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Chapter 1

Introduction



1.1 Aims and scope

Only recently, The Lancet published a report identifying environmental pollution as the
major cause of diseases and premature deaths worldwide (Landrigan et al., 2018). The
study attributes approximately 9 million premature deaths in 2015 (16% worldwide)
to diseases caused by pollution, thereby exceeding the death toll of all wars or other
violent acts within the same period. Besides the severe impacts of environmental
pollution on human health, environmental pollution also affects other dimensions
of social live. For instance, studies have shown significant effects of environmental
pollution on psychological health (e.g. Gascon et al., 2018; Sass et al., 2017; Zhang,
Zhang & Chen, 2017), physical activity (e.g. An, Zhang, Ji & Guan, 2018; Bresnahan,
Dickie & Gerking, 1997; Roberts, Voss & Knight, 2014), and happiness (e.g. Ambrey,
Fleming & Chan, 2014; Levinson, 2012; Schmitt, 2013). Yet, environmental pollution
is not equally distributed across the society and mostly affects the poor and minorities.
Because of its severe consequences for the population at risk, this unequal distribution
of pollution constitutes a serious dimension of social inequality, which is even linked to
mortality.

As one of the first research studies on the topic of environmental inequality, the
report of the United Church of Christ - Commission for Racial Justice (1987) showed
that minorities and the socio-economically disadvantaged live disproportionately close
to hazardous industrial facilities. Ever since, environmental inequality has been on the
agenda of social science research for several decades in the United States (e.g. Anderton,
Anderson, Oakes & Fraser, 1994; Been, 1994; Bryant & Mohai, 1992; Bullard, 1990).
Those and other studies (for an overview e.g. Mohai & Saha, 2015a; Ringquist, 2005)
have documented a persistently high disadvantage of minority groups regarding the
environmental quality of their living environment. As Mohai, Pellow and Roberts
(2009, p. 406) put it: ‘Today, hundreds of studies conclude that, in general, ethnic
minorities, indigenous persons, people of color, and low-income communities confront
a higher burden of environmental exposure from air, water, and soil pollution from
industrialization’.

Though environmental inequality research has gained extensive interest in the
United States, it has received far less attention in Europe and Germany. Only recently,
a few empirical studies (Diekmann & Meyer, 2010; Flacke, Schüle, Köckler & Bolte,
2016; Kabisch & Haase, 2014; Kohlhuber, Mielck, Weiland & Bolte, 2006; Raddatz &
Mennis, 2013) have started to provide first evidence for a disproportionately high burden
of minorities and (somewhat less consistent) of the socio-economically disadvantaged
in the German speaking area. For instance, these studies demonstrate that foreigners
in Germany generally perceive a higher impairment through air pollution than native
German citizens (Kohlhuber et al., 2006), experience a lower provision of public green-
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space around their place of residence (Kabisch & Haase, 2014), or live closer to industrial
facilities (Raddatz & Mennis, 2013). Similarly, high-income households report a lower
impairment through air pollution (Kohlhuber et al., 2006), and are less exposed to
chemical compounds and particulate matter (Flacke et al., 2016). Though these studies
provide some evidence for the existence of environmental inequality in the German
speaking area, research in Europe and especially in Germany lags far behind the state
of research in the United States. Studies in Germany have analysed either single regions
(Flacke et al., 2016; Kabisch & Haase, 2014; Raddatz & Mennis, 2013) or used subjective
measures of air pollution (Kohlhuber et al., 2006). Especially in a cross-sectional design,
it is thus difficult to evaluate the state-wide extent of environmental inequality and
to draw conclusions about the causal mechanisms at work. Consequently, Germany
lacks a nationwide and systematic analysis of the extent and the causal mechanisms of
environmental inequality.

The main objective of this book is to extend the research on environmental inequality
in Germany. This book aims to shed more light on the question of whether minorities in
Germany are affected by a disproportionately high burden of environmental pollution,
and to increase the general knowledge about the causal mechanisms, which contribute
to the unequal distribution of environmental hazards across the population. In general,
this book deals with two main research questions:

1. Are minorities in Germany disproportionately exposed to environmental pollution?
2. What causes this disproportionate exposure of minorities to environmental pollu-

tion?

To improve our knowledge about environmental inequality in Germany, this book
extends previous research in several ways. First, to evaluate the extent of environmental
inequality, this book relies on two different data sources. On the on hand, it uses
household-level survey data and self-reports about the impairment through air pollution.
On the other hand, it combines aggregated census data and objective register-based
measures of industrial air pollution by using geographic information systems (GIS).
Consequently, this book offers the first analysis of environmental inequality on the
national level that uses objective measures of air pollution in Germany. Second,
to evaluate the causes of environmental inequality, this book applies a panel data
analysis on the household level, thereby offering the first longitudinal analysis of
selective migration processes outside the United States. Third, it compares the level of
environmental inequality between German metropolitan areas and evaluates to which
extent the theoretical arguments of environmental inequality can explain differing
levels of environmental inequality across the country. By doing so, this book not only
investigates the impact of indicators derived by the standard strand of theoretical
reasoning but also includes structural characteristics of the urban space.
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Though Chapter 2 also investigates the socio-economic dimensions of selective
migration processes and resulting disadvantages in environmental pollution, the main
focus of this book lies on the disadvantage of minorities for two reasons. First, previous
research in the United States has identified the minority-majority devide as the more
consistent and robust finding (Ringquist, 2005). Second, data limitations hinder the
use of socio-economic variables on a fine-grained spatial level in Germany. Still, the
following sections will also discuss the theoretical arguments and previous findings
regarding socio-economic indicators, as socio-economic resources constitute one major
explanation of the minority-majority divide. Most prominently, Wilson (1978, 1987)
has argued that disadvantages of racial minorities in the United States mostly stem
from socio-economic disadvantages rather than from race or ethnicity itself.

Note that many scholars use the terms of environmental inequality and environ-
mental justice interchangeably. Yet, this book is primarily concerned with environ-
mental inequality per se, thereby concentrating on the unequal distribution of envir-
onmental pollution across the society. Consequently, this book does not deal with
normative questions of justice or injustice. Whether a given distribution of pollution
can be evaluated as just or fair depends on the underlying concept of justice. For
example, it can be argued that justice does not only depend on the distribution of
environmental burdens but also on the distribution of profits generated by emitting
industries or the usage of polluting technologies (for a discussion see e.g. Preisendörfer,
2014). However, before discussing the dimensions of justice, it is important to offer
an empirical foundation investigating the extent of environmental inequality and its
mechanisms. Hence, I will deal with the analyses of inequality rather than justice in
this book.

1.2 Theoretical mechanisms

When analysing the causal mechanisms of environmental inequality, most research in the
United States points to two different explanation: selective siting and selective migration
(e.g. Been & Gupta, 1997; Crowder & Downey, 2010; Hamilton, 1995; Sieg, Smith,
Banzhaf & Walsh, 2004). The argument of selective siting assumes that industrial
facilities are sited disproportionately close to areas with a high proportion of minorities
and poor households. The argument of selective migration, in contrast, assumes that
minorities and poor households selectively move into areas with an already high level
of environmental pollution, while majority or affluent households selectively leave those
areas. Accordingly, one of the main concerns in environmental inequality research is
the question of ‘which came first?’ (Pastor, Sadd & Hipp, 2001). The following sections
will outline both theoretical arguments in more detail.
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1.2.1 Selective siting

The selective siting argument claims that hazardous facilities are disproportionately
sited in neighbourhoods that already face a high proportion of minorities or low-income
households (Been & Gupta, 1997; Mohai & Saha, 2015a; Pastor et al., 2001; Saha &
Mohai, 2005; Wolverton, 2009). The reason for this selective siting behaviour can be
threefold.

First, selective siting might be the results of taste-based discrimination. If decision
makers belong predominantly to the majority group and are aware of the danger or
the burden of industrial facilities, they might want to externalise unwanted facilities
onto minority groups, while protecting members of their own group (Hamilton, 1995).

Second, the market explanation assumes that companies seek to minimise their
land and housing costs when looking for the location of new facilities. Because of
lower land prices and housing costs, poor regions are an attractive siting location for
new facilities (Downey, 2005; Farber, 1998; Saha & Mohai, 2005; Wolverton, 2009,
2012). Furthermore, compensation costs for environmental pollution are lower in poor
neighbourhoods, as low-income groups allegedly value environmental quality less than
high-income groups do (Mohai & Saha, 2015a; Saha & Mohai, 2005; Wolverton, 2009,
2012). Therefore, it is a rational strategy for a profit-maximising company to place
facilities in low-income areas. If minorities are overrepresented in low-income areas,
they are disproportionately exposed to industrial facilities.

Third, the social and political capital explanation assumes that minorities and
low-income households hold a lower social and political capital. Hence, inhabitants
of regions with a high minority share are less likely to organise collective protests
against hazardous facilities (Hamilton, 1995; Mohai & Saha, 2015a; Pastor et al., 2001).
They are less likely to influence political decisions, to engage in collective action (to
reach e.g. a ban of hazardous facilities), or to take legal actions (Wolverton, 2009).
High-income neighbourhoods with a low minority share, in contrast, are much more
likely to influence political actors not only due to their social ties, but also due to
their political engagement or civic activism. Furthermore, affluent households are able
to afford expensive legal proceedings. Because civil protest, political or legal actions
against the siting of facilities may cause financial harms or bad publicity, the respective
executive decision makers try to avoid those situations: they choose the ‘path of least
political resistance’ (Saha & Mohai, 2005) and — in anticipation of potential protest
in affluent neighbourhoods — selectively settle in socio-economically disadvantaged
regions.

In sum, those fine-grained mechanisms predict that minorities face a higher burden
of environmental pollution because facilities are disproportionately sited in areas with
a high proportion of minorities. Temporally, this means that the minority population
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already resided in a specific area before this area received newly sited industrial
facilities, and in consequence experienced a high amount of environmental pollution.
Interestingly, only the first sub-mechanisms assumes that the siting decisions is a direct
consequence of race or ethnicity itself. The second and third mechanism, in contrast,
assume that minorities lack either economic or socio-political resources, leading to the
disproportionate siting of facilities in areas with a high minority share.

1.2.2 Selective migration

The second major explanation of environmental inequality proposes a competing mech-
anism. In general, this second approach follows a more general strand of research on
differential migration and neighbourhood-attainment patterns, showing that minori-
ties face difficulties to access high-quality neighbourhoods and to escape low-quality
neighbourhoods (e.g. Alba, Logan, Stults, Marzan & Zhang, 1999; Crowder & South,
2005; Crowder, South & Chavez, 2006; Logan & Alba, 1993; South & Crowder, 1997;
South, Huang, Spring & Crowder, 2016). Based on these more general patterns, the
selective migration argument assumes that the unequal exposure of disadvantaged
citizens stems from selective migration processes into and out of polluted areas (Ban-
zhaf & McCormick, 2012; Banzhaf & Walsh, 2008; Crowder & Downey, 2010; Mohai
& Saha, 2015a; Pais, Crowder & Downey, 2014; Sieg et al., 2004). This means that
socio-demographic changes in polluted areas sequentially follow the siting process.
Again, two different sub-mechanisms support this theory.1

First, the ‘racial residential discrimination thesis’ assumes that minorities are steered
into polluted areas because of discriminatory barriers on the housing market. On the
one hand, housing agents or property owners may fear declining attractiveness or
declining prices due to minority inhabitants. For instance, research has shown that the
minority share has a significant impact on the perception of neighbourhood crime rates,
indepedent of the actual crime rate (Massey & Denton, 1993; Semyonov, Grodzeisky
& Glikman, 2012). Hence, housing agents or landlords may prefer renters belonging
to the majority group and discriminate against minority applicants (Turner & Ross,
2005; Yinger, 1986). On the other hand, housing agents may also spuriously anticipate
that minorities have lower preferences for high environmental quality and thus restrict
the housing opportunities to a subset with lower quality (Ondrich, Ross & Yinger,
2003; Turner & Ross, 2005). Importantly, this mechanism assumes that the selective
migration patterns of minority households are a direct consequence of the minority
status and are independent of socio-economic resources.

1 Note that similar sub-mechanisms in the more general literature on neighbourhood-attainment
processes are called ‘place stratification’ and ‘spatial assimilation’ models (e.g. Crowder & South,
2005; Crowder et al., 2006; South et al., 2016).
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Second, the ‘racial income-inequality thesis’ assumes that minorities are mainly
forced to move into polluted areas as a side product of their lower economic resources. In
general, this argument follows Tiebout’s (1956) model of the ‘consumer-voter’. Hereafter,
households are assumed to have specific preferences for the provision of public goods and
aim to satisfy these preferences. As local communities have relatively stable revenues
and expenditure plans, households can adjust the level of public goods provision to their
preferences mainly by moving between the communities. Households are ‘voting with
their feet’. Because households prefer a higher environmental quality over a lower one
(Bayer, Keohane & Timmins, 2009), there is a higher demand for clean neighbourhoods.
Given the finite amount of high environmental quality neighbourhoods, a higher
demand for housing in clean areas also increases the housing and land prices in these
areas (Banzhaf & McCormick, 2012; Bayer et al., 2009; Farber, 1998). Furthermore,
previous research has shown that households are willing to pay more for a clean
environment as their income rises (Banzhaf, Sidon & Walsh, 2012; Liebe, Preisendörfer
& Meyerhoff, 2010; Meyer & Liebe, 2010). High-income households are therefore more
likely to move out of low-quality neighbourhoods (selective out-migration) because
they can afford to do so and are more willing to pay higher housing prices in clean
neighbourhoods. Simultaneously, low-income households are more likely to move into
low-quality neighbourhoods (selective in-migration), as these neighbourhoods are more
affordable and, thus, more attractive to low-income households. In sum, minorities
sort into low-quality neighbourhoods just because they cannot afford high-quality
areas with high-priced housing opportunities. In contrast to the first explanation, the
‘racial income-inequality thesis’ posits that selective migration trajectories are not a
function of minority status itself, but rather a consequence of differently distributed
socio-economic resources.

Similar to the predictions of the selective siting argument, both sub-mechanisms of
selective migration predict that minorities bear a disproportionate burden of environ-
mental pollution. However, the argument of selective migration presumes a different
temporal order than the argument of selective siting. According to the theory of se-
lective migration, areas firstly hold a high amount of environmental pollution, and
subsequently experience the in-flow of minority households. Consequently, both the-
ories – selective siting and selective migration – predict that minorities end up in
closer proximity to industrial pollution, though both theories posit a distinct temporal
order. Interestingly and similar to the theory of selective siting, only one fine-grained
mechanism of selective migration assumes that selective migration patterns are the
consequence of race or ethnicity itself. The second explanation, again, builds on the
idea that minorities are steered into low quality neighbourhoods because they posses
lower economic resources.
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1.3 Previous findings and gaps

As already sated above, previous research (mostly from the United States) has unam-
biguously shown that minorities bear a disproportionate exposure to environmental
risks in various dimensions. For instance, a vast body of research shows that minori-
ties are exposed to higher amounts of hazardous industrial air pollution (e.g. Ard,
2015; Ash & Fetter, 2004; Downey, 2005; Morello-Frosch, Pastor & Sadd, 2001; Pastor,
Morello-Frosch & Sadd, 2005; Pastor, Sadd & Morello-Frosch, 2002). Other studies
find that minorities live closer to industrial facilities (e.g. Downey, 2003; Mohai, Lantz,
Morenoff, House & Mero, 2009; Raddatz & Mennis, 2013) or toxic waste sites (e.g.
Hipp & Lakon, 2010; Mohai & Saha, 2007). Still others demonstrate that minorities are
also disproportionately affected by pollution stemming from mobile sources like traffic
(e.g. L. P. Clark, Millet & Marshall, 2014; Diekmann & Meyer, 2010; Moreno-Jiménez,
Cañada-Torrecilla, Vidal-Domı́nguez, Palacios-Garćıa & Mart́ınez-Suárez, 2016) or
are provided with lower amounts of green-space around their residences (e.g. Casey,
James, Cushing, Jesdale & Morello-Frosch, 2017; Kabisch & Haase, 2014). Though
some studies provide none or only weak support for ethnic disparities (e.g. Anderton et
al., 1994; Bowen, Salling, Haynes & Cyran, 1995), the majority of studies confirms the
disadvantage of minorities. In a meta-analysis of 49 environmental inequality studies,
Ringquist (2005) finds a consistent disadvantage of racial minorities throughout all
studies, though the strength of this effect may vary with applied methods and study
area.

Regarding the disproportionate exposure of economically disadvantaged groups,
results seem to be less consistent. Though higher environmental risks, on average, are
concentrated in socio-economically weak communities, this finding highly depends on
the type of measurement and the applied method (Ringquist, 2005). For instance,
studies show that aggregated income is negatively associated with the level of hazardous
industrial pollution (e.g. Ash & Fetter, 2004; Downey & Hawkins, 2008) or the presence
of industrial facilities (e.g. Mohai & Saha, 2007; Wolverton, 2009). This is in line with
results on the individual level, reporting a lower burden with increasing household
income (Crowder & Downey, 2010; Mohai, Lantz et al., 2009). However, there is also a
quite large body of research that finds no or only weak evidence for the association
between socio-economic indicators and environmental pollution (e.g. Arora & Cason,
1999; Baden & Coursey, 2002; Davidson & Anderton, 2000; Diekmann & Meyer, 2010;
Havard, Deguen, Zmirou-Navier, Schillinger & Bard, 2009). Baden and Coursey (2002),
for example, find that income correlates negatively with the presence of hazardous
waste sites in earlier decades, but not with newly sited industrial facilities since 1990.
In a later study, Baden, Noonan and Turaga (2007) demonstrate that conclusions
crucially depend on the geographic scale, as income correlates with the presence of
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superfund sites only on some spatial scales. Besides studies from the United States,
studies in Europe found rather weak or inconclusive results regarding the correlation
between socio-economic status and environmental pollution. For instance, Diekmann
and Meyer (2010) report only negligible effects of income on the level of pollution, and
Havard et al. (2009) find a curvilinear relationship between the deprivation level of
an area and pollution, with midlevel areas exhibiting the highest level of pollution.
Similarly, Padilla et al. (2014) obtain opposing results in different French cities: While
deprived areas in Lille and Marseille experience higher levels of nitrogen dioxide (NO2),
Paris exhibits a negative correlation between deprivation and pollution, and Lyon a
curvilinear relationship. The fact that many studies report inconclusive results regarding
the connection between socio-economic resources and environmental pollution seems
somewhat surprising given that many explanations for the minority-majority divide
rest upon the assumption that socio-economic resources are decisive.

In accordance with those mixed findings on the socio-economic dimension of environ-
mental inequality, scholars offer a rather inconclusive picture of the causal mechanisms
producing the disproportionate exposure of minorities. When looking at cross-sectional
studies, a high discontent appears on whether the disadvantage of minorities is a func-
tion of the minority status itself or rather the result of economic resources. Some
studies, for example, report a declining or even vanishing correlation between the
minority share and pollution when controlling for the aggregated income (Ash & Fetter,
2004; Baden & Coursey, 2002; Bowen et al., 1995; Downey, 2006a). These findings
support the argument that the disproportionate exposure of minorities is mainly a
by-product of their lower socio-economic resources. Still, other studies do not find any
reduction of the minority-majority divide due to accounting for income (Daniels &
Friedman, 1999; Morello-Frosch et al., 2001), or show that conclusions depend on the
level of aggregation (Downey, 1998). Similarly, income accounts only for a minor part
of lower moving returns experienced by minority households (Crowder & Downey, 2010;
Pais et al., 2014, see also below). These findings, in contrast, contradict the assumption
that the disproportionate burden of minorities stems from the uneven allocation of
socio-economic resources.

Also when turning to the question of ‘which came first’ – or more precisely, whether
selective siting or selective migration is responsible for environmental inequality – results
seem rather mixed. While some longitudinal studies investigating the temporal order of
facility siting and socio-demographic changes find evidence for selective siting processes
(Funderburg & Laurian, 2015; Mohai & Saha, 2015b; Pastor et al., 2001), others find
none or only weak support (Been & Gupta, 1997; Downey, 2005; Oakes, Anderton
& Anderson, 1996; Shaikh & Loomis, 1999). For instance, the results of Pastor et
al. (2001) exhibit a significantly higher probability of receiving a hazardous waste
facility within a quarter mile distance for areas with a higher share of minorities. In
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contrast, Been and Gupta (1997) find a correlation between minority share and facility
presence prior to 1970, but no correlation for newly sited facilities, and Downey (2005)
concludes that the change in the number of facilities is neither correlated with the
total percentage of Black inhabitants nor with the change in the percentage of Black
inhabitants. Furthermore, other studies show that historical patterns like agglomeration
economies (Elliott & Frickel, 2013), waterways within the city (Baden & Coursey, 2002),
or infrastructural opportunities (Wolverton, 2012) are more decisive for the appearance
of new facilities than the socio-demographic composition of the nearby inhabitants.
Thus, evidence for selective siting processes is rather mixed.

Similarly, longitudinal studies investigating selective migration patterns provide
rather inconclusive results. Most studies using aggregated data rather contradict the
selective migration argument (Downey, 2005; Funderburg & Laurian, 2015; Hunter,
White, Little & Sutton, 2003; Mohai & Saha, 2015b; Oakes et al., 1996; Pastor
et al., 2005, 2001). For instance, Mohai and Saha (2015b) show that the share
of minorities in census tracts receiving a new facility increased temporally prior to
the siting of facilities and not due to subsequent migration processes. Similarly,
Pastor et al. (2001) find rather declining minority shares in areas that received a new
facility, and Hunter et al. (2003) do not find selective out-flows from polluted areas,
thereby contradicting the theoretical prediction of selective migration. However, those
longitudinal studies relying on individual or household level data provide empirical
evidence for selective migration patterns (Crowder & Downey, 2010; Pais et al., 2014).
Crowder and Downey (2010), for example, reveal that Black households experience
significantly higher environmental pollution in the area of destination when moving
to a new place of residence. Pais et al. (2014) corroborate this finding by showing
that Black households face a significantly higher probability of following a permanently
high-pollution moving-trajectory. Interestingly, both studies on the individual level
find only a marginal reduction of the minority effect when controlling for income. This
finding is also in line with more general findings of migration research, demonstrating
that differences in neighbourhood attainment cannot be explained by socio-economic
differences (South et al., 2016) and that minorities experience lower payoffs from socio-
economic resources (Logan & Alba, 1993). Thus, previous research indicates that lower
socio-economic resources can only marginally explain differing moving trajectories.

Note that most of the studies investigating the causal mechanisms of environmental
inequality were conducted in the United States. Thus, it is not clear to which extent
findings regarding the causal mechanisms are transferable to the German context. First,
environmental inequality in the United States is mostly concerned with ethnic minorities
like Black Americans, Hispanics, or Asians. In contrast, minorities in Germany are
mostly immigrant-minorities (Kalter & Granato, 2007) and stem from relatively recent
immigration from other European countries or Turkey. Second, the United States
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exhibits much higher levels of residential segregation (Musterd, 2005), which might be a
quite important factor in the occurrence and development of environmental inequality.
Third, the urban structures differ between the United States and European countries.
For instance, European cities are more densely populated and more centrally organised
(Huang, Lu & Sellers, 2007; Schwarz, 2010), and consequently exhibit different patterns
of urban transportation (Buehler, 2011). Fourth, economic inequality in the United
States is higher than in Germany (Piketty & Saez, 2014), which might also point
towards lower levels of inequality in other dimensions. All those differences could on
the one hand affect the extent of environmental inequality, but on the other hand also
play an important role regarding the causes of environmental inequality.

In Germany, we face two main gaps in the empirical literature on environmental
inequality. First, we lack a national-level evaluation of the presence of environmental
inequality that uses objective pollution data. Though a tremendous amount of empirical
research in the United States supports the finding that minorities are disproportionately
affected by environmental pollution on various scales, it is not clear whether this finding
is easily transferable to Germany. As outlined above, previous studies in Germany
either use subjective measures of air pollution or restrict the analysis to single regions,
thereby not allowing for inference on the country level. Second, we lack a congruent
picture on the causes of environmental inequality. This is not a particular problem of
German research in this field, but a shortcoming of environmental inequality research
in general. Though several studies in the United States use longitudinal data to
explicitly investigate the causal mechanisms of environmental inequality, results offer a
rather inconsistent picture. Some studies find support for selective siting, other do not.
Similarly, some studies find support for selective migration patterns, others do not;
and still others rather emphasise the importance of infrastructural characteristics. It is
thus the aim of this book to contribute to these gaps in the literature and to advance
the research on environmental inequality in Germany, but also to contribute to the
more general discussion on the driving forces behind environmental inequality.

1.4 Levels of aggregation

From a methodological point of view, it is important to note that previous research on
environmental inequality employed two distinct strategies to evaluate the distributions
of environmental pollution across the society. While some studies rely on individual
data, others use spatially aggregated data to investigate environmental inequality.

The individual approach follows the ‘standard procedure’ in social sciences and
analyses individual or household-level survey data (e.g. Crowder & Downey, 2010;
Diekmann & Meyer, 2010; Mohai, Lantz et al., 2009; Pais et al., 2014). This is
especially important when analysing the process of selective migration, as the actual
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moving behaviour of households can be observed. However, data protection issues hinder
the use of actual household locations, making it difficult to connect household level data
to fine-grained neighbourhood characteristics and objective indicators of environmental
quality like air pollution or the distance to industrial facilities. Furthermore, the
pure description of the extent of environmental inequality might crucially depend on
sampling procedures, as many studies use regionally stratified sampling techniques.
The aggregated approach in contrast uses spatial units like neighbourhoods or census
tracks as the level of observation (e.g. Banzhaf & Walsh, 2008; Been, 1994; Mohai &
Saha, 2015b). This has the advantage that the analyses are based on large samples and
provide information on the aggregated dynamics. Especially when analysing selective
siting, the average socio-economic status or the aggregated minority share of an area are
the theoretically relevant factors for choosing the location of industrial facilities. Still,
relying on aggregated data makes it difficult to draw conclusions on individual-level
behaviour. For instance, Banzhaf and Walsh (2013); Depro, Timmins and O’Neil (2015)
show that the impacts of selective migration or sorting processes on aggregated income
dynamics are theoretically hard to predict and empirically difficult to identify when
relying on aggregated data. To overcome these problems, the current book employs
both strategies. It uses household level survey data to investigate selective migration
patterns, but aggregated data to investigate the level of environmental inequality in
Germany.

However, using spatially aggregated data bears some potential problems that need to
be accounted for in the analyses. One issue is the modifiable areal unit problem (MAUP;
see e.g. Wong, 2009), actually consisting of two distinct problems. First, conclusions
may depend on the level of aggregation (e.g. Baden et al., 2007; Downey, 1998). For
example, we can analyse environmental inequality on the city level and conclude that
minorities live in more polluted cities. However, this does not necessarily mean that
minorities also live in more polluted districts within the cities. Thus, conclusions could
vary when conducting similar analyses on the city and the city-district level. In general,
a higher resolution increases the variance between units and decrease the (unobserved)
variance within units, thereby increasing the accuracy of predictions (assuming that
there is no theoretical reason to expect differing results for different levels). Second,
the conclusions may also depend on the borders of the spatial units. Accordingly,
we need to ask whether conclusions would change if we shift given borders by an
arbitrary distance to the left or the right. In environmental inequality research, it seems
plausible to assume that hazardous facilities are systematically sited at the borders of
administrative spatial units (Mohai & Saha, 2006, 2007). If we allocate the pollution
to the facility-hosting spatial unit only, selection of geographic borders may crucially
influence the results. Furthermore, facilities located at the borders of a spatial unit
can actually affect neighbouring units more than the hosting unit. To overcome this
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problem, Mohai and Saha (2006, 2007) propose to use a so called ‘areal apportionment
method’, which weights the characteristics of nearby units by the spatial intersection
between census tracts and a circle around the facility location (for a similar method see
also Banzhaf & Walsh, 2008). The present books deals with these issues by 1) using
very fine-grained spatial units to minimise the unobserved variance within units, and
by 2) applying a matching algorithm between facilities and census units that follows
Banzhaf and Walsh (2008), merging the emissions to census units weighted by the
intersection between the census units and a circular buffer around the facility location.

A second issue of spatially aggregated data relates to the use of appropriate statistical
methods. As has been formulated by Tobler (1970, p. 236): ‘everything is related to
everything else, but near things are more related than distant things’. It seems quite
intuitive that geographically close units (whether aggregated or individual) are more
similar to each other, more likely to influence each other, and also more likely to be
affected by common shocks. Though this does not seem surprising, it has important
implications for the statistical methods applied to analyse spatial data. As the units
of observation cannot be handled as if they were independent of each other, a core
assumption of ‘standard’ linear regression models (E(εiεj) = E(εi)E(εj) = 0, where
ε is the regression disturbance for all observations i and j, i 6= j) is violated. As has
been shown by previous research (e.g. Pace & LeSage, 2010), this can lead to erroneous
inferential statistics, but also to biased point estimates when using non-spatial regression
methods. Thus, appropriate spatial methods need to be applied when analysing spatial
data (e.g. Anselin, 1988; Cliff & Ord, 1981; Elhorst, 2014; LeSage & Pace, 2009).
Surprisingly, this issue has been widely ignored in environmental inequality research
(exceptions are Elliott & Frickel, 2013, 2015; Havard et al., 2009; Pastor et al., 2005;
Raddatz & Mennis, 2013), and studies using spatial regression techniques predominantly
apply the most commonly used spatial autoregressive model (e.g. Elliott & Frickel,
2015; Havard et al., 2009; Raddatz & Mennis, 2013) to control for spatial dependence.
However, a variety of spatial model specifications exist, which not only control for
spatial dependence but also explicitly model theoretically relevant spatial patterns.
Hence, the current book 1) summarises the most popular spatial regression techniques,
and 2) performs several Monte Carlo experiments to compare the performance of spatial
model specifications throughout different situations. This provides a theoretical and
empirical foundation for the subsequent use of spatial regression models in the analysis
of environmental inequality patterns in Germany.

1.5 Overview

This book is divided into four empirical studies and a final conclusion. Chapters 2, 4,
and 5 deal with the research questions formulated in this chapter. Chapter 2 employs
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the ‘standard’ methodological approach and uses household-level data, while Chapters 4
and 5 use spatially aggregated data. Chapter 3, in contrast, deals with methodological
issues when using spatially aggregated data. Though the four research studies can be
seen as cumulative research and build on each other, all chapters provide the necessary
theoretical background and can be read independently. This section provides a short
overview of each study.

Study 1 (Chapter 2) scrutinises the main research questions of this book by analysing
household level survey data of the German Socio-economic Panel (SOEP). In the
beginning, it replicates previous findings (Kohlhuber et al., 2006) by showing that, in
a cross-sectional design, minorities and socio-economically disadvantaged households
report a higher impairment through air pollution. However, the main focus of this
study lies on the causal mechanisms, especially on the process of selective migration
and its influence on the perceived exposure to air pollution in Germany. As has been
argued earlier, the theory of selective migration assumes that minorities selectively
move into more polluted areas.

To test this argument, the study applies fixed-effects panel estimators and investig-
ates the moving returns of households between 1986 and 2014. Specifically, we test
two main questions. First, whether increases in income lead to higher moving returns,
i.e. a stronger reduction in exposure to environmental pollution, and second, whether
minority households experience different moving returns than native German house-
holds. In addition, the study analyses the more fine-grained mechanisms by testing
if income explains the lower moving returns of minorities and by differentiating the
moving returns of first- and second-generation immigrants. This provides the first
empirical test of selective migration mechanisms outside of the United States that uses
longitudinal household data.

Study 2 (Chapter 3) is more concerned with a methodological topic than with
environmental inequality per se. In a first step, the study summarises the most popular
spatial model specifications and shows theoretically under which conditions non-spatial
regression methods produce biased estimates. This gives a strong motivation for the use
of spatial regression models when analysing spatially aggregated data, a finding which
becomes important in the following chapters. However, a main difficulty in applied
spatial econometrics is the selection of the correct model specification, as empirical
specification tests exhibit severe drawbacks.

In a second step, the study thus compares the performance of the most common
spatial regression models in different scenarios of spatial dependence by using Monte
Carlo experiments. The study extends previous simulation results by evaluating the
bias of the impacts rather than the regression coefficients, as direct and indirect impacts
are the measures of interest in applied spatial econometrics. Furthermore, this study
provides results for situations in which the regressions suffer from an omitted variable
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bias. By doing so, Chapter 3 constitutes a comprehensive introduction into spatial
regression methods used in the following chapter, but also contributes to the discussion
of model selection in spatial econometrics. The results clearly indicate that some
specifications are much more robust against misspecification than others.

Study 3 (Chapter 4) again deals with the topic of environmental inequality. In
contrast to study 1, study 3 uses spatially aggregated data and objective measures
of air pollution. Therefore, I combine spatial data of the 2011 German census and
pollution measures of the European Pollutant Release and Transfer Register (E-PRTR).
By using geo-locations of industrial facilities and geographic boundaries of the census
units, I calculate the proportionate toxicity-weighted amount of air pollution for each
census cell. In the end, the study relies on more than 90,000 census cells over Germany.

Based on the results of study 2 (Chapter 3), this study uses SLX and community-
fixed SLX models to incorporate spatial spillover-effects into the analysis and to account
for the spatial distribution of socio-demographic characteristics. Specifically, the study
is concerned with three main questions. First, the presence and extent of environmental
inequality in Germany when using objective measures of industrial air pollution. Second,
the spatial patterns of environmental inequality. Theoretically, I argue that both causal
mechanisms of environmental inequality predict a clustering effect of minorities around
hazardous facilities, a hypothesis that can be tested by applying spatial regression
models. Third, the paper investigates whether the correlation between the minority
share and toxic air pollution differs significantly between urban and rural areas. Thus,
study 3 gives a first nation-wide assessment of environmental inequality and its spatial
pattern with objective indicators of environmental pollution in Germany.

Study 4 (Chapter 5) constitutes a follow-up study of study 3. While study 3 shows
that minorities, on average, bear a disproportionate exposure to environmental pollution,
study 4 takes a more detailed look at the variations of environmental inequality between
German cities and analyses which structural conditions foster environmental inequality.
This study uses similar data as in study 3, but enriches the data by additional city-
specific characteristics from the ‘Indicators, Maps and Graphics on Spatial and Urban
Monitoring’ (INKAR) database as well as infrastructural characteristics derived from
OpenStreetMap.

The standard strand of theoretical reasoning in environmental inequality research as
well as the findings of the previous study in this book suggest that residential segregation
constitutes a main driver of environmental inequality. However, other studies also
point to the importance of the geographic centrality of pollution in shaping high levels
of environmental inequality. To test the influence of macro-structural characteristics,
the study applies city-fixed effects multilevel models. Thereby, I identify a structural
characteristic of the urban form, which has been mostly overlooked by previous research.
Furthermore, the findings of this last study provide a different interpretation for the
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results of the preceding studies, and emphasise the importance of taking the urban
context into account when analysing environmental inequality.

The book ends with a final discussion and conclusion (Chapter 6). The last chapter
summarises the main findings of the four empirical studies, and develops an overarching
conclusion. Thereby, it highlights how the findings of the empirical studies help to
understand the main research questions of whether environmental inequality exists in
Germany, and which causal mechanisms are responsible for the disproportionate burden
of minorities. Furthermore, it discusses the limitations of this book and develops some
suggestions for further research, which can help to bolster our understanding of the
processes of environmental inequality.

16



Chapter 2

How Selective Migration Shapes
Environmental Inequality in
Germany: Evidence from
Micro-Level Panel Data

Abstract
Socio-economically disadvantaged and ethnic minorities are affected by a disproportion-
ately high exposure to environmental pollution. Yet, it is unclear if selective migration
causes this disproportionate exposure experienced by low-income and minority house-
holds. The study uses longitudinal data from the German Socio-Economic Panel to
investigate the process of selective migration and its connection to the perceived ex-
posure to air pollution in Germany. Consistent with the selective migration argument,
movers experience a decrease in exposure according to their income, while stationary
households do not experience a reductive effect due to income. Furthermore, the mov-
ing returns differ by minority status. While native German households experience less
exposure to pollution when moving to a new place of residence, minority households
do not. Additional analyses show that this minority effect cannot be explained by
socio-economic differences, but completely vanishes in the second immigrant generation.

This chapter has been published as:

Best, H., & Rüttenauer, T. (2018). How selective migration shapes environmental inequality in
Germany: Evidence from micro-level panel data. European Sociological Review, 34 (1), 52-63. DOI:
10.1093/esr/jcx082
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2.1 Introduction

Environmental inequality, connecting the distribution of environmental hazards to
socio-economic and ethnic characteristics, has received growing attention in the United
States (for an overview: Mohai & Saha, 2015a; Pellow & Nyseth Brehm, 2013; Ringquist,
2005), as well as in continental Europe (Diekmann & Meyer, 2010; Funderburg &
Laurian, 2015; Havard et al., 2009; Kohlhuber et al., 2006; Laurian & Funderburg, 2014;
Padilla et al., 2014). Most of the empirical research focuses on the question whether
there is an unequal distribution of environmental pollution; yet only a few studies
explore the causal mechanisms. To our knowledge, only one study investigates these
causal mechanisms of environmental inequality in continental Europe (Funderburg &
Laurian, 2015), exclusively using aggregated data. This is a major shortcoming, as the
United States is a rather special case with a high level of economic inequality (Piketty
& Saez, 2014) and residential segregation (Musterd, 2005). Therefore, it is far from
clear whether we can observe similar drivers of environmental inequality in Europe.

Previous studies, especially from the United States, have identified two causal
mechanisms of environmental inequality: selective siting and selective migration (Mohai
& Saha, 2015a). The first mechanism states that the increase of pollution follows
already existing differences in the socio-demographic composition of neighbourhoods.
Hazardous facilities are disproportionately sited in areas with low socio-economic
resources and high minority shares (or disproportionately cleaned up in areas with high
socio-economic resources and low minority shares). In contrast, the second mechanism
assumes that differences in the socio-demographic neighbourhood composition emerge
after pre-existing differences in pollution. This means that minority households and
households with low socio-economic resources selectively move into polluted areas, while
socio-economically advantaged households move out. Previous studies have investigated
these two causal explanations on aggregated levels, such as neighbourhoods, zip code
areas, or census tracts (Been & Gupta, 1997; Downey, 2005; Funderburg & Laurian,
2015; Mohai & Saha, 2015b; Oakes et al., 1996; Pastor et al., 2001; Richardson,
Shorty & Mitchell, 2010; Shaikh & Loomis, 1999). Those macro-level studies offer
mixed results regarding selective siting and provide only weak evidence regarding the
selective migration mechanisms. However, the only two longitudinal studies on the
household level find evidence for selective migration patterns (Crowder & Downey,
2010; Pais et al., 2014). Thus, it remains unclear whether selective migration causes
the disproportionate exposure to environmental pollution experienced by low-income
and minority households.

The present study adds to the discussion of environmental inequality in two ways.
First, the present study is the first panel study on environmental inequality in Germany.
Hence, we add new evidence to the question, whether selective migration causes
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environmental inequality in continental Europe. We argue that the exposure to
environmental pollution depends on income and ethnic origin via individual moving
decisions (selective migration). Secondly, we compare different immigrant groups (first-
and second-generation immigrants and by country of origin) and analyse whether the
disadvantage of ethnic minorities can be explained by their lower socio-economic status.

This study relies on household-level data of self-reported impairment through air
pollution of the German Socio-Economic Panel (GSOEP) between 1986 and 2014.
By using panel data and fixed-effects estimators, we ensure that our results are not
affected by differing perception of pollution between the households. Though the
micro-level data used in this study offer clear advantages when analysing selective
migration patterns, they do not allow to investigate selective siting, as the latter
depends on aggregated neighbourhood characteristics rather than individual household
characteristics.

2.2 Theory and previous results

Numerous studies in the United States have shown that income and race are related to
the amount of environmental pollution (for an overview: Mohai & Saha, 2015a; Pellow
& Nyseth Brehm, 2013; Ringquist, 2005). In the German-speaking area, previous
studies conclude that low-income households as well as ethnic minorities experience
a higher exposure to environmental pollution (Bolte & Mielck, 2004; Diekmann &
Meyer, 2010; Kabisch & Haase, 2014; Kohlhuber et al., 2006; Raddatz & Mennis,
2013).1 Regardless, all these studies did not aim to analyse the causal mechanisms of
environmental inequality. Therefore, the following outline of the causal mechanisms
mostly relies on literature from the United States.

The selective migration argument assumes that the patterns of environmental
inequality result from specific decisions on the individual or household level (Massey,
1990; Schelling, 1978). On the one hand, these residential choices are driven by
individual preferences, e.g. the preference to live in a clean and unpolluted environment.
On the other hand, individuals have to deal with the structural constraints of their
actions. If we assume a similar preference for clean environment throughout the
society — an assumption that our analytical strategy allows to relax — market or
other allocation mechanisms regulate the access to scarce resources. When selecting a
place of residence, individuals try to satisfy their preferences regarding the good ‘clean
environment’, given their economic and structural constraints (Tiebout, 1956). Thus,
we have to explain how these constraints differ by income and ethnicity to understand

1 Supplementary cross-sectional analyses of our data confirm these results (see supplementary Table
2.3).
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the causes of environmental inequality. First, we will outline how income affects the
migration process and afterwards turn to the ethnic differences in migration patterns.

2.2.1 Income as the key to clean neighbourhoods

The ‘market explanation’ of environmental inequality considers a clean environment
as an economic luxury good, which is available on the market for an additional
price. Environmental quality influences the rents and housing prices: While housing
opportunities in low-quality areas are relatively cheap, they are relatively costly in high-
quality areas. As a result, tenants and homebuyers must pay for high environmental
quality when making a migration decision (Banzhaf & McCormick, 2012; Been &
Gupta, 1997; Diekmann & Meyer, 2010; Hanna, 2007; Hunter et al., 2003). Given
the preference for a clean environment, households experiencing an increase in income
are able to pay more for environmental quality when migrating and consequently
will end up in neighbourhoods with lower pollution. Even if housing prices are not
exogenously higher in clean neighbourhoods, prices should rise due to higher demand
for housing in these areas, despite relatively constant housing opportunities (Banzhaf
& McCormick, 2012; Kim, Campbell & Eckerd, 2014). On the other hand, higher
environmental pollution (combined with an out-migration of the wealthier inhabitants
and decreasing demand for housing) leads to decreasing housing prices in polluted
areas and consequently attracting lower-income households who cannot afford the
luxury good ‘clean environment’. As a result, lower-income households will choose
neighbourhoods with higher pollution when moving.

Following this market explanation, high pollution does not need to be the reason for
out-migration. Even if households relocated for other reasons, high-income households
sort into clean neighbourhoods, while low-income households sort into polluted neigh-
bourhoods (Banzhaf & McCormick, 2012). Though pollution may trigger out-migration,
all migrating households — independent of the reasons for relocation — need to choose
a neighbourhood destination, which is assumed to happen selectively. Therefore, we
postulate the following Hypothesis 1:

H1: An increase in income will lead to decreasing exposure to environmental pollution
when moving to a new neighbourhood.

This is a causal formulation of the between hypothesis, that is high-income house-
holds will on average realise a stronger reduction in exposure. In line with this hy-
pothesis, the majority of previous research has found a negative correlation between
income and environmental pollution within the same spatial area (Ash & Fetter, 2004;
Downey, 2006a; Downey & Hawkins, 2008; Mohai & Saha, 2007; Pastor et al., 2002),
which supports the ‘market explanation’. Despite this, other studies suggest that there
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is no relationship between income and environmental pollution (Been & Gupta, 1997;
Morello-Frosch & Jesdale, 2005) or at least no linear relationship (Ash, Boyce, Chang
& Scharber, 2013; Havard et al., 2009). Aside from these macro-level studies, only two
studies have presented results from longitudinal analyses on the micro-level. Crowder
and Downey (2010) used household-level data from the Panel of Income Dynamics
and pollution data of the Toxics Release Inventory (TRI). They state that although
pollution does not increase the probability of out-migration when controlling for other
individual characteristics, income is associated with lower pollution in the neighbour-
hood of destination for movers. Thus, they find a conditional effect of income on
pollution. If households move, higher-income households sort into neighbourhoods
with a lower amount of pollution. Using similar data, Pais et al. (2014) compare
different migration trajectories separated by the exposure to pollution. They find that
the probability of being in a constantly high pollution trajectory compared to being
in a constantly low pollution trajectory decreases with income. This indicates that
households with higher income are more likely to continuously live in low pollution
neighbourhoods.

2.2.2 Minority status as a barrier to clean neighbourhoods

Turning to the disadvantages of ethnic minorities, two explanations have been widely
discussed by previous scholars: the ‘racial income-inequality thesis’ and the ‘racial
residential discrimination thesis’.2

The ‘racial income-inequality thesis’ relates to the ‘market explanation’ in explaining
the effect of ethnicity on the exposure to environmental pollution (Been & Gupta,
1997; Campbell, Peck & Tschudi, 2010; Crowder & Downey, 2010; Oakes et al., 1996;
Pais et al., 2014). Hereafter, the high exposure of ethnic minority groups is not a
result of ethnicity itself, but rather, a result of the differences in the socio-economic
resources of different ethnic groups. The hypothesis assumes that ethnic minority
groups hold a relatively low income compared to the ethnic majority. Following the
‘market explanation’, minority groups are limited by their economic resources and
cannot afford the housing prices in high-quality neighbourhoods. Thus, they are
pushed to more affordable but more polluted areas. The ethnic majority, in contrast,
holds a relatively high income and faces lower economic constrains when choosing a
neighbourhood of destination. It follows that majority households sort into high-quality
neighbourhoods, while minority households sort into low-quality neighbourhoods. If

2 The terms ‘race’ and ‘ethnicity’ have the same meaning throughout this article. US scholars typically
study inequalities based on race, while European researchers typically focus on inequalities along
ethnic lines. For our purposes, both concepts refer to a fixed actor attribute that can be the basis
for different housing market opportunities.
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this is true, a higher exposure of minority households should dissipate after controlling
for socio-economic resources.

In contrast, the second mechanism assumes a persisting effect of ethnicity on the
exposure to environmental hazards, independent of socio-economic characteristics. The
‘racial residential discrimination thesis’ explains the unequal distribution of environ-
mental pollution by discriminating actions of real estate agents or property owners
(Crowder & Downey, 2010; Crowder, Pais & South, 2012; Pais et al., 2014; for discrim-
ination on the housing market in general: Choi, Ondrich & Yinger, 2005; Ondrich et
al., 2003; Pager & Shepherd, 2008; Turner & Ross, 2005). The reasons for housing
discrimination could be twofold: first, native inhabitants could perceive minority groups
as a threat due to prejudices about their criminal behaviour (Massey & Denton, 1993;
Semyonov et al., 2012). Housing agents and property owners, in turn, fear declin-
ing desirability of neighbourhoods and, as a result, declining profits due to minority
in-migration (Turner & Ross, 2005; Yinger, 1986). Thus, they prefer majority house-
holds as new inhabitants in high-quality neighbourhoods. Secondly, housing agents
could spuriously anticipate the housing preferences of minority groups (Ondrich et
al., 2003; Turner & Ross, 2005). If housing agents supposed minority groups have
lower preferences for clean environments or neighbourhood quality in general, they
could pre-select housing offers based on their prejudiced viewpoint. In both cases,
discriminating behaviour sorts minority households into polluted neighbourhoods.

The theoretical explanations as well as the empirical results regarding the dispropor-
tionate exposure of minority groups stem mainly from the United States and refer to
ethnic minorities like Asian, Mexican, or African-American groups. It is important to
note that minorities in Germany are the result of relatively recent immigration, mainly
from Turkey, Southern Europe, and later Ex-Yugoslavia and Eastern Europe (see
Kalter & Granato, 2007, and the more detailed discussion of our data in the following
section). Additionally, housing segregation by ethnic group is lower in Germany than
in the United States (Musterd, 2005). Nonetheless, we assume that the mechanisms
discussed above are transferable to the German context, as previous research has found
general disadvantages of immigrants on the German housing market (Auspurg, Hinz &
Schmid, 2017; Drever & Clark, 2002), plus a higher exposure of immigrant minorities to
pollution (Diekmann & Meyer, 2010 for Switzerland; Kohlhuber et al., 2006; Raddatz
& Mennis, 2013 for Germany). In sum, this leads to Hypothesis 2:

H2: Native Germans will realise a stronger reduction in the exposure to environ-
mental pollution than immigrant minority households when moving to a new
neighbourhood.

Based on the discussion of the fine-grained mechanisms of selective migration, we will
extend our analysis of selective migration in two ways. First, we will test whether the
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differences between ethnic groups can be explained by socio-economic differences (H2a:
‘racial income-inequality hypothesis’). If this explanation is true, the disadvantage of
minorities should disappear or at least diminish when controlling for income. Secondly,
we will separate the minority group into first- and second-generation immigrants. If
discrimination causes the disproportionate burden of minority households (H2b: ‘racial
residential discrimination thesis’), we would assume second-generation immigrants to
experience similar disadvantages as first-generation immigrants.

The disproportionate exposure of ethnic minorities to environmental pollution is
well documented in previous research. Even after controlling for income, many studies
document a significant correlation between ethnic minority share and environmental
pollution within the same neighbourhood (Ash & Fetter, 2004; Downey, 2006a; Downey
& Hawkins, 2008; Pastor et al., 2005). In addition, housing audit studies highlight
the persisting discrimination against minorities on the housing market (Choi et al.,
2005; Ondrich et al., 2003; Turner & Ross, 2005). This income-independent effect of
ethnicity is in line with the ‘racial residential discrimination thesis’. Yet, as most of the
environmental inequality studies use cross-sectional data, they cannot — and do not
aim to — identify the causal mechanisms leading to the disproportionate exposure of
minority groups to environmental pollution. Nonetheless, some other studies (Been &
Gupta, 1997; Downey, 2005; Mohai & Saha, 2015b; Oakes et al., 1996; Pastor et al.,
2001; Richardson et al., 2010; Shaikh & Loomis, 1999) focus on the causal mechanisms
by analysing longitudinal data on the aggregate level. Of these studies, only Richardson
et al. (2010) find empirical evidence for the selective migration into polluted areas. All
other macro studies rather contradict the selective migration argument.

In contrast, the two longitudinal studies on the household level find evidence for
selective migration of ethnic groups. According to Crowder and Downey (2010), ethnic
minorities are more likely to move into polluted areas when comparing mobile households.
Even when controlling for socio-economic characteristics, the effect of ethnicity persists.
Additionally, the analysis shows that income is a greater determining factor for Black
than for White homeseekers in dictating the pollution at the place of destination. This
finding is in line with the explanation of discriminating housing markets, as mobile
minority households require a higher income to realise the same level of pollution than
their majority counterparts do. The second household-level study by Pais et al. (2014)
comes to similar conclusions. Although the race effect is lowered in magnitude when
controlling for socio-economic factors, the odds of following a high-to-high pollution
trajectory are still substantially higher for Black than for White households. These
results support both the ‘racial income-inequality thesis’ and the ‘racial residential
discrimination thesis’. Furthermore, the number of inter-neighbourhood moves reduces
the probability of being in a constantly high-pollution trajectory for White households,
while having a contradicting effect for Black households.
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2.3 Data, operationalisation, and method

We use household-level data from the GSOEP, a repeated and representative panel
study in Germany (Wagner, Frick & Schupp, 2007). Our final sample comprises
information on 12,037 households, participating between 1986 and 2014. This sample
includes all households living in private households (households living in hostels or
retirement homes were excluded) participating at least in two of the six relevant waves
(unbalanced panel). All models were estimated without using sampling weights.3

As dependent variable we use the subjectively perceived impairment through air
pollution. In 1986, 1994, 1999, 2004, 2009, and 2014, the GSOEP household question-
naire included the question ‘How strongly do you feel you are affected by the followed
environmental influences on your residential area: Through air pollution’. Respondents
had to evaluate their answer on a five-point scale ranging from ‘Not at all’ to ‘Very
strongly’ (coded 1–5).

The main explanatory variables are income and minority status. As we argue that
the latter variables are crucial for the extent of environmental exposure only when
people move, we include an interaction-term of these main explanatory variables with
a dummy indicating a relocation of the household between two points of observation.
This ensures that the report of perceived pollution temporally follows the relocation,
and we do not run into trouble concerning the causality. As a measure of income, we
calculated the equivalised household income by dividing the monthly net income by
the square root of the household size (Burniaux et al., 1998).

In the German context it makes sense to specify minority as immigrant minority: the
vast share of minorities — especially of minorities visible by their looks or their language
— are immigrants and their descendants (Kalter & Granato, 2007). Most of the first-
generation immigrants in our sample originate from countries covered by Germany’s
active labour immigration policy of the 1960’s like Turkey (n = 348), Yugoslavia
(n = 199), Italy (n = 171), Greece (n = 110), or Spain (n = 66). The second important
group of first-generation immigrants originates from Eastern Europe (n = 566). In
total, the sample contains 1,490 first- and 699 second-generation immigrants.4 Third-
generation immigrants are categorised as native Germans in the original data set. Due
to the low number of cases, we need to collapse some of the origins and differentiate
between Turkey, former Yugoslavia, and the following regions as classified by the United
Nations Statistics Division: Southern Europe, Eastern Europe, rich Western Countries
3 As panel attrition may be an issue for the present research question, we estimated additional models

using inverse staying probability weights (not shown). These models yield very similar results (see
Solon, Haider & Wooldridge, 2015, for a discussion on weighting).

4 To separate the effect due to relocation from the effect of other events, we had to exclude 198
households (approximately 1.6% of the total sample) that experienced a change in minority status due
to a change of the household head (32 additional households had to be excluded when differentiating
between first and second generation of immigration).
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(Northern and Western Europe, the United States, Canada, Australia) and a residual
category for other countries (see Gresch & Kristen, 2011, for a discussion of different
operationalisations).5

Finally, the relocation of the household is measured by three period dummies
indicating the first, second, or third move of a household. Hence, the coefficient of the
second move-dummy indicates the additional effect of a second move over the first, etc.
For construction, all GSOEP waves between 1986 and 2014 were taken into account to
capture relocations between the waves used in the final analyses.

Additionally, we include several variables controlling for confounders. Most import-
antly, we exclude the possibility of a perception bias and, consequently, a spurious
decrease in the perception of environmental pollution after a relocation (e.g. due to
cognitive-dissonance reduction). Hence, we include a control variable for households
that have been living in their new home for less than 6 months. We also include a
dummy that captures the change of the household head as perception of pollution
might differ between the former and the new household head. In addition, several
control variables may influence the pollution level as well as income and thus confound
the effect of income on pollution: we include age squared, since income and living
situation might notably improve in early adulthood (the linear age term is omitted
because it cannot be separated from the year trend in two-way fixed-effects models)
but stagnate or decrease in old age. In the same line, we control for children living in
the household, considering children influence the household income (by definition) and
might influence the residential choice when households move.6 Since we are interested
in the total effect, we generally do not control for mediators. An important exception
is controlling for income when testing the ‘racial income-inequality hypothesis’.

To identify the causal mechanisms of environmental inequality, we use fixed-effects
panel estimators. These estimators use the variance within the household over time
while excluding the variance between the households (Allison, 2009; Brüderl & Ludwig,
2015). Time-constant household-specific characteristics are excluded and no longer
affect the estimation results. Furthermore, the inclusion of year-dummies (two-way
fixed-effects) ensures that people without relevant within-variance — households without
any relocation — serve as a control group. This controls for a change in pollution level
over time independent of our explanatory variables. For ease of interpretation, we use
linear fixed-effects estimators, though the dependent variable is measured on an ordinal
scale. To ensure that this model selection does not influence our results, we conducted
5 Our operationalisation of minority status follows the status of the GSOEP household head. This

decision ignores the individual migration histories of all other household members. However, our
approach avoids questionable exclusions (of mixed native and immigrant households) and leads to
more conservative estimates, i.e. a bias towards a non-finding.

6 Note that we do not include control variables that might cause moving decisions. This would be
important if we investigated the question whether pollution induces relocations. However, for our
dependent variable the reasons for the moving decision do not confound the results.
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Table 2.1: Summary statistics
Native German household Minority household

Variable Mean SD (within) Mean SD (within)
% moved at least once 49.04 63.76
Perceived impairment through air pollution 1.825 0.587 1.923 0.639
% experienced an improvement 48.62 49.62
Monthly equivalence income (in 1,000 Euros) 1.614 0.527 1.367 0.426
Age of household head 52.683 5.928 48.963 6.088
Children living in household 0.263 0.273 0.379 0.296
Number of households 9816 2221
N 31267 7118

additional sensitivity checks using an additive index of air and noise pollution7 as well
as fixed-effects ordered-logit models (see supplementary Tables 2.4 and 2.5). Both
models support the results of the linear fixed-effects estimators of air pollution.

2.4 Results

Table 2.1 presents descriptive statistics by the household’s minority status. First,
the data show that most households report a low perceived impairment through air
pollution (mean of 1.8). Secondly, the data indicate a higher mobility level for minority
households. Approximately 50% of the households with a native German household
head moved at least once within our observation period compared to 64% of the
minority households. Furthermore, minority households perceive a higher average level
of impairment through air pollution. However, in both groups nearly 50% of households
experienced at least one improvement in air quality over time. In addition, minority
households report on average a 250 EUR lower household income, which indicates
that the higher pollution experienced by minority households might be a function of
socio-economic status (‘racial income-inequality hypothesis’).

To draw conclusions about the mechanisms leading to environmental inequality,
Table 2.2 presents the results of the panel regressions. All models are two-way fixed-
effects models with cluster robust standard errors. We begin with a discussion of
income inequality and then turn to the minority effect.

Model FE 1 includes household income, moving behaviour, and their interaction
as explanatory variables. The important construct for testing the effects of selective
migration is the interaction of moving behaviour and income which separates the effect
of movers and non-movers. In line with our H1, FE 1 shows a significant reduction
of the perceived pollution due to income for movers only. This confirms the ‘market
explanation’. When moving, households experience a higher reduction of perceived
7 The subjective impairment by ambient noise was measured using a question very similar to air

pollution (see above).
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Table 2.2: Fixed-effects estimation of perceived impairment through air pollution
FE 1 FE 2 FE 3 FE 4

Monthly equivalence income (in 1,000 Euros) −0.008 −0.009 −0.009
(0.009) (0.009) (0.009)

1. Move −0.203∗∗∗ −0.282∗∗∗ −0.247∗∗∗ −0.249∗∗∗
(0.030) (0.022) (0.031) (0.032)

2. Move −0.034 −0.080∗∗ −0.039 −0.045
(0.039) (0.025) (0.042) (0.042)

3. Move −0.014 −0.015 −0.023 −0.034
(0.086) (0.041) (0.087) (0.088)

1. Move × income −0.027∗ −0.022 −0.021
(0.013) (0.013) (0.013)

2. Move × income −0.019 −0.020 −0.018
(0.020) (0.020) (0.020)

3. Move × income 0.009 0.009 0.014
(0.044) (0.044) (0.045)

1. Move × minority 0.165∗∗∗ 0.159∗∗∗
(0.044) (0.044)

2. Move × minority 0.023 0.015
(0.049) (0.049)

3. Move × minority 0.047 0.048
(0.097) (0.096)

1. Move × minority (1st-generation immigrant) 0.226∗∗∗
(0.051)

2. Move × minority (1st-generation immigrant) 0.083
(0.060)

3. Move × minority (1st-generation immigrant) 0.141
(0.135)

1. Move × minority (2nd-generation immigrant) −0.005
(0.078)

2. Move × minority (2nd-generation immigrant) −0.047
(0.075)

3. Move × minority (2nd-generation immigrant) −0.026
(0.129)

R2 0.056 0.057 0.057 0.058
Adj. R2 0.056 0.056 0.057 0.057
AIC 67185 67166 67153 66880
Number of households 12037 12037 12037 12005
N 38385 38385 38385 38268
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Cluster robust standard errors in parentheses. Additional controls: Age2,
children living in household, change of household head, duration of residence, year.

air pollution as their income rises. Figure 2.1 shows how the reduction of pollution
due to moving increases with income. In contrast, the effect of income for stationary
households is close to zero and not significant: only when moving, households can use
their income to reduce their exposure to pollution. Note, however, that the effect is
statistically significant but low in magnitude. An increase in income by 1,000 Euro
increases the effect of mobility on impairment through air pollution by only 0.03 points
(which equals 0.05 standard deviations). This income interaction effect equals three
times the presented effect if we interact moving behaviour with the household’s average
income over time, which would compare the moving returns between ‘rich’ and ‘poor’
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Figure 2.1: Conditional effect of the first move on the impairment through pollution
with 95% confidence interval (FE 2)

households (see supplementary Table 2.6).8 Independent of model choice, our results
confirm selective migration as a causal mechanism of environmental inequality.

Turning to the minority effect, model FE 2 includes the main moving effects and
an interaction between moving behaviour and minority status. While the interaction
terms in combination with the main effects represent the effect of migration for
minority households, the main moving effects represent migration returns for native
German households. In consonance with H2, we find a significant and negative effect
of migration for native German households: the first observed move reduces the
perceived impairment through air pollution by nearly 0.28 points on a scale from 1 to
5 (which equals approximately 0.47 within standard deviations). In contrast, minority
members experience a much lower reduction in pollution when moving (reduction by
approximately 0.12 points or 0.20 within standard deviations). This is a substantial
difference and confirms our H2: the improvement due to mobility is more than twice as
strong for native German households than for minority households. Figure 2.2 depicts
the results graphically. Even the effect of the second move exceeds the 1% significance
level for native German households and points to an average additional improvement
due to a second move, while it is non-significant for minority households. These results
confirm selective migration as a cause of the disproportionate exposure to air pollution
of minority households (H2).

Model FE 3 tests the ‘racial income-inequality hypothesis’ and includes income as
well as minority status with its moving interactions. If the effect of the household’s

8 We argue that comparing different income levels within the same household over time is the adequate
strategy to model the effect, as it uses within-variance only. The strategy may produce conservative
point estimates but is less prone to biases induced by unobservable confounders.
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Figure 2.2: The effect of moving for native German and immigrant minority households
on the impairment through pollution with a 95% confidence interval (FE 2)

minority status was a result of lower socio-economic status, the minority effect should
disappear or diminish under control of income. Still, the difference in reduction of air
pollution between native German and minority movers remains nearly unaffected when
controlling for income (comparing FE 2 and FE 3). Independent of income, native
German households can experience a much higher reduction in air pollution than their
minority counterparts do. In contrast to the ‘racial income-inequality hypothesis’, we
do not find any significant effect of household income and only a slight decrease of the
minority effect in model FE 3. As in previous research, we observe a persistently lower
effect of mobility on the exposure to pollution for minority households, even when
controlling for income. Interestingly, the interaction between moving and income fails
to reach the 5% significance level in model FE 3, which is in line with the results of
Ringquist (2005) who concludes that the minority effect is much more robust than the
income effect.

The last model (FE 4) separates the effect of minority status for first- and second-
generation immigrants. The results show that the disadvantage of minority households
identified in Models FE 2 and FE 3 completely stems from the disadvantage of first-
generation immigrants. Figure 2.3 compares the effect of the first two moves for
native Germans, separating first- and second-generation immigrants (under control of
income). It turns out that the improvement of the pollution level from moving to a new
place of residence experienced by second-generation immigrants is comparable to the
improvements experienced by native Germans. First-generation immigrants, in contrast,
do not experience any improvement in exposure to pollution when moving. Even under
control for income, native Germans, as well as second-generation immigrants, sort
into neighbourhoods with lower environmental pollution when moving, while first-
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Figure 2.3: The effect of moving for native German, first-, and second-generation
immigrant households on the impairment through pollution with a 95% confidence
interval (FE 4, controlling for income)
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Figure 2.4: The effect of the first move for native German and first-generation immigrant
households separated by their country of origin on the impairment through pollution
with a 95% confidence interval

generation immigrants face the same exposure to pollution after moving to a new
place of residence. Additional analyses of first-generation minority households (Figure
2.4, see supplementary Table 2.7) reveal that especially households originating from
Turkey, Ex-Yugoslavia, and Eastern Europe are disadvantaged compared to native
German households (p ≤ 0.05). Households from those countries are not able to
improve environmental quality due to mobility. Immigrants from wealthy Western
countries, such as France, the United Kingdom, or the United States, in contrast, seem
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to experience the similar average improvement in environmental conditions due to
moving as native Germans do, but the estimation of this effect is based on few cases
only and statistically not significant.

2.5 Summary and conclusion

Environmental inequality has become an important topic of sociological research
in the United States. This research has led to several important findings on the
differential exposure of minorities to pollutants. Despite this, previous studies have led
to inconsistent results regarding the causes of environmental inequality, and empirical
studies in Europe are rare. In this article we present the first causal-analytic panel
study of environmental inequality in Germany.

To investigate causal mechanisms, this article uses household-level panel data and
fixed-effects estimators. We find that income has a significant impact on the level of
perceived air pollution for movers, while it has no effect for stationary households:
An increase in income leads to a significant reduction of air pollution when the
household moves to a new place of residence. This confirms the existence of selective
moving processes that shape environmental inequality. However, the effect of income is
relatively low in magnitude and sensitive to model specification. When simultaneously
including income and nationality, the effect of income loses significance. Regarding
minority status, we find a significant improvement in air quality due to migration for
native German households. Minority households, in contrast, only experience weak
improvements. The disadvantages are especially strong for first-generation immigrants,
who do not improve their situation at all when moving. This minority-difference in
mobility patterns is robust against model specifications. Thus, selective migration
behaviour operates as a causal mechanism, shaping the difference in pollution regarding
minority status and, to a lower extent, income. These findings are consistent with
previous results on the individual level from the United States (Crowder & Downey,
2010; Pais et al., 2014).

The fact that we find a moderate income-effect but a strong difference between
native German and minority households is especially interesting in the German context.
As German minorities are far less segregated than minority groups in the United States,
we would have expected to observe lower minority differences. However, our data
show that first-generation immigrant minorities in Germany are confronted with a high
disadvantage when relocating and, thus, experience a higher exposure to pollution.
This is true especially for first-generation immigrants from Turkey, former Yugoslavia,
and Eastern Europe.

In summary, our analyses confirm selective migration as a causal mechanism of
environmental inequality. Nevertheless, this study can only be a first step towards
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understanding the fine-grained mechanisms triggering selective migration. Our data
allow to rule out some mechanisms prominently discussed in the literature: first, we do
not find a noteworthy reduction of the minority effect when controlling for income, which
indicates that minority disadvantages cannot be explained solely by their relatively
low socio-economic status. This contradicts the ‘racial income-inequality hypothesis’.
Secondly, the disadvantage of immigrants completely vanishes in the second generation,
indicating that the disadvantage does not stem from discriminative behaviour triggered
by simple ethnic markers like the look or the name of a person. This contradicts
the ‘racial residential discrimination thesis’, but results are not fully conclusive, as
discrimination could still occur based on other characteristics like language skills or
citizenship. These characteristics are predominantly visible in the first immigrant
generation and, thus, would lead to disadvantages in the first but not in the second
generation.

At the same time, we cannot rule out that mechanisms other than income or
discrimination play a role: first, successful integration of second-generation immigrants
could also lead to informal network structures that support the search for high-quality
housing. Following this argument, the disadvantage of first-generation immigrants
would stem from their ethnic networks and their lack of sufficient ties to the mainstream.
Secondly, homogeneity preferences might play an important role in residential choice
(Kim et al., 2014), affecting predominantly first-generation immigrants. Thirdly,
preferences for environmental quality might differ between Germans/second-generation
immigrants on one side and first-generation immigrants on the other. Addressing these
potential explanations in further research could produce important insights of the
fine-grained mechanism of selective migration, hence bolstering our understanding of
the causal mechanisms of environmental inequality.

A shortcoming of the present study is the subjectivity of the pollution measure.
Though a strong correlation with noise pollution and proximity to the city centre
indicates a connection to traffic-related air pollution, it remains a subjective measure.
Thus, its use may be critical for cross-sectional analyses because of differing perceptions
of pollution (as criticized by Diekmann & Meyer, 2010). Fixed-effects panel estimators,
in contrast, do not rely on the consistency of perception between respondents, which
strongly reduces the concerns brought forward against the use of perceived impairment.
Nevertheless, further research should validate the results by combining objective and
subjective measures of air pollution in a panel study (note that the cross-sectional study
by Diekmann and Meyer (2010) found a correlation between objective and subjective
pollution data).

Finally, it is important to note that we did not address the question ‘which came
first?’ (Pastor et al., 2001): we did not study facility siting or clean-up behaviour,
which was identified as another cause of environmental inequality by previous research,
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stating that facilities are sited disproportionately close to minorities. Our analysis
offers strong evidence for selective migration as a causal mechanism but cannot claim
selective migration as the exclusive or the most important mechanism. To complete
the picture of causality producing environmental inequality, further research needs to
combine micro panel data and longitudinal macro data to analyse selective migration
as well as selective siting in one single study. This could also help to explain the fact
that macro-level studies were not able to find evidence for selective migration processes,
while micro-level studies do.
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2.A Appendix Chapter 2

Table 2.3: Pooled OLS estimation of perceived impairment through air pollution
POLS 1 POLS 2 POLS 3 POLS 4

Monthly equivalence income (in 1,000 Euros) −0.065∗∗∗ −0.064∗∗∗ −0.064∗∗∗
(0.008) (0.008) (0.008)

Minority 0.073∗∗∗ 0.068∗∗∗
(0.017) (0.017)

Minority (1st-generation) 0.075∗∗∗
(0.021)

Minority (2nd-generation) 0.057∗
(0.027)

Female household 0.062∗∗∗ 0.080∗∗∗ 0.065∗∗∗ 0.066∗∗∗
(0.014) (0.014) (0.014) (0.014)

Educationa
(Ref: high)

Other 0.708 0.829 0.722 0.719
(0.444) (0.445) (0.443) (0.444)

Drop out 0.002 0.026 −0.043 −0.048
(0.048) (0.049) (0.050) (0.050)

Low −0.028 0.029 −0.032 −0.033
(0.019) (0.017) (0.019) (0.019)

Medium −0.029 0.015 −0.026 −0.026
(0.019) (0.018) (0.019) (0.019)

Constant 1.719∗∗∗ 1.601∗∗∗ 1.690∗∗∗ 1.695∗∗∗
(0.099) (0.099) (0.099) (0.099)

R2 0.067 0.063 0.069 0.069
Adjusted R2 0.066 0.062 0.068 0.068
AIC 24843 24898 24829 24826
N 37886 37886 37886 37881
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standard errors in parentheses. Additional controls: Age, age2, children
living in household, year.
a Categorised Casmin classification: Other (unspecified); Drop out (1a); Low (1b, 1c); Medium (2a, 2b, 2c gen,
2c voc), High (3a, 3b).
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Table 2.4: Fixed-effects estimation of additive pollution index (perceived impairment
through air pollution and perceived impairment through noise)

FE 1 FE 2 FE 3 FE 4
Monthly equivalence income (in 1,000 Euros) −0.001 −0.003 −0.003

(0.015) (0.015) (0.015)
1. Move −0.421∗∗∗ −0.573∗∗∗ −0.521∗∗∗ −0.525∗∗∗

(0.056) (0.043) (0.060) (0.060)
2. Move −0.090 −0.118∗ −0.088 −0.099

(0.074) (0.047) (0.078) (0.079)
3. Move 0.017 −0.061 −0.022 −0.054

(0.175) (0.082) (0.178) (0.181)
1. Move × income −0.044 −0.033 −0.031

(0.025) (0.025) (0.025)
2. Move × income −0.008 −0.012 −0.009

(0.036) (0.036) (0.037)
3. Move × income −0.019 −0.017 −0.002

(0.089) (0.089) (0.090)
1. Move × minority 0.372∗∗∗ 0.365∗∗∗

(0.085) (0.085)
2. Move × minority −0.001 −0.007

(0.093) (0.094)
3. Move × minority 0.170 0.167

(0.189) (0.189)
1. Move × minority (1st-generation) 0.482∗∗∗

(0.098)
2. Move × minority (1st-generation) 0.128

(0.116)
3. Move × minority (1st-generation) 0.417

(0.262)
1. Move × minority (2nd-generation) 0.067

(0.145)
2. Move × minority (2nd-generation) −0.142

(0.139)
3. Move × minority (2nd-generation) −0.039

(0.255)
R2 0.052 0.054 0.054 0.055
Adjusted R2 0.052 0.053 0.053 0.054
AIC 113589 113536 113537 113091
Number of households 12037 12037 12037 12005
N 38371 38371 38371 38254
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Cluster robust standard errors in parentheses. Additional controls: Age2,
children living in household, change of household head, duration of residence, year.
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Table 2.5: Fixed-effects ordered-logit (BUC) estimation of perceived impairment
through air pollution

FE 1 FE 2 FE 3 FE 4
Monthly equivalence income (in 1,000 Euros) −0.015 −0.020 −0.018

(0.038) (0.038) (0.038)
1. Move −0.391∗∗∗ −0.729∗∗∗ −0.524∗∗∗ −0.524∗∗∗

(0.093) (0.063) (0.098) (0.099)
2. Move −0.018 −0.171∗ −0.046 −0.074

(0.126) (0.073) (0.134) (0.134)
3. Move −0.049 0.037 −0.055 −0.064

(0.219) (0.118) (0.224) (0.226)
1. Move × income −0.154∗∗ −0.133∗∗ −0.134∗∗

(0.050) (0.050) (0.050)
2. Move × income −0.052 −0.054 −0.042

(0.070) (0.071) (0.070)
3. Move × income 0.081 0.075 0.076

(0.115) (0.115) (0.115)
1. Move × minority 0.465∗∗∗ 0.434∗∗∗

(0.116) (0.116)
2. Move × minority 0.108 0.087

(0.134) (0.134)
3. Move × minority 0.074 0.075

(0.247) (0.246)
1. Move × minority (1st-generation) 0.577∗∗∗

(0.135)
2. Move × minority (1st-generation) 0.280

(0.158)
3. Move × minority (1st-generation) 0.282

(0.337)
1. Move × minority (2nd-generation) 0.062

(0.200)
2. Move × minority (2nd-generation) −0.121

(0.210)
3. Move × minority (2nd-generation) −0.096

(0.329)
Pseudo R2 0.068 0.068 0.069 0.070
AIC 28934 28932 28905 28764
Number of households 8053 8053 8053 8026
N 27814 27814 27814 27711
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Cluster robust standard errors in parentheses. Additional controls: Age2,
children living in household, change of household head, duration of residence, year.
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Table 2.6: Fixed-effects estimation of perceived impairment through air pollution
with time-constant average income over time per household

FE 1 FE 2 FE 3 FE 4
Monthly equivalence income (in 1,000 Euros) −0.017∗ −0.017∗ −0.016∗

(0.008) (0.008) (0.008)
1. Move −0.136∗∗∗ −0.282∗∗∗ −0.186∗∗∗ −0.194∗∗∗

(0.040) (0.022) (0.041) (0.042)
2. Move −0.001 −0.080∗∗ −0.009 −0.018

(0.049) (0.025) (0.051) (0.051)
3. Move −0.070 −0.015 −0.081 −0.106

(0.104) (0.041) (0.105) (0.107)
1. Move × income −0.072∗∗ −0.061∗∗ −0.057∗∗

(0.022) (0.022) (0.022)
2. Move × income −0.046 −0.044 −0.040

(0.028) (0.028) (0.028)
3. Move × income 0.043 0.043 0.059

(0.065) (0.065) (0.066)
1. Move × minority 0.165∗∗∗ 0.151∗∗∗

(0.044) (0.044)
2. Move × minority 0.023 0.010

(0.049) (0.049)
3. Move × minority 0.047 0.055

(0.097) (0.097)
1. Move × minority (1st-generation) 0.213∗∗∗

(0.051)
2. Move × minority (1st-generation) 0.076

(0.060)
3. Move × minority (1st-generation) 0.159

(0.136)
1. Move × minority (2nd-generation) −0.001

(0.078)
2. Move × minority (2nd-generation) −0.050

(0.075)
3. Move × minority (2nd-generation) −0.029

(0.128)
R2 0.057 0.057 0.057 0.058
Adjusted R2 0.056 0.056 0.057 0.058
AIC 67168 67166 67140 66869
Number of households 12037 12037 12037 12005
N 38385 38385 38385 38268
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Cluster robust standard errors in parentheses. Additional controls: Age2,
children living in household, change of household head, duration of residence, year.
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Table 2.7: Fixed-effects estimation of perceived impairment through air pollution
(full models)

FE 1 FE 2 FE 3 FE 4 FE 5
Monthly equivalence income −0.008 −0.009 −0.009 −0.010

(0.009) (0.009) (0.009) (0.009)
1. Move −0.203∗∗∗ −0.282∗∗∗ −0.247∗∗∗ −0.249∗∗∗ −0.254∗∗∗

(0.030) (0.022) (0.031) (0.032) (0.031)
2. Move −0.034 −0.080∗∗ −0.039 −0.045 −0.050

(0.039) (0.025) (0.042) (0.042) (0.041)
3. Move −0.014 −0.015 −0.023 −0.034 −0.041

(0.086) (0.041) (0.087) (0.088) (0.089)
1. Move × income −0.027∗ −0.022 −0.021 −0.017

(0.013) (0.013) (0.013) (0.013)
2. Move × income −0.019 −0.020 −0.018 −0.018

(0.020) (0.020) (0.020) (0.020)
3. Move × income 0.009 0.009 0.014 0.015

(0.044) (0.044) (0.045) (0.045)
1. Move × minority 0.165∗∗∗ 0.159∗∗∗

(0.044) (0.044)
2. Move × minority 0.023 0.015

(0.049) (0.049)
3. Move × minority 0.047 0.048

(0.097) (0.096)
1. Move × minority (1st-gen.) 0.226∗∗∗

(0.051)
2. Move × minority (1st-gen.) 0.083

(0.060)
3. Move × minority (1st-gen.) 0.141

(0.135)
1. Move × minority (2nd-gen.) −0.005

(0.078)
2. Move × minority (2nd-gen.) −0.047

(0.075)
3. Move × minority (2nd-gen.) −0.026

(0.129)
1. Move × Turkey 0.317∗∗

(0.101)
2. Move × Turkey 0.096

(0.112)
3. Move × Turkey 0.328

(0.225)
1. Move × Ex-Yugoslavia 0.349∗

(0.150)
2. Move × Ex-Yugoslavia −0.163

(0.154)
3. Move × Ex-Yugoslavia 0.287

(0.377)

To be continued.
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Table 2.7 continued
FE 1 FE 2 FE 3 FE 4 FE 5

1. Move × Southern Europe 0.180
(0.092)

2. Move × Southern Europe 0.309∗∗
(0.113)

3. Move × Southern Europe −0.005
(0.232)

1. Move × Eastern Europe 0.251∗∗
(0.084)

2. Move × Eastern Europe −0.038
(0.103)

3. Move × Eastern Europe 0.177
(0.218)

1. Move × Other Western −0.155
(0.225)

2. Move × Other Western 0.116
(0.282)

3. Move × Other Western −0.780
(0.481)

1. Move × Other country −0.005
(0.142)

2. Move × Other country 0.238
(0.191)

3. Move × Other country 0.038
(0.409)

Residence < 6 month −0.138∗∗∗ −0.136∗∗∗ −0.138∗∗∗ −0.140∗∗∗ −0.141∗∗∗
(0.027) (0.027) (0.027) (0.027) (0.027)

Change of household head −0.088∗∗∗ −0.083∗∗∗ −0.087∗∗∗ −0.085∗∗∗ −0.084∗∗∗
(0.024) (0.024) (0.024) (0.025) (0.025)

Age2 −7.8e−05∗∗∗ −7.3e−05∗∗∗ −7.7e−05∗∗∗ −8.0e−05∗∗∗ −7.9e−05∗∗∗

(1.6e−05) (1.6e−05) (1.6e−05) (1.6e−05) (1.6e−05)
Children in household 0.053∗∗∗ 0.061∗∗∗ 0.056∗∗∗ 0.061∗∗∗ 0.062∗∗∗

(0.015) (0.015) (0.015) (0.015) (0.015)
R2 0.056 0.057 0.057 0.058 0.059
Adjusted R2 0.056 0.056 0.057 0.057 0.058
AIC 67185 67166 67153 66880 66696
Number of households 12037 12037 12037 12005 11977
N 38385 38385 38385 38268 38158
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Cluster robust standard errors in parentheses.
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Chapter 3

A Systematic Comparison of
Spatial Regression Models Using
Monte Carlo Experiments

Abstract
This study summarises the most popular spatial model specifications and offers a
comparison of their performance in different scenarios by using Monte Carlo experiments.
In contrast to previous simulations, this study evaluates the bias of the impacts rather
than the regression coefficients and also provides results for situations with a non-spatial
omitted variable bias. Results reveal that the most commonly used SAR and SEM
specifications yield severe drawbacks. In contrast, spatial Durbin specifications (SDM
and SDEM) as well as the simple SLX provide accurate estimates of direct impacts
even in the case of misspecification. However, regarding the indirect spillover effects,
several situations exist in which the SLX outperforms the more complex SDM and
SDEM specifications.



3.1 Introduction

The increasing availability of spatially aggregated and georeferenced data have led to
raising interest of social scientist in spatial analyses (Logan, 2012). For instance, social
scientist investigate the influence of contextual conditions (e.g. Crowder, Hall & Tolnay,
2011; Friedrichs, Galster & Musterd, 2003; Kling, Liebman & Katz, 2007; Sampson,
Morenoff & Earls, 1999; Sampson, Morenoff & Gannon-Rowley, 2002), or deal with
explicitly spatial research questions like segregation, neighbourhood boundaries, or the
exposure to environmental conditions (e.g. Dokshin, 2016; Downey, 2006b; Legewie &
Schaeffer, 2016; Lichter, Parisi & Taquino, 2015; Reardon et al., 2008).

Still, researchers need to be aware of the fact that analysing spatial data also
bears new challenges for the applied methods. In many cases, the spatial dynamics
or relationships are of specific interest, and thus require the use of spatial methods.
However, even when spatial relationships are not of explicit interest, spatial units are
often not independent. As Tobler’s first law of geography puts it: ‘everything is related
to everything else, but near things are more related than distant things’ (Tobler, 1970,
p. 236). For instance, it seems plausible to assume that the unemployment rate in one
region is correlated to or even influenced by the unemployment rate of the neighbouring
regions. In consequence, the observations cannot be considered independent and
identically distributed (i.i.d.), thus violating one of the assumptions for standard linear
regression models: E(εiεj) = E(εi)E(εj) = 0, where ε is the random error term for
each observation i and j (i 6= j). An intuitive implication of this violation is that the
standard OLS estimator of the equation y = Xβ + ε produces erroneous inferential
statistics. However, spatial autocorrelation can also lead to biased point estimates,
depending on the spatial process underlying the spatial autocorrelation (e.g. Pace &
LeSage, 2010).

Several spatial model specifications exist to deal with this issue by explicitly
modelling the spatial dependence of the data. On the one hand, those models provide
a way to obtain unbiased point estimates of the true parameters. On the other
hand, spatial models offer the opportunity to estimate spatial spillover coefficients,
thereby informing the researcher about processes of spatial correlation or influence. Still,
researchers have to deal with several decisions regarding the spatial model specifications,
all using different ways to model the spatial dependence. Unfortunately, empirical
specification tests of spatial models yield severe drawbacks, thus impeding a general
rule of selecting the correct model specification in practical research. Therefore, it is of
substantial interest to evaluate the performance of spatial model specifications under
different scenarios of misspecification.

This study conducts a systematic comparison of different spatial model specifications
under different scenarios of spatial dependence by using Monte Carlo experiments. This
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demonstrates under which conditions standard linear models yield biased estimates
and how spatial model specifications perform throughout different scenarios of spatial
dependence. The study extends previous simulations in several ways. First, the analysis
evaluates the bias of the model specifications by relying on the impact estimates rather
than the point estimates, as the model impacts are the measures of interest in applied
research (LeSage & Pace, 2017). Second, it systematically evaluates the performance
of the spatial model specifications under absence and presence of a non-spatial omitted
variable bias. Third, it incorporates multiple explanatory variables with distinct spatial
effects, as this resembles the case in applied research.

The results of the Monte Carlo experiments reveal that the most commonly used
spatial models – spatial autoregressive model (SAR) and spatial error model (SEM) –
have severe drawbacks in applied research. In line with previous findings, those models
are outperformed by more flexible Durbin specifications. However, the results also
reveal that, under quite realistic scenarios, SLX offers a better performance than the
Durbin specifications, especially regarding the indirect spillover effects.

3.2 Theoretical background

As a first step in spatial econometrics, the researcher has to specify the spatial re-
lationship between the units of observation, or more precisely, to define which units
j are neighbours of unit i for all units i = {1, 2, ..., N}. This is done by setting up
an N × N dimensional neighbours weights matrix W , where all elements wij > 0
for all neighbouring units i and j (i 6= j), and 0 otherwise. This study relies on a
row-standardised contiguity weights matrix, defining all units as neighbours that share
at least one common border. Several specifications for W exist, as for example k
nearest neighbour or distance based approaches (see e.g. Dubin, 2009), and choosing
the correct or incorrect specification may be vital for the results. However, these
aspects have been discussed elsewhere (Corrado & Fingleton, 2012; LeSage & Pace,
2014; Neumayer & Plümper, 2016), and the focus of this study remains at the model
specifications, thereby assuming a correctly specified W .

3.2.1 Model specifications

As mentioned above, spatial dependence can be modelled in various ways (for a
comprehensive introduction see e.g. Elhorst, 2014; LeSage & Pace, 2009). The most
popular spatial model specification is the spatial autoregressive model (SAR), which
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incorporates the spatially weighted dependent variable y as an endogenous regressor at
the right-hand side of the equation. The SAR model is defined as:

y = ρWy +Xβ + ε, (3.1)

where y is an N × 1 vector of the dependent variable, W as defined above, X
an N ×K matrix of k = {1, 2, ...K} covariates, and ε an N × 1 vector of normally
distributed disturbances. β is a K×1 vector of parameter estimates and ρ represents the
autoregressive scalar parameter.1 This SAR specification assumes that the dependent
variable of unit i is directly influenced by the spatially weighted dependent variable of
neighbouring units j.

Another specification of spatial models is the spatial error model (SEM). In contrast
to the SAR specification, the SEM explicitly models spatial autocorrelation between
the disturbances u, represented by the scalar parameter λ. The SEM is defined as:

y = Xβ + u,

u = λWu+ ε.
(3.2)

A third approach does not incorporate the spatial dependence as an autoregressive
term of the dependent variable or the error term, but directly models so called spatial
‘spillover’ effects by including the spatially lagged covariates into the equation. This
spatial lag of X (SLX) specification is defined as:

y = Xβ +WXθ + ε, (3.3)

where θ is an K × 1 vector of spatial spillover parameters. This model incorporates
the direct effect of the covariates β as well as the indirect spillover effects θ from the
covariates of neighbouring units. An important property of the SLX model is that θ
constitutes a K × 1 vector, thus including a distinct spatial effect for each covariate.

The three specifications shown above represent the most basic specifications of spatial
models. Yet, there are further specifications which combine the models mentioned
above. The spatial autoregressive combined model (SAC) comprises an autocorrelated
dependent variable and an autocorrelated disturbance, resulting in:

y = ρWy +Xβ + u,

u = λWu+ ε.
(3.4)

1 The model intercept is omitted in all models for simplicity.
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The spatial Durbin model (SDM), in contrast, combines the spatial spillover specification
of the covariates (SLX) with the spatial autoregressive term of the dependent variable,
resulting in:

y = ρWy +Xβ +WXθ + ε. (3.5)

A third combined model is the spatial Durbin error model (SDEM), combining the
specifications of SEM and SLX:

y = Xβ +WXθ + u,

u = λWu+ ε,
(3.6)

thereby comprising the spatial spillover effects of the covariates as well as an autocor-
related disturbance term.

Combining all three basic model specifications mentioned above leads to the general
nesting spatial model (GNS):

y = ρWy +Xβ +WXθ + u,

u = λWu+ ε.
(3.7)

Though the GNS specification combines all the spatial processes of the previous
specifications, this model plays only a minor role in applied research, as this specification
– analogous to Manski’s neighbourhood effects model (Manski, 1993) – is not or only
weakly identifiable (Cook, Hays & Franzese, 2015; Gibbons & Overman, 2012).2

Note that most of the spatial model specifications cannot be estimated by Least
Squares (LS), as using (constrained) LS estimators for models containing a spatially
lagged dependent variable or disturbance leads to inconsistent results (e.g. Anselin &
Bera, 1998; Franzese & Hays, 2007). However, an extensive amount of econometric
literature discusses different estimation methods based on (quasi-) maximum likelihood
(e.g. Anselin, 1988; Lee, 2004; Ord, 1975) or instrumental variable approaches using
generalized methods of moments (e.g. Drukker, Egger & Prucha, 2013; Kelejian &
Prucha, 1998, 2010), in which the endogenous lagged variables can be instrumented by
q higher order lags of the exogenous regressors (X,WX,W 2X, ...,W qX) (Kelejian
& Prucha, 1998).

3.2.2 Local and global spatial impacts

At first glance, the specifications presented above seem relatively similar in the way of
modelling spatial effects. Yet, they differ in very important aspects. First, models with
an endogenous spatial term (SAR, SAC, and SDM) assume a very different spatial
2 Gibbons and Overman (2012) even argue that the SDM is only weakly identified in practice.
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dependence structure than models with only exogenous spatial terms as SLX and
SDEM specifications. While the first three assume global spatial dependence, the
second two assume local spatial dependence (Anselin, 2003; Halleck Vega & Elhorst,
2015; LeSage & Pace, 2009). Second, the interpretation of the coefficients differs greatly
between models with and without endogenous effects. This becomes apparent when
considering the reduced form of the equations above. Exemplary using the SAR model
of (3.1), the reduced form is given by:

y − ρWy = Xβ + ε,

(IN − ρW )y = Xβ + ε,

y = (IN − ρW )−1(Xβ + ε). (3.8)

When subsequently taking the first derivative of the explanatory variable xk of the
reduced form in (3.8) to interpret the partial effect of a unit change in variable xk on
y, we receive

∂y

∂xk
= (IN − ρW )−1βk, (3.9)

for each covariate k = {1, 2, ..., K}. As can be seen from (3.9), the partial derivative
with respect to xk produces an N ×N matrix, thereby representing the partial effect
of each unit i onto the focal unit i itself and all other units j = {1, 2, ...N − 1}. The
diagonal elements of (3.9) indicate how each unit i influences itself (change of xi on
change of yi), and each off-diagonal elements in column i represents the effect of i on
each other unit j (change of xi on change of yj). Since reporting the individual partial
effects is usually not of interest, LeSage and Pace (2009) proposed to average over these
effect matrices. While the average diagonal elements of the effects matrix resulting
from (3.9) represent the direct impacts of variable xk, the average column-sums of
the off-diagonal elements represent the indirect impacts (or spatial spillover effects).
Hence, the direct impacts can be interpreted as the average effect of a change in xi

on yi, while the indirect impacts exhibit how a change in xi, on average, influences all
neighbouring units yj.

Table 3.1 summarises the direct and indirect impacts for all model specifications
outlined above (adopted from Halleck Vega & Elhorst, 2015, p. 345). For OLS,
SEM, SLX, and SDEM, the point estimates obtained in the regression models can be
interpreted as partial (direct and indirect) impacts. However, in case of SAR, SAC, and
SDM, point estimates differ from the partial derivatives (or impacts). Two important
consequences follow from the impact estimates presented in Table 3.1.

First, for SAR, SAC, and SDM even the direct impacts differ from the point
estimates. This results from the fact that an endogenous term of the dependent
variable Wy contains feedback loops through the system of neighbours (Franzese &
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Table 3.1: Direct and indirect impacts, adopted from Halleck Vega and
Elhorst (2015)

Direct Impacts Spatial Spillovers Type
OLS/SEM βk 0 none

SAR/SAC Diagonal elements of
(I − ρW )−1βk

Off-diagonal elements of
(I − ρW )−1βk

global

SLX/SDEM βk W θk local

SDM/GNS Diagonal elements of
(I − ρW )−1 [βk +W θk]

Off-diagonal elements of
(I − ρW )−1 [βk +W θk] global

Hays, 2007; Halleck Vega & Elhorst, 2015). A change of xik in the focal unit i influences
the focal unit i itself, but also the neighbouring unit j, which in turn influences the
focal unit i in a feedback loop. This feedback loop is part of the direct impact.

Second, the kind of indirect spillover effects in SAR, SAC, and SDM models differs
from the kind of indirect spillover effects in SLX and SDEM models: while the first
three specifications represent global spillover effects, the latter three represent local
spillover effects (Anselin, 2003; LeSage, 2014; LeSage & Pace, 2009). In case of SLX and
SDEM the spatial spillover effects can be interpreted as the effect of a one unit change
of xk in the spatially weighted neighbouring observations on the dependent variable of
the focal unit; when using a row-standardised contiguity weights matrix, Wxk is the
average value of xk in the neighbouring units. Thus, only direct neighbours – as defined
in W – contribute to those local spillover effects. In contrast, spillover effects in SAR,
SAC, and SDM models do not only include direct neighbours but also neighbours of
neighbours (second order neighbours) and further higher-order neighbours. This can
be seen by rewriting the inverse in (3.9) as power series:3

(IN − ρW )−1βk = (IN + ρW + ρ2W 2 + ρ3W 3 + ...)βk = (IN +
∞∑
h=1

ρhW h)βk, (3.10)

where the identity matrix represents the direct effects and the sum represents the first
and higher order indirect effects (including the above mentioned feedback loops). This
implies that a change in one unit i does not only affect the direct neighbours but
passes through the whole system towards higher-order neighbours, where the impact
declines with distance within the neighbouring system. Note furthermore, that all
diagonal elements diag(W ) = wii = 0, whereas the diagonal elements diag(W 2) =
diag(WW ) 6= 0. Intuitively, ρW only represents the effects between direct neighbours
(and the focal unit is no neighbour of the focal unit itself), whereas ρ2W 2 contains the
effects of second order neighbours, where the focal unit is a second order neighbour of
the focal unit itself. Thus, equation (3.10) includes feedback effects from ρ2W 2 on.

3 A power series of
∑∞
k=0W

k converges to (I −W )−1 if the maximum absolute eigenvalue of W < 1,
which is ensured by standardising W .
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In consequence, local and global spillover effects represent two distinct kinds of
spatial spillover effects (LeSage, 2014). The interpretation of local spillover effects
is straightforward: it represents the effect of all neighbours as defined by W (the
average over all neighbours in case of a row-standardised weights matrix). For example,
the environmental quality in the focal unit itself but also in neighbouring units could
influence the attractiveness of a district and thus lead to in- or out-migration flows.
In contrast, interpreting global spillover effects can be a bit more difficult. Intuitively,
the global spillover effects can be seen as a kind of diffusion process. For example, an
exogenous event might increase the housing prices in one district of a city, thus leading
to an adaptation of housing prices in neighbouring districts, which than leads to further
adaptations in other units and also to a feedback effect and further increases in the
focal unit. Yet, those processes happen in time. In a cross-sectional framework, the
global spillover effects are hard to interpret. Anselin (2003) proposes an interpretation
as an equilibrium outcome, where the partial impact represents an estimate of how this
long-run equilibrium would change due to a change in xk (see also LeSage, 2014).

3.2.3 Bias in non-spatial OLS

So far, this study has summarised different spatial model specifications and discussed
the types of spatial effects defined by those specifications. However, even if spatial
effects are not of specific interest, spatial dependence can influence the estimation
results. Non-spatial OLS models may not only exhibit erroneous inference but also
biased estimates in some cases of spatial correlation. Still, it is important to distinguish
between two kinds of biases, resulting from the discussion of direct and indirect impacts
above. First, one could say that the unbiased estimate is the non-spatial parameter βk.
Second, one could also say that the unbiased estimate is the direct impact of xk, which
does not only include the non-spatial effect but also the feedback loops. As discussed
elsewhere (Gibbons & Overman, 2012; Gibbons, Overman & Patacchini, 2015), if a
researcher is interested in the treatment effect (e.g. of a political intervention), the total
direct impact including feedback loops might be of more interest than the non-spatial
effect. The non-spatial parameter βk does not include feedback effects, and thus actually
underestimates the impact of a chance in xik on yi. Note that the non-spatial parameter
reflects the first derivative of the non-reduced spatial regression formula as in (3.1),
while the direct impacts (with feedback effects) are given by the diagonal elements of
the first derivative of the reduced form as in (3.8). Thus, the choice of which effect is
the correct ‘treatment’ effect does also affect the discussion under which conditions a
non-spatial OLS model produces biased estimates of a spatial data generating process
(DGP).
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Suppose the DGP follows a GNS as defined in (3.7), but we erroneously assume the
DGP was y = xβ + ε, and use the OLS estimator β̂ = (xᵀx)−1xᵀy for estimation of
the parameter β. As shown by Franzese and Hays (2007), using the non-reduced form
of (3.7) as DGP leads to the following estimate for β:

β̂ =(xᵀx)−1xᵀ(ρWy + xβ +Wxθ + λWu+ ε)

=(xᵀx)−1xᵀxβ + (xᵀx)−1xᵀρWy + (xᵀx)−1xᵀWxθ

+ (xᵀx)−1xᵀλWu+ (xᵀx)−1xᵀε

plim β̂ =β + ρ
Cov(x,Wy)

Var(x) + θ
Cov(x,Wx)

Var(x) + λ
Cov(x,Wu)

Var(x) + Cov(x, ε)
Var(x) , (3.11)

where Wy, Wx and Wu are omitted variables, producing a bias similar to the
standard omitted variable bias resulting from Cov(x, ε) 6= 0. Still, if we assume that ε
is independent and randomly distributed, E(ε|x) = 0, therefore also E(Wu|x) = 0,
which leads to an expectation of 0 for the last two terms in (3.11), as long we do not
suffer from a standard (non-spatial) omitted variable bias (Cov(x, ε) = 0). As in the
standard case of an omitted variable, the bias resulting from estimating a non-spatial
OLS if spatial dependence is present depends on Cov(x, z) and Cov(y, z), where z is
the omitted variable Wy or Wx.

Still, if one argues that the unbiased causal effect of a change in x is given by the
direct impacts as described in Table 3.1, we need to rewrite the DGP in reduced form:

y =(IN − ρW )−1(xβ +Wxθ +L(λ)ε), (3.12)

where x and ε are independent and randomly distributed N (0, σ2
x) and N (0, σ2

ε) with
a mean of zero, and for simplicity we define L(λ) = (IN − λW )−1. Consequently, we
derive at a different expectation for the estimate in non-spatial OLS models:

β̂ =(xᵀx)−1xᵀ(IN − ρW )−1(xβ +Wxθ +L(λ)ε)

=(xᵀx)−1xᵀ(IN − ρW )−1xβ

+ (xᵀx)−1xᵀ(IN − ρW )−1Wxθ (3.13)

+ (xᵀx)−1xᵀ(IN − ρW )−1L(λ)ε.

For independent random vectors x and symmetric real matrices A, Girard (1989); Pace
and LeSage (2010) show that E((xᵀx)−1xᵀAx) = N−1tr(A). Furthermore, we know
that E((xᵀx)−1xᵀL(λ)ε) = 0, as x and ε are independent, and therefore E(ε|x) = 0.
Thus, (3.13) can be simplified to
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plim β̂ = 1
N

tr((IN − ρW )−1β)

+ 1
N

tr((IN − ρW )−1W θ) (3.14)

= 1
N

tr((IN − ρW )−1(β +W θ)),

which equals the average diagonal elements of (IN − ρW )−1(β + W θ). Note that
this equals exactly the summary measure for the direct impacts in the GNS model as
defined by LeSage and Pace (2009) and described in Table 3.1. Thus, the non-spatial
OLS provides an unbiased estimate of the direct impacts, though it does not provide
an unbiased estimate of the parameter β.4

However, bias arises when not only the dependent but also the covariate x is
spatially autocorrelated. To see this, we define x = δWx + υ, or in reduced form
x = (IN − δW )−1υ, where υ ∼ N (0, σ2

υ), and δ denotes the autocorrelation in x.
Consequently, we can rewrite (3.13) as:

β̂ =υ
ᵀ((IN − δW )−1)ᵀ(IN − ρW )−1(IN − δW )−1υ

υᵀ((IN − δW )−1)ᵀ(IN − δW )−1υ
β

+ υᵀ((IN − δW )−1)ᵀ(IN − ρW )−1(IN − δW )−1Wυ

υᵀ((IN − δW )−1)ᵀ(IN − δW )−1υ
θ (3.15)

+ υᵀ((IN − δW )−1)ᵀ(IN − ρW )−1(IN − δW )−1L(λ)ε
υᵀ((IN − δW )−1)ᵀ(IN − δW )−1υ

.

Multiplying both numerator and denominator by (υᵀυ)−1 (Pace & LeSage, 2010) and
using E(ε|x) = 0 leads to

plim β̂ =
tr
[
(IN − δW )−1((IN − δW )−1)ᵀ(IN − ρW )−1

]
tr
[
((IN − δW )−1)ᵀ(IN − δW )−1

] β

+
tr
[
(IN − δW )−1((IN − δW )−1)ᵀ(IN − ρW )−1W

]
tr
[
((IN − δW )−1)ᵀ(IN − δW )−1

] θ.

(3.16)

To see that (3.16) > N−1tr((IN − ρW )−1(β +W θ)) for positive values of ρ and δ,
we can rewrite the traces in (3.16) as the sum of the elements of the Hadamard product

plim β̂ =
∑
ij(M(δ)M(δ)ᵀ ◦M(ρ))ij

tr(M(δ)M (δ)ᵀ) β

+
∑
ij(M (δ)M (δ)ᵀ ◦M (ρ)W )ij

tr(M(δ)M(δ)ᵀ) θ,

(3.17)

4 Betz, Cook and Hollenbach (2018) show why the parameter estimates of a non-spatial model are
even biased if the covariates are randomly distributed.
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where ◦ denotes the Hadamard product, M(δ) = (IN − δW )−1, and M(ρ) = (IN −
ρW )−1. Now recall that M (δ) = IN + δW + δ2W 2 + ..., thus all diagonal elements of
M (δ) > 1 and all off-diagonal elements ofM (δ) ≥ 0 for δ > 0, thereforeM (δ)M (δ)ᵀ is
a non-negative matrix with all diagonal elements > 1. Similarly, M (ρ) is non-negative
with diagonal elements > 1. It follows that

∑
ij

(M(δ)M (δ)ᵀ ◦M (ρ))ij > tr(M (δ)M(δ)ᵀ ◦M(ρ)), (3.18)

and using E(a ◦ b) = E(a)E(b) + Cov(a, b) shows that when taking only the traces of
(3.17) instead of the total sum (and leaving aside the positive off-diagonal elements):

E
(

tr(M (δ)M (δ)ᵀ ◦M (ρ))
tr(M (δ)M (δ)ᵀ)

)
= 1
N

tr(M (ρ))

+ Cov(diag(M (δ)M (δ)ᵀ), diag(M (ρ))
N−1tr(M(δ)M(δ)ᵀ) .

(3.19)

As both M(δ) and M(ρ) are constructed from the same weights matrix W ,
Cov(diag(M (δ)M (δ)ᵀ), diag(M (ρ)) > 0 for positive ρ, δ. Thus, it follows from (3.18)
and (3.19) that tr(M (δ)M (δ)ᵀ)−1∑

ij(M (δ)M (δ)ᵀ◦M (ρ))ijβ > N−1tr(M (ρ)β). Simil-
arly, tr(M (δ)M (δ)ᵀ)−1∑

ij(M (δ)M (δ)ᵀ ◦M (ρ)W )ijθ > N−1tr(M (ρ)W θ) for posit-
ive values of δ and ρ, which adds an additional bias when θ > 0. Thus, β̂OLS exceeds the
direct impacts of N−1tr(M (ρ)[β +W θ]), and is upwardly biased for positive values of
ρ and δ. Furthermore, this bias in the impacts is a non-linear function of the parameter
estimates, thereby giving a strong motivation to compare the biases in impacts rather
than coefficients.

Note that the first part of (3.17) goes to N−1tr(M (ρ)β) only if either ρ = 0 or δ = 0
(leading to M(ρ) = IN , or M(δ) = IN respectively), and the second term goes to
N−1tr(M (ρ)W θ) only if δ = 0. Obviously, the latter part of the bias also disappears if
θ = 0. Furthermore, LeSage and Pace (2009); Pace and LeSage (2010) show that in the
presence of an omitted variable and E(ε|x) 6= 0, spatial correlation in the disturbances
leads to an amplification of the non-spatial omitted variable bias. Replacing the random
disturbance in (3.15) by ε = γx+ η, where γ defines the covariance between the error
term (or an omitted variable) and the covariate x, adds an additional bias of the form

+tr(M(δ)M (δ)ᵀM (ρ)L(λ))
tr(M (δ)ᵀM (δ)) γ (3.20)

to equation (3.17). Following the same argument as above, (3.20) is positive and > γ

for positive parameters ρ, δ, λ > 0, but also in the case of ρ, δ = 0 and λ > 0. The
term (3.20) goes to γ only if both ρ, λ = 0. Thus, the non-spatial OLS estimator βOLS
is biased in the presence of either:
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1. Spatial autocorrelation in the dependent variable (ρ 6= 0) and spatial autocorrela-
tion in the covariate (δ 6= 0). This bias increases with ρ, δ, and β.

2. Local spatial spillover effects (θ 6= 0) and spatial autocorrelation in the covariate
(δ 6= 0). This is analogous to the omitted variable bias resulting from the omission
of Wx. It increases with θ and δ, but additionally with ρ if θ 6= 0 and δ 6= 0.

3. An omitted variable and E(ε|x) 6= 0. This non-spatial omitted variable bias γ is
amplified by spatial dependence in the disturbances (λ) and spatial autocorrelation
in the dependent variable (ρ), but also increases with positive values of δ if either
ρ 6= 0 or λ 6= 0. Obviously, it also increases with γ.

3.3 Model selection

By showing that the non-spatial OLS estimates are biased in some constellations
of spatial dependence, the previous chapter gives a strong motivation for the use of
spatial regression models. However, as described in Chapter 3.2.1, a variety of spatial
model specifications exist that can be used to account for the spatial structure of the
data. Thus, selecting the correct model specification remains a crucial task in applied
research.

3.3.1 Specification tests

One way of selecting the model specification is the application of empirical specification
tests. In general, there are two different strategies: a specific-to-general or a general-to-
specific approach (Florax, Folmer & Rey, 2003; Mur & Angulo, 2009).

The specific-to-general approach is the more common way in spatial econometrics.
This approach starts with the most basic non-spatial model and tests for possible
misspecifications due to omitted autocorrelation in the error term or the dependent
variable. Therefore, Anselin, Bera, Florax and Yoon (1996) proposed to use Lagrange
multiplier (LM) tests for the hypotheses H0: λ = 0 and H0: ρ = 0, which are robust
against the alternative source of spatial dependence. Though the specific-to-general
approach based on the robust LM test offers a quite good performance in distinguishing
between SAR, SEM, and non-spatial OLS (Florax et al., 2003), in their original paper,
Anselin et al. (1996) already note the declining power of the robust LMλ test for
spatial error dependence with increasing autocorrelation in the dependent variable
(indicating some uncertainty under a SAC-like DGP). Furthermore, Mur and Angulo
(2009) demonstrate strong drawbacks of the specific-to-general approach under non-
optimal conditions like heteroscedasticity or endogeneity. Another shortcoming of this
approach is its disregard of spatial dependence from local spillover effects, as resulting
from an SLX-like process. Cook et al. (2015), for instance, show theoretically that an
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SLX-like dependence structure leads to the rejection of both hypotheses H0: λ = 0 and
H0: ρ = 0, though no autocorrelation is present. This is also validated by simulation
results: the LM test is not helpful in distinguishing between SDM- and SDEM-like
processes, and produces heavily biased results in case of a GNS-like structure (see
Table 3.12 of the Appendix).

The general-to-specific approach depicts the opposite way of specification search.
This approach starts with the most general model and stepwise imposes restrictions
on the parameters of this general model. In theory, one would start with a GNS
specification and subsequently restrict the model to simplified specifications based on
the significance of parameters in the GNS. The problem with this strategy is that
the GNS is only weakly identified and, thus, is of little help in selecting the correct
restrictions. The most intuitive alternative would be to start with one of the two-source
models SDM, SDEM, or SAC. This, however, bears the risk of imposing the wrong
restriction in the first place (Cook et al., 2015). Furthermore, Cook et al. (2015) show
that more complicated restrictions are necessary to derive all single-source models from
SDEM or SAC specifications.

Thus, both ways of specification testing suffer from different sources of uncertainty,
thereby making it hard to develop a general way of empirically finding the correct
model specification. Consequently, scholars have developed other strategies to select
the spatial model specification.

3.3.2 Alternative strategies

Some argue that the best way of choosing the appropriate model specification is to
exclude one or more sources of spatial dependence – autocorrelation in the dependent
variable, autocorrelation in the disturbances, or spatial spillover effects of the covariates
– by design (Gibbons & Overman, 2012; Gibbons et al., 2015). Natural experiments are
probably the best way of making one or more sources of spatial dependence unlikely,
thereby restricting the model alternatives to a subset of all available models. However,
the opportunities to use natural experiments are restricted in social sciences, making
it a favourable but often impractical way of model selection. Therefore, Cook et al.
(2015) argue that theoretical considerations should guide the model selection. First, it
might be possible to rule out some sources of spatial dependence by theory, and thus
restricting the specification alternatives to a subset. Second, theoretical mechanisms
might guide the choice of either global or local spillover effects.

Still, others (Elhorst, 2014; LeSage, 2014; LeSage & Pace, 2009) argue that there
are strong analytical reasons to restrict the model specifications to a subset, as the
SDM subsumes the SLX and SAR model, and the SDEM subsumes SLX and SEM.
It is easily observed that SDM reduces to SLX if ρ = 0 and to SAR if θ = 0, while
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the SDEM reduces to SLX if λ = 0 and to SEM if θ = 0. Less intuitively, Anselin
(1988) has also shown that the SDM subsumes the SEM. Therefore, we can express the
reduced form of (3.2) and rearrange terms:

y = Xβ + (IN − λW )−1ε

(IN − λW )y = (IN − λW )Xβ + ε

(IN − λW )y = Xβ − λWXβ + ε

y = (IN − λW )−1(Xβ +WXθ + ε).

(3.21)

Thus, the SEM constitutes a special case of an SDM with the relative simple restriction
θ = −λβ, meaning direct and indirect effects are constrained to a common factor
(Anselin, 1988, 2003). The fact that SDM subsumes SAR, SLX, and SEM leads to
the conclusion that applied research should only consider SDM and SDEM as model
specifications (LeSage, 2014). Especially in the case of a likely omitted variable bias,
LeSage and Pace (2009, p. 68) argue in favour of using the SDM.

Nonetheless, others propose to use the SLX specification as point of departure
(Gibbons & Overman, 2012; Halleck Vega & Elhorst, 2015). First, scholars have argued
that SAC and SDM models are only weakly identified in practice (Gibbons & Overman,
2012; Pinkse & Slade, 2010). Second, the global spillover specification in SAR, SAC,
and SDM often seem to be theoretically implausible. Recall, for instance, the example
of ‘diffusing’ housing prices, where the housing price in one district influences housing
prices in neighbouring districts. Specifying a SAR-like process means that housing
prices directly influence each other. Yet, it might be more plausible that housing prices
are driven by the demand within the focal, but also by the demand of neighbouring
units, which reflects an SLX-like structure. Third, the SLX is computationally efficient,
as it can be estimated by using Least Squares. Fourth, it turns attention back to the
question of whether X and WX are exogenous, which should be the main focus when
investigating the dependence between X and y. Furthermore, SLX, SDM, and SDEM
share the advantage that all three models estimate flexible indirect spillover effects,
which are not bound to a common ratio between direct and indirect effects for all
covariates (as in SAR and SAC).

3.4 Monte Carlo experiment

As outlined in the previous section, quite diverging advises exist of which model to
select in applied research. To further improve the discussion on the selection of spatial
model specification, this study compares the performance of different spatial model
specifications by using a Monte Carlo experiment. Following the discussion above, a
Monte Carlo experiment should consider several aspects to provide implications for
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practical research. First, as proposed by LeSage and Pace (2017), it is important to
evaluate the bias of the impacts rather than the point estimates. The impacts are the
measures of interest in applied research and the bias in impacts follows a non-linear
function of the bias in parameter estimates. Second, it is important to incorporate
more than one covariate, as bias in one parameter βk could be counterbalanced by
a bias in ρ, θk or λ, thus producing unbiased impacts for covariate k. However, a
counterbalancing bias in ρ or λ could, in turn, affect the impacts of other covariates,
as the autoregressive parameters affect all covariates. Third, we should evaluate the
performance in two different worlds, one without omitted variable (omv) bias and one
with omv bias, as this is likely to occur in applied research.

The DGP of the Monte Carlo simulation follows a GNS and is shown in (3.22) to
(3.24), where υk and ε are independent and randomly distributed N (0, σ2

υ) and N (0, σ2
ε)

with a mean of zero, and xk is the kth column-vector ofX for k = 1, ..., K covariates (K
is fixed at 2 in the simulations). The parameter ρ represents the autocorrelation in the
dependent variable, λ the autocorrelation in the disturbances, and δk the autocorrelation
in covariate k.

y = ρWy +Xβ +WXθ + u, (3.22)

u = λWu+Xγ + ε, (3.23)

xk = δkWxk + υk. (3.24)

The parameter-vector γ in (3.23) specifies the correlation between x and the disturbance
vector u, thereby defining the strength of an omitted variable bias. In reduced form,
this DGP can be written as

y =(IN − ρW )−1
[
(IN − δkW )−1υkβk

+W (IN − δkW )−1υkθk

+ (IN − λW )−1((IN − δkW )−1υkγk + ε)
]
.

(3.25)

The simulations build on a square grid of 900 observations, where all units sharing
a common border are defined as neighbours. Thus, the DGP uses a row-standardised
contiguity weights matrix W . The parameter vector β was fixed at β =

(
0.2 0.5

)ᵀ
,

and the noise parameters were fixed at σ2
υ, σ2

ε = 1 for all trials. All other parameters
vary between the following two options for each parameter (vector):

• ρ ∈ {0, 0.5},
• λ ∈ {0, 0.5},
• δ ∈

{(
0 0
)ᵀ
,
(
0.4 0.7

)ᵀ}
,

• θ ∈
{(

0 0
)ᵀ
,
(
0.1 0.8

)ᵀ}
,

• γ ∈
{(

0 0
)ᵀ
,
(
0.3 0

)ᵀ}
,
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leading to a total of 32 distinct combinations. Note that this selection of parameters
intentionally violates the common ratio assumption between direct and indirect effects,
as this should be a more common case in practical research. All combinations were
simulated in 1000 trials, with the same starting seed for each combination. All spatial
models were estimated using R’s package spdep (Bivand & Piras, 2015).

3.4.1 Results without omv

Figure 3.1 shows the bias of the direct and indirect impacts for the simulations without
a non-spatial omitted variable bias. Respective numbers and the root mean squared
error (RMSE) are shown in Appendix 3.A. Several findings can be observed in the plot.

First and less surprising, all models perform reasonably well when correctly spe-
cifying the DGP. For instance, when the DGP follows a SAR-like process (e.g. line
2 and 4), the SAR model yields very precise estimates of direct and indirect impact.
Similarly, SDEM yields the lowest bias if the DGP contains positive error-correlation
λ > 0 and positive local spillover effects θ > 0, but no correlation in the dependent
variable ρ = 0 (see line 13 and 15). These findings hold over all model specifications
(though SAC could be seen as an exception).

Second, OLS yields an unbiased estimate of the direct impacts in many situations.
The results confirm the theoretical predictions of Chapter 3.2.3: OLS estimates of the
direct impacts are only biased in case of either positive autocorrelation in the dependent
variable ρ > 0 and autocorrelation in the covariate δk > 0 or local spillover effects
θk > 0 and autocorrelation in the covariate δk > 0. Furthermore, this bias is rather
moderate for low values of δ, θ, and β as can been seen in the first column of Figure
3.1. Note, however, that the bias is a conservative estimate, because the simulations
use a relatively symmetric neighbours weights matrix. For instance, when increasing
the variance in the number of neighbours per unit (thereby increasing the covariance
between the diagonals of the inverted matricesM (δ) andM (ρ)), the bias in non-spatial
OLS becomes more severe (see Equation 3.19 for the theoretical explanation).

Third, SLX, SDM, and SDEM all provide quite accurate estimates of the direct
impacts (most visible in column 2). SAR, SEM, and SAC, in contrast, yield some
drawbacks: especially in the presence of local spillover effects, these three specifications
are biased (see lower part of Figure 3.1). Furthermore, SAR and SEM suffer from bias
if both autocorrelation in the disturbance as well as autocorrelation in the dependent
variable are present (see line 6 and 8). Though SLX is downwardly biased in case of
autocorrelation in the dependent variable and the covariates (e.g. line 12 and 16), and
SDM as well as SDEM yield some bias in case of a GNS-like process (line 14 and 16),
those biases are rather moderate. This indicates that SLX, SDM, and SDEM are most
robust against misspecification regarding the direct impacts.
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Figure 3.2: Bias of indirect impacts and 95% confidence interval of empirical standard
deviation for different strengths of autocorrelation: β = (0.2, 0.5)ᵀ, γ = (0, 0)ᵀ,
δ = (0, 0)ᵀ, θ = (0.1, 0.8)ᵀ

Fourth, several differences exist regarding the indirect impacts. Most obviously, the
often used SAR specification suffers from considerable bias: it overestimates indirect
impacts in case of autocorrelation in the disturbances, and offers biased estimates if
local spillover effects exist (which are not restricted to a common ratio). The latter also
applies to SAC: thought SAC offers relatively accurate estimates for x2, it overestimates
indirect impacts for x1. Regarding the remaining three specifications – SLX, SDM,
and SDEM – conclusions are less obvious. SDM and SDEM suffer from large bias for
high values of θ (see x2) if the DGP follows a GNS-like process (line 14 and 16): SDM
overestimates the indirect impacts, while SDEM underestimates the indirect impacts.
In addition, SDM performs badly if the true DGP is SDEM (line 13), and SDEM
performs badly if the true DGP is SDM (line 10), whereat the bias increases with
higher values of θk in both cases. Similar to SDEM, SLX underestimates the indirect
impacts in presence of global spillovers / autocorrelation in the dependent variable.

For a better comparison, Figure 3.2 shows the bias of the indirect impacts in case
of a GNS-like processes for different strengths of ρ and λ (for simplicity, we restrict
the autocorrelation in covariates to zero and keep the local spillover effects fixed at
θ = (0.1, 0.8)ᵀ). Respective numbers are shown in Appendix 3.B. Three findings are
outstanding. First, in a GNS-like situation, the bias in SDM increases with increasing
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autocorrelation in y (ρ) and increasing autocorrelation in the disturbances (λ). Second,
the bias in SLX and SDEM increases with higher values of ρ, but is unaffected from the
strength of λ. Third, though SLX and SDEM suffer from the same problem, the bias
from omitting global autocorrelation is less severe in SLX than in SDEM. Thus, the SLX
outperforms SDEM. Furthermore, SLX outperforms SDM in most situations; only if
the autocorrelation in the dependent variable is much stronger than the autocorrelation
in the disturbances (ρ = 0.9, λ = 0.3), SDM yields lower bias than SLX.5

In sum, the results of the Monte Carlo experiments show that the three flexible
model specifications of SLX, SDM, and SDEM offer an accurate estimate of the direct
impacts, and all three specifications are relatively robust against misspecification
regarding the direct impacts. However, results regarding the indirect impacts cast some
doubt on the advice to consider only SDM or SDEM if no prior knowledge about the
cause of spatial correlation is available. Especially in a ‘mixed world’ (where the true
DGP is GNS), the results reveal that SLX offers a good alternative, which is more
robust against misspecification in many situations.

3.4.2 Results with omv

So far, we have only considered the situation where X is perfectly exogenous in a
non-spatial sense. However, in applied research one might often face situations in
which the covariates might be correlated with the disturbances. Thus, simulations in
Figure 3.3 replicate previous simulations with an omitted variable correlated with x1

(γ =
(
0.3 0

)ᵀ
) in a non-spatial way.

Comparing column 1 of Figures 3.1 and 3.3 reveals that OLS suffers from a larger
bias due to spatial autocorrelation if x is correlated with the disturbance, conforming
results by Pace and LeSage (2010). Regarding the direct impacts of variable x1, which
is affected by the omv bias, SEM exhibits the best estimation results. Yet, the good
performance of SEM regarding one variable (x1) is somewhat offset by a relatively
large bias in the second variable (x2), as the SEM tends to underestimate the impact
of the second variable not affected by the omitted variable in case of positive spatial
autocorrelation in y. As in previous results, the bias in SLX, SDM, and SDEM is
comparable and lower than in the remaining specifications.

Turning to the indirect impacts, SDEM reduces the bias in the variable affected
by the omv compared to other model specifications. Still, it suffers (as in the case
without omv) from a bad performance in the second variable if the DGP contains an
autoregressive parameter of the dependent variable (ρ > 0). Furthermore, it becomes
apparent that the underestimation of the indirect impacts in case of an GNS-like

5 Note that the SAC yields relatively low biases for the indirect impacts in GNS-like processes, but at
the same time produces relative large biases in the direct impacts (see Table 3.10).
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process without an omv bias (Figure 3.1) is somewhat counterbalanced by the positive
omv bias leading to an overestimation of the impacts. For instance, in additional
Monte Carlo experiments defining a downward bias (γx1 = −0.1), SDEM amplifies the
downward bias. Thus, it seems to depend on the constellation between the impacts and
the omv bias whether SDEM reduces or increases the bias. However, a bias towards
zero seems to be less severe than an upwardly biased parameter estimate. Another
interesting finding is that the estimates of indirect impacts in SDM are most strongly
affected by the omitted variable bias. Comparing column 3 in Figures 3.1 and 3.3
reveals that estimates in SDM show stronger changes than estimates of SLX and SDEM
due to the non-spatial omitted variable (e.g. line 8 and 14). In sum, the second set of
Monte Carlo simulations demonstrate that indirect impact estimates of SDEM and
SLX are less affected by a non-spatial omv bias than SDM. Furthermore, in specific
situations, SDEM may even help to reduce the non-spatial bias.

Additional simulations (available on request) reveal that the conclusions made above
are robust to different variations of the parameters chosen in the DGP.6 Obviously
and as can be seen in Figure 3.2, the performance of SDM increases with increasing
values of ρ relative to SDEM and SLX, and decreases with increasing values of λ (and
vice versa). Still, SDM, SDEM, and SLX yield nearly equal biases regarding the direct
impacts, while SLX and SDEM outperform the SDM in terms of the indirect impacts.

3.5 Conclusion

The increasing availability of spatial or georeferenced data provides the possibility to
investigate spatial research questions. However, analysing spatial data also requires
careful thoughts regarding the model specification. As has been shown theoretically
and empirically, different constellations of the data exist that lead to biased estimates
in non-spatial OLS models. Furthermore, non-spatial models disregard the spatial
processes inherent in the data, thereby loosing interesting information. To overcome
these problems, several spatial model specifications can be employed, which take the
spatial dependence into account.

Nevertheless, the variety of specifications also bears the problem of selecting the
correct specification in applied research, and specification tests are of little help in many
situations. Therefore, this study employs a Monte Carlo experiment to systematically
compare the bias of the most common spatial regression models in different situations
of misspecification. In addition, this study extends previous simulations by relying on
the impacts rather than the regression coefficients, as those impacts are the parameters
of interest in applied research.
6 Variations were specified as follows: ρ ∈ {0.3, 0.7}, λ ∈ {0.3, 0.7}, θ =

(
0.1 0.4

)ᵀ, and γ ∈
{
(
−0.1 0

)ᵀ
,
(
−0.3 0

)ᵀ
,
(
0.3 0.2

)ᵀ}.
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In line with previous studies (Elhorst, 2014; LeSage, 2014; LeSage & Pace, 2009),
the Monte Carlo experiment reveals that the most commonly used SAR, SEM, and
SAC specifications are outperformed by the more flexible specifications of SDM, SDEM,
and SLX. Still, the results contradict the recommendation to consider only SDM and
SDEM in applied research. While all three SDM, SDEM, and SLX show only marginal
differences in the direct impacts, there are notable differences in the indirect spillover
effects. Especially in a ‘mixed world’, in which the DGP follows a GNS-like structure,
SLX produces less biased estimates of indirect impacts than SDM and SDEM. In the
presence of non-spatial endogeneity, SDEM can help to reduce an upward bias due to
omitted variables. Nonetheless, this finding needs further investigation, as conclusions
seem to depend on the constellation of impacts and omv bias.

Given its good performance regarding direct as well as indirect impacts, the SLX
seems to provide a worthwhile alternative to SDM and SDEM. Especially if it is not
possible to eliminate one of the three sources of spatial dependence, SLX seems a good
choice. Furthermore, the SLX is computational simple and intuitively interpretable. In
contrast to global spillover effects in SDM, the local spillover effects can be interpreted
as the effects of the average neighbours. Beyond that, the spatial spillover effects in
SLX can also be ‘globalised’ to some extent by including separate terms for second or
even higher order neighbours, which, in addition, would be a more flexible function than
higher order terms of one autoregressive parameter ρ. This provides some motivation
for practical research to rely on the simple SLX specification rather than the more
complex SDM.

Still, it is important to keep in mind that spatial models only give parameter
estimates for (conditional) correlations. Simply estimating a model from cross-sectional
observational data hardly tells anything about the causal mechanisms underlying these
correlations. The causal process underlying the spatial correlation can be the result
of either 1) spatial interdependence in the depended variable, 2) spillover effects in
the covariates, or 3) common unobserved shocks. To identify the (spatial) causal
effects between two variables of interest, it is necessary to use designs or methods
following the counterfactual approach like natural experiments (Angrist & Pischke,
2009, 2015; Morgan & Winship, 2015). However, this applies to all empirical research,
also non-spatial observational studies. Thus, as is the case with all observational studies,
spatial models can provide interesting insights into the correlational structure of the
data, but can only be a first step in evaluating the causal mechanisms.
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3.C Appendix Chapter 3 C: Lagrange multiplier
test

Table 3.12: Rejection rates of H0 (Lagrange multiplier test): β =
(0.2, 0.5)ᵀ, γ = (0, 0)ᵀ

ρ δ λ θ LMλ LMρ LM∗λ LM∗ρ LMλρ

0.0 0, 0 0.0 0, 0 0.0410 0.0440 0.0520 0.0500 0.0580
0.4 0, 0 0.0 0, 0 1.0000 1.0000 0.0920 0.7750 1.0000
0.8 0, 0 0.0 0, 0 1.0000 1.0000 0.3880 0.9990 1.0000
0.0 0.4, 0.7 0.0 0, 0 0.0440 0.0520 0.0550 0.0590 0.0550
0.4 0.4, 0.7 0.0 0, 0 1.0000 1.0000 0.1340 0.9900 1.0000
0.8 0.4, 0.7 0.0 0, 0 1.0000 1.0000 0.9950 1.0000 1.0000
0.0 0, 0 0.4 0, 0 1.0000 1.0000 0.7190 0.1140 1.0000
0.4 0, 0 0.4 0, 0 1.0000 1.0000 0.8560 0.6830 1.0000
0.8 0, 0 0.4 0, 0 1.0000 1.0000 0.8380 0.9780 1.0000
0.0 0.4, 0.7 0.4 0, 0 1.0000 1.0000 0.9430 0.1100 1.0000
0.4 0.4, 0.7 0.4 0, 0 1.0000 1.0000 0.9970 0.9560 1.0000
0.8 0.4, 0.7 0.4 0, 0 1.0000 1.0000 1.0000 1.0000 1.0000
0.0 0, 0 0.8 0, 0 1.0000 1.0000 0.9990 0.2860 1.0000
0.4 0, 0 0.8 0, 0 1.0000 1.0000 0.9960 0.5190 1.0000
0.8 0, 0 0.8 0, 0 1.0000 1.0000 0.7450 0.7410 1.0000
0.0 0.4, 0.7 0.8 0, 0 1.0000 1.0000 1.0000 0.3000 1.0000
0.4 0.4, 0.7 0.8 0, 0 1.0000 1.0000 1.0000 0.7280 1.0000
0.8 0.4, 0.7 0.8 0, 0 1.0000 1.0000 1.0000 0.9410 1.0000
0.0 0, 0 0.0 0.1, 0.8 0.4240 0.9910 1.0000 1.0000 1.0000
0.4 0, 0 0.0 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 0, 0 0.0 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.0 0.4, 0.7 0.0 0.1, 0.8 0.8320 1.0000 1.0000 1.0000 1.0000
0.4 0.4, 0.7 0.0 0.1, 0.8 1.0000 1.0000 0.9960 1.0000 1.0000
0.8 0.4, 0.7 0.0 0.1, 0.8 1.0000 1.0000 0.4970 1.0000 1.0000
0.0 0, 0 0.4 0.1, 0.8 1.0000 1.0000 0.9900 1.0000 1.0000
0.4 0, 0 0.4 0.1, 0.8 1.0000 1.0000 0.9530 1.0000 1.0000
0.8 0, 0 0.4 0.1, 0.8 1.0000 1.0000 0.8520 1.0000 1.0000
0.0 0.4, 0.7 0.4 0.1, 0.8 1.0000 1.0000 0.9560 1.0000 1.0000
0.4 0.4, 0.7 0.4 0.1, 0.8 1.0000 1.0000 0.0930 1.0000 1.0000
0.8 0.4, 0.7 0.4 0.1, 0.8 1.0000 1.0000 0.9600 1.0000 1.0000
0.0 0, 0 0.8 0.1, 0.8 1.0000 1.0000 0.2590 0.9930 1.0000
0.4 0, 0 0.8 0.1, 0.8 1.0000 1.0000 0.2370 0.9940 1.0000
0.8 0, 0 0.8 0.1, 0.8 1.0000 1.0000 0.1530 0.9940 1.0000
0.0 0.4, 0.7 0.8 0.1, 0.8 1.0000 1.0000 0.9880 1.0000 1.0000
0.4 0.4, 0.7 0.8 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 0.4, 0.7 0.8 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000

Number of observations=900, repetitions=1000. LM= Lagrange multiplier test, LM∗= Ro-
bust Lagrange multiplier test, each for H0: λ = 0, H0: ρ = 0, H0: λ, ρ = 0.
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Chapter 4

Neighbours Matter: A
Nation-Wide Small-Area
Assessment of Environmental
Inequality in Germany

Abstract
This study investigates the presence of environmental inequality in Germany and
analyses its spatial pattern on a very fine grained level. Using the 2011 German census
and pollution measures of the E-PRTR, the study relies on nearly 100,000 one squared
km census cells over Germany. SLX and community-fixed SLX models incorporate
spatial spillover-effects into the analysis to account for the spatial distribution of
socio-demographic characteristics. Results reveal that the share of minorities within
a census cell indeed positively correlates with the exposure to industrial pollution.
Furthermore, spatial spillover effects are highly relevant: the characteristics of the
neighbouring spatial units matter in predicting the amount of pollution. Especially
within urban areas, clusters of high minority neighbourhoods are affected by high
levels of environmental pollution. This highlights the importance of spatial clustering
processes in environmental inequality research.

This chapter has been published as:

Rüttenauer, T. (2018). Neighbours matter: A nation-wide small-area assessment of environmental
inequality in Germany. Social Science Research, 70, 198-211. DOI: 10.1016/j.ssresearch.2017.11.009

https://doi.org/10.1016/j.ssresearch.2017.11.009


4.1 Introduction

Environmental inequality research addresses the question of whether environmental
pollution is unequally distributed across different groups of citizens. In the United
States, a vast body of research has shown that ethnic minorities and socio-economically
disadvantaged groups face a disproportionately high exposure to environmental pollution
(e.g. Ash et al., 2013; Ash & Fetter, 2004; Banzhaf & Walsh, 2008; Been & Gupta,
1997; Crowder & Downey, 2010; Downey, Dubois, Hawkins & Walker, 2008; Downey
& Hawkins, 2008; Mohai & Saha, 2007; Pais et al., 2014; Pastor et al., 2001; Szasz &
Meuser, 2000). While the assessment of environmental inequality in some European
countries has grown during the last years (e.g. Diekmann & Meyer, 2010; Funderburg
& Laurian, 2015; Havard et al., 2009; Padilla et al., 2014; Richardson et al., 2010),
empirical analyses in Germany are still scarce. Furthermore, the existing studies in
Germany either use subjective measures of environmental pollution (Kohlhuber et al.,
2006; Mielck, 2004) or focus on single regional areas (Kabisch & Haase, 2014; Raddatz
& Mennis, 2013). Although this research has contributed greatly to the understanding
of environmental inequality, Germany lacks a nation-wide assessment of environmental
inequality that uses objective indicators for environmental pollution.

The present study addresses this gap in the literature by analysing the connection
between the foreign-minority population and objectively measured industrial pollution.
By connecting 2011 German census data with industrial facilities of the European
Pollutant Release and Transfer Register (E-PRTR), the analyses build on an original
dataset of 93,777 (1 km2 sized) grid cells over Germany. Thus, the connection between
the socio-demographic distribution and environmental pollution is evaluated on a
very fine grained spatial level. The study uses the proportionate toxicity-weighted
pollution from surrounding facilities as well as the proximity to the nearest facility as
indicators for environmental pollution. Additionally, it incorporates housing indicators
to test whether the connection between minority groups and pollution is mediated by
housing-related variables.

Furthermore, this paper extends the question regarding the presence of environ-
mental inequality in Germany in two ways. First, spatial models (SLX) are used to test
for the existence of spatial spillover effects. Using these models allows for separating
the effects of the unit’s characteristics itself and the effects stemming from neighbouring
spatial units. Hence, this study explicitly models the spatial pattern of environmental
inequality and tests whether neighbouring units matter in predicting environmental
pollution. Second, it investigates whether the spatial spillover effects differ between
rural and urban areas. Therefore, community-fixed effects SLX models are used to com-
pare environmental inequality within urban and rural areas. This analysis contributes
to the existing literature not only by assessing the presence of environmental inequality
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but also by investigating its spatial structure. The results highlight the importance of
spatial spillover and clustering effects in environmental inequality research.

4.2 Theoretical background

Previous scholars have argued that environmental inequality may stem from two
different processes: selective siting and selective migration. While the selective siting
argument posits that hazardous facilities are disproportionately sited in minority
neighbourhoods, the selective migration argument assumes that minority households
may disproportionately migrate into polluted areas.1

The reason for selective siting may be twofold. First, areas holding a high minority
share are expected to face lower housing costs (Downey, 2005; Farber, 1998; Saha &
Mohai, 2005; Wolverton, 2009, 2012). Second, minority groups may lack the political
power to prevent the siting of new facilities (Hamilton, 1995; Mohai & Saha, 2015a;
Pastor et al., 2001). Both characteristics make high minority areas an attractive
location for industrial facilities. However, the empirical results regarding the causal
mechanisms are mixed. While some studies find a connection between minority share
and the probability of receiving an industrial facility (Funderburg & Laurian, 2015;
Mohai & Saha, 2015b; Pastor et al., 2001), others find none (Downey, 2005; Oakes
et al., 1996) or only weak support (Been & Gupta, 1997; Shaikh & Loomis, 1999) for
selective siting.

In contrast to the selective siting argument, the selective migration argument as-
sumes that neighbourhood characteristics are not a predictor of facility siting. Instead,
the argument works the other way round: neighbourhood pollution predicts neigh-
bourhood characteristics. This means that minority households selectively move into
polluted areas. Again, two mechanisms clarify this argument. First, lower housing
prices in polluted areas make these areas more attractive for low income households
and, thus, to minority households because of their lower socio-economic status (Been
& Gupta, 1997; Campbell et al., 2010; Crowder et al., 2011; Downey, 2005; Pais et al.,
2014). This is called the ‘racial income-inequality thesis’, which will be tested indirectly
in the analysis. Second, minority households may face significant discriminatory barri-
ers on the housing market when trying to enter high quality neighbourhoods (Crowder
et al., 2011, 2012; Pais et al., 2014). While previous research on the macro level failed
to identify selective migration as a cause of environmental inequality (Been & Gupta,
1997; Downey, 2005; Funderburg & Laurian, 2015; Mohai & Saha, 2015b; Oakes et

1 Note that minorities in the United States are predominantly defined as ethnic minorities. In Germany,
minorities stem mostly from recent migration processes, and are thus defined as foreign-minority
and later operationalised as foreign population. Still, it is assumed that the same mechanism apply
as discussed in the American literature.
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al., 1996; Pastor et al., 2001; Shaikh & Loomis, 1999), research on the household level
found clear evidence for selective migration of minority households into polluted areas
(Crowder & Downey, 2010; Pais et al., 2014). Furthermore, those studies on the micro
level conclude that socio-economic factors can only partly explain the racial gap in
moving behaviour.

Although studies conducted in Germany did not aim to compare the causes of envir-
onmental inequality, they give important insights about the presence of environmental
inequality. Kohlhuber et al. (2006) find non-German citizens to perceive a higher
degree of exposure to noise and air pollution also when controlling for socio-economic
indicators. In the same manner, Raddatz and Mennis (2013) find the percentage of
foreigners to be negatively correlated with the distance to the next industrial facility
in the city of Hamburg, even when controlling for the percentage of welfare recipi-
ents. For the city of Berlin, Kabisch and Haase (2014) identify a lower provision of
urban green space in city districts with a higher minority share. In addition to the
identification of general environmental inequality in Germany, the first two studies
show that dissimilarities in the exposure to pollution between minority and majority
groups cannot be explained solely by socio-economic variables. However, while the first
study uses subjective measures of pollution, the latter concentrate on single German
cities. Therefore, the present study is the first nation-wide assessment of environmental
inequality that uses objective measures of pollution.

4.3 Neighbours matter

Following theoretical explanations as well as findings from previous research, we expect
the percentage of minority members to be positively correlated with the exposure to
environmental pollution and the proximity to the next industrial facility. However,
this simple correlation does not take into account the spatial distribution of minority
groups and environmental pollutants. Although the cross-sectional design of this study
does not allow testing causal mechanisms that lead to environmental inequality, the
theoretical explanations offer some predictions of the spatial patterns that are to be
expected from these processes.

First, if selective siting causes the unequal distribution of environmental pollution
over different households, we expect the broader neighbourhood to be a main driver
of environmental pollution. In other words, when companies decide where to place a
new facility, it is not a single neighbourhood that is decisive but rather whole clusters
of neighbourhoods. If the theory of selective siting is correct, companies will place
facilities where low-income or minority households cluster because lower housing prices
and less political protest can be expected in those areas. Therefore, not only the
minority share of a unit itself, but also the minority share of the broader neighbourhood
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is expected to be an important predictor of environmental pollution. Furthermore,
existing industrial facilities may attract new industrial facilities due to attractive
infrastructure opportunities (Ard, 2016; Elliott & Frickel, 2013). This would reinforce
the clustering of industrial facilities and minority neighbourhoods.

Second, if selective migration causes environmental inequality, the broader neigh-
bourhood may be important as well. The argument of selective migration, as outlined
above, only considers environmental quality as a decisive preference for a household’s
relocation. However, as shown theoretically by Schelling (1978) and confirmed by
recent research (W. A. V. Clark & Coulter, 2015; Crowder et al., 2011, 2012; Krysan,
Couper, Farley & Forman, 2009; Rathelot & Safi, 2014; Sager, 2012), minority and ma-
jority groups tend to segregate spatially because of similarity preferences, which means
households prefer to have members of their own group within their neighbourhood.
Thus, if households of minority groups tend to move into polluted areas because of
affordable housing opportunities, they will attract even more members of the minority
group while staving off majority-group households. Kim et al. (2014) show formally
that the similarity preferences of households help to explain the observed disproportion-
ate exposure of minority groups. As in the previous case of selective siting, minority
households are expected to cluster around high pollution areas.

Again, it is important to note that it is impossible to distinguish between those
processes – selective siting and selective migration – in a cross-sectional design. However,
it is possible to test whether pollution correlates especially with high minority clusters
by incorporating spatial spillover effects. More precisely, the present study will test
if the minority share of neighbouring spatial units will influence the exposure to
environmental pollution or, in other words, if neighbours matter. Additionally, housing
market characteristics of the census tract and housing market characteristics of the
neighbourhood are incorporated to investigate whether these characteristics can explain
the correlation between minority share and environmental pollution.

Additionally, there might also be significant variation in the patterns of environ-
mental inequality between different types of communities. As previous research has
shown, urban and rural areas may face differences in segregation processes (Catney,
2016; Crowder et al., 2012; Sager, 2012) as well as in pollution patterns (Ard, 2015;
Briggs, Abellan & Fecht, 2008). Therefore, patterns of environmental inequality may
differ between urban and rural areas in two ways. First, the direct correlation between
minority share and pollution may be stronger within metropolitan areas because these
areas generally face higher segregation levels (Sager, 2012) and pollution may be more
concentrated in these segregated areas. In line with this argument, results by Ard
(2016) indicate that segregation is associated with increasing overall health risks from
industrial pollution but also with additional health risks for minority neighbourhoods.
Second, the spatial spillovers may be stronger in metropolitan areas. Previous research

77



has shown that segregation between central and suburban districts within metropolitan
areas (macro segregation) increased during the last decades (Lichter et al., 2015). This
could indicate that the expected clustering effects may be stronger within urban areas.

On the other hand, segregation could also reduce environmental inequality. As
Downey (2007) notes, minority succession processes may lead to the concentration of
minority groups in city centres (or in other parts of the city) absolutely independent
from the concentration of pollution sources. In contrast to the first argument, this
second argument would result in a lower correlation between minority share and
pollution within urban areas.

In sum, the present paper tests 1) if there is environmental inequality in Germany
when using objective measures, 2) if neighbours matter in explaining the level of
pollution and 3) if the patterns of environmental inequality differ between urban and
rural areas.

4.4 Data and methods

4.4.1 Data

To answer these questions two different data sources are combined: demographic data
of the 2011 German census and pollution reports of the European Pollutant Release
and Transfer Register (E-PRTR) for 2011.

The German census (Statistische Ämter des Bundes und der Länder, 2015) provides
information about the population on the basis of a one squared km grid. This grid
divides Germany into 361,478 equally sized and distributed grid cells, of which 214,633
are populated by at least one household. Excluding grid cells with missing data (due
to low numbers of inhabitants and confidentiality issues) leads to a final dataset of
93,777 grid cells.2 This final dataset still contains information of nearly 73 million
inhabitants (90.94% of the total German population). The 93,777 grid cells are defined
as neighbourhoods in the current study, though they define no administrative or real-life
boundaries of neighbourhoods, but just result from a random grid. This is an advantage
for the present research as the grid boundaries itself should not be related to siting or
clean-up decisions (because they are not meaningful for administrative authorities). On
average, these one squared km sized neighbourhoods contain 778 inhabitants (median:
303 inhabitants) and thus, offer a very fine grained spatial level to assess the presence
and the spatial patterns of environmental inequality.

The E-PRTR (European Commission, 2006) contains information about industrial
facilities falling under one or more of the 65 E-PRTR industrial activities (European

2 When including all 201,101 non-missing units into the baseline model (containing only the minority
share as explanatory variable), results similar to the presented baseline model M1 are obtained.
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Commission, 2006, pp. 79-82), which exceed a pollutant specific threshold of emissions
(European Commission, 2006, pp. 83-86). For 2011 the dataset contains a total of
4,971 facilities, of which 1,476 report industrial emissions to air, and 3,495 report waste
management activities or emission to land and water.3 In sum, these facilities report
nearly 1b tonnes of emissions to air and nearly 90m tonnes of processed waste. These
pollution data are matched with the grid cells of the German census by using the
georeferenced location of the facilities.

4.4.2 Variables

To measure the exposure to environmental pollution, two different indicators were
constructed. The main indicator is the amount of toxicity-weighted industrial air pol-
lution, while the proximity to the nearest industrial facility is used as a complementary
indicator to examine the robustness of the results.

To compute the air pollution for each census grid cell, a 2 km buffer around each
facility location was constructed and the emissions were allocated to the census cells
proportional to the overlap of the 2 km buffer and the census cell boundaries. This
method is similar to the method used by Banzhaf and Walsh (2008) and addresses
the problem that facilities may be sited at the edges of spatial units (Mohai & Saha,
2006, 2007). In a second step, the aggregated air pollution was calculated as the
toxicity-weighted sum of all air pollutants, which were allocated to each census grid
cell in the first step. For weighting, the inhalation toxicity weights of the United States
Environmental Protection Agency’s (EPA) Risk Screening Environmental Indicators
(RSEI) database were used (Environmental Protection Agency, 2015). The resulting
measure is similar to the hazard-based results in the RSEI data and provides an
estimate of the amount of industrial emissions weighted by each pollutant’s potential
for long-term health risks. This includes pollutants like chlorinated substances, heavy
metals, and other gases and organic substances (like ammonia, benzene, or fluorine),
while excluding greenhouse gases (like CO2, NOx, PM10, SOx), which are not classified
as causing chronic human health impacts (e.g. cancer).4 In a final step, the natural
logarithm of this proportionate amount of toxicity-weighted air pollution was computed
to take the right skewness into account.

This measure of exposure to pollution (as used by Banzhaf & Walsh, 2008) is
superior to the widely used unit-coincidence methods (for a discussion see e.g. Mohai
& Saha, 2007) or hazard-proximity measures (e.g. Crowder & Downey, 2010), but less

3 Note that the E-PRTR relies on self-reported emissions, which is prone to reporting biases. However,
complementary analyses using the E-PRTR reports from 2010 to 2012 and 3-years average emissions
yield nearly identical results.

4 Additional analyses not using toxicity weights but aggregating over all emission (including greenhouse
gases) lead to similar conclusions but less conservative point estimates (not shown).
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sophisticated than the RSEI scores used in recent studies in the United States (e.g.
Ard, 2015; Ash et al., 2013). In contrast to the United States RSEI, the European
E-PRTR does not offer exposure estimates based on plume models, accounting for stack
high, wind direction, wind speed, and resulting surrogate dose of emissions. Though
the current study uses the same air pollutants and toxicity-weights as RSEI data, it
can only use a less accurate approximation of actual exposure to pollution as provided
by the RSEI.

The second measure, the proximity to the nearest facility, is calculated as the
inverted Euclidean distance between the centre of each census grid cell and the facility
located nearest to the grid cell. In contrast to the measure of air pollution (including
1,476 facilities), the second measure also includes facilities reporting waste management
activities or emission to land and water (4,971 facilities). The proximity to industrial
facilities does not aim for measuring any physical health impacts, but rather represents
an indicator of reduced neighbourhood quality (due to potential noise, visibility of
industrial facilities, or odour). Thus, the two measures, toxicity weighted air pollution
and proximity to the nearest facility, offer the possibility to evaluate the presence of
environmental inequality by using two distinct dimensions of exposure to environmental
pollution. While the amount of toxicity weighted pollution provides a measure related
to health risks, the proximity should mostly capture disadvantages due to visibility
or odour nuisances of close facilities. However, both measures can only provide an
approximation of exposure to environmental pollution (though it is the best possible
approximation based on the available data in Europe).

The explanatory variables stem from the 2011 census data. Minority share is
available as the percentage of foreigners, which is defined as the proportion of inhabitants
without a German citizenship. Additional control variables are included to test if the
correlation between minority share and pollution can be explained due to differences
in socio-economic characteristics. Most importantly, the living space per inhabitant
can be seen as a proxy of socio-economic status.5 Second, the percentage of vacant
housing approximates the housing market conditions, as a higher percentage of vacant
housing should correlate with less demand for housing and, therefore, lower housing
prices. To investigate the differences between urban and rural areas, a dichotomous
variable is constructed that takes the value one for all grid cells that are located within
a community with at least 100,000 inhabitants, and zero otherwise. Furthermore, the
number of inhabitants (which equals population density because of similar census cell
sizes) as well as the percentage of inhabitants aged 65 or older are included as controls.

5 Note that this is the best available proxy for wealth at this fine-grained spatial level. Though wealthy
people might move to small flats in inner cities (e.g. to reduce commuting distance), this problems
seems less severe in the present study as the analysis simultaneously controls for population density.
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4.4.3 Method

In a first step, a simple OLS model is used to investigate the connection between
minority share and pollution. However, the simple OLS model is not able to take the
spatial nature of the data into account. Moran’s I test confirms that the non-spatial
OLS model exhibits a highly significant spatial residual correlation, indicating that
observations are not independent. As shown by Pace and LeSage (2010), spatial auto-
correlation in the dependent variable cov(Wy,y) 6= 0 does not only lead to erroneous
inferences, but also to biased point estimates in case of cov(Wx,x) 6= 0, where W
specifies the N ×N spatial weights matrix (all wij > 0 for neighbouring i and j 6= i,
and wij = 0 otherwise), y the N × 1 vector of the dependent variable and x the N × 1
vector of the independent variable. In other words, if the explanatory variable xi of
unit i is correlated with the explanatory variable xj and the outcome variable yj of the
neighbouring unit j, OLS estimates of βx suffer from omitted variable bias.

Several model specifications exist that incorporate the spatial dependence of the data
by including spatial lags of the dependent variable (SAR), a spatially weighted error
term (SEM), or both (e.g. LeSage & Pace, 2009; Ward & Gleditsch, 2008). However,
the SEM does not estimate spatial spillover effects, which are of interest for the research
question at hand. Though the SAR does provide estimates of direct and spillover
effects, those are global spillover processes as a change in the explanatory variable of
one observation affects all other observations, which is not intuitively interpretable (for
a detailed explanation see e.g. LeSage, 2014). In addition, the ratio between direct
and spillover effects is fixed for all parameters of the covariates as a SAR specification
estimates only one autoregressive parameter. Thus, the flexible SLX model is more
suitable for the research question of this study (Elhorst, 2014; Halleck Vega & Elhorst,
2015). This model allows testing whether ‘neighbours matter’ or more precisely, whether
the minority share of neighbouring units spills over and affects the level of pollution in
the focal spatial unit. Furthermore, the SLX model is attractive due its simplicity as
the coefficients can be interpreted directly (in contrast to the SAR coefficients).

The SLX model is specified as

y = αι+Xβ +WXθ + ε,

where W and y are defined as above, ι is a N ×1 vector of ones, α the model intercept,
X a N ×K matrix of K covariates, and ε a N × 1 vector of residuals (for i = 1, . . . , N
units). β and θ are K × 1 parameter vectors: while β contains the parameters of the
direct effect estimates, θ contains the parameters of the local spatial spillover effects
between neighbouring units. These spillover effects can be interpreted as the average
effects of the focal unit’s neighbours. In the present study, the weights matrix is defined
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Table 4.1: Descriptive statistics
Rural Urban Overall

Variable Mean SD Mean SD Mean SD
Air pollution (ln kg) 0.54 (2.59) 1.79 (5.01) 0.66 (2.93)
Distance to nearest
facility (km)

7.82 (4.57) 3.21 (1.81) 7.37 (4.59)

% Foreigners 3.02 (4.66) 9.00 (8.43) 3.59 (5.44)
Population 577.58 (835.71) 2649.91 (2887.97) 777.82 (1345.95)
% 65 and older 19.56 (8.74) 20.57 (7.44) 19.65 (8.63)
% Vacant housing 3.46 (4.12) 3.50 (3.54) 3.46 (4.07)
Living space 44.93 (6.66) 41.74 (5.95) 44.63 (6.66)
N 84716 9061 93777

as contiguity (Queens) neighbours matrix, which includes all units as neighbours sharing
at least one common border. As this would drop all observations without a direct
neighbour (otherwise wijxj would spuriously equal zero), the nearest neighbouring unit
was imputed for all units without a direct neighbour. In the final sample this affects
6.8% of the units. The outlined modelling strategy leads to an average number of
3.6 neighbours per unit (ranging from 1 to 8 neighbours). Alternative measures are
considered in the discussion section.

Two different modelling strategies are used to investigate the correlation between
minority share and pollution. The first strategy uses an overall SLX model (as defined
above), thus investigating if the minority share in a census grid cell is correlated with
pollution in a nation-wide comparison. This might, however, result from the fact that
the average minority share is higher in cities or areas where also pollution is high (e.g.
the mid-western region of Germany), thereby only capturing regional level-differences.
Thus, the second strategy uses community-fixed effects SLX models. This strategy
controls for the community-constant differences between 4,518 communities (e.g. the
community’s share of minorities or level of pollution) and, additionally, ‘differences out’
unobservable differences between the communities. Consequently, those fixed effects
models investigate whether census grid cells with a high minority share are affected
by a disproportionately high pollution within the communities (compared to census
grid cells within the same community), independent of general regional differences. All
models were estimated using R’s package spdep (Bivand & Piras, 2015).

4.5 Results

Table 4.1 shows the descriptive statistics of the used variables separated by rural and
urban areas. The table includes the distance instead of the proximity to the nearest
facility because it is intuitively interpretable (in contrast to its inverse). Industrial air
pollution tends to be higher, and the average distance to the nearest industrial or waste
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Figure 4.1: Spatial distribution of air pollution and minority share in Germany
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Figure 4.2: Spatial distribution of air pollution and minority share in Berlin
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management facility tends to be lower in urban areas. This indicates a generally higher
exposure to industrial pollution in urban areas. At the same time, the percentage of
minority inhabitants living within each census cell is nearly three times higher in urban
areas. These summary statistics clearly indicate that it is important to account for the
differences between urban and rural areas when analysing the patterns of environmental
inequality.

Figure 4.1 illustrates the spatial distribution of air pollution and minority share
graphically. Analogue to the descriptive statistics, Figure 4.1 shows that highly polluted
census cells as well as neighbourhoods with a high percentage of minority inhabitants
cluster around urban areas. Particularly the mid-western part of Germany holds a
high pollution and census cells with a high minority share. Regarding the remaining
parts of Germany, high levels of minority inhabitants and pollution (to a lower extent)
occur especially around the metropolitan areas. The spatial clustering of the variables
of interest further supports the finding of high spatial correlation between the units
of observations and illustrates graphically that the individual census cells cannot be
handled as if they were independent of each other. To take the city of Berlin as
an example (Figure 4.2), this finding does not only apply for the whole country but
also for the distribution within cities. The Berlin district ‘Mitte’, for example, is
characterised by a high percentage of minority inhabitants and is also affected by high
pollution. Another interesting pattern can be found within the districts of ‘Neukölln’
and ‘Spandau’: within the districts, those cells with a high share of minorities are
affected by the highest level of pollution. These geographical patterns offer a first sign
for a positive correlation between minority share and pollution in Germany as a whole
but also within metropolitan areas. Very similar patterns can be seen when looking at
the proximity to the nearest industrial facility (as shown in Figures 4.3 and 4.4 in the
appendix).

To test whether census cells with a higher minority share face a higher exposure to
industrial pollution, Table 4.2 presents the results of the multiple regression models,
regressing the industrial air pollution on the percentage of foreigners and further
controls. All variables (except dichotomous variables) are standardised, allowing for
the interpretation of the coefficients’ magnitude in terms of standard deviations.

Model M1 represents the baseline model without any control variables or spatially
lagged explanatory variables. The model confirms the impression of the previous figures:
the percentage of minority inhabitants within a census cell is positively correlated with
air pollution. Thus, model M1 confirms the presence of environmental inequality in
Germany. Model M2 indicates, however, that the effect magnitude of model M1 is likely
to be biased. When incorporating the spatially lagged minority share – meaning the
average minority share in the neighbouring census cells – the model yields a much weaker
direct correlation between minority share and air pollution. A big proportion of the
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Table 4.2: OLS and SLX estimates. Dependent variable: industrial air pollution
OLS SLX

M1 M2 M3 M4
(Intercept) 0.000 −0.003 −0.027∗∗∗ −0.027∗∗∗

(0.003) (0.003) (0.003) (0.003)
% Foreigners 0.120∗∗∗ 0.054∗∗∗ 0.039∗∗∗ 0.012∗

(0.003) (0.005) (0.005) (0.005)
W [% Foreigners] 0.113∗∗∗ 0.084∗∗∗ 0.014∗

(0.005) (0.006) (0.007)
Population −0.006 0.009

(0.005) (0.007)
W [Population] 0.002 0.064∗∗∗

(0.007) (0.010)
% 65 and older 0.003 0.003

(0.003) (0.003)
W [% 65 and older] 0.006 0.009

(0.005) (0.005)
% Vacant housing 0.009∗∗ 0.003

(0.003) (0.004)
W [% Vacant housing] 0.010∗ −0.003

(0.005) (0.005)
Living space −0.034∗∗∗ −0.027∗∗∗

(0.004) (0.004)
W [Living space] −0.075∗∗∗ −0.055∗∗∗

(0.005) (0.005)
Urban 0.245∗∗∗ 0.117∗∗∗

(0.013) (0.016)
Urban × % Foreigners 0.055∗∗∗

(0.013)
Urban × W [% Foreigners] 0.290∗∗∗

(0.017)
R2 0.014 0.019 0.032 0.044
Adj. R2 0.014 0.019 0.031 0.044
N 93777 93777 93777 93777
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standardised coefficients. Standard errors in parentheses. W
is specified as contiguity neighbours weights matrix. Model M4 interacts all covariates with the urban
dummy (interaction with controls not shown).

effect in model M1 seems to be driven by the spatial correlation between neighbouring
units. Furthermore, it confirms the hypothesis that neighbours matter. The level of
pollution is not only correlated with the minority share of the focal unit but also with
the minority share of neighbouring units.

When comparing the effect magnitudes of direct and spillover effects, it is important
to keep in mind that the spatially lagged minority share represents the average minority
share of the neighbours. This means that an increase in the minority share in all
neighbouring units together (which are 3.6 neighbours on average) by one standard
deviation is correlated with a 0.11 standard deviations higher pollution in the focal
unit. Consequently, one could say that the characteristics of the surrounding area
matter more than the characteristics of the census cell itself. However, this does not

85



mean that a higher minority share in just one neighbouring unit has a stronger impact
than the unit specific characteristics themselves.

The results presented so far support the hypothesis that high minority neighbour-
hoods experience a disproportionate high exposure to environmental pollution and
that neighbours matter by influencing the pollution level. However, the models do
not control if the correlation between minority share and pollution is a consequence
of socio-economic or housing-related characteristics. Model M3 adds several control
variables, all modelled as direct and spillover effects. Living space per inhabitant and
the share of vacant housing show a significant and theoretically plausible effect on
the amount of pollution. More importantly, these area- and housing-related control
variables explain a considerable proportion of the minority effect. The magnitude of the
direct as well as the spillover effect of the minority share is reduced by more than 25%.
However, supplementary models (not shown) reveal that the housing-related variables
do a rather poor job in explaining the disproportionate burden of neighbourhoods
facing a high minority share. The reduction of the minority effect occurs mainly due
to controlling for urban areas (or if excluded due to population density). Thus, a
significant proportion of the correlation between minority share and pollution found
in model M2 can be ascribed to the fact that minority households cluster in urban
areas, which tend to suffer from higher levels of industrial air pollution. The argument
that disproportionate pollution in high minority areas stems from cheaper housing
opportunities cannot be supported by the analysis.

Model M4 further investigates if the patterns of environmental inequality signific-
antly differ between urban and rural areas. Note that all covariates are interacted with
the urban dummy in model M4, as all processes may differ in urban areas (control
interactions are not shown). Both interaction terms are significant and show that the
direct as well as the spillover correlations between minority share and pollution are
higher in urban areas. While the main effect of the urban dummy shows that people in
general experience higher levels of pollution in urban areas, the interaction confirms an
additional burden for minorities in urban areas. Comparing main and interacted effect
indicates that the magnitude of the disadvantage results mainly from disadvantages
in urban areas. Another interesting finding is that the difference in spillover effects is
much stronger than the difference in direct effects. While the direct effect in urban
areas is approximately six times as strong as in rural areas, the spillover effect is more
than twenty times higher in urban areas. This indicates that neighbours matter espe-
cially in urban areas. Particularly in urban areas, pollution is correlated with clusters
of high minority areas. This holds true even when accounting for the higher average
number of neighbours in urban (5.87) than in rural (3.29) areas.

However, the results presented so far do not control for regional level-differences over
Germany. Community-specific unobservables may bias the results. This might be espe-
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Table 4.3: Community-fixed effects estimates. Dependent variable: industrial
air pollution

Overall Urban Rural Diff

M5 M6 M7 (M6-M7)
% Foreigners 0.062∗∗∗ 0.076∗∗∗ 0.035∗∗∗ 0.041∗

(0.009) (0.016) (0.007) (0.017)
W [% Foreigners] 0.163∗∗∗ 0.391∗∗∗ 0.077∗∗∗ 0.315∗∗∗

(0.025) (0.070) (0.015) (0.071)
Population −0.010 −0.011 −0.008 −0.002

(0.007) (0.009) (0.006) (0.011)
W [Population] −0.039 −0.124∗∗∗ −0.023 −0.100∗∗

(0.023) (0.030) (0.017) (0.034)
% 65 and older −0.005 −0.001 0.000 0.000

(0.004) (0.017) (0.003) (0.017)
W [% 65 and older] −0.009 −0.101 0.004 −0.105

(0.007) (0.072) (0.005) (0.072)
% Vacant housing 0.014∗∗ 0.035 0.012∗∗ 0.023

(0.005) (0.027) (0.004) (0.027)
W [% Vacant housing] 0.021∗ 0.087 0.020∗∗ 0.068

(0.008) (0.092) (0.007) (0.093)
Living space −0.012∗∗ 0.014 −0.008∗ 0.022

(0.004) (0.022) (0.003) (0.022)
W [Living space] −0.036∗∗∗ −0.161∗ −0.022∗∗∗ −0.139∗

(0.007) (0.070) (0.006) (0.070)
R2 0.018 0.076 0.005
Adj. R2 -0.031 0.067 -0.050
N 93777 9061 84716
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standardised coefficients. Cluster robust standard errors in
parentheses. W is specified as contiguity neighbours weights matrix. The differences and standard errors
in column 4 are obtained by an overall fixed-effects model with interaction terms of the urban dummy
and all covariates.

cially problematic when comparing rural and urban areas. Therefore, Table 4.3 presents
results from community-fixed effects models. These models control for the differences
between 4,518 German communities and use only the ‘within-community variance’ to
estimate the effects, while conditioning for all community-constant characteristics. For
ease of interpretation an overall model as well as two models separately for urban and
rural areas are estimated. The fourth column of Table 4.3 additionally presents a test
for differences between urban and rural areas. These differences were computed by
interacting all covariates in the overall model (M5) with the urban dummy.

First of all, model M5 estimates the within-community environmental inequality
for all communities taken together. It turns out that the extent of environmental
inequality is even stronger within communities than it is in a country-wide comparison
(comparing M3 and M5). This finding is in line with results from the American context,
where environmental inequality is found to be stronger within than between cities (Ash
& Fetter, 2004). Again, results support the hypothesis that neighbours matter. Also
within communities, clusters of high minority neighbourhoods correlate significantly
and positively with pollution. Additionally, the minority share is by far the strongest
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predictor of environmental pollution, though the models include controls for the share
of vacant housing and living space per inhabitant, which should be more important
if the socio-economic disadvantages of minority groups and resulting preferences for
cheap housing are responsible for the higher exposure to environmental pollution.

Models M6 and M7 compare whether the patterns of environmental inequality differ
between urban and rural areas. A first interesting finding is that population density of
the surrounding area is a significant predictor of pollution only in urban areas, whereas
the percentage of vacant housing correlates with pollution only in rural areas. In both
urban and rural areas, pollution is significantly lower in areas with higher living space
per inhabitant, though the direct effect is non-significant for urban areas. Regarding
the minority share, the direct effect in urban areas is twice as strong as in rural areas.
Furthermore, there are highly significant and strong differences in the spillover effects.
The effect of the minority share spilling over from neighbouring units is more than four
times higher within urban than within rural areas. Even when taking into account that
observations in urban areas have on average 5.87 neighbours, the spatial spillover effect
from a single neighbouring unit is nearly as strong in its magnitude as the effect of
the focal unit’s minority share itself. According to M6, a one-unit change in a single
neighbouring cell has only a slightly lower impact (0.391/5.87=0.067) than a one-unit
change of the focal unit’s minority share in urban areas (0.076). If all neighbours
increased their minority share simultaneously, this would lead to an effect that is more
than four times higher than the effect of an increase in the unit’s own minority share.

In sum, the analyses reveal: 1) the disadvantage of minority neighbourhoods is
stronger within urban areas and 2) this stems mostly from the fact that neighbours
matter especially in urban areas. In general, results confirm that neighbours matter:
industrial air pollution tends to be especially high in areas where high proportions of
foreign inhabitants agglomerate.

4.6 Discussion

Though the theoretical predictions are supported by the results, there remain three
critical issues regarding the presented models. First, although the models account for
the covariance between y and WX, there still remains spatial autocorrelation in the
residuals, which might result from spatially clustered unobservables that influence y
and X. Second, the conclusions, especially regarding the spatial spillover effects, might
depend on the specification of the neighbourhoods weights matrix W and third, all
analyses rely on toxicity-weighted air pollution from industrial facilities as an indicator
for the exposure to environmental pollution. Therefore, these issues are addressed in
the following paragraphs.
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To reduce the remaining spatial autocorrelation of residuals, a spatial Durbin model
was estimated. The Durbin model, additionally, includes the spatially lagged dependent
variable Wy on the right-hand side of the equation (e.g. LeSage & Pace, 2009). This
method reduces the spatial correlation of the residuals dramatically. Regarding the
effect magnitudes, the spatial Durbin models yield similar direct but slightly higher
spillover effects.6 This applies to the overall as well as the fixed effects Durbin model.
Additionally, overall and fixed-effects Durbin models confirm that direct and spillover
effects are significantly stronger in urban areas. In sum, the spatial Durbin models
offer very similar results to the SLX models, while reducing the remaining residual
autocorrelation.

Regarding the specification of the neighbourhood weights matrix, additional models
were estimated with alternative specifications. When excluding cases without direct
neighbours instead of imputing these connections, nearly identical results are obtained.
When replacing the weights matrix by a 10 nearest neighbours matrix (while weighting
the neighbours by inverse distance), direct effect magnitudes decrease while the spillover
effects increase. However, the main story does not change. Another model specification
includes first as well as second order neighbours separately (two different weights
matrices). These models produce nearly identical direct effects but slightly smaller
spillover effects for the first order neighbours. Interestingly, also the second order
neighbours produce effects comparable to first order neighbours with particularly
strong impacts in urban areas. Combining first and second order effects, these models
estimate an even stronger spillover effect from neighbouring units. This further supports
the story that neighbours matter: even the neighbours of the neighbours play a role in
determining the level of pollution. All estimated alternatives also support the findings
from the community-fixed effects models and the different patterns between urban and
rural communities.

To ensure that the conclusions do not depend on the measure of exposure to
environmental pollution, Tables 4.4 and 4.5 in the Appendix present the analyses of
the results section with an alternative measure, the proximity to the nearest facility.
In contrast to the first indicator, this measure additionally includes waste management
facilities (like landfill sites). These analyses basically confirm the previous results.
Census grid cells with a high minority share are located closer to industrial facilities
and, again, neighbours matter: a high minority share of neighbouring units is associated
with closer industrial facilities. Though the relative effect magnitude of the spillover
effects compared to the direct effects is lower when using the proximity, these analyses
confirm that the total effect of neighbouring units is stronger. Furthermore, the

6 Note that the impacts in a Durbin model depend on the weights matrix and differ from the model’s
coefficients. I refer to the average direct and indirect effects over all units here (for more information
see e.g. Halleck Vega & Elhorst, 2015; LeSage & Pace, 2009).
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results confirm the conclusion regarding the area differences. The correlation between
minority share and proximity to industrial facilities is stronger in urban areas, especially
regarding the spatial spillover effects. Hence, neighbourhoods with a high minority
share and neighbourhoods lying in an area with a high minority share are not only
exposed to a higher amount of air pollution but are also located closer to industrial
and waste management facilities. However, it must be noted that both measures only
use indicators of industrial pollution and do not account for other sources of pollution
like traffic.

4.7 Conclusion

Although environmental inequality has gained increasing interest in Europe, this is the
first nation-wide wide assessment of environmental inequality in Germany that uses
objectively measured pollution. Furthermore, the present study includes the spatial
nature of environmental inequality patterns by using innovative spatial methods and
including the characteristics of neighbouring units. This seems to be important as the
theoretical mechanisms of environmental inequality concern not only single units but
rather spatial clusters. In sum, the analyses yield three important results.

First, there is a considerably high correlation between the minority share and
exposure to environmental pollution. Not only in a nation-wide comparison, but also
within communities, minorities experience a higher exposure to environmental pollution.
This means that minorities live in more polluted areas in Germany and in more polluted
neighbourhoods within communities. Housing-related control variables do a poor job
in explaining the correlation between minority share and pollution, indicating that
the ‘racial income-inequality thesis’ finds no support. It rather indicates that the high
exposure of minorities does not mainly stem from their low socio-economic status and
the resulting need for low-cost housing. However, to adequately confirm this finding,
panel data or natural experiments are needed to account for other non-observable
confounders. With certainty, it can only be stated that neighbourhoods and areas with
a high level of minorities are exposed to disproportionately high levels of pollution.

Second, neighbours matter, which means that neighbourhoods that are located
within clusters of high minority neighbourhoods face a higher level of pollution, inde-
pendent of their own characteristics. Thus, processes of spatial clustering seem to play
an important role in shaping patterns of environmental inequality. One explanation
could be that regions where minorities agglomerate offer attractive sites for industrial
facilities as the probability of resistance declines with distance rather than boundaries.
Another explanation could be that segregation of minorities around industrial facilities
contributes to their disproportionate exposure to pollution. In combination with further
attraction of minority households due to similarity preferences, this could induce a
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self-reinforcing processes leading to a clustering of minorities around industrial facilities.
This is especially interesting as results from the United Stated (Downey, 2007) rather
indicate that segregation patterns do not play a crucial role in determining the extent of
environmental inequality. If this also applies to Germany, then why do we observe these
clustering processes? To answer this question empirically, further research should have
a more detailed look at the spatial patterns of environmental inequality. Especially
in a time-series framework this could lead to new insights regarding the causes or
structural conditions generating the disproportionate exposure of minority households
to industrial pollution.

Third, the correlation between the minority share and environmental pollution is
stronger within urban than within rural areas. Especially the spatial spillover effects
stemming from neighbouring units are much stronger within urban communities. Urban
infrastructures, the level of segregation, or urban housing opportunities may foster
the extent of environmental inequality. On the one hand, minorities might be less
clustered or segregated in rural areas, which prevents companies from selectively siting
facilities close to minorities. Spatial restriction in urban areas, in contrast, could ‘force’
companies to place facilities closer to inhabitants, which might then disproportionately
affect minorities. On the other hand, rural areas exhibit a lower population density and
more relaxed housing markets, which might provide better opportunities to ‘escape’
polluted areas. This is also supported by the finding that higher vacancy rates are
correlated with pollution within rural areas (but not within urban areas): people seem
to leave polluted neighbourhoods in rural areas. Especially minority households might,
in turn, profit from those relaxed housing situations, leading to lower barriers regarding
discriminating behaviour as well as price pressure.

In sum, the present study offers a first assessment of environmental inequality in
Germany using objective measures of air pollution, but also highlights the importance
of spatial processes associated with environmental inequality. However, the results
also open new issues for further research. This study estimates the exposure to
environmental pollution by proportionately allocating the toxicity-weighted emissions
of facilities to surrounding neighbourhoods. Though this is an improvement over other
studies in Germany using subjective measures, it is far behind the accuracy provided
by EPA’s RSEI in the United States. Further effort should be undertaken to improve
the data quality in Europe, including advanced models based on estimated surrogate
doses of exposure as it is done by the RSEI. This would not only improve the quality of
environmental inequality research in Europe but also offer the opportunity to conduct
comparative studies between different countries, thereby providing new insights for
international research in this area.

Further research should also investigate the question of why neighbours matter.
Though the discussion above offers some possible explanations, further research is needed
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to explain the patterns observed in this study. The strong difference between urban and
rural areas indicates that structural characteristics might play an important role. Thus
further research should try to enrich the analyses by other structural variables and
investigate their influence on the clustering processes presented here. Geographic data
on urban forms as provided by OpenStreetMap, for example, would offer an interesting
extension of socio-demographic characteristics usually used in environmental inequality
research. Moreover, combining the spatial patterns of environmental inequality with
individual mobility data might offer important insights of the causal mechanisms
leading to the disproportionate exposure of minorities to environmental pollution.
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4.A Appendix Chapter 4
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Figure 4.3: Spatial distribution of proximity to nearest facility and minority share in
Germany
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Figure 4.4: Spatial distribution of proximity to nearest facility and minority share in
Berlin
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Table 4.4: OLS and SLX estimates. Dependent variable: proximity to nearest
facility

OLS SLX

M1 M2 M3 M4
(Intercept) 0.000 −0.007∗ −0.049∗∗∗ −0.025∗∗∗

(0.003) (0.003) (0.003) (0.003)
% Foreigners 0.320∗∗∗ 0.155∗∗∗ 0.119∗∗∗ 0.076∗∗∗

(0.003) (0.004) (0.004) (0.005)
W [% Foreigners] 0.282∗∗∗ 0.165∗∗∗ 0.089∗∗∗

(0.005) (0.006) (0.006)
Population −0.035∗∗∗ 0.061∗∗∗

(0.005) (0.006)
W [Population] 0.180∗∗∗ 0.372∗∗∗

(0.007) (0.009)
% 65 and older 0.014∗∗∗ 0.005

(0.003) (0.003)
W [% 65 and older] 0.021∗∗∗ 0.004

(0.004) (0.004)
% Vacant housing 0.016∗∗∗ 0.006

(0.003) (0.003)
W [% Vacant housing] 0.004 −0.012∗∗

(0.004) (0.004)
Living space −0.039∗∗∗ −0.025∗∗∗

(0.003) (0.003)
W [Living space] −0.069∗∗∗ −0.046∗∗∗

(0.004) (0.004)
Urban 0.378∗∗∗ 0.459∗∗∗

(0.012) (0.015)
Urban × % Foreigners 0.070∗∗∗

(0.012)
Urban × W [% Foreigners] 0.142∗∗∗

(0.016)
R2 0.103 0.131 0.173 0.193
Adj. R2 0.102 0.131 0.173 0.193
N 93777 93777 93777 93777
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standardised coefficients. Standard errors in parentheses. W
is specified as contiguity neighbours weights matrix. Model M4 interacts all covariates with the urban
dummy (interaction with controls not shown).
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Table 4.5: Community-fixed effects estimates. Dependent variable: proximity to
nearest facility

Overall Urban Rural Diff

M5 M6 M7 (M6-M7)
% Foreigners 0.132∗∗∗ 0.153∗∗∗ 0.088∗∗∗ 0.065∗

(0.009) (0.025) (0.008) (0.027)
W [% Foreigners] 0.216∗∗∗ 0.357∗∗∗ 0.122∗∗∗ 0.236∗∗∗

(0.018) (0.036) (0.013) (0.038)
Population −0.044∗∗∗ −0.086∗∗∗ 0.017∗ −0.102∗∗∗

(0.009) (0.010) (0.007) (0.012)
W [Population] 0.079∗∗∗ −0.013 0.169∗∗∗ −0.182∗∗∗

(0.013) (0.024) (0.016) (0.029)
% 65 and older 0.005 −0.011 0.004 −0.015

(0.002) (0.012) (0.002) (0.012)
W [% 65 and older] 0.007 0.018 0.006 0.012

(0.004) (0.044) (0.004) (0.045)
% Vacant housing 0.017∗∗∗ 0.035∗ 0.011∗∗∗ 0.024

(0.003) (0.017) (0.003) (0.017)
W [% Vacant housing] 0.009 0.036 0.003 0.033

(0.005) (0.053) (0.005) (0.054)
Living space −0.035∗∗∗ −0.086∗∗∗ −0.018∗∗∗ −0.067∗∗

(0.004) (0.023) (0.003) (0.023)
W [Living space] −0.063∗∗∗ −0.358∗∗∗ −0.032∗∗∗ −0.325∗∗∗

(0.007) (0.052) (0.004) (0.053)
R2 0.069 0.167 0.044
Adj. R2 0.066 0.166 0.042
N 93777 9061 84716
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Standardised coefficients. Cluster robust standard errors in
parentheses. W is specified as contiguity neighbours weights matrix. The differences and standard errors
in column 4 are obtained by an overall fixed-effects model with interaction terms of the urban dummy
and all covariates.
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Chapter 5

Bringing Urban Space Back in: A
Multi-Level Analysis of
Environmental Inequality in
Germany

Abstract
Various studies have shown that minorities bear a disproportionate exposure to envir-
onmental pollution. To understand the causes of this environmental inequality, it is
important to analyse which structural conditions foster environmental inequality. This
study uses an original dataset by combining the German 2011 census with georeferenced
pollution data to analyse the variation of environmental inequality between German
cities. While structural characteristics derived from standard theories of environmental
inequality do a rather poor job of explaining regional differences, an overlooked in-
dicator correlates strongly with environmental inequality: the geographic centrality
of polluting facilities within the urban space. Including this structural measure into
the city-fixed effects multilevel analysis accounts for more than 25% of the variation
between cities. This highlights the importance of taking geographic conditions into
account when analysing environmental inequality.

This chapter has been published as: Bringing urban space back in: A multilevel analysis of environ-
mental inequality in Germany. Urban Studies. DOI: 10.1177/0042098018795786

https://doi.org/10.1177/0042098018795786


5.1 Introduction

Scholars agree that environmental inequality exists. A huge body of research in the
United States and also a growing body of research in Europe has shown that ethnic
minorities are exposed to a disproportionately high amount of environmental pollution
(e.g Ard, 2015; Ash & Fetter, 2004; Diekmann & Meyer, 2010; Downey & Hawkins, 2008;
Laurian & Funderburg, 2014; Padilla et al., 2014; Pastor et al., 2005, 2001; Rüttenauer,
2018). However, some studies show that the level of environmental inequality varies
considerably between different cities (Downey, 2007; Downey et al., 2008; Padilla et
al., 2014), which offers an opportunity to analyse the structural conditions that foster
environmental inequality. As has been argued by Schweitzer and Stephenson (2007),
comparative research is needed to investigate the influence of urban conditions on the
distribution of environmental hazards across social groups. Identifying decisive urban
conditions helps to improve our understanding of the underlying causal mechanisms,
and, in turn, may help urban planners to avoid the persisting disadvantage of minorities.

So far, systematic analyses of the varying inequality levels have been constrained to
the United States. Still, it is unclear to which extent findings from the United States
are transferable to Germany. First, environmental inequality in the United States is
mostly concerned with ethnic minorities like Black Americans, Hispanics, or Asians.
In contrast, minorities in Germany are mostly immigrant-minorities and stem from
relatively recent immigration from other European countries or Turkey. Second, the
United States exhibits much higher levels of residential segregation: while dissimilarity
indices in the United States at the beginning of the century varied between 41 and
64 (depending on the ethnic group), Germany exhibits segregation indices around 20
(Musterd, 2005). Third, the urban structures differ between the United States and
Europe, with a higher population density and more centrally organised cities in Europe
(Huang et al., 2007). All those characteristics might play an important role for facility
siting decisions or residential mobility, and therefore could on the one hand affect the
extent of environmental inequality, but on the other hand also play an important role
regarding the causes of environmental inequality. Thus, it is important to investigate
the structural conditions that foster environmental inequality in a different context.

The current study addresses this aim by analysing a novel dataset which combines
pollution data from the European Pollutant Release and Transfer Register with socio-
demographic data from 2011 German census on the level of 1 square km grid cells
and information on the level of German cities. In a first step, city-fixed random-slope
multilevel models show that the level of environmental inequality varies considerably
between German cities. In the second step, I add cross-level interactions to investigate
whether the effect-heterogeneity between the cities can be explained by structural
differences between the cities. The findings show that structural characteristics derived
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from the standard strand of reasoning in environmental inequality literature – like
residential segregation – do a relatively poor job of explaining inter-city differences.
This is somewhat surprising, but in line with previous research from the United States.
Still, further analyses emphasise the importance of taking the urban landscape into
account. Including the average centrality of industrial facilities explains more than
25% of the inter-city variation in environmental inequality. This result challenges the
importance of the standard theory in environmental inequality research, as residential
segregation only plays a minor role in determining environmental inequality. Conversely,
the analysis highlights the importance of the geographic location of polluters within
the urban space.

Though many studies have shown that selective siting and selective migration
processes contribute to environmental inequality outcomes (Banzhaf & Walsh, 2008;
Crowder & Downey, 2010; Pastor et al., 2001; Saha & Mohai, 2005), it is less clear
how important those processes are in producing the correlation between environmental
pollution and minority households observed at the macro-level. Besides those social
processes, only few studies have explicitly included characteristics of urban infrastruc-
ture and form when investigating environmental inequality (e.g. Baden & Coursey,
2002; Elliott & Frickel, 2015; Wolverton, 2012), showing for example that riversides,
infrastructure, or agglomeration economies play an important role in determining fa-
cility locations. Similarly, the results of the present study show that a considerable
proportion of environmental inequality relies on the centrality of industrial facilities.
This demonstrates the importance of considering the urban space, where social pro-
cesses like siting or migration take place. Doing so can enhance our knowledge about
the causes of environmental inequality, but can also offer new insights into the side
products of urban structures and urban planning.

5.2 Theoretical background

Previous literature on the causes of environmental inequality has mostly concentrated
on two possible explanations for the disproportionate exposure of minority households
to environmental pollution: selective siting and selective migration (for an overview
see Mohai & Saha, 2015a).

The argument of selective siting assumes that polluting facilities temporally follow
the settlement of minority or economically disadvantaged households. The reason
that polluting facilities choose areas predominantly occupied by minorities may be
threefold: taste-based discrimination, profit maximisation, and the avoidance of political
protest (Campbell, Kim & Eckerd, 2015; Grant, Trautner, Downey & Thiebaud, 2010;
Hamilton, 1995). First, decision makers may predominantly belong to the majority
group and choose to locate unwanted industrial facilities close to minority households
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and far away from their own group. Second, housing and land-use prices may be lower
around high-minority areas, as minority households exhibit generally lower incomes
and consequently live in low-rent areas. If companies were economically rational, they
would choose low-cost amenities and – as a side-effect – locate close to the minority
population. Third, companies may seek the ‘path of the least resistance’ (Saha &
Mohai, 2005) and, thus, choose locations where political protest is assumed to be low.
If decision-makers within companies assume that minority groups are less likely to
organise collective actions against facility siting (‘not in my backyard’) due to their
limited resources and political efficacy, minority areas may provide an attractive siting
location.

Several studies have used longitudinal data to test the argument of selective siting.
By doing so on the spatially aggregated level, Funderburg and Laurian (2015); Mohai and
Saha (2015b); Pastor et al. (2001); Saha and Mohai (2005); Shaikh and Loomis (1999)
conclude that demographic disparities in facility-hosting areas already existed prior
to the siting process, which supports the argument of selective siting. However, other
longitudinal studies do not exhibit a consistent association between the demographic
composition of an area and the probability of receiving a new industrial facility (Been
& Gupta, 1997; Downey, 2005; Oakes et al., 1996), and still others rather emphasise
infrastructural and historical patterns of facility siting (Baden & Coursey, 2002; Elliott
& Frickel, 2013; Wolverton, 2012). Furthermore, agent-based models show that siting
decisions alone cannot explain high levels of environmental inequality (Campbell et al.,
2015). Thus, empirical results remain mixed regarding the role of selective siting.

In contrast to selective siting, the argument of selective migration assumes that the
in-flow of minority residents temporally follows the occurrence of polluting facilities.
Again, two alternative reasons for this causal pathway exist: the ‘racial residential
discrimination thesis’ and the ‘racial income-inequality thesis’ (Best & Rüttenauer,
2018; Crowder & Downey, 2010; Pais et al., 2014). The ‘racial residential discrimin-
ation thesis’ posits that ethnic minorities are discriminated against in the housing
market. Independent of socio-economic characteristics, ethnic minorities are steered
into neighbourhoods with a lower environmental quality because housing agents or
landlords may fear declining attractiveness due to minority in-migration, or spuriously
anticipate lower preferences for environmental quality (e.g. Turner & Ross, 2005). The
‘racial income-inequality thesis’, in contrast, argues that selective migration of minority
households is a result of economic disparities between ethnic groups. Assuming that
households prefer a high environmental quality over a low environmental quality, it fol-
lows that demand as well as rents and housing prices are higher in clean neighbourhoods.
At the same time, the willingness or ability to pay for environmental quality crucially
depends on income. Thus, rich households sort into high-quality neighbourhoods,
while poor households will end up in less desirable and more polluted neighbourhoods
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(e.g. Banzhaf & Walsh, 2008; Sieg et al., 2004). As minority households hold lower
economic resources than their majority counterparts do, those households sort into
low-quality neighbourhoods because they simply cannot afford rents and housing prices
in high-quality neighbourhoods.

When analysing the aggregated socio-economic development of an area after hosting
a new facility, most existing research does not support selective migration as a cause
of environmental inequality (e.g. Downey, 2005; Funderburg & Laurian, 2015; Mohai
& Saha, 2015b; Oakes et al., 1996; Pastor et al., 2005, 2001). However, studies using
individual data and moving trajectories indeed find evidence in favour of the selective
migration argument. Best and Rüttenauer (2018), Crowder and Downey (2010), and
Pais et al. (2014) conclude that minority households selectively move into more polluted
areas than majority households do. Even when controlling for income, these disparities
in moving behaviour persist, which indicates that selective migration is not mainly
driven by income. However, agent-based models of Campbell et al. (2015) indicate
that the finding of minorities selectively moving into low-quality areas may be a
result of similarity preferences rather than the tendency of choosing lower quality
neighbourhoods. Thus, it is unclear how decisive those selective migration processes
are for the observed extent of environmental inequality.

5.3 Macro-structural predictors

Regarding the extent of environmental inequality, previous studies have shown that
some cities exhibit a high level of environmental inequality, while others show none
or only low levels (Downey, 2007; Downey et al., 2008; Padilla et al., 2014). To
explain these variations, this section first describes hypotheses that are derived from
the standard strand of reasoning and subsequently develops a novel hypothesis that
has not been tested by previous research.

The theory of selective siting highlights two factors that should explain the level of
environmental inequality on the macro level: political efficacy and ethnic residential
segregation. First, assuming that companies choose facility locations based on the level
of expected political resistance, higher political efficacy of majority members should
increase the ‘externalization’ of pollution onto minority groups. Second, independent
from the actual motives of a company’s decision, decision makers should only be able to
place facilities disproportionately close to minority residents, if residential segregation
exists. In cities where minority residents are evenly distributed in space (absolutely
desegregated), there is no opportunity for companies to discriminate against minority
households and to choose a facility location that is disproportionately close to minorities.
Thus, higher residential segregation should increase the possibility of selective siting
and consequently increase the level of environmental inequality.
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The same argument applies for selective migration. An absolutely desegregated area
makes selective migration implausible as an explanation for environmental inequality.
In a desegregated city, there is no possibility that minority households would have
moved selectively into polluted areas in the past, while majority households would not.
If selective migration were at work, minorities would live segregated in areas closer to
industrial facilities as a consequence of selective migration. Thus, selective migration
processes should produce higher levels of segregation. Second, according to the ‘racial
income-inequality thesis’, economic disparities should be the main reason for selective
migration processes. Thus, higher levels of economic inequality within a city should
lead to higher levels of environmental inequality.

In sum, the standard strand of reasoning in environmental inequality research leads
to the following hypotheses: the level of environmental inequality increases with

H1) increasing levels of residential segregation,
H2) increasing political efficacy of the majority group,
H3) increasing economic inequality.

However, previous research produced rather inconclusive results regarding those
hypotheses. Comparing the level of environmental inequality in U.S. metropolitan
areas, Downey et al. (2008) find mixed results regarding the role of income inequality
and spatial segregation. Though both factors have a significant effect in some models,
the results vary with respect to the operationalisation of the dependent variable and
the ethnic group under consideration. Similarly, Downey (2007) finds a significant
association between residential segregation and the ethnic toxic concentration ratio,
but the effect is small in magnitude and the explanatory power of the model only
marginal. In contrast, a recent comparison of segregation measures by Ard (2016)
shows that – for most segregation measures – increasing segregation leads to increasing
health risks especially for minority residents. Still, it is difficult to interpret strength
and explanatory power in this study. As noted by Downey (2007), it seems odd that
segregation has no distinct impact on the level of environmental inequality given that
it seems to be an important condition for the theories of selective siting as well as
selective migration to work.

One explanation could be that the spatial proximity of industrial facilities is mainly
driven by labour-market related characteristics. For example, Hersh (1995) finds
that working class households are located closer to facilities because of attractive job
opportunities. Similarly, Been and Gupta (1997), and Wolverton (2012) identify the
percentage working in manufacturing as an important driver of facility siting. On the
one hand, industrial workers offer an attractive labour force for companies; on the other
hand, people employed in industry may trade-off environmental quality for attractive
jobs (Wolverton, 2009). If minorities are, at the same time, overrepresented in the class
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of manufacturing or industrial workers, this will lead to a disproportionate burden of
minorities. Thus, the extent of environmental inequality might also depend on the
share of people working in the industrial sector. In line with this hypothesis, Krieg
(1995) identifies a higher correlation between minority share and toxic waste sites in
older industrialised towns, which leads to the hypothesis that the level of environmental
inequality increases with

H4) an increasing share of people employed in the industrial sector.

Another explanation is that studies of environmental inequality ‘fail to take the
spatial distribution of environmental hazards within metropolitan areas into account’
(Downey, 2007, p. 970). More precisely, the results of Downey (2005) in Detroit point
out that ethnic minorities were somewhat separated from (new) polluting facilities
because they lived – due to high residential segregation – in areas where industrial
facilities decreased. While the Black population resided segregated in central areas
of the city, new facilities emerged in suburban and predominately White areas. This
process ‘prevented’ the Black population from living in areas of newly emerging
facilities and, thus, led to the conclusion that facilities were not sited selectively in
Black neighbourhoods between 1970 and 1990.

Elliott and Frickel (2015) support this implication in a historical analysis of hazard-
ous industrial sites in four U.S. cities, finding a persisting geographical accumulation
of industrial sites around the urban core. At the same time, they conclude that the
extent of environmental inequality diminished over time due to the increasing churning
of White middle-class households into those central areas, where minorities have been
overrepresented so far. Also for NO2 concentration levels (including also mobile sources),
Padilla et al. (2014) find a positive correlation between deprivation and pollution only
in those cities with high deprivation levels in the inner city.

It is well known from segregation research (e.g. Massey & Denton, 1989) that
minorities generally tend to cluster around the central city districts. As has been stated
above, this can also prevent minorities from being exposed to environmental pollution
if this pollution occurs in more peripheral areas. Altogether, this suggests that, when
taking the spatial distribution of pollution into account, especially the centrality of
pollution is a crucial driver of environmental inequality. If facilities are located close to
the city centre – where minority groups usually cluster – we expect to observe a high
correlation between minority share and environmental pollution. This leads to the last
(and so far overlooked) hypothesis that the level of environmental inequality increases
with

H5) increasing centrality of facilities within the urban space.

Though previous results point towards the importance of the spatial distribution of
pollution, this hypothesis has not been explicitly tested in previous research.
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5.4 Analytical strategy

5.4.1 Data

The European Pollutant Transfer and Release Register (E-PRTR; European Com-
mission, 2006) is a register capturing industrial activities and emission reports on all
German facilities that fall under one or more of the 65 E-PRTR activities (European
Commission, 2006, pp. 79-82) and exceed a pollutant specific threshold of emissions
(European Commission, 2006, pp. 83-86). The regulations of this pollutant register are
similar to the U.S. Toxics Release Inventory (TRI). All facilities exceeding a pollutant-
specific threshold have to report their emissions and geo-locations.1 In 2011, the dataset
contains a total of 1,479 facilities reporting nearly 1b tonnes of emissions to air and
nearly 90m tonnes of processed waste. Of those facilities, 367 (24.81%) are located
within a 2 kilometre buffer around the 79 metropolitan areas and report emissions to
air. Most of the air-polluting facilities in metropolitan areas operate in the energy and
waste management sector (both 28%), metal production, chemical industry (both 10%),
or the mineral industry (9%).

The 2011 German census (Statistische Ämter des Bundes und der Länder, 2015)
provides information about the German population on the level of 361,478 equally
distributed 1 kilometre grid cells. Reducing this dataset to non-missing observations
(excluding cases with none or low number of inhabitants) and German metropolitan
areas (more than 100,000 inhabitants) results in a final dataset of 9,061 grid cells
clustered within 79 cities. In total these grid cells capture approx. 24 million inhabitants
and contain on average 2,650 (median: 1,717) inhabitants.

In addition, the socio-demographic data of the 2011 German census are further
enriched by characteristics of the 79 metropolitan cities provided by the ‘Indikatoren
und Karten zur Raum- und Stadtentwicklung’ database (INKAR; BBSR, 2017). This
is done by using not the level of municipalities but the level of districts (‘Landkreise’)
as 66 of the 79 cities are districts by themselves (‘Kreisfreie Stadt’) and this level
provides additional variables not available at the municipality level. Though for 13
of the cities, district-level characteristics also include sub-urban regions, additional
analyses excluding these cities yield nearly identical results.

5.4.2 Variables

The main variable of interest is the amount of air pollution for each census grid cell.
Therefore, I created a 2 kilometre buffer around the georeferenced location of each
E-PRTR facility and allocated the reported emissions to air proportionate to the spatial
1 Note that information in the E-PRTR is self-reported. To control for reporting biases, a model using

3-years average emissions was estimated, producing similar results.
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overlap between the buffer and each census grid cell. This method is similar to the
method Banzhaf and Walsh (2008) apply to the U.S. TRI data. This leads to a dataset
of 9,061 census grid cells containing the proportionate amount of industrial emissions
to air (including greenhouse gases, chlorinated substances, heavy metals, and other
gases and organic substances), without weighting them by toxicity. The reason for not
weighting the pollution by toxicity is that using EPA’s RSEI toxicity weights reduces
the effective number of facilities within the cities to 179 with only 49 cities holding at
least one facility. However, additional analyses using toxicity weights lead to similar
results with the same conclusions, no matter whether in- or excluding cities without
any toxic facilities (see Figure 5.3 of the Appendix). To take the right skewness of the
emissions into account, the natural logarithm of the emissions (+1) is calculated.

The main explanatory variable on the census grid cell level is the minority share.
In the German census, this is available as the percentage of foreigners (not holding
German citizenship) in each census cell. Additional control variables on the grid cell
level include population (which equals population density because of same-sized spatial
units), the percentage of people aged 65 or older, the percentage of vacant housing, and
the living space per inhabitant (in m2). The latter can be seen as a proxy for wealth
especially within cities. Furthermore, I control for infrastructural characteristics by
including the distance to highway junctions and railway lines (e.g. Wolverton, 2012).
Those infrastructural characteristics are obtained from OpenStreetMap.

To investigate the differences between German cities, I use the following city-
level indicators: residential segregation, economic inequality, political efficacy, the
share of employees in industry, and facility centrality. As a measure for segregation,
the spatial information theory index (H̃) as proposed by Reardon and O’Sullivan
(2004) is computed for each city. The spatial version H̃ is calculated by taking
the average proximity-weighted local neighbourhood of each point into account. In
the main analysis, a kernel density bandwidth of 2,000m is used to compute the
local environment. Economic inequality is operationalised by the German – foreign
unemployment ratio (percentage of unemployed foreigners divided by the percentage of
unemployed Germans). Political efficacy is measured as the total voter turnout of each
city in the preceding federal election (2009), and the share of industrial workers as the
percentage of employees in the industrial sector. In a last step, further controls on the
city level are added. These controls include the average gross wages per capita in the
industrial sector, the city size (area), and population growth rate per square kilometre
within the last ten years.

To calculate the facility centrality in each city, I geo-coded each city’s town hall
as the city centre.2 Subsequently, I computed the distance of each industrial facility
within a 2 kilometre range of the city boundaries to the city centre. In the end, the
2 Manual inspection of the 79 cities confirms this strategy to be adequate.
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average of these distances was taken and divided by the maximum possible distance
between the city centre and each point of the city boundary. Dividing the average
distance by the maximum distance ensures that the centrality measure does not depend
on the city’s actual size but becomes a relative measure. For ease of interpretation, I
calculated the inverse of this average relative distance to receive the average centrality
of industrial facilities.3 Formally, the facility centrality for each city i = 1, ..., N can be
written as

FCi =
( 1
M

∑M
j=1 dij

max(d̃i)

)−1

,

where dij is the distance between each facility j = 1, ...,M in the 2km surrounding of
city i and the city’s centre, and d̃i a vector of the distances between the city centre
and all coordinates of the city’s boundary. The summary statistics of all variables are
presented in Table 5.3 of the Appendix.

5.4.3 Method

The analyses rely on multilevel models, nesting the 9,061 census grid cells within the
79 cities (e.g. Hox & Wijngaards-de Meij, 2015). The main point of interest is the
comparison of within-city environmental inequality between the cities. As in previous
literature (e.g. Ash & Fetter, 2004; Diekmann & Meyer, 2010; Downey & Hawkins,
2008; Rüttenauer, 2018), the air pollution is regressed on the percentage of foreigners,
and this regression coefficient is interpreted as the level of environmental inequality.
To obtain a within-city effect, the first level (census grid cell) variables are group
mean centered (for a detailed discussion on centering methods and implications see
Enders & Tofighi, 2007). This is essentially similar to city-fixed effects estimators
(including a dummy for each single city), which means that all city-wide characteristics
are controlled for in the first-level estimates (e.g. generally higher pollution in larger
cities). The model can be written as

pollutionij = β0j + β1forgnij + β2forgnijsegrj + ...+ u1jforgnij + εij,

for all i = 1, ..., N observations and j = 1, ..., J cities, where β0j is a city-specific
intercept, u1j the random-slope parameter, and εij the idiosyncratic disturbance.

The included cross-level interactions (β2) provide an estimate of how city-level
characteristics (e.g. segregation) influence the within-city correlation between the
percentage of foreigners and industrial air pollution (β1), i.e. the level of environmental
inequality. Note that the main effects of the city-level variables are subsumed by the
individual intercepts. Furthermore, the random slope parameter can be used to evaluate

3 This ensures, furthermore, that cities without any facility receive a centrality value of zero, whereas
the distance would be infinite.
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the impact of the cross-level interactions on the between-city variation. All second level
predictors (city level) were standardised around the grand mean and scaled by their
standard deviation. Note that this approach does not claim to identify causal effects,
as the cross-sectional design does not allow testing selective siting against selective
migration processes (e.g. Baden & Coursey, 2002; Pastor et al., 2001). The aim is to
analyse whether city-level characteristics are connected to the extent of environmental
inequality. However, similar results are obtained when conditioning on facility location,
or merging 2012 pollution reports with the 2011 census (see the Tables 5.4 and 5.5 in
the Appendix).

5.5 Results

Model M1 in Table 5.1 presents the baseline model, only including the minority
share as a predictor. The model confirms that, within German cities, there is a
significant and relatively strong correlation between minority share and environmental
pollution. Furthermore, this effect varies considerably and significantly between the
cities (compared to a model without random slope: χ2(1) = 184.01, p < 0.001). More
precisely, the coefficients for the minority share ranges from -0.1557 (Gelsenkirchen) to
0.8567 (Leverkusen).

This confirms that there is a large variation in the level of environmental inequality.
While some cities have a negative coefficient, i.e. the majority is actually dispropor-
tionately more affected by environmental pollution, others have a very strong positive
coefficient pointing towards a strong disadvantage of minority groups. For a first de-
scriptive inspection, Figures 5.1 and 5.2 show the spatial distributions of air pollution
and minorities for the most extreme cities (including the point locations of facilities
and the city centre). While Figure 5.1 presents cases with the highest levels of envir-
onmental inequality, Figure 5.2 presents cases with the lowest levels of environmental
inequality.

When looking at the distribution of the minority population (right panel for each
city), minority households seem to experience relatively identical levels of residential
segregation, but tend to live closer to industrial facilities in the four cities of Figure
5.1 than in the cities of Figure 5.2. Again in both figures, the minority share is higher
around the city centre, meaning that minorities in all eight cases cluster around the city
centre – a pattern similar to cities in the U.S. (Massey & Denton, 1989). However, there
appears to be an interesting difference between both figures: pollution and facilities
tend to be closer to the city centre in cities with high levels of environmental inequality
(Figure 5.1). Facilities in cities with low levels of environmental inequality (Figure 5.2),
in contrast, are located more distant from the city’s centre. This seems to prevent
minorities from being disproportionately affected by industrial pollution. In those
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Figure 5.1: Distribution of pollution and minorities for cities with high level of environ-
mental inequality

cities, where pollution happens to be strong in the peripheral areas, majority groups
seem to be equally or even more affected by pollution than their minority counterparts.

To test the influence of the city-level characteristics statistically, models M2 - M5
of Table 5.1 present the results of the multilevel models including census-level controls
and cross-level interactions. Model M2 adds the census-level control variables. Though
the coefficient for the minority share is lowered in magnitude by including the controls,
it remains highly significant and strong. As expected, the living space per inhabitant –
which can be seen as a proxy for wealth in urban areas – is negatively associated with
the level of environmental pollution. Furthermore, the distance to highway junctions
and railway lines has the expected effect on air pollution. In line with results of
Wolverton (2012), pollution is higher in areas with more favourable infrastructural
opportunities. Yet, a high level of environmental inequality net of the census-level
controls remains.
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Figure 5.2: Distribution of pollution and minorities for cities with low level of environ-
mental inequality

To answer the question of whether structural differences between the cities can
explain the differing levels of environmental inequality, models M3 to M5 add the
cross-level interactions between structural indicators and the minority share. Model
M3, which includes the structural characteristics derived from the standard literature
of environmental inequality, presents challenging findings. Neither economic inequality
nor political efficacy has a significant influence on the level of environmental inequality
within a city. The coefficient regarding economic inequality does not show the assumed
direction: higher economic inequality is associated with lower levels of environmental
inequality – though far from significant. Residential segregation, in contrast, shows
the expected sign: higher residential segregation is associated with higher levels of
environmental inequality. However, the effect is only significant at the 10% level
and relatively weak in magnitude. Alternative segregation indices like the spatial
dissimilarity index (D̃) or different radii for the local environment yield very similar
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Table 5.1: City-fixed effects multilevel models. Dependent variable: ln air pollution
M1 M2 M3 M4 M5

Census cell level

% Foreigners 0.297∗∗∗ 0.187∗∗∗ 0.187∗∗∗ 0.187∗∗∗ 0.177∗∗∗
(0.033) (0.033) (0.034) (0.030) (0.034)

Population −0.006 −0.006 −0.005 −0.005
(0.011) (0.011) (0.011) (0.011)

% 65 and older −0.003 −0.004 −0.003 −0.003
(0.010) (0.010) (0.010) (0.010)

% Vacant housing 0.019† 0.020† 0.021∗ 0.022∗
(0.011) (0.011) (0.011) (0.011)

Living space −0.052∗∗∗−0.052∗∗∗−0.052∗∗∗−0.052∗∗∗
(0.013) (0.013) (0.013) (0.013)

Distance to highway −0.043∗∗∗−0.042∗∗∗−0.042∗∗∗−0.042∗∗∗
(0.011) (0.011) (0.011) (0.011)

Distance to rail −0.159∗∗∗−0.158∗∗∗−0.157∗∗∗−0.157∗∗∗
(0.011) (0.011) (0.011) (0.011)

City level

% Foreigners × H̃2000 0.078† 0.085∗ 0.111∗
(0.043) (0.037) (0.048)

% Foreigners × Unemployment ratio −0.003 −0.034 −0.034
(0.029) (0.027) (0.029)

% Foreigners × Voter turnout 0.047 0.030 0.028
(0.034) (0.031) (0.034)

% Foreigners × % Employed in industry 0.086∗∗ 0.066∗∗ 0.050
(0.027) (0.024) (0.031)

% Foreigners × Facility centrality 0.113∗∗∗ 0.111∗∗∗
(0.025) (0.025)

% Foreigners × Wages in production 0.020
(0.036)

% Foreigners × Size −0.051
(0.059)

% Foreigners × Growth rate 0.023
(0.032)

Fixed effects yes yes yes yes yes
Random slope yes yes yes yes yes
AIC 23656 23399 23452 23450 23496
N 9061 9061 9061 9061 9061
N cluster 79 79 79 79 79
σ2 % Foreigners 0.065 0.059 0.052 0.038 0.039
σ2 Residual 0.784 0.759 0.759 0.759 0.759
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1. Multilevel models with group centered first level variables. All
variables are scaled by their standard deviation. Standard errors in parentheses.

results (not shown). Only the share of industrial workers yields a significant influence
on the level of environmental inequality: the more people employed in industry, the
higher the level of environmental inequality. This is in line with the hypothesis
that minorities are more affected by pollution, because industrial facilities provide
attractive employment opportunities for the working class. Still, adding those cross-level
interactions reduces only a small proportion of the slope variance (around 12%). Note
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that segregation, unemployment ratio, and voter turnout alone would actually increase
the variance. Thus, the structural characteristics derived from the standard strand
of theoretical reasoning do not explain the varying levels of environmental inequality
at all. Though surprising from a theoretical point of view, those findings reflect the
results obtained by Downey (2007) in the U.S.: in line with the present study, economic
inequality has an insignificant and in some models negative effect on environmental
inequality, and residential segregation does an unexpectedly poor job of explaining
environmental inequality.

Model M4 adds the measure of facility centrality as a cross-level interaction to test
the influence of the geographic distribution of polluters. In line with the impressions
from Figures 5.1 and 5.2, the centrality of facilities within a city shows a highly
significant and positive association with environmental inequality. The higher the
average centrality of facilities, the stronger the correlation between minority share and
pollution. While a one standard deviation increase in minority share corresponds to a
0.187 standard deviation increase in pollution at the average value of facility centrality,
this effect increases by 60% to 0.3 (0.187 + 0.113) when the facility centrality lies
one standard deviation above the mean. Minorities are disproportionately affected
by industrial pollution especially in cities with centrally located facilities. Another
interesting finding of model M4 concerns the effect of spatial segregation. Once facility
centrality is controlled for, the coefficient for residential segregation is significant at
the 5% level. In addition, including the facility centrality explains a large proportion
of the random slope variance. When comparing models M4 and M3, more than one
quarter of the slope variance ((0.052− 0.038)/0.052 = 0.27) can be explained due to
the centrality of industrial facilities; more than due to all other variables combined.
This highlights the importance of the facilities’ location or, more precisely, centrality
within the urban space for the extent of environmental inequality.

Model M5 adds further cross-level controls. Though none of those exhibit a
significant effect, they have some influence on other effects of interest. First, the
segregation effect increases in its magnitude and now equals the the facility centrality
effects regarding its magnitude. This is mainly due to controlling for the city size.
Second, the effect of the share employed in the industrial sector is lower in its magnitude
and does not reach significance in model M5. This is mainly due to the collinearity
between the share of industrial workers and wages in the industrial sector. Still even
when adding further controls, the centrality of industrial facilities exhibits a highly
significant effect on the extent of environmental inequality.

Note that the findings are robust against a variety of model specifications, like
excluding cities with extreme values, restricting the data to observations with at least
200 inhabitants, using an absolute instead of a relative centrality index, estimating
separate models for each hypothesis, using the proximity to air polluting facilities
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within the city as dependent variable, or including spatial spillover effects. Also when
applying RSEI inhalation toxicity weights and thereby excluding greenhouse gases
from the analysis, similar results are obtained regarding the centrality of facilities.
Residential segregation and percentage employed in industry, in contrast, exhibit no
significant effect on the level of environmental inequality when using toxicity-weighted
pollution (see Figure 5.3 of the Appendix). Furthermore, additional spatial models (see
Table 5.7 in the Appendix) reveal that the centrality of facilities does not only increase
the general burden of minorities but also the clustering effect observed by Rüttenauer
(2018).

5.6 Discussion

Does this mean that environmental inequality is not mainly driven by selective siting or
selective migration processes, but rather a result of the urban structure? It is important
to keep in mind that this is a cross-sectional finding, making it hard to interpret
why the centrality of facilities is so important. In my opinion, there are two ways of
interpreting the results: the centrality of facilities might either be a confounding or a
mediating mechanism.

First, the impacts of facility centrality may be the result of two independent processes.
Minorities cluster around the city centre because of reasons other than environmental
quality (e.g. infrastructure, similarity preferences, etc.). At the same time, industrial
air pollution occurs around the urban core because of infrastructural or historical
reasons. Historical analyses of Portland by Elliott and Frickel (2013), for example, show
a persisting clustering of industrial facilities close to waterways, independent of socio-
demographic characteristics. In combination, those two independent processes may
lead to the fact that minorities bear a disproportionately high level of environmental
pollution. This would question the causal link between pollution and minority share.

Second, centrality of industrial facilities may be driven by some kind of selective
siting, independent of the applied measures for political efficacy and economic inequality;
or the clustering of minorities may be driven by high pollution within the urban core.
In contrast to the first interpretation, this would suggest a causal link between pollution
and minority share, mediated by the centrality of industrial facilities.

Yet, additional models (Table 5.2) do not provide an easy conclusion regarding the
predictors of facility centrality. It seems that the location of the facilities is indeed
independent of the centrality of the minority population within the city. Model M1 of
Table 5.2 regresses the facility centrality on the relative minority centralization index
(Massey & Denton, 1988), but does not exhibit a significant correlation. This means that
facilities are not located more centrally if minorities live centrally. Similar conclusion
apply to the level of segregation (M2). Interestingly, models M3 and M4 indicate
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Table 5.2: Linear OLS models (city level). Dependent variable: facility centrality
M1 M2 M3 M4 M5 M6 M7 M8

Centralization indexa 0.020 0.186
(0.114) (0.171)

H̃2000 −0.105 −0.198
(0.113) (0.155)

Unemployment ratio 0.295∗∗ 0.255†
(0.109) (0.130)

Voter turnout 0.244∗ 0.160
(0.111) (0.138)

% Employed in industry 0.118 0.147
(0.113) (0.122)

Cenrality of rivers −0.071 −0.142
(0.114) (0.114)

Public transport −0.084 0.021
(0.114) (0.118)

R2 0.000 0.011 0.087 0.059 0.014 0.005 0.007 0.164
Adj. R2 -0.013 -0.002 0.075 0.047 0.001 -0.008 -0.006 0.082
N 79 79 79 79 79 79 79 79
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1. All variables are centered around their mean and scaled by their
standard deviation. Standard errors in parentheses.
a Relative Centralization Index as described by Massey and Denton (1988): proximity of the foreign population
to the city centre relative to the proximity of the German population to the city centre.

that facilities are located more centrally in cities with higher economic inequality and
higher political efficacy. While the first model rather supports the interpretation of
the facility centrality as confounding mechanisms, models M3 and M4 rather point
to its role as a mediator. Additionally, models M6 and M7 show that neither the
centrality of rivers (measured as the minimal distance to the city centre), nor the extent
of public transport opportunities (measured as the public transport stops per square
kilometre) yield a significant effect on the centrality of industrial facilities. Though
central facilities are often located next to rivers, there are also cities with central rivers
but without centrally located facilities. Thus it remains somehow inconclusive why
some cities exhibit centrally located facilities, while others do not. Further research
using longitudinal data is needed to draw appropriate conclusions about the occurrence
of centrally located facilities.

5.7 Conclusion

Though many studies investigate environmental inequality, there is surprisingly little
consensus about the factors causing the uneven distribution of environmental burdens
across different groups. While some empirical studies confirm that selective siting plays
an important role, others rather emphasise the role of selective migration. The present
study goes one step back and analyses under which circumstances we observe high
levels of environmental inequality. Therefore, this study investigates varying levels of
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environmental inequality between German cities and tests whether different structural
characteristics explain those variations.

The results of the city-fixed multilevel models reveal that residential segregation,
economic inequality and political efficacy of the majority population do a rather
poor job of explaining the level of environmental inequality. Though segregation has
the expected positive effect, its significance depends on model specifications and its
explanatory power is rather low. This is also what Downey (2007) concludes for the
U.S., but nonetheless seems to be a surprising result, given the importance of residential
segregation for the most common explanations of environmental inequality. Without a
substantial level of spatial segregation, neither selective siting nor selective migration
seem to be plausible explanations. Only the share of employees in the industrial
sector exhibits a significant and positive correlation with the level of environmental
inequality, pointing towards the importance of employment opportunities. However, a
much stronger and more robust effect comes from the spatial distribution of pollution
within the urban space. Including the spatial centrality of industrial facilities as a
cross-level interaction explains more than 25% of the random slope variance. Though
the measure of centrality applied in this study is rather simple (not considering the
spatial distribution or density of facilities), it still does a very good job of explaining the
varying levels of environmental inequality. Minorities are disproportionately affected if
pollution occurs around the city centre – where minorities tend to cluster. These results
point to the importance of incorporating the spatial structure of polluters within the
urban space into the analysis of environmental inequality.

The results pose some questions for further research. First, the analysis is based on
Germany which has low levels of spatial segregation and rather dense metropolitan
areas. Thus, further research has to test whether the presented findings apply to
other countries with other structural conditions. Second, the analysis relies only on
industrial air pollution, while ignoring pollution coming from mobile sources like traffic.
It is likely that results for mobile sources (like traffic) differ, as pollution may be
generally more concentrated around the urban core. Third, this study is cross-sectional
in nature. Hence, it is not possible to investigate the temporal order of facility siting
and residential moving behaviour. Finally, further research should also aim to enrich
the analyses by further data of the urban form of the cities. Other factors than the
centrality of rivers or public transport could play an important role in determining the
centrality of industrial facilities.

Nonetheless, the findings of this study challenge the standard reasoning of envir-
onmental inequality research. While most environmental inequality research focuses
on individual decisions, only few studies have analysed the spatial context in which
those individual processes occur. It seems, however, that structural constraints play
an important role in determining the level of environmental inequality observed at
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the macro level. This is not to say that selective migration or siting does not occur,
but only that the importance of these causal mechanisms may be overstated. Though
companies may consider the minority share next to potential sites, other factors may
be much more important (e.g. Elliott & Frickel, 2015; Wolverton, 2012). Similarly,
environmental quality certainly plays a role for moving decisions, but other factors
may be more important. Still, structural conditions may contribute to the (possibly
unintended) consequence that minorities end up in more polluted neighbourhoods. This
interpretation of the findings is also supported by the fact that agent-based models by
Campbell et al. (2015) do not reach realistic levels of environmental inequality when
just assuming selective siting and migration as causal mechanisms.

In sum, the results encourage further research not only to ‘bring the polluters back
in’ (Grant et al., 2010), but also to bring the urban space back in, thereby considering
the geographic location of polluters within urban areas. This might also help urban
planners to develop strategies for avoiding or reducing the disproportionate exposure
of minority households to environmental pollution.
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5.A Appendix Chapter 5

Table 5.3: Summary statistics
Statistic N Mean St. Dev. Min Max
ln Air pollution 9061 4.04 6.65 0.00 20.93
% Foreigners 9061 9.00 8.43 0.00 87.10
Population 9061 2649.91 2887.97 3.00 23379.00
% 65 and older 9061 20.57 7.44 0.00 99.60
% Vacant housing 9061 3.50 3.54 0.00 60.00
Living space 9061 41.74 5.95 11.00 95.90
Distance to highway 9061 2683.66 2094.72 23.29 17239.26
Distance to rail 9061 1236.04 1240.91 0.02 10170.87
H̃2000 79 0.03 0.01 0.01 0.08
D̃2000 79 0.17 0.05 0.08 0.30
Unemployment ratio 79 2.34 0.37 1.28 3.43
Voter turnout 79 69.18 3.75 60.10 77.10
% Employed in industry 79 16.72 10.41 5.10 76.60
Facility centrality 79 2.78 2.17 0.00 17.78
Wages in production 79 3498.37 625.28 2422.90 5076.50
Size 79 17211.42 12977.61 4489.00 89170.00
Growth rate 79 0.80 4.20 −8.31 10.46

Explained Slope Variance (%)

11.3

11.57

10.3

12.72

48.11Facility centrality

% Employed in industry

Voter turnout

Unemployment ratio

Residential Segregation

-0.2 -0.1 0.0 0.1 0.2
Cross-level interaction with % foreigners

Separate Model M3 M4 M5

Figure 5.3: Coefficients of cross-level interactions with 95% confidence interval using
toxicity-weighted air pollution, including explained slope variance for separate models
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Table 5.4: City-fixed effects multilevel models conditioning on facility location.
Dependent variable: ln air pollution

M1 M2 M3 M4 M5
Census cell level

% Foreigners 0.297∗∗∗ 0.150∗∗∗ 0.148∗∗∗ 0.147∗∗∗ 0.142∗∗∗
(0.033) (0.033) (0.034) (0.029) (0.032)

Population 0.007 0.008 0.008 0.008
(0.011) (0.011) (0.011) (0.011)

% 65 and older 0.001 0.000 0.000 0.000
(0.010) (0.010) (0.010) (0.010)

% Vacant housing 0.012 0.013 0.014 0.015
(0.011) (0.011) (0.011) (0.011)

Living space −0.048∗∗∗−0.047∗∗∗−0.047∗∗∗−0.047∗∗∗
(0.012) (0.012) (0.012) (0.012)

Predicted probabilitya 0.232∗∗∗ 0.232∗∗∗ 0.232∗∗∗ 0.232∗∗∗
(0.011) (0.011) (0.011) (0.011)

City level

% Foreigners × H̃2000 0.076† 0.083∗ 0.103∗
(0.042) (0.035) (0.045)

% Foreigners × Unemployment ratio −0.002 −0.036 −0.033
(0.029) (0.026) (0.028)

% Foreigners × Voter turnout 0.054 0.036 0.032
(0.034) (0.029) (0.033)

% Foreigners × % Employed in industry 0.091∗∗∗ 0.069∗∗ 0.059∗
(0.026) (0.023) (0.030)

% Foreigners × Facility centrality 0.123∗∗∗ 0.121∗∗∗
(0.024) (0.024)

% Foreigners × Wages in production 0.011
(0.034)

% Foreigners × Size −0.036
(0.056)

% Foreigners × Growth rate 0.029
(0.030)

AIC 23656 23179 23230 23224 23270
N 9061 9061 9061 9061 9061
N cluster 79 79 79 79 79
σ2 % Foreigners 0.065 0.058 0.051 0.033 0.035
σ2 Residual 0.784 0.741 0.741 0.741 0.741
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1. Multilevel models with group centered first level variables. All
variables are scaled by their standard deviation. Standard errors in parentheses.
a Predicted probability of probit model. Dep. var: Presence of at least one facility. Indep. vars: Distance to
highway junctions, distance to railways, distance to rivers, number of facilities in neighbouring units.
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Table 5.5: City-fixed effects multilevel models. Dependent variable: ln air pollution
in 2012

M1 M2 M3 M4 M5
Census cell level

% Foreigners 0.314∗∗∗ 0.203∗∗∗ 0.196∗∗∗ 0.196∗∗∗ 0.188∗∗∗
(0.029) (0.029) (0.031) (0.029) (0.032)

Population −0.001 −0.001 −0.000 −0.000
(0.011) (0.011) (0.011) (0.011)

% 65 and older −0.005 −0.006 −0.006 −0.006
(0.010) (0.010) (0.010) (0.010)

% Vacant housing 0.026∗ 0.027∗ 0.028∗ 0.028∗∗
(0.011) (0.011) (0.011) (0.011)

Living space −0.047∗∗∗−0.047∗∗∗−0.047∗∗∗−0.047∗∗∗
(0.013) (0.013) (0.013) (0.013)

Distance to highway −0.048∗∗∗−0.047∗∗∗−0.047∗∗∗−0.047∗∗∗
(0.011) (0.011) (0.011) (0.011)

Distance to rail −0.155∗∗∗−0.154∗∗∗−0.153∗∗∗−0.153∗∗∗
(0.011) (0.011) (0.011) (0.011)

City level

% Foreigners × H̃2000 0.048 0.054 0.078†
(0.038) (0.035) (0.045)

% Foreigners × Unemployment ratio 0.021 −0.000 −0.001
(0.027) (0.026) (0.028)

% Foreigners × Voter turnout 0.031 0.020 0.020
(0.031) (0.029) (0.033)

% Foreigners × % Employed in industry 0.075∗∗ 0.061∗∗ 0.050†
(0.024) (0.023) (0.030)

% Foreigners × Facility centrality 0.082∗∗∗ 0.080∗∗∗
(0.024) (0.024)

% Foreigners × Wages in production 0.013
(0.034)

% Foreigners × Size −0.047
(0.055)

% Foreigners × Growth rate 0.020
(0.030)

AIC 23644 23390 23445 23451 23497
N 9061 9061 9061 9061 9061
N cluster 79 79 79 79 79
σ2 % Foreigners 0.049 0.042 0.039 0.033 0.034
σ2 Residual 0.785 0.759 0.759 0.759 0.760
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1. Multilevel models with group centered first level variables. All
variables are scaled by their standard deviation. Standard errors in parentheses.
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Table 5.6: Linear OLS models. Dependent variable: coefficient first
stagea

M1 M2 M3 M4 M5
H̃2000 0.181 0.241∗ 0.271∗∗ 0.349∗∗

(0.112) (0.113) (0.100) (0.122)
Facility centrality 0.474∗∗∗ 0.463∗∗∗ 0.456∗∗∗

(0.100) (0.099) (0.100)
Unemployment ratio 0.010 −0.112 −0.111

(0.116) (0.106) (0.110)
Voter turnout 0.222† 0.162 0.137

(0.123) (0.110) (0.121)
% Employed in industry 0.353∗∗ 0.276∗∗ 0.205†

(0.106) (0.095) (0.122)
Wages in production 0.070

(0.123)
Size −0.132

(0.118)
Growth rate 0.122

(0.105)
R2 0.033 0.224 0.191 0.376 0.397
Adj. R2 0.020 0.214 0.147 0.333 0.328
N 79 79 79 79 79
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1. All variables are scaled by their standard
deviation. Standard errors in parentheses.
a Interaction coefficient between % foreigners and city dummy, dep. var.: ln air pollution,
control variables similar to first level controls in Table 5.1.
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Table 5.7: City-fixed effects SLX multilevel models. Dependent variable: ln air
pollution

Model 1 Model 2 Model 3 Model 4 Model 5
Census cell level

% Foreigners 0.089∗∗∗ 0.068∗∗∗ 0.064∗∗∗ 0.052∗∗∗ 0.060∗∗
(0.018) (0.019) (0.019) (0.016) (0.020)

W [% Foreigners] 0.421∗∗∗ 0.319∗∗∗ 0.314∗∗∗ 0.318∗∗∗ 0.296∗∗∗
(0.046) (0.048) (0.052) (0.051) (0.052)

City level

% Foreigners × H̃2000 0.021 0.007 0.026
(0.021) (0.016) (0.027)

% Foreigners × Unemployment ratio 0.003 −0.006 −0.007
(0.019) (0.017) (0.020)

% Foreigners × Voter turnout 0.029 0.018 0.020
(0.021) (0.018) (0.024)

% Foreigners × % Empl. in industry 0.038∗ 0.033† 0.035
(0.019) (0.017) (0.022)

% Foreigners × Facility centrality 0.037∗ 0.038†
(0.018) (0.020)

% Foreigners × Wages in production −0.007
(0.022)

% Foreigners × Size −0.007
(0.030)

% Foreigners × Growth rate 0.011
(0.022)

W [% Foreigners] × H̃2000 0.057 0.079 0.109
(0.065) (0.064) (0.072)

W [% Foreigners] × Unemployment ratio 0.005 −0.044 −0.046
(0.044) (0.045) (0.043)

W [% Foreigners] × Voter turnout 0.031 0.009 0.017
(0.051) (0.051) (0.051)

W [% Foreigners] × % Empl. in industry 0.078† 0.047 0.047
(0.040) (0.040) (0.046)

W [% Foreigners] × Facility centrality 0.160∗∗∗ 0.157∗∗∗
(0.041) (0.038)

W [% Foreigners] × Wages in production −0.014
(0.054)

W [% Foreigners] × Size −0.075
(0.089)

W [% Foreigners] × Growth rate 0.031
(0.048)

Fixed effects yes yes yes yes yes
Random slope yes yes yes yes yes
First level controlsa no yes yes yes yes
AIC 22996 22857 22943 22961 23015
N 9061 9061 9061 9061 9061
N cluster 79 79 79 79 79
σ2 % Foreigners 0.008 0.007 0.007 0.000 0.005
σ2 W [% Foreigners] 0.131 0.130 0.128 0.121 0.097
σ2 Residual 0.724 0.706 0.707 0.708 0.707
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, †p < 0.1. Multilevel models with group centered first level variables. All
variables are scaled by their standard deviation. Standard errors in parentheses. The neighbours weights matrix
W is specified a contiguity weights matrix.
a Similar first level controls as in Table 5.1. All control variables are additionally included as spatially lagged
covariates.
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Chapter 6

Final Discussion and Conclusion



6.1 Introduction

The topic of environmental inequality has received extensive attention in the United
States. In Germany, by contrast, it has only played a minor role in sociological research,
which seems to be a serious shortcoming given the importance of environmental
conditions for other dimensions of social life. Thus, the main objective of this book
is to resolve this shortcoming and to extend the empirical research on environmental
inequality in Germany. Therefore, this book dealt with two main research questions:

1. Are minorities in Germany disproportionately exposed to environmental pollution?
2. What causes this disproportionate exposure of minorities to environmental pollu-

tion?

To answer these questions, I conducted several studies relying on different data sources
and methods. By using different analytical strategies, this book assesses the main
research questions from a diverse set of viewpoints, elaborating on several aspects of
environmental inequality. However, the final question remains as to how those findings
from different perspectives combine to a congruent overall picture of environmental
inequality in Germany. In the following sections, I will first summarise the main findings
of each study, subsequently combine these findings to an overarching conclusion, and
finally discuss limitations and implications for further research.

6.2 Summary of results

6.2.1 Study 1

The first study in this book follows the standard method of empirical research in the
social sciences by using household-level survey data of the German Socio-Economic
Panel (SOEP). This study relies on the subjectively perceived impairment through air
pollution and individual moving trajectories. In a first step, we replicate findings of
previous research by showing that minorities and low-income households face a higher
impairment through air pollution.

However, the main objective of this study is to investigate whether this higher
impairment stems from selective migration patterns. Therefore, the study uses fixed-
effects panel estimators to analyse whether income helps to increase the moving returns
and whether minority households experience different environmental benefits from
relocations. The results of the analyses reveal that income plays a rather minor role.
Though increases in income lead to significantly higher improvements in environmental
quality due to relocations, this effect is rather weak in its magnitude and depends on
the model specification. Minorities, in contrast, experience a strong disadvantage when
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moving. First generation immigrants are not able to improve the environmental quality
at their place of destination at all, while German households experience relatively
strong improvements due to relocations. This finding confirms that selective migration
patterns indeed contribute to the disproportionate exposure of minority households to
environmental pollution.

The fact that this disadvantage of minority households is only marginally reduced
when controlling for income contradicts the ‘racial income-inequality hypothesis’,
assuming that minority disadvantages mainly stem from differences in the socio-
economic status. Interestingly, the disadvantage completely vanishes in the second
generation; second generation immigrants experience similar moving returns as native
German households. To some extent, this finding contradicts the assumption that
discriminatory barriers on the housing market are responsible for the differing moving
returns, as many visible characteristics like names or looks are still present within
the second generation. Though discrimination based on other characteristics cannot
be ruled out, disadvantages may also result from different mechanisms. For instance,
network ties to the mainstream could play an important role in finding adequate housing,
or homogeneity preferences of (especially first generation) immigrant households might
constrain their choice set of possible destinations. However, those explanations remain
speculative at this stage of research.

It is important to keep in mind that this study has some limitations. First, it
relies on subjective measures of air pollution. Though this should be less of a problem
with fixed-effects panel estimators, changes in other characteristics than air pollution
might still influence the time-varying perception of environmental quality. Second,
we only test the mechanism of selective in-migration. The study investigates whether
households experience different returns based on household characteristics if households
move to another place of residence. We do not test whether increases in air pollution
lead to the selective out-migration of socio-economically affluent or native German
households, a question that should be investigated in further research.

6.2.2 Study 2

The second study differs from the remaining studies of this book, as it does not
deal with the topic of environmental inequality per se, but rather investigates a
methodological issue, which gains importance in the subsequent studies: statistical
methods for the analysis of spatial data. At the outset, the study provides an overview
of the most commonly used spatial regression models, and shows analytically that non-
spatial regression models suffer from estimation bias in several constellations of spatial
dependence, thereby giving a strong motivation to rely on spatial regression models when
using spatially aggregated data. However, a variety of different model specifications exist,
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assuming different dependency structures within the data. Furthermore, specification
tests are of little help in many situations, as all strategies suffer from severe drawbacks.
Thus, I employ several Monte Carlo experiments to assess the performance of different
specifications under the possibility of misspecification. The study extends previous
simulations by evaluating the bias in impacts rather than the coefficients, as the
regression impacts are the measures of interest in applied research.

The results reveal several interesting findings. First, in many situations the non-
spatial OLS model exhibits unbiased estimates of the direct impacts (though it yields
biased estimates of the coefficients). Nevertheless, several situations exist in which
OLS suffers from bias. Second, the most popular spatial model specifications – the
spatial autoregressive model (SAR), the spatial error model (SEM), and the spatial
autoregressive combined model (SAC) – show severe drawbacks: these models are very
sensitive to misspecification. The more flexible specifications – spatial lag of X (SLX),
spatial Durbin (SDM), and spatial Durbin error model (SDEM) – all provide robust
estimates of the direct impacts. Third, regarding the indirect impacts or ‘spillover’
effects, the relatively simple SLX model outperforms the more complex SDM and
SDEM in a ‘mixed world’, i.e. in the presence of all three sources of spatial dependence
(autocorrelation in the dependent variable, autocorrelation in the error, and local
‘spillover’ effects). Likewise, the results show that the SDM is more sensitive to non-
spatial omitted variable bias compared to SLX and SDEM. This gives some motivation
to rely on SLX or SDEM models if no prior information on the structure of the spatial
dependence is present.

Note, however, that the conclusions of this study are based on the robustness of the
models against misspecification. If the model correctly specifies the data generating
process, all model specifications (SAC is an exception to some extent) yield unbiased
estimates of the true impacts. A general conclusion that one should always use
SLX is thus erroneous. As a first step, it should be evaluated whether theoretical
considerations might guide the empirical model. If theoretical arguments give strong
reasons for global or local ‘spillovers’, the specification best suiting this argument
should be preferred. Yet, if several theoretical mechanisms might be at work, SLX
seems to provide relatively robust estimates. This yields important implications for
the following study, as environmental pollution as well as the minority share exhibit
high levels of spatial correlation, which can result from various theoretical processes.

6.2.3 Study 3

The third study again deals with the main research questions of this book by invest-
igating the presence and spatial pattern of environmental inequality in Germany. In
contrast to the first study, study 3 uses objective measures of toxic air pollution and spa-
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tially aggregated socio-demographic data. Therefore, the study combines georeferenced
pollution data of the European Pollution Release and Transfer Register (E-PRTR) and
spatial data of the 2011 German census by allocating the toxicity-weighted amount of
industrial air pollution to each census unit. By doing so, this study pursues two main
objectives. First, it aims to assess whether minorities are affected by a disproportionate
amount of toxic industrial emissions to air. Second, the study aims to draw a picture
of the spatial patterns of environmental inequality. Theoretically, both mechanisms –
selective migration and selective siting – predict that pollution and minority households
spatially cluster together. Following the selective migration argument, a polluted area
should attract minority households, which in turn attracts further minority households
because of similarity preferences, thereby leading to an accumulation of minority house-
holds around industrial facilities. Similarly, if we follow the argument of selective siting,
facilities should be placed predominantly in areas where minority households cluster, as
it seems plausible that protest against siting declines with distance rather than strict
boundaries.

The results of study 3 confirm results of study 1: the share of minorities within a
spatial census unit positively correlates with the amount of toxic industrial air pollu-
tion. This effect is very robust against different model specifications and considerably
high in magnitude. Even when considering the distance to the nearest industrial fa-
cility or the total amount of pollution without toxicity-weighting, minorities bear a
disproportionately high burden. Furthermore, the analyses show that minorities live
in more polluted areas in a German-wide comparison, but also live in more polluted
areas within the communities, thereby offering the first nation-wide confirmation of
the disproportionate exposure of minority households to environmental pollution. The
disadvantage of minorities even persists when housing-related variables – the living
space per inhabitant and the share of vacant housing – are controlled for. This, again,
raises some doubt on the assumption that disadvantages of minorities stem from lower
socio-economic resources and the need for affordable housing opportunities.

Regarding the spatial patterns, the results of the third study indeed confirm that
the broader neighbourhood matters. The SLX models reveal that pollution tends to be
high especially in those areas where a high share of minority households agglomerates.
Moreover, the connection between the minority share and environmental pollution is
significantly stronger within urban regions than within rural regions. Especially in
urban areas, minority households spatially cluster around hazardous industrial facilities.
This could be seen as an indication that residential segregation around industrial
facilities plays a major role in shaping the extent of environmental inequality. One
could assume that population pressure and tough housing market situations lead to
higher levels of segregation in urban areas, which, in consequence, steers minorities into
more polluted areas. However, the cross-sectional nature of the data does not allow to
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empirically test why neighbouring units matter in predicting the amount of pollution.
As demonstrated in the preceding study, several causal pathways are possible, but
cannot be separated empirically.

6.2.4 Study 4

The fourth study constitutes a follow-up study on the previous study. As in the
previous empirical assessment, study 4 uses spatially aggregated data of the E-PRTR
and the 2011 German census. However, in this follow-up study, the observations are
restricted to the German metropolitan areas (i.e. all communities with at least 100,000
inhabitants), and further city-level characteristics derived from the INKAR database
and OpenStreetMap are added to the data. The main objective of this study is to
investigate the variation in the level of environmental inequality between German cities.
While some cities exhibit a very high correlation of minority share and environmental
pollution, others do not. To investigate this variation, the fourth study relies on city
fixed-effects multi-level models, incorporating city-level characteristics as cross-level
interactions. Note that this study, in contrast to the preceding study, uses the total
amount of air pollution instead of the toxicity-weighted air pollution to deal with some
methodological issues. Using toxicity-weights, however, leads to similar results with
even stronger support for the conclusions.

Theoretically, several ways exist to explain the differences in environmental inequal-
ity between cities. First, according to the theories of selective migration and selective
siting, and in line with the results of study 3 in this book, the level of residential
segregation should play an important role. On the one hand, residential segregation
constitutes a necessary condition for selective siting. On the other hand, it seems
implausible that minority households moved selectively into specific regions in the past
if we do not observe a substantial level of residential segregation. Second, following
the ‘racial income-inequality thesis’ higher economic inequalities should lead to higher
levels of environmental inequality. Third, according to the selective siting argument
and its reasoning based on political opposition, environmental inequality should in-
crease with increasing political efficacy of the majority group. Still, previous results
in the United States point towards two alternative explanations: the extent of the
industrial sector and the centrality of industrial facilities. On the one hand, industrial
facilities may provide job opportunities, which are traded off against environmental
quality. If minority residents are overrepresented the industrial sector, a high share
of employees in the industrial sector would lead to a higher exposure of minorities.
On the other hand, research on residential segregation has shown that minorities tend
to cluster around central city districts because of infrastructural and network-related
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opportunities. Thus, the position of industrial facilities – and especially the centrality
of these facilities – may be a crucial driver of environmental inequality.

Results of this last study are somewhat surprising. While economic inequality and
political efficacy show no significant effect on the level of environmental inequality,
higher levels of segregation are associated with higher levels of environmental inequality.
However, segregation is only marginally significant and not robust across different
model specifications. Furthermore, its explanatory power is very weak, indicating that
residential segregation does a rather poor job of explaining environmental inequality.
This seems somewhat odd given the importance of residential segregation for the
mechanisms of selective siting and selective migration. The share of manufacturing
workers, in contrast, exhibits a more robust and stable effect on environmental inequality,
suggesting that minorities live disproportionately close to industrial facilities because
these facilities provide attractive employment opportunities. Nonetheless, the results
indicate that the centrality of industrial facilities is much more decisive for the level of
environmental inequality: in cities with centrally located facilities minorities bear an
especially high burden of environmental pollution. The centrality of industrial facilities
does not only explain the direct correlation between minority share and environmental
pollution, but also the clustering effects observed in the preceding study. Moreover,
the centrality of facilities explains a large proportion of the variation between German
cities. Interestingly, additional analyses reveal that the centrality of industrial facilities
– at least in a cross-sectional assessment – seems to be independent of the centrality
of the minority population, thereby casting some doubt on the causal link between
minority share and environmental pollution.

In sum, study 4 provides results, which are challenging for the standard strand of
theoretical reasoning in environmental inequality research. City-level characteristics
based on the theories of selective migration and selective siting play a rather minor
role in explaining varying levels of environmental inequality. The results emphasise
the importance of infrastructural conditions for the formation of the disproportionate
burden of minority households. Migration decisions may be driven by factors other than
environmental quality, and siting decisions may be driven by factors other than the
minority share within a region. Still, under specific structural conditions like centrally
located industries, minorities tend to end up in closer proximity to industrial facilities.

6.3 Discussion and concluding remarks

In the end, the crucial question is how the results of this book help to answer the two
main questions of 1) whether minorities are affected by a disproportionate amount
of environmental pollution in Germany, and 2) what causes this disproportionate
exposure.
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6.3.1 Existence of environmental inequality

The first question is relatively easy to answer. All studies presented in this book
confirm a disproportionate exposure of minorities to environmental pollution. When
using household-level data, we find that minorities report a higher impairment through
air pollution, which replicates earlier findings by Kohlhuber et al. (2006). When using
spatially aggregated data, we find that minorities experience a disproportionately high
exposure to toxic industrial emissions and live closer to industrial facilities. This is
in line with other studies on the spatially aggregated level, showing that minorities
experience a lack of public green-space (Kabisch & Haase, 2014), or live closer to
industrial facilities in the city of Hamburg (Raddatz & Mennis, 2013). However, the
present book extends those previous studies by providing the first nationwide assessment
using objective indicators of environmental pollution. In addition, this book employs a
methodological approach analogue to studies in the Unites States (e.g. Ard, 2015; Ash
et al., 2013; Ash & Fetter, 2004; Banzhaf & Walsh, 2008; Downey, 2006a) by using the
amount of toxicity-weighted environmental pollution. This provides the first nationwide
empirical evidence for the disproportionate exposure of minorities to harmful industrial
substances in Germany.

The finding of a disproportionate burden of minorities applies to a country-wide
comparison, but also to a within-community comparison. Similar to research in the
United States (Ash & Fetter, 2004), we find a stronger correlation between the minority
share and pollution within communities than across the whole country. This means that
the disproportionate burden of minorities is not only the result of different pollution
levels across the country, or an urban-rural divide, but also occurs on the small scale of
single communities and cities. Minorities live in more polluted areas in Germany but
also in more polluted parts of the communities. In sum, this book confirms the presence
of environmental inequality in Germany based on different data sources, different
methods, and different spatial scales.

In addition, the results of this book provide some insights into the spatial pattern
of environmental inequality. First, environmental pollution is especially high in areas
where minorities agglomerate, meaning that there is some kind of clustering process
around industrial hazards. Second, minorities are especially disadvantaged within urban
or metropolitan regions: in these areas minorities experience an additional disadvantage
and the clustering processes seem to be especially pronounced within urban regions.
This is concerning given that a high proportion of minority households resides within
metropolitan regions. Third, there is considerable variation in the magnitude of
environmental inequality across German cities, showing that there are even some
cities in which the majority group bears a higher burden of environmental pollution.
Gelsenkirchen and Hannover, for example, seem to be outstanding cases in this regard,
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a fact that should receive more attention in further research. Notwithstanding, the vast
majority of German cities exhibit a positive correlation between the minority share
and environmental pollution.

6.3.2 Causes of environmental inequality

The second question, in contrast, is relatively hard to answer. At the beginning of this
project it seemed clear to me that there are two possible causal mechanisms: selective
siting and selective migration. Both mechanisms are intuitive and plausible. However,
the studies in this book indicate that the causes of environmental inequality are more
complicated than generally assumed by these theoretical explanations.

First, we could confirm that selective migration patterns contribute to the dispropor-
tionate exposure of minority households to environmental pollution. Similar to findings
in the United States (Crowder & Downey, 2010; Pais et al., 2014), minority households
in Germany indeed experience significantly lower improvements in environmental qual-
ity when moving to a new place of residence. Interestingly, this disadvantage cannot
be explained by socio-economic differences. Neither do we find a noteworthy reduction
of the minority effect in study 1 when controlling for income, nor can housing-related
variables explain the disadvantage in study 3. This indicates that the assumptions of
the ‘racial income-inequality thesis’ are not met by empirical evidence. According to
the standard strand of reasoning, discrimination on the housing market remains as
a possible explanation for the differing moving trajectories. However, the fact that
second generation immigrant do not experience any disadvantages compared to native
German households casts some doubt on this explanation. Though results are not fully
conclusive in this regard, it seems implausible to assume that housing agents or land-
lords only discriminate against first-generation but not second-generation immigrants.
Then why do we observe the lower moving returns of minorities? I will return to this
question later in the current section.

Second, the clustering pattern of minority households around hazardous facilities,
at a first glance, seems to conform to the theories of selective siting and selective
migration. Both theories offer some support for the argument that minorities cluster
around hazardous facilities. In combination with the finding that the general minority
effect as well as the clustering effect are much stronger within urban regions, one could
assume that residential segregation plays an important role in shaping environmental
inequality. The assumption that minorities residentially segregate around more polluted
areas is also in line with findings of the first study, showing the disadvantaged moving
trajectories of minorities. Though results by Ard (2016) from the United States support
this idea, others (Downey, 2007; Downey et al., 2008) indicate that segregation is only
weakly associated with environmental inequality.
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In line with Downey’s (2007) conclusions, results of the last study point towards a
different interpretation of the preceding findings. The comparison of German cities
reveals that segregation plays only a minor role in shaping the disproportionate exposure
of minorities to environmental pollution. Although residential segregation seems to be
a necessary condition for environmental inequality – in a completely desegregated city,
it would not be possible to observe a higher exposure of one group – it is apparently not
a sufficient condition for the appearance of environmental inequality. In contrast, the
results point towards two independent mechanisms. First, minorities tend to cluster
around the urban core in nearly all cities. This observation has been made by scholars
of residential segregation in the United States (e.g. Logan, Zhang & Alba, 2002; Massey
& Denton, 1988) a long time ago, and is mostly attributed to other factors than the
environmental quality. For instance, Alba et al. (1999) show that speaking the language
of the host country increases the probability of immigrant households to move from
the central city to suburban districts, as language skills facilitate the access to other
networks and infrastructures. Similarly, Crowder et al. (2012) stress the importance
of metropolitan-level characteristics like city size, the level of suburbanization, or the
available housing stock in constraining the migration patterns of minorities. Second,
some cities exhibit a considerably high pollution around the urban core. In combination,
both mechanisms lead to a disproportionate burden of minority residents.

This conclusion also conforms to the results of the preceding studies. Study 1 shows
the low moving returns of minority households, but casts doubt on the explanation
that these disadvantages stem from socio-economic disparities or discrimination. An
alternative explanation is that minorities constrain their choice set of possible destin-
ations to more central parts of the city, thereby experiencing lower improvements in
environmental quality due to relocations. This fits also to the vanishing effect in the
second immigrant generation, if language skills indeed facilitate the access to integrated
and suburban neighbourhoods (Alba et al., 1999; Logan et al., 2002). Moreover, study 3
shows that minorities tend to cluster around environmental hazards. Again, this may
result from the tendency to reside in more central regions of the cities, producing
agglomerations of high minority areas around the urban core. If pollution, at the same
time, occurs around the urban core, we observe a clustering of minority inhabitants
around polluted areas, which is, however, not a result of clustering around hazards, but
rather a result of clustering around the urban core. This way of reasoning is also in
line with simulation results by Campbell et al. (2015) and Kim et al. (2014). By using
agent based models, they show that just assuming selective siting and selective migra-
tion processes does not lead to realistic levels of environmental inequality. Only after
including homogeneity preferences as decision rules for relocations, the models exhibit
a level of environmental inequality, which reflects the levels uncovered in observational
studies.
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In sum, the results of this book provide the following answer to the second question.
Selective migration contributes to environmental inequality. However, the general argu-
ment of selective migration in environmental inequality research may be oversimplified.
It assumes perfect information about the environmental quality of possible residences,
low transaction costs, and flexible responses of households to the provision of public
goods. Yet, migration decisions and the choice of destination are likely to be driven by
other factors than environmental quality, like homogeneity preferences or the access
to networks and other social infrastructures. Thus, selective migration into polluted
areas may be a side product of other (non-monetary) factors involved in migration
decisions. Similar conclusions can be drawn regarding the siting of industrial facilities:
the demographic composition of nearby residents may play a role, but infrastructural
and historical conditions are probably more important for siting decisions (see e.g.
Baden & Coursey, 2002; Elliott & Frickel, 2013, 2015; Wolverton, 2012). What follows
are two – possibly independent – processes: 1) urban infrastructure confines residential
choices of minorities to the urban core, and 2) urban infrastructure facilitates centrally
located industries. In combination, both processes lead to a disproportionate burden
of minority households.

Note that this conclusion offers a congruent explanation for all findings in this book,
but is not directly tested in the empirical studies. In order to test this overarching
conclusion empirically, further research needs to combine household-level panel data
with longitudinal neighbourhood-level data and pollution estimates. Investigating the
interaction between micro-mechanisms and macro-conditions would allow to develop a
more integrated picture of environmental inequality processes, thereby bolstering our
knowledge of the causal mechanisms.

6.4 Implications for further research

Based on the conclusions, this book offers several implications for further research. On
the one hand, further research should try to overcome some of the limitations of this
book. On the other hand, further research should elaborate on some results of this
book in more detail.

Regarding the limitations of this book, several aspects need to be mentioned.
First and foremost, this book does not offer any direct tests on the mechanism of
selective siting, owed mostly to the limited availability of suitable data. Though
E-PRTR provides annual data on polluting facilities from 2007 on, till now we lack
a source of annual socio-demographic data on a fine-grained spatial level. A solution
for this problem could be to use less fine-grained data (e.g. community level data).
However, this increases the unobserved variance within spatial units and bears the risk
of masking decisive processes. Furthermore, many of the facilities included in E-PRTR
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were already in operation prior to 2007. Thus, to comprehensively test the selective
siting mechanism, further research needs to collect appropriate information on siting
dates, and ideally merge this information with socio-demographic data at the time
of siting. Second, this book is mostly constrained to industrial pollution. Although
the first study uses a subjective evaluation, not separating between the sources of
pollution, the remaining studies are restricted to pollution stemming from industrial
activities, thereby ignoring pollution from other sources like traffic. Conclusions may
differ when using other sources of pollution, as traffic pollution, for instance, is likely
to be generally more concentrated in central urban regions. Third, the two studies
using E-PRTR data apply a relatively imprecise measure of exposure by allocating
aerial emissions proportionately to the surrounding census cells. In the United States,
the Risk-Screening Environmental Indicators (RSEI) model provides a much more
elaborate method to estimate the exposure of surrounding regions to the emissions
of industrial facilities by using meteorological data, facility-specific information, and
properties of particulates. Further research should aim to develop or apply similar
methods to the E-PRTR in Germany and provide more accurate estimates of exposure
to environmental emissions. Fourth and again owed to data restrictions, this book
did not connect the micro-level data used in the first study to macro-level outcomes
of the remaining studies. Though we observe that selective migration patterns take
place, it is not possible to evaluate the impact on the macro-level outcome. Therefore,
further research should aim to connect longitudinal micro-level moving trajectories to
the macro-level data of the socio-demographic composition and the level of industrial
pollution, allowing to test the interplay of micro-mechanisms and macro-outcomes.

Besides these points, the results of this book also provide several implications that
should be considered in further research. First, further research should pay more
attention to the causes of selective migration patterns. This books shows that the
moving disadvantage of minority households is not a result of lower socio-economic
resources and the vanishing disadvantage in the second immigrant-generation casts
some doubt on the explanation resting on discrimination. Though this book offers an
alternative explanation based on moving trajectories within central city areas, this
should be investigated empirically in further research. Furthermore, it is certainly an
interesting questions whether social network ties and homogeneity preferences help to
explain the lower improvements of minorities due to residential mobility. Altogether,
the theoretical argument of selective migration needs to be further enriched by including
more elaborate fine-grained mechanisms rather than just assuming that households
seek to improve environmental quality and are only constrained by economic resources
or discriminatory barriers. Instead, environmental quality at the place of destination
might be a side product of more complicated moving decisions (e.g. Alba et al., 1999;
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Crowder et al., 2012). Thus, more attention needs to be paid to the fine-grained
mechanisms of selective migration.

Second, research in the area of environmental inequality needs to account for the
urban structures where migration and siting processes take place. For instance, previous
research has already demonstrated how the inclusion of infrastructural characteristics
can change the conclusions regarding selective siting mechanisms (e.g. Baden & Coursey,
2002; Elliott & Frickel, 2015; Wolverton, 2012). However, urban characteristics are
also very likely to influence the moving behaviour. For instance, the availability of
public transportation, the extent of urban sprawl, land use policies and other urban
characteristics may contribute to residential choices and thus also influence the extent
of environmental inequality. In a similar line, Schweitzer and Stephenson (2007) have
already advocated a closer connection between environmental inequality research and
urban studies. Importantly, all social processes take place within a spatial context and
research on environmental inequality has only started to take some of many possible
characteristics of the urban space into account. Further research in this area seems
particularly important, as identifying decisive urban forms and characteristics offers
the opportunity to develop promising policy interventions.

Third and related to the previous point, environmental inequality research should
more carefully elaborate on the statistical methods applied to spatial data. As this
book (along with an extensive amount of research on spatial econometrics) shows,
applying non-spatial regression methods to spatial data may not only produce erroneous
inference but also biased point estimates. Moreover, using spatial data but non-spatial
methods actually neglects potentially important information inherent in the data. As
results of this book demonstrate, using spatial regression models can help to produce
new insights into the spatial patterns, which, in turn, can foster our knowledge about
the causal mechanisms. For instance, the sorting model of Tiebout (1956) as formalised
by Banzhaf and Walsh (2008, 2013) predicts that moving decisions are a function of the
environmental quality at the place of residence, but also of the quality in neighbouring
regions, as these regions constitute the available choice set. With longitudinal data,
this theoretical model could be explicitly specified and tested by applying spatial
regression models, including spatially lagged covariates. Hence, spatial regression
models should receive more attention in the field of environmental inequality research,
as environmental inequality constitutes an explicitly spatial research question.

Environmental inequality constitutes a serious dimension of social inequality, as
environmental pollution affects many dimensions of social life, like physical and mental
health, social activity, or subjective well-being. Thus, it is vital to identify the causal
forces leading to the disproportionate exposure of minorities to hazardous environmental
pollution. Only when understanding the causes, we can develop promising strategies to
prevent the persisting disadvantage of minorities. To achieve this goal, further research
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on environmental inequality has to elaborate on various theoretical and empirical
aspects, and find explanations for the current inconsistencies in the field. Especially the
combination of georeferenced micro-level moving trajectories and spatial macro-level
data seems to be a promising way of bolstering our knowledge of the causal processes
leading to environmental inequality.
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Flacke, J., Schüle, S. A., Köckler, H. & Bolte, G. (2016). Mapping environmental
inequalities relevant for health for informing urban planning interventions - A case
study in the city of Dortmund, Germany. International Journal of Environmental
Research and Public Health, 13 (7), 711.

Florax, R., Folmer, H. & Rey, S. J. (2003). Specification searches in spatial econometrics:
The relevance of Hendry’s methodology. Regional Science and Urban Economics,
33 (5), 557–579.

Franzese, R. J. & Hays, J. C. (2007). Spatial econometric models of cross-sectional
interdependence in political science panel and time-series-cross-section data. Political
Analysis, 15 (2), 140–164.

Friedrichs, J., Galster, G. & Musterd, S. (2003). Neighbourhood effects on social
opportunities: The European and American research and policy context. Housing
Studies, 18 (6), 797–806.

Funderburg, R. & Laurian, L. (2015). Bolstering environmental (in)justice claims with
a quasi-experimental research design. Land Use Policy, 49 , 511–526.

Gascon, M., Sánchez-Benavides, G., Dadvand, P., Mart́ınez, D., Gramunt, N., Gotsens,
X., . . . Nieuwenhuijsen, M. (2018). Long-term exposure to residential green and blue
spaces and anxiety and depression in adults: A cross-sectional study. Environmental
Research, 162 , 231–239.

Gibbons, S. & Overman, H. G. (2012). Mostly pointless spatial econometrics? Journal
of Regional Science, 52 (2), 172–191.

Gibbons, S., Overman, H. G. & Patacchini, E. (2015). Spatial methods. In G. Duranton,
J. V. Henderson & W. C. Strange (Eds.), Handbook of Regional and Urban Economics
(Vol. 5, pp. 115–168). Amsterdam: Elsevier.

Girard, D. A. (1989). A fast ‘Monte-Carlo cross-validation’ procedure for large least
squares problems with noisy data. Numerische Mathematik, 56 (1), 1–23.

Grant, D., Trautner, M. N., Downey, L. & Thiebaud, L. (2010). Bringing the polluters
back in: Environmental inequality and the organization of chemical production.
American Sociological Review, 75 (4), 479–504.

Gresch, C. & Kristen, C. (2011). Staatsbürgerschaft oder Migrationshintergrund?
Ein Vergleich unterschiedlicher Operationalisierungsweisen am Beispiel der Bildungs-
beteiligung. Zeitschrift für Soziologie, 40 (3), 208–227.

139

https://www.epa.gov/sites/production/files/2015-12/documents/rsei_methodology_v2.3.4.pdf
https://www.epa.gov/sites/production/files/2015-12/documents/rsei_methodology_v2.3.4.pdf
http://prtr.ec.europa.eu/docs/en_prtr.pdf
http://prtr.ec.europa.eu/docs/en_prtr.pdf


Halleck Vega, S. & Elhorst, J. P. (2015). The SLX model. Journal of Regional Science,
55 (3), 339–363.

Hamilton, J. T. (1995). Testing for environmental racism: Prejudice, profits, political
power? Journal of Policy Analysis and Management, 14 (1), 107–132.

Hanna, B. G. (2007). House values, incomes, and industrial pollution. Journal of
Environmental Economics and Management, 54 (1), 100–112.

Havard, S., Deguen, S., Zmirou-Navier, D., Schillinger, C. & Bard, D. (2009). Traffic-
related air pollution and socioeconomic status. Epidemiology, 20 (2), 223–230.

Hersh, R. (1995). Race and Industrial Hazards: A Historical Geography of the Pittsburgh
Region, 1900-1990. Washington DC: Resources for the Future.

Hipp, J. R. & Lakon, C. M. (2010). Social disparities in health: Disproportionate
toxicity proximity in minority communities over a decade. Health & Place, 16 (4),
674–683.

Hox, J. & Wijngaards-de Meij, L. (2015). The multilevel regression model. In H. Best
& C. Wolf (Eds.), The Sage Handbook of Regression Analysis and Causal Inference
(pp. 133–152). London: Sage.

Huang, J., Lu, X. X. & Sellers, J. M. (2007). A global comparative analysis of urban
form: Applying spatial metrics and remote sensing. Landscape and Urban Planning,
82 (4), 184–197.

Hunter, L. M., White, M. J., Little, J. S. & Sutton, J. (2003). Environmental hazards,
migration, and race. Population and Environment, 25 (1), 23–39.

Kabisch, N. & Haase, D. (2014). Green justice or just green? Provision of urban green
spaces in Berlin, Germany. Landscape and Urban Planning, 122 , 129–139.

Kalter, F. & Granato, N. (2007). Educational hurdles on the way to structural
assimilation in Germany. In A. F. Heath, S. Y. Cheung & S. N. Smith (Eds.),
Unequal Chances (Vol. 137, pp. 271–319). Oxford: Oxford Univ. Press.

Kelejian, H. H. & Prucha, I. R. (1998). A generalized spatial two-stage least squares pro-
cedure for estimating a spatial autoregressive model with autoregressive disturbances.
The Journal of Real Estate Finance and Economics, 17 (1), 99–121.

Kelejian, H. H. & Prucha, I. R. (2010). Specification and estimation of spatial
autoregressive models with autoregressive and heteroskedastic disturbances. Journal
of Econometrics, 157 (1), 53–67.

Kim, Y., Campbell, H. & Eckerd, A. (2014). Residential choice constraints and
environmental justice. Social Science Quarterly, 95 (1), 40–56.

Kling, J. R., Liebman, J. B. & Katz, L. F. (2007). Experimental analysis of neighborhood
effects. Econometrica, 75 (1), 83–119.

Kohlhuber, M., Mielck, A., Weiland, S. K. & Bolte, G. (2006). Social inequality in
perceived environmental exposures in relation to housing conditions in Germany.
Environmental Research, 101 (2), 246–255.

140



Krieg, E. J. (1995). A socio-historical interpretation of toxic waste sites. American
Journal of Economics and Sociology, 54 (1), 1–14.

Krysan, M., Couper, M. P., Farley, R. & Forman, T. A. (2009). Does race matter in
neighborhood preferences? Results from a video experiment. American Journal of
Sociology, 115 (2), 527–559.

Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N., . . .
Zhong, M. (2018). The Lancet Commission on pollution and health. The Lancet,
391 (10119), 462–512.

Laurian, L. & Funderburg, R. (2014). Environmental justice in France? A spatio-
temporal analysis of incinerator location. Journal of Environmental Planning and
Management, 57 (3), 424–446.

Lee, L.-f. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for
spatial autoregressive models. Econometrica, 72 (6), 1899–1925.

Legewie, J. & Schaeffer, M. (2016). Contested boundaries: Explaining where ethnoracial
diversity provokes neighborhood conflict. American Journal of Sociology, 122 (1),
125–161.

LeSage, J. P. (2014). What regional scientists need to know about spatial econometrics.
The Review of Regional Studies, 44 (1), 13–32.

LeSage, J. P. & Pace, R. K. (2009). Introduction to Spatial Econometrics. Boca Raton:
CRC Press.

LeSage, J. P. & Pace, R. K. (2014). The biggest myth in spatial econometrics.
Econometrics, 2 (4), 217–249.

LeSage, J. P. & Pace, R. K. (2017). Spatial econometric Monte Carlo studies: Raising
the bar. Empirical Economics, in press.

Levinson, A. (2012). Valuing public goods using happiness data: The case of air quality.
Journal of Public Economics, 96 (9-10), 869–880.

Lichter, D. T., Parisi, D. & Taquino, M. C. (2015). Toward a new macro-segregation?
Decomposing segregation within and between metropolitan cities and suburbs. Amer-
ican Sociological Review, 80 (4), 843–873.

Liebe, U., Preisendörfer, P. & Meyerhoff, J. (2010). To pay or not to pay: Competing
theories to explain individuals’ willingness to pay for public environmental goods.
Environment and Behavior , 43 (1), 106–130.

Logan, J. R. (2012). Making a place for space: Spatial thinking in social science.
Annual Review of Sociology, 38 , 507–524.

Logan, J. R. & Alba, R. D. (1993). Locational returns to human capital: Minority
access to suburban community resources. Demography, 30 (2), 243–268.

Logan, J. R., Zhang, W. & Alba, R. D. (2002). Immigrant enclaves and ethnic
communities in New York and Los Angeles. American Sociological Review, 67 (2),
299–322.

141



Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem.
The Review of Economic Studies, 60 (3), 531–542.

Massey, D. S. (1990). Social structure, household strategies, and the cumulative
causation of migration. Population Index , 56 (1), 3–26.

Massey, D. S. & Denton, N. A. (1988). The dimensions of residential segregation.
Social Forces, 67 (2), 281–315.

Massey, D. S. & Denton, N. A. (1989). Hypersegregation in U.S. metropolitan areas:
Black and hispanic segregation along five dimensions. Demography, 26 (3), 373.

Massey, D. S. & Denton, N. A. (1993). American Apartheid: Segregation and the
Making of the Underclass. Cambridge, Mass: Harvard Univ. Press.

Meyer, R. & Liebe, U. (2010). Are the affluent prepared to pay for the planet?
Explaining willingness to pay for public and quasi-private environmental goods in
Switzerland. Population and Environment, 32 (1), 42–65.
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Statistische Ämter des Bundes und der Länder. (2015). Zensus 2011:
Metoden und Berichte. Wiesbaden. Retrieved 20.03.2017, from
https://www.zensus2011.de/SharedDocs/Downloads/DE/Publikationen/
Aufsaetze Archiv/2015 06 MethodenUndVerfahren.pdf

Szasz, A. & Meuser, M. (2000). Unintended, inexorable: The production of environ-
mental inequalities in Santa Clara County, California. American Behavioral Scientist,
43 (4), 602–632.

Tiebout, C. M. (1956). A pure theory of local expenditures. The Journal of Political
Economy, 64 (5), 416–424.

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit
region. Economic Geography, 46 , 234–240.

Turner, M. A. & Ross, S. (2005). How racial discrimination affects the search for
housing. In X. N. De Souza Briggs (Ed.), The Geography of Opportunity (pp. 81–100).
Washington DC: Brookings Institution Press.

United Church of Christ - Commission for Racial Justice. (1987). Toxic Wastes and
Race in the United States: A National Report on the Racial and Socioeconomic
Characteristics of of Communities with Hazardous Waste Sites. New York: United
Church of Christ.

145

https://www.zensus2011.de/SharedDocs/Downloads/DE/Publikationen/Aufsaetze_Archiv/2015_06_MethodenUndVerfahren.pdf
https://www.zensus2011.de/SharedDocs/Downloads/DE/Publikationen/Aufsaetze_Archiv/2015_06_MethodenUndVerfahren.pdf


Wagner, G. G., Frick, J. R. & Schupp, J. (2007). The German Socio-Economic Panel
study (SOEP) - Evolution, scope and enhancements. Schmollers Jahrbuch, 127 ,
139–169.

Ward, M. D. & Gleditsch, K. S. (2008). Spatial Regression Models (Vol. 155). Thousand
Oaks: Sage.

Wilson, W. J. (1978). The Declining Significance of Race: Blacks and Changing
American Institutions. Chicago: Univ. of Chicago Press.

Wilson, W. J. (1987). The Truly Disadvantaged: The Inner City, the Underclass, and
Public Policy. Chicago: Univ. of Chicago Press.

Wolverton, A. (2009). Effects of socio-economic and input-related factors on polluting
plants’ location decisions. The B.E. Journal of Economic Analysis & Policy, 9 (1).

Wolverton, A. (2012). The role of demographic and cost-related factors in determining
where plants locate: A tale of two Texas cities. In H. S. Banzhaf (Ed.), The Political
Economy of Environmental Justice (pp. 199–222). Palo Alto: Stanford Univ. Press.

Wong, D. (2009). The modifiable areal unit problem (MAUP). In A. S. Fotheringham
& P. Rogerson (Eds.), The Sage Handbook of Spatial Analysis (pp. 105–124). Los
Angeles and London: Sage.

Yinger, J. (1986). Measuring racial discrimination with fair housing audits: Caught in
the act. The American Economic Review, 76 (5), 881–893.

Zhang, X., Zhang, X. & Chen, X. (2017). Happiness in the air: How does a dirty sky
affect mental health and subjective well-being? Journal of Environmental Economics
and Management, 85 , 81–94.

146



Curriculum Vitae

CONTACT

Department of Social Sciences
TU Kaiserslautern
Erwin-Schroedinger-Str. 57
D-67663 Kaiserslautern
Phone: +49 (0) 631 205 5785
Email: ruettenauer@sowi.uni-kl.de

ACADEMIC POSITIONS

2015–present Research Assistant, Chair of Sociology and Social Stratification
(Prof. Dr. H. Best). TU Kaiserslautern

Apr.–Sep. 2015 Research Assistant, Chair of Quantitative Methods of Empirical
Social Research (Prof. Dr. H. Best). JMU Würzburg

EDUCATION

Aug. 2016 Spatial Econometrics. Summer School in Social Science Data
Analysis. University of Essex

2015 Master of Arts, Sociology (Minor: Statistics). LMU Munich
Aug.–Dec. 2013 Globalization Program. Venice International University

2012 Bachelor of Arts, Sociology (Minor: Economics). LMU Munich
2009 Abitur. Lise Meitner Gymnasium Unterhaching

PUBLICATIONS
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