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Abstract

We deduce cell population models describing the evolution of a tumor (possibly interacting with its
environment of healthy cells) with the aid of differential equations. Thereby, different subpopulations
of cancer cells allow accounting for the tumor heterogeneity. In our settings these include cancer
stem cells known to be less sensitive to treatment and differentiated cancer cells having a higher
sensitivity towards chemo- and radiotherapy. Our approach relies on stochastic differential equations
in order to account for randomness in the system, arising e.g., by the therapy-induced decreasing
number of clonogens, which renders a pure deterministic model arguable. The equations are deduced
relying on transition probabilities characterizing innovations of the two cancer cell subpopulations,
and similarly extended to also account for the evolution of normal tissue. Several therapy approaches
are introduced and compared by way of tumor control probability (TCP) and uncomplicated tumor
control probability (UTCP). A PDE approach allows to assess the evolution of tumor and normal
tissue with respect to time and to cell population densities which can vary continuously in a given set
of states. Analytical approximations of solutions to the obtained PDE system are provided as well.

1 Introduction

Phenotypic and functional tumor heterogeneity is an important feature of neoplastic lesions. During
the last decade there has been increasing evidence that a subpopulation of cancer cells exhibiting the
characteristics of stem cells triggers the initiation and growth of the tumor, also playing an essential role
in metastasis, see e.g., [58] and the references therein. According to the cancer stem cell hypothesis,
tumors are initiated and sustained by a small subset of cancer cells with the abilities of self-renewal and
production of differentiated cells of diverse lineages [64]. Depending on the biochemical conditions in
the tumor microenvironment, cancer stem cells (CSCs) can undergo several types of mitosis (see e.g.,
[11]): symmetric self-renewal, when both daughter cells keep the characteristics of stem cells; asymmetric
self-renewal, when only one of the daughter cells stays a stem cell, while the other becomes a progenitor
cell; and division into two progenitor cells. Progenitor cells have intermediate properties between stem
cells and differentiated cells; they can divide symmetrically or unsymmetrically, undergoing self-renewal,
or yielding two differentiated daughter cells. While differentiated (progenitor) cells are relatively short-
lived, having a limited mitotic potential, cancer stem cells seem to have acquired a limitless replicative
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potential or immortality [24], thus they are able to persist long enough to accomplish oncogenic mutations
and to migrate and establish new tumors at distal sites in the body. Moreover, cancer stem cells are
suspected to be responsible for the recurrence of the disease after treatment [44, 53]. This is thought
to be due to some cancer cells evolving with the capacity of resistance to chemo and/or radiotherapy
[3, 35]. Therefore, therapies specifically targeting cancer stem cells are likely to be a critical determinant
in achieving complete tumor eradication [12].

A large palette of mathematical models for various aspects of CSC dynamics has been proposed. They
range from deterministic compartmental models involving several types of cells in different stages and
formulated in an ODE framework, see, e.g., [5, 12, 20, 61] to models accounting for spatial effects, possibly
also under the influence of the tumor microenvironment in a discrete, agent-based [16, 15] or continuous
[17, 66] manner. Models also accounting for random effects via transition probabilities [23, 62], stochastic
processes [18], or stochastic differential equations [50] have been proposed as well, however not all of them
considering stemness or phenotype heterogeneity of the cancer cells. Some of the models mentioned above
also relate to the influence of CSC dynamics on chemo and/or radiotherapy response. While including
randomness in the models describing the therapy-free evolution of CSCs in interaction with differentiated
cells (DCs) and normal tissue accounts e.g., for perturbations of the tumor microenvironment reflecting
on the cell population, for cell-to-cell variations or for differences in the cell cycle stage, in the context
of therapy stochasticity becomes a desirable feature of the mathematical settings: By therapeutical
interventions the number of clonogens is to be drastically reduced (up to eradication), which makes a pure
deterministic model questionable. Models involving CSCs and assessing some kind of applied treatment
while explicitly accounting for stochasticity are rarer: For instance, in [56] the authors use birth-death
Markov chains in continuous time to investigate the extinction times of cancer stem cells and normal stem
cells; [37] use a continuous time, discrete state-space birth-death process, too. Iwasa et al. [30] developed
a model for acquired drug resistance and determine the resistance probability of an exponentially growing
cell population starting from one sensitive cell and reaching a given detection size and found that a tumor
subject to high rates of apoptosis will show a higher incidence of resistance than expected on its detection
size only. Fakir et al. [18] considered a stochastic tumor control probability (TCP)1 model incorporating
repopulation of stem-like cancer cells and their mutual interactions within microenvironmental niches.
The TCP is computed upon relying on probability distributions of a prespecified shape and corresponding
survival and repopulation matrices involving niche-endogenous birth and death rates. Continuum SDE
models for the evolution of tumor cells offer a way to account for intrinsic and extrinsic uncertainties in
connection to CSC and their interactions with DCs and normal tissue. SDE models used in the context
of cancer growth and assessing the TCP and the probability distributions of times to extinction for the
considered populations of cancer cells were proposed in [63] and later in [38].

In this work we introduce a class of SDE models describing the interplay between CSCs and tumor
DCs. Their formal deduction is presented in Section 2 and follows the method proposed by Allen, see
e.g., [2], and also used in a first form in [38]. However, an essential modification is done here in order
to ensure non-negativity of the solutions. The restrictions imposed by the latter actually guide the
modeling in this framework. For these models we perform numerical simulations in order to illustrate
the (pathways and averaged) behavior of the two subpopulations of interacting cancer cells. In Section 3
we extend the settings to account for therapy, thereby looking both at a time-discrete approach and its
continuous counterparts. Several different treatment schedules involving chemo and/or radiotherapy are
considered. Section 4 is dedicated to assessing the various treatment strategies applied to the DCs and
CSC populations. The subsequent Section 5 proposes a model version supplementary accommodating the
dynamics of the normal cells. For the new model we evaluate in Section 6 the therapy effects on normal
cells with the aid of the normal tissue complication probability (NTCP) and the overall treatment efficacy
by way of the uncomplicated tumor control probability (UTCP). Section 7 provides a PDE approach to
assessing the future evolution in mean of the tumor and normal tissue based on the tumor state known at
some given moment of time. Such prediction of the tumor evolution is of high relevance for the patients
and for clinical trials, as it helps to estimate and compare the disease evolution under diverse classes of
a tumor staging system or different treatments. Thereby, the quantities of interest here are expectations
of the total tumor burden, its stemness portion, and the deviation of normal tissue from a critical
functionality threshold. A way to derive analytical approximations in a closed-form for such quantities is
also presented. The method can be extended to predict other interesting future numerical characteristics
of the tumor (e.g., its standard deviation or survival probabilities for some given thresholds). Moreover,
the proposed PDE approach is less time consuming and numerically more efficient than the standard one

1The TCP gives the probability that no clonogenic cells survive the treatment.
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based on simulating the SDE system. We deduce the corresponding linear and nonautonomous PDEs,
solve them numerically, and also provide analytical approximations of the solution components. Finally,
in Section 8 we provide some comments on the perspectives of our modeling approach.

2 An SDE model for a heterogeneous tumor without treatment

2.1 Model set up

We derive an SDE model for the differentiated cancer cells and the cancer stem cells. To this aim, let
c(t) and s(t) denote the population sizes of the former and of the latter, respectively, at time t. We want
to analyze the interactions between these two populations and are going to proceed as in [2]. We make
the following assumptions (see also [26]):

1. Cancer stem cells are immortal and have an unlimited replicative potential.

2. As mentioned in Section 1, each of the cancer stem cells is able to divide in various ways; for
simplicity we assimilate in the respective subpopulation progenitor to differentiated cells:

• into two stem cells (with probability a1),

• into one differentiated cancer cell and one cancer stem cell (with probability a2) or

• into two differentiated cancer cells (with probability a3)

with ai ∈ [0, 1] for i = 1, 2, 3 and
3∑
i=1

ai = 1.

The probabilities ai are commonly chosen to be constants, however in order to ensure the non-
negativity of solutions to our model (1) below, we will require a2 and a3 to be proportional to
the density c of differentiated cancer cells. Indeed, there is evidence of the latter influencing the
CSC dynamics and their properties [42, 55]. We postulate that the differentiation of CSCs into
DCs is favorized by the two phenotypes being in contact (while the direct birth and death of either
phenotype are not influenced by any other processes) and choose here

ai(c) =
ãic

ã1 + ã2c+ ã3c
, i = 2, 3, a1(c) =

ã1
ã1 + ã2c+ ã3c

with ãi being positive constants. Other choices are possible as well, the only restriction being that

ai(0) = 0 for i = 2, 3 and
3∑
i=1

ai(c) = 1.

3. Differentiated cancer cells are mortal and have a finite potential to divide.

4. During proliferation differentiated cancer cells divide into two cells, each of them being again a
differentiated cancer cell.

The relevant occurrences in connection with the differentiated and stem cell dynamics in a tumor can be
described schematically as in Figure 1:

Figure 1: Interaction of differentiated cancer cells c and cancer stem cells s.
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The parameters used above have the following meaning: bc: proliferation rate of c-cells (symmetric
differentiation only); bs: proliferation rate of stem cells (with the three possibilities enumerated in 2.
above), and ds, dc: death rates.

The above assumptions lead to ds = 0, dc > 0, bc = 02. For a small interval of time ∆t we register in
Table 1 the respective transition probabilities for X = (c, s)t, upon relying on the scheme in Figure 1.

Changes in X Probability

∆X(1) = (1, 0)t p1 = (bcc · (1− (bs + ds)s) + (1− (bc + dc)c) · a2(c)bss)∆t = (1− dcc) · a2(c)bss∆t
∆X(2) = (−1, 0)t p2 = dcc · (1− (bs + ds)s)∆t
∆X(3) = (0, 1)t p3 = (1− (bc + dc)c) · a1(c)bss∆t = (1− dcc) · a1(c)bss∆t
∆X(4) = (0,−1)t p4 = (1− (bc + dc)c) · dss∆t = (1− dcc) · dss∆t
∆X(5) = (2,−1)t p5 = (1− (bc + dc)c) · a3(c)bss∆t = (1− dcc) · a3(c)bss∆t
∆X(6) = (−1, 1)t p6 = dcc · a1(c)bss∆t
∆X(7) = (2, 0)t p7 = bcc · a2(c)bss∆t = 0
∆X(8) = (−1,−1)t p8 = dcc · dss∆t
∆X(9) = (1,−1)t p9 = (bcc · dss+ dcc · a3(c)bss)∆t = dcc · a3(c)bss∆t
∆X(10) = (1, 1)t p10 = bcc · a1(c)bss∆t = 0
∆X(11) = (3,−1)t p11 = bcc · a3(c)bss∆t = 0

∆X(12) = (0, 0)t p12 = 1−
∑11
i=1 pi

Table 1: Transition probabilities for X = (c, s)t, according to the scheme in Figure 1

Then at a given time t the expectation and the covariance matrix are:

E(∆X) =

12∑
i=1

pi∆X
(i) =

(
(a2(c(t)) + 2a3(c(t)))bss(t)− dcc(t)

((a1(c(t))− a3(c(t)))bs − ds)s(t)

)
∆t

E
(
∆X(∆X)t

)
=

12∑
i=1

pi∆X
(i)
(

∆X(i)
)t

=:

(
u v
v w

)
∆t,

with

u = dcc(t) + (a2(c(t)) + 4a3(c(t)))bss(t)− (2a2(c(t)) + 4a3(c(t)))bsdcc(t)s(t),

v = −2a3(c(t))bss(t) + (ds + (a3(c(t))− a1(c(t)))bs)dcc(t)s(t)

w = ((a1(c(t)) + a3(c(t)))bs + ds)s(t).

It is straightforward to show that

V :=
E (∆X(∆X)t)

∆t

is positive-definite. Hence the square root of the matrix V exists and we denote it by B := V1/2. Further
we define and compute:

µ :=
E(∆X)

∆t
=

(
(a2(c(t)) + 2a3(c(t)))bss(t)− dcc(t)

((a1(c(t))− a3(c(t)))bs − ds)s(t)

)
,

V :=
E (∆X(∆X)t)

∆t
=

(
u v
v w

)
.

The matrix B can be explicitly computed (see e.g., [2]):

B = V1/2 =

(
u v
v w

)1/2

=
1

η

(
u+ τ v
v w + τ

)
2Actually, bc becomes negligible after a few differentiations; in order to simplify the computations we directly assume

bc = 0, see also [26]. In Section 3 we will also take into account death rates which are not inherent to the population, but
are due to treatment application, hence there a death rate ds > 0 will be considered.
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with τ =
√
uw − v2 and η =

√
u+ w + 2τ . With the previously computed matrix V we obtain the

following values for the entries of B:

τ =
{

((a1(c)a2(c) + a2(c)a3(c) + 4a1(c)a3(c))bs + (a2(c) + 4a3(c))ds)bss
2

+((a1(c) + a3(c))bs + ds)dccs− 2bs((a1(c)a2(c) + a2(c)a3(c) + 4a1(c)a3(c))bs + a2(c)ds)dccs
2

−((a3(c)− a1(c))bs + ds)
2d2cc

2s2
} 1

2

η =
√

2τ + ((1 + 4a3(c))bs + ds)s+ dcc− (2a2(c) + 4a3(c))bsdccs

along with u, v, w as computed above. The system of stochastic differential equations for the dynamics
of the two cancer cell populations is then given by

dX = µ(X)dt+ B(X)dW(t)

with the initial condition X(0) = X0 and W(t) = (W1(t),W2(t))t, where (W1(t))t and (W2(t))t denote
independent Wiener processes. Thus for each population we obtain

dc(t) = µ1(c, s)dt+B11(c, s)dW1(t) +B12(c, s)dW2(t)

= [(a2(c(t)) + 2a3(c(t)))bss(t)− dcc(t)]dt+
1

η
(u+ τ)dW1(t) +

v

η
dW2(t)

ds(t) = µ2(c, s)dt+B21(c, s)dW1(t) +B22(c, s)dW2(t)

= [((a1(c(t))− a3(c(t)))bs − ds)s(t)]dt+
v

η
dW1(t) +

1

η
(w + τ)dW2(t).

(1)

Thereby, (c(t))t and (s(t))t are stochastic processes for which every trajectory describes the evolution
of a specific tumor - hence, if we assume each patient has a single tumor3, the disease development in
a specific patient. Thus, X = (c, s)t : Ω × (t0, T ) → (0,∞)2, with (Ω,A,P) being a filtered probability
space for which Ω denotes the sample space, i.e. a set of tumors/cancer patients.

Remark 2.1 If (1) is supplemented with initial conditions

c(0) = c0, s(0) = s0 (2)

with c0 and s0 positive, nonanticipative random variables, then following e.g. [46] chapt. 5.2 and [59]
the existence of a solution to the problem (1), (2) can be shown, at least locally.
The non-negativity of solutions to our SDE system follows directly from a result by Cresson et al. [9]
providing necessary and sufficient conditions for the invariance of rectangular subsets, which we recall for
convenience in Subsection 9.1.

2.2 Numerical simulations

In order to simulate our system of SDEs (1) we consider the example of glioma, which are rarely curable
brain tumors arising from abnormal glial cells in the human brain, with poor prognosis (the median
survival time is about 14 months). We take the birth rate of untreated tumor stem cells to be only
very slightly less than the corresponding median value obtained in [60] for glioma, namely bs = log 2/55.
In that paper only one glioma phenotype was observed, thus not distinguishing between stem cells and
differentiated cells. As we assumed above that bc = 0, this seems to be justified. For the DCs we assume
that their death rate is smaller than the mitosis rate of stem cells, and take dc = log 2/60. The death
rate ds of CSCs is taken very small, in accordance with the assumptions in Section 2.1. The different
rates involved in the probabilities of the CSCs to differentiate are ã1 for the symmetric division into two
CSCs, ã2 for the asymmetric division into one DC and one CSC, and ã3 for the division into two DCs.
Compared to the symmetric divisions of cancer stem cells, the asymmetric one is much rarer, and is
occasionally even neglected (see [25]). We will not completely neglect it, since in our model this would
mean that once the DCs get extinct there is no chance of producing any new DCs from the CSCs, which
would contradict the biologically well established fact that tumor relapse can occur from small amounts
of stem cells [32]. The parameters used to simulate (1) are collected in Table 2.

3meaning no metastases occur
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Parameter bs dc ds ã1 ã2 ã3
Value log 2/55 log 2/60 log 2/200 0.5 0.05 0.1

Table 2: Summary of the model parameters for cancer cells based on [60].

Some trajectories of our SDE system solved with the Euler-Maruyama method and the average over 103

such trajectories are shown in Figure 2.

Figure 2: Several trajectories of the solution components of system (1) and averages (black lines) of 103

trajectories solved with the Euler-Maruyama algorithm and using parameter values as in Table 2.
Initial condition: (c, s)t = (1, 0.1)t.

2.2.1 Approximation of the persistence time

An important aspect of two interacting populations is their long-term behavior, especially the persistence
time, i.e. the time it takes for one of the two populations to become extinct. As we consider a system
of SDEs it makes sense to look at the mean persistence time of the joint populations. To compute it,
we simulate the behavior of the two tumor cell phenotypes described with the aid of the SDE (1) and
trace the trajectories till the whole population first becomes extinct. This simulation has to be carried
out several times so that we can average the persistence times.
Concretely this means that we generate a large enough number of trajectories (here 1000) by solving (1)
with the Euler-Maruyama method over a time span of 70 days. These trajectories are stopped whenever
we have c+s ≤ 0 and we note the exact time of this event. Averaging the data computed with the choice
of parameters from Table 2 we obtain estimations for several different compositions of the initial tumor4,
which we collected in Table 3.

Initial values (c0, s0)t Persistence time
(in days)

(0.01, 0.01) 16.778
(0.1, 0.1) 55.782
(1, 0.1) 69.848
(0.1, 1) 69.858
(0.3, 0.9) 69.959
(0.9, 0.3) 69.989
(0.4, 1) 70
(1, 0.4) 69.990
(1, 1) 70

Table 3: Persistence times.

4by this we mean amount of CSCs and DCs at the initial time, i.e. at the first tumor assessment time; this could be the
time of first diagnosis. We do not mean the time at which the tumor started to develop, as that cannot be inferred, and
even less its proportions of CSCs and DCs
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Obviously, the computed persistence times are larger when starting with larger tumor cell populations.
The tumor heterogeneity seems, however, to play a role, since starting with the same overall joint amount
of neoplastic cells different persistence times are obtained (compare 3rd and 4th, and 4th-7th rows in
Table 3). We observe that the tumor persistence time seems to correlate inversely with the initial amount
of differentiated cells and directly with the initial CSC density (rows 3-4, 7-8, but not 5-6). This is in line
with biomedical evidence as reviewed in Section 1: targeting the CSCs should enhance the therapeutical
outcome.

3 Including treatment

Cancer stem cells have been identified in many tumors as the driving force behind cancer growth as well
as cancer progression [25]. Consequently, effective treatment schedules and strategies should affect the
differentiated cancer cells as well as the cancer stem cells. The eradication of CSCs is rather difficult, as
these cells are less sensitive to radiation or chemical agents in comparison to DCs [48]. Moreover, it is
difficult to identify these cells in vivo, as they are spread all over the tumor [66].
An important consequence of cancer treatment is the increase of the death rates dc and ds for both types
of cancer cells.

3.1 Chemotherapy: differentiation promoters

In chemotherapy different cytotoxic agents affect the death rate of the DCs as well as that of CSCs,
depending on the treatment dose. CSCs are less sensitive to this treatment, resulting in a lower death
rate in comparison to the DCs [48].
Here we present an approach to model the so-called differentiation therapy. Here the aim is to induce the
cancer cells to resume the process of maturation. This kind of therapy does not directly kill the cancer
cells, but restrains their growth and allows the more efficient application of conventional therapies to
eradicate the tumor. Thereby, the sensitivity of cancer stem cells is enhanced by adding differentiation
promoting agents. Possible promoters are members of the TGF-β superfamily which are known to affect
the characteristics of growing tumors like invasion and immune evasion, and most important (as men-
tioned), the increase of stem cell differentiation [25].
In our model from Section 2.1 this would imply decreasing the probability a1 which characterizes the
splitting of a cancer stem cell into two cancer stem cells, and increase the probability a3 for the differ-
entiation of a cancer stem cell into two differentiated cancer cells. Here we focus on the fact that the
rate a3 depends on the parameter δ related to the dose of the chemical differentiation promoter delivered
during the treatment. Thus, we get

a3 = a3(c(t), δ(t)) =
ã3(δ(t))c

ã1 + ã2c+ ã3(δ(t))c
, with ã3(δ(t)) = ã3 +

α̃δ(t)

1 + δ(t)
, α̃ > 0, (3)

where ã3 is the value in the case without therapy and α̃ is a sensitivity parameter. For instance, drugs
targeting histone deacetylases (HDACS) are already being used to enhance differentiation or reprogram-
ming events; we refer to [43] for a review of epigenetic alteration agents involved in CSC reprogramming.
A treatment approach in a phase I study is to deliver 200 mg bid per day of SAHA (vorinostat) on 7
days a week, with one treatment cycle of 4 weeks [34]. Low grade gliomas have diameters between 1 and
6 cm (occasionally even larger), see e.g., [7]. We choose an early stage tumor with a diameter between 1
and 2 cm, hence a reasonable dose in a tumor of diameter 1.2 cm can be assumed to be δ = 0.05625 mg.5

Additionally to a change in differentiation rates, the chemotherapy also influences the cell death rate
depending on the dose. We assume an increase in the death rate for the differentiated cancer cells with
0.015, which is comparable to the one in [51]. Due to the fact that cancer stem cells are less sensitive to
this supplementary therapy effect we only increase the death rate with ds = 10−4.

Trajectories obtained by numerical simulations with the Euler-Maruyama method for widely different
values of the sensitivity parameter α̃ are shown in Figure 3. The sensitization on CSCs effects a slightly
reduced growth in their density, while the DCs are depleted to a certain, however not very large amount.
For (much) larger values of α̃ there is even less increase in CSCs (but no effective decrease) and almost
no further effect on DCs, but the concrete choice of this parameter seems to be hardly of relevance with
respect to the efficacy of reducing the overall tumor burden when the effect of the chemotherapeutic agent

5for simplicity we assume this to be constant
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Figure 3: Different trajectories of SDE (1) and their averages for 103 trajectories in the case with
chemotherapy. Parameter values as in Table 2, dose-dependent probability a3 of symmetric splitting of

a cancer stem cell into differentiated cells as given in (3). Upper row: α̃ = 0.5, lower row: α̃ = 10 .

Figure 4: Trajectories of SDE (1) and their averages for 103 trajectories in the case with differentiation
therapy only. Parameter values as in Table 2, α̃ = 10, follow up to 100 days.
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is mainly aiming at sensitizing the cancer cells by inducing differentiation of CSCs. The behavior of CSCs
and DCs after the end of this treatment is shown in the follow-up plots of Figure 4. The depletion is too
low (compare also with Figure 2 showing no therapy at all), as the cancer stem cells are known to trigger
recidives even when present in a very low amount [32]. Therefore this approach alone is not enough to
control the tumor: the differentiation promoter should be used in an adjuvant way with other therapies,
e.g. ionizing radiation.

3.2 Radiation therapy

When applying radiation therapy proliferating cells are harmed by altering their genetic material. De-
pending on the cell type and the cell’s current position in the cell cycle, its radiosensitivity varies.
The most common approach for modeling radiation treatment of a tumor is the LQ-model based on a
linear-quadratic exponent to describe the effect of the therapeutic dose on cell survival fractions: A cell
survives applied doses of radiation (and is said to be a clonogen) if it is able to act as a progenitor for a
significant line of offspring [10]. The fraction of surviving cells S(D) after a single total dose D (in Gray)
is then given by (see e.g., [4])

S(D) = e−(αD+βD2) (4)

for parameters α, β that correlate with the cell cycle length. The parameter α can be interpreted as the
lethal damage due to a single track of radiation and the parameter β represents lethal damage due to the
missrepair of DNA damage as a result of two separate tracks of radiation [25]. Tissues with a slow cell
cycle correspond to a small α/β-ratio, whereas fast cycling tissues containing quickly proliferating cells
correspond to a larger α/β-ratio. In common clinical practice the total dose D is given in ν fractions of
equal size d [4]. From the corresponding hazard rates

di = (αi + βid)d for i = c, s (5)

we obtain the death rates involved in system (1). Unlike chemotherapy in the previous section, the
treatment with radiation includes weekend breaks. A common daily radiation dose is d = 2 Gy during
ν = 25 days of treatment (hence a total dosis of 50 Gy, leading to an overall treatment time of 5 weeks
[4]. To simulate this therapy strategy we choose the sensitivity parameters in Table 4. The obtained
results are shown in Figure 5.

Parameter α (in Gy−1) βc (in Gy−2) βs (in Gy−2) d (in Gy) ν (in days)
Value 0.0906 0.006 0.00605 2 25

Table 4: Model parameters for radiation therapy based on [65, 52], where no difference was made
between various phenotypes of tumor cells. The parameter βs was chosen here slightly larger than βc to

account for the reduced sensitivity of CSCs towards therapy.

Figure 5: Different trajectories of the solutions components of system (1) with the application of
radiation therapy and their averages over 103 trajectories. Parameter values as in Tables 4 and 2, follow

up to 70 days.
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A closely related concept to the LQ-model is the Biological Effective Dose (BED) [4]. This quality
measure of radiation treatment only involves the exponent of the LQ-model and has the form

BED = νd
(

1 +
d

α/β

)
(6)

with the dose d per fraction and the number of fractions ν. We will use this quantity in Subsection 3.4 to
describe therapy applying irradiation doses at discrete times, alone or in combination with the continuous
application of a cell differentiation promoter.

3.3 Combining chemotherapy and radiotherapy

Most patients undergo tumor resection for diagnostic and treatment purpose, however postoperative
treatment strategies like radiation and chemotherapy are needed to further reduce tumor progression and
ideally prevent recurrence. Thereby, they can be used in a consecutive or concurrent way; the latter
option seems to be often the better choice [19, 6]. Clinical trials aiming at the investigation of such com-
bined effects have been set up; for instance, the use of vorinostat together with radio and chemotherapy
(cisplatin) in the treatment of advanced staged oropharyngeal squamous cell carcinoma makes the object
of a phase I study (ClinicalTrials.gov identifier NCT01064921). Studies of histone deacetylase inhibitors
as anticancer drugs in combination with radiotherapy have been performed for a large variety of cancers,
including glioblastoma, see [14] and the references therein.

In our model we consider the joint application of a differentiation promoter (e.g., vorinostat) and of radio-
therapy. As mentioned above, the main effect of chemotherapy is the stimulation of differentiation into
cells which are more sensitive towards radiotherapy, thus boosting the cell kill. However, the administered
drug can also induce a modest cell depletion by itself, hence enabling us to add some tiny, but positive
constants to the previous death rates ds and dc used in our model obtained in Section 2. For simplicity
we consider a simulation based approach and do not incorporate a decay term modeling radiation therapy
via LQ into our system of SDEs, but simply apply formula (4) to the CSC and DC volume fractions at
scheduled times during computation. The simulation is stopped at the times of radiation treatment, S(D)
is applied to c and s using the corresponding values for α and β, and then the simulation is resumed.
The radiotherapy is applied 5 days a week, 5 weeks, with a daily dose of 2 Gy, thus for a total therapy
time of 35 days. Chemotherapy (sensitization) follows the approach in Subsection 3.1 above and involves
the same dosis therein, applied daily in a concurrent way during the time span of 4 weeks and during
all weekdays. The administration of the chemotherapeutic agent leads to an increase in the number of
CSCs dividing symmetrically into DCs and thus becoming more sensitive to radiation. Simulations of this
combined treatment strategy are shown below in Figure 6. Just by visually comparing this with Figure
5 it is difficult to decide whether radiotherapy gives better results alone or in simultaneous combination
with a differentiation promoter.

(a) (b)

Figure 6: Trajectories of the SDE model (1) with the simultaneous application of radio- and
chemotherapy (differentiation promoter) and their averages over 103 simulated trajectories. Parameter

values as in Tables 4 and 2, with α̃ = 10, follow up to 70 days.

A further common way to integrate different cancer therapies is to alternately apply chemotherapy (in our
case differentiation promoter of CSCs into DCs) and ionizing radiation. Thereby, an often used schedule
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is to apply three to four weeks of chemotherapy followed by radiotherapy. Here a differentiation promoter
is administered for 4 weeks and subsequently radiotherapy is applied for 5 weeks, only on workdays, to
achieve a total dose of 50 Gy in fractions of 2 Gy each. The parameters are chosen in accordance with
the previous Subsections 3.1 and 3.2. The results of the corresponding simulations are depicted in Figure
7. Upon comparing the two approaches involving combined chemo- and radiotherapy we observe that

(a) (b)

Figure 7: Different trajectories of the SDE model (1) with the alternating application of chemotherapy
and radiation therapy and their mean values for 103 simulated trajectories. Parameter values as in

Tables 4 and 2, with α̃ = 10, follow up to 70 days.

the consecutive application seems to be less efficient than the concurrent one.

3.4 Time-discrete therapy

Up to now we have considered the development of the population sizes of cancer stem cells and differ-
entiated cancer cells for continuous therapies. However, no treatment schedule is actually continuous,
therefore we model a time-discrete approach involving chemo and/or radiation therapy, in a way that
it is typically applied to patients, i.e. at discrete points in time - for example: once a day, except for
weekends.
To this aim we select a sequence of points in time {tk}k=1,...,N with 0 < t1 < . . . < tN at which the
treatment is administered. Further let ξ1, . . . , ξN be a sequence of i.i.d. random variables characterizing
the effect of therapy on the tumor cells. Thus, the random variable ξk corresponds to the treatment at
time tk. The process Lt describes the (cummulative) effect of the treatment on the respective cell types
and can be given e.g., as in [63]

L
(j)
t =

{
0 , if 0 ≤ t < t1∑
{k: tk≤t} ξ

(j)
k , if t1 ≤ t.

j = c, s. (7)

Thereby we set ξk to be a rescaled non-centered χ2-distributed random variable

ξ
(j)
k ∼ σDχ

2
(

1, BED(j)
)

(8)

with BED(j) representing the biological effective dose from (6) computed for αj/βj , the parameter values
σD = 0.1, d = 2 Gy, and the corresponding sensitivity parameters αj , βj (j = c, s) as in Table 4.
Next we need a couple of stochastic processes Rc(t) and Rs(t) that characterize the population sizes of
the differentiated cancer cells and the cancer stem cells upon application of therapy:

Rc(t) = c(t)e−εcL
(c)
t , Rs(t) = s(t)e−εsL

(s)
t (9)

for t ≥ 0 with small constants εc, εs > 0 (here we choose εc = 0.0004, εs = 0.0002 to account for
the stem cells being less sensitive). The choice of the noncentral parameter of the χ2 distribution is
motivated by the proportionality between the mean of ξk and the dose d; this dependence is analogous
to that for the survival fraction, hence (9) actually describes the effect of radiotherapy (LQ model) on
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(a) (b) (c)

Figure 8: Trajectories of (1) and their averages over 103 simulated trajectories with a time-discrete
therapy solved with the Euler-Maruyama scheme, parameter values as in Table 2. Subfigures 8(a) and
8(a) show the results of the simulation for the two subpopulations of cancer cells and Subfigure 8(c)

shows the processes L
(s)
t , L

(c)
t .

the respective population of tumor cells. In order to simulate this model we need some distributions
and parameters that we choose similarly to Section 2.2, Table 2. When applying radiotherapy alone or
simultaneously to the continuously applied differentiation promoter we start the radiation treatment at
time t1 = 1 and continue on every workday, for 5 weeks, if applicable administering during the weekends
the chemotherapeutic agent for cancer cell sensitization. Simulations of the application of radiotherapy
alone are depicted in Figure 8. In this case, too, after the end of treatment the cancer cells (especially
CSCs) multiply further and trigger recurrence of the tumor, so that applying a differentiation promoter
is expected to lead to better outcome.

The application of radiotherapy at discrete times can also be combined in an alternative way with
the continuous administration of differentiation promoter (i.e. first chemotherapeutic sensitization by
differentiation promoter for 4 full weeks, then radiotherapy applied once a day during the 5 weeks following
chemo, only on workdays). In the next section we will assess the effects of these and the previous
approaches by way of TCP.

4 Treatment assessment via TCP

A common quality measure for the success of a treatment schedule is the tumor control probability
(TCP), which gives the probability that no clonogenic cells survive the radiation treatment. It is deter-
mined by complex interactions between tumor biology, tumor microenvironment, radiation dosimetry,
and patient-related variables. The complexity of these joint factors constitutes a challenge for building
predictive models for routine clinical practice.
Most TCP models rely on simple statistics in connection to cell survival. Among these, the model
considering a discrete distribution (Poisson or binomial) for the number of cells surviving radiation
treatment is –due to its simpliciy– very popular, see e.g., [8]. These settings, however, cannot capture
many of the features related to the specific treatment schedules, like cell repair, proliferation, sensitivity
to radiation etc. Cell population models describing the evolution of the tumor cell density via differential
equations offer a way to overcome these drawbacks, but most of those considered so far are purely
deterministic, hence adequate only for large cell populations. By anti-cancer therapy, however, such a
population is supposed to shrink drastically, so that only a small number of cells remains. As already
mentioned in the Section 1, this renders the use of a deterministic model questionable, thus calling for
the accommodation of stochasticity in the modeling process. Settings accounting for uncertainties via
stochastic birth and death processes have been proposed e.g., by Zaider & Minerbo [67] and extended
e.g. in [10, 21]; they lead eventually to a system of ODEs, which are the mean field equations for the
expected cell density -thus carrying in fact the assumption of large cell populations- and where the effect
of the birth and death processes is captured via a hazard function. Here we assess the TCP from our
SDE models introduced above, thereby relying for its computation on numerical simulations, as a closed
form expression of the TCP (as obtained e.g., in [10, 21]) seems to be out of reach, given the complexity
of such formulations. We denote by τc+s the first time when the stochastic process characterizing the
overall tumor cell population first becomes zero and compute (following the idea in [63])

TCP(t) = P(τc+s ≤ t), t ≥ 0. (10)
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This implies that the TCP is the cumulative distribution function of the random variable τc+s. Based
on (10) we can thus compute the TCP upon performing a large number Q of simulations for the process
(c+ s)(t):

TCP(t) =
number of simulations with τc+s ≤ t

Q
, (11)

which is a probability that converges to TCP(t) for Q → ∞. The results are shown in Figure 9. The
comparison between TCPs for the different therapy approaches gives some hints on which of these might
be more effective with respect to tumor eradication.

(a)

Figure 9: TCP for the different therapy strategies based on (1), with 103 simulations.

However, the treatment should not have the single aim of eradicating the neoplastic tissue; preserving as
much healthy tissue as possible is of utmost importance as well. Therefore, the effects of therapy on the
normal tissue have to be included in the models. They are influenced, too, by the stochasticity inherent
to the system and are addressed in the next section.

5 An SDE formulation accounting for the effects on normal tis-
sue

Analogously to Section 2.1 we can derive an SDE for the normal cell density:

dn(t) = (bn − dn)n(t)dt+
√

(bn + dn)n(t)dW (t) (12)

with initial conditions n(0) = n0 and the Wiener process W (t) assumed to be independent of W1(t) and
W2(t) in (1). The dynamic death rate dn is defined as

dn(t) = hn(t) + δn(t)(Sc(D)c(t) + Ss(D)s(t)), (13)

where δn(t) characterizes the interaction between normal tissue and tumor cells, which is known to
be destructive for the former, due e.g. to tumor-induced hypoxia and the effects of matrix degrading
enzymes. However, only living tumor cells can degrade the normal tissue, therefore we have to include
the survival fractions for both cancer cell phenotypes, according to their sensitivities toward the applied
treatment. When no radiotherapy is applied we take Sc = Ss = 1. We further assume that in the time
span of interest the natural decay of normal tissue (i.e. without any influence of therapy or cancer) is
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negligible. The term hn(t) describes normal tissue necrosis due to therapy; concretely, hn(t) denotes the
hazard rate of normal cells and can be seen as an intrinsic risk of being degraded by therapy. A classical
choice is hn(t) = −(ln(S(t)))′, where S(t) represents the dynamic survival fraction of normal cells under
therapy, see e.g., [57]. When considering therapy according to the LQ model this leads to

hn(t) = (αn + 2βnD(t))Ḋ(t),

with the positive constants αn and βn denoting as before the sensitivity parameters and D(t) being the
total dose absorbed at time t. Analogous formulae hold for the other cell subpopulations (CSCs and
DCs) as well (with corresponding sensitivities αi and βi, i = c, s). When the total dose is fractionated,
i.e. D = νd, then in [22] the hazard rate was proposed to take the form

hn(t) = (αn + βnd)Ḋ(t). (14)

Furthermore, considering as in [21] ti (i = 1, . . . , ν) the starting time of each fraction and assuming the
doses are delivered during the time interval [ti, ti + RT ] with a constant amount d in each fraction (RT
denotes thereby the fraction length, here RT = 1), following [21] we arrive at

Ḋ(t) =

{
d, t ∈ [ti, ti + 1]
0, otherwise

,

which makes of (14)
hn = (αn + βnd)d.

The survival fractions correspondingly modify to account for this fractionation, so that for each treatment
fraction we use Sc(d) and Ss(d) in (13). With this the death rate in (13) is completely specified and we
turn our attention toward the birth rate bn in (12). Aligning to a logistic growth model (see also [21, 62]),
we assume this birth rate to depend on an organ specific carrying capacity M and take

bn(t) =

{
µn

(
1− n(t)

M

)
, if n(t) ≤M

0, otherwise
, (15)

to be the birth rate if n(t) normal cells are alive. This implies that the normal cell growth is limited
by growth factors like space and nutrient supply. Due to this definition an increasing population size
leads to a decreasing birth rate. With this choice the amount of normal cells would always stay below
the carrying capacity M if we would only examine the deterministic model. Setting bn(t) = 0 whenever
n exceeds the carrying capacity (which can happen when describing stochasticity upon using a Wiener
process) a too large increase of the normal tissue is prevented.
Since we have used volume fractions for the cancer populations c(t) and s(t) we also have to consider
volume fractions for the normal cells n(t). Therefore, we nondimensionalize equation (12) and the corre-

sponding parameters, with ñ(t) = n(t)
N for a reference size N (conveniently choose N = M).

Observe that the dynamics of normal cells is (one-way) coupled to that of CSCs and DCs via decay
induced by the interaction between healthy and neoplastic tissues. Thus, in order to assess the evolution
of n(t) we need to solve the SDEs for c(t) and s(t) introduced and handled in Sections 2 and 3 Numerical
simulations of solutions to (12) with the coefficients described above are shown in Figure 10 for the case
with no therapy. Thereby we introduce a threshold density for the normal tissue: If the latter falls below
that threshold, then the respective area affected by the tumor is assumed to no longer function. Here
and everywhere in the following we will fix this threshold to γ = 0.70, meaning that the affected region
will fail when less than 70% of its constituent tissue is functional. Notice that without therapy (i.e. for
hn(t) = 0 and Ss = Sc = 1 in (13)) the (average) normal tissue density will reach the threshold γ in more
than the observed 70 days. The next step will be to take treatment into account.

Parameter Description Value

µn constant maximum birth rate (in day−1) 0.01
δn interaction factor 0.002
γ threshold of functionality 0.70
n0 initial density of normal tissue 1
M actual carrying capacity (normalized) 1

Table 5: Model parameters for normal tissue (without therapy)
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Figure 10: Trajectories of (12) for normal tissue density and of CSCs and DCs as solutions to (1).
Their averages over 103 trajectories are shown as thick black lines. Parameter values are given in

Table 5. The dotted grey line represents the threshold value γ for the normal cell density.

The application of chemotherapy (only aiming at CSC differentiation into DCs) does not explicitly alter
in our model (12) the equation. However, it affects indirectly the normal tissue density, on the one hand
by reducing the amount of tumor cells and thus decreasing the normal tissue degradation, but on the
other hand due to the side effects of the differentiation promoter it can also degrade a certain (very small)
amount of tissue. Simulations of the behavior of normal cells with a differentiation promoter therapy as
described in Section 3.1 are shown in Figure 11. Only very small differences between the situation with
no therapy and that with application of the differentiation promoter can be observed; the cancer cell
densities seem to be slightly reduced when therapy is applied, while the normal cells are hardly affected.
In average the normal tissue maintains its function beyond the time span of the treatment schedule (4
weeks).

Figure 11: Trajectories of (12) for normal tissue density and of CSCs and DCs as solutions to (1) for
the differentiation therapy approach in Section 3.1, with α̃ = 10. Their averages over 103 trajectories
are shown as thick black lines. Parameter values are given in Table 5. The dotted grey line represents

the threshold value γ for the normal cell density.

Now including radiation therapy (i.e. taking a nonzero hazard rate hn(t)) increases the death rate of
normal tissue. We consider as before several treatment approaches, including radiotherapy alone or in
combination with the differentiation promoter, in concurrent or alternating ways. Time-discrete scenarios
are also considered: Figure 12 shows simulations of the densities of normal cells, cancer stem cells, and
differentiated cancer cells for these approaches. In the time-discrete case we illustrate in Figure 13 the
outcome for radiotherapy applied at discrete times (on 25 days, once a day, during workdays, each dose 2
Gy), alone or in combination with differentiation therapy applied continuously for a period of 4 weeks and
for an alternating therapy with differentiation promoter applied continuously for 4 full weeks, followed
by time-discrete radiotherapy applied for 5 weeks (working days only, 2 Gy once per day). For the
simulations we use the parameters from Tables 5 and 6.

Parameter Description Value

αn sensitivity parameter (in Gy−1) 0.0025
βn sensitivity parameter (in Gy−2) 0.0025

Table 6: Model parameters for radiotherapy affecting normal tissue, based on [21].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Trajectories of the SDE (12) and of system (1) and their averages (black lines) over 103

trajectories. Parameters as in Tables 4, 2, 5 and 6. Plots 12(a)-12(c): effect of radiation therapy only.
Plots 12(d)-12(f): concurrent chemo and radiotherapy. Plots 12(g)-12(i): alternating chemo and

radiotherapy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Trajectories of the SDE (12) and of processes c(t), s(t) obtained by applying time discrete
therapy: radiotherapy alone (plots 13(a)-13(c)); in a concurrent (plots 13(d)- 13(f)) or an alternating

way (plots 13(g)-13(i)). Averages over 103 trajectories are shown in thick black lines. Parameters as in
Tables 4, 2, 5 and 6.
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6 Treatment assessment: NTCP and UTCP

Normal tissue complication probability (NTCP) and uncomplicated tumor control probability (UTCP)
are two further measures for the quality of treatment. They aim at assessing its damaging influence on the
normal tissue alone (NTCP) and jointly on tumor cells and normal tissue (UTCP). NTCP is generally
defined as the probability that the functioning of normal tissues is impaired by exposure to ionizing
radiation and is hence to be kept as low as possible. There are quite a few approaches to computing
NTCP for diverse treatment schedules described in a deterministic way or including stochasticity via
birth and death processes, see e.g., the Lyman model [41] using dose-volume histograms and applicable
to uniform dose distributions, its adaptation to nonuniform distributions done in [39], further extensions
like the critical volume NTCP model [31, 45] accounting for the tissue structure, i.e. whether parts of it
can still function if the rest is damaged, and the model presented in [21] relying on simple birth and death
processes and allowing to compute the NTCP by way of generating functions or numerical simulations.
The method applied in [62] to determine a formula for NTCP cannot be used here, as our framework is
more complex and does not allow to perform the assumptions made therein. In the following we therefore
compute the NTCP with the aid of numerical simulations from our SDE model.

NTCP computation for an SDE model In analogy to Section 4 denote by τn the random variable
registering the times when n(t) first drops below a specific threshold value γ. This threshold γ describes
as in Section 5 the minimum amount of normal tissue necessary for a specific organ to function properly.
Then the probability that severe complications occur in the healthy tissue is given by:

NTCP(t) = P(τn ≤ t) t ≥ 0. (16)

This implies that the NTCP is the cumulative distribution function of the random variable τn. As our
differential equations are quite complicated we cannot explicitly compute a formula for the NTCP but
we can approximate it numerically.
Based on (16) we can compute the NTCP upon simulating a large number Q of trajectories for the
process n(t) denoting for the volume fraction of healty tissue and obtain

NTCP(t) =
number of simulations with τn ≤ t

Q
, (17)

which converges to NTCP(t) for Q→∞. Simulating the NTCP via the SDE model and with parameters
given in Tables 5 and 6 we obtain the results presented in Figure 14. As expected, the time discrete

Figure 14: NTCP for the different therapy strategies based on SDEs, 103 simulations.

therapy approaches seem to be the most conservative ones. The mere use of a differentiation promoter
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is the approach least damaging the normal tissue, but it is also least efficient in killing cancer cells,
while time discrete approaches are comparable. A high efficiency in tumor cell depletion is unfortunately
impairing the functionality of normal tissue, therefore another quality measure is needed to assess the
performance of a therapeutic approach.

Uncomplicated Tumor Control Probability In Sections 4 and 6 we have computed and estimated
values for the TCP and NTCP with different models. For an effective treatment we do not only have
to increase the TCP but also keep the NTCP at a minimum. Therefore we introduce the uncompli-
cated tumor control probability (UTCP) which is a general expression for the probability of achieving
complication-free tumor control [33].
In general, the UTCP can be described as the probability for tumor control (denoted with P (C)) minus
the probability that the patient suffers severe health impairment (denoted with P (I)) but is controlled:

UTCP = P (C)− P (C ∩ I), (18)

where P (C ∩ I) denotes the probability that the patient is both controlled and suffers health impairment
[1]. With the multiplication law of statistics we can rewrite (18) as

UTCP = P (C)− P (C)P (I|C) = P (C)(1− P (I|C))

where P (I|C) is the conditional probability for injury provided the tumor has been controlled. When the
event of an injury I and the event of tumor control C are statistically independent we obtain P (I|C) =
P (I). Thus we obtain

UTCP = P (C)(1− P (I))

which is
UTCP = TCP (1−NTCP) (19)

with our notations from the previous sections. Figure 15 shows results obtained by simulating the previous
therapy strategies relying on (1), (12). Averages are taken over 103 simulations. The results suggest that
time-discrete therapies start becoming an effective option after the half time of overall treatment, while
continuous time approaches seem to be adequate only during the earlier treatment phase, though their
UTCPs are quite low.

Figure 15: UTCP for the different treatment strategies based on 103 simulations of (1), (12).

Probably therapeutic schemes involving further combinations of radiotherapy, differentiation promoter(s),
and chemotherapy effectively aiming and direct or indirect tumor cell kill (e.g., by inhibiting angiogenesis)
might be more appropriate. The performance of one scheme or the other may also vary according to the
type of cancer to be treated, and it may be necessary to include various other features of the specific
therapeutic approach(es) to be applied. Our goal was not to identify the best therapeutic option, but

19



rather to provide a model class which is able to combine the description of the evolution of tumor cell
subpopulations having different, dynamically changing phenotypes, with a large variety of therapeutic
schedules, thereby explicitly accounting for stochasticity, and illustrate it for several therapy approaches,
both time-discrete and continuous.

7 Assessment of future average development of tumor and nor-
mal tissue via PDEs.

In this section we want to address the problem of assessing the mean evolution of tumor and normal tissue
with respect to time and to cell populations which at a specified time moment can vary continuously in
a given set of states. To this aim we deduce PDEs characterising the dynamics of variables of interest
related to the three (sub)populations of cells: CSCs, DCs, and normal cells.
We start with the SDE system obtained by coupling (1) with (12) and describing tumor and normal cell
evolution in the absence of therapy:

dc(t) = µ1(c, s)dt+B11(c, s)dW1(t) +B12(c, s)dW2(t) (20a)

ds(t) = µ2(c, s)dt+B21(c, s)dW1(t) +B22(c, s)dW2(t) (20b)

dn(t) = (bn(n)− dn(c, s))n(t)dt+
√

(bn(n) + dn(c, s))n(t)dW3(t), (20c)

with initial conditions

c(t0) = c0, s(t0) = s0, n(t0) = n0, (21)

and with the involved coefficients µi, Bij (i, j ∈ {1, 2}), bn, dn as in Subsection 2.1 and Section 5.
Thereby, Wi(t) (i = 1, 2, 3) are as before mutually independent Wiener processes. Note that here t0 is
a reference time (for example, the time when the tumor was first discovered and documented, with an
appropriate staging system, by a physician) and not necessarily the initiation time point of the disease.
Then starting from the information available about the tumor at t0 we want in this section to describe
his future mean evolution with a PDE.
In the following we will be rather interested in characterizing the behavior of the whole tumor burden, its
stemness portion, and the difference between the amount of normal tissue and the latter’s critical density
involving the functionality threshold γ considered in Section 5 and thus allowing to evaluate the survival
chances of a patient. Therefore we consider the function f : R3 → R3,

f(ct, st, nt) := (ρt, st, ϑt)
t, where ρt := ct + st and ϑt := nt − γnH .

Thereby nH denotes the (constant in time) amount of normal tissue.
Let Xt := (ct, st, nt)

t and Yt := (ρt, st, ϑt)
t. Then applying Itô’s formula for the process Yt = f(Xt) we

get the corresponding SDE system:

dYt = lµ.. (Yt)dt+ pσ(Yt)dW(t) (22)

Yt0 = y,

with the initial condition y = (c0 + s0, s0, n0 − γnH)t, drift lµ.. (Yt) =

 µ1(Yt) + µ2(Yt)
µ2(Yt)
µ3(Yt)

, where

µ3(Yt) := (bn(Y3(t) + γnH)− dn(Y1(t), Y2(t)))(Y3(t) + γnH), and diffusion matrix

pσ(Yt) =

 (B11 +B21)(Yt) (B12 +B22)(Yt) 0
B21(Yt) B22(Yt) 0

0 0 σ(Yt)

 ,

where σ(Yt) :=
√

(bn(Y3(t) + γnH) + dn(Y1(t), Y2(t)))(Y3(t) + γnH). If (Yt)t≥0 is a solution to (22) on
a filtered probability space (Ω,A,P) then (see e.g. [49, 46]) (Yt)t≥0 is a Markov process relatively to that
filtration, having a semigroup (St)t≥0 defined, for any function φ measurable and bounded on R3, by

Stφ(y) = E[φ(Yt)|Yt0 = y].
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Its infinitesimal generator has, for any φ twice continuously differentiable and with compact support, the
form

Lφ(y) =

3∑
i=1

lµ.. i(y)
∂φ

∂yi
(y) +

1

2

3∑
i,j=1

( pσ pσt)ij(y)
∂2φ

∂yi∂yj
(y).

Then (see e.g. [49, 46]) the quantity U(t,y) := E[φ(Yt)|Yt0 = y] satisfies the backward Kolmogorov
PDE

∂tU(t,y) = LU(t,y)

U(t0,y) = φ(y).

This is written for convenience as a system, however the three PDEs are actually decoupled.
Here we will choose for φ the identity mapping on R3, so that we obtain for U(t,y) = E[Yt|Yt0 = y] the
system of parabolic drift-diffusion equations

∂tU(t,y) =

3∑
i=1

lµ.. i(y)
∂U

∂yi
(t,y) +

1

2

3∑
i,j=1

( pσ pσt)ij(y)
∂2U

∂yi∂yj
(t,y) (23a)

U(t0,y) = y. (23b)

Thus, the solution of this PDE represents the vector of expected overall tumor burden, the expected
density of stem cell subpopulation, and the expected dynamic displacement from the critical functionality
level of normal tissue. All these quantities depend on time and on the starting distributions of the cell
populations c0, s0, n0, all of which are supposed to be positive and to have finite upper bounds, say Mc,
Ms and Mn, respectively. The sign of the third component of U can be negative or positive, according
to whether the normal tissue falls or not below the critical level and it is actually an indicator of patient
survival, therefore arguably more relevant than the corresponding effective amount of normal tissue. Also
notice that the deduced PDE is nonautonomous with respect to the y variable and its divergence form
is:

∂tU(t,y) =

3∑
i,j=1

(1

2
( pσ pσt)ij(y)

∂U

∂yi
(t,y)

)
yj

+

3∑
i=1

(
lµ.. i(y)− 1

2

3∑
j=1

∂( pσ pσt)ij
∂yj

(y)
)∂U

∂yi
(t,y) (24a)

= div(
1

2
pσ pσt∇U(t,y)) +

(
lµ.. −

1

2
div( pσ pσt)

)
· ∇U(t,y)

U(t0,y) = y. (24b)

Alternatively a backward problem with terminal condition can be obtained (see e.g. [49]) by considering

u(τ,y) := E[YT |Yτ = y], t0 ≤ τ ≤ T, (25)

with y in D := R3
+, which satisfies the final value problem

∂τu(τ,y) +

3∑
i=1

lµ.. i(y)
∂u

∂yi
(τ,y) +

1

2

3∑
i,j=1

( pσ pσt)ij(y)
∂2u

∂yi∂yj
(τ,y) = 0 in (t0, T )×D (26a)

u(T,y) = y in D, (26b)

together with boundary conditions like those mentioned above. Equation (25) defines the expectations of
the quantities of interest ρt, st, ϑt (overall tumor burden, density of stem cells, and dynamic displacement
from the critical functionality level of normal tissue) at some later time T provided they were known
at some earlier time τ . In our context the latter could be the time of diagnosis (usually differing from
patient to patient) and T could correspondingly represent the follow-up time. Note that (26) can be
reduced to the class of PDEs of type (23) by the transformation U(T + t0 − τ,y) := u(τ,y).
Including therapeutic effects can be easily done for continuously applied therapies, as in the SDE frame-
work we accounted for such effects by way of the coefficients in the SDEs involving birth, death, and
transition rates affected by the respective therapeutic agent. Time-discrete therapies with ionizing radi-
ation applied at discrete, pre-specified times can be described in this context similarly to what we did in
Subsection 3.4, i.e. using some stochastic processes Lt to characterize the cummulative treatment effect
on the quantities given by the components of the vector U(t,y) (or for that matter u(T + t0 − t,y))
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determined by solving the above initial (or, correspondingly, terminal)-boundary value problem. For
instance, instead of (9) we could consider

Rρ(t,y) = (U1 − U2)(t,y)e−εcL
(c)
t + U2(t,y)e−εsL

(s)
t , Rs(t,y) = U2(t,y)e−εsL

(s)
t ,

with L
(c)
t and L

(s)
t as in Subsection 3.4 and use these to dynamically replace the initial conditions for U1

and U2 on every new computed time interval. We only describe the concept here and address explicitly
merely the case without therapy in order not to overload the presentation.

7.1 Numerical simulations

System (24) involves three PDEs, each of the solution components depending on time and on a three-
dimensional vector y. However, taking a closer look at the original SDE system (20) we see that the
third equation is decoupled from the first two. This observation can help reducing the computational
effort needed for (24). Indeed, similarly with what we did above, we can write a PDE system for
Ũ(t, ỹ) = (U1(t, ỹ), U2(t, ỹ))t, where ỹ = (y1, y2)t:

∂tŨ(t, ỹ) =

2∑
i,j=1

(1

2
( p̃σ p̃σt)ij(ỹ)

∂Ũ

∂ỹi
(t, ỹ)

)
ỹj

+

2∑
i=1

(
l̃µ.. i(ỹ)− 1

2

2∑
j=1

∂( p̃σ p̃σt)ij
∂ỹj

(ỹ)
)∂Ũ

∂ỹi
(t, ỹ) (27a)

= div(
1

2
p̃σ p̃σt∇U(t, ỹ)) +

(
l̃µ.. −

1

2
div( p̃σ p̃σt)

)
· ∇Ũ(t, ỹ) in (t0, T )× R2

+,

Ũ(t0, ỹ) = ỹ in R2
+, (27b)

whereby we will actually compute the solution only on the domain D̃ = (0,Mc + Ms) × (0,Ms). In the
above equations

l̃µ.. (ỹ) =

(
µ1(ỹ) + µ2(ỹ)

µ2(ỹ)

)
, p̃σ(ỹ) =

(
(B11 +B21)(ỹ) (B12 +B22)(ỹ)

B21(ỹ) B22(ỹ)

)
. (28)

This system of decoupled, linear PDEs is nonautonomous with respect to the two-dimensional ỹ variable
and can be solved to provide at any time the expected total tumor burden and the expected amount of
stem cells in that tumor.
To determine the quantity U3(t,y) = E[Y3(t, ỹ)|Y3(t0) = y3] we need the full vector y, thus the corre-
sponding scalar PDE will have to be solved in 3D:

∂tU3(t,y) = µ3(y)
∂U3

∂y3
(y) +

1

2
σ2(y)

∂2U3

∂y23
(y) in (t0, T )× R3 (29a)

U3(t0,y) = y3 in R3.

The solution will be computed on D = D̃× (−γnH ,Mn − γnH). We use a Douglas-Rachford alternating
direction (ADI) finite difference method which makes one dimension implicit each time while leaving
the other two dimensions explicit. Here a more accurate ADI scheme (see [13]) has been implemented
and employed to find the approximations of the solution components. The parameters involved in the
coefficients of the PDEs are the same with those used in Sections 2 and 5. Figure 16 shows the solution
components at different times: U1: expected total tumor burden, U2: expected amount of tumor stem
cells, and U3: expected deviation of normal cells/tissue from the critical level at which the affected
region is still functional. The latter was taken to be γ = 0.7, i.e. 70% of the normal cells have to be
preserved in order to ensure tissue functionality. Notice that with time passing the normal tissue is more
and more degraded, as a consequence of the interaction with tumor cells. Increasing the functionality
threshold drives U3 deeper into the negative region, meaning that patient survival chances are dramatically
impaired. Such situation is illustrated in Figure 17, where γ = 0.85, the rest of the parameters remaining
unchanged. Only U3 is represented, as U1 and U2 do not change with γ due to the normal cells not
influencing the evolution of tumor cells.

7.2 Analytical approximations based on Euler SDE discretization

In this subsection we describe a way to derive closed-form analytical approximations of the predicted
mean of YT based on the staging of the tumor at τ , i.e. for u(τ,y) = E[YT |Yτ = y] with τ ∈ [t0, T ] and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 16: Solution components of (27), (29) at various time moments, no therapy applied. Left
column: expected total tumor burden, middle: expected density of cancer stem cells, right: expected
deviations of normal cells from critical threshold for which γ = 0.7. Plots 16(a)-16(c): initial state,

16(d)-16(f): 10 days, 16(g)-16(i): 30 days, 16(j)-16(l): 70 days.
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(a) (b) (c)

Figure 17: Solution of (29) at various time moments, no therapy applied. Shown are expected
deviations of normal cells from critical threshold for which γ = 0.85. Plot 17(a): 10 days, 17(b): 30

days, 17(c): 70 days.

y ∈ R3
+. However, in order to simplify the presentation we will only illustrate the method for the vector

of the first two components u1, u2, hence corresponding to the solution of the PDE system

∂τ ũ(τ, ỹ) +
2∑
i=1

l̃µ.. i(ỹ)
∂ũ

∂ỹi
(τ, ỹ) +

1

2

2∑
i,j=1

( p̃σ p̃σt)ij(ỹ)
∂2ũ

∂ỹi∂ỹj
(τ, ỹ) = 0 in (t0, T )× R2

+ (30a)

ũ(T, ỹ) = ỹ in R2
+. (30b)

where in this subsection t0 represents the initiation time of the tumor. For simplicity of notation we will
omit the tildes on the variables in the following, but always mean the 2D vectors, unless otherwise stated.
In the following we give an analytical approximation of the solution to (30) on a small prediction interval
(τ, T ).6 The idea presented here can be recursively extended such that the corresponding results hold on
an arbitrary prediction interval (τ, T ), however they would have a very cumbersome closed form.

Proposition 7.1 Let z := (ln y1, ln y2)t, y := (y1, y2) ∈ R2
+. Then an analytical approximation of the

solution to (30) on a small prediction interval (τ, T ) is given componentwise by

uj(τ,y) ' EAS(M(z))

[
Ij(z)

(
ð∇Aj(M(z)) +

1

2
∇Sjj(M(z))

)
· S·j(z)

+
(ð

2
HessAj(M(z)) +

1

4
HessSjj(M(z))

)
: Mj

2(z)

]
,

where j = 1, 2 and we used the following notations (ζ ∈ R2):

A(ζ) :=

(
e−ζ1(l̃µ.. 1

(ζ) + l̃µ.. 2
(ζ))− 1

2e
−2ζ1( p̃σ2

11(ζ) + p̃σ2
12(ζ))

e−ζ2 l̃µ.. 2
(ζ)− 1

2e
−2ζ2( p̃σ2

21(ζ) + p̃σ2
22(ζ))

)
, (31)

M(ζ) := ζ + A(ζ)ð, Σ(ζ) :=

(
e−ζ1 p̃σ11(ζ) e−ζ1 p̃σ12(ζ)
e−ζ2 p̃σ21(ζ) e−ζ2 p̃σ22(ζ)

)
, S(ζ) := ðΣ(ζ) (32)

EAS(ζ) := exp
(
ðδj ·A(ζ) +

1

2
δtjS(ζ)δj

)
,

Ij(ζ) := exp
(
δj ·M(ζ) +

1

2
δtjS(ζ)δj

)
,

(Mj
2(ζ))km := Ij(ζ)

(
Sjm(ζ)Sjk(ζ) + Skm(ζ)

)
,

δj := (δj1, δj2)t, where δij is the usual Kronecker symbol, ð :=
T − τ

2
.

Thereby, l̃µ.. and p̃σ are as in (28), S·j denotes the column j of S, and as usual A : B = trace(ABt) for
A,B arbitrary matrices.

6By small interval is meant e.g. an interval of length 2ð, where ð is the discretization step of the Euler scheme for the
SDE system (22).
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Proof: Let Zj(τ) := lnYj(τ), j = 1, 2. Then uj(τ,y) = E[eZj(T )|Z1(τ) = ln y1, Z2(τ) = ln y2]. The SDE
system satisfied by Z = (Z1, Z2)t writes

dZt = A(Zt)dt+ Σ(Zt)dW(t), (33a)

Zτ = z, t ∈ [τ, T ] (33b)

where z = (ln y1, ln y2)t, and thr drift and diffusion coefficients A(Zt) and Σ(Zt) are those given in (31)
and (32), respectively. In general, the discretization of (33) has the form

Zτk+1
= Zτk + A(Zτk)ð + Σ(Zτk)

√
ðεk, εk ∼ N(0, I2), k = 0, . . . , n− 1 (34)

where τ = τ0 < τ1 < · · · < τn = T and ð = τk+1 − τk = T−τ
n .

We aim at computing the approximation

E[eZj(T )|Z(τ) = z] '
∫
R2

ez
(n)
j pτ,T (z(n)|z(0))dz(n), (35)

where z(0) = z and pτ,T is the transition density from τ to T for the Markov process given in (34).
Between such transition densities it is well known that we have the following representation:

pτ0,τn(z(n)|z(0)) =

∫
R2

· · ·
∫
R2

pτ0,τ1(z(1)|z(0))pτ1,τ2(z(2)|z(1)) . . . pτn−1,τn(z(n)|z(n−1)) dz(1) . . . dz(n) (36)

and consider that pτk,τk+1
(z(k+1)|z(k)) is the density of a normal distribution of mean M(z(k)) and variance

S(z(k)) according to (32), thus

pτk,τk+1
(z(k+1)|z(k)) =

1

2π(detS(z(k)))1/2
exp

(
− 1

2
(z(k+1) −M(z(k)))tS−1(z(k))(z(k+1) −M(z(k)))

)
,

for all z(k+1) ∈ R2, k = 0, . . . , n− 1.
To compute (35) recall that we consider for the sake of clarity n = 2; the computations for the more
general case are analogous, but more tedious.

E[eZj(T )|Z(τ) = z] '
∫
R2

ez
(2)
j

∫
R2

pτ0,τ1(z(1)|z(0))pτ1,τ2(z(2)|z(1)) dz(1)dz(2)

=

∫
R2

pτ0,τ1(z(1)|z(0))
∫
R2

ez
(2)
j pτ1,τ2(z(2)|z(1)) dz(2) dz(1). (37)

To calculate the inner integral in (37) observe that it is the Laplace transform of a multivariate normal
density. Denoting δj := (δj1, δj2)t, where δij is the usual Kronecker symbol, we can write∫

R2

ez
(2)
j pτ1,τ2(z(2)|z(1)) dz(2) =

∫
R2

eδj ·z(2)

pτ1,τ2(z(2)|z(1)) dz(2)

= exp
(
δj ·M(z(1)) +

1

2
δtjS(z(1))δj

)
.

Plugging this into (37) gives

E[eZj(T )|Z(τ) = z] '
∫
R2

exp
(
δj · (z(1) + ðA(z(1))) +

1

2
δtjS(z(1))δj

)
pτ0,τ1(z(1)|z(0)) dz(1). (38)

We expand the exponential of the nonlinear part from the above integral in a Taylor series of second
order around the point M(z(0)),7then use the Laplace transform for a multivariate normal distribution
to assess the terms of the form∫

R2

eλ·z
(1)

z(1)r pτ0,τ1(z(1)|z(0)) dz(1) =
∂

∂λr
exp

(
λM(z(0)) +

1

2
λtS(z(0))λ

)
, r = 1, 2∫

R2

eλ·z
(1)

z(1)r z(1)s pτ0,τ1(z(1)|z(0)) dz(1) =
∂2

∂λr∂λs
exp

(
λM(z(0)) +

1

2
λtS(z(0))λ

)
, r, s = 1, 2.

7Actually a Taylor expansion of any order can be used and all computations can be performed explicitly in an absolutey
analogous way, however they can become very involved, therefore we restrain here to this second order expansion.
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These calculations lead to

M1,r(z
(0)) :=

∫
R2

eδj ·z(1)

z(1)r pτ0,τ1(z(1)|z(0)) dz(1)

= exp
(
δj ·M(z(0)) +

1

2
δtjS(z(0))δj

)(
Mr(z

(0)) + Sjr(z
(0))
)
, j, r = 1, 2

M2,rs(z
(0)) :=M1,r(z

(0))(Mr(z
(0)) + Sjr(z

(0))) + Ssr(z
(0)) exp

(
δj ·M(z(0)) +

1

2
δtjS(z(0))δj

)
,

j, r, s = 1, 2. Replacing into (38) gives the claim, after rewriting the obtained formula with the aid of
matrix-vector multiplications. �

8 Conclusions and outlook

Noise is an important component of all physiological processes. In cancer development and treatment
it plays an important role, too, as there is a large patient-to-patient variability concerning both the
evolution of a tumor and its response to therapy. Moreover, cell population reduction effected by therapy
leads to small cell numbers and thus to fluctuations. In this work we proposed a modeling approach
involving SDEs and obtained from simple transition probabilities, thereby paying particular attention to
the deduction of the SDEs. The explicit drift and diffusion terms are derived from step-by-step modeling
and not by simply adding some multiplicative noise to an ODE system describing in a more or less
heuristic way the evolution of the tumor cell subpopulations. For instance, the form of the (negative)
diffusion coefficients for the model in [47] is largely arbitrary and needs justification. Same applies to the
simple multiplicative form of (positive) diffusions in the models from [50, 63]. We would like, however,
to mention here the model in [54] focusing on another issue related to tumor growth and effectively
deducing the coefficients of the corresponding single SDE by a diffusion limit of branching processes. The
deduction method we used here is related to that in [54] and similar to what has been done in [2] for an
SDE system characterizing the dynamics of interacting populations, however with relevant modifications
aiming at preserving the positivity of solutions. Indeed, the conditions for the latter were shown in [9] to
be necessary and sufficient, therefore they actually guided the modeling, in particular by requiring some
of the mitotic and differentiation rates to be nonconstant.
Further factors from the tumor microenvironment, e.g., tumor acidity, affect cell proliferation, differen-
tiation, and therapeutic response of both normal and neoplastic tissues. Such effects can be included
by considering a supplementary (deterministic or stochastic) equation for the dynamics of proton con-
centration and modifying the cell splitting rates to let them depend not just on the available amount of
cells, but also on the acidity. Birth and death rates could depend on the latter as well. An SDE system
with correlated Wiener processes would be more realistic, but also more challenging, as the theory and
numerics of such systems have still to be developed for the situation where the SDEs are coupled in such
nonlinear way as is the case here.
Even for a nonlinear SDE system like ours, with independent Brownian motions characterizing the noise
there are still enough open problems: The solutions can be shown to exist only locally, the numeri-
cal schemes available so far are not positivity preserving, and, moreover, the system can become stiff
when small cell densities are reached simultaneously in both subpopulations, leading to large diffusion
coefficients needing to be balanced by a tiny discretization step.
Passing to a PDE system like in Section 7 enables accounting for the (expected) evolution of tumor
cells in interaction with the surrounding normal tissue not only with respect to time, but also depending
on continuous ranges of tumor and (shifted) normal cell densities, so that predictions become available
for different scenarios of the tumor and normal tissue states, thereby also making allowance for tumor
heterogeneity with respect to stemness. Similarly, other cell phenotypes can be considered in this modeling
framework, e.g. if one is interested in the migratory (mesenchymal vs. amoeboid, moving vs. proliferating,
etc.) behavior of tumor cells in order to assess not just growth, but also spread of the neoplastic tissue.
Indeed, besides time evolution the space dynamics also plays an essential role in the assessment of several
indicators of tumor malignancy, among others acidity, cell motility, tissue degradation. In particular
radiotherapy needs a correct estimation of tumor margins for determining the CTV/PTV. For instance,
this issue is of outmost relevance for cancers like glioma, whose spread heavily relies on the underlying,
highly anisotropic and patient-specific brain tissue structure. Accounting for such effects leads to systems
of partial differential equations of reaction-diffusion-taxis type, some coupled to ODEs. Accounting for
stochasticity in that context is far more challenging, and even with major simplifications there are but
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few references addressing such models. They involve PDEs with random coefficients [28, 29] or couplings
between PDEs and SDEs [36, 27]. The latter, however, only take into account a single cancer cell
population moving and proliferating under the influence of intra- and extracelluar tumor acidity, and were
obtained in a heuristic way. Effectively deducing adequate coupled PDEs from transition probabilities for
interacting cell subpopulations inferring phenotypic switch triggered by randomly influenced population
densities or just by some external factors would be a most interesting, but also challenging issue even if
only done formally.
Still in the present framework of interacting cell populations just depending on time, the issue of cancer
stem cell plasticity in which tumor cells harbor the dynamic ability of shifting from a non-CSC state
to a CSC state and back gives rise to more complicated two-way couplings, therefore we made here te
simplifying assumption that CSCs only divide symmetrically or asymmetrically and cannot arise from
differentiated cells. Including CSC plasticity can be, however, of substantial relevance to the therapeutic
outcome [40] and as such deserves investigation. Mathematical models have the great advantage of being
amply versatile and allowing to test a large variety of approaches with features which can be turned on
and off at will in the simulations. Therefore, they have the potential of helping to understand both the
modeled processes and the performance of the therapeutic ansatz.

9 Appendix

9.1 Recalling invariance criteria for SDEs

In this subsection we recall the result in [9] concerning stochastic invariance.
Let (Ω,F ,P) be a probability space with a right-continuous increasing family F = (Ft)t≥0 of sub-σ fields
of F , each containing all sets of P-measure zero. We consider an SDE system of the form

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), t ∈ (0,∞), (39)

X(0) = X0,

where f : [0,∞) × Rm → Rm and g : [0,∞) × Rm → Rm×r are Borel measurable functions and W :
[0,∞)× Ω→ Rr is an r- dimensional F - adapted Wiener process.

Definition 9.1 ([9]) The subset K ⊂ Rm is called invariant for the system (39) if for every X0 ∈ K
the corresponding solution (X(t))t≥0 satisfies

P ({X(t) ∈ K, t ∈ (0,∞)}) = 1.

Theorem 9.1 ([9]) Let I ⊂ {1, . . . ,m} be non-empty. Then the set

K := {x ∈ Rm : xi ≥ 0, i ∈ I}

is invariant for the stochastic system (39) if and only if

fi(t, x) ≥ 0 for x ∈ K s.t. xi = 0,

gij(t, x) = 0 for x ∈ K s.t. xi = 0, j = 1, . . . , r

for all t ≥ 0 and i ∈ I.
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