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Abstract

In this article a diffusion equation is obtained as a limit of a reversible kinetic equation
with an ad hoc scaling. The diffusion is produced by the collisions of the particles with
the boundary. These particles are assumed be to reflected according to a reversible law
having convenient mixing properties. Optimal convergence results are obtained in a very
simple manner. This is made possible because the model, based on Arnold’s cat map can
be handled with Fourier series instead of the symbaolic dynamics associated to a Markov
partition.

1. — Introduction.

The purpose of this article is the description of a diffusion equation obtained as the
limit of a deterministic and reversible linear kinetic equation.

For this purpose the following model is introduced. Beetween two horizontal plates a
family of particles evolve as a Knudsen gas i.e. a gas with no interparticles collisions. The
vertical velocity of the particles is positive or negative, according to whether they go up
or down, and of constant modulus ¢. Their horizontal velocities ca(w) are parametrized
by T? = R?/(2x7Z)*. Whenever the particles hit the top or bottom plate, their vertical
velocities are changed into their opposite while their horizontal velocities are modified by
the right action of an hyperbolic automorphism of T? (cf. figure 1).

More precisely the following notations are used : the space position of the particles
is (z,2) € R% x (0, h); the vertical component of the velocity of the particles is +¢; the
horizontal component of this velocity is given by ca(w), w € T? with a : T? — R? denoting
a smooth enough mean zero vector field. The nonnegative functions fi(t,z,z,w) (resp.
f-(t,x,z,w)) represent the density of particles which at time ¢ and point (z,v) have the
velocity (ca(w), +c¢) (resp. (ca(w), —c)). |

The following hyperbolic automorphism 7' of the torus (Arnold’s cat map) defined by

T (tl) == ( | > <ii> (mod. 27). (1)
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will be the only case treated here; the method developped in the present paper would apply
. ) . 4 9 . .

to any hvperbolic automorphism of T, The map T : T? — T? is one-to-one and C'°°; it

preserves the measure dwydwsy /47% and its inverse (which also is a €™ map) is given by

7l (:;> — < _} h é) (ti) (mod. 27) . (:

The densities f= satisty the Liouville equations

Q)
~—

affi + calw) - 01.]‘&: + c(’):fi =0, aé¢& Rd, 0<z<h, weT?. (3)
with the following boundary conditions on the plates:
frit e, 0,w) = f(t,2.0.Tw), ac R, weT?, (4a)
f(t, e, how) = fHt, . h,Tw), =€ R, we T, (40)
and their value at ¢ = 0 is given by the following initial condition
FEO e,z w)=d(z), 2eRY 0<z<h, we T, (5)

which is compatible with an approximation, as h — 0, by an horizontal diffusion, and
which avoids the appearance of an initial layer in the limiting process.

Since the densities f* satisfy the equation (3), they are constant along the character-
istic lines of the system; hence

[et/R]
fi*'(’z‘, T, z,w) = ¢(x—h Z a(Tkw)) + O(h). (6)

k=0

The asymptotic limit leading to an horizontal diffusion will be obtained by letting h go
to zero and observing the system for large positive times. A small parameter € being
introduced, A 1s changed into eh (thus letting the collision frequency going to oo) and ¢
into ¢/e. The problem of interest (3)-(4a,b)-(5) becomes

0 fE Feealw) 0, fF 0. fF =0, 2R, 0<z<h, we T (7)
frt e, 0,w) = f7(t,2.0.Tw), zeR' ©weT?, (8a)

frtoa how) = fF(t.a h, Tw), zeRY, weT?, (80)

ROz 20y =d(x), zeRY, 0<z<h, we T (9)

Its solution is given by (see (6))

[z‘.‘t/egh}
\ﬁhmmwﬁmmwdzZ:MT%ﬂ+w@; (10)

k=0




therefore most of the analysis is reduced to studying the limit, as € — 0, of the expression

[ct/e?h]
Ve(t, v w) = dla — eh 2: a(Trw)). (11)

k=0

2.— Notations and Main Results.

The following notation will be systematically used below:

1
(F)=— | Flw)do.
4= JTe

The formula Upf = f o T with the mapping T given by (1) defines an operator Urp in the
space L2(T?); this operator is unitary and therefore its adjoint is given by Up f = Uy lf =

fol 1

Definition 1. A coboundary is an element of Im(/ — Ugp). Two functions f and g
. D ) - . R . . . ;

belonging to L*(T?) are said to be cohomologous if and only if f — ¢ is a coboundary and

this equivalence relation will be denoted f ~ g¢.

The next proposition describes the elementary properties of what will be, in the limit
¢ — 0, the diffusion coefficient. It is essentially based on the ergodic and mixing properties
of the mapping 7"

Proposition 2.
1) Any function a € L*(T?) which satisfies the relation @ = a o T is constant and the
subspace Im(I — Ur) is dense in the space of functions @ € L*(T?) such that < ¢ >= 0
(notice that this space is invariant under T').

Let s > 0 and a : T? — R% in the Sobolev class H*(T?), with mean value (a) =0
2) One has:

N -1 o2
1

lim (| —= Z aoT*| ) =0, (12)
Y k=0

D(a) = +{a*) + N\ a0 TF 9 a) =
(a) = 3{a*) + > | )= g Jim TN

k>1

o=

where the series

Z(a o T* ® a)

k1

is normally convergent.
3) Let £ € R* and b ¢ H*(T?: R such that (b) = 0. If @ & ~ b-& then & D(a)é = &-D(h)E.
4) For any ¢ € RY, the following properties are equivalent:

1) D{a)t =0;

) & Dia)t =0



iii) The sequence of functions fy - € of L*(T*)

N
fro&=) faoTh ¢

k=1
is (uniformly with respect to N) bounded in L*(T?);
iv) The function a - £ is a coboundary.
The main result of this paper is the following
, ; - N o 9 N
Theorem 3. Let s > d/2, a: T? — R? be in the Sobolev class H*(T%) with mean value
(a) = 0 and let ¢ € C*{RY) be an initial data. Denote by u(t,z) the solution of

O = heV, - (D(a)V,u), u(0,2) = é(x). (13)

Then the family of functions f* defined by (7). (8) and (9) converges to u(x,t) as € — 0
in the following sense: for any 7 > 0 and any compact K C R

(FE(t 2.z 0)) = ult,2), CU([0,7] x K x T%x]0, A[)), (14a)
FE(t e, z,w) — u(t,2), CU([0,7],0* L2(RY < T%)) (14b)

Furthermore with 1.(z,t) defined by the formula (11) one has:
H)Lei - ?chLOG(Rdex(k(),h,)xT?) = O(*) (15)

The proof of this theorem is tailored on the proof of the Ito formula (ef. for instance
[d]); in particular it will be shown that the average of the different products appearing in a
Taylor expansion are, in the limit decorrelated and therefore converge to the product of the
corresponding limiting averages. In the original Tto formula, this point is straightforward
since (by construction) the Brownian motion has independent increments. At variance in
the present paper, the independence is obtained only in the limit € — 0 and, as will be
shown below, is a consequence of the different mixing properties of the map 7'

An analogous result has been proven by [de-ph] for suspensions of finite type subshifts
under holderian maps. It would be theoretically possible to reduce the present analysis to
this situation by coding the mapping 17" with a Markov partition. However our goal is to
produce a proof of a diffusion limit as explicit as possible and which in the present case
uses only elementary techniques (Fourier series expansions instead of Markov partition as
a coding of the system).

In spite of the fact that the initial model given by the equations (6)-(7)-(8) is time
reversible (it is given by a one-to-one and onto broken hamiltonian flow which preserves
the measure of the phase space (&, + 6—.)drdzdw), the limiting equation (14) is well posed
only for + > 0. In particular, the L*(dz) norm of the solution of the equation (14) is for
t > 0 strictly decreasing; it is constant only in the special case where the solution 1s space
homogenous. And the diffusion equation {14) obtained as the limit of a reversible system
is in some sense the simplest and most basic exemple of an irreversible partial differential
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equation, in spite of the fact that for some very smooth (holomorphic) data it is possible
to invert for a small time the diffusion equation; this is realised in R by the inversion
formula, due to Lebeau [1], of the Fourier-Bros-Tagolnitzer transform (cf. also [go-le] for
the extension of this formula to analytic real compact Riemannian manifolds). However
such inversion formula is not valid for non analytic functions, and this is precisely in this
situation, in a topology much weaker than any space of holomorphic functions (namely
CU[0, 7)o w* — L= (R* x T?))) (ef. (14)-(15)) that the approximation of (6)-(7)-(8) by (14)
is provern.

The rest of the paper is organized as follows. In section 3, the basic mixing properties
of the map T are given (property (H1) of proposition 5); they rely on a diophantine estunate
due to Kronecker. The mixing property (H1) is used to prove proposition 2. Then the
decorrelation properties of the process are first (property (H2)) proven in proposition 6.
This implies property (H3) of corollary 7. used in the estimate of the remainder of the
“Ito” formula. Then proposition 8 and corollary 9 provide all the material for the proof of
theorem 3 which belongs to section 4. Section 5 contains final remarks and comments on
the numerical simulations.

3.— Proofs of the Mixing Properties and of Proposition 2.

As we said above, the proofs rely on the use of Fourier series. Indeed the properties
of the dynamical system induced by the map T on the torus T? are most conveniently
translated into those of the dynamical system defined in Z? (the dual group of T?) by the

iteration of the matrix ?
, 21
M = (1 1> .

The matrix M is strictly hyperbolic, ie. has two (distinct) real eigenvalues given by

1+V5
2

4

Ap=1+6, A_=)\7" withf= (16)

and that the corresponding eigenvectors (generating the unstable and stable manifolds)

are

ey =pl ) em=pl _, ) (17)

with o= (14 82)71/2, The vectors ( e4.e.) define an orthonormal basis. In this basis M

reduces the diagonal form
AL 0
M o~ '
! <o AM>

In the next lemma we recall the following classical estimate (due to Kronecker).

Lemma 4. Let 4 = 123 Then:



(1) (best rational approximation for )

T [ e — (18)

{p,q)=1 | (1-+ \/g)r[‘Z
(i1) (diophantine estimate for 6)
1

: 19)
() €2\ {0} (1+V5)sup(Ipl, la}) e,

inf lgf —p| >

Proof. The minimal polynomial of # over Q is P(X) = X? -~ X — 1= (X - 0)(X +671).

Let p and ¢ be two integers (p.q) = 1. First P({L’;) # () since P has no rational root, and
therefore

. e e g — 2 1
P(L)] = i (20)
q q
On the other hand
D7 P D P
g ’lP(q)] L \P(L)] - 1 |
C T e B e Al 26

Considering both cases l%’ — 6] > 1 and ]Iqi — 8] < 1, one obtains for any pair of integers

(p, q) with ¢ £ 0
1
> inf (1, ———— (21)
< (1+ \/5)q3> o

which proves point 1). Point ii) follows directly from point i). //

Proposition 5. Let 0 < y(R) be a nonincreasing positive function such that
im v(R) = 0.
R—oo

Consider the class of functions:

Hy={feL*T%)st. >  [f(P <x(RIFI3}-
[ki] k21> R

Then -

1) “Rate of Mixing”: For all (f, ¢) € H, such that (f) = (g) =0

1+/5
Vo

ii) Property (H1): “Exponential mixing”: For all s > 0 and all f € H*(T?) such
that (f) = 0. the self-correlation coefficient defined as

[(foT g} < (22)

L i o n/2 k
fll2llgllzx (Cio (%) ) . with ¢ =

1
L ]
2w

Cen)=(fod"f)

6



satifies the decay estimate:

(ICr(n)] < ClIfIZe™ "™ with o = log (#) . (23)
Proof . With the Plancherel formula one has, for any pair (f, ¢) € L?*(T?) with mean
value (f) = (g) = 0, the formula:

(FoT" g) =gk ) FMTR)j(~k) (24)
k50

For any K > 0, decompose the above sum into two parts corresponding to Kp and If,
with Ir given by

Kp=1{kcZ"st. sup(|k

ko|) < R}.

b

Since g belongs to the class H,, the Cauchy-Schwartz inequality yields the estimate:

2 .f’k‘wn;\‘)g(w’)! < [Ifllallallon (7). =

EEN,

For k € Kp, one introduces the decomposition k = (k- ey )eq + (k- e )e—; Kronecker’s
estimate (19) shows that

ke | > 67 kT > (V2RE) !

whence
\ T
P »

= V2RH'

Using that f € H, and that y is nonincreasing, this implies the estimate:

Mk

a0 < 1)l u.~< i ) (26)
kezc;{o} ’ ST V2R \

The relation (22) is obtained by choosing R = /\i’/z in (25) and (26). To obtain the
exponential rate of mixing (23), one specializes (22) to the case f = ¢ and uses, the
expression x(R) = R™*(||f|[,|Ifll; ). //
Proof of Proposition 2. Let k € 2%\ 0. Since Ker (M — A_T) is a line with irrational
slope, the orthogonal projection of k on Ker (M — A_T) is not 0 and therefore [M~"k| —
+00 as n — +0o0.

Let a € L?*(T?) and consider its Fourier series:

alw) = Z i}('ﬁt)f‘ik“

kez?

i



The relation @ = a o T shows that for any k& € Z? and any n one has
alk) =a(M™"k).

But a € [*(Z?) since a € L*(T?): hence for all k # 0 in 2% a(k) = a(M~"k) — 0 as

n — oo, Therefore a = O on Z2\ 0, which means that a i% a constant. 1111s pmveq the

(Ii— Ur)* = l‘"l( Up — I) n L (T? ) W hlch albo 15 leduccd to the constants. lhcwtom the
set of coboundaries is dense in the space of functions @ € L*(T?) such that < a >= 0.
For point 2), start with the formula

(aoT*QaoTh =lao T "2 a). (27)

which follows from the invariance of the measure dwydw, under 7. Summing with respect
to m = k — [ yields

®2

N-—1 N=1N-1 N-1
> aoT* =3 > (aoT* ' @a) = N(a®?)+2> (N =m)(acT" @a) (28)
k=0 k=0 =0 m=1
or in other words
N-1 ©2 5 N=~1
& T \ . P

+2 Z (aoT™ @ a) = Z aoTk )+ i L m{aoT™ @a). (29)

m=0 m==0

The exponential decay estimate (23) implies the absolute convergence of the series

N~1
. b -
E (aoT™ & a)
m=0

which appears in the left hand side of (12) ( point 2) of proposition 2) and shows that

N1

Z m{aoT™ Da) — 0.

m=0

Therefore (by Cesaro’s Theorem) the last term of the right hand side of (29) goes to zero,
leading to the relation

)
I

lim { Z aoT* ) (30)

N ——»oc
k=0

Dfa) =

v

and completing the proof of the point 2) of the proposition 2.

3



To prove point 3), write @ ~ bas a—b= ¢ — ¢ o T and use the relation:

N 1
. ;
~D(h)- €= lim | —= hoT*. £
£ Do) &= Jim [—= }%:‘B(L NIEE
1 V-l
i fl— g((iIOTk~‘~+<>o[}‘ £ goTHH . &)

lim \/_ Z (aoTF 6|2 =¢ Dia)-¢ (31)

N -0
k=0

Since the matrix D(a) is symmetric and nonnegative, points 4 1) and 4 11) are equiva-
lent. To prove that 4) ii) implies 4 111) consider the function

eT!, ¢eR (32)

¥y

r(z) = ;- Z<(10T e Eetks

ke?Z

Observe that

r(0) = 5z Z((z oT* € a-¢) = »5 Dia)- ¢ (33)

k€2

and that, due to the decay estimate (23), r(z) is holomorphic in the strip Bes = {z €
C s.t. |Sz| < as}. Therefore one has:

N—1 2 N-1N-1 N=1N-1
HfN'fH%z(T?) = ((Z aoTk§> ) = k1) = / r(a) ( Z cur(xwm> da
: . N 1=0

k=0 k=0

™ p(2) 4 r(—2) — 2r(0)

:/ @)+ r(=2) = 2000) o2 (N oyde 4 27N (0). (34)
Jern 2sin” £ '

The first integral term in the right hand side of (34) is bounded because r € C*(T?).

Therefore the relation

0=2¢&-Dia)-&=ar(0)

implies that the series

fae 5~LGOIL

k=1

is (uniformly with respect to V) bounded in L?(T?).

To prove that iii) implies iv) observe that the sequence fy - € is, in any case, the
“formal inverse” for the equation
C —

gt T, (35)

a -



Since the sequence
N
i

f,\wf::Z(mTk-ﬁ

k=1

is bounded in L?(T?), one can consider f, one of its weak L?('T?) limit points and, using

lemma 4, one has, for any function ¢ € C>(T?)
{(fv—=FfxoT)e) —{(E-ap) = —({-ao TNHU ) -0, for N — oo (36)

which shows that f— fol =a-£. [/

As we said above, the proof of theorem 2 follows in many respects the proof of the
Ito formula. Therefore it will be important to decorrelate events occuring in two separate
intervals of time, uniformly with respect to the size of these intervals, and under the
only assumption that their mutual distance is large enough. This is dealt with in the
next proposition. What we prove is a property similar to the “Very Weak Bernouilli
property” as introduced by Ornstein-Weiss (cf. [bow]). The main difference with the
classical formulation as in [bow] is the use of trigonometric polynomials instead of indicator

functions of partitions.

Proposition 6. The transformation 7" has the following

Property (H2). There exist two constants 3y > 0 and fy such that for all [,m € N,
Uc{n,.on+l1},VC{n, ...n+m}and for all pair of trigonometric polynomials P, @,
of degree less than R, one has, for all n > 3ylog R + 54

(J[Por [ Qo) —(J[PoT (][ QoT*) =0 (37)

kelU keV kel kev

Proof . This proof follows that of proposition 5. The method is similar to the one used
by Katznelson [katz], but here a more precise result is needed and proven. Observe that
it 1s enough to study expressions of the following type:

1 - gy \ ATk . P A k, .
=3 / eXp | w L M7 Jexp | w - E Mg ) dw
T kel kev

— ﬁg / exp | w - Z M7 ) dw 4;2 / exp | ww - }_: MFEy | dw (38)
J T2 ket ST? keV
with & € K, Vn <k <n+land np € Kr Vn <k < n+m (where, as in the proof of the
proposition 5, Kr = {k € Z* s.t. sup(|ky].|k2]) < R}).
With the notations

Np= D MR, X =) My

kel ket
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the relation (37) is equivalent to the following assertion:
There exist By > 0 and By such that:

X +X{=0,= X;=0,and X{" =0. Van>plogR+p, Vi,m e N, (39)

Denote by I = Rey. and S = Re_ the unstable and stable manifolds of M acting on
R2. Let £ € Ky, one has

X7 el € ST g = 3 g MTey ] = > AR M ey
kel kel kel
Proceeding likewise with X?}, for all £ and n in K» one has
A? A

= Vi e | < VOR
1— A" Xy e ]”‘VER1~MA»’

X7 ey < VAR (40)

This implies that X, belongs to a neighborhood S% of S while X7 belongs to a neighbor-
hood I of I given by the formulas:

It ={X € R? s.t.

/\n
X emi;\/iR———l —}

A

41
1 . /\w- 3 ( )

Sp = (Y R st |X-ey| < VAR

Since X7 + Xib = 0, both X;; and X} belong to K, = Sk N1y (cf. fig 2) which for an
n greater than a given value Np is contained in Kg ,. Whenever they are not both equal
to zero, the diophantine estimate (19) of lemma 4 can be used to give:

1

1
Xjeg|2——en— or |Xf e |Z—pm. 42
verl 2 1+vaRr 0 ve 2 (1+ V3R (42)
For n > (2log R + log(v/2(1 + v/5))/ log A4, one has
1 /\77,
——— > V2R 43
(1+VB)R L= A )

Therefore, if n is greater than

< 2log R+ log(v2(1 + \/57))
sup | nos Sl

1()?; /\+

X7 and X{ are both equal to zero. //

Corollary 7. Let 0 < y(R) be a nonincreasing positive function going to 0 as R tends to
infinity, such that

\(R) = O((1/1og R)®) for R — +oo (44)

11



Consider the class of functions defined by:

Wy=H 0 {f e LT st gy S0 [FR) < fllox(R), VR >0} (45)

‘l‘ Y
4
sup({ki ], [k2])>R

Then
Property (H3) For all f € T such that (f) =0

N
1 =
—= > foT*

is uniformly bounded (with respect to N) in L*('T?).

Proof . The proof follows the same line as the one indicated by Ratner [rat] when the
mapping 1" is replaced by any I\ system. For the sake of being complete, we give a proof
based only on property (H2) (which is more restrictive than assuming the IX property).
First observe that

N
<|ZICOT}v}1> — Z <‘]L‘OTAT]]COf[!A"Q‘fOT[’kg‘foyjk‘1>
k=0

0§k1,}€2,k3,k.;§,\/r
= 4! ST (foThfoTRforkforhy. (46)
0<hy <hy<ks<ks<N

and introduce the following sets of indices:

A= (ki ko ks ke) st 0<hy <hg kg <kg <N, sup [k —kioq] < 1\71/3},

2<1<4
B = {(A?l,lmfz, ]&Ig, ]\,1) s.t. 0 S kl S k‘.g S /\73 S A’T,} i: J\T, ]\fg - ]\?1 > 1\7]‘/3},
C i {(kl,]\‘,g,k;;,k,;) s.t. O S 1&71 E }x‘g _< Zx‘,g S 134 S 1\7, ]\‘73 - ]{2 > l\“rl/g} y
D = {(ky ko kg, ky) st 0 < kg <ky <hg <hyg SN, kg — kg > NP
One has

ANB=ANC=4ND=0 and 0,1, .  ,N'=4UBUCUD (47)

with the subsets B, C'D having non empty intersection. ;From the relation (47) one
deduce the estimate:

N
<’ZfOTk14> < 4! Z !<f07k1f o TklfodefOTI“H
k=0

(ki kg ks kg)EA

4l Y (foThfoThefo ke fo k)
(ky ko kg ky)ER

12



+4t Z |<f o Tkl, ]L o Tkgf o Tk;xf o Tk.; >|
(ki ko ks, ka)€C
LN . - ~ - Sy - “ ~ 7 .
4! L [(foT* folkforhaforhyl. (48)
(ko ko ky kg)ED
To prove the corollary we show that all the terms which appears in (48) are uniformly
bounded with respect to N2. This will be done in three steps: step 1: terms of (48) with
support in A; step 2: terms with support in B or D (the proof being similar in these two
cases); and step 3: terms with support in €. For steps 2 and 3 the Fourier expansion of f
truncated at degree R will be used; it is denoted by Pr(f) and since f € IV one has;

[flw) = Pr(H)w)] < x(B)][f]le - (50)

Step 1. Summation with support in A.
Observe that 4 < 3IN(NY3 4 1)3; this implies the estimate:

S [feThfoTRfoT N foTH) <3NV + DIl (51)
(ky ko ks ka)EA

Step 2. Summation with support in B and D.

As already noticed, the proof is similar for these two terms and therefore only the
sum with support in B is considered.

Since f belongs to Wy, estimate (50) shows that

Z (foT* foT* fol foTh)

(klyk?7k37k4)€}3

= Z ’<PR<f) 0 Tkl PR(f) 6 Tk""}.)R(f) o Tk:‘i]?R(f) o Czwk4>1
(k1,k2,ka,ka)EB

AN I (R) (sup((R), 1) (52)

To use property (H2), write:

(Pr(f)o TF Pr(f) o T** Pr(f) o T* Pr(f) o T*) =

(PR(f) o T* " Pr(f) o T** " Pr(f) o T* *Pr(f)o T*™) (53)
In (53) choose & = [£1£22] notice that Pg(f) is of mean value zero (because f is of mean

value zero) and apply proposition 6 to the sets
U={x=Fk}, V=A_ky—rky—rky—r}

It shows that, for

R = exp(



and for any (ky, k2, k3, ky) € B, one has
(Pr(f) o T" Pp(f) o T Pr(f) o T Pr(f) o TH) = 0.
Therefore with y(R) = O((1/log R)°) for R — 400, the estimate
Do WfeThfoTifoTi oM <
(ky, ko ks, ks)EB

AT1/3

NI v(exp( S 20

= O(N?
N )) )
is deduced from (52).
Step 3. Sumumation with support in C. Asin step 2 write:
> (foTkfoTkfoTksfoTk)l

(k1 ko ks ky)EC
S Z I(PR(]L) 0 I*l\q PR(]‘) o Tk?JDR(f) o Tkapl\,(f) 5 /Tk4>l
(kv ko ks ky)eC
FANY| FIA (B (sup(x(R), 1)) .

Then for any (ky, ko, ks, ky) € C, apply proposition 6 to the sets
U={rk-ky,k—=h}, and V ={ks—rky—r}

with x = [h;‘—}”&] It shows that, for

N3 98
R = exp(;_—**?/%—

)

one has:
(Pr(f) o T* Pr(f) o T* Pr(f) o T Pr(f) o T*) =
(Pr(f) o T* Pr(f) o T* ) (Pr(f) o T Pp(f) o T*).

Therefore
Z (foT* foT* foT* foTt)

(k1 ko ka k) eEC

<N UPRIAOTN Pr(f)oT*) (P f)oT  Pu( f)oT") | +4N*[|f[4.x(R) .

(k1 ko k3 ka)eC

On the other hand:

Z (Pr(f)o T* Pr(f)o T ) (Pr(f) o T* Pr(f) o T™)]
(ky kg ks ki) EC

14
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_< Z I<PR(f) 0 Tkl PR(f) o T]”2>||<I)R(f) o Tk;z]‘)R(f) o Tk‘l>l
0<ky ko kg kg <N

= S (PahHoTHP(f) T (50)

0<ky ko <N

Since f belongs to the class W, C H,, Pr(f) also belongs to the class H, and the estimate
(22) of proposition 5 can be used to give

(PR(f) o T* Pr(f) o T < eI F11x(CoAl2H07) (60)

2m -

: n/2 : . | .
The sum Y, v, X(CoA'") converges (by assumption: sce (44)) and therefore:

2
ST UPA(f) 0 T8 Pa(f) o T)
0Lk k2 KN

0<ky k<N

With (56), (57), (58) and (61) one obtains, for

b‘mrl/B e 2,81
R = eXP(\—WZ?O—*

the formula
ST [feTtfoTr o TR o TR

(ki,k2.k3,ks)EC

N3 —9p

< 4N FI[Ze x(exp 57 )+ O(N?) < CN*.

which concludes the proof of step 3 and of corollary 7. //

To further extend the decorrelation properties, this section is concluded with propo-
sition 8 involving functions f € H*(R?) and corollary 9 which allows to consider smooth
functions with subquadratic growth at infinity.

Proposition 8. Assume that the vector field @ is smooth enough (say a € C*(T? R?))
and satisifes < a >= 0. Then for any pair of functions f and g € H*(R®) with d/2 < s
one has:

[et/e?h) le(t47) /€% h) [ct/e?h) [c(t+r__)/s:2h,]
[(fleh Z aoT*))g(eh Z aoTh—{f(eh Z aoT*))) (g(eh Z aoT")|
k=0 {=[c(t+8) /e h] k=0 U==[e(t-+8) /e k]

15



g=d /2

€
s—d/2

Rk atl ;{ .‘lv‘,‘, C‘vl(\ ’
¢ exp < ¢ ,7( > exp <£—}~ exp <~~~ 5 >> (63)
€? €l € e )

In (62) and (63) C',C" and C” denote some constants independent of €, ¢ and 7, £+ 7 in
I the bounded interval [0, K.
|

< | flsllglls (C + e YH(K, 6, e)) (62)

with H(L, 6, €) given by:

H(K,é,¢€) =

Proof . First represent f and ¢ in terms of their Fourier transforms:

f(I ::/ 5) zﬂ)ia _(](.’T) ES / (”71 (7])(7{:% (64)
R Jrd

| and observe that since f and ¢ belong to H¥(R%) the above integrals can, in the sequel,
be replaced by

fe(z) = / O o) = / i) G- (65)
REN{|e£]|<1} Ren{|eg|<1}

—d/2 .
This truncation introduces in the proof an error of the order of ||f]|s|lg]ls S=r7s 77 Which

correspond to the first term in the right hand side of (62) and reduces the proof of the
proposition 8 to estimating the expression:

(f/fzh [e(t+7)/e2h]
e sup H exp(i€ - eha o T*) H exp(in - eha o T))
|5|§1>|’7|<1 I=[c(t+8) /2 h)
[et/e?h) [c(t+7)/c?h]
—( H exp(ié - eha o T*))( H exp(in - €ha o I‘l)ﬂ . (66)
k=0 I=[c(t+8)/e?R]

However proposition 6 (property (H2) or relation (37) ) cannot be directly applied to the
above formula because the functions exp(i€ - eha) and exp(in - e¢ha) are not trigonometric
polynomials in the variable w. Therefore these functions have to be approximated by
their truncated Fourier series. In order to do so it is convenient to introduce the following
notations:

(w) = exp(2€ - ha(w)), Pr(fe) = Z 95(1‘)6:\*1)(1?Ar~w)
sup(|ky [ k2| <R)

and 4; p = > 16e(k)] . (67)

sup(|&y],]k21>R)

16



Assuming that a € C*(T? R?), the quantities A¢ g are finite and one has:

HPR(GE)“—9£||OO < Z 1()5(L)‘ ﬁAE,R;

sup(tky],[k2|> R

HPr(O)] — Uleo <IIPr(B) = Oelloe < Acre [|Pr(6) oo < (1 + Ag r). (68)

and

C
7, <o < Ap = sup g p < s 69
Yo, 0 <o <1 } lf}lgpl RS 1= o)Ri—» (69)
Going back to (66), one has the inequality:
[et/e?h) le(t+r) /e h) zf/e h) [?(t‘f”T)/EQ}IJ
CTT beo™  J] o)~ J[ Beeot* I  feot®
k=0 I=[c(t+6) /e h] k=0 I=[c(t+6) /e h]
[ct/e* b [e(tdr) /e k)
<HCIT PrBeeyo™ I Palfey)oT¥)
k=0 I=[c(t+8) /2 h]
[et/e?h) [e(t+7)/e2h)
I Prtbec)o™( J]  Pr(Be) 0T
k=0 [=[c(t+8)/€2h)
[(‘t/rzh [c(’t-}—r)/f?h]
H 0Tt J[  benoT®
[C(t+~15)/€2}1.]
ct/e [c(1+r)/62h]
H Pr(feg) II  Pr(ba) o™
k=0 I=[c(1+6) /e R]
[et/e?h] [e(t+7) /€2 h]
(T o II 0o
k=0 I=[c(t+8)/e2h]
[et/e?h) [e(t+7) /e h]
~CIT Peb)o™0 T PalBe)oTH). (70)
k=0 [=[c(t+8)/e?h]
The property (H3) can be used for the first term of the right hand side of (70) which turns
out to be zero for )
R = exp( 7 (fe(t +8)/e*h] — [et/e*h] — 531)). (71)
20
The estimates (68) and (69) can be used to control the the second and the third term of
(70), with |e£] < 1 and |en| < 1 their sum is bounded by:
2AR C(tj 2 (14 Ap)lettFn/el <oy, C(tjvﬂ exp(Ag C(tf 7 ). (72)
e*h e“h €*h o

17



With (69) and the choice of R given by (71), the right hand side of (72) satisfies the
following estimate:

(1 - (¢ c o) ok '
AAR i—;—T—)— 6Xp(;lR (‘(‘ i T) ) S STERP L TS exp ST EXpP | Ty (73)
€h ~ 2, 22 2 5 o ’

which leads to the function H(K, ¢, €) and completes the proof. //

Corollary 9. Assume that the vector fleld a satisfies the assumptions of proposition 8.
Let f e CX(RY) and g € O™ (RY) with subquadratic growth at infinity as follows

g+ Y [Vaegla)] < Cy(1+ [2]*) (74)

1<I<[d/2+1]

Then for any positive constant M

[ct/e?h)] [e(t+T)/e2h] [ct/e?h] [(:(t+~z)/r_2h]
[(f(eh Z aoT*)g(eh Z aoTH)—(f(eh Z aoT*) g(eh }: aoTh)|
k=0 I=[c(¢+68)/€?h)] k=0 I=[c(i+8) /e h]

N =l 2
R 1 . VT — &4 262
< 2| flocCy sup (=== > a0 TH)|| <~mw-—>
N>0 L0

VN M
e dj2 w o
+Cl1f]s ME <F1 — a7 + € H(Ix,b,e)) (75)

where s is chosen equal to [d/2+1], || f]|s represent the H* Sobolev norm of f and H (I, ¢, €)
is the function defined by (63). As before, the constants are independent of £, 7, ¢ and 8.

Proof . Introduce a cutoff function yar € C>°(R?*) with the following properties:
Va,0 < yar <1, xpu(z) = 1if [o] < M, xum(z) =0 for [z > 2M (76)

and denote by g the function gyas. ;From the formula |g —ga| < lg]1),> 3 one deduces

the estimate:

[ct/*h) [e(t+7) /€ h] [ct/e*h] [a(t47) /e ]
(Fleh 3o aoTHgteh 3 aoTh)=(f(eh 30 aoThlgleh 3 aoTh)
k=0 I=[c(t+6)/€? h] k=0 I=[e(t48) /€2 h]

[et/e?h) [e(t+7) /€ h]
< [(f(eh Z ao Tgar(eh }: aoTh)
k=0 l=[c(t+8) /€2 h)
let/e?h) [e(t47)/e?h)
—{(f(eh Z ao Tk N {gar(eh Z ao Tl)”
k=0 I=[c(t+8) /€7 h]

—
(0.0



[e( t+T)/v52/z]

+2]|f (eh b 1o THw))|dw 7T
e LZ::[CUH)/J},,] aoTH (w2 I=[c(t+8)/e2h)]
Corollary 7 shows that
[C([,-}~T)/'5?h]
mes {w s.t. |eh }: aoTw)| > M}
[=[c(t+8) /e h)
N - e
1 o e [ VT 0+ D¢ .
< sup ||(—== aoTH| | ———F—— . (78)

Using the Canchy-Schwarz inequality and the subquadratic growth of ¢ (74), this implies

[c(t47) /e h]

/h (z+r)!« h] ao T (w)|[>M Z

c(t+6)/ € Zh I::[C(t—}‘(q)/fzh]

9

Jr s 19\ A
< sup | Za o TH)] (-—\/E——ﬁ—i——i—) . (79)

: M
N>0 k 0

Therefore, with estimate (62), one concludes that

[ct/e?h] [e(t+7)/e2h] [ct/e?h] [c(t-Jr_Q\/czh]
(f(eh Z aoT*)g(eh Z aoTh))—(f(eh Z aoT*)) (geh L aoTH)]
k=0 l:[c(t+5)/e'2h] k=0 l:[c(t+5)/€2h,]
;X ————\ 2
<2l f 1, sup II(M—ZUOT}")Hi <M__'“__.>
i N ﬁk =0
Fs-d/'2 ~—[l o .
Hifl ol (05 + a0, (50)

%2

Since (74) shows that ||gar||s is bounded by C,M >, (80) completes the proof of

corollary 9. //

4,— Proof of Theorem 2.

As it was said in the introduction the proof of theorem 2 is inspired by the proof the
Ito formula for the Brownian motion. Therefore the starting point is the Taylor formula
at order three for the increment.

(Velt + om0y~ (a0 ))
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[et/e?h] [e{t+r) /e k]

= (Vélz—eh S a(Trw))-eh Y a(Thw))

k=0 k=[ct/e? h]+1

[et/¢2h] [e(t-+r)/e?h] o2

+%<V2 olx — eh Z a(T*w)) : | eh Z a(T*w) )
k=0 k={ct/e?h]4-1

N 3
[e(t+1)/eh]

FO({|(eh > alTre)] ). (

k=[ct/e?h]+1

o

1)

The analysis of the limit for € — 0 in the above expression will be done in 3 steps and
will be used to denote any constant independant of € and 7.

Step 1. Estimate of the remainder. One has

[e(t+7)/€e*R] [er) /e h] '
(eh > a(T)P) < (b D> a(Tre))’) + O((eh)?) (82)
k=[ct/e?h]+1 k=0

or, using Holder’s inequality with N = [c7/e*h]

le(i47) /e h)

((eh > alT«)P)

k=[ct/e?h]+1

4

<V2r(ehV/N)Y3({ D+ O((eh)?) (83)

1 XL
— a(T*w
VT{Y_: (T*w))

Using corollary 7, the following bound is deduced from (83)
[e(t+7)/e2h) : | |
lim sup(|(eh Z a(T*eN! ) < O (Veh)?? (84)

=0 k=[ct/e2h]+1

Step 2. Decorrelation in (81). Since the treatment of the linear term is simpler than
the treatment of the quadratic term (but follows the same lines) , only the latter, will be
considered in detail. A “small” positive time § is introduced and one has:

[ct/e*R] [e(t+7)/e2h]
{(V2¢(x — eh Z a(TrY) « (eh Z a(T*w))®2)
k=0 k=[ct/e?h]+1
[et/eh) [e(t47) /e h]
A<V§.gg(‘;17 — ¢eh Z (I(Tk;‘.z,")) . (‘6/7’2 Z (((Tkww\d)'
k=0 k=lc(t+8)/e2h]+1
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[ct/e? h] [e(t+8) /¢ h)
<{|Vig(x — ¢h Z a(TFw))| |(eh Z a(TFw))*)
k=0 k=[ct/e2h]+1

[ct/jgh,] [e(t+8) /e h] [c(i+:)/c’?'h]
+2(|V2é(x — eh }: a(T )] l(eh Z a(T*))*|(eh L a(T*w))|?)
k==0 k=[ct/e?h]+1 ke=[e(t+68) /e h]+1
(85)
The first term of the right hand side of (85) is bounded by:
[e(t+8)/e? b ‘
IV2sllllch S aoTH
k=[ct/e2h])+1
< V2d]|oo 27h %np“ ZnoTk))) S5 26%). (86)
\/——I\ =0
Similarly the second term is bounded by:
1 N
Viqﬁ oo 27h sup || —— ao T (7 + 262) S+ 2€?). 87)
V26l 20 sup I3 20 TGV 720 (s7
The only remaining term is
h [et/e* h) ch [e(tT)/e?h]
(Vigle —— > a(T w)): (= > a(T*w))®?)
- ¢ c==[e(t+6) /€2 h]+1

Here corollary 9 is used with g(z) = 2®? leading to the following estimate:

6]l[at/62h] h/[c(b+r)/e2h] N
(V2o ~ 2 3 a(Thw)) - (—~ S a(Trw))®?)
¢ = ke=[ct /e h]+1
5 eh (et/e 71 . eh et /2] S
—(V2p(z — - Z a(T*w))) <(~7» Z a(TFw))®?)]
k=0 k=[ct/e? h]+1

<||IV26|| a0 27h bup I \/_ZchoTk)H (6 + 2e%)

k=0

+IVE6|s0 27h xupH(\/__ZaoT}‘W VT + 262)(8 + 2€2)

k=0
N

HIT2olle sup (o a0 T s

N>0 —



+2||V34lloo sup ||

2y S P
(=Y aorhp [ YLZit2
N>0 v N M

k=0
) dio e 2 ’ \
OIS Bl M (Cros T H (I 8,0)). (88)
S —dj

For a given 7 € (0,1) , and 0 < € < 7 one uses the special form of the function H (K, 4, €);

it shows that. by choosing
- N o (2a-dy
b =¢and M = ¢ FFD

one has
ch [et/e h) ch [C(t-%:}\/cgh] N
limsup{|(VZ¢(z — —-- Z a(T*w)) : (——— L a(T*w))=%
€0 ¢ k=0 ¢ k=[ct/e?h]-+1

ch [et/e?h] ch [e(t+7) /e h]

(Vi - LN e (DY a0, (s0)
c ;
. k=0 k=[ct/e2h]-+1

Step 3. Weak and strong limits. Denote by u.(t, z) the family of functions (¥ (¢, z,-)).
Starting with (81), using the estimate for the remainder (84), the L bounds on V¢ and
V24, the inequality

#{k st [et/eh] +1 <k <[e(t+7)/e?h]} < [er/e*h], (90)

and property (H3) from corollary 7, we arrive at the (uniform in = € [0,1] and € € [0, 1])
bound:

lue(t+7,2) ~u(t,x, )] < CVT. (91)

It follows from Ascoli’s theorem that the family u, is relatively compact in C°([0, 7]; w* —
—L>®(R%)). Let u be a limit point of this family and rename as usual, f*, ¥, and u, the
corresponding subfamilies, with u, converging to u. Starting from the “Ito” formula (82),
using (85) and (89) one obtains:
w(t + 7 2) —u(t,z) = lim){ue(t +7,2) = u(t, )}
e—( ’

le(t+7)/e? h]—[ct/e* h]~1

R ¢ . N . . } \ L ANy o~ 47/
= lm{iV2u,.(t,2): hm((2 Z a(TFoN®H Y + o(r)/? (92)
e—0 < €—0 C —p :
or with (12) (cf. point 2 of proposition 2.)
u(t+r,2) —u(t,r) = %}I.TD('G) cViu(t,2) + ()(‘7’)4/3 . (93)

Dividing (93) by 7 and letting 7 go to zero, one sees that u solves the initial value problem
for the diffusion equation:

5 ) ‘ :
%fi - %D((z) cViu, u(a,0) = o) (94)




The solution of (94) being unique, it follows that the whole families

[et/e?h)
(FE(t e,w)) or uc(m, t) = (bt 2, w0)) = (d(x — eh Z a(T*w)))

k=0

converge in C°([0, 7];w* — —~L>®(R%)) to u(t,x).

Observing that the problem (7)-(10) is translation invariant in the variable = € R?
and using the regularity of ¢ € C*(RY), one can see that the family of functions u (t,2)
satisfies the (uniform in €) estimate:

et o)l e (it 2 ray) < € (95)

Acoli’s theorem, (91) and (95) show that for any = > 0 and any compact I ¢ R?, the
sequence u.(t, z) converges to u(t,z) in C'(0, 7] x K'). This argument completes the proof
of the strong convergence of the averages (14a).

Finally let f be in the w* closure in L“(R‘f x RE % T?) of the family (¢, 2,w). One
deduces from (11) that f is invariant under the action of T

itz w) = ft,2,Tw); (96)

The ergodicity property (proposition 2 point 1)) implies that f is independent of w and
therefore coincide with the function u(t,z): this demonstrates the convergence (14h) and-
concludes the proof of theorem 3. //

5.— Final Remarks and Numerical Experiments..

The model (3), (4a), (4b) and (5) defines a global broken hamiltonian flow which
induces an isometry on LP(R? x T?) for all 1 < p < oo. In particular the quantity
FE - Olle + 1 f7(#,-,)ll2 is conserved for any e > 0 at variance with the quantity
|u(t,)||2. Therefore the type of convergence which is given in the theorem 3 (strong
for the average and weak for the solution itself) is optimal with the exception of the trivial
case where D(a) = 0 which correspond to no diffusion. In this situation the solution ex-
hibits an initial layer near ¢ = 0 which is taken care of by the time scaling and the solution
fE(z,t, z0) converges strongly to its initial value ()

The paradox of deriving a well posed irreversible problem for ¢ > 0 from a reversible
problem can be explained from the following facts.

1) The scaling has been done with the a priori choice of considering the solution for
large positive times;

2) It gives the correct approximation at the order € of local averages of the solution
in term of the local averages of its initial data; the dependence on w is lost in the approx-
imation. In some sense, this decay of information can be estimated by the decay of the
L* norm of u which, for the diffusion equation, is the linearized version of the classical
entropy.



W

The relevance of the above remarks depends of course on the analysis of the strict
positivity of the diffusion matrix D(a). In fact it results from proposition 2 that D(a) =0
for a varying in a dense subset of L?(T?)/R (isomorphic to the space of mean zero functions
in L?('T?)). Furthermore the diffusion is degenerate in the directions ¢ for which the

“excursion length™:
N

fu &= (aoTh) ¢
k=1
is (uniformly with respect to N') bounded in L*(T?), an observation which turns out to
be in agreement with the intuition.

Although the space of coboundaries is dense in the subspace of L?(T?) consisting of
mean zero functions, it is not L? closed. In other words, it is possible to find smooth
funtions of L*(T?) not being coboundaries. For example, observe that for d = 1 and
a(wy,wy) = coswy one has D(a) = +.

More generally it would be extremely useful to have an explicit expression of D(a).
For d = 1 it can be easily obtained in term of the Fibonnaci sequence £,

Fo=0, =1, F, =F,+ Fr (97)

Observe that the minimal polynomial of the matrix M is X? — 3X + 1 and introduce the
. . .. . - »
matrix P — I which has for minimal polynomial X* — X — 1, then on one hand one has

M=P+1=DrP? (98)
and on the other hand
P Pn,ml 4+ Pn»'z (()9)

and this implies the formula:

M = Fonga Fay
Fz n F: 2n—1
Therefore, with the diffusion matrix given by (12) one has, for any function f: T? — R
in H® with s > 0O:

D(f)y == (FoTm fl=> S AMRIF(=k)

n>1 n>l keZ2~{0}

= iy Z Z F(Fongoky 4 Fongiko, Fongrky + Fonoyho ) f(=ky, —ks) (100)
keZ?2—{0}n>1

In particular, since the Fibonnaci sequence is rapidly increasing this will provide and
exact formula (involving a small number of non zero terms ) for D(f) whenever f is a
trigonometric polynomial.

The numerical experiment were done by the third author. They intend to illustrate
the difference beetween the diffusive and the non diffusive case. In two space variables the
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trajectories of 128 particles over 1000 interactions with the upper and lower boundary has
been obtained. The diffusive case (see fig. 3) corresponds to horizontal velocity field:

alw) = (a1(w), az(w)) = (coswy, coswa) (101)

As shown on fig. 4 the trajectory of a single particule is in general ergodic, however notice
that even in this case some exceptionnal trajectories are not ergodic. This will be the case
for any particle starting with a velocity a(wp) with wy any periodic point for the mapping
T. For instance on fig. 4 is plotted the path of a single particle driven by the flow given
by (101) with initial velocity:
a{wg), wo = (0, 7/2) (102)

Observe the relation wy = 7wy which correspond to the behaviour of the particle.

Fig. 5 is devoted to the simulation (128 particles and 1000 collisions) of the non
diffusive case with a vector field given by the formula:

First there is an initial layer then the process stabilises to a stationary state.
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Fig. 5 Evolution of the Non Diffusive Case
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