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Abstract 

111 this x+iclr 11 tlif&sion ecltlation is obtained as a limit of a. reversible kinr>t,ic equation 
with a.11 ad hoc scaling. The diffusion is produced by the collisions of the particles with 
the boundmy. Tl lese particles are assun~d be to reflected according to a. reversible law 
having convenient mixing propert,ies. Optimal convergence results are obtained in a very 
simple nmnner. This is made possible because the model, lmscd on ilrnold’s cat map can 
be handled with Fourier series inst,escl of t,he symbolic dynamics a.ssociated to a Markov 
pxtition. 

1. - Introduction. 

The purpose of this article is the description of a diffusion equation obtained as the 
limit, of a. deterministic and reversible linear kinet,ic equation. 

For this purpose the following moclel is introduced. Bectween two horizontal plates a 
family of particles evolve a.s a. I\;nuclse~i ga.s i.e. a gas with no interparticlcs collisions. The 
vertical velocity of the particles is positive or negative, according to whether they go up 
or down, and of constant modulus c. Their horizontal velocities m(w) are parametrized 
by T” = R’/(hZj2, Whenever the particles hit, the top or bottom plak, their vertical 
velocities are changed into t,heir opposite while their horizontal velocities arc: modified by 
the right action of an hyperbolic automorphistn of T2 (cf. figure 1). 

More precisely t’he following not,ations are used : the space posit,ion of the pasticles 
is (x, .z) E R” x (O! \s); the vertical cornponent~ of the velocity of the particles is fc; the 
horizontal component of this velocity is given by m(w), w E: T2 with (1, : T2 ---f R” denoting 
a. smooth enough mean zero vector field. The nonnegat.ive functions .f+(t, z:, z, u) (req. 
j-q, :2‘, z, w)) represent, the density of part,icles which a,t, time t and point, (:I:, II) ha.ve t,he 
velocit,y (m(ti)) i-c) (resp, ( (x(u,). --c)). 

The following hyperbolic automorphism ?’ of the torus (Arnold’s cat map) defined by 



The clcnaities ,f* sat isfv the Liour-ill? rquutions L 

and their due n.t f = 0 i s given by hhe follovdng initial condition 

which is compatil,le wit,h an a.pp~osirnat,ion, n .s h -3 0, bv an horizontal cliffirsion, ant 1 
which a,voicls the a,ppenra.nce of an init,ial layer in the liniit,ing process. 

Since t,he clensitjies ,fi satisfy the ccpation (3): they arc> constant along the cha.ract,er- 
ist,ic lines of the syskm; hence 

The asymptotic limit leading t,o an horizontd diffmion will 1.x ol.)tainecl by letting 11 go 
to zero and observing the system for la.rge positjive t,imcs. A s1d1 parameter c being 
introduced, 11, is changed into ch, (thus letting t.hc collision frccpmcy going t:o caj and t 
into t/c. The proldern of inkwst (3)-(4a,b)-(5) lx~ccm~cs 



2.- Not,nt,ions and Main Results. 

The nest proposition descrihm t,he elementary properties of what will be, in the limit 
t: -+ 0, the diffusion coeficient~, It, is ossent~idly bawd on the crgodic and mixing propertics 
of the mapping ,Y. 

Proposition 2. 
1) Ahy function Q E L2(T”) ,l 1 w lit i satisfies the rcl;lt,ion a = 0 0 ?’ is constnnt, a.Ilcl the 
subspa.ce Irn( 1 - UT) is dense in the space of functions CI E .L”(T’) such t,lmt < a >= 0 
(notice that this space is invariant, ltncler il?). 

Let, B > 0 and o, : T” ---f R” in t,he Sobolcv class H”(T2), wit,11 mm11 vallrc (Cb) = 0 
2) OIlC has: 



The proof of this theorem is tailored on t,hc proof of the Ito formula (cf. for instance 
[cl]); in pasticula,r it, will be shown t,ha.t the average of the cliffcrent pro(l11cts appearing ill a. 
Taylor expansion are, in the limit, decorrelat,ecl and therefore converge to the product of t,h~ 
corresponding limit,ing a,verages. In the origind It0 formuk~,, t,his point is strniglit,f(~r~v;a,r(l 
since (by const,ruct,i&) the Brownian motdon has independent incrcment,s. At va,riance in 

the present paper, t,lie intlcl)endcnce is obta.inecl only in the limit ~5 -i 0 and, as will be 
shown below, is a consequence of t,he different, mising propdies of tllcm: m:?p T. 

411 annlogous resldt has hem p-m-en hy [de-pli] for suspemions of finite tyl)e sulxld?s 
under liiilderian maps. It would he theowticallp possible to rcclllc*e the prcscd analysis i0 
this situation by coding t,he mapping T wit,11 a. !bIa.rliov part,itiou, Han-ever our goal is to 
prodllce n proof of a. diffusion limit8 as explicit, as possible ant1 which in illc pXse11t c&se 
uses only elernentarv techniques (Fourier srries espn.nsions inskacl of Mnrl~ov partJitjion a.s 
a. cc-ding of the syst~em). 

In spite of the fact that the initial model given by the’ cqilations (cj-( 7)-( S) is time 
reversible (it i.. $ giwn bv a one-t o-one and ont 0 l~rolien hamil t 0liia.n ilotv which prc3erves 
tlw IlleRSllfe of the pl1ase spnce (;;,\ -+ CL, )cl.rdxd~). t,1 1 1e imiting equation [ 14) is w-cl1 posed 
milt- for f > 0. In particular. the L2(d.r i norm of tlit - 3 soliition of the equation (14) is fol 
f > 0 strictly tlecreasirig: it is constant, only in t,lie spwial cast’ where t,lic solllt,icXl is space 
llornogc~nous. And the clifiusiorl eqllation (14) obt,ained as die limit, of a. reversible system 
ii; in some Sense the simplest, and most basic escmple of xl irrcwwil,le partial tlift;,rent~ial 



3.-- Proofs of the Mixing Propertries and of Proposition 2. 

As we said ahove. the proofs rc>ly cm the llse of Fmlricr swim, Intlcccl tlic pmpelties 
of die dynanlica~l syst,cm induced 13,~ t,he map T cm the t.orus ‘I_\” arc inos t mnvenient ly 
transla.td into t,llose of the dynamical systrrii clef&d in Z’ (t,lle dt.ml group of T2) 13)’ the 
iteration of the matrix 



Consiclcr the class of functions: 

TllCIl * 
i) “Rate of Mixing”: For all (.f, .(I) E H’, sd~ that. (.f) = (g) = 0 

G 

.l f E H'( 7’” 



For k E I<& one introduces the clccompo,6tion k = (k . e-+)e-+. .-I- (k a c..)c..; I~ronc~cl;cr’s 
estinmte (19) shows that, 

Using that f E H, a.ncl that \: is nonincreasing, this implies the est,imate: 

The relation ( 32) is obtained by choosing R = Ai’” in (2.5) and (26). To ol)tain the, 
exponential rate of mixing (231, me specializes (22) to the case f '=1 g and uses, the 

expression x(R) z R-“(llfll,Ilfll,1)1/2. // 

Proof of Proposition 2. Let, X: E 2” \ 0, Since I<er (;\I - X-.2) is a, line wit,11 irrntiond 
slope, the orthogonal projection of k on I<er (:\I -‘-. A__ 1) ‘~ 1s not, 0 allcl t~llerefcre /:V” x: / -+ 
-+x2 as 1’1 4 +,2-c* 

r 



The exponentid c1eca.y estimate (23) implies t,hc alxolute convergence of the series 

Therefore (by Cksaro’s Theomu) t,hc last krrrl of the right hand sick of (29) goes to zero, 
leading to the relat~ion 

(30) 



(31 > 

and that, due to the decay est,inlate (23), Y(z) is holoniorphic~ in the strip I?,, = {z E 
C s.t. 19~1 < as}. Therefore one has: 

(34) 

implies tha.t the series 



As wc said above, the proof of t.hcorem 2 follmvs in mmy rcspcct,s the proof of the 
Ito fornlult\. Therefore it, lvill lx importxd t,o decorrelate events occuring ill t,wo scpar:~tJe 
intervds of time, ~iniforndy \vith respect to the size of t,llese intervals~ and ltllclc~r the 
only assumption ihnt their mutual distance is large enough. This is cledt 1vith in t~lie 
nest proposition, What \ve prove is a. property sinzilar to the “Vfxy Weal; l3ernouilli 
property” as introclucecl by Orristein-T$7eiss (cf. [bow]). The rnairi clitterence with the 
classical formulation a.s in [bow] is the use of trigonometric polynoniinls instea.tl of indicator 
functions of pa.rtitions. 

Proposition 6. The transforrn;Ltion T has the following 

Property (H2). Tl lere exist8 two constants ,&, > 0 n,nd ,R1 such that for all 1, m E N, 
u c { 12, “‘) 11, + I}, I,’ c { 12, . . . . 71, f 77>.} and for all pair of trigonometric polynonds P, Q, 
of degree less than R, one has, for all 7~ > ;5’” log h’ -+ /?I 

Proof . This proof follows that of proposition 5. The rnet~hod is simi1a.r t,o the one used 
by Katznelson [katz], hut here a more precise rcstdt is needed nncl proVeIl. Observe tl1a.t 
it is enough t’o study expressions of t,he following type: 



S;l, = {S E R” s.t. 1-Y s et] 5 1/zllf$} > (41.) 

Since Xi + Xt’; = 0, both X, a.nd X$ belong to I<’ R,n, = SE fl Ii, (cf. fig 2) which for an 
n greater thm a. given va.lue No is conta.ined in I<R\, . Whenever they are not, both cclua.l 
to zero, the diophaalt~ine estinmk (19) of 1 enmm 4 cm lx used t,o give: 

For n > (2 log R + log-( A( 1 + &))/ log A+, one has 

Tlier6~fore, if n is greater t1ia.n 



Then 

Property (H3) F- or all .f E TT; such that (,f’) = 0 

is lmiformly l~ountled (wit,11 respects to 21’:) in L’i (T’), 
Proof . The proof follows the same lint a.s the one inclicatcd 1)~ Iia.tnc~ [ra,t] when the 
mapping T is rcplawd 13y any I< syst,em. For the sake of being complete, WC give a proof 
based only 011 property (112) ( -1 * 1 ts uc 1 is more restrictive than assuming the I\: property). 
First, observe that 

= 4! c 
(.f n pif o T”’ f o p:l,f o ,h) . 

ojk~~kzjk.7<k‘1<,Vv - 
and introduce the following sets of indices: 

w 

with the subsets B. CD having non empt’y intersection. ;,From tlic relation (47) one 
deduce t,he estimate: 



i 

Step 2, Suiimrat,ion with support in I3 and D. 
As ah-eady noticed, the proof is similar for these two terms ant1 tllerefolc! 01113’ t*11c 

sun with support1 in B is consideretl. 
Since .f belongs to WY, estimate (50) shows tlmt, 



(55) 



With (56), (s’ij, (58) and (61) me obtains, for 

the formul,2 
0 T”1.f o T”” .f o I‘k3.f o T”.I) I 

(kl,k2.k:i,k.i)EC 

which concludes the proof of step 3 and of corollary 7. // 

To further edend the clecorrela.tion properties, this xc t.ion is concluded with pr~po- 

sition S involving functions .f E H”( R”) and corolla,ry 9 which allows t,o consider smooth 
funct,ions with subquachxtic growth at infinity. 

15 



with H 

Proof . First represent .f and CJ in t,erms of t,heir Fourier t~rmsforrns: 

and observe tlmt since .f and .r/ belong to TT” (R”) t,hc a,bovc integrals cm, in t,hc sequels 
he replxed by 

This truncation introduces in the proof an error of the order of llfl1,jlgII,~ which 

correspond to the first term in t,lw right hand side of (62) a.ncl recl~~ws the proof of the 
proposition 8 to estinmting t,he expression: 

[Cf/2h] [c(l+r)/c2h] 
- ( I-I exp(i[ ’ &n 0 T”)) ( cq’(i’) * FJb(l 0 T’)) / . (W 

k=O I=[c(f+h)/<“h] 

However proposition 6 (property (HZ) or relation (37) ) cannot, be clir~~ctlg applied to the 
above formula because the functions esp(i[ . e/m) mcl esp( irj . ~72~7,) arc not trigonometric 
polynomials in the mria~hlr ti. Therefore these functions hax~: to 1,~: apl.)rosinla,tecl by 
their truncaded Fourier series. In order to do so it is convenient, to introduce the following 
notat,ions: 



[et/t-‘h] [c(tS-i3/t2h] 

[Ct/t-2h] [c(fSr)/c2h] 
+I( n &, 0 T”)( &,, 0 T”) k=O I=[C(l+q/E2h] 



With (6’3) and the choice of X given by (71), tl re right hand side of (72) sa,tisfies the 
following es t,imntc>: 

Then for any posit,ivc constant, ,U 

where s is chosen equal to [d/2+1], Il.fijs represent the W” Sol.~olcv norm of ,f and H(IC, 6, C) 
is the function defined by (63). As before, the constants are intlepenclcnt of f, 7, .5 and 6. 

Proof . Introduce a c,utoff function ,yh,f E C-(R2) wit,11 the following propcrtics: 



(79) 

Therefore, with estimate (GZ), me concludes tha,t 

4.- Proof of Theorem 2. 

Ito fornnrla for t,he Brownian motion. Therefore the st asting point2 
at’ order three for the increment. 

(SO) 



or? using Hdcler’s inequality with X = [crj~“h] 

(53) 

TJsing corollary 7, the following bound is deduced from (83) 

Step 2. Decorrelation in (81). S ince the tren.tment of the linear t8erlll is simpler thall 
t>he treatment of the quadrat~ic term (but, follows the same lines) , mly the latkr, will be 
considered in clet,ail. rl L~s~nall‘~ positive time 6 is introduced ad one has: 



Similarly the second term is bounded by: 

ch [ctle2hl 
(O”,$qx - -f c a(T”‘td)) : ($ 

[C(tST)/E2h] 

x Ci(T”W))@J’) 
k=O k=[c(t+h)/c~h]+1 

Here corollary 9 is used wit,h g(:r) = n: CC2 leading to thz following estimnte: 

4 



El,, [ctlt2hl 
-(Y‘Q(,T - 7 c n(T”w 

k=O 

Step 3. Weak and strong limits. Denote hy u,(t. J) ihe family of functions ($f( t, .T, ~1). 
Starting with (Sl), using t,lw estimate for the remainder (84): t,hc> L’” lxnnlds 0x1 Vq5 and 
V” 4, the inequnli t,?; 

#{k s.t,. [CA/E%] + 1 _< k < [c(t + T)/E2h]} 5 [C7./2Jl~] ) (90) 

and propertly (H3) f- lorn corobry 7, we arrive at, t,he (uniform in 7 E [O, l] and E E [0, I]) 
lxRmCl: 

Its,(t + 7,x) - 16&, cc, .)I 5 c&I (91) 

It follows from Ascoli’s theorem that the fa.mily II, is relatively compact in C”([O, T]; w* - 
-L”(Rd)). Let ZL be a, limit point of t,his family ant1 re~xune as 1~ua1, j’;“, ,J,t n.nd I/,, the 
corresponding subfamilies, with u, converging to u. Starting from t,hc: ?It,o” formula. (SZ), 
using (85) and (69) one obtains: 

or with (12) (cf. points 2 of proposition 2.) 

for the difTusion equation: 

au 

at 
-- $(tr‘1 



The solution of (94 j being unique, it follows that the whole families 

converge in C”([O. 71; Il.* - -L=( R”)) to u(t. .r). 
Observing t,lia.h the problix~ (7)-( 10) is translation invariant in t,he v~lrii?blC R‘ E ‘It” 

and using the regularity of o E C’( R”), one can see t1la.t t,he family of flnlct~ion~ ~,(‘t, x) 
sa.tisfies the (tmiform in E) estimate: 

Acoli’s t,heorem, (01) and (95) .1 s 1o’rT that, for any i- > 0 and my coIllpa.ct 1; c P, t,he 
sequence zL,(t, x) convc’rges to ujt, .r) in C(PO. T] X I<). This argumc’nt, coml)letcs t,hc proof 
of the strong convergence of the avrrages (i&t). 

Finally let f be in t,he IO* closure in L”(Rt x Rp x T2) of the family ,$,(t, :c!w). One 
decluces from (11) tallat, .f is invariant, under the action of T 

The crgodicitSy property (proposition 2 point, 1)) implies that .f is indepcntlentJ of 0 a,ntl 
therefore coincide with the function u(t, CC): this demonstrates t,he converg~nc~~ (1413) xl& 
conchtdcs the proof of theorem 3, // 

5.- Final Remarks aucl Nunlerical Experiments., 

The model (3), (&I,), (41~) md (5) l.fi c e 1x3 a, global broken hamiltonian flow which 
induces a.n isometry on LJ’(R” x T”) for all 1 _< p 5 ix). In pnrt,iclllnr the: ql1antit,y 

* f 2 is conserved for any E > 0 at xka.ncc kth t,llc> quantity ~1’;:‘“;~; A;? + ll.f,(h ) Ill 
‘11 )’ ‘2. Therefore ihe t,ype of convergence which is given in the t,heorem 3 (st,rong 

for t,he average and we& for the solut~ion itself) is optimal with the ostq~tion of the trivial 
case where D(a) = 0 which correspond to no diffusion. In this situ&on the solution ex- 
hibits an initia.1 layer riea,r t = 0 which is taken care of by the timr: scaling and the solution 
f,‘(z, t, a) converges st,rongly t,o its init,ial valtle d(x) 

The paradox of deriving a well posed irreversible problem for f > 0 from a reversible 
problem can be explained from the following facts. 

1) The scaling has been done with t’he a priori choice of considering t,he solution for 
large positive times; 

i 
23 



The releva,ncc of the above remarks depends of course on the analysis of the strict, 
positivity of the dif?%on matrix D(a). In fact it results from proposition 2 that D(a) = 0 
for CL varying in a dense slllxet of L’( T’)/R ( xomorphic to the space of mPa.n zero fimctions 
in L2 (T” )). F~wt~hwmore the diffusion is tlcgencxj.te in the directions [ for which the 
“escursiou lengt,h” : 

.i,~~=-f(/7mTk)*~ 
k--l 

is (uniformly with respect t’o *Y) b~o~mcltd in L2( T2), an observation which t,lwns orlt to 
bc in agreement tvit,h the intuition. 

Although the spxe of cobonndaries is dense in the s~~l~~pn~ce of L”( T2) consisting of 

mean zero fimctions. it, is not I,” closed. In other words, it. is possible to find smooth 
funtions of L”(T’) not, bein, 0‘ cobounckuies. For example, observe t,hat, for tl = 1 and 
cL(w1, Ldz) = coso1 one has II = $. 

More gcrlerallg it would be extremely useful to hn,ve nrl aplicit cspression of D(a). 
For tl = 1 it, can be ea.sily obtained in t,erm of the Fibonx~xi SPC~~~CY~CC~ F,, 

Observe that the minimal polynomial of t,he mat,ris ~11 is X2 - 3X + 1 and introduce the 
matrix P - 1 which has for minimd polynominl S’ - X -.- 1, then on one ha.nd one has 

-If z p + 1 = p” (W 

and on the other hand 

and this implies the formula: 

pn = pn--1 + pn--2 (99) 

Therefore, wit,11 the diffusion matrix given by (13) one has, for any fmlction .f : T” -+ R 
in H” wit,h :; > 0: 



trajectories of 128 particles over 1000 intemctions with t,he uppm n.rld lotvcf l.~c~lII~cl~t~y h:IS 
been obt,ainecl. The difkive case (see fig. 3) corresponds to horizontal velocity field: 

As shown on fig. 4 the trajedory of 5 single particnle is in general ergo&c, hot\‘evW notice 
that Cven in this case some exceptionnal tr;ljcctorirs arc not crgodic, This mdll be the case 
for an; particle st,a,rtirig with a, velocity tr(ti,)) with do any periodic point for the mapping 
2’. For instance on fig. 4 is plot ted the path of a single particle driven by the flow given 
by (101) with initial velocity: 

Observe the rela.tion do ‘=1 T’tio which correspond to the behaviour of the partic.le. 
Fig. 5 is devoted to the sirnula.tion (1% particles a.nd IO00 collisions) of the mm 

diffusive case with a vector field given by the forndn: 
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