we have fixed the m-value, the recall can be assured by tuning the

parameter l, i.e., the number of hash tables we need to access to retrieve all can-

didates for the similarity search. For instance, Figure 4.1 shows that Scheme 1

and Scheme 3 can reach 99.99% recall (δ = 0.0001) with l = 8 for θ = 0.1

(i.e., µ = 7). This means that 8 hash tables (i.e., 8 entries from both pairwise

indices) are enough to retrieve 99.99% of the true positive candidates. From Fig-

ure 4.1, we can see that this bound (l) is more than three times lower (to obtain

100% recall) than the bound established earlier in Proposition 4.3.1, discussed

in Section 4.3.1, which would need to look up 25 entries. This improvement is

consistent for the other schemes, too.

The actual tighter bound for l can be calculated by solving Equations 4.5

and 4.6, as these equations use the exact Kendall’s tau distance threshold θd in



4.5 Query-Driven LSH 55

2 4 6 8 10 12 14
l

0.2

0.4

0.6

0.8

1.0

Recall

Scheme 1

Scheme 2

Scheme 3

Scheme 4

Figure 4.1: Comparison of recall functions among query-driven LSH schemes;

k = 10.

k=30 k=40

θ 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

InvIn+Drop 10 14 17 19 13 18 22 26

Scheme 3 3 4 6 10 3 4 6 8

Scheme 4 4 7 14 33 4 7 14 22

Table 4.8: Lower bound of parameter l

calculation of collision probability rather using relaxed threshold using µ, dis-

cussed earlier. Depending on δ, the value of l can be higher than
(
k
2

)
. Hence,

we consider accessing min(
(
k
2

)
, l) hash tables in the query-driven LSH to avoid

selecting the same hash function multiple times. Table 4.8 presents the num-

ber of hash tables (keys in pairwise and triple index) that need to be scanned

compared to the access in inverted index using Proposition 4.2.2 ( it is denoted

as the baseline InvIn+Drop), for δ = 0.01. We see that our proposed methods

scan significantly a fewer entries compared to InvIn+Drop for lower θ, and sub-

sequently, the prefix-filtering approach on the pairwise and triple index. The

difference between the index access using the proposed LSH and the baseline

InvIn+Drop becomes large as the ranking size k increases, and thus, making our

schemes more efficient.

In practice, we observe that even 100% recall can be obtained with l tuned

for δ = 0.01 (i.e., recall 99.99%), as shown in Table 4.8. We further discuss this

in Section 4.6.2 for top-10 and top-20 rankings. Figure 4.1 shows that the recall

functions for Scheme 1 and Scheme 2 give an upper bound for the recall functions

Scheme 3 and Scheme 4, respectively. For these characteristics, the parameter

l that is determined for Scheme 3 and Scheme 4 can be used for Scheme 1 and

Scheme 2, respectively, to achieve a predefined recall value. This is validated

by our experimental results in Section 4.6.2. Hence, the tighter bounds of l

determined from Scheme 3 and Scheme 4 are used to tune the parameter l in

query-driven LSH schemes.
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4.5.2 Effect of the Position of Query Elements

According to Definition 3 of the generalized Kendall’s Tau distance, we notice

that a non-overlapping element appearing at a top rank is responsible for more

discordant pairs than if it would appear at a lower rank. Hence, the list with

more non-overlapping elements in the top of a ranking list is more unlikely to

satisfy the similarity threshold. Here, we discuss how this characteristic affects

the candidate pruning during similarity search. We denote the total number

of discordant pairs caused by any non-overlapping element that appears in the

ith position as K̄
(0)
i . For any two top-k rankings and a given threshold θd, the

upper and lower bound of the K̄
(0)
i can be calculated by following equations.

upK̄
(0)
i = min(k − i, µ) where µ = k −

√
θd (4.9)

lowK̄
(0)
i =

{
0 i ≥ µ
µ− i+ 1 otherwise

(4.10)

avgK̄
(0)
i = 1/2(lowK̄

(0)
i +up K̄

(0)
i ) (4.11)

According to Equations 4.9 and 4.10, Figure 4.2 shows how the rank of a

non-overlapping element contributes to the distance, expressed in percentage

of distance threshold θ. From Figure 4.2, we observe that missing elements

from very top positions is responsible for more than 50% discordant pairs of the

total Kendall’s Tau distance for a small distance threshold (such as θ = 0.1).

Consequently, we can say that the pruning of false positive candidates can be

achieved more effectively for the hash functions that project the rankings on the

elements from top positions, for a small distance threshold.

2 4 6 8 10
Position of element(i)

10

20
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40

50

60

70

% of distance threshold upper bound for θ=.1

upper boundfor θ=.2

upper boundfor θ=.3
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lower bound for θ=.3

Figure 4.2: Number of discordant pairs due to different positions (rank) of

elements in a top-10 ranking

Therefore, selecting hash functions that project on elements from the topmost

positions have a higher probability to retrieve true positive candidates.

In Figure 4.2, we also see that the lower and the upper bound of contribution

to the distance for the ith non-overlapping element decreases as the threshold
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increases. Hence, selecting hash functions by giving preference to top-ranked el-

ements becomes comparatively less effective in candidate pruning for larger dis-

tance thresholds. Additionally, our proposed LSH schemes use pairs or triplets

from the query instead of using distinct elements for projecting rankings, and

thus, focusing on only top elements will have a higher chance to retrieve dupli-

cate rankings as candidates. Here, we present Algorithm 3 to select l functions

for query-driven LSH schemes in a way that ensures the selected hash functions

projecting the query not emphasizing only the top elements of the query.

Algorithm 3: Selecting l functions for the query-driven LSH schemes

Data:

q = {e1, e2, . . . , ek}; q(ei) = position of ei

weight of ei,W (ei) =avg K̄
(0)
i /

∑
ej∈q avgK̄

(0)
i

H = {h1, h2, . . .};W (hi) =
∑
ej∈E(hi)

W (ej)

G = {g1, g2, . . .}; W (gi) =
∑
hj∈giW (hj)

E(hx) = elements used in hx for projecting q, hx ∈ H
1 Procedure selectHash(q,W,H,G)
2 S := ∅
3 S := argmaxgi{W (gi)|hj ∈ gi ∧ E(hj) ∈ q}
4 while |S| ≤ l do

5 G := G − S
6 T := argmingi{

∑
ea,eb∈

⋃
hx∈gi

|q(ea)− q(eb)| where

hj ∈ gi ∧ E(hj) ∈ q}
7 S := S ∪ argmaxgi{W (gi)|gi ∈ T}
8 end while

1010 return S

If we replace Line 6 in Algorithm 3 with T = {gi|hj ∈ gi ∧ E(hj) ∈ q}, the

algorithm will return l functions that only emphasize on top elements from the

query. In Section 4.6.3, a comparison between random selections of hash func-

tions and position-influenced selections is discussed with experimental results

for real-world datasets.

4.6 Experimental Evaluation

We have implemented the index structures described above in Java 1.6 and run

the experiments using an Intel Xeon CPU @ 2.67GHz machine, running Linux

kernel 3.2.60, with 264GB main memory. The index structures are kept entirely

in memory.

To evaluate the querying performance in terms of query response time

(here, wallclock time), number of retrieved candidates, and recall (i.e.,

fraction of results found), we use two different datasets.

Yago Entity Rankings: This dataset contains 25,000 top-k rankings that
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have been mined from the Yago knowledge base, as described in [IMS13]. Es-

sentially, it contains entity rankings like the top-10 tallest buildings in the world

or the countries by population.

NYT: This dataset contains search engine result rankings, created using

1 million keyword queries, randomly selected out from a published query log

of a large US Internet provider. These queries are executed against the New

York Times annotated corpus [San08] using a standard tf*idf scoring model with

Dirichlet smoothing from the information retrieval literature.

Characteristics of the mentioned datasets are different, specifically, consid-

ering the frequency in which items appear across different rankings. The Yago

dataset holds real-world entities where each entity occurs in a few rankings

only. On the other hand, the NYT dataset comprises many popular documents

that appear in many query-result rankings. Considering that the distribution

of items in rankings follows Zipf’s law, the estimated skewness parameter for

NYT and Yago datasets are 0.87 and 0.53, respectively.

In addition to the baseline approach described in Section 4.2, we consider

a competitor based on the work by Wang et al. [WLF12]. Based on the con-

cept of prefix-filtering, the authors propose an adaptive filtering framework for

improving the performance of executing joins between two sets. This frame-

work considers a global order of all elements in sets to build a Delta Inverted

Index that uses different prefix parameters to index the elements in sets. Then,

they propose an algorithm for similarity search, called SimJoin Query, on top

of their adaptive framework, coined as it Adapt-Join. We implemented their

proposed index structure Delta Inverted Index, where the global order of the

items in rankings is generated by the tf*idf measure of each elements appearing

in rankings, and then apply SimJoin over the built index.

The runtime performance is measured in terms of average runtime for 1000

queries while varying the normalized distance threshold θ (given by θd = k2×θ).
Overall, a comparative study on the following approaches is presented:

• The filter and validate method on the single item-based inverted index

denoted as InvIn.

• Prefix-filtering method on the single-item-based inverted index, where

larger posting lists are dropped selectively, using the distance bound given

in Proposition 4.2.2, denoted as InvIn+Drop.

• The presented LSH Scheme 1, i.e., using the sorted pairwise index.

• The presented LSH Scheme 2, i.e., using the triplets index.

• The presented LSH Scheme 3, i.e., using the unsorted pairwise index.

• The presented LSH Scheme 4, i.e., using the unsorted pairwise index.

• The competitor SimJoin.
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NYT (MB) Yago (MB)

k = 10 k = 20 k = 10 k = 20

Simple Inverted Index 14.99 22.08 15.99 30.18

Sorted Pairwise Index 64.81 267.45 107.0 437.59

Unsorted Pairwise Index 45.45 188.25 77.51 319.06

Triple Index 127.0 776.18 254.2 1042

Table 4.9: Comparison of size among indices

NYT (sec) Yago (sec)

k = 10 k = 20 k = 10 k = 20

Simple Inverted Index 0.081 0.114 0.075 0.095

Sorted Pairwise Index 0.342 1.732 0.368 1.886

Unsorted Pairwise Index 0.307 1.434 0.409 1.816

Triple Index 1.250 12.09 1.434 28.69

Table 4.10: Comparison of building time among indices

• We have additionally implemented LinearScan that is simply a full linear

scan over all rankings. We do not report on it in the plots for readability,

as LinearScan is at least 34 times slower than InvIn.

Before starting the evaluation of the performance of different proposed

schemes for the similarity search, we present a comparison of the building time

and the index size among different indices used in proposed LSH schemes in

Table 5.3 and Table 4.10. From the statistics in these table, we can see that

the size of the index grows as more elements are used to generate the keys,

as expected. We can also find that the growth of this index increases more

drastically for Yago data than the NYT, due to their data characteristics. As

the elements in Yago rankings are less skewed, using multiple elements as keys

does not shorten the size of posting lists compare to the case of NYT.

4.6.1 Evaluation of theoretical bounds on index access for

Query-Driven LSH

Table 4.11 and Table 4.12 tables present the theoretically established bounds

for the parameter l, denoted as TB, determined from the Equation 4.3 - 4.6 for

respectively Scheme 1, Scheme 2, Scheme 3, and Scheme 4 with error probability

δ = 0.01, confirming recall value 99%. In these tables, we compare the statistics

under TB with the manually tuned minimum index accesses to achieve 100%

recall in the similarity search, presented by column M. From Table 4.11 and

Table 4.12, we can see that, almost all of the time, the automatically tuned

parameter l is the same as the manually tuned l for 100% recall. For the cases

where the manually tuned l is larger than the theoretically established one, the

actual recall for this value of l is given within parentheses.
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θ Data Scheme 1 Scheme 2 Scheme 3 Scheme 4

TB M TB M TB M TB M

0.1
NYT 3 1 4 2 3 2 4 2

Yago 3 3 4 3 3 3 4 3

0.2
NYT 5 4 8 6 5 5 8 6

Yago 5 4 8 6 5 5 8 6

0.3
NYT 7 5 18 9 7 7 18 13

Yago 7 6 18 11 7 7 18 15

Table 4.11: Comparison of tuning factor l for 100% recall for top-10 rankings

θ Data Scheme 1 Scheme 2 Scheme 3 Scheme 4

TB M TB M TB M TB M

0.1
NYT 3 3 3 3 3 3 3 3

Yago 3 3 3 3 3 3 3 3

0.2
NYT 6 6 8 8 6 6 8 8

Yago 6(99.9) 7 8(99.8) 9 6(99.9) 7 8(99.8) 11

0.3
NYT 7 7 10 10 7 7 10 10

Yago 7(99.9) 8 16 12 7(99.9) 9 16 12

Table 4.12: Comparison of tuning factor l for 100% recall for top-20 rankings
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Figure 4.3: Comparative study of query processing for varying θ in top-10 Yago

rankings.

4.6.2 Performance Analysis among Query-Driven LSH

Schemes and Competitors

The baseline approach InvIn retrieves the total of 22,755 and 37,071 candidates

and takes on average 0.05ms and 0.15ms to response, respectively for top-10

and top-20 Yago rankings. InvIn retrieves the total of 60, 627 and 74, 128 can-

didates and takes on average 0.15ms and 0.35ms to response, respectively for

top-10 and top-20 NYT rankings. The performance of InvIn is more than

three times slower for Yago and two times slower for NYT compared
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Figure 4.4: Comparative study of query processing for varying θ in top-20 Yago

rankings.
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Figure 4.5: Comparative study of query processing for varying θ in top-10 NYT

rankings.

to our proposed schemes. From Figure 4.4, we see that fewer candidates

are retrieved from the pairwise indices or the triplets index using the proposed

schemes, compared to the baseline and the InvIn+Drop method, for the Yago

dataset. This performance improvement stems from the tight bound of the

parameter l, resulting less index accesses, as well as from shorter posting lists

due to the query-driven selection of hash tables. Since recall is tuned to 100%,

retrieving fewer candidates implies evaluating fewer false-positive candidates,

which reflects the characteristic of the LSH technique that true-positive candi-

dates are more likely to be hashed into the same bucket. The characteristic of

retrieving less false-positive candidates than the baseline and InvIn+Drop meth-

ods is consistently observed throughout the datasets—except for Scheme 1 and

Scheme 3 with parameter θ = 0.1 for the NYT dataset (cf., Figure 4.6).

In Figure 4.4 and Figure 4.6, we observe that retrieving less false-positive

candidates for all the proposed schemes directly influences the runtime perfor-

mance for both datasets. For all proposed schemes, as the threshold increases,

more hash tables are needed to be accessed, and the runtime performance re-
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Figure 4.6: Comparative study of query processing for varying θ in top-20 NYT

rankings.

mains almost proportionate with the number of retrieved elements, for all ap-

proaches with both datasets. The only exception is observed for the Scheme 4

with θ = 0.3, due to the computation time for finding intersection of posting lists

from the key pairs used in Scheme 4, as discussed in Section 4.4.2. Figure 4.4

and Figure 4.6 also show that all the proposed schemes perform better than the

competitor SimJoin. SimJoin finds the best prefix parameter for each query and

applies Adapt-Join using a delta inverted index to find potential candidates.

From the experimental results, for both datasets, we can conclude that the 1-

prefix scheme performs best most of the time, following the observation that

the InvIn+Drop method performs better than the competitor. More precisely,

the InvIn+Drop scheme uses the 1-prefix method and ensures best performance

by dropping the longest index entries. Unlike this, in the SimJoin method,

the index entries for the elements are globally sorted by the inverted docu-

ment frequency, and thus, dropping posting lists according to the adaptive best

prefix parameter does not ensure the dropping of the large ones. For the Yago

dataset, we can see that all the schemes perform better than InvIn+Drop (except

Scheme 4 for top-10 rankings with θ = 0.3). For the NYT dataset only Scheme 2

and Scheme 4 is winning over InvIn+Drop, except Scheme 4 with θ = 0.3. One

reason behind this observation is that the NYT dataset contains more skewed

data which is further explained by a recall analysis among the schemes, using

experimental results summarized in Table 4.13 and Table 4.14.

In Figures 4.4 and 4.6, we notice that Scheme 2 and Scheme 4 consistently

retrieve fewer candidates than Scheme 1 and Scheme 3, respectively. A direct

consequence of it is reflected in the precision studies; Figure 4.8 shows that

the precision of Scheme 2 and Scheme 4 is always higher than Scheme 1 and

Scheme 3. This result implies that the probability of retrieving candidates that

belong to R in Scheme 2 and Scheme 4 is higher than in Scheme 1 and Scheme 3,

respectively. This is align with the LSH property that the probability of finding

similar ranking is higher when more hash functions are used to create hash keys

for LSH schemes.
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θ = 0.1 θ = 0.2 θ = 0.3

l = 1 l = 3 l = 6 l = 10 l = 1 l = 3 l = 6 l = 10 l = 1 l = 3 l = 6 l = 10

Scheme 1 for NYT 100 100 100 100 99.9 100 100 100 99.8 99.9 100 100

Scheme 2 for NYT 100 100 100 100 99.9 100 100 100 67.5 67.7 99.9 100

Scheme 3 for NYT 99.7 100 100 100 98.9 99.8 100 100 97.9 99.6 99.8 100

Scheme 4 for NYT 99.7 100 100 100 99.8 99.8 100 100 67.1 67.4 99.7 100

Scheme 1 for Yago 98.9 100 100 100 97.1 99.5 100 100 92.1 97.9 99.9 100

Scheme 2 for Yago 98.9 100 100 100 96.6 98.9 100 100 90.1 95.5 98.6 99.5

Scheme 3 for Yago 98.7 100 100 100 96.6 99.3 100 100 91.3 97.3 99.7 100

Scheme 4 for Yago 98.9 100 100 100 96.6 99.3 100 100 91.3 97.3 99.7 100

Table 4.13: Comparison of achieved recall in percent for k = 10.

θ = 0.1 θ = 0.2 θ = 0.3

l = 1 l = 3 l = 6 l = 10 l = 1 l = 3 l = 6 l = 10 l = 1 l = 3 l = 6 l = 10 l = 15

Scheme 1 for NYT 100 100 100 100 99.9 100 100 100 99.2 99.9 100 100 100

Scheme 2 for NYT 99.9 100 100 100 99.8 99.9 100 100 85.4 85.6 100 100 100

Scheme 3 for NYT 99.7 100 100 100 98.6 99.5 99.9 100 97.5 99.2 99.8 100 100

Scheme 4 for NYT 99.8 100 100 100 98.5 99.7 99.8 100 83.5 85.0 86.2 100 100

Scheme 1 for Yago 99.1 100 100 100 96.4 98.8 99.9 100 92.0 96.8 99.2 99.6 100

Scheme 2 for Yago 99.1 100 100 100 95.6 98.0 99.6 100 90.5 95.2 98.4 99.6 100

Scheme 3 for Yago 99.0 100 100 100 95.6 98.4 99.5 99.8 90.8 96.3 98.9 99.5 100

Scheme 4 for Yago 98.8 100 100 100 94.7 97.7 98.9 100 89.1 94.9 98.2 100 100

Table 4.14: Comparison of achieved recall in percent for k = 20.
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Figure 4.7: Comparative study of precision for varying θ in NYT rankings.
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Figure 4.8: Comparative study of precision for varying θ in Yago rankings.

Comparing the individual rows in Table 4.13 and Table 4.14, we can see

that the recall achieved by Scheme 1 and Scheme 2 is always greater than the

recall reached by Scheme 3 and Scheme 4 respectively, for the same value of l.

This observation validates our theoretical analysis of recall bounds among the

proposed schemes, shown in Figure 4.1 for different l. Putting it in another way,

Scheme 3 is less likely to find a true-positive result than Scheme 1, for the same

value of l. Additionally, comparing the columns of Table 4.13 and Table 4.14,

we observe that the recall increases as l increases, which is in line with the LSH

theory. We can also understand the characteristic of the datasets, by analyzing

the recall statistics, shown in these tables. Comparing the rows of Table 4.13

and Table 4.14, for all the schemes with the same threshold θ and l, we find out

that the recall for the NYT dataset is always larger or equal to the recall for the

Yago dataset. This observation reflects that the elements of the NYT dataset

are more skewed than in the Yago dataset.

Figure 4.8 presents the comparison by precisions of all four schemes. It shows

that the precision of Scheme 2 and Scheme 4 is always higher than for Scheme 1

and Scheme 3, again, this is in line with the LSH theory. This observation

also reflects that the NYT dataset is more skewed than Yago. Due to skewed
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Figure 4.9: Comparative study of selection of hash functions for top-20 query

with θ = 0.2.

distribution of elements in the NYT dataset, the precision of all schemes for

NYT remains almost the same as the precision of InvIn+Drop, whereas the

precision of all four schemes for Yago data is much higher than the precision of

InvIn+Drop.

4.6.3 Performance Analysis among Different At-Query-

Time Selection Methods

Figure 4.9 and Figure 4.10 report on the effect of the position of elements on

selection of hash function for Scheme 1 and Scheme 3. From these figures, we

can see that both schemes retrieve more true-positive candidates when hash

functions are selected emphasizing on pairs or triplets from only top elements

of the query instead of the bottom elements, for both datasets. We also see

that the difference between retrieved true-positive candidates on focusing only

the very top elements and the very bottom elements is larger in NYT, as the

NYT data have more skewed distribution than Yago. For the same reason,

100% recall is also achieved faster by pruning false-positive candidates, shown

in Figure 4.10. This property remains consistent to all other schemes.

Figure 4.11 shows that fewer false-positive candidates are retrieved using the

selection method according to Algorithm 3 than the selection method accord-

ing to the same algorithm when replacing Line 6 (i.e., to make the selection

emphasizing only the top elements), for both datasets with the same value of

l. This effect also remains consistent with other schemes. This result has di-

rect influence in efficiency of similarity search as retrieving more false positive

results need more validation time, in order to collect all results in R. With the

increasing ranking size, the efficiency suffers more because the validation time

is proportionate with the ranking length. Considering Scheme 2, we need to ac-

cess only eight entries in index for retrieving 100% results for given threshold 0.2
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Figure 4.10: Comparative study of selection of hash functions for top-20 query

with θ = 0.2.
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Figure 4.11: Effect of selection method for Scheme 2, k = 20 and θ = 0.2.

(see Table 4.11) in top-20 list. However, 3772 more false positive candidates are

retrieved as candidates from eight index scans while hash functions are selected

only emphasizing top elements (see Figure 4.11). This difference becomes larger

for more skewed dataset and it grows as l increases due to the generation of

more duplicate candidates.

4.6.4 Lessons Learned

Now, we can summarize the main findings from the above experimental results

as follows:

1. The value of the automatically tuned parameter l for 99% recall matches

almost precisely with the actual value of l that is needed to retrieve all

results.

2. Comparing the efficiency of similarity search among all proposed schemes,

Scheme 2 performs best for skewed data (e.g., NYT) whereas Scheme 3

performs best for less-skewed dataset.
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3. There is a tradeoff between the space needed to store the index struc-

ture for the proposed schemes and the efficiency during similarity search.

Though Scheme 3 does not perform best for a skewed dataset, it uses less

space to store the hash tables (i.e., the unsorted pairwise index) compared

to the space needed to store the hash tables for Scheme 2 (i.e., the triple

index).

4. All the schemes outperform the adaptive prefix-filtering method for sim-

ilarity search and the manually tuned optimal baseline approach In-

vIn+Drop.

4.7 Summary

In this chapter, we presented an efficient approach to processing similarity

queries over top-k lists under the generalized Kendall’s Tau distance. We pro-

posed four different LSH schemes using two different hash function families,

reflecting different ways to realize and understand pair-based and triplet-based

indices. Key contribution of this work is the in-depth analysis of the ability of the

proposed methods to determine high-recall results with few lookups in the index.

We have derived query-driven formulations of the expected recall and presented

bounds that allow an automated tuning of the number of hash tables required

to achieve a predefined recall. We implemented the described approaches and

reported on the results of a comprehensive performance evaluation, using two

real-world datasets. This study confirmed the insights obtained through theo-

retic analysis and further demonstrated the superiority of the approaches over

plain inverted indices and SimJoin, the state-of-the-art from literature.





Chapter 5

LSH-Based Probabilistic

Pruning of Inverted Indices

This chapter is based on our own publication at WebDB 2017 [PM17]. In this

chapter, we aim at optimizing the usage of hash tables for our proposed LSH

methods, which implies pruning of the entries in pairwise indices or triple index,

discussed in the previous chapter.

In Section 3.2, we briefly mentioned query-aware LSH methods [JASG08,

HFZ+15] that suffer from a similar problem of keeping most of the hash tables,

though only a few of them are used during query processing. On the other

hand, the methods used in literature such as LSH forest [BCG05] or locality

sensitive B-tree structure [TYSK10] are not applicable in our proposed LSH

schemes. Because the proposed schemes in the previous chapter use up to three

hash functions together (in case of Scheme 2) and also the hash functions map

data to the binary space, which leaves not much choice for building a prefix tree

or B-tree over the labels of hash buckets.

In this chapter, we present a method for optimizing the number of hash

entries required to maintain without reducing the quality of the similarity search

over rankings by exploiting the locality sensitivity property of proposed hash

families H1 and H2. So, the objective is to prune the inverted indices in a

way such that it does not effect the result quality. Here, we formulate the

problem statement in a generic way, relaxing the space optimization problem in

similarity search over rankings as well as similarity search over sets. We will,

throughout the coming sections, focus on sets, but come back to handling ranked

lists in Section 5.5, where we instantiate the proposed “pruning approach” for

two explicit scenarios.

Essentially, all inverted indices resemble a hash map where the keys are

items, pairs, etc., derived from the sets/rankings to be indexed. In the previous

chapter, we have seen how such indices can efficiently determine very similar

sets/rankings by accessing fewer index entries than the prefix-filtering method,

69
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τ1 = {2, 5, 4, 3, 1}
τ2 = {1, 4, 7, 5, 2}
τ3 = {0, 8, 7, 5, 6}

7→ 〈τ2〉, 〈τ3〉
5→ 〈τ1〉, 〈τ2〉, 〈τ3〉
4→ 〈τ1〉, 〈τ2〉
. . .

Table 5.1: Sample sets (left) and inverted index (right)

by exploiting the LSH property. Let us emphasize briefly the connection between

LSH and inverted indices through an small example. Table 5.1 shows three sets

of integer values. The connection between inverted indices and locality sensitive

hashing (LSH) is apparent: We can use the definition of H1 that projects sets τi
to binary space based on presence or absence of the elements inside it. According

to H1, the bucket label ‘1’ for function h2 is similar to the key entry ‘2’ in the

inverted index, both of them hold the sets where number ‘2’ appears. In this

work, we use the term ‘hash bucket’ and ‘index entry’ interchangeably.

This work also deals with the problem of similarity search over sets, as

mention earlier, where the query size is the same as the size of the stored sets.

Whereas, in score-based document retrieval method, queries are normally very

short compared to the size of stored documents. Hence, finding the results based

on score-based document search differs from the searching scenario considered in

our work. Similarly, let us further briefly mention that there are many lossless

compression methods and lossy static index pruning methods for web search

engines and document retrieval in general [SCC+01, ZM06, SJPB08]. We believe

that lossless compression techniques are fully orthogonal to our approach. We

will discuss how the static pruning methods can be related to our proposed

pruning approach later in Section 5.3.

5.1 Problem Statement and Setup

Consider a data collection S comprising of sets τi. Each τi ∈ S has a domain

Dτi of items it contains. The global domain of items is then D =
⋃
τi∈S Dτi

and |D| = n. We assume all sets have the same size. Table 5.1 shows three sets

holding five elements each.

At query time, a user provides a query set q, a distance threshold θ ∈ [0, 1],

and a distance function d. Our objective is to determine all sets τi ∈ S that

have a distance less than or equal to θ, so the result R of a query can be written

as:

R := {τi | d(τi, q) ≤ θ, τi ∈ S}.

As mentioned above, we can build a simple inverted index over S, to look up—

at query time—those sets that have at least one element overlapping with the

query’s elements. Particularly, the distance to the query is evaluated only for

the sets which hold overlapping elements with the query (c.f., the Filter and

Validate method presented in Algorithm 1 in Section 2.1.2). Considering the
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example in Table 5.1, for a query q = {8, 7, 0, 6, 9}, the set τ1 does not overlap

at all with the query’s elements, while τ2 and τ3 do overlap.

In this chapter, we address the problem of rendering inverted indices more

space-efficient by eliminating some of the stored posting lists, posting list entries,

or both, controlled by a pruning parameter φ ∈ [0, 1].

If a query is executed over such a pruned index, the query returns a result

set Rp that is a subset of the true result set R given above.

Our objective is to find the optimal pruning factor φ such that the results of

the similarity search satisfy a user-defined recall level %. We can formalize this

task as follows.

maximize φ

subject to Rp/R ≥ % (5.1)

Note that we assume the distance threshold θ to be strictly smaller than

the normalized maximum possible distance, hence, 0 ≤ θ < 1. Therefore, the

inverted index can find all result sets as all results need to have at least one

overlapping item with the query.

5.2 Contributions and Outline

In this work, we make the following contributions:

• We discuss three ways to prune an inverted index and propose two different

ways to query the pruned index.

• We present a probabilistic analysis to find the number of index entries

needed to be accessed to ensure the predefined recall goal for the similarity

search over pruned inverted indices.

• Based on the analysis, we formalized an optimization problem to find

maximum pruning factor φ∗, while ensuring the user-given recall goal.

The remainder of this chapter is organized as follows. Section 5.3 discusses

the three, admittedly very straightforward, pruning techniques. The probabilis-

tic analysis of query processing in pruned indices and optimization problem of

finding the maximum pruning factor are proposed in Section 5.4. Section 5.5

discusses two case studies that apply our proposed techniques to prune and

query inverted indices for sets and top-k rankings. Section 6.4 presents a de-

tailed experimental study and finally, Section 5.7 summarizes the work of this

chapter.
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5.3 Horizontal, Vertical, and Diagonal Index

Pruning

As shown in Section 4.3 of the previous chapter, the space complexity of pair-

wise indices or triple index grows polynomially with the number of elements

used as keys. Subsequently, optimizing the space requirement of such indices

becomes the necessity as it is important to keep the index in main memory to

avoid expensive random I/O while accessing the hash buckets. In this section,

we discuss three simple ways to drop parts of the inverted index structure, as

illustrated in Figure 5.1.

5.3.1 Horizontal Pruning

In this approach, we randomly select a fraction φ of the total index keys and

remove the corresponding posting lists completely. Considering the elements

are uniformly distributed over hash buckets, elimination of random posting lists

reduces φ fraction of space required to store complete index. Removing random

index keys signifies removing random hash functions from the hash family in

LSH, and thus, discarding few hash entries that are equivalent to the pairwise

or triplet-based indices.

On the other hand, instead of removing the posting lists completely, we can

drop the most frequent or least frequent φ fraction of index keys (thus, drop

very long or very short posting lists). In this case, we can calculate the reduced

space due to the removal of posting lists based on the skewness of the data.

For example, having data following a Zipf distribution with skewness parameter

ν = 1.1 implies that removing top-20 entries of index keys will remove 30% of

total objects listed in all posting lists. Clearly, random removal of a φ fraction

of entries reduces less space than the removal of the top φ fraction of entries

and more space than the removal of the bottom φ fraction of entries.

5.3.2 Vertical Pruning

Unlike removing index keys and the associated entire posting lists, in this strat-

egy, we randomly drop a φ fraction of items from each posting list. This is

the scenario when we keep all hash tables from the hash families but remove φ

fraction of items from each hash buckets. Eliminating entries from hash buckets

inevitably leads to removing items from the equivalent entries in the pairwise

or triplet-based indices. The space reduction due to this pruning approach does

not depend on the distribution of the elements. Dropping a φ fraction of items

from each posting lists always reduces the space requirement to store posting

lists by a factor of (1− φ).

Assuming items from a posting list contain information about the usefulness

of them, we can drop the least important ones from each list, instead of randomly

dropping a few items. In information retrieval literature, such an approach is
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Horizontal Pruning Vertical Pruning Diagonal Pruning

Figure 5.1: Illustration of three ways to prune an inverted index

known as term-based static index pruning [SCC+01, dMdSF+05], where the

authors use different scoring models to decide the importance of an item in the

posting list.

5.3.3 Diagonal Pruning

In this strategy, we drop a fraction of φ elements from each of the original

sets and then create an index based on the remaining elements. Hence, if a

specific element is, by chance, removed from all the objects, the index entry

corresponding to that removed element will not appear in the index, which

resembles the idea of horizontal pruning. On the other hand, if a specific element

is removed only from few sets, then those sets will not appear in the posting list

of that element, which resembles vertical pruning. This is the scenario when,

for each object, we randomly pick φ fraction of hash functions from the hash

family to map the object. Thus, if a hash function is never chosen for mapping

any of the objects, the entire hash table for that hash function is lost, i.e.,

the equivalent index keys in the pairwise or triple index for that hash function

is also lost, yielding the horizontal pruning scenario. On the other hand, if

a hash function is chosen occasionally for mapping few of the objects, some

of the entries from that hash table are eliminated, causing vertical pruning of

equivalent pairwise or triple index entries.

As this method prunes the index both horizontally and vertically, we called it

diagonal pruning. It generalizes the document-centric pruning method [BC06],

known from the area of information retrieval, where less important terms are

removed from each document before generating the index. We can observe here

that if elements are uniformly distributed among sets, this pruning method tends

to prune the index equally from both vertical and horizontal direction. On the

other hand, if data has a skewed distribution, then this method tends to prune

the index more horizontally than vertically.

For all three pruning methods, discussed above, it is clear that eliminating

an object from the index affects the query processing. In the next section, we

will discuss how we can quantify the pruning effect on the quality of the search

results in similarity search.
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5.4 Query Processing on Pruned Indices

Due to pruning of an element from the index, i.e., pruning of an element from

the hash bucket, we can miss a candidate for a query if the query and the pruned

element are supposed to collide into the same bucket by a hash function. Thus,

pruning increases the chance of missing a true result in similarity search. In

case of dropping an entire posting list corresponding to a key, a collision can

be missed if the hash function maps the query to the pruned bucket. As we

can relate the inverted index with the hash tables of a hash family, discussed in

the previous chapter, the probability of missing result can be approximated by

exploiting the modification of the collision probability of hash families. Here,

we discuss two different ways to query a pruned index exploiting LSH such that

the predefined recall requirement can be ensured.

5.4.1 Ad-hoc Query Processing

A properly set up LSH ensures that l accesses to the hash tables collect enough

candidates to achieve predefined recall goal. But, while dropping hash entries

or elements from hash buckets, which is also similar to querying a pruned index,

as discussed in the previous section, the assurance of result quality does not

hold anymore. One simple solution to overcome this problem is using more

than l hash functions to map the query into the pruned index, until we reach

l successful accesses to hash buckets. In the worst case, we might need to

use many hash functions to map the query into the pruned index, in order to

achieve the required number of successful accesses. In this scenario, a missed

collision, i.e., the case when the hashed query does not find any matched key

in the pruned index, does not collect any additional candidates for that index

access. As the runtime performance is mainly dominated by the validation of

retrieved candidates (i.e., actual distance computations between candidates and

the query) from successful bucket accesses, this approach does not incur any

extra overhead in the runtime performance.

5.4.2 Probabilistic Query Processing

Unlike the above ad-hoc approach, in probabilistic query processing, we modify

the collision probability of LSH schemes based on the fraction of objects pruned

from the index and the pruning methods (i.e., horizontal, vertical, or diagonal).

Then, based on the modified collision probability, we calculate new bound on

the number of required accesses to the pruned index, in order to assure the

user-defined recall.

Consider a factor fY that scales the original collision probability P1 according

to the fraction of pruned object. Introducing the factor fY in recall Equation 2.1,

discussed in Section 2.1.3, we get Equation 5.2, which is further used to tune

the old parameter l for a pruned index. We find the the number of required

accesses lY by solving Equation 5.2 that adapts the effect of pruning in query
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processing and assures the user-defined recall.

% = 1− (1− fY · Pm1 )lY (5.2)

In notation of lY , the subscript Y indicates the pruning method, i.e.,

horizontal, vertical, or diagonal, that was used for pruning the index. Re-

quired accesses lY refers to the number of accesses in the pruned index (hash

buckets) that are needed in order to reach a predefined recall goal under the

modified collision probability. Now, we will discuss how to calculate fY for all

three pruning methods.

Horizontal pruning: Consider the items are uniformly distributed over a

collection of sets S. Therefore, when building an inverted index over S, the

sets will be evenly distributed over each index entry, i.e., each posting list will

hold almost similar number of sets. Therefore, removing φ fraction of index

keys randomly from the index will prune total φ fraction of postings (cf., sets)

from the index. Clearly, a query can not collide with a candidate set, which is

removed due to pruning of the index key, where the query is mapped by a hash

function.

Hence, the collision probability P1 is modified by the factor fh = (1 − φ),

as a collision can occur only for non-pruned index entries. For a non-uniform

distribution of the sets into the buckets of the index, the pruning factor can

be modified using, if known, the cumulative distribution function (CDF) of the

pruned objects, i.e., the total number of posting elements which are removed

due to the pruning of φ fraction of index entries.

Vertical pruning: Similar to horizontal pruning, the collision probability

P1 is modified by the factor fv = (1 − φ) for the vertical pruning. Although

the keys in the index are not pruned, the collision between objects can still

be missed due to removal of φ fraction of postings from each index entry (i.e.,

posting list). Considering lh is the number of keys that we need to look up to

reach the predefined recall goal % with modified collision probability, we have

lh = lv. Note that lh is equal to lv only when we consider that the data (cf.,

sets) are uniformly distributed over index entries.

Diagonal pruning: In diagonal pruning, we prune φ fraction of items from

each set before creating the inverted index, i.e., a specific set will be listed under

posting lists of only 1−φ fraction of items from that set. In this pruning method,

a query may not collide with a candidate set due to the following two reasons:

• The items in the index key are always chosen from pruned items of the

sets, i.e., the hash function that maps both the query and the set into the

same bucket was never chosen during hash table creation.

• The items in the index key are chosen from pruned items for few sets,

including the candidate set, but not for all, i.e., the hash function that

maps both the query and the set into the same bucket was selectively not

used during the mapping of the candidate set.
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Therefore, we need to find the number of postings (cf. sets) removed from

the posting lists for both the reasons, mentioned above. Here, it is important

to know how the keys are generated to build the inverted index. Considering i

items are used to generate the keys, the pruning of φ fraction of items from each

set prunes 1−
(
k′

i

)
/
(
k
i

)
(with k′ = (1−φ) ·k) fraction of postings from the index

because each object is listed under only
(
k′

i

)
non-pruned keys. Consequently,

the collision probability P1 is adjusted by the following factor:

fd =
k′(k′ − 1) · · · (k′ − i− 1)

k(k − 1) · · · (k − i− 1)
.

5.4.3 Cost Model for Query Processing

Query processing is mainly divided into two parts: In the first step, the hash

tables are accessed to retrieve candidates (filter step). Then, all candidates are

validated to determine the result set R.

The cost of the filtering step depends on the number of index accesses at

query time and the length of the posting list. Based on the distribution of

elements in the collection of sets S, we can find the expected length of posting

lists, denoted as Postlen. In probabilistic query processing, we can find the

number of required accesses for different pruning methods, i.e., lv, lh, and ld from

Equation 5.2, by plugging in the specific factors fY discussed in the previous

section.

On the other hand, the required index accesses for ad-hoc query processing

depends on the number of successful scans, that means, accesses via keys that

actually exist in the pruned index. The probability of a key being present in

a pruned index is equal to the factor fY , discussed in Section 5.4.2, depending

on the pruning methods. Considering each index access as a Bernoulli trial, we

can calculate the number of trials to get the first successful access. Therefore,

we calculate the expected number of scans, E[lv], E[lh], and E[ld] for ad-hoc

query processing which leads to l successful accesses for vertical, horizontal, and

diagonal pruning, respectively, by the following equation:

E[lY ] = l · (1/fY ). (5.3)

Finally, to assess the cost of the validation phase, we need to find the num-

ber of candidates retrieved from filtering step, i.e., the union of the retrieved

elements from accessing lY entries from the hash tables. Considering |D| = n,

i.e., a total of n items that are used to build the index, the expected number

of unique candidates is Ecan[lY ] := n(1 − (1 − Postlen/n)lY ). Let us consider

cf and cv are the scanning cost and the cost for the distance calculation for

candidate validation, respectively. So, the final cost to find R is given by:

Cost(lY ) = (lY · Postlen · cf ) + (Ecan[lY ] · cv). (5.4)
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5.4.4 Optimizing the Pruning Factor

Now, we discuss how we use the above cost model to determine the optimal

value of the pruning parameter φ. In Section 5.1, we have already defined

the optimization problem, subject to a recall guarantee %. Based on different

pruning methods, we can estimate the expected number of index accesses (i.e.,

lv, lh, or ld) that are needed to ensure the recall requirement, as discussed earlier.

Following our discussion, if the pruning factor increases, the number of accesses

in the pruned index also increases. However, there is a limit on the number of

keys that are possible to generate from a query. Therefore, if the required lY
accesses is over this limit, i.e., we cannot create lY number of keys from a query,

the recall requirement cannot be ensured. Considering the length of each set in

S is k and index keys are generated using i items from a set, we can generate

maximum
(
k
i

)
keys from a size-k set or from a query (for instance, i = 2 for

pairwise index, discussed in Section 4.3.1). Hence, to ensure the constraint in

Equation 5.1, we formulate the optimization problem as follows:

maximize φ

subject to
(
k
q

)
− lY = 0,

Cost(lY ) ≤ β · Cost(l) (5.5)

As the required number of index accesses is directly proportionate to the

pruning factor, i.e., we need to access the index more often if we prune the

index more, we add an additional constraint in Equation 5.5, by restricting the

increasing cost of query processing. To do so, we introduce a parameter β in

Equation 5.5, where β ≥ 1, based on the application scenario and the user

demand.

In our thesis, we mainly deal with top-k rankings and generalized Kendall’s

Tau as the distance function. Hence, the validation cost cv, i.e., the cost for

distance computation for each candidate is O(k log k), whereas index access cost

cf is only O(1). Clearly, cf � cv depending on the size of the object (i.e., k). As

a result, in our work, the candidate validation cost dominates the cost of a query

processing and the filtering cost becomes negligible in the cost model. We also

observe that the increasing number of index accesses in the pruned index does

not affect the total number of unique candidates retrieved from a pruned index.

Therefore, we can relax the bound of the parameter β by β > 0. With this new

bound on β, the cost constraint looses its significance as the total number of

unique candidates retrieved from a pruned index, as well as from a non-pruned

index, is bounded by O(|R|). Therefore, in our work, the optimization problem

can be simplified by removing the cost restriction and the optimal pruning factor

φ∗ is calculated as follows:

φ∗ = argmaxφ

{(
k
q

)
− lY = 0

}
. (5.6)
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5.5 Case Studies

To demonstrate the versatility of our approach, we present here similarity search

problem with two different distance measures. In the first scenario, we consider

the similarity search over sets using the Jaccard distance, discussed in Sec-

tion 2.1.4. The second scenario deals with the problem addressed in this thesis,

i.e., the similarity search over rankings using the generalized Kendall’s Tau dis-

tance. In this section, we discuss different parameters that are used to find the

optimal pruning factor for each scenario.

5.5.1 Scenario I: Set Similarity with Jaccard Distance

In general, we can use a single-item-based inverted index to determine the can-

didate sets that overlap at least one item with the given query set by measuring

the number of overlap between them. As mentioned earlier, with the example

given in the introduction of this chapter, we can simply use proposed hash fam-

ily H1 to relate LSH to querying single-item-based inverted index. Hence, H1,

proposed in Section 4.4.1, is the appropriate choice of hash family as the order

of elements in the set is not required to find the overlap-based Jaccard distance.

Moreover, using an index that combines two elements together as key, we can

find the candidates that are more similar to the query. Therefore, we want to

build here a sorted pairwise index presented in Section 4.3, based on the pairs

of elements from each set. For example, one such index entry of the sorted

pairwise index for the example shown in Table 5.1 looks like (4, 5)→ 〈τ1〉, 〈τ2〉.
Following the discussion how the sorted pairwise index is directly related to

the index used by the proposed query-driven LSH method Scheme 1, defined

in Section 4.4.1, we apply our pruning approach on a sorted pairwise index by

exploiting Scheme 1.

According to the query-driven LSH method, Scheme 1 uses the collision prob-

ability P1 = µ/k, where µ is the minimum overlap needed to meet a distance

threshold θ. In the previous chapter, we define µ corresponding to the general-

ized Kendall’s Tau distance. Hence, we need to find the parameter µ for the Jac-

card distance here. To meet the Jaccard distance threshold θ, we need at-least

θs Jaccard similarity, where θ=1−θ. Now, considering µ is the minimum overlap

needed to meet a Jaccard distance threshold θ, the required Jaccard similarity

is µ/(2k − µ). Hence, by solving θs = µ/(2k − µ), we find µ = 2kθs/(1 + θs).

For Scheme 1, the parameter m = 2, discussed in Section 4.4.1. We can now

apply m, µ, and set size k in Equation 4.3 to determine the required number

of accesses l in complete index for a fixed recall goal. Further, using the same

parameters, additionally with fY in Equation 5.2, we can find the required

number of accesses lY in pruned index for a fixed recall goal. Clearly, we need

to consider i = 2 to find modifying factor fd for the diagonal pruning method

and in Equation 5.6—as two items are used to create keys.
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5.5.2 Scenario II: Ranking similarity over Kendall’s Tau

Distance.

Similarity search over a collection of rankings under generalized Kendall’s Tau

distance has been discussed in the previous chapter, by using different variations

of inverted indices. In the previous scenario, we applied our pruning approach to

one of these inverted indices, the sorted pairwise index, by exploiting LSH family

H1. Hence, in this scenario, we consider another variation of pairwise indices,

the unsorted pairwise index, presented in Section 4.3. This index also uses pairs

of items as keys, but there is a difference between the key (i, j) and the key

(j, i): The posting list for the key (i, j) holds only those rankings where element

i occurs before j, and vice versa for the key (j, i). For instance, entry (4, 5)

only holds τ2 but not τ1 for the example shown in Table 5.1. In the previous

chapter, we have discussed that the unsorted pairwise index is directly related

to the index used by LSH method Scheme 3, defined in Section 4.4.2. Moreover,

Scheme 3 is defined based on the LSH familyH2, proposed in Section 4.4.2 and it

is the most efficient one for this scenario, discussed in Section 4.6.4. Therefore,

in this scenario, we apply our pruning approach on the unsorted pairwise index

by exploiting Scheme 3.

Here, we directly obtain the collision probability P1, m, and l from the

discussion in Section 4.5.1. Using the same parameters, additionally with fY in

Equation 5.2, we can find the required number of accesses lY in pruned unsorted

pairwise index for a fixed recall goal. Similar to the above scenario, the diagonal

pruning method considers i = 2 to find fd and then, Equation 5.6 is used to

determine the optimal pruning factor.

5.6 Experimental Evaluation

We have implemented the pairwise indices mentioned above in Java 1.7 and run

the experiments using an Intel Core i7@3 GHz machine with 8GB main memory.

Both pairwise indices used in experiments are kept entirely in memory.

The querying performance is given in terms of query response time (here,

wallclock time), number of retrieved candidates, and recall. The re-

sults are provided by averaging five consecutive experimental runs over 1000

benchmark queries. We use two different datasets for the experiments.

LiveJ: A dataset containing a set of user profiles, describing the interests of

users, is obtained from Life Journal1. This dataset is used for Scenario I. We

consider 100,000 profiles of fixed (truncated) size 20 for the experiments.

Yago Entity Rankings: This dataset is used for the evaluation of Sce-

nario II. From this dataset, we consider 25,000 top-20 rankings that have been

mined from the Yago knowledge base, as described in [IMS13].

In this section, we discuss the effect of pruning methods in similarity search

1http://socialnetworks.mpi-sws.org/data-imc2007.html

http://socialnetworks.mpi-sws.org/data-imc2007.html
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θ for LiveJ (Scenario I) θ for Yago (Scenario II)

Methods 0.1 0.3 0.5 0.1 0.2 0.3

Full scan 52006.1 52006.1 52006.1 37.21 37.21 37.21

Prefix-filtering 23185.1 34045.4 43988.1 19.26 22.78 25.95

Baseline 5105.3 7360.4 9059.5 2.327 2.706 3.067

Table 5.2: Retrieved candidates for different approaches of query processing in

non-pruned index.

LiveJ Yago

Pruning method θ φ∗ lY θ φ∗ lY

Horizontal pruning

0.1 0.8 125 0.1 0.9 53

0.3 0.8 167 0.2 0.9 68

0.5 0.7 112 0.3 0.9 90

Vertical pruning

0.1 0.8 125 0.1 0.9 53

0.3 0.8 167 0.2 0.9 68

0.5 0.7 112 0.3 0.9 90

Diagonal pruning

0.1 0.5 95 0.1 0.7 73

0.3 0.5 126 0.2 0.7 97

0.5 0.4 87 0.3 0.7 130

Table 5.3: Theoretically established optimal pruning factor φ∗.

based on experimental results for both scenarios, mentioned in Section 5.5, to

validate our optimization problem. The effect of pruning methods is presented

against the baseline approach. The query-driven LSH method on the non-pruned

index structures is considered as the baseline approach here. Before starting the

evaluation on pruned indices, we present the performance of the full scan and

prefix-filtering method in the single-item-based index in Table 5.2. Based on

Proposition 4.2.2, we determine the prefix-filtering parameter for both scenarios,

where µ = 2kθs/(1 + θs) as discussed in Section 5.5 for the first scenario, and

µ = dk(1−
√
θ)e as discussed in Lemma 4.2.1 for the second scenario. The results

show that both approaches retrieve far more candidates (> 5 times) than the

baseline approach, as expected, for both scenarios.

5.6.1 Theoretically Established Parameters

In this experimental studies, both pairwise indices are pruned randomly using

all three pruning methods. Based on Equation 5.6, Table 5.3 represents the

theoretically established optimal pruning factor and corresponding number of

index accesses lY , for predefined recall goal % = 0.99, for both datasets. We

should mention here that we consider discrete values of φ with step of 0.1,

while optimizing φ∗ using Equation 5.6. Due to randomly pruning of the index

structures, we have lv = lh, as discussed earlier. Hence, the maximum pruning

factor also becomes the same for both methods.
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Yago LiveJ

θ 0.1 0.2 0.3 0.1 0.3 0.5

l 3 5 7 2 4 8

E[lv] 30 50 70 10 20 26.6

E[lh] 30 50 70 10 20 26.6

E[ld] 42.6 71 99.4 8.6 17.39 23.52

Table 5.4: E[lY ] for l successful accesses

Based on Equation 4.3 and Equation 4.5, we present the required number of

accesses l for the sorted pairwise index (used in LiveJ) and the unsorted pairwise

index (used in Yago), respectively, in Table 5.4. Additionally, in this table, based

on Equation 5.3, we present theoretically established required number of access

lY for ad-hoc query processing, in order to meet l successful scan in pruned

indices, for optimal pruning factor presented in Table 5.3.

5.6.2 Efficiency of Pruned Indices

In this section, we first show the effect of index pruning with varying θp for

both datasets in Figure 5.2, while discarded index keys are chosen randomly.

For Yago data, we can see that both the horizontal pruning and vertical pruning

method prune the size of the unsorted pairwise index almost proportionally to

the pruning factor. On the other hand, the diagonal pruning method prunes the

posting lists in proportion close to the factor of 2θp. This is expected as removed

keys or removed objects from index are chosen randomly and also the elements in

Yago rankings are less skewed, discussed in Section 4.6 of the previous chapter.

From Figure 5.2, we can observe that all three pruning methods prune less

amount of index space for a specific pruning factor in case of LiveJ data than

Yago dataset, specially, for horizontal and diagonal pruning. The reason behind

this characteristic is that the distribution of elements in profiles of LiveJ is

more skewed than Yago. The length of posting lists in LiveJ lies in [1, 19335],

whereas The length of posting lists in Yago lies in [1, 74]. Due to the skewed

distribution of data in LiveJ, the difference between horizontal and vertical

pruning is also prominent, and during diagonal pruning, index entries are pruned

more vertically than horizontally.

Using the theoretically established optimal pruning factor φ∗, we first prune

the sorted pairwise index that is used in Scenario I. Then, we perform the pro-

posed query processing methods for different θ over pruned index, and present

the results in Table 5.5. Similarly, we perform the query processing on pruned

unsorted pairwise index for Scenario II, and present the results in Table 5.6.

From both tables, we can observe that the theoretically established φ∗ fulfills

the recall requirement % for probabilistic query processing, and thus, validates

the optimization problem. We can also notice that the probabilistic query pro-

cessing retrieves more candidates than the baseline for the LiveJ dataset due to

the skewed data distribution over index entries.
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Figure 5.2: Pruning effect in size of pruned index.

On the other hand, due to less skewed distribution of the items in the Yago

dataset, the difference between retrieved candidates for the optimally pruned

index and non-pruned index is negligible, which validates our assumption to

discarding the cost factor to simplify the optimization problem. From the ex-

perimental results, we find that the runtime is proportional to the retrieved

candidates that also support the simplification of the optimization problem.

Table 5.5 and Table 5.6 also report on the number of successful index accesses

at query time, which is bounded by lY and E[lY ] in probabilistic and ad-hoc

query processing, respectively. From the highlighted column in Table 5.4, Ta-

ble 5.6, and Table 5.5, we observe that the E[lY ] is indeed match with the

experimental results for horizontal pruning and can ensure the recall goal.

In Table 5.5 and Table 5.6, experimental results show that the ad-hoc query

processing always retrieves less candidates than the probabilistic query process-

ing and do not ensure the required recall requirement due to its ad-hoc charac-

teristic. However, this method reaches the recall requirement only when #total

accesses in ad-hoc query processing becomes almost the same as the expected

number of index accesses given in Table 5.4. It also validates/supports our

probabilistic analysis for ad-hoc query processing. For example, in horizontal

pruning for both scenarios, ad-hoc query processing reaches recall requirement

% and we can see that #total accesses ≈ E[lh] (highlighted in blue). As vertical

pruning does not discard any keys from the index, the #total accesses in ad-hoc

query processing is the same as l in baseline method, which is far less than E[lh].

Therefore, ad-hoc query processing can not reach the recall requirement while

using vertical pruning.

5.6.3 Lessons Learned

Here, we summarize the findings obtained through the experimental studies.

• The theoretically established maximum pruning factor based on the prob-

abilistic query processing method reaches the recall requirement, which is

validated through similarity search on real-world data.
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Probabilistic query processing Ad-hoc query processing # baseline

Pruning θ time #Candidates recall # successful time #Candidates recall # Total # successful candidates

method accesses accesses accesses in

Horizontal

0.1 11.17 10031.3 100 24.6 3.4 3806.7 100 9.45 2 5105.3

0.3 11.54 13257.0 100 33.93 4.4 5163.3 100 19.39 4 7360.4

0.5 13.39 14452.2 100 33.59 7.4 7822.5 99.9 26.29 8 9059.5

Vertical

0.1 14.0 11252.9 100 125 1.03 1142.2 51.3 2 2 5105.3

0.3 9.8 12208.7 100 167 1.67 1926.9 64.3 4 4 7360.4

0.5 11.0 14001.9 100 112 4.08 3998.9 93.6 8 8 9059.5

Diagonal

0.1 10.38 10378.3 99.5 79.69 1.24 1309.1 37.3 2.63 2 5105.3

0.3 11.06 11512.7 100 104.58 1.99 2098.4 47.3 4.94 4 7360.4

0.5 11.32 13003.1 99.7 76.84 3.52 3938.9 61.0 9.61 8 9059.5

Table 5.5: Query processing in pruned sorted pairwise index on LiveJ based with φ∗ for % = 99%, k = 20.

Probabilistic query processing Ad-hoc query processing # baseline

Pruning θ time #Candidates recall # successful time #Candidates recall # Total # successful candidates

method accesses accesses accesses

Horizontal

0.1 0.027 2.37 100 5.2 0.017 2.05 99.8 30.33 3 2.327

0.2 0.050 2.39 99.8 6.8 0.031 2.39 99.8 50.63 6.7 2.706

0.3 0.030 2.65 99.8 8.9 0.040 2.65 99.7 70.82 6.9 3.068

Vertical

0.1 0.040 3.63 100 53 0.008 1.52 93.5 3 3 2.327

0.2 0.050 4.00 100 68 0.013 1.77 95.0 5 5 2.706

0.3 0.192 4.46 100 90 0.016 1.96 94.1 7 7 3.068

Diagonal

0.1 0.037 2.32 99.1 8.09 0.018 1.56 90.8 30.28 3 2.327

0.2 0.047 2.61 99.9 10.6 0.035 1.87 94.5 48.70 5 2.706

0.3 0.055 2.84 99.5 14.3 0.048 2.10 94.6 67.61 7 3.068

Table 5.6: Query processing in pruned unsorted pairwise index based on Yago with φ∗ for % = 0.99, k = 20.
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• The ad-hoc query processing does not ensure the recall requirement,

though retrieves less candidates than the probabilistic query processing,

except for cases where the total scan almost matches with E(lY ).

• The diagonal pruning method always retrieve less candidates compare to

other pruning methods, while using the maximum pruning factor estab-

lished theoretically.

• The optimized pruning factor is higher when the distance threshold in

similarity search is lower.

5.7 Summary

In this chapter, we discussed three different ways to prune inverted indices

and presented a probabilistic analysis of the effect of index pruning to query

processing, by exploiting the relatedness of inverted indices to locality sensitive

hashing (LSH). Based on this analysis, we were able to formalize an optimization

problem that determines the optimal pruning factor, considering a user-defined

recall requirement and cost of query processing. Experimental evaluations were

conducted over two case studies that validate our proposed query approach. The

evaluations showed that the optimal pruning factor is quite high (≥ 80%), when

the distance threshold in similarity search is low (θ ≤ 0.3), and ad-hoc query

processing in horizontal pruning outperforms for the optimal pruning factor in

both scenarios.



Chapter 6

Entity-Centric Category

Mining

6.1 Introduction

This chapter is based on our own publications at EDBT 2016 [PM16a] and SS-

DBM 2018 [PM18]. Here, we address the second main problem considered in

this thesis; determining interesting attributes, in order to categorize a entity list

accordingly, to understand and explore large and heterogeneous data without

prior domain knowledge. Consider, for instance, knowledge bases, like YAGO,

Freebase, or DBPedia, contain hundreds of millions of facts for millions of enti-

ties from all kinds of domains—leave alone information on the web in general.

One classical approach to make such vast amounts of data easily accessible to

users is to organize items into specific categories according to their attributes, in

order to constrain the view of data explorers to such subsets. But who defines

such data dimensions of interest?

Consider the case of large businesses with several retail stores across the

USA. Clearly, data analysts are likely to investigate properties like the best

selling items overall, but in particular also the best selling items per state or

city. Likewise, it might also be interesting to investigate the sales of retail stores

for specific product categories, or deals accomplished per employee. Analysts

frequently use the drill-down operation in OLAP [GCB+97, SAM98] over pre-

defined dimensions to analyze such cases. For a reasonably small scenario with

well-defined schemata, telling which categories (dimensions) are interesting can

be accomplished by domain experts, manually [JGP16]. However, when turning

our attention to arbitrary, per se unknown scenarios in the age of Big Data,

heterogeneity, dynamics, and scale strongly advocate solely automated means.

The overall task is the following: Given a table that contains data objects

and their attributes, we want to determine those categorical attributes (i.e.,

columns of the table) that can be used to categorize the objects, thus, providing

85
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Building City Country Height

Burj Khalifa Dubai UAE 828m

Shanghai Tower Shanghai China 632m

Abraj Al-Bait Clock Tower Mecca Saudi Arabia 601m

Ping An Finance Centre Shenzhen China 599m

Goldin Finance 117 Tianjin China 596m

One World Trade Center NY City United States 541m

Table 6.1: The World’s Tallest Buildings (Wikipedia).

more focused and comprehensible information to users.

Applications scenarios are manifold, ranging from mining interesting pat-

terns in data [WYY00, BKS10] or understanding dependencies between table

columns [AIS93], to clustering or filtering entities or identifying dimensions of

interest in data warehousing applications [DP13, DPD14, JGP16].

Let us introduce the problem through an example. Table 6.1 is showing

part of a Wikipedia table reporting on the World’s tallest buildings, sorted by

height. This list is quite long, as very many tall buildings from many countries all

over the World are captured. A refined view of this large table can be defined

by imposing a constraint on the attribute country, such as country=‘United

States’ or country=‘China’. Browsing through such constrained tables fosters

exploration/understanding of datasets at hand and can further answer specific

information needs of users.

However, are all attributes useful in the sense that they define interesting

subsets? With domain knowledge, it is a relatively simple task for humans to

decide whether a categorical attribute is interesting for categorizing a list of

entities, although sometimes subjective. For instance, categorizing skyscrap-

ers by continent seems very reasonable, while categorizing them by architect

depends on the number of skyscrapers per architect—boring if each architect

designed one or two skyscrapers only. With large and heterogeneous data avail-

able, specifically on the web, hiring domain experts annotating attributes man-

ually is infeasible. In this work, we propose a fully automated framework to

learn a classification model that can identify suitable categorical attributes for

categorizing entities. Suitable in the sense of human-perceived interestingness.

The human perception of ‘interestingness’ is a complex concept that asserts

generality, unexpectedness, conciseness, utility, and diversity [GH06]. We first

investigate existing probability-based objective measures of interestingness for

categorical attributes [GH06, KP07]. However, we observe by anecdotal evidence

and later also by experimental results that, in many cases, these measures fail

to capture some aspects of data that are important in our task to identifying

suitable attributes for categorization, discussed in Section 6.3.2. On the other

hand, statistical measures such as variance or divergence, for finding interesting

distribution of numeric data, are not directly applicable to our scenario. More-

over, as our objective is building a completely automated framework to train
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the classifier, we leave out the discussion on utility-based measures that require

user intervention.

Addressing the identified shortcomings in existing measures, we propose

three novel statistical measures, p-diversity, p-peculiarity, and max-info-gap for

categorical attributes, and finally, we learn a robust and accurate classification

model using support vector machine (SVM) over combinations of proposed and

existing measures. Based on a user study, we show that the trained classifier

can predict those categorical attributes that are suitable for further categoriza-

tion of entities—in a human-perceived sense. Experimental results also show

that the proposed statistical measures are more effective in capturing ‘interest-

ingness’ compared to existing measures like entropy or coverage. To the best

of our knowledge, this is the first full-fledged approach that identifies meaning-

ful categorical attributes, a generic and widely applicable component in data

exploration and analytics.

6.1.1 Problem Statement and Notation

Our objective is to identify the categorical attributes that are perceived suitable

by humans to define meaningful subsets of the entities for a specific entity-centric

table. In this work, we call such categorical attributes ‘interesting’.

To achieve this goal, we investigate a set of tables R, where a table r ∈ R
represents a list of entities and a set of associated attributes A. We use a set of

statistical measures F in order to map each categorical attribute (i.e., column

of a table) to a feature space for training a classifier C that can predict if an

attribute is interesting or not.

For example, consider the column country from Table 6.1 and denote the set

of values for the attribute country with Vcountry = {UAE (1),Saudi Arabia (1)

China (3),United States (1)}. The numbers in parentheses express the multi-

plicity. Now, we compute the statistical measures over Vcountry, for instance,

the Shannon entropy of the frequency distribution of Vcountry would be 1.792.

If we knew that the attribute country is an interesting one for categorizing tall

buildings, then we could, roughly speaking, learn that an entropy around 1.792

might be an indicator for interesting attributes, in any table we encounter.

To bring this toy example to larger scale, in order to build a reliable classifier,

we face two main challenges:

• To the best of our knowledge, there is no catalogue available in literature,

listing categorical attributes that are useful for the categorization of a

specific entities class. Such training data is, however, crucial to train a

classifier C, thus, needs to be acquired first—and we want to do so without

any human intervention.

• We have to identify suitable measures (statistical features) that can cap-

ture the characteristics of categorical attributes, tailored to our context

of interestingness. Existing measures have certain drawbacks that hinder
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Figure 6.1: Framework of mining categorical attributes.

them grasping important characteristics.

Notation: An attribute a ∈ A of a table is divided into three types—(i) the

subject of the table, denoted as as, which represents the class of the entities,

(ii) the measuring attributes, denoted as an ∈ N , which can be used for ranking

criteria to order the subject entities, and (iii) the categorical attributes, referred

as ac. Additionally, for each r ∈ R, we extract metadata M that holds the

unique table identification, the constraint, and the ranking criterion of a table,

denoted as rid, rcons, and rcr, respectively, if available. Following this notation,

the table r depicted in Table 6.1 is represented as r = (as, an, ac1, ac2,M), where

as = building, an = height, ac1 = city, and ac2 = country. No constraints are

extracted for this table. Each attribute a ∈ A is associated with a value set,

denoted Va. An example of Va has been shown earlier in this section.

6.1.2 Sketch of our Approach

Our whole approach is divided into two main components, as shown in Fig-

ure 6.1. The Information Extraction component first creates the training sam-

ples from Wikipedia tables in a completely automated manner. Whether cate-

gorical attributes retrieved from a Wikipedia tables will considered as ‘interest-

ing’ or ‘not-interesting’, for further categorization of the entities present in the

table, is determined based on a central hypothesis, proposed in Section 6.2.

After labeling the categorical attributes, the Data Mining component ex-

tracts the feature vector F for each categorical attribute in the training data.

F comprises the commonly used existing statistical measures like entropy, un-

alikeability, and newly proposed statistical measures, discussed in Section 6.3.

Then, a classifier C is trained over the extracted feature vectors using ν-SVM.

We evaluate how well these existing and proposed features can train the classi-
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fier, individually or in combination, based on a user study.

6.1.3 Contribution and Organization

With this work, we make the following contributions:

• We present a framework to harness training samples of interesting and not-

interesting categorical attributes from web tables without explicit human

interaction.

• We propose three new statistical measures that can capture the interest-

ingness of categorical attributes, tailored to our main objective and by

reflecting the weaknesses of existing statistical measures.

• We have conducted a comprehensive evaluation, including a user study,

demonstrating the applicability of the general approach and the superior-

ity of the newly proposed features.

• The sample training data retrieved from Wikipedia tables, relevance as-

sessments, and trained classifiers are made public and can be downloaded

from http://dbis.informatik.uni-kl.de/catmining/.

The remaining chapter is organized as follows. Section 6.2 proposes the work-

ing hypothesis and algorithm to extract training data. Section 6.3 discusses the

proposed novel statistical measures and introduces the learning model. Sec-

tion 6.4 presents the experimental results. Finally, Section 6.5 summarizes the

work.

6.2 Automated Extraction of Training Data

Here, we describe a fully automated way of collecting the training data from

a set of tables. The training data hold a list of categorical attributes and the

corresponding labels (interesting or not-interesting) that indicate whether the

attribute allows a suitable categorization of the entities or not, reflecting a

human notion of meaningful categorization. Hence, we need to determine the

label for a categorical attribute ac (i.e., a column of a table) that appears in a

table for entity type as, but how can we determine the label without any human

effort?

We put forward the working assumption that the presence and absence of

web tables is an indicator of general interest or disinterest of humans in such

tables. Following this assumption, the presence of a web table makes a categor-

ical attribute interesting if that attribute is used as a constraint to create that

very table. We cast this observation into our general hypothesis, given below.

We will see later by experiments using human relevance assessments that this

hypothesis is in fact well-grounded.

http://dbis.informatik.uni-kl.de/catmining/
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Building City Height

One World Trade Center New York City 541m

Willis Tower Chicago 442m

432 Park Avenue New York 426m

Trump Tower Chicago 423m

Empire State Building New York City 381m

Table 6.2: List of Tallest Buildings in the Unites States (Wikipedia)

Hypothesis 1 A categorical attribute in a table is considered interesting, thus,

its statistical features are positive training samples, iff we find at least one table

over the same entity class that is created by imposing a constraint over that

categorical attribute.

Let us walk through an example to explain the intuition behind this hypoth-

esis. In Table 6.1, we observe that entities of class ‘building’ are displayed, to-

gether with the categorical attributes ‘country’ and ‘city’. By browsing through

Wikipedia, we also find another table, the List of Tallest Buildings in the United

States, shown in Table 6.2. Clearly, both tables are created on the same entity

class building and the constraint ‘country=United States’ is used in Table 6.2.

This implies that we found (at least) one table (i.e., Table 6.2) which is created

by imposing the constraint ‘United States’ on the categorical attribute ‘coun-

try’ from Table 6.1. Hence, according to our hypothesis, ‘country’ column of

Table 6.1 is labeled ‘interesting’ for entity class ‘building’. Here, we consider Ta-

ble 6.1 as the parent table and Table 6.2 as the child table. Note that the child

table (cf., Table 6.2) may not be a subset of the parent table (cf., Table 6.1),

this is irrelevant for our task, however.

Once we have found such a parent-child pair of tables, we extract statistical

features, for instance, information entropy, from the frequency distribution of

the categorical attribute ‘country’ of the parent table and consider it a positive

sample in our training data.

Although the final classifier is independent of specific entity types, while

generating the training data from tables, an association between subject as and

categorical attribute ac is required. Because a categorical attribute can be as-

sociated with many entity types (e.g., ‘length’ can be an attribute for highways,

bridges or beaches), thus, the pair (as, ac) provides a unique identification for

features retrieved for attribute ac for entity class as. It would be misleading,

or simply wrong, to search for any table (irrespective of matching entity type)

that was generated by using a constraint on categorical attribute ac, to conclude

anything useful from the statistics computed from any table that has such an

attribute ac. The final classifier is independent of the entity class as it operates

solely on statistical measures retrieved from categorical attribute.
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6.2.1 Training Samples Generation Algorithm

To retrieve the label for categorical attributes and its statistics, a brute-force

method would visit all pairs of tables to find the existence of a parent-child table

pair. Avoiding the brute-force method, Algorithm 4 scans the tables twice to

retrieve the training samples.

In the first table scan, the metadata such as constraint rcons and subject

as for all tables are extracted and a simple index, called cons map, is created.

The cons map uses the constraint rcons retrieved from a table as key and corre-

sponding subject as of that table as value. For example, consider the two tables

“List of Tallest Buildings in the United States” and “List of Universities in the

United States” that are created using the constraint United States. Hence, the

corresponding entries in cons map is stored as:

United States→ {buildings, universities}.

The subject and the constraint of a table are extracted from the title of the

table—more details on the extraction of metadata are discussed in Section 6.2.2.

After creation of cons map, the second scan over the tables is done to retrieve

all the attributes and their statistics. During this scan, we ignore numeric

attributes (cf., Line 8 in Algorithm 4) and retrieve only categorical attributes

for a specific entity class and store them as pair of (as, ac) with its values Vac .

Using these retrieved information together with cons map, we generate the label

for each (as, ac) pair based on Hypothesis 1 and collect the statistics from Vac
to create the training sample.

According to the proposed hypothesis, the label of a categorical attribute is

found by identifying the existence of a parent and a child table that are linked

by the categorical attribute. To determine the link, we scan each value in Vac
associated with a categorical attribute ac for a specific entity class as in a table

and check the cons map until we find a match. Once a value from Vac is found

as a key in cons map, we scan the subject list associated with the key to see

whether the entity class as exists in the list. If the list contains as, we know

that there exists another table which is built over the same entity class as by

using one of the categorical value from Vac as constraint. This indicates that

there exists a child table using ac and we identify the current table that we are

scanning as the parent table. Hence, according to our hypothesis, we label the

pair (as, ac) as ‘interesting’ and consider it as a positive training samples. If

none of the values from Vac matches with the key in cons map, we know that

there are no child tables exist for the attribute ac. Hence, the pair (as, ac) is

labeled as ‘not-interesting’ and is considered as a negative training sample.

While retrieving Vac for a categorical attribute ac, we also capture the num-

ber of entities associated with each categorical value in Vac (e.g., in Table 6.2,

Vcity = {New York City (2),Chicago (2)}). This information is then used to

map a pair (as, ac) to feature space F , capturing the empirical characteristics,

such as information entropy, of the pair (as, ac); discussed in detail in Section 6.3.

Note that web tables are not always fully consistent in data representation



92 6. Entity-Centric Category Mining

Algorithm 4: Generating Training Samples

Data: Initialization

cons map : {key : constraints, value : subjectList[ ])}
training samples: interesting [ ] // a list of {(as, ac),F} where ac is

used to categorize as.

Negative training samples: notInteresting [ ] // a list of {(as, ac),F}
where ac is not used to categorize as

1 Procedure generateSamples(web tables R)
/* Scan on R to build cons_map */

2 for r ∈ R do

3 r.as, rcons ← parse metadata(r)

4 add (r.as) to the list of cons map[rcons]

5 end for

/* Scanning R to build training samples */

6 for r ∈ R do

7 List{r.A} ← parse(r) // Parsing all colums

8 List{r.Ac} ← List{r.A} \ (r.as ∪N ) // Removing numeric

attributes

9 for ac ∈ List{r.Ac} do

10 F ← calculateFeatures(Vac)
/* Find existence of parent, child table in R based

on Vac */

11 for x ∈ Vac do

12

13 subjectList← cons map[x]

14 if r.as ∈ subjectList then

15 add {(r.as, ac),F} to interesting [ ]

16 break

17 else

18 add {(r.as, ac),F} to notInteresting [ ]

19 end if

20 end for

21 end for

22 end for

23 return interesting [ ],notInteresting [ ]

and column descriptions [SC14, IRW16]. As ambiguous representations of nu-

meric types can generate wrong classification labels to categorical attributes,

Algorithm 4 excludes all attributes of numeric type. Such restriction removes

categorical attributes such as years, while generating only the training data,

but not from the test data. The trained classification model is applied to any

categorical attribute, independently of its type.
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6.2.2 Harnessing Wikipedia

In this work, we specifically use the English Wikipedia corpus to generate the

training samples. The major difficulties in extracting and understanding infor-

mation from web tables arise due to inherent heterogeneity in schema and data

representation [CP11, WWWZ12].

Here, we discuss in more detail why Wikipedia is an excellent source for

our endeavor. First of all, by enforcing collaborative editing policies and con-

trolling duplicated information across multiple pages, Wikipedia maintains high

information quality, thus, is generally considered credible for knowledge explo-

ration [CLK+16, MW08, BND13]. For this work, we also excluded user pages

to avoid biased data.

Second, Wikipedia tables contain surprisingly many categorical attributes.

Such information is not available in web portals, like http://rankopedia.com

or http://ranker.com, where tables are created based on crowdsourcing, with

only numeric attributes (mainly number of upvotes) being available for the en-

tities. More precisely, 3/4 of all Wikipedia tables that are investigated for this

work contain categorical attributes. The distribution of the number of categor-

ical attributes per table can be well described by a Poisson distribution with

mean λ = 1.9 (with relative sum squared error of < 0.00001).

Third, the structure of the tables in Wikipedia is quite consistent and the

metadata of tables, required by Algorithm 4, can be extracted. However, we

noticed that often Wikipedia tables do not have sufficient information about ta-

ble description associated via html tags, not even the title of the table. Hence,

retrieving metadata from arbitrary tables would require sophisticated NLP tech-

niques and further human involvement for checking the correctness of the re-

trieved results. To avoid the human involvement, in this work, we consider only

those tables that have the property of being sortable and are extracted from the

pages that has page title beginning with the phrase “List of . . .”. This greatly

helps to accurately collect metadata, such as subject and constraint of the ta-

ble, by parsing the title/caption of the table or the title of the Wikipage. These

page titles have a very simple sentence structure that can be easily parsed by

using propositions from the English dictionary to retrieve the subject and the

constraints of a table. For example, from the page title “List of Tallest Build-

ings in the Unites States”, we retrieve subject of the table as ‘Tallest Buildings’

and ‘Unites States’ as the constraint, using prepositions ‘of’ and ‘in’. Although

sometimes page titles are more complex than the given example, they are still

easily parseable and much less complicated than full-fledged sentences in regular

text paragraphs.

Now, we will discuss briefly how we identify the subject and the categorical

attributes/constraint from a table. We use the subject parsed from the page

title discussed earlier as a hint to identify the subject column of the table. To

do so, we check whether any of the column headers of the table matches with

the subject retrieved from the page title. The match is considered true if any

of the stemmed words (nouns) retrieved as subject from the page title matches

http://rankopedia.com
http://ranker.com
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with the stemmed column headers. Then, the matched keyword is considered

the subject for the training sample and the corresponding column is identifies

as subject column for that table.

There are few cases where the subject obtained from the page title and the

header of the subject column in the table do not use the same common noun

for the subject. For example, in many cases, we found the table header of the

subject column is referred as ‘name’. In such cases, we use the retrieved sub-

ject from the page title as the subject for the training sample and the adjacent

column to the sortable column (ranking column) in the table as the subject

column. We filter the numeric attributes during our sample generation as pre-

sented in Line 8 of Algorithm 4. To do so, we employ a dictionary of units to

recognize numeric attributes, i.e., if the table header or cells contain ‘lbs’ or

‘kg’. The presence of only numeric content in a cell of a table column is also

used to identify the numeric attribute. Although the structure of tables are

well defined in Wikipedia, the data are not free from ambiguity. For instance,

in some tables, numerical data (e.g., age) are spelled-out, thus, are retrieved as

non-numeric categorical values. Such cases yield false identification of a numeric

attribute as a categorical attribute in our training data. More sophisticated ex-

traction methods [LSC10, BND13] could be used in Algorithm 4 for metadata

extraction, which is orthogonal to our proposed hypothesis. However, despite

this restriction in obtaining training data, the trained classification model can

in fact predict interesting categorical attributes of numeric type, such as years.

Potential Limitations: Not surprisingly, in various cases, the absence of

a table in Wikipedia happens due to the limited manpower and not due to

general disinterest in that table. In fact, we found cases where a table is missing

in Wikipedia where human evaluators in our user study unanimously state that

they are interesting and, following our hypothesis, should exist. For instance,

the list of the gold medalists in Olympic history, grouped by the type of sport,

was not present in Wikipedia at the time of harnessing the training data, but

marked interesting by the majority of voters in our user study. In fact, during

the progress of this work, we found that several such lists of gold medalists were

added to Wikipedia. Due to this characteristics, the accuracy of the samples

extracted by Algorithm 4 suffers from false positive data and reaches only 68.9%

overall accuracy according to the user assessments. However, even though few

training samples were apparently misleading, our classifier is able to correctly

classify the task according to the evaluators’ judgments. Supported by such

exemplary evidence, and the overall performance shown in the experimental

evaluation, we believe the hypothesis is reasonable to generate the training data

for our learning task, as important tables are created supposedly before people

spend effort in creating less important ones.

We will see later that by directly considering the output of the described

extraction algorithm, i.e., the training samples, we obtain a 68.9% accordance

to human assessments. Whereas, the performance of our classification model,

learned based on generated training data, reaches 90.9% classification accuracy.
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Algorithm 5: Map-1(a)

1 Procedure map1(key1 , value1)

2 List{r.A} ← parse(r)

3 List{r.Ac} ← List{r.A} \ (r.as ∪N )

4 for ac ∈ List{r.Ac} do

5 for x ∈ Vac do

6 key2← (x, r.as)

7 value2← (rid, ac, count)

8 return emit(key2 , value2 )cat

9 end for

10 end for

Table id: t1
Building Country Hight

B1 C1 H1
B2 C2 H2
B3 C3 H3
B4 C2 H4

Table id: t2,  Constraint: C2
Building  Architect   Year

B2 A1 Y1
B4 A2 Y2
B5 A3 Y3

Collections of tables  

((C1, building), (t1, country, 1))cat

((C2, building), (t1, country, 2))cat

((C3, building), (t1, country, 1))cat

((C2, building), (t2))cons

((A1, building), (t1, architect, 1))cat

((A2, building), (t1, architect, 1))cat

((A3, building), (t1, architect, 1))cat

Map-1 (a)

Map-2 (a)

(C1, building){(t1, country, 1, 
mask=0)}
((C3, building){(t1, country, 2, 
mask=0)

(C2, building){(t1, country, 2, 
mask=1)}
(A1, building){(t2, architect, 1, 
mask=0)}

(A2, building){(t2, architect, 1, 
mask=0)}
(A3, building){(t3, architect, 1, 
mask=0)}

Reducer-1

Figure 6.2: The first phase of MapReduce job with a toy example.

6.2.3 Scale-Out Adaptation of the Generation of Training

Data

In this section, we present a scale-out adaptation of the generation of training

data, using the MapReduce framework [DG04], in order to make the Algo-

rithm 4 efficient, while dealing with large web corpora. MapReduce is a simple

programming model that allows processing data distributed across clusters. The

MapReduce implementation of Algorithm 4 requires two sequential MapReduce

jobs. Normally, each table is small enough so that we can avoid distributing it

over clusters. Thus, we can reduce the communication overhead of counting ap-

pearance of a particular categorical value in a table, denoted as count in Line 7

of Algorithm 5, an important parameter for the function calculateFeatures()

in Algorithm 4. Algorithm 5 processes each ranking and emits a map that keep

the count for a categorical value appearing in a specific table. Additionally, we

associate tagcat for each emitted value to create a lineage from this map job.

After computation of the first map job (Algorithm 5), the combiner produce the

list of tables under the same key.

We use another map job to create cons map, mentioned in Algorithm 4. Us-
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ing Algorithm 5 and Algorithm 6, we basically create two different lineages tagcat
and tagcons. After that, Algorithm 7 computes the left outer join of these two

lineages, which can be implemented following the discussion in paper [YDHJ07].

It allows us to find if a categorical value from a table (in key2) appears as a con-

straint in another table or not. We keep track of this information by introducing

a Boolean variable mask for each categorical value. Figure 6.2 presents an il-

lustration of the first phase of MapReduce job on a simple example using two

small tables. Using Algorithm 5 and Algorithm 6, statistics for each categorical

value appearing in two example tables and cons map are created. These results

are then joined by Reducer-1 (Algorithm 7) to produce intermediate results for

the next phase of MapReduce job, shown in Figure 6.2.

Algorithm 6: Map-1(b)

1 Procedure map2(key1 , value1)

2 r.as, rcons ← parse cons(r.M, r)

3 key2← (rcons, r.as)

4 value3← (tid)

5 return emit(key2 , value3 )cons

Algorithm 7: Reducer-1: Generating intermediate results

1 Procedure reducer(key2 , list < values >)

2 for v ∈ list < values > do

3 if v.tag = tagcons then

4 flag ← true

5 drop v from list < values >

6 end if

7 end for

8 if flag = true then

9 mask ← 1

10 output← (list < values >,mask)

11 return emit(key2 , output)

12 else

13 mask ← 0

14 output← (list < values >,mask)

15 return emit(key2 , output)

16 end if

According to our proposed hypothesis, if any categorical value for a specific

entity class (i.e., any categorical value from a specific table) appears at least

once as a constraint in another table, the corresponding categorical attribute

is considered interesting. This condition is checked easily by a set containment

query in Line 13 of Algorithm 4. But, in case of the scale-out adaptation of

Algorithm 4, we need to pay attention here that the output from Reducer-1
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(C1, building){(t1, country, 1, 
mask=0)}
(C3, building){(t1, country, 2, 
mask=0)

(C2, building){(t1, country, 2, 
mask=1)}
(A1, building){(t2, architect, 1, 
mask=0)}

(A2, building){(t2, architect, 1, 
mask=0)}
(A3, building){(t3, architect, 1, 
mask=0)}

(country, building, t1) {(C1, 1, 
mask=0)};
(country, building, t1) {(C3, 2, 
mask=0)};

(country, building, t1) {(C2, 2, 
mask=0)};
(architect, building, t2){(A1, 1, 
mask=0)};

(architect, building, t2){(A2, 1, 
mask=0)};
(architect, building, t2){(A3, 1, 
mask=0)};

(country, building, t1) 
(Interesting);

(architecture, building, t2) (not-
Interesting);

Output from Reducer-1 Map

Reducer

Figure 6.3: Exemplary illustration of Algorithm 8.

(Algorithm 7), though seems similar like the the set containment query, can

not actually produce the final results. As the output of Reducer-1 is computed

based on the keys (key2), partitioned by categorical values, the MapReduce

framework can not ensure that all categorical values from a specific table will

appear in the same partition. Hence, according to our hypothesis, we cannot

decide whether at least one categorical value from a table is used as constraint

in another table, based on the output generated by Reducer-1, independently

from each partition. To deal with this problem, we require another MapReduce

job, presented in Algorithm 8, in order to generate the final results, i.e., the

label (‘interesting’ or ‘not-interesting’) for categorical attributes in the training

data.

Algorithm 8: Generating label for retrieved categorical attributes.

1 Procedure map(key2 , list < values >)

2 for v ∈ list < values > do

3 key3← (v.ac, key2.as, v.rid) value← (key2.x, v.mask)

4 return Emit(key3 , value)

5 end for

6 Procedure reducer(key3 , list < values >)

7 for v ∈ List < values > do

8 sum = sum+ v.mask

9 end for

10 keyfinal ← (key3.ac, key3.as)

11 if sum > 0 then

12 return emit(keyfinal , interesting)

13 else

14 return emit(keyfinal ,notInteresting)

15 end if

The map procedure in Algorithm 8 simply re-arrange the information of
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categorical values, generated by Reducer-1, where the table id (rid) associated

with a categorical value is considered as key3. This ensures that the results of

set containment query for all categorical values from a table end up in the same

partition. Then, the reducer in Algorithm 8 generates the label ‘interesting’ for

a categorical attribute if any of the categorical values in a specific table holds

mask = 1, which signifies that the categorical value is used as a constraint in

another table. Using the output from the Reducer-1 (cf., Figure 6.2) for the

toy example, Figure 6.3 presents the second phase of MapReduce job based on

Algorithm 8.

6.3 Learning the Classification Model

After creating the training samples based on the proposed hypothesis, we step

toward to learn the classification model. For the task of learning which cate-

gorical attributes are interesting, we use different statistical measures to cap-

ture essential characteristics of the frequency distribution of values inside table

columns. As discussed earlier in Section 6.1, interestingness is not a fixed con-

cept. It is rather a meta concept capturing various separate concepts like gen-

erality, coverage, reliability, peculiarity, diversity, and utility of data. Here, we

propose three statistical measures, coined p-diversity, p-peculiarity, and max-

info-gap, capturing drawbacks of four existing statistical measures, entropy,

max-coverage, unalikeability, and peculiarity, that are commonly used to capture

different characteristics of categorical attributes. The features are first extracted

from the training samples using these measures and then the ν-SVM approach

is used to train the classifier.

Before we dive into the concrete definitions of the individual measures, we

present Table 6.3, in order to understand better on which data these measures

are actually executed. In the heading of the table, we values and their fre-

quencies (i.e., the set Vac) for three made-up exemplary tables for a categorical

attribute ‘country’. We see that the different measures (normalized in [0,1]) vary

quite strongly, relative to each other, but also compared to the same measure

for different table characteristics. For instance, the normalized entropy (Ĥ) of

Example 2 is 0.79, signifying average information content in Example 2 is high,

as the frequency of each country is uniformly distributed. Whereas the entropy

of Example 1 is 0.44, signifying that the average information content in Exam-

ple 1 is lower than Example 2 due to the skewness in categorical values. On the

other hand, the max-coverage value of Example 2 is 0.18, very different from

its entropy value, quantifying the maximum dominance of a categorical value

within it (quite low for this example). The key point is that individual mea-

sures highlight different aspects of categorical values—for instance, the degree

of randomness or dominance.
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Example1 Example2 Example3

USA(12) USA(2) USA(12)

Spain(8) Germany(2) Germany(2)

Germany(2) China(2) China(2)

China(2) Australia(1) Australia(2)

Australia(2) France(2) France(2)

France(2) Switzerland(1) Switzerland(1)

Russia(1) Russia(1)

Ĥ 0.44 0.79 0.48

mCov 0.43 0.18 0.55

mIg 0.75 0.29 0.8

U 0.71 0.84 0.67

D 0.74 0.93 0.7
ˆpPec 0.53 0.46 0.64
ˆpV ar 0.36 0.7 0.49

Table 6.3: Sample Data and Corresponding Measures.

6.3.1 Existing Features for Categorical Attributes

Several probability-based objective measures for interestingness are proposed in

literature, specifically for mining association or classification rules, capturing

the generality or reliability of such rules. One of the most prevalent measures

is entropy, mainly used for mining attribute-value pairs in decision trees. Sta-

tistical measures that are capturing diversity of categorical attributes are, on

the other hand, less prominently investigated [DS08]. Below, we briefly discuss

how the traditional statistical measures, discussed in Section 2.2.2, can be used

as features to learn the classification model and how these measures can reflect

the interestingness of a categorical attribute.

Shannon Entropy: In this work, a categorical attribute ac is treated as a

random variable where Vac represents the set of possible values that ac can hold.

Shannon entropy for ac is calculated by H(ac) = −
∑
x∈Vac

P (x) log2 P (x), with

P (x) = count(x)/|T |, where |T | is the size of the table and count(x) is the

frequency of value x ∈ Vac . We use the normalized entropy, given by:

Ĥ(ac) =
−
∑
x∈Vac

P (x) log2 P (x)

log2 |T |
.

Here, Ĥ(ac) = 1 when each categorical values appears only once, and

Ĥ(ac) = 0 when ac holds only one value for all entities. Clearly, a piece of

information is considered interesting when the randomness of the information

content is neither extremely high (i.e., Ĥ(ac) = 1) nor extremely low (i.e.,

Ĥ(ac) = 0). In Figure 6.4(a) and Figure 6.4(b), we present the distribution

of the entropy values extracted from retrieved interesting and not-interesting

samples respectively. Following the interpretation of entropy in our context,
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(b) Not-interesting samples
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(d) Not-interesting samples

Figure 6.4: Distribution of features value

we found that 69% of the seemingly interesting samples (categories) have an

entropy value in [0.2, 0.8] (cf., Figure 6.4(a)), and 71% of the not-interesting

categories have an entropy value in [0, 0.2] or [0.8, 1] (cf., Figure 6.4(b)).

Max-Coverage: According to the discussion in Section 2.2.2, max-coverage

of a categorical attribute ac is calculated as:

mCov(ac) = maxx∈Vac{P (x)}.

It captures dominance of a categorical value. If all the entities in the table

have the same value for ac, then mCov(ac) = 1. Such an extreme case is def-

initely not an interesting one. On the other hand, mCov(ac) → 0 when very

many categorical values are associated with ac and each entity holds a differ-

ent categorical value. This scenario is also not an interesting one. Intuitively,

the mid range in [0,1] might represent mCov-value for a interesting category.

According to the distribution of mCov(ac) values in our positive and negative

training samples, we observe that Max-Coverage values lie in [0.2, 0.8] for 66% of

interesting category samples (cf., Figure 6.4(a)) and 47% of the not-interesting

categories have a mCov-value in [0, 0.2] (cf., 6.4(b)).

It should be mentioned here that a categorical attribute with a large entity

list is suitable for the categorization of entities, when the attribute has a skewed

frequency distribution with high mCov-value or a uniform distribution with

low mCov-value. According to the interpretation of mCov-value, discussed
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earlier, mCov-value for both mentioned scenarios fail to identify the categorical

attribute as interesting for categorization.

Unalikeability: For capturing the degree of diversity of categorical attributes,

we use the unalikeability measure, discussed in Section 2.2.2. Like entropy mea-

sure, considering a categorical attribute ac as random variable, the unalikeability

measure U(ac) is calculated as:

U(ac) = 1−
∑
x∈Vac

P (x)2.

U(ac) = 0 when a categorical attribute ac holds the same value for all entities,

thus, can not further refine the entity list. On the other hand, U(ac) → 1

signifies that ac is too diverse to choose an attribute value pair for further

refinement of entity list. Clearly, both cases represent that the category is not

interesting in our context. Reflecting this characteristic, Figure 6.4(d) shows

that 83% of not-interesting categories hold unalikeability values in [0, 0.2] or

[0.8, 1].

This measure quantifies how often observations of a random variable differ

from one another. Hence, two categorical attributes, having a similar frequency

distribution but different population sizes, can not be distinguishable by this

measure. For instance, uniformly distributed categorical values in a large table

gets a unalikeability value near ‘1’, and thus, is identified as not-interesting,

which is definitely not the case. This characteristic is also reflected in the

distribution of unalikeability values of retrieved training samples. We can see

that unalikeability value of 46% of interesting samples lie in [0.8, 1.0] (cf., Fig-

ure 6.4(c)), which is making the distribution similar to the value distribution of

not-interesting samples (cf., Figure 6.4(d)).

Peculiarity: Peculiarity is another diversity measure used in this work. It

is the complement of the Simpson’s index, commonly used in mathematical

ecology, discussed in Section 2.2.2. Considering categorical attribute as random

variable, peculiarity of a categorical attribute ac, denoted as D(ac), is calculated

as:

D(ac) = 1−
∑
x∈Vac

count(x)(count(x)− 1)

|T |(|T | − 1)
.

D(ac) also shows almost a similar characteristic as U(ac), in the context of

understanding the interestingness of a categorical attribute. From Figure 6.4(d)

and Figure 6.4(c), we can see that the distribution of D(ac)-values for both,

not-interesting and interesting samples, respectively, have a similar distribution

pattern with U(ac). Supporting our interpretation ofD(ac)-values in the context

of identifying interesting category, around 74% of not-interesting categories hold

feature values in [0, 0.2] or [0.8, 1] (cf., Figure 6.4(d)). This measure also fails

to identify the scenario that a uniform distribution with large population would

be interesting for categorizing an entity list.
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6.3.2 Novel Features for Categorical Attributes

The existing measures discussed above are commonly used as impurity mea-

sures in classification methods, such as decision trees. Though they reflect

information about the distribution of categorical values, they fail to capture

some distinctive features of the distribution that can provide important insights

for categorization of the entities. The problem we are addressing in this work

calls for a more fine-tuned understanding of the distribution of categorical data.

In the following, we propose three probability-based statistical measures: (i)

max-info-gap, (ii) p-diversity, and (iii) p-peculiarity. We also discuss how these

measures provide more distinctive information to understand which distribution

of categorical values would be interesting in our context, compared to the above

existing statistical measures.

Max-Info-Gap: Consider a specific value x, say ‘China’, of a categorical

attribute ac in a table. If x is very frequent, the information contained in

that column of the categorical value is low. In the extreme case, ac can hold

one unique value for all entities. This could mean that the table is explicitly

created for entities that hold this one specific categorical value. In information

theory, the maximum amount of information content that a specific categorical

value can hold is − log2
1
|T | for a table T with |T | rows; basically when it is

describing only one entity in the table. Now, the idea behind max-info-gap is to

quantify the maximum difference between the information content expressed by

one specific categorical value within Vac and the maximum information content

a categorical value can hold hypothetically for that table, given by:

maxx∈Vac
{

(− log2 |T |−1)− (− log2 P (x))
}
.

The maximum difference occurs for the categorical value with maximum

coverage. Unlike max-coverage, which only focus on the maximizing P (x), max-

info-gap considers the size of the table to find more insights about the coverage

value. It signifies the dominance of a categorical value considering the table size.

With the existing notion of max-coverage, we define max-info-gap as follows.

Definition 9 Max-Info-Gap is the maximum information gap between the max-

imum information that a categorical value can hold for the categorical attribute

and the actual information it is holding. It is denoted as mIg(ac) for categorical

attribute ac, and is calculated as follows:

mIg(ac) = 1− log2mCov(ac)

log2 |T |−1
.

The values of mIg(ac) fall by definition into [0, 1]. When an attribute ac is

completely diverse, i.e., each value in ac is exactly associated with one entity,

mIg(ac) = 0, clearly not an interesting scenario for further categorizing entities.

For a fixed table size, as the dominance of one specific categorical value increases,

mIg(ac) also increases. In general, we can say that a skewed distribution of
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Figure 6.5: Comparison between max-info-gap and max-coverage with varying

table size.

categorical values hold higher mIg-measure than the uniform distribution for

a fixed table size. In extreme case, when all entities hold the same categorical

value thenmIg(ac) = 1 asmCov(ac) = 1. For example, if we compare the values

of mIg-value in Table 6.3, we can observe that the mIg-value of Example 1 and

Example 3 are higher than the mIg-value of Example 2 as the distribution of

categorical values in Example 1 and Example 3 are more skewed than Example 2.

We can also see that the mIg-value of Example 3 is slightly higher than the

mIg-value of Example 1, as the dominance of ‘USA’ is higher in Example 3,

considering that the table length is comparable in both examples .

Example 4

USA Spain Germany China Australia France

(60) (50) (45) (60) (40) (60)

It is important to discuss here how significantly max-info-gap differs from

max-coverage, as both of these measures quantify the dominance of a categori-

cal value in a table. Both measures, mIg and mCov hold a value towards 1 if

one categorical value is very dominant. But mIg considers the table length to

reward the mCov-value as table length increases. In Figure 6.5, we present how

table length affects mIg and mCov measure. We can see from the Figure 6.5

that for a higher coverage value, such as mCov = 0.9, mIg-values do not differ

much from the mCov-values for different table sizes. This characteristic signi-

fies the existence of one very dominating categorical value. On the other hand,

for a low coverage value, representing a non-skewed distribution of categorical

values, mIg-values significantly differ from mCov-value as the table length in-

creases. In Figure 6.5, we can see that with a fixed low mCov = 0.2; for a small

table with 10 entities holds mIg = 0.3, whereas a larger table with 100 entities

mIg = 0.63, significantly higher to indicate that the further categorization of

entities is suitable here. The mCov measure cannot capture this insight from

the distribution of the categorical values.

When comparing Example 2 and Example 4, we can see that Example 4

is intuitively more suitable for further categorization. Both examples have

mCov = 0.16 but mIg-values of them differ significantly. For Example 4,
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Figure 6.6: Distribution of max-info-gap in retrieved training samples.

mIg = 0.74 which is high enough to emphasize the possibility of meaningful

categorization, whereas mIg = 0.28 for Example 2 (cf., Table 6.3).

Figure 6.6 presents the distribution of mIg-values for retrieved training sam-

ples. From Figure 6.6(a), we observe that 39% of the not-interesting samples

have mIg-value in [0, 0.1], reflecting that mCov → 0 can be an indicator of

not-interesting category, mentioned earlier. Moreover, 19% of the interesting

samples have mCov ≤ 0.1 in our training data (cf., Figure 6.4(a)), whereas only

3% of the interesting samples have mIg ≤ 0.1 (cf., Figure 6.6). This obser-

vation reflects that max-info-gap can better distinguish interesting categorical

attributes from not-interesting ones.

P-Diversity: To understand the deviation of the distribution of categori-

cal values from a predefined reference distribution, we propose the p-diversity

measure. In contrast to the concept of unalikeability, it describes how often

the observation of a random variable varies with respect to an pre-established

reference frequency. This reference frequency is defined based on how we de-

scribe the distribution of categorical values for meaningful categorizations. For

a categorical attribute ac, if all entities hold the same categorical value, there

is no diversity among the observations (in such case, U(ac) = 0). In this sce-

nario, imposing a constraint on ac cannot create a new and refined table, thus,

is clearly not an interesting scenario for categorizing the entity list by ac. First,

the categorical attribute must hold at least two values for having a possibility

of creating refined tables by putting a constraint over values of ac. Second, in

an ideal case, these two categorical values will be equally distributed over the

entities in the table. Based on these two observations, we consider the reference

frequency 0.5, in this work. It represents the minimum diversity for a categorical

attribute to become interesting. Relative to this reference frequency, we define

the measure p-diversity of a categorical attribute as follows.

Definition 10 P-Diversity is the square root of the sum of squares of the differ-

ences between the actual coverage of a categorical value to the reference coverage
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value 0.5. It is denoted as pV ar(ac) for ac, and is calculated as:

pV ar(ac) =

√ ∑
x∈Vac

(P (x)− 0.5)2.

Note that the maximum pV ar(ac) is equal to (1− 0.5|T |)/
√
n, which occurs

when the categorical attribute holds different values for each entity in the table.

The normalized P-Diversity is, thus, given by:

ˆpV ar(ac) =

√ ∑
x∈Vac

(P (x)− 0.5)2)

(1− 0.5|T |)/
√
n

.

Here, ˆpV ar(ac) = 1 if the categorical attribute holds different values for each

entity in a table and ˆpV ar → 1 represent the cases where further categorizations

are not suitable. On the other hand, a ˆpV ar → 0, while the coverage of categor-

ical values tends to 0.5, which indicates the possibility of further categorization.

The normalizing factor for p-diversity considers the size of the table and rewards

pV ar-value as the table size increases. Hence, a uniform distribution with a cov-

erage value far from 0.5 might hold a ˆpV ar-value close to 0, if the table size is

large. Rewarding the table with larger size, even though the categorical values

have a lower coverage, is perfectly in line with the consideration for meaningful

categorization of a table, in our context. For example, let us consider Example 2

and Example 4 where both lists have almost similar distribution of categorical

values. Additionally, the coverage of each categorical value is less than 0.2 in

both lists, which is significantly smaller than the reference coverage of 0.5. But

due to the large table size, Example 4 holds ˆpV ar = 0.09, close to 0, indicating

further categorization of the table, while Example 2 holds ˆpV ar = 0.66, indicat-

ing not a meaningful categorization scenario. Unalikeability cannot capture this

characteristic and holds almost similar U -values, 0.85 and 0.83, respectively, for

Example 2 and Example 4, indicating both scenarios are not suitable for the

further categorization of entity list.

We present the ˆpV ar-value of retrieved not-interesting samples in Fig-

ure 6.7(b), where we can observe that that 50% of retrieved not-interesting

training samples hold ˆpV ar-values in range of [0.9, 1] and 72% not-interesting

training samples have ˆpV ar-value ≥ 0.5. Reflecting the significance of the ref-

erence distribution, Figure 6.7(a) shows that the density of interesting samples

is highest at ˆpV ar = 0.5. In line with our interpretation of ˆpV ar-value, we

also observe that 80% of the retrieved interesting categorical attributes hold
ˆpV ar-values within [0.2, 0.8].

According to the definition of ˆpV ar, a uniform distribution of categorical

values is considered to be more useful for further categorization than a highly

skewed distribution of categorical values where ˆpV ar → 1. We can see in Ta-

ble 6.3 that less skewed Example 1 has lower ˆpV ar value compared to Example 3.
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Figure 6.7: Distribution of p-diversity in retrieved training samples.

Table size list ˆpV ar U D

100
list1: { USA(80), Spain(20)} 0.09 0.32 0.32

list2: {USA(60), Spain(40)} 0.03 0.48 0.48

5
list3: {USA(4), Spain(1)} 0.63 0.32 0.4

list4: {USA(3), Spain(2)} 0.21 0.48 0.6

Table 6.4: Comparing ˆpV ar-value with unalikeability.

Now, we will discuss the difference between p-diversity and two existing di-

versity measures. Let us consider the example in Table 6.4. In the first row, we

represent two lists where list1 is more skewed than the list2. The second row

holds list3 and list4 with an identical distribution of values as list1 and list2,

respectively, but both lists hold very few entities. As unalikeability does not con-

sider the list size, it cannot distinguish between list1 and list3 as both lists have

the similar distribution. In contrast to unalikeability measures, ˆpV ar(list1) is

very close to 0, indicating a possibility for further categorization of list1 and
ˆpV ar(list3) = 0.63, which tells that list3 is not suitable for further categoriza-

tion of its entities. On the other hand, the peculiarity measure increases as the

table size decreases, consequently, a skewed distribution of categorical values in

a small table is considered more interesting than a larger one. For example,

Table 6.4 shows that D(list3) = 0.4 is closer to 0.5 than D(list1) = 0.32. As

mentioned earlier, a D-value close to 0.5 characterizes interesting attributes, and

thus, list3 is more suitable for categorization than list1 according to peculiarity,

which is clearly not the case. In this table, we can also see that as list size in-

creases, the difference between ˆpV ar-value for skewed and uniform distribution

decreases as expected.

In the experimental study in Section 6.4, we will see that the classification

model created by using p-diversity performs better than the model that is con-

sidering existing diversity measures.

P-Peculiarity: Finally, we propose the p-peculiarity measure to capture the

unexpectedness in a categorical attribute of a table. A categorical attribute
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Figure 6.8: Distribution of p-peculiarity in retrieved training samples

does not show any peculiarity if the categorical values are uniformly distributed

over the entities. With p-peculiarity, we measure the skewness of the data by

finding the difference of its distribution from the uniform distribution. Unlike

the max-info-gap, where the most skewed categorical value is used to quantify

the skewness, here, all categorical values are considered, i.e., the actual frequency

distribution of categorical values is considered.

Definition 11 P-Peculiarity is the absolute difference between the actual prob-

ability distribution of the categorical values and the uniform probability distri-

bution. P-peculiarity is denoted as pPec(ac) for categorical attribute ac, and is

given by:

pPec(ac) =
∑
x∈Vac

|P (x)− 1

|Vac |
|.

We now investigate how this measure can be normalized. We observe that

the maximum deviation from the uniform distribution occurs when all categor-

ical values except one occur exactly once. The remaining one occurs for all

other entities in the table. Hence, p-peculiarity normalized to [0, 1] by factor

max(pPec(ac)) is given by:

(|Vac | − 1)
∣∣∣ 1
|T | −

1
|Vac |

∣∣∣+
∣∣∣ |T |−|Vac |+1

|T | − 1
|Vac |

∣∣∣. The normalized P-Peculiarity,

ˆpPec(ac), is then simply given by:

ˆpPec(ac) =

∑
x∈Vac

|P (x)− 1
|Vac |
|

max(pPec(ac))
.

According to the formulation of max(pPec(ac)), it is clear that ˆpPec(ac) = 1

indicates that one specific categorical value has almost full coverage over the

entities. On the other hand, ˆpPec(ac) = 0 only for the case where each cat-

egorical value has exactly the same coverage. Both cases are considered to

be not-interesting for further categorizations of an entity list. Our intuition

is that ˆpPec(ac)-value in mid range of [0,1] is considered to be interesting for
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Table size list ˆpPec mIg

100 list1: { USA(90), Spain(10)} 0.82 0.98

10 list2: {USA(9), Spain(1)} 1.0 0.95

Table 6.5: Comparing ˆpV ar-value with mIg.

further categorizations of an entity list. We present the distribution of ˆpPec-

value of retrieved training samples in Figure 6.8. Following our intuition about

the range of ˆpPec(ac)-value for interesting category, we observe that 78% of

the interesting categories hold ˆpPec-values in [0.2, 0.8] (cf., Figure 6.8(a)) and

67% not-interesting categories hold ˆpPec-values within ≤ 0.2 and ≥ 0.8 (cf.,

Figure 6.8(b)).

Similar to the max-info-gap, the normalizing factor used in p-peculiarity also

rewards the ˆpPec value as table size increases. However, increasing table size

rewards p-peculiarity values more prominently than the max-info-gap for the

skewed distribution. For example, in Table 6.5, we can see that ˆpPec(list2) = 1,

indicating that this is not an interesting case for further categorization of the

list, whereas mIg = 0.95, indicating that this could be an interesting case for

further categorization (recall that mIg → 1 indicates interesting scenarios). On

the other hand, we can see that with larger list, the ˆpPec(list1) comes close

to the mid-range of [0,1] for the same skewed distribution as list2, indicating

an increasing significance for the categorization of the list. We can observe the

similar characteristics by comparing the distribution of p-peculiarity and max-

info-gap measures for interesting samples in Figure 6.8(a) and Figure 6.6(a)

respectively—only 1% of interesting samples hold ˆpPec ≥ 0.8, whereas 31% of

interesting samples hold mIg ≥ 0.8.

6.3.3 Tailoring Support Vector Machines

After the discussion of possible features, we now describe how a classifier is

trained based on different combinations of them. We opted for applying the

support vector machine (SVM) approach, a widely known and well-understood

concept. In the easiest case, for a balanced (roughly the same number of positive

and negative samples) and linearly separable training data, a linear SVM is used

to train the classifier. However, the extracted the training data from Wikipedia

contain noise for various reasons, discussed earlier. Hence, we need to employ a

soft-margin classifier, specifically, ν-SVM [SSWB00] which can detect outliers

while learning the classification model from the training data. In ν-SVM, the

parameter ν is tunable within [0, 1]. It controls the lower and upper bound

on the number of misclassified samples that are allowed to use in the training

phase, and thus, enables the tuning of the training error. As ν increases, the

model becomes more biased and prone to underfitting the data. Moreover, the

statistical measures that are used as features in this work are not always linearly

separable. Multiple non-contiguous ranges of feature-values can be associated
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with a specific class of samples. Hence, we employ the popular Radial Basis

Function (RBF) as kernel function [SS01] that transforms our training data to

higher dimensional space by using a non-linear mapping. This ‘kernel’ method

allows classifying the training data linearly in the higher dimensional space.

In the RBF kernel, a parameter γ is used to control the radius of influence

of the support vectors. For example, large γ-value discards the influence of ν

and cannot prevent overfitting. In Section 6.4, we will discuss how the optimal

values for ν and γ are calculated to train the classifier.

In this work, we extracted 16 times more negative samples than the positive

ones from Wikipedia using Algorithm 4, discussed in more detail in Section 6.4.

For such an imbalance training data, the one-class SVM [SPS+01] can be em-

ployed, where the classifier is trained based on the samples from a single class

(either positive or negative training samples). Another option could be under-

sampling the data to obtain a balanced training data. In Section 6.4, we present

a comparative study on the performance of the classification models which are

trained by either ν-SVM on balanced samples created from original training

data or one-class SVM on imbalanced original training data.

6.3.4 Evaluation Methodology

The learning model is validated in two different ways: (i) based on held-out

test data and (ii) by means of a user study.

For held-out test data, the samples, extracted from Wikipedia tables using

Algorithm 4, are considered as ground truth to evaluate the performance of

learned classification model. We mainly use accuracy as the performance metric

in this work. Additionally, we use class-specific accuracy (i.e., precision), recall,

and F-measure, discussed in Section 2.3, to evaluate classification models.

Our objective is to learn a classifier that can classify the interesting categories

for the categorization of an entity list. Therefore, we also validate the classifi-

cation model by means of a user study. As human-perceived interestingness is

not a fixed concept, choices/preferences of users can differ. The human asses-

sors are asked to classify each test sample into one of three possible categories:

interesting, not-interesting, and not sure.

Subsequently, we define the ground truth depending on the agreement level

of the human responses. The higher the agreement level (e.g., all agree on a

label), the more “obvious” the task appears, and thus, it is presumably also

easier for the classifier to correctly classify it. We see later that this is indeed

the fact.

Consider a total of y users that provide assessments of the test samples.

Different agreement levels are considered based on majority voting: For the x/y

agreement level, where x > y/2, one of the three possible choices is considered as

ground truth for a sample if at least x users agree on that choice. The samples

which are marked as not sure are excluded from the ground truth. For different

agreement levels, class-specific accuracy/precision, recall, and F1 measures are
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used to evaluate the performance of the classification models against the ground

truth generated from the user study. In order to quantify the reliability of user

agreements, we use Fleiss’ kappa [Fle71], discussed in Section 2.3.

6.4 Experimental Evaluation

To obtained the training samples, we have used the English version of a 2016

Wikipedia dump file. We have implemented Algorithm 4 in Java 1.8. Experi-

ments are executed on an Intel Core i7 CPU@3GHz machine, with 16GB main

memory. We use the LIBSVM [CL11] library to train the classification models.

The entire process of extracting the training data from the 50.49GB (uncom-

pressed) Wikipedia dump took around 30 minutes, where most of the time was

spent on actually cleaning-up the raw dump file before Algorithm 4 was applied.

We extracted a total of 2045 ranking tables from Wikipedia pages entitled “List

of . . .”. From these tables, based on Algorithm 4, 2519 categorical attributes

are labeled as “not-interesting” which are considered as negative samples and

158 categorical attributes are labeled as “interesting” which are considered as

positive samples.

For the training data, 75% of the positive and negative samples are randomly

selected. The remaining 25% samples from each class are considered as held

out test data, denoted as TestPos and TestNeg respectively for the positive

and the negative samples. These two test datasets are merged into a set denoted

as Test which contains 669 samples. We retrieved significantly fewer positive

samples than negative samples. To create balanced training samples, we equally

divided the negative samples into ten smaller chunks and then merged each of

these chunks with the positive training samples, resulting in 10 sub-training

files, each containing 306 training samples. The ratio of positive and negative

samples in these sub-training files are 1:1.5.

For repeatability and adoption, the labeled training data retrieved by Algo-

rithm 4, the 10 sub-training files, and the results of the user study are publicly

available under http://dbis.informatik.uni-kl.de/catmining/.

6.4.1 User-Study Setup

As mentioned earlier in Section 6.3.4, we set up a user study to validate the

trained classifier. For this purpose, 110 randomly selected samples from Wiki-

pedia are presented to users. The samples are displayed to a user in form

of “A(as) : B”. In this format, ‘A’ represents the title of the Wikipedia table,

‘as’ represents the subject of the table, and ‘B’ represents a categorical attribute

associated with the entity lists in the table. Users are asked to label the samples

in three categories: (i) If a user is interested to categorize the entities in table

‘A’ by using categorical attribute ‘B’, then the sample is labeled as interesting,

(ii) If a user thinks it is not interesting to categorize the entities in table ‘A’

by using categorical attribute ‘B’, then the sample should be annotated with

http://dbis.informatik.uni-kl.de/catmining/
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not-interesting, (iii) a user can also label a sample not sure in case the user

can not decide any of the two options before.

Overall, each question is evaluated by 9 human evaluators. Four evaluators

are in fact enough to achieve a significance level1 of α = 0.05.

On average, an evaluator has marked 35.5% questions with interesting, 53.5%

questions with not-interesting, and 20% with not sure. As the users’ choices differ,

we use Fleiss’ kappa to understand the reliability of agreement. For each testing

sample, nine user choices are taken for assessment. For the nine evaluators, the

calculated kappa value is 0.45 and the 95% confidence interval for Kappa has a

range between 0.42 and 0.48 for the collected user data. Moreover, this range

of value significantly differs from zero and p-value ≈ 0 � 0.05, which clearly

rejects the null hypothesis that the agreement among users is achieved randomly.

6.4.2 Parameter Selection and Evaluation

Due to the imbalanced size of the available training samples, discussed earlier, it

seems feasible to use a one-class SVM to learn a model separately for each class.

Alternatively, we also have created the 10 balanced sub-training files from the

original training sample, as mentioned above. Here, we evaluate the performance

of classification models created by all feature combinations from F , in total

2|F| − 1 combinations. The classification models are created for all possible

feature combinations from each sub-training file. Modifying the parameters

tuning in the LIBSVM library, we implemented a grid search for ν-SVM with

5-fold cross-validation to find the optimal parameter pair (ν, γ) for each sub-

training file. Finally, the classification model is learned with optimal ν and γ.

According to the theoretical discussion in [CLS05], the solution of ν-SVM is only

feasible for 0 ≤ ν ≤ 0.77 for our training data. In fact, in line with the theoretical

study, we found that the optimal ν-value lies in [0.41, 0.61] for different sub-

training files with optimal γ = 0.0003. For each feature combination, the average

training time of 10 sub-training files is 13.813s.

6.4.3 Results Based on Held-Out Data

The performance of the classification models, created on sub-training files, is

first evaluated on held-out test data which is created by randomly selecting

25% samples from complete samples. The held-out test data also contains 16

times more not-interesting samples than the interesting ones, reflecting the same

characteristic as the training data. Therefore, a high overall accuracy on Test

data does not imply that the class-specific accuracy is also high, i.e., the model

performs well for both TestPos and TestNeg separately. Hence, we consider the

class-specific accuracy, i.e., the precision of TestPos and TestNeg separately to

evaluate the classification model, rather considering the overall accuracy of the

1With 9 evaluators and 3 possible answers for each task, there are 39 possible outcomes.

Full agreement has, thus, a random chance of 3/39 = 0.00015, 6/9 agreement has random

chance of 0.03 for one-tail observation.
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Figure 6.9: Comparison among different type of models.

classification models on Test. For each feature combination f ∈ 2F , we train

10 classifiers based on the 10 sub-training files and choose the one, denoted as

bestf , that has minimum classification error on both the TestPos and TestNeg.

Finally, the classification model which performs best among all bestf for feature

combinations f ∈ 2F , is chosen as the final model, coined final-M in this paper.

We find out that the final-M is trained using all features except entropy and

unalikeability, reaching an accuracy of 80% and 82.003% respectively for TestPos

and TestNeg.

For TestPos and TestNeg datasets separately, Figure 6.9 compares the per-

formance among final-M, two different one-class SVM models, built on positive

and negative training samples separately, and the average performance of all

bestf , created on feature combinations f ∈ 2F . From this figure, we can ob-

serve that the performance of the classification model created from interesting

training samples using one-class SVM reaches 77.46% accuracy for TestNeg.

But its performance is very poor (only 7.5%) for TestPos. This model is clearly

unable to detect outliers and is underfitting the data, which is unacceptable for

a reasonable classifier. Though, the classification model built on not-interesting

samples using one-class SVM performs consistently for both TestPos and Test-

Neg, the performance is inferior to the average performance of bestf created by

using ν-SVM method. Finally, final-M is clearly outperforming all other models.

6.4.4 Evaluation Based on User Study

Earlier, we have discussed how we select the best model final-M from all bestf
models trained for each feature combinations. The selected model is evaluated

over Test data which is retrieved from Wikipedia using Algorithm 4. Hence,

the validation of the final-M requires further user relevance assessments. In this

section, we discuss the evaluation of the classification model based on a user

study to validate our whole approach. As mentioned earlier in Section 6.3.4,

we consider different levels of user agreement based on majority voting. For

each x/y agreement level, we divide the ground truth into two test files. The
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samples which are marked ‘interesting’ in the ground truth of user study with

x/y agreement level, is denoted as x/y-userPos. On the other hand, the sam-

ples which are marked ‘not-interesting’ in the ground truth of x/y agreement

level are denoted as x/y-userNeg. Here, we exclude the samples which are

marked as ‘not sure’ from the ground truth. As the agreement level decreases,

the ground truth contains more not-interesting samples than interesting ones.

For the lowest agreement label, the 5/9-userNeg dataset contains almost two

times more samples than 5/9-userPos dataset.

Performance of Individual Features

To understand how well each of the features, i.e., the statistical measures, can

classify the data, Figure 6.10 compares the performance across the bestf clas-

sification models created over one single feature f ∈ F . The ground truth is

considered 6/9 agreement level of user assessment for this figure. We can see

from the figure that the model created based on p-diversity is outperforming all

the other models and reaches 72.41% overall accuracy for the test samples from

the user study. Also, the model created based on Max-Info-gap is performing

2nd-best (70.69% overall accuracy). The performance of both models is con-

sistent throughout all agreement levels, except 8/9 agreement level where the

model based on entropy reaches slightly higher accuracy—the detailed study is

given in Appendix A.1. Figure 6.10 also shows that the precision of all these

models for 6/9-userPos is comparatively low than 6/9-userNeg. The precision

improves as the agreement level increases and reaches 100% and 83.33% for

9/9-userPos and 9/9-userNeg, respectively. Comparing the F1-measure, i.e., the

harmonic mean of precision and recall, we observe that the model created using

p-diversity is outperforming the other models created on single features. These

results reflect our claim that the proposed measures can capture the character-

istics better than the existing ones (e.g., entropy, max-coverage, etc.) to find

the meaningful categorization scenarios in a human-perceived sense.

Performance of Feature Combinations

Now, we investigate the performance of the final-M which is trained using the fea-

tures peculiarity, p-diversity, max-coverage, max-info-gap, and p-peculiarity

with the model created based on the existing measures only, i.e., entropy, unalika-

bility, peculiarity, and max-coverage, denoted as M-Ex. Final-M achieves 79.31%

overall accuracy, which is much higher compared to M-Ex that achieves only

67.24% for the 6/9 agreement level. Figure 6.11 shows that final-M is more ro-

bust and achieves higher F1-measure than M-Ex based on 6/9 agreement level

of the user study.

Table 6.4.4 reports on the performance of final-M for different agreement lev-

els. Now, the higher agreement means that human evaluators had no difficulty

to accomplish the classification task in a consistent way which indicates that the

task is relatively easy to solve. For such presumably simple tasks, the successful
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Figure 6.10: Comparison of single-feature models considering 6/9 agreement

level as ground truth.

classification by automated means is, thus, also more likely. The results in Ta-

ble 6.4.4 are reflecting the same characteristic as the classification performance

of the model increases with the increment of the agreement level.

Next, we categorize all bestf models, created earlier using all possible feature

combinations, into seven groups based on the number of features used to train

the model, i.e., 1 ≤ |f | ≤ |F|. The performance of the best performing model

from each group is reported in Figure 6.12 based on 6/9 agreement level. In this

figure, we also mention which features are used to create the best one within

each group. For instance, the model using the features entropy, p-diversity, and

max-info-gap is performing best among all the models created by combining any

three features from F .

Assessment of Main Hypothesis

Figure 6.13 presents an evaluation of Algorithm 4, respectively our main hy-

pothesis, by comparing the retrieved labels for userPos and userNeg samples

using Algorithm 4 with the human-labeled ground truth for different agreement

levels. Figure 6.13 shows that the algorithm can identify the positive sample

precisely (c.f., high precision on userPos). As discussed earlier in Section 6.2,

due to the incompleteness of Wikipedia data, the algorithm missed out many

positive samples that are marked as ‘interesting’ by users, which is reflected
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Figure 6.11: Performance of final-M vs. M-Ex.

Agreem. userNeg samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 83.33 90.90 83.33 100.00 90.90 90.90

8/9 91.67 78.57 84.61 70.00 87.50 77.78 81.81

7/9 86.36 82.61 84.44 75.00 80.00 77.41 81.58

6/9 86.48 82.05 84.21 66.67 73.68 70.00 79.31

5/9 84.21 78.69 81.36 53.57 62.50 57.69 74.12

Table 6.6: Performance of final-M for different agreement levels.

by low recall on userPos shown in Figure 6.13. Figure 6.13 also shows that

Algorithm 4 almost correctly identifies all samples that are marked as ‘not-

interesting’ by users for userNeg. Moreover, final-M which is trained based on

the training samples retrieved by Algorithm 4 reaches reasonable performance

for both userPos and userNeg data, presented in Table 6.4.4. These findings

strongly support our working hypothesis (cf., Section 6.2) which states that posi-

tive and negative training samples can be derived from the presence and absence

of tables in Wikipedia.

Figure 6.14 shows that the models created on different features achieve al-

most the same classification accuracy for user-study samples according to two

different ground truths: (i) the level retrieved by Algorithm 4 and (ii) 6/9

agreement level from our user study. This performance remains consistent for

all other models which are not shown in the figure. This result emphasizes the

robustness of the trained classification models.

6.4.5 Lesson Learned

Now, we summarize the observations from the above experimental studies in

the following four lessons.

1. Our working hypothesis, which is the main idea behind Algorithm 4, is

well-grounded: The positive and negative training samples in the obtained

training data are generally confirmed by human evaluators.
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Figure 6.13: Performance of Algorithm 4.

2. Our study shows that p-diversity outperforms existing measures for the

task to capture diversity in our context. The proposed measure max-info-

gap performs better than max-coverage and entropy.

3. Final-M is able to achieve 79.31% overall accuracy for the ground truth

given by the 6/9 user-agreement level. It uses all the features discussed in

this work, except entropy and unalikeability, to train the model.

4. Final-M can accurately classify the data even when disagreement among

the users’ increases (i.e., the classification task gets more difficult).

6.5 Summary

In this chapter we presented a new approach to capture human interest in non-

numeric categorical attributes of an entity class in a complete automated means.

We made the initial hypothesis that training data can be derived from Wikipedia
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based on the presence or absence of specific tables. We motivated and defined

three new statistical measures to capture subjective interestingness for our con-

text of finding interesting attribute to a categorize entity list. The results of

the experimental study, involving a user study, show that using features com-

bination, a classification model can well reflect human interests on categorical

attributes. Based on the user study, we also validate our proposed hypothesis.

It also shows that the proposed statistical measures are more suitable to capture

human interest compared to the traditional measures like information entropy.





Chapter 7

Applications of the

Classification Model

This chapter is partly based on our demo publication at VLDB 2016 [PMMP16].

In this chapter, we present a brief description of two full-fledged prototypes,

PANTHEON and PALEO, which allow users to explore underlying data, pre-

sented in tabular forms. Both systems adopt the proposed classification model

from the previous chapter as a component, to assist the functionalities provided

by the systems, as well as increase the efficiency of the framework. PANTHEON

guides a user to navigate through a ranking database created automatically from

a Knowledge Base. It also allows a user to issue a query about an entity type,

along with a criterion (optional), to our ranking database, for extracting infor-

mation about lists of entities from the given type, ranked based on different

criteria. In contrast to PANTHEON, the system PALEO allows a user or data

analyst to find potential queries that can generate the user-given ranked entity

list from a pre-defined database.

7.1 PANTHEON

One of the challenges in handling Big Data is about making sense of large

collections of complex and dynamic information. Rankings are an essential and

easily comprehensible methodology to summarize the key facets of knowledge

while requiring little or no understanding about the underlying data. We have

developed PANTHEON, a holistic and versatile approach to compile interesting

rankings from knowledge bases, without human intervention, and subsequently

exploit these rankings for data exploration.

Consider a user who is traveling to the United States and wants to explore ex-

ceptional entities worth visiting. Being fascinated by city skylines, she specifies

“Skyscrapers” as a domain of interest for exploring the data. PANTHEON finds

the most prominent rankings within the domain, and allows her to explore the

119
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domain starting with a ranking list, for example, PANTHEON returns a list of

skyscrapers, located in the United States and ranked by their height. Now, she

might want to continue browsing within the same domain of interest and learns

about skyscrapers in other locations or further fine-tuned the exploration by

adding additional constraint, e.g., skyscrapers in New York. Alternatively, she

can also decide to change the domain and look at rankings that contain moun-

tains in the United States, which she can add to her itinerary. PANTHEON

enables such facility to explore data by transforming a knowledge base to a

well-selected set of rankings, containing outstanding entities, that are deemed

interesting to users. This is achieved by computing statistical properties, such

as entropy, coverage, unalikeability, etc., over categorical attributes, in order to

put thresholds on ranking competitiveness, and to limit the ranking sizes to the

most interesting top portions.

Now, we describe briefly the framework of PANTHEON that finally builds a

ranking database from a Knowledge Base, adopting the proposed classification

model from the previous chapter within it.

7.1.1 System Framework

PANTHEON comprises two components. The core component creates a ranking

database, holding meaningful rankings, generated from an underlying knowledge

base (KB), such as Yago, Freebase, or DBpedia. The UI component allows users

to explore the underlying KB by navigating through the generated rankings.

At the time of ranking generation, PANTHEON considers all facts, i.e.,

subject-predicate-object (SPO) triples, provided by the KB as input, via one or

multiple files, or read from corresponding tables of a relational database system.

To illustrate how such facts look like, the following triplet states that the entity

‘Empire State Building’ is 381m high.

Empire_State_Building => hasHeight => 381m

Figure 7.2 shows an overview of the system. It presents different steps and

connection among them to generate the ranking database. Briefly put, the

rankings are created using following steps:

1. Create ranking ‘skeletons’ from SPO triplets in KB using Apache Spark.

2. From the vast number of possibly ranking skeletons, find only the inter-

esting ones using a classifier.

3. Assign a meaningful ordering criterion and direction (ASC/DSC) to the

ranking skeletons.

A ranking skeleton is a group of entities retrieved by imposing a constraint

(predicate=object) over SPO triplets and it does not contain information about

ranking criteria. For instance, “Skyscrapers in Europe” is a ranking skeleton,
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Figure 7.1: PANTHEON framework

while “Highest skyscrapers in Europe” is a ranking. One ranking skeleton may

resulted in multiple rankings, using different ranking criteria. The rankings are

stored in PostgreSQL with appropriate indices and data normalization, which

allows interactive browsing of the rankings with low latency.

Skeleton Creation. In this work, we use Yago to generate the ranking

database. Yago triplets are divided into three categories: (i) basic facts, like

Albert Einstein => hasWonPrize => Nobel, to represent information about

an entity, (ii) type facts, such as Albert Einstein => isType => Scientist,

to group similar type of entities, and (iii) literal facts, like Albert Einstein =>

bornIn => 1879, to describe numerical information about an entity. We trans-

form the Yago triplets into (predicate => (object => {subject list}))

tuples, adopted from the work by [IMS13]. The type and basic facts are merged

and grouped by their (predicate, object) values to create a basic set of ranking

skeletons with only one constraint. For instance, in this step, a ranking skeleton

like ‘scientists who have won the Nobel Prize’ would be created.

Finding Interesting Skeletons. Yago is a diverse, large, and popular KB

that is automatically built from different data sources, e.g., Wikipedia, Word-

Net, and GeoNames. It covers a wide range of topics, such as geographical

entities, personalities of history, movies, individuals across the science. Clearly,

all ranking skeletons with single constraint, which are generated automatically

in the last step from Yago, are not equally meaningful, thus, not all of them can

create interesting and comprehensible rankings. At this point, it is important

to realize which ranking skeleton can create a useful ranking. Otherwise, rank-

ing creation procedure can grow exponentially, in both time and space, due to

merging of multiple skeletons together to create complex ranking skeletons with

multiple constraints and joining of each skeleton with multiple criteria available

in Yago to create the final rankings. Following the discussion about the gen-
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eral interest of humans on meaningful categories from the previous chapter, we

consider the following two scenarios that can guide us to understand whether a

ranking skeleton should be pruned or not.

• Depending on the domain, a ranking skeleton can be associated with a

really long list of subjects, for example, list of scientists who won Nobel

prize (scientists are the subjects in such Yago triplets). This is definitely a

scenario where the skeleton should not be pruned, rather it can be merged

with other constraints to create an interesting and more comprehensible

rankings.

• A predicate can be associated with very many objects, but each (predicate,

object) pair links to very few subjects.For example, skeletons for each

(hasMarried, an individual) pair is generated in the first step from the

Yago facts, but each of such pairs is associated with very few subjects

(i.e., the number of spouse). Such scenarios are definitely not desired for

further creation of a ranking and needed to be pruned.

Moreover, it is not feasible to employ human assistants to annotate the in-

teresting scenarios. To solve this problem, PANTHEON utilize the classification

model final-M, proposed in Chapter 6, that can detect the predicates that are

interesting for humans to be used as a constraint (predicate=object) in rank-

ings. For this purpose, we first need to compute different features over the fre-

quency distribution of the values of a categorical constraint. Here, we consider

(predicate, objectType) as categorical attribute. For example, if (hasWonPrize,

Awards) is considered as a categorical attribute, (hasWonPrize, Nobel), (has-

WonPrize, Lorentz Medal), etc., are considered as categorical values. The fre-

quency of each instance of Awards (e.g., Nobel, Lorentz Medal) is the number of

subjects associated with it. These frequency values are then used for computing

the statistical measures, peculiarity, max-Coverage, max-info-gap, p-diversity, and

p-peculiarity (see Section 6.3.1 and Section 6.3.2). The collected measures for a

specific predicate (e.g., hasWonPrize) are used as features to fed into the classi-

fication model which predicts if the predicate is interesting/meaningful enough

to create the (predicate, object) pairs. In case of positive prediction by the

classification model, we keep the skeleton using single constraint, i.e., imposing

(predicate = object). Additionally, but more ad-hoc, an additional pruning step

is applied to remove all ranking skeletons having less than a threshold number

of entities qualifying for it. In this work, we fixed this threshold to thirty. To

obtain more complex rankings, two ranking skeletons are joined by combining

their lists of constraints, and the associated subject list for the combined con-

straint is obtained by intersecting their subject lists, as discussed in [IMS13].

We continue this merging step iteratively, combining at most three (predicate,

object) pairs.

Finally, we generated 2, 116, 942 ranking skeletons, based on 189 predicate

combinations (max. 3 predicates together). After pruning ranking skeletons, as

described above, we are left with 536, 982 ranking skeletons, each containing at
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least 30 entities. By using the classification model, we prune a total of 41, 571

skeletons.

Ranking Criteria We consider all the literal facts in Yago as ranking criteria

which are joined with the ranking skeletons to generate the actual rankings. For

each pair of ranking skeleton and criterion, we find the intersected subject list

and annotate the subjects with the corresponding numerical value, to create the

actual ranking. Here, we ignore the subjects that do not have an associated

numeric value in Yago. Finally, we rank the subjects according to the associ-

ated numerical values, where the order of the ranking (descending/ascending)

is decided by analyzing the kurtosis and skewness of the distribution of numeric

values, before adding the ranked entities to our ranking database.

The ranking skeletons, obtained from the previous step, are then joined with

19 distinct ranking criteria, which yields the total 339, 816 rankings. Each of

these rankings holds at least 30 entities with their ranking score, as per the

threshold mentioned earlier. These rankings are generated over 30, 145 distinct

categorical constraints in the form of Predicate = Object. There are 747, 147

distinct entities from various domains present in these rankings.

UI component The generated rankings are normalized into predicate, object,

subject, and ranking sets and stored in a PostgreSQL database. We added

several indices for faster data access, in particular, spatial indices are added on

predicates, objects, subjects, and literals, in order to enable efficient similarity

search on these attributes.

To enable searching and browsing through the ranking database, a lightweight

web service is created. It consists of multiple PHP scripts, providing an API

to search for predicates, objects, subjects, and rankings in the database, using

keyword search. Using the API, a user can narrow down the search attribute

by attribute and display intermediate results. This API is accessed by an

HTML/JavaScript front end, providing a multi-step search interface to a user

for finding interesting rankings. These rankings are displayed in a tabular

fashion, while the system asynchronously searches for similar rankings in the

background.

7.1.2 Application Scenarios

In this section, we discuss how PANTHEON allows users to explore large data by

navigating through generated ranking database, without any knowledge about

underlying KB.

Exploring Entities via Rankings In this application scenario, a user ex-

plore and learn about the top-performing entities from a domain of interest. In

addition, while browsing the displayed rankings, by changing the constraints

and ranking criteria, there is an opportunity of discovering other entities from
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Figure 7.2: Exploration scenario in Pantheon.

a different domain, which are related to one of the initial interest. Figure 7.4

shows a screenshot demonstrating this scenario. The user can specify the do-

main of interest and (optionally) some constraints and get the most prominent

rankings that adhere to the specifications. The system provides assistance while

selecting this initial constraints.

Consider a user who is interested in skyscrapers. By specifying“Skyscrapers”

as domain, she obtains 34 different rankings with different categorical constraints

using PANTHEON. Figure 7.4 shows a list of skyscrapers located in the United

States, ranked by their height. There are several options how the user can

continue. She can continue browsing through the rankings from the domain

skyscrapers by clicking the “Next” button and learn about how the entities

within this domain compare with different constraints. Alternatively, perhaps

she is interested in visiting the United States and wants to see what are some of

the other top entities, from different domains. By clicking on the link next to the

Domain, she can browse through the other domains with rankings concerning

the United States. Figure 7.4 shows that there are 24 rankings with distinct

domains, which are reflecting entities from the United States and can be ordered

by Height. Similarly, by clicking on the link next to the ranking criteria (in this
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case “Height”), the user can explore rankings with different ranking criteria.

Navigating through the different domains, the user can explore other rankings,

such as containing the highest waterfalls in the United States or the longest

rivers in the United States, which she might wish to add to her itinerary while

visiting the United States.

Random Walk through Ranked Entities In this scenario, a user can ran-

domly walk through entities that mutually share ranking domains or some prop-

erties. In this way, a users can explore how two top entities from two very dif-

ferent domains can be related through a path in the knowledge graph, where an

edge between the entities exists if they appear together in one ranking in our

ranking database. To enable this random walk, PANTHEON allows a user to

select an entity from a ranking and gives access to all the rankings where the en-

tity appears. She can then select another entity from any one of these rankings

of her interest, for exploring the graph further. For example, a user can start

with the domain “linguistics”, where she selects the entity “Noam Chomsky”.

This allows her to access all rankings where “Noam Chomsky” appears, such as

a list of people who have won the Helmholtz Medal. In that list, the user can

select the next entity “Max von Laue”, which allows her to explore the domain

“physics” and find a path which connects “Noam Chomsky” to “Albert Einstein”,

as both, “Max von Laue” and “Albert Einstein”, appear in the ranking of “list

of Nobel laureates”.

7.2 PALEO

PALEO [PM16c, PMMP16] is a system designed for exploring databases by re-

verse engineering OLAP-style top-k queries. Given an input result list, PALEO

is able to efficiently determine input-generating SQL queries and can addition-

ally be relaxed to find queries that generate rankings similar to the input within

a certain distance bound. Here, we introduce a scenario to explain how PALEO

is useful for exploring data.

Consider a user Alice who needs to make up her mind which smartphone

to buy next. Alice is favoring model X, model Y, and model Z, in this order.

She is interested in finding explanatory queries and in fact populated rankings

that resemble this ranking. PALEO tries to determine such queries, either ex-

plicitly reflecting Alice’s preference or delivering queries and resulting rankings

that are close to her ranking. Given the structure of the queries (perhaps trans-

lated to natural language) Alice learns about the categorical constraints and

ranking criteria used. Given the computed rankings, Alice can further learn

about other smartphones that perform perhaps even better, depending on how

much PALEO is allowed to deviate from the original input ranking. Assume

PALEO returned a ranking of {X, W, Y, Z} with constraints ‘storage=16GB’

and ‘brand=Samsung’, ranked by ‘battery lifetime’. What can she learn from

that and how can she proceed? She can remove the constraint on the make to
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Figure 7.3: PALEO framework [PMMP16]

get additional offers, she also learned that the model W appears feasible, too.

Further, she changes the ranking criteria as ‘battery lifetime’ is not the most

decisive criterion for her anyway, can distort the ranking slightly to see how

generating queries are going to differ, etc.

Now, we present the key components of PALEO framework and elaborate on

how we utilize our proposed classification model from Chapter 6, in this system.

7.2.1 System framework

As user input, the system uses a top-k list L containing either a list of ranked

entities only or a list of entities associated with corresponding scores. Then,

given a database D with multiple relations Ri, each containing data from a

single domain, PALEO efficiently and effectively determines queries Qi that,

when executed over the database, compute result lists that are similar to L.

The found queries and corresponding top-k lists are ordered according to their

similarity to the input ranking and their interestingness, in a human-perceived

sense. The similarity of result rankings to the input is controlled via a user-

defined similarity threshold.

The system consists of the following steps, depicted in Figure 7.3:

1. Classification of the database tables and their columns into interesting and

non-interesting ones (pre-processing step).

2. Finding the meaningful predicate P in the WHERE clause of the reversed

engineered queries Qi from Ri .

3. Finding the ranking criterion according to which the ranked list (or a

similar one) could be sorted.

4. Validation and ranking of the resulting queries and the corresponding re-

sulting lists.
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As the basis of all computation, we retrieve all tuples from the relation R,

where the entity is one of the entities in the input list L into one single relation.

We refer to this table as R′.

PALEO identifies a set of candidate predicates by using the tuples in R′.

A predicate P can be a combination of multiple atomic predicate Pi, where

Pi represents in the form of attribute = value (e.g., team = ’Chicago Bulls’).

According to the generation of R′, all distinct (attribute, value) pairs in R′ are

atomic candidate predicates. This would drastically reduce the performance of

the system due to a radical expansion of the set of candidate predicates. To

reduce the size of candidate predicates, PALEO uses two labels of pruning. The

first level of pruning is done based on the preprocessing step on R′, using the

classification model. As discussed earlier in Chapter 6, not all the attributes

in a table are meaningful to use as predicates. For example, in NBA dataset1,

last name of a coach or number of season-win by a coach is not an interesting

attribute to generate a ranking list, whereas birth year of a NBA player is an

interesting predicate. We use the classification model final-M, proposed in the

previous chapter, to find such interesting attributes and only generate those

(attribute, value) pairs, where the attribute is predicted as ‘interesting’ by the

classification model. The second level of pruning uses user-defined distance

threshold θ to prune the remaining predicates from the first level of pruning.

It utilizes a bound proposed by Panev et al. [PMM16] that specifies minimum

number of overlapping elements between L and entities, which are generated

by applying a candidate predicate over R′, are required to satisfy the given

similarity threshold θ.

The candidate predicates from the previous step are combined with the cri-

teria supported by the system to form candidate queries. The candidate queries

are then executed on R′ to validate if a candidate query is matching the input

list. If PALEO takes scores of the ranked entities as given input, statistical

methods and decision trees are used to efficiently identify the most promising

column for a ranking criteria, rather combining all possible criteria with can-

didate predicates, in order to avoid executing all queries over R′, discussed by

Panev and Michel [PM16c].

In the third step, the candidate queries are further executed over original

Ri. This is necessary as there are in general entities outside R′ that will qualify

for the ranking and might distort it. The validation is done iteratively and in

each step information is gathered to potentially eliminate forthcoming queries

without executing them [PM16c].

All queries that can generate the input list L do not reveal the same amount

of information. Here, we again use the classification model to identify the in-

teresting ones. PALEO assigns scores to table columns according to their inter-

estingness, i.e., the score predicted by the classification model for the column.

This score is nothing but the objective value generated by LIBSVM tools while

solving the classification problem for a specific column. The higher score sig-

1http://www.databasebasketball.com/

http://www.databasebasketball.com/
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nifies that the column is very likely to be part of a predicate in an interesting

top-k query. Need to be mentioned here that the attribute scores are generated

at the preprocessing step and is independent of the input list. The classification

model final-M operates solely on five statistical measures, peculiarity, p-diversity,

max-coverage, max-info-gap, and p-peculiarity, computed over the values inside a

database column. This interesting score of a column is combined with the rank-

ing similarity score, in order to reflect the tradeoff between result similarity in

terms of the footrule distance to the input ranking and query-centric objectives

like interestingness of column constraints.

7.2.2 Application Scenarios

PALEO enables exploration on underlying database in three different ways.

Here, we very briefly describe these scenarios.

Exploring Similar Lists In this scenario, given a ranked list of entities and

a similarity threshold θ, PALEO shows a set of queries together with their

top-k result lists and corresponding statistics. Figure 7.4 shows a screenshot

demonstrating this scenario, where a user provides a list of four NBA players

(highlighted by the purple box) and a footrule distance threshold θ = 0.2. Upon

clicking “Find Queries” button, PALEO shows queries that can produce the

input list within the distance threshold (highlighted by the red box and the

green box, respectively, in Figure 7.4). Addition, PALEO shows the query

execution time, and marks the interesting attributes in its predicate proposed

by the classification model. A resulted query with lower Footrule distance will

be displayed more prominently by default in the system, with the number of

interesting categories as a second criteria to score the query. However, users

can additionally change the ordering of the results by the number of interesting

categories in a query’s predicate. By inspecting interesting categories, users can

acquire information about the categories which were used in the WHERE clause

of the query and their distribution statistics in the database. For instance, in

the example in Figure 7.4, the upper query uses only a constraint on the field

position while the query below puts constraints to position as well as the league.

Additional statistics of the entire process can be shown by pressing the “Under

the Hood” button.

Classification of Database Columns. Understanding and exploring infor-

mation in an arbitrary domain of knowledge is challenging as the complete

domain usually contains a large number of entities (e.g., the NBA database

contains 3924 players). A simple solution to comprehend such large data is or-

ganizing entities by ordering them using specific categories. The classification

model integrated in PALEO assists a user to find interesting categories for a

refined view on a subset of the entities in the example domain. For example,

our model suggests that, in the NBA dataset, a refined view on the subset of

players based on the position they play(ed) is more interesting than a refined



7.2 PALEO 129PALEO
Exploring Databases via Reverse Engineering Ranking Queries

Head-to-Head Explore CategoriesFind Queries

2. Allen Iverson 3. George Gervin

4. Kobe Bryant

1. Michael Jordan
++Jerry W

Input your top-k list:

Similarity threshold: 0.2 Find QueriesFind Queries

Query Top-k list Footrule
distance

0.13

Execution
time Interesting categories

SELECT player, max(ppg)
FROM nba
WHERE position = 'G'
group by player
order by max(ppg) desc LIMIT 5

1. Michael Jordan 37.1

2. Kobe Bryant 35.4

3. George Gervin 33.1

4. Allen Iverson 33.0

5. Jerry West 31.3

499 ms position

SELECT player, max(fgm)
FROM nba
WHERE position = 'G'
and league = 'NBA'
group by player
order by max(fgm) desc LIMIT 5

1. Michael Jordan 1098

2. George Gervin 1024

3. Kobe Bryant 978

4. Jerry West 831

5. Allen Iverson 815

0.2 512 ms position, league

Under the Hood

Jerry West

Write SQL

x x x

x

EditEdit ExecuteExecute

EditEdit ExecuteExecute

Figure 7.4: Screenshot of scenario for finding similar lists.

subset of players based on the university they went to or based on their birth

date. PALEO also allows a user to have a quick overview of all tables in the

database, where the table columns are scored according to the classification

model and by clicking on a specific value in an interesting category, the user

can add constraint to focus into a part of the data. For more insights on ta-

ble columns, PALEO displays statistical characteristics on how the categorical

values are distributed over the entities (Entropy, P-Diversity), how their dis-

tribution differs from the uniform distribution (P-Peculiarity), the dominating

categorical values (Max-Coverage, Max-Info-Gap), etc.

Head-to-head Comparison of Entities. PALEO also allows a user to com-

pare specific entities of their choice by comparing scoring functions and cate-

gories. In a head-to-head entity comparison, the performance of entities is ag-

nostic to all other entities in the domain except the ones provided as input.

Thus, users will also be able to compare entities that normally do not belong

in the same league, i.e., one is ranked significantly higher than another, and

therefore, are not together in any top-k scenario. PALEO provides an option of

exploring these entities and shows how they can be compared against each other

by ignoring the other entities that could (potentially) appear between them in

the ranking.





Chapter 8

Conclusions and Outlook

Overall, in this thesis, we addressed two related but independent research prob-

lems, efficient similarity search over rankings and the identification of meaning-

ful categories for an entity lists, for the purpose of exploring ranked entities or

tables.

We proposed four query-driven Locality Sensitive Hashing schemes for per-

forming efficient similarity search over ranked entities. Exploiting properties of

the proposed LSH families, we determined a tighter, yet probabilistic, bound on

the number of index accesses than the bound provided by the popular prefix-

filtering method, for the query processing over pairwise and triple indices, which

are different variations of inverted indices. We also devised a strategy of select-

ing the elements from a query, based on their position in the query ranking, for

probing an inverted index during query processing, in order to increase the pre-

cision of the similarity search. We presented a detailed study on the efficiency of

our proposed schemes using two real-world ranking datasets. Further, in order

to optimize the space requirement for maintaining the index structures, used in

proposed Query-driven LSH, we discussed three pruning methods and analyzed

their effect on the quality of the search results. Based on this analysis, we for-

malized an optimization problem to find the optimal pruning factor to prune

the indices, ensuring a user-given recall requirement. The proposed pruning

approach is generic and can also be applied to an inverted index. We validated

our optimization problem using two case studies, over a ranking database and

a collection of sets.

In the second part of the thesis, we presented a completely automated frame-

work to train a classifier that can identify the meaningful categories, in a human-

perceived sense, for categorizing the entities in a table, and thus, assist users

to explore entities of their interest. Here, we proposed three objective measures

of interestingness, capturing different characteristics of categorical data. Using

the proposed measures and two existing measures as features, we trained a clas-

sifier by using ν-SVM approach from the training data that are collected from

Wikipedia tables, based on the proposed hypothesis. We validated the proposed
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hypothesis and the performance of the trained classification model with the help

of user assessments on a test dataset. We also reported a detailed study on how

well the individual feature, i.e., the proposed and existing objective measures,

is capable of characterizing the interestingness of categorical data.

Future Directions

In the problem of similarity search over rankings, we addressed the effect of

the ranking position of query elements in the efficiency of the similarity search.

Later, from the experimental study on real-world datasets, we observed that the

distribution of query elements in ranking dataset also affects the efficiency of the

proposed schemes. Here, the future direction could be incorporating the data

distribution to our query-driven LSH schemes to increase the performance of the

query-driven LSH schemes, particularly, in case of the skewed data distribution.

Next, we discussed the optimization problem to find the optimal pruning factor

to prune an index, which uses the cost for querying the index as one of the

constraints. There, we assumed that the data are uniformly distributed over

posting lists to find the cost for a query. The cost model can be further extended

according to the actual data distribution to make the optimization problem more

accurate and data-driven.

To train the proposed classifier for finding meaningful categories, we har-

nessed Wikipedia tables to extract the training data. There, we used a simple

extraction method to avoid noise in the generation of training data. As a result,

we retrieved fewer training samples to train the classifier. Hence, the open possi-

bilities are—using complex extracting methods to retrieve the table information

more accurately from Wikipedia, extracting tables beyond Wikipedia, or using

query logs to capture general interests of users on categorical attributes, in order

to increase the sample size. Also, depending on the success of retrieving larger

training samples, we can integrate deep learning methods to extract features

automatically from the sample for building the classifier.



Appendix A

Appendix

A.1 Performance of Single Feature

Here, we present the performance of the classification model, based on single

feature for all different agreement levels.

Agreem. userNeg samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 83.33 90.90 83.33 100.00 90.90 90.91

8/9 83.33 90.90 86.95 90.00 81.81 85.71 86.36

7/9 72.73 84.21 78.05 81.25 68.42 74.28 76.32

6/9 64.86 82.76 72.73 76.19 55.17 64.00 68.97

5/9 64.91 78.72 71.15 64.28 47.36 54.54 64.71

Table A.1: Performance of entropy for different agreement levels.

Agreem. userNeg samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 71.43 83.33 66.66 100.00 80.00 81.82

8/9 83.33 76.92 80.00 70.00 77.77 73.68 77.27

7/9 72.73 76.19 74.42 68.75 64.70 66.66 71.05

6/9 64.86 77.42 70.59 66.66 51.85 58.33 65.52

5/9 63.16 76.60 69.23 60.71 44.73 51.51 62.35

Table A.2: Performance of max-coverage for different agreement levels.
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Agreem. userNeg samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 71.43 83.33 66.66 100.00 80.00 81.82

8/9 83.33 71.42 76.92 60.00 75.00 66.66 72.72

7/9 72.73 69.57 71.11 56.25 60.00 58.06 65.79

6/9 64.86 72.73 68.57 57.14 48.00 52.17 62.07

5/9 63.16 75.00 68.57 57.14 43.24 49.23 61.18

Table A.3: Performance of unalikeability for different agreement levels.

Agreem. userNeg samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 71.43 83.33 66.66 100 80.00 81.82

8/9 91.66 78.57 84.61 70.00 87.50 77.78 81.81

7/9 77.27 73.91 75.56 62.50 66.66 64.51 71.05

6/9 70.27 76.47 73.24 61.90 54.16 57.77 67.24

5/9 68.42 76.47 72.22 57.14 47.05 51.61 64.71

Table A.4: Performance of peculiarity for different agreement levels.

Agreem. userNeg Samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 83.33 90.90 83.33 100.00 90.90 90.91

8/9 83.33 90.90 86.95 90.00 81.81 85.71 86.36

7/9 72.73 84.21 78.05 81.25 68.42 74.28 76.32

6/9 70.27 81.25 75.36 71.42 57.69 63.83 70.69

5/9 71.93 78.85 75.23 60.71 51.51 55.73 68.24

Table A.5: Performance of max-info-gap for different agreement levels.

Agreem. userNeg samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 83.33 90.90 83.33 100.00 90.90 90.90

8/9 83.33 83.33 83.33 80.00 80.00 80.00 81.81

7/9 77.27 80.95 79.07 75.00 70.58 72.72 76.32

6/9 72.97 81.82 77.14 71.42 60.00 65.21 72.41

5/9 75.44 78.18 76.79 57.14 53.33 55.17 69.41

Table A.6: Performance of p-diversity for different agreement levels.

Agreem. userNeg samples userPos samples

level Rec. Prec. F1 Rec. Prec. F1 Accuracy

9/9 100.00 71.43 83.33 66.66 100.00 80.00 81.82

8/9 91.67 68.75 78.57 50.00 81.81 62.50 72.72

7/9 77.27 65.38 70.83 43.75 58.33 50.00 63.16

6/9 75.68 70.00 72.73 42.85 50.00 46.15 63.79

5/9 70.18 70.18 70.18 39.28 39.28 39.28 60.00

Table A.7: Performance of p-peculiarity for different agreement levels.
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A.2 User Study Samples

Table Subject of the Table Attribute to categorize

List of the busiest airports in Romania airports Code(IATA/ICAO)

List of tallest buildings in Washington, D.C. Name of tallest buildings Floors

List of the busiest airports in Japan airports IATA/ICAO

List of Knight’s Cross of the Iron Cross recipients of the

Fallschirmj??ger

Name of Knight’s Cross of the Iron Cross

recipients of the Fallschirmj??ger

Role and unit1

List of FIFA World Cup goalscorers Player of FIFA World Cup Goal average

List of the busiest airports in Japan airports Cityserved

List of Canadian supercentenarians Name of Canadian supercentenarians Death date

List of FC Seoul records and statistics Name of FC Seoul records and statistics Clean Sheets per Match

List of continents by population Region of continents Per Annum Growth

Rate2010-2013

List of Pakistani films of 2010 Title of Pakistani films of 2010 Verdict

List of South African airports by passenger movements airports Code(IATA/ICAO)

List of mountain peaks of Central America Mountain Peak of mountain peaks of Cen-

tral America

Nation

List of mountain peaks of Central America Mountain Peak of mountain peaks of Cen-

tral America

Nation

List of National Basketball Association career playoff rebound-

ing leaders

Player of National Basketball Association

career playoff rebounding leaders

Team(s) played for (years)

Sunday Times Rich List 2011 name Citizenship

List of highest-grossing Bollywood films Movie of highest-grossing Bollywood films Net Gross

List of prefecture-level cities by GDP cities Provinces

List of the busiest airports in Romania airports Code(IATA/ICAO)

List of tallest buildings in Ukraine Name of tallest buildings Status

List of Finnish supercentenarians Name of Finnish supercentenarians Region or country of birth

List of places in Queensland by population Urban Centre of places Region

List of newspapers in Canada by circulation newspapers Weekly Circulation 2008

List of cities in Egypt Name of cities Census 1986

List of tallest buildings in Providence Name of tallest buildings Coordinates
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Table Subject of the Table Attribute to categorize

List of the busiest airports in the Nordic countries Countries of the busiest airports Airport(s) included

List of tallest residential buildings in the world Name of tallest residential buildings Country

List of supercentenarians from the United States Name of supercentenarians from the

United States

Sex

List of mountains in Taiwan Name of mountains Location

List of tallest buildings in Spain Name of tallest buildings Floors

List of tallest buildings in Saudi Arabia Name of tallest buildings Floors

List of 2004 box office number-one films in the United States Title of 2004 box office number-one

films

Director(s)

List of Jamaican supercentenarians Name of Jamaican supercentenarians Death date

List of best-selling albums by country Year of best-selling albums Artist

List of tallest buildings in Pakistan Name of tallest buildings City

List of airports in Spain airports Code

List of the 100 largest cities and towns in Canada by area Municipality of the 100 largest cities

and towns

Status

List of Major League Baseball longest winning streaks Game of Major League Baseball longest

winning streaks

Score

List of cities in Germany by population City of cities Growth

List of multiple Olympic medalists in one event Athlete of multiple Olympic medalists Sport

List of airports in Ukraine airports City

List of multiple Olympic gold medalists at a single Games Athlete of multiple Olympic gold

medalists at a single Games

Nation

List of Major League Baseball longest losing streaks Game of Major League Baseball longest

losing streaks

Opponent

List of top association football goal scorers by country Player of top association football goal

scorers

Country

List of Paralympic Games host cities Countries of Paralympic Games host

cities

Continent
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Table Subject of the Table Attribute to categorize

List of the world’s largest cruise ships ships Beam

List of supercentenarians from the United States Name of supercentenarians from the

United States

Birth date

List of Pakistani films of 2013 Title of Pakistani films of 2013 Domestic gross

List of Bollywood films of 2013 films India

List of Australian rugby union stadiums by capacity Stadium of Australian rugby union sta-

diums

City

List of African stadiums by capacity stadiums Home Team/s

List of tallest buildings in Cincinnati Name of tallest buildings Reference

Ranked list of Mexican states states Comparable country

List of tallest buildings in Slovenia Name of tallest buildings Location

List of tallest residential buildings in the world Name of tallest residential buildings Country

List of the busiest airports in Canada Airport Serves

List of U.S. cities with significant Korean-American popu-

lations

cities Percentage

List of newspapers in Canada by circulation newspapers Weekly Circulation 2009

List of mountains of Switzerland above 3000 m mountains Range

List of accidents and incidents involving airliners in the

United States

Date of accidents and incidents involv-

ing airliners

Article

List of shopping centres in Australia by size centres Department Stores

List of roller coaster rankings Name of roller coaster Record held

List of North American stadiums by capacity stadiums Home Team(s)

List of highest-grossing concert tours Actual gross of highest-grossing concert

tours

Artist

List of U.S. states by electricity production from renewable

sources

Hydropower of U.S. states State

List of Tamil films of 2010 Movie of Tamil films of 2010 Production

List of richest Cypriots Name of richest Cypriots Fortune

List of 2002 box office number-one films in the United States Title of 2002 box office number-one

films

Director(s)

List of Total Drama Island episodes Name of Total Drama Island episodes Team
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Table Subject of the Table Attribute to categorize

List of Major League Baseball longest winning streaks Total gam of Major League Baseball

longest winning streaks

Team

List of Major League Baseball longest losing streaks Game of Major League Baseball longest

losing streaks

Opponent

List of Tamil films of 2009 Title of Tamil films of 2009 Cast

List of mountains in Iran Photograph of mountains Mountain

List of public corporations by market capitalization Name of public corporations Headquarters

List of tallest buildings in Osaka Prefecture Name of tallest buildings Coordinates

List of tallest buildings in Bangladesh Name of tallest buildings City

List of U.S. cities with significant Chinese-American popu-

lations

Borough of U.S. cities with significant

Chinese-American populations

City

List of multiple Olympic medalists in one event Athlete of multiple Olympic medalists Event

List of the busiest airports in the Nordic countries Countries of the busiest airports Metropolitan Area

List of tallest structures in Serbia Image of tallest structures Floors

List of tallest buildings in Iowa Picture of tallest buildings Primary Purpose

List of mountains in Taiwan Name of mountains Location

List of Finnish supercentenarians Name of Finnish supercentenarians Region or country of birth

List of National Basketball Association career playoff free

throw scoring leaders

Player of National Basketball Associa-

tion

Team(s) played for

(years)1

List of oldest and youngest Academy Award winners and

nominees

Age of oldest and youngest Academy

Award winners and nominees

Date of Nomination

List of tallest buildings in New Hampshire Picture of tallest buildings Name

List of states and union territories of India by population State or union territories of states and

union territories of India

Area4

List of tallest buildings in Europe by year buildings City

List of Knight’s Cross of the Iron Cross with Oak Leaves

recipients (1942)

Service of Knight’s Cross of the Iron

Cross with Oak Leaves recipients (1942)

Name

List of settlements on the island of Ireland by population settlements Province
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Table Subject of the Table Attribute to categorize

List of tallest destroyed buildings and structures in the

United Kingdom

Name of tallest destroyed buildings and

structures

Fate

List of Gold Coast Football Club records Score of Gold Coast Football Club

records

Opponent

List of college field hockey coaches with 250 wins Name of college field hockey coaches

with 250 wins

Pct.

List of longest streams of Idaho Name of longest streams of Idaho Length in Idaho2

List of cities and towns in Armenia cities Province

List of cities in Oregon cities Population(2013 est.)1

List of Tamil films of 2010 Movie of Tamil films of 2010 Studio

List of cities in Swaziland cities District

List of mountains of Bangladesh Peak Nam of mountains of Bangladesh Location

List of ice hockey arenas by capacity arenas Country

List of the busiest airports in Ireland Province of the busiest airports County

List of college football stadium video boards University of college football stadium

video boards

Stadium

List of best-selling albums in South Korea Year of best-selling albums Title

List of Tamil films of 2009 Title of Tamil films of 2009 Production

List of cities in Germany by population City of cities State(Bundesland)

List of tallest buildings in Pennsylvania Name of tallest buildings City

List of tallest buildings and structures in Liverpool Name (alternate names) of tallest build-

ings and structures

Coordinates

List of islands of Scotland islands Local Authority

List of record home attendances of English football clubs clubs Stadium

List of tallest buildings in the world Tallest buildings Country

List of countries by sovereign wealth funds countries Funds
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pruning for information retrieval systems. In W. Bruce Croft,

David J. Harper, Donald H. Kraft, and Justin Zobel, editors, SI-

GIR 2001: Proceedings of the 24th Annual International ACM

SIGIR Conference on Research and Development in Information

Retrieval, September 9-13, 2001, New Orleans, Louisiana, USA,

pages 43–50. ACM, 2001.

[SH15] Markus Schedl and David Hauger. Tailoring music recommen-

dations to users by considering diversity, mainstreaminess, and

novelty. In Ricardo A. Baeza-Yates, Mounia Lalmas, Alistair

Moffat, and Berthier A. Ribeiro-Neto, editors, Proceedings of the

38th International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, Santiago, Chile, August 9-13,

2015, pages 947–950. ACM, 2015.

[SJPB08] Gleb Skobeltsyn, Flavio Junqueira, Vassilis Plachouras, and Ri-

cardo A. Baeza-Yates. Resin: a combination of results caching

and index pruning for high-performance web search engines. In

Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebastiani, Tat-

Seng Chua, and Mun-Kew Leong, editors, Proceedings of the 31st

Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR 2008, Singapore,

July 20-24, 2008, pages 131–138. ACM, 2008.

[SK04] Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity

predicates. In Gerhard Weikum, Arnd Christian König, and Stefan

Deßloch, editors, Proceedings of the ACM SIGMOD International

Conference on Management of Data, Paris, France, June 13-18,

2004, pages 743–754. ACM, 2004.

[SLC10] Mingxuan Sun, Guy Lebanon, and Kevyn Collins-Thompson. Vi-

sualizing differences in web search algorithms using the expected

weighted hoeffding distance. In Michael Rappa, Paul Jones, Ju-

liana Freire, and Soumen Chakrabarti, editors, Proceedings of the

19th International Conference on World Wide Web, WWW 2010,

Raleigh, North Carolina, USA, April 26-30, 2010, pages 931–940.

ACM, 2010.



154 BIBLIOGRAPHY

[SP12] Venu Satuluri and Srinivasan Parthasarathy. Bayesian locality

sensitive hashing for fast similarity search. PVLDB, 5(5):430–441,

2012.

[Spe94] C. Spearmsn. The american journal of psychology. ACM Trans.

Database Syst., 15(1):72–101, 1094.

[SPS+01] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexan-

der J. Smola, and Robert C. Williamson. Estimating the sup-

port of a high-dimensional distribution. Neural Computation,

13(7):1443–1471, 2001.

[SS00] Sunita Sarawagi and Gayatri Sathe. i3: Intelligent, interactive

investigaton of OLAP data cubes. In Weidong Chen, Jeffrey F.

Naughton, and Philip A. Bernstein, editors, Proceedings of the

2000 ACM SIGMOD International Conference on Management

of Data, May 16-18, 2000, Dallas, Texas, USA., page 589. ACM,

2000.

[SS01] Bernhard Schölkopf and Alexander J. Smola. Learning with Ker-

nels: Support Vector Machines, Regularization, Optimization, and

Beyond. MIT Press, Cambridge, MA, USA, 2001.

[SSWB00] Bernhard Schölkopf, Alexander J. Smola, Robert C. Williamson,

and Peter L. Bartlett. New Support Vector Algorithms. Neural

Computation, 12(5):1207–1245, 2000.

[ST95] Abraham Silberschatz and Alexander Tuzhilin. On subjective

measures of interestingness in knowledge discovery. In Usama M.

Fayyad and Ramasamy Uthurusamy, editors, Proceedings of the

First International Conference on Knowledge Discovery and Data

Mining (KDD-95), Montreal, Canada, August 20-21, 1995, pages

275–281. AAAI Press, 1995.

[SvZ09] Frans Schalekamp and Anke van Zuylen. Rank aggregation: To-

gether we’re strong. In Irene Finocchi and John Hershberger, ed-

itors, Proceedings of the Eleventh Workshop on Algorithm Engi-

neering and Experiments, ALENEX 2009, New York, New York,

USA, January 3, 2009, pages 38–51. SIAM, 2009.

[SW49] Claude E. Shannon and Warren Weaver. The Mathematical The-

ory of Communication. Univ. of Illinois Press, 1949.

[TD01] David M. J. Tax and Robert P. W. Duin. Uniform object gen-

eration for optimizing one-class classifiers. Journal of Machine

Learning Research, 2:155–173, 2001.

[THY+17] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei

Zhang. Extracting top-k insights from multi-dimensional data. In



BIBLIOGRAPHY 155

Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and

Dan Suciu, editors, Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD Conference 2017,

Chicago, IL, USA, May 14-19, 2017, pages 1509–1524. ACM,

2017.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduc-

tion to Data Mining. Addison-Wesley, 2005.

[TTZ07] Yohannes Tsegay, Andrew Turpin, and Justin Zobel. Dynamic

index pruning for effective caching. In Mário J. Silva, Alberto

H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuinness,

Bjørn Olstad, Øystein Haug Olsen, and André O. Falcão, editors,
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search. In K. Selçuk Candan, Yi Chen, Richard T. Snodgrass,

Luis Gravano, and Ariel Fuxman, editors, Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIG-

MOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 85–96.

ACM, 2012.

[WLMJ14] Xiaoguang Wang, Xuan Liu, Stan Matwin, and Nathalie Japkow-

icz. Applying instance-weighted support vector machines to class

imbalanced datasets. In Jimmy J. Lin, Jian Pei, Xiaohua Hu,

Wo Chang, Raghunath Nambiar, Charu C. Aggarwal, Nick Cer-

cone, Vasant G. Honavar, Jun Huan, Bamshad Mobasher, and

Saumyadipta Pyne, editors, 2014 IEEE International Conference

on Big Data, Big Data 2014, Washington, DC, USA, October 27-

30, 2014, pages 112–118. IEEE, 2014.

[WLWZ12] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Qili Zhu.

Probase: a probabilistic taxonomy for text understanding. In
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