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ABSTRACT

The Symbol Grounding Problem (SGP) is one of the first attempts to proposed a
hypothesis about mapping abstract concepts and the real world. For example, the
concept "ball" can be represented by an object with a round shape (visual modality)

and phonemes /b/ /a/ /l/ (audio modality). This thesis is inspired by the association
learning presented in infant development. Newborns can associate visual and audio
modalities of the same concept that are presented at the same time for vocabulary
acquisition task.

The goal of this thesis is to develop a novel framework that combines the constraints
of the Symbol Grounding Problem and Neural Networks in a simplified scenario of
association learning in infants. The first motivation is that the network output can be
considered as numerical symbolic features because the attributes of input samples are
already embedded. The second motivation is the association between two samples is
predefined before training via the same vectorial representation. This thesis proposes to
associate two samples and the vectorial representation during training. Two scenarios
are considered: sample pair association and sequence pair association.

Three main contributions are presented in this work. The first contribution is a novel
Symbolic Association Model based on two parallel MLPs. The association task is defined
by learning that two instances that represent one concept. Moreover, a novel training
algorithm is defined by matching the output vectors of the MLPs with a statistical dis-
tribution for obtaining the relationship between concepts and vectorial representations.
The second contribution is a novel Symbolic Association Model based on two parallel
LSTM networks that are trained on weakly labeled sequences. The definition of associa-
tion task is extended to learn that two sequences represent the same series of concepts.
This model uses a training algorithm that is similar to MLP-based approach. The last
contribution is a Classless Association. The association task is defined by learning based
on the relationship of two samples that represents the same unknown concept.

In summary, the contributions of this thesis are to extend Artificial Intelligence
and Cognitive Computation research with a new constraint that is cognitive motivated.
Moreover, two training algorithms with a new constraint are proposed for two cases:
single and sequence associations. Besides, a new training rule with no-labels with
promising results is proposed.
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1
INTRODUCTION

The human brain is an essential inspiration for Artificial Intelligence (AI) when

designing and creating computational models, e.g., HMAX [1] and SpikeNet [2].

Computer Vision is one example that simulates similar behavior to the brain,

such as, recognizing objects in images. Not only AI but Cognitive Science (CS), Neu-
roscience (NS) and Cognitive Computation (CC) also investigate how the brain works.

For example, Goodale and Milner [3] formulated a hypothesis that two paths are in the

primate cortex. One path is linked to vision-for-perception whereas the other path is

connected to vision-for-action. Riesenhuber and Poggio [1] proposed the HMAX model for

object classification that was inspired by the vision-for-perception path.

A challenging scenario that computation models are well suited to tackle is Infant
Learning (IL) [4, 5]. In this case, newborns require learning with minimal or no knowl-

edge of their environment. One of the first learning elements is to map abstract concepts
to their sensory input (in the vocabulary acquisition task) [6]. As a result, infants learn

that the meaning of a word is associated to several modality representations. Other

forms are also important, such as motor sensory or social cues, which are not considered

in this thesis [7, 8].

The goal of this thesis is to present a general framework that links cognitive elements

and computational models. In this scenario, three concepts related to human cognitive

tasks are important to define for setting the constraints of the framework. First, the

1



CHAPTER 1. INTRODUCTION

Symbol Grounding Problem (SGP) proposes a cognitive theory about how words have

their meaning. Second, IL has useful insight into the visual and auditory perceptions

and their cross-modal relationship, which the proposed model relies on exploiting the

cross-modal information. Third, Association Learning (AL) is the link between two or

more sensory signals that represent the same meaning. Vision and auditory samples are

only considered in this thesis.

1.1 Symbol Grounding Problem (SGP)

Several fields, such as AI, NS, CS, and CC, have been interested in how the human

brain works for a long time. One of the most striking features is how the meanings of the

words are born. For example, a roundish shaped object and a spoken word /b/ /a/ /l/
represents the abstract concept ball. Also, the meaning of another word violin can be

expressed not only in the visual perception (shape, color, and texture), but also in the

audio perception (sound, pitch, and timbre). The abstract concept remains hidden in

our brain as a prototype. Similarly, the letters and digits (that represent words and

numbers, respectively) are elements that humans know how to manipulate. For example,

a sequence of written letters represents a word, and a sequence of digits illustrates a

mathematical operation.

Harnad [9] proposed that the mind is a symbolic system, and the cognition is the

manipulation of those symbols. He called it the Symbol Grounding Problem (SGP).

However, the meaning of a symbol is unclear in this context. For example, Merriam-

Webster 1 defines the term symbol as:

1. an authoritative summary of faith or doctrine

2. something that stands for or suggests something else by reason of rela-

tionship, association, convention, or accidental resemblance; especially

3. an arbitrary or conventional sign used in writing or printing relating to

a particular field to represent operations, quantities, elements, relations,

or qualities

4. an object or act representing something in the unconscious mind that

has been repressed

1Symbol. (n.d.). Retrieved July 9, 2017, from https://www.merriam-webster.com/dictionary/symbol

2



1.1. SYMBOL GROUNDING PROBLEM (SGP)

FIGURE 1.1. Example Chinese Room Argument. The person inside of
the room who does not know Chinese an has a dictionary with
all Chinese characters. The hypothesis is that the person inside
receives a question in Chinese and replies in Chinese using the
dictionary. Image retrieved from https://blog.cloudmiddleman.com/
middlemanning-for-fun-and-profit-dd998b32e973.

5. an act, sound, or object having cultural significance and the capacity to

excite or objectify a response

These definitions are too general for the grounding process between symbols and

word meanings. Searle [10] explained the term symbol with a well-known example: the

Chinese Room Argument. In this example, one person is inside of the room, and another

person is outside of a room. The person inside of the room only speaks English, and the

other person only speaks Chinese (see Figure 1.1). In that case, Searle claimed that the

person inside could communicate in Chinese if he/she can manipulate (read, understand,

and write) the iconic characters based on a dictionary (Chinese-English) that contains

all possible characters and rules. This example shows that the manipulation is based on

the recognition of the shapes but not on the meaning of the words.

Furthermore, Harnad [9] described that the meaning of the words involves three men-

tal representations: iconic, categorical, and symbolic. Iconic representation is the physical

projection of the real world. Categorical representation is the learned feature for recog-

nizing objects and events. Symbolic representation is the mapping between the names

and the objects. Figure 1.2 shows two examples of the three mental representations.

3
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CHAPTER 1. INTRODUCTION

Iconic Categorical Symbolic

shape
color

orientation cat
(visual)

(audio)
pitch

duration
loudness

FIGURE 1.2. Example of the three mental representations defined by Harnad
[9].

Many challenges remain open in SGP. Mayo [11] presented three limitations regard-

ing AI (robots and artificial life). First, the grounding step between abstract concepts and

sensory input is still unknown where it comes and how it works. Infants especially do not

know how to ground symbols and acquire information via sensory input (e.g., eyes and

ears). Also, an unknown criterion is required for choosing the best category of the iconic

information. Second, concepts related to the visual domain are easier to ground because

there is a clear representation, such as cat, dog, ball, pizza. However, other abstract

concepts are not attached to a specific visible representation, such as politics, victory,

or love. Consequently, it is unclear (from the robotics point of view) when the grounded

information for defining an intelligent mind. Similar to Mayo, Steels [12] added more

observations to SGP. To begin with, the relationship between meaning, conceptualization,

and symbolization remains unknown. Moreover, the brain fires neurons depending on

the semantic meaning of a phrase. For example, smell words fire neurons in the olfactory

processing area, and action words trigger the motor area.

In addition to these open observations, there is not a consensus of the components

with their respective tasks in SGP. Taddeo and Floridi [13] summarized the most common

approaches into three scenarios: a) representationalism, b) semi-representationalism,

and c) non-representationalism. The first approach defines the meaning of the symbol

that relies on the conceptual and categorical representations. The second approach has

some elements from the first approach but also incorporated ideas from behavior-based

robotics. One example of the robotics principles is to define a concept with "a composite

description of several components". Another example of behavior-based on robotics is to

consider symbols with three elements: a) a form, which is the physical representation

4



1.1. SYMBOL GROUNDING PROBLEM (SGP)

(or shape), b) a meaning, which is the semantic concept, and c) a referent, which is the

object that is referred by the input signal. The third approach proposes that a symbolic

representation is not required because of intelligent behavior and the interaction in the

environment. In other words, intelligent behavior is the only the connection between the

sensor information and the actions without any semantic meaning.

SGP has inspired several applications. Some of them are specific, such as Grounding

Symbols in the Semantic Web [14], and other cases are too general, e.g. Symbol Emer-

gence in Robotics [15]. Coradeschi et al. [14] have proposed several types of SGP, such as

Grounding Words in Actions, Social Symbol Grounding, and even, Grounding Symbols in

the Semantic Web. Tellex et al. [16] explained a model that aligns a video of the robot

navigation and commands giving in natural language. In this case, the authors described

a probabilistic graphical model that can ground objects, places, and paths in the real

world (robotics domain) inspired by SGP. Di Nuovo et al. [17] showed a model related to

the transition between digit recognition and digit manipulation (math operations). This

transition stage is similar to how infants first learn to recognize digits (visual and audio,

even to use their limbs to represent them). The authors proposed a neural network that

learns the association between visual, audio, and haptic components.

Another task inspired by SGP is giving semantic similarity and relatedness. Similar to

the visual grounding, a concept can exploit visual and auditory perceptions. For example,

a person can ground the concept car not only to shapes and colors but also to sounds (i.e.,

closing a door, the sound of the engine, the ignition of the car). The authors compared

several fusion strategies for combining linguistic and auditory representations [18].

Taniguchi et al. [15] have proposed Symbol Emergence in Robotics (SER), which is

inspired by the SGP. In this case, they have summarized several research topics that are

important in robotics. Some of them are multi-modal communication, concept formation,

language acquisition and mental development, learning interaction strategy, learning

motor skills and segmentation of time-series information.

In summary, SGP is a challenging scenario, in which several authors proposed many

solutions. Finding the required elements that are involved in the process of semantic

acquisition is vital for language understanding. Learning the meaning of words in the

early ages is one example of this scenario. Especially, how infants start learning to

recognize objects and sounds including the mapping to semantic knowledge.
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Segmentation Recognition

Segmentation Recognition

Visual Perception

Audio Perception

Association Learning

FIGURE 1.3. A simplified pipeline of the association learning in infants. The
problem definition in this scenario considered only two tasks from Machine
Learning approaches for each modality: segmentation and recognition.

1.2 Infant Learning

Infants can acquire semantic knowledge employing their sensory input. The research

community has been interested in finding out how infants learn. Infant Language Center

at the University of Pennsylvania2, Infant and Child Studies Lab at the University

of Toronto Mississauga3, Baby Research Center Nijmegen4 are examples of research

institutes in Infant Learning. These labs investigate several tasks, e.g. understand

language development, measuring attention of newborns.

Additionally, a computation model based on machine learning problem can be in-

spired by IL. Figure 1.3 shows a minimal scenario where infants learn to segment and

recognize two different signals (or iconic representations) including the association be-

tween them. This work is constrained to two modalities: visual and audio (audio can

also be represented in textual descriptions). However, more factors are also crucial to

consider for vocabulary acquisition, such as motor-sensor, attention, and social cues.

1.2.1 Visual Perception

Initially, 3-months old infants show viewpoint invariance, which the ability to recognize

objects regardless of the viewpoint. The viewpoint invariance in infants is supported by

the following experiments. In that case, Kraebel and Gerhardstein [19] trained several

infants with multi-part objects that are horizontally oriented and tested with vertical

2http://www.psych.upenn.edu/infant/home.html
3http://www.utm.utoronto.ca/infant-child-centre/
4http://www.babyresearchcenter.nl/en/

6

http://www.psych.upenn.edu/infant/home.html
http://www.utm.utoronto.ca/infant-child-centre/
http://www.babyresearchcenter.nl/en/
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oriented objects. Another experiment relies on images that look 2D and 3D objects. Bhatt

and Waters [20] found that infants can discriminate images that look like 3D objects

(from an adult point of view) whereas failed to detect similar discrepancies in 2D images.

The authors inferred that infants could exploit line intersection (similar to adults that

exploit constellation of Y, arrow, and T junctions), and shade information for extracting

3D cues.

After 3-months old, infants start developing the features for object recognition. Wilcox

[21] proposed a timeline of the developing of common visual attributes: shapes, sizes,

patterns, and color. These features are more sensitive depending on age. Initially, 4.5-

month-old infants can exploit the shape and size of the objects in events where the

objects are partially occluded. The infants do not use the other visual feature (patterns

and colors). In contrast, 7.5-month-old infants prefer using patterns, and 11.5-month-old

infants prefer using colors for object identification.

Moreover, infants pay attention to the structure in multi-element scenes. Fiser and

Aslin [22] found that infants around 9-month-old extract several features from their

visual environment based on two information sources: a) co-occurrence frequency of

elements and b) the predictability of relations between elements. To recognized new envi-

ronment, infants considered any feature previously learned in unknown environments.

As a result, the structure is useful for learning higher-level features and constraints.

This result also is supported by Spelke [23]. Infants can segment a scene into objects

given by three-dimensional surfaces and motions. They convert visual information into

units that are connected while those units are moving, keeping the size and shape. Hence,

infants might perceive elements that can make them infer about the unity of partially

occluded objects. One of the elements are the edges between two adjacent objects.

1.2.2 Auditory Perception

One of the essential tasks that infants require for acquiring vocabulary is the capacity of

speech segmentation. In other words, the identification process between word-like units

and auditory speech input. Friederici and Wessels [24] have found features that infants

use for speech segmentation. First, 6- and 12-month-old infants learn the phonotactic5

structure of their mother tongue. Second, 9-month-old infants prefer grammatically

correct than and grammatically incorrect word boundaries. Third, the selection between
5the area of phonology concerned with the analysis and description of the permitted sound sequences

of a language. "Phonotactics." Merriam-Webster.com. Merriam-Webster, n.d. Web. 11 July 2017.
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legal over illegal word boundary is based on phonotactic features and not prosodic6

features.

Jusczyk [25] have found similar results for word segmentation in infants. The authors

claimed that infants used more information sources instead of only using phonotactic

features. Some cues related to stress (prosodic) and statistical information appears earlier

than phonotactic and allophonic7. The authors suggested that this initial strategy for

word segmentation helps to develop other features based on phonotactic and allophonic.

At the end of the second year, infants have a similar performance to adults for recognizing

familiar words.

Jusczyk et al. [26] have been working on an extended-analysis of how significant

are the intonation in words. They have analyzed bisyllabic words with two types of

intonation: 1) strong/weak and 2) weak/strong. In the first case, 7-month-old infants

can correctly recognize all words. However, infants have failed to recognize words in

the second case. Newborns have tried to use the strong accent as an anchor for words.

For example, they recognize the phrase "guitar is" as "taris". Later on, 10-month-old

infants have learned to recognize weak/strong words. Hence, infants between 6- and

10-month-old have learned how to integrate more information from multiple sources into

word segmentation.

Pelucchi et al. [27] have demonstrated that infants have a statistical mechanism

for learning languages. Eight-month-old infants can learn transitional probabilistic

information in unknown speech stimuli. In that particular case, the authors evaluated

infants (who their native language is English) with Italian speech stimuli.

1.2.3 Link between Visual and Auditory Perceptions

The vocabulary acquisition gives insight into the relationship between visual and audi-

tory signals. For example, the McGurk effect [28] shows a perceptual phenomenon that

links to the visual and auditory signals in the speech perception. Children learn a new

word in their vocabulary if they follow these conditions [29]: used with the intention to

communicate, has a consistent phonological shape, has a consistent meaning, and has

extended to multiple exemplars.
6the rhythmic and intonational aspect of language. "Prosody." Merriam-Webster.com. Merriam-Webster,

n.d. Web. 11 July 2017.
7one of two or more variants of the same phoneme. "Allophone." Merriam-Webster.com. Merriam-

Webster, n.d. Web. 11 July 2017.
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Words and tones (or fake words) are distinguishable by infants. Balaban and Waxman

[30] have proposed a theory that words help to categorize objects. They evaluated two

groups of 9-month-old infants in three experiments where one group uses words and the

other group uses tones instead of words. Two of the three experiments have suggested

that word phrases help to categorize because the audio stimuli enhance the infant visual

attention. The authors therefore claimed a connection exists between words and objects

because of initial attempts at mapping the words with their meanings. Furthermore,

Graf Estes et al. [31] found in 17-month-old infants that they can discriminate between

words, syllable sequences that are not words, and familiar sequences with low internal

probabilities. This task evaluates if infants can learn the object-word association in

these three different auditory stimuli. The results showed that the words are more

accessible to being mapped to objects in comparison with the other two options. Asano

et al. [32] have examined the brain activity of 11-month-old infant using three EEG-

based measurements. The experiment was to evaluate one scenario where an object

is semantically and correctly matched with auditory stimuli. Their findings were that

brain activity changes in the three measures depending on matching or miss-matching

between the object and the auditory stimuli.

An essential step in vocabulary acquisition is to learn nouns that have visual rep-

resentations (e.g., cat, dog, ball, car). Figure 1.4 shows a semantic network of the most

learned English words in 18-month-old infants. Many words are nouns (blue) in compar-

ison to the other lexical classes (adjectives-green and other-yellow). Infants pay more

attention to shape attributes for learning nouns. For example, the first nouns that infants

learn have similar shapes between them [33]. There is a relationship between the size of

the vocabulary acquisition and infants paying more attention to shape, which helps them

learn new nouns. Yee et al. [34] found similar results, in which 18- and 24-month-old

infants can develop a type of shape representations (between all samples of the same

noun category) based on learning the name of objects (mainly nouns). Afterwards, this

initial sparse shape representation helps to develop the shape bias and the perceptual

similarity mechanism.

Werker et al. [35] analyzed the age of infants that can learn the multi-modal associa-

tion between words and objects. In this scenario, the experiment evaluates if it is possible

to associate without many external factors, such as interaction with the speaker, object

manipulation, and no social or contextual cues to direct the attention between the object

and the environment. Two groups of different ages have been evaluated under these

9
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FIGURE 1.4. Example of the semantic network of infants between 6- and 18-
months old. Retrieved from http://wordbank.stanford.edu/analyses?
name=networks.

constraints. The first group (infants between 8- and 12-months old) could not associate

the word and the object. The results support that the word and the object were analyzed

independently. In contrast, the second group (14-month-old) can learn the matching

between the word and the object without a problem.

Another result that supports the relationship between visual perception and vocabu-

lary acquisition is provided by Pruden et al. [36]. In their work, 10-month-old infants

tend to learn the mapping between words and object that they are more interested in.

This can mislead the association between the word and the interested object. In fact,

infants at this age do not consider social cues. In other words, infants are only taking

into consideration what the speaker is saying.

Infants with blindness, deafness or hard of hearing tend to delay their vocabulary ac-

quisition [37, 38]. However, Lederberg and Spencer [39] claimed that infants can develop

novel strategies (because of brain plasticity) that accelerate the word learning process.

For example, infants who are deaf develop novel strategies for visual attention. In such
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cases, the parents need to make an extra effort for visual communication [40]. Similar to

deaf infants, the parents of blind children try different communication strategies than

for sighted children. For example, their language is more directive and structured in the

way that parents encourage children to take a more active role regarding conversation

and exploring their environment [41].

1.3 Association Learning

As mentioned in Sections 1.1 and 1.2, infants can associate different modalities under the

same semantic concept. Aristotle in his book Laws of Association8 proposed one of the first

definitions of association in memory, which described three conditions: spatial or temporal

contact, similar elements, and different elements. Additionally, many applications are

similar to infant learning. Parallel data is more common these days because of several

sources of information, such as images with its description, photos that have GPS

coordinates, visual and audio elements, and multiple sensor data. With this in mind,

several tasks can exploit the relationship between them. For instance, image captioning

tasks translate from images to textual descriptions. However, this relationship is in

one direction. Another task can be seen as matching if two or more elements represent

the same class. Many challenges have the association scenario if the input samples are

multi-modal. The first challenge is the feature representation where one modality can

exploit information of the other modality. Moreover, fusion techniques can be one way to

improve the feature representation to take the best of both representations. The second

challenge is the projection from one latent space to another latent space. In this manner,

the similarity metric should adapt to the new constraints at the new vectorial space.

There are several scenarios for learning associations between modalities. In this section,

Partial Labeling, Neural Networks, and Embedded Cognition in Humanoid Robotics are

briefly explained.

First, Partial Labeling considers that small portions of the dataset are labeled in

the following manner. Some images have a set of candidate labels, but only one label is

correct. Several researchers have tried to use images associated with text descriptions or

a set of labels in a way that maximizes one label between all possible candidates using

SVM [42–44].

8http://www.bcp.psych.ualberta.ca/~mike/Pearl_Street/Dictionary/contents/L/
lawsofassoc.html
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Second, neural networks approach learns to embed the relationship in their struc-

ture. In this case, only models that include a cognitive motivation are described. Two

approaches are considered for the problem of image-word association: a) Feed-forward

networks and b) Self-Organizing Map (SOM). One of the first works of auto-associative

learning using Neural Networks was proposed by Plunkett et al. [45]. Their model learns

to combine the visual perception and the word (meaning) using different architectures

where one part of the network learns the visual information. Additionally, another part of

the network learns the association. SOMs are neural networks that learns the similarity

between elements in an unsupervised environment. In this architecture, the idea is to

learn the association between the phonetics of the word and its corresponding visual

information [46, 47]. Their network has two components. One component is a receptive

field that works as a retinal input, and the other component is orthogonal vectors that

represent labels. Another approach for vocabulary acquisition is also based on SOMs [48].

In that case, the model learns the meaning of the words based on the co-occurrence

statistics. Li et al. [49] proposed a model that combines two SOMs for learning the

association between the word meaning and word form. In this case, they evaluate several

scenarios based on the type of semantic information (nouns, adjectives).

Third, the association between images and words can be learned by a humanoid

robotic with embedded cognition. The humanoid detects a tutor and the tutor's gaze.

Then, the robot learns based on the interaction or mimicking the tutor [50]. Another

scenario is to align patches of a scene with their corresponding word. In this case, the

same number of patches and words are given to the robot. After training based on

graphical models, the robot can align accordingly [51].

In this work, the presented models rely on Neural Networks because the architectures

are more biologically plausible when compared to Support Vector Machines (SVM) or

Hidden Markov Models (HMM). HMAX model [1, 52], SpikeNet [2, 53] are examples

of object recognition that rely on the biological visual system. The first approach is

inspired by the Hierarchical features in the Visual Cortex, whereas, the second approach

is inspired by how the neurons encode information in the brain.

1.4 Research Goals and Hypotheses

The goal of this thesis is to combine SGP and Neural Network (NN) into one framework.

On the one hand, SGP is an open challenge related to how our brain works. On the other
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hand, NNs have been successfully applied to different domains, such as Computer Vision

and Speech Recognition. This framework is applied to an association task inspired by

infant learning, in which infants learn to match parallel samples that represent the

same abstract concepts.

The research hypothesis of this work can be stated as follows:

Neural Networks, mainly Multilayer Perceptrons (MLPs) and Long Short-Term Mem-
ory (LSTM), are biologically inspired. Therefore, cognitive constraints should be possible
to be included into NNs because of their capacity of embedding discriminant information
inside of their architecture. Moreover, the association task can be solved adding not only
the recognition of the input samples but also the binding between semantic concepts
and the real world. One approach exploits the capacity of MLP for the recognition task.
Another approach exploits the capacity of LSTM for the sequence recognition task in
weakly labeled data.

In this work, several test cases are used for evaluating this hypothesis. Moreover, the

test cases are the association between isolated elements and sequence of elements. Also,

the format of the pair samples can be mono- and multi-modal.

1.5 Contributions

The main contributions provided by thesis are to unify the Symbol Grounding Prob-

lem and Neural Networks in the association task. A summary of the contributions is

described:

1. A new approach for considering the output of the networks, mainly Multi-layer

Perceptrons (MLPs) and Long Short-Term Memory (LSTM) as numerical, symbolic

features. This assumption is based on the power of neural networks that can embed

attributes and features.

2. A theoretical framework for association learning and binding symbolic features and

semantic concepts. In other words, this framework does not require the traditional

definition of the mapping between semantic concepts and vectorial representations.

In contrast, semantic concepts without vectorial representations define the associa-

tion between pairs of input samples. Furthermore, the framework learns converges

to an agreement during training.

13
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3. A novel training algorithm for learning the agreement between two networks. In

more detail, the algorithm includes the binding between semantic concepts and

vectorial representation given a statistical distribution as part of the loss function.

Several test cases have been used for evaluating this algorithm. One of the test

cases is to associate pairs of isolated elements that represent the same semantic

concept. The other test cases are related to parallel sequences that represent the

same ordered sequence of semantic concepts.

4. A new multi-modal dataset is introduced for the association task. In this case,

multi-modal sequences have semantic concepts that might present in one or both

modalities.

5. A new training rule for learning the association between two isolated elements

that represents the same unknown semantic concept. In this case, the classifier

learns to match the raw output vector with a statistical distribution.

6. A novel approach for multi-modal learning to use two parallel LSTM networks

with weakly labeled sequences. In this case, both LSTMs exploit a generated multi-

modal latent space. Moreover, Dynamic Time Warping aligns one latent space

produced by one LSTM to the other latent space produced by the other LSTM.

1.6 Thesis Structure

This work is presented into seven chapters. Chapter 2 describes the required background

about Neural Networks for understanding the presented framework Chapter 3 presents

the general association framework. Chapters 4 and 5 show the results of the association

framework for two test cases. Chapter 6 introduces a new constraint for association

multi-modal sequences with missing elements. Chapter 7 presents a new constraint for

the association problem, which do not use labeled data. Chapter 8 presents the conclusion

and future work.

Chapter 2 describes the background information of this thesis. Initially, a formal def-

inition of a supervised task are given. NNs are described, mainly Multilayer Perceptrons

(MLPs) and Long Short-Term Memory (LSTM). The presented association framework

exploits the capacity and advantages of both architectures.

14
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Chapter 3 explains a general framework for association learning inspired by the

Symbol Grounding Problem. First, a problem definition of the association learning and

its relation to the Symbol Grounding Problem is given. Second, the association learning

framework and each component are explained. In this work, two approaches are used for

implementing the association framework. One approach is based on MLP, and the other

approach is based on LSTMs.

Chapter 4 presents the results of the framework implemented by MLPs. In this case,

the task is to learn the association between two input samples that represent the same

semantic concept. Two scenarios are used to evaluate the model: mono- and multi-modal

samples. The performance of the presented model reaches similar results to MLP that is

trained for the classification task for each input set.

Chapter 5 presents the results of the framework implemented by LSTMs. The

association learning is between two parallel sequences. Similar to the MLP framework,

two scenarios are also used for evaluating this model: mono- and multi-modal sequences.

In both cases, the presented model reaches similar results to LSTM trained for the

classification task in one modality.

Chapter 6 explains the model based on LSTM with an extension for handling multi-

modal sequences with elements that can be or cannot be in both modalities. In this

case, the alignment step is modified for handling only elements that are common in

both modalities. The model is tested in two scenarios: random missing elements in both

modalities, and a fixed number of missing elements in one modality.

Chapter 7 introduces a new model that learns the association between two elements

that represent the same unknown semantic concept. The model is evaluated in four

datasets. The performance of the classless model is better than two clustering algorithms,

and in good range regarding the supervised case.

Chapter 8 summarizes the findings and contributions provided by this thesis. Addi-

tionally, the next challenges and future research questions are discussed.
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BACKGROUND

The previous chapter described SGP concerning the association between two

samples. This chapter explains critical components of the association learning

framework in the context of machine learning task. First, supervised classification
is a task where the goal is to map input samples to categories. In the context of SGP,

the categories are abstract concepts that map to the real world. Second, one approach

for solving the supervised classification task is Neural Networks. Two architectures are

essential in this thesis: Multilayer Perceptrons (MLPs) and Recurrent Neural Networks
(RNNs).

2.1 Supervised Classification

Many examples of supervised classification are in the market. For instance, digital

cameras can detect if a face is smiling for taking a picture. Supervised classification is

a mapping task between elements (e.g., images or texts) and categories. More formally,

the mapping function f : x ∈ Rn → {1, . . . ,k} where x is an input sample and the set

{1, . . . ,k} represents possible categories. The following mathematical expression describes

a mapping function.

y= f (x), (2.1)

17



CHAPTER 2. BACKGROUND

Training

Testing

Classifier "airplane"

Classifier "? ? ? ?"

FIGURE 2.1. Example of the object classification task. The training step is based
on input samples of the target category. In this case, each image has only
one category. Input images are taken from CIFAR-10 dataset [54].

where y is a category represented by a numeric code. As a result, Equation (2.1) is

updated to

ŷ= f ∗(x;θ), (2.2)

where f ∗ is a model (called classifier) that approximates f , θ is the parameters of the

model, and ŷ ∈ Rk is the output category given the input x.

The output vector ŷ is represented commonly by a one-hot scheme. This vectorial

representation has all set to zero, except a single element, which is set to one. An example

of this coding scheme notation is shown as follows

category: airplane↔ eT
1 =

[
0,1,0, . . . ,0,0

]
, (2.3)

where e1 ∈ Rk is a unit vector, and the index 1 represents the position where the

vector is not zero. Thus, each category has different representations that are mutually

exclusive between them.

So far, supervised classification has been only explained considering "isolated ele-

ments" (each image represents only one category). One extension of isolated elements

consists of classifying input samples that represent a set of ordered categories (i.e.,

sequence labels). Similar to the previous scenario, the association learning can be seen
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Training

Testing

Classifier "7 6 1 9"

Classifier "? ? ? ?"

FIGURE 2.2. Example of the sequence classification. The main difference with
the object classification task is related to the categories. In this case, each
input sample is represented by a series of categories. Note that the training
step requires image samples and categories. The testing step classifies input
samples into categories. Input images are taken from MNIST dataset [55].

as reading a text line aloud1. Figures 2.1 and 2.2 show the differences between object

and sequence classification.

Machine Learning (ML) is a standard approach to model the mapping function f ∗.

Mitchell [56] defined machine learning with three terms: a "Task" that can be learned

based on "Experience", and the quality of the learning process can be evaluated with a

"Metric". In this case, input sample x represents Experience, and it is commonly split

into two datasets. Each dataset has a different goal. The model is trained only in one

dataset, whereas the other dataset is for evaluation purposes. The evaluation measures

the quality of the model for generalization of unseen samples. One dataset is only used

for training the model, and the other dataset is used for evaluating how good the model

is for generalization of unseen samples.

Furthermore, two pipelines are common for learning the mapping function f . The

first approach is feature engineering, in which the samples are converted to features, i.e.,

SIFT [57]. The second approach is to use raw input samples (i.e., pixels of images) for

learning the embedding of feature representation and the classification at the same time,

such as LeNet-5[55]. The rest of this chapter describes two NN architectures that the

proposed association framework relies on.

1It is a common term in OCR community that is defined by the sentences that are obtained from a
scanned page
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x1

x2

x3

x4

ŷ1

ŷ2

Hidden
layer

Input
layer

Output
layer

FIGURE 2.3. Example of an MLP. In this case, the network has one hidden
layer of five elements. The input and output layers have four and two
elements (respectively). Figure generated based on the source code http:
//www.texample.net/tikz/examples/neural-network/.

2.2 Neural Networks (NNs)

The focus of this work lies on NNs because of its biological motivation. Moreover, this

approach similar to the human brain is trained based on samples and embeds discrim-

inant information in the connections between neurons. The output layer summarizes

information of the categories from input samples, which can be combined with SGP.

Additionally, the connections between several modalities (i.e., texts and images) can

be also embedded into the connections weights of this approach. Therefore, NNs is the

selected approach for combining SGP and IL. This section describes two architectures.

Multilayer Perceptrons (MLPs) are a common approach for object and text classification.

In contrast, Recurrent Neural Networks (RNNs) have been applied to sequence learning,

e.g., speech recognition.

2.2.1 Multi-layer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) are composed of layers, which are a group of neurons.

Each layer connects to another layer (similar to a composition of functions). MLPs can

learn to approximate continuous functions [58, 59]. Thus, an MLP with a hidden layer

can be expressed based on Equation (2.2):

ŷ= f 1( f 2(x;θ1);θ2), (2.4)
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where function f 2 is the relationship between input and hidden layers and function f 1

is the relationship between hidden and output layers. The function f 2 receives the input

sample x and passes to the hidden layer. Then, the function f 1 receives that information

from function f 2 and passes to the output layer. Figure 2.3 shows an example of an MLP

that has four input and two output elements. There are mainly three types of layers.

First, the input layer (green) receives input samples. Second, the output layer (red)

predicts the categories, and there are no connections to other layers. Third, the hidden

layers (blue) lay between the input and output layers.

Furthermore, MLPs have two stages: forward and backward steps. The forward step

propagates input samples from the input layer to the output layer. The backward step

feeds the error measure between the network output and the desired target. In this

manner, the parameter networks can be updated based on this error. Formally, an MLP

with one hidden layer is defined by the following equations:

h=σ
(
Wxh ·x+bxh

)
, (2.5)

ŷ=σ
(
Why ·h+bhy

)
, (2.6)

σ(v)= 1
1+ e−v , (2.7)

where Wxh and Why are weight matrices, and bxh and bhy are bias vectors. Note that the

matrix Wxh and the bias vector bxh are the parameter θ1 in Equation (2.4) (similarly to

Why,bhy, and θ2). In the forward step, the input samples pass through the MLP from the

input layer to the output layer (Equations (2.5) and (2.6)). Afterwards, the backward step

uses a similar principle to the forward step with the goal of updating the parameters as

an optimization problem. Note that the backward step is performed after the forward

step. Hence, an error or loss function is required, e.g., Mean Square Error (MSE):

JMSE = 1
N

∑(
ŷ−y

)2, (2.8)

where y ∈ Rk is the desired target and N is the number of elements in the dataset. Given

the loss function, the parameters can be updated based on gradient descent. In other

words, the parameters changes based on the difference between output vectors (after the

forward step) and the desired target ŷ.

∂J
∂ŷ

= 2
N

∑
(ŷ−y) , (2.9)
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Afterwards, the error and the partial derivatives can be propagated for each parameter

with the chain rule. The derivatives are defined by the following equations

∂J
∂Why

= ∂J
∂ŷ

· ŷ · (1− ŷ)⊗h, (2.10)

∂J
∂bhy

= ∂J
∂ŷ

· ŷ · (1− ŷ), (2.11)

∂J
∂Wxh

= ∂J
∂ŷ

· ŷ · (1− ŷ) ·Why ·h⊗x, (2.12)

∂J
∂bxh

= ∂J
∂ŷ

· ŷ · (1− ŷ) ·Why ·h, (2.13)

Finally, the method gradient descent updates each parameter of the network

Why =Why−α∗ ∂J
∂Why

, (2.14)

Wxh =Wxh−α∗ ∂J
∂Wxh

, (2.15)

bhy =bhy−α∗ ∂J
∂bhy

, (2.16)

bxh =bxh−α∗ ∂J
∂bxh

, (2.17)

where α is a learning rate. Note that this example is based on a MLP with one hid-

den layer. Furthermore, this architecture can have more layers, which new layers are

appended to the last layer.

A MLP can predict the category of a sample after training. Therefore, a winning-take-
all rule is used as a strategy for finding the category given the input sample. Formally,

the following equation defines the decision rule, which retrieves the position of the

maximum value of the output vector:

k∗ = arg maxk ŷ. (2.18)

2.2.2 Recurrent Neural Networks (RNNs)

In the previous section, the description of MLP utilizes isolated elements as input

samples. However, sequence learning is also possible. One solution is to use a window

with a fixed size that moves over the input sequence. As a result, the network receives

the elements inside of the window. This approach requires finding the size of the window

that obtains the best performance. The problem of the window size is handled with a

different architecture.
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ŷt

ht−1

xt

FIGURE 2.4. Example of a Vanilla Recurrent Neural Network. The main feature
is a self-loop connection (ht−1) that encodes or summarizes information of
previous states.

ŷt−1 ŷt ŷt+1

xt−1 xt xt+1

ht−1 ht. . . . . .

FIGURE 2.5. The flow of information of an RNN is more natural to see if the
connections are unfolded over time. For example, the input xt exploits the
encoded information of ht−1 for predicting ŷt.

RNNs have been proposed for learning sequences. The main difference between

MLPs and RNNs is a self-loop or feedback connection that considers previous states.

Figure 2.4 shows an example of an RNN. The recurrent connection has two effects:

learning sequences with dynamic sizes and generalization of all input samples.

Similar to MLPs, RNNs have forward and backward steps. The forward step feeds

each element of the sequence to the network. Usually, the representation of input vector
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is xt where t ∈ [1, . . . ,T]. The time t represents the length of the sequence (between 1 and

T), which is not always related to the time domain. The backward step feeds the error

back to the network from the last element T and iterative runs to the first element.

Moreover, a vanilla RNN is defined by the following equations:

ht = tanh
(
Wxh ·xt +Uhh ·ht−1 +bh

)
, (2.19)

ŷt = softmax
(
Why ·ht +by

)
, (2.20)

softmax(v)= v∑N
i vi

, (2.21)

where the weight matrices Wxh ∈ Rn,h and Why ∈ Rh,k are similar to the weight matrices

of an MLP. The feedback or recurrent connection is defined by the matrix Uhh. Figure 2.5

shows the information flow between connections in the forward step if RNN is unfolded

over time. Note that the initial state of the recurrent connection is h0 = 0. Also, the

output vector in the last position ŷT encodes a summary of the sequence. In this case, the

training step uses another loss function, called cross-entropy because the output layer

has a softmax function:

J t
cross−entropy =−

N∑
i=1

T∑
t=1

yt log ŷt, (2.22)

Werbos [60] proposed an algorithm called Backpropagation Through Time (BPTT) for

training RNN. First, the gradient of each parameter is calculated using the chain rule.

One difference in comparison to MLP is that the gradients update the RNN parameters

for each time step t. Note that the backpropagation is iteratively calculated from the last

element to the first element. In summary, the gradients for each parameter are:

∂J t

∂Why
= ∂J t

∂ŷ
⊗ht, (2.23)

∂J t

∂by
= ∂J t

∂ŷ
, (2.24)

∂J t

∂ht
= (

1− tanh(ht)2) ·(Why ·
∂J t

∂ŷ
+ ∂J t+1

∂ht+1

)
, (2.25)

∂J t

∂bh
= ∂J t

∂ht
, (2.26)

∂J t

∂Wxh
= ∂J t

∂ht
⊗xt, (2.27)

∂J t

∂Uhh
= ∂J t

∂ht
⊗ht−1. (2.28)
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Second, all gradients are summed up and applied gradient descent method for updating

the parameters. For example, the matrix Why that represents a parameter of an RNN is

updated by the following equations:

∂J
∂Why

=
T∑

t=1

∂J t

∂Why
, (2.29)

Why =Why −α
∂J
∂Why

. (2.30)

So far, vanilla RNNs have used only the information of the previous timestep t. Under

some circumstances, the model can also exploit information from future timesteps (both

timesteps t−1 and t+1). Consequently, one model can combine two RNNs that employs

both contexts. A forward RNN runs over the sequence from 1 to T, and a backward
RNN runs over from T to 1. This architecture is called Bidirectional RNN [61], which is

formulated as follows:

ŷ f
t =RNN f

(
xt,θ f

)
, t ∈ [1, . . . ,T], (2.31)

ŷb
t =RNNb

(
xt,θb

)
, t ∈ [T, . . . ,1], (2.32)

ŷt = combination
(
ŷ f

t , ŷb
t

)
, (2.33)

where the function combination represents the unification between ŷ f
t and ŷb

t , such as

concatenate both vectors, element-wise addition or multiplication operation. Therefore,

the model learns to predict based on all elements in the sequence (e.g., global context).

Figure 2.6 shows an example of a bidirectional RNN unfolded over time.

2.2.3 Long Short-Term Memory (LSTM) Networks

Considering an RNN unfolding over time, each timestep can be interpreted as one layer

in MLPs. Each layer has a multiplicative effect in the backward step. Therefore, the

more number of layers can produce gradient values to be extreme small or big. On the

one hand, values closed to zero can produce small changes in the network parameters.

On the other hand, large values can present mathematical overflow on the computers.

Hence, RNNs have limitations for long sequences because the gradient might be close to

zero. This effect is called it the vanishing gradient problem [62].

One solution is controlling the information that goes inside and outside of the network.

With this in mind, Long Short-Term Memory (LSTM) has been proposed [63, 64], where

several gates manage the flow of information. In contrast with RNNs, an LSTM has a

25



CHAPTER 2. BACKGROUND

ŷt−1 ŷt ŷt+1

xt−1 xt xt+1

. . .

. . .

FIGURE 2.6. Bidirectional RNNs merge a forward RNN and a backward RNN
in order to exploit information of all sequence. Thus, the input xt exploits
both directions (ht−1,ht+1) for predicting ŷt.

cell ct that stores the state of the network and a self-loop connection that is controlled by

the forget gate ft. Besides, two more gates (input it and output ot gates) are included

to control the inflow and outflow information in the LSTM cell. Both gates control how

much information enters the cell and passes to the next time step. Figure 2.7 shows an

LSTM cell with all its internal connections.

The forward step of LSTM is a set of equations that has three phases. First, the input

and the forget gates receive the input sample xt and the previous hidden state ht−1.

it =σ
(
Wi ·xt +Ui ·ht−1 +bi

)
, (2.34)

ft =σ
(
W f ·xt +U f ·ht−1 +b f

)
. (2.35)

Second, the update of the cell state depends on two factors. The first factor is how much

information from the input makes is through the input gate. The second factor is how

much knowledge is reset from the previous state of the cell by the forget gate.

C̃= tanh
(
Wc ·xt +Uc ·ht−1 +bC

)
, (2.36)

ct = ft ·Ct−1 + it · C̃. (2.37)

Finally, the output gate and the current state of the cell produce the output vector of an

LSTM at timestep t:

ot =σ
(
Wo ·xt +Uo ·ht−1 +bo

)
, (2.38)

ht = ot · tanh(ct). (2.39)
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ct

Cell

× ht×

×

f t Forget Gate

i tInput Gate otOutput Gate

C̃xt

xt xt

xt

FIGURE 2.7. Example of the connections of LSTM. It can be observed
how the gates (input i t, forget f t, and output ot) control the flow of
information. Note that each gate is a learnable component that ex-
ploits sub-patterns of the sequence. Image generated based on the
Tikz source code https://tex.stackexchange.com/questions/332747/
how-to-draw-a-diagram-of-long-short-term-memory. Additionally,
the image is taken from [65].

The backward step is similar to vanilla RNNs. Note that gradients are propagated from

the output gate to the cell state and from the cell state to the other gates (input and

forget gates). The following equations summarize the backward step of one LSTM cell:

∂J t

∂ot
= ∂J t

∂ht
· tanh(ct) ·ot · (1−ot), (2.40)

∂J t

∂ct
= ∂J t

∂ht
· ot ·

(
1− tanh(ct)2)+ ∂J t+1

∂ct+1
· ft+1, (2.41)

∂J t

∂it
= ∂J t

∂ct
· it ·

(
1− it

) · C̃, (2.42)

∂J t

∂ft
= ∂J t

∂ct
·ct−1 · ft · (1− ft), (2.43)

∂J t

∂C̃
= ∂J t

∂ct
· it ·

(
1− tanh(C̃)2). (2.44)

In this case, the update step of LSTM parameters is similar to RNN parameters. For
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Text line of digits

3 8 3 2 1
Target Sequence

Alignment

FIGURE 2.8. Example of a weakly labeled sequence. The length of the text line
is longer than the length of the target sequence. In this case, the effort
annotating this input sequence is less than annotating each column of the
sequence. Input images are taken from MNIST dataset [55].

example, the input gate (Wi and Ui) are updated with the following equations:

∂J
∂Wi

=
T∑

t=1

∂J t

∂it
⊗xt, (2.45)

∂J
∂Ui

=
T∑

t=1

∂J t

∂it
⊗ht−1, (2.46)

2.2.4 Connectionist Temporal Classification (CTC)

Annotating each input sample xt with its respective target yt is a time-consuming task.

To simplify the annotation effort, Graves et al. [66] proposed a new output layer called

Connectionist Temporal Classification (CTC) that aligns LSTM outputs to labels. For

explanations purposes, CTC is explained using OCR task as test case. However, CTC can

be applied to more scenarios, such as Speech Recognition. OCR task predicts texts (string)

given scanned text lines (images). A text line that can be represented by x1, . . . ,xT is

only annotated with a set of ordered categories c1, . . . , cd where d < T. Hence, the targets

y1, . . . ,yT are not required as a part of the annotated dataset. This section describes the

CTC training. Please refer to the original work for more information [66].

Initially, the sequence labeling task has not only K categories as before but also a

new category called blank or non-label (b|). The motivation for the new category is to

constrain the learning algorithm on two transitions: label-to-label and non-label-to-label.
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The probability of sequence label is given by

p(l|x)=
∑

π∈B−1(l)
p(π|x), (2.47)

p(π|x)=
T∏

t=1
ŷt, (2.48)

where π is a set of possible paths that can lead to the sequence label l. One significant

component is the function B : K
′T → K≤T , where K

′T are a sequence with length T,

whereas, K≤T are a sequence shorter or equal than T. In this case, a many-to-one

function B eliminates any repeated element or non-label. For example, the following

sequences a--bb--cc-a, --a-bc--aa can produce the target sequence label abca. The

combination of different paths of the same labeling provides enough information for

avoiding the requirement of knowing exactly the position of the error sequence.

Afterwards, the target sequence is prepared for the training algorithm. The blank

category is added to the original sequence label: between each pair of labels, at the

beginning and at the end of the sequence. For instance, the sequence "1 2 3" is converted to

"b|1b|2b|3b|". Equation (2.47) can be solved similarly to Hidden Markov Model (HMM) [67],

which is trained with a dynamic programming approach for propagating the forward and

backward probabilities of the sequence. Finally, a decoding step is applied for labeling

the input sequence based on the LSTM output vectors. One standard approach is to

retrieve the maximum element per timestep. Later, the repeated categories between

the blank class are removed from the target sequence. Also, the blank class is removed.

Figure 2.9 shows an example of sequence classification based on decoding step.

In summary, CTC training extends the pipeline of LSTM that was described in this

section. The new module is presented between the forward and backward step. The

goal is to obtain target vectors for each time step, which are not provided as part of the

annotated dataset. The new pipeline with CTC training is described as follows

1. The input sequence xt is fed to LSTM

2. The forward-backward algorithm CTCt explained in this section is applied given

the current output probabilities ŷt

3. The error is calculated between the output ŷt and CTCt

4. LSTM parameters are updated given the error

29



CHAPTER 2. BACKGROUND

0 50 100 150 200

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

000222000009999......111000

2 9 7 1

Input Sequence

LSTM Output

Output classification
before decoding

Output classification
after decoding

FIGURE 2.9. Example of the LSTM classification based on CTC training. The
blank class is represented by the index zero. The decoding step converts
the output vectors to sequence of categories. Input images are taken from
MNIST dataset [55].

2.3 Summary

This chapter describes a definition of ML in terms of three components: Task, Experience,

and Metric. Additionally, two different architectures of NNs have been described. The first

architecture is an MLP, which can be defined by function compositions. This architecture

has been successfully applied to object and text classification. The other architecture

is LSTM, which is a RNN with gates. This architecture has been applied to sequence

learning, such as speech recognition.

The next chapter presents a new framework for the association task that is inspired

by SGP and infant learning. The motivation of using NNs is based on the discriminant

information embedded in the weight between neurons. Therefore, the output layer can

be interpreted as numerical symbolic feature. Additionally, the combination of several

modalities can be also handled based on embedding in NNs.

30



C
H

A
P

T
E

R

3
ASSOCIATION LEARNING FRAMEWORK

This chapter presents a new association model that learns the link between two

input samples of the same category. Two scenarios are considered in this work.

The first scenario is constrained to pairs of elements that represent the same

category. The second scenario is extended to pairs of sequences. Each sequence represents

the same series of categories. Note that the input representations can be mono- and

multi-modal.

The models explain in this chapter appeared in ICANN2016 [68], ICDAR2015 [69],

and CoCo2016 [70]. Section 3.1 describes the association learning in terms of a machine

learning task. Furthermore, association learning is defined by learning that two elements

represent the same category. Section 3.2 explains a main framework for association

learning with two parallel NNs. Section 3.3 presents one version of the association

framework based on two parallel MLPs. This model learns the association in the case

that two input samples represent the same semantic concept. Section 3.4 explains

another version of association framework based on two parallel LSTMs. This model type

can learn the association between two weakly labeled sequences.

3.1 Problem Definition

The previous chapter formally described the supervised classification task, in which

the objective is to find a mapping function between input samples and their respective
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category. The association task of two input samples can be expressed similar to the

supervised scenario presented in Chapter 2:

ŷ= f ∗
(
x(1),x(2);θ

)
, (3.1)

where the goal is to classify two input samples x(1) and x(2) with the same category ŷ.

The input type of both samples is not necessarily the same. For example, the association

learning can be between images and their textual descriptions.

This section introduces a novel constraint inspired by SGP, which proposes to learn

the association without predefined scheme before training. With this in mind, two defini-
tions are explained for understanding the new constraint in the association scenario.

Semantic Concepts (SeC) are the possible categories into which input samples can

be classified, e.g., cat, dog, airplane. This is represented by the set of categories

K = {1, . . . ,k}.

Vectorial Representations (VR) are the raw numerical output vectors that neural

networks internally represent semantic concepts, which is usually based on a

one-hot scheme (c.f. Section 2.1). This is represented by the set of unit vectors

V R = {e1, . . . ,ek}.

This chapter uses the term traditional approach to refer to the relationship between

semantic concepts and vectorial representations before training. This thesis proposes

a new condition that learns the assignment between semantic concepts and vectorial

representations during training. The presented constraint is supported by two factors.

The first factor is the output vectors of NNs, which can be considered as numerical
symbolic features without predefined categorical information, i.e. do not directly refer to

categories. The second factor consists on learning an agreement or matching between two

different input samples and their respective concept simultaneously. This phenomenon

resembles the way infants learn new concepts (c.f. Section 1.2). Note that the constraint

add a new dimension for learning.

More formally, the relation between the two new definitions can be expressed as a

matrix E ∈ Rk x k where each row and each column represent a semantic concept and a
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Vectorial Representation

Airplane

Semantic concept

ŷT
1 = [0.2,0.7,0.2,0.3]

ŷT
2 = [0.1,0.1,0.5,0.6]

ŷT
3 = [0.9,0.3,0.1,0.8]

ŷT
4 = [0.6,0.3,0.4,0.6]

FIGURE 3.1. Example of semantic concepts and vectorial representations. Usu-
ally, the traditional approach requires to define the representation of the
category airplane based on the vectorial representations ŷ1, ŷ2, ŷ3, and ŷ4.
The selection between one of the four options is made before training model.

vectorial representation, respectively. For example, that relationship in a scenario of four

categories (k = 4) can be defined by one of the following two matrices1 E(1) and E(2):

E(1) =

e1 e2 e3 e4

 or E(2) =

e3 e4 e1 e2

 , (3.2)

The decision of choosing E(1) over E(2) or vice versa occurs externally to the model

before training. A person decides each representation for each category. This work

proposes that the training algorithm includes the relation represented by E as a learning

parameter. Therefore, Equation (2.2) is updated as follows:

ŷ= f ∗(x;θ, g(K ,E)), (3.3)

where g(K ,E) is a learnable parameter of the relation between the set of potential

categories k and the set of possible unit vectors e.
1Note that there are k! possible combinations of matrix E for this example
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With this in mind, the association learning can be expressed as follows. Given two

sets of input elements X(1) and X(2) and a set semantic concepts K where an element

in X(1) is linked to one element in X(2) with the same semantic concept. The goal of the

association learning is

f 1(X(1);θ(1), g(1)(K ,E(1)))= f 2(X(2);θ(2), g(2)(K ,E(2))), (3.4)

E(1) ≡ E(2). (3.5)

This constraint requires that the model self-learns the matching to the same k for

each (x(1), x(2)) pair during training. Similar behavior occurs in infants while they are

learning this kind of agreement between categories and sensory information. Infants

are learning the agreement between modalities where the same semantic concept may

have several formats, e.g. visual and audio. In this case, agreement is referred to that

children can classify with the same category information collected by different sensory

input signals.

3.2 General Framework for Symbolic Association
Learning

Association learning requires two input sets with the same semantic concepts. The

proposed model has two parallel NNs, in which each NN learns to classify one input.

This architecture is flexible regarding sample formats, which are not required to be the

same.

Siamese Networks proposed by Chopra et al. [71] uses two parallel NNs but for

applies face verification. The task is defined by two face samples, which may correspond

to the same or different person (binary classification). One requirement of their model

is to have two labels for each pair of faces: same and difference. Instead, the presented

model here can learn multiple categories and match different types of input pairs, such

as (image, text) or (image, audio). Hence, the motivation behind it is to be more flexible

by learning the function f independently. Both models are associated to update the

model parameters (θ(1),θ(2),E(1), and E(2))

The training algorithm follows an Expectation-Maximization (EM) approach [72],
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Association Framework

X(1) NN(1)

Semantic
Concepts
1, . . . ,k

Association
Learning

X(2) NN(2)

FIGURE 3.2. Overview of the association learning framework. Two parallel
NNs learn the agreement between two input samples. In other words, the
prediction of both input samples must be the same.

which consists of two steps. The first step (called Expectation-step) predicts the output of

the model given the current parameters. Then, the second step (called Maximization-step)

updates the parameters giving the current output of the model. These two steps are

iteratively applied between each other.

Concretely, the E-step propagates each input sample through the respective NN. The

association learning module uses the raw output vector to extract matrices E(1) and E(2).

Afterwards, the M-step propagates the error from NN(1) back to NN(2), and vice versa.

This error propagation approach leads to both networks agreeing on the same semantic

concept. Figure 3.2 shows the general association learning framework. In this work,

two scenarios have been considered: two input samples associated with 1) one semantic

concept and 2) multiple semantic concepts.

3.3 Symbolic MLP-based Approach

In this section, the general association framework is implemented using two parallel

MLPs. The goal is to associate two samples that represent the same semantic concept,

which each sample pair corresponds to only one category.

The presented approach describes a solution for association of isolated elements, i.e.
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an image represents only a digit. Formally, the input set can be defined as

X=X(1) ∪X(2) ∪K
′
, (3.6)

K
′ = K −E, (3.7)

where X(1) and X(2) are two disjoint sets that represent the same semantic concepts K
without their vectorial representation E. The approach has two parallel MLPs that are

defined by

ŷ(1) = MLP (1)
(
x(1),θ(1)

)
, (3.8)

ŷ(2) = MLP (2)
(
x(2),θ(2)

)
. (3.9)

The training procedure follows the EM-algorithm. The key elements of this procedure is to

learn the association between SeC and VR based on two weighting vectors γ(1)
j ,γ(2)

j ∈ Rk

where j = 1, . . . ,k. The intuition behind the weighting vectors is to attach semantic

concepts to the raw output vector. Also, their role is to modify the output distribution of

the output vectors. Figure 3.3 shows an example of the weighting vector in one dimension.

Consider an output vector with values similar to the original state (top histogram). In

that case, the maximum element is at position three. However, the weighting vectors

γ1 and γ2 can modify the distribution. For instance, Option 1 shows that the maximum

element is at position one. In contrast, the maximum value is at position four in the

Option 2. In summary, the weighting vectors have the role of changing the distribution

between all semantic concepts with the constraint that each semantic concept has a

different representation.

The E-step predicts vectorial representation for each semantic concept k. First, the

network receives a mini-batch of m input samples.

z(1)
j = 1

m

m∑
i=1

power
(
ŷ(1)

i ,γ(1)
j

)
where j = 1, . . . ,k, (3.10)

z(2)
j = 1

m

m∑
i=1

power
(
ŷ(2)

i ,γ(2)
j

)
where j = 1, . . . ,k. (3.11)

Afterwards, the training algorithm assembles the matrices Z(1) and Z(2) by concatenating

all vectors z j where j=1,. . .,k. The goal of this process is to match the relationship between

semantic concepts and vectorial representations. The matrices (Z(∗)) are transformed to

an assembly of one-hot vectors (E(∗)). One way to find this relationship is to take indices

of the maximum value and then setting to zero the row and column of that position
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FIGURE 3.3. Example of the weighting vector role. Note that the maximum
element of the original state is three. However, the weighting vectors can
modify this arrangement. In this example, Option 1 and 2 show different
distributions where the maximum values change.

(implemented by max_operation function). This process is repeated k times. Figure 3.4

shows an example of this transformation when the number of categories k is equal to

four. Note that the matrix E has k! possible combinations.

Z(1) =

z(1)
1 z(1)

2 . . . z(1)
k−1 z(1)

k

 , (3.12)

Z(2) =

z(2)
1 z(2)

2 . . . z(2)
k−1 z(2)

k

 , (3.13)

E(1) =max_operation
(
Z(1)

)
, (3.14)

E(2) =max_operation
(
Z(2)

)
. (3.15)
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Z(1) =


0.3 0.7 0.8 0.1
0.4 0.2 0.9 0.4
0.2 0.9 0.3 0.3
0.7 0.7 0.2 0.2

 E(1) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


FIGURE 3.4. Example of the elimination process. Each column of Z(1) is a

vector that summarizes all input samples of category k. Afterwards, a max
operation applied to the matrix four times to obtain a simplified version
that is represented by E(1). The current relation between semantic concepts
(columns) and vectorial representation (rows) is shown in the following
relation (K,E)={(1,4),(2,3),(3,2),(4,1)}.

The M-step has two purposes. One is to update the network parameters (θ(1) and θ(2)).

The other purpose is to update the weighting vectors (γ(1) and γ(2)) with gradient descent.

Besides, the network parameters are updated as the standard backpropagation algorithm

seen in Chapter 2. The main difference compared to the standard backpropagation

algorithm is the error calculation. The loss function of MLP (1) is MSE between output

vector ŷ(1) and the unit vector e(2), which are obtained after the E-step. Note that e(2) is

the vectorial representation of semantic concept k in MLP (2), which might be or might

not be the same in MLP (1) in the first iterations of the training step. Furthermore, the

training step force both networks to learn the agreement based on this coupling, i.e. e(1)

are e(2) the same. The loss function for each MLP is defined as follows:

J(1)
MLP = 1

N

N∑
i=1

(
ŷ(1)

i −e(2)
k

)2, (3.16)

J(2)
MLP = 1

N

N∑
i=1

(
ŷ(2)

i −e(1)
k

)2, (3.17)

where e(∗)
k is the vectorial representation of the desired semantic concept of the element

x(∗)
i . In contrast, the loss function of the weighting concepts uses a statistical distribution

φ as a target. For example, the loss function can be computed with respect to a uniform

distribution. Therefore, φ can be expressed a uniform distribution per semantic concept
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based on the vectorial representations. The loss function is defined as follows

J(1)
γ j

=
(
z(1)

j − 1
k

e(1)
j

)2
, (3.18)

γ(1)
j = γ(1)

j −α∗
∂J(1)

γ j

∂γ(1)
j

, (3.19)

J(2)
γ j

=
(
z(2)

j − 1
k

e(2)
j

)2
, (3.20)

γ(2)
j = γ(2)

j −α∗
∂J(2)

γ j

∂γ(2)
j

. (3.21)

The prediction step is similar to the one introduced in Chapter 2, but is combined

with the weighing vectors for mapping from the vectorial representation to the abstract

concept. As a reminder, note that the output vectors of this model do not have categorical

information. The main steps are as follows. First, the maximum element of the vectorial

representation is retrieved (Equations (3.22) and (3.24)). Second, the semantic concept

is retrieved based on the vectorial representation and the weighing vectors for each

semantic concepts (Equations (3.23) and (3.25)).

vr(1) = arg maxvr ŷ(1), (3.22)

k(1)∗ = arg maxk power
(
ŷ(1)

vr(1) ,γ
(1)
j,k(1)

)
, (3.23)

vr(2) = arg maxvr ŷ(2), (3.24)

k(2)∗ = arg maxk power
(
ŷ(2)

vr(2) ,γ
(2)
j,k(2)

)
. (3.25)

Figure 3.5 shows a general overview of the association framework with two parallel

MLPs. Several components has the MLP-based approach. The first component is the

cross-learning between both networks, which force the agreement. This cross-learning

is implemented using the vectorial representation of MLP (1) as targets of MLP (2), and

vice versa. The second component is to use a statistical distribution for learning the

relationship between semantic concepts and vectorial representations. The weighting
vectors modify the distribution of the output vectors for both learning the relationship

and predicting semantic concepts. The next section extends the model to input samples

with multiple categories.

39



CHAPTER 3. ASSOCIATION LEARNING FRAMEWORK

x(1)
1 , . . . ,x(1)

m MLP (1) ŷ(1)
1 , . . . , ŷ(1)

m γ(1)
1 , . . . ,γ(1)

k E(1)

J(1)
MLP

c1, . . . , cm

J(2)
MLP

x(2)
1 , . . . ,x(2)

m MLP (2) ŷ(2)
1 , . . . , ŷ(2)

m γ(2)
1 , . . . ,γ(2)

k E(2)

FIGURE 3.5. General overview of the MLP-based approach. The E-step (solid
line) passes the input samples through each MLP, and obtains each matrix
E. The M-step (dashed line) propagates the error back to each network.
Note that the matrix E(1) is used for updating MLP (2), and E(2) is used for
updating MLP (1).

3.4 Symbolic LSTM-based Approach

The previous section has defined a model that can learn the association between two

MLPs where the training algorithm includes the relation between semantic concepts and

vectorial representations as a new learning component. One step further is proposed in

this section, in which the association model learns the relationship in a scenario similar

to reading text lines aloud. This test case can be similar to infants gathering samples

of maternal speech, when parents want to teach new words via reading aloud story

books [24].

One way to represent this scenario might be to convert each word and element into

input vectors x(1) and x(2) (respectively). This situation can occur if the training algorithm

does not require segmenting input samples beforehand. Moreover, the segmentation

process means annotating the position of each word in the input sequence. Sometimes,

the words are represented by more than one vector. Another option is to use text lines

with their respective audio. This work uses the latter scenario because it has several

benefits, which have already mentioned in Section 2.2.4, especially regarding a less

annotated dataset.
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More formally, sequences X(1) =
{
x(1)

1 , . . . ,x(1)
t1

}
and X(2) =

{
x(2)

1 , . . . ,x(2)
t2

}
represent the

same ordered set of semantic concepts SeC = {c1, . . . , cs}. Like the previous approach with

MLPs, the two parallel NNs learn to share their latent space using an EM-approach.

The main network architecture is LSTMs since this architecture is a standard approach

for sequence learning.

Initially, there are two LSTM networks for each sequence that represent the same

chain of semantic concepts.

ŷ(1)
j =LSTM(1)(x(1)

j ,θ(1)) j = 1, . . . , t1, (3.26)

ŷ(2)
j =LSTM(2)(x(2)

j ,θ(2)) j = 1, . . . , t2, (3.27)

where t1 and t2 are the lengths of each sequence. The LSTM-based approach is trained

online (or the mini-batch size is one) for each sequence, whereas the MLP approach

learns based on mini-batches.

In general, this version of the association framework follows a similar EM-approach

for training. The main difference is the application to sequences instead of pairs of

samples with one semantic concept. The E-Step predicts the relationship between se-

mantic concepts and vectorial representation and the output sequences. Equations (3.10)

and (3.11) are updated for manipulating input sequences as follows:

z(1)
j = 1

t1

t1∑
t=1

power
(
ŷ(1)

t ,γ(1)
j

)
, (3.28)

z(2)
j = 1

t2

t2∑
t=1

power
(
ŷ(2)

t ,γ(2)
j

)
j = 1 . . . ,k. (3.29)

In this case, the training algorithm summarizes the sequence information to find the

mapping g : Z→E. Similar to previous approach with MLP, each vector ẑ(1)
j ( j = 1, . . . ,k) is

concatenated to obtain the matrix Z(1) (the same procedure is applied to ẑ(2)
j ). After finding

the vectorial representation, the CTC step (c.f. Section 2.2.4) produces the alignment of

each LSTM with the current output sequences Ŷ(1) and Ŷ(2). Note that the approach using

MLPs learns the agreement between two input vectors. In contrast, the agreement here

is represented by two set of vectors of different lengths. One way to use the information

of one sequence as the target of the other is to align them over the time domain. A

standard alignment approach is calculated the Euclidean distance between each pair of

vectors and selecting the pairs with minimum distance. Berndt and Clifford [74] proposed

another alignment method that reaches better performance, which is called Dynamic
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Euclidean Alignment

DTW Alignment

FIGURE 3.6. Example of Euclidean and DTW alignments. Euclidean alignment
focuses only on local context because of the minimum distance of each pair.
In contrast, DTW alignment exploits the global context of both signals
in terms of common sub-paths instead of independent points. Images are
retrieved from [73].
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Algorithm 1 Pseudocode of the Alignment between two sequences based on DTW.

Require: Two sequences a(1) = {a(1)
1 , . . . ,a(1)

t1 }, a(2) = {a(2)
1 , . . . ,a(2)

t2 }

{Initialize matrix DTW}
for i=1 TO t1 do

DTW[i,0]← inf inity
end for

for i=1 TO t2 do
DTW[0, i]← inf inity

end for

for i=1 TO t1 do
for j=1 TO t2 do

d ← Euclidean_distance
(
a(1)

i ,a(2)
j

)
DTW[i, j]← d+minimum


DTW[i−1, j−1]
DTW[i−1, j]
DTW[i, j−1]

end for
end for

Time Warping (DTW). Their method combines two signals that minimizes the cost of all

pair elements. Figure 3.6 shows the difference between Euclidean and DTW alignment.

Dynamic programming solves the DTW alignment problem. Algorithm 1 describes

the general algorithm for aligning two signals. This approach performs the DTW align-

ment twice: one from LSTM(1) to LSTM(2) and the other from LSTM(2) to LSTM(1).

Therefore, cost matrices for both DTW (1→2) and DTW (2→1) are calculated for sequence

alignment, i.e., from sequence 1 to sequence 2. These matrices are defined by the following

relationship:
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DTW (1→2) = dist
(
CTC(1)

i ,CTC(2)
j

)
+min


DTW (1→2)[i−1, j−1],

DTW (1→2)[i−1, j],

DTW (1→2)[i, j−1],

(3.30)

DTW (2→1) = dist
(
CTC(1)

i ,CTC(2)
j

)
+min


DTW (2→1)[i−1, j−1],

DTW (2→1)[i−1, j],

DTW (2→1)[i, j−1].

(3.31)

where DTW (1→2) ∈ R t1,t2 is the cost matrix obtained after applying Algorithm 1,

dist[i, j] is the Euclidian distance between ˆCTC(1)
i and ˆCTC(2)

j where i ∈ t1 and j ∈ t2.

Then, a path mapping p(1) : ŷ(1)
i → ŷ(2)

j where i = 1, . . . , t1 and j = 1, . . . , t2 links each vector

ŷ(1) to one vector ŷ(2). In other words, each vector ŷ(1) is linked to one vector ŷ(2).

The M-step updates the LSTM parameters θ(1) and θ(2) and the weighting vectors
γ(1) and γ(2). The weighting vectors are updated similarly to Equations (3.18) and (3.19).

To train both LSTM networks, one LSTM network learns their parameters using the

output of the other LSTM network as a target. Each LSTM employs this step. This

cross-training is plausible because of the alignment path obtained by DTW. As a result,

the loss function of each LSTM is

J(1)
LSTM = ŷ(1)

j1
−CTC(2)

j1
j1 = 1, . . . , t1, (3.32)

J(2)
LSTM = ŷ(2)

j2
−CTC(1)

j2
j2 = 1, . . . , t2. (3.33)

Retrieving semantic concepts from output sequences follow the same approach de-

scribed in the previous section. Note that Equations (3.22) to (3.25) are applied to each

timestep.

3.5 Summary

This chapter describes the association problem in the context of SGP and infant learning.

The motivation behind this approach is that infants have a limited knowledge about

their environment. Therefore, the association between different sensory input signals of

the same category is not predefined. Additionally, the agreement of the same abstract

concept between several sensory input signals is slowly learned by infants.
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x(1)
1 , . . . ,x(1)

t1 LSTM(1) ŷ(1)
1 , . . . , ŷ(1)

t1 E(1) CTC(1)
1 , . . . ,CTC(1)

t1

J(1)
LSTM

c1, . . . , cn DTW (1→2) DTW (2→1)

J(2)
LSTM

x(2)
1 , . . . ,x(2)

t2 LSTM(2) ŷ(2)
1 , . . . , ŷ(2)

t2 E(2) CTC(2)
1 , . . . ,CTC(2)

t2

FIGURE 3.7. General overview of the Association Learning based on LSTM.
Similar to the MLP version, the training process follows an EM approach.
The E-step (solid line) passes each input sequence to their respectively
LSTM network. Also, the relation between semantic concepts and vectorial
representations are obtained. The M-step (dashed lines) updates the LSTM
parameters based on the alignment latent space. In this case, LSTM(1) is
trained based on the latent space generated by LSTM(2).

The presented association framework learns to match two different input samples

that represents the same category. Two scenarios are considered: sample pairs of one

category and multiple categories. The first scenario case matches two independent

elements of the same abstract concept. The proposed solution uses two parallel MLPs.

The second scenario matches two sequences that are weakly annotated. The proposed

solution is based on two parallel LSTMs. Chapters 4 and 5 show the evaluation of these

methods. Each chapter explains the results in mono- and multi-modal scenarios.
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ASSOCIATION LEARNING FOR INPUT PAIRS

This chapter describes the results of the following test case: a semantic concept

is represented by two samples. The evaluation covers two conditions related to

the input format. The first scenario is mono-modal, in which two visual samples

are fed to model that learn the symbolic association. The second scenario is multi-

modal, in which one input sample comes from the image domain, and the other sample

comes from the text domain. The association model is compared to MLPs that are

trained on each input element independently. The goal is to measure the capacity of

the association model regarding traditional approach where only one input is used for

classification. Experiments show that the performance of the association is lower than

MLPs. This performance is expected because of a new learning condition where the

relationship between semantic concepts and vectorial representation is included as part

of the learning process.

The results presented in this chapter appeared in ICANN 2016 [68]. This chapter is

organized as follows. Section 4.1 explains the association between isolated sample pairs

in terms of machine learning components. Section 4.2 describes four datasets, where two

of them are mono-modal, and the others are multi-modal. Section 4.3 describes the input

features and the network parameters that are used in this section. Section 4.4 presents

the results of the association learning framework regarding Association Accuracy and

Accuracy.
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4.1 Problem Definition
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FIGURE 4.1. Difference between the traditional approach and this work concern-
ing learning elements. The traditional approach represents the association
by fixing the vectorial representations for each semantic concept in both
networks. This setup does not consider that infants learn the association
while two elements are presented at the same time. This work adds a
new dimension inspired by infant association. In this case, the vectorial
representation is self-learned by both networks.

The first challenge of the association model is to match two representations of the

same semantic concept. This scenario can occur if two elements appear at the same time

in the infant learning scenario. As a reminder, machine learning tasks can be divided into

several components: semantic concepts, vectorial representations, classifiers, and sensory

input samples. In the traditional approach, each semantic concept is represented by a

vectorial representation, and each network uses the same representation. Each network

learns to classify input samples given the pre-defined vectorial representation. Thus, the

learning parameters are only related to the classifier model. In contrast, the presented

model does not require any pre-defined decision about the vectorial representation, and

the training algorithm includes the agreement between the vectorial representation

as a learning parameter. Hence, the learning parameters are not only related to the
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classifiers, but also to the vectorial representation. Figure 4.1 shows an example setup of

the difference between the traditional approach and this work.

4.2 Datasets

The evaluation process relies on four datasets. The first two datasets are mono-modal

(only images), and the other datasets are multi-modal (images and texts). The descrip-

tions of each dataset are below

MNIST is a dataset for digit recognition [75]. The digits are represented by 28x28 gray-

scale images. This dataset is divided into 60,000 and 10,000 samples for training

and testing sets (respectively). Besides, MNIST is modified for association learning

in the following procedure. First, two disjoint sets are generated from MNIST.

Then, both sets are re-arranged in a way that two samples from each set represent

the same semantic concept.

COIL-20 is a dataset for object classification [76]. The dataset has 20 objects, and

each object is represented by 72 gray-scale images. Each image has been taken at

five degrees apart. This dataset does not have a pre-defined training and testing

datasets. Thus, all images taken at even angles are considered part of the training

set, and the rest of images are considered part of the testing dataset. A similar

approach to MNIST is followed for modifying this dataset for the association task.

TVGraz is a multi-modal dataset with ten categories [77]. The dataset was collected

by crawling RGB images and their respective web pages. Initially, ten categories

from Caltech-256 [78] are used as a query for retrieving the top 1,000 results from

Google Image Search. Each image is manually labeled with the following rule: if

the image sample has at least a single visible instance of the category, it is labeled

as positive sample of the category, otherwise it is labeled as a negative sample of

the category. In this work, only positive samples are used. The training and testing

set are randomly selected.

Wikipedia featured Articles is another multi-modal dataset collected in October 2009

from the featured Articles offered in Wikipedia [79]. The authors collected the ten

most populated categories. Each article is composed of several text sections and

RGB images. Thus, a pruning process was required for managing the data in a
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more structured manner. At the end of the pruning step, the dataset is based on

sections with images and the length of texts is at least 70 words. The size of the

dataset is 2,866 samples. The training and testing sets are also randomly selected.

X(1) X(2) X(1) X(2)

X(1) X(2) X(1) X(2)

MNIST COIL-20

TVGRAZ WIKIPEDIA

Semantic Concept:
Eight

Semantic Concept:
Duck

Semantic Concept:
Butterfly

Semantic Concept:
Geography

FIGURE 4.2. Examples of four datasets that are used for evaluation. The top
datasets are mono-modal, and the bottom datasets are multi-modal.

As mentioned, the mono-modal datasets do not have the structure for the association

task. The following procedure modifies both datasets. First, the dataset is divided into

two disjoint sets X(1) and X(2). Second, two elements of the same semantic concept from

different sets are linked to each other. The multi-modal datasets are not required to

be modified since images and texts have already an established association. Figure 4.2

shows several examples of each dataset. The multi-modal dataset is more challenging

because both input domains are different between them.

The evaluation of the model is based on cross-validation. Each dataset is randomly

sampled for generating training and testing sets. This process is repeated ten times.

Table 4.1 summarizes the sizes of the training and testing set for each dataset.
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TABLE 4.1. Description of each dataset. Note that each input sample is actually
a pair of elements.

Dataset Concept Training Size Testing Size

MNIST 10 25000 4000
COIL-20 20 360 360
TVGraz 10 1942 652
Wikipedia 10 2146 720

4.3 Features and Network Setups

Each input sample is required to be described using features. In this case, two sets of

different features are used. In mono-modal datasets, the raw pixels of the images are used

as input features after re-scaling the pixel values between zero and one. Afterwards, the

input features are flattened into one dimension. In multi-modal datasets, Latent Dirichlet
Allocation (LDA) [80] and Bag-of-Visual-Word (BoVW) [81] based on SIFT [82] are used

for representing texts and images (respectively). LDA is a generative probabilistic

model, in which documents are represented as random mixtures over latent topics.

Each topic is represented by a distribution over the words. Additionally, the topics are

not pre-defined, and they are developed based on the likelihood of term co-occurrence.

BoVWs is inspired by document classification where each document is represented by a

histogram of independent features. Two steps are required for replicating this idea in

object classification. First, each image is represented by a set of descriptors, e.g., SIFT.

Second, all collected patches are used to generate a visual codebook. The goal is to group

similar patches. A standard approach is K-means clustering. Each cluster is represented

by the centroid of all elements that are in the cluster. Sometimes the cluster center is

called codeword. Finally, each descriptor of an image is matched to the closest codeword,

and a histogram of codewords represents the image.

In this setup, 100 topics are used for LDA and a codebook of 1024 for BoVW. Moreover,

LDA and SIFT features are extracted using NLTK 1 and VLFeat 2 respectively. Pereira

and Vasconcelos [83] also used these features. Finally, the extracted multi-modal features

are rescaled to mean zero and standard deviation one.

1http://www.nltk.org/
2http://www.vlfeat.org/

51



CHAPTER 4. ASSOCIATION LEARNING FOR INPUT PAIRS

The association learning framework based on MLP has the following parameters for

each scenario:

Mono-modal scenario The association model has only one hidden layer with 40 neu-

rons for each internal MLP. The learning rate is set to 0.0001 with momentum 0.9.

The learning rate for the weighting vectors is set to 0.01. The mini-batch size is set

to 1,000 and 360 samples for MNIST and COIL-20, respectively.

Multi-modal scenario The model has one hidden layer with 150 neurons for each

internal MLP. The learning rate is 0.00001 and momentum 0.9. The learning rate

of the weighting concepts is 0.01. The mini-batch size is 300 samples.

4.4 Results and Discussion

The performance of the model is measured based on two metrics. The first metric

evaluates the accuracy if two networks predict the same semantic concept. This metric is

called Association Accuracy (AAcc) and is formally defined by :

AAcc = 1
N

N∑
i=1

1
(
ŷ(1)

i , ŷ(2)
i ,yi

)
, (4.1)

1
(
ŷ(1)

i , ŷ(2)
i ,yi

)=
1 ŷ(1)

i == ŷ(2)
i ==yi,

0 otherwise,
(4.2)

where ŷ(1)
i and ŷ(2)

i are the output classification from each network, yi is the ground-

truth label, N is the total number of elements.

The second metric is Accuracy, which shows the ratio between predictions and correct

output predictions. This metric is applied to each network independently and is defined

by:

Accuracy= 1
N

N∑
i=1

1
(
ŷi,yi

)
, (4.3)

1
(
ŷi,yi

)=
1 ŷi ==yi,

0 otherwise,
(4.4)
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where ŷi is the prediction of the network (also one network from the association

learning framework), and yi is the desired semantic label. The rest of this section

describes the results of mono- and multi-modal scenarios.

TABLE 4.2. Association Accuracy (%) of the presented model and the traditional
approach in the mono-modal scenario. Both cases are using MLP architec-
tures. The performances of both setups are quite similar. It is expected that
the new constraint affects this model.

Dataset This Work Standard MLP

MNIST 94.61±0.24 95.02±0.32
COIL-20 92.86±1.65 92.94±0.62

4.4.1 Mono-modal Scenario

In this scenario, both networks in the association learning framework are being fed

with data that has similar properties. Thus, it is expected to reach similar performance.

The association accuracy is compared between the presented model and the standard

approach. As a result, the presented model can learn the association without pre-defined

the mapping between semantic concepts and vectorial representations. In other words,

the model self-learns this relationship. The performance of each model is shown in

Table 4.2.

TABLE 4.3. Accuracy (%) of this work and the standard MLP in the mono-modal
scenario. The performances of the presented model and the traditional
setup are similar. The focus of this comparison is to solve the semantic
relationship without losing performance.

Dataset Format Method
This Work Standard MLP

MNIST
visual 97.32±0.30 97.50±0.23
visual 97.18±0.21 97.42±0.22

COIL-20
visual 97.20±1.09 97.39±1.27
visual 97.17±1.09 96.89±1.12

Comparing both performances, the presented model maintains a similar performance

to MLP with the traditional approach (see Table 4.3). Furthermore, the accuracy per
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class of both datasets (MNIST and COIL-20) is also similar. The results are observed in

Figures 4.3 and 4.4.
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FIGURE 4.3. Confusion Matrices of traditional setup and this work (MNIST
Dataset). It is observed that the accuracy per category between the tradition
setup (top row) and the presented model (bottom row) has almost identical
performance.

Furthermore, the reason why the symbolic association relies on the convergence of the

semantic concepts. Figure 4.5 shows an example of several iterations and some principal

components of the presented model during training for MNIST. The starting stage shows

the initial values for the output vectors ŷ(1), ŷ(2) and weighting vectors γ(1), γ(2). Note

that the mapping between semantic concepts and vectorial representations is not fixed

before training, and the association matrix shows only one relation between both MLPs

at position (0, 0). In other words, both networks predict all samples as category zero.

After the first iteration, the association matrix shows a different relation at position (2,

2) from the starting stage. The output vector has already changed to sparse values. In

more detail, the mapping between semantic concepts and the vectorial representation is
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FIGURE 4.4. Confusion Matrices of the traditional setup and the symbolic associ-
ation framework (COIL-20 Dataset). Similar to Figure 4.3 the performances
(top vs bottom rows) are quite similar.

represented by the weighting vectors. For example, the minimum value (light color) for

the semantic label at position four is mapped to the ground truth at position three.

This section has presented the results of the symbolic association framework. The

performances in two mono-modal datasets are similar. This behavior is expected because

each internal MLP is trained on the same data domain. The next section describes the

results of the presented model in a more challenging scenario where the input sets are

different, and the performance of each MLP might be different.

4.4.2 Multi-modal Scenario

The association learning framework is evaluated in a multi-modal scenario, where one

modality is visual elements, and the other modality is text description elements. As a
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FIGURE 4.5. Example of the training process at different stages (mono-modal
scenario). The model can learn because semantic concepts converge between
both networks. The convergence is shown in two components. The first
component is the weighting vectors γ(1) and γ(2) that agree on the same
relationship (light values show the link between semantic concepts and
the vectorial representation). For example, the maximum element of both
raw output vectors is three, which is associated to the semantic label four
in γ(1) and γ(2). The second component that shows the convergence is the
association matrix. Both networks learn to predict the same semantic
concept for each sample pair.
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TABLE 4.4. Association Accuracy (%) of the symbolic association model and the
traditional setup in the multi-modal scenario. In this case, the performances
are not as good as the mono-modal dataset.

Dataset This Model Standard MLP

Wikipedia 11.82±2.25 12.97±1.11
TVGraz 28.30±1.45 31.50±1.16

result, the feature space of each modality is different between them and the capacity of

both networks might also be different.

TABLE 4.5. Accuracy (%) of the presented model and the traditional setup in the
multi-modal scenario. In this case, the model reaches similar performance
compared to the standard MLP trained in each modality independently.

Dataset Format Method
This Model Standard MLP

Wikipedia
visual 27.44±2.69 28.38±1.60
text 34.07±2.96 37.25±1.43

TVGraz
visual 53.19±2.74 55.97±1.86
text 52.74±2.45 53.65±1.38

The association accuracy is shown in Table 4.4. In this case, the performance of the

presented model remains similar to the traditional approach that is trained in each

modality independently. In more detail, the accuracy of each network also remains

similar (see Table 4.5). One of the reasons might be that Wikipedia has more inter-class

variability.

Figures 4.6 and 4.7 show a new pattern that has not been observed in the mono-modal

scenario. In the Wikipedia dataset, the traditional approach has a problem where many

samples are misclassified as the semantic concept seven in MLP1. This misclassification

does not occur in MLP2. On the other hand, the association framework has the same mis-

classification in both MLPs. These results suggest that bad performance in one classifier

is spread to the other network as well. However, the results of TVGraz dataset show the

opposite. Two classifiers have good performance, and it can be beneficial under some

conditions. For example, semantic concept seven in this work (MLP1 and MLP2) reaches
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FIGURE 4.6. Confusion Matrices between the traditional setup and the symbolic
association model (Wikipedia Dataset). The performances of both models
are still similar regardless of modality. However, the symbolic association
model reaches a lower accuracy for some semantic concepts. For example,
the semantic concept nine (c) reaches less accuracy than the independently
trained MLP (a). However, the same semantic concept reaches better results
in the other internal MLP (d) than the traditional setup (b).

better results compared to MLP trained of each modality independently. However, this

claim is not conclusive because most of the cases the performance decreased a little bit.

Similar to the mono-modal scenario, the training algorithm also converges to the

same vectorial representation for both networks. Figure 4.8 shows another example

of the learning behavior based on one multi-modal sample from TVGraz dataset. It is

observed that both networks collapsed into one classification output instead of spreading

over all classes. After 100 epochs, there are some initial results that both networks

have started learning some of the semantic concepts. After 300 epochs, the weighting

vectors of each network have similar relations between semantic concepts and vectorial
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FIGURE 4.7. Confusion Matrices between the traditional setup and the symbolic
association model (TVGraz Dataset). As with the previous experiment
(Figure 4.6), the performances of both setups are similar. Additionally, the
same behaviors are also presented here.

representations. However, the association matrix has still not converged. After training,

the association matrix shows that both networks converge to the same semantic concept.

Additionally, each weighting vectors shows only one relation (light color at each column)

between the semantic concepts and the vectorial representation.

4.5 Summary

This chapter has described the evaluation of the symbolic association. Two cases were

used for this purpose. The first case is a mono-modal scenario that uses two visual

elements to represent the same semantic concept. The second scenario is a multi-modal

scenario, where text and visual elements represent the same semantic concept. Several

findings are summarized based on the results.
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FIGURE 4.8. Example of the training algorithm at different stages (TVGraz
Dataset). The convergence pattern that has been explained in Figure 4.5 is
also presented in this example. The behavior of weighting vectors γ(1) and
γ(2) and the association matrix remain the same as in the mono-modal case.
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4.5. SUMMARY

• The symbolic association has two internal MLPs, which are compared to MLPs

that are trained independently on each input set. The performances between both

networks are similar in both test cases: mono- and multi-modal scenarios.

• The symbolic association model works because of convergence of semantic concepts

convergence. This behavior is the same in the mono- and multi-modal datasets.

• The internal networks of the association model can weakly transfer their perfor-

mance between each other. In other words, a network can cause the other network

to improve inside of the association model, whereas the MLP trained independently

with the traditional approach decreases the performance.

Next chapter presents results of the association framework applied to sequences with

weakly labels. In that case, the second version of the association framework exploits

LSTM networks that are trained based on a CTC layer.
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ASSOCIATION LEARNING IN SEQUENCES

This chapter presents the results of the second version of the symbolic association

framework. Similar to the previous chapter, two scenarios are also considered

in this chapter. The goal of the first scenario (mono-modal) is to associate two

sequences that have the same input type (i.e., text lines) with the same order of semantic

concepts. On the other hand, the second scenario (multi-modal) associates two sequences

of different input types (e.g., visual and audio). In both cases, the input sequences do

not have any pre-segmentation step before training. In other words, the annotation of

the scenarios is weakly labeled sequences (c.f. Section 2.2.4). Note that both sequences

are trained based on the alignment between the output network (i.e., ŷ1, . . . , ŷt,) and the

desired target sequence (i.e., c1, . . . , cd) where d << t.

The presented results have been published in ICDAR2015 [69], CoCo2016 [70], and

NC2/2016 [84]. The chapter is divided into three sections. Section 5.1 describes the

association problem of sequences in terms of three elements: input samples, classifiers,

and vectorial representations. Section 5.2 shows the mono-modal association, based on

two contexts. In the first context, one input sequence can use the latent space produced

by another input sequence. The second context corresponds to one LSTM network, which

can learn one input sequence based on the latent space produced by another input

sequence and a different LSTM network. Section 5.3 shows a more complex scenario

where the input samples are from different formats. As a result, one network learns a

latent space that is produced by another network with input samples of different formats.
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FIGURE 5.1. Differences between components of traditional and symbolic as-
sociation tasks when the input samples are sequences. The new setup is
more challenging than the association task defined in Chapter 4. In this
setup, the association task occurs between two weakly labeled sequences.
The main difference between the traditional and symbolic associations is
the component of the vectorial representation. In the one hand, the vecto-
rial representation is already defined before training and the association
between both sequences are already defined in the traditional association
scenario. In the other hand, the symbolic association does not define the
association via vectorial representation, which is part of the training step.

The performance of the symbolic association model is similar to the traditional setup.

5.1 Problem Definition

The presented association problem is related to parallel sequences where the format of

both samples can be the same or different. For instance, one sample could be a textual

description and the other sample an image. Formally, X(1) and X(2) are represented

by a sequence of vectors x(1)
1 , . . . ,x(1)

t1 and x(2)
1 , . . . ,x(2)

t2 , respectively. Both input samples

represent the same sequence of semantic concepts c1, . . . , cd.

As presented in Figure 5.1, the association scenario here is more challenging due to

the following reasons. First, the relationship between both input sequences is one-to-one:
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5.2. SCENARIO 1: PARALLEL MONO-MODAL SEQUENCES

the semantic concepts of both input sequences have the same order. However, the relation

between feature input vectors is not one-to-one because each input sequence is a set of

many input vectors. Therefore, the relationship between input vectors of each sequence

is not defined because of weakly labeled sequence. As a reminder, note that Section 4.1

described that the association between isolated input pairs. In that case, each input

sample is represented by one vector and the link between both input vectors is clearly

defined. Second, the learning model is trained on the Latent Space of another input

sequence, whereas, the association learning in isolated pair samples is based only on the

output layer. Hence, one sequence is predicted based on the other sequence.

The evaluation process utilizes two metrics. The first metric is the Sequence Associa-
tion Accuracy (SeqAAcc) for sequences, which is defined by:

SeqAAcc =
∑N

i=1 LCS(ŷ(1)
i , ŷ(2)

i ,yi)∑N
i=1 len(yi)

, (5.1)

where ŷ(1)
i and ŷ(2)

i are the predicted sequence for each input, yi is the target sequence.

The f unction LCS is the length of the longest common sequence between ŷ(1)
i , ŷ(2)

i , and

yi, and len(yi) is the number of elements of sequence yi.

The second metric evaluates the performance of each network independently. The

Label Error Rate (LER) is defined by:

LER = 1
N

N∑
i=1

ED (ŷi,yi)
len(yi)

, (5.2)

where ŷi is the predicted sequence of one network, function ED (ŷi,yi) is the edit

distance between the predicted sequence ŷi and the desired target yi.

5.2 Scenario 1: Parallel Mono-modal Sequences

This section describes the feasibility of the association model based on two conditions.

First, it is possible to train a LSTM network with the latent space produced by another

input sequence. In this case, the input sequence represents the same array of semantic

concepts. Second, the feasibility to train two LSTMs networks that generate two latent
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CHAPTER 5. ASSOCIATION LEARNING IN SEQUENCES

spaces generated from two different input sequences. Again, both input sequences

represent the same ordered series of semantic concepts.

5.2.1 Dataset Preparation

For both scenarios, a mono-modal dataset has been produced based on MNIST [75]. The

generation procedure is described below:

Generating of semantic concepts: Each semantic concept was randomly generated

with a number between four and eight digits. There is not constraint that the same

digit can be repeated more than one in the number.

Generating visual sequences: There is an instance per each digit in the sequence.

Afterwards, a dynamic black background is located before and after each digit. The

length of the background is randomly selected between three and ten columns.

Training and Testing sets: As a reminder, the training and testing are generated

using the original split of MNIST dataset. Therefore, this generated dataset also

uses the same division. The training set has 50,000 sequences, and the testing set

has 15,000 sequences. The experiment design follows cross-validation approach

where 10,000 sequences and 3,000 sequences are randomly selected. This random

selection is repeated ten times; thus, the dataset presents ten different setups

of training and testing sets. Figure 5.2 shows several examples of the generated

dataset.

FIGURE 5.2. Several examples of sequences in the mono-modal dataset. It
is observed that each row represents the same semantic sequence with
different instances.
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5.2. SCENARIO 1: PARALLEL MONO-MODAL SEQUENCES

TABLE 5.1. Sequence Association Accuracy (%) and Label Error Rate (%) of one
LSTM network trained independently to each input set and the symbolic
association model (implemented by one LSTM). These results show that the
training based on input sequence and different output vectors is possible.

LER (%)
Models SeqAAcc (%) Sequence 1 Sequence 2

LSTM trained for one sequence 93.07±1.47 3.47±0.99 3.52±0.80
association learning (version: one LSTM) 95.87±0.88 2.12±0.46 2.15±0.43

5.2.2 Input Features and LSTM setup

As mentioned, two architectures are evaluated in the mono-modal scenario. In this test

case, the visual sequences were normalized between 0.0 and 1.0 for both architectures.

Both architectures have similar parameter settings. The hidden size is 20 memory cells,

and the weighting vectors are initialized to 1.0. The learning rate is set to 0.0001 with

momentum of 0.9 for the first architecture whereas the learning rate is set 0.00001

with the same momentum in the second architecture. The learning rate of the weighting

vectors is set to 0.001 in the first architecture, but the second architecture uses a learning

rate 0.01.

5.2.3 Mono-modal Latent Space produced by one LSTM
Network

This scenario can be understood as a simplified version of the general model described

in Section 3.4. Figure 5.3 shows an example of the simplified model. This experimental

setup evaluates the LSTM training based on latent spaces generated by a different

sequence. The main difference is to use only one LSTM instead of two LSTMs, and the

training procedure uses input sequence 1 with the latent space of input sequence 2 and

vice versa.

Table 5.1 shows the Sequence Association Accuracy and the Label Error Rate of the

association model with one LSTM network and LSTM network trained independently

to each input sequence set. One interesting outcome observed is that the effect of using

latent space produced by different input samples has a positive effect on the perfor-

mance. Additionally, the process of learning the mapping between semantic concepts and

vectorial representation did not hurt the performance of the model.
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FIGURE 5.3. Example of the Symbolic Association Learning implemented with
one LSTM. In this case, the setup evaluates the feasibility of training input
sequence (X(1)) with a different output sequence (ŷ(2)

t2 ), and vice versa. The
training follows the same EM-approach. The E-step (solid line) generates
the output sequence of each input and CTC-alignment. The M-step (dashed
line) updates the parameters of the association model.

Figure 5.4 shows several examples of the predicted sequence and the DTW cost

matrices. The output classification is shown in the positions with the maximum acti-

vation values (dark color). Note that the output classification are vectors, for instance,

y(1)
1 , . . . ,y(1)

t1 . Each example has a different length (x-axis of output classification columns).

The cost matrices show the alignment (blue line from the bottom left corner to the top

right corner) between both output vectors. It can be observed that there is a grid pattern

in the cost matrix. Those columns and rows are the positions that represent the relation-

ship between each time step. That relationship can be divided into two types: a) semantic

concepts between both sequences and b) the segmentation (blank class) between each

output classification. The alignment path runs through each of these intersections.

The results indicate that it is viable to train an LSTM network based on DTW

alignment and the latent space produce by a different input sample. Next, this model is

extended to two LSTM networks. This extension provides more flexibility to the model

because each LSTM can have different architectures (i.e. input and memory cells sizes).
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FIGURE 5.4. Several examples of the classification with the symbolic association
framework, one LSTM version. First, the DTW alignment can successfully
transform information from one sequence to another sequence in a sce-
nario with sequences with different lengths and weakly labeled. Second,
the classifications of both output sequences agree on the same vectorial
representation. For example, the first digit of the sequence (top row) is
one, and both output classifications are represented by the same vectorial
representation.
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FIGURE 5.5. Association Learning using two LSTMs in the mono-modal scenario.
The E-step (solid line) can be summarized in two elements: pass each input
sequences through each LSTM and CTC alignment based on the output
sequences. The M-step (dashed line) updates the parameters of both LSTM
networks and the weighting vectors.

5.2.4 Mono-modal Latent Space produced by two LSTM
Networks

This section presents the results of the symbolic association using two LSTMs. Note

that one internal LSTM employs a loss function between an input sequence (X(1)) and

a target vector produced by another sequence (X(2)). With this in mind, the goal of this

section is to evaluate the training process based on the alignment of two latent spaces

that share similar information.

Figure 5.5 shows an example of the symbolic association model implemented by

two LSTMs. It can be observed that LSTM1 learns the feature from input sequence

1 in combination with the latent space generated from input sequence 2. Similar to

Section 5.2.3, the model is compared to a single LSTM that is trained to each input

set (i.e., input sequence 1). Table 5.2 shows that the presented model reaches similar

performance to LSTM trained with the traditional setup. These results show that LSTM

can learn in a latent space generated by different input sequence and network.
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TABLE 5.2. Sequence Association Accuracy (%) and Label Error Rate (%) be-
tween one LSTM network trained independently to each input set and the
symbolic association model (implemented by two LSTM networks). These
results show the training based on input sequence and different output
vectors is possible.

LER (%)
Models SeqAAcc (%) Sequence 1 Sequence 2

LSTM trained for one sequence 93.07±1.47 3.47±0.99 3.52±0.80
association learning (version: two LSTMs) 95.69±0.27 2.29±0.27 2.21±0.17

Note that the presented model can correctly classify input sequences even if LSTM

network trained independently has failed to classify them. Figure 5.6 shows several

examples where the presented model and LSTM classify input sample correctly and

incorrectly.

In this section, the results have shown that LSTM can learn given a latent space

that is not produced by the same input sequence. With this in mind, the question arises

if the latent space can learn even in a different input feature set or input format. This

question is evaluated in the next section.

5.3 Scenario 2: Parallel Multi-modal Sequences

The symbolic association has been applied to mono-modal sequences. The results in the

previous section have shown that latent spaces have useful information for cross-training.

This is expected because the input sequences are in the same data domain.

5.3.1 Dataset Preparation

In this section, the evaluation of the presented model occurs in a more complex scenario.

Moreover, the formats of each input sequence are different: visual and audio. This

scenario is similar to reading aloud. Three multi-modal datasets are used for this

evaluation purpose. The first dataset is a digit recognition task, the second dataset is a

letter recognition task, and the third dataset is a word recognition task. Each of these

datasets has visual and audio components.

Digit Recognition This dataset is generated by two components. The first element
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FIGURE 5.6. Several examples of the prediction step (correct-green solid square,
incorrect-red dashed square). Two architectures are compared: the symbolic
association (first two columns) and a LSTM trained independently on each
input set (last two columns). In this manner, it is possible to compare if the
presented model adds extra noise during training. There are cases in which
that the symbolic association predicts correctly both sequences, whereas
one LSTM predicts them incorrectly (second and third rows). On the other
hand, there are examples, in which the opposite situation occurs. Symbolic
association fails whereas both standard LSTMs are correct.
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VISUAL COMPONENT AUDIO COMPONENT

DIGIT RECOGNITION LETTER RECOGNITION
VISUAL COMPONENT AUDIO COMPONENT

VISUAL COMPONENT AUDIO COMPONENT

WORD RECOGNITION

FIGURE 5.7. Examples of the three multi-modal datasets. Note that two datasets
(top row) have semantic concepts that are shorter in the visual and audio
components than the other dataset (bottom row).

is the visual representation using MNIST [75], and the second element is the

audio representation generated by Festival Toolkit [85]. The number of seman-

tic concepts is ten. The visual representation follows this procedure. First, the

number of digits in the sequence is randomly generated between three and eight

elements. A black background is attached after and before each digit. The length

of the black background is randomly selected between three and eight columns.

Finally, the digits are stacked horizontally. For the audio component, the Festival
Toolkit generates audio files given the semantic sequence. The artificial voices1 are

randomly selected, from four predefined artificial English speakers in the toolkit,

for generating audio files. This procedure is the same as [46] where the authors

have also used the Festival Toolkit for producing audio components. The training

and testing set sizes are 50,000 and 15,000 sequences, respectively. In this case,

MNIST has already a pre-defined training and testing sets. Thus, this dataset

retains division of the original MNIST. In other words, the digits present in the

training set of MNIST, are only used for the training set of this dataset. The same

decision is applied to the testing set.

Letter Recognition This dataset is generated following a similar process as the digit

recognition dataset. The number of classes is 27 lower case letters. The number of

elements in the sequence is randomly selected between three and eight elements.

Visual representations are artificially produced by sequences of printed texts. The

1The toolkit can build synthetic voices based on phone sets, word pronunciation, intonation. For more
information, please visit the following link http://festvox.org/bsv/.

73

http://festvox.org/bsv/


CHAPTER 5. ASSOCIATION LEARNING IN SEQUENCES

audio representation is also generated using the Festival Toolkit. Since this novel

dataset does not have a pre-defined split between training and testing datasets,

the size of the dataset is 60,000 sequences.

Word Recognition The last multi-modal dataset is partially generated using GRID
audio visual sentence corpus [86]. The GRID corpus is employed for learning the

alignment between the audio and the movements of lips. The dataset is composed

of a small vocabulary of 52 words. In this work, only audio components are used,

which is featured by 34 subjects: 18 males and 16 females. Similar to the letter

recognition task, the visual representation is created with text lines of printed

texts. The size of this dataset is 34,000 sequences.

Each of these multi-modal datasets has a different quality. For example, the visual

component of the digit recognition dataset is more complicated regarding the sample

variety that is presented in MNIST, whereas printed texts have less variability. On the

other hand, the audio component of the word recognition dataset comprises a rich set

of speakers because of the GRID corpus. Note that the reported results are the mean

of a ten-cross validation, where 10,000 samples2 are randomly selected for training.

Furthermore, randomly 3,000 sequences3 were selected the testing set. In the last

dataset, the selection is made by 50% male voices and 50% female voices for both the

training and testing datasets. As a result, the sizes of training and testing sets are 17,000

samples. Figure 5.7 shows several examples of the three multi-modal datasets.

5.3.2 Input Features and LSTM setup

In the multi-modal scenario, the visual and audio elements are in two different input

feature spaces. The visual components are represented using the raw pixels normalized

between 0.0 and 1.0. The audio components are transformed to Mel-Frequency Cepstral

Coefficient (MFCC). In more detail, MFCC is a Fourier-transformation based on filter

banks with 40 coefficients (plus energy), which are distributed on a mel-scale, augmented

with the first and second derivatives. The size of the audio feature vector is 123. The

audio component is normalized to mean zero and variance one. The baseline is similar

to the mono-modal scenario, in which the standard LSTM is trained on each input set.

2from 50,000 samples in the first dataset and 60,000 samples in the second dataset
3from 15,000 samples in the first dataset, and 50,000 samples after selecting the training set in the

second dataset
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FIGURE 5.8. Example of the symbolic association in the multi-modal scenario.
Note that the top LSTM receives a visual sequence and is trained based on
the audio sequence, and vice versa. Therefore, a transfer domain occurs via
alignment latent spaces.

For example, one LSTM network is trained only on visual elements. The parameters

of LSTM (visual components) are: the size of the memory cells is 20 for the first two

datasets and 40 for the last dataset, the learning rate of the network is 0.00001, and the

momentum is 0.9. The parameters of the other LSTM (audio component) are: memory

cell size is 100 for all three datasets, and the learning rate and momentum are the same

as the visual elements. The weighting vectors are initialized to 1.0, and the learning rate

is set to 0.01 for both networks.

5.3.3 Multi-modal Latent Space produced by two LSTMs

The last scenario is two LSTM networks, which are trained with combined latent spaces

that are generated from two different input types. For example, one LSTM receives the

visual element as input and is aligned to another audio latent space generated by the

other LSTM. Figure 5.8 shows an example of the symbolic association in the multi-modal

scenario. Table 5.3 shows that the proposed model reaches a similar performance to that

of an LSTM network, which is trained with the traditional approach. The errors of two

datasets (Letter and Words recognition) have been slightly increased. This performance
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TABLE 5.3. Sequence Association Accuracy (%) and Label Error Rate (%) of
the standard LSTM and the symbolic association model in the multi-modal
scenario. Similar to the mono-modal scenario, the performances are also
similar.

LER (%)
Dataset Model SeqAAcc (%) Sequence 1 Sequence 2

Digits
Standard LSTM 96.84±0.69 3.42±0.84 0.08±0.06
Association Model 97.28±0.57 2.69±0.55 0.15±0.08

Letters
Standard LSTM 99.34±0.12 0.09±0.05 1.06±0.14
Association Model 98.65±0.65 0.35±0.33 1.24±0.50

Words
Standard LSTM 97.30±0.48 0.45±0.68 3.68±0.27
Association Model 96.02±0.91 0.51±0.84 3.77±0.40

is expected taking into considerations that a different latent space is used. However, it is

observed in the first dataset that the error in visual components is decreased.

Figure 5.9 shows an example of several stages of the training process. The visual

element has approximately 300 vectors, whereas the audio component has 150 vectors.

Note that the first row at each step represents the LSTM trained in the visual elements

and the other row is the audio element. The first element shows that both networks

try to agree to the blank class since this element helps to align the non-class elements.

The DTW matrices show a weakly alignment between both networks since there are not

learned semantic concepts. After 5,000 sequences, one of the networks (audio LSTM) has

already learned the input sequence, whereas the other network has started learning some

elements (for instance, element around time step 250). From 1,000 to 5,000 sequences,

the CTC layer has converged to a multi-modal latent space where the visual and audio

samples are combined. The last iteration (20,000 sequences) shows that both networks

have already learned the multi-modal sample. The DTW cost matrix show the alignment

path between both networks given the current input sample.

Figure 5.10 shows several examples of predicted sequences with their respective

DTW cost matrix, which are correct (full line) and incorrect (dashed line) scenarios. In

this case, incorrect means that not all elements are correctly classified. Note that in all

cases, there are elements that agree in both networks. For example, the last row shows

that both LSTM networks agree on the same first element of the predicted sequence
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FIGURE 5.9. Example of the learning behavior in the multi-modal latent space.
The first element, which both LSTMs agree is the blank class. The last two
iterations show how the semantic concepts are slowly learned. Note that
audio LSTM learns all elements before the visual LSTM.

77



CHAPTER 5. ASSOCIATION LEARNING IN SEQUENCES

even both LSTM predict incorrectly.

Input
Sequence 1

0 50 100

0
50

10
0

−3

−2

−1

0

1

2

Input
Sequence 2

0 50 100

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

LSTM
Output 2

0 50 100 150 200

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

LSTM
Output 1

0 50 100 150 200
LSTM 1

0
50

10
0

L
ST

M
2

0.005

0.010

0.015

0.020

0.025

Cost
Matrix 1

0 50 100
LSTM 2

0
50

10
0

15
0

20
0

L
ST

M
1

0.0025

0.0050

0.0075

0.0100

0.0125

Cost
Matrix 2

0 50 100 150

0
50

10
0

−3.0

−1.5

0.0

1.5

3.0

0 50 100 150

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
LSTM 1

0
50

10
0

15
0

L
ST

M
2

0.005

0.010

0.015

0.020

0.025

0 50 100 150
LSTM 2

0
50

10
0

15
0

20
0

L
ST

M
1

0.0025

0.0050

0.0075

0.0100

0.0125

0 50 100 150

0
50

10
0

−4

−2

0

2

4

0 50 100 150

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250
LSTM 1

0
50

10
0

15
0

L
ST

M
2

0.005

0.010

0.015

0.020

0.025

0 50 100 150
LSTM 2

0
50

10
0

15
0

20
0

25
0

L
ST

M
1

0.004

0.008

0.012

0.016

0 50 100 150

0
50

10
0 −3.0

−1.5

0.0

1.5

0 50 100 150

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

0
1

2
3

4
5

6
7

8
9

10 0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
LSTM 1

0
50

10
0

15
0

L
ST

M
2

0.005

0.010

0.015

0.020

0.025

0 50 100 150
LSTM 2

0
50

10
0

15
0

20
0

L
ST

M
1

0.003

0.006

0.009

0.012

0.015

FIGURE 5.10. Several examples of the prediction in the multi-modal scenario.
The first row shows two predictions that are correct (green solid square).
Also, both results agree on the same vectorial representation. The remaining
results show case that the predictions are partially wrong (red dashed
square).
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5.4 Summary

This chapter has described the evaluation of the second version of the symbolic associa-

tion framework. Furthermore, two scenarios have been shown: a mono-modal dataset

containing pairs of text lines of digits and three multi-modal datasets with text line-audio

pairs for digits, letter, and words. Several findings are described below:

• The symbolic association framework based on LSTM networks has performances

that are similar to those of LSTM trained on one input set. This outcome is sup-

ported in two setups: mono- and multi-modal association. Note that the association

is not predefined before training in the symbolic association model, which this

condition hurts a little bit the performance of the model.

• The mono- and multi-modal latent spaces allow each LSTM to be trained in dif-

ferent modalities. Hence, there is not a requirement to define metrics between

modalities because each LSTM works as a proxy between the data domain to a

common latent space.

• Similar to the findings in Chapter 4, the association model works because the

convergence of the semantic concepts. In this case, the blank class is the first

element to which each internal LSTM network agrees.

One of the limitations occurs if the standard trained LSTM classifies an input

sample correctly, whereas the presented model has failed. This result suggests that some

information is missing in the latent space generated from the other sequence. Similarly,

there are some cases in which the presented model correctly classifies input samples,

and the standard trained LSTM predicts incorrectly. This scenario has been shown in

the multi-modal digit recognition task. In other words, some information decoded in the

audio latent space helps to improve the performance of the visual network. As a future

work, the alignment step can be improved for selecting better options. For example, it

can be useful that the alignment uses some type of transformations, such as maximum

or mean in the time axis.

Another limitation of the model is the current assumption that each element of

the sequence is always presented in both sequences. One step further, the model could

handle sequences that might be presented in one or both sequences. An extension of the

association framework is described in the next chapter.
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ASSOCIATION LEARNING IN SEQUENCES WITH MISSING

CONCEPTS

This chapter describes an extension of the LSTM-based approach, in which the

semantic concepts can appear in one or both modalities. For example, the sentence

"one two three" can be associated with only two elements in the sentence "two

four three". The experimental design in this chapter evaluates two cases. The first case

compares to both the model presented in this chapter that can handle missing elements

in multi-modal sequences and two baselines: an LSTM network trained on one modality

and the association model presented in Chapter 5. The second case evaluates the effect

of the number of missing elements and the importance of the modality. Both cases show

that the presented extension reaches better results that model described in Chapter 5

and similar performances to LSTM networks trained only on one modality.

The presented extension and results are based on a published version in the Journal

of Artificial Intelligence Research (JAIR) [87]. This chapter is divided into four sections.

Section 6.1 explains the new association task where multi-modals sequences (visual,

audio) has semantic concepts in one or two channels. Note that this task follows the same

idea in Chapter 5 of using weakly labeled annotation. Section 6.2 describes the process

for handling missing elements, in which relies on using split semantic concepts that are

presented in one (missing elements) or both modalities (common elements). Section 6.3

presents three multi-modal setups: missing elements in both channels, missing elements
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in the audio channel, and missing elements in the visual channel. Additionally, the

network setup of each LSTM network is described. Section 6.4 discusses the results of

the proposed extension and compares its performance to the original model and LSTM

networks trained on one modality.

6.1 Problem Definition

The new association scenario still applied on multi-modal sequences where each semantic

concept might be or might not be in both channels. Therefore, the link between both

modalities is partial instead of complete as the previous chapter. Again, two sequences

are defined X(1) =
{
x(1)

1 , . . . ,x(1)
t1

}
and X(2) =

{
x(2)

1 , . . . ,x(2)
t2

}
. Additionally, each sequence

has a set of semantic concepts C(1) = {c1, . . . , cd1} and C(2) = {c1, . . . , cd2}. Note that an

important condition is that both sequences have at least one shared semantic concept

C(1) ∩C(2) 6= {;}, and the order between semantic is the same.

As presented in Figure 6.1, this scenario is more challenging because the association

is not one-to-one like the previous case. However, LSTM-based approach can still align

partial sequences with weakly labels and still agree on the same vectorial representation.

Similar to Chapter 5, the association model exploits the Latent Space produces by both

sequences even with shared semantic concepts. In this chapter, Association Accuracy for

sequences and Label Error Rate (Equations (5.1) and (5.2)) are also used.

6.2 Handling Missing Elements

The LSTM-based approach learns to pair in the DTW alignment, where both output

sequences are aligned to each other. The alignment is possible because the assumption of

both sequences represents the same series of semantic concepts. However, that approach

is not feasible if there are missing elements in one of the sequences. Therefore, it is

required to define two cases about the semantic concepts: shared semantic concepts in

both sequences and missing semantic concepts in one sequence. Those sets are formulated

as follows:

Sshare : C(1) ∩C(2) ={c1, . . . , cl1} shared semantic concepts, (6.1)

S(1) : C(1) \ C(2) ={c1, . . . , cl2} only in modality one, (6.2)

S(2) : C(2) \ C(1) ={c1, . . . , cl3} only in modality two. (6.3)
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As mentioned in Section 3.4, DTW alignment combines the output sequences obtained

by CTC step (Equations (3.30) and (3.31)). One of the outcomes is the alignment path

from one sequence to another sequence, which is expressed by p(1) : CTC(1)
i → CTC(2)

j .

Therefore, the latent space generated by sequence 1 is used for training sequence 2.

There is a limitation with that approach. For example, the visual sequence exploits only

information obtained from the audio sequence. However, there are cases in the latent

space that it is better to keep the information obtained from the visual sequence. This

chapter proposes a solution for exploiting both modalities instead of one. One standard

approach for combining two signals is to use a maximum operation between them that
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FIGURE 6.1. Association between sequences with partial alignment because
some concepts (eight and four) are presented in both sequences. Note that
the problem definition described in Section 5.1 has the same series of
concepts in both sequences.
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summarizes the best of each modality. This step can be expressed as follows:

CTC(1,2)
t =

 max
(
ŷ(2)

c,t′
, ŷ(1)

c,t

)
c ∈ Sshare,

ŷ(1)
c,t c ∈ S(1),

(6.4)

CTC(2,1)
t =

 max
(
ŷ(1)

c,t′
, ŷ(2)

c,t

)
c ∈ Sshare,

ŷ(2)
c,t c ∈ S(2),

(6.5)

where ŷ(1)
c,t and ŷ(2)

c,t are scalar values that represent the semantic concept c at timestep

t. At this stage, the target vector is based on concatenating all semantic concepts that

are in both sequences. Afterwards, both vectors CTC(1,2)
t and CTC(2,1)

t are converted to a

probability vector1. Therefore, Equations (3.32) and (3.33) are updated as follows:

J(1)
LSTM = ŷ(1)

j1
−CTC(1,2)

j1
j1 = 1, . . . , t1, (6.6)

J(2)
LSTM = ŷ(2)

j2
−CTC(2,1)

j2
j2 = 1, . . . , t2. (6.7)

Figure 6.2 shows an example of the proposed approach for handling multi-modal

sequences with missing and shared semantic concepts. Note that this step combines

both modalities before the target sequence. Additionally, this model can align semantic

concepts with the same vectorial representation. For example, the semantic concept té
is represented by the same unit vector e4. Also, the non-shared semantic concepts are

predicted with different vectorial representations.

6.3 Experiments

The presented approach is evaluated in two multi-modal scenarios. The first scenario

is defined with a random number of missing concepts in each modality. The second

scenario evaluates the effect of missing concepts in one modality. Additionally, the

presented approach is compared to the original model (c.f. Chapter 5) and LSTM networks

trained on one modality. The results of these experiments are also reported based on

the Sequence Association Accuracy (SeqAAcc) (Equation (5.1)) and the Label Error Rate

1a probability vector is obtained after applying norm(y)= y/
∑n

i yi where y ∈ Rn
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FIGURE 6.2. Example of the proposed approach for handling the new associ-
ation problem: semantic concept are presented in one or both modalities.
This approach combines two modalities based on two components (dashed
lines and squares): shared semantic concepts and a maximum operation.
The model can still learn the association with this partial alignment, e.g.
concepts té and higiene agree on the same vectorial representation.

(LER) (Equation (5.2)). This section is divided into two parts. The first part explains

the process for generating three multi-modal setups. One of the setups generates multi-

modal sequences with a random number of missing concepts on each modality. For

example, the sequences "one two three four" and "two four six seven" has the following

missing concepts. The missing concepts of the first sequence are "six" and "seven" based

on the second sequence that is used as a reference. The same analysis is applied to the

sequence two, in which the missing concepts are "one" and "three". The other two setups

generate multi-modals sequences where the concepts of one modality are a subset of

the other modality. For example, the sequences "one two three four" and "two four" has

the following missing concepts. The first sequence does not have any missing concept

considering the second sequence as a reference. In contrast, the second sequence has

"one" and "three" as missing concepts considering the first sequence as a reference.
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6.3.1 Multi-modal Setups

The procedure of generating each setup follows similar steps described in Section 5.3. As

a reminder, note that the multi-modal sequences have two components: visual and audio.

The visual component is a horizontal arrange of objects (similar to a panorama). The

second component is a set of Spanish words whereas the experiments in the previous

chapter are based on English words. Three steps have the process of generating the

multi-media datasets: generating semantic concepts for each modality, generating the

visual component based on the semantic concepts, and generating the audio component

based on the semantic concepts. Each of these steps is explained as follows:

Generating Semantic Sequences: As mentioned before three setups are consid-

ered, the first setup has missing concepts in both modalities (setup 1: missing both),

and the other setups have missing concepts only in one modality (setup 2: missing
visual and setup 3: missing audio, respectively). All setups start with a series of ten

semantic concepts that are randomly selected without repetition. This initial series is

used for representing the concepts for each modality. For the first setup, the next step

removes between zero and fives concepts from the initial ten concepts on each modality.

Therefore, both sequences haves shared and missing concepts (i.e. Sshare 6= {;}, S(1) 6= {;},

and S(2) 6= {;}). For the second and third setups, the next step removes a fixed number of

concepts from one modality. For instance, the visual channel has ten concepts whereas

the audio channel only has eight concepts. Hence, there are missing concepts in only

one modality (i.e., Sshare 6= {;}, S(1) 6= {;}, and |S(2)| < |S(1)|). The set of semantic concepts

used for all setups are 30 nouns in Spanish: oso, bote, botella, bol, caja, carro, gato, queso,
cigarrillo, gaseosa, bebida, pato, cara, comida, hamburguesa, higiene, líquido, loción,
cebolla, pimentón, pera, redondo, sánduche, cuchara, té, teléfono, tomate, florero, vehículo,
madera.

Generating Visual Components: The visual component of the multi-modal se-

quence is based on the semantic concepts generated in the first step. Furthermore, this

channel is constrained to a horizontal arrangement of objects, i.e., panorama. Therefore,

COIL-100 dataset [88] offers a set of 100 isolated objects with a black background. More-

over, each object has 72 color images that show the object at different angles (five degrees

apart). In this work, all images are converted to grayscale and resize to 32x32 pixels. Also,

some objects were filtered out because of very similar to another object, same predicted

category using a pre-trained network. Thus, a subset of 30 objects is used in this step.
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Each concept in the sequence selects randomly one of the images of the selected concepts.

Afterwards, all images are horizontally stacked for generating panoramas. A random

noise is added to the panoramas as background (i.e. new_img = panorama+noise).

Generating Audio Components: Similar to the visual component, the audio se-

quence is generated based on the concepts that are presented. Therefore, an audio

dataset was collected based on the presented vocabulary. Twelve subjects from several

countries of Center and South America recorded two times each concept using Audacity
(R) recording and editing software2. Each concept presented in this modality selects one

audio file from two recorded ones. Similar to the visual channel, all selected audio are

concatenating.

Training and Testing Multi-modal Datasets: The visual and audio components

have different splits for training and testing. There are 1,000 multi-modal sequences per

subjects. In more detail, the visual and audio components have a different division for

training and testing sets. For the visual component, images at odd angles are used for

training whereas at even angles are used for testing. For the audio component, eleven

subjects are randomly selected for training, and the remaining subjects are used for

testing. The experiment follows a 5 cross-validation approach, in which the subjects of

the audio component are randomly selected for each fold. Figure 6.3 shows an example

of the first multi-modal configuration, in which both sequences have missing concepts.

6.3.2 Input Features and LSTM setup

This chapter follows a similar feature extraction process described in Section 5.3. The

visual component is rescaled between 0 and 1. The audio component is converted to MFCC

using HTK. Thus, the audio files are represented by a vector with 123 components based

on filter banks and expanded with the first and second derivatives. Both components are

normalized to mean zero and standard deviation one.

The presented approach is evaluated against two baselines: symbolic multi-modal

association (Chapter 5) and LSTM trained on one modality. These three architectures are

using the same parameters for evaluating LSTM performances. The visual component is

training with a bidirectional LSTM network with 40 memory cells, and the learning rate

is 0.0001 with momentum 0.9. Another bidirectional LSTM network is trained on the

2Audacity® software is copyright ©1999-2017 Audacity Team. The name Audacity® is a registered
trademark of Dominic Mazzoni.
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botella, comida, gato, hamburguesa, redondo

loción, gato, hamburguesa, pera, redondo

Visual Sequence

Audio Sequence

Shared Semantic Concepts:
gato, hamburguesa, redondo

FIGURE 6.3. Example of the multi-modal configuration with missing elements.
In this example, the shared concepts are (Sshared): gato, hamburguesa, and
redondo. This partial alignment is useful for combining the latent spaces of
both modalities. Additionally, the non-shared concept in the visual sequence
is (S(1)) botella, whereas the other modality (S(2)) presents loción and pera
as non-shared concepts.

audio component with 100 memory cells, and the learning rate and momentum are the

same to the other LSTM. The learning rates of the weighting concepts are set 0.001 for

both the presented approach and the original model.

6.4 Results and Discussion

This section reports the average of 5-folds for each multi-modal configuration. The first

multi-modal setup evaluates the presented model with a random set of missing elements

in each sequence. The other setups focu on the relation between the number of missing

concepts and the performance. Note that the training set has 11,000 sequences whereas

the testing set has 2,000 sequences.

The first results are obtained from the first multi-modal setup: missing concepts in

both modalities. The presented approach is compared to two baselines: LSTM trained

on each modality independently and the original model described in Chapter 5. As can

be seen in Table 6.1, the presented approach reaches better results (SeqAAcc and LER)

than the original model. This outcome is expected because the initial assumption of

the original mode is both modalities have the same series of semantic concepts (i.e.,

S(1) = S(2)). Additionally, the presented model reaches also similar results of AAcc than
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TABLE 6.1. Sequence Association Accuracy (%) and Label Error Rate (%) from
the multi-modal configuration of missing concepts in both modalities. The
presented approach reaches better results than the original model. The
more interesting outcome is that the presented approach reaches a lower
error than the baseline in the audio sequences. It can be inferred that
the combination of visual and audio sequences helps to reduce the error.
However, the presented model reaches higher error than the baseline in the
visual sequences.

Model LER (%)
SeqAAcc (%) visual audio

LSTM + CTC (baseline) 70.68± 6.12 0.14±0.14 35.84± 5.35
Original Model ([70], Chapter 5) 19.59± 8.90 7.00±2.42 79.01± 9.51
Model (missing concepts) 71.52±11.85 0.97±1.58 33.09±10.38

the LSTM networks trained only on one modality. It is interesting to see that the

presented approach reaches lower LER than LSTM in the audio sequence because of the

combination between visual and audio latent spaces. However, the same combination

hurts the performance of the presented approach in the visual sequences.

The performance of the presented approach did not decrease with partial alignment

between modalities. This model can still learn to agree on the same vectorial representa-

tion as mentioned before. Figure 6.4 shows two examples of the vectorial representation

agreement between shared concepts. For example, the concepts madera, carro, and

loción in the first row agree on the same vectorial representations e9, e24, and e25 in

both modalities3. The second row shows another example where the visual sequence is

correctly predicted whereas the audio sequences are not. In that case, the concept loción
has the same representation e25 in both networks and agree with the prediction in the

first row.

The second and third multi-modal setups are based on several datasets, which a

fixed number of missing elements are extracted from one component of all multi-modal

sequences. Thus, the robustness of the model is analyzed concerning number of missing

concepts. This scenario runs between zero and five missing concepts. Note that zero
missing concept is the initial assumption of the original model, which shows the effect of

the max operation. Figure 6.5 shows that the max operation improves SeqAAcc of the

3Sometimes, one concept is represented by two vectorial representations, but both networks can
retrieve the correct concept.
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FIGURE 6.4. Several examples of the output classification and DTW cost matri-
ces are shown. The first multi-modal sequence shows an example, in which
both output classifications are correct (solid green square). The second multi-
modal sequence shows one correct and one incorrect output classification
(dashed red square).

presented approach in all missing concept setups and modalities. The original model is

negatively affected by increasing the number of missing concepts whereas the presented

approach is more robust against that factor. Furthermore, Figure 6.6 presents LER of

each modality and shows a similar pattern to Figure 6.5. The left figure shows that

the original model increases the error of the audio component based on increasing

the number of missing concepts in the image components. In contrast, the presented

approach keeps the same performance regardless of the missing concepts (up to 50%

missing concepts). It can be observed a similar pattern on the right figure.
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FIGURE 6.5. Sequence Association Accuracy (%) of second and third multi-
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the presented approach (triangle) is better than the original model (circle)
in general (i.e., modality, number of missing elements). Note that the max
operation has a positive effect on the performance.
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FIGURE 6.6. Label Error Rate (%) of the second and third multi-modal con-
figurations with several missing concepts. The performance of presented
approach (visual-triangle and audio-X) is similar in all missing concepts.
On the other hand, the performance of the original model (visual-circle and
audio-square) is hurt by the number of missing concepts.
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6.5 Summary

This chapter describes an extension that handles missing concepts in one or both modali-

ties. The extension relies on partial alignments based on shared concepts in the sequence

and a max operation for combining. Several findings are described below:

• The presented approach reaches better results than the original model and similar

to LSTM. The partial alignment and the max operation prove to have a positive

effect for handling missing concepts, which is evaluated in three multi-modal

configurations.

• Similar to Chapter 5, the presented approach relies on the convergence of the

shared concepts, even with a partial alignment instead of a complete alignment.

One of the limitations of the presented approach is the alignment between panoramas

and audio, where the relationship is only one dimension. The next step is to align objects

that are presented in a two-dimensional image and an audio signal. Moreover, a two-

dimensional HMM has already applied to image classification [89]. With this in mind, a

two-dimensional HMM can be combined with LSTM networks for sequence classification

in images as future work.
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CLASSLESS ASSOCIATION

In this chapter, the association of isolated elements relies on a more difficult scenario.

The goal is to associate two elements without specifying semantic classes. The

proposed model uses a statistical distribution as a target. Similar to the model

discussed in Chapter 3, the training algorithm follows an EM-approach for learning the

agreement between two NNs. The model is compared to two cases: The first case is a

supervised classification, which is implemented by an MLP, and the second case is a

traditional unsupervised classification that is evaluated with two clustering algorithms:

K-means and Hierarchical Clustering. The performance of the model has reached better

purity than both unsupervised algorithms (lower baseline). Moreover, the performance

concerning supervised case is comparable regarding the lack of semantic concepts and a

weakly loss function.

The proposed architecture and results have been presented in ICANN2017 [90]. This

chapter is divided into three sections. Section 7.1 describes the association task, in which

the semantic concepts are not available. Section 7.2 presents the novel model called

classless association. Section 7.3 describes the experimental setup and the performance

of the classless association model.
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FIGURE 7.1. Problem definition of the classless association. It can be observed
that two different instances represent the same semantic concept. After the
model is trained, both classifiers predict sample pairs by the same index.

7.1 Problem Definition

This section introduces a new association problem. In this scenario, the goal is to associate

two instances of the same unknown semantic concept. This task is a more challenging

scenario than the association problem described in Chapter 4. Figure 7.1 shows a

comparison between two scenarios of the association task: supervised and classless

association. Note that the class-less association does require an alternative cost function

without labeled data.

In this case, two metrics are used: Association Accuracy (AAcc) and Purity. The first

metric has already been defined in Equations (4.1) and (4.2). This metric only measures

how many samples are classified by the same index. However, this metric does not show

if the networks have learned any semantic concept. The second metric complement the

first metric for quantifying the classification. Purity is a standard metric for evaluating

the quality of two sets: output prediction Ŷ and the ground-truth label Y as follows:
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Purity
(
Ŷ,Y

)= 1
N

k∑
i=1

max j|ŷi ∩y j|, (7.1)

where N is the number of elements in the dataset. Formally, two disjoint sets x(1) ∈
Rn1 and x(2) ∈ Rn2 represent the association task with the condition that both instances

express the same unknown class c. Additionally, there is no sharing information between

samples, for instance samples (x(1)
1 ,x(2)

1 ) and (x(1)
2 ,x(2)

2 ) may or may not represent the

same category, which is unknown by the model. Some approaches use similarities and

dissimilarities for training [91] but this classless association problem is not constrained

to those conditions.

7.2 Model

The presented model uses a statistical distribution as an alternative loss function pre-

sented in Chapter 2 where there is no requirement of labeled data. Similar to Chapter 4,

two parallel MLP networks implement the model. Additionally, the model follows an

EM-approach for training. The E-step predicts the distribution of the raw output vec-

tors. The M-step updates the parameters of the statistical distribution and the network

parameters. Furthermore, the model is defined by the following equations:

ŷ(1)
i =net(1)

(
x(1)

i ,θ(1)
)
, (7.2)

ŷ(2)
i =net(2)

(
x(2)

i ,θ(2)
)
, (7.3)

where net(1) and net(2) are two MLPs with parameters θ(1) and θ(2) (respectively).

Moreover, another parameter is the desired statistical distribution φ ∈ Rk, where k is

the output size. As a reminder, the goal is to approximate the raw output vectors of a

network and a statistical distribution.

The EM-approach starts setting each sample x(1) and x(2) with a random index

between 1 and k. The indices have the desired target distribution of φ. For example, a

dataset with ten samples and statistical distribution defined by φ = [0.7,0.3]T can be

represented by seven samples with the index 1 and three samples with the index 2.
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The E-step passed a mini-batch of samples to each network. Then, a post-processing

step is applied where an approximation of the current distribution based on raw output

vectors is obtained as follows:

ẑ(1) = 1
m

m∑
i=1

power
(
ŷ(1)

i ,γ(1)
)
, (7.4)

ẑ(2) = 1
m

m∑
i=1

power
(
ŷ(2)

i ,γ(2)
)
, (7.5)

where γ(1) and γ(2) ∈ Rk are the parameters that guide the network to learn the

statistical distribution, and m is the size of the mini-batch. Note that the term γ described

in Chapter 3 is used for learning the relationship between semantic concepts and vectorial

representations. Here, the goal is to determine the vectorial representation, and each

network learns to group similar input samples by itself.

The M-step updates two modules: the terms γ(1) and γ(2) based on matching output

vectors and a statistical distribution and network parameters θ(1) and θ(2) based on the

current indexes that represent pseudo-classes. The first module is updated via variance

between the current distribution of the raw vectors and the desired target, which are

defined by:

J(1)
γ =

(
ẑ(1) −φ

)2
, (7.6)

J(2)
γ =

(
ẑ(2) −φ

)2
, (7.7)

where φ is the target distribution. Figure 7.2 shows an example about the novel loss

function based on statistical distributions. Gradient descent updates these parameters

as shown by the equations:

γ(1)
new =γ(1)

old −α
∂J(1)

γ

∂γ
, (7.8)

γ(2)
new =γ(2)

old −α
∂J(2)

γ

∂γ
, (7.9)
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ŷd
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Figure 7.2: Loss function based on a statistical distribution. The E-step (solid lines) passes
forwarded the input samples. In this manner, an estimation of the current statistical
distribution of the output vectors. Afterwards, the M-step (dashed lines) updates the
weighting vectors based on the new loss function.

where ∂J(1)
γ /∂γ and ∂J(2)

γ /∂γ are the derivatives w.r.t γ and α is the learning rate. Second,

the network parameters are updated based on the following condition: one network used

the indexes generated by the other network and vice versa.

J(1)
MSE = 1

N

N∑
i=1

(
ŷ(1)

i −c(2)
i

)2
, (7.10)

J(2)
MSE = 1

N

N∑
i=1

(
ŷ(2)

i −c(1)
i

)2
, (7.11)

where c(1)
i and c(2)

i are the vectorial representations of pseudo-classes, which are

self-defined without categorical information or labels by the network. One crucial step is

related to prediction or classification step, which is used for updating the indexes while

the network is in training mode. The indexes are used in this model as pseudo-classes
for the loss functions (Equations (7.10) and (7.11)). In this case, the pseudo-classes
are updated after a number of iterations, e.g after 1,000 iterations. Therefore, another

parameter is chosen when the indexes are updated by retrieving the maximum element

of the following equation:
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FIGURE 7.3. Overview of the classless association model. This model follows
an EM-approach. The E-step (solid lines) passes each input sample to each
MLP and classifies the samples based on the weighting vector. The M-step
(dashed lines) updated the parameters.

c(1) =arg maxk power
(
ŷ(1),γ(1)

)
, (7.12)

c(2) =arg maxk power
(
ŷ(2),γ(2)

)
, (7.13)

The intuition is that similar samples are grouped with the same index or pseudo-class.

Figure 7.3 shows the cross-learning between both MLPs. It can be observed that the

role of the pseudo-classes is crucial because the model is self-labeling input samples

during training. Algorithm 2 shows the pseudo-code of the presented training algorithm

in terms of E- and M-steps.
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Algorithm 2 Pseudocode of the Classless Association Training based on matching
network output against a statistical distribution.

Require: mini-batch size m, update_classes, learning_rates, γ(1), γ(2), φ
{Random Initialization of input and pseudo-classes (X(1), X(2),c(1) c(2))}
for each_epoch=1 TO max_epoch do

{E-STEP}
for i=1 TO M do

{Equations (7.2) and (7.3)}
ŷ(1)

i ← f orward_step
(
MLP (1),x(1)

i

)
ŷ(2)

i ← f orward_step
(
MLP (2),x(2)

i

)
end for

ẑ(1) ← 1
M

∑M
i=1 power

(
ŷ(1)

i ,γ(1)
)

ẑ(2) ← 1
M

∑M
i=1 power

(
ŷ(2)

i ,γ(2)
)

{M-Step}
for i=1 TO M do

{MLP (1) is learning from MLP (2), and vice versa}
accumulate_gradient_error

(
MLP (1), ŷ(1)

i , c(2)
i

)
accumulate_gradient_error

(
MLP (2), ŷ(2)

i , c(1)
i

)
end for
backward_step

(
MLP (1),C(2))

backward_step
(
MLP (2),C(1))

{Equations (7.6) to (7.9)}
update_weighting_vector

(
ẑ(1),γ(1),φ

)
update_weighting_vector

(
ẑ(2),γ(2),φ

)
if each_epoch != 1 and each_epoch mod update_classes == 0 then

{Prediction step: generating new pseudo-classes}
for i=1 TO M do

c(1)∗
i ← arg maxc power

(
ŷ(1)

i ,γ(1)
)

c(2)∗
i ← arg maxc power

(
ŷ(2)

i ,γ(2)
)

end for
end if

end for

99



CHAPTER 7. CLASSLESS ASSOCIATION

7.3 Datasets and Network Setups

The model is evaluated in four different setups. Each setup has two disjoint sets that

represent the same unknown class. All setups are based on MNIST. The process for

generating the training and testing follow these steps. First, the training set of the

MNIST is split into two disjoint sets X(1) and X(2) where half of the sample of each digit is

in one set and the other half is in the other set. In other words, if digit 1 has ten samples,

five samples go to set X(1), and the other five samples go to set X(2). Second, each sample

from X(1) is linked to another sample from X(2) with the condition that both samples

represent the same category. Note that it is a standard approach to use labeled data to

measure the results of unsupervised scenarios [91, 92]. Third, all samples from input2
have applied the spatial transformations. In this manner, the task has two different

sets of feature distributions. Hence, the four variations are: a) Identity, b) Rotation 90

degrees, c) Inverse, and d) Random Rotation.

This process generates 21,000 and 4,000 samples for training and validation sets

(respectively). The testing set is generated based on the testing set from MNIST. As a

result, the size of the testing set is 4,000 samples. Additionally, each dataset follows a

uniform distribution between all digits.

The experimental design follows a ten cross-validation approach. The parameters

for the three datasets are the following. Each MLP has two hidden layers with 200

and 100 neurons. The weighting vectors γ(1) and γ(2) are initialized to 1.0. The learning

rate of both networks follows a schedule that the learning rate decreased by half every

1,000 epochs, and the initial value is set to 1.0. The learning rate for weighting vector

follows a different approach where the learning rate is based on 1/(100+ epoch)0.3. The

mini-batch size is 25% of the training set (5,250 sample pairs). The motivation behind

using a significant mini-batch of samples is to get a closer distribution to the dataset. The

selected parameters of the random rotation scenario are different. Similar to the previous

setups, the model has two hidden layers for each MLP with 400 and 150 neurons. The

learning rate starts at 1.2.

The classless association problem is compared to two baselines. The first baseline

is used an upper bound, which the categories are available, and the other baseline is

used as lower bound, which categories are not available. Therefore, the presented model

is compared to MLP trained with labeled data for each set and two cluster algorithms

(K-means and Hierarchical Clustering). The clustering algorithm implementations are
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provided by scikit-learn [93].

7.4 Results and Discussion

In this section, the average of a ten cross-validation is reported. Table 7.1 summarizes

the results of all datasets. The first three datasets show that classless association model

reaches an Association Accuracy (AAcc) below than the supervised case. This metric

is not calculated for the clustering approaches because there is no clear link without

analyzing each pair of clusters. In more detail, the results of this association only show

that a pair of input samples agree on the same index. Nonetheless, it does not show

if the model learns to discriminate classes. The purity metric of the first three classes

shows a good performance in both cases (supervised and unsupervised scenarios). The

performance of the presented model is lower than the supervised case. However, it is still

good because of the lack of labeled information. These observations are also supported by

comparing the performance to the unsupervised case where the classless model reaches

better results. For example, the clustering algorithm reaches approx. 64% whereas the

presented model reaches around 89% (MNIST and Inverted MNIST). In a most extreme

scenario, this model shows its superiority against the clustering algorithms in the case

of random rotation MNIST. The association accuracy is not as good as the first three

datasets.

The classless model learns the concept of classes while it is training. Figure 7.4 shows

an example of this behavior. Initially, the samples are uniformly distributed between the

indexes, therefore the purity is closed to random chance. After 1,000 epochs, the purity

increases and the association matrix shows initial results. At this stage, it is unclear

what samples are grouped based on the other indexes. However, new groups with a clear

pattern are presented after 3,000 epochs. Some examples are digits 1 and 0. After 49,000

epochs, both networks match the classification and that is also supported by the purity

of each MLP and the association matrix.

Figure 7.5 compares the best and worst results between all folds. It can be observed

that the best result has a perfect matching between both networks (main diagonal in the

Association Matrix). The worst result presents a partial matching in the sense that both

networks classify the some samples of different classes with the same index, which is

supported the low purity of the second MLP. One group with two digits causes this bad

performance.
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TABLE 7.1. Association Accuracy (%) and Purity (%) results. This model is
compared with the supervised scenario (labels are provided) and with K-
means and Hierarchical Agglomerative clustering (no label information).

Dataset Model Association Purity (%)
Sample 1 Sample 2 Accuracy (%) X(1) X(2)

supervised association 96.7±0.3 96.7±0.2 96.6±0.3
classless association 86.1±3.2 89.6±4.5 89.0±4.2
K-means - 63.9±2.2 62.5±3.7
Hierarchical Agglomerative - 64.9±4.7 64.3±5.5

supervised association 93.2±0.3 96.4±0.2 96.6±0.2
classless association 86.5±2.5 82.9±4.5 82.9±4.3
K-means - 65.0±2.8 64.0±3.6
Hierarchical Agglomerative - 65.4±3.5 64.1±4.1

supervised association 93.2±0.3 96.5±0.2 96.5±0.2
classless association 89.2±2.4 89.0±6.8 89.1±6.8
K-means - 64.8±2.0 65.0±2.5
Hierarchical Agglomerative - 64.8±4.4 64.4±3.8

supervised association 88.0±0.5 96.5±0.3 90.9±0.5
classless association 69.3±2.2 75.8±7.3 65.3±5.0
K-means - 64.8±2.6 14.8±0.4
Hierarchical Agglomerative - 65.9±2.8 15.2±0.5

Figure 7.6 shows a comparison between the learning curve (Purity) of the supervised

and class-less cases. Note that the supervised case learns faster with the same network

parameters as the class-less association. Also, the classless approach learns slower

because the class convergence is learned by similar grouping elements that have similar

features.

7.5 Summary

In this chapter, a new association model has been described, in which the two instances

of the same unknown semantic concepts are the input samples. Additionally, the training

algorithm does not rely on labeled datasets. Therefore, a new loss function has been in-

troduced that employs statistical distributions as targets. Several findings are described

below

• The performances of the presented model is located between the unsupervised
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and supervised approaches. In the one hand, the two clustering algorithms reach

results between 15% and 65% whereas this model surpasses them with better

performances between 65% and 89%. On the other hand, MLP trained with labels

(supervised approach) has a better performance than the classless association

model with results between 90% and 96%. Hence, it is possible to infer that the

classless association has a good trade-off between the lack of labeled data and the

performance of the supervised case as baselines.

• The training algorithm can slowly make groups with instances of the same cate-

gories. Also, both networks agree on the same group-index. However, one limitation

of the model is to group two semantic concepts into one group (random rotation

dataset). Thus, the model cannot recover from this condition. In other words, the

instances of different classes that are in the same group cannot be split apart by

the model.

• The training algorithm is slow comparing to MLP (trained with labeled data) and

the clustering algorithms. The main bottleneck is updating the pseudo-classes. As

a result, the information that is embedded in the model needs to be updated. One

possible solution is that the model decides by itself when the pseudo-classes are

updated.
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8
CONCLUSION AND FUTURE WORK

This thesis describes a new symbolic association framework that combines NN and SGP.

Additionally, the presented model is also inspired by AL in infants, in which newborns

learn that two or more sensory signals represent the same concept. There are many

challenges in this scenario. Firstly, SGP is still an open problem because it is unclear

how the human brain can map abstract concepts to the real world and can manipulate

those concepts. For example, the concepts related to numbers are manipulated for

mathematical operations, whereas letters are manipulated for communication. Secondly,

infants learn to acquire their vocabulary based on association visual and audio sensory

information. For example, a newborn can receive two signals: one signal is the waveform

of play with the ball, and the other is the visual representation of an environment

with the ball. Therefore, the children require several processes to understand these

two signals. The waveform and the scene must be segmented into units (e.g., words,

objects). Afterwards, each unit is classified into concepts where same concepts, such as

the ball, can be linked to each other modality. Thirdly, the importance of each modality for

vocabulary acquisition in children. Consider the concept triangle. A visual representation

might be a contour with three lines that are connected by three vertexes, and an audio

representation might be the sound of triangle. Moreover, a third representation might

be the feeling of texture that the triangle is made of, e.g., wood, wool, or plastic Each of

those examples are represented in three different formats: visual, audio, and haptic.

The main contributions rely on NN, CC, and CS for learning the association in a
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simplified scenario that is inspired by vocabulary acquisition in infants. It is possible to

interpret the NN output as numerical symbolic features because discriminant features

can be embedded in their architectures. The symbolic association has been evaluated in

mono- and multi-modal association tasks.

8.1 Concluding Remarks

This thesis has investigated mainly two NN architectures for the association learning:

MLP and LSTM. As a general overview, the general association framework exploits of

using output or target vectors from one network to train another network. This cross-
learning approach force that both NN converge to the same category. Algorithm 3 shows

the general association algorithm of the presented models.

Algorithm 3 Pseudocode of the Association Learning.

Require: two neural networks: NN(1), NN(2) and two input sets: X(1),X(2)

Ŷ(1) ← f orward_step(NN(1),X(1))
Ŷ(2) ← f orward_step(NN(2),X(2))
backward_step(NN(1),Ŷ(2))
backward_step(NN(2),Ŷ(1))

This thesis focuses on the association task in the mono- and multi-modal domains.

The mono-modal scenario uses two datasets: digit association and object association. The

multi-modal scenario is applied to sample pairs and sequence pairs. The sample pairs

are images and texts whereas the sequence pairs are panorama and audios.

Three models have been proposed in this thesis for each association scenario. The first

model relies on two NN networks that associate two isolated elements of the same concept.

The performance of the model reaches similar results to the traditional approach, which

is MLP networks trained independently on each input set. This approach is evaluated in

two cases mono- and multi-modal associations based on MNIST and COIL-20 datasets

for the first case, and TVGraz and Wikipedia datasets for the second case.

The second model is based on two LSTM networks for associating sequences with

weakly labels. In contrast to the MLP-based approach, this model produces two latent

spaces that are aligned to each other. This approach has also been evaluated in several

scenarios: mono- and multi-modal sequences. The performances are still similar to the

traditional case where each LSTM is trained independently in the input set. Moreover,
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this model is extended to handling sequences that contain elements that are presented

in one or both modalities. The extension of the model has shown better results than

the LSTM model that assumes both sequences represent the same series of concepts.

This model is robust concerning the number of missing elements and holds a similar

performance in each multi-modal setup.

The third model is an extension of MLP-based approach where the association task is

defined by two samples that represent the same unknown concept. This model relies on

a statistical distribution of classes instead of predefined classes. Therefore, the training

set does not have any labeled data. This version of the model has been evaluated in

a mono-modal dataset where one input set has been applied a spatial transformation,

such as identity, rotation 90 degrees, inverse, and random rotation. The performance

of the model is compared to two cases. One side is the supervised scenario where the

labels are available for each sample, and the other side the labels are not available at

all. MLP networks are used as upper bound (supervised), and two cluster algorithms

are used as lower bound (unsupervised). The classless model reaches results that are

in both cases. Moreover, the performance reaches better than the clustering, especially

in the random rotation where clustering algorithms entirely fail to make groups with

similar samples. On the other hand, the performance of the class-less model reaches

a good performance about the supervised case regarding trade-off between label and

accuracy. This limitation is caused by the loss function cannot impose similar samples

that represent different categories. Therefore, the model cannot split two or more digits

after they are in the same group. For example, the digits three and eight are grouped by

the same pseudo-class (see Figure 8.1).

8.2 Future Directions

The presented work has several contributions for symbolic approaches based on NN.

This section provides future directions in the association learning framework for two

architectures: LSTM- and Classless MLP-based approaches. The goal of proposed direc-

tions is to extend the association framework to reach human-level association between

different modalities. This section is divided as follows. Section 8.2.1 describes the future

work based on the association framework with parallel LSTM. Section 8.2.2 describes

the future work based on the classless association
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8.2. FUTURE DIRECTIONS

8.2.1 LSTM-based Approach

The model based on LSTM has several directions for future work. In this section, four

scenarios are proposed

Association between two-dimensional images and audio: The original assumption

is to align panoramas and audio signals. The next step is to align a different setup

of two-dimensional images and one-dimensional audio with weakly labels. There

are several challenges to be considered in this task. One of the most critical chal-

lenges is to segment all objects on the image into one-dimensional sequence with

the same order as the audio signal.

More modalities: The current version of the model aligns only two modalities. Fur-

thermore, a third signal can be included based on motor sensors, i.e., recording

the process of writing digits. The new information can be combined given two ap-

proaches. One approach is to use DTW given the three signals. The other approach

is combining the best relation between each pair of signals, for example: selecting

two of the following pairs audio-visual, visual-motor, and motor-audio.

More Languages: The different languages can be visually grounded to the same objects.

In this scenario, a word in English and a word in French are linked to the same

visual representation of the desired concept. This direction can be seen similar to

the direction of more modalities

Classless LSTM: The last direction is to adapt the same motivation of the Classless

MLP-based approach to LSTM. Thus, LSTM with CTC can be trained based on

a statistical distribution instead of classes. One of the main challenges is the

number of classes that are presented in the sequence whereas one class per input

is presented in the MLP-based approach.

8.2.2 Classless Association (MLP-based Approach)

This model has been evaluated in a simplified scenario where the next logical step is to

find the limits of the model.

Few- and One-shot Learning: The first direction is to evaluate against other models

regarding few- and one-shot learning. This model does not have any information
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regarding of samples. However, its performance can be improved with minimal

label effort, for instance, one label per class.

More challenging tasks: The second direction is to extend the model to more challeng-

ing case, such as object recognition and multi-modal association. Additionally, the

training algorithm has been evaluated with fully-connected layers. It is essential to

evaluate this model with different layers and architectures, such as Convolutional

or Residual connections.

Shared-weights between MLPs: The third direction is to exploit shared weight be-

tween networks of different modalities. For instance, visual samples can be useful

for training a network with text samples. In this case, the networks have mutual

information that is embedded.

More distributions: The last direction is to evaluate the robustness of the model

with different statistical distributions. At the moment, the model reaches good

performances if the training set and the target distribution are both uniform

distribution. However, the statistical distributions in real applications are more

difficult to obtain. Therefore, it is important to analyze cases that input distribution

is different from the target distribution.
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