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Abstract

Numerical Godeaux surfaces are minimal surfaces of general type with the smallest possible
numerical invariants. It is known that the torsion group of a numerical Godeaux surface is cyclic
of orderm ≤ 5. A full classification has been given for the casesm = 3, 4, 5 by the work of Reid
and Miyaoka. In each case, the corresponding moduli space is 8-dimensional and irreducible.
There exist explicit examples of numerical Godeaux surfaces for the orders m = 1, 2, but a
complete classification for these surfaces is still missing.

In this thesis we present a construction method for numerical Godeaux surfaces which is based
on homological algebra and computer algebra and which arises from an experimental approach
by Schreyer. The main idea is to consider the canonical ring R(X) of a numerical Godeaux
surface X as a module over some graded polynomial ring S. The ring S is chosen so that R(X)
is finitely generated as an S-module and a Gorenstein S-algebra of codimension 3. We prove
that the canonical ring of any numerical Godeaux surface, considered as an S-module, admits
a minimal free resolution of length 3 whose middle map is alternating. Moreover, we show
that a partial converse of this statement is true under some additional conditions. Afterwards
we use these results to construct (canonical rings of) numerical Godeaux surfaces. Hereby, we
restrict our study to surfaces whose bicanonical system has no fixed component but 4 distinct
base points, in the following referred to as marked numerical Godeaux surfaces.

The particular interest of this thesis lies on marked numerical Godeaux surfaces whose torsion
group is trivial. For these surfaces we will study the fibration of genus 4 over P1 induced by the
bicanonical system. Catanese and Pignatelli showed that the general fibre is non-hyperelliptic
and that the number h̃ of hyperelliptic fibres is bounded by 3. The two explicit constructions of
numerical Godeaux surfaces with a trivial torsion group due to Barlow and Craighero-Gattazzo,
respectively, satisfy h̃ = 2.

With the method from this thesis, we construct an 8-dimensional family of numerical Godeaux
surfaces with a trivial torsion group and whose general element satisfy h̃ = 0. Furthermore, we
establish a criterion for the existence of hyperelliptic fibres in terms of a minimal free resolution
of R(X). Using this criterion, we verify experimentally the existence of a numerical Godeaux
surface with h̃ = 1.
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Notation

Let X be a smooth projective complex surface, and let D,D′ be divisors on X . We use the
following notation:

D ∼ D′ D and D′ are linearly equivalent
D ≡ D′ D and D′ are numerically equivalent
PicX the Picard group of X
TorsX the subgroup of torsion elements of PicX
H i(X,OX(D)), or simply H i(X,D) the ith cohomology group of the sheaf OX(D)
hi(X,OX(D)), or simply hi(X,D) the vector space dimension of H i(X,OX(D))
χ(OX(D)) the Euler-Poincaré characteristic of OX(D), that is

h0(X,OX(D))− h1(X,OX(D)) + h2(X,OX(D))
KX a canonical divisor of X
pg(X) the geometric genus of X , that is h0(X,OX(KX))
q(X) the irregularity of X , that is h1(X,OX)
Pn(X) the nth-plurigenus of X , that is h0(X,OX(nKX))

for n ≥ 1
κ(X) the Kodaira dimension of X

If X is clear from the context, we will often write pg, q, Pn, χ and K2 instead of pg(X), q(X),
Pn(X), χ(OX) and K2

X .

Throughout this thesis, all considered rings will be commutative and unitary. Let A be a
Noetherian ring, and let I ⊆ A be an ideal. If M is a finitely generated A-module, we set:

depth(I,M) the length of any maximal M -sequence in I
annAM the annihilator of M
projdimAM the projective dimension of M

For a map ψ : F → G between free A-modules, we write:

rank(ψ) the rank of ψ
Ij(ψ) the jth determinantal ideal of ψ
I(ψ) Irank(ψ)(ψ)

If d is a matrix representing ψ, then rank(ψ) is the same as the size of the largest non-vanishing
minor of d. By abuse of notation, we sometimes write rank(d) instead of rank(ψ).
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1 Introduction

In the study of algebraic surfaces throughout the last centuries, complex surfaces with geometric
genus pg = 0 and irregularity q = 0 have always been of a particular interest. Around 1870,
Max Noether posed the question whether every surface satisfying pg = q = 0 is rational. A first
negative answer was given by Enriques in 1894. Enriques considered a surface of degree 6 in
P3 passing doubly through the edges of a tetrahedron. The normalization is then a non-rational
surface with the desired invariants. Shortly afterwards, Castelnuovo presented his celebrated
rationality criterion stating that a surface is rational if and only if P2 = q = 0, where P2 denotes
the second plurigenus, and another example of a non-rational surface with pg = q = 0 ([Cas96]).

In the 1930s, the first examples of surfaces of general type with pg = q = 0 were constructed
independently by Campedelli and Godeaux ([Cam32], [God34]). Campedelli constructed a sur-
face with pg = 0 and K2 = 2 as the minimal model of a double cover of P2 branched along a
curve of degree 10 having a specific configuration of singularities. Godeaux considered a quin-
tic surface Y in P3 on which the cyclic group of order 5 acts without fixed points. Then Y is a
surface of general type with K2

Y = 5, pg(Y ) = 4 and q(Y ) = 0 and the smooth minimal model
of the quotient is a surface of general type with K2 = 1 and pg = q = 0. In honor of their work,
minimal surfaces of general type with pg = 0, and hence q = 0, are nowadays called numerical
Godeaux surfaces if K2 = 1 and numerical Campedelli surfaces if K2 = 2.

In 1977, Gieseker showed the existence of a quasi-projective coarse moduli space Ma,b

parametrizing isomorphism classes of minimal models of surfaces of general type with K2 = a
and χ = b ([Gie77]). Having a complete description of Ma,b for as many types of (K2, χ) is a
constant aspiration in algebraic geometry. A first natural question is for which values of (K2, χ),
there exists a minimal surface of general type with these invariants, and hence a non-empty
moduli space. Although there is no general answer to this question, the numerical invariants of
a minimal surface of general type X satisfy several well-known inequalities:

• K2
X ≥ 1 and χ(OX) ≥ 1,

• K2
X ≤ 9χ(OX) (Bogomolov-Miyaoka-Yau-inequality),

• K2
X ≥ 2χ(OX)− 6 (Noether’s inequality).

If the surface X is irregular, that means q(X) > 0, a further restriction is given by Debarre’s
inequality stating that K2

X ≥ 2χ(OX) in this case. This shows, in particular, that the numerical
Godeaux surfaces are exactly the minimal surfaces of general type satisfying K2 = χ = 1.
Thus it is fair to say that numerical Godeaux surfaces are the surfaces of general type with the
smallest possible invariants.

From the beginning of the 1970s, several steps towards a complete classification of these
surfaces have been achieved. Miyaoka showed that the group H2(X,Z)tors ∼= TorsX is cyclic
of order ≤ 5, where TorsX is the torsion subgroup of the Picard group of a numerical Godeaux
surface X ([Miy76]). For a surface with a non-trivial torsion group of order m, the original
construction due to Godeaux generalizes to the following: There exists a finite étale covering
Z → X of degree m corresponding to TorsX . Construct first the cover surface Z and realize
X then as the quotient. Using this method, Reid gave a complete description of the canonical
ring of a numerical Godeaux surface X with TorsX = Z/5Z, Z/4Z and Z/3Z ([Rei78]). In
each case, Reid showed that the moduli space of these surfaces is irreducible and 8-dimensional.
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Figure 1.1: The geography of minimal surfaces of general type

In the 1980s, Barlow constructed numerical Godeaux surfaces with TorsX = 0 and TorsX =
Z/2Z ([Bar82]). The surfaces with a trivial torsion group were also the first examples of simply
connected numerical Godeaux surfaces. Since then there have been further examples of numeri-
cal Godeaux surfaces with TorsX = Z/2Z ([Bar85], [Wer94], [Wer97], [Cou09], [KLP10]) and
trivial torsion group ([CG94]), but a complete classification for these surfaces is still missing.

The main subject of this thesis is a construction method for numerical Godeaux surfaces based
on homological algebra and computer algebra. The construction arises from an experimental
approach by Schreyer ([Sch05]). The basic idea of this approach is to study the canonical ring

R(X) =
⊕
n≥0

H0(X,OX(nKX))

of a numerical Godeaux surface X as a module over a polynomial ring S. More precisely, let
x0, x1 be a basis of H0(X,OX(2KX)), and let y0, . . . , y3 be a basis of H0(X,OX(3KX)). We
will show that R(X) is a finitely generated S = k[x0, x1, y0, . . . , y3]-module for any numerical
Godeaux surface X . Thus, geometrically, we study the canonical model Xcan = Proj(R(X))
of X via its image under the finite morphism Xcan → Proj(S) = P(22, 34).

In Chapters 3, 4 and 5 we prove some general results on the canonical ring R(X), considered
as an S-module, and its minimal free resolution. These statements provide the theoretical foun-
dation for our construction which we present in Chapters 6, 7 and 8. In doing so, we restrict
our study to numerical Godeaux surfaces whose bicanonical system has no fixed component
but four distinct base points. We refer to these surfaces as marked numerical Godeaux surfaces.
Note that the torsion group of any such surface is of odd order. But anyway, our main interest
lies in numerical Godeaux surfaces with a trivial torsion group.
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Besides the theoretical results, one of the major features of our method is that we can compute
explicit examples of numerical Godeaux surfaces. Let us briefly explain this by means of the
following diagram:

X̃ X Xcan P(22, 34, 44, 53)

P1 P1 × P3 P(22, 34)

f ϕ

π

g

X denotes a marked numerical Godeaux surface and π : X → Xcan is the birational morphism
onto the canonical model of X . The map g is a product rational map induced by the linear
systems |2KX | and |3KX | and is birational onto its image W ⊆ P1×P3 ([CP00], [Pig00]). The
bicanonical system induces a fibration f : X̃ → P1 of genus 4, where X̃ is the blow-up of X at
the four base points of |2KX |.

We focus on the morphism ϕ : Xcan → P(22, 34) and the image Y ⊆ P(22, 34). Via our
construction we obtain in the first place only the surface Y which is a birational model of the
canonical modelXcan. However, we develop an algorithm for determining the defining relations
of Xcan ⊆ P(22, 34, 44, 53) from a (given) minimal free resolution of R(X) as an S-module.
Hence, we obtain the canonical model Xcan and the different birational models Y and W and
we can study the geometry of these surfaces explicitly via computer algebra.

Now let us assume that TorsX = 0. The general fibre of f is non-hyperelliptic and a complete
intersection curve of type (2, 3). However, hyperelliptic fibres may occur and Pignatelli showed
that the number h̃ of hyperelliptic fibres (counted with multiplicity) is ≤ 3 ([Pig00]). The two
explicit constructions of torsion-free numerical Godeaux surfaces due to Barlow and Craighero-
Gattazzo, respectively, satisfy h̃ = 2. We believe that these surfaces are rather special and that
the general elements of the moduli space of torsion-free numerical Godeaux surfaces satisfy
h̃ = 0. Up to now, the existence of surfaces with h̃ = 1 has been unknown.

Throughout this thesis we establish several new relations between Schreyer’s original ap-
proach and geometric properties of X such as the order of the torsion group or the existence
of hyperelliptic curves in the bicanonical system |2KX |. One main result of this thesis is the
existence of an 8-dimensional family of torsion-free numerical Godeaux surfaces whose general
element has no hyperelliptic bicanonical curves. Furthermore, we develop a criterion for the ex-
istence of (smooth) hyperelliptic bicanonical curves which allows us, in particular, to determine
the number of these curves from the first syzygy matrix of a minimal free resolution of R(X)
as an S-module. Moreover, using this criterion, we compute an explicit example of a numerical
Godeaux surface (defined over a field with characteristic p > 0) satisfying h̃ = 1.

We end this introductory part by giving an outline of the chapters and results of this thesis:

In Chapter 2 we briefly introduce most of the notation which will be used throughout this
thesis such as minimal free resolutions, canonical modules, and minimal and canonical surfaces.

Chapter 3 then focuses on numerical Godeaux surfaces. It is known that the canonical ring
R(X) of a numerical Godeaux surface X is generated in degree ≤ 6. We refine this statement
by showing that R(X) is generated in degree ≤ 5 and describe a minimal set of algebra genera-
tors. Afterwards we consider the canonical ring R(X) as a module over the polynomial ring S
introduced above. We show that the morphism ϕ : Xcan → Y is the normalization of Y . At the
end of Chapter 3, we will see that a minimal free resolution of R(X) as an S-module has length
3 and determine the Betti numbers of R(X).

In Chapter 4 we present our main theorem on the canonical ring of numerical Godeaux sur-
faces. We prove that the canonical ringR(X), considered as an S-module, admits a minimal free
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resolution whose middle map is alternating. This result can be seen as a generalization of the
celebrated structure theorem of Buchsbaum and Eisenbud for Gorenstein ideals in codimension
3 ([BE77]) and the proof of our statement is based on similar ideas.

In Chapter 5 we prove a partial converse of the structure theorem of Chapter 4. We first
show that any finitely generated graded S-module having a self-dual resolution as described in
Chapter 4 supports, under some additional (ring) condition, the structure of a Gorenstein ring.
Afterwards we show that, under some further mild assumptions, the corresponding scheme is the
canonical model of a numerical Godeaux surface X . Furthermore, we explain how a complete
set of defining relations of R(X) (as a ring) can be obtained from the S-linear relations.

One important ingredient for our construction is that the elements x0, x1 ∈ S form a regular
sequence for R(X). In Chapter 6 we show that modulo this regular sequence the minimal free
resolution of R(X) splits into a direct sum of three exact sequences. Restricting to marked
numerical Godeaux surfaces then, we give an explicit description of these three complexes.
Furthermore, we call a minimal free resolution ofR(X) standard if the middle map is alternating
and the complexes are of a particular fixed form modulo x0, x1. We will show that the canonical
ring of any marked numerical Godeaux surface admits such a standard resolution.

In Chapter 7 we present and explain the individual steps of our construction. We will see
that constructing S-modules R having a standard resolution is basically equivalent to choosing
a line in a complete intersection Q ⊆ P11 and a point in some vector space. More precisely,
our construction depends on pairs of the form (l, p), where l is a 2 × 12 matrix representing a
line in Q and p is a point in a vector space V(l). In particular, we can assign such a pair to any
standard resolution of R(X). The variety Q is defined by four quadrics of rank 6 which are the
Pfaffians of some skew-symmetric matrices of size 4. We present a method for finding lines in
Q and study also some local properties of the corresponding Fano scheme of lines F1(Q).

To decide if a pair (l, p) results in the canonical ring of a numerical Godeaux surface X , we
use the statements from Chapter 5. If this is the case, we assign to the pair (l, p) the isomorphism
class [X] ∈ M1,1 and speak of an admissible pair. In Chapter 8 we characterize and identify
(admissible) pairs which lead to isomorphic surfaces. The identification part is mainly done by
introducing appropriate group operations on the parameter space of the matrices l and the vector
spaces V(l). Furthermore, we give some criteria which allow us to determine the order of the
torsion group of X from a given standard resolution of R(X). Finally, we use our construction
to show the existence of an 8-dimensional family of numerical Godeaux surfaces having a trivial
torsion group which Schreyer’s experimental results already suggested. The proof of this result
is based on the fact that we can construct one such surface with our method which will be verified
in Chapter 11.

In Chapter 9 we briefly recall the classification results on numerical Godeaux surfaces with
torsion group Z/5Z and Z/3Z due to Godeaux, Miyaoka and Reid, respectively. For every
member X of the 8-dimensional family of Z/5Z-Godeaux surfaces we give an explicit descrip-
tion of the first syzygy matrix of R(X) as an S-module. In particular, we will see that such a
surface is a marked numerical Godeaux surface. Furthermore, in both cases, we deduce some
properties on the standard resolutions of the corresponding canonical rings.

In Chapter 10 we restrict our attention to torsion-free marked numerical Godeaux surfaces.
We show that our finite birational morphism ϕ : Xcan → Y ⊆ P(22, 34) is not an isomorphism
if there exists a (smooth) hyperelliptic bicanonical curve. Furthermore, we give an explicit
characterization of the existence of such curves in terms of a standard resolution of R(X).

The aim of Chapter 11 is to present some explicit computations with MACAULAY2 ([GS]). In
particular, we construct a marked numerical Godeaux surface (defined over a finite field exten-
sion over Q) having a trivial torsion group and no hyperelliptic fibres. Furthermore, we verify
by an explicit computation the existence of a torsion-free numerical Godeaux surface (defined
over a finite field) having exactly one hyperelliptic bicanonical curve.



2 Preliminaries

The aim of this chapter is to introduce the main objects and tools which are used throughout the
thesis. We start by describing minimal free resolutions and Betti numbers. Then we introduce
the notion of ∗local rings and ∗canonical modules. At the end of the chapter, we give a brief
introduction to algebraic surfaces, where the main focus lies on surfaces of general type.

Notation 2.0.1. Throughout this thesis, k denotes an algebraically closed field unless otherwise
stated. When dealing with surfaces, we will often assume that k = C.

2.1 Minimal Free Resolutions and Betti Numbers

In this section we state some well-known results on minimal free resolutions and syzygies which
can be found in [Eis05]. Let S = k[t0, . . . , tr] be the graded polynomial ring in r + 1 variables
with deg(ti) = ai > 0 for i = 0, . . . , r. If ai = 1 for all i, then we call S standard graded.
Let M =

⊕
d∈ZMd be a finitely generated graded S-module, and let m1, . . . ,mn ∈ M be

homogeneous generators of M with deg(mj) = bj . Sending the canonical basis vectors of the
free module F0 =

⊕
j S(−bj) to the mj , we get a surjective map of degree 0

0←M ← F0.

The kernel M1 of this map is again a finitely generated graded S-module. We call the elements
of M1 syzygies on the generators mj or syzygies of M . Continuing this procedure with the
module M1 yields an exact sequence

0←M ← F0 ← F1 ← · · · ← Fi ← Fi+1 ← · · · . (2.1)

We call its free part
F0 ← F1 ← · · · ← Fi ← Fi+1 ← · · ·

a (graded) free resolution of M . By abuse of notation, we also call every sequence as in (2.1) a
free resolution of M .

Theorem 2.1.1 (Hilbert’s Syzygy Theorem). Let M be a finitely generated graded S-module.
Then M has a finite graded free resolution

F0 ← F1 ← · · · ← Fm−1 ← Fm ← 0

of length m ≤ r + 1 with finitely generated free modules Fi.

Proof. See [Eis05], Theorem 1.1 and Exercise 1.1.2.

A free resolution of a finitely generated S-module M is in general not unique. However, we
obtain uniqueness up to isomorphism if we are working with minimal free resolutions:

Definition 2.1.2. Let m = (t0, . . . , tr) ⊆ S. We call a complex of free graded S-modules

· · · ← Fi−1
δi←− Fi ← · · ·
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minimal if for every i the image of δi is contained in mFi−1 .

One can show that a free resolution is minimal if and only if a minimal set of module gen-
erators is chosen in every step of the construction of the free resolution. In particular, such a
resolution exists. Furthermore, a minimal free resolution can be computed from any free resolu-
tion. In the following, M will always denote a finitely generated graded S-module. In view of
the following result we will often speak of the minimal graded free resolution of M .

Theorem 2.1.3. If F and G are two minimal free graded resolutions of M , then there exists a
graded isomorphism of complexes F→ G which induces the identity on M .

Proof. See [Eis13], Theorem 20.2.

One of the most important features of this result is that the number of generators of a given
degree in each module of a minimal free resolution does only depend on the module M and not
on the resolution.

Definition 2.1.4. Let F be the minimal free resolution of M . We write

Fi =
⊕
j

S(−j)βi,j(M).

Then the numbers βi,j(M) are called the (graded) Betti numbers of M . We simply write βi,j
for βi,j(M) if M is clear from the context.

The Betti numbers of M can be represented in a table, called the Betti table of M :

j\i 0 1 · · · m
...

...
... · · ·

...
0 β0,0 β1,1 · · · βm,m
1 β0,1 β1,2 · · · βm,m+1
...

...
... · · ·

...
s β0,s β1,1+s · · · βm,m+s

There exists a characterization of these numbers using the functor Tor. Note that k is the
residue field S/m. The module Tori(M, k) is the ith homology module of the complex F⊗S k.
Since F is a minimal free resolution, every map of the complex F⊗S k is zero and Tori(M, k) =
Fi ⊗S k. By the Lemma of Nakayama the number of minimal generators of Fi in degree j is
then dimk Tori(M,k)j .

Proposition 2.1.5. For M as above we have

βi,j = dimk Tori(M,k)j .

There exist several connections between the Betti numbers of M and its Hilbert function
respectively Hilbert series. Recall that the Hilbert function HM : Z → Z of M is defined by
d 7→ dimkMd. The Hilbert series of M is the formal Laurent series

ΨM (t) =
∑
d∈Z

HM (d)td ∈ Z[[t, t−1]].

First of all we can express the Hilbert function of M in terms of the Betti numbers:
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Proposition 2.1.6. If {βi,j} are the graded Betti numbers of M , then the alternating sums Bj =∑
i≥0(−1)iβi,j (together with the Hilbert function of S) determine the Hilbert function of M

via the formula
HM (d) =

∑
j∈Z

BjHS(d− j).

If S is standard graded this reduces to the formula

HM (d) =
∑
j∈Z

Bj

(
r + d− j

r

)
.

Moreover, the values of Bj can be deduced inductively from the Hilbert functions HM and HS

via the formula
Bj = HM (j)−

∑
k:k<j

BkHS(j − k). (2.2)

Proof. See [Eis05], Corollary 1.10.

Note that the Hilbert function of M does in general not determine the Betti numbers of M .
The next statement expresses the Hilbert series of M as a rational function in t depending only
on the alternating Betti numbers and the weights of the polynomial ring:

Theorem 2.1.7 (Hilbert, [Eis05], Theorem 1.11). Let M and Bj be as above, and set ϕM (t) =∑
j∈ZBjt

j . The Hilbert series of M is given by the formula

ΨM (t) =
ϕM (t)∏
i(1− tai)

.

We end this section with a result relating free resolutions and regular sequences. Regular
sequences play an important role in homological algebra and satisfy various nice properties.
The one we are mainly interested in is the fact that free resolutions stay exact modulo regular
sequences, or more precisely:

Proposition 2.1.8. Let M be a finitely generated S-module with free resolution

F• : F0 ← F1 ← · · · ← Fm ← 0.

Let s = s1, . . . , sk ∈ S be an M -regular sequence. Then F• ⊗ S/(s) is a free resolution of
M ⊗ S/(s) = M/(s)M as an S/(s)-module.

Proof. See [BH98], Proposition 1.1.5.

2.2 Canonical Modules and Gorenstein Rings

Later we will see that our basic object of study is a ∗local ring which is a Gorenstein ring. A
∗local ring is the graded counterpart of a local ring. We hereby use the notation introduced in
[BH98]. For proofs and further details, we refer to Section 1.5 and 3.6 of [BH98]. Throughout
this section A =

⊕
d∈ZAd will denote a graded ring.

Definition 2.2.1 ([BH98], Definition 1.5.13). A graded ideal m ofA is called ∗maximal, if every
graded ideal that properly contains m is equal to A. The ring A is called ∗local, if it has a unique
∗maximal ideal m. A ∗local ring A with ∗maximal ideal m will be denoted by (A,m). The
∗dimension of such a ring, denoted by ∗dimA, is defined as the height of m.
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Notation 2.2.2. We call a graded ring A a positively graded k-algebra if

(i) A =
⊕

d≥0Ad,

(ii) A0 = k.

Throughout this thesis, we tacitly assume that each positively graded k-algebra satisfies the
additional property:

(iii) A is finitely generated over k.

Example 2.2.3. Let A be a positively graded k-algebra, and let m =
⊕

d≥1Ad. Then m is the
unique ∗maximal ideal of A. Hence every positively graded k-algebra is ∗local. In particular,
the graded polynomial ring S of Section 2.1 is ∗local.

Notation 2.2.4. LetM andN be gradedA-modules. AnA-module homomorphism f : M → N
satisfying f(Md) ⊆ Nd+i for all dwill be called homogeneous of degree i. In the case i = 0, we
simply call f homogeneous. LetM0(A) be the category of graded A-modules, whose objects
are gradedA-modules and whose morphisms are homogeneousA-module homomorphisms. We
denote the group of A-module homomorphisms between M and N which are homogeneous of
degree i by Homi(M,N). The module ∗HomA(M,N) =

⊕
i Homi(M,N) is a graded sub-

module of HomA(M,N). Note that HomA(M,N) = ∗HomA(M,N) if M is finitely gener-
ated. By ∗ExtiA(−, N) we denote the ith right derived functor of ∗HomA(−, N) inM0(A). IfA
is Noetherian and M is finitely generated as an A-module, then ∗ExtiA(M,N) = ExtiA(M,N).

Using the ∗Ext-modules we will now introduce the notion of a ∗canonical module:

Definition 2.2.5 ([BH98], Definition 3.6.8). Let (A,m) be a Cohen-Macaulay ∗local ring of
∗dimension d. A finitely generated graded A-module C is a ∗canonical module of A if there
exist homogeneous isomorphisms

∗ExtiA(A/m, C) ∼=

{
0 for i 6= d

A/m for i = d.

The natural question arises whether every Cohen-Macaulay ∗local ring A admits a ∗canonical
module and, if so, whether this is unique. Let (A,m) be as in Definition 2.2.5, and let C be a
∗canonical module of A. If A has no homogeneous units of positive degree, which is equivalent
to the fact that m is maximal in the usual sense, then we get the following result:

Proposition 2.2.6. Let (A,m) be a Cohen-Macaulay ∗local ring, and let C be a ∗canonical
module of A. If m is a maximal ideal, then C is uniquely determined up to homogeneous iso-
morphism.

Proof. See [BH98], Proposition 3.6.9.

We will see that every Cohen-Macaulay positively graded k-algebra admits a ∗canonical mod-
ule. A first step towards this result is:

Example 2.2.7 ([BH98], Example 3.6.10). Let A = k[t0, . . . , tr] be the polynomial ring over
k with deg(tj) = aj > 0, and let m = (t0, . . . , tr) ⊆ A be the ∗maximal ideal of A.
The minimal free resolution of A/m is the Koszul complex K(t0, . . . , tr). From the self-
duality of K(t0, . . . , tr) we see that ∗ExtiA(A/m, A) = 0 for i 6= r and ∗ExtrA(A/m, A) =
A/m(

∑r
j=0 aj). Hence

∗ExtrA(A/m, A(−
r∑
j=0

aj)) = A/m

and A(−
∑r

j=0 aj) is the ∗canonical module of A.
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Note that in this example the ∗canonical module is easy to describe since it is simply a shift
of the ring A. Cohen-Macaulay ∗local rings fulfilling this property have an equivalent important
description:

Proposition 2.2.8. Let (A,m) be a Cohen-Macaulay ∗local ring with ∗canonical module ωA.
Then the following conditions are equivalent:

(i) A is Gorenstein.

(ii) ωA ∼= A(a) for some a ∈ Z.

Proof. See [BH98], Proposition 3.6.11.

The number a from Proposition 2.2.8 is uniquely determined by A if m is maximal (in the
usual sense). If A is a positively graded k-algebra with ∗canonical module ωA, we define the
a-invariant of A as

a(A) = − inf{i | (ωA)i 6= 0}.

Hence, for a Gorenstein positively graded k-algebra we have

ωA ∼= A(a(A)).

In Example 2.2.7 we have seen that any positively graded polynomial ring over k has a
∗canonical module. The following result shows that any Cohen-Macaulay positively graded
k-algebra admits a ∗canonical module:

Proposition 2.2.9. Let (A,m) be a Cohen-Macaulay ∗local ring with ∗canonical module ωA.
Furthermore, let ϕ : (A,m) → (B, n) be a ring homomorphism of Cohen-Macaulay ∗local
rings satisfying

(i) ϕ(Ad) ⊆ Bd for all d ∈ Z,

(ii) ϕ(m) ⊆ n,

(iii) B is a finitely generated graded A-module.

Then ωB exists and
ωB ∼= ∗ExttA(B,ωA),

where t = ∗dimA− ∗dimB.

Proof. See [BH98], Proposition 3.6.12.

Remark 2.2.10. Note that the isomorphism above is an isomorphism of B-modules. Given any
A-module N , the module ∗HomA(B,N) (and hence also ∗ExtiA(B,N) for any i) has a natural
structure as a (graded) B-module. Indeed, for b ∈ B and f ∈ ∗HomA(B,N), we define b · f as
the homomorphism which sends an element c ∈ B to f(bc).

At the end of this section, we state a result relating the minimal free resolution of a positively
graded k-algebra with the minimal free resolution of its canonical module:

Proposition 2.2.11. Let A = k[t0, . . . , tr] be as in Example 2.2.7, and let B be a positively
graded k-algebra. Furthermore, let ϕ : A→ B be a ring homomorphism satisfying the proper-
ties of Proposition 2.2.9. Assume that B has a minimal free resolution (as an A-module)

0← B ← F0 ← F1 ← · · · ← Ft ← 0,

with t = ∗dimA− ∗dimB and Fi =
⊕

j A(−j)βi,j . Let dB,A = max{j | βi,j 6= 0}. Then

a(B) = a(A) + dB,A.
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Proof. First note that B is a Cohen-Macaulay A-module since

depth(m, B) = depth(n, B).

Hence ∗ExtiA(B,ωA) = 0 for i 6= t. Using Proposition 2.2.9 this implies that

0← ωB ← ∗HomA(Fm, ωA)← ∗HomA(Fm−1, ωA)← · · · ← ∗HomA(F0, ωA)← 0

is a minimal free resolution of ωB which shows the claim.

2.3 Minimal and Canonical Surfaces

In this section we introduce the main geometrical objects of this thesis: minimal and canon-
ical surfaces. We also introduce the canonical ring of a surface and recall some well-known
statements on surfaces of general type. The definitions and results are mainly extracted from
[Bea96], [Bom73] and [BHPVdV15].

Notation 2.3.1. Throughout this section X denotes a smooth projective complex surface.

To begin with, let us introduce the notion of (−1)-curves and minimal surfaces.

Definition 2.3.2. A curve C ⊆ X is called a (−1)-curve if C ∼= P1 and C2 = −1.

Definition 2.3.3. We call X minimal if X does not contain any (−1)-curves.

Any smooth surface X ′ is birational to a minimal surface which we call a minimal model
of X ′. Hence, when studying (smooth) surfaces up to birational equivalence, a first step is to
determine all minimal models in a given birational equivalence class. Whether there exists a
unique minimal model in a fixed equivalence class depends on the Kodaira dimension of the
surfaces in this class:

Definition 2.3.4. Let D be a divisor on X , and let φ|nD| : X 99K Pan be the rational map
associated to the linear system |nD|, n ≥ 1. The Kodaira dimension of D, denoted by κ(D), is
defined as follows. If h0(X,nD) ≥ 1 for some n ≥ 1, then we define

κ(D) = max
n

dimφ|nD|(X).

Otherwise we set κ(D) = −∞. For D = KX we call κ(X) := κ(KX) the Kodaira dimension
of X .

Remark 2.3.5. Note that by definition κ(X) ∈ {−∞, 0, 1, 2}. The Kodaira dimension is a
birational invariant of X . Hence, while studying surfaces up to birational equivalence, we can
subdivide the class of surfaces with respect to their Kodaira dimension. Any surface X with
κ(X) ≥ 0 admits a unique minimal model. Thus, for these surfaces it is sufficient to classify
minimal surfaces.

Definition 2.3.6. A surface X with κ(X) = dimX(= 2) is called a surface of general type.
Otherwise we call X a surface of special type.

Next we introduce two further birational invariants of a surface - the plurigenera and the
canonical ring.

Definition 2.3.7. Let n ≥ 0. We call the linear system |nKX | the nth pluricanonical system
of X . The number Pn = h0(X,nKX) is called the nth plurigenus of X . We denote the
corresponding rational map, if it exists, by

φn : X 99K PPn−1.
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Definition 2.3.8. The canonical ring of X is the graded C-algebra

R(X) =
⊕
n≥0

H0(X,OX(nKX)).

If κ(X) = −∞, thenR(X) ∼= C. In 1962, Mumford proved that forX being of general type,
the canonical ring is a finitely generated graded C-algebra. The main part of his proof is to show
that |nKX | is base-point-free for sufficiently large n. We call any divisor with such a property
semi-ample.

Theorem 2.3.9. The canonical ring of X is a finitely generated C-algebra. For κ(X) ≥ 0, we
have

dimR(X) = κ(X) + 1.

Proof. See [Mum62].

Note that the question whether the equivalent statement holds in higher dimensions has been
an open problem for many decades. However, recently it has been proved that the canonical ring
of any smooth projective variety of general type is finitely generated (see [BCHM10]).

Now let us restrict our study to surfaces of general type. There exists a sufficient condition
for X being of general type in terms of the canonical divisor of X:

Proposition 2.3.10. If KX is ample, then X is of general type.

Proof. As KX is ample, there exists an integer n > 0 such that nKX is very ample. Therefore,
the rational map φn is a closed embedding and hence κ(X) = 2.

The converse of this statement is in general false. For example, if X is a minimal surface
of general type containing a curve C with KXC = 0, then there exists no integer n such that
the rational map φn is an embedding. The irreducible curves on X satisfying KXC = 0 are
completely characterized:

Definition 2.3.11. A curve C ⊆ X is called a (−2)-curve if C ∼= P1 and C2 = −2.

Proposition 2.3.12. Let X be a minimal surface of general type, and let C ⊆ X be an irre-
ducible curve. Then KXC = 0 if and only if C is a (−2)-curve. Furthermore, these curves form
a finite set and are numerically independent.

Proof. See [Bom73], Proposition 2.1.

From now on, we restrict our study to surfaces of general type. In this case, the canonical ring
defines again a surface:

Definition 2.3.13. Let X be a surface of general type. We call the projective surface Xcan =
Proj(R(X)) the canonical model of X .

The canonical model depends only on the birational equivalence class ofX . It is a normal sur-
face having (at most) rational double points as singularities. We can obtain the canonical model
from the minimal model of X by contracting the finitely many (−2)-curves on the minimal
model. In particular, if X is minimal, we obtain a birational morphism

π : X → Xcan

which is a minimal resolution of singularities.
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Remark 2.3.14. The singularities of Xcan are also known as canonical singularities, Du Val
singularities or simple surface singularities. All these notions are equivalent in dimension 2.

In the following we want to study the rational maps associated to the pluricanonical systems
on Xcan. To do this, we first have to extend the definition of a canonical divisor to normal
projective surfaces:

Definition 2.3.15. Let V be a normal projective surface. Being normal implies that the sin-
gular locus Sing(V ) consists of at most finitely many points. Let Vreg = V \ Sing(V ). Then
Vreg is a smooth surface and has a canonical divisor KVreg which is a Weil divisor. Since
codim(Sing(V ), V ) ≥ 2, the divisor KVreg corresponds to a (unique) Weil divisor on V , which
we call the canonical divisor of V , denoted by KV .

Let V be as in the previous definition. Since V is projective it admits a dualizing sheaf ωV
(see [Har77], III. Section 7). Then ωV ∼= OV (KV ). Note that in contrast to a smooth surface,
the canonical divisor on V may not be Cartier, or equivalently, ωV may not be invertible.

Definition 2.3.16. Let X be a minimal surface of general type with canonical ring R :=
R(X) =

⊕
m≥0Rm, and let n ≥ 1. We define the nth Veronese subring of R as

R(n) =
⊕
m ≥0

Rnm.

Then the inclusion R(n) ⊆ R induces an isomorphism of schemes Proj(R) ∼= Proj(R(n)).
Furthermore, the subring

R[n] =
⊕
m≥0

Rmn ⊆ R

is again a graded Noetherian ring and the corresponding scheme

X [n]
can := Proj(R[n])

is called the nth canonical image of X . The inclusion R[n] ⊆ R induces a rational map
κn : Xcan 99K X [n]

can.

For any n ≥ 1, the rational map φn : X 99K PPn−1 factors through the canonical modelXcan:

X Xcan

X
[n]
can

π

φn κn

Furthermore, by Bombieri’s famous theorem on pluricanonical maps, we know that the nth
canonical image is isomorphic to the canonical model for n large enough:

Theorem 2.3.17. Let X be a surface of general type with canonical model Xcan. Then

κn : Xcan → X [n]
can

is an isomorphism for all n ≥ 5.

Proof. See [Bom73], Main Theorem.
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Let us summarize some of the main properties of the canonical model which will be used
throughout this thesis:

Theorem 2.3.18. LetX be a minimal surface of general type with canonical modelXcan. Then

(i) Xcan is a normal projective surface, birational to X ,

(ii) KXcan is Cartier and ample,

(iii) Xcan has only canonical singularities,

(iv) H0(X,OX(mKX)) = H0(Xcan,OXcan(mKXcan)) for every m ≥ 0.

Proof. See [Rei85], Chapter 1 and [Mat13], Chapter 1.

Next we study the canonical ring of minimal surfaces of general type with q = 0. It is known
that the canonical ring of these surfaces is Gorenstein:

Theorem 2.3.19. Let X be a minimal surface of general type. Then R = R(X) is Gorenstein if
and only if q(X) = 0.

For the sake of completeness we will prove this result here. The proof relies on local coho-
mology and some results of Goto and Watanabe. Let us first introduce some notation:

Definition 2.3.20 (see [GW78], Chapter 5). A positively graded k-algebra R fulfills the condi-
tion (]) if there exists d0 ≥ 0 such that for all d ≥ d0 the dth Veronese subring R(d) is generated
by Rd over R0.

Remark 2.3.21. Note that if R = RY,L =
⊕

nH
0(Y,L⊗n) is the section ring of an ample

line bundle L over a projective variety Y , then R satisfies the condition (]). In particular,
the canonical ring R(X) ∼= R(Xcan) of a minimal surface of general type satisfies (]) and

ωXcan
∼= ˜R(X)(1) = OXcan(1) (see [GW78], Notation 5.1.7).

Lemma 2.3.22. Let X and R be as in Theorem 2.3.19. Then R is Cohen-Macaulay if and only
if q = 0.

Proof. Assume first that R is a Cohen-Macaulay ring. Then depthR = dimR = 3 implies that
H i

m(R) = 0 for all i ≤ 2, where m =
⊕

d>0Rd. The result follows now from the fact that

H1(X,OX) ∼= H1(Xcan,OXcan) ∼= H2
m(R)0 = 0,

and hence q = h1(X,OX) = 0.

Now we assume that q = 0. First notice that q = 0 implies that

h1(Xcan,OXcan(nKXcan)) = h1(X,OX(nKX)) = 0 (2.3)

for all n ∈ Z. Indeed, for n ≥ 2 and n ≤ −1 this is clear from the proof of Proposition 2.3.26
below. The case n = 0 is the assumption and the case n = 1 follows from Serre duality. To
prove that R is Cohen-Macaulay of depth 3 it is enough to show that H i

m(R) = 0 for i ≤ 2. The
exact sequence relating local and global cohomology

0→ H0
m(R)→ R→

⊕
n

H0(Xcan,OXcan(n))→ H1
m(R)→ 0
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and the fact that R ∼=
⊕
H0(Xcan,OXcan(n)) yields H0

m(R) = H1
m(R) = 0. The vanishing of

H2
m(R) follows now from (2.3) and

H2
m(R) ∼=

⊕
n

H1(Xcan,OXcan(n)) ∼=
⊕
n

H1(Xcan,OXcan(nKXcan)).

It remains to show that R(X) is also Gorenstein under this assumption. For this we use the
following two statements:

Lemma 2.3.23. Let R = RY,L be as in Remark 2.3.21, and let ωR be the ∗canonical module of
R. Then ωR ∼=

⊕
d∈ZH

0(Y, ωY (n)) and ωY ∼= ω̃R, where ωY is the dualizing sheaf of Y .

Proof. See [GW78], 5.1.8.

Lemma 2.3.24. Let R = RY,L be as in Remark 2.3.21 and assume that R is Cohen-Macaulay.
Then RY,L is Gorenstein if and only if ωY ∼= L⊗n for some n ∈ Z.

Proof. See [GW78], 5.1.9.

Note that in the latter case ωR ∼= R(n). Applying this to R = RXcan,ωXcan yields:

Lemma 2.3.25. Let X and R be as in Theorem 2.3.19. If R is Cohen-Macaulay, then R is
Gorenstein with ωR ∼= R(1).

Proof. Follows directly from Remark 2.3.21 and Lemma 2.3.24.

Combining Lemma 2.3.22 and 2.3.25, we see thatR(X) is a Gorenstein ring if and only if q = 0
which proves Theorem 2.3.19.

We end this section by stating a well-known formula for the plurigenera of a minimal surface
of general type:

Proposition 2.3.26. Let X be a minimal surface of general type. Then

Pn = h0(X,OX(nKX)) =


1 for n = 0,

pg for n = 1,(
n
2

)
K2
X + χ(OX) for n ≥ 2.

The proof of this formula is a direct consequence of the Riemann-Roch theorem for surfaces
and Mumford’s vanishing theorem:

Theorem 2.3.27 (Mumford’s vanishing theorem for surfaces). Let D be a divisor on a smooth
projective surface X . If D is semi-ample with Kodaira dimension κ(D) = 2, then

hi(X,OX(−D)) = 0 for all i < dimX.

Recall that we call a divisor D on X semi-ample if, for some m ≥ 1, the linear system |mD| is
base-point-free. By a further result of Bombieri, we know that the canonical divisor of a minimal
surface of general type is semi-ample:

Theorem 2.3.28. Let X be a minimal surface of general type. Then |mKX | is base-point-free
for all m ≥ 4.

Proof. See [Bom73], Theorem 5.2.
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Proof of Proposition 2.3.26. The statement is trivial for n = 0, 1. So let us assume that n ≥ 2.
Applying the Riemann-Roch theorem to OX(nKX) yields

χ(OX(nKX)) =

(
n

2

)
K2
X + χ(OX).

Thus, it remains to show that χ(OX(nKX)) = h0(X,OX(nKX)). By Serre duality we have
h2(X,OX(nKX)) = h0(X,OX((1 − n)KX)), where the right-hand side is zero since the
canonical divisor of a minimal surface of general type is nef and big. Furthermore, applying
Theorem 2.3.27 to the semi-ample divisor (n− 1)KX , we obtain

h1(X,OX(nKX)) = h1(X,OX((1− n)KX)) = 0.





3 Numerical Godeaux Surfaces: Basics

In this chapter we study the canonical ring R(X) of a numerical Godeaux surface X and give
the basic idea of our construction method. First we will consider R(X) as a C-algebra and
determine the degrees of a minimal set of homogeneous algebra generators. Afterwards we take
the 6 generators of lowest degree and study R(X) as a module over the algebra S generated
by these elements. We show that R(X) is a finitely generated Cohen-Macaulay S-module and
compute the Betti numbers of R(X). Furthermore, we show that the corresponding morphism
of projective schemes Proj(R(X)) → Proj(S) is finite and birational onto its image. Let us
first recall the definition of a numerical Godeaux surface:

Definition 3.0.1. A minimal surface X of general type is called a numerical Godeaux surface
if K2

X = 1 and pg = q = 0.

Throughout the whole chapter, X will denote a numerical Godeaux surface, and Xcan =
Proj(R(X)) the canonical model of X . Furthermore, we assume that k = C.

3.1 The Bi- and the Tricanonical System

In our construction we use some classical results on the bi- and the tricanonical system of a
numerical Godeaux surface which we will briefly recall here. Let us start with a more detailed
study of the bicanonical system. We write

|2KX | = |M |+ F,

where M denotes a generic member of the moving part and F the fixed part of |2KX |. Note that
|M | is a pencil by Proposition 2.3.26.

Proposition 3.1.1. If M is generically chosen, M is reduced and irreducible. Moreover, M and
F satisfy one of the following conditions

(i) F = 0,

(ii) KXF = 0, F 2 = −2,M2 = 2,MF = 2,

(iii) KXF = 0, F 2 = −4,M2 = 0,MF = 4.

Proof. See [Miy76], Lemma 6.

The proposition shows that the fixed part of |2KX |, if non-empty, is supported on the (−2)-
curves of X . As these curves are contracted by the morphism π : X → Xcan, we get the
following consequence for the bicanonical system on the canonical model:

Corollary 3.1.2. |2KXcan | is free from fixed components and its generic member is irreducible.

Next we focus on the tricanonical system.

Proposition 3.1.3. |3KX | has no fixed part.

Proof. See [Miy76], Proposition 2.
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Miyaoka also studied the question whether a point on X can be a base point of both the bi-
and the tricanonical system.

Proposition 3.1.4. Let |M | denote the moving part of |2KX |. If M is generic, then M contains
no base points of |3KX |.

Proof. See [Miy76], Proposition 3.

Corollary 3.1.5. Let M̂ be the generic member of |2KXcan |. Then |3KXcan | has no base points
on M̂ .

Proof. See [Miy76], Corollary after Proposition 3.

Remark 3.1.6. Combining the previous statements, we conclude that no base point of |3KX |
(respectively of |3KXcan |) is a base point of |2KX | (respectively of |2KXcan |). Hence, for a
base point P of |3KX | there exists a unique divisorD ∈ |2KX | which contains P . Furthermore,
Miyaoka showed that every base point of |3KXcan | is simple and that P̂ is a base point of
|3KXcan | if and only if P̂ = D̂1D̂2, where D̂1, D̂2 are two distinct effective curves which are
numerically equivalent to KXcan with D̂1 + D̂2 ∈ |2KXcan |. The last fact gives indeed a very
precise description of the number of base points of |3KX |.

Theorem 3.1.7. Every base point of the tricanonical system |3KX | is simple and the number b
of base points is given as follows:

b =
#{t ∈ H2(X,Z)tors | t 6= −t}

2
.

Proof. See [Miy76], Theorem 2.

Note that for numerical Godeaux surfaces H2(X,Z)tors = TorsX = H1(X,Z), where
TorsX is the torsion subgroup of the Picard group of X . Bombieri showed that the order
of the torsion group of a numerical Godeaux surface is less than or equal to 6. Miyaoka refined
this result in the following way:

Theorem 3.1.8. The torsion group of X is cyclic of order less than or equal to 5.

Proof. See [Miy76], Lemma 11 and Remark after Theorem 2’.

Combining these two statements we obtain the following important result:

Theorem 3.1.9. As above, let b denote the number of base points of |3KX |. Then

b =


0 if TorsX ∼= 0 or Z/2Z,
1 if TorsX ∼= Z/3Z or Z/4Z,
2 if TorsX ∼= Z/5Z.

Proof. See [Miy76], Theorem 2’.

Later we will use this characterization and Lemma 3.1.11 below to determine the torsion
group of our constructed surfaces.

Lemma 3.1.10. Assume TorsX 6= 0 and let τ ∈ TorsX be a non-trivial torsion element. Then

h0(X,KX + τ) = 1, h1(X,KX + τ) = 0.

Proof. See [Rei78], Lemma 0.3.
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Lemma 3.1.11. Assume that |2KX | has no fixed part and has (2KX)2 = 4 distinct (simple)
base points. Then the order of TorsX is odd. In particular, for the number b of base points of
|3KX |, we find that

• b = 0 if and only if TorsX ∼= 0,

• b = 1 if and only if TorsX ∼= Z/3Z,

• b = 2 if and only if TorsX ∼= Z/5Z.

Proof. Suppose to the contrary that the order of the torsion group is even, that means TorsX ∼=
Z/2Z or TorsX ∼= Z/4Z. Let τ ∈ TorsX be a non-trivial torsion element of order 2. By
Lemma 3.1.10 there exists an effective divisor D ∈ |KX + τ |. But then |2KX | contains the
double curve 2D and thus, cannot have 4 distinct base points. The second part is an immediate
consequence of Theorem 3.1.9.

3.2 The Canonical Ring R(X)

This section is devoted to describe the degrees of a minimal set of generators of the canonical
ring of a numerical Godeaux surface X . Recall that by Proposition 2.3.26 the plurigenera of X
are given as

Pn = h0(X,nKX) =


1 for n = 0,

0 for n = 1,(
n
2

)
+ 1 for n ≥ 2.

Let x0, x1 be a basis of H0(X, 2KX), and let y0, y1, y2, y3 be a basis of H0(X, 3KX).

Lemma 3.2.1. x2
0, x0x1, x

2
1 are linearly independent.

Proof. Suppose that there exist λ0, λ1, λ2 ∈ C, not all zero, such that λ0x
2
0+λ1x0x1+λ2x

2
1 = 0

in R(X). But every quadratic form in two variables decomposes into a product of two linear
forms. Since R(X) is an integral domain, one of the linear factors must be zero. But x0, x1

being linearly independent implies that the coefficients of this factor are zero, and hence that all
λi are zero, contradicting our assumption.

Since H0(X, 4KX) is 7-dimensional, we can choose z0, . . . , z3 ∈ H0(X, 4KX) so that
x2

0, x0x1, x
2
1, z0, . . . , z3 is a basis of H0(X, 4KX). Our next task is to give a basis for the vector

space H0(X, 5KX). To start with we consider the natural multiplication map

µ : H0(X, 2KX)⊗H0(X, 3KX)→ H0(X, 5KX).

Lemma 3.2.2. The map µ is injective.

Proof. From R(X) ∼= R(Xcan) we get a commutative diagram

H0(X, 2KX)⊗H0(X, 3KX) H0(X, 5KX)

H0(Xcan, 2KXcan)⊗H0(Xcan, 3KXcan) H0(Xcan, 5KXcan)

∼=

µ

µ̃

∼=

.
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Since the vertical maps are isomorphisms, it is sufficient to prove that µ̃ is injective. Let x̃0, x̃1

be a basis of H0(Xcan, 2KXcan). By Corollary 3.1.2 we know that the bicanonical system has
no fixed part on the canonical model. Therefore, V (x̃0) and V (x̃1) do not have a common
component and the following sequence is exact

0→ OXcan(−4KXcan)

(
x̃1
−x̃0

)
−−−−−→

OXcan(−2KXcan)
⊕

OXcan(−2KXcan)

(x̃0,x̃1)−−−−→ OXcan → OZ → 0,

where Z = V(x̃0) ∩V(x̃1). Now tensoring with OXcan(5KXcan) and taking global sections we
get a sequence

0→
H0(Xcan, 3KXcan)

⊕
H0(Xcan, 3KXcan)

(x̃0,x̃1)−−−−→ H0(Xcan, 5KXcan)

which is exact since h0(Xcan,KXcan) = h1(Xcan,OXcan) = 0. Now, since x̃0, x̃1 form a basis
for H0(Xcan, 2KXcan), the second map is simply the map µ̃ which shows the claim.

The lemma shows that the global sections xiyj for i = 0, 1 and j = 0, . . . , 3 define an 8-
dimensional subspace of H0(X, 5KX). Now as h0(X, 5KX) = 11, we can choose sections
w0, w1, w2 ∈ H0(X, 5KX) extending these elements to a basis. Since we will use the same
notation for the generators in the rest of this thesis, let us summarize the previous results in one
table:

n h0(X,nKX) basis of H0(X,nKX)

2 2 x0, x1

3 4 y0, . . . , y3

4 7 x2
0, x0x1, x

2
1, z0, . . . , z3

5 11 x0y0, . . . , x1y3, w0, w1, w2

From the previous chapter we know that R(X) is a positively graded C-algebra. To describe
the structure of this algebra in more detail we are interested in the highest degree of a minimal
homogeneous system of generators and in the number of such generators for each fixed degree.
By the previous results, the second problem is settled for generators up to degree 5 (the elements
marked in blue in the table above). For the first problem, Ciliberto gave upper bounds for the
canonical ring of surfaces of general type depending on pg and K2. For example, he showed
that if pg ≥ 1 then the canonical ring is generated in degree ≤ 5. The highest bound applies to
surfaces of general type with pg = q = 0:

Theorem 3.2.3. Let Y be a minimal surface of general type with pg = q = 0. Then R(Y ) is
generated in degree ≤ 6.

Proof. See[Cil83], Theorem 3.5.

By some Hilbert series calculations and the results of Miyaoka in the previous chapter, we
will refine this statement for numerical Godeaux surfaces:

Proposition 3.2.4. The canonical ring R(X) of a numerical Godeaux surface is generated in
degree ≤ 5.

To prove this statement, we consider first the Hilbert series

Ψ(t) =
∑
n≥0

Pnt
n = 1 +

∑
n≥2

(

(
n

2

)
+ 1)tn
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of R(X). Then Ψ(t) has a representation as a rational function of the form

Ψ(t) =
1− 3t+ 5t2 − 3t3 + t4

(1− t)3
.

Recall that no base point of the tricanonical system is a base point of the bicanonical system.
Hence, there exists a form ỹ0 of degree 3 such that Proj(R(X)/(x0, x1, ỹ0)) = ∅. Hence R(X)
is a finitely generated module over A = k[x0, x1, ỹ0] by Proposition 3.2.6 below. Algebraically
this means that x0, x1, ỹ0 is a homogeneous system of parameters for R(X). Furthermore, since
R(X) is Cohen-Macaulay, R(X) is a free module over A. Now let us use Theorem 2.1.7 on the
alternating Betti numbers to compute the degrees of the free generators:

(1− t2)2(1− t3)Ψ(t) = 1 + 3t3 + 4t4 + 3t5 + t8.

Hence
R(X) ∼= A⊕A(−3)3 ⊕A(−4)4 ⊕A(−5)3 ⊕A(−8). (3.1)

as A-modules. Choose ỹ1, ỹ2, ỹ3 ∈ H0(X, 3KX) so that ỹ0, . . . , ỹ3 is a basis of H0(X, 3KX).
Then clearly

1, ỹ1, ỹ2, ỹ3, z0, . . . , z3, w0, w1, w2

is a basis of R(X) as an A-module up to degree 5.

Proof of Proposition 3.2.4. By the previous arguments, it remains to show that any element in
R(X) is a polynomial expression in the algebra generators of R(X) of degree ≤ 5. Since we
already know that R(X) is generated in degree ≤ 6, it is enough to show this for any form of
degree 6. So let r ∈ R(X) be an arbitrary form of degree 6. Then we can represent r as an
A-linear combination of the module generators up to degree 4 (since there are no linear forms of
degree 1 inA). Hence r is a polynomial expression in the elements x0, x1, y0, . . . , y3, z0, . . . , z3

which proves the claim.

So, if Ŝ = k[x0, x1, y0, . . . , y3, z0, . . . , z3, w0, w1, w2] is the weighted polynomial ring with
degrees as assigned before, then there exists a surjection of rings Ŝ −−→→ R(X), and hence a
closed embedding

ϕ : Xcan = Proj(R(X)) ↪−→ Proj(Ŝ) = P(22, 34, 44, 53). (3.2)

Therefore we can consider Xcan as a subvariety of a weighted projective space of dimension 12.
Furthermore, using Theorem 2.1.7 and Proposition 2.3.26, we deduce from

(1− t2)
2
(1− t3)

4
(1− t4)

4
(1− t5)

3
Ψ(t) = 1− 6t6− 12t7− 18t8− 4t9 + 30t10 + 72t11 + . . .

that Xcan ⊆ P(22, 34, 44, 54) is defined by at least 40 homogeneous relations. Later we will
specify this statement and show that we need exactly 54 defining relations.

Studying this embedding is difficult for various reasons. As a (cyclic) Ŝ-module, R(X) has
a minimal free resolution of length 10. While there is the structure theorem for codimension
3 Gorenstein ideals by Buchsbaum-Eisenbud ([BE77]) or the results on codimension 4 Goren-
stein ideals by Reid ([Rei13a]), only little is known for higher codimension. In particular, to
describe the minimal free resolution of a codimension 10 Gorenstein ideal in general seems
hopeless. Furthermore, from a computational point of view, codimension 10 is not very promis-
ing for irreducibility or non-singularity tests. Schreyer’s basic construction idea addresses these
problems:
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Construction 3.2.5 (Schreyer’s idea). We do not consider R(X) as an algebra but as a finitely
generated S-module, where S ⊆ Ŝ is a subring chosen appropriately. Geometrically, we study
the image of Proj(R(X)) under the projection into the smaller projective space Proj(S).

So as a first step of the construction we have to define a subring S such that R(X) is finitely
generated as an S-module. Note that for the computational side a small codimension of the pro-
jected surface is desirable. For the choice of S we use the following geometric characterization:

Proposition 3.2.6. Let B be a positively graded k-algebra, and let f1, . . . , fk ∈ B be homoge-
neous elements of positive degree. Then B is a finitely generated A = k[f1, . . . , fk]-module if
and only if f1, . . . , fk have an empty vanishing locus in Proj(B).

Applying this to B = R(X) we have to choose global sections of the pluricanonical systems on
X which have an empty vanishing locus on Xcan. So let

S = k[x0, x1, y0, y1, y2, y3],

be the graded polynomial ring, where the xi and yj are as before with deg(xi) = 2 and
deg(yj) = 3. The natural homomorphism

f : S → R(X)

gives R(X) the structure of a graded S-algebra. In the following we consider R(X) as a graded
S-module via the homomorphism f .

Proposition 3.2.7. R(X) is a finitely generated S-module.

Proof. Clear from Remark 3.1.6 and Proposition 3.2.6.

Using the closed embedding in (3.2), we will from now on identify Xcan with its image in
P(22, 34, 44, 53). Now, since R(X) is finitely generated as an S-module, the homomorphism
f : S → R(X) induces a finite morphism of projective schemes

ϕ : Xcan → P(22, 34).

As R(X) is a ring and an S-module we have ker(f) = annS R(X). Let SY = S/ annS R(X)
and Y = Proj(SY ) ⊆ P(22, 34). Then Y is the image of Xcan under ϕ.

Proposition 3.2.8. (Xcan, ϕ) is the normalization of Y .

The proof of this result uses a statement of Miyaoka on the rational map φ3. Recall that we
denote by φn (respectively κn) the rational map associated to the linear system |nKX | (respec-
tively |nKXcan |). By Bombieri’s Theorem 2.3.17 we know that κn is an embedding for n ≥ 5.
Furthermore, Bombieri showed that κ3 is birational except for finitely many choices of tuples
(K2, pg). One exception he stated is the case (K2, pg) = (1, 0). However, Miyaoka proved later
that the statement is indeed true for numerical Godeaux surfaces:

Theorem 3.2.9. Let Z ⊆ P3 be the image of X under φ3. Then φ3 : X 99K Z is birational.

Proof. See [Miy76], Theorem 4.

Now let us prove Proposition 3.2.8:
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Proof of Proposition 3.2.8. We already know that ϕ : Xcan → Y is a finite morphism. Fur-
thermore, Xcan is a normal surface. Hence, by the characterization of the normalization of an
integral scheme, it remains to show that ϕ : Xcan → Y is birational. Since every pluricanonical
map factors through the canonical model we get a commutative diagram

X Z

Xcan

φ3

π κ3

where π and φ3 are birational. Hence, κ3 is birational and, since Xcan ⊆ P(22, 34, 44, 53), it is
the projection of Xcan to P(34) ∼= P3. Now together with the projection of Xcan to P(22, 34)
we get the following commutative diagram of integral schemes

Xcan Z ⊆ P3

Y

ϕ

κ3

On the level of function fields, this corresponds to a commutative diagram

K(Xcan) K(Z)

K(Y )

∼=

But this implies that K(Xcan) ∼= K(Y ). Hence, ϕ : Xcan → Y ⊆ P(22, 34) is birational and
(Xcan, ϕ) is the normalization of Y .

3.3 The Minimal Free Resolution of R(X) as an S-module

A first part of the description of R(X) as an S-module is to study its minimal free resolution.
The main result of this section is the following:

Theorem 3.3.1. The minimal free resolution of R(X) as an S-module is of type

0← R(X)←

S
⊕

S(−4)4

⊕
S(−5)3

←

S(−6)6

⊕
S(−7)12

⊕
S(−8)8

←

S(−9)8

⊕
S(−10)12

⊕
S(−11)6

←

S(−12)3

⊕
S(−13)4

⊕
S(−17)

← 0.

For the proof of this result we need the notation and results on ∗canonical modules from
Section 2.2. Recall that both S and R(X) are ∗local Gorenstein rings with ωS ∼= S(−16) and
ωR(X)

∼= R(X)(1). Since we are only dealing with these two ∗local rings in the following, we
will omit the ∗ if no confusion can arise.

Proposition 3.3.2. R(X) is a Cohen-Macaulay graded S-module.
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Proof. Let m and n denote the graded maximal ideals of S andR(X), respectively. SinceR(X)
is a Cohen-Macaulay ring, we have

depth(n, R(X)) = dimR(X) = 3.

Now the natural ring homomorphism f : S → R(X) satisfies f(Si) ⊆ R(X)i for all i and
f(m) ⊆ n. Hence, since R(X) is a finitely generated S-module,

depth(m, R(X)) = depth(n, R(X)) = 3.

Then the result follows as dimS R(X) = dimS/ annS R(X) = dimR(X) = 3, where the
second equality follows from the fact that S/ annS R(X) ↪→ R(X) is integral.

Now, using the fact that R(X) is Gorenstein, we show that the Betti numbers of R(X) as an
S-module satisfy the following symmetry condition:

Proposition 3.3.3. Let
0← R(X)← F0 ← . . .← Fn ← 0

be a minimal free resolution of R(X) as an S-module, where Fi =
⊕

j≥0 S(−j)βi,j .
Then

βi,j = β3−i,17−j for 0 ≤ i ≤ 3, 0 ≤ j ≤ 17 and βi,j = 0 otherwise.

Proof. First note that the previous statement and the Auslander-Buchsbaum formula in the
graded case imply that

n = projdimR(X) = depth(m, S)− depth(m, R(X)) = 3.

So let
0← R(X)← F0 ← F1 ← F2 ← F3 ← 0

be a minimal free resolution ofR(X). As in the proof of Proposition 2.2.11, applying the functor
HomS(-, ωS) yields a minimal free resolution of ωR(X):

0← ωR(X) ← HomS(F3, ωS)← HomS(F2, ωS)← HomS(F1, ωS)← HomS(F0, ωS)← 0

On the other hand, as R(X) is Gorenstein, ωR(X)
∼= R(X)(1) and, after tensoring with S(−1),

we obtain

0← R(X)← HomS(F3, S(−17))← HomS(F2, S(−17))

← HomS(F1, S(−17))← HomS(F0, S(−17))← 0,

which is another minimal free resolution of R(X). Finally, since the Betti numbers of R(X) are
uniquely determined, we obtain the desired equalities

βi,j = β3−i,17−j for 0 ≤ i ≤ 3, 0 ≤ j ≤ 17 and βi,j = 0 otherwise.

Notation 3.3.4. If Fi is a free module occurring in a minimal free resolution of R(X), we
denote the shift of the dual HomS(Fi, ωS)(−1) ∼= HomS(Fi, S(−17)) from now on by F∨i .
Furthermore, if f : Fi → Fi+1 is an S-linear homomorphism given by a matrix α, the dual map
f∨ : F∨i+1 → F∨i is given by the matrix αtr (with an appropriate shift of the grading).

The main idea of the proof of Theorem 3.3.1 is to consider a minimal free resolution of R(X)
modulo an R(X)-regular sequence. Recall from Section 2.1 that free resolutions stay exact
modulo a regular sequence.
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Lemma 3.3.5. x0, x1 ∈ S is a regular sequence for R(X).

Proof. Using again the fact that the bicanonical system on Xcan has no fixed part, we have
dimR(X)/(x0, x1)R(X) = dimR(X)− 2. The result follows now from R(X) being Cohen-
Macaulay.

So let R = R(X)/(x0, x1)R(X) and T = S/(x0, x1) ∼= k[y0, . . . , y3] with deg(yi) = 3.
Then we get the following:

Lemma 3.3.6. As a T -module R splits into a direct sum

R =
2⊕

k=0

R(k) with R(k) =
⊕
j≡k

(mod 3)

Rj .

Moreover, for any minimal free resolution F• of R(X), the complex F • = F• ⊗ S/(x0, x1)
decomposes into a direct sum of three T -complexes F (k)

• which are minimal free resolutions of
R(k) as a T -module.

Proof. The statement on the splitting of R(X) and its minimal free resolution is a direct conse-
quence of Proposition 2.1.8 and the fact that the degree of any homogeneous element of T is a
multiple of 3.

As a last step before proving Theorem 3.3.1 we compute the alternating Betti numbers Bj of
R(X) as defined in Section 2.1. Let Ψ(t) again denote the Hilbert series of R(X). Then

(1− t2)2(1− t3)4Ψ(t) = ϕR(X)(t) =
∑
j≥0

Bjt
j

= 1 + 4t4 + 3t5 − 6t6 − 12t7 − 8t8

+ 8t9 + 12t10 + 6t11 − 3t12 − 4t13 − t17.

Note that the polynomial ϕR(X)(t) is symmetric in the sense that the coefficients of tk and
−t17−k coincide. This is a further consequence of Proposition 3.3.3.

Proof of Theorem 3.3.1. By the results on the numbers and degrees of the generators of R(X)
as a k-algebra, we know that there are no relations between the generators of degree ≤ 5. Fur-
thermore, using the (known) alternating Betti numbers Bj and the symmetry of the (unknown)
Betti numbers, the minimal free resolution of R(X) as an S-module must be of the following
form

0← R(X)←

S
⊕

S(−4)4

⊕
S(−5)3

⊕
S(−6)l1

⊕
S(−7)l2

←

S(−6)6+l1

⊕
S(−7)12+l2

⊕
S(−8)8+l3

⊕
S(−9)l3

←

S(−8)l3

⊕
S(−9)8+l3

⊕
S(−10)12+l2

⊕
S(−11)6+l1

←

S(−10)l2

⊕
S(−11)l1

⊕
S(−12)3

⊕
S(−13)4

⊕
S(−17)

← 0,

where l1, l2, l3 are non-negative integers.
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By considering this free resolution modulo the R(X)-regular sequence x0, x1, we show now
that l1 = l2 = l3 = 0. By Proposition 3.3.6 we know that the sequence F• splits into a direct
sum of three T -complexes which are minimal free resolutions of Ri for i = 0, 1, 2:

0←− R̄(0) ←−
T
⊕

T (−6)l1
←−

T (−6)6+l1

⊕
T (−9)l3

←− T (−9)8+l3 ←− T (−12)3 ←− 0

(3.3)

0←− R̄(1) ←−
T (−4)4

⊕
T (−7)l2

←− T (−7)12+l2 ←− T (−10)12+l2 ←−
T (−10)l2

⊕
T (−13)4

←− 0

(3.4)

0←− R̄(2) ←− T (−5)3 ←− T (−8)8+l3 ←−
T (−8)l3

⊕
T (−11)6+l1

←−
T (−11)l1

⊕
T (−17)

←− 0

(3.5)

If l2 > 0, then the minimality of the free resolution (3.4) implies that the last (non-trivial) map
of (3.4) has a zero column which is a contradiction. Hence l2 = 0. Using the same argument for
the map in the middle of sequence (3.5) we see that l3 must be zero as well. Then l1 = 0 follows
from considering the last map in (3.5).

Remark 3.3.7. The theorem shows thatR(X) is generated in degree≤ 5 as an S-module. Hence,
this result is an alternative proof of the fact that R(X) is generated in degree ≤ 5 as an algebra.

Corollary 3.3.8. Proj(R̄(0)) is a finite scheme of length 4 in P3.

Proof. We know that R̄(0) =
⊕

k≥0R3k is a graded ring. Now the proof of Theorem 3.3.1
implies that

0← R̄(0) ← T ← T (−2)6 ← T (−3)8 ← T (−4)3 ← 0

is a minimal free resolution of R̄(0) as a T -module, where we consider the variables yj with
degree 1. Hence, R̄(0) is a cyclic T -module whose Hilbert polynomial is the constant polynomial
4. Consequently, Proj(R̄(0)) ⊆ P3 is a finite scheme of length 4.

From Section 3.2 we know that there exists a surjective ring homomorphism

f̂ : Ŝ → R(X),

where Ŝ = k[x0, x1, y0, . . . , y3, z0, . . . , z3, w0, w1, w2] is the graded polynomial ring as defined
before. In the following, we will determine a minimal generating set of the kernel of f̂ . Let
r0 = 1, r1 = z0, . . . , r4 = z3, r5 = w0, r6 = w1, r7 = w2 which generate R(X) as an
S-module. Theorem 3.3.1 shows that there are 26 S-linear relations between these module
generators:

0 =
7∑

k=0

gm,krk. (3.6)

Furthermore, for the 28 elements rirj ∈ R(X), 1 ≤ i ≤ j ≤ 7, there exist elements si,j,k ∈ S
such that

rirj =
7∑

k=0

si,j,krk. (3.7)

Note that modulo the relations (3.6) the relations in (3.7) are uniquely determined. Let IX ⊆ Ŝ
be the ideal generated by the relations in (3.6) and (3.7). Then:
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Lemma 3.3.9. R(X) ∼= Ŝ/IX

Proof. Since all generators of IX define relations in R(X), f̂ factors through a surjective ho-
momorphism Ŝ/IX → R(X). On the other hand, as an S-module, Ŝ/IX is also generated by
r0, . . . , r7 and every relation in (3.6) is also an S-linear relation between the module generators
of Ŝ/IX . Hence, there exists a surjective S-linear homomorphismR(X)→ Ŝ/IX which shows
the claim.

In Proposition 3.2.8 we have seen that ϕ : Xcan → Y is the normalization of Y . We end this
section by giving a criterion for ϕ to be an isomorphism. To do so, let us write the first syzygy
matrix d1 of R(X) as (

d
(0)
1

d′1

)
:

S
⊕
F ′
0

← F1,

and set M = coker d′1.

Proposition 3.3.10. The morphism ϕ : Xcan → Y is an isomorphism if and only if M̃ = 0.

Proof. Let IY = annS R(X) = annS(coker d1), and let SY = S/IY as before. We have
annS R(X) = annS 1R(X) since R(X) is a ring. Hence, the sequence

0→ SY → R(X)→M → 0

is exact, where the non-trivial maps are induced by the ring homomorphism f : S → R(X) and
the projection of F0 onto F ′0, respectively. This yields an exact sequence of coherent OP(22,34)-
modules

0→ OY → ϕ∗OXcan → M̃ → 0

which proves the claim.

The proposition implies that the coherent sheaf M̃ is supported on the non-normal locus of
Y . Let I ′ be the ideal generated by the 7× 7 minors of d′1. Then we have

Supp(M̃) ⊆ V (I ′) = Proj(S/I ′) ⊆ P(22, 34). (3.8)

Note that we obtain only an inclusion as we are working over a weighted projective space. Later
we will see in explicit examples that this inclusion is often strict.





4 A Structure Theorem for the Canonical
Ring

Let X be a numerical Godeaux surface with canonical ring R(X). Furthermore, let S =
k[x0, x1, y0, . . . , y3] be the graded polynomial ring with deg(xi) = 2 and deg(yj) = 3 as in
the previous chapter. We have already seen that the resolution of R(X) as an S-module is iso-
morphic to a twist of its dual. The purpose of this section is to prove a stronger version of this
result. More precisely, we will show that there exists a minimal free resolution of R(X) which
is equal to a twist of its dual up to the sign (−1) in the middle. Let us first introduce some
notation.

Definition 4.0.1 ([BE77], Section 2). Let A be a commutative ring, and let F be a finitely
generated free A-module. We call a map f : F → HomA(F,A(s)), s ∈ Z, alternating if, with
respect to some (and hence any) basis and dual basis of F and HomA(F,A(s)) respectively, the
matrix corresponding to f is skew-symmetric.

The main result of this chapter is the following.

Theorem 4.0.2. There is a minimal free resolution of R(X) as an S-module of type

0← R(X)← F0
η1←− F1

η2←− F∨1
η∨1←− F∨0 ← 0,

where η2 is alternating.

This statement can be seen as a modification of the famous structure theorem of Buchsbaum
and Eisenbud for codimension 3 Gorenstein ideals, see [BE77]. Note that we cannot apply their
results directly since R(X) is not a cyclic S-module. As in [BE77], the central ingredient of our
proof is to define a multiplication on the minimal free resolution of R(X) and to show that this
multiplication is commutative.

4.1 Preliminaries

In this introductory part, A will denote a graded commutative ring, and F = (F•, d) a chain
complex of finitely generated free A-modules with Fi = 0 for i < 0. We will consider F =⊕

i≥0 Fi as a graded A-module. Note that we have two different gradings on F. On the one
hand, we have the grading coming from homology, that means we say f ∈ F is (homological)
homogeneous of degree i if f ∈ Fi. We denote the (homological) degree of f by |f |. On the
other hand, we have the grading coming from A. We denote the degree of any element f ∈ F
which is homogeneous with respect to the grading of A by deg(f).

Definition 4.1.1. By F⊗ F we denote the chain complex whose degree n component is

(F⊗ F)n =
⊕
i+j=n

Fi ⊗ Fj

with differentials
δ(f ⊗ g) = d(f)⊗ g + (−1)|f |f ⊗ d(g)
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for f, g ∈ F homogeneous. Let µ : F ⊗ F → F be a map of chain complexes. We say that the
map µ is homotopy-associative if the chain maps

µ ◦ (µ⊗ idF) : F⊗3 → F and µ ◦ (idF⊗µ) : F⊗3 → F

are homotopic. Moreover, we define a map of chain complexes α : F⊗ F→ F⊗ F by

f ⊗ g 7→ f ⊗ g − (−1)|f |·|g|g ⊗ f

for f, g ∈ F homogeneous. We say that µ is homotopy-commutative if the chain map µ◦α : F⊗
F→ F is homotopic to zero.

4.1.1 The Module HomSY
(R(X), R(X))

One ingredient in the proof of Theorem 4.0.2 is that any non-zero homogeneous SY -linear ho-
momorphism R(X) → R(X) is already an isomorphism, where SY = S/ annS R as before.
The aim of this subsection is to prove the following result which implies this statement:

Theorem 4.1.2. R(X) ∼= HomSY (R(X), R(X)) as SY -modules.

Since we will use similar ideas again, we show this in a more general setting.

Lemma 4.1.3. Let A ⊆ B be an inclusion of integral domains with Q(A) = Q(B). If B is a
finitely generatedA-module, thenB is a fractional ideal ofA, that means there exists 0 6= d ∈ A
such that dB ⊆ A.

Proof. Let b1, . . . , bm be module generators of B as an A-module. Then B, considered as an
A-submodule of Q(A), is generated by b1

1 , . . . ,
bm
1 . But Q(A) = Q(B) implies that for each i

there exist ai, di ∈ Awith di 6= 0 such that bi1 = ai
di

. Then d = d1 ·. . .·dm satisfies dB ⊆ A.

The next step is to show that any A-linear homomorphism B → B for domains A ⊆ B as in
the lemma above is the multiplication by an element of B. The proof relies on two well-known
results:

Proposition 4.1.4. LetA be a reduced ring with total ring of fractions L. If L is a direct product
of finitely many fields and I, J are A-submodules of L, then every A-linear homomorphism
I → J is the multiplication by an element of L.

Proof. See [HS06], Lemma 2.4.1.

Proposition 4.1.5. Let A,L, I, J be as in Proposition 4.1.4. Then the natural map

J :L I → HomA(I, J)

is a surjective A-module homomorphism with kernel 0 :L I .

Proof. See [HS06], Lemma 2.4.2.

Proposition 4.1.6. Let A and B be as in Lemma 4.1.3. Then B ∼= HomA(B,B) as A-modules.

Proof. Let L = Q(A) = Q(B). From Propositions 4.1.4 and 4.1.5 we see that

τ : B :L B → HomA(B,B)

is surjective with kernel 0 :L B. We claim that 0 :L B = 0. Let ad ∈ 0 :L B. Then a
db = 0 for all

b ∈ B. But this implies that ab = 0 for all b ∈ B. Hence a = 0 since B is a faithful A-module.
Thus, τ is an isomorphism. It remains to show that B :L B = B. Clearly B ⊆ B :L B. Now
let z ∈ B :L B ⊆ L. But then z = z · 1 ∈ B.
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To apply this statement in our setting we have to verify thatB = R(X) andA = SY fulfill the
condition assumed above. So let us suppose now that A and B have additionally the structure of
positively graded k-algebras and that B is a finitely generated graded A-module.

Remark 4.1.7. Since B is a finitely generated A-module, HomA(B,B) = ∗HomA(B,B) (see
Notation 2.2.4). Furthermore, the isomorphism τ is compatible with the grading of B and
∗HomA(B,B). Indeed, given b ∈ Bn, the homomorphism τ(b) is homogeneous of degree
n and hence τ(b) ∈ (∗HomA(B,B))n = Homn(B,B). Thus τ is an isomorphism of graded
A-modules.

Let q be a homogeneous prime ideal of B, and let T be the set of homogeneous elements
in B\q. We denote the graded ring T−1B by Bq, and the subring of degree zero elements by
B(q). With the same notation for A, the proof of Theorem 4.1.2 uses the following result on the
homomorphisms of local rings induced by the inclusion A ⊆ B:

Lemma 4.1.8. Let q be a homogeneous prime ideal ofB, and let p = q∩A be the corresponding
(homogeneous) prime ideal of A. If the homomorphism

A(p) → B(q)

induced by the inclusion A ⊆ B is an isomorphism and if Ap contains an invertible element of
degree 1, then the homomorphism

Ap → Bq

is an isomorphism as well.

Proof of Theorem 4.1.2. Identifying SY with its image in R(X) via the injective homomor-
phism SY ↪→ R(X), we have to show thatQ(SY ) = Q(R(X)). First, the inclusion SY ⊆ R(X)
implies that Q(SY ) ⊆ Q(R(X)). Let q = (0) be the generic point of Proj(R(X)) and
p = (0) = ϕ(q) the generic point of Y . Since ϕ : Xcan → Y is birational, the ring homo-
morphism

ϕ]q : (SY )(p) → R(X)(q)

is an isomorphism. Furthermore, (SY )p contains an invertible element of degree 1, for example
the element y0

x1
. The result follows now from the previous lemma and the fact that R(X)q =

Q(R(X)) (and similarly for (SY )p). Consequently, the assumptions of Proposition 4.1.6 are
satisfied and R(X) ∼= HomSY (R(X), R(X)) as graded SY -modules.

4.2 A Multiplicative Structure on the Minimal Free Resolution

From now on F = (F•, d) will denote a (fixed) minimal free resolution ofR(X) as an S-module:

0← R(X)
d0←− F0

d1←− F1
d2←− F2

d3←− F3 ← 0.

The aim of this section is to define a multiplication on F satisfying various properties needed for
the proof of Theorem 4.0.2.

Theorem 4.2.1. There exists a chain map µ : F⊗F→ F such that, writing ab for µ(a⊗ b), the
following holds:

(i) µ respects the grading of S, that is for a, b ∈ F homogeneous with respect to the grading
of S we have deg(ab) = deg(a) + deg(b),

(ii) d(fg) = d(f)g + (−1)|f |fd(g) for any f, g ∈ F homogeneous,
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(iii) µ is homotopy-associative,

(iv) there exists an element e0 ∈ F of degree 0 which acts as a unit for µ on F, that means
e0g = g = ge0 for any g ∈ F,

(v) fg = (−1)|f |·|g|gf for any f, g ∈ F homogeneous (that means µ is commutative).

We will prove this statement in several steps. Throughout the rest of this chapter, we use the
following notation.

Notation 4.2.2. By e0, . . . , e7 we denote the canonical basis of the finitely generated free mod-
ule F0, where e0 corresponds to the summand S in F0. Let mi := d0(ei) ∈ R(X). Then
m0, . . . ,m7 is a generating set of R(X) as an S-module. By µ̃ we denote the (S-linear) multi-
plication map from R(X)⊗R(X) to R(X).

Let us first consider the following diagram:

0 R(X)⊗R(X) (F⊗ F)0 (F⊗ F)1 (F⊗ F)2 (F⊗ F)3 · · ·

0 R(X) F0 F1 F2 F3 0

µ̃

d0 ⊗ d0 δ1 δ2 δ3

d0 d1 d2 d3

where the first row is a complex and the second row is exact. By the comparison theorem for
complexes of projective modules we can lift the map µ̃ : R(X) ⊗ R(X) → R(X) to a map of
complexes µ : F⊗ F→ F inducing µ̃. Furthermore, any two lifts of µ̃ are homotopic.

Proposition 4.2.3. Any chain map µ : F⊗ F→ F which is a lift of µ̃ satisfies properties (i)-(iii)
of Theorem 4.2.1.

Proof. The three properties are immediate from the definition of µ. Property (i) holds since δi
and di are homogeneous maps of degree 0 with respect to the grading by S. Property (ii) is just
the commutativity of the diagram above after adding the chain map µ. To verify the last property
we have to show that the chain map

ρ := µ ◦ (µ⊗ idF)− µ ◦ (idF⊗µ) : F⊗3 → F

is homotopic to zero. But ρ is a lift of the map µ̃◦ (µ̃⊗ idR(X))− µ̃◦ (idR(X)⊗µ̃) : R(X)⊗3 →
R(X) which is the zero map since R(X) is associative. Thus ρ is homotopic to zero.

Remark 4.2.4. Similarly one can check that the map µ from Proposition 4.2.3 is homotopy-
commutative.

So it remains to show that there is a lift µ of µ̃ which satisfies also properties (iv) and (v). To
do this, we will first introduce the symmetric square of the complex F as in [BE77]. Let M be
the graded submodule of F⊗ F generated by

{f ⊗ g − (−1)|f |·|g|g ⊗ f | f, g ∈ F homogeneous}.

Since δ(M) ⊆M , the module
S2(F) = (F⊗ F)/M

inherits the structure of a complex of S-modules (with differentials δ̄).
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Lemma 4.2.5. Let n ≥ 0 and set V = ⊕i+j=n, i<jFi ⊗ Fj . Then

S2(F)n ∼=


V if n is odd,
V ⊕

∧2(Fn/2) if n ≡ 2 mod 4,

V ⊕ S2(Fn/2) if n ≡ 0 mod 4.

In particular, S2(F) is a complex of free S-modules.

Proof. See [FSWT11], Theorem 2.9.

From the definition of S2(F) we see that any lift µ : F⊗ F → F of µ̃ which factors through the
complex S2(F) satisfies property (v). Let π : F ⊗ F → S2(F) be the map of chain complexes,
where each πi is the canonical projection from (F⊗ F)i to S2(F)i.

Proof of Theorem 4.2.1. To begin with, let us consider the following diagram

R(X)⊗R(X) F0 ⊗ F0

0 R(X) F0

µ̃

d0

d0 ⊗ d0

α0

where α0 := µ̃ ◦ (d0 ⊗ d0) : F0 ⊗ F0 → R(X). For ei ⊗ ej − ej ⊗ ei ∈M ⊆ F0 ⊗ F0 we have

α0(ei ⊗ ej − ej ⊗ ei) = mimj −mjmi = 0

since R(X) is a commutative ring. Thus, α0 factors through S2(F)0
∼= S2(F0) which gives the

following commutative diagram

R(X)⊗R(X) F0 ⊗ F0

S2(F)0

0 R(X) F0

µ̃

d0

d0 ⊗ d0

α0

π0

γ0

Since S2(F)0 is free, there is a map β0 : S2(F)0 → F0 such that γ0 = d0 ◦ β0. From this, setting
µ0 = β0 ◦ π0, we obtain a new commutative diagram
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R(X)⊗R(X) F0 ⊗ F0

S2(F)0

0 R(X) F0

µ̃

d0

d0 ⊗ d0

α0

π0

γ0

β0

µ0

Note that for any 1 ≤ i ≤ 7 we have

γ0(π0(e0 ⊗ ei)) = γ0(π0(ei ⊗ e0)) = α0(ei ⊗ e0) = mi = d0(ei).

Hence, we can define β0 in such a way that β0(π0(e0 ⊗ ei)) = β0(π0(ei ⊗ e0)) = ei, and thus,

µ0(e0 ⊗ ei) = µ0(ei ⊗ e0) = ei

for all i = 0, . . . , 7. By linearity this yields

µ0(f ⊗ e0) = µ0(e0 ⊗ f) = f

for any f ∈ F0. Next we show that

0← R(X)
γ0←− S2(F)0

δ̄1←− S2(F)1
δ̄2←− . . .

is a complex. Using the fact that (S2(F), δ̄) is a complex of free S-modules we have only to
show that im(δ̄1) ⊆ ker(γ0). Let h ∈ im(δ̄1). Using the commutative diagram

(F⊗ F)0 (F⊗ F)1

S2(F)0 S2(F)1

0 0

δ1

π0 π1

δ̄1

we find an element g ∈ (F⊗ F)1 such that h = π0(δ1(g)). Then

γ0(h) = γ0(π0(δ1(g))) = α0(δ1(g)) = µ̃((d0 ⊗ d0)(δ1(g))) = 0

since (d0 ⊗ d0) ◦ δ1 = 0. Thus, im(δ̄1) ⊆ ker(γ0).

Now, combining this with the previous diagram, we obtain the following commutative dia-
gram:



4.2 A Multiplicative Structure on the Minimal Free Resolution 35

0 R(X) S2(F)0 S2(F)1 S2(F)2 · · ·

0 R(X) F0 F1 F2 · · ·

id

γ0

β0

δ̄1 δ̄2

d0 d1 d2

where the first row is a complex and the second row is exact. Using the exactness of the second
row, we can extend β0 to a map of chain complexes β : S2(F)→ F:

0 R(X) S2(F)0 S2(F)1 S2(F)2 · · ·

0 R(X) F0 F1 F2 · · ·

id

γ0

β0

δ̄1

β1

δ̄2

β2

d0 d1 d2

As above, we can choose the maps βi successively so that

βi(πi(e0 ⊗ g)) = βi(πi(g ⊗ e0)) = g

for any g ∈ Fi: If e0 ⊗ g ∈ F0 ⊗ F1, then

β0(δ̄1(π1(g⊗e0))) = β0(δ̄1(π1(e0⊗g))) = β0(π0(δ1(e0⊗g))) = β0(π0(e0⊗d1(g))) = d1(g).

Hence, we can choose β1 so that β1(π1(e0⊗g)) = β1(π1(g⊗e0)) = g and we proceed similarly
for i ≥ 2.

Setting µi = βi ◦ πi for i ≥ 1, this yields a chain map µ : F ⊗ F → F which factors through
β : S2(F)→ F:

(F⊗ F)0 (F⊗ F)1 · · ·

S2(F)0 S2(F)1 · · ·

F0 F1 · · ·

δ1

π1

µ0

δ̄1

β1β0

d1

π0

µ1

Let f, g ∈ F. In the following, we will write fg for β(π(f ⊗ g)) = µ(f ⊗ g). For f = e0 we get

e0g = µ(e0 ⊗ g) = β(π(e0 ⊗ g)) = g = β(π(g ⊗ e0)) = µ(g ⊗ e0) = ge0.

Hence, e0 acts as a unit element for the multiplication. Finally, by the definition of µ0, the chain
map µ is a lift of the map µ̃ : R(X)⊗R(X)→ R(X):
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R(X)⊗R(X) (F⊗ F)0 (F⊗ F)1 · · ·

S2(F)0 S2(F)1 · · ·

0 R(X) F0 F1 · · ·

δ1

δ̄1

β1β0

d1

d0 ⊗ d0

d0

γ0

µ̃

This completes the proof.

4.3 The Induced Chain Map Between the Resolution and its
Dual

By the proof of Proposition 3.3.3 we know that

0← ωR(X)(−1)← F∨3
d∨3←− F∨2

d∨2←− F∨1
d∨1←− F∨0 ← 0

is a minimal free resolution of ωR(X)(−1) which is isomorphic to R(X). In this section, we
first construct a chain map between the given resolution and its dual which is induced by the
multiplication map µ defined above. Afterwards we show that this map is an isomorphism of
chain complexes. Using this isomorphism, we can finally prove Theorem 4.0.2.

Let σ : F3 → S(−17) be the canonical projection map. For any 1 ≤ i ≤ 3 we define a map
hi : Fi ⊗ F3−i → S(−17) by sending a⊗ b to σ(ab). Moreover, for each i, this induces a map

si : Fi → HomS(F3−i, S(−17)) = F∨3−i

a 7→ la : F3−i → S(−17)

b 7→ hi(a⊗ b) = σ(ab).

Proposition 4.3.1. Define the maps

ti =

{
si if i = 0, 1,

−si if i = 2, 3.

Then

F0 F1 F2 F3 0

F∨3 F∨2 F∨1 F∨0 0

d1

t1

d2

t2

d3

t3

d∨1d∨2d∨3

t0

is a commutative diagram, or equivalently, t : F→ F∨ is a chain map.

Proof. We have to show that for any 0 ≤ i ≤ 2 we have

ti ◦ di+1 = d∨3−i ◦ ti+1.
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So let f ∈ Fi+1 and g ∈ F3−i. Then

d∨3−i(ti+1(f))(g) = ti+1(f)(d3−i(g))

= θiσ(fd3−i(g))

= θiσ(d3−i(g)f),

with

θi =

{
1 if i = 0,

−1 if i = 1, 2,

and where the last equality holds since fd3−i(g) = (−1)(i+1)(2−i)d3−i(g)f = d3−i(g)f . On
the other hand, since gf = 0,

0 = d3−i(g)f + (−1)3−igdi+1(f).

Hence

d∨3−i(ti+1(f))(g) = θiσ(d3−i(g)f) = (−1)iθiσ(gdi+1(f))

= (−1)iθiσ(di+1(f)g)

= (−1)iθisi(di+1(f))(g).

Applying this to the three possible values for i, we see that the last term is always equal to
ti(di+1(f))(g) which proves the claim.

Our next task is to show that the maps si are dual to each other with respect to some chosen
bases. Let us first fix some notation.

Notation 4.3.2. If ε0, . . . , εn is any basis of Fi, we denote by ε∨i the map sending εj to 0 if
j 6= i and to 1 otherwise. Clearly, ε∨0 , . . . , ε

∨
n is then a basis of F∨i . We denote by g0, . . . , g25,

v0, . . . , v25 and h0, . . . , h7 the canonical bases of F1, F2 and F3, respectively.

Then, considering the maps with respect to these bases and its duals, yields the following:

Proposition 4.3.3. For n = 0, . . . , 3 we have

s∨n = s3−n.

Or, in terms of the maps t,
t∨n = −t3−n.

Proof. It is enough to prove the claim for i = 0, 1. Let us start with the case i = 0. Using the
bases given above, we get a representation

s0(ek) =
7∑
i=0

σ(ekhi)h
∨
i

for any basis element ek of F0. Indeed, we have(
7∑
i=0

σ(ekhi)h
∨
i

)
(hj) =

7∑
i=0

σ(ekhi)h
∨
i (hj) = σ(ekhj) = (s0(ek))(hj).
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Thus, with respect to the bases e0, . . . , e7 and h∨0 , . . . , h
∨
7 we can represent s0 by the matrixσ(e0h0) · · · σ(e7h0)

...
. . .

...
σ(e0h7) · · · σ(e7h7)


Similarly, for s3 we have

s3(hk) =

7∑
i=0

σ(hkei)e
∨
i

for any basis element hk ∈ F3. Hence, we obtain a representation of s3 with respect to the bases
h0, . . . , h7 and e∨0 , . . . , e

∨
7 by the matrixσ(h0e0) · · · σ(h7e0)

...
. . .

...
σ(h0e7) · · · σ(h7e7)

 .

But
eihj = hjei

for any i, j = 0, . . . , 7 since deg(ei) = 0 for all i. This implies that the first matrix is the
transposed of the second. Hence, identifying h∨∨i with hi via the isomorphism Fi

∼=−→ F∨∨i , we
get

s∨0 = s3.

Analogously, for s1 and s2 we get representations

s1 g0 · · · g25

v∨0 σ(g0v0) · · · σ(g25v0)
...

...
. . .

...
v∨25 σ(g0v25) · · · σ(g25v25)

and

s2 v0 · · · v25

g∨0 σ(v0g0) · · · σ(v25g0)
...

...
. . .

...
g∨25 σ(v0g25) · · · σ(v25g25)

,

respectively. Again, givj = vjgi for any i, j = 0, . . . , 25 since deg(vj) = 2 for all j. Hence,

s∨1 = s2.

4.4 Proof of Theorem 4.0.2

Let us consider the middle square of the commutative diagram from Proposition 4.3.1:

F1 F2

F2
∨ F1

∨

d2

t2

d∨2

t1 = −t∨2 −t∨2 ◦ d2 = d∨2 ◦ t2

We claim that the following holds:

Proposition 4.4.1. For each i = 0, . . . , 3, the map ti is an isomorphism.

Before proving this proposition, let us first see how the main theorem follows from this state-
ment.
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Proof of Theorem 4.0.2. By Proposition 4.4.1, t2 (or equivalently t1) is an isomorphism. Then
d̃2 := d2 ◦ t−1

2 is a homomorphism from F∨1 to F1. But since

(t−1
2 )∨ = (t∨2 )−1

we have

d̃2
∨

= (d2 ◦ t−1
2 )∨

= (t−1
2 )∨ ◦ d∨2

= −d2 ◦ t−1
2

= −d̃2.

Consequently,

0← R(X)← F0
d1←− F1

d̃2←− F∨1
d∨1←− F∨0 ← 0

is a minimal free resolution of R(X) with alternating middle map as desired.

It remains to prove that every ti is an isomorphism. Note that in the setting of [BE77] F0 = S.
This implies directly that t0 is the identity map (lifting the identity on the corresponding rings)
and thus, that each tk is an isomorphism. To show this in our setting some additional work is
needed. Again we consider the commutative diagram from Proposition 4.3.1. Let t̃ : R(X) →
ωR(X)(−1) be the induced S-linear map:

0 R(X) F0 F1 F2 F3 0

0 ωR(X)(−1) F3
∨ F2

∨ F1
∨ F0

∨ 0

t̃

d0 d1

t1

d2

t2

d3

t3

u0 d∨1d∨2d∨3

t0

Since both complexes are minimal free resolutions, it is enough to show the following:

Proposition 4.4.2. t̃ : R(X)→ ωR(X)(−1) is an isomorphism.

We prove this statement in several steps. First of all we know that R(X) and ωR(X)(−1) are
isomorphic R(X)-modules. Let α : ωR(X)(−1) → R(X) be such an isomorphism. Then for
ε := α−1(1R(X)) we have

ωR(X)(−1) = {aε | a ∈ R(X)}.

Furthermore, since u0 is surjective and homogeneous of degree 0 we know that u0(h∨7 ) = λε
for some λ ∈ k∗. Using this and the following lemma we can show that t̃ is not the zero-map.

Lemma 4.4.3. s0(e0) = t0(e0) = h∨7 .

Proof. Recall that s0 is represented by the matrix

s0 e0 · · · e7

h∨0 σ(e0h0) · · · σ(e7h0)
...

...
. . .

...
h∨7 σ(e0h7) · · · σ(e7h7)

Using the fact that e0 is an identity element for the multiplication the first column is nothing but
(σ(h0), . . . , σ(h7))tr. By the choice of the basis h0, . . . , h7, we have σ(hi) = 1 for i = 7 and 0
otherwise.
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Lemma 4.4.4. t̃ is a non-zero S-linear homomorphism.

Proof. Clear since t̃(1R(X)) = u0(t0(e0)) = u0(h∨7 ) = λε 6= 0.

Recall from Theorem 4.1.2 that every homogeneous SY -linear homomorphism fromR(X) to
R(X) is the multiplication by a homogeneous element of R(X). We want to apply this result to
the composition α ◦ t̃.

Proof of Proposition 4.4.2. First note that, since α is also S-linear, we have

IY = annS(R(X)) = annS(ωR(X)(−1)).

Hence t̃ and α are both SY -linear homomorphisms. But then α ◦ t̃ is a non-zero SY -linear
homomorphism from R(X) to R(X), and hence the multiplication by a non-zero homogeneous
element of R(X). As t̃ and α are both homogeneous (of degree 0), this implies that α ◦ t̃ is the
multiplication by some θ ∈ k∗, and hence an isomorphism. Consequently, t̃ is an isomorphism.
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Godeaux Surfaces

Let S = k[x0, x1, y0, . . . , y3] be the graded polynomial ring as considered in the previous chap-
ters. In this chapter we will consider S-modules R satisfying the following condition:

(∗) R is a finitely generated graded S-module with a minimal free resolution of type

0← R←

S
⊕

S(−4)4

⊕
S(−5)3

←

S(−6)6

⊕
S(−7)12

⊕
S(−8)8

←

S(−9)8

⊕
S(−10)12

⊕
S(−11)6

←

S(−12)3

⊕
S(−13)4

⊕
S(−17)

← 0

Notation 5.0.1. Let R be an S-module satisfying (∗) with minimal free resolution

0← R← F0
d1←− F1

d2←− F2
d3←− F3 ← 0.

By e we denote the element of R corresponding to the generator 1 of S in F0. Let d′1 be the
submatrix of d1 obtained by erasing the first row. By I ′ ⊆ S we denote the zeroth Fitting ideal
of M = coker d′1, that is the ideal generated by the maximal minors of d′1. By the properties of
Fitting ideals, the ideal I ′ is independent of the choice of a presentation matrix of M , and hence
independent of the choice of a minimal free resolution of R as an S-module. Furthermore, we
set IY = annS R and SY = S/IY . Finally, we assume that k = C throughout this chapter.

Our aim is to prove a partial converse of the structure theorem for numerical Godeaux surfaces
presented in the last chapter. More precisely, we will show:

Theorem 5.0.2. Let R be an S-module satisfying (∗) which has a minimal free resolution of the
form

0← R← F0
d1←− F1

d2←− F∨1
d∨1←− F∨0 ← 0,

where Fi∨ = HomS(Fi, S(−17)) and d2 is skew-symmetric. If

(♦) depth(I ′, S) ≥ 5,

then R is a Gorenstein ring. Under this condition, let Y = Proj(SY ) and X = Proj(R).
Suppose further that

(i) x0, x1 ∈ S is a regular sequence for R,

(ii) Proj(SY /(y0, . . . , y3)) is empty or 0-dimensional,

(iii) IY is prime,

(iv) X has only Du Val singularities.
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Then X is the canonical model of a numerical Godeaux surface. Furthermore, X is the normal-
ization of Y .

To prove this theorem, we proceed in several steps. First we show that the condition (♦)
implies that R carries a unique structure as an SY -algebra with identity element e. Then, we use
the additional properties (i) - (iv) to prove that R is the canonical ring of a surface of general
type. As a last step, we use the Hilbert series of R to deduce that this surface is a numerical
Godeaux surface.

5.1 Preliminaries

Let B be a faithful A-module with distinguished element e ∈ B. In [EU97], Eisenbud and
Ulrich studied conditions under which B supports the structure of an A-algebra with identity
element e. In case of a finite birational A-module, there is at most one such structure:

Definition 5.1.1 ([EU97]). Let A be a commutative ring, and let B be a faithful A-module with
a distinguished element e ∈ B. Then B is called a finite birational A-module if there is an
element d ∈ A which is a non-zerodivisor on B such that

dB ⊆ Ae ⊆ B.

If B is a finite birational A-module and carries the structure of an A-algebra with identity ele-
ment e, then the algebra structure of B is uniquely determined by the fact that B is a subalgebra
of B[d−1] = A[d−1].

Example 5.1.2. Suppose that A ⊆ B are integral domains with Q(A) = Q(B) such that B is
finitely generated as an A-module. Then B is a birational A-module by Lemma 4.1.3.

Lemma 5.1.3. LetA ↪→ B be an injective homomorphism of rings, whereB is a finite birational
A-module (with identity element e). Furthermore, let N be a B-module. Then every A-module
isomorphism ϕ : B → N is also B-linear.

Proof. Let d ∈ A and e ∈ B be as in Definition 5.1.1, that is dB ⊆ Ae ⊆ B. Note that since ϕ
is an A-module isomorphism, the element d is also a non-zerodivisor on N . Now let g, r ∈ B
be arbitrary. By assumption, there is an element a ∈ A such that dg = a. Then

dϕ(gr) = ϕ(dgr) = ϕ(ar) = aϕ(r) = dgϕ(r),

and therefore
ϕ(gr) = gϕ(r)

since d is a non-zerodivisor on N .

5.2 The Induced Algebra Structure

We will show that the condition (♦) implies that R carries the structure of a (commutative) S-
algebra. This extends a result of Böhning ([Böh05], Theorem 1.1) on Gorenstein algebras from
codimension 2 to codimension 3:

Theorem 5.2.1. Let R be an S-module satisfying (∗) with minimal free resolution

0← R
d0←− F0

d1←− F1
d2←− F2

d3←− F3 ← 0,



5.2 The Induced Algebra Structure 43

and let e, I ′ and SY be as in Notation 5.0.1. Furthermore, assume that depth(annS R,S) =
projdimS(R) = 3. If

(♦) depth(I ′, S) ≥ 5,

then R carries a unique structure of a (commutative) SY -algebra with identity element e.

Proof. The first step is to show that R is a Cohen-Macaulay S-module. We have

dimS R = dimS/ annS R = dimS − codim annS R

= dimS − depth(annS R,S) = 3,

where the second and third equality follow from the fact that S is Cohen-Macaulay and the last
one holds by assumption. Furthermore, using the graded version of the Auslander-Buchsbaum
formula, we see that

depthR = depthS − projdimS(R) = dimS − 3 = 3.

Thus, dimS R = depthR, and hence R is Cohen-Macaulay.

Next we show that R is a finite birational SY -module with distinguished element e. The
matrix d′1 is a presentation matrix (over S) of the module R/SY e. This implies that I ′ ⊆
annS(R/SY e), and hence that (I ′SY )R ⊆ SY e. Now since R is a Cohen-Macaulay S-module
and depth(I ′, S) ≥ 5, we have depth(I ′, R) = dimR − dimR/I ′R ≥ 2. Hence, there exists
an element d ∈ I ′SY which is a non-zerodivisor on R. Consequently,

dR ⊆ SY e ⊆ R

as required. In particular, annS e = annS R.

In the following, X = Spec(S) is the affine cone over Proj(S) and

• Y = V (annS R) ⊆ X is the closed subscheme of X of codimension 3,

• Z ⊆ Y is the closed subscheme of Y defined by (I ′ + annS R) with complement U =
Y \Z, and

• R is the coherent sheaf associated to R as an SY -module.

From the above, we know that the map SY → R sending s to se is an isomorphism onto its
image SY e. Then, as d′1 is a presentation matrix of R/SY e, we haveR|U ∼= OY |U .

Now consider the standard exact sequence of local and global cohomology ([Gro67], Propo-
sition 2.2)

0→ H0
Z(Y,R)→ H0(Y,R)→ H0(U,R)→ H1

Z(Y,R)→ 0.

Suppose that H0
Z(Y,R) = H1

Z(Y,R) = 0. Then H0(Y,R) ∼= H0(U,R) and thus R ∼=
H0(U,OY |U ) as SY -modules. Using this isomorphism, R inherits the structure of a commuta-
tive SY -algebra with identity element e. Since the homomorphisms in the exact sequence above
preserve the grading, R is a graded SY -algebra, and hence a graded k-algebra. Furthermore, the
SY -algebra structure is uniquely determined since R is a finite birational SY -module.

So it remains to show that H0
Z(Y,R) and H1

Z(Y,R) vanish. By [Gro67], Theorem 3.8, it is
enough to show that depth(Z,R) ≥ 2. But, since Y is affine,

depth(Z,R) = depth(I ′SY , R) ≥ 2

which proves the claim.
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Definition 5.2.2 ([Gra96], Definition 3.1). Let A be a positively graded polynomial ring, and let
B be an A-algebra. Let c = dimA− dimAB denote the codimension of B. Then B is called a
Gorenstein algebra of codimension c (and twist s ∈ Z) if

B ∼= ExtcA(B,A(s))

as B-modules.

Now, if the S-module R in Theorem 5.2.1 admits a minimal free resolution which is self-dual
up to a sign, then R is a Gorenstein S-algebra:

Theorem 5.2.3. Let R be an S-module satisfying (∗) which has a minimal free resolution of the
form

0← R← F0
d1←− F1

d2←− F∨1
d∨1←− F∨0 ← 0,

where Fi∨ = HomS(Fi, S(−17)) and d2 is skew-symmetric. If depth(I ′, S) ≥ 5, then R is a
Gorenstein S-algebra of codimension 3.

Proof. To use Theorem 5.2.1 we first have to show that depth(annS R,S) = 3. By [BE73],
as the above complex is exact, we know that depth(I(d∨1 ), S) ≥ 3, where I(d∨1 ) is the ideal
generated by the minors of size rank(d∨1 ) of a matrix representing d∨1 . Hence,

depth(I(d1), S) = depth(I(d∨1 ), S) ≥ 3.

Furthermore, depth(I(d1), S) = depth(annS R,S) as the two ideals have the same radical
ideal. The result follows then from the fact that

depth(annS R,S) ≤ projdimS(R) = 3.

So, all assumptions of Theorem 5.2.1 are satisfied and hence, R is a finite birational SY -module
and an S-algebra of codimension 3 (with identity element e). Furthermore, we can identify SY
with its image in R via the injective homomorphism SY → R (sending an element s to se).

Applying the functor HomS(−, S(−17)) to the resolution above, we get a complex

0→ F0
∨ d∨1−→ F1

∨ d∨2 =−d2−−−−−→ F1
d1−→ F0 → Ext3

S(R,S(−17))→ 0

which is exact since depth(annS R,S) = 3 implies ExtiS(R,S) = 0 for i < 3. Comparing
these two complexes, we can construct a commutative diagram

0 F∨0 F∨1 F1 F0 R 0

0 F∨0 F∨1 F1 F0 Ext3
S(R,S(−17)) 0

d∨1

− idF∨0

d2

− idF∨1

d1

idF1 idF0
u

d∨1 −d2 d1

The graded isomorphism of complexes in the diagram above induces an S-linear isomorphism
u : R → Ext3

S(R,S(−17)). Now, since u is also SY -linear, Lemma 5.1.3 implies that u is an
R-linear homomorphism. Hence,

R ∼= Ext3
S(R,S(−17)), (5.1)

showing that R is a Gorenstein S-algebra.
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Remark 5.2.4. We call the condition (♦) the ring condition. Now let R1 and R2 be two S-
modules as in Theorem 5.2.3 satisfying the ring condition. Then, if R1 and R2 are isomorphic
as S-modules (and hence as SY -modules), the SY -algebras R1 and R2 are isomorphic as rings
by Theorem 5.2.1.

5.3 Proof of Theorem 5.0.2

Before proving the main theorem of this chapter we need a further preliminary result concerning
the dualizing sheaf for a scheme of type Proj(R), where R is a Cohen-Macaulay graded ring.
But let us first state a result on dualizing sheaves and finite morphisms.

Let f : X → Y be a finite morphism of Noetherian schemes. Recall that f∗ gives an equiva-
lence from the category of quasi-coherentOX -modules to the category of quasi-coherent f∗OX -
modules. Let us denote the inverse functor by .̃ Then given any quasi-coherent OY -module G,
the sheaf f !G is the quasi-coherent OX -moduleHomY (f∗OX ,G )̃.

Lemma 5.3.1 (See [Har77], III Exercise 7.2). Let f : X → Y be a finite morphism of projective
schemes of the same dimension over k, and let ωY be a dualizing sheaf for Y . Then f !ωY is a
dualizing sheaf for X .

With the help of this lemma we show in the next statement how the canonical module of
a Cohen-Macaulay ring and the dualizing sheaf for the corresponding projective scheme are
related.

Proposition 5.3.2. LetR be a positively graded k-algebra of dimension n+1 ≥ 2, and letX =
Proj(R) be the corresponding projective scheme over k with dualizing sheaf ωX . Moreover,
assume that R is Cohen-Macaulay and let ωR be the canonical module of R. Then

ω̃R ∼= ωX .

Proof. Since R is Cohen-Macaulay there exists a homogeneous system of parameters t0, . . . , tn
in R such that R is a finitely generated free A = k[t0, . . . , tn]-module. Furthermore, by replac-
ing the ti with suitable powers, we may assume that all elements have the same degree. The
natural ring homomorphism A→ R induces then a finite morphism

ψ : X → Pn.

Then Lemma 5.3.1 implies that ωX ∼= ψ!ωPn and thus

ψ∗ωX ∼= HomPn(ψ∗OX , ωPn). (5.2)

On the other hand, since both A and R are Cohen-Macaulay and R is a finite A-module, we get

ωR ∼= HomA(R,ωA)

by Proposition 2.2.9. Considering the associated coherent sheaves and combining with the iso-
morphism in (5.2) yields

ψ∗(ω̃R) ∼= ÃωR ∼= HomPn(ψ∗OX , ωPn) ∼= ψ∗ωX ,

where AωR means considering ωR as anA-module. Now applying the functor ˜ which is inverse
to ψ∗ we obtain the claimed isomorphism

ω̃R ∼= ωX .
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We have now all the ingredients for proving the main theorem of this chapter:

Proof of Theorem 5.0.2. By Theorem 5.2.3 we already know that R is a Gorenstein algebra of
codimension 3. The scheme Y = Proj(SY ) is a closed subscheme of P = P(22, 34) with
support V (IY ). Since dimSY = dimS − codim(annS R) = dimS − 3 = 3, Y is a projective
surface. Using the inclusion of rings SY ⊆ R yields a surjective morphism of surfaces

ϕ : X → Y,

where X = Proj(R). This morphism is finite since R is a finitely generated SY -module. Hence
ϕ∗OX is a coherent sheaf of OY -algebras and

Proj(R) = X ∼= Spec(ϕ∗OX).

Furthermore, by the proof of Theorem 5.2.1, there exists a non-zerodivisor d ∈ SY such that

SY [d−1] = R[d−1]. (5.3)

Hence, ϕ is birational, and since X has at most Du Val singularities ϕ : X → Y is the normal-
ization of Y . Furthermore, (5.3) and (iii) imply that R is an integral domain. Hence X is an
integral normal projective scheme.

Since R is a finite SY -module and SY ⊆ R, we know that dimR = 3. Hence R is a Cohen-
Macaulay ring. Applying Proposition 2.2.9 to S and R, we obtain

ωR ∼= Ext3
S(R,ωS) = Ext3

S(R,S(−16))

as R-modules. Combining this with the isomorphism from (5.1) yields

ωR ∼= Ext3
S(R,S(−16)) ∼= R(1).

Thus, R is a Gorenstein ring. Sheafifying gives then an isomorphism of OX -modules

ω̃R ∼= OX(1).

By assumption, all singularities ofX are rational double points, and hence Gorenstein of index
1. In particular, X is Gorenstein and admits an invertible dualizing sheaf ωX . Furthermore, the
Weil divisor KX on the normal scheme X (as defined in Section 2.3) is Cartier and ωX ∼=
OX(KX). On the other hand, ωX ∼= ω̃R by Proposition 5.3.2. Hence

ωX ∼= OX(1), (5.4)

and OX(1) is invertible. Next we want to show that

OX(1)⊗n ∼= OX(n) (5.5)

for any n ≥ 0. Note that, asOX(1)⊗n is an invertible sheaf andOX(n) is a reflexive sheaf on the
normal integral scheme X , it is enough to show that the two sheaves coincide outside a closed
subset of codimension 2. By assumption we know that Yb := Y \(V (x0, x1) ∪ V (y0, . . . , y3))
is finite. Then V = ϕ−1(Yb) is a codimension 2 closed subset of X . Let U = X\V . Then, for
any n ≥ 0

OX(1)⊗n|U ∼= OX(n)|U .

Indeed, let p ∈ U be a prime ideal. Then by the definition of the set U , there exist integers
i ∈ {0, 1} and j ∈ {0, . . . , 3} such that xi, yj /∈ p. But since R(1)(p)

∼= R(p) as R(p)-modules,
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the morphism
R(p)

∼= R(1)(p) ⊗ · · · ⊗R(1)(p) → R(n)(p)

is an isomorphism of R(p)-modules with inverse given by multiplication with xni
ynj

.

Let n =
⊕

n≥0Rn. Now depth(R) = 3 implies H i
n(R) = 0 for i ≤ 2. Using the exact

sequence relating local and global cohomology this results to

R ∼=
⊕
n≥0

H0(X,OX(n)).

Using the isomorphisms in (5.4) and (5.5) we obtain

Rn = H0(X,OX(n)) ∼= H0(X,OX(1)⊗n) ∼= H0(X,ω⊗nX ). (5.6)

Now let π : X̃ → X be a minimal resolution of singularities. Since all singularities are canoni-
cal, we have π∗ωX̃

∼= ωX and

H0(X̃, ω⊗n
X̃

) ∼= H0(X,ω⊗nX )

for all n ≥ 0. In particular,

R ∼=
⊕
n≥0

H0(X,ω⊗nX ) ∼=
⊕
n≥0

H0(X̃, ω⊗n
X̃

).

Consequently, R is the canonical ring of the smooth surface X̃ and, since dimR = 3, X̃ is a
surface of general type. Furthermore, H2

n (R) = 0 implies that

0 =
⊕
n≥0

H1(X,OX(n)) ∼=
⊕
n≥0

H1(X,ω⊗nX ) ∼=
⊕
n≥0

H1(X̃, ω⊗n
X̃

). (5.7)

Hence, X̃ is a minimal surface by [BHPVdV15], Theorem VII.5.3. From the free resolution of
R as an S-module we deduce that

dimkRn =

(
n

2

)
+ 1

for all n ≥ 2 and dimkR1 = 0. Using the formula of the plurigenera of Proposition 2.3.26, we
conclude that X̃ is a minimal surface of general type with K2 = 1 and pg = q = 0. Thus, X̃ is
a numerical Godeaux surface with canonical model X .

Let R be an S-module fulfilling all assumptions of Theorem 5.0.2. Knowing a minimal free
resolution of R as an S-module gives us only the relations of R which are S-linear. However,
we are mainly interested in the ring structure of R which exists by the previous results. As
before, let us choose r0 = 1, r1 = z0, . . . , r4 = z3, r5 = w0, r6 = w1, r7 = w2 as module
generators for R as an S-module. We want to compute the remaining 28 defining relations of R
expressing the products rirj ∈ R, for 1 ≤ i ≤ j ≤ 7, as S-linear combinations of the module
generators (see Lemma 3.3.9). In the following we present a way of determining these relations
using the results from Chapter 4. From the proof of Theorem 4.2.1 we know that there exists a
commutative diagram
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0 R S2(F)0 S2(F)1 S2(F)2 · · ·

0 R F0 F1 F2 · · ·

id

γ0

β0

δ̄1

β1

δ̄2

β2

d0 d1 d2

where the second row is exact. Note that we can compute the maps of the first row from the
ones in the second row. By definition, the homomorphism γ0 maps the canonical basis vec-
tors of S2(F)0 to the elements rirj for 0 ≤ i ≤ j ≤ 7. Then, the commutativity of the
diagram above implies that the images of these basis vectors under the homomorphism β0 rep-
resent the elements rirj as S-linear combinations of the module generators r0, . . . , r7. Con-
sequently, knowing d1 and δ̄1, we can compute (a basis for) the homomorphisms of degree 0
in HomS(coker δ̄1, coker d1) with the help of a computer algebra system. Furthermore, any
S-linear homomorphism coker δ̄1 → coker d1 is also SY -linear. Hence, up to scalars, there
exists exactly one such homomorphism since the SY -algebra structure of R is uniquely deter-
mined. Choosing the isomorphism sending e0 ⊗ e0 ∈ S2(F)0 to e0 ∈ F0, gives us the desired
homomorphism β0, and hence the remaining relations.



6 The Minimal Free Resolution Modulo a
Regular Sequence

Throughout this chapterX denotes a numerical Godeaux surface with canonical ringR(X) and
canonical model Xcan = Proj(R(X)). Furthermore, S = k[x0, x1, y0, . . . , y3] is the graded
polynomial ring as defined before.

In Chapter 3 we have seen that the sequence x0, x1 ∈ S is a regular sequence for R(X) and
that the minimal free resolution of R(X) as an S-module splits modulo x0, x1 into a direct sum
of three complexes. Furthermore, the structure theorem of Chapter 4 tells us that there exists a
free resolution whose middle map is alternating. The aim of this chapter is to consider such a
resolution modulo x0, x1 and to describe the direct summands.

6.1 Preliminaries

Let
0← R(X)

d0←− F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0︸ ︷︷ ︸

= F•

be a minimal free resolution with dtr2 = −d2. We will now introduce a notation for the graded
parts of the maps d1 and d2 which will be used throughout the rest of this thesis.

Notation 6.1.1 (The general set-up). We write

d1 =

6S(−6) 12S(−7) 8S(−8)

S b0(y) ∗ ∗
4S(−4) a b1(y) c

3S(−5) 0 e b2(y)

d2 =

6S(−11) 12S(−10) 8S(−9)

6S(−6) o n b3(y)

12S(−7) −ntr b4(y) p

8S(−8) −b3(y)tr −ptr 0

Note that the matrices o and b4 are both skew-symmetric. Since there are no elements of degree
1 in S, the maps S(−5)3 ← S(−6)6 and S(−8)8 ← S(−9)8 are both zero. The red matrices
are the parts of d1 and d2 which depend only on the variables y0, . . . , y3. More precisely, for
each i, all entries of bi(y) are linear combinations of y0, . . . , y3 with coefficients in k. By d′1
we denote the matrix obtained from d1 by erasing the first row. We do not assign names to the
matrices indicated by a ∗ since they won’t play a role in the following. For the matrices marked
in blue we obtain the following characterization:
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degree entries

a, e, p 2 linear combinations of x0, x1

c, n 4 linear combinations of x2
0, x0x1, x

2
1

o 5 linear combinations of xiyj , i = 0, 1, j = 0, . . . , 3

Let us now briefly recall the notation from Chapter 3. Let

R = R⊗ S/(x0, x1) =
2⊕
i=0

R(i)

and

F • = F• ⊗ S/(x0, x1) =

2⊕
i=0

F (i)
•

considered as T = K[y0, y1, y2, y3]-modules. Setting d̄i = di ⊗ T for each i yields

d̄1 =

6T (−6) 12T (−7) 8T (−8)

T b0(y)

4T (−4) b1(y)

3T (−5) b2(y)

d̄2 =

6T (−11) 12T (−10) 8T (−9)

6T (−6) b3(y)

12T (−7) b4(y)

8T (−8) −b3(y)tr

So the minimal free resolutions of the R(i) are of the form:

0 R(0) T T (−6)6 T (−9)8 T (−12)3 0

0 R(1) T (−4)4 T (−7)12 T (−10)12 T (−13)4 0

0 R(2) T (−5)3 T (−8)8 T (−11)6 T (−17) 0

b0(y) b3(y) b2(y)tr

b1(y) b4(y) b1(y)tr

b2(y) −b3(y)tr b0(y)tr

Our aim is to describe the above three minimal resolutions explicitly. Later we will use these
results as a starting point for our construction of numerical Godeaux surfaces. More precisely,
we will first construct the individual minimal free resolutions modulo x0, x1 and then, based on
these, the whole resolution.

6.2 The Canonical Ring Modulo a Regular Sequence

In this section we give an explicit description of the canonical ring R(X) and its minimal free
resolution modulo the regular sequence x0, x1. Thereby we restrict our study to numerical
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Godeaux surfaces fulfilling one additional assumption. As in Section 3.1 we write

|2KX | = |M |+ F,

where M is a generic member of the moving part of |2KX | and F is the fixed part. Recall from
Proposition 3.1.1 that there are the following possibilities for M and F :

(i) F = 0, M2 = 4,

(ii) M2 = 2, MF = 2, F 2 = −2,

(iii) M2 = 0, MF = 4, F 2 = −4.

In the first case, |M | may have 4 base points (possibly infinitely near) or a single double base
point which is then a singular point of M . From now on we assume that our numerical Godeaux
surface X satisfies the following conditions:

(♣) F = 0 and |M | has 4 distinct base points P0, . . . , P3.

We call any such numerical Godeaux surface X a marked numerical Godeaux surface.

Remark 6.2.1. Note that a base point p of a linear system L on a smooth surface is called
ordinary if the general element of L is smooth at p and two general elements have different
tangent directions at p. Since (2KX)2 = M2 = 4, Assumption (♣) implies that every base
point of |2KX | is ordinary.

Remark 6.2.2. Let us see how Assumption (♣) fits into the current literature. It is known that
the Craighero-Gattazzo surface, a numerical Godeaux surface with TorsX = 0, fulfills this
condition (see [CP00], Theorem 5.1). Furthermore, any numerical Godeaux surface X with
TorsX = Z/4Z or Z/5Z satisfies F = 0 (see [CCML07], Corollary 4.4). We will see later that
the bicanonical system of any numerical Godeaux surface with TorsX = Z/5Z has indeed 4
distinct base points. In contrast, a surface X with TorsX = Z/4Z cannot have 4 distinct base
points as shown in Lemma 3.1.11.

Now let us consider the birational morphism π : X → Xcan. Then the 4 base points of |M |
are mapped to 4 distinct points under π. Indeed, since we may assume that M is irreducible by
Proposition 3.1.1, M does not meet any fundamental cycle of X . Then π|M is an isomorphism
onto its image. By abuse of notation, we denote the 4 image points on Xcan also by P0, . . . , P3.
Note that Xcan is smooth at the points P0, . . . , P3. Furthermore, an arbitrary element C ∈
|2KX | is of the form

C = C0 +
∑

aiEi

with KXC0 = 2 and KXEi = 0 for all i. Then MEi = 2KXEi = 0 for all i and the 4 base
points are all contained in C0. Thus |2KXcan | has also 4 distinct base points.

Lemma 6.2.3. The points P0, . . . , P3 ∈ Xcan are mapped to 4 distinct points under ϕ : Xcan →
Y .

Proof. We have a commutative diagram

X Xcan

Y

π

ϕ̂ ϕ
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Note that ϕ̂ is a morphism since F = 0. So it is enough to show the statement for ϕ̂ in place
of ϕ. Since M is smooth at the base points P0, . . . , P3, Bertini’s Theorem implies that M
is nonsingular. Furthermore we know that M is not hyperelliptic by the results of Pignatelli.
Thus M is a smooth non-hyperelliptic curve. Note that here Assumption (♣) is crucial. By
Proposition 3.1.1, M does not contain any base points of |3KX |. Let M̂ denote the generic
member of |2KXcan |. Recall that we denote the rational map associated to the systems |nKX |
and |nKXcan | by φn and κn, respectively. Let

D = φ3(M) = κ3(M̂) ⊆ P3

be the image curve in P3. Note that M̂ does also not contain the base points of |3KXcan | by
Corollary 3.1.5. Now by adjunction we get KM = (3KX)|M . Furthermore, since pg = q = 0,
the restriction map

H0(X, 3KX)→ H0(M, (3KX)|M )

is an isomorphism. Hence φ3(M) = φ3|M (M) = φKM (M), where φKM denotes the morphism
associated to the canonical system |KM |. Now M being non-hyperelliptic implies that φKM is
an isomorphism. Note that the image curve D is a complete intersection of type (2, 3) of genus
4 in this case (see [Miy76], Proposition 4). Consequently, the points P0, . . . , P3 are mapped to
4 different points in P3 under φ3 and therefore also to 4 different points in Y ⊆ P(22, 34) under
ϕ̂.

Let us denote by p0, . . . , p3 the 4 image points of P0, . . . , P3 in P3. Moreover, let J =⋂3
i=0 Ji ⊆ T be the homogeneous (saturated) ideal of {p0, . . . p3} ⊆ P3, where Ji is the homo-

geneous ideal of pi for each i. Our aim is to prove the following result:

Proposition 6.2.4. For each i, R(i) is a Cohen-Macaulay T -module. Furthermore,

R(0) ∼= T/J,

R(1) ∼=
3⊕
i=0

T/Ji,

R(2) ∼= Ext3
T (R(0), T (−17)).

We will show this statement for every T -module R(i) separately. Whenever studying a single
module R(i) we assume for simplicity that the variables yi in T all have degree 1.

Let f : T → R be the natural ring homomorphism induced by f : S → R(X). Then ker(f) =
annT 1R = annT R and thus

Proj(T/ annT R) = {p0, . . . , p3}.

On the other hand, since d̄1 decomposes into a direct sum of the three matrices b0(y), b1(y) and
b2(y), we get

annT (1R) = annT (coker b0(y)) = J ′,

where J ′ ⊆ T is the ideal generated by the entries of the matrix b0(y). Hence

Proj(T/J ′) = {p0, . . . , p3} = Proj(T/J) (6.1)

Proof of Proposition 6.2.4, Part I. First we show that R(0) ∼= T/J ′ is Cohen-Macaulay. By the
Auslander-Buchsbaum formula we have

depth(R(0)) = dimT − projdimR(0) = 1.
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On the other hand, dimR(0) = 1 by (6.1). Hence, R(0) is Cohen-Macaulay. But being Cohen-
Macaulay of dimension 1 implies that

H0
m(R(0)) = H0

m(T/J ′) = 0,

where m is the homogeneous maximal ideal of T . Hence J ′ is saturated, and J = J ′ by (6.1).
This shows the first part of Proposition 6.2.4. Let us now continue with R(2). Applying the
functor Hom(−, ωT ) to the minimal free resolution

0← R(0) ← T
b0←− T (−6)6 b3←− T (−9)8 btr2←−− T (−12)3 ← 0

yields a complex

0← Ext3
T (R(0), ωT )← Hom(T (−12)3, ωT )

b2←−Hom(T (−9)8, ωT )

btr3←−−Hom(T (−6)6, ωT )
btr0←−− Hom(T, ωT )← 0

which is exact by Proposition 2.2.11. Now, since ωT ∼= T (−12), tensoring with T (−5) gives
the exact sequence of the form

0← Ext3
T (R(0), T (−17))← T (−5)3 b2←− T (−8)8 btr3←−− T (−11)6 btr0←−− T (−17)← 0.

On the other hand, we know that the minimal free resolution of R(2) is of type

0← R(2) ← T (−5)3 b2←− T (−8)8 −btr3←−−− T (−11)6 btr0←−− T (−17)← 0.

Thus
R(2) ∼= Ext3

T (R(0), T (−17)).

It remains to show thatR(2) is a Cohen-Macaulay T -module. Again, by the Auslander-Buchsbaum
formula we see that depth(R(2)) = 1. Hence dimR(2) ≥ 1. From

J = annT R =
2⋂
i=0

annT (coker bi(y)) ⊆ annT (coker b2(y))

we see that
1 = dimT/J ≥ dimT/ annT (coker b2(y)) = dimR(2)

which shows the claim.

So in particular the first summand of the free resolution of R resolves the ideal of the points
p0, . . . , p3 ∈ P3. Since the finitely many configurations of 4 distinct points in P3 can be distin-
guished by their minimal free resolution, we can describe this resolution even more precisely:

Lemma 6.2.5. The 4 points p0, . . . , p3 ∈ P3 are in general position.

Proof. We have seen that the minimal free resolution of the homogeneous ideal J of the points
p0, . . . , p3 is of type

0← T/J ← T ← T (−2)6 ← T (−3)8 ← T (−4)3 ← 0.

But there are only finitely many possible configurations of 4 distinct points in P3 whose minimal
free resolutions have different Betti numbers:
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The 4 points are colinear.

0 1 2 3

0 1 2 1 .
1 . . . .
2 . . . .
3 . 1 2 1

1 3 3 1

The 4 points are noncolinear, but three of them
are colinear.

0 1 2 3

0 1 1 . .
1 . 2 3 1
2 . 1 2 1

1 4 5 2

No three of the 4 points are colinear, but all lie
on a common hyperplane.

0 1 2 3

0 1 1 . .
1 . 2 2 .
2 . . 1 1

1 3 3 1

The 4 points are in general position.

0 1 2 3

0 1 . . .
1 . 6 8 3

1 6 8 3

Hence only the last case can occur.

General Assumption 1. Recall that we consider Xcan as a subscheme of P(22, 34, 44, 53).
After performing a linear change of coordinates on P(22, 34, 44, 53) (or equivalently, an auto-
morphism of k[x0, x1, y0, . . . , y3, z0, . . . , z3, w0, w1, w2]) if necessary, we assume from now on
that the 4 points P0, . . . , P3 ∈ Xcan are mapped to the 4 coordinate points of P3, more precisely
that

p0 = (1 : 0 : 0 : 0), p1 = (0 : 1 : 0 : 0), p2 = (0 : 0 : 1 : 0) and p3 = (0 : 0 : 0 : 1).

In particular, we assume from now on that

J = (yiyj | 0 ≤ i < j ≤ 3) =
3⋂
i=0

Ji,

where Ji = I(pi).

Before proving the remaining part of Proposition 6.2.4, we first compute the support of the
T -module R(1).

Lemma 6.2.6. annT R
(1) = annT (coker b1(y)) = J .

Proof. From the discussion above we know that

annT (coker d̄1) = annT (coker b0(y)) = J

and

annT (coker d̄1) =

2⋂
i=0

annT (coker bi(y)).
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Thus, J ⊆ annT (coker b1(y)). To show equality it is enough to prove that

V (annT (coker b1(y))) = {p0, p1, p2, p3}.

Assume that there is a point pi which is not contained in V (annT (coker b1(y))). Then there
exists an integer ni ≥ 1 such that ynii ∈ annT (coker b1(y)). Consequently, for each j ∈
{0, . . . , 3}, there is a relation of the form ynii zj = 0 in R, and hence a relation of the form

dj,0x0 + dj,1x1 + ynii zj = 0

in R(X), where dj,0, dj,1 ∈ R(X). Since ynii (Pi) = ynii (pi) 6= 0, all forms z0, . . . , z3 must
vanish at the point Pi ∈ Xcan. But this implies that Pi is a base point of |4KXcan | contradicting
Theorem 2.3.28.

Using this result, the proof of Proposition 6.2.4 for R(1) is a direct consequence of the follow-
ing statement.

Proposition 6.2.7. LetN be a finitely generated graded T -module satisfying the following prop-
erties:

(i) annTN = J =
⋂3
i=0 Ji,

(ii) the minimal free resolution of N is of the following type

0← N ← T 4 ← T (−1)12 ← T (−2)12 ← T (−3)4 ← 0.

Then

N ∼=
3⊕
i=0

T/Ji.

Proof. First we will show that N is a Cohen-Macaulay module. Let m = (y0, . . . , y3) be the
homogeneous maximal ideal of T . By the Auslander-Buchsbaum formula we get

depth(m, N) = depth(m, T )− projdim(N) = 4− 3 = 1.

Furthermore, by the second assumption, dimN = dim(T/ annT N) = 1. Consequently,

depth(m, N) = dimN

and N is Cohen-Macaulay. Using the long exact sequence relating local and global cohomology
we get the exact sequence

0→ H0
m(N)→ N →

⊕
d

H0(Ñ(d))→ H1
m(N)→ 0. (6.2)

Since depth(m, N) = 1 we know that H0
m(N) = 0 and H1

m(N) 6= 0. For any coherent sheaf F
on P3, we denote the graded T -module

⊕
d≥0H

0(P3,F(d)) by Γ≥0(F). Now let us first show
that

N ∼= Γ≥0(Ñ).

As Nd = 0 for all d < 0 the sequence (6.2) yields an injective map N → Γ≥0(Ñ). Conse-
quently, it remains to prove that H1

m(N)d = 0 for all d ≥ 0. Let

d = max{e | H1
m(N)e 6= 0}.
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Note that the maximum exists by Serre’s vanishing theorem. Let us denote by reg(N) the
Castelnuovo-Mumford regularity of N . Then d + 1 ≤ reg(N) by [Eis05], Theorem 4.3. But
from the minimal free resolution ofN we deduce that reg(N) = 0. Hence d ≤ reg(N)−1 < 0.
Let ηi : pi ↪→ P3 be the inclusion of the closed point pi in P3. Then Gi = ηi∗Opi = T̃/Ji is a
skyscraper sheaf on P3 with support at the point pi. We claim that

Γ≥0(
3⊕
i=0

Gi) ∼= Γ≥0(Ñ).

First note that T/Ji ∼= Γ≥0(Gi) for each i follows from the same arguments as for N above.
Now, since all ideals in the support of N are minimal, we can choose for each i ∈ {0, . . . , 3} a
homogeneous element ni ∈ N such that annT (ni) = Ji. Let ai = deg(ni). Thus, for each i,
we obtain an injective map of graded T -modules

(T/Ji)(−ai) ↪→ N,

and therefore an injective morphism Gi(−ai) ↪→ Ñ of coherent sheaves on P3. Now since pi is
a point, it is isomorphic to an affine variety. Furthermore, any line bundle on Opi is trivial, and
hence Gi ⊗ OP3(d) ∼= Gi for all d. Thus, we get an injective morphism Gi ↪→ Ñ , and hence a
morphism

3⊕
i=0

Gi → Ñ .

This morphism is again injective since the support of Ñ is the disjoint union of the supports of
the Gi. By tensoring with OP3(d), taking global sections and the direct sum over all d ≥ 0, we
obtain a homogeneous homomorphism

Γ≥0(
3⊕
i=0

Gi) ↪→ Γ≥0(Ñ) ∼= N.

But for any d ≥ 0 we have h0(P3, (
⊕3

i=0 Gi)(d)) = h0(P3,
⊕3

i=0 Gi) = 4 = h0(P3, Ñ(d)) =
dimkNd. Hence

Γ≥0(
3⊕
i=0

Gi) ∼= N.

The result follows now from the fact that cohomology commutes with finite direct sums of
coherent sheaves on Noetherian schemes:

3⊕
i=0

T/Ji ∼=
3⊕
i=0

Γ≥0(Gi) ∼= Γ≥0(

3⊕
i=0

Gi) ∼= N.

6.3 A Standard Resolution of R(X)

The aim of this section is to give one possible choice of the maps of the minimal free resolution
of each R(i) and prove afterwards that there is always a minimal free resolution of R(X) with
alternating middle map which is modulo x0, x1 the direct sum of the chosen resolutions. We
will call such a minimal free resolution then a standard resolution.

By duality it is enough to specify the resolutions of R(0) and R(1). Recall that R(0) ∼= T/J
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with J = (yiyj | 0 ≤ i < j ≤ 3). So one possible choice for the maps of F (0)
• is

T

(
y0y1 y0y2 y1y2 y0y3 y1y3 y2y3

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− T (−6)6 (6.3)

T (−6)6



−y2 0 −y3 0 0 0 0 0
y1 −y1 0 0 −y3 0 0 0
0 y0 0 0 0 0 −y3 0
0 0 y1 −y1 y2 −y2 0 0
0 0 0 y0 0 0 y2 −y2

0 0 0 0 0 y0 0 y1


←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− T (−9)8 (6.4)

T (−9)8



−y3 −y3 0
0 −y3 0
y2 y2 0
0 y2 −y2

−y1 0 0
0 0 y1

0 −y0 0
0 0 −y0


←−−−−−−−−−−−−−−− T (−12)3 (6.5)

For F (2)
• we simply take as maps the dual of the maps above.

For R(1) ∼=
⊕3

i=0 T/Ji we choose first a minimal free resolution of T/Ji for each i and take
then the direct sum. We will only specify a free resolution of T/J0 (the other cases are chosen
in the same way).

T (−4)

(
y1 y2 y3

)
←−−−−−−−−−− T (−7)3


0 y3 −y2

−y3 0 y1

y2 −y1 0


←−−−−−−−−−−−−−−− T (−10)3


y1

y2

y3


←−−−− T (−13)3 ← 0

Note that the chosen minimal free resolution of R(1) is therefore self-dual (up to a sign).

Now, denoting the three maps (6.3)-(6.5) by b̃0, b̃3 and b̃tr2 , and the first two syzygy maps of
the minimal free resolution of R(1) by b̃1 and b̃4, we get a minimal free resolution of R of the
form

0← R← F 0


b̃0

b̃1
b̃2


←−−−−−−−−−−− F 1


b̃3

b̃4
−b̃tr3


←−−−−−−−−−−−−− F∨1


b̃tr0

b̃tr1
b̃tr2


←−−−−−−−−−−−−− F∨0 ← 0

(6.6)

Proposition 6.3.1. There exists a minimal free resolution

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

of R(X) as an S-module such that:

(i) dtr2 = −d2,

(ii) modulo x0, x1 the resolution reduces to the minimal free resolution in (6.6).
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Proof. Let us first briefly sketch the idea of the proof. We start with a minimal free resolution of
R(X) whose middle map is alternating. Reducing this resolution modulo x0, x1 gives a minimal
free resolution of R. Thus, there exists an isomorphism between this complex and the one in
(6.6). Any such isomorphism gives an isomorphism between the original resolution of R(X)
and another free resolution of R(X) which has the desired form modulo x0, x1. Now the (only)
difficult part is to find an isomorphism which preserves the skew-symmetry of the middle matrix.

So let
0← R(X)← F0

e1←− F1
e2←− F∨1

etr1←−− F∨0 ← 0 (6.7)

be any minimal free resolution of R(X) with etr2 = −e2. Then there exists a graded isomor-
phism of complexes

0 R(0) F
(0)
0 F

(0)
1 F

(0)
2 F

(0)
3 0

0 R(0) F
(0)
0 F

(0)
1 F

(0)
2 F

(0)
3 0

b0

α
(0)
1

b3

α
(0)
2

btr2

α
(0)
3

b̃tr2b̃3b̃0

α
(0)
0

inducing the identity map on R(0), where the first row is the first summand of (6.7) modulo
x0, x1. Applying first the functor HomT (−, T (−17)) to the diagram above and taking then the
inverse of the chain maps yields a graded isomorphism of complexes

0 R(2) F
(2)
0 F

(2)
1 F

(2)
2 F

(2)
3 0

0 R(2) F
(2)
0 F

(2)
1 F

(2)
2 F

(2)
3 0

b2

α
(2)
1

−btr3

α
(2)
2

btr0

α
(2)
3

b̃tr0−b̃tr3b̃2

α
(2)
0

between two minimal free resolution of R(2), where the first row is the third summand of reso-
lution (6.7) modulo x0, x1 and with α(2)

i = (α
(0)
3−i)

−tr for all i. Now let us continue with R(1).
As above, there is a graded isomorphism of complexes

0 R(1) F
(1)
0 F

(1)
1 F

(1)
2 F

(1)
3 0

0 R(1) F
(1)
0 F

(1)
1 F

(1)
2 F

(1)
3 0

b1

α
(1)
1

b4

α
(1)
2

btr1

α
(1)
3

b̃tr1b̃4b̃1

α
(1)
0

inducing the identity map on R(1). Our aim is to show that there exists a graded isomorphism
between these complexes such that α(1)

2 = (α
(1)
1 )−tr and α

(1)
3 = (α

(1)
0 )−tr. Applying the

functor Hom(−, T (−12)) and combining the resulting diagram with the original one yields a
commutative diagram

F
(1)
0 F

(1)
1 F

(1)
2 F

(1)
3

F
(1)
0 F

(1)
1 F

(1)
2 F

(1)
3

F
(1)
0 F

(1)
1 F

(1)
2 F

(1)
3

b̃1

(α
(1)
2 )tr

b̃4

(α
(1)
1 )tr

b̃tr1

(α
(1)
0 )tr

b1

α
(1)
1

b4

α
(1)
2

btr1

α
(1)
3

b̃tr1b̃4b̃1

α
(1)
0

(α
(1)
3 )tr
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where all vertical maps are isomorphisms.

Now R(1) ∼=
⊕3

i=0 T/Ji implies that HomT (R(1), R(1)) ∼= R(1). In particular, since R(1) ∼=
coker b̃1, there exist µ0, . . . , µ3 ∈ k∗ such that

α
(1)
0 (α

(1)
3 )tr =


µ0

µ1

µ2

µ3

 and α(1)
1 (α

(1)
2 )tr =


µ0 id3

µ1 id3

µ2 id3

µ3 id3

 .

Now it is just a straightforward but lengthy computation to see that we can modify the original
isomorphism of complexes so that α(1)

0 (α
(1)
3 )tr = id and α(1)

1 (α
(1)
2 )tr = id. Note that this

modification involves the computation of the square roots of µi for each i which is possible
since we assumed k to be algebraically closed.

It remains to put the individual isomorphisms together to an isomorphism of the whole com-
plex. Let

α0 =

α
(0)
0

α
(1)
0

α
(2)
0

 , α1 =

α
(0)
1

α
(1)
1

α
(2)
1

 , α2 = α−tr1 and α3 = α−tr0 .

Then, setting d1 = α0e1α
−1
1 and d2 = α1e2α

−1
2 = α1e2α

tr
1 , the above isomorphisms define a

graded isomorphism of complexes

0 R F0 F1 F∨1 F∨0 0

0 R F0 F1 F∨1 F∨0 0

e1

α1

e2

α2

etr1

α3

dtr1d2d1

α0

where, by the definition of the αi, the second row satisfies all required properties.

Definition 6.3.2. Let R be a finitely generated graded S-module with a minimal free resolution
of the form

0← R← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0, (6.8)

where the Fi are as above. If (6.8) satisfies the two properties of Proposition 6.3.1, we call (6.8)
a standard resolution of R.

Remark 6.3.3. Proposition 6.3.1 shows that the canonical ring of any marked numerical Godeaux
surface admits, possibly after a suitable isomorphism as described in General Assumption 1, a
standard resolution. Note that such a standard resolution is in general not unique.





7 Constructing Standard Resolutions

Throughout this chapter X denotes a marked numerical Godeaux surface.

In the previous chapter we described explicitly the maps of the minimal resolution of R(X)
modulo the regular sequence x0, x1. In this chapter we will first focus on the remaining parts of
the maps. Of course we cannot expect to get a complete description of the whole resolution in
general. But we can simplify several entries of the maps and give a nice geometric characteriza-
tion of the relations which are not linear. Afterwards we use this information to set up general
matrices for d′1 and d2 and solve the relations d′1d2 = 0.

7.1 The Relations

In this section we will consider a fixed standard resolution

0← R← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0,

where R is a finitely generated graded S-module (for example, R = R(X)). Recall that d′1 is
the matrix obtained from d1 by erasing the first row. Then

d′1 =

6S(−6) 12S(−7) 8S(−8)

4S(−4) a b1(y) c

3S(−5) - e b2(y)

(7.1)

d2 =

6S(−11) 12S(−10) 8S(−9)

6S(−6) o n b3(y)

12S(−7) −ntr b4(y) p

8S(−8) −b3(y)tr −ptr -

(7.2)

as introduced in Notation 6.1.1. All matrices marked in red have the form as defined in Section
6.3. We consider the entries of these matrices as the known entries of d′1 and d2. The matrices
marked in blue are unknown so far and we treat their entries as variables. In the following we
are studying the relations between these variables given by the equation d′1d2 = 0.

By fixing the maps for the resolution modulo x0, x1 in Section 6.3, we fixed also an ordering
on the 4 image points in P3. In general, permuting the pointsP0, . . . , P3 (respectively p0, . . . , p3)
corresponds to a linear change of coordinates on P(22, 34, 44, 53) (respectively on P3):

Lemma 7.1.1. Let B2 = {p0, . . . , p3} ⊆ P3, and let G ≤ Aut(P3) = PGL(4,k) be the
subgroup of automorphisms which leave B2 invariant. Then G ∼= (k∗)3 o S4.

Proof. Since PGL(4, k) = GL(4, k)/k∗ it is enough to show that

G̃ ∼= (k∗)4 o S4,
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where G̃ is the preimage of G under the natural homomorphism GL(4,k) → PGL(4,k). We
identify each σ ∈ S4 with the permutation matrix mσ, where

(mσ)i,j =

{
1 if σ(i) = j,

0 otherwise.

Moreover, we identify (k∗)4 with the torus T of diagonal matrices in GL(4, k). Then T, S4 are
clearly subgroups of G̃ with T ∩ S4 = {id} and every element g ∈ G̃ is of the form t ◦mσ for
some t ∈ T,mσ ∈ S4. But T being a normal subgroup of G̃ implies then

G̃ = T o S4.

From now on we assume that the order of the 4 base points is fixed as in Assumption 1. Then
G ∼= (k∗)3 and every element g = (λ1, λ2, λ3) ∈ G defines an automorphism

P3 → P3,

(p0 : p1 : p2 : p3) 7→ (p0 : λ1p1 : λ2p2 : λ3p3).

Later we will lift this morphism to an automorphism νg of P(22, 34, 44, 53). Then the canonical
model νg(Xcan) satisfies also Assumption 1 and we will study the standard resolution of the
corresponding canonical ring which is isomorphic to R(X).

Working with the ordered set of points p0, . . . , p3, we will now introduce a way of labelling
the entries of the matrices d′1 and d2 which reflects this ordering. For the matrix a we have

y0y1 y0y2 y1y2 y0y3 y1y3 y2y3

a

D0 0 0 0

0 D1 0 0

0 0 D2 0

0 0 0 D3


with D0 =

(
y1 y2 y3

)
, D1 =

(
y0 y2 y3

)
, D2 =

(
y0 y1 y3

)
and D3 =

(
y0 y1 y2

)
.

Each row of the matrix on the right-hand side of a stands for a point pk whose ideal is generated
by the entries of the matrix Dk. The element yk is the only variable of degree 3 which is not
contained in this ideal. Hence, we can index the rows of a by the integers k = 0, . . . , 3. The
matrix above of a has as entries the elements of the minimal generating set {yiyj | 0 ≤ i < j ≤
3} of J . We label the columns of a by the tuples (i, j) for 0 ≤ i < j ≤ 3. Let

N = {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3)}

be the set of these column indices.

Notation 7.1.2 (The matrix a). Let k ∈ {0, . . . , 3}, and let (i, j) ∈ N . Then we denote the
entry in row k and column (i, j) of a by a

(k)
i,j . Hence the matrix a is of the form

a
(0)
0,1 a

(0)
0,2 a

(0)
1,2 a

(0)
0,3 a

(0)
1,3 a

(0)
2,3

a
(1)
0,1 a

(1)
0,2 a

(1)
1,2 a

(1)
0,3 a

(1)
1,3 a

(1)
2,3

a
(2)
0,1 a

(2)
0,2 a

(2)
1,2 a

(2)
0,3 a

(2)
1,3 a

(2)
2,3

a
(3)
0,1 a

(3)
0,2 a

(3)
1,2 a

(3)
0,3 a

(3)
1,3 a

(3)
2,3

.
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We prove that if d′1d2 = 0, then 12 out of the 24 entries of a are always zero. More precisely,
we show the following:

Proposition 7.1.3. Let d′1 and d2 be as in (7.1) and (7.2) with d′1d2 = 0. Moreover, let k ∈
{0, . . . , 3} and (i, j) ∈ N . If k /∈ {i, j}, then a

(k)
i,j = 0.

Remark 7.1.4. To simplify our presentation, we assume that we have given variables aki,j for
arbitrary elements k, i, j ∈ {0, . . . , 3} subject to the condition aki,j = akj,i.

To prove Proposition 7.1.3, we introduce also an indexing on the entries of the matrix p in d2

and analyze the relations given by d′1d2 = 0 which are linear in the unknown entries of a and p.
So let us consider the matrix p and its adjacent matrices in d2. We have

∗

−y2 0 −y3 0 0 0 0 0

y1 −y1 0 0 −y3 0 0 0

0 y0 0 0 0 0 −y3 0

0 0 y1 −y1 y2 −y2 0 0

0 0 0 y0 0 0 y2 −y2

0 0 0 0 0 y0 0 y1

E0 0 0 0

p
0 E1 0 0

0 0 E2 0

0 0 0 E3

−ptr 0


with

E0 =

 0 y3 −y2

−y3 0 y1

y2 −y1 0

 , E1 =

 0 y3 −y2

−y3 0 y0

y2 −y0 0

 ,

E2 =

 0 y3 −y1

−y3 0 y0

y1 −y0 0

 , E3 =

 0 y2 −y1

−y2 0 y0

y1 −y0 0

 .

For each k ∈ {0, . . . , 3}, the matrix Ek is the first syzygy matrix of Dk. Let hk,1 < hk,2 < hk,3
be the indices of the three variables of degree 3 which are contained in Dk. From the definition
of the matrix Ek we see that the variable yhk,l does not appear in the lth row of Ek. Then we
choose (k, hk,l) for k = 0, . . . , 3 and l = 1, 2, 3 as row indices for the entries of p and denote
the set of these indices by L1, that is

L1 = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)}.

Next we continue with the columns of p. The matrix above of p is b3(y) which is the first syzygy
matrix of J = (yiyj | 0 ≤ i < j ≤ 3) ⊆ S. We index the columns of b3(y) with the elements
of the set

L2 =
{

1,2
0 ,

0,1
2 ,

1,3
0 ,

0,1
3 ,

2,3
0 ,

0,2
3 ,

2,3
1 ,

1,2
3

}
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and say that an element c,de ∈ L2 represents the relation

yc(ydye)− yd(ycye). (7.3)

Then, by the choice of the set L2, every relation corresponding to a column of b3(y) is repre-
sented by an element of L2.

Notation 7.1.5 (The matrix p). Let (k, hk,l) ∈ L1 and c,d
e ∈ L2. Then we denote the element in

row (k, hk,l) and column c,d
e of the matrix p by

p
(k,hk,l)
c,d
e

.

Hence, the first row of a column index of p consists of the indices (sorted by size) of the variables
appearing in the corresponding column of b3(y). Note that by (7.3), the variable corresponding
to the first entry has always a positive sign whereas the second entry corresponds to a variable
with a negative sign.

Remark 7.1.6. Note that for any 0 ≤ c < d < e ≤ 3 we have c,de ∈ L2 and d,e
c ∈ L2.

Next we consider those relations given by d′1d2 = 0 which are linear in the entries of a and p
and see the advantages from the indexing introduced above. Recall that the matrix of relations
is given by

d′1d2 =

 ao− b1(y)ntr − cb3(y)tr an− cptr ab3(y) + b1(y)p

−entr eb4(y)− b2(y)ptr ep

 .

We will first focus on the 4 × 8 matrix ab3(y) + b1(y)p. By the definition of the indexing, the
rows of this matrix are indexed by k for k ∈ {0, . . . , 3}, whereas the columns are indexed by
c,d
e ∈ L2. Let us first express the entries of the matrices b1(y) and b3(y) with respect to these

indices. If k ∈ {0, . . . , 3} and l = (l1, l2) ∈ L1, then

b1(y)k,l =

{
0 if k 6= l1,

yl2 otherwise.

Furthermore, for n = (n1, n2) ∈ N and λ = c,d
e ∈ L2, we have

b3(y)n,λ =


0 if {n1, n2} 6= {c, e} and {n1, n2} 6= {d, e},
−yd if {n1, n2} = {c, e},
yc if {n1, n2} = {d, e}.

Fix an integer k ∈ {0, . . . , 3} and choose 3 different integers c, d, e ∈ {0, . . . , 3} representing
an index c,d

e ∈ L2. As above, let hk,1, hk,2, hk,3 be the elements in {0, . . . , 3} \ {k}. The entry
in row k and column c,d

e of the matrix b1(y)p is then given by

∑
l∈L1

b1(y)k,lp
l
c,d
e

=

3∑
j=1

yhk,jp
(k,hk,j)
c,d
e

.

The entry in row k and column c,d
e of ab3(y) is then given as∑

n∈N
a(k)
n b3(y)

n,c,d
e

= a
(k)
d,eyc − a(k)

c,e yd.
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Putting this together we see that the entry in row k and column λ = c,d
e of ab3(y) + b1(y)p is of

the form
p

(k,hk,1)
c,d
e

yhk,1 + p
(k,hk,2)
c,d
e

yhk,2 + p
(k,hk,3)
c,d
e

yhk,3 + a
(k)
d,eyc − a(k)

c,e yd.

In the following, we will denote this polynomial by rk,λ which we consider as a polynomial in
the variables y0, . . . , y3 whose coefficients are entries of the matrix a and p. Then the condition
rk,λ = 0 implies that all these coefficients must be zero. Hence from one polynomial rk,λ we
get 4 relations. Using these relations, we are now able to prove Proposition 7.1.3.

Proof of Proposition 7.1.3. Let a(k)
c,d be an entry of the matrix a with k /∈ {c, d}. The idea is to

find an element λ ∈ L2 consisting of k, c, d with the additional property that k is contained in
the first row of λ. Then the equation rk,λ = 0 is one of the relations and evaluating this will
prove the claim. To begin with, let us sort the three integers k, c, d by size. Since c < d there are
three possibilities

(i) k < c < d,

(ii) c < k < d,

(iii) c < d < k.

In the first case we know that k,c
d
∈ L2 by Remark 7.1.6. Hence there exists a relation

p
(k,hk,1)
k,c
d

yhk,1 + p
(k,hk,2)
k,c
d

yhk,2 + p
(k,hk,3)
k,c
d

yhk,3 + a
(k)
c,dyk − a

(k)
k,dyc = 0. (7.4)

By the definition of the elements hk,l we know that k /∈ {hk,1, hk,2, hk,3}. Hence the variable yk
appears exactly once in (7.4). This implies that its coefficient a(k)

c,d must be zero. The remaining
cases are proven in the same way.

As a consequence of this statement, we modify our original set-up for the matrix d′1 by as-
suming that

a =


a

(0)
0,1 a

(0)
0,2 0 a

(0)
0,3 0 0

a
(1)
0,1 0 a

(1)
1,2 0 a

(1)
1,3 0

0 a
(2)
0,2 a

(2)
1,2 0 0 a

(2)
2,3

0 0 0 a
(3)
0,3 a

(3)
1,3 a

(3)
2,3

.

Moreover, again by evaluating the relations given by rk,λ = 0, we see that several entries of the
matrix p are also zero and that any of the remaining entries can be represented by an entry of the
matrix a. More precisely, we obtain the following nice characterization for the entries of p.

Lemma 7.1.7. Let (k, hk,l) ∈ L1 and λ = c,d
e ∈ L2. Evaluating the relations given by ab3(y) +

b1(y)p = 0 yields

p
(k,hk,l)
c,d
e

=


0 if hk,l /∈ {c, d},
a

(k)
c,e if hk,l = d,

−a(k)
d,e if hk,l = c.

(7.5)

Proof. Clear from the definition of the polynomial rk,λ above.

Using this lemma, we can assume that
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p =



−a(0)
0,2 a

(0)
0,2 −a(0)

0,3 a
(0)
0,3 0 0 0 0

a
(0)
0,1 0 0 0 −a(0)

0,3 a
(0)
0,3 0 0

0 0 a
(0)
0,1 0 a

(0)
0,2 0 0 0

0 −a(1)
1,2 0 −a(1)

1,3 0 0 0 0

a
(1)
0,1 0 0 0 0 0 −a(1)

1,3 a
(1)
1,3

0 0 a
(1)
0,1 0 0 0 a

(1)
1,2 0

0 −a(2)
1,2 0 0 0 −a(2)

2,3 0 0

−a(2)
0,2 a

(2)
0,2 0 0 0 0 0 −a(2)

2,3

0 0 0 0 a
(2)
0,2 0 a

(2)
1,2 0

0 0 0 −a(3)
1,3 0 −a(3)

2,3 0 0

0 0 −a(3)
0,3 a

(3)
0,3 0 0 0 −a(3)

2,3

0 0 0 0 −a(3)
0,3 a

(3)
0,3 −a(3)

1,3 a
(3)
1,3



.

Note that we can write the matrix p as 
p(0)

p(1)

p(2)

p(3)

 , (7.6)

where each matrix p(k) has 3 rows whose entries depend only on a
(k)
k,hk,1

, a
(k)
k,hk,2

and a
(k)
k,hk,3

.

After proceeding similarly with the relations coming from eb4(y)− b2(y)ptr = 0, we see that
any element of the matrix e is either 0 or an entry of the updated matrix a (up to a sign). Using
the updated matrices a, e and p, we obtain a new matrix of relations:

d′1d2 =

 ao− b1(y)ntr − cb3(y)tr an− cptr 0

−entr 0 ep

 .

Furthermore we reduced the problem of describing 156 unknown entries of degree 2 to describ-
ing only the 12 unknowns

a
(3)
2,3, a

(3)
1,3, a

(3)
0,3, a

(2)
2,3, a

(2)
1,2, a

(2)
0,2, a

(1)
1,3, a

(1)
1,2, a

(1)
0,1, a

(0)
0,3, a

(0)
0,2, a

(0)
0,1. (7.7)

In particular, we see from the new matrix of relations that if the entries of the matrix a are known,
all the remaining relations are linear in the unknowns and a solution for these relations can be
computed using syzygies.

Now let us recall that a possible entry of the matrix a is a linear combination of x0, x1 with
coefficients in k. We will think of these coefficients as Stiefel coordinates:

Definition 7.1.8. Let n ≤ m. We denote by St(n,m) the Stiefel manifold of full rank n ×
m matrices (with entries in k.) The entries of a matrix l ∈ St(n,m) are called the Stiefel
coordinates of l.

We consider St(n,m) as the open subscheme of Anm determined by the condition that at least
one of the n× n minors does not vanish. Furthermore, the group GL(n, k) acts on St(n,m) by
multiplication on the right. The quotient space

St(n,m)/GL(n,k)
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is the Grassmannian Gr(n,m). Throughout this thesis we are mainly interested in the Stiefel
variety St(2, 12) and use the following notation:

Notation 7.1.9. For a matrix l ∈ St(2, 12), we denote the linear space (spanned by the rows
of l) by [l] ∈ Gr(2, 12). Furthermore, considering each row of l as a point in P11, the matrix l
defines a line in P11, which we denote by l.

Remark 7.1.10. Let l1, l2 ∈ St(2, 12). Then

[l1] = [l2] if and only if l1 = l2.

Now a general assignment to the variables in (7.7) gives a matrix l ∈ St(2, 12), and hence a
line l ⊆ P11. On the other hand, let l ∈ St(2, 12) be any matrix. Taking the elements of the first
row as coefficients of x0 and the entries of the second row as coefficients of x1 yields 12 entries
for a, and hence also for e and p. In the following, we will denote the corresponding matrices by
a(l), e(l) and p(l), respectively. Our aim is to find assignments to the 12 variables in (7.7) which
satisfy the given relations, that is the relations coming from ep = 0.

To do so, we consider the product of the updated matrices e and p which is a 3× 8 matrix of
the form  0 −q3 0 q2 0 −q1 0 0

q3 −q3 −q2 q2 0 0 0 −q0

0 0 q2 0 −q1 0 q0 0


with

q0 = a
(1)
1,2a

(1)
1,3 − a

(2)
1,2a

(2)
2,3 + a

(3)
1,3a

(3)
2,3,

q1 = a
(0)
0,2a

(0)
0,3 − a

(3)
0,3a

(3)
2,3 + a

(2)
0,2a

(2)
2,3,

q2 = a
(1)
0,1a

(1)
1,3 − a

(0)
0,1a

(0)
0,3 + a

(3)
0,3a

(3)
1,3,

q3 = a
(0)
0,1a

(0)
0,2 − a

(1)
0,1a

(1)
1,2 + a

(2)
0,2a

(2)
1,2

depending on the 12 variables in (7.7). Let Q = V (q0, . . . , q3) ⊆ P11 be the corresponding
projective variety. Then with the notation introduced above, the relations coming from ep = 0
have an equivalent geometric description:

Lemma 7.1.11. Let l ∈ St(2, 12) be a matrix, and denote by e(l) and p(l) the corresponding
matrices. Then

e(l)p(l) = 0⇐⇒ l ⊆ Q.

Proof. Clear from the definition of the matrices e(l), p(l) and the variety Q ⊆ P11.

Since some of the computations involving the chosen indices were rather technical, let us
briefly summarize the achievements of this section.

Summary 7.1.12 (The entries of degree 2). We have seen that in the general set-up of d′1 and d2

with d′1d2 = 0, the 12 entries of the matrix a determine all the other entries of degree 2. Among
all relations coming from d′1d2 = 0 there are exactly 4 (quadratic) relations involving only the
variables in (7.7). Furthermore, in Lemma 7.1.11 we have seen that solving these quadratic
relations is equivalent to finding a line l ⊆ Q.
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7.2 Finding Lines in Q

In the previous section we have seen that the variety Q ⊆ P11 plays a central role for describing
or constructing standard resolutions. In this section we study the 4 quadrics q0, . . . , q3 defining
the varietyQ. We will see that q0, . . . , q3 are Pfaffians of some skew-symmetric matrices. In the
end, we will use the special form of the quadrics to describe a procedure for computing lines in
Q.

Lemma 7.2.1. The variety Q ⊆ P11 is an irreducible complete intersection.

Proof. Using SINGULAR ([DGPS18]) we see thatQ is irreducible and that dimQ = 7 = 11−4.
Hence Q is an irreducible complete intersection.

If Q were smooth, it would be a Fano variety of index 4 and would have Kodaira dimen-
sion −∞. However, using SINGULAR again, we compute that Q is highly singular with a
3-dimensional reducible singular locus.

7.2.1 Pfaffians

Before studying the single quadratic forms qi, let us briefly introduce the notion of Pfaffians
and some properties. Throughout this section, M denotes a skew-symmetric matrix of order 2n
defined over a commutative ring. It is well-known that det(M) is a square of a polynomial in
the entries of M . We call this polynomial the Pfaffian of M , denoted by pf(M). There is an
explicit expression of pf(M) in the entries of M .

Lemma 7.2.2. Let M be as above. Then

pf(M) =
∑
σ∈Λ

sign(σ)mi1i2mi3i4 · · ·mi2n−1i2n ,

where

σ =

(
1 2 · · · 2n
i1 i2 · · · i2n

)
and Λ is the set of all permutations in S2n with

i1 < i2, i3 < i4, · · · , i2n−1 < i2n, i1 < i3 < · · · < i2n−1.

For example, if n = 2 and

M =


0 m12 m13 m14

−m12 0 m23 m24

−m13 −m23 0 m34

−m14 m24 −m34 0

 ,

then
pf(M) = m12m34 −m13m24 +m14m23. (7.8)

In the following we will write skew-symmetric matrices in a shorter way, where we omit the
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entries below the diagonal:

M =


0 m12 m13 m14

0 m23 m24

0 m34

0

 .

Note that for a given polynomial p which is the Pfaffian of a skew-symmetric matrix, there are
in general several skew-symmetric matrices having this polynomial as a Pfaffian:

Proposition 7.2.3. Let M be a skew-symmetric matrix of order 2n. If B ∈ GL(2n,k) with
det(B) = 1, then

pf(M) = pf(BMBT ).

Now let us return to our 4 quadrics

q0 = a
(1)
1,2a

(1)
1,3 − a

(2)
1,2a

(2)
2,3 + a

(3)
1,3a

(3)
2,3,

q1 = a
(0)
0,2a

(0)
0,3 − a

(3)
0,3a

(3)
2,3 + a

(2)
0,2a

(2)
2,3,

q2 = a
(1)
0,1a

(1)
1,3 − a

(0)
0,1a

(0)
0,3 + a

(3)
0,3a

(3)
1,3,

q3 = a
(0)
0,1a

(0)
0,2 − a

(1)
0,1a

(1)
1,2 + a

(2)
0,2a

(2)
1,2.

Comparing them with Equation (7.8) we see that each qi is the Pfaffian of a skew-symmetric
4× 4 matrix. A possible choice of the matrices is

M0 =


0 a

(1)
1,2 a

(2)
1,2 a

(3)
1,3

0 a
(3)
2,3 a

(2)
2,3

0 a
(1)
1,3)

0

 , M1 =


0 a

(0)
0,2 a

(3)
0,3 a

(2)
0,2

0 a
(2)
2,3 a

(3)
2,3

0 a
(0)
0,3

0

 ,

M2 =


0 a

(1)
0,1 a

(0)
0,1 a

(3)
0,3

0 a
(3)
1,3 a

(0)
0,3

0 a
(1)
1,3

0

 , M3 =


0 a

(0)
0,1 a

(1)
0,1 a

(2)
0,2

0 a
(2)
1,2 a

(1)
1,2

0 a
(0)
0,2

0

 .

7.2.2 A Las Vegas Algorithm for Computing Lines in Q

Let us now present an algorithm for computing lines which are completely contained in Q =
V (q0, . . . , q3) ⊆ P11. The idea of the procedure is the following. First choose a nonsingular
point p of Q. Then compute the variety Z = Q ∩ TpQ which is a cone with vertex p over a
surface in P6. Afterwards choose a second point q ∈ Z and compute the line pq. The correctness
of the algorithm follows then from the following statement:

Proposition 7.2.4. Let p ∈ Q be a nonsingular point which is also nonsingular for every Qi =
V (qi). Let q ∈ Q ∩ TpQ with q 6= p. Then pq ⊆ Q.
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Since Q = Q0 ∩ · · · ∩Q3 and TpQ = TpQ0 ∩ · · ·TpQ3, the proof is a direct consequence of the
following lemma:

Lemma 7.2.5. Let p be a nonsingular point of Qi, and let Zi = Qi ∩ TpQi. Let q ∈ Zi with
q 6= p. Then pq ⊆ Qi.

Proof. Let ` = pq. Suppose that ` is not contained in Q. Then we know from Bézout’s theorem
that

2 = deg(Qi) deg(`) =
∑

x∈Qi∩`
i(x;Qi, `) ≥ i(p;Qi, `) + i(q;Qi, `) ≥ 2 + 1 = 3,

where i(−;Qi, `) denotes the intersection multiplicity of Qi and ` at a point. But this is a
contradiction. Hence ` ⊆ Qi.

Before settling the question how to find a point p ∈ Q, possibly after extending our base field,
let us first make some general observations on varieties defined by Pfaffians. Let M denote a
general skew-symmetric 4× 4 matrix as in the previous section, and let

A = k[m12,m13,m14,m23,m24,m34].

Then V (pf(M)) ⊆ Proj(A) = P5 is a projective variety. Let 0 6= c = (c1, . . . , c4)tr ∈ k4.
Since

ctrMc = 0,

the vector Mc has in general three linearly independent linear entries. For example, if c4 6= 0,
then the first three entries

b0 = c2m12 + c3m13 + c4m14,

b1 = −c1m12 + c3m23 + c4m24,

b2 = −c1m13 − c2m23 + c4m34

are linearly independent. Furthermore we have

c1c4 pf(M) = c1m23b0 + (c2m23 − c4m34)b1 + (c3m23 + c4m24)b2.

Hence, if c1c4 6= 0, then
(pf(M)) ⊆ (b0, b1, b2) ⊆ A. (7.9)

We call an element c ∈ k4 yielding three linearly independent forms whose ideal contains pf(M)
a random kernel for M .

Remark 7.2.6. The word kernel refers to the fact that

p ∈ V (pf(M)) ⊆ P5 ⇐⇒ rank(M(p)) < 4

⇐⇒ there exists 0 6= c ∈ k4 : M(p)c = 0.

Furthermore, since any skew-symmetric matrix has even rank we have

p ∈ V (pf(M))⇐⇒ rank(M(p)) = 2.

Lemma 7.2.7. Let p, q ∈ V (pf(M)) be two different points such that syz(M(p)) ∩ syz(M(q))
is non-trivial. Then pq ⊆ V (pf(M)).
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Proof. We have to show that rank(M(λp+µq)) < 4 for any (λ : µ) ∈ P1. Since rank(M(p)) <
4 and rank(M(q)) < 4 we may assume that λµ 6= 0. Then

syz(M(λp+ µq)) = syz(λM(p) + µM(q))

⊇ syz(λM(p)) ∩ syz(µM(q)) = syz(M(p)) ∩ syz(M(q))

) 0.

Thus rank(λM(p) + µM(q)) = rank(M(λp+ µq)) < 4.

Let us return to our variety Q ⊆ P11. We treat first the case k = Q. For each i = 0, 1, 2
choose a random kernel ci for Mi such that the nine linear equations define a 2-dimensional
space Λ ∼= P2. Then Λ ⊆ Q0 ∩Q1 ∩Q2 by (7.9) and

Λ ∩Q = Λ ∩Q3︸ ︷︷ ︸
=Q̃3

⊆ Λ ∼= P2.

The variety Q̃3 is defined by a quadratic polynomial in P2 and thus is a conic. But finding
rational points on a conic is a well-studied problem. We will use the SINGULAR-procedure
rationalPointConic to choose a point p̃ ∈ Q̃3. If there exists a rational point (and hence
infinitely many), the algorithm will find one. If there is no such point, the procedure computes a
field extension of Q of degree 2 and chooses a point in this field extension. Let p ∈ Q ⊆ P11 be
the corresponding point. If necessary we repeat the procedure above until we get a nonsingular
point p ∈ Q.

As a second step, by Proposition 7.2.4, we have to choose a point q ∈ Q ∩ TpQ. We have
TpQ ∼= P7 and

Z = Q ∩ TpQ ⊂ TpQ ∼= P7

has expected dimension 3. Let V (qi) = Qi = Qi∩Tp(Q) ⊂ P7 and letMi be the corresponding
matrix such that qi = pf(Mi). Next we do a similar trick as before. Choose an integer j ∈
{0, . . . , 3} and let dj be a random kernel for M j . By Θ we denote the 4-dimensional linear
subspace of P7 defined by the three resulting linear equations. Then

Cj = Θ ∩Q0 ∩ · · · ∩Q3 ⊂ Θ ∼= P4

is a curve of degree 8. Intersecting with some general hyperplane H we get a 0-dimensional
variety of degree 8, hence 8 points in a P3 which are not necessarily defined over the ground
field. We use the SINGULAR-procedure absPrimdecGTZ to separate one of these points,
possibly over a finite field extension of degree at most 8. Let q be the corresponding point in
Q ⊆ P11. Then ` = pq is contained in Q ⊆ P11

Q(α) as desired, where Q(α) is a finite field
extension of Q of degree at most 16. Let us summarize the results from this section:

Proposition 7.2.8. Let k = Q. There is a Las Vegas algorithm computing lines in Q defined
over a finite field extension of Q of degree at most 16.

Remark 7.2.9. Varying the random kernels in the first step of the algorithm leads to different
conics in P2, and hence we may perform this first step repeatedly to find a conic having a k-
rational point. Thus, in practice, the computed line is usually defined over a field extension of Q
of degree at most 8.

Remark 7.2.10. If k = Fp we use similar ideas but proceed simply by trial and error. First
we choose random kernels for each skew-symmetric matrix Mi. This yields 12 linear forms
which are in general linearly independent. We repeatedly choose kernels until we get only 11
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independent linear forms and hence, by the definition of a random kernel, a point p in Q. Then
by Remark 7.2.6 there exist 0 6= ci,1, ci,2 ∈ k4 such that Mi(p)ci,j = 0 for i = 0, . . . , 3,
j = 1, 2. Now, by Lemma 7.2.7, as a new random kernel we take random linear combinations of
ci,1 and ci,2. This yields in general 11 independent forms. We repeat this until we get 10 linear
independent forms, and hence a line ` through p in Q.

7.3 The Fano Scheme of Lines F1(Q)

After having seen how to compute lines in Q, we will now study the scheme whose points
correspond to these lines.

Definition 7.3.1. Let X be a projective scheme. We call the Hilbert scheme Hilb1+t(X) the
Fano scheme of lines in X , denoted by F1(X).

Let fr be the Hilbert polynomial of an r-dimensional linear subspace of Pn. Then

Hilbfr(Pn) ∼= Gr(r,Pn) = Gr(r + 1, n+ 1).

Hence, if X ⊆ Pn, then we will consider F1(X) as a subscheme of the Grassmannian Gr(r +
1, n+ 1). In particular, for X = Q, we obtain F1(Q) ⊆ Gr(2, 12).

Recall that we have a quotient map St(2, 12)→ Gr(2, 12). We define the set

St(Q) := {l ∈ St(2, 12) | [l] ∈ F1(Q)}

which is the preimage of F1(Q) under this quotient map, and hence a closed subset of St(2, 12).
Any line ` ⊆ Q gives a point in F1(Q) which we denote by [`]. Note that, if ` = l for some
l ∈ St(Q), then [`] = [l] ∈ F1(Q) (see Notation 7.1.9). Moreover, for l ∈ St(2, 12) we have

l ∈ St(Q) if and only if l ⊆ Q.

7.3.1 Generators of F1(Q)

In this subsection we determine defining equations of F1(Q) locally in open sets of an affine
cover of F1(Q). For the sake of simplicity, we will denote the coordinates of P11 now by
t0, . . . , t11 using the substitution

(a
(3)
2,3, a

(3)
1,3, a

(3)
0,3, a

(2)
2,3, a

(2)
1,2, a

(2)
0,2, a

(1)
1,3, a

(1)
1,2, a

(1)
0,1, a

(0)
0,3, a

(0)
0,2, a

(0)
0,1) 7→ (t0, . . . , t11).

First note that

F1(Q) =
3⋂
i=0

F1(Qi)

and hence it is enough to describe the Fano scheme of a single hypersurface Qi. Via the Plücker
embedding we can consider Gr(2, 12) as a subvariety of P65 with coordinates vi,j for 0 ≤ i <
j ≤ 11. Let Ui,j be the open set on which the vi,j-coordinate is non-zero. Then Ui,j ∼= A20 and
we can represent an element of Gr(2, 12) ∩ Ui,j by a unique matrix in St(2, 12) whose 2 × 2
submatrix with columns i, j is the identity matrix. Using the substitution above, the 4 quadratic
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relations are of the form

q0 = t0t1 − t3t4 + t6t7,

q1 = t3t5 − t0t2 + t9t10,

q2 = t6t8 − t9t11 + t1t2,

q3 = t4t5 − t7t8 + t10t11.

Now we replace the variables ti by %i,0x0 + %i,1x1, where %i,0 and %i,1 are the coordinates
of A24. We consider the resulting polynomials as homogeneous polynomials in x2

0, x0x1, x
2
1

with coefficients depending on %i,0 and %i,1. These coefficients define in total 12 quadratic
homogeneous relations and hence a closed subset WQ ⊆ A24 with St(Q) = WQ ∩ St(2, 12).
Then F1(Q)∩Ui,j ⊆ Ui,j is defined by these 12 forms in the affine subspace V (%i,0 − 1, %j,1 −
1, %j,0, %i,1) ∼= A20. In particular, we see that on every (affine) open set Ui,j ∼= A20, F1(Q) is
also defined by quadratic polynomials. Furthermore, with the help of SINGULAR we compute
that dim(F1(Q) ∩ Ui,j) = 8 for all 0 ≤ i < j ≤ 11. Since (F1(Q) ∩ Ui,j)i,j is an affine cover
of F1(Q) this implies:

Lemma 7.3.2. The scheme F1(Q) is 8-dimensional.

The next question is whether F1(Q) is irreducible or not. Unfortunately we were not able to
test the irreducibility with any of the computer algebra systems SINGULAR, MACAULAY2 or
MAGMA. With the help of the software BERTINI ([BHSW]) which uses numerical homotopy
continuation methods we computed that F1(Q) is irreducible. However these computational
results are not certified.

7.3.2 Local Properties of F1(Q)

The goal of this subsection is to study F1(Q) locally. More precisely, we are interested in
conditions under which a line ` ⊆ Q leads to a smooth point [`] of F1(Q). To begin with, let
us state some preliminary results on normal sheaves and complete intersections which we use in
the following.

Definition 7.3.3. Let X be a scheme over k, and let Y ⊆ X be a closed subscheme with ideal
sheaf I. The sheaf HomY (I/I2, OY ) is called the normal sheaf of Y in X and is denoted by
NY/X . If X is smooth and Y is a locally complete intersection, thenNY/X is locally free and is
called the normal bundle of Y in X .

Proposition 7.3.4 ([EH16], Proposition 6.15). If Z ⊆ Y ⊆ X are schemes such that Y is a
locally complete intersection in X , then there is an exact sequence of sheaves

0→ NZ/Y → NZ/X
α−→ NY/X |Z .

Moreover, if all schemes are smooth, then α is an epimorphism.

Later we will apply this statement to the varieties ` ⊆ Q ⊆ P11 and show that the morphism
α is surjective if and only if Q is smooth along the line `.

Corollary 7.3.5 ([EH16], Corollary 6.16). Suppose Z ⊆ Y ⊆ Pn are (not necessarily smooth)
complete intersections of hypersurfaces with homogeneous ideals

IY = (f1, . . . , ft) ⊆ IZ = (g1, . . . , gs), fi =
s∑
j=1

ai,jgj .
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If deg(fi) = γi and deg(gj) = δj , then

NY/Pn =
t⊕
i=1

OY (γi), NZ/Pn =
s⊕
j=1

OZ(δj)

and NZ/Y is the kernel of the morphism

α : NZ/Pn → NY/Pn |Z

given by the matrix ā = (āi,j), where āi,j denotes the restriction of ai,j to Z.

Let us now apply these results to our setting. Let ` ⊆ Q be a fixed line. Then there is an exact
sequence

0→ N`/Q → N`/P11
α−→ NQ/P11 |`

which is the sequence

0→ N`/Q →
10⊕
i=1

O`(1)
α−→

4⊕
i=1

O`(2) (7.10)

by the previous corollary. Hence, as any subsheaf of a locally free sheaf on a smooth curve,
N`/Q is locally free as well. So in our case, where this curve is isomorphic to P1,

N`/Q ∼=
m⊕
i=1

OP1(ai)

for some m ≤ 10 and integers ai ≤ 1. Recall that the singular locus of Q is a 3-dimensional
reducible variety. So a general line ` ⊆ Q will not meet the singular locus. Let Qreg =
Q\ Sing(Q) be the open set of regular points of Q.

Proposition 7.3.6. The map α in sequence (7.10) is surjective if and only if Q is smooth along
`. In this case, N`/Q is a locally free sheaf of rank 6 and degree 2.

Proof. The proof is a generalization of the case where ` is contained in a single hypersurface
H (see [EH16], Proposition 6.24). We prove that the morphism of stalks αp is surjective for all
p ∈ `. For this, after a linear change of coordinates, we may assume that ` is defined by the
forms t2, . . . , t11. We denote the 4 quadratic generators of I(Q) still by q0, . . . , q3. Since

(q0, . . . , q3) = I(Q) ⊆ I(`) = (t2, . . . , t11)

we can find for each i unique linear forms ai,j depending only on t0, t1 and a quadratic form
hi ∈ (t2, . . . , t11)2 such that

qi =

11∑
j=2

ai,jtj + hi.

By Corollary 7.3.5, the map α is given by the matrix (ai,j) 0≤i≤3,
2≤j≤11

(considered as forms on `).

On the other hand, the Jacobian of Q is the matrix
∑11

j=2
∂a0,j
∂t0

tj
∑11

j=2
∂a0,j
∂t1

tj a0,2 + ∂h0
∂t2

· · · a0,11 + ∂h0
∂t11

...
...

...
. . .

...∑11
j=2

∂a3,j
∂t0

tj
∑11

j=2
∂a3,j
∂t1

tj a3,2 + ∂h3
∂t2

· · · a3,11 + ∂h3
∂t11

 .
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In particular, the restriction of the Jacobian to ` is given by
0 0 a0,2 · · · a0,11

...
...

...
. . .

...

0 0 a3,2 · · · a3,11

 . (7.11)

Let p ∈ ` ⊆ Q. Then Q is smooth at p if and only if there exists a 4× 4 minor of (7.11) which
does not vanish at p. But this is equivalent to the fact that the matrix corresponding to αp has an
invertible 4× 4 minor, and hence that αp is surjective.

Thus if ` ⊆ Qreg, then

N`/Q ∼=
6⊕
i=1

OP1(ai) (7.12)

is a locally free sheaf of rank 6 and degree 2 =
∑6

i=1 ai. The integers a1, . . . , ar determine the
splitting type of N`/Q:

Definition 7.3.7. LetF ∼=
⊕r

i=1OP1(ci) be a locally free sheaf on P1 of rank r with c1 ≥ . . . ≥
cr. The integers c1, . . . , cr are called the splitting type of F . We call F balanced if |ci− cj | ≤ 1
for all i, j.

Returning to our normal bundle N`/Q for ` ⊆ Qreg, we see that there are only finitely many
possible splitting types for N`/Q:

a1 a2 a3 a4 a5 a6

1 1 0 0 0 0

1 1 1 0 0 −1

1 1 1 1 −1 −1

1 1 1 1 0 −2

1 1 1 1 1 −3

Note that only the first row leads to a balanced vector bundle on P1. Since being balanced is an
open condition in a family of vector bundles on P1 with a fixed rank and degree, we can find an
open set Ubal ⊆ F1(Q) such that

N`/Q ∼=
2⊕
i=1

OP1(1)⊕
4⊕
i=1

OP1

for any [`] ∈ Ubal. Moreover, with the help of the Las Vegas algorithm from the last section, we
compute a line ` fulfilling this property. Hence Ubal is non-empty.

Now let ` ⊆ Qreg be a line. The scheme F1(Q) is smooth at the point [`] if and only if

dim[`] F1(Q) = dimTF1(Q),[`],

where TF1(Q),[`] denotes the Zariski tangent space to F1(Q) at [`]. We have:

Theorem 7.3.8. Let X be a projective scheme over k and let Y ⊆ X be a closed subscheme
with ideal sheaf I and Hilbert polynomial f .
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(i) There exists an isomorphism of k-vector spaces

TH,[Y ]
∼= H0(Y,HomY (I/I2, OY )) = H0(Y,NY/X)

where TH,[Y ] is the Zariski tangent space to H = Hilbf (X) at the point [Y ]. In particular,

dim[Y ]H ≤ h0(Y,NY/X).

(ii) If Y ⊆ X is a local complete intersection then

dim[Y ]H ≥ h0(Y,NY/X)− h1(Y,N Y/X).

In particular, if h1(Y,NY/X) = 0, then H is smooth at [Y ] of dimension h0(Y,NY/X).

Proof. [EH16], Theorem 6.21, [Kol13], Theorem I.2.15.

Using this result, we get the following statement on smooth points of F1(Q):

Proposition 7.3.9. Let ` ⊆ Qreg ⊆ Q be a line with normal bundle

N`/Q ∼=
6⊕
i=1

OP1(ai),

a1 ≥ a2 ≥ . . . ≥ a6. If a6 ≥ −1, then F1(Q) is smooth at [`] with dim[`] F1(Q) = 8. In
particular, for any line ` ⊆ Qreg such that [`] ∈ Ubal, the point [`] is a smooth point of F1(Q).

Proof. Using Theorem 7.3.8 it is enough to show that h1(`,N`/Q) = 0 which is trivially satisfied
if a6 ≥ −1. Moreover, using again Theorem 7.3.8, we have

dim[`] F1(Q) = h0(`,N`/Q) = 8.

Note that for any ` ⊆ Qreg ⊆ Q we have

h0(`,N`/Q)− h1(`,N`/Q) = 8. (7.13)

For the sake of completeness, we will also give a formula for the left-hand side of (7.13) for the
case where `meets the singular locus ofQ. Then we have an exact sequence of coherent sheaves

0→ N`/Q →
10⊕
i=1

O`(1)
α−→

4⊕
i=1

O`(2)→ F → 0,

where F = cokerα. The sheaf F is supported on ` ∩ Sing(Q). In particular, if ` * Sing(Q),
thenF is supported on finitely many points. Splitting the above long exact sequence in two short
exact sequences

0→ N`/Q →
10⊕
i=1

O`(1)→ E → 0

and

0→ E →
4⊕
i=1

O`(2)→ F → 0.
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Taking global sections, we obtain

0→ H0(`,N`/Q)→ H0(`,
10⊕
i=1

O`(1))→ H0(`, E)

→ H1(`,N`/Q)→ 0→ H1(`, E)→ 0

and

0→ H0(`, E)→ H0(`,
4⊕
i=1

O`(2))→ H0(`,F)

→ H1(`, E)→ 0.

Thus
h0(`,N`/Q)− h1(`,N`/Q) = 8 + h0(`,F).

7.4 Syzygies of the Matrix a

In Section 7.1 we have seen that we can assign to any matrix l ∈ St(2, 12) a matrix a(l) whose
entries are linear forms in x0, x1. In this section, we study properties of the module Ll =
coker a(l) as a B = k[x0, x1]-module. Our aim is to show that there is an open subset Vgensyz ⊆
St(Q) such that for any l ∈ Vgensyz, the module Ll has the expected Betti numbers. Then, in the
next section, we will further simplify the relations given by d′1d2 = 0 for matrices l ∈ Vgensyz.

A priori, the following Betti tables for Ll are possible:

Lemma 7.4.1. Let ã : B4 ← B(−1)6 be a homogeneous homomorphism of rank 4. Then the
Betti table of L = coker ã is one of the following:

0 1

0 4 4

0 1 2

0 4 5 1

0 1 2

0 4 5 .

1 . . 1

0 1 2

0 4 5 .

1 . . .

2 . . 1

0 1 2

0 4 5 .

1 . . .

2 . . .

3 . . 1

0 1 2

0 4 6 2

0 1 2

0 4 6 1

1 . . 1

0 1 2

0 4 6 .

1 . . 2

0 1 2

0 4 6 1

1 . . .

2 . . 1
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Proof. Since rank(ã) = 4, the minimal free resolution of L is of the form

0← L← B4 ← B(−1)4+m ←

B(−2)m2

⊕

B(−3)m2

⊕

B(−4)m4

⊕
...

← 0, (7.14)

where 0 ≤ m ≤ 2 and
∑

i≥2mi = m are integers. Then, for each choice of m, there are only
finitely many choices for the integers mi such that the above sequence is a free resolution of L.
Indeed, for n >> 0 we have

0 ≤ dimk(L)n = 4(n+ 1)− (4 +m)n+m2(n− 1) +m3(n− 2) + · · ·

= (−m+
∑
i≥2

mi)n+ (4−
∑
i≥2

(i− 1)mi)

= 4−
∑
i≥2

(i− 1)mi.

Now distinguishing between the cases m = 0, 1 and 2, we see that there exist only finitely many
choices for the integers mi such that the right-hand side is non-negative. These possibilities are
exactly the Betti numbers as claimed above. Note that the Betti tables in the first row correspond
to minimal free resolutions with m = 0 or m = 1, whereas the Betti tables in the second row
correspond to the possible choices having m = 2.

Remark 7.4.2. Note that for any two matrices l1, l2 ⊆ St(2, 12) with [l1] = [l2] ∈ Gr(2, 12)
we have rank(a(l1)) = rank(a(l2)). Furthermore, Ll1 and Ll2 have the same Betti numbers.
Indeed, [l1] = [l2] implies that there exists an element u ∈ GL(2, k) such that ul1 = l2. The
matrix u defines a linear change of coordinates on P1 and hence an isomorphism fu : B → B.
Then a(l2) is just the matrix a(l1), where each entry b is replaced by fu(b), which shows that
these matrices have the same rank and Betti numbers.

Remark 7.4.3. For a matrix l ∈ St(Q), we denote the integer m from the proof of Lemma
7.4.1 by m(l). By the previous remark we know that for matrices l1, l2 with [l1] = [l2] ∈
F1(Q) we have m(l1) = m(l2). In particular, for any point [l] ∈ F1(Q) with representative
l ∈ St(Q) the following is well-defined: m([l]) := m(l). Recall that we represent an element
of Ui,j ∩ F1(Q) ⊆ A20, for 0 ≤ i < j ≤ 11, by a unique 2 × 12 matrix l whose 2 × 2
submatrix with columns i, j is the identity matrix. For example, if i = 10 and j = 11, then for
[l] ∈ U10,11 ∩ F1(Q) ⊆ A20, we obtain a corresponding a-matrix

a(l) =


x1 x0 0 λ9x0 + µ9x1 0 0

λ8x0 + µ8x1 0 λ7x0 + µ7x1 0 λ6x0 + µ6x1 0

0 λ5x0 + µ5x1 λ4x0 + µ4x1 0 0 λ3x0 + µ3x1

0 0 0 λ2x0 + µ2x1 λ1x0 + µ1x1 λ0x0 + µ0x1

.
The conditions rank(a(l)) = 4 and m(l) = 2 are open conditions on the coordinates of A20

(respectively on the Stiefel coordinates of l). Hence there exists an open subset of F1(Q) (re-
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spectively of St(Q)) whose points lead to a-matrices having a full rank and a minimal free
resolution with m(l) = 2. Using the Las Vegas algorithm from Subsection 7.2.2, we will check
by a computation in Section 11.3 that this open set is non-empty.

Lemma 7.4.4. Let l ∈ St(Q) be a matrix and assume that rank(a(l)) = 4. Then the Hilbert
polynomial of Ll is a constant nl. Moreover, L̃l is supported at nl points in P1 (counted with
multiplicity).

Proof. Since rank(a(l)) = 4 there must be a non-zero 4× 4 minor of a(l). Hence

dimLl = dimB/ annB(Ll) ≤ 1.

This implies that the Hilbert polynomial of Ll is a constant nl ∈ N. From the structure theorem
for coherent sheaves on P1 we deduce that

L̃l ∼=
k⊕
i=1

OP1(si)⊕
m⊕
j=1

Orj [pj ],

where si ∈ Z andOrj [pj ] is a torsion sheaf of degree rj supported on a closed point pj ∈ P1. On
the other hand, we know that h0(P1, L̃l(d)) = dimk(Ll)d = nl for d >> 0. Hence k = 0 and

nl =
m∑
j=1

rj .

Remark 7.4.5. Assume Ll has a minimal free resolution corresponding to the first three Betti
tables in the second row of Lemma 7.4.1, that is a resolution of type

0← Ll ← B4 ← B(−1)6 ←
B(−2)h

⊕

B(−3)2−h

← 0 (7.15)

for 0 ≤ h ≤ 2. Then, in each case, the Hilbert polynomial of Ll is h. Hence L̃l is supported on
h points (counted with multiplicity). We will later observe that this number h is related to the
number of hyperelliptic curves in |2KX |.

In the next section, we will see that we can a priori assume that the matrix c is zero in d′1 if
and only if the minimal free resolution of Ll is of the form (7.15) with h = 0. The following
statement shows that ”having a minimal free resolution of this form” is again an open condition
on St(Q):

Proposition 7.4.6. There exists a (non-empty) open subset Vgensyz ⊆ St(Q) such that for every
l ∈ Vgensyz, the module Ll has a minimal free resolution of the form

0← Ll ← B4 ← B(−1)6 ← B(−3)2 ← 0.

Proof. Similarly as before, it is enough to show first that the property stated above is an open
condition and give then one example fulfilling this property. Here we will only show the open-
ness and refer for examples to Chapter 11. First recall from Remark 7.4.3 that having a minimal
free resolution corresponding to a Betti table in the second row of Lemma 7.4.1 is an open con-
dition. Hence we assume from now on that m = 2 in (7.14). In the previous remark, we have
seen that the Hilbert polynomial of Ll with a minimal free resolution as in (7.15) is h. Moreover,
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we compute that the Hilbert polynomial of a module Ll with minimal free resolution of type

0← Ll ← B4 ← B(−1)6 ←
B(−2)

⊕

B(−4)

← 0

is the zero polynomial. We show now that, in this setting, having a Hilbert polynomial equal
to zero is an open condition. By the previous proposition, this is equivalent to showing that
the scheme Supp(L̃l) is empty for l ∈ St(Q). But, by the definition of the module Ll, this is
equivalent to the fact that the 4× 4 minors of a(l) do not vanish at any point p ∈ P1.

The matrix a(l) has 15 minors of size 4 which we write as a product

M4(l)



x4
0

x3
0x1

x2
0x

2
1

x0x
3
1

x4
1


,

where M4(l) is a 15 × 5 matrix depending only on the Stiefel coordinates of l. A point p ∈ P1

at which all 4 × 4 minors of a(l) vanish leads to a non-trivial syzygy of the columns of M4(l).
Hence, the 4× 4 minors of a(l) do not vanish at any point of P1 if

rankM4(l) = 5. (7.16)

Since having a full rank is an open condition, (7.16) is an open condition on St(Q). Thus, on an
open subset of St(Q) the minimal free resolution of Ll is of type

0← Ll ← B4 a(l)←−− B(−1)6 ← B(−3)2 ← 0

or

0← Ll ← B4 a(l)←−− B(−1)6 ←
B(−2)1

⊕

B(−4)1

← 0.

Next we assign to any l ∈ St(Q) a coherent sheaf on P1 by setting

Sl = ˜ker(a(l)).

Then, on an open subset of St(Q), we have

Sl ∼= OP1(−3)2 or Sl ∼= OP1(−2)⊕OP1(−4).

In both cases, Sl is a vector bundle on P1 of rank 2 and degree −6. But only in the first case, Sl
is a balanced vector bundle. The result follows now from the fact that being balanced is an open
condition in a family of vector bundles on P1 with fixed rank and degree. Hence, there exists
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an open subset of St(Q) such that for any matrix l in this set, the module Ll has a minimal free
resolution as claimed. We denote the largest open subset of St(Q) on which this condition is
satisfied by Vgensyz.

Remark 7.4.7. In the next section we will also need some information on the syzygies of the
matrix p(l). With MACAULAY2 we compute that the (updated) matrix p has rank 8. Hence,
replacing the open set from Proposition 7.4.6 from the last statement by a smaller one, if nec-
essary, we may without loss of generality assume that rank p(l) = 8 for any l ∈ Vgensyz. This
implies that coker p(l) has a minimal free resolution of the form

0← coker p(l)← B12 ← B(−1)8 ← 0.

Furthermore, we assume from now on that Vgensyz ⊆ St(Q) is the maximal open set on which
both open conditions above hold: Hence, if l ∈ St(Q) is a matrix with l /∈ Vgensyz, then Ll or
coker p(l) have other Betti numbers than those above.

7.5 Solving the Linear Relations

In this section we study again a standard resolution

0← R← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

as in Section 7.1 with the general set-up for d′1 and d2 as in (7.1) and (7.2). Recall that any
matrix l ∈ St(Q) completely determines the entries of the matrices a, e and p in d′1 and d2. Our
updated matrix of relations has then the following form

d′1d2 =

 a(l)o− b1(y)ntr − cb3(y)tr a(l)n− cp(l)tr 0

−e(l)ntr 0 0

 .

We see that the relations coming from d′1d2 = 0 are linear in the entries of the matrices o, n, c.
So, after arranging the remaining unknown entries in a vector, they give a syzygy of a matrix, say
M(l), whose entries depend only on l. In this section, we will introduce and study the matrix
M(l) under the assumption that Ll = coker a(l) has a minimal free resolution of the form

0← coker a(l)← B4 a(l)←−− B(−1)6 ← B(−3)2 ← 0. (7.17)

Recall from Proposition 7.4.6 that this assumption is satisfied for each matrix l ∈ Vgensyz.

Lemma 7.5.1. Let c̃ : B4 ← B(−2)12 be an arbitrary homogeneous homomorphism, and let
l ∈ St(Q) be a matrix such that Ll has a minimal free resolution as in (7.17). Then

im(c̃) ⊆ im(a(l)).

Proof. The columns of c̃ span a subspace of the 12-dimensional k-vector space (B4)2. From
the minimal free resolution of Ll we compute that dimk(Ll)2 = 0. Hence the image of a(l)
contains the vector space (B4)2 which proves the claim.

Remark 7.5.2. Note that the previous lemma can be generalized to the following statement. Let

ã : B4 ← B(−1)6 and c̃ : B4 ← B(−2)12
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be two non-zero homogeneous homomorphisms with rank(ã) = 4. Then im(c̃) ⊆ im(ã) if and
only if coker ã has Betti numbers as in (7.17) (with ã instead of a(l)).

Now let
0← R← F0

d1←− F1
d2←− F∨1

dtr1←−− F∨0 ← 0

be any standard resolution ofR whose a-matrix a(l) has Betti numbers as in (7.17). Let c̃ denote
the c-matrix of d1. By Lemma 7.5.1, there exists a matrix t1 such that c̃ = a(l)t1. Setting

α1 =


id6 −t1

id12

id8

,

e1 = d1α1 and e2 = α−1
1 d2α

−tr
1 , we obtain another standard resolution

0← R← F0
e1←− F1

e2←− F∨1
etr1←−− F∨0 ← 0

of R with assigned matrix l and whose c-matrix is zero now.

General Assumption 2. Let

0← R← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a standard resolution with assigned matrix l ∈ St(Q). If coker a(l) has Betti numbers as in
(7.17), then we assume from now on that the c-matrix of d1 is zero. Thus, in this case, a standard
resolution of R has the additional property c = 0.

Later we will see that if the canonical ringR(X) admits a standard resolution whose a-matrix
has Betti numbers as in (7.17), then X is a torsion-free numerical Godeaux surface.

Our next step is to see how the condition c = 0 effects our original relations. One consequence
of this condition is that every entry of n can be expressed by the entries of the matrices a and
o. To see this, we will first write the entries of o and n with respect to the indices introduced in
Section 7.1.

Recall that o is a square matrix of size 6 whose entries are homogeneous of degree 5. We
consider these entries as polynomials in y0, . . . , y3 whose coefficients are variables of degree
2. The row indices of o should be the same as the column indices of the matrix a, namely the
elements of the set

N = {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3)}.

Furthermore, since o is skew-symmetric, row and column indices should be the same.

Notation 7.5.3 (The matrix o). Let (r1, s1), (r2, s2) ∈ N . Then the entry in row (r1, s1) and
column (r2, s2) of the matrix o is of type:{

0, if r1 = s1 and r2 = s2,∑3
m=0 o

(r1,s1)
r2,s2,m · ym, otherwise.

Furthermore, by the skew-symmetry of o, we have

o(r1,s1)
r2,s2,m = −o(r2,s2)

r1,s1,m

for all m = 0, . . . , 3. So in total, the matrix o has 60 unknown entries of degree 2.
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Now it remains to consider the matrix n. Similarly as for the matrix o, every row of n should
correspond to a column of a. Furthermore, the column indices of n should be the same as
the column indices of b4(y). Since the matrix b4(y) is skew-symmetric, these indices should
coincide with the row indices of b4(y), that is with the elements of the set

L1 = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)}.

Notation 7.5.4 (The matrix n). Let (r, s) ∈ N and (k, l) ∈ L1. We denote the entry in row
(r, s) and column (k, l) of n by n

(r,s)
k,l .

Next we study the equation ao − b1(y)ntr = 0 which is one of the equations coming from
d′1d2 = 0 under the additional condition c = 0. Then the entry in row k and column (r, s) of the
matrix on the left-hand side is of the form

∑
n∈N

a(k)
n

( 3∑
m=0

onr,s,mym
)
− yhk,1n

(r,s)
k,hk,1

− yhk,2n
(r,s)
k,hk,2

− yhk,3n
(r,s)
k,hk,3

. (7.18)

Corollary 7.5.5. Let (r, s) ∈ N and (k, l) ∈ L1. If ao− b1(y)ntr = 0, then

n
(r,s)
k,l =

∑
n∈N

a(k)
n onr,s,l. (7.19)

In particular, we can then express any entry of the matrix n by elements of a and o.

Proof. Clear from Equation (7.18).

Remark 7.5.6. To obtain the expressions for the entries of n we used the fact that the coefficients
of the variables ym for m = hk,1, hk,2, hk,3 must be zero in (7.18). For m = k we get a further
relation

ρ(k)
r,s :=

∑
n∈N

a(k)
n onr,s,k = 0. (7.20)

Hence, altogether, we obtain 24 relations of degree 4. Furthermore, ao − b1(y)ntr = 0 if and
only if (7.19) and (7.20) are satisfied.

Remark 7.5.7. To simplify the following calculations, we assume that we have given variables
o

(r1,s1)
r2,s2,m for any r1 6= s1 ∈ {0, . . . , 3} and r2 6= s2 ∈ {0, . . . , 3} subject to the conditions:

o(r1,s1)
r2,s2,m = o(s1,r1)

r2,s2,m = o(s1,r1)
s2,r2,m = o(r1,s1)

s2,r2,m.

Substituting the entries of the matrix n by the expression in Corollary 7.5.5 yields now the
following new matrix of relations

d′1d2 =

 0 an 0

−entr 0 0


together with the 24 relations from Remark 7.5.6.
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Next we study the relations of degree 6 coming from an = 0. Let i ∈ {0, . . . , 3}, and
(k, l) ∈ L1. Then the element in row i and column (k, l) of the updated matrix an is of the form

ξ
(i)
k,l :=

∑
n∈N

a(i)
n nnk,l =

3∑
j=1

a
(i)
i,hi,j

n
i,hi,j
k,l

=
3∑
j=1

a
(i)
i,hi,j

( 3∑
m=1

a
(k)
k,hk,m

o
k,hk,m
i,hi,j ,l

)

=

3∑
j=1

3∑
m=1

a
(i)
i,hi,j

a
(k)
k,hk,m

o
k,hk,m
i,hi,j ,l

.

Corollary 7.5.8. Let i ∈ {0, . . . , 3} and (k, l) ∈ L1. Then, modulo the 24 relations from
Remark 7.5.6, we have

ξ
(i)
k,l =

{
0 if i ∈ {k, l},
−ξ(k)

i,l if i /∈ {k, l}.

In particular, the equation an = 0 gives 12 additional relations of degree 6.

Proof. If i = k or i /∈ {k, l}, then the claimed expression follows directly from the definition of
ξ

(i)
k,l and the properties of the entries of o from Notation 7.5.3 without any reduction modulo the

relations of degree 4. So it remains to consider the case l = i. Then

ξ
(i)
k,i =

3∑
j=1

3∑
m=1

a
(i)
i,hi,j

a
(k)
k,hk,m

o
k,hk,m
i,hi,j ,i

= −
3∑
j=1

3∑
m=1

a
(i)
i,hi,j

a
(k)
k,hk,m

o
i,hi,j
k,hk,m,i

= −
3∑

m=1

a
(k)
k,hk,m

( 3∑
j=1

a
(i)
i,hi,j

o
i,hi,j
k,hk,m,i

)

= −
3∑

m=1

a
(k)
k,hk,m

ρ
(i)
k,hk,m

= 0.

Finally, from the equation−entr = 0 we get 18 relations of degree 6 which cannot be reduced
any further. Now let us put all our previous results on the unknown entries of d′1 and d2 and their
relations together.

Summary 7.5.9. We consider d′1 and d2 with the updated matrices for a,e and p and with the
additional condition c = 0. Then there are in total 72 unknown entries of degree 2: the 12 entries
of the matrix a and the 60 entries in the matrix o from Notation 7.5.3. Furthermore, there are
58 relations between these 72 variables, namely the 4 quadratic (Pfaffian) relations q0, . . . , q3

and the 54 relations deduced above. In particular, after finding a solution for the 4 quadratic
relations, we get 54 equations which are linear in the remaining 60 variables.

Writing the 60 unknown entries of the o-matrix as a column vector o, we can represent the 54
linear relations as

Mo = 0,

whereM is a 54 × 60 matrix whose entries depends solely on the 12 variables in the matrix a.
Furthermore, we writeM so that the first 24 rows correspond to the relations of degree 4 and
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the last 30 rows to the relations of degree 6. With the help of MACAULAY2 we compute that
rankM = 38.

For l ∈ Vgensyz ⊆ St(Q), let M(l) be the matrix obtained from M by replacing the a-
variables with the assignment given by l. Hence, M(l) depends only on x0, x1 and on the
Stiefel coordinates of l. In Chapter 11 we consider an example with a matrix l ∈ St(Q) such
that cokerM(l) has a minimal free resolution of type

0← cokerM(l)←
B(−1)24

⊕

B30

← B(−2)60 ←
B(−3)4

⊕

B(−4)18

← 0.

In general, after replacing Vgensyz by a smaller open subset if necessary, we may assume that for
any l ∈ Vgensyz we have rank(M(l)) = 38 and that cokerM(l) has a minimal free resolution
of the form

0← cokerM(l)←
B(−1)24

⊕

B30

M(l)←−−− B(−2)60 ←

B(−3)n3(l)

⊕

B(−4)n4(l)

⊕

B(−5)n5(l)

⊕
...

← 0, (7.21)

where the ni(l) are non-negative integers with n3(l) ≤ 4 and
∑

k≥3 nk(l) = 22. Since the
unknown entries of the matrix o have all degree 2, any possible assignment to these variables
gives an element of the vector space (B(−2)60)3. Now let

V(l) ⊆ (B(−2)60)3
∼= k120

be the k-vector space of dimension n3(l) generated by the columns of the homomorphism
B(−2)60 ← B(−3)n3(l) in (7.21). Hence, V(l) is the kernel of a linear map of vector spaces

k192 M′(l)←−−− k120,

where the matrixM′(l) depends only on the Stiefel coordinates of l.

Then an element r ∈ (B(−2)60)3 is a solution of the system

M(l)o = 0 (7.22)

if and only if r ∈ V(l). Usually we consider V(l) with a fixed basis and identify it with the
vector space kn3(l), by sending the standard basis vectors of kn3(l) to the chosen basis vectors.
Hence, using this identification, we will denote in the following by p both the solution vector in
V(l) and the corresponding point in kn3(l). Given such a point p, we write the corresponding
solution of the system (7.22) in a matrix as in Notation 7.5.3 and denote this matrix by o(l, p).
Moreover, from Corollary 7.5.5 we know that we can express any element of the general matrix
n in terms of entries of the matrices a and o. Now Equation (7.19) with a and o replaced by a(l)
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and o(l, p) respectively, defines a matrix n(l, p). Then

a(l)o(l, p)− b1(y)n(l, p)tr = 0

is a direct consequence from the definition of the matrix n(l, p) and the fact that the entries of
the matrices a(l) and o(l, p) satisfy (7.20).

Proposition 7.5.10. Let l ∈ Vgensyz ⊆ St(Q) be a matrix, and let p ∈ V(l) be any point. Then
the matrices

d′1(l) =

a(l) b1(y) 0

0 e(l) b2(y)

 and d2(l, p) =


o(l, p) n(l, p) b3(y)

n(l, p)tr b4(y) p(l)

−b3(y)tr −p(l)tr 0


satisfy

d′1(l)d2(l, p) = 0.

Proof. Clear from the previous results in this section and the discussion on the quadratic rela-
tions q0, . . . , q3 in Section 7.1.

In Remark 7.4.2 we have seen that for matrices l1, l2 ∈ St(Q) with [l1] = [l2] ∈ F1(Q), the
modules coker a(l1) and coker a(l2) have the same Betti numbers. For the corresponding vector
spaces V(l1) and V(l2) we obtain the following:

Lemma 7.5.11. Let l1, l2 ∈ Vgensyz ⊆ St(Q) such that [l1] = [l2] ∈ F1(Q). Then V(l1) ∼= V(l2).

Proof. The condition [l1] = [l2] implies that there exists an invertible matrix

u =

u0,0 u0,1

u1,0 u1,1


such that l2 = ul1. Then the matrixM(l2) is the matrixM(l1) with each variable xi being sub-
stituted by u0,ix0 +u1,ix1. Hence, cokerM(l1) and cokerM(l2) have the same Betti numbers.
In particular, the solution spaces V(l1),V(l2) ⊆ (B(−2)60)3 have the same dimension and there
exists an isomorphism

su : V(l1)→ V(l2).

Furthermore, from any basis of V(l1) we get a corresponding basis of V(l2) by substituting each
variable xi by u0,ix0 +u1,ix1 as above. Hence, we assume that su maps a chosen basis of V(l1)
to its corresponding basis in V(l2).

Remark and Assumption 7.5.12. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (7.23)

be a standard resolution of R(X). We can assign a unique matrix l ∈ Mat(k, 2 × 12) to the
a-matrix of d1 (by writing the coefficients of x0 in the first row, and the ones of x1 in the second
row of l). Suppose that l /∈ St(2, 12). Then there exists an element (p0 : p1) ∈ P1 inducing a
non-trivial relation between the rows of l. Let I ′ ⊆ S denote the ideal generated by the 7 × 7
minors of d′1 as in Notation 5.0.1. Then, from the form of d′1 modulo x0, x1, we deduce that the
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vanishing locus of I ′ in P(22, 34) contains the 4 curves

C0 = V (p1x0 + p0x1, y1, y2, y3), C1 = V (p1x0 + p0x1, y0, y2, y3),

C2 = V (p1x0 + p0x1, y0, y1, y3), C3 = V (p1x0 + p0x1, y0, y1, y2),

which implies that depth(I ′, S) = dimS − dimS/I ′ ≤ 4. Hence, R(X) does not satisfy the
ring condition from Remark 5.2.4. Since, we believe that the canonical ring of any (marked)
numerical Godeaux surface X satisfies this condition, we will assume from now on that the
assigned matrix to any standard resolution of R(X) is contained in St(2, 12). In particular, we
can assign to (7.23) a unique matrix l ∈ St(Q). Furthermore, if l ∈ Vgensyz, then there exists a
unique point p ∈ V(l) such that

d′1 = d′1(l) and d2 = d2(l, p).

We call the pair (l, p) the assigned pair to the standard resolution (7.23).

We end this section with a brief discussion on the linear relations of d′1d2 = 0 without the
additional assumption c = 0:

Remark 7.5.13. If l ∈ St(Q) such that coker a(l) has different Betti numbers as in (7.17), we
cannot a priori assume that c = 0. In this case, we use the equation

a(l)o− b1(y)ntr − cb3(y)tr = 0 (7.24)

to express every entry of the matrix c by entries of the matrices a, o and n. Then the remaining
equations are linear in the unknown entries of o and n and we can represent these relations as

M(l)

o

n

 = 0. (7.25)

As before, we denote the corresponding solution space by V(l). Then, after choosing a point
p ∈ V(l), we get matrices o(l, p) and n(l, p) by writing the solution of (7.25) as entries of the
matrices o and n. Afterwards we use Equation (7.24) to determine a unique matrix c which
satisfies this equation and denote this matrix by c(l, p). Then with

d′1(l, p) =

a(l) b1(y) c(l, p)

0 e(l) b2(y)


and d2(l, p) as in Proposition 7.5.10 we also get

d′1(l, p)d2(l, p) = 0.

In particular, to any standard resolution

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (7.26)

of R(X) we can assign a unique pair (l, p) with either d′1 = d′1(l) or d′1 = d′1(l, p), and d2 =
d2(l, p).

Altogether, the results of this chapter show how to construct matrices d′1 and d2 of a particular
form satisfying d′1d2 = 0. It remains to show how to obtain a finitely generated S-module R
and a standard resolution of R from this construction:
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Proposition 7.5.14. Let d′1 : F ′0 ← F1 and d2 : F1 ← F∨1 be two homogeneous homomorphisms
satisfying:

(i) d′1 = d′1(l, p) and d2 = d2(l, p), and hence d′1d2 = 0,

(ii) depth(I ′, S) ≥ 5, where I ′ is the ideal generated by the 7× 7 minors of d′1,

(iii) d2 is skew-symmetric,

(iv) d′1 and d2 have modulo x0, x1 the form as introduced in Section 6.3.

Then there exists an exact sequence

F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

with d1 =

 d
(0)
1

d′1

, where d(0)
1 : S ← F1 is a homogeneous homomorphism. Hence, R :=

coker d1 is a finitely generated S-module admitting a standard resolution.

Proof. First note that the skew-symmetry of d2 implies directly that there exists a further syzygy
of d2 (which cannot be obtained from the columns of (d′1)tr): First we have

7 ≥ rank(d′1) ≥ rank(d̄′1) = 7

and
19 ≥ rank(d2) ≥ rank(d̄2) = 18.

Then, considering d2 over the quotient field L = Q(S), we deduce that rank(d2) = 18 since
any skew-symmetric matrix with entries in a field is of even rank. Furthermore, the form of d′1
modulo x0, x1 implies that rank(d′1) = 7 considered as a matrix over L. Hence, there exists
exactly one further syzygy defined over L. Multiplying by a common denominator if necessary,
we get a further syzygy of d2 defined over S, and hence a complex

S(−k)
g1←− F1

d2←− F∨1
gtr1←−− S(−17 + k)← 0,

where k is chosen minimally. In the following, we will show that k = 0.

Let Z = Proj(S/I ′) and U = P(22, 34)\Z. Then Z is empty or 0-dimensional by assump-
tion. Consider the exact sequence

0←M ← F ′0
d′1←− F1

i←− N ← 0,

where M = coker d′1 and N = syz(d′1). Let us split this exact sequence into two short exact
sequences:

0←M ← F ′0 ← E ← 0,

0← E
d′1←− F1

i←− N ← 0,

where E = im d′1. Considering the corresponding exact sequence of sheaves and restricting to
U , the fact that M̃|U = 0 implies that Ñ|U is a locally free OU -module of rank

19 = rank(F1)− rank(F ′0).



7.5 Solving the Linear Relations 89

Next we apply the functor Hom(−, S(−17)) to the two short exact sequences above. From
the first sequence we get

0→M∨ → F ′0
∨ → E∨

→ Ext1(M,S(−17))→ Ext1(F ′0, S(−17))→ Ext1(E,S(−17))

→ Ext2(M,S(−17)).

Now Ext1(F ′0, S(−17)) = 0, and also Ext2(M,S(−17)) = 0 since dimM ≤ 1. Hence
Ext1(E,S(−17)) = 0, and we get an exact sequence

0→M∨ → (F ′0)∨
i∨−→ E∨ → Ext1(M,S(−17))→ 0.

Using this for the second exact sequence we get an short exact sequence

0→ E∨
d′∨1−−→ F∨1 → N∨ → 0.

Next we consider the following commutative diagram:

0 E∨ F∨1 N∨ 0

F ′0 F1 N 0

i∨

d2

i

(7.27)

Now since d2 ◦ d′∨1 = 0 and F∨1
i∨−→ N∨ is surjective, there exists a module homomorphism

h : N∨ → N which gives commutative square in the diagram above. In particular, we get:

S(−17 + k)

0 E∨ F∨1 N∨ 0

F ′0 F1 N 0

S(−k)

i∨

d2 h

n∨1

n1

i

g∨1

g1

(7.28)

where
S(−k)

n1←− N h←− N∨
n∨1←−− S(−17 + k)← 0

is a complex of S-modules. Now let us take a point p ∈ U . Then, from (F ′0)p ∼= (im d′1)p and
(E∨)p ∼= (im d′∨1 )p, we get

(F∨1 )p ∼= (N∨)p ⊕ (F ′∨0 )p

(F1)p ∼= Np ⊕ (F ′0)p

Furthermore, for every p ∈ U , the induced (local) map (d2)p is of the form
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(N∨)p (F ′∨0 )p

Np hp 0

(F ′0)p 0 0

where the local homomorphism hp : (N∨)p → Np is given by a skew-symmetric matrix. Hence,
we see that the rank of h drops at exactly at the points of U at which the rank of d2 drops.
Sheafifying the homomorphism h : N ← N∨ and restricting to U , we get a morphism

(Ñ)|U
φ|U←−− (Ñ∨)|U

of locally free sheaves of rank 19 = 2 · 9 + 1 which is (locally) alternating. Furthermore, since
rank(d2) = 18 and depth(I(d2), S) ≥ 3, the ideal of the submaximal minors of φ|U is of depth
3. Now, after applying the Buchsbaum-Eisenbud structure theorem to φ|U , a straight forward
Chern class computation implies that k = 0.

Finally, setting d(0)
1 = g1 and d1 =

 d
(0)
1

d′1

, we obtain a complex

F0
d1←− F1

d2←− F∨1
d∨1←− F∨0 ← 0

which is exact since rank(d1) = rank(d∨1 ) = 8, rank(d2) = 18 and depth(I(di), S) ≥ 3 for
i = 1, 2.



8 A Family of Torsion-Free Numerical
Godeaux Surfaces

Let X be a marked numerical Godeaux surface. In Proposition 7.5.10 and Remark 7.5.13 we
have seen that we can assign to any standard resolution

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

of R(X) a pair (l, p) with l ∈ St(Q) and p ∈ V(l).
On the other hand, if

F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

is an acyclic complex with d′1 = d′1(l, p) and d2 = d2(l, p) for some l ∈ St(Q) and p ∈ V(l)
such that R := coker d1 satisfies all conditions of Theorem 5.0.2, then Proj(R) is the canonical
model of a marked numerical Godeaux surface. We then call the pair (l, p) admissible. More
generally, we say that l ∈ St(Q) is admissible if there exists a point p ∈ V(l) such that (l, p) is
admissible. Hence, we can assign to the admissible pair (l, p) the isomorphism class [Proj(R)]
in the Gieseker moduli space M1,1 of numerical Godeaux surfaces. Thus, if we want to calculate
the dimension of our constructed family correctly, we have to identify pairs whose assigned
surfaces are isomorphic.

The aim of this chapter is to study and characterize (different) admissible pairs which lead to
the same point in the moduli space. As in the previous chapter we restrict our study mainly to
matrices which are contained in the open set Vgensyz. At the end of this chapter, we count the
moduli of torsion-free numerical Godeaux surfaces which we obtain by our construction.

Throughout this chapter X denotes a marked numerical Godeaux surface with canonical
model Xcan. Furthermore, we assume that k = C.

8.1 Standard Resolutions and Pairs (l, p)

In the last chapter we have seen that we can assign a pair (l, p) to any standard resolution of the
canonical ringR(X). Of course, we would like to assign such a pair toR(X). But unfortunately,
a standard resolution of R(X) is only uniquely determined up to isomorphism. The aim of this
section is to characterize pairs which come from isomorphic standard resolutions of R(X). To
begin with, we introduce some notation which will be used in the following:

Notation 8.1.1. For λ = (λ0, . . . , λ3) ∈ (k∗)4 we denote by E(λ) the 4 × 4 diagonal matrix
with λ0, . . . , λ3 on its diagonal. Furthermore, we denote by Ê(λ) the 12 × 12 block diagonal
matrix with λ0 id3, . . . , λ3 id3 on its diagonal.

Now let
0← R(X)← F0

d1←− F1
d2←− F∨1

dtr1←−− F∨0 ← 0

be any standard resolution of R(X) with assigned pair (l, p). First it is important to emphasize
that the pair (l, p) only determines the matrices d′1 and d2 of a standard resolution but not the
first row of the matrix d1.
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Indeed, if r : S
(r4 r5)←−−−− S(−4)4 ⊕ S(−5)3 is any (non-zero) homogeneous homomorphism,

then
0← R(X)← F0

e1←− F1
d2←− F∨1

etr1←−− F∨0 ← 0,

with

e1 =


1 r4 r5

id4

id3

 ◦ d1 =

 d
(0)
1 + rd′1

d′1


is another standard resolution of R(X) with the same assigned pair (l, p). In general, however,
different (isomorphic) standard resolutions of R(X) may lead to different assigned pairs:

Proposition 8.1.2. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (8.1)

be a standard resolution of R(X) with assigned pair (l, p), where l ∈ Vgensyz ⊆ St(Q) and
p ∈ V(l). If

0← R(X)← F0
e1←− F1

e2←− F∨1
etr1←−− F∨0 ← 0 (8.2)

is another standard resolution of R(X) with assigned pair (l′, p′), then there exist µ ∈ k∗,
h = (h0, . . . , h3) ∈ H := {−1, 1}4 ∼= (Z/2Z)4 and an automorphism

νµ,h : St(Q)→ St(Q)

such that
l′ = νµ,h(l) and p′ =

1

µ2
p.

Moreover, if any two standard resolutions of R(X) have the same assigned matrix l, then they
also have the same assigned point p ∈ V(l). On the other hand, for any µ ∈ k∗ and h ∈ H
there exists a standard resolution of R(X) with assigned pair (νµ,h(l), 1

µ2
p).

Proof. We start by showing the first statement. Since (8.1) and (8.2) are two minimal free
resolutions of R(X), there exists an isomorphism of complexes

0 R(X) F0 F1 F∨1 F∨0 0

0 R(X) F0 F1 F∨1 F∨0 0

d1

α1

d2

α2

dtr1

α3

etr1e2e1

α0

inducing the identity map on R(X). We use the entries of the maps di and ei modulo x0, x1, to
describe the isomorphisms αi. Note that since the last syzygy map is the transpose of the first
one it is enough to consider α0, α1 and α2. By ¯ we denote the reduction of a matrix modulo
x0, x1 as before. Then, since

d̄i = ēi and ᾱi−1d̄i = ēiᾱi,
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after dividing by a non-zero scalar if necessary, we get

ᾱ0 =


1

E(λ)

µ id3

 , ᾱ1 =


id6

Ê(λ)

µ id8

 and ᾱ2 =


µ id6

Ê(λ)

id8


for some λ ∈ (k∗)4 and µ ∈ k∗. Then, simply by degree reasons, this implies that

α0 =


1 r4 r5

E(λ)

µ id3

 , α1 =


id6 t1

Ê(λ)

µ id8

 and α2 =


µ id6

Ê(λ)

t2 id8


where S(−6)6 t1←− S(−8)8, S(−9)8 t2←− S(−11)6 and r : S

(r4 r5)←−−−− S(−4)4 ⊕ S(−5)3 are
homogeneous homomorphisms. Note that this holds for any standard resolution of R(X) re-
gardless whether l ∈ Vgensyz or not. But now we use the additional property l ∈ Vgensyz to
conclude that t1 = 0 and t2 = 0. First note that coker a(l′) has the same Betti numbers as
coker a(l). Indeed, from

a(l′) = E(λ)a(l)

we deduce that a(l) and a(l′) have the same rank and their corresponding cokernels the same
Betti numbers. Thus, by General Assumption 2, the c-matrix of e1 is also zero. Now let α′0 be
the matrix obtained from α0 by erasing the first row and the first column. Thena(l′) b1(y) 0

0 e(l′) b2(y)

 = e′1 = α′0d
′
1α
−1
1 =

∗ b1(y) a(l)t1

0 ∗ b2(y)


implies that a(l)t1 = 0. From the definition of the open set Vgensyz in Proposition 7.4.6 we know
that coker a(l) has a minimal free resolution of the form

0← coker a(l)← B4 ← B(−1)6 ← B(−3)2 ← 0.

Hence, by the definition of the map t1, we get a(l)t1 = 0 if and only if t1 = 0. Next we consider
the maps d2 and e2. From e2 = α1d2α

−1
2 we deduce that

p(l′) = Ê(λ)p(l)

and

p(l′)tr = p(l)trÊ(µλ−1).

Now the particular shape of the matrix p as described in (7.6) and the fact that rank(a(l)) = 4
imply that µ

λi
= λi for all i, or equivalently,

λ2
0 = λ2

1 = λ2
2 = λ2

3 = µ. (8.3)

Furthermore rank(p(l′)) = rank(p(l)) = 8 which implies l′ ∈ Vgensyz. Next we show that
t2 = 0 by considering the matrix n(l′, p′). We have

n(l′, p′) = n(l, p)Ê(λ−1)
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and

n(l′, p′)tr = Ê(λ−1)n(l, p)tr + Ê(λ)p(l)t2

which implies that p(l)t2 = 0. Thus, using Remark 7.4.7, we conclude that t2 = 0. Putting these
results together, we see that the first 3 matrices of every isomorphism between two standard
resolutions of R(X) are of the form

α0 =


µ−1 r4 r5

E(h)

µ id3

 , α1 =


µ−1 id6

Ê(h)

µ id8

 and α2 =


µ id6

Ê(h)

µ−1 id8

,
where h = (h0, . . . , h3) ∈ H , µ ∈ k∗ and r4, r5 are defined as before. Next let us define the
morphism νµ,h. The automorphism of A24 defined by

A24 → A24,

(. . . , %
(i)
i,j,0, . . . , %

(i)
i,j,1, . . .) 7→ (. . . , µhi%

(i)
i,j,0, . . . , µhi%

(i)
i,j,1, . . .)

induces an automorphism of the open subschemes

ν̃µ,h : St(2, 12)→ St(2, 12).

We claim that ν̃µ,h(St(Q)) = St(Q). To prove this, we first define a corresponding automor-
phism of P11 which restricts to an automorphism of Q. The ring homomorphism

k[a
(i)
i,j ]→ k[a

(i)
i,j ],

a
(i)
i,j 7→ µhia

(i)
i,j

induces an automorphism τ̃µ,h : P11 → P11 with inverse τ̃µ−1,h−1 , and satisfying

ν̃µ,h(l) = τ̃µ,h(l) ⊆ P11.

Hence, it is enough to show that τ̃µ,h(Q) = Q. But this is clear, since for any p ∈ Q, we
have qi(τ̃µ,h(p)) = µ2qi(p) = 0 for all i. Hence νµ,h := ν̃µ,h|St(Q) : St(Q) → St(Q) and
τµ,h := τ̃µ,h|Q : Q→ Q are automorphisms. Furthermore, by the definition of the isomorphisms
α0 and α1, we get

l′ = νµ,h(l).

From the form of the linear relations defining the matrixM, we see that there is an invertible
matrix βµ,h ∈ GL(54, k) (depending on µ and h) such that

M(νµ,h(l)) = βµ,h · M(l).

Hence, we may assume that V(l) = V(νµ,h(l)) (and consider these spaces with the same bases).
Then, since o(l′, p′) = 1

µ2
o(l, p), we get

p′ =
1

µ2
p ∈ V(l).

So, in particular, if we have two standard resolutions of R(X) with assigned pairs (l, p) and
(l, p′), then µ = ±1, and thus p′ = p. To show the last statement of the proposition we just
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reverse the steps above. More precisely, starting with standard resolution (8.1), we use the
isomorphisms αi, given a fixed µ ∈ k∗ and h ∈ H , to construct a new standard resolution of
R(X) whose assigned pair is then (νµ,h(l), 1

µ2
p).

Since τµ,h : Q→ Q is a morphism of projective varieties, τµ,h is independent of the choice of
µ ∈ k∗. Hence we can neglect µ and get the following result:

Corollary 8.1.3. The finite group H acts on Q (and hence on F1(Q)) by

H ×Q→ Q,

(h, p) 7→ τh(p).

Remark 8.1.4. Later we will show that the torus G = (k∗)4 acts linearly on Q (and on F1(Q)).
Furthermore, we will see that the action ofH onQ is just the restriction of the action ofG, when
considering H as a natural subgroup of G.

For any standard resolution of R(X) with assigned pair (l, p) we define the set

Stab(l, R(X)) = {p′ ∈ V(l) | there exists a standard resolution of R(X)

with assigned pair (l, p′)}.

Then Proposition 7.5.10 shows that if l ∈ Vgensyz, then

Stab(l, R(X)) = {p}.

If l ∈ St(Q) is a matrix such that the module Ll = coker a(l) has Betti numbers which are
different from those in Proposition 7.4.6, then Stab(l, R(X)) contains in general more than one
point. For example, let us consider the case where coker a(l) has a minimal free resolution of
the form

0← coker a(l)← B4 a(l)←−− B(−1)6 ←
B(−2)

⊕

B(−3)

← 0. (8.4)

We will show now that in this case there is a family of standard resolutions of R(X) having
the same assigned matrix l (or equivalently the same a-matrix) but different assigned points
p ∈ V(l) (or equivalently different o-matrices).

Remark 8.1.5. Let X be a marked numerical Godeaux surface such that the cokernel of the a-
matrix of a standard resolution ofR(X) has Betti numbers as in (8.4). In Chapter 10 we will see
that this implies TorsX = 0 and that there is exactly one hyperelliptic curve in the bicanonical
system |2KX |.

Now let B(−1)6 sl←− B(−2) be the homomorphism corresponding to the first column of the
syzygy matrix of a(l) and let q = (q0, . . . , q7)tr ∈ k8. Then, similarly as above, we define

α0 = idF0 , α1 =


id6 γq

id12

id8

 , α2 =


id6

id12

−γq id8

 and α3 = idF∨0 ,

where γq = slq
tr. Then, setting e1 = α0d1α

−1
1 and e2 = α1d2α

−1
2 , we obtain another standard

resolution of R(X) and an isomorphism of chain complexes:
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0 R(X) F0 F1 F∨1 F∨0 0

0 R(X) F0 F1 F∨1 F∨0 0

d1

α1

d2

α2

dtr1

α3

etr1e2e1

α0

From the definition of the isomorphisms αi we see that

e′1 = d′1 and e2 =


o + b3γ

tr
q − γqbtr3 n− γqp(l)tr b3(y)

−ntr + p(l)γtrq b4(y) p(l)

−b3(y)tr −p(l)tr 0

 . (8.5)

Hence, the two standard resolutions of R(X) have the same assigned matrix l ∈ St(Q). Let
V(l) be the solution space, and let p ∈ V(l) such that (l, p) is the pair assigned to the resolution
in the first row of the commutative diagram above. Then for any point q ∈ k8 there exists a point
pq ∈ V(l) such that (l, pq) is the pair assigned to the second row of the diagram. Hence, we have

Stab(l, R(X)) ⊇ {pq | q ∈ k8}.

The following result shows that we get indeed more than one point in Stab(l, R(X)) in this
case:

Lemma 8.1.6. If q1 6= q2 ∈ k8, then pq1 6= pq2 .

Proof. It is enough to show that any two different elements in k8 lead to different o-matrices.
Let us consider the map

g : k8 → Mat(k, 6× 6),

q 7→ b3γ
tr
q − γqbtr3 .

Then g is a group homomorphism since γq1+q2 = γq1 + γq2 for any q1, q2 ∈ k8. From (8.5) we
deduce that the o-matrices corresponding to two distinct points in k8 are different if and only if
g is injective. On the other hand g(q) = b3γ

tr
q − (b3γ

tr
q )tr. Hence it is enough to show that b3γtrq

is symmetric if and only if q = 0. So let q ∈ k8. If we write sl = (s0, . . . , s5)tr, then

γq =


s0q0 · · · s0q7

...
. . .

...

s5q0 · · · s5q7

 .

The condition that the 6× 6 matrix b3γtrq is symmetric can be expressed by
(

6
2

)
= 15 equations

which are linear in the variables yi and whose coefficients are linear combinations of the entries
of the matrix γq. Now the fact that sl is a non-zero syzygy implies that there exists at least one
j ∈ {0, . . . , 5} such that sj 6= 0. Then by equating the coefficients of the 15 polynomials with
the zero polynomial, it is now a straightforward calculation to see that these coefficients are all
zero if and only if q = 0.

Note that p0 = p. For an explicit example of a matrix l, where coker a(l) has Betti numbers
as in (8.4), we compute with MACAULAY2 that the solution space V(l) is 12-dimensional. For
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a randomly chosen point q ∈ k8 we calculate that

pq = p+ rq,

where rq ∈ V(l). Furthermore, we compute that

r0 = 0,

rq1+q2 = rq1 + rq2 ,

rλq1 = λrq1

for two randomly chosen points q1, q2 ∈ k8 and λ ∈ k which suggests that {rq | q ∈ k8} is an
8-dimensional vector space. Furthermore, our experimental results suggest that

Stab(l, R(X)) = p+ {rq | q ∈ k8}.

Unfortunately, up to now we were not able to verify this.

Remark 8.1.7. In a future work we want to study the remaining linear relations for the other
possible Betti numbers of coker a(l). The case which we have described in the last section is
the only one which allows the additional condition c = 0. So far, we have studied some of the
other cases only experimentally. For example in the case (8.4), we can assume that 3 of the 4
rows of c are a priori zero and that the entries of the remaining row depend only on one of the
quadratic forms x2

0, x0x1, x
2
1. Similarly as in the previous case, we restrict our study then to

standard resolutions whose c-matrix fulfills this additional assumption.

8.2 A P(V(l)) of Choices

In this section we study first how standard resolutions with assigned matrices l1 and l2 are related
if [l1] = [l2] ∈ F1(Q). Afterwards, we study standard resolutions with a fixed assigned matrix
l ∈ St(Q) and points λp ∈ V(l), where p ∈ V(l) and λ varies over k∗. We will show that the
choice of different representatives of a point in F1(Q) in the first case (respectively of different
representatives of a point in P(V(l)) in the second case) leads to isomorphic rings.

Proposition 8.2.1. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (8.6)

be a standard resolution ofR(X) with assigned pair (l1, p1), where l1 ∈ Vgensyz and p1 ∈ V(l1).
Let u ∈ GL(2, k) be arbitrary. There exists a ring Ru isomorphic to R(X) which admits a
standard resolution with assigned pair (l2, p2), where l2 = ul1, p2 = su(p1) and su : V(l1) →
V(l2) is the isomorphism from Lemma 7.5.11. Moreover, if R′ = R(X ′) is the canonical ring
of another marked numerical Godeaux surface X ′ which admits a standard resolution with
assigned pair (ul1, su(p1)), then

R′ ∼= R(X).

Proof. Let us write

u =

u0,0 u0,1

u1,0 u1,1

 and v =

v0,0 v0,1

v1,0 v1,1

 ,
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where v is the inverse of u, and consider the ring homomorphism

ηu : Ŝ = k[x0, x1, y0, . . . , y3, z0, . . . , z3, w0, w1, w2]→ R(X),

x0 7→ v0,0x̄0 + v1,0x̄1,

x1 7→ v0,1x̄0 + v1,1x̄1,

yj 7→ ȳj , zj 7→ z̄j , wk 7→ w̄k.

Let Iu be the kernel of ηu, and set Ru := Ŝ/Iu. Then R(X) ∼= Ru.

Now let ej be the matrix obtained from dj by substituting every variable xi by u0,ix0 +u1,ix1.
Then

0← Ru ← F0
e1←− F1

e2←− F∨1
etr1←−− F∨0 ← 0 (8.7)

is a standard resolution of Ru with assigned matrix l2 ∈ St(Q). Furthermore, from the choice
of the isomorphism

su : V(l1)→ V(l2)

in Lemma 7.5.11, we see that the assigned point to (8.7) is p2 = su(p1). This shows the first
claim. Finally, letR′ be another canonical ring which admits a standard resolution with assigned
pair (ul1, su(p1)). Then, since the ringRu has a standard resolution with the same assigned pair,
Ru and R′ are isomorphic as S-modules, and hence as rings by Remark 5.2.4. Consequently,
R′ ∼= Ru ∼= R(X).

Remark 8.2.2. This statement shows that if a pair (l, p) with l ∈ Vgensyz and p ∈ V(l) is ad-
missible, then the pair (ul, su(p)) is also admissible for every u ∈ GL(2,k). In particular,
for matrices in Vgensyz the property of being admissible is invariant under the group action of
GL(2,k). Note that in the proof of Proposition 8.2.1 we used the condition l ∈ Vgensyz only
to apply the isomorphism in Lemma 7.5.11. Hence, focusing only on the assigned matrices, a
matrix l ∈ St(Q) is admissible if and only if ul ∈ St(Q) is admissible for every u ∈ GL(2, k).
Thus, we can call a point in F1(Q) admissible if it has an admissible representative in St(Q).

Next let l ∈ Vgensyz be some matrix. Assume that there exists a numerical Godeaux surface
X whose canonical ring R(X) admits a standard resolution with assigned pair (l, 0). Then the
second syzygy matrix is

d2(l, 0) =


0 0 b3(y)

0 b4(y) p(l)

−b3(y)tr −p(l)tr 0

 .

Thus,

d1 =


b0(y) 0 0

a(l) b1(y) 0

0 e(l) b2(y)


is a first syzygy matrix forR(X). But this implies that the surface Y = Proj(S/ annS R(X)) ⊆
P(22, 34) contains the union of surfaces

V (y0, y1, y2) ∪ V (y0, y1, y3) ∪ V (y0, y2, y3) ∪ V (y1, y2, y3)

which is a contradiction since Y is irreducible. This shows that if a pair (l, p) is admissible, then
p 6= 0.
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So let 0 6= p ∈ V(l). How do the matrices d′1(l) and d2(l, p) change if we choose the point
λp instead of p for some 0 6= λ ∈ k? Clearly, the matrix d′1 remains unchanged, whereas

d2(l, λp) =


o(l, λp) n(l, λp) b3(y)

−n(l, λp)tr b4(y) p(l)

−b3(y)tr −p(l)tr 0

 =


λo(l, p) λn(l, p) b3(y)

−λn(l, p)tr b4(y) p(l)

−b3(y)tr −p(l)tr 0

 .

We notice that the matrix

λd2(l, λp) =


λ2o(l, p) λ2n(l, p) λb3(y)

−λ2n(l, p)tr λb4(y) λp(l)

−λb3(y)tr −λp(l)tr 0


is simply the matrix d2(l, p) with each variable xi (respectively yj) being substituted by λxi
(respectively λyj). This observation motivates the following result:

Proposition 8.2.3. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (8.8)

be a standard resolution of R(X) with assigned pair (l, p), where l ∈ Vgensyz and p ∈ V(l). For
every λ ∈ k∗ there exists a ring Rλ isomorphic to R(X) which admits a standard resolution
with assigned pair (l, λp). Moreover, if R′ = R(X ′) is the canonical ring of another marked
numerical Godeaux surface X ′ which admits a standard resolution with assigned pair (l, λp),
then R′ ∼= R(X).

Proof. The proof of this statement is based on the same ideas as the one of Proposition 8.2.1.
Let λ ∈ k∗ and consider the ring homomorphism

ηλ : Ŝ → R(X),

xi 7→ (1/λ)x̄i, yj 7→ (1/λ)ȳj ,

zj 7→ z̄j , wk 7→ w̄k.

As above, the ringRλ := Ŝ/ ker(ηλ) is isomorphic toR(X) and Proj(Rλ) is a further canonical
model satisfying General Assumption 1. Next let δ1 and δ2 be the matrices obtained from d1

and d2 by substituting every variable xi by λxi and every yj by λyj . Then δ2 = λd2(l, λp) and
δ′1 = λd′1(l) as above. Furthermore, by the definition of the homomorphism ηλ, there exists a
minimal free resolution of Rλ of the form

0← Rλ ← F0
δ1←− F1

δ2←− F∨1
δtr1←−− F∨0 ← 0 (8.9)

with δtr2 = −δ2 but which is not standard. Dividing δ1 and δ2 by λ we get a standard resolution
with assigned pair (l, λp). The second statement is proven exactly as in Proposition 8.2.1.

So as before we conclude that if a pair (l, p) is admissible, with l and p as usual, then the
pair (l, λp) is also admissible for every λ ∈ k∗. In particular, for a fixed (admissible) matrix
l ∈ Vgensyz, the condition of being an admissible point in V(l) is independent under the action
of k∗ of V(l). We call a point in Proj(V(l)) admissible if some (and hence any) representative
in V(l) has this property. All in all, we see that for any matrix l ∈ Vgensyz, we have a Pn3(l)−1 of
choices for admissible points p with d′1(l)d2(l, p) = 0.
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8.3 A Group Action on F1(Q)

In the beginning of Chapter 7 we have seen that any element g ∈ G = (k∗)3 induces an automor-
phism of P3 which fixes the 4 coordinate points of P3. We will now extend this automorphism to
an automorphism of P(22, 34, 44, 53). On the algebraic side, the image of the canonical model
under this automorphism corresponds then to a ring Rg which is isomorphic to R(X). In this
section we analyze how the standard resolutions of R(X) and Rg are related.

An element g = (λ0, . . . , λ3) ∈ (k∗)4 induces the automorphism

P(22, 34, 44, 53)→ P(22, 34, 44, 53),

(x0 : x1 : y0 : . . . : y3 : z0 : . . . : w2) 7→ (x0 : x1 : λ0y0 : . . . : λ3y3 : z0 : . . . : w2).

Note that in contrast to what happens over P3, for any 1 6= µ ∈ k∗, the elements g and µg define
different automorphisms of P(22, 34, 44, 53). The image of Xcan under this automorphism is
another canonical model of X (fulfilling General Assumption 1). To simplify the following
computations, we assume from now on that the automorphism associated to g is

P(22, 34, 44, 53)→ P(22, 34, 44, 53),

(x0 : x1 : y0 : . . . : y3 : z0 : . . . : w2) 7→ (x0 : x1 : λ2
0y0 : . . . : λ2

3y3 : z0 : . . . : w2).

Now restricting ρg to Xcan corresponds to a surjective ring homomorphism

ηg : Ŝ → R(X),

xi 7→ x̄i, yj 7→ λ2
i ȳi,

zj 7→ z̄j , wk 7→ w̄k,

where Rg := Ŝ/ ker(ηg) is isomorphic to R(X). Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (8.10)

be a standard resolution of R(X) with assigned pair (l, p), where l ∈ Vgensyz and p ∈ V(l). Our
aim is to construct, outgoing from the given standard resolution of R(X), a standard resolution
of Rg. To do this, we proceed similarly as in the previous section.

Let δ1 and δ2 be the matrices obtained from d1 and d2 by substituting every variable yi by
yi/λ

2
i . Then

0← Rg ← F0
δ1←− F1

δ2←− F∨1
δtr1←−− F∨0 ← 0 (8.11)

is a minimal free resolution ofRg as an S-module with δtr2 = −δ2. Modulo x0, x1, the resolution
above has now a different form, hence it is not standard. But from Proposition 6.3.1 we know
that there is always an isomorphism (of chain complexes) to a standard resolution. Finding such
an isomorphism is however a tedious computation as in the proof of Proposition 6.3.1. We omit
the derivation of the single matrices giving such an isomorphism and present only the results.

Let λ = λ0λ1λ2λ3 and µi = λ2
i . Then we set

α0 =


λ

α
(1)
0

λ id3

 and α1 =


α

(0)
1

α
(1)
1

α
(2)
1


and define the individual matrices using the indices introduced in Chapter 7.
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The matrices α(1)
0 , α

(0)
1 , α

(1)
1 , α

(2)
1 are all diagonal matrices. Hence, we will only specify the

elements on the diagonal. The matrix α(1)
0 is a 4× 4 matrix and for i ∈ {0, . . . , 3} we set

(α
(1)
0 )i,i =

λ

λi
.

We index the rows and columns of the 6× 6 matrix α(0)
1 by the elements of

N = {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3)},

and set for r = (r1, r2) ∈ N

(α
(0)
1 )r,r =

λ

µr1µr2
.

Next we define the 12× 12 matrix α(1)
1 whose rows and columns are indexed by

L1 = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)}.

For s = (s1, s2) ∈ L1 we set

(α
(1)
1 )s,s =

λ

λs1µs2
.

Finally, the rows and columns of the 8× 8 matrix α(2)
1 are indexed by the elements of the set

L2 =
{

1,2
0 ,

0,1
2 ,

1,3
0 ,

0,1
3 ,

2,3
0 ,

0,2
3 ,

2,3
1 ,

1,2
3

}
.

Let θ = c,d
e ∈ L2, and let iθ be the element in {0, . . . , 3}\{c, d, e}. Then we set

(α
(2)
1 )θ,θ =

λ

µiθ
.

Furthermore, setting

e1 = α0δ1α
−1
1 and e2 = α1δ2α

tr
1 = α1δ2α1,

the matrices αi induce a graded isomorphism of complexes

0 Rg F0 F1 F∨1 F∨0 0

0 Rg F0 F1 F∨1 F∨0 0

δ1

α1

δ2

α−1
1

δtr1

α−1
0

etr1e2e1

α0id

where the second row is now a standard resolution of Rg. Hence, we can determine the corre-
sponding matrix lg ∈ St(Q) by considering the a-matrix of e1. To do so, we proceed similarly
as in Proposition 8.1.2. The automorphism of A24 defined by

A24 → A24,

(. . . , %
(i)
i,j,0, . . . , %

(i)
i,j,1, . . .) 7→ (. . . , λiλ

2
j%

(i)
i,j,0, . . . , λiλ

2
j%

(i)
i,j,1, . . .)

induces an automorphism of the open subschemes

ν̃g : St(2, 12)→ St(2, 12).
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We claim that ν̃g(St(Q)) = St(Q). As in the proof of Proposition 8.1.2 we obtain a correspond-
ing automorphism

τ̃g : P11 → P11

satisfying
τ̃g(l) = ν̃g(l)

and whose inverse morphism is τ̃g−1 . Hence, it is enough to show that τ̃g(Q) = Q. For p ∈ Q
and i ∈ {0, . . . , 3} we have

qi(τ̃g(p)) = µhi,1µhi,2µhi,3qi(p) = 0,

where hi,1, hi,2, hi,3 are the 3 distinct integers in {0, . . . , 3}\{i}. In particular, for p ∈ Q we
have τ̃g(p) ∈ Q for any g ∈ G. Hence, the restrictions

νg := ν̃g|St(Q) : St(Q)→ St(Q) and τg := τ̃g|Q : Q→ Q

are automorphisms.

Now the definition of the isomorphisms αi implies directly that lg = νg(l). Furthermore,
a lengthy calculation shows that there are invertible matrices βg,0 ∈ GL(54,k) and βg,1 ∈
GL(60, k) (depending on g) such that

M(νg(l)) = βg,0M(l)βg,1,

where M is the matrix representing the linear relations as defined before. Hence, the matrix
β−1
g,1 induces an isomorphism of vector spaces

sg : V(l)→ V(νg(l)). (8.12)

Furthermore, comparing the o-matrices of d1 and e1, we see that pg = sg(p) ∈ V(νg(l)). Thus,
the (canonical) ring Rg admits a standard resolution with assigned pair (νg(l), sg(p)).

Remark 8.3.1. Note that, for any g ∈ G, we have νg(l) ∈ Vgensyz since the matrix νg(l) satisfies
all the open conditions from Proposition 7.4.6 and Remark 7.4.7. Indeed, since

a(νg(l)) = α
(1)
0 a(l)(α

(0)
1 )−1 and p(νg(l)) = α

(1)
1 p(l)(α

(2)
1 )−1,

we have

(i) rank a(νg(l)) = 4 and rank p(νg(l)) = 8,

(ii) the module Lνg(l) = coker a(νg(l)) has a minimal free resolution of the form

0← Lνg(l) ← B4 ← B(−1)6 ← B(−3)2 ← 0.

Remark 8.3.2. The previous arguments show that the multiplicative group (k∗)4 acts onQ via the
automorphisms τg. Furthermore, considering the group H from Proposition 8.1.2 as a subgroup
of G, we see that the restriction of the action to H is exactly as in Corollary 8.1.3.

Note that for any µ ∈ k∗ and g ∈ (k∗)4 we have τg = τµg. Indeed, if p ∈ Q, then

τµg(p) = µ3τg(p) = τg(p) ∈ P11.

Writing every element g of the group G = (k∗)3 as (λ0, λ1, λ2, λ3) with λ0 = 1 and λi ∈ k∗
for i ≥ 1, we get the following result:
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Corollary 8.3.3. The torus G = (k∗)3 acts on Q ⊆ P11 by

G×Q→ Q,

(g, q) 7→ g.q := τg(q).
(8.13)

Moreover, we get an induced action of G on F1(Q) by setting

g.f = [νg(l)], (8.14)

where f ∈ F1(Q) and l ∈ St(Q) with f = [l].

Proof. Clearly, (8.13) is a morphism of algebraic varieties. It remains to show (8.14) is inde-
pendent of the choice of the representative in St(Q). So let l1, l2 ∈ St(Q) with [l1] = [l2]. Then
there exists an element u ∈ GL(2,k) such that l2 = ul1. Then from the definition of νg we see
directly

νg(l2) = νg(ul1) = uνg(l1).

Hence [νg(l1)] = [νg(l2)] and (8.14) is well-defined.

Proposition 8.3.4. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (8.15)

be a standard resolution of R(X) with assigned pair (l, p), where l ∈ Vgensyz and p ∈ V(l).
Moreover, letR′ = R(X ′) be the canonical ring of another marked numerical Godeaux surface.
Let g ∈ G, and let νg and sg be as above. If R′ admits a standard resolution with assigned pair
(νg(l), sg(p)), then R′ ∼= R(X).

Proof. From the previous discussion we know that there is a ringRg isomorphic toR(X) which
has a standard resolution with assigned pair (νg(l), sg(p)). This implies thatR′ ∼= Rg by Remark
5.2.4, and hence R(X) ∼= R′.

In the previous section we identified pairs (l, p) under the action of k∗ on V(l)\{0}. More
precisely, we concluded that it is enough to choose points in the quotient space P(V(l)). We
want to proceed in a similar way with the group action of G on F1(Q). Our aim is to define a
quotient of F1(Q) under the action of G which is again a projective scheme and satisfies some
nice properties. As a first step we want to linearize the group action of G on F1(Q):

Definition 8.3.5 (see [New78], §4). Let G be an algebraic group. A linearization of an action
of G on the projective scheme V ⊆ Pn is a linear action of G on kn+1 inducing the given action
on V . A linear action of G on V is an action of G together with a linearization.

Remark 8.3.6. Note that there is in general not a unique linear action of G on kn+1 inducing a
given action on V ⊆ Pn. For example, let G = k∗ which acts on V = P2 by

G× P2 → P2,

(λ, [t0 : t1 : t2]) 7→ [λt0 : λ−1t1 : λ−1t2].

Then, for every i ∈ Z, the linear representation

fi : G→ GL(3,k),

λ 7→ diag(λi+1, λi−1, λi−1)

defines a linear action of G on k3 inducing the given action on V .
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Let us now consider F1(Q) as projective subscheme of P(122 )−1 = P65 using the Plücker
embedding of Gr(2, 12) (which contains F1(Q)). Then the action of G on P65 defined by

G× P65 → P65,

(g, [. . . : p(i)
i,j ,

(k)
k,m

: . . .]) 7→ [. . . : λiλ
2
jλkλ

2
mp(i)

i,j ,
(k)
k,m

: . . .]
(8.16)

restricts to the action of G on F1(Q) ⊆ P65. Next we want to choose a linearization of this
group action. The linear action of G on k66 determining the ring homomorphism

k[t(i)
i,j ,

(k)
k,m

]→ k[t(i)
i,j ,

(k)
k,m

],

t(i)
i,j ,

(k)
k,m

7→
λiλ

2
jλkλ

2
m

λ0λ2
1λ2λ2

3

t(i)
i,j ,

(k)
k,m

(8.17)

induces the given action on P65, respectively on F1(Q), with λ0 = 1 as before. For example,

t(0)
0,1,

(0)
0,3

7→ 1

λ2
t(0)
0,1,

(0)
0,3

,

t(1)
1,2,

(1)
1,3

7→ λ2t(1)
1,2,

(1)
1,3

,

t(0)
0,1,

(2)
2,3

7→ t(0)
0,1,

(2)
2,3

,

t(2)
2,3,

(3)
1,3

7→ λ3t(2)
2,3,

(3)
1,3

,

t(0)
0,1,

(2)
0,2

7→ 1

λ2
3

t(0)
0,1,

(2)
0,2

,

t(1)
1,3,

(2)
1,2

7→ λ1t(1)
1,3,

(2)
1,2

,

t(0)
0,3,

(2)
0,2

7→ 1

λ2
1

t(0)
0,3,

(2)
0,2

,

...

(8.18)

After having defined a linear G-action on F1(Q) ⊆ P65, we want to construct an appropriate
quotient scheme. This involves some notation from Geometric Invariant Theory (GIT):

8.3.1 Good and Geometric Quotients

In the following we will give a brief overview on (projective) GIT. For proofs and further details,
we refer to [New78].

Definition 8.3.7. Let G be a reductive group acting linearly on a projective scheme V ⊆ Pn,
and let f ∈ k[t0, . . . , tn] be a G-invariant homogeneous polynomial of degree ≥ 1. Then the set

Vf = {v ∈ V | f(v) 6= 0}

is an affine open G-invariant subset of V . We say that v ∈ V is



8.3 A Group Action on F1(Q) 105

(i) semi-stable for the action ofG, if there exists a homogeneous polynomial f ∈ k[x0, . . . , xn]
as above with v ∈ Vf ,

(ii) stable for the action of G, if for the orbit G.v of v we have dimG.v = dimG, and if there
exists a form f as above such that G acts on Vf with closed orbits.

Let V = Proj(R) with R = k[t0, . . . , tn]/I(V ), and let RG be the graded k-algebra gen-
erated by all G-invariant homogeneous polynomials. Since G is reductive, RG is a finitely
generated k-algebra by Nagata’s theorem. The inclusion RG ⊆ R gives a rational map

V 99K Proj(RG)

whose locus of indeterminacy is the closed subscheme N of V given by the ideal RG+ =⊕
d>0R

G
d . From the definition of a semi-stable element, we see that V \N is the set of semi-

stable elements in V , and hence open. More generally, we have:

Proposition 8.3.8. The set V ss (respectively V s) of semi-stable (respectively stable) points of
V is a G-invariant Zariski-open subset of V .

The open set V ss is the domain of definition of the rational map V 99K Proj(RG). Note that
the sets V ss or V s may be empty.

Example 8.3.9. Being semi-stable depends in general on the choice of the linearization of the
action of G. Let us consider again the action of G = k∗ on V = P2 from Remark 8.3.6. For the
linear action induced by f2 there exists no non-constantG-invariant polynomial. HenceRG = k
and V ss = ∅. For the representation f0 however, one can easily compute thatRG = k[t0t1, t0t2].
Hence Proj(RG) ∼= P1 and

V ss = {v = [v0 : v1 : v2] ∈ P2 | v0v1 6= 0 or v0v2 6= 0}.

Let us now introduce the notion of good and geometric quotients:

Definition 8.3.10. Let V ⊆ Pn and G be as in Definition 8.3.7, and let W be a scheme. We call
a morphism π : V →W a

(1) good quotient of V by G if

(i) π is G-invariant, that means π is G-equivariant, where G acts trivially on W ,

(ii) π is affine and surjective,

(iii) for any affine open subscheme U ⊂W , the induced homomorphism

O(U)→ O(π−1(U))G

is an isomorphism,

(iv) if Y is a closed G-invariant subset of V , then π(Y ) is closed in W ,

(v) if Y1, Y2 ⊆ V are disjoint closed G-invariant subsets, then π(Y1) ∩ π(Y2) = ∅;

(2) geometric quotient of V by G, if it is a good quotient and an orbit space, that means for any
w ∈W the fibre π−1(w) is a single G-orbit.

Since any fibre of π as in the previous definition is closed, a geometric quotient has the
nice property that every orbit of G is closed and that the orbits are separated in the quotient.
Unfortunately, not any projective scheme admits a good or a geometric quotient. Restricting to
the open subsets of semi-stable or stable points however, we get one of the central results in
geometric invariant theory:
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Theorem 8.3.11 (Mumford). Let V ⊆ Pn and G be as in Definition 8.3.7. Then

(i) there exists a good quotient π : V ss →W and W is projective,

(ii) there exists an open subset W s of W such that π−1(W s) = V s and W s is a geometric
quotient of V s,

(iii) for v1, v2 ∈ V ss we have π(v1) = π(v2) if and only if G.v1 ∩G.v2 6= ∅,

(iv) an element v ∈ V ss is stable if and only if dimG.v = dimG and G.v is closed in V ss.

For W = Proj(RG), the restriction π|V ss : V ss → W satisfies all the properties of a good
quotient. In the following we denote a good quotient of V ss by V ss // G, whereas we denote
a geometric quotient of V s by V s/G. Let us summarize the previous results in the following
diagram:

V s ⊆ V ss ⊆ V

V s/G ⊆ V ss // G = Proj(RG)

geometric good

The theorem shows that the set V ss (respectively V s) plays a central role in finding a good (re-
spectively geometric) quotient. Determining the set of (semi-)stable elements of V is in general
a difficult problem. Fortunately, the Hilbert-Mumford Criterion gives a numerical criterion for
(semi-)stability depending on 1-parameter subgroups:

Definition 8.3.12. A 1-parameter subgroup of G is a non-trivial homomorphism σ : k∗ → G of
algebraic groups.

Let V ⊆ Pn and G be as above. Note that a 1-parameter subgroup σ : k∗ → G together with
the linear representation G→ GL(n+ 1,k) induces a linear action of k∗ on kn+1 which can be
diagonalized. That means there exists a basis e0, . . . , en of kn+1 such that for all λ ∈ k∗

λ.ei = λmiei

for some mi ∈ Z. Now let v ∈ Pn, and let ṽ =
∑

i viei be a lift to kn+1. Then for λ ∈ k∗ we
have

λ.ṽ = σ(λ).ṽ =
∑
i

λmiviei.

Definition 8.3.13. With the notation as above, the Hilbert-Mumford index of v and σ is

µ(v, σ) = max{−mi | vi 6= 0}.

Note that this is well-defined since the right-hand side is independent of the chosen lift of v
and of the basis of kn+1.

Theorem 8.3.14 (Hilbert-Mumford criterion). Let V ⊆ Pn be a projective scheme on which the
reductive group G acts linearly, and let v ∈ V . Then

(i) v is semi-stable if and only if µ(v, σ) ≥ 0 for every 1-parameter subgroup σ of G,

(ii) v is stable if and only if µ(v, σ) > 0 for every 1-parameter subgroup σ of G.
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Now we apply the previous statements to the projective scheme F1(Q) ⊆ P65 on which
the reductive group G = (k∗)3 acts linearly as defined in (8.17). We want to show that, with
the chosen linearization, F1(Q)s is not empty. Let F1(Q) = Proj(B). The following two
statements rely on some computational results which will be verified in Chapter 11.

Lemma 8.3.15. The open set of semi-stable elements F1(Q)ss is not empty.

Proof. Recall that a point v ∈ F1(Q) is semi-stable if there exists a non-constant form f in
BG such that f(v) 6= 0. From (8.18) we see that f = t(0)

0,1,
(2)
2,3

is a non-constant G-invariant

polynomial in k[t(i)
i,j ,

(k)
k,m

]. Furthermore, by an explicit computation in Chapter 11, we will see

that there are points in F1(Q) having a non-zero t(0)
0,1,

(2)
2,3

-coordinate. This implies that f is not

contained in the defining ideal of F1(Q) and thus, f ∈ BG is non-zero. Hence, any element in
the non-empty open set

F1(Q) ∩D+(t(0)
0,1,

(2)
2,3

)

is semi-stable.

To show the existence of stable points in F1(Q) we use the Hilbert-Mumford criterion.

Lemma 8.3.16. The open set of stable elements F1(Q)s is not empty.

Proof. Any 1-parameter subgroup σ : k∗ → G = (k∗)3 maps an element λ to a diagonal matrix
diag(λa1 , λa2 , λa3), where ai ∈ Z are not all zero. Now let v ∈ F1(Q), and let ṽ ∈ k66 be a lift
of v considered with respect to the canonical basis of k66. Then, using (8.18) again, we get

λ.ṽ = σ(λ).( . . . , v(0)
0,1,

(0)
0,3

, . . . , v(0)
0,1,

(2)
0,2

, . . . , v(0)
0,1,

(2)
2,3

, . . . , v(0)
0,3,

(2)
0,2

,

. . . , v(1)
1,2,

(1)
1,3

, . . . , v(1)
1,3,

(2)
1,2

, . . . , v(2)
2,3,

(3)
1,3

, . . .)

= ( . . . , λ−a2v(0)
0,1,

(0)
0,3

, . . . , λ−2a3v(0)
0,1,

(2)
0,2

, . . . , λ0v(0)
0,1,

(2)
2,3

, . . . , λ−2a1v(0)
0,3,

(2)
0,2

,

. . . , λa2v(1)
1,2,

(1)
1,3

, . . . , λa1v(1)
1,3,

(2)
1,2

, . . . , λa3v(2)
2,3,

(3)
1,3

, . . .).

Thus, if v ∈ F1(Q) ∩D+(t(0)
0,1,

(0)
0,3

t(0)
0,1,

(2)
0,2

t(0)
0,3,

(2)
0,2

t(1)
1,2,

(1)
1,3

t(1)
1,3,

(2)
1,2

t(2)
2,3,

(3)
1,3

), then

µ(v, σ) ≥ max{a2, 2a3, 2a1,−a2,−a1,−a3} > 0

since at least one of the integers ai is non-zero. Hence,

F1(Q) ∩D+(t(0)
0,1,

(0)
0,3

t(0)
0,1,

(2)
0,2

t(0)
0,3,

(2)
0,2

t(1)
1,2,

(1)
1,3

t(1)
1,3,

(2)
1,2

t(2)
2,3,

(3)
1,3

) ⊆ F1(Q)s

and we will verify computationally in Chapter 11 that the open set on the left-hand side is non-
empty.

Let us now assume that F1(Q) is irreducible as the computation of BERTINI suggests. Other-
wise, we replace F1(Q) by an irreducible 8-dimensional component.

Theorem 8.3.17. The quasi-projective scheme F1(Q)s/G is a geometric quotient of F1(Q)s of
expected dimension dimF1(Q)s − dimG = 5.

Proof. Let π : F1(Q)ss → F1(Q)ss //G be the good quotient of F1(Q)ss, where π is the restric-
tion of the rational map F1(Q) 99K Proj(BG), and F1(Q) = Proj(B) as before. Furthermore,
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let us denote the geometric quotient by πs : F1(Q)s → F1(Q)s/G, where πs = π|F1(Q)s . From
the previous two lemmas we know that the sets F1(Q)ss and F1(Q)s are not empty. It remains
to show that the geometric quotient has the expected dimension. Let v ∈ F1(Q)s be arbitrary.
Then the orbitG.v is closed in F1(Q)s, dimG.v = dimG and π−1

s (πs(v)) = G.v. Hence every
fibre of the geometric quotient πs : F1(Q)s → F1(Q)s/G has constant dimension 3. Thus, using
the properties of a geometric quotient from Definition 8.3.10, we get

dimF1(Q)s/G = dimF1(Q)s − dimG = dimF1(Q)− 3 = 5.

Note that this implies also that dimF1(Q)ss // G = 5. Indeed, by Theorem 8.3.11 (ii), the
(irreducible) scheme F1(Q)ss // G contains the 5-dimensional open subset F1(Q)s/G. Thus
dimF1(Q)ss // G = 5.

8.4 Standard Resolutions and Torsion Groups

After having studied standard resolutions of R(X) and their algebraic properties in detail, we
will now focus on the geometric side again. In this section we see how the torsion group TorsX
of a marked numerical Godeaux surface X is determined by a standard resolution of R(X).
Recall from Lemma 3.1.11 that there is the following connection between the torsion group
TorsX and the number b of base points of |3KX |

(i) TorsX = 0 if and only if b = 0,

(ii) TorsX = Z/3Z if and only if b = 1,

(iii) TorsX = Z/5Z if and only if b = 2.

Furthermore, recall that we have a commutative diagram of birational morphisms

X Xcan

Y

π

ϕ̂ ϕ

where ϕ̂ is the morphism defined by the global sections x0, x1, y0, . . . , y3. Thus, any base point
P of |3KX | is mapped to a point (p0 : p1 : 0 : 0 : 0 : 0) ∈ Y under ϕ̂. Furthermore, any point in
X (respectively Xcan) lying over such a point (p0 : p1 : 0 : 0 : 0 : 0) ∈ Y must be a base point
of |3KX | (respectively |3KXcan |). Recall that Y = Proj(S/IY ), where IY = annS R(X).
Then, since √

annS(R(X)) =
√
〈8× 8 minors of d1〉,

we deduce that a point p ∈ P(22, 34) is contained in Y if and only if all maximal minors of
d1 vanish at p. Hence, using this and the characterization above, we get the following criterion
relating minimal free resolutions and torsion groups:

Proposition 8.4.1. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a minimal free resolution of R(X). Let d̂1 = d1 ⊗ S/(y0, . . . , y3) which we consider as a
B = k[x0, x1]-module, and let Î8 be the ideal generated by the 8× 8 minors of d̂1. Then
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(i) TorsX = 0 if and only if V (Î8) = ∅,

(ii) TorsX = Z/3Z if and only if V (Î8) = {p} ⊆ P1,

(iii) TorsX = Z/5Z if and only if V (Î8) = {p, q} ⊆ P1, with p 6= q.

Proof. Part (i) is immediate from the previous arguments. To prove part (ii) and (iii), it remains
to show that in the case TorsX = Z/5Z the two distinct base points P and Q of |3KX | are
mapped to distinct points p = (p0 : p1 : 0 : 0 : 0 : 0) and q = (q0 : q1 : 0 : 0 : 0 : 0) in Y ,
or equivalently that (p0 : p1) 6= (q0 : q1) ∈ P1. But from the description of the base points of
|3KX | in Remark 3.1.6 we know that P and Q are contained in two distinct divisors of |2KX |
which shows the claim.

Given a standard resolution of the canonical ring of a marked numerical Godeaux surface X ,
the last statement gives an easy criterion to determine the torsion group of X . However, from
a constructional point of view, we are interested in conditions which we can impose a priori on
the system d′1d2 = 0 and which result then in numerical Godeaux surfaces with a fixed torsion
group. We will see that the matrices a and e of a standard resolution play a central role for these
conditions. To begin with, we establish a relation between the matrix e and the torsion group of
X .

Lemma 8.4.2. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a standard resolution of R(X) with assigned matrix l ∈ St(Q). If there is a point p ∈ P1

such that all 3 × 3 minors of e(l) vanish at p, then TorsX = Z/3Z or TorsX = Z/5Z. In
particular, if there are two different points p, q ∈ P1 at which all 3 × 3 minors of e(l) vanish,
then TorsX = Z/5Z.

Proof. Let p = (p0 : p1) ∈ P1 be a point at which all 3× 3 minors of e(l) vanish. The first part
of the statement will follow from the previous proposition once we show that p ∈ V (Î8). For
this, recall that p ∈ V (Î8) if and only if all 8× 8 minors of the matrix

d̂1 =


∗ 0 ∗

a(l) 0 c(l, p)

0 e(l) 0


vanish at p. But every 8 × 8 minor of d̂1 is a product of a 3 × 3 minor of the matrix e(l) with
some other polynomial, and thus every 8× 8 minor of d̂1 vanishes at p. The second part follows
now directly from Proposition 8.4.1.

The statement above gives a sufficient condition for the torsion group to be non-trivial. To turn
this into a usable criterion, we would need to show that this condition is also necessary. Even
though we have so far not accomplished this, we believe that this is true for various reasons.
First recall that numerical Godeaux surfaces having torsion group Z/5Z have been completely
described due to the work of Godeaux, Miyaoka and Reid and that there is an 8-dimensional
irreducible family of such surfaces. Later we will study the canonical ring of a general element
X of this family and we will see that X is a marked numerical Godeaux surface. Furthermore,
we are able to give the first syzygy matrix of a minimal free resolution of R(X) as an S-module
depending on the parameters describing the 8-dimensional family. We will see that, independent
of the parameters, the maximal minors of the matrix e vanish at exactly two points. Hence, for
the (classical) Godeaux surfaces the converse of Lemma 8.4.2 holds.
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For the 8-dimensional family of numerical Godeaux surfaces with torsion group Z/3Z we
proceed similarly. We first describe the canonical ring with respect to the parameters and com-
pute then explicit examples. We will see that there are marked numerical Godeaux surfaces with
a torsion group Z/3Z and that the computed examples satisfy the converse of Lemma 8.4.2.
Having this in mind, we can formulate the following conjecture:

Conjecture 8.4.3. Let X be a marked numerical Godeaux surface, and let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be any minimal free resolution of R(X). Then TorsX = 0 if any only if the maximal minors of
the e-matrix of d1 have an empty vanishing locus in P1.

Remark 8.4.4. Note that if the condition on the maximal minors of the matrix e holds for one
minimal free resolution of R(X), then it is satisfied for any minimal free resolution and in
particular also for a standard resolution of R(X).

If true, this conjecture gives a direct way of proving the following nice relation between the
torsion group of X and the open set Vgensyz ⊆ St(Q):

Proposition 8.4.5. Let X be a marked numerical Godeaux surface, and let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a standard resolution of the canonical ring R(X) with assigned matrix l ∈ St(Q). If l ∈
Vgensyz, then TorsX = 0.

Before giving the proof, we need a result relating the minors of the matrices a and e. With the
help of SINGULAR we compute:

Corollary 8.4.6. Let mi(a) be the ideal generated by the i× i minors of a, and let mj(e) be the
ideal generated by the j × j minors of e. Then

V (m3(a)) ∩Q ⊂ V (m3(e)) ∩Q ⊂ V (m4(a)) ∩Q ⊆ P11.

In particular, for any matrix l ∈ St(Q) we have

V
(
m3(a(l))

)
⊆ V

(
m3(e(l))

)
⊆ V

(
m4(a(l))

)
⊆ P1. (8.19)

Proof of Proposition 8.4.5. By the choice of the open set Vgensyz in Proposition 7.4.6, the condi-
tion l ∈ Vgensyz implies that the 4×4 minors of the matrix a(l) define the empty set in P1. Hence,
from the inclusions of the vanishing loci in (8.19), we deduce that V

(
m3(e(l))

)
is empty. The

claim follows then from Conjecture 8.4.3.
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Recall that for a matrix l ∈ St(Q) with rank(a(l)) = 4, the module Ll = coker a(l) has a
minimal free resolution of the form

0← Ll ← B4 ← B(−1)4+m(l) ←

B(−2)m2(l)

⊕

B(−3)m3(l)

⊕

B(−4)m4(l)

⊕
...

← 0 (8.20)

with 0 ≤ m(l) ≤ 2. In Lemma 9.1.6 we will show that TorsX = Z/5Z implies that
rank(a(l)) = 4 and m(l) = 0. Furthermore, we will see in Lemma 9.2.4 that for numeri-
cal Godeaux surfaces having torsion group TorsX = Z/3Z, we have m(l) ≤ 1. Hence, if
m(l) = 2, then TorsX = 0. Relying on these results, we can give an alternative proof of
Proposition 8.4.5 without assuming Conjecture 8.4.3:

Proof of Proposition 8.4.5, II . For any l ∈ Vgensyz the module Ll has a minimal free resolution
of type

0← Ll ← B4 a(l)←−− B(−1)6 ← B(−3)2 ← 0.

Hence, m(l) = 2 for any l ∈ Vgensyz and the statement follows from the discussion above.

8.5 Counting the Number of Moduli

In Chapter 7 we have presented a method to construct standard resolutions. The aim of this
section is to put this construction and the individual results from the last sections together, to
obtain an 8-dimensional family of marked numerical Godeaux surfaces having a trivial torsion
group. To do this, we assume that we can compute one marked numerical Godeaux surface
having a trivial torsion group via this construction. The existence of such an example will be
verified in Chapter 11.

To begin with, let us briefly recall some results on the moduli space of surfaces of general
type and the number of moduli.

Theorem 8.5.1 (Gieseker). There exists a quasi-projective coarse moduli space Ma,b for sur-
faces of general type with K2 = a and χ = b.

Let X be a minimal surface of general type. In the introduction we have seen that K2
X =

χ(OX) = 1 if and only if K2
X = 1 and pg(X) = q(X) = 0. Hence the space M1,1 is a coarse

moduli space for numerical Godeaux surfaces.

Definition 8.5.2. Let X be a minimal surface of general type with K2
X = a and χ(OX) = b.

The number of moduli of X , denoted by m(X), is the local dimension of the moduli space of
Ma,b at the isomorphism class [X] corresponding to X .

There exist an upper and a lower bound for the number of moduli ofX in terms of the tangent
sheaf of X:
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Proposition 8.5.3. Let X be a minimal surface of general type, and let TX denote the tangent
sheaf of X . Then

h1(X, TX) ≥ m(X) ≥ h1(X, TX)− h2(X, TX) ≥ 10χ− 2K2
X .

Proof. See [Cat84], (1.11).

Applying this to a numerical Godeaux surface we get:

Corollary 8.5.4. Let X be a numerical Godeaux surface. Then m(X) ≥ 8.

In Chapter 11 we will compute an explicit example of a torsion-free numerical Godeaux
surface with properties as follows:

Theorem 8.5.5. There exists a marked numerical Godeaux surface X satisfying:

(i) The canonical ring R(X) has a standard resolution with assigned pair (l, p) satisfying
l ∈ Vgensyz, [l] ∈ F1(Q)s and p ∈ V(l) ∼= k4.

(ii) TorsX = 0.

(iii) The birational model Y ⊆ P(22, 34) of Xcan = Proj(R(X)) is smooth. Hence,

X ∼= Xcan
∼= Y.

(iv) There are no hyperelliptic fibres in the bicanonical system |2KX |.

In particular, this surface is different from the other existing explicit examples of torsion-free
numerical Godeaux surfaces due to Barlow and Craighero-Gattazzo, respectively.

After replacing F1(Q) by an irreducible component if necessary, we assume from now on that
F1(Q) is 8-dimensional and irreducible.

In the last chapters we have seen that the canonical ring of any marked numerical Godeaux
surface admits a standard resolution and that we can assign a matrix l ∈ St(Q) and a point
p ∈ V(l) to any such surface. Now let

nmin = min{dimk V(l) | there exists a torsion-free marked numerical Godeaux surface X

having an assigned matrix l ∈ Vgensyz with [l] ∈ F1(Q)s} − 1.

From Theorem 8.5.5 we know that the set on the right-hand side is non-empty and that nmin ≤ 3.
Furthermore, since the Betti numbers are upper semi-continuous, there exists a non-empty open
subset Vmin ⊆ Vgensyz such that for all l ∈ Vmin we have dimk(V(l)) = nmin + 1.

For every l ∈ Vmin, the vector space V(l) is a sub-vector space of (B(−2)60)3
∼= k120 of

dimension nmin + 1. Hence, we obtain a map

Vmin → Gr(nmin + 1, 120)

sending l to V(l). Then the pull-back E′ of the universal subbundle on Gr(nmin + 1, 120) is a
vector bundle on Vmin of rank nmin + 1 with (E′)l ∼= V(l) for any l ∈ Vmin.

In particular, we can consider a pair (l, p), with l ∈ Vmin, from now on as a point in E′, and
call this point admissible, if (l, p) is admissible. Furthermore, since all conditions of Theorem
5.0.2 are open conditions, the existence of one admissible pair shows that there exists a non-
empty open subset in E′ of admissible points.



8.5 Counting the Number of Moduli 113

Recall from Section 8.2 that being admissible is invariant under the action of GL(2,k) on
St(Q), and invariant under the action of k∗ on V(l)\{0} for a given admissible matrix l ∈ Vmin.
Having this in mind, we will use E′ to construct a Pnmin-bundle over some open subscheme of
F1(Q) whose fibres are isomorphic to the projective spaces P(V(l)) for l ∈ Vmin. Let

π : St(2, 12)→ Gr(2, 12)

be the quotient morphism as before. Let I ∈ Γ = {J ⊆ {0, . . . , 11} | |J | = 2}, and let
l ∈ St(2, 12). In the following we call the 2× 2 submatrix of l whose columns are given by the
set I , the Ith submatrix of l, and its determinant the Ith minor of l. For I ∈ Γ, the sets

VI = {l ∈ St(2, 12) | the Ith minor of l is non-zero}

form an open cover of St(2, 12). The images UI := π(VI) form the (standard) open cover of
Gr(2, 12) as considered in the previous section. Furthermore, recall that every point in UI has a
unique representative in VI whose Ith submatrix is the unit matrix. Now let ŨI = UI ∩ F1(Q)
and ṼI = VI ∩ St(Q). Then, for any I ∈ Γ, there exists a unique smooth section

σI : ŨI → ṼI

which maps a point in ŨI to its unique representative in ṼI introduced above. After replacing
Vmin with a smaller open subset if necessary, we may assume that Vmin ⊆ ṼI for some I ∈ Γ.
Let Umin ⊆ F1(Q) be the inverse image of Vmin under σI . Then the pull-back of E′ under the
map σI gives a vector bundle on Umin of rank nmin + 1. Then E = P(σ∗IE

′) is the desired
Pnmin-bundle over Umin.

Proposition 8.5.6. The minimal dimension is nmin = 3. Moreover, there exists an open sub-
set Umoduli of the P3-bundle E parametrizing an 8-dimensional family of numerical Godeaux
surfaces with a trivial torsion group.

Proof. By the definition of the open set Vmin and the integer nmin there exists a marked numer-
ical Godeaux surface X having an assigned pair (l, p) with l ∈ Vmin (respectively [l] ∈ Umin)
and p ∈ V(l). Let v denote the corresponding point in E. Now since all the conditions from
Theorem 5.0.2 are open, there exists a non-empty open subset Umoduli ⊂ E whose points define
standard resolutions of the canonical ring of (marked) numerical Godeaux surfaces, and hence
(marked) numerical Godeaux surfaces. Furthermore, from Proposition 8.4.5 we know that all
these surfaces have a trivial torsion group. Hence we obtain a family of torsion-free numerical
Godeaux surfaces parametrized by the (irreducible) open set Umoduli. Now let us compute the
dimension of this family. First we have

dimUmoduli = dimE = dimUmin + nmin = 8 + nmin.

The dimension of the corresponding family of torsion-free numerical Godeaux surfaces is how-
ever lower since we also have to take the action of the 3-dimensional algebraic groupG = (k∗)3

on F1(Q) into account as explained in Section 8.3. From the definition of the open set Umin and
(8.12), we deduce thatUmin isG-invariant. Hence, our constructed family of numerical Godeaux
surfaces has (at most) dimension 8 + nmin − 3 = 5 + nmin. Now let us suppose that nmin < 3.
Then we obtain an open neighborhood of [X] ∈ M1,1 of dimension 5 + nmin < 8 which is a
contradiction to m(X) ≥ 8 by Corollary 8.5.4. Hence nmin = 3, and E is a P3-bundle con-
taining the open set Umoduli which parametrizes an 8-dimensional family of numerical Godeaux
surfaces with TorsX = 0.





9 Standard Resolutions and the Families
with Non-Trivial Torsion

Throughout this chapter we assume that k = C.

In this chapter we study numerical Godeaux surfaces having a non-trivial torsion group whose
order is odd, that means numerical Godeaux surfaces with torsion groups isomorphic to Z/3Z
or to Z/5Z. These surfaces have been explicitly described and, in both cases, they fill up an
8-dimensional, irreducible component of the moduli space of numerical Godeaux surfaces due
to the results of Godeaux, Reid and Miyaoka (see [Rei78], [Rei], [Miy76]). For each family, we
show how the canonical ring R(X) of a general element X of the family fits into our set-up. In
particular, we will prove that the general element X of the family of surfaces with torsion group
Z/5Z is a marked numerical Godeaux surface.

9.1 The Family of Z/5Z-Godeaux Surfaces

In this section we first recall the original construction due to Godeaux and then state the descrip-
tion of numerical Godeaux surfaces with TorsX = Z/5Z by Miyaoka (see [Miy76]) and Reid
(see [Rei78]).

Construction 9.1.1 (Godeaux). Let ξ be a primitive fifth root of unity. We define an action of
G = Z/5Z on P3

〈u1,...,u4〉 by

(u1, u2, u3, u4) 7→ (ξu1, ξ
2u2, ξ

3u3, ξ
4u4).

Let Y be the Fermat quintic defined by the form u5
1 +u5

2 +u5
3 +u5

4. Then Y is a smooth surface
with K2

Y = 5, pg(Y ) = 4 and q(Y ) = 0. Furthermore, Y is G-invariant and does not contain
the 4 fixed points of the group action. Hence G acts freely on Y and the surface X = Y/G is
smooth with K2

X = 1 and pg(X) = q(X) = 0. Moreover, TorsX = π1(X) = Z/5Z, where
π1(X) is the topological fundamental group of X .

This construction is the basis for a general definition:

Definition 9.1.2 (See [Miy76], Section 5). Let Y ′ be a normal quintic surface in P3 with only a
finite number of rational double points. Assume that the cyclic group G = Z/5Z acts freely on
Y ′. Then the minimal nonsingular model X of Y ′/G is called a Godeaux surface.

The following statement gives a complete classification of Godeaux surfaces and relates them
to numerical Godeaux surfaces:

Theorem 9.1.3. Let X be a numerical Godeaux surface. Then the following conditions are
equivalent:

(i) X is a Godeaux surface,

(ii) π1(X) ∼= Z/5Z,
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(iii) TorsX ∼= Z/5Z,

(iv) |3KX | has two base points,

(v) φ|3KX |(X) is a hypersurface of degree 7 in P3.

Proof. See [Miy76], Theorem 4.

Next we state a result on the moduli space of Godeaux surfaces:

Theorem 9.1.4. The moduli space of Godeaux surfaces is a normal unirational variety. It is a
quotient space of a Zariski open subset of A8 by a finite group.

Proof. See [Miy76], Theorem 5.

In his proof, Miyaoka characterized the normal quintic surfaces Y ′ ⊆ P3 from Definition
9.1.2 on which G acts freely as in Construction 9.1.1. In the following, we will briefly sketch
his proof. Let f be the defining equation of Y ′. Since G acts on Y ′ without fixed points, we can
assume that, after a suitable linear change of coordinates on P3, the polynomial f is of the form

f = u5
1 + u5

2 + u5
3 + u5

4 + . . . .

The 8 monomials

u3
1u3u4, u1u

3
2u3, u2u

3
3u4, u1u2u

3
4, u

2
1u

2
2u4, u

2
1u2u

2
3, u

2
2u3u

2
4, u1u

2
3u

2
4 (9.1)

are all the other G-invariant monomials of degree 5. Hence a general surface Y ′ is given by the
G-invariant polynomial

f = fc = u5
1 + u5

2 + u5
3 + u5

4 + c0u
3
1u3u4 + c1u1u

3
2u3 + c2u2u

3
3u4 + c3u1u2u

3
4

+ c4u
2
1u

2
2u4 + c5u

2
1u2u

2
3 + c6u

2
2u3u

2
4 + c7u1u

2
3u

2
4

(9.2)

with c = (c0, . . . , c7)tr ∈ A8. Since having at most rational double points is an open condition,
there exists an open subset of A8 yielding surfaces as described in Definition 9.1.2. Now let f, f ′

be two quintic polynomials as in (9.2) such that, for W = V (f) and W ′ = V (f ′), we have

W/G ∼= W ′/G.

Then there exists an automorphism γ ∈ Aut(P3) and an element g ∈ G (inducing an automor-
phism of P3) such that

γ(W ) = γ(W ′) and γ ◦ g = gn ◦ γ (9.3)

for some n ∈ {1, 2, 3, 4}. The claim follows then from the fact that the automorphisms of P3

fulfilling (9.3) form a finite subgroup of Aut(P3).

Next we consider the canonical ring of a Godeaux surface X . So let Y ′ be a quintic surface
defined by a G-invariant polynomial f as in (9.2) such that X = Y ′/G. Then

R(X) = R(Y ′)G,

whereR(Y ′) is the canonical ring of the surface Y ′. We will now give a set of algebra generators
for R(X) which is independent of the choice of the parameter c ∈ A8. By the definition of the
group action, a monomial ua11 u

a2
2 u

a3
3 u

a4
4 ∈ k[u1, . . . , u4] is G-invariant if and only if

a1 + 2a2 + 3a3 + 4a4 ≡ 0 mod 5.
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Using this characterization, we compute (either by hand or with the help of a computer algebra
system) a basis for all G-invariant homogeneous polynomials up to degree 5:

degree basis for the invariants algebra generators for RG

2 u1u4, u2u3 u1u4, u2u3

3 u2u
2
4, u

2
3u4, u

2
1u3, u1u

2
2 u2u

2
4, u

2
3u4, u

2
1u3, u1u

2
2

4 u2
1u

2
4, u1u2u3u4, u

2
2u

2
3, u

3
2u4, u3u

3
4, u1u

3
3, u

3
1u2 u3

2u4, u3u
3
4, u1u

3
3, u

3
1u2

5 u5
4, u

5
3, u

5
2, u

5
1, 8 forms from (9.1) u5

4, u
5
3, u

5
2

Let Ŝ be the positively graded k-algebra k[x0, x1, y0, . . . , y3, z0, . . . , z3, w0, w1, w2] as defined
before and consider the ring homomorphism

η : Ŝ → k[u1, u2, u3, u4]/(f),

x0 7→ u1u4, x1 7→ u2u3, y0 7→ u2u
2
4, . . . , y3 7→ u1u

2
2,

z0 7→ u3
2u4, . . . , z3 7→ u3

1u2, w0 7→ u5
4, w1 7→ u5

3, w2 7→ u5
2,

(9.4)

which sends the algebra generators of Ŝ to the G-invariant polynomials in the right column of
the table above. Let I be the kernel of this homomorphism. Then R(X) ∼= Ŝ/I and Proj(Ŝ/I)
is the canonical model of X .

Next we will consider R(X) as an S-module, being generated by the elements

1, z0, . . . , z3, w0, w1, w2.

In the following we present a minimal generating set of the S-linear relations between the chosen
module generators of R(X) (depending on c ∈ A8). This allows us to completely determine the
first syzygy matrix d1 of a minimal free resolution ofR(X) as an S-module. Note that a relation
in R(X) is simply an element of the kernel of η. For example, we have:

η(y0y3 − x0z0) = u2u
2
4u1u

2
2 − u1u4u

3
2u4 = 0,

η(y0y1 − x1z1) = u2u
2
4u

2
3u4 − u2u3u3u

3
4 = 0,

η(x2
1z0 − y1w2) = u5

2u
2
3u4 − u5

2u
2
3u4 = 0,

η(c1x
2
1y3 + c2x

2
1y1 + c3y3z1 + (c4y2 + c6y1)z0 + (c5y3 + c7y0)z2 + (c0y1 + y2)z3

+ x1(w0 + w1 + w2)) = u2u3f = 0.

(9.5)

Note that the relations in the first three rows do not depend on the choice of the parameters
c0, . . . , c7 ∈ k.

From the description of the minimal free resolution ofR(X) in Chapter 3, we know that there
are 6 S-linear relations of degree 6. Hence, it is enough to find 6 relations of this degree which
are linearly independent. The columns of the following matrix represent relations between the
chosen module generators:
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1 y0y1 y0y2 − x2
0x1 y0y3 y1y2 y1y3 − x0x

2
1 y2y3

z0 −x0

z1 −x1

z2 −x0

z3 −x1

w0

w1

w2

Moreover, the columns are clearly linearly independent. Note that the relations do not depend
on the parameters.

Now for degree 7 we find 12 linearly independent relations which we represent in the follow-
ing matrices:

1 −x2
1y0 −x0x1y3 −x2

0y1 −x0x1y0

z0 y1 y2 y3

z1 y0 y2 y3

z2

z3

w0 −x1

w1

w2 −x0

1 −x0x1y1 −x2
1y2 −x2

0y3 −x0x1y2 c1x
2
1y3 + c2x

2
1y1

z0 c4y2 + c6y1

z1 c3y3

z2 y0 y1 y3 c5y3 + c7y0

z3 y0 y1 c0y1 + y2

w0 −x0 x1

w1 x1

w2 x1

As a last step we determine also 8 S-linear relations of degree 8 which are linearly independent
and which do not result from the relations of degree 6. The following matrix shows one possible
choice for such relations:
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1 x1y
2
3 x1y

2
1 x0y

2
0 h1 h2

z0 x2
1 c4x

2
0 + c1x0x1

z1 x2
0 c3x0x1 + c6x

2
1 c7x0x1 + c2x

2
1

z2 x2
1 c0x

2
0 + c5x0x1

z3 x2
0

w0 −y2 −y3 y1 y0 + c3y3

w1 −y3 −y0 c2y0 + y1 y0

w2 −y1 −y2 y1 y0

where

h1 = c7x0y
2
1 + x0y

2
2 + c4x0y1y3 + c1x1y1y3,

and

h2 = c6x1y
2
0 + c0x0y0y2 + c5x0y1y3.

Putting the single matrices together, we obtain a first syzygy matrix d1 of R(X).

Next let us draw some conclusions from these technical computations. First we note that the
matrix d̄1 = d1 ⊗ S/(x0, x1) is independent of all parameters c0, . . . , c7. Furthermore, we have

annT (coker d̄1) = {p0, . . . , p3}, (9.6)

where p0, . . . , p3 are the 4 coordinate points of P3 as in Chapter 6. Hence the canonical model
Xcan = Proj(R(X)) ⊆ P(22, 34, 44, 53) contains 4 distinct points whose xi-coordinates vanish.
Now using the fact that the fixed part F of |2KX | is zero for any Godeaux surface (see Remark
6.2.2), we get the following result:

Proposition 9.1.5. Any element of the 8-dimensional family of Godeaux surfaces is a marked
numerical Godeaux surface.

In particular, the canonical ring of any element of this 8-dimensional family admits a standard
resolution. Now we will consider the a-matrix ã of d1. Since we have only determined the first
syzygy matrix, we cannot assign a matrix l ∈ St(Q) to ã. But since the rank of the a-matrix and
the Betti numbers of the corresponding module are the same in any minimal free resolution of
R(X), we obtain the following result:

Lemma 9.1.6. Let X be a Godeaux surface, and let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (9.7)

be a minimal free resolution of R(X) as an S-module with a-matrix ã. Then rank(ã) = 4 and
L = coker ã has a minimal free resolution of the form

0← L← B4 ← B(−1)4 ← 0,

where B = k[x0, x1] as before. In particular, if (9.7) is a standard resolution with ã = a(l) for
some l ∈ St(Q), then l /∈ Vgensyz, where Vgensyz is the open set of St(Q) defined in Proposition
7.4.6.

Proof. It is enough to show this statement for the a-matrix ã of the syzygy matrix d1 defined
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above. Then

ã =


0 0 −x0 0 0 0

−x1 0 0 0 0 0

0 0 0 −x0 0 0

0 0 0 0 0 −x1


and all statements are immediate.

We end this section by showing that the reverse of the second statement of Lemma 8.4.2 is
true:

Lemma 9.1.7. Let X be a Godeaux surface, and let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a minimal free resolution of R(X) as an S-module with e-matrix ẽ. Then the 3× 3 minors of
ẽ vanish at two distinct points p, q ∈ P1.

Proof. As before, we may assume that d1 is the matrix defined above. But then

m3(ẽ) = (x2
0x1, x0x

2
1) ⊆ B,

where m3(ẽ) is the ideal generated by the 3× 3 minors of ẽ. Thus, the corresponding vanishing
locus contains the points p = (0 : 1) and q = (1 : 0).

9.2 The Family of Z/3Z-Godeaux Surfaces

In this section we consider the family of numerical Godeaux surfaces having a torsion group
isomorphic to Z/3Z. Reid showed that the moduli space of these surfaces is 8-dimensional and
irreducible. As before, the idea is to start with a covering surface corresponding to the torsion
group: Take a covering surface of general type Y with invariants K2

Y = 3, pg = 2 and q = 0
on which the cyclic group Z/3Z acts freely, then Y/G is a numerical Godeaux surface X with
TorsX = Z/3Z (see [Rei78]). In the following we will briefly present a refined construction
by Reid using unprojection (see [Rei13b]). For further details on this method and the theory of
unprojections, we refer to [Rei13b], [Rei00] and [CU16].

Let P = P(13, 23, 33) be the weighted projective space with coordinates ui, vi, ti for i =
0, 1, 2, and let σ be the permutation (012) ∈ S3. Then σ acts on the coordinates of P by

σ : ui 7→ uσ(i), vi 7→ vσ(i), ti 7→ tσ(i)

which induces an action of G = Z/3Z on P. Given a weighted homogeneous polynomial
f ∈ k[ui, vi, ti] we will simply write σ(f) for the polynomial f(uσ(i), vσ(i), tσ(i)) and call the
set {f, σ(f), σ2(f)} the orbit of f .

Now consider the three weighted homogeneous polynomials

f0 = −u0t0 + v1v2 − r0u1u2,

g0 = −v0t0 + r1u2v1 + r2u1v2 + su1u2,

h0 = −t1t2 + r0v
2
0 + su0v0 + r1r2u

2
0,
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where r0 is a general weighted homogeneous polynomial of degree 2 with orbit {r0, r1, r2}
and s is a general G-invariant weighted homogeneous polynomial of degree 3. Furthermore, let
W ⊆ P be the 4-dimensional variety defined by

f0, f1 = σ(f0), f2 = σ(f1), g0, g1 = σ(g0), g2 = σ(g1), h0, h1 = σ(h0), h2 = σ(h1).

Theorem 9.2.1. Let Y ⊆ P be the surface obtained by intersecting W with the G-invariant
linear subspace {u0 + u1 + u2 = t0 + t1 + t2 = 0}. Then Y ⊆ P(12, 23, 32) is a canonical
surface with pg = 2, K2

Y = 3.

Proof. See [Rei13b], Theorem 1.1(A).

Furthermore, Reid showed that for general choices of ri and s, the surface Y is smooth and
irreducible and the action of G on Y is fixed point free. Hence, X = Y/G is a numerical
Godeaux surface with TorsX = Z/3Z. In the following, we refer to such surfaces simply as
Z/3Z-Godeaux surfaces. Coughlan and Urzúa restated Reid’s result as follows:

Proposition 9.2.2. The coarse moduli space of Z/3Z-Godeaux surfaces is irreducible and uni-
rational of dimension 8. It is covered by the 9-dimensional parameter space given by the follow-
ing forms for ri and s

r0 = a11u
2
1 + a12u1u2 + a22u

2
2 + b0v0 + b1v1, r1 = σ(r0), r2 = σ(r1),

s = c2(u2
0u1 + u2

1u2 + u2
2u0) + c3(u2

0u2 + u2
1u0 + u2

2u1)

+ d2(u0v1 + u1v2 + u2v0) + d3(u0v2 + u1v0 + u2v1).

Proof. See [CU16], Proposition 2.2.

Now let

R(Y ) = k[u0, u1, v0, v1, v2, t0, t1]/(f0, f1, f2, g0, g1, g2, h0, h1, h2),

where we have substituted u2 by −u0 − u1 and t2 by −t0 − t1. The results of Reid show that
R(Y )G is the canonical ring of a Z/3Z-Godeaux surface X . Now we determine a set of algebra
generators of R(X) ∼= R(Y )G depending on a11, a12, a22, b0, b1, c2, c3, d2, d3. To do this, we
first compute generating sets for allG-invariant homogeneous polynomials ofR(Y ) up to degree
5 and then use the forms defining Y to decide which of the elements are needed for a minimal
set of algebra generators. Unfortunately, these computations are not as straightforward as in the
case of the Z/5Z-Godeaux surfaces.

Since there are no relations in R(Y ) of degree ≤ 3 we compute (either by hand or using
SINGULAR) that the polynomials

θ0 = v0 + v1 + v2,

θ1 = u2
0 + u0u1 + u2

1

form a basis for the invariants of degree 2, and that

γ0 = u1v0 − u0v1 − u1v1 + u0v2,

γ1 = u0v0 + u1v0 − u0v1 − u1v2,

γ2 = u2
0u1 + u0u

2
1,

γ3 = u3
0 − 3u0u

2
1 − u3

1
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form a basis for the invariants of degree 3. We choose these 6 polynomials as algebra generators
of degree ≤ 3.

Determining the invariants of degree 4 and 5 involves some more work. First, we com-
pute with the help of SINGULAR bases for the invariants of degree 4 and 5 in the polyno-
mial ring k[u0, u1, v0, v1, v2, t0, t1]. Then we use the defining relations of Y and the invari-
ants of degree 4 (respectively of degree 5) given by the products of θ0 and θ1 (respectively
of θi and γj) to compute relations between these invariants which depend on the parameter
λ = (a11, a12, a22, b0, b1, c2, c3, d2, d3)tr ∈ A9. We performed these lengthy calculations with
the help of SINGULAR and present only the results here:

Proposition 9.2.3. Let θ0, θ1, γ0, . . . , γ3 be as above. Furthermore, let

δ0 = u1t0 − u0t1,

δ1 = u0t0 + u0t1 + u1t1,

δ2 = v0v1 + v0v2 + v1v2,

δ3 = u2
1v0 + u2

0v1 + 2u0u1v1 + u2
1v1 + u2

0v2

which are invariant forms of degree 4 in R(Y ), and

ε0 = v1t0 − v2t0 − v0t1 + v1t1,

ε1 = v0t0 − v1t0 + v0t1 − v2t1,

ε2 = 2u0u1t0 + u2
1t0 + u2

0t1 + 2u0u1t1

which are invariant forms of degree 5 in R(Y ). Then, if λ ∈ {b1(b0 − b1) 6= 0} ⊆ A9, the
invariants θ0, θ1, γ0, . . . , γ3, δ0, . . . δ3 and ε0, ε1, ε2 generate R(Y )G ∼= R(X) as a k-algebra.

Now let Ŝ be the graded polynomial ring k[x0, x1, y0, . . . , y3, z0, . . . , z3, w0, w1, w2] as be-
fore. Furthermore, let λ = (a11, a12, a22, b0, b1, c2, c3, d2, d3)tr ∈ A9 with b1(b0 − b1) 6= 0. We
consider the ring homomorphism

ηλ : Ŝ → k[u0, u1, v0, v1, v2, t0, t1]/(f0, f1, f2, g0, g1, g2),

xi 7→ θi, yj 7→ γj , zj 7→ δj , wk 7→ εk
(9.8)

and set Rλ := Ŝ/ ker(ηλ). Then Rλ is the canonical ring of a Z/3Z-Godeaux surface X .
Now let us consider Rλ as an S-module being generated by 1, z0, . . . , z3, w0, w1, w2. In con-

trast to the Godeaux surfaces considered in the last section, it was computationally not feasible
to determine a general first syzygy matrix of Rλ depending on the parameter λ ∈ A9. We
found one general S-linear relation between the module generators of Rλ by studying the alge-
bra generators of degree 2 and 3 (which are completely independent of the choice of λ). We see
that

θ3
1 − 9γ2

2 − 3γ2γ3 − γ2
3 = 0

in k[u0, u1, v0, v1, v2, t0, t1]. Hence we get a relation of the form

x3
1 − 9y2

2 − 3y2y3 − y2
3 = 0 (9.9)

in Rλ for every λ ∈ A9. Using this, we get a weaker version of Lemma 9.1.6 for an element X
of this 8-dimensional family of Z/3Z-Godeaux surfaces:

Lemma 9.2.4. Let X be as above, and let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0 (9.10)
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be a minimal free resolution of R(X) as an S-module with a-matrix ã. Then for the minimal
free resolution of L = coker ã

0← L← B4 ← B(−1)4+m ←

B(−2)m2

⊕

B(−3)m2

⊕
...

← 0

we have m ≤ 1. In particular, if X is a marked Z/3Z-Godeaux surface and (9.10) is a standard
resolution with assigned matrix l ∈ St(Q), then l /∈ Vgensyz.

Proof. Let λ ∈ A9 such that R(X) ∼= Rλ. Since (9.9) is a non-zero relation in Rλ, there must
be a non-zero relation in R(X) of degree 6 only depending on the algebra generators of R(X)
of degree 2 and 3. Now let us consider the minimal free resolution of R(X). We may assume
that this relation is in the generating set of the 6 S-linear relations of degree 6. But this implies
that the 4×6 matrix ã of the first syzygy matrix d1 has a zero-column and the claim follows.

By computing examples over finite fields, we find several λ ∈ A9 such that

annT (coker d̄1) = {p̃0, . . . , p̃3}, (9.11)

where p̃0, . . . , p̃3 are 4 distinct points in P3 and Xcan = Proj(R(X)) ⊆ P(22, 34, 44, 53) is
smooth at the corresponding points in Xcan. After performing a suitable linear change of co-
ordinates on P(22, 34, 44, 53), we may assume that these 4 points are mapped to the coordinate
points of P3. Hence, we can compute a standard resolution of R(X) and study the properties of
the matrices a and e. In each of the examples, the 3× 3 minors of e vanish at exactly one point.
Hence, these calculations support Conjecture 8.4.3.





10 Torsion-Free Numerical Godeaux
Surfaces and Hyperelliptic Fibres

In this chapter we will focus on numerical Godeaux surfaces having a trivial torsion group. We
will show that the existence of smooth hyperelliptic bicanonical curves implies that the mor-
phism ϕ : Xcan → Y is not an isomorphism. Furthermore, we will establish relations between
the minimal free resolution of R(X) as an S-module and the existence of hyperelliptic curves
in the bicanonical system |2KX |.

Recall that we write the bicanonical system as

|2KX | = |M |+ F,

where F denotes the fixed part and M is a generic member of the moving part of |2KX |. In
[CP00], Catanese and Pignatelli described the curves in the bicanonical system and the induced
fibration for a numerical Godeaux surface X with TorsX = 0 or TorsX = Z/2Z. Their
results distinguish between the different possibilities for (F 2,M2) and some configurations of
the base points of |M |. Here, we restrict our study to numerical Godeaux surfaces satisfying the
following condition

(∗) F = 0 and |M | has 4 base points (possible infinitely near).

Note that any marked numerical Godeaux surface clearly fulfills this condition.

Throughout this chapter X denotes a numerical Godeaux surface with TorsX = 0 fulfilling
condition (∗).

10.1 Preliminaries

In this section we first study the fibration f induced by the bicanonical system |2KX | and then
state the results by Catanese and Pignatelli on the fibres of f . By X̃ (respectively X̃can) we de-
note the blow-up of X (respectively of Xcan) at the (smooth) base points of |2KX | (respectively
of |2KXcan |). Then we have a commutative diagram

X̃ X

X̃can Xcan

β

π

β̂

π̂

where β (respectively β̂) denotes the blow-up morphism and π (respectively π̂) is a contraction
of (−2)-curves. Now let us consider the rational map X 99K P1 induced by the bicanonical
system. As X satisfies condition (∗), the only points at which this rational map is not defined
are the 4 base points of |2KX |.
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Hence, we get an induced morphism from the blow-up X̃ to P1

X̃ X

P1

β

f |2KX |

such that f is a fibration of genus 4. In his thesis, Pignatelli described the curves in |2KX |:

Lemma 10.1.1. Let C ∈ |2KX |. Then one of the following holds:

(i) C is embedded by ωC and φ3(C) = φωC (C) is the complete intersection of a quadric and
a cubic. Moreover, if φωC (C) is reducible, it decomposes into a union of two plane cubics
intersecting (with multiplicity) in three points.

(ii) C is honestly hyperelliptic and φ3(C) = φωC (C) is a (double) twisted cubic curve.

Case (i) is the general one.

Proof. See [Pig00], Lemma 2.3.1.

Note that we call a Gorenstein curve C honestly hyperelliptic if there exists a finite morphism
C → P1 of degree 2. Note that this definition does not require that C is smooth or irreducible.
A complete characterization of such curves is given in [CFHR99]:

Lemma 10.1.2. An honestly hyperelliptic curve C of genus pa(C) = g ≥ 0 is isomorphic to
a divisor C2g+2 in the weighted projective space P(1, 1, g + 1) not passing through the vertex
(0, 0, 1), and defined by an equation of type

w2 + ag+1(x1, x2)w + b2g+2(x1, x2) = 0.

It follows that every point ofC is either nonsingular or a plane double point, and thatC is either
irreducible or of the form C = D1 + D2 with D1D2 = g + 1. The projection φ : C → P1 is
a finite double cover, and the inverse image of any point x ∈ P1 is a Cartier divisor Z ⊆ C
which is a 0-dimensional scheme of length 2. In other words, Z is either two distinct nonsingular
points of C, a nonsingular point with multiplicity 2, or a section through a planar double point
of C.

Proof. See [CFHR99], Lemma 3.5.

Notation 10.1.3. In the following, we will call a smooth honestly hyperelliptic curve simply a
hyperelliptic curve.

Next we study the rational map

ψ := φ2 × φ3 : X 99K P1 × P3,

where φn denotes the rational map defined by |nKX | as before. This map factors through the
canonical model. Let ψ̂ denote the corresponding map on Xcan. Since |3KX | (respectively
|3KXcan |) has no base points, the only points at which ψ (respectively ψ̂) is not defined are the
base points of |2KX |. Setting W = ψ(X) = ψ̂(Xcan) ⊆ P1 × P3, we obtain a commutative
diagram
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X̃ X

X̃can Xcan

W

β

π

β̂

π̂

ψ̂ĝ
g ψ

Proposition 10.1.4. Both maps ψ and ψ̂ are birational. Furthermore, if the fibration induced
by the bicanonical system on X̃ has a honestly hyperelliptic fibre, then g is not an isomorphism.

Proof. See [CP00].

Pignatelli showed the following result on the number of hyperelliptic fibres of f :

Theorem 10.1.5. The conductor divisor of the normalization of W is supported on the honestly
hyperelliptic fibres of f . If h̃ is the number of the honestly hyperelliptic fibres of f (counted with
multiplicity as curves in the conductor divisor), then 0 ≤ h̃ ≤ 3. Furthermore, f cannot have 3
distinct hyperelliptic fibres.

Proof. See [Pig00], Theorem 3.2.1 and Proposition 4.3.1.

Using the Segre embedding we can identify W with its image W ′ in P7. Note that the em-
bedding is given by the sections xiyj , for i = 0, 1 and j = 0, . . . , 3. Now, let L denote the
subsystem of the linear system |5KXcan | spanned by these 8 global sections. Then we have a
diagram

X̃can Xcan X [5] ⊆ P10

W W ′

β̂

ψ̂ĝ

∼=

|5KXcan |
∼=

L

where X [5] 99K W ′ is the corresponding projection from X [5] to P7. As a next step we want to
show how our map ϕ : Xcan → Y ⊆ P(22, 34) fits into this diagram. Let ν : Y 99K P7 be the
rational map defined by the forms xiyj . Then the right-hand side of the previous diagram looks
as follows

Xcan X [5] ⊆ P10

Y

W ′

|5KXcan |
∼=

L

ϕ

ν
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Suppose that there exists a honestly hyperelliptic fibre Cp of f , where p ∈ P1. Then the
restriction of ĝ : X̃can → W to Cp is a finite morphism of degree 2. Hence, the non-normal
locus of W contains a curve. Now let us consider the finite birational morphism ϕ : Xcan → Y ,
which is the normalization of Y . In the following we will prove that also the morphism ϕ is not
an isomorphism if there exists a smooth hyperelliptic fibre of f . But in contrast to the morphism
ĝ, the restriction of ϕ to a hyperelliptic curve is not a degree 2 cover, but the resolution of one
double point.

So let C ∈ |2KX | be a hyperelliptic curve. Then C is irreducible by Lemma 10.1.2, and
hence C does not meet any of the (−2)-curves of X . Thus, we can identify C with its image in
Xcan. Since g(C) = 4, the g1

2 on C is uniquely determined. Let K0 be the divisor representing
the hyperelliptic class. Then |3K0| = |KC | and we have the following diagram

C

P1 P3

φωC = φ3|C|K0|

ν3

where ν3 denotes the 3-uple embedding of P1 into P3. The image D = φωC (C) ⊆ P3 is
a rational normal curve of degree 3 and φωC : C → D is a finite degree 2 covering ramified
at 2g + 2 = 10 points. Let G = ϕ(C) ⊆ Y , then φωC factors through G and we obtain a
commutative diagram

C

G

D

φωC

ϕ|C

(10.1)

Theorem 10.1.6. The curve G has exactly one singular point with multiplicity 2. The morphism
ϕ|C : C → G is the resolution of this singularity. Moreover, G is an honestly hyperelliptic curve
of genus pa(G) = 5.

To prove this theorem, we will first embed the three curves of Diagram (10.1) in three different
projective spaces such that the images of C and G are contained in rational normal scrolls. Then
we show that the morphism ϕ|C corresponds to the restriction of a birational transformation
between these scrolls.

10.2 Rational Normal Scrolls in Dimension 2

Let us briefly recall the definition and some properties of rational normal scrolls in dimension 2.
Let E = OP1(a1)⊕OP1(a2) be a locally free sheaf of rank 2 with 0 ≤ a1 ≤ a2 and a2 > 0. We
consider the corresponding P1-bundle

π : P(E)→ P1,

which is a rational geometrically ruled surface. The invertible sheafOP(E)(1) is generated by its
global sections and defines a morphism to projective space:
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Definition 10.2.1. We call the image of P(E) under the morphism

j : P(E)→ Pd = P(H0(P(E),OP(E)(1)))

a rational normal scroll of type a1, a2, denoted by S(a1, a2).

Note that d = a1 + a2 + 1. Furthermore, in [Har13] it is shown that S(a1, a2) ⊆ Pd is an
irreducible non-degenerate surface of minimal degree, that means

deg(S(a1, a2)) = codim(S(a1, a2)) + 1 = a1 + a2.

If a1 > 0, then OP(E)(1) is very ample and S(a1, a2) is isomorphic to P(E). In particular,
S(a1, a2) is smooth. If a1 = 0, then S(0, a2) is singular and j : P(E)→ S(0, a2) is a resolution
of singularities.

The Picard group of P(E) is generated by the class of a fibre L = [π∗OP1(1)] and the class of
a hyperplane section H = [j∗OPd(1)] with

L2 = 0, LH = 1, H2 = a1 + a2

(see [Har77], V.2). In the case where j is an isomorphism, we denote the generators of the Picard
group Pic(S(a1, a2)) by L and H as well. Furthermore, in the following we will denote both
the divisor and its class by L (respectively by H), by abuse of notation.

There is an alternative (equivalent) geometric description of rational normal scrolls which we
will briefly explain. Let a1, a2 be two integers with 0 ≤ a1 ≤ a2, a2 > 0, and set d = a1+a2+1.
In Pd we choose two complimentary linear subspaces W1 and W2 of dimension a1 and a2,
respectively. Let νi : P1 →Wi be the ai-uple embedding of P1 into Wi. The image of P1 under
νi is a rational normal curve Ci of degree ai. Note that if a1 = 0 then C1 is simply a point. The
surface swept out by the lines

ν1(t)ν2(t)

for t varying over P1 is a rational normal scroll S(a1, a2). If a1 = 0, then S(0, a2) ⊆ Pa2+1 is
the cone over a rational normal curve C2 ⊆ Pa2 of degree a2.

Proposition 10.2.2. Let 1 ≤ a1 < a2. Then:

(i) The rational normal curve C1 ⊆ S = S(a1, a2) occurring in the construction explained
above is the unique rational normal curve of degree < a2 on S (other than the lines of the
ruling of S). In particular, it is uniquely determined by S. We call this curve the directrix
of S.

(ii) The image of the scroll S = S(a1, a2) under projection from a point p ∈ S is projectively
equivalent to S(a1 − 1, a2) if p is contained in the directrix of S, otherwise, the image is
projectively equivalent to S(a1, a2 − 1).

Proof. See [Har13], Proposition 8.20.

Let S(a1, a2) ⊆ Pa1+a2+1 be a rational normal scroll, and let v1,0, . . . , v1,a1 , v2,0, . . . , v2,a2

denote the coordinates of Pa1+a2+1. Then the ideal of S(a1, a2) can be generated by the 2 × 2
minors of a 1-generic 2× (a1 + a2) matrix of linear forms l1,0 · · · l1,a1−1 l2,0 · · · l2,a2−1

l1,1 · · · l1,a1 l2,1 · · · l2,a2

 , (10.2)
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such that the 2 × 2 minors of

li,0 · · · li,ai−1

li,1 · · · li,ai

 define a rational normal curve of degree ai

in the linear subspace

Wi := V (l3−i,0, . . . , l3−i,a3−i) ⊆ Pa1+a2+1

of dimension ai, and such that the linear spaces W1 and W2 are complimentary (see [Har13],
Chapter 9). Hence, any rational normal scroll is a determinantal variety. Furthermore, any such
matrix as in (10.2) is conjugate to the matrix v1,0 · · · v1,a1−1 v2,0 · · · v2,a2−1

v1,1 · · · v1,a1 v2,1 · · · v2,a2

 .

10.3 A Criterion for Hyperelliptic Fibres

Now we return to the study of hyperelliptic curves. Eisenbud showed that any hyperelliptic
curve C of genus g ≥ 2 is isomorphic to a curve on a rational normal scroll. To recall the precise
statement, let again K0 denote the divisor on C corresponding to the unique linear system g1

2 on
C. As a consequence of the Riemann-Roch theorem the complete linear system |(g + k)K0| is
very ample if and only if k ≥ 1. If we write Ck for the image of C under the corresponding
embedding, then Ck ⊆ Pg+2k is a non-degenerate, nonsingular curve of degree 2g + 2k.

Theorem 10.3.1. The curve Ck ⊆ Pg+2k is a divisor of type 2H − (2k − 2)L on the scroll
S(k − 1, g + k).

Proof. See [Eis80], Theorem 3.

We will apply this result to our given hyperelliptic curve C ⊆ Xcan of genus 4 and the linear
system |6K0|. Let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a minimal free resolution of R(X), and let a be the a-matrix of d1. After applying a linear
change of coordinates if necessary, we may assume that

C = Proj(R(X)/(x0)).

Recall that
∣∣6K0

∣∣ =
∣∣2KC

∣∣ =
∣∣(6KX)|C

∣∣. Furthermore, since h1(X,OX(nKX)) = 0 for all
n, the sequence

0→ H0(X,OX((n− 2)KX))→ H0(X,OX(nKX))→ H0(C,OC(nKX |C))→ 0

is exact. In particular, this implies that

R(X)/(x0) ∼=
⊕
n≥0

H0(C,OC(nKX |C)).

From the exact sequence above we compute that h0(C,OC(6K0)) = h0(C,OC(6KX |C)) = 9.
Hence, there are 6 relations between the 15 global sections

x3
1, {x1zj}0≤j≤3, {yiyj}0≤i≤j≤3 ∈ H0(C,OC(6K0)).

These relations are given by the first 6 columns of d̃1 := d1 ⊗ S/(x0):
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1 y0y1 + α1x
3
1 . . . y2y3 + α6x

3
1

z0

... a0

z3

w0

w1 0

w2

where a0 = a⊗S/(x0). Note that the entries of the first column represent a set of generators of
R(X) as an S-module. Now recall that the image of C under the projection to P3 is a rational
normal curve whose ideal is generated by 3 quadrics f0, f1, f2. Hence, these forms are among
the relations of degree 6 in R(X)/(x0) and after multiplying with a suitable invertible matrix
from the right, we get the following relations

1 f̃0 f̃1 f̃2 f0 f1 f1

z0

... ã0 0

z3

Lemma 10.3.2. rank(ã0) = rank(a0) = 3.

Proof. Since TorsX = 0 by assumption we know from Proposition 8.4.2 that the vanishing
locus of the 3× 3 minors of e is empty, where e is the e-matrix of d1. Then from the inclusions
in (8.19) we know that also the vanishing locus of the 3×3 minors of a is empty. Hence, there is
no point p ∈ P1 with rank(a(p)) = 2. Now assume that rank(a0) < 3. This implies that every
3× 3 minor of rank(a0) vanishes, and hence that every 3× 3 minor of a vanishes at p = (0 : 1)
which is a contradiction.

Now this lemma implies that there exist an element z̃ ∈ {z0, . . . , z3} and elements σ6, σ7, σ8 ∈
{yiyj | 0 ≤ i < j ≤ 3} such that the global sections

σ0 = x1z̃, σ1 = x3
1, σ2 = y2

0, σ3 = y2
1, σ4 = y2

2, σ5 = y2
3, σ6, σ7, σ8

form a basis of H0(C,OC(6K0)).

Next let us consider the curve D ⊆ P3. The invertible sheaf OD(2) is very ample. Fur-
thermore, every global section of OD(2) is the restriction of a global section of OP3(2), and
henceH0(P3,OD(2)) is 7-dimensional. As a basis ofH0(P3,OD(2)) we can choose the global
sections σ2, . . . , σ8 (considered as elements of H0(P3,OD(2))).

As a last step we have to consider the curveG = ϕ(C) ⊆ P′ := P(2, 34)<x1,y0,...,y3>. The line
bundle OP′(6) is very ample and H0(P′,OP′(6)) is 11-dimensional, where the global sections
x3

1, yiyj , i = 0, 1, j = 0, . . . , 3, form a basis. Using these global sections, we can embed P′ in
P10. On the other hand, the three quadratic forms f0, f1, f2 are among the defining equations
of G. Thus, the global sections σ1, . . . , σ8 (considered as elements of H0(G,OG(2))) define an
embedding G ↪→ P7 with image G′.
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All these morphisms fit into a common commutative diagram:

C C2

G G′

D D6

P1

(σ0 : . . . : σ8)

∼=

|3K0|

|K0|

ν3 ν6

(σ2 : . . . : σ8)

∼=

(σ1 : . . . : σ8)

∼=
τ2

τ0

τ1
(10.3)

By Theorem 10.3.1, the curve C2 is contained in a rational normal scroll S(1, 6) ⊆ P8. The
curve D6 ⊆ P6 is a rational normal curve of degree 6. The morphism τ2 is the restriction of
a projection τ̂2 from the line V (u2, . . . , u8) ⊆ P8 to a complimentary space V (l0, l1) ∼= P6,
where l0 and l1 are linear forms. Hence, τ̂2 factors through the projection from the point Γ0 =
(1 : 0 : . . . : 0) ∈ P8

〈u0,...,u8〉 to P7
〈u1,...,u8〉 and the projection from Γ1 = (1 : 0 : . . . : 0) ∈ P7

to V (l0, l1) ∼= P6
〈u2,...,u8〉, whose corresponding restrictions are the morphisms τ0 and τ1. This

implies that the curve G′ is contained in the cone over D6 ⊆ P6 with vertex Γ1 ∈ P7, hence in a
rational normal scroll S(0, 6) ⊆ P7. Since TorsX = 0, the curve G does not contain any point
at which all the yj vanish. Thus, by the choice of the sections σ2, . . . , σ8, the curve G′ does not
contain the vertex of S(0, 6). The ideal of the rational normal curve D6 ⊆ P6 is generated by
a 1-generic matrix of linear forms of size 2 × 6 . Hence, by the previous discussions, there are
linear forms m0, . . . ,m5 in the variables u2, . . . , u8 such that the scroll S(1, 6) ⊆ P8 is defined
by the 2× 2 minors of the matrix  l0 m0 · · · m4

l1 m1 · · · m5


with directrix C1 = V (m0, . . . ,m5) = V (u2, . . . , u8). We can summarize the previous discus-
sions as follows:

Proposition 10.3.3. The morphism τ0 is the restriction of the projection from the point Γ0 on
the directrix C1 of S(1, 6). Hence τ0 is the restriction of a birational map S(1, 6) 99K S(0, 6).
Furthermore, the morphism τ1 is the restriction of the projection from the vertex Γ1 of the cone
S(0, 6) to P6.

Now from (10.3) we see that the commutative triangle

C2

G′

D6

τ2

τ0

τ1

(10.4)
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is just the isomorphic “lift” of the triangle (10.1). Hence it is enough to prove Theorem 10.1.6
for the morphism τ0 : C2 → G′.

Remark 10.3.4. Since τ2 : C2 → D6 is a finite map of degree 2, the inverse image Zp of any
point p in D6 (respectively G′) under τ1 (respectively τ0) is a 0-dimensional scheme of length
≤ 2. Note that Proposition 10.3.3 implies that the length of the inverse image of a point p ∈ D6

under τ1 is the number of intersection points (counted with multiplicity) of the line through Γ1

and p with the curve G′.

Proof of Theorem 10.1.6. Since G′ does not contain the vertex of S(0, 6) we will identify G′

with its preimage under the resolution of singularities j : P(OP1 ⊕ OP1(6)) → S(0, 6) which
is the blow-up of the vertex Γ1. Note that the surface P(OP1 ⊕ OP1(6)) is the 6th Hirzebruch
surfaceX6. The exceptional divisor of this blow-up is a curveB withB ∼ H−6L. Let a, b ∈ Z
such that G′ ∼ aH + bL. From Remark 10.3.4 we know that 1 ≤ a ≤ 2. Furthermore, we have

0 = G′B = (aH + bL)(H − 6L) = b.

Hence G′ ∼ H or G′ ∼= 2H . In the following, we will show that the first case cannot occur.
First let Z1 → S(1, 6) be the blow-up of Γ0 ∈ S(1, 6). Then the induced birational morphism
Z1 → S(0, 6) factors through X6 → S(0, 6), where the induced morphism Z1 → X6 is the
contraction of a (−1)-curve. Furthermore, sinceC2 does not contain Γ0, we can identifyC2 with
its isomorphic image in Z1. Then G′ is the image of this curve under the morphism Z1 → X6.
In particular, τ0 : C2 → G′ is a birational morphism. Hence, G′ ∼= 2H . Now let ` be any
line through Γ0 intersecting the curve C2. Suppose that ` intersects C2 in two points (counted
with multiplicity). Then, since S(1, 6) is defined by quadrics, Bézout’s Theorem implies that
` ⊆ S(1, 6). In particular, ` is the unique line of the ruling through the point Γ0. This implies
that the curve G′ has exactly one singular point q. Furthermore, q is either a node if ` intersects
C2 in two distinct points, or a cusp otherwise. Hence, G′ is an honestly hyperelliptic curve with
pa(G

′) = 5.

Remark 10.3.5. Note that we can deduce the number of singular points of G′ ⊆ X6 and their
types also directly from the genus formula. Indeed, we have

2pa(G
′)− 2 = KX6G

′ + (G′)2 = (−2H + 4L)(2H) + (2H)2 = 8

which implies pa(G′) = 5.

Proposition 10.3.6. Let X be a marked numerical Godeaux surface. If there exists a hyperel-
liptic curve C ∈ |2KX |, then the finite birational morphism ϕ : Xcan → Y is not an isomor-
phism. More precisely, for every hyperelliptic curve C ∈ |2KX |, there exists a unique point
q ∈ ϕ(C) ⊆ Y such that Y is not normal at q.

Proof. As before we identify C with its isomorphic image in Xcan. Suppose to the contrary that
ϕ : Xcan → Y is an isomorphism. But then also ϕ|C is an isomorphism of C onto its image
G ⊆ Y . But this is a contradiction to Theorem 10.1.6. In particular, the point q ∈ G ⊆ Y is a
non-normal point of Y .

The last step of this chapter is to translate these results to (algebraic) properties of the minimal
free resolution of the canonical ring R(X). In the following, let X be a fixed marked numerical
Godeaux surface (with TorsX = 0), and let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a minimal free resolution of R(X) as an S-module with a-matrix a.
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Lemma 10.3.7. If there exists a hyperelliptic curve C ∈ |2KX |, then there exists a point q ∈ Y
at which the 7× 7 minors of d′1 vanish.

Proof. In Proposition 10.3.6 we proved that ifC is a hyperelliptic curve, then there exists a point
q ∈ Y at which the morphism (OY )q → (ϕ∗OXcan)q is not an isomorphism. Now recall that
we have an exact sequence of OY -modules

0→ OY → (ϕ∗OXcan)→ M̃ → 0,

where M = coker d′1. Consequently,

q ∈ Supp(M̃) ⊆ V (7× 7 minors of d′1) ⊆ P(22, 34)

which shows the claim.

Let 0 6= x̃ ∈ H0(X, 2KX), and let p be the corresponding point in P1. We denote the
bicanonical curve Proj(R(X)/x̃) ∈ |2KXcan | byCp. IfCp is a hyperelliptic curve, then Lemma
10.3.2 implies that rank(a(p)) = 3. Now we show that the converse of this statement holds as
well. This gives a complete characterization of the existence of hyperelliptic curves in terms of
the a-matrix of d1:

Proposition 10.3.8. Let p ∈ P1 such that the curve Cp is smooth. Then, Cp is hyperelliptic if
and only if rank(a(p)) = 3.

Proof. After a linear change of coordinates we may assume that p = (0 : 1). Let us suppose that
rank(a(p)) = 3. Recall from Lemma 10.1.1 that the image D of Cp under φ3 : Xcan → P3 is a
complete intersection of type (2, 3) if Cp is not hyperelliptic, or a twisted cubic curve otherwise.
Hence, it is enough to prove that the ideal of D contains two linearly independent quadrics. To
show this, we proceed similarly as in the proof of Lemma 10.3.2. The condition rank(a(p)) = 3
implies that rank(a0) = 3, where a0 = a⊗ S/(x0). Now let us consider the first 6 columns of
d̃1 = d1 ⊗ S/(x0):

1 y0y1 + α1x
3
1 . . . y2y3 + α6x

3
1

z0

... a0

z3

After multiplying with a suitable invertible matrix from the right, we can assume that the rela-
tions are of the form

1 f0 + β0x
3
1 f1 f2 f3 f4 f5

z0

... ã0

z3

where f0, . . . , f5 do only depend on the variables y0, . . . , y3 and β0 ∈ k. The submatrix of ã0

corresponding to the last 5 columns of the matrix has rank ≤ 3. Hence, after a further column
operation on the last 5 columns, we obtain a new matrix of relations:
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1 f0 + β0x
3
1 f̃1 f̃2 f̃3 f̃4 f̃5

z0

... ∗ 0

z3

Hence, among the defining relations of Cp there are the two linearly independent quadrics f̃4, f̃5

depending only on y0, . . . , y3 which shows the claim.

As a final result, we establish a relation between the open set Vgensyz ⊆ St(Q) and the exis-
tence of hyperelliptic bicanonical curves:

Corollary 10.3.9. Let X be any marked numerical Godeaux surface, and let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a standard resolution of R(X) with assigned matrix l ∈ St(Q). If l ∈ Vgensyz, then TorsX =
0 and |2KX | contains no (smooth) hyperelliptic curves.

Proof. From Proposition 8.4.5 we already know that l ∈ Vgensyz implies that TorsX = 0. But
l ∈ Vgensyz implies also that the vanishing locus of the 4× 4 minors of the matrix a(l) is empty.
Thus, |2KX | has no hyperelliptic curves by Proposition 10.3.8.

Remark 10.3.10. The results of this section can be generalized to the case of an irreducible (not
necessarily smooth) honestly hyperelliptic curve C with pa(C) = 4:

The definition of an honestly hyperelliptic curve and Lemma 10.1.2 imply that C is a reduced
irreducible Gorenstein curve. Then, for every n, the sheavesOC(KC) andOC(nK0) are invert-
ible, where K0 is defined as before. Using the Riemann-Roch theorem (for singular curves) we
get h0(C,OC(KC)) = h0(C,OC(3K0)) = 4 and h0(C,OC(nK0)) = 2n− 3 for n ≥ 4. From
the factorization OC(6K0) = OC(K0)⊗OC(5K0) we obtain a multiplication map

µ : H0(C,OC(K0))⊗H0(C,OC(5K0))→ H0(C,OC(6K0)).

Furthermore, using the base-point-free pencil trick, we obtain an exact sequence

0→ OC(4K0)→ H0(C,OC(K0))⊗OC(5K0)→ OC(6K0)→ 0.

Taking global section we get a sequence

0→ H0(C,OC(4K0))→ H0(C,OC(K0))⊗H0(C,OC(5K0))→ H0(C,OC(6K0)→ 0

which is exact since h1(C,OC(4K0)) = 0. Hence, the multiplication map µ is surjective.
Now let V = H0(C,OC(6K0)), and choose bases s0, s1 ∈ H0(C,OC(K0)) and t0, . . . , t6 ∈

H0(C,OC(5K0)). Then we obtain a 2 × 7 matrix M(OC(K0),OC(5K0)) of linear forms on
P(V ) whose entry in row i and column j is si ⊗ tj ∈ V . As C is reduced and irreducible,
M(OC(K0),OC(5K0)) is a 1-generic matrix of linear forms whose 2× 2 minors vanish on the
image of C under the embedding C ↪→ P(V ) (see [Eis05], Proposition 6.10). Now the variety in
P(V ) ∼= P8 defined by the 2×2 minors of M(OC(K0),OC(5K0)) is a rational normal scroll of
degree 7 which is smooth since µ is surjective, and hence isomorphic to S(1, 6). Then, as in the
smooth case, the image of C under this embedding is a divisor on S(1, 6) linearly equivalent to
2H − 2L. Proceeding along the same lines as for a smooth curve, we obtain the corresponding
results for an irreducible honestly hyperelliptic curve C, where the morphism ϕ|C : C → G
from Theorem 10.1.6 is now a birational morphism resolving a singularity of multiplicity 2.





11 Explicit Examples with Macaulay2

In this chapter we present some explicit examples of our computations of marked numerical
Godeaux surfaces. First we construct an example with torsion group Z/5Z and one with torsion
group Z/3Z using the ideas from Chapter 9. Then we use our methods to compute, in each case,
a standard resolution, the associated matrix in St(Q) and check that Conjecture 8.4.3 holds for
these examples.

Afterwards we focus on numerical Godeaux surfaces having a trivial torsion group. We
present the main parts of our construction and the corresponding Macaulay2-procedures. Fur-
thermore, we want to verify all the assumptions we have made throughout the last chapters, in
particular the existence of the non-empty open set Vgensyz ⊆ St(Q) and the non-emptiness of
the set of stable points F1(Q)s. Afterwards we calculate an explicit example of a torsion-free
marked numerical Godeaux surface X having no hyperelliptic bicanonical curves. After that
we will briefly sketch the construction of the simply connected Barlow surface and verify com-
putationally that this surface contains two distinct hyperelliptic fibres. In the end, we present
an example of a numerical Godeaux surface (over a field with characteristic p > 0) having one
hyperelliptic fibre.

11.1 An Example with Torsion Group Z/5Z

In this section we give an explicit example of a numerical Godeaux surface with torsion group
Z/5Z. As a first step, we use the results from Section 9.1 to compute the canonical ring of such
a surface as an invariant ring under a free action of G = Z/5Z. Our procedures are contained
in the Macaulay2-file numGodeauxZ5 which we load at the beginning of our session. They
work over a finite field k = Fp or over k = Q. However, from the proof of Proposition 6.3.1, we
know that the calculation of a standard resolution may involve the computation of some square
roots. If these square roots are not contained in k, we cannot compute a standard resolution over
the base field.

To simplify the computations and to avoid coefficient growth we give an example over the
finite field F197. Recall from Section 9.1 that we have to compute a quintic surface Y ′ ⊆ P3

depending on 8 parameters on which G acts freely. Afterwards we compute algebra generators
of R(Y ′)G ∼= R(X). Note that the invariants of R(Y ′) up to degree 5 do not depend on the
quintic Y ′. So we compute them as a first step:

i1 : load "numGodeauxZ5.m2"

i2 : kk = ZZ/197;

i3 : invZ5 = computeZ5Invariants(kk);

i4 : invZ5

o4 = | u_1u_4 u_2u_3 u_2u_4ˆ2 u_3ˆ2u_4 u_1ˆ2u_3 u_1u_2ˆ2
-------------------------------------------------------
u_2ˆ3u_4 u_3u_4ˆ3 u_1u_3ˆ3 u_1ˆ3u_2 u_4ˆ5 u_3ˆ5 u_2ˆ5 |
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Next we compute a G-invariant quintic surface Y ′ ⊆ P3 depending on a parameter r ∈ A8.
Note that the definition of a Godeaux surface requires that Y ′ is normal having at most finitely
many rational double points. For the sake of simplicity, we restrict our computations to smooth
quintic surfaces.

i5 : r = random(kkˆ1,kkˆ8)

o5 = | 16 49 -71 97 -78 -43 -69 34 |

i6 : -- compute the corresponding quintic surface Y’
IY’ = computeInvariantQuintic(r);

i7 : gens IY’

o7 = |u_1ˆ5+u_2ˆ5+27u_1u_2ˆ3u_3-20u_1ˆ2u_2u_3ˆ2+u_3ˆ5
----------------------------------------------------
+8u_1ˆ2u_2ˆ2u_4+74u_1ˆ3u_3u_4+33u_2u_3ˆ3u_4
----------------------------------------------------
-16u_2ˆ2u_3u_4ˆ2-82u_1u_3ˆ2u_4ˆ2+9u_1u_2u_4ˆ3+u_4ˆ5 |

Next we determine the canonical ring R(X) by computing the kernel of the homomorphism
η : Ŝ → Z/I(Y ′) as in (9.4):

i8 : IX = canonicalRing(IY’);

o8 : Ideal of Sbig

i9 : betti gens IX

0 1
o9 = total: 1 54

0: 1 .
1: . .
2: . .
3: . .
4: . .
5: . 6
6: . 12
7: . 18
8: . 12
9: . 6

Note that the number and degrees of the ideal generators of I(X) are exactly as deduced in
Proposition 3.3.9.

Next we consider R(X) as an S-module being generated by the elements 1, z0, . . . , z3,
w0, w1, w2. We compute a first syzygy matrix d1 of R(X) as an S-module, or equivalently,
a (minimal) generating set for the S-linear relations in R(X). The relations of degree 6 and
7 are simply the generators of the ideal I(X) in the corresponding degrees. Furthermore, we
know that there are 8 S-linear (independent) relations of degree 8 which we can compute from
the 18 generators of degree 8 of I(X). Note that there are 10 relations in degree 8 which
are not S-linear expressing the different products zizj ∈ R(X) as S-linear combinations of
1, z0, . . . , z3, w0, w1, w2. Knowing the first syzygy matrix we can easily compute a minimal
free resolution of R(X) = coker d1 with Macaulay2 and verify that R(X) has Betti numbers
as shown in Theorem 3.3.1:

i10 : F = minimalResolution(IX);
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i11 : betti F

0 1 2 3
o11 = total: 8 26 26 8

0: 1 . . .
1: . . . .
2: . . . .
3: . . . .
4: 4 . . .
5: 3 6 . .
6: . 12 . .
7: . 8 8 .
8: . . 12 .
9: . . 6 3

10: . . . 4
11: . . . .
12: . . . .
13: . . . .
14: . . . 1

Next we compute a minimal free resolution having a skew-symmetric middle matrix. From
Theorem 4.0.2 we know that such a resolution always exists. Furthermore, we can use the
proof of Theorem 4.0.2 to construct this resolution outgoing from the given resolution. So, if
F• denotes the given minimal free resolution, then G• = Hom(F•, S(−17)) is also a minimal
free resolution of R(X) by Proposition 3.3.3. Hence there exists an isomorphism of chain
complexes:

0 R(X) F0 F1 F2 F3 0

0 R(X) F3
∨ F2

∨ F1
∨ F0

∨ 0

d1

t1

d2

t2

d3

t3

dtr1dtr2dtr3

t0

Now we use Macaulay2 to calculate such an isomorphism. More precisely, we compute first
the module HomS(coker d1, coker dtr3 ). This module must have a non-zero homogeneous ele-
ment of degree 0 which we take as our isomorphism t0. Afterwards we can lift t0 to an iso-
morphism of complexes t• : F• → G•. Furthermore, we showed in Chapter 4 that there exists
an isomorphism t• satisfying ttr3 = −t0 and ttr2 = −t1. Choosing such an isomorphism, we
compute a skew-symmetric minimal free resolution as in the proof of Theorem 4.0.2 with our
procedure skewsymmetricResolution:

i12 : Fskew = skewsymmetricResolution(F);

As a last preliminary step we want to compute a standard resolution of R(X). Our program
standardResolution follows the (constructive) ideas of the proof of Proposition 6.3.1.
The output of this procedure is either a standard resolution of R(X) or an error message if we
cannot compute a standard resolution over the chosen base field.

i13 : Fstand = standardResolution(Fskew);

i14 : d1 = Fstand.dd_1;

8 26
o14 : Matrix S <--- S
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i15 : d2 = Fstand.dd_2;

26 26
o15 : Matrix S <--- S

i16 : d3 = Fstand.dd_3;

26 8
o16 : Matrix S <--- S

i17 : d1*d2 == 0

o17 = true

i18 : -- verify that the second matrix is skew-symmetric
d2 + transpose(d2) == 0

o18 = true

i19 : -- verify that the third matrix is the dual of the first
d1 - transpose(d3) == 0

o19 = true

Having found a standard resolution, we can compute the assigned matrix l ∈ St(Q) and the
matrix a(l) from the first syzygy matrix d1:

i20 : l = assignedMatrix(d1)

o20 = {2} | 0 0 0 0 -14 0 0 0 0 -14 0 0 |
{2} | -1 0 0 0 0 0 0 0 -1 0 0 0 |

i21 : -- compute the a-matrix of d1
al = d1ˆ{1..4}_{0..5}

o21 = {4} | 0 0 0 -14x_0 0 0 |
{4} | -x_1 0 0 0 0 0 |
{4} | 0 0 -14x_0 0 0 0 |
{4} | 0 0 0 0 0 -x_1 |

4 6
o21 : Matrix S <--- S

Next we see that the minimal free resolution of the module coker a(l) is of the form as claimed
in Lemma 9.1.6. Note that the variables x0, x1 have degree 2 in the polynomial ring S which is
the reason for the degree “jumps” in the Betti tables below:

i22 : betti res coker al

0 1
o22 = total: 4 4

4: 4 .
5: . 4

Now we check that the 3 × 3 minors of the matrix e(l) vanish indeed at two distinct points as
shown in Lemma 9.1.7:
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i23 : -- compute the e-matrix of d1
el = d1ˆ{5..7}_{6..17};

3 12
o23 : Matrix S <--- S

i24 : me3 = minors(3,el);

i25 : decompose me3

o25 = {ideal x , ideal x }
0 1

Recall that every base point of |3KX | is contained in a unique divisor of |2KX |. The two points
in the vanishing locus of the 3 × 3 minors of e(l) (considered as points in P1) define exactly
these divisors:

i26 : use Sbig;

i27 : base3K = ideal mingens (IX + ideal(y_0..y_3));

i28 : netList (decompose base3K)

+-----------------------------------------------------------
| 5 2

o28 = |ideal(x , x + w , z , z , z , z , w + w , w , y , y ,...
| 0 1 2 3 2 1 0 1 2 0 3 2
+-----------------------------------------------------------
| 5 2
|ideal(x , w , z , z , z , z , w , x + w , y , y , y , y )
| 1 2 3 2 1 0 1 0 0 3 2 1 0
+-----------------------------------------------------------

Let us now consider the birational morphism ϕ : Xcan → Y ⊆ P(22, 34). Recall that we have
an exact sequence of OP(22,34)-modules

0→ OY → ϕ∗OXcan → M̃ → 0,

where M = coker d′1. We expect that the induced morphism OY,p → (ϕ∗OXcan)p is not an
isomorphism at the image points of the base points of |3KX | and the base points of |2KX |,
hence that these points are contained in Supp(M̃). Since

Supp(M̃) ⊆ V (7× 7 minors of d′1)

we first check that the points are contained in the vanishing locus on the right-hand side:

i29 : d1’ = d1ˆ{1..7};

i30 : I’ = minors(7,d1’);

i31 : netList (decompose I’)

+--------------------------+
o31 = |ideal (x , y , y , y , y )|

| 1 1 2 3 0 |
+--------------------------+
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+--------------------------+
|ideal (x , y , y , y , y )|
| 0 1 2 3 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 2 3 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 1 3 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 1 2 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 1 2 3 |
+--------------------------+

Next let us verify that the base points of |2KXcan | and |3KXcan | are smooth points of Xcan,
whereas their image points in Y are all singular points. Due to the singularities of the weighted
projective space, we cannot determine smoothness directly via the Jacobian criterion. To remedy
this situation, we first embed Xcan (respectively Y ) in a standard projective space. From Theo-
rem 2.3.17 we know that the rational map corresponding to |5KXcan | gives a closed embedding
of Xcan into the projective space PP5−1 = P10. The image of Xcan under this embedding is the
surface Proj(R[5]) (see Definition 2.3.16).

To embed Y in a projective space we simply embed P = P(22, 34) in a standard projective
space. We know that the invertible sheaf OP(6) is very ample. Thus, we can embed P in Pn−1,
where n = h0(P,OP(6)) = dimk S6 = 14. We denote the isomorphic image of Y under this
embedding by Y ′:

i32 : R5 = kk[v_(0)..v_(10)];

i33 : -- compute the 5th-canonical morphism and the
-- 5th-canonical image in Pˆ10
(IX5,psi5) = fifthCanoncialModel(IX);

i34 : -- compute the images of the base points of |2K_X| (list l2)
-- and |3K_X| (list l3) in Pˆ10
(l2,l3) = imageOfBasepoints(psi5);

i35 : jacIX5 = jacobian IX5;

i36 : codim IX5

o36 = 8

i37 : -- check that all base points are smooth
apply(l2,i->rank(jacIX5 % i) == 8)

o37 = {true, true, true, true}

i38 : apply(l3,i->rank(jacIX5 % i) == 8)

o38 = {true, true}

Now we check that the image points in Y are singular points of Y :
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i39 : -- compute the image Y in P = P(2ˆ2,3ˆ4)
IY = ann coker d1;

o39: Ideal of S

i40 : S6 = kk[t_(0)..t_(13)];

i41 : -- embed in Pˆ13 via the ample sheaf O_P(6)
(IY’,phi6) = embedInProjectiveSpace(IY);

i42 : (l2’,l3’) = imageOfBasepoints(phi6);

i43 : jacIY’ = jacobian IY’;

i44 : codim IY’

o44 = 11

i45 : -- check that the image points are not smooth
apply(l2’,i->rank(jacIY’ % i) == 11)

o45 = {false, false, false, false}

i46 : apply(l3’,i->rank(jacIY’ % i) == 11)

o46 = {false, false}

Finally we compute the birational model W ⊆ P1 × P3 introduced in Section 10.1. To do so,
we first compute the image of the rational map Y 99K P7 given by the global sections xiyj .
The image surface W ′ is contained in ν1,3(P1 × P3), where ν1,3 : P1 × P3 → P7 is the Segre
embedding. Hence, the surface W is the inverse image of W ′ under ν1,3.

i47 : S13 = kk[x_0,x_1,y_0..y_3,Degrees=>{2:{1,0},4:{0,1}}];

i48 : -- compute the model W in Pˆ1 x Pˆ3
IW = bihomogeneousModel(IY);

o48 : Ideal of S13

i49 : -- compute the number and degrees of the generators of IW
tally degrees IW

o49 = Tally{{0, 7} => 1}
{1, 2} => 1
{1, 5} => 1
{2, 3} => 1

We see that the set of generators of the ideal of W contains exactly one form depending only on
the variables y0, . . . , y3. This form defines the birational tricanonical model ofXcan in P3. Note
that its degree is 7 = (3KX)2 − 2 since |3KX | has two base points (see also Theorem 9.1.3).
Furthermore, we can compute whetherW is smooth or not by testing smoothness in every of the
8 affine charts Vi,j = D+(xiyj) covering P1 × P3.

i50 : isSmoothBihomModel(IW)

o50 = false
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11.2 An Example with Torsion Group Z/3Z

As a next example we consider a numerical Godeaux surface X with torsion group Z/3Z. All
procedures are contained in the Macaulay2-file numGodeauxZ3 and work over a finite field
or the rational numbers. However, to avoid coefficient growth, we work again over a finite field.

To begin with, we use the results from Section 9.2 to compute the canonical ring R(X).
Recall that this construction depends on the choice of a parameter λ ∈ A9. As a first step we
want to find an element λ ∈ A9 such that Proj(Rλ/(x0, x1)) consists of 4 distinct points, where
Rλ ∼= R(X) is defined as in (9.8).

i1 : load "numGodeauxZ3.m2"

i2 : kk = ZZ/97;

i3 : invZ3 = computeZ3Invariants(kk);

i4 : while(
r = random(kkˆ1,kkˆ9);
Y = computeInvariantSurface(r);
(IX,lm) = computeBasePoints(Y,mat);
not (length(lm) == 4)) do();

i5 : r

o5 = | -6 19 -12 -48 1 2 11 -43 9 |

From Lemma 6.2.5 we know that the images of the 4 base points of |2KX | in P3 are in general
position. Hence, there exists an automorphism ν of P(22, 34, 44, 53) such that the image points
of the corresponding points in ν(Proj(Rλ)) are the 4 coordinate points of P3. After applying
this automorphism, or algebraically after replacing Rλ by an isomorphic ring, we compute a
minimal free resolution of the canonical ring as an S-module as explained in the last section.

i6 : IX = computeAutomorphism(IX,lm);

i7 : F = minimalResolution(IX);

i8 : betti F

0 1 2 3
o8 = total: 8 26 26 8

0: 1 . . .
1: . . . .
2: . . . .
3: . . . .
4: 4 . . .
5: 3 6 . .
6: . 12 . .
7: . 8 8 .
8: . . 12 .
9: . . 6 3
10: . . . 4
11: . . . .
12: . . . .
13: . . . .
14: . . . 1
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If there exists a standard resolution of R(X) being defined over the field F97, the procedure
skewsymmetricResolution computes one as explained in the last section. Otherwise, an
error message is printed:

i9 : Fskew = skewsymmetricResolution(F);

i10 : Fstand = standardResolution(Fskew);

i11 : d1 = Fstand.dd_1;

8 26
o11 : Matrix S <--- S

i12 : d2 = Fstand.dd_2;

26 26
o12 : Matrix S <--- S

Having a standard resolution of R(X), we compute the assigned matrix l ∈ St(Q) and the
matrix a(l):

i13 : l = assignedMatrix(d1)

o13 = {2} | 0 -29 29 13 -29 29 -38 38 -33 -38 38 7 |
{2} | 32 0 0 32 0 0 0 0 -33 0 0 -33 |

i14 : al = d1ˆ{1..4}_{0..5}

o14 = {4} | 7x_0-33x_1 38x_0 0 -38x_0 0 0 |
{4} | -33x_0-33x_1 0 38x_0 0 -38x_0 0 |
{4} | 0 29x_0 -29x_0 0 0 13x_0+32x_1 |
{4} | 0 0 0 29x_0 -29x_0 32x_1 |

Next we compute the Betti numbers of the module coker a(l) and see that they are of the form
as claimed in Lemma 9.2.4:

i15 : betti res coker al

0 1 2
o15 = total: 4 5 1

4: 4 . .
5: . 5 .
6: . . 1

Finally we verify that Conjecture 8.4.3 is satisfied in this example, that means that the 3 × 3
minors of the matrix e(l) vanish precisely at one point:

i16 : el = d1ˆ{5..7}_{6..17};

i17 : me3 = minors(3,el);

i18 : decompose me3

o18 = {ideal x }
0

This point (considered as a point in P1) defines the unique divisor in |2KX | containing the base
point of |3KX |:
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i19 : use Sbig;

i20 : base3K = ideal mingens (IX + ideal(y_0..y_3));

i21 : netList (decompose base3K)

+--------------------------------------------------------
| 5 2

o21 = |ideal(x , - 48x + w , z , z , z , z , w , w + w , y , ...
| 0 1 1 2 3 1 0 2 0 1 3
+--------------------------------------------------------

Next we compute the matrix d′1 and the vanishing locus of its 7× 7 minors:

i22 : d1’ = d1ˆ{1..7};

i23 : I’ = minors(7,d1’);

i24 : netList (decompose I’)

+--------------------------+
o24 = |ideal (x , y , y , y , y )|

| 0 1 2 3 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 2 3 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 1 3 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 1 2 0 |
+--------------------------+
|ideal (x , x , y , y , y )|
| 0 1 1 2 3 |
+--------------------------+

The output shows that the morphism OY,p → (ϕ∗OXcan)p is an isomorphism except possibly
at the points in the vanishing locus of the ideal I ′. As in the example of the Z/5Z-Godeaux
surface from the last section, we compute that the base points of |2KXcan | and the single base
point of |3KXcan | are smooth points ofXcan. However, in this example, the surface Y is smooth
at the corresponding image points of the bicanonical base points but singular at the image of
the tricanonical base point. Since these calculations are performed exactly as in the last section,
we won’t present the Macaulay2-results here. In the end we compute the birational model
W ⊆ P1 × P3 and test this surface on smoothness:

i25 : -- compute the image Y in P(2ˆ2,3ˆ4)
IY = ann coker d1;

o25 : Ideal of S

i26 : S13 = kk[x_0,x_1,y_0..y_3,Degrees=>{2:{1,0},4:{0,1}}];

i27 : IW = bihomogeneousModel(IY);

o27 : Ideal of S13
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i28 : tally degrees IW

o28 = Tally{{0, 8} => 1}
{1, 3} => 1
{1, 5} => 1
{2, 2} => 1

As in the previous section, there is exactly one bihomogeneous polynomial among the generators
of the ideal of W depending only on the variables y0, . . . , y3. This polynomial defines the
birational image of the canonical model in P3. In this case, the degree of this polynomial (or
equivalently, of the corresponding surface in P3) is 8 = (3KX)2 − 1 since |3KX | has a single
base point. At the end of this section we compute that the surface W is not smooth:

i29 : isSmoothBihomModel(IW)

o29 = false

11.3 Examples with a Trivial Torsion Group

In this section we present the implementation of our construction method of numerical Godeaux
surfaces developed throughout this thesis and give some examples. Let us briefly recall the main
steps of this construction: The first step is the computation of two homogeneous homomor-
phisms

d′1 : F ′0 ← F1, d2 : F1 ← F∨1

such that

(i) d′1d2 = 0,

(ii) d2 is alternating,

(iii) modulo x0, x1, the matrices d′1 and d2 have the form as chosen in Section 6.3.

As a second step, we use these matrices to compute a standard complex

F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0. (11.1)

Finally, if R := coker d1 satisfies all the properties of Theorem 5.0.2, then Proj(R) is the
canonical model of a numerical Godeaux surface.

In Chapter 7 we have seen that the computation of two matrices d′1 and d2 as above is equiv-
alent to choosing a matrix l ∈ St(Q) and a point p in a vector space V(l). Furthermore, in
Subsection 7.2.2 we described a Las Vegas algorithm for computing lines in Q, and hence ele-
ments of St(Q).

We have implemented our construction using the computer algebra system Macaulay2. Up
to now, these procedures can be performed over any finite field Fp. When working over the field
k = Q, the procedures are also applicable except for the procedure which computes lines in
Q. According to the Las Vegas algorithm from Subsection 7.2.2 for k = Q, we first have to
choose a point in a conic, and then a point in a 0-dimensional variety Z8 of degree 8. In general,
this variety does not have any k-rational points. But of course Z8 has rational points in some
finite field extension of degree at most 8. Hence, to choose a point in Z8 we need to compute an
absolute primary decomposition of the corresponding ideal. As far as we know, such a procedure
is not implemented in Macaulay2 up to now. But there exists an efficient implementation in
the computer algebra system SINGULAR.
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So in the case k = Q, we first compute with the help of SINGULAR a line inQwhich is defined
over a number field Q(α) of degree at most 16, and then use our programs in Macaulay2 to
finish the construction.

Let us now present the individual procedures by computing an example over a finite field.
As a first step we have to introduce several variables representing the unknown entries of the
matrices d′1 and d2. We consider first the case where we assume a priori that the matrix c is
zero. Using the results from Chapter 7, we only have to introduce variables for the entries of the
matrices a and o. For the sake of simplicity, we also introduce variables for the entries of n –
then our program will compute the substitution of every variable in n as in Corollary 7.5.5 and
we do not have to do this manually. This initialization is done by our Macaulay2-program
globalVariables:

i1 : load "numGodeaux.m2"

i2 : kk = ZZ/317;

i3 : setRandomSeed(11);

i4 : (A,B) = globalVariables(kk);

7 26
o4 : Matrix SR <--- SR

26 26
o5 : Matrix SR <--- SR

For example, the initial a-matrix of A is of the form:

i6 : -- the a-matrix of A
astart = Aˆ{0..3}_{0..5}

o6 = | a_(0,0,1) a_(0,0,2) 0 a_(0,0,3) 0 0 |
| a_(1,0,1) 0 a_(1,1,2) 0 a_(1,1,3) 0 |
| 0 a_(2,0,2) a_(2,1,2) 0 0 a_(2,2,3)|
| 0 0 0 a_(3,0,3) a_(3,1,3) a_(3,2,3)|

As a next step, we construct the complex (11.1) modulo x0, x1 as described in Section 6.3. Then,
putting the first two syzygy matrices of this complex and the matrices A and B together, we
obtain the general set-up for the matrices d′1 and d2 as introduced in (7.1) and (7.2). Afterwards
we compute a minimal generating set for the relations coming from d′1d2 = 0. These steps are
performed by the following Macaulay2-procedure:

i7 : (rel2,subs1) = setupMarkedGodeaux(R);

The matrix rel2 contains a minimal set of relations coming from the equation d′1d2 = 0. The
computation shows that there are in total 58 relations as described in Summary 7.5.9:

i8 : betti rel2

0 1
o8 = total: 1 58

0: 1 .
1: . .
2: . .
3: . 28
4: . .
5: . 30
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Among the 28 relations of degree 4 there are the Pfaffians q0, . . . , q3 which we have studied in
Section 7.2:

i9 : -- the 4 Pfaffians
pfaffrel = rel2_{24..27}

o9 = |a_(1,1,2)a_(1,1,3)-a_(2,1,2)a_(2,2,3)+a_(3,1,3)a_(3,2,3)
---------------------------------------------------------
a_(0,0,2)a_(0,0,3)+a_(2,0,2)a_(2,2,3)-a_(3,0,3)a_(3,2,3)
---------------------------------------------------------
a_(0,0,1)a_(0,0,3)-a_(1,0,1)a_(1,1,3)-a_(3,0,3)a_(3,1,3)
---------------------------------------------------------
a_(0,0,1)a_(0,0,2)-a_(1,0,1)a_(1,1,2)+a_(2,0,2)a_(2,1,2)|

The second output of the program setupMarkedGodeaux is a matrix subs1. Every entry
of this matrix corresponds to a variable of the underlying polynomial ring (possibly being sub-
stituted by other values using the relations coming from d′1d2 = 0). During the construction
we update this matrix iteratively. That means, if we have found a possible assignment for the
variables in a or o, we substitute the corresponding entries by these values. As a last initializing
step we set up the 4 skew-symmetric matrices from Section 7.2 whose Pfaffians are q0, . . . , q3:

i10 : Ms = setupSkewMatrices(rel2);

Now we compute a random line in Q (and a representative in St(Q)) with the help of the Las
Vegas algorithm from Section 7.2.2. Since we are working over a finite field we do this simply
by trial and error as explained at the end of Section 7.2.2. Hence, the runtime of this procedure
strongly depends on the characteristic of the base field.

i11 : time (subsline,randline) = pickLine(Ms);
-- used 404.33 seconds

i12 : randline

o12 = {2} | -113 64 11 26 37 3 -89 -117 -131 -53 1 0 |
{2} | -71 -91 62 55 100 41 -61 -57 -33 -142 0 1 |

Note that the assumption c = 0 is only valid if the a-matrix of d′1 has rank 4 and if the cokernel
module has the Betti numbers

0 1 2

0 4 6 .

1 . . 2

Our program pickLine checks if these conditions are satisfied. Next we verify that the com-
puted matrix l is contained in the open subset Vgensyz ⊆ St(Q) from Proposition 7.4.6 and
Remark 7.4.7:

i13 : al = sub(astart,subsline);

i14 : betti res coker al

0 1 2
o14 = total: 4 6 2

4: 4 . .
5: . 6 .
6: . . .
7: . . .
8: . . 2
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i15 : pstart = Bˆ{6..17}_{18..25};

i16 : pl = sub(pstart,subsline);

i17 : betti res coker pl

0 1
o17 = total: 12 8

7: 12 .
8: . 8

Thus, the matrix l satisfies all the required open conditions, and hence l ∈ Vgensyz.

Next, we want to verify that the point [l] is a stable point of F1(Q) under the linear action of
G = (k∗)3 defined in (8.17) and (8.18). According to the proof of Lemma 8.3.16 it is enough to
show that the respective coordinates of the corresponding point in P65 are non-zero. But, by the
definition of the Plücker embedding, these coordinates are the 2×2 minors of l. In our example,
we see that all the 2× 2 minors are non-zero. Hence, [l] ∈ F1(Q)s.

i18 : gens minors(2,randline)

o18 = |-72 115 -103 69 -137 -56 -114 -60 74 -69 18 44 -52 -50 -51
-----------------------------------------------------------
-60 43 92 139 -14 -21 36 -30 -30 -119 81 -129 155 134 -85
------------------ ----------------------------------------
151 7 150 -117 18 -119 -80 37 139 -143 46 -155 -105 -38 52
-----------------------------------------------------------
71 91 -62 -55 -100 -41 61 57 33 142 -113 64 11 26 37 3 -89
-----------------------------------------------------------
-117 -131 -53 1 |

1 66
o18 : Matrix SR <--- SR

As a last step we compute a solution of the linear relations given by d′1d2 = 0 which is done
by our program pickSection. This procedure computes first the remaining linear relations,
chooses then a basis of the vector space of solutions V(l), and picks a random point in this space
in the end:

i19 : time (subspoint,randpoint) = pickSection(subsline);
-- used 0.459521 seconds

i20 : -- the number of the rows of the chosen point is the
-- dimension of the solution space
randpoint

o20 = | -12 |
| 112 |
| -120 |
| 146 |

4 1
o20 : Matrix SR <--- SR

Thus, there exists a matrix l ∈ St(Q) such that the vector space V(l) is 4-dimensional as claimed
in Section 7.5. Now, we are able to compute a standard resolution:
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i21 : Fstand = standardResolution(subspoint);

i22 : betti Fstand

0 1 2 3
o22 = total: 8 26 26 8

0: 1 . . .
1: . . . .
2: . . . .
3: . . . .
4: 4 . . .
5: 3 6 . .
6: . 12 . .
7: . 8 8 .
8: . . 12 .
9: . . 6 3

10: . . . 4
11: . . . .
12: . . . .
13: . . . .
14: . . . 1

The procedure standardResolution computes first the matrices d′1(l) and d2(l, p), where
(l, p) is the pair chosen before. Then the program computes one additional syzygy of the matrix
d2(l, p), transforms this to the required form modulo x0, x1 and concatenates the resulting row
vector with the matrix d′1(l). All properties of the maps of a standard resolution are checked
again by this procedure. We present this for some of the properties:

i23 : d1 = Fstand.dd_1;

8 26
o23 : Matrix S <--- S

i24 : d2 = Fstand.dd_2;

26 26
o24 : Matrix S <--- S

i25 : d3 = Fstand.dd_3;

26 8
o25 : Matrix S <--- S

i26 : d1*d2 == 0

o26 = true

i27 : (d2 + transpose(d2) == 0, d1 - transpose(d3) == 0)

o27 = (true, true)

i28 : (rank(d1) == 8, rank(d2) == 18)

o28 = (true, true)

Now let us verify that the assumptions from Theorem 5.0.2 are satisfied for R := coker d1.
First we verify that R satisfies the ring condition. Let I ′ denote the ideal of the 7 × 7 minors
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of d′1. Recall that R supports the structure of a ring if depth(I ′, S) ≥ 5, or equivalently if
dimS/I ′ ≤ 1.

i29 : verifyRingCondition(d1)

o29 : true

Hence,R is a Gorenstein ring by the proof of the first part of Theorem 5.0.2. Next let us compute
the defining ideal IY of the surface Y ⊆ P := P(22, 34):

i30 : -- compute the image Y in P = P(2ˆ2,3ˆ4)
IY = ann coker d1;

o30 : Ideal of S

i31 : -- verify that Y is a surface
dim(IY) == 3

o31 = true

Now set SY = S/IY . By Theorem 5.0.2 we have to verify that x0, x1 is a regular sequence forR
and that Proj(R/(y0, . . . , y3)R) is empty or 0-dimensional. Since R is Gorenstein (and hence
Cohen-Macaulay) it is enough to show that dimR/(x0, x1)R = dimR− 2. Furthermore, since
the morphism ϕ : Proj(R) → Y corresponding to the inclusion SY ⊆ R is finite, it is enough
to show that Proj(SY /(x0, x1)) is 0-dimensional and that Proj(SY /(y0, y1, y2, y3)) is empty or
0-dimensional. These two checks are performed by our procedure verifyAssumptions:

i32 : verifyAssumptions(d1)

o32 = true

Now it remains to show that IY is prime and that Proj(R) has at most finitely many rational
double points. These conditions are (computationally) not as easy to verify as the last ones. Of
course, if Y is a smooth surface, then Proj(R) is smooth as well. Indeed, since ϕ : Proj(R)→
Y is finite and birational by the proof of Theorem 5.0.2, then Y being smooth implies that ϕ is
an isomorphism. To determine whether Y ⊆ P(22, 34) is smooth or not, we first embed Y in a
standard projective space P13 as in Section 11.1. We denote the isomorphic image of Y under
this embedding by Y ′:

i33 : S6 = kk[t_(0)..t_(13)];

i34 : IY’ = embedInProjectiveSpace(IY);

o34 : Ideal of S6

i35 : codim IY’

o35 = 11

But now the codimension of Y ′ in this standard projective space is much higher than the one
of Y in the weighted projective space P(22, 34) and testing smoothness for varieties of a high
codimension is again computationally difficult. This problem was one motivation for a new
smoothness-test developed by Böhm and Frübis-Krüger (see [BFK18]). The massively parallel
implementation of this algorithm (see [BDF+18]) verifies that the surface Y is indeed smooth.
Hence Proj(R) ∼= Y .

As a last step we compute the surface W ⊆ P1×P3 from the surface Y as in the last sections.
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i36 : S13 = kk[x_0,x_1,y_0..y_3,Degrees=>{2:{1,0},4:{0,1}}];

i37 : IW = bihomogeneousModel(IY);

i38 : tally degrees IW

o38 = Tally{{0, 9} => 1 }
{1, 6} => 2
{1, 7} => 3
{2, 5} => 8
{2, 6} => 3
{3, 4} => 10
{4, 3} => 3
{5, 3} => 2
{7, 2} => 1

We see that the set of generators of the ideal of W contains exactly one form depending only on
the variables y0, . . . , y3. The degree of this form is 9 and it defines the image of Proj(R) in P3.
As a last computation we check whether W is smooth:

i39 : isSmoothBihomModel(IW)

o39 = true

Now, in contrast to the situation in the previous sections, where we presented examples having
a non-trivial torsion group, the surface W ⊆ P1 × P3 is smooth.

11.3.1 A Surface with no Hyperelliptic Fibres

The previous example showed that there exists a ring R and a standard resolution of R defined
over the finite field F317 fulfilling all the required properties of Theorem 5.0.2. But of course
we want to show that our construction yields a numerical Godeaux surface X over C. Using the
implementation of our Las Vegas algorithm in SINGULAR we compute a line in Q defined over
Q(α), which is a field extension of Q of degree 8. We use this line to start our construction in
Macaulay2:

i1 : load "numGodeaux.m2"

i2 : kk1 = QQ;

i3 : V = kk1[u];

i4 : -- the minimal polynomial of the field extension
minf = 71148218536494892800*uˆ8-267905284785328397760*uˆ7

-191663543691355381443*uˆ6+660717755665025167872*uˆ5
+1148693036616534958317*uˆ4+340130423478253176036*uˆ3
-416450846724240829045*uˆ2-279258661204766681124*u
-44344622837306452725;

i5 : -- define the number field kk = Q(alpha)
kk = toField(V/minf);

i6 : (A,B) = globalVariables(kk);

i7 : astart = Aˆ{0..3}_{0..5};

i8 : (rel2,subs1) = setupMarkedGodeaux(R);
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i9 : load "line1.txt";

i10 : subsline = updateRelations(line1);

The file line1.txt contains a matrix l ∈ St(Q) representing the line in Q computed by
SINGULAR. The procedure updateRelations computes the updated matrix of variables
subsline as explained in the example over F317.

Next we check that the matrix l is contained in the open set Vgensyz ⊆ St(Q):

i11 : al = sub(astart,subsline);

i12 : betti res coker al

0 1 2
o12 = total: 4 6 2

4: 4 . .
5: . 6 .
6: . . .
7: . . .
8: . . 2

i13 : pstart = Bˆ{6..17}_{18..25};

i14 : pl = sub(pstart,subsline);

i15 : betti res coker pl

0 1
o15 = total: 12 8

7: 12 .
8: . 8

Now we determine the solution space V(l) which is done by a syzygy computation. Naturally,
over the rational numbers or over a number field, the intermediate coefficient growth is a prob-
lem. As a result, compared to the 0.5 seconds over the field F317, this procedure takes now more
than an hour. To ease the computations further on, we choose a point in Q4 and not in Q(α)4,
and compute the corresponding solution in V(l):

i16 : randpoint = sub(matrix{{-99},{81},{117},{63}},SR)

o16 = | -99 |
| 81 |
| 117 |
| 63 |

i17 : time subspoint = computeSection(randpoint,subsline);
-- used 5789.08 seconds

The computation of the standard resolution involves the calculation of the syzygies of the 26×26
matrix d2(l, p) having entries in the polynomial ring Q(α)[x0, x1, y0, . . . , y3]. In the chosen
example the calculation finishes after several hours:

i18 : Fstand = standardResolution(subspoint);
-- used 31639.9 seconds

i19 : d1 = Fstand.dd_1;
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8 26
o19 : Matrix S <--- S

i20 : d2 = Fstand.dd_2;

26 26
o20 : Matrix S <--- S

Having a standard resolution, we want to verify that R := coker d1 supports the structure of a
ring:

i21 : verifyRingCondition(d1);

o21 : true

Hence, R is a Gorenstein ring by Theorem 5.0.2. Next we compute the surface Y ⊆ P(22, 34)
which is defined by the ideal IY = annS R = annS(coker d1). Now, since R is a ring, we have

annS R = annS 1R,

where the ideal on the right-hand side is usually easier to compute:

i22 : d1’ = d1ˆ{1..7};

i23 : d10 = d1ˆ{0};

i24 : IY = time ideal mingens ideal (d10*syz(d1’));
-- used 4947.85 seconds

o24 : Ideal of S

Now we verify the assumptions (i) and (ii) of Theorem 5.0.2:

i25 : verifyAssumptions(d1)

o25 : true

Let us assume for a moment that Y is a smooth surface. Then Proj(R) is smooth as well and
R is the canonical ring of a numerical Godeaux surface X defined over the number field Q(α).
Furthermore, for Xcan = Proj(R) we have

Y ∼= Xcan
∼= X.

Hence, X is a marked numerical Godeaux surface. Furthermore, since the assigned matrix
l ∈ St(Q) satisfies l ∈ Vgensyz we know that TorsX = 0 by Proposition 8.4.1. Furthermore,
if the birational model of X in P1 × P3 is smooth, then the bicanonical system of X has no
(honestly) hyperelliptic fibres by Proposition 10.1.4. However, checking smoothness of the
surface Y or its isomorphic surface Y ′ ⊆ P13 over the number field directly is not feasible due
to the high codimension and the intermediate coefficient swell. In the following we will argue
that Y is smooth using a reduction modulo a prime.

Let K = Q(α), and let OK be the ring of integers of the number field K. The surface
Y = Proj(S/IY ) is defined over K and we can consider Y as a family of varieties Y over
Spec(OK), where the generic fibre Y0 is isomorphic to Y and the special fibre Yp over a closed
point p ∈ OK corresponds to the reduction modulo p. We call the fibre Yp a specialization of
Y . Now let p be a prime in OK such that

OK/p ∼= Fp,
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where p is a prime number. Furthermore, by replacing Y with its isomorphic surface Y ′ ⊆ P13,
we may assume that Y is a subscheme of a (standard) projective space. Now taking the flat
closure of Y in projective space over the local ring of p yields a flat family of surfaces over
Spec(OK,p) whose generic fibre over the point Spec(K) is Y , and whose special fibre is a
surface Yp defined over Fp. Now, since being smooth is an open property, if the special fibre Yp
is smooth, then so is Y .

So we have to find a prime ideal p ∈ Spec(OK) such that OK/p ∼= Fp. Using the characteri-
zation of prime ideals in OK , it is enough to find a prime number p ∈ Z such that the minimal
polynomial minf of α has a linear factor (of multiplicity 1) modulo p. Using SINGULAR we
compute that for p = 197, we have

minf ≡ (u+ 36) · f0 mod p,

for some polynomial f0 of degree 7. Hence, we take as a prime ideal p = (197, u + 36).
Reducing the computed standard resolution F• modulo p, we obtain a standard resolution over
Fp whose assigned pair is just the reduction of the chosen pair over K. Hence we can apply our
construction to this pair and compute the surface in P(22, 34) and its isomorphic image in P13:

i1 : load "numGodeaux.m2"

i2 : kk = ZZ/197;

i3 : -- the reduction of the chosen line over K modulo (197,u+36)
lmod = matrix{{-6, -4, -2, -2, -6, -1, 4, -3, -2, 5, 2, 0},

{-53, 16, -88, -12, 76, 71, 67, -48, 71, 0, 74, 94}};

i4 : -- the reduction of the point over K modulo (197,u+36)
pointmod = matrix{{-99},{81},{117},{63}};

i5 : subspoint = solveRelations(lmod,pointmod);

i6 : Fstand = standardResolution(subspoint);

i7 : d1 = Fstand.dd_1;

i8 : IY = ann coker d1;

i9 : S6 = kk[t_(0)..t_(13)];

i10 : -- compute the isomorphic image of Y in Pˆ13
IY’ = embedInProjectiveSpace(IY);

o10 : Ideal of S6

We have verified that Y ′ is indeed a smooth surface with the help of the algorithm from [BDF+18].
Thus, from the discussion above we deduce that Y is a smooth surface over the number field
K. Furthermore, modulo p, we compute that the corresponding surface in P1 × P3 is smooth.
Hence, using similar arguments as above, we conclude that the surface W ⊆ P1 × P3 defined
over K is smooth. Let us summarize the results of these computations:

Summary 11.3.1. There exists a marked numerical Godeaux surface X defined over a number
field K with

(i) TorsX = 0,

(ii) X ∼= Xcan
∼= Y ,
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(iii) the bicanonical system |2KX | has no hyperelliptic fibres.

In particular, this surface is different from the Barlow surface and the Craighero-Gattazzo surface
- the other existing examples of torsion-free numerical Godeaux surfaces.

Note that so far we have only computed the surface Y ⊆ P(22, 34) and the S-module R =
coker d1 which supports the structure of a ring. Now we use the ideas introduced at the end of
Chapter 5 to compute the remaining defining relations (over Fp) of R as a ring, and hence the
canonical ring R(X):

i11: Sbig = kk[x_0,x_1,y_0..y_3,z_0..z_3,w_0..w_2,
Degrees=>{2:2,4:3,4:4,3:5}];

i12 : IX = canonicalRing(d1);

i13 : betti IX

0 1
o13 = total: 1 54

0: 1 .
1: . .
2: . .
3: . .
4: . .
5: . 6
6: . 12
7: . 18
8: . 12
9: . 6

11.3.2 The Barlow Surface

In this subsection we construct the canonical ring R(X) of the Barlow surface and compute a
standard resolution of R(X). Recall that the Barlow surface was the first example of a simply
connected numerical Godeaux surface. Let us first briefly sketch the construction due to Barlow.
Hereby we follow the description given by Lee in [Lee01].

In Section 9.1 we have seen that there is an 8-dimensional family of Godeaux surfaces where
each surface is given as the quotient of a quintic in P3 under a free action of the group Z/5Z.
In this family there is a 4-dimensional subfamily in which the corresponding quintic is the de-
terminant of a symmetric 5 × 5 matrix. These symmetric determinantal quintics were studied
by Catanese in [Cat81]. The corresponding Godeaux surface is then called a determinantal
Godeaux surface. Moreover, in this 4-dimensional family there exists a 2-dimensional subfam-
ily in which the group action of Z/5Z on the (symmetric determinantal) quintic can be extended
to a group action of the dihedral groupD5. Using a twist of this action, Barlow realized a simply
connected numerical Godeaux surface as a quotient of such a quintic. Furthermore, since this
twisting works for the whole subfamily, this construction shows the existence of a 2-dimensional
family of simply connected numerical Godeaux surfaces.

In the following we briefly recall the description of a symmetric determinantal quintic Σ ⊆ P3

and the definition of the action of D5 on Σ. Let u1, . . . , u4 denote the coordinates of P3, and let
ξ be a primitive fifth root of unity as in Section 9.1. Then the group D5 = 〈b, a〉 acts on P3 via

b : (u1 : u2 : u3 : u4) 7→ (ξu1, ξ
2u2, ξ

3u3, ξ
4u4),

a : (u1 : u2 : u3 : u4) 7→ (u4 : u3 : u2 : u1).
(11.2)
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A quintic in P3 which is invariant under this action of D5 is the determinant of the symmetric
matrix

A =



0 a1u1 a2u2 a2u3 a1u4

a1u1 a3u2 a4u3 a5u4 0

a2u2 a4u3 a6u4 0 a5u1

a2u3 a5u4 0 a6u1 a4u2

a1u4 0 a5u1 a4u2 a3u3


,

where a1, . . . , a6 ∈ k are parameters.

Example 11.3.2 (See [Lee01], Example 1). Setting a1 = . . . = a6 = 1 in the above matrix A,
we get the quintic

Σ : u5
1 + u5

2 + u5
3 + u5

4 + 5(u1u4 − u2u3)(u1u
2
2 + u2

3u4 − u2
1u3 − u2u

2
4) = 0.

A generic surface Σ has 20 nodes. Let σ : ∆ → Σ be a double cover which is branched over
these nodes. Then there exists the following diagram (see [Lee01], p. 900)

∆/〈b〉 B = ∆/〈b, aσ〉

X = ∆/〈b, σ〉
(11.3)

where X is a determinantal Godeaux surface and B is a determinantal Barlow surface.

So we can realize the canonical ring of a Barlow surface as the invariant ring under the twisted
action of D5 on Y . The double cover ∆ is explicitly described in [Cat81] and [Rei81]: let A be
the matrix from above. Furthermore, let

R = C[u1, . . . , u4, v0, . . . , v5]/I,

where deg(ui) = 1, deg(vj) = 2 and I is the ideal generated by∑
j

Ai,jvj , (5 relations of degree 3)

vjvk −Bj,k, (15 relations of degree 4)
(11.4)

where Bj,k is the entry in row j and column k of the adjoint matrix of A. Then

∆ = Proj(R) ⊆ P(14, 25)

is a smooth surface of general type with pg = 4, q = 0 and K2
Y = 10 (see [Cat81], Proposition

2.11). Moreover, ∆ is a double cover of the quintic surface in P3 defined by det(A).

Having settled the theoretical background we can now compute the Barlow surfaceX . For the
calculation of a quintic surface Σ and a double cover ∆ we adapt the results and Macaulay2-
scripts of [BvBKS12]. In [BvBKS12] a quintic determinantal surface with parameters

a1 = a2 = a4 = a5 = 1, a3 = a6 = −4

is considered which corresponds to the special surface in [Bar85]. We take the same parameters
and perform our computations over the field F521 which contains a fifth root of unity:
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i1 : load "determinantalBarlow.m2"

i2 : kk = ZZ/521;

i3 : -- a fifth root of unity in kk
xi = (25)_kk;

i4 : -- compute the double cover in P(1ˆ4,2ˆ5)
Idelta = doubleCover(kk,xi);

o4 : Ideal of Z

Next we compute the canonical ring R(X) as the invariant ring of Z/I(∆). We verify that the
bicanonical system of the Barlow surface has indeed 4 distinct base points as shown in [CP00].
Afterwards we compute an automorphism of P(22, 34, 44, 53) which maps the 4 base points to
the ”standard” position as explained in the previous sections:

i5 : IX = canonicalRingBarlow(Idelta);

i6 : -- compute the base points of |2K|
base2K = ideal mingens (IX+ideal(x_0,x_1));

i7 : -- verify that there are 4 distinct base points
length(decompose base2K) == 4

o7 : true

As before, we compute now a minimal free resolution of R(X) ∼= Ŝ/I(X) as an S-module and
see whether R(X) admits a standard resolution over F521:

i8 : F = minimalResolution(IX);

i9 : Fskew = skewsymmetricResolution(F);

i10 : Fstand = standardResolution(Fskew);

i11 : d1 = Fstand.dd_1;

8 26
o11 : Matrix S <--- S

i12 : d2 = Fstand.dd_2;

26 26
o12 : Matrix S <--- S

Having a standard resolution, we compute the assigned matrix l ∈ St(Q) and the Betti numbers
of coker a(l):

i13 : l = assignedMatrix(d1)

o13 = |-102 0 235 4 1 0 -51 51 -51 2 -2 -2 |
|-51 51 -51 2 2 -2 235 0 -102 0 -1 -4 |

i14 : al = d1ˆ{1..4}_{0..5};
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i15 : betti res coker al

0 1 2
o15 = total: 4 6 2

4: 4 . .
5: . 6 .
6: . . 2

In [CP00], Catanese and Pignatelli showed that the bicanonical fibration of the Barlow surface
has two hyperelliptic fibres (counted with multiplicities). We can verify that there are indeed two
distinct hyperelliptic fibres C1 and C2 over the field F521. Moreover, we compute that the two
hyperelliptic curves are smooth and irreducible. Hence, Proposition 10.3.8 implies that there are
two points in P1 at which the 4×4 minors of the matrix a(l) vanish, but which are not contained
in the vanishing locus of the 3× 3 minors. The fibres over these two points in P1 are exactly the
two hyperelliptic curves.

i16 : ma4 = minors(4,al);

i17 : decompose ma4

o17 = {ideal(x + 45x ), ideal(x + 220x )}
0 1 0 1

i18 : ma3 = minors(3,al);

i19 : decompose ma3

o19 = {ideal (x , x )}
1 0

Next we compute the vanishing locus of the 7×7 minors of d′1. Recall that we have the inclusion

Supp(M̃) ⊆ V (7× 7 minors of d′1),

where M = coker d′1. The algebraic set on the right-hand side contains always the image of
the 4 base points of |2KX |. Since the two hyperelliptic fibres in the Barlow surface are smooth,
there are two additional points in V (7× 7 minors of d′1) by Lemma 10.3.7:

i20 : d1’ = d1ˆ{1..7};

i21 : I’ = ann coker d1’;

i22 : netList decompose I’

+--------------------------------------------------------------+
o22 = |ideal(x , y , y , x , y ) |

| 1 3 2 0 0 |
+--------------------------------------------------------------+
|ideal(x , y , y , x , y ) |
| 1 3 2 0 1 |
+--------------------------------------------------------------+
|ideal(x , y , x , y , y ) |
| 1 2 0 1 0 |
+--------------------------------------------------------------+
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+--------------------------------------------------------------+
|ideal(x , y , x , y , y ) |
| 1 3 0 1 0 |
+--------------------------------------------------------------+
| 3 2 |
|ideal(106x + y , y - y , x + 45x , y - 118y , y - 118y ) |
| 1 3 2 3 0 1 1 3 0 3 |
+--------------------------------------------------------------+
| 3 2 |
|ideal(197x + y , y - y , x + 220x , y + 234y , y + 234y )|
| 1 3 2 3 0 1 1 3 0 3 |
+--------------------------------------------------------------+

The two additional points in the vanishing locus of I ′ are the singularities of the images of
the hyperelliptic curves under ϕ as shown in Proposition 10.3.6. Furthermore, these points are
singular points of the surface Y . We believe that these are the only singularities of Y . We also
compute the images of the hyperelliptic curves under the tricanonical morphismXcan → P3 and
verify that these curves are twisted cubic curves:

i23 : -- the ideal of the surface Y in P(2ˆ2,3ˆ4)
IY = ann coker d1;

i24 : pthyp1 = ideal(x_0+45*x_1);

i25 : pthyp2 = ideal(x_0+220*x_1);

i26 : T = kk[y_0,y_1,y_2,y_3];

i27 : -- compute the images of the hyperell. fibres in Pˆ3
Dhyp1 = fibreInP3(pthyp1);

i28 : Dhyp2 = fibreInP3(pthyp2);

i29 : (genus(Dhyp1) == 0, genus(Dhyp2) == 0)

o29 = (true, true)

i30 : (betti res Dhyp1, betti res Dhyp2)

0 1 2 0 1 2
o30 = (total: 1 3 2, total: 1 3 2)

0: 1 . . 0: 1 . .
1: . 3 2 1: . 3 2

The image of a (general) bicanonical curve is a complete intersection of type (2, 3):

i31 : ptgeneral = ideal(x_0+196*x_1);

i32 : Dgeneral = fibreInP3(ptgeneral);

i33 : genus(Dgeneral) == 4

o33 = true



162 11 Explicit Examples with Macaulay2

i34 : betti res Dgeneral

0 1 2
o34 = total: 1 2 1

0: 1 . .
1: . 1 .
2: . 1 .
3: . . 1

Finally, we compute the birational modelW ⊆ P1×P3 and verify thatW is singular as expected:

i35 : S13 = kk[x_0,x_1,y_0..y_3,Degrees=>{2:{1,0},4:{0,1}}];

i36 : IW = bihomogeneousModel(IY);

i37 : tally degrees IW

o37 = Tally{{0, 9} => 1}
{1, 4} => 1
{1, 5} => 1
{2, 3} => 3
{3, 2} => 1

i38 : isSmoothBihomModel(IW)

o38 = false

11.3.3 A Surface with one Hyperelliptic Fibre

At the beginning of this section we have constructed a numerical Godeaux surface X with
TorsX = 0 whose bicanonical system has no (honestly) hyperelliptic fibres. We have seen
that the cokernel of the a-matrix a(l) of a standard resolution of R(X) has a minimal free reso-
lution of type

0← coker a(l)← B4 ← B(−1)6 ← B(−3)2 ← 0,

where B = k[x0, x1] as before. Furthermore, the vanishing locus of the 4× 4 minors of a(l) is
empty in this case.

On the other hand, in the example of the Barlow surface, we have seen that the corresponding
matrix a(l) has a minimal free resolution

0← coker a(l)← B4 ← B(−1)6 ← B(−2)2 ← 0

and that the vanishing locus of the 4× 4 minors of a(l) consists of 2 points in P1.
From the characterization in Proposition 10.3.8 we know that for constructing a torsion-free

numerical Godeaux surface with exactly one hyperelliptic fibre, we have to choose a matrix
l ∈ St(Q) such that the 4 × 4 minors of a(l) vanish at exactly one point (with multiplicity 1).
Furthermore, by Remark 7.4.5 and the discussion after Proposition 8.4.5, we are interested in a
matrix l ∈ St(Q) such that the module coker a(l) has a minimal free resolution of the form:

0← coker a(l)← B4 ← B(−1)6 ←
B(−2)1

⊕

B(−3)1

← 0. (11.5)
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There are several possibilities for computing such a matrix l ∈ St(Q). The first one is that
we simply use the Las Vegas algorithm to compute random lines in Q and stop if we have
found a line such that one presentation matrix l ∈ St(Q) (and hence any) fulfills the required
property. The other possibility is to start with the matrix l associated to the Barlow surface. The
corresponding line has two distinguished points in P11 determined by the points in the vanishing
locus of the 4 × 4 minors of a(l). Recall that the Las Vegas algorithm computes first a point
p ∈ Q and then a line in Q through this point. So we can take one of these special points in
P11 and start the second part of the Las Vegas algorithm with this point. Then the output is a
(presentation matrix of a) line having in general a minimal free resolution as in (11.5).

i1 : load "numGodeaux.m2"

i2 : kk = ZZ/521;

i3 : (A,B) = globalVariablesC(kk);

i4 : astart = Aˆ{0..3}_{0..5};

i5 : (rel2,subs1) = setupMarkedGodeaux(R);

Note that the procedure globalVariablesC works in almost the same manner as the pro-
cedure globalVariables from the first example of Section 11.3. The only difference is
that we do not assume that the c-matrix of d1 is zero. Thus, the starting set-up depends on the
unknown entries of the matrices a, o, n and c. Next we choose a line in Q which intersects the
assigned line of the Barlow surface in the special point corresponding to the point in P1 given by
(x0+45x1) (see output o17 in Section 11.3.2). We verify that the cokernel of the corresponding
a-matrix has the desired Betti numbers:

i6 : l = matrix {{-259, -21, 189, -23, -254, -232, -172, -175,
89,-103, 1, 0},{-130, -201, 71, 8, -65, -242,
-24, 25, 4, 221, 0, 1}};

i7 : subsline = updateRelations(l);

i8 : al = sub(astart,subsline);

i9 : betti res coker al

0 1 2
o9 = total: 4 6 2

4: 4 . .
5: . 6 .
6: . . 1
7: . . .
8: . . 1

o10 : ma4 = minors(4,al);

i11 : decompose ma4

o11 = {ideal(x - 50x )}
0 1

The last step of the construction is the computation of the solution space V(l). The procedure
pickSectionC works similar as in the case c = 0. However, to compute a solution space of
the smallest possible dimension, we perform some preliminary calculations to decide which of
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the entries of the matrix c can be set to zero a priori as mentioned in Remark 8.1.7. Note that
these computations depend on the choice of the matrix l. After that we choose a random point
in the solution space V(l) and compute a standard resolution:

i12 : (subspoint,randpoint) = pickSectionC(subsline);

i13 : -- a point in a 12-diml solution space
randpoint

o13 = | 14 |
| 127 |
| 229 |
| 41 |
| -143 |
| 116 |
| 185 |
| -159 |
| 195 |
| 137 |
| -118 |
| 168 |

12 1
o14 : Matrix kk <--- kk

i15 : Fstand = standardResolution(subspoint);

i16 : d1 = Fstand.dd_1;

8 26
o16 : Matrix S <--- S

i17 : d2 = Fstand.dd_2;

26 26
o17 : Matrix S <--- S

Next we verify the first assumptions of Theorem 5.0.2 as in the example of a numerical Godeaux
surface having no hyperelliptic fibres:

i18 : verifyRingCondition(d1)

o18 = true

i18 : verifyAssumptions(d1)

o18 = true

i19 : IY = ann coker d1;

Hence, R := coker d1 has a ring structure and Proj(R) is a surface. Next we compute the
vanishing locus of the 7× 7 minors of d′1:

i20 : d1’ = d1ˆ{1..7};

i21 : I’ = ann coker d1’;

i22 : netList decompose I’
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+----------------------------------------------------------+
| 3 2 |

o22 =|ideal(33x + y , y - y , y + 234y ,y + 234y ,x - 50x )|
| 1 3 2 3 1 3 0 3 0 1 |
+----------------------------------------------------------+
|ideal(x , y , y , y , x ) |
| 1 3 1 0 0 |
+----------------------------------------------------------+
|ideal(x , y , y , y , x ) |
| 1 3 2 1 0 |
+----------------------------------------------------------+
|ideal(x , y , y , y , x ) |
| 1 3 2 0 0 |
+----------------------------------------------------------+
|ideal(x , y , y , y , x ) |
| 1 2 1 0 0 |
+----------------------------------------------------------+

We see that there is one additional point in the vanishing locus. We compute that the curveG1 =
Proj(SY /(x0 − 50x1)) ⊆ Y has arithmetic genus 5 and exactly one singularity q ∈ G1 ⊆ Y .
Furthermore, we verify that q is the only singular point of Y . Let us also compute the image of
G1 ⊆ Y under the projection from Y to P3:

i23 : ptspecial = ideal(x_0-50*x_1);

i24 : Dspecial = fibreInP3(ptspecial);

i25 : ptgeneral = ideal(x_0-33*x_1);

i26 : Dgeneral = fibreInP3(ptgeneral);

i27 : (genus Dspecial == 0, genus Dgeneral== 4)

o27 = (true, true)

i28 : betti res Dspecial

0 1 2
o28 = total: 1 3 2

0: 1 . .
1: . 3 2

i29 : betti res Dgeneral

0 1 2
o29 = total: 1 2 1

0: 1 . .
1: . 1 .
2: . 1 .
3: . . 1

We see that the image of the special curve is a twisted cubic curve, whereas the image of some
random curve is a complete intersection of type (2, 3). In the end we compute the surface W in
P1 × P3:

i30 : S13 = kk[x_0,x_1,y_0..y_3,Degrees=>{2:{1,0},4:{0,1}}];
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i31 : IW = bihomogeneousModel(IY);

i32 : tally degrees IW

o32 = Tally{{0, 9} => 1}
{1, 6} => 5
{2, 4} => 4
{2, 5} => 3
{3, 3} => 3
{3, 4} => 3
{4, 3} => 2
{5, 2} => 1

i33 : time isSmoothBihomModel(IW)
-- used 396.951 seconds

o33 = false

From the proof of Theorem 5.2.1 we know that R admits a unique structure as an SY -algebra.
Furthermore, from the number and degrees of the module generators of R as an S-module we
deduce that R is generated in degree ≤ 5 as a k-algebra. Hence, the description of the defining
relations of the canonical ring of a numerical Godeaux surface from Lemma 3.3.9 holds also
for the ring R. Hence we can use our algorithm canonicalRing to compute the remaining
defining relations of R (as a ring). Recall that this algorithm relies only on Lemma 3.3.9 and the
ideas of Chapter 4. Thus, we assume that all statements of Chapter 4 remain true if we replace
the canonical ring R(X) by our computed Gorenstein S-algebra R of codimension 3 which can
be checked in detail. Moreover, we plan to transfer these results to an even more general setting
in a future work.

i34: Sbig = kk[x_0,x_1,y_0..y_3,z_0..z_3,w_0..w_2,
Degrees=>{2:2,4:3,4:4,3:5}];

i35 : IX = canonicalRing(d1);

i36 : betti IX

0 1
o36 = total: 1 54

0: 1 .
1: . .
2: . .
3: . .
4: . .
5: . 6
6: . 12
7: . 18
8: . 12
9: . 6

We claim that the surface Proj(R) is smooth. To verify this, it is enough to check smoothness
at the preimages of the one singular point of Y . We compute that there are two distinct points
p0, p1 ∈ Proj(R) lying over the singularity q ∈ Y . Since these two points are not contained in
the singular locus of the weighted projective space P(22, 34, 44, 53), we can verify directly that
p0, p1 are smooth points of Proj(R) by computing the rank of the Jacobian matrix of Proj(R)
at these points. Thus, Proj(R) (considered over the algebraic closure of F521) is the canonical
model of a torsion-free numerical Godeaux surface X having exactly one hyperelliptic fibre.
Furthermore X ∼= Xcan = Proj(R).
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We end this section with the following conjecture which is suggested by our computational
results:

Conjecture 11.3.3. Let X be a marked numerical Godeaux surface with TorsX = 0. Further-
more, let

0← R(X)← F0
d1←− F1

d2←− F∨1
dtr1←−− F∨0 ← 0

be a standard resolution of the canonical ring R(X) with assigned matrix l ∈ St(Q). Assume
that coker a(l) has a minimal free resolution of type

0← coker a(l)← B4 ← B(−1)6 ←
B(−2)h

⊕

B(−3)2−h

← 0.

Then h is the number of hyperelliptic fibres of the bicanonical fibration (counted with multiplic-
ity).





12 Outlook

We end this thesis by giving a brief outlook on further applications of the presented construction.

In Chapters 7 and 8 we restricted our study mainly to standard resolutions whose assigned
matrices are contained in the open subset Vgensyz ⊆ St(Q). We have shown that such a standard
resolution leads to a (marked) numerical Godeaux surface X having a trivial torsion group.
Furthermore, we have seen that the existence of (smooth) hyperelliptic curves in the bicanonical
system of X is completely determined by the a-matrix a of a standard resolution of R(X), and
thus by the choice of the matrix l ∈ St(Q). Recall from Proposition 10.3.8 that, for p ∈ P1, a
smooth bicanonical curve Cp is hyperelliptic if and only if rank(a(p)) = 3. In a future work,
we want to establish further relations between the a-matrix and the existence of base points of
|3KX |. In Lemma 8.4.2 we have already seen that if there is a point p ∈ P1 with rank(a(p)) ≤ 2,
then |3KX | has a base point and that the unique bicanonical curve containing this base point is
the fibreCp. We expect that the converse of this statement is also true and that we obtain a similar
classification result as for hyperelliptic curves, that means: a bicanonical curve Cp contains a
base point of |3KX | if and only if rank(a(p)) = 2. Furthermore, we expect that our construction
gives us also the (known) families of numerical Godeaux surfaces with torsion group Z/3Z and
Z/5Z, respectively. To see this, we first have to identify subsets V3, V5 ⊆ St(Q) whose elements
lead to numerical Godeaux surfaces with torsion group Z/3Z and Z/5Z, respectively. Then we
have to compute the (minimal) dimension of the vector spaces V(l) for matrices in these subsets.
In explicit examples, we have seen that for l /∈ Vgensyz, the dimension of the solution space V(l)
is in general much higher than for l ∈ Vgensyz. But in this case, there are the non-trivial sets
Stab(l, R(X)) ⊆ V(l) (see Lemma 8.1.6) whose points lead to isomorphic standard resolutions
of R(X) and which we have to consider in the dimension count at the end.

A further application of our method is the construction of Godeaux curves. A Godeaux curve
C is a curve of genus 4 marked with an effective divisor Σ such that 3Σ = 2KC . Reid studied
such a curve assuming thatC is a complete intersection of type (2, 3) in P3 and Σ = p0+. . .+p3

being the sum of the 4 coordinate points of P3. Hence, a general bicanonical curve of a surface in
our constructed 8-dimensional family of torsion-free numerical Godeaux surfaces is a Godeaux
curve. More generally, we can modify our method by considering a finitely generated S′ =
k[x1, y0, y1, y2, y3]-module R′ having the same Betti numbers as R(X) (as an S-module). By
computing explicit examples with Macaulay2, we have seen that the construction of a standard
resolution of R′ works basically in the same way as for R(X). But, instead of choosing a line
in the complete intersection Q ⊆ P11, we only have to choose a point in Q. Our aim is to get a
more detailed description of the solution spaces and to compute the moduli of Godeaux curves
which we obtain with our modified construction.

Finally, a further extension is to drop the general assumption that the 4 base points of |2KX | =
|M | are all distinct. To obtain an applicable construction in this case, we first have to describe
the possible configurations of the images of the base points in P3 and the minimal free resolu-
tion of the canonical ring modulo x0, x1 as in Chapter 6, and then adapt the original set-up of
the matrices d′1 and d2 modulo x0, x1. Then, in particular, our construction should also yield
numerical Godeaux surfaces with torsion group Z/2Z or Z/4Z.
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