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Visualization and Analysis of Multifields using Pareto Sets

by Lars S. HUETTENBERGER

The focus of this work is to provide and evaluate a novel method for multifield
topology-based analysis and visualization. Through this concept, called Pareto sets,
one is capable to identify critical regions in a multifield with arbitrary many individ-
ual fields. It uses ideas found in graph optimization to find common behavior and
areas of divergence between multiple optimization objectives. The connections be-
tween the latter areas can be reduced into a graph structure allowing for an abstract
visualization of the multifield to support data exploration and understanding.

The research question that is answered in this dissertation is about the general
capability and expandability of the Pareto set concept in context of visualization and
application. Furthermore, the study of its relations, drawbacks and advantages to-
wards other topological-based approaches. This questions is answered in several
steps, including consideration and comparison with related work, a thorough intro-
duction of the Pareto set itself as well as a framework for efficient implementation
and an attached discussion regarding limitations of the concept and their implica-
tions for run time, suitable data, and possible improvements.

Furthermore, this work considers possible simplification approaches like inte-
grated single-field simplification methods but also using common structures iden-
tified through the Pareto set concept to smooth all individual fields at once. These
considerations are especially important for real-world scenarios to visualize highly
complex data by removing small local structures without destroying information
about larger, global trends.

To further emphasize possible improvements and expandability of the Pareto set
concept, the thesis studies a variety of different real world applications. For each
scenario, this work shows how the definition and visualization of the Pareto set is
used and improved for data exploration and analysis based on the scenarios.

In summary, this dissertation provides a complete and sound summary of the
Pareto set concept as ground work for future application of multifield data analy-
sis. The possible scenarios include those presented in the application section, but
are found in a wide range of research and industrial areas relying on uncertainty
analysis, time-varying data, and ensembles of data sets in general.
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Chapter 1

Introduction

1.1 Motivation

Based on technological advancement in computational and sensory capacity over
the past years, the data volume in scientific research and applications has increased
steadily and will most likely follow in this trend. This increase affects not only the
number of data sets but also their complexity in terms of size and resolution, thus
making effective analysis and visualization more and more difficult. The increased
complexity also leads to a transition from single- to multifield data sets. Instead
of a single field, a set of fields is given to provide, for example, different domain
resolutions of the same data, different variables or time-steps of the same simulation,
or, to compensate uncertainty, the results of repeated simulation or measurement
runs [81]. Analysis and visualization tools aim to compare or combine the individual
fields to support domain experts as well as regular users in tasks like identification
and exploration of common behavior and structures, outliers and trends in the data.

To guide these tasks when the amount or complexity of the data is too high to
simply presenting it in one image per individual field, a general approach is to pro-
vide combined, comparing or abstracted views on the data [131]. Following this
goal for single- and multifield data alike, topology-based analysis and visualization
methods can be utilized to describe and organize structures in the data, to highlight
data subsets, and to guide data exploration. Those approaches are especially appli-
cable in scenarios for which some level of relation between the individual fields can
be assumed as for example the case for multifield or ensemble data sets.

Applications for such approaches can be found in a wide area of scientific re-
search and real world scenarios. Examples, some which are included in the applica-
tion section of this work (Chapter 7), can be found in:

Fluid simulation Abstracted flow visualization helps to provide an overview and
to understand complex, time-varying fluid behavior in large, complicated vec-
tor fields.

Vortex detection In multi-criteria analysis for vortex detection in combustion cham-
bers, information from different vortex criteria are combined and structured to
find common ground and to compensate for uncertainty in the individual cri-
teria.

Quality control Automated, sensory measurements create large quantities of data
sets to ensure the quality and durability of machines and products. However,
sensor errors are always possible such that it is necessary for analysis purposes
to distinguish between common, global trends in the data and local errors.
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Environmental studies This includes weather forecast, analysis of Hurricane struc-
tures, or climate change studies. In general, different projections of prediction
models or different time steps are compared to identify local and global trends
and outliers, and thus to improve the existing models further.

Note that application domains involve scalar-, vector-, or tensor fields, combinations
of those, as well as fields with different resolutions. This thesis, however, focuses
only on scalar fields over the same domain and resolution.

In the context of multifield scalar fields, topology-based approached include con-
cepts like the Reeb space, Jacobi set, and Joint Contour Nets. Those are well stud-
ied but have different limitations. The number of individual fields is restricted by
the number of domain dimensions, the created structures are high-dimensional and
thus hard to visualize in 2D or 3D or are invariant to the orientation of the individual
fields.

The study of novel multifield approaches is therefore still an open task, espe-
cially since the assumption of common behavior in the data does not hold in gen-
eral. In such cases, unrelated features in the individual fields result in separate, local
and small-scale structures in the multifield, drastically increasing its complexity and
making abstraction and even simplification of the multifield necessary.

1.2 Contribution

In this dissertation, the design, visualization and evaluation of an approach for con-
tinuous scalar multifield data, the Pareto set, is presented. This concept avoids limi-
tations of existing concepts and yields a topology-based structures such that an ab-
stract visualization and exploration of multifield data becomes possible.

To provide a complete introduction of Pareto sets and its related structures, the
following contributions are reflected on in the individual chapters of this disserta-
tion.

• The main contribution is the introduction and definition of the Pareto set con-
cept itself which is used as a framework throughout the dissertation.

• Additionally, guidelines for an efficient implementation to identify the Pareto
sets in piecewise linear multifields in 2D and 3D domains like simplical com-
plexes as well as visualizing strategies for them are provided.

• To discuss options to simplify and organize the Pareto set for easier visualiza-
tion and to understand internal structures and connectivities within the Pareto
set, a related structure, the reachability graph is introduced and defined.

• To evaluate the Pareto set concept, this thesis provides thorough comparison
with existing topology-based multifield concepts. The results are utilizes to
further improve the Pareto set implementation.

• The usability of the Pareto set is tested using several real-world application
scenarios, as mentioned above.

• In context of these applications, further extensions and improvements of the
Pareto set visualization are provided.
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In summary, this dissertation provides all necessary parts to understand and calcu-
late the Pareto set as well as its related structures and visualizations in the context of
scalar multifields. Application examples present to the capabilities of the concept,
show and discuss when and how it can be applied, and how to interpret and im-
prove the results. Thus, the thesis provides all parts to place the Pareto set concept
firmly into the research field of topology-based multifield analysis, visualization,
and applications.

1.3 Thesis Structure

The Pareto set concept introduction is separated in three main chapters: theoretical
definitions and considerations, comparison with existing concepts, and application
examples.

To follow the theoretical definitions, related scientific works and mathematical
background for the Pareto set concept, respectively are introduced in the first two
segments of this thesis (Chapters 2 and 3) excluding the introduction.

Chapter 4 contributes the definition of the Pareto set as well as its inner structure,
the reachability graph, based on an existing concept of Pareto optimality from multi-
criteria graph optimization. The definition is applicable to continuous scalar fields
over the same domain with an arbitrary number of individual fields and domain
dimensions.

With respect to applications, the thesis focuses on piecewise linear scalar fields
and provides instructions for multi-threaded implementations in 2D and 3D do-
mains. For these cases, equivalent definitions of the Pareto set that further reduce the
computational effort are introduced as well as a framework to calculate the Pareto
set at interactive speeds, allowing for inclusion and exclusion of individual fields
without a complete recalculation. For each improvement, the resulting implications
and limitations, for example with respect to data sets, running time, visualization
are discussed. Hence, in Chapter 4 Pareto set and the reachability graph are defined
to helps users to understand and, with the provided guidlines, to implement this
concept for their own applications.

In the next segment (Chapter 5) the high complexity of multifield data and the
susceptibility of multifield analysis and visualization concepts, including Pareto sets,
towards small-scale structures, loosely denoted as "‘noise"’ is considered. Existing
approaches are evaluated and a novel simplification method for Pareto sets is intro-
duced based on the reachability graph.

The second part of the introduction is contained in Chapter 6. In this compari-
son chapter, the relation between the Pareto set and other topology-based multifield
concepts is studied. Besides a general discussion about advantages and disadvan-
tages of the Pareto set towards other commonly used methods and related work, the
work focuses on the relations with Jacobi sets and Joint Contour nets. Both concepts
are well studied and provide efficient implementations as well as relations to other
multifield methods. This allows for a transitive relation of the Pareto set to these
other topological structures, including the important Reeb space.
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This places Pareto sets firmly into the context of multifield approaches, helps
users to decide when Pareto sets are suitable or even better than other concepts for
their application, and highlights improvements through the combination of different
methods.

In Chapter 7 application examples of the Pareto set in real-world scenarios are
addressed. The potential of Pareto sets as a visualization tool is shown in a variety
of different problems and, in each scenario, it is discussed how the original Pareto
set definition and its visualization is used and improved for data exploration. In
addition to these discussions, throughout the chapter arising open tasks for further
improvement are summarized.

Improvements for the Pareto set concept that are included in this thesis are glyph-
based visualization, weighted Pareto sets based on single-field topological structures
and time-varying information, and domain decomposition based on the robustness
of non-Pareto points.

With this chapter, the wide range of applications of the Pareto set visualization
is emphasized, which helps users to consider possible scenarios and improvements
of that concept.

The last segment (Chapter 8) contains the conclusion of the dissertation with a
summary of the limitations and possibilities of the Pareto set concept and an outlook
on future work.



5

Chapter 2

Related Work

Throughout this dissertation, a novel topology-based approach for analysis and vi-
sualization of multifield scalar fields is presented with focus on two- and three-
dimensional domains. To better follow the overview of related work that places
Pareto sets in a proper context, the background section is structured in non-topology-
based multifield, topology-based single-field, and topology-based multifield tech-
niques, i.e. methods that use concepts and ideas from computational topology [51]
to visualize or enhance the visualization of scientific data.

2.1 Topology-based Techniques for Single Fields Data Sets

The extraction of topological structures not only provides a meaningful summary
of the data, but these structures are also often used to drive exploration of the data
in interactive systems, or inform parameter choices in later visualization phases. In
this context, multifield approaches are usually based on well-studied methods for
single fields.

The basis for many approaches are critical points, like minima and maxima in
scalar fields [157, 139] that can be extended by additional concepts to show the con-
nection between those points, the so-called topological structure. Contour tree and
Reeb graph [48] contract connected components of isosurfaces to points in a graph
structure and translate the adjacency of isosurfaces to the adjacency of those points.
Additional information, like level set volume or boundary size can be added to
the graph as edge weights to transport additional information [102]. Ushizima et
al. [166], for example, use a Reeb graph enhanced with thickness information to de-
tect and visualize material flow and pockets in rock formations to study ways to
capture CO2 and reduce the carbon dioxide concentration in the atmosphere.

Carr [31] presents the flexible isosurface interface where individual contours in
a 3D view can be manipulated by moving single points in a drawing of the data’s
contour tree. As an application, this interface is used to mark and color different
contours to identify materials and thus different anatomical parts from MRI brain
scans in medical research [33, 98]. Weber [173] extends this approach to volume
rendering by assigning individual contour tree edges their own transfer function.
Thomas and Natarajan [160] identify symmetric structures in the extremum graph
to identify symmetric structures in the corresponding scalar fields, for example to
highlight patterns in the data.

Bremer et al. [23] use Jacobi sets and Weber et al. [172] use Reeb graphs to track
volumetric features across time. Bremer et al. [24] track burning flames in a combus-
tion simulation on the basis of different physical quantities. The tracked features,
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such as critical points, can be used to efficiently update contour trees over time, in
time-dependent data fields [113].

Similar concepts can be applied to other data types. For vector fields, Morse-
Smale complexes [74, 149] are an example. In this context a partition of the domain
into regions is constructed, clustering integral lines with the same origin and the
same destination. However, all approaches consider only one single field. Gyulassy
et al. [73] combine the domain partition with user defined borders to assist physi-
cians in histology studies, which is one possible application. This technique requires,
in the context of the application, useful input to produce meaningful results.

Gyulassy et al. [78] detect core structures (skeletons) in porous materials through
a topologically simplified Morse-Smale complex of a signed distance field. This sup-
ports material scientists to perform quality and quantity analysis of materials for
pores, tunnels, and holes.

Garth and Tricoche [64] present feature- and topology-based techniques, like
cutting-plane topology and spiral-critical points that are tracked through a flow
field. Corresponding visualizations are used, for example, to show general motion
patterns inside combustion engines.

Besides providing abstract data visualization and supporting interactive data ex-
ploration, such graph structures can be used for data simplification. In many ap-
plications, structural richness may result from noise or sampling inaccuracies, and
robust topological visualization methods should ideally be impervious to such phe-
nomena. Hence, for all those data types, simplification techniques have been pro-
posed and studied, with the aim of allowing topological visualization of structurally
rich data. A common approach to guide topological simplification is persistent ho-
mology [49], for example of Reeb graphs [162, 50, 128] or for Morse-Smale simplifi-
cation [72, 41, 138].

In data mining, the simplification of merge trees based on density functions can
be an alternative to clustering [126]. Here, Oesterling et al. generate a density field
from a set of point data, that are otherwise visualized through methods like scatter
plots, hyperboxes, or parallel coordinates [10, 3, 94], since they lack a field, placing
the point values in a continuous domain. Surveys, regarding the visualization of
multivariate point data are, for example, found in work by Chan or Xie et al. [35,
189].

The concept of persistence in general captures the existence interval of topological
features as scalar values change. For two adjacent nodes in a Reeb graph, this cor-
responds to scalar value difference between the corresponding critical points [50].
Under the assumption that unimportant features or those resulting from noise have
low persistence, i.e. tend to disappear under slight changes to the data, they can
be safely omitted from visualization. Such simplification must be consistent in the
sense that it captures the topological structure of hypothetically modified data that
is close to the original. Recent work introduces a flooding-based method that “fills”
a feature up without introducing new ones [162].
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2.2 Visualization of Multifield Data Sets

A large drawback of single-field data is that it cannot address uncertainty in simula-
tion processes or small-scale errors in the measurement devices. Such obstacles are
found in a series of applications, like hurricane structure or paths analysis, volcano
eruptions in atmospheric research, and fluid dynamics [67, 105, 9]. Approaches like
presented by Gyulassy et al. [73] integrate user input into the visualization that can
be used to address uncertainty through expert domain knowledge. However, user
input is not always available or suitable in the context of the application. Hence,
multifield data are used to compensate for that.

To visualize multifield data, several techniques exist, although not all visual-
ization methods use topological structures. A general alternative is to juxtapose
modalities in multiple linked views [133, 185, 186], presenting each individual field
in an individual window, for example to study the flow behavior in different engine
parts [25]. Each image can furthermore be enhanced with topological structures,
like the extremum graph [105]. However, in these approaches, interactions between
modalities are not explicitly expressed in the images but must be explored by the
user. This is a difficult task, especially if the number of fields is high.

Two possible approaches to support the exploration are either to integrate all
fields into a single volume or to provide comparison measurements between the
fields to allow for field traversal and clustering. Kniss et al. [103] propose to use
multidimensional transfer functions for rendering volumes based on multiple input
data like multi-modal MRI scans [167]. For multifield data, to reduce the complexity
of the transfer functions, Kniss et al. suggest to use Gaussian transfer functions
instead.

Urness and Interrante [165] discuses the visualization of vector fields by pre-
senting their stream lines in a single image and provide guidelines for streamline
placement and overlapping. Based on this work, Urness et al. [164] compile strate-
gies to overlay streamline features visualization and glyph-based flow visualization
to create a single images from multiple vector fields. Their presented examples and
discussions, however, suggest that this concept only works for two input fields.

Woodring and Shen [188] use boolean set operations to integrate several volumes
together into one volume for visualization. Sauber et al. [143] show global correla-
tions of multifields where the user can select a subset of fields to find regions that
behave coherently. Botchen et al. [18] integrate extracted features from multifields
using fuzzy logic to guide isosurface selection in a single view. Nagaraj et al. [122]
define a gradient-based similarity measure that is visualized to show field coher-
ence. In subsequent work, Nagaraj and Natarajan [120] propose a new measure –
the so-called variation density function – to guide isosurface selection.

Akiba and Ma [2] suggest to couple information visualization with volume ren-
dering to visualize time-dependent, multifield scalar fields. In another combination
of information and scientific visualization techniques, Jänicke et al. [96] use brush-
ing and linking of a graph structure called attribute cloud to visualize multifield
data. Lampe et al. [107] transform volumes in a neighborhood-preserving fashion to
curves that can be laid out and analyzed in parallel. Fuchs et al. [62] use an evolu-
tionary search algorithm to assist hypotheses formalization in multifield, volumetric
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data. Rübel et al. [140] consider multivariate data as point data and use parallel co-
ordinates to visualize and select groups of points with similar attributes.

Unsteady multifields are an extremal case of uncertainty, where the data is not given
consistently through a function but as a point set. As with univariate point data, it
is possible to use density driven clustering and decomposition to create combined
visualizations [95]. Another idea to create continous maps that contain the com-
bined information of ensemble data is to consider an approach by Baruque et al. [8]
that uses ensemble methods with topology preserving models to train a continuous
maps.

Liu et al. [112] use longest common subsequence approach to calculate a distance
between pathlines of vector field ensembles. This distances are used to guide clus-
tering or calculate similarity field to identify regions with low or high uncertainty
in the model that created the ensemble. Cox et al. [42] compare explicit and implicit
visualization of an ensemble of hurricane path predictions in a user study. They
conclude that an implicit representation, here an error cone, can lead to misinterpre-
tation of the uncertainty of the data.

To visualize high-dimensional data, Weber et al. [174] creates an ensemble of low-
dimensional landscapes all with the same contour tree as the high-dimensional data.
Harvey and Wang [82] define distances between these landscapes and use nonlinear
dimensionality reduction to project the ensemble member onto a 2D plane and allow
their exploration.

For further reading, Bürger and Hauser [26] give an overview of further multifield
and multifield visualization techniques.

2.3 Topology-based Techniques for Multiple Fields Data Sets

Multifield visualization techniques as presented above have different drawbacks.
Methods like overlays or linked views cannot handle large numbers of individ-
ual fields. Therefore, approaches using transfer functions, correlation or average
maps, etc., summarize multiple fields into a single image. However, large, high-
dimensional, or complex data still need some kind of abstract view or structuring to
allow for efficient data analysis and exploration. As with single-field data, topology-
based approaches exist and aim to provide abstracted views onto the structures in-
herent in multifield data. Those approaches are often extensions of single-field meth-
ods into more complex concepts instead of single-field methods applied to sum-
maries, like the correlation or average map. The latter obviously loses information
and transparency in the intermediate, compacting step.

In this context, an important extension towards multifield field visualization is
the Reeb space [53, 141]. Analogous to the Reeb graph, fibers, isosurfaces based on
all variable values are contracted to points in a high-dimensional construct. Its di-
mension is linked to the number of individual fields, thus not suited for visualizing
a high numbers of fields. Different approaches aim to reduce the dimensional com-
plexity.
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Carr and Duke [30] expand the fibers into so-called slabs, which are connected
regions of points equal in quantized isovalues for all fields and then generate a graph
that encodes adjacency of these slabs. This so-called joint contour net represents
the multifield topology for the chosen quantization and is presented using graph
drawing techniques. Zhao et al. [67] apply this concept to visualize a multivariate
data set containing values like precipitation, pressure, and temperature for hurricane
analysis. The results are still approximations and require a good choice of the slab
size to produce good results.

As an application in the area of uncertain data, ensembles of repeated simula-
tion runs or measurement operations are analyzed collectively to compensate for
uncertainty or inaccuracy in the individual data sets, thus creating multifield data.
Mihaela and Westermann [115] define a confidence interval based on the Hessian
matrix for each domain point to provide a likelihood for critical points. Similar, Gün-
ther et al. [71] build a probability distribution function based on the ensemble data
to provide a upper and lower value bounds and therefore level set value intervals.
Günther et al. use those to create structures similar to split trees with limitations re-
garding the probability distribution and saddle points for highly complex data sets.

Edelsbrunner and Harer [52] define the Jacobi set of Morse functions as the set of
critical points of one function’s restrictions to the fibers of the other functions aug-
mented by the critical points of the single functions. That method is only applicable
as long as the number of individual fields does not exceed the dimension of the
domain manifold. Hence, Jacobi sets can be useful for bivariate functions in 2- or
3D domains, for example to calculate the more complex Reeb space efficiently [161].
Mascarenhas and Snoeyink [113] as well as the implementation later in the thesis
indicate that domain triangulation resulting in simplical grids create spurious ele-
ments in the Jacobi set.

As stated before, Edelsbrunner and Harer [52] also suggests to use Jacobi sets to
track critical points in time-dependent scalar fields as an application for unifield data
sets, considering time as an additional fields thus creating a bivariate/multifield
scenario. In this case, the Jacobi set consists of one-dimensional lines, and their
length can be interpreted as life span. Bremer et al. [23] use the life span as a base
for a simplification approach on Jacobi sets.

Also, Jacobi sets are used to define time-varying Reeb graphs of single scalar
fields on a 3-sphere [58] and later on 4- or 5-manifolds [57], and culminate in the
definition of Reeb spaces [53]. Edelsbrunner et al. [55] create a similarity measure
based on the difference in the field gradients, an extension to the definition of Jacobi
sets with the same restrictions.

Schneider et al. [145] in an extension of work by Schneider et al. [146] propose
the following approach: for each given scalar field they compute its largest contours,
i.e. maximal contours that contain only one critical point, then compute similarities
between largest contours of all fields based on a normalized spatial-overlap measure
and store this information in a weighted graph to which graph clustering is applied.
Largest contours are considered to be volumetric features and graph clusters can
therefore be interpreted as sets of features that are consistent across fields. However,
the similarity graph and its clustering are no typical topological structures and the
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information is not integrated, e.g. to give a subdivision of the domain.

For multiple vector fields, Morse decomposition is proposed by Szymczack [156]
in connection with supertransition graphs. Here, a given grid is refined into smaller
subgrids, each represented by a node. Any vector inducing movement from one
subgrid to another is recorded as an edge in the graph. Again, the simplicity of the
graph can be controlled through by refining the subgrids. While this can be applied
to almost any problem, a coarser grid might not represent important topological in-
formation. A simplification through removal or merge of unimportant information
would therefore be desirable.

An approach by Tricoche et al. [163] for single vector fields that also works for
multifield data is to identify critical points in each function and then cluster them in
the common domain to reduce the structural complexity. The clustering is nonethe-
less based on geometric distances between the points and not on any topological
structure.

However, so far only limited results are discussed toward the simplification of
multifield structural visualization. A promising method is the simplification of Ja-
cobi sets through a local difference measure, described by Suthambhara and Natara-
jan [121] for two functions f and g on a 2-manifold embedded in R3. Their measure
is based on ∇f(x) × ∇g(x) to describe the similarity between the two functions.
Although, it might be possible to expand this measure to multiple functions, the
limitation for Jacobi sets still exists, namely k ≤ d.

For further related work, Heine et al. [84] present a detailed survey regarding
topology-based methods for single- and multifield data. Kehrer and Hauser [100]
provide a survey regarding the general visualization of multifield.

2.4 Existing Work on Pareto Optimality

While the definitions used in this thesis are based on concepts introduced by Stadler
and Flamm [152], the concept / theoretical foundation of Pareto optimality was al-
ready introduced in earlier work. .

Stadler and Flamm refer in their definitions to Ehrgott and Gandibleux [59] who
define Pareto optima in the context of (multiobjective) combinatorial problems with
a finite set of feasible configurations. Pareto optimality is calculated globally as an
optimum under all configurations. Stadler and Flamm extend this to multiobjective
optimization problems over graph structures in which the different configurations
are nodes in a graph. Edges restrict traversal between the different configurations
and allow the definition of neighbors and paths in the configuration space. Similar
to Ehrgott and Gandibleux, Stadler and Flamm define Pareto optimal configurations
with respect to multiple objectives, though locally, and also introduce concepts like
the barrier tree.

With an application focus in economics, Gerard Debreu [44] introduced Pareto
optimality in 1959 in the context of multiobjective optimization over an open set in
Rl to model pure exchange economy markets. Smale [150] adapts the definitions
to smooth manifolds in a mathematical attempt to generalize Morse theory [116]
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from single to multiple fields, i.e. creating a definition of topology for multifields.
In his work, Smale defines critical points, Pareto optima, based on the derivative
of the multifield at these points and outlines the idea of "Morse inequalities" for
multiple fields. Wan [169] follows those outlines, proving the concept of those Morse
inequalities and creating a structure similar to Betti numbers [116] for two functions
over a compact manifold Wn (n ≥ 2).

De Melo [43] also bases his work on Smale’s introduction of Pareto optimality
for manifolds and defines a stratification of the set of Pareto optima. Stratification is
defined as a cover of the Pareto set by a finite number of pairwise disjoint connected
sub-manifolds that fulfills the regularity conditions [114]. De Melo proves in his
work that this stratification is stable under small perturbations of the corresponding
multifield with at most n ≤ 3 fields.

Note that all those introductions of Pareto optimality are from a mathematical back-
ground with a focus on improving either optimization problem solving or the theory
behind multifield topology. Neither group has visualization or implementation as
a major focus. Hence, aspects like real-world application scenarios, simplification
methods or a comparison with other visualization approaches are not considered.
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Chapter 3

Mathematical Background

To provide a foundation for the definitions in Chapter 4 and 5 but also to understand
the techniques in the comparison section (Chapter 6) the current chapter introduces
the needed mathematical framework and definitions for multifield data. More com-
plex concepts like the Jacobi set or multi-modal optimization are revisited directly
when needed.

In general, multifield data [81] are sets of individual fields over the same domain
M such that the data is defined as f = (f1 . . . fn) with n being the number of indi-
vidual fields and each field fi : Mi 7→ Ii with Mi ⊆ M and some image space Ii
with the only restriction that a shared domain M exists such that Mi ⊆ M holds for
all i. With this general definition, several subtypes of multifield data are possible.
However, in this work, the focus is on multivariate and ensemble data over the same
domain such that Mi = Mj for all 1 ≤ i, j ≤ n. In multivariate data, related variables
are computed or measured, while in ensemble data, each field is a separate output
of a single or repeated computational or measurement process. Related variables or
for example functions that are based on the same scenario, or their features have a
similar semantic. Hence, throughout this thesis, multifield refers to multifield data
over the same domain with special focus on multivariate and ensemble fields. Other
types, like multiscale, derived or spectral data exist but are not in the focus.

3.1 Simplical Complexes

While all theoretical definitions in this dissertation apply to manifolds as a domain
M ⊆ RD, d ≤ D, for real-world scenarios a restriction to simplical complexes is
necessary to allow machine-based calculation. A d-manifold is a topological space
that locally resembles a d-dimensional Euclidean space [177] near each point. More
precisely, each point of an d-dimensional manifold has a neighborhood that is home-
omorphic to the Euclidean space Rd. Two-dimensional manifolds are also called sur-
faces. Examples include the plane, the sphere, and the torus [110, 109].

To efficiently save and process the domain, manifolds are represented using sim-
plical complexes. A simplex is a generalization of the notion of line, triangle or
tetrahedron to arbitrary dimensions. Specifically, a d-simplex is a d-dimensional
polytope which is the convex hull {a0x0 . . . adxd |

∑d
i=0 ai = 1 ∧ ∀di=0ai ≥ 0} of

its d + 1, affinely independent vertices xi ∈ Rd. A simplicial complex S is a set of
simplices that satisfies the following conditions:

• Any face of a simplex from S is also in S.

• The intersection of any two simplices σ1, σ2 ∈ S is either ∅ or a face of both σ1
and σ2.
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A simplicial d-complex Sd is a simplicial complex where the largest dimension of
any simplex in Sd equals d. For instance, a simplicial 2-complex must contain at least
one triangle, and must not contain any tetrahedra or higher-dimensional simplices.
A common example is a triangulated plane.

To efficiently save and process a field over a simplical complex Sd, the data val-
ues are only stored at the vertices. This is called a simplical map. The field is then
approximated and expanded through bilinear interpolation over the simplical com-
plex. More precisely, assume a point x ∈ Rd lies inside a d′-simplex σ, d′ ≤ d

such that x can be described through barycentric data x =
∑d′

i=0 bivi, with bi ≥ 0
for all 0 ≤ i ≤ d′ and vi the vertices of σ. Then, the value at x is defined by
f(x) =

∑d′

i=0 bif(vi), resulting in a piecewise linear field. Note that this approxi-
mation is found in many real-world application, including all applications scenarios
described in Chapter 7.

For more details on manifold and simplical complexes see for example work by
Munkres [119] or by Hatcher [83], respectively.

3.2 Single-Field Topology

Topology-based methods for multivariate data are often either based or related to
topological methods for single-field data. The following two subsections therefore
introduce major visualization and analysis concepts for scalar and vector fields, re-
spectively. In both cases, the field separation and continuous deformation is applied
to reduce the visual complexity while preserving its structure including properties
like neighborhoods and connectedness.

Both concepts use the general definition of critical points, i.e. points with zero
gradient ( ∂∂xf(x) = 0) [108]. Using the second derivative, different types of critical
points can be distinguished. A point x ∈ M is defined a maximum if ∂2

∂x2
f(x) > 0, a

minimum if ∂2

∂x2
f(x) < 0, and otherwise a saddle if ∂2

∂x2
f(x) = 0.

Alternatively, a maximum x for the single field f : M 7→ R is defined by the
scalar value in its neighborhood. In the case of manifolds, the neighborhood can be
defined by distance such that a point is a maximum, iff

∃ε>0∀y∈M|y − x| ≤ ε ⇒ f(x) ≥ f(y)

and a minimum iff
∃ε>0∀y∈M|y − x| ≤ ε ⇒ f(x) ≤ f(y).

Note that Fermat’s interior extremum theorem Theorem citebartle2000introduction
shows the equality of both definition of maxima and minima, respectively, as it states
that if x is a extremum (minimum or maximum) and the derivative f ′ at x exists,
than f ′(x) = 0 has to hold. For an illustration of critical points, see Images 3.1(a) for
a maximum and Images 3.1(b) and 3.1(c) for two examples of saddle points.
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3.2.1 Morse functions

As a general assumption in the following topological methods, it is supposed that
each field is based on a Morse function f : Rd 7→ R. Those functions fulfill three
conditions [51]

1. f is smooth

2. All critical points, have distinct function values

3. All critical points are non-degenerate (i.e. det(Hessian(p)) 6= 0)

Hessian is the d × d square matrix H of second-order partial derivatives with ele-
ments Hi,j := ∂2f

∂xi∂xj
. As a direct implication of (1) and (2), f does not contain flat

areas, i.e. neighborhoods where f is constant. With condition (3), Theorem 5 by D.
Gauld [65] is applicable:

Theorem 3.2.1. Let 0 be a non-degenerate critical point for f : R 7→ R. Then there is a
diffeomorphism θ that maps a neighborhood of x in Rd onto another such neighborhood with
θ(0) = 0, and there are numbers ci = ±1 (i = {1, . . . , d}) such that for all z = (zi) in the
domain of θ,

fθ(z) =

d∑
i=1

ciz
2
i + f(x).

A diffeomorphism θ is invertible functions, such that both θ and θ−1 are defined
and differential, for example deformations like rotation, translation or scaling. Thus,
after some deformations, the neighborhood around each critical point in a Morse
function f is parabolic. For 2D, there are four different configurations for the ci. The
images (a) and (b) in Figure 3.1 illustrate two of them. Image (c), however, shows a
so-called Monkey saddle with a degenerated critical point in x = (0, 0). Note that the
neighborhood around x cannot be deformed into a parabolic shape.

(a) −(x2 + y2) + 4 (b) x2 − y2 (c) x3 − 3xy2

FIGURE 3.1: A set of 2D functions each with a critical points at x =
(0, 0). The labels indicate the used equation for f(x, y). (a) shows a
maximum, (b) a saddle, and (c) a Monkey saddle. The images are

received from the Wikipedia repository [182, 184, 181]

Hence, with a Morse function, for every point x there is a neighborhood such
that every direction from x can be described as monotone increasing or decreas-
ing. These implications are used in the implementations and proofs, see for example
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Lemma 4.3.1. Resulting limitations are discussed at the end of Chapter 4 after the
Pareto set concept is thoroughly introduced. Hence, for the remainder of this thesis,
it is assumed that all individual fields in a multifield are Morse functions.

3.2.2 Contour Trees and Reeb Graphs

For a continuous scalar field f : M 7→ R, with M ⊆ Rd some manifold, the Reeb graph
and the contour tree are based on the connected components of the level sets f−1(c) =
{x ∈ M | f(x) = c} for each c ∈ f(M). Two points x, y ∈ M with f(x) = f(y) are in
the same component if a function p : [0, 1] 7→M exists such that

• p is continuous,

• p[0] = x and p[1] = y, and

• ∀z∈[0,1]f(p[z]) = f(x), i.e. p lies in the level set.

As the isovalue c changes the level set f−1(c) can evolve, in other words its compo-
nents can split, merge, appear or vanish. A graph-based representation, the Reeb
graph, illustrates how the level set changes with the isovalue. Leaf nodes represent
the creation or deletion of a component, interior vertices represent the merge or split
of two components and each edge illustrates a component for all isovalues between
the values at each end of the edge. Note that changes in the level set and the graph
only appear at critical points: ∂f

∂x (p) = 0. Thus, those points are used to define and
select meaningful level sets [6].

FIGURE 3.2: Reeb graph of the height function on a torus. The images
are received from the Wikipedia repository [178].

If the manifold has no holes, the connected component of a level set f−1(c) is a
closed isocontour and separates the domain into two regions, inside and outside of
the component. This also separates the Reeb graph into two distinct subgraphs only
connected by the node or edge corresponding the isocontour. Hence, the graph is a
tree and is denoted as contour tree.
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As an example, Figure 3.2 shows a commonly used 2D manifold in form of a
torus surface with f the height function along the z-axis. Next to the torus, a Reeb
graph visualizes its structure. Note that neither the Reeb graph nor the contour
tree are unambiguously, i.e. two fields can have the same contour tree/Reeb graph
as shown in Figure 3.3. For further literature, see for example Doraiswamy and
Natarajan or Pascucci et al. [48, 128].

FIGURE 3.3: Two height maps and, between them, a contour tree cor-
responding to both maps.

3.2.3 Reeb space

Let M be a d-dimensional domain, note that for a function f : M 7→ R the level
set is d − 1 dimensional. The level set for a multifield f = (f1, . . . , fn) with fi :
M 7→ R is defined as f−1(c) = {x ∈ M | ∀ni=1fi(x) = ci} for each c ∈ f(M) ⊆ Rn.
For multifields, the level set is d − n dimensional, for d ≥ n and zero otherwise.
Note that c is a n dimensional value and can change in n different directions such
that the evolution of the connected components f−1(c) has to be illustrated in a n-
dimensional space, the Reeb space [141]. Figure 3.4 shows an example from work by
Carr and Duke [29].

A feature of both Reeb space and Reeb graph is that the structures have no geo-
metric connection. Thus, the both visualizations are invariant to rotation, scaling or
point symmetric transformation.

3.2.4 Morse-Smale Complex

For a vector field f : M 7→ Rd, with M ⊆ Rd some manifolds. Similar to scalar fields,
critical point x is defined by f(x) = ~0 = (0, . . . , 0). The integral line of a vector field
is a path p : (0, 1) 7→M such that

• p is continuous,

• the limits/end points p[0] and p[1] are critical, and

• the tangent vectors of p agree with the gradients of f at all points along the
path, i.e. ∀x∈[0,1] ∂

∂xp(x) = ∇f(p(s)). [54]

Hence, integral lines represent the flow along the gradients between critical points.
Note that all integral lines have several properties.

• Two lines are either the same or disjoint, i.e. do not intersect.

• Integral lines cover the entire domain M.
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FIGURE 3.4: A illustration from Carr and Duke [29] with two 3D
fields f1 and f2. The field f1(x, y, z) = z is the height map, and the
field f2(x, y, z) =

√
x2 + y2 + z2 is a distance map. The fields are fur-

ther illustrated through sequences of contour trees of f1 restricted to
an isosurface for f2, i.e. f−1

2 (h) for some value h, and vice versa.

With this, the domain is decomposed into Morse-Smale cells, regions of similar flow.
For a critical point x, the stable manifolds S(x), unstable manifolds D(x) is given as

S(x) = {x} ∪ {y ∈M | p[1] = x ∧ p[t] = y, t ∈ (0, 1) for a integral line p},

D(x) = {x} ∪ {y ∈M | p[0] = x ∧ p[t] = y, t ∈ (0, 1) for a integral line p}.

The Morse-Smale cells are regions of points with the same destination and origin
based on the integral lines as shown in Figure 3.5, alternatively a cell is defined as
S(a) ∩ D(b) for two critical points a, b ∈ M. The collection of all cell is called the
Morse-Smale complex [76, 74, 56].

FIGURE 3.5: Example of the Morse-Smale complex for a simple 1D
field. The Morse-Smale cells are indicated by the displaced red sec-

tions underneath the x-axis.
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The cells can also be calculated for any scalar field f by considering the gradients
of f a vector field. For multifields however, the Morse-Smale complex cannot be
calculated since integral lines with tangents parallel to multiple gradient vectors
usually do not exist.

3.3 Gaussian functions

FIGURE 3.6: Gaussian curve z = e−x
2−y2 over a simplical 2-complex

from the free media repository at Wikipedia [179].

Throughout this work, analytical examples are used to illustrate definitions and
ideas. In general, triangulated Gaussian bells of the form

f(x) = ae−
(x−b)2

2c2

are utilized. They create a bell curve with a as the height of the curve’s peak, b
the position of the center of the peak and c controlling the width of the "bell". The
function values increase exponentially towards b such that f has a maximum at x =
b. The inverse, −f , creates an exponentially decreasing minimum at position b. The
bell curve can be calculated in any dimension, especially in 2D and 3D. Figure 3.6
shows an example on a two-dimensional plan. To create multiple peaks, i.e. minima
and maxima, the Gaussian function is the sum of multiple Gaussian bells. Thus, for
the implementation of a single field f the simplified version :

f(x) =
m∑
k=0

ake
−2·|x−bk|

with ak ∈ {1,−1} and bk a set of positions is used. Note that x is a critical point
for f , with respect to single-field scalar topology, if and only if (iff) x = bk for some
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1 ≤ k ≤ m under the assumption that the distance |bk − bk′ | for all 1 ≤ k, k′ ≤ m is
large enough such that ∀k 6=pe−2·|x−bk| << ε for all x ≈ bi,p and some small ε > 0 can
be assumed. Note that this is not a impossible assumption since e−2·|x−bk| converges
exponentially.

The scalar ak allows to define the type of critical point at position bk, in detail a
minimum if ai,k = −1 and a maximum if ai,k = 1. Saddle points, however, cannot
be defined directly and do not correspond to any bi,k.

Throughout the chapters, if an example field is created with this concept, the
multifield is only based on rather similar Gaussian bells. Therefore, m, the number
of positions bi,k, is equal in all fields fi and furthermore, the positions are only shifted
slightly over the individual fields, i.e. |bi,k − bj,k| < ε for all 1 ≤ i, j ≤ n and some
ε > 0. The position distance |bi,g−bi,h| inside each field fi, however, can be arbitrary.
Hence, to create a multifield with n fields, it is sufficient to define a matrix of n×m
positions.
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Chapter 4

Definition and Computation of the
Pareto Set

4.1 Motivation

The concepts that are presented in the following chapters are aimed at elucidating
topological structures of multiple fields. While its implementation assumes piece-
wise linear fields over simplical complexes, the definition only requires Morse fields
over the same manifold M. Alternative definitions are also provided to use in later
chapters and inspire alternative implementations.

With the focus on visualization, application, and implementation, the definition
is shifted in a later part of this chapter to simplical complexes and piecewise linear
Morse fields, especially for purposes of application and simplification of Pareto sets
in Chapter 5 and 7.

Furthermore, this chapter is the collection of all corresponding definition sections
in previously published papers and conference presentations [91, 86].

4.2 Definition of Pareto Optimality

In this sections ideas and concepts pioneered in the domain of multi-criteria op-
timization are described and adapted to derive a topological-based description of a
multifield f . The presentation follows Stadler and Flamm [152], who describe Pareto
sets on graphs, and adapts their description to the continuous setting of multifield
f : M 7→ Rn, M ⊆ Rd with an adjusted terminology. Note that f can be described as
a set of n individual single-fields fi : M 7→ R such that f = (f1, . . . , fn).

Multi-criteria Optimization Stadler and Flamm adapted definitions from Ehrgott
and Gandibleux [59]. In their context, a (multiobjective) combinatorial problem is
defined as X ⊆ 2A, with A a finite set of configurations, several weight functions
wj : A 7→ Z, yielding a finite set of objective functions fi. Two usual examples, given
by Ehrgott and Gandibleux are

fi(S) =
∑
a∈S

wi(a), or

fi(S) = max
a∈S

wi(a),



22 Chapter 4. Definition

with S ∈ X . The problem is solved by identifying

”min”S∈X(f1(S), . . . fn(S))

for some meaning of "min". In other words, optimization aims to find a configura-
tion S ∈ X such that no other configuration T ∈ X is better than S. Better in terms
of Stadler and Flamm means, that fi(S) ≤ fi(T ) for all i, who defined the optimal
solutions as Pareto minima.

In this thesis and several other works [43, 169, 150], this definition is extended
from the finite configuration space to continuous manifolds.

To compare two different points x and y in M with respect to their corresponding
values of the multifield field f , it is said that x (weakly) dominates y if fi(x) ≥ fi(y)
for all i = 1, . . . , n, and denoted as x � y. Furthermore, x strictly dominates y, written
as x � y, if x � y and there is at least one index i such that fi(x) > fi(y). x and y are
called comparable if either x � y or y � x holds, and incomparable (x ≺� y) otherwise.
Intuitively, comparability is based on the notion that all fields fi change in the same
way – all either increase or decrease – when moving from x to y.

Note that the relation � defines a partial order on the values of f :

Reflexivity Given a point x ∈ M, it is obvious that fi(x) ≤ fi(x) for all 1 ≤ i ≤ n.
Hence x � x holds.

Transitivity Given three points x, y, z ∈ M with x � y and y � z, this implies
that for all 1 ≤ i ≤ n, fi(x) ≥ fi(y) and fi(y) ≥ fi(z) and therefore also
fi(x) ≥ fi(z). Hence x � z holds.

Antisymmetry Given two points x, y ∈ M such that x � y and y � x hold. Hence,
for each individual fields fi it holds that fi(x) ≥ fi(y) and also fi(x) ≤ fi(y).
Since all fi are Morse fields, this implies that fi(x) = fi(y) and thus f(x) =
f(y).

In contrast to Stadler and Flamm, the manifold domain M is used to define a
open neighborhood U(x), a connected area of M without borders and containing
x ∈ M. This supports later visualization approaches by not only identifying global,
but also local critical points.

Definition 4.2.1. In this notation, a point x is called a (local) Pareto optimum if there
exists an open neighborhood U(x) containing x such that

∀U ′(x) ⊆ U(x), ∀y ∈ U(x) \ {x}, x ≺� y.

Similarly, x is a (local) Pareto minimum if it has comparable points y ∈ U(x) \ {x}, but
is weakly dominated by them, i.e.

∀U ′(x) ⊆ U(x), ∀y ∈ U(x) \ {x}, (x ≺� y) ∨ (x � y).

If, on the other side, x weakly dominates all comparable points in the neighborhood, such that

∀U ′(x) ⊆ U(x), ∀y ∈ U(x) \ {x}, (x ≺� y) ∨ (x � y)

holds the point x is defined as a (local) Pareto maximum. All other points are termed
regular.
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For the remainder of this work, Pareto optima, Pareto minima, and Pareto max-
ima are collectively referred to Pareto extrema. Thus, this thesis defines the sets

P+(f) of all Pareto maxima,

P−(f) of all Pareto minima,

Po(f) of all Pareto optima, and

P(f) of all Pareto extrema

for the multifield f , with P(f) also referenced as the Pareto set. If the field f is clear
from the context, it can be neglected, i.e. P is sufficient.

Obviously, P+(f) ∪ P−(f) ∪ Po(f) = P(f) holds directly implied by their defi-
nition. Note that in contrast to existing work [43, 169, 150] this thesis distinguishes
between three types of Pareto extrema instead of just Pareto optimality to consider
visualization and application tasks in current and future work.

The definitions are illustrated in Figure 4.1, which shows all types of points in
the Pareto set concept with two 1D fields. See, for example, the location x marked as
Pareto minimum. Both function g and h increase towards the left, while to the right
g decreases and h increases. Hence, to the right, the x is adjacent to incomparable
points and, to the left, x is adjacent to dominating points such that x is defined a
Pareto minimum.

Pareto optima (incomparable region)

Pareto maxima
Pareto minimum

function value

space 
h

g

FIGURE 4.1: Two fields g, h with individual critical points (red cir-
cles). The location of Pareto maxima and Pareto minima are indicated
by green and red doted lines, respectively. Pareto optima create two

connected areas, colored yellow.

It should be noted that in the single-field case (n = 1), minima/maxima are
Pareto minima/maxima according to this definition. Thus, in this regard, the ap-
proach is analogous to scalar single-field topology. Furthermore, for n > 1, each
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point that is maximal or minimal in at least one individual field is either a Pareto
maximum or Pareto minimum, respectively, or a Pareto optimum. In contrast how-
ever, other critical points, i.e. so-call saddle points, are not directly translated to
Pareto extrema and remain an open task.

To calculate the Pareto set, i.e. classify points as Pareto extremal or regular points,
it is necessary to identify the comparable points with respect to these points. Com-
parable points with respect to a point x are separated into those dominating x and
those dominated by x, resulting in the following definitions.

Definition 4.2.2. Given any open neighborhood U(x) with x ∈ U(x), for each field fi, the
set

H+
i,U(x)(x) := { y ∈ U(x) | fi(x) ≤ fi(y) }

is defined. Considering all fi, x is dominated by the local ascending set

H+
U(x)(x) :=

n⋂
i=1

H+
i,U(x)(x).

The local descending set H−U(x)(x) for point x and neighborhood U(x) is defined analo-
gously, and let H±U(x)(x) := H+

U(x)(x)∪H−U(x)(x) is the set of all comparable points around
x restricted by U(x).

Note thatH+ andH− can be calculated iteratively withH+
i andH−i , respectively,

and can be used as an alternative definition of the Pareto set. This equality is directly
implied by the corresponding definitions and yields the following lemma.

Lemma 4.2.1. The point x ∈M is a Pareto optimum, iff there exists a U(x) such that

H±U ′(x)(x) := {x}∀U ′(x) ⊆ U(x).

The analogous lemma for H+ and Pareto maxima as well as H− and Pareto min-
ima are also direct implication of their definitions. The restriction to consider all
subsets U ′(x) ⊆ U(x) can be dropped, if f is linear in U(x).

Proof. The multifield f is linear, iff every individual field fi is linear. Hence each fi
is of the form g(x) = a + b · x for some scalar a ∈ Rd and b ∈ R. Without loss of
generality, it can be assumed that a = ~0. Let y ∈ H+i, U(x)(x) exist with y 6= x such
that fi(x) = g(x) ≤ g(y) = fi(y).

For every subset U ′(x) ⊆ U(x), a point z exists such that z = (1− t) · x+ t · y for
some t ∈ (0, 1), since U ′(x) is open. For this point z the linear function g implies that

fi(z) = g(z) = (1− t) · g(x) + t · g(y) ≥ (1− t) · g(x) + t · g(x) = g(x)

and z ∈ H+i, U ′(x)(x) hold. This argument can be repeated for every individual
field fi such that z ∈ H+U ′(x)(x) and thus H+i, U ′(x)(x) 6= {x} is proven.

With respect to the focus of this thesis, an alternatively definition of H+ arises
under the assumption that fi are linear inside a neighborhood U(x) and each field
can be written in the form g(x) = a + b · x, or more specifically in the form gi(x) =
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fi(0) +∇fi(x) · x. Note that for these linear fields ∇fi is constant over all x ∈ U(x).
Hence, for two points x, y ∈ U(x) and every 1 ≤ i ≤ n it holds that

fi(x) ≤ fi(y)⇔ gi(x) ≤ gi(y)⇔ ∇fi(x) · x ≤ ∇fi(x) · y

and therefore
fi(x) ≤ fi(y)⇔ 0 ≤ ∇fi(x) · (y − x).

As a direct implication, the local ascending set can be defined over the gradients
∇fi(x) for the individual fields fi. In other words, for two points x, y, the inequality
fi(x) ≤ fi(y) holds if y is contained in the set

H+
i,U(x)(x) := { y ∈ U(x) | (y − x) · ∇fi(x) ≥ 0 }.

Also the local descending set can be alternatively defined through the term (y − x) ·
∇fi(x) ≤ 0. This alternative definition allows for an alternative implementation, as
shown later, and opens the Pareto set concept to be understood from different points
of view.

Intuitively, Pareto extremal points represent barriers across which the compo-
nents of the multifield function f cannot be jointly increased or decreased further.
In other words, it is not possible to strictly increase one or more components while
keeping the others equal. See for example Figure 4.1, where the barriers are clearly
visible through the yellow Pareto optimal regions. It is therefore motivated to join
adjacent points that are Pareto extrema into connected components, thus a barrier.
More specifically, two points are called connected if their are adjacent in the domain.
This relation is transitive, such that its reasonable to identify maximally connected
subsets among the Pareto extrema as connected components in the Pareto set P. For
reference in following parts of this work, E(f) denotes the set of connected compo-
nents in P(f).

4.3 Global Ascending and Descending Sets

To understand the global structure of the multifield f , an intuitive notion is derived
from paths along which all individual fields increase or decrease, and connect min-
imal and maximal structures via such paths, in rough analogy to vector field topol-
ogy.

Definition 4.3.1. To achieve this, an ascending path p+ : [0, 1] → S is defined as a
continuous map from the unit interval to S with the property that

f(p(s)) � f(p(t)) for all 0 ≤ s ≤ t ≤ 1.

Intuitively, as one traverses p+, all individual fields fi do not decrease. This defi-
nition implicitly requires that any two points on an ascending path are comparable.
If two points x, y are connected by some ascending path p such that p(0) = x and
p(1) = 1, in the remainder of the thesis this circumstance is denoted as x y.

Definition 4.3.2. Using ascending paths, the global ascending set of a point is defined as
the set of all points in S which can be reached by an ascending path from x, i.e.

C+(x) := { y | ∃p+ s.t. p+(0) = x ∧ p+(1) = y} = { y | x y}.
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Obviously, descending paths and global descending sets can be defined in complete
analogy. Note the relation between the global and local ascending set: H+

U(x)(x) =

C+(x) ∩ U(x) for a sufficiently small neighborhood U(x), but not in general since
an ascending path can leave U(x), loop around and reenter the neighborhood, thus
containing both points in- and outside of H+

U(x)(x). Therefore, in this work different
notations for global and local ascending sets are used. Figure 4.2 illustrates the dif-
ference in a small example on a 3 × 3 data point set with two sets of values. Both
images show the neighborhood of the Pareto minimum (0, 0) as hatched area. Hence,
the local ascending set contains the points (1, 1) and (6, 6). The global ascending set
is implied by the path (black lines) originating from (0, 0). Note that, among others
points, (6, 6) is only contained in the global ascending set in the first image (a) and
not in the second (b) due to the barrier of Pareto optima.

0,0 2,2

7,-1 7,-1 3,3

6,6 4,45,5

1,1

(a) H+
U(x)(x) = C+(x) ∩ U(x)

0,0 2,2

7,-1 7,-1 7,-1

6,6 4,45,5

1,1

(b) H+
U(x)(x) 6= C+(x) ∩ U(x)

FIGURE 4.2: 3×3 data points with two sets of values. Pareto maxima,
Pareto minima, and Pareto optima are colored green, red, and yellow,
respectively. A neighborhood around the point with values (0, 0) is
indicated by a hatched area. Ascending paths from this points are

indicated by a black line.

Furthermore, an ascending path connecting two points x and y, i.e. x y, is not
necessarily unique. Consider for example the 2D-function f(a, b) = a and the two
points x = (0, 0) and y = (1, 1). Any path from x to y with an monotone increasing a
coordinate, regardless of the b coordinate, is an ascending path, for example (0, 0)→
(0, 1) → (1, 1) and also (0, 0) → (1, 0) → (1, 1). Hence, it is beneficial to think of
ascending and descending paths as extensions of the notion of monotone paths for
single scalar fields in contrast to steepest gradient paths. Note that ascending and
descending sets behave like mirrors: If a point x is inside the ascending set of a point
y then y is in the descending set of x.

Lemma 4.3.1. To show that local and global ascending sets are interchangeable for the defi-
nition of Pareto maxima, the following proof shows that for every point x ∈M(

∃U(x)∀U ′(x)⊆U(x)H
+
U ′(x)(x) = {x}

)
⇔
(
C+(x) = {x}

)
.
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Proof. Let y ∈ C+(x) be a point with x 6= y and x  y such that an ascending path
p+ exists with p+(0) = x and p+(1) = y. Let U(x) be any open neighborhood around
x that contains both x and y. For every subset U ′(x) ⊆ U(x), it is possible to find
j ∈ (0, 1], the smallest position such that ∀i∈[0,j]p[i] ∈ U ′(x), since x ∈ U ′(x) and
U ′(x) is open. Hence p+(j) ∈ H+

U ′(x)(x) with p+(j) 6= x exists.

Let U(x) a neighborhood around x such that ∀U ′(x)⊆U(x)H
+
U ′(x)(x) 6= {x}. As-

sume that some y ∈ U(x) is a point with y � x and x 6= y but without any
ascending path p+ between x and y. In other words, for every continuous path
p : [0, 1] 7→ M with p[0] = x and p[1] = y some position a, b ∈ [0, 1], a < b, exists
such that f(p(a)) ≺ f(p(b)) or f(p(a)) ≺� f(p(b)) holds. For any of these paths p, let
j ∈ (0, 1] be the smallest such positions. Note that p and j have to exists since oth-
erwise x is surrounded by incomparable points, i.e. a Pareto maximum or f is not
a smooth Morse function. Therefore, the section of the past from p[0] to p(j) define
an ascending path q(i) = p(i/j) that implies x  p(j) 6= x, p(j) ∈ C+(x) and thus
C+(x) 6= {x}.

Taking the union of ascending (resp. descending) paths over all points in a small
neighborhood and further over a set of points, allows the straightforward general-
ization of ascending and descending sets for Pareto extremal regions, i.e. elements of
E(f). To fix terminology, let P ∈ E(f) be a (connected) Pareto minimal region, thus
a union of multiple, Pareto minimal points, then C+(P ) :=

⋃
x∈P C+(x) is the (global)

ascending set of P . Again, (global) descending sets are defined in complete analogy.

4.4 Definition of the Reachability Graph

With the notation of connected components in P(f) and global ascending/descend-
ing sets, in this thesis an abstract view on the structure within the multifield f . The
structure represents the components E(f) and how they are connected by ascending
and descending paths. For the remaining chapters, component R1 reaches compo-
nent R2 (R1 R2), iff there exists a point x ∈ R2 such that x ∈ C+(R1).

Definition 4.4.1. Given the global ascending and descending sets for each connected com-
ponent in P(f), the reachability graph RG(f) = (V,E) for f is constructed. Each com-
ponent is translated to a node in the graph, i.e. a bijection b : E(f) 7→ V exists. For edges,
the graph contains a directed edge from nodes b(R1) to b(R2), iff R1 reaches R2. In other
words,

∀R1, R2 ∈ E(f),
(
R1 R2

)
⇔
(
(b(R1), b(R2)) ∈ E

)
.

Figure 4.3 sketches a scenario with four fields, each based on a sum of Gaussian
bell fields and each with a uni-single maximum in R2, R4, a minimum in R3, R4,
and a saddle in R1. The ascending and descending sets of R1 are colored in red and
green, the descending set for R2 is hatched to exemplarily indicate reachability. The
second image shows the reachability graph for this scenario. As a reminder, Pareto
extremal points represent barriers, such that ascending paths cannot move through
Pareto optimal regions, i.e. regions of incomparable points, or through Pareto max-
ima or Pareto minima. Hence, reachability among the connected components is not
transitive.

The general concept is able to classify points as Pareto maxima, Pareto minima,
and Pareto optima while the elements in E(f) can only be denoted as Pareto extrema
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R1 R5R3

R2

R4

(a)

B

R2

R4

R1 R5R3

(b)

FIGURE 4.3: An example configuration of Pareto extrema illustrating
the reachability graph, the global ascending and descending sets of
the connected component R1 (shaded red and green), as well as the

descending sets of R2 (hatched).

since they can also consist of a mix of these, see for example R1 in Figure 4.3 or the
connected component of Pareto extrema in Figure 4.1. Through the number of out-
going and incoming edges in the graph it is possible to give a refined classification of
the elements in E(f). Between Pareto maxima and Pareto minima can be distinguished,
if only ingoing, respectively only outgoing, edges exist at the corresponding node in
the reachability graph. If for a node incoming and outgoing edges exist, the corre-
sponding element in E(f) is denoted as a Pareto saddle. Again, note the relation to the
terminology of Reeb graphs, where nodes with only outgoing edges correspond to
minima, nodes with only ingoing edges correspond to maxima and all other nodes
correspond to saddle points [127, 32].

Also note that loops in the graph are possible. A current assumption is, that
some of these are based on numerical errors resulting from the triangulation of the
domain / the field. As a remark, other concepts like Jacobi sets seem to have similar
problems [113].

For a simple example, the input data as presented in Figure 4.4 is presented, a
ring of four vertices {v1, v2, v3, v4} connected by edges (v1, v2), (v2, v3), (v3, v4), and
(v4, v1). The field values of two fields are printed directly on the vertices while all
other points along the edges are linearly interpolated. The field values at the vertices
are: f(v1) = (1, 1), f(v2) = (2, 2), f(v3) = (3, 3), and f(v4) = (0, 4). Note that v1
and v4, and also v2 and v4 are incomparable such that these vertices and all points
included in the two edges between them are Pareto extremal and form a connected
component in P(f). However, v1 reaches v3 via a path over v2 such that the resulting
reachability graph contains only one node and a loop to itself.

Hence, it is necessary to refine the classification to ignore loops in the number of
ingoing and outgoing edges to define Pareto minimal, Pareto maximal, and Pareto
optimal elements of E(f).
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V1

V2

V3

V4

3
3

0
4

2
2

1
1

FIGURE 4.4: A simple example with two sets of scalar values over
four vertices and four edges. Vertex v1 is a Pareto minimum, colored
in green, v3 is Pareto maximal, colored in red, and vertex v4 and ad-
jacent edges, colored in yellow, are Pareto optimal. v1, v3, and v4 and
all points along the mentioned edges build on connected component
S, i.e. one element in E(f). Note that this component reaches itself via
the ascending path along the edges (v1,v2) and (v2,v3) which results

in a loop.

Definition 4.4.2. Let RG = (V,E) be the reachability graph for some multifield f and
v ∈ V some node in the graph. If the number of outgoing edges

out = |{u ∈ V | (v, u) ∈ E ∧ u 6= v}|

is zero (out = 0), the connected component in E(f) corresponding to v is called a Pareto
maximum. If the number of ingoing edges

in = |{u ∈ V | (u, v) ∈ E ∧ u 6= v}|

is zero (in = 0), the component is a Pareto minimum. If neither holds, the component is
called a Pareto saddle.

Additionally, note that an edge (g, h) in the reachability graph implies that the
connected component G reaches H , i.e. that

CG,H := {x ∈ S | x ∈ C+(G) ∧ x ∈ C−(H)} 6= ∅

holds, but it is possible that this set CG,H consists of multiple, separate connected
components. Hence, while not in the focus of this section, a multigraph with mul-
tiple edges between the nodes might be a more suited visualization. This and other
aspects, like for example a good placement of the edges according to CG,H is a possi-
ble topic of future work, while for the simplification approach described in Chapter 5
the graph as presented above is sufficient.
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4.5 Implementation for Piecewise Linear Multifields

In this section, implementation guidelines are provided to identify Pareto extremal
points in pseudocode. For the result described in later chapters, the programming
language C + + [155] is used to calculate the Pareto set, its related structures and
visualizations, but the pseudocode is flexible enough such that an alternative imple-
mentation in another languages is feasible.

Furthermore, for the purpose of implementing an algorithm that (de)classifies
points as Pareto extrema and calculates their ascending and descending sets, the
domain of the general concept is changed from continuous fields to piecewise linear
scalar fields given on the same simplical complex S of dimension d. In general,
the scalar values of the n fields are only given at the vertices and stretched over
the whole domain S through bilinear interpolation (see the corresponding section in
Chapter 3).

As a direct implication, if x, y ∈ S are two points inside the same simplex σ and
do not lie on its faces / border, the set of comparable points with respect to x is
related to the set of comparable points with respect to y simply by a translation.

Lemma 4.5.1. If any point inside a simplex σ is Pareto maximal, minimal, or optimal, all
points y ∈ σ are Pareto maximal, minimal, or optimal, respectively.

Proof. Let x ∈ σ be Pareto minimal, thus in a small neighborhood Uε(x) := {u ∈ σ |
|x− u| < ε} ⊆ σ around x all points are either incomparable or dominating x. Note
that this also holds for all subsets Uε′(x) ⊆ U(x), for any ε′ < ε. Let y ∈ σ be any
other point inside the simplex with a neighborhood Uε′′(y) ⊆ σ with ε′′ < ε.

Since all fields fi are linear inside σ, specially in Uε′′(y) and Uε′′(x), they can be
approximated with fi(x) = ai · x+ bi for some variables ai, bi ∈ R, 1 ≤ i ≤ m.

Let x′ ∈ Uε′′(x) be any point near x, i.e. x′ = x + z for some |z| < ε′′, for which,
w.l.o.g. fi(x) < fi(x

′) holds.

fi(x) < fi(x
′)⇒ ai · x+ bi < ai · x′ + bi = ai · (x+ z) + bi.

Hence,
ai · x+ bi < ai · (x+ z) + bi ⇒ 0 < ai · z,

and thus,
fi(y) = ai · y + bi < ai · (y + z) + bi.

This can be shown analogously for every other field fi as well as for cases with
fi(x) > fi(x

′). Hence, if either x � x′, x ≺ x′ or x ≺� x′ in some neighborhood
Uε′′(x) holds, for any y ∈ σ a y′ ∈ Uε′(y) is found such that y � y′, y ≺ y′, or y ≺� y′,
respectively, holds.

As a direct implication, the ascending and descending sets of x and y are related
by translation and restriction to σ. As illustration, see how the ascending sets for
x and x′ in Subfigure 4.5(a) are of the same shape and size, if they would not be
restricted to the triangle. This does not hold if x or y lie on a face, in other words in
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a simplex of dimension d′ < d. Then, x is located inside multiple simplices σj and
the ascending set H+(x) is the union of multiple local ascending sets:

H+(x) :=
⋃
j

H+
σj (x).

The images in Figure 4.5 illustrates this behavior inside 2D simplices.

(a) (b)

(c) (d)

FIGURE 4.5: Different configurations with two fields over a selection
of triangles to illustrate the concept of ascending (red) and descend-

ing sets (green).

Hence, to determine Pareto extremality, the implementation outlined in List-
ing 4.1 starts by checking for each simplex whether its barycenter is a Pareto ex-
tremum. As proven above, iff one point in the interior is Pareto extremal, all interior
points are Pareto extremal and of the same type.

The algorithm tests each d-simplex σ ∈ S by computing the ascending set H+
σ (x)

that is the intersection of the m half-spaces H+
σ,i(x) at the barycenter x and the d+ 1

half-spaces given by σ’s faces. Note that the result is a polygon with at most m sides
and x as one of its corners. Inside σ, this polygon can be considered a cone starting
at x such that the ascending and descending sets can also be addressed as ascending
and descending cones, respectively.

The implementation starts with the simplex σ and successively clips it by the
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half-spaces that originate from non-zero gradients. This process is illustrated in Fig-
ure 4.6. In this image, a triangle is reduced by three half-space, indicated by three
thick lines. The remaining area is colored in green and its representation as a simpli-
cal complex is indicated by thinner lines.

FIGURE 4.6: Successive clipping of a triangle by half-planes originat-
ing from three gradients at the barycenter to determine H+

σ (x) (green
region).

Because, in general, a clipped simplex is no simplex but a polyhedron that can
always be represented by the union of at most d simplices, a list of simplices is stored
instead of a polyhedron as the clipping result. As each additional half-space intersec-
tion potentially doubles the number of simplices in this list, the worst-case runtime
is in O(dk).

For 2D and 3D the Marching Triangle and Marching Tetrahedra methods can be
used [99]. Note that for this implementation only the field values at the barycenter
and the vertices are needed and not their domain coordinates.

The function hasCone determines if the barycenter with field values v has an as-
cending set inside a triangles given by its three field values vi at the corners. The
values are implemented as n-vectors, with n the number of separate fields. If the
boolean flag ascending is set false, the descending set is calculated instead. In this
pseudocode, each individual field fi is considered recursively and the current trian-
gle is split into subtriangles containing only points with values larger than v[i]. The
subtriangles are are encoded in the set denoted sub_tri in the code. Each element of
sub_tri contains first the number of new subtriangles and a sequence of triples indi-
cating the new vertices of the each subtriangle. Each triple consists of three indices.
If an index t is > 3, the new vertex has the old values vi[t-3]. Otherwise, the field
intersects the triangle between the vertices of t and t+ 1 modulo 3. The intersection
and thus the new values are calculated implicitly.

To choose the element of sub_tri that encodes the intersection of the triangle with
fi(v), note that every intersection of a triangle corresponds to one of the 23 = 8
classes, depending which of the three vertices is inside or outside the remaining
part of the triangle. Hence, each class can be described by a 3-bit vector. Figure 4.7
shows examples of these eight classes.

If at the end all subtriangles are empty, hasCone returns false. Otherwise, if at
least one subtriangle is non-empty, thus a set of points exists where all field values
are larger than those at the barycenter, a boolean true is sent back through the recur-
sion tree to be the output of hasCone.
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FIGURE 4.7: The 8 classes of possible triangle intersections with their
corresponding 3-bit descriptor. The thick black line marks the inter-
section, the gray area marks the remaining triangle part and the thin

black line indicates possible subtriangles.

As a reminder, since the fields are piecewise linear inside the simplices, it is suf-
ficient for each simplex to run hasCone only for the field values at its barycenter as
input v and, as input vi, the corresponding information from each adjacent triangle
(highest dimensional simplex). These calculations can easily be multi-threaded.

LISTING 4.1: Recursive pseudocode for the ascending or descending
set of a point in a triangle.

1 i n t hasCone ( values v , values vi [ 3 ] ,
bool ascending , i n t n )

3 {
// a l l f i e l d s are considered

5 i f ( n >= v . s i z e ( ) )
{

7 // does the current t r i a n g l e e x i s t ?
i f ( (| vi [0]− vi [ 1 ] ) | < 0 or

9 (| vi [1]− vi [ 2 ] ) | < 0 or
(| vi [2]− vi [ 0 ] ) | < 0 )

11 re turn f a l s e ;

13 re turn true ;
}

15

i n t s u b _ t r i [ 8 ] [ 7 ] = {
17 { 0 , } , { 1 , 0 , 2 , 3 , } , { 1 , 1 , 0 , 4 , } ,

{ 2 , 1 , 2 , 3 , 1 , 3 , 4 , } , { 1 , 2 , 1 , 5 , } ,
19 { 2 , 0 , 1 , 5 , 5 , 3 , 0 , } ,

{ 2 , 0 , 4 , 2 , 2 , 4 , 5 , } , { 1 , 3 , 4 , 5 , }
21 } ;

23 // the 3−b i t d e s c r i p t o r as na tur a l number
i n t index = 0 ;
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25

// c a l c u l a t i n g the d e s c r i p t o r
27 i f ( ascending )

{
29 i f ( v i [ 0 ] [ n ] >= v [ n ] ) index |= 1 ;

i f ( v i [ 1 ] [ n ] >= v [ n ] ) index |= 2 ;
31 i f ( v i [ 2 ] [ n ] >= v [ n ] ) index |= 4 ;

}
33 e l s e

{
35 i f ( v i [ 0 ] [ n ] <= v [ n ] ) index |= 1 ;

i f ( v i [ 1 ] [ n ] <= v [ n ] ) index |= 2 ;
37 i f ( v i [ 2 ] [ n ] <= v [ n ] ) index |= 4 ;

}
39

i n t [ ] edge = s u b _ t r i [ index ] ;
41 // key to c a l c u l a t e the s u b t r i a n g l e s

i n t n t r i = edge [ 0 ] ;
43 // number of s u b t r i a n g l e s

45 bool found = 0 ;

47 // generate each s u b t r i a n g l e
f o r ( i n t t r i =0 ; t r i < n t r i ; ++ t r i )

49 {
values nval [ 3 ] ;

51

f o r ( i n t i =0 ; i <3 ; i ++ )
53 {

i n t j = ( t r i ∗3)+ i +1;
55 i f ( edge [ j ] >= 3 )

// no i n t e r s e c t i o n , use old ver tex
57 nval [ i ] = vi [ edge [ j ]−3] ;

e l s e
59 {

// f i e l d i n t e r s e c t s t r i a n g l e
61 // between v0 and v1

i n t v0 = ( edge [ j ] ) mod 3 ;
63 i n t v1 = ( edge [ j ] + 1 ) mod 3 ;

65 // r e l a t i v i n t e r s e c t i o n p o s i t i o n t
double t = vi [ v1 ] [ n ] − vi [ v0 ] [ n ] ;

67 i f ( t != 0 )
t = ( v [ n ] − vi [ v0 ] [ n ] ) / t ;

69

// new value a t t h i s p o s i t i o n
71 nval [ i ] = (1.0− t )∗ vi [ v0 ] + t ∗vi [ v1 ] ;

}
73 }

75 // r e c u r s i v r l y i n t e r s e c t s u b t r i a n g l e s
// with next f i e l d n+1

77 i f ( hasCone ( v , nval , ascending , n+1 ) )
found = true ;

79 }

81 re turn found ;
}
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4.5.1 Parallel Computation of the Pareto Set

For each barycenter of a simplex, the hasCone code is run for each adjacent simplex
of highest dimension. For example for the previous Figures 4.5 and 4.6, to identify
the type of all points on an edge, excluding its two end points, the ascending and
descending sets of the edge’s barycenter have to be calculated in all adjacent trian-
gles, usually two.

If, for example, the ascending set for x in any triangle is found to be non-empty,
x cannot be a Pareto maximum. Otherwise, if all ascending sets in all adjacent tri-
angles are empty, x has to be a Pareto maximum. As usual, this idea works anal-
ogously for descending sets and Pareto minima. The implementation guideline in
Listing 4.2 therefore annotates each simplex ,regardless of its dimension, with two
boolean variables: is_minimum and is_maximum, with initial value true. When
processing a d-simplex σ, the algorithm also processes each of its adjacent simplices
σ′ of dimension d′ < d by computing H+

σ (x) and H−σ (x) for the barycenters x of
each σ′ using the clipping algorithm described above and sets, if necessary, their
is_minimum and is_maximum booleans to false. When all d-simplices have been
processed in that manner, the two booleans of each simplex of lower dimension are
also set and classify it as either Pareto optimum, Pareto minimum, Pareto maximum,
or as aregular simplex.

LISTING 4.2: Pseudocode to identify/classify Pareto extremal sim-
plices in a simplical complex.

void f indPare to ( )
2 {

f o r a l l ( t r i t r i a n g l e s ) {
4

values val [ 3 ] = {
6 t r i [0]−> value ,

t r i [1]−> value ,
8 t r i [2]−> value ,

} ;
10

// f i r s t , t r i a n g l e i t s e l f
12 {

values vcen =
14 barycenterOf ( t r i ) . value ;

16 i f ( hasCone ( vcen , val , true , 0 ) )
t r i −>is_maximum = f a l s e ;

18

i f ( hasCone ( vcen , val , f a l s e , 0 ) )
20 t r i −>is_minimum = f a l s e ;

}
22

// next , edges
24 f o r ( i n t i =0 ; i <3 ; ++ i )

{
26 i n t e0 = t r i [ ( i +0) mod 3 ] ;

i n t e1 = t r i [ ( i +1) mod 3 ] ;
28

// look up t h i s edge
30 edge ed = findEdge ( e0 , e1 ) ;

32 values vcen =



36 Chapter 4. Definition

barycenterOf ( ed ) . value
34

i f ( hasCone ( vcen , val , true , 0 ) )
36 ed−>is_maximum = f a l s e ;

38 i f ( hasCone ( vcen , val , f a l s e , 0 ) )
ed−>is_minimum = f a l s e ;

40 }

42 // check v e r t i c e s
f o r ( i n t i =0 ; i <3 ; ++ i )

44 {
value vcen = t r i [ i ]−>v ;

46

i f ( hasCone ( vcen , val , true , 0 ) )
48 t r i [ i ]−>is_maximum = f a l s e ;

50 i f ( hasCone ( vcen , val , f a l s e , 0 ) )
t r i [ i ]−>is_minimum = f a l s e ;

52 }
}

4.5.2 Interactive Computation of the Pareto Set

The definition of the Pareto set is based on information from all involved fields fi.
In detail, to decide if a point is Pareto extremal or regular, the intersections of the
ascending set, H+

i,σ, and the descending set, H−i,σ, need to be calculated for all 1 ≤
i ≤ n. However, it this section it is shown that only a subset of fields is necessary to
define these two sets, given piecewise linear fields over a simplical complex. Hence,
if a new field is added to f , the recalculation of the Pareto set requires only this
subset and the added field, while the Pareto set based on the previous set of fields is
already visualized as an interim result.

This observation provides two advantages to the Pareto set concept. It allows for
a more efficient implementation of the hasCone-method than with the marching tri-
angle algorithm for 2D domains, and thus allows a more effective data exploration.
The effect of individual fields on the Pareto set visualization can be quickly explored
by inserting or removing them to/from a already processed multifield. Also, the re-
sults for subgroups of the multifields can be efficiently saved and combined without
a recalculation of the Pareto set based on the complete multifield.

To reduce the number of necessary recalculation steps upfront, the following two
observations are to be considered: First, let x ∈ M be a Pareto optimum. For every
y ∈ U(x) in a sufficiently small, open neighborhood around x, there are two fields
fi, fj such that fi(x) < fi(y) and fj(x) > fj(y). Hence, adding another field does not
change x into a regular point. Therefore, only regular points need to be recomputed
when a new field is added.

Second, let x ∈ σ be a regular point such that the ascending set is non-empty, i.e.
H+
σ (x) 6= {x}. As stated in the previous section and in Chapter 1, the work focuses

on 2D simplical complexes with fi, 1 ≤ i ≤ n, linear in σ. Thus, each H+
i,σ(x) is a

half-plane restricted to σ and H+
σ (x) is a 2D-polygon with x as a corner. Obviously,

each corner can only be adjacent to two edges and those are sections of either some
coface of σ or the border of H+

i,σ(x), for some 1 ≤ i ≤ n. This is true since H+
σ (x)
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is the finite intersection of all H+
i,σ(x) restricted to σ. For reference, the border of

H+
i,σ(x) in σ that is also the border of H+

σ (x) is defined as

B+
i,σ(x) := { y ∈ σ | (y − x) · ∇fi(x) = 0 ∧ x � y }.

This definition implies that B+i, σ(x) = {x} iff H+
i,σ(x) does not "contribute" to the

border. As a reminder, since all half-planes H+
i,σ(x) intersect at x, the 2D-polygon is

actually a cone restricted to σ.

(2, 2, 2)

(2, 1, 1) (1, 2, 1)

f3

f2 f1

x

a

a

FIGURE 4.8: Example of a triangle with f = (f1, f2, f3).

Figure 4.8 provides an illustration of the two presented observations. Note that
the third field f3 does not contribute to the borders of the ascending or descending
set which are colored in red and green, respectively. All three fields are linear inside
the triangle σ and can therefore clearly be defined through the field values at the
three vertices of σ. For the point x ∈ σo, the isolines {y ∈ σ | fi(x) = fi(y)} for each
field are drawn and labeled with their corresponding field fi.

In higher dimensions, the ascending cone can be bordered by arbitrary many
hyperplanes. For two dimensions, however, only two hyperplanes, given by two
fields, are needed to define the ascending set. In this thesis, these indices with
B+i, σ(x) 6= {x} are denoted as defining indices for σ.

Analogous considerations hold for the descending set. Due to the linearity of the
field value distribution inside σ, the borders of both the ascending and descending
set are point-symmetric with respect to x and defined by the same field indices.
Hence, for each triangle, only two indices are needed to recompute both sets.

The thesis uses the above observations in the following algorithm. In a first iter-
ation, considering at least two fields, the the two indices i, j defining the borders of
the ascending set are identified for each triangle. In the next incremental steps, its
sufficient to check if H+

n+1,σ(x) intersects the ascending set fulfilling either

B+
i,σ(x) ∩H+

n+1,σ(x) = {x} or B+
j,σ(x) ∩H+

n+1,σ(x) = {x}.
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If both conditions are true, fi and fj remain the most restrictive fields, i.e. i and
j remain the defining indices. Hence, no additional field is needed to define the
ascending set. Otherwise, if one of these conditions does not hold, i or j are re-
placed by another field as an additional defining index. If both terms are false, then
fi(y) ≥ fi(x), fj(y) ≥ fj(x) and fn+1(y) < fn+1(x) for all points y in the previously
ascending set. Due to the point-symmetry of the sets, the reverse of these relations
also holds for the descending set. Hence, x is surrounded by incomparable points
and becomes Pareto optimal.

As a reminder, Lemma 4.5.1 shows that it is sufficient to apply this idea only to
a single point inside each simplex, for example the centroid. Furthermore, let σ∗ be
the union of all cofaces of σ, i.e. edges and vertices. Based on the linearity of fi it
holds that

B+
i,σ(x) ∩H+

n+1,σ(x) = {x} ⇔ B+
i,σ∗(x) ∩H+

n+1,σ∗(x) = {x},

and
B+
j,σ(x) ∩H+

n+1,σ(x) = {x} ⇔ B+
j,σ∗(x) ∩H+

n+1,σ∗(x) = {x}.

Hence, for each triangle, the incremental step is reduced to the simple computa-
tion of line intersections along the edges. In detail, the intersection of the two points
B+
i,σ∗(x) andB+

j,σ∗(x) with the linesH+
n+1,σ∗ . For an efficient implementationH+

n+1,σ∗

can be further separated into at most three subsectionsH+
n+1,σ∗∩ek, k ∈ {1, 2, 3}with

ek the three edges of the triangle σ.

Figure 4.9 illustrates the idea of incrementally increasing the number of individ-
ual fields on a set of four artificial functions. It shows how the Pareto set grows by
incrementally adding fields to the data set. In this example, the fields consists of
Gaussian functions with minima in each corner and maxima that are located cen-
tral at the top and bottom side of the domain. Note that the location of extrema is
slightly shifted vertically and horizontally for each fields.

Note how the Pareto set in image (a) only consist of individual points colored in
red or green. With only one field, the ascending and descending sets are half-spaces
without any clipping and no incomparable points exist. For (b) - (d) the number
of incomparable points increases which is reflected in the images by the amount of
white areas in the triangles as well as the size of the Pareto set. Analysis of the images
can, for example, consider that the increase of incomparable points going from im-
age (c) to image (d) is less stronger than the increase between (a), (b), and (c). Hence,
it is sufficient for additional investigations on how and where the functions differ
or are most similar, to focus on the Pareto set for only the first three fields. Other
important aspects that are revealed by an incremental analysis are, for example, that
the fourth field mostly affects the upper left part of all connected components of the
Pareto set in image (d) as those areas remain to regular regions in image (c), i.e. be-
fore field f4 is added to the multifield.

The reverse order of images illustrates the idea of incremental removal of in-
dividual fields from the multifield. Other insertion or removal sequences would
obviously result in other Pareto sets than shown in these images, excluding the final
Pareto set, based on all four fields, which is invariant to these sequences.
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(a) f1

(b) f2

FIGURE 4.9: The Pareto set, colored in strong green, red and yellow
according to their Pareto type. In each triangle the ascending and
descending set for its barycenter are colored in less intensive colors

according to the color scheme in previous Figures.
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(c) f3

(d) f4

FIGURE 4.9: Pareto set and ascending and descending sets (cont.)
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The implementation in 2D is outlined in the following pseudocode segment (List-
ing 4.3). The idea is that if the ascending cone for a point v inside a triangle exists, i.e.
is non-empty, it intersects with at least one edge in form of an interval. The interval
can be defined by its start and end point along the edge.

As done in the implementations in the previous subsections, let v be a vector
saving the field values of a point at a triangle t and vi the matrix saving the field
values of the three corners of t in its columns. The number of fields is given through
nFields and the flag ascending indicates if either the ascending or the descending
cone is to be calculated.

LISTING 4.3: Iterative pseudocode to determine the ascending or de-
scending set of a point in a triangle.

1 // f o r each edge of the t r i a n g l e
f o r ( i n t j =0 ; j <3 ; j ++ )

3 {
// the edge from v0 to v1

5 i n t v0 =( j +0) mod 3 ;
i n t v1 =( j +1) mod 3 ;

7

// i n i t i a l B+_ { i ,\ sigma ∗ }
9 // and B+_ { i ,\ sigma ∗ }

double min = 0 ,max = 1 ;
11

// f o r a l l f i e l d s
13 f o r ( i n t i =0 ; i <nFie lds ; i ++ )

{
15 // the r e l a t i v e p o s i t i o n

// where f _ i ( x ) = f _ i ( v )
17 double x = ( v [ i ] − vi [ v0 ] [ i ] ) ;

x = x / ( vi [ v1 ] [ i ] − vi [ v0 ] [ i ] ) ;
19

// H+_ { i ,\ sigma ∗ } i t e i t h e r from
21 // [ v0 , x ] or [ x , v1 ]

i f ( v i [ v0 ] [ i ] > vi [ v1 ] [ i ] )
23 {

// check i f B+_ { i ,\ sigma ∗ }
25 // i n t e r s e c t s H+_ { i ,\ sigma ∗ }

i f ( ascending )
27 {

i f ( min<=x ) {
29 min = x ;

}
31 }

e l s e
33 {

i f ( max>=x ) {
35 max = x ;

}
37 }

}
39 e l s e

{
41 i f ( ascending )

{
43 i f ( max>x ) {

max = x ;
45 }

}
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47 e l s e
{

49 i f ( min<=x ) {
min = x ;

51 }
}

53 }
}

55

i f ( (max − min ) > 0 )
57 {

// A ( p a r t i a l ) cone i s found
59 // i n t e r s e c t i n g the current edge .

re turn true ;
61 }

}
63 // a cone does not e x i s t

re turn f a l s e ;

This implementation allows for the continuous addition of fields. An obvious
extension to this implementation is to consider field deletion. However, removal
of fields is more complex, since Pareto extrema can change their status and become
a Pareto maximum, a Pareto minimum, or a regular point. While regular points
obviously remain regular, their defining indices can change. If, for some triangle,
the deleted field fi is one of the defining indices, then the status of that triangle can
only be determined if it is known (a) what the defining indices were before fi was
added, and (b) which fields were added after fi. Note that all those field additions
from (b) need to be recalculated sequentially, making the deletion of fields in the
front of the adding sequence computationally expensive. The same recalculation
can be done for Pareto extrema, assuming that before the addition of fi the triangle
previously contained regular points.

While it is in principle possible to store the sequence of defining indices to make
field deletion interactive, i.e. allowing the removal of arbitrary fields, this is rather
expensive due to the recalculation. Hence, it is reasonable to keep the sequence of
defining indices for each triangle small to avoid the memory problems that moti-
vated th incremental algorithm. It is also beneficial to only allow field deletion in
reverse order of their addition to avoid recalculation, similar to an undo-option.

As a final remark towards interactive calculation, by saving the defining indices
it is easy to combine the results of two separate multifields, given the same domain.
Instead of recalculating the Pareto set for the union of the two sets of fields, it is
sufficient to only consider the fields given by the two pairs of defining indices to
calculate the new, collective Pareto set, i.e. to only use four fields in each triangle.

4.6 Discussion

The Pareto set concept has the advantage that the approach works for arbitrary num-
bers of individual fields without a restriction in terms of the domain dimension. This
is especially advantageous in the context of visualization since the domains are usu-
ally two or at most three dimensional for such applications. Here, some existing
topology-based approached like the Jacobi set, are limited to only considere two or
three fields. However, it is often useful to consider more than just two or three fields,
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for example to better compensate or analyze uncertainty.

Furthermore, the results can be visualized directly within the domain and thus
combined with other maps, like selected individual fields or geographical informa-
tion of the domain, for example in the context of atmospheric research. The visual-
ization of the Pareto set and the complementing spatial information can be done, for
example, by two different media like color and height.

The fields are only compared according to their topology and gradients. Hence,
the Pareto set is invariant to scaling factors or measuring units of the individual
fields. However, the results remain sensitive to field inversion, i.e. the Pareto set
changes if instead of a field fi, its inversion −fi is considered. This detail makes
Pareto sets very suitable to maximal and minimal behavior among multiple different
scalar fields, as long as the fields are semantically related.

4.6.1 Analytical Examples and Visualization Ideas

To demonstrate the definition presented in this chapter and to indicate its relevance
for analysis purposes, the following analytical examples are presented. A general
concept, used in this thesis, is to color Pareto extrema based on their type. In detail,
Pareto maxima are colored green, Pareto minima are colored red, and Pareto optima
are colored yellow. This can be done either for each simplex separately or for each
component in E(f). For 2-simplical complexes, the local ascending sets, colored
red, and local descending sets, colored in green, for the barycenter of each triangle
can be used to visualize areas with regular points. For 3-simplical complexes the
visualization of the ascending and descending sets would obscure the Pareto set.
Hence, for 3D domains regular points are either omitted from the visualization or
indirectly presented with the reachability graph.

The created artificial analytical data set are sums of Gaussian bell functions as
presented in the corresponding section in Chapter 3 and approximated to piecewise
linear fields over a simplical complex.

The first data set in 2D, depicted in 4.10(e), is based on four fields, each with
two positive and two negative peaks and perturbed centers. Since only boundaries,
i.e. sequences of lines and points, can be Pareto minimal or maximal, the enclosed
Pareto optima can alternatively colored using the following code:

• light red for regions with mostly minimal Pareto boundary,

• light green for regions with mostly maximal Pareto boundary,

• and yellow for all other regions.

Note that this code approximates the definition of Pareto extremal nodes in the
reachability graph based on in- and outgoing edges. It is only an approximation
and equality cannot be guaranteed, however this visualization does not require the
calculation of the reachability graph and is therefore much faster.

Instead of the local ascending and descending sets, in Image 4.10(e), the visu-
alization is based on line-integral convolution (LIC) [27] of the angle bisection of
H+
σ (x) at each position x to depict a very rough approximation to the overall fields’

gradient behavior. In detail, the angle bisections of H+
σ (x) for regular points create a
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(e) (f)

FIGURE 4.10: Analytical examples. (a) Pareto extrema of four 2D
fields, each with two positive and two negative peaks, and line-
integral convolution depicting approximated gradient directions in
non-Pareto regions [27]. (b) Pareto extrema along with the global
ascending and descending sets for the five Pareto optimal regions.
For illustration, some global ascending/descending sets intersections
have been annotated with a bit string indicating the relation to the

Pareto extremal regions.

(piecewise constant) vector field. Given a randomized gray level image N , i.e. each
pixel has a random gray scale value, of the same size as the domain S, each pixel x
is colored with the following map m:

m(x) :=

∫ L

−L
k(s)N(px(s))ds

with px the path going through x, i.e. px(0) = x, following the vector field, and
2L a considered the path length. The kernel k defines the weights along the path
p. Common kernels found in mathematical literature [170, 11] for |u| ≤ 1 are for
example:

Uniform (box) k(s) = 1/2,

Triangular k(s) = 1− |s|,

Epanechinkov k(s) = 3
4(1− u2),

Quartic (biweight) k(s) = 15
16(1− u2)2, or

Gaussian k(s) = (2π)−
1
2 · e−

1
2
u2 .

For the corresponding image in Figure 4.10, the simple box kernel is used. The gen-
eral idea of LIC is that close points along the same path receive a similar value since
their are integrated over almost the same pixels. Otherwise, close points that are not
on the same path, i.e. on a parallel path, are integrated over different image pixels,
thus receive different values. Hence, LIC creates an image consiting of lines that run
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(b)

FIGURE 4.11: Analytical examples. (a) Pareto extrema of eight 3D
fields, each based on 3D Gaussian bells with three positive and three
negative peaks. The reachability graph is placed in the domain. The
nodes are placed at the gravity center of their corresponding elements
of E(f). (b) A graph layout that shows the reachability graph of the

multifield in (c). Generated by C.Heine with graphviz’s fdp [63].

parallel to a given gradient field. This concept is easy to implement and fast to com-
pute since the calculations are local and can be limited with 2L. It is a basic approach
to visualize vector fields.

The image shows five Pareto optimal regions and some Pareto minimal and
Pareto maximal regions at the boundary. Note that the Pareto optimal regions have
uneven boundaries and that the boundaries are not exclusively minimal or maximal
although the used Gaussian field would suggest the opposite, at least around the
location of minima and maxima of the individual fields. A possible reason for those
artifacts is the use of the piecewise linear approximations.

Points that are Pareto optimal are incomparable to their neighbors. Therefore,
a Pareto optimal region shows the lack of a clear consensus between the individual
scalar fields. Note that the size of a Pareto optimal region is a first visual indicator
on how close the fields are to a consensus. In detail, the image shows that the fields
have less common behavior around the two red Pareto minimal regions than around
the green Pareto maximal regions.

In Figure 4.10(f), the Pareto extremal regions are shown for another 2D data set,
but this time also the global ascending and descending sets are shown for each
Pareto optimal region. These are depicted by their colored boundary. Note that
each Pareto optimal region contains a large circular marker with a color equal to the
boundary color of the corresponding global ascending and descending set For exam-
ple, the blue boundary corresponds to the Pareto optimal region marked with "‘4" in
the lower left. Similar to Morse-Smale cells, an equivalence class can now be defined
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for each point based on the set of ascending and descending sets that contain them.

While these visualization strategies work for 2D, in 3D examples it is only feasi-
ble to show the boundaries of Pareto extremal regions as solid surfaces, as demon-
strated in Figure 4.11(a). This image shows another artificial data set that uses eight
fields each with three positive and three negative peaks, resulting in three Pareto
maximal and minimal regions, respectively. In the visualization, also two saddle-
like Pareto extrema emerge, thus in total eight connected components in the Pareto
set. An approach that works for any dimension is to show the reachability graph
of ascending and descending sets, as can be seen in Figure 4.11(b) for the same 3D
data set. The components in Figure 4.11(a) are classified and colored based on the
number of ingoing and outgoing edges of their corresponding nodes in the reacha-
bility graph, as defined previously in this chapter. Again, loops exist in the graph
due to Pareto minimal points reaching Pareto maximal points of the same connected
component and are based, most likely, on the inaccuracy of the triangulation.

4.6.2 Limitations

While the definitions work for continuous fields and and derived simplicial com-
plexes, they have a number of limitations with regard to the data and the visualiza-
tion.

Note that in the single-field case, where only one field f = (f1) is considered,
points cannot be incomparable. Therefore, every point y in a neighborhood of a
Pareto maximum x has to be dominated by x, i.e. x � y ⇒ f1(x) ≥ f1(y), which
is equivalent to x being a maximum for f1 in terms of single-field topology. This
equivalence also works for Pareto minima and single-field minima. However, the
definition of ascending and descending sets does not consider the number of con-
nected components in those sets. Thus, the definition does not distinguish between
regular points and those corresponding to so-called saddle points from single-field
topology. Nevertheless, the above illustrations (e.g. Figure 4.10) demonstrate that
single-field saddles, closely positioned in the domain but in different fields, can re-
sult in saddle-like structures.

Furthermore, data sets with a large number of small, localized structures and
flat regions contained in individual fields pose limitations to the method. Assume a
local maximum x for some field fi, i.e. for a neighborhood U(x) around x, it holds
that ∀y∈U(x)fi(y) < fi(x). Thus, x cannot be a regular point since this requires at
least on neighbor y ∈ U(x) with fj(y) ≥ fj(x) for all 1 ≤ j ≤ n, including j = i.
Obviously, this holds for minima alike. As a result, every local feature of any single
field creates a feature in the Pareto set visualization or, generally speaking noise from
the individual fields accumulates into the multifield.

On the other side, a non-critical point x with respect to a single field fi can be a
Pareto extremal point. This is especially true if there is another field fj with fi = −fj
for some neighborhood around x. Hence, all points inside that neighborhood are
Pareto extrema and create a large connected component in the Pareto set. Hence,
the Pareto set approach is more suitable for multivariate data, i.e. variables with a
similar semantic. This is the case for example if all variables are criteria for the same
phenomenon or for ensemble data sets.
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Obviously, other types of multifields without a common domain, such as point
data or a set of simulation results with different spatial resolutions, have to be pre-
processed and retriangulated to create the same domain for all fields.

Another limitations is the restriction to smooth Morse function. It is necessary to
define the continuous ascending and descending paths, enforces that every vertex
has only one set of scalar values, and also avoids problems with flat areas. In a flat
areas all fields are constant such that for any point x in that area ∀y∈U(x)f(x) = f(y).
Hence x � y and also y � x for all points y ∈ U(x), making x theoretically both
Pareto maximum and Pareto minimum but not a Pareto optimum. This is problem-
atic since it contradicts the case for non-flat regions where every Pareto optimum is
also Pareto maximum and Pareto minimum. Fixing the definition to allow for flat
regions is difficult however, since it is impossible to identify, based on local neigh-
borhood information, if a flat area corresponds to a valley or a plateau in the data
and thus should be considered minimal or maximal, respectively.

4.6.3 Runtime

It is easy to see that in the 2D case with simplical complex representation of the data,
the runtime is in O(3 · n · 7 · t) with n the number of fields and t the number of
triangles. For each simplex (triangle, edge, or vertex) the ascending and descending
set in all adjacent triangles has to be calculated. Only for one point per simplex the
Pareto type needs to be computed to determine the type of all points in that simplex.
With the implementation of hasCone in 2D, for each triangle all three edges have to
be considered, resulting in a factor 3 for the runtime.

For higher dimensions however, only the merging triangle algorithm is at hand.
In this case, the runtime is much longer because, in general, a clipped simplex is no
simplex, but can always be represented by the union of at most d simplices which are
stored as a list of simplices instead of a polyhedron. As each additional half-space
intersection potentially increases the number of simplices in this list, the worst-case
runtime is in O(dk).

Note that this runtime only holds for the calculation of the Pareto set. The reach-
ability graph needs even more time to create, as the number of global ascending sets
is extremely high. The implementation for 2D domains used for this chapter creates
the global ascending set for each connected component in the Pareto set separately.
Each edge at the component border, with vertices a and b, receives a value vector v
with vi = min{fi(a), fi(b)} for 1 ≤ n ≤ n. Since the fields fi are piecewise linear,
v is sufficient to describe the front of the ascending set. The value vector is passed
through the adjacent triangle to the neighboring edges to push the front of the cur-
rently calculated ascending set forwards. At each edge, with vertices a′ and b′, the
value vector is updated. W.l.o.g. let fi(a′) ≤ fi(b′), then

vnew
i = vi if fi(a

′) ≤ vi ≤ fi(b′),
vnew
i = fi(a

′) if vi ≤ fi(a′),

and otherwise the front does not reach that edge and is not further propagated. If
v is updated however, the ascending front is push to the next triangle. Each edge is
visited by the front of the ascending set in the worst case by each of its neighboring
edges, at least four times, the running time of the front propagation is in Ω(E ·E′ · 4)
with E the number of all edges in the simplical complex and E′ the number of all



48 Chapter 4. Definition

Pareto minimal edges. The running time for the implementation for 3D domains is
analogously Ω(T · T ′ · 4) with T and T ′ the number of all triangles and all Pareto
minimal triangles, respectively.

Note that the ascending front can visit each edge repeatedly with an updated
value vector, thus creating an even longer running time, even if piecewise linear
fields are considered and an assumption is possible that many paths run parallel and
thus can be summarized. It is however possible to adapt ideas from Morse-Smale
complexes and their calculation, since both concepts are slightly similar. However,
as shown in numerous works for Morse-Smale complexes, e.g. [77, 175, 148, 75, 149]
their calculation is rather complex and time consuming, too. Nevertheless, options
are discussed in this dissertation to reduce this run time problem in Chapter 6.3.
Also, as stated above, details like edge placement and the visualization as a multi-
graph is still an open discussion.
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Chapter 5

Simplification of Pareto Sets

As stated in the previous chapters, Pareto sets, and multifield visualizations in gen-
eral, are prone to cluttering due to many small, local structures in the data. All local
structures in the individual fields occlude the large multifield structure, and can
hence be considered as noise.

The removal of those local structures is often done in two steps. First, a deci-
sion function is applied to distinguish noise from potentially important information.
Then, the multifield data set is modified to remove the marked structures either im-
plicit in the visualization or explicit in the individual fields itself.

The presented multifield simplification methods described in the following sec-
tions are results from previous work, found in previous work [86].

5.1 Using Existing Single-Field Approaches

A straight-forward approach removes unwanted local structures in the individual
fields before the multifield analysis is applied. This also avoids computational over-
head in the latter.

For the single-field case, several approaches exists to either smooth or simplify
an individual field [138, 41, 50, 78, 72, 77, 162, 163]. To remain in the context of
topology-based methods, consider a Reeb graph or contour tree of a given data set
(see Section 3.2.2). Implicit simplification of the data is done through the simplifi-
cation of the graph structure, i.e. by merging two adjacent nodes into one [5]. As a
reminder, each node in the graph represents a critical point in the single-field topol-
ogy (minimum, maximum or saddle point). Each edge in the graph can be associ-
ated with the value different between its two corresponding nodes. This difference,
called persistence, can be considered the amount of work an explicit simplification of
that edge would cost and can be used for a decision function.

sort all edges based on persistence
starting from the lowest edge:

merge current edge
repeat until no edge with persistence < minP exists.

Note that a merge of two points might also change the persistence of their ad-
jacent edges. For example, consider a path a, b, c, d in a larger Reeb graph. The
distance d(a, d) is equal to d(a, b) + d(b, c) + d(c, d) and should stay the same after
a merge of b and c into a single node c′, since a simplification should only remove
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local structures. Hence, the new distances d′(a, c′) and d′(c′, d) have to be modified.
For example, let d′(a, c′) = d(a, b) and d′(c′, d) = d(b, c) + d(c, d). This is valid since
only points with the lowest persistence are merged such that no negative values are
created.

Note that it is possible that the new node c′ is regular in that Reeb graph, i.e.
only has one ingoing and one outgoing edge. Therefore c′ can be removed from
the Reeb graph completely, by connecting a and d directly with the new distance
d′(a, d) = d′(a, c′) + d(c′, d).

The implicit changes of the persistences at the edges also reflect the explicit
changes of the scalar values in the data. Two common approaches to do these data
changes are called carving and flooding. The latter is illustrated in Figure 5.1, in which
a small feature in a 1D function, created by a small peak x and a sink y, is removed.
The two critical points, corresponding to the peak and sink are marked by red and
green dotted lines, respectively. Flooding means that all points adjacent to y with
a scalar value between f(y) and f(x) are changed to f(x) + ε with ε > 0 inducing
a small descend towards x. Carbing means that all points adjacent to x with scalar
values between f(y) and f(x) and changed to f(y) − ε with ε > 0 inducing a small
ascend towards y. For further explanation and for information on an efficient imple-
mentation of a simplification algorithm using Reeb graphs, see work by Tierny and
Pascucci [162].

In contrast to guided simplification methods based on global structures, data
smoothing changes the data only based on local information. The method used in
later sections is derived from Gaussian blur [125], an image processing tool to re-
duce image noise and reduce detail. The function value at each point is set to a
weighted average of the value of that point’s neighbors with the Gaussian function
as weights.

As a reminder, the Gaussian function in two dimensions, where x and y is the
distances from the origin in the x- and y-axis, respectively, and σ the standard devi-
ation:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 .

The original point value receives the largest weight with a distances of zero, while
the neighboring points receive smaller and smaller weights as their distance in-
creases. Since the weights decrease exponentially with the distance, this smooth-
ing technique preserves boundaries and sharp edges in the data. Furthermore, the
weights converge towards zero exponentially fast so that the implementation uses
a distance variable after which all weights are approximated by zero. Hence, only
points inside a set neighborhood need to be considered for the weighted average.

5.2 Simplification based on Reachability Graphs (RGS)

While Chiang et al. [38] apply their contour tree-based smoothing technique to single-
field scenarios, an adapted approach for multifields is used in this thesis. For this ap-
proach, the global structure as represented by the reachability graph (see Section 4.4)
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FIGURE 5.1: Illustration of two single-field simplification methods.
(a) shows the unsimplified function and indicates the regions that
are to be flooded and carved as blue and red areas, respectively.
(b) shows the simplified function, if the flooding concept is applied,
while (c) depicts the simplified functions after the peak is carved

away.

is used to provide an abstract view on the domain-wide connections between con-
nected components of Pareto extrema, i.e. the elements of E(f). Simplification oper-
ations for this graph and how those operations are translated to actual modifications
to the data are discussed in this section. Additionally, following the two steps sim-
plification idea indicated in the introduction of this chapter, a suitable criterion to
find a good sequence of graph simplification operations are defined.

Given the reachability graph RG(f), there are two types of possible operations
that yield simplification of the graph and are therefore suitable to simplify the struc-
ture of E(f). All other operations to a graph structure can be done through a se-
quence of these two or their reverse actions.

Merge two adjacent nodes into a new one, which inherits the old nodes’ edges and
neighbors.

Purge a node and remove it along with every adjacent edge from the graph.

In detail, let RG(f) = (V,E) be a directed graph with nodes V and edges E ⊆
V × V . To merge a, b ∈ V into some c 6∈ V , the new graph RG′ = (V ′, E′) with
V ′ = {c} ∩ V \ {a, b} and E′ = E|a←c,b←c \ {(a, b), (b, a)} is created. The equation
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E|a←c,b←c \ {(a, b), (b, a)} means that every appearance of a or b in the set of edges
E is replaced with c and every loop that might get created through this renaming is
removed.

To purge a ∈ V , the new graph RG′ = (V ′, E′) with V ′ = V \ {a} and E′ =
{(x, y) ∈ E | x, y 6= a} is created. However, removal of any node with more than
one adjacent edge can result in a disconnected graph, which implies disconnected
data. However, since every reachability graph is connected, a purge operation must
be avoided during simplification. The only allowed purge is the removal of a leaf,
which is topologically equivalent to a merge operation of the leaf and its adjacent
node. Hence, for the graph simplification approach only merging of nodes needs to
be discussed.

5.2.1 Interpretation

A merge operation inRG can have different interpretations in terms of how the func-
tion f changes such that the new reachability graphRG′ is isomorphic to the original
RG(f) after the merge operation. For a contour tree representing a single field, there
are several ways as is, for example, presented by Tierny and Pascucci [162]. To pro-
vide a broad overview, three approaches to change f into f ′ which corresponds to
a merge of the reachability graph RG(f) into RG(f ′) are described. Note that more
efficient methods might be possible but remain open discussion.

Given an edge (R1, R2) connecting two connected components of P(f) R1 and
R2, either R1 or R2 can be removed, or these components are merged through a
connecting region of Pareto extrema. Figure 5.2 illustrates the changes to f that are
equivalent to a merge in the corresponding reachability graph RG(f). Assume that
R1 and R2 are elements in E(f) with the corresponding nodes R1 and R2 and an
edge (R1, R2). The hatched red and green areas are sections of the ascending and
descending set of R1, the unhatched are those of R2. The blue encircled region
describes the equivalence class of a regular point H+(R1) ∩H−(R2). It contains all
ascending paths that start from a point in R1 and end somewhere in R2. To merge
the nodes R1 and R2, they can be connected by Pareto extrema or one of them can
be replaced by regular points. In either case, it is not allowed to create any more
connected components in E(f) or loops in the reachability graph. Otherwise, the
changes to f do not correspond to the merge operation in the reachability graph.

Figure 5.2(b) illustrates the removal of R2. It shows the ascending and descend-
ing sets ofR1. Note how all paths from or toR2 are now re-connected toR1 without
creating circular paths or new Pareto extrema.

The functions are modified in such a way that all function values of the points
in R2 are iteratively moved towards R1. Figure 5.2(c) illustrates the idea behind
this pushing analogy on a one-dimensional example with two functions (orange and
blue) and two Pareto extrema with the same color scheme as in previouslz shown
images and as described in Section 4.6. The function values in the neighborhood
of moved points are interpolated to create the topological behavior as illustrated in
Figure 5.2(b).

The second option, removal of R1 to merge (R1, R2) in the reachability graph,
is symmetric to this illustration. However, these two options are not able to handle
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FIGURE 5.2: Illustration of the functional change if an edge corre-
sponding to a connection between R1 and R2 is merged. (a) and (b)
show the result of the changes to the ascending and descending sets
of R1 while (c) provides implementational ideas through a 1D exam-

ple.

loops, i.e. when R1 = R2. Because the removal results in regular points that do
not reach Pareto maxima or Pareto minima. This is a contradiction to the above
observation.

Hence, for the third option, i.e. connecting R1 and R2 through additional Pareto
extrema, the functions inside the blue circled area in Figure 5.2(a) are modified. All
ascending paths from any point of R1 to some point of R2 are contained in this area.
While a single line of Pareto extrema from some point in R1 to another in R2 also
connects these components, thus forcing the change of all points in the encircled re-
gions since otherwise loops from this connected component R1/R2 to itself are cre-
ated. This is, however, not topologically equivalent to the merge of (R1, R2). Hence,
all points inside the blue circled area are changed into Pareto extrema through a
modification of the multifield f .

As an example, consider the image from Chapter 4, also shown in the Figure 5.3,
with four vertices connected in a circle as a simple and compact illustration. The ver-
tices v1 reach v3 via a path through v2. A point along this path is chosen, here v2, and
change at least two of its function values, here f0 and f1. The first value is decreased
below min{f0(v1), f0(v3)} and the second value is increase above max{f1(v1), f1(v3)},
e.g. f ′(v2) = (0, 4). The function values for v1 and v3 remain unchanged while all
other points along the path are linearly interpolated. Note that all points along the
path become Pareto extremal.

In summary, two key elements for the simplification are illustrated in Figure 5.2(a).
First, given the area that contains all ascending paths from one element of E(f) to
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FIGURE 5.3: A simple example with two sets of scalar values over
four vertices and four edges. Vertex v1 is a Pareto minimum, colored
green, v3 is Pareto maximal, colored red, and the yellow colored ver-
tex v4 and adjacent edges are Pareto optimal. v1, v3, and v4 and all
points along the mentioned edges build on connected component S,

i.e. one element in E(f).

the other – the blue circled area in Figure 5.2(a) – all function values at the boundary
of that area and outside are not changed. Second, at least two functions are modi-
fied in such a way that their gradient vectors are inverted to each other for all points
inside that area.

5.2.2 Operation Sequence

The last step towards a viable simplification method is to determine a suitable order
of merge operations such that simplification addresses small-scale regions (e.g. re-
sulting from noise) with preference.

The previous paragraph outlines the merge of two nodes (a, b) either through
removal of R2, removal of R1, or through an additional connection between R1
and R2. The first option modifies only a very small part of H+(R1) ∩ H−(R2) and
all points of R2, the second option only some points in H+(R1) ∩ H−(R2) and all
points of R1 are changed, and for an additional connection between R1 and R2 it is
required to change all points in H+(R1) ∩H−(R2).

To estimate the amount of change to f required to transform a regular point x
into a Pareto optimum, the dominated and/or dominating points with respect to x
restricted to a small neighborhood of x are measured, i.e. H+

σ (x)∪H−σ (x) as defined
in Section 4.1, σ being the simplex containing x. If those points become incomparable
to x by small changes to f , x becomes Pareto optimal.

As a reminder, since the multifield f is assumed to be linear in σ, H+
σ (x) is an

intersection of n convex half-spaces, each with a hyperplane as border defined by
{ y ∈ σ | fi(x) = fi(y) } for 1 ≤ i ≤ n and σ.

Definition 5.2.1. Let x not be Pareto maximal. H+
σ (x) \ {x} 6= ∅ is a convex polyhedron

and the cone at x has an opening angle which reflects the local quantity of dominated points
invariant to the size of σ and the actual scalar values from f . In this thesis, this angle is
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denoted as α+
σ (x) ∈ [0, π]. If x lies on a face of some simplex, σ becomes a set of simplices to

which x is adjacent and α+ is calculated as the sum of opening angle in those simplices,

α+(x) :=
∑
σ∈T

α+
σ (x),

with T the set of all d-simplices containing x.

Due to the piecewise-linearity of the individual fields fi, the value α+ is con-
stant for each simplex. The piecewise-linearity also implies that inside d-simplices,
the ascending and descending sets are point symmetric. Hence the opening angle
for Pareto maxima, for which the ascending set is empty, is defined through the
descending cone, i.e. α−σ (x) or α−σ (x) . If x is Pareto optimal, both ascending and de-
scending sets are empty. It is therefore reasonable to define α+

σ (x) := 0 for all Pareto
optima x, although the opening angle does technically not exist.

In this thesis, the amount of required alterations to f to transform all points
R = H+(R1) ∩ H−(R2) into Pareto extrema is estimated using

∫
y∈R α

+
σy + α−σydAy.

However, note that the ascending and descending set for x are point symmetric at
x/ Therefore α+

σ (x) = α−σ (x) holds. Hence,
∫
y∈R α

+
σydAy equivalently reflects the

alteration to f except for a scalar factor.

To change a Pareto optimum x into a regular point, an optimization problem
must be solved for each point, which is only practical for small problem instances.
An obvious upper bound with the same approach as α+

σ is to measure all incompara-
ble points with respect to x restricted to a small neighborhood around x. For Pareto
optima, this is obviously the complete neighborhood, therefore an upper bound.

Definition 5.2.2. The reachability graph is augmented with the following weights such that
it becomes a weighted reachability graph RGw(f) = (V,E,w). For each edge (s, t) ∈ E,
corresponding to components S, T ∈ E(f), w(s, t) =

∫
y∈R α

+
σydAy + min{|S|, |T |} is

defined with R ⊆ H+(S) ∩H−(T ) as described above.

With this definition, w(R1, R2) is an estimate of the work needed to remove the
component R2 in the previous image. Furthermore, as the node R2 is removed, all
incoming and outgoing edges of R2 become incoming and outgoing edges of R1.
To adjust the weights without a recalculation of the ascending and descending sets,
w(R1, R2) is added to every relocated edge weight and sum the weights of multiple
edges, if those appear. The weights measure how much the functions at a point have
to be changed with respect to the halfplanes to turn a regular point into a Pareto
extremum. Note that these weights remain conservative estimations since in the
piecewise linear setting the change applied to one point also changes all other points
of the same simplex.

A greedy algorithm is applied to find a sequence of edge merges until a given
threshold is reached. In particular, the algorithm chooses the edge with minimal
weight, merges the two adjacent nodes as illustrated before by merging one of the
connected components into the other. Then the algorithm recomputes the remaining
weights and repeats the procedure until no edge with a weight smaller than the
given threshold can be found.

As noted in Section 4.6 through a set of analytic examples, errors in the trian-
gulation might create errors, i.e. wrongly classified Pareto extrema and loops in the
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reachability graph. However, these errors are small and local, i.e. they usually affect
only single simplices σ and the opening angles α+

σ (x) are rather small. Hence, loops
that are created through these triangulation errors have a small weight and are the
first ones to be removed by the greedy algorithm, via a merge of the adjacent node
with itself.

5.2.3 Implementation

The current implementation of computing the angle is limited to two dimensional
domains, specifically simplical complexes (triangulated grid) with scalar values given
at the vertices. The same algorithm as in Chapter 4 is used to identify the set of
Pareto extrema E(f).

The idea is to compute the ascending and descending set for each component
using the following algorithm. It begins at the Pareto minima, respectively Pareto
maxima, of the components and propagates a front along the ascending, respectively
descending, paths, extending it through individual triangles.

If the front encounters a Pareto extremum and a corresponding edge that is not
already in the reachability graph, such an edge is added. This is done until every
section of the front has stopped at a Pareto extremum. In each triangle, the corre-
sponding section of the global ascending or descending, set is saved such that in a
second step, the weights for each edge can be calculated in each triangle individu-
ally and then be accumulated. Note that the sections of the ascending or descending
sets, respectively, in the triangles are defined by at most six points, two along each
edge of the triangle; in other words, in the worst case, each triangle is visited by the
front three times. This makes the calculation of intersections straightforward.

Let c := |E(f)| be the number of connected components. The reachability graph
RG(f) has at most c2 edges, the calculation of the ascending and descending sets
and their intersection can be broken down to n linear problems in each of the m
triangles such that a worst-case running time in O(c2 ·m · n) is obtained. Note that
this is a pessimistic estimate, as G has typically fewer than c2 edges.

5.3 Simplification Based on the Comparison Measure Con-
tour Tree (CTS)

Simplification based on the reachability graph has a major drawback. If the number
of elements E(f) is relatively large, the simplification algorithm discussed in the pre-
vious section is costly, since the ascending and descending sets must be calculated
for every component.

The edge weightw(S, T ), based on the opening angle α+
σ (x) can however be used

to modify a simplification approach presented by Suthambhara and Natarajan [121]
for the Jacobi set of two scalar functions such that it works for the Pareto set for
arbitrarily many functions.

Suthambhara and Natarajan calculate a local comparison measure that reflects
local topological difference between the functions at each point x ∈ S. This measure
yields a scalar field f ′ from which a contour tree [32] is extracted. Each node v ∈ V
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corresponds to connected components in the level sets: {x ∈ S | f ′(x) = cv} for some
value cv. Each edge (a, b) corresponds to a connected region in

{x ∈ S | ca ≤ f ′(x) ≤ cb}

such that the level sets for the nodes a and b are subsets. Suthambhara and Natarajan
then proved that the hypervolume of this connected region is a conservative estimate
of the change in relationship between the two functions if specific graph operations
are applied to the contour tree.

Therefore their approach is extended by introducing a similar local comparison
measure with the same interpretation as in the work of Suthambhara and Natara-
jan. Here, this produces a second method to simplify Pareto sets with reduced com-
putational effort. In the following Section 5.4, both simplification techniques are
compared, among others to provide multiple, different points of views on multifield
simplifications and also to indicate some initial indications of a connection between
Jacobi and Pareto sets. This connection is discussed in detail in Section 6.2.

5.3.1 Comparison Measure

Suthambhara and Natarajan’s comparison measure is defined for every point in the
domain. It is a scalar invariant value that is also invariant to specific triangulations
of the domain, i.e. the size of the simplices. It reflects local topological differences
between the underlying functions. In the context of the Pareto set approach, strong
differences between the functions result in incomparable points, reducing the num-
ber of comparable ones and produces Pareto optima.

Hence, it is reasonable to replace the measure from Suthambhara and Natara-
jan [121] with 2 · (π − α+

σ (x)), the function from the previous section which reflects
an upper bound for the difference between the separate functions in f .

As discussed before, α+
σ is not defined for every point in S since σ is ambiguous

for some x, especially vertices. Following the mentioned work [121], α+ is averaged
at the vertices based on the values in the adjacent d-simplices. Through linear inter-
polation using these average values at the vertices, a continuous, piecewise linear
scalar field κf is received for S.

Note that for the Pareto optimal points for which no cone exists, κf equals π,
which directly implies that Pareto optima are maximal in κf . It is easily enforced
that every element in E(f) contains at least one Pareto optimum by adding new
functions.

Assume that an element in E(f) does not contain a Pareto optimum and therefore
only contains Pareto maxima and/or Pareto minima. For such a Pareto maximum x
withH−σ (x) 6= {x}, d new functions are added to f . Every new function is equivalent
to f0 except for a sufficiently small neighborhood U(x)∩H−σ (x) around x. Inside that
region, the positions with the function values f0(x) in the new functions are moved
by a sufficiently small ε such that these positions form a small d-simplex. The other
values for the new functions in U(x) ∩ H−σ (x) are set through linear interpolation.
Note that for every point inside that simplex and for every direction from that point,
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the function value increases while it decreases in another new functions. Hence, ev-
ery point inside that simplex is surrounded by incomparable points and is therefore
Pareto extremal.

However, since x is in the connected component and the new Pareto extrema are
all adjacent to x, the new functions do not increase |E(f)| and at most enlarge the
component including x. Also, they do not change κf drastically and only inside the
small neighborhood U(x).

Hence, for this work, it can be assumed that every element of E(f) contains at
least one maximum with respect to κf . Furthermore, since all Pareto optima have
π as value of κf , each element in E(f) can be associated with a unique connected
component in the level set {x ∈ S | κf (x) = π}.

Note that since the new functions are almost equal to f0, they can be neglected
for the calculation of κf except for small neighborhoods around some Pareto optima
where those function values differ from f0. Thus, only little computational effort is
required to create those new functions.

5.3.2 Contour Tree

Given κf , the approach in this thesis follows Suthambhara and Natarajan to con-
struct and simplify a contour tree. For the purpose of illustration, Figure 5.4 presents
the graph operations provided in work by Suthambhara and Natarajan [121]. The
larger blue nodes are associated with connected components in the Jacobi set. Note
the similarity of the Merge and Purge operations to the graph simplification applied
in Section 5.2.

FIGURE 5.4: Illustration of the merge and purge graph operations
similar to the work by Suthambhara and Natarajan [121].

Also note that, under the above assumption, all connected components are as-
sociated with leafs in the contour tree such that a merge tree is sufficient for sim-
plification purposes and simpler to compute. Using this insight, as well as the fact
that all nodes of interest, i.e. those associated elements of E(f), are maxima in the
merge tree, a simplified version of the greedy algorithm [121] is applied. This al-
gorithm sequentially chooses the graph operation with minimal cost, applies oper-
ations to recalculate the weights and repeats this until the minimal cost is above a
given threshold or until a number of operations is reached. However, the basic idea
to merge edges with smallest weight first, as is also done in the previous section, are
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adopted. Here, for each edge the integral of κf over the area swept by the level sets
corresponding to an edge in the merge tree are taken as edge weights.

5.4 Comparison and Discussion of the Simplification Approach

The two strategies, reachability graph simplification (RGS, cf. Section 5.2) and sim-
plification based on the contour tree of κf (CTS, Section 5.3) are applied to two data
sets to provide a proof-of-concept and an initial comparison between these methods.
Computation times for the results shown in the following are in the range of seconds
to minutes depending on the size of E(f), as discussed in Section 5.2.

5.4.1 Analytical Examples

The first data set is a synthetic example. A 4×2 set of positionsAi = {ai,j ∈ [0, 1]d|0 ≤
j ≤ 4} and Bi = {bi,j ∈ [0, 1]d|0 ≤ j ≤ 4} for 1 ≤ i ≤ 4 is selected with the restriction
that 0 < |as,j − at,j | < 0.1 and 0 < |bs,j − bt,j | < 0.1 for 1 ≤ s, t, j ≤ 4. The functions
fi are defined as

fi(x) :=

4∑
j=0

e−|ai,j−x|·2 −
4∑
j=0

e−|bi,j−x|·2,

and combined to yield f(x) = (f1(x), . . . , f4(x)). The explicit values for f are calcu-
lated at the vertices of a regularly triangulated grid as input to the algorithms.

(a) component contours (b) reachability graph

FIGURE 5.5: An illustration of the reachability graph over a synthetic
data set with four scalar fields. (a) depicts the contours of each of the
four scalar component functions. The reachability graph, given in (b).

Figure 5.5 provides an overview of this example. Each function has a maximum
in each of the four connected components of P(f) in the corners, a minimum in each
of the connected components in the top and bottom middle, and a saddle in each of
the three connected components in the middle row. Figure 5.5(a) shows contour lines
for the fi, color coded in blue, red, green and black, to illustrate their single-field
topologies. Figure 5.5(b) shows the same data and its reachability graph, together



60 Chapter 5. Simplification

with the Pareto sets of f consisting of minima (green), maxima (red), and optima
(yellow). Nodes are placed in the center of gravity of the corresponding component.
Note that loops are not shown, and edges that are already given transitively are
removed to simplify visual understanding of this example.

This synthetic data set has a relatively simple structure. To obtain increased
structural richness as a testbed for simplification, random noise is added. At each
vertex and for each component, the function values are changed by a uniform ran-
dom value from the interval [−p · δ, p · δ], where δ denotes the range of the corre-
sponding component function and p << 1.

(a) original data (1.5%-noise,
|E(f)| = 210)

(b) RGS (t = 100) (c) RGS (t = 199)

(d) original data (1.5%-noise,
|E(f)| = 210)

(e) CTS (t = 110) (f) CTS (t = 200)

FIGURE 5.6: A comparison of the two Pareto set simplification tech-
niques over synthetic data with 1.5% random noise. The top im-
ages (b) and (c) show reachability graph simplifications (RGS). The
increasing thresholds t are indicated by the image labels. The bottom
row (images (e) and (f)) illustrates the comparison measure contour
tree simplification (CTS) for two similar thresholds. The first images

(a) and (d) present the unsimplified data for the methods.

Figure 5.6(a) and 5.6(d) show the same synthetic data, both with additional 1.5%
noise. Due to the relative flatness of f , even such a low noise level already introduces
significant changes to the structure and breaks apart the three connected compo-
nents in the middle into several smaller components. The six connected components
in the top and bottom row remain roughly intact however. Ideally, the simplification
procedure would retain these components and remove all other newly introduced
components.
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Figure 5.6(b) and 5.6(c), and 5.6(e) and 5.6(f) show the result of the two ap-
proaches after a number of simplification steps. In all four images, the value t in-
dicates the number of removed, respectively merged, elements of E(f). In both ap-
proaches, connected components that correspond to purged or merged nodes in the
reachability graph or the contour tree of κf , respectively, are removed. Hence, nei-
ther the form of the components nor the contour lines change among Figure 5.6(a)
to 5.6(c) and 5.6(d) to 5.6(f), respectively.

Note that both methods are able to remove most of the spurious noise and keep
the six connected components in the top and bottom row that are identified in the
noise-free data in Figure 5.5. CTS however removed almost all of the noise-based
components too, among them those which are associated with the three connected
components in the middle row from Figure 5.5.

For the RGS approach, a range of simplification steps are observed for which the
desired elements of E(f) remain. Still, an exact reconstruction of the original syn-
thetic data, i.e. topological equality in the reachability graph, could not be achieved.

An explanation for the results is twofold. First, the induced noise results only in
small, local maxima in κf . Hence, the Pareto extrema that are a consequence of this
noise correspond to only low-weighted nodes, which are all removed very early in
the CTS method. Since leafs are always removed from the contour tree the remaining
nodes do not gain weight very fast. Hence, in later simplification steps, also Pareto
sets which otherwise are considered important are removed. For the RGS approach,
on the other hand, the ascending and descending sets of merged Pareto extrema
are changed along with all edge weights adjacent to the corresponding nodes in the
reachability graph. Hence, in a cluster of noise-based Pareto extrema, such as those
in the middle row of Figure 5.5, it is more likely that Pareto extrema remain in the
data under RGS than it is if CTS is applied.

5.4.2 Can Data

The subsection uses the Can data set (courteously pro- vided by M. Rütten, DLR
Göttingen) as a real-world example with four fields resulting from a CFD simulation
of flow in a fluid-filled cylinder with a rotating lid. Section 7.1 provides a detailed
overview over all individual fields as well as the general application for this kind of
simulation scenario. For these examples it is sufficient to consider the Pareto set as
shown in Figure 5.7 and, understand that this Pareto set provides extremal regions,
i.e. elements of E(f), in which all fields agree. The simplicial complex that serves as
input to both simplification schemes is generated as a two-dimensional slice parallel
to and containing the cylinder’s central axis.

Pareto maximal and minimal components, as classified by the reachability graph,
are of main interest in the latter application since they indicate regions in which
all considered fields suggest extremal behavior. All fields agree that towards those
components their value increases or decreases, respectively, and hence agree on ex-
tremality of this region. Note that in Figure 5.7, the reachability graph is shown
through lines going from red to blue in ascending direction, but without edges that
are already given transitively. The motivation is to highlight the main structure of
the graph, while hidden edges are still used in the simplification processes.
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FIGURE 5.7: An illustration of the Pareto set and its reachability
graph as an overlay over a real-world data set with four scalar fields,
called the can data set. Note that this visualization removes tran-
sitively given edges in the reachability graph due to confusion and

clutter. See Section 7.1 for more details.

Edges in the graph furthermore provide a domain expert with information on
how those regions are connected or even interact with each other. The graph aids the
experts to understand global structures and directs their attention to Pareto extrema,
where a detailed analysis might be necessary. Specifically, an edge represents a set
of paths between two connected components on which all fields agree with respect
to the ascending and descending direction, respectively.

It can be observed that this data set is relatively clean and contains little structure.
Again, noise is added to gauge the effect of simplification. Figure 5.8(a) and 5.8(d)
present the Pareto set for modified data with random 0.04-noise. Note how such a
small degree of noise already produces a large amount of separate extremal regions.

Figure 5.8(b) and 5.8(c) present the results of RGS for two different numbers of
simplification steps, whereas Figure 5.8(e) and 5.8(f) show the outcome of the CTS
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(a) original data (0.04%-noise,
|E(f)| = 264)

(b) RGS (t = 150) (c) RGS (t = 221)

(d) original data (0.04%-noise,
|E(f)| = 264)

(e) CTS (t = 159) (f) CTS (t = 226)

FIGURE 5.8: A comparison of the two Pareto set simplification tech-
niques over synthetic data with 0.04% random noise. The top images
(b) and (c) shows reachability-graph simplification (RGS) for two in-
creasing thresholds. The bottom row illustrates the comparison mea-
sure contour tree simplification (CTS) for two increasing thresholds
(images (e) and (f)). The unsimplified data is presented in the images

(a) and (d), respectively.

method. The value t indicates the number of removed, respectively merged, con-
nected components of P(f).

As with the previously investigated, synthetic data, it is noticeable that the con-
tour tree approach removes more components than necessary, while in the reacha-
bility graph approach noise-based extremal regions remain.

5.4.3 Discussion

In this chapter, two techniques for simplifying multifield scalar data based on struc-
tures gained through the calculation of the Pareto set are presented.

The first technique is based on the reachability graph – a weighted graph whose
nodes represent connected components of Pareto extrema. Connectivity is deter-
mined by the existence of paths along which function values that are strictly in-
creasing or decreasing. Edge weights estimate the local stability as measured by the
opening angle of the space of incomparable points within a region. For two fields,
this measurement is a normalized version the approach presented by Suthambhara
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and Natarajan [121], originally developed for Jacobi set simplification. However,
these presented version extends naturally to more than two fields and is further-
more resilient to scaling input field values, e.g. resulting from a change in units. The
simplification itself greedily merges or purges node and pairs of nodes, respectively,
in the order of edge weights until a given threshold is reached. The concept of reach-
ability also lends itself to a decomposition of the domain by defining an equivalence
relation among regular points from which the same sets of Pareto extrema can be
reached.

The second simplification technique follows more closely along the lines of the
idea introduced by Suthambhara and Natarajan [121]. It computes the contour tree
of the stability field computed from the original multifield data and performs topo-
logical simplification on that contour tree. Again the stability measure of Suthamb-
hara and Natarajan is replaced by the opening angle measurement to support more
than two fields.

The results of a case-study-based qualitative comparison of both methods re-
vealed that both techniques manage to remove most of the artificial noise that is in-
troduced during the experiments, but the contour-tree-based method removes more
connected components than necessary. The different results may be explained by
observing that the CTS essentially turns the multifield problem into a single-field
problem, using only local information at each point, whereas the reachability graph
considers the functions jointly within regions and thus has more information at its
disposal. Compared to the contour tree technique, the reachability graph supports
loops and can thereby handle errors based on inconvenient triangulation. However,
loops remain difficult to interpret, because they never arise in the single-field setting.
In addition, the contour tree technique is slightly faster, but neither does it provide
a good abstract view on the data as the reachability graph nor the above indicated
domain decomposition. However, these observations are based on a few scenario
cases, so that potential advantages for both approaches could not yet be identified.

All presented simplification methods, including the one by Suthambhara and
Natarajan, currently lack precise rules to implicitly change the scalar values of the
multifield. Hence the combinatorial structures, i.e. the contour tree and the reacha-
bility graph, respectively, are simplified instead. Suthambhara and Natarajan point
out that the corresponding modifications of the multifield itself may be complex
and computationally expensive since it must satisfy numerous constraints on the lo-
cal stability measure. However, the feasibility of such modifications for the RG and
the Pareto set are outlined in this thesis. It presents three concrete models to change
the multifield data set corresponding to a simplification of the reachability graph,
but further analysis of these models, for example their efficiency, runtime and limi-
tations, may depend on the actual application.

Although only two-dimensional domains were considered in this chapter, the
computation and simplification of the combinatorial structures extend naturally to
higher dimensions and can always be shown via graph drawing. To better visualize
the simplification, in detail why and where simplification is applied, it is necessary
to show the intersection between ascending and descending sets of the connected
components of the Pareto set, corresponding to merged nodes. This is, however,
challenging and possible directions for future work need methods like multifield
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transfer function design for volume rendering on the combinatorial structure in anal-
ogy to Zhou and Takatsuka [192].

While in this chapter the theoretical feasibility of Pareto set simplification is
demonstrated, a more in-depth evaluation is desirable. Furthermore, the presented
methods are limited by the computational overhead to create the support structures,
especially the reachability graph. The creation of the graph is extremely time con-
sumptive in contrast naive Gaussian smoothing in case of a reasonable large number
of fields and so a major obstacle for application purposes. In part, this is due to the
fact that for each component in E(f) all existing ascending paths have to be traced.

However, it is possible to find relations between Pareto and Jacobi sets, as well as
other topology-based techniques. This similarity can be used to transform topologi-
cal simplification for these concepts to the Pareto set concept as done with Jacobi set
simplification [121] in the CTS section. Similar benefits may arise through a compar-
ison with Morse-Smale complexes [76] and joint contour nets [30], especially how
the quantization of the fields’ values interacts with the reachability relation. Because
ascending and descending paths are quite unlikely, steepest ascent and descent the
relation to Morse-Smale complexes is not imminent. But Szymczak’s work [156] on
piecewise constant vector fields bears some algorithmic similarity to the detection of
Pareto sets and may provide a link between the two.
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Chapter 6

Comparison of the Pareto set with
Similar Multifield Techniques

In this chapter the Pareto set concept is compared with existing, related techniques,
both in terms of limitations and functionality. This places the Pareto set in the context
of the general topic of topology-based multifield analysis and visualization tools.
Hence, in this chapter, advantages and drawbacks of the most common topology-
based approaches are discussed as well as their limitations compared to the Pareto
set. This helps domain experts to better choose which technique is best suited for
their scenario and to better interpret differences in results and visualizations.

Another, major segment of this chapter is the comparison the techniques in terms
of transformation. In detail, in this thesis, equality or subset relation between the
different concepts are presented to integrate existing algorithms and ideas from pre-
vious and future work into the Pareto set concept and visa versa. Thus, improving
the calculation and implementation of the Pareto set and its related structures, as
well as following simplification approaches now and in the long run.

6.1 General Comparison with Common Methods

To provide a general overview and context, the Pareto set is compared with related
topology-based definitions for multiple scalar fields. Because the presented meth-
ods differ structurally, the general comparison focuses on presenting features, lim-
itations, and properties that distinguish the different approaches from each other,
so that prospective applicants can decide which method best fulfills their needs.
This sections starts with presenting the related methods and some of their unique
characteristics and finishes with common features and differences of the Pareto set
approach to these methods. A more detailed comparison, especially with the focus
on how results from a particular method can be used to calculate structures from the
Pareto set concept and vice versa, can be found in Section 6.2 and 6.3. The general
comparison presented in the current section can also be found in a manuscript that
was published in Computer Graphics Forum [91].

Jacobi Sets: Edelsbrunner and Harer [52] defined the Jacobi set of Morse functions
as the set of critical points of one function’s restrictions to the intersection of the
other functions’ level sets augmented by the critical points of the single functions.
Although not immediate from the definition, Jacobi sets do not depend on the or-
der in which the fields are given. Equivalently, a point x is in the Jacobi set, if the
Jacobi matrix, i.e. the matrix of the m gradients at x, has a rank lower than m. This
highlights that the method is only applicable as long as the number of fields does



68 Chapter 6. Comparison

not exceed the dimension of the domain manifold. The Jacobi set concept is pa-
rameter free, i.e. their calculation does not need further input except the multifield
data, has been used to define time-varying Reeb graphs of single scalar fields on a
3-sphere [57], and culminates in the definition of Reeb spaces [53].

Comparison of Largest Contours: Schneider et al. [145] in an extension of earlier
work [146] proposed the following approach: for each given scalar field compute
its largest contours, i.e. maximal contours that contain only one critical point, then
compute similarities between largest contours of all fields based on a normalized
spatial overlap measure and store this information in a weighted graph to which
graph clustering is applied. Largest contours are considered to be volumetric fea-
tures. Therefore, graph clusters can be interpreted as sets of features that are consis-
tent across fields. The user can tune the result by selecting and deselecting clusters
and single largest contours in a gallery view. The similarity graph and its clustering
are no typical topological structures and the information is not integrated into the
domain, e.g. to give a subdivision. The computation of largest contours requires the
computation and topological simplification of a contour tree for each field, limiting
the method to simply-connected domains and requires parameter input to guide the
simplification.

Joint Contour Nets (JCN): A recent approach is presented by Carr and Duke [30].
It splits each cell into so-called slabs, which are connected regions of points equal in
quantized/rounded multifield values, then generates a graph that encodes the ad-
jacency of these slabs. This graph represents the multifield topology for the chosen
quantization and is presented using graph drawing techniques. Visual inspection
can reveal structures resembling local extrema and saddles. The method requires
quantization of field values, requiring a quantization parameter per field. However,
these parameters can be used to drive topological simplification. From the joint con-
tour net the quantized contour trees of the single fields can be extracted using a
simple quotient graph algorithm.

Pareto set: Both methods, Pareto sets and JCNs, work for any dimensions and on
any number of scalar fields. Jacobi sets, however, have not been discussed for a
case in which the number of fields exceeds the number of dimensions of the mani-
fold domain. Although conceptually work for any discretization of the domain, all
algorithms based on the concepts discussed in this section restricted their implemen-
tation to simplicial complexes and piecewise linear data.

Unlike the other methods, Pareto sets are not blind to inverting one or more of
the input fields, which means that changing field’s gradient signs affects the out-
come. This implies that the Pareto set concept requires the applicant to invert fields
meaningfully, e.g. when it is reasonable to assume that local maxima of one field
semantically match local minima of another, the applicant has to invert one of the
two. As a small example, consider the identification of "bad weather" with a temper-
ature and a precipitation map. Usually, bad weather consists of low temperatures
and high precipitation. Hence, if, e.g. the temperature map inverted, bad weather is
located where boths variables are maximal.

All methods can be considered extensions of “classical” topological structures:
Jacobi sets extend the notion of critical points, Schneider et al. [145]’s approach ex-
tends largest contours, and Joint contour nets extend contour trees. While the Pareto
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set extends the notion of local extrema of single scalar fields to Pareto optima in mul-
tifields, it does not extend the notion of saddles, although saddle-like features tend
to show up in the results. The Pareto set concept extends the notion of monotone
paths to ascending and descending paths. The connectivity of Pareto extremal re-
gions is determined by observing ascending and descending sets between them and
encoding them into graphs as done in the previous section. Non-Pareto extremal
points are defined as equivalent if their ascending and descending sets border the
same Pareto extremal region. A decomposition of the domain using this equivalence
relation and then considering neighborhood relations between regions can also re-
veal interesting aspects of the data. For the special case of one scalar field on a simply
connected domain, the reachability graph is precisely the contour tree, as is shown
by Chiang et al. [38], who use monotone path to define and compute the contour
tree.

6.2 Comparison of the Pareto set with the Jacobi set

In this section deeper connections between Pareto sets and Jacobi sets [52] are ex-
amined, specifically, to prove a subset relation between the sets of critical points
defined by both concepts. The results indicate further relations between both sets
and other multifield approaches, and, in particular, the Morse decomposition and
the JCN methods. All results of this section can also be found in previous work [87].

6.2.1 Alternative Definition of Pareto Sets based on Linear Programs

To show the relation between the Jacobi set and the Pareto set, first, an alternative
characterization of critical points in a piecewise linear multifield through point-
specific linear programs is defined. Then it is proven that a point is in the Pareto
set if and only if the corresponding linear program has no solution, i.e. is infeasible,
thus showing that both definitions are equivalent. This allows mathematical theo-
rems from linear programming to be applied for the proofs in Subsection 6.2.5.

To identify the Pareto set, an intersection of halfspaces characterized by the gra-
dients of f is calculated. Hence it is reasonable that the optimization problem should
be based on a suitable description of the latter. Note that for each point x ∈M those
gradients are only related to a sufficiently small neighborhood U(x). Hence, for each
point x, each Morse function fi can be locally approximated by a linear function gi
with the only condition that gi(x) = fi(x) and ∇gi(x) = ∇fi(x). With this function
gi, H+

i,U(x)(x) = {x} is equivalent toH+
i,M(x) = {x}when fi is substituted by gi. Note

that gi is different for each x and not a global approximation of fi. For easier reading,
the U(x) in H+

U(x)(x) is dropped in the following theorem.

Theorem 6.2.1. Let ε > 0. Given a point p ∈M, and denote ki := ∇fi(p).
The (n+ 1)× (d+ 1)-matrix Ap is defined as

Ap :=


−k1,1 · · · −k1,d 1

...
. . .

...
...

−kn,1 · · · −kn,d 1
0 · · · 0 −1





70 Chapter 6. Comparison

and vectors

b = (−ε, . . . ,−ε, 0)T ∈ Rn+1

c = (0, . . . , 0, 1)T ∈ Rd+1.

Then H+(p) 6= {x} if and only if the linear program P+
p defined by

maximize cTx

subject to Ap x ≤ b
(6.1)

is feasible and unbounded. Feasible means that an x ∈ Rd+1 exists for which Ap x ≤ b
holds and unbounded means that for every x with Ap x ≤ b an x′ 6= x with Ap x′ ≤ b can
be found such that cTx < cTx′.

Proof. Without loss of generality, it is assumed that p = 0 by translation such that
through the introduction of ε > 0, p is not a solution. Otherwise, without ε, i.e. with
b = ~0 the zero vector, the linear problem would always be feasible with x = ~0 as a
solution.

The two directions of the equivalence claim are proven separately. For⇒,H+(p) 6=
{x} is assumed such that y ∈ H+(~0) with y 6= 0 exists. Then, based on the definition
ofH+(~0), (y−~0)T ·ki > 0 for all i = 1, . . . , n. Hence, εi > 0 exists such that kTi ·y ≥ εi
for all i = 1, . . . , n. Thus, for εmin = mini=1,...,n εi and a γ0 ≥ ε

εmin
> 0,

kTi · y · γ ≥ εmin · γ ≥ ε holds for all i = 1, . . . , n and any γ ≥ γ0.

Note that an arbitrary γ is introduced in this proof to receive an infinite amount of
solutions for P+

p . To find these solutions, for any γ ≥ γ0, a q ≥ 0 is set such that the
following inequality holds for all i = 1, . . . , n:

(kTi · y · γ)− q ≥ ε

This is true as long as q lies within the difference of kTi · y · γ and ε, i.e.

0 ≤ q ≤ (y · kTi · γ)− ε, for all i = 1, . . . , n.

Hence, for q := mini=1,...,n(kTi · y · γ) − ε, it is easily computed that for y′ =
(y0, . . . , yn, q)

Ap · y′ ≤ b holds.

To see this, consider the calculation of line i, 1 ≤ i ≤ n, with Ap,i · y′ ≤ −ε. Given
the definition of Ap this calculation is equivalent to −kTi · y + q ≤ −ε and thus, is
simply an inversion to the above argumentation, everything is multiplied by −1.
Due to the inversion the parameter q changes into −q ≤ 0 such that the last line,
Ap,n+1 · y′ ≤ 0 is also ensured. Hence P+ is feasible. Furthermore, with cT y′ = q =
γ · mini=1,...,n(kTi · y) − ε and γ ≥ γ0 > 0 not bounded from above, the program is
also unbounded.

Conversely for ⇐, let y ∈ Rn+1 be a solution to the linear program P+
p . Define

y′ = (y0, . . . , yn) such that, based on the definition of P+
p ,

−kTi · y′ + yn+1 ≤ −ε and therefore kTi · y′ ≥ ε+ yn+1 hold.
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Hence, with Ap,n+1 · y = −1 · yn+1 ≤ 0, it holds that

kTi · y′ > 0

for all i = 1, . . . , n, such that y′ 6= ~0 is in H+(~0) by definition of the ki.

The linear program P−p for which the gradient vectors are negated is defined
analogously, and its relation to H−(p) is proven in the same way. Also note that, as
a direct implication of Theorem 6.2.1, p ∈M is not Pareto maximal, i.e. p 6∈ P+ if and
only if P+

p is feasible and unbounded.

6.2.2 Definition of Jacobi Sets based on Linear Programs

In the following subsection, the concept underlying the Jacobi sets is briefly revis-
ited. A more thorough elaboration can be found in related work by Edelsbrun-
ner [52].

6.2.3 Mathematical Background of Jacobi set

The Jacobi set of n ≤ d Morse functions fi on a common d-manifold M is defined
through level set intersections. The level set of a function fi, 1 ≤ i ≤ n, and scalar
value t ∈ R is the set Mt := f−1i (t). For multiple functions, the intersection of
the level sets, excluding function fl, is defined as Mt,l :=

⋂
i 6=l f

−1
i (ti) for a vector

t ∈ Rn. The Jacobi set J is the closed set of all points x that are critical in fl restricted
on Mf(x),l for some index 1 ≤ l ≤ n with respect to scalar field topology.

Note that a level set on a d-manifold is of dimension d − 1 and the closed inter-
section of n− 1 level sets is of dimension d− (n− 1).

Conversely, x ∈ J holds if and only if, after removing all points from M with
different values than x with respect to n − 1 of the Morse function, x is critical with
respect to the (n)th function, thus a minimum, maximum or saddle of some degree.
Note that x can become isolated in Mf(x),l is also considered as critical in this thesis.
In case of n > d, this results in J = M.

In another approach towards Jacobi sets presented by Edelsbrunner [52], criti-
cality of a point x ∈ M is defined through the gradients of the functions fi at x. In
detail, the gradients ∇fi of the function i 6= l at a point x ∈ Mt are considered for
some index 1 ≤ l ≤ n and a n-vector t. Those gradients span the linear subspace
of vector normals of Mt. If ∇fl at point x also belongs to this linear subspace, x is
critical in fl restricted on Mt,l.

In general, Jacobi sets can be described as the closure of a set of points x for which
there is a λ ∈ Rn such that λ 6= 0 and

∑n
i=1 λi · ∇fi(x) = ~0. Hence,

J := cl

{
x ∈M | ∃λ ∈ Rn \ {0} s.t.

n∑
i=1

λi∇ · fi(x) = ~0

}

Note that in this linear combination negative parameters λi are allowed, thus the
direction of the gradient is ignored.
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For further use, the notation of the positive Jacobi Set J+ is introduced. It includes
the additional restriction that λi ≥ 0 for all 1 ≤ i ≤ n and thereby results in a positive
linear combination.

Definition 6.2.1. A point x ∈M is in the positive Jacobi Set J+ iff

∃λ ∈ Rn \ {~0} s.t.
n∑
i=1

λi · ∇fi(x) = ~0 and ∀ni=1λi ≥ 0.

In this work J+ ⊆ J is obtained as a subset of the Jacobi set. In an analogous
fashion, also the notation of negative Jacobi sets J− is added. Note that both sets in
the definition of J+ and J− do not include the closure. This avoids complications in
the following proofs with points that lie in the closure but not in the actual set.

Furthermore, note how the alternative definition is based on the gradient vectors
rather than on the values of the Morse functions. Thus, the translation of this defi-
nition for multiple scalar fields to multiple vector fields is immediate if each vector
field is equivalent to a gradient fields of some Morse function.

For the following part, it is noteworthy that Equation 6.2 is closely related to the
definition of critical triangles by Szymczak [156], defined for k piecewise constant
vector fields over a 2-dimensional manifold. Szymczak calls a triangle critical iff the
convex hull of its vectors – inside a triangle the separate vector fields are constant –
contains the zero vector. Definition 6.2 and the relation to Jacobi sets are presented
to use the results in the main proof and, additionally, to put Pareto sets transitively
in relation with Szymczak’s definition.

C+ :=

{
x ∈M | ∃λ ∈ Rn s.t.

n∑
i=1

λi · vi(x) = ~0 ∧
n∑
i=1

λi = 1 ∧ λi ≥ 0 f.a. i

}
(6.2)

Claim 6.2.2. Under the assumption that for every x ∈ M, vi(x) = ∇fi(x) with fi the
Morse functions as given above, it holds that C+ = J+.

Proof. ⊆: Obviously, if a convex combination with parameter λ results in the zero-
vector, those parameters are also a positive linear combination that result in the zero-
vector. Furthermore,

∑
λi = 1 ∧ λi ≥ 0 f.a. i excludes λ = 0 as parameter.

⊇: If the positive linear combination with parameter λ results in the zero-vector,
it can be concluded that

∑
λi = c 6= 0 holds. The right inequality is implied by the

requirement that λ 6= ~0 and λi ≥ 0 for 0 ≤ i ≤ k. Hence, with the new parameter
λ′ = λ/c the sum

∑
λi = 1 is received and the convex combination still results in the

zero-vector.

6.2.4 Alternative Definition of Jacobi Sets based on Linear Programs

As with the Pareto sets in the previous subsections, in this subsection, points in the
Jacobi set are characterized through the feasibility of a linear program. This transla-
tion allows the usage of mathematical results from a linear program in the proof in
Subsection 6.2.5 and furthermore provides a new approach to compute Jacobi sets.
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Theorem 6.2.3. Let again ε > 0, p ∈ M, and ki = ∇fi(p) to define a (d + 1) × (n + 1)-
matrix

Bp :=


−k1,1 · · · −kd,1 0

...
. . .

...
...

−k1,d · · · −km,d 0
1 · · · 1 −1


and vectors

b = (−ε, . . . ,−ε, 0)T∈ Rn+1

c = (0, . . . , 0, 1)T ∈ Rd+1

Then p ∈ J+ if and only if the linear program D+
p

minimize bT y

subject to Bp y = c

and yi ≥ 0

(6.3)

is feasible and unbounded.

Proof. For ⇒, let without loss of generality p = ~0 by translation and assume that
p ∈ J+. By equation 6.2.1 and the proven equality J+ = C+, there is a λ ∈ Rd such
that

n∑
i=1

λi · ki = ~0 with λi ≥ 0 and
n∑
i=1

λi = 1

holds. Thus, a possible solution for D+
p with arbitrary α > 0 is given by

y := (αλ1, . . . , αλd, (α− 1))T

Since
∑n

i=1 λiki = ~0 holds, also
∑n

i=1 λiαki = 0 is true such that the first d rows of
Bpy = c are true. With(

n∑
i=1

yi

)
− y(n+1) =

(
n∑
i=1

λi

)
α− (α− 1) = 1

all conditions of D+
p are fulfilled by y which is therefore feasible. Furthermore, since

bT y = −ε · α ·
n∑
i=1

λi = −ε · α

can be arbitrary small with respect to α, D+
p is also unbounded.

Conversely for⇐, assume that D+
p is feasible with y ∈ Rn+1 as a possible solution.

First, define α := y(n+1) + 1 and parameter vector λ ∈ Rn with

λi = yi/α for all 1 ≤ i ≤ n.

The problem condition yi ≥ 0 holds for all i especially i = n+1 that implies λi ≥ 0 for
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all i. This and the last row of the equation systemBp ·y = c, namely
∑n

i=0 yi−yn+1 =
1, furthermore imply that

∑n
i=0 λi = 1 holds. Also, based on the first d rows of Bp,(

n∑
i=1

ki · yi = ~0

)
⇒

(
n∑
i=1

ki · λi = ~0

)
holds.

Hence, with λ as parameters, p ∈ J+ according to equation 6.2.1.

As usual in this thesis, a analogous linear program D−p is defined for which an
analogous statement is easily proven, namely that p ∈ J− if and only ifD−p is feasible
and unbounded.

6.2.5 Translation between Jacobi and Pareto Sets

Having characterized both Pareto extrema and Jacobi critical points in terms of the
feasibility of linear programs, the main result is stated in the next subsection. The
proof is based on the weak duality theorem for a primal-dual system [20]. The follow-
ing segment briefly reiterates this statement and its preconditions. Therefore, given
a linear program in primal form

maximize cTx
subject to Ax ≤ b

and a corresponding problem in dual form

minimize bT y

subject to AT y = c

and y ≥ 0

for which the matrix A and the vectors b and c are the same, linear programming
theory states the following result.

Theorem 6.2.4 (Weak Duality). Proven by Boyd and Vandenberghe [20] in the context of
linear optimization,

• the primal program is unbounded⇔ the dual program is infeasible, and

• the dual program is unbounded⇔ the primal program is infeasible.

Thus, the previous results from Sections 6.2.1 and 6.2.2 are used to easily prove
the following result. This is possible since P+

p , P−p , D+
p , and D−p are all in primal and

dual form, respectively.

Theorem 6.2.5. Given a d-manifold M ⊆ Rd and n Morse functions fi : M 7→ R with
n ≤ d, the following relations are obtained:

(i) P+ = J+

(ii) P− = J−

(iii) P ⊆ J
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Proof. (i). Given a point p /∈ P+, it holds by definition of P+ thatH+(p) 6= {p}. There-
fore, using Theorem 6.2.1, the linear program P+

p is feasible and unbounded. Since
P+
p is in primal form, weak duality provides that the corresponding dual problem
D+
p is infeasible, hence neither feasible nor unbound. Thus, Theorem 6.2.3 implies

that p /∈ J+ and therefore J+ ⊆ P+.

The reverse statement, P+ ⊆ J+, follows analogously using the second line of the
weak duality theorem. Combined, P+ = J+ is received.

Claim (ii) follows analogously by considering P−p and D−p instead of P+
p and D+

p .

(iii). The claims (i) and (ii) are used for the second equality of

P = P+ ∪ P− = J+ ∪ J− ⊆ J.

Note that (iii) can be trivially extended to the case n > d since then J = M and
therefore P ⊆ J as a direct result. J = M follows directly from the level set-based
definition of Jacobi sets. For each point p, after the restriction of a function to the level
set intersection of the other n − 1 ≥ d functions, only p remains which is obviously
critical under such a restriction.

Examples in the following section indicate furthermore that the subset relation
(iii) is strong, i.e. P ⊂ J is possible.

6.2.6 Discussion

The result obtained here is based on a continuous formulation and requires Morse
functions over a d-manifold, while practical application need to work on a piecewise
linear setting over d-simplical complexes. Similar to the implementation to deter-
mine the Pareto sets in Section 4.5, for any point x on d′-simplices with d′ < d, the
linear programs for all adjacent d-simplices need to be calculated with additional
conditions. Obviously, the neighborhood of the considered point x has to be re-
stricted to the current d-simplex. This can be achieved by adding the d− 1-simplices
adjacent to x as new conditions to the linear program. While not proven, numerical
experiments indicate that there is a similar correspondence.

Discussion

Pareto and Jacobi sets are calculated for a selection of artificial and practical data
sets, given on two-dimensional simplicial meshes using the algorithms described in
Chapter 4 and in the work by Edelsbrunner and Harer [52]. Figures 6.1 and 6.2 pro-
vide the results from two data sets as examples.

First, for a simulation of a fluid-filled can with a rotating bottom different cri-
teria, here the velocity and pressure values, are measured to identify locations of
possible vortices. The complete data set is presented in Section 7.1 in the next chap-
ter. On a 2D cross-section through the can, both the Jacobi set and the Pareto set are
calculated and presented in Figure 6.1. Pareto extrema are shown in red (minima)
and green (maxima), respectively, while points in the Jacobi set are colored gray.
Note that P1 ⊂ J1 holds.
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(a) (b)

FIGURE 6.1: Pareto sets and Jacobi sets for a two-dimensional exam-
ple with two functions. In both images the same fields are used but

in the second image, one of the individual fields is inverted.

In Subfigure 6.1(b), one of the individual fields is negated, and the results are
shown using the same coloring as in Subfigure 6.1(a); here, P2 ⊂ J2. Changing the
sign of the component functions, which inverts the gradient vectors, does not change
the Jacobi set since the definition of J allows positive and negative parameter λi.
Therefore, the equality J1 = J2 holds. In the definition of J+ and J−, the orientation
of the gradients is restricted through the limitation to only positive or only nega-
tive parameters λi. Since other possible orientations can be neglected based on the
symmetry of Jacobi sets, it follows that for the closure cl{J+1 ∪ J+2 } = J1 holds in
these images. Hence, using the previous theorem, cl{P+

1 ∪ P+
2 } = J1 is also true.

This can obviously be extended to cases with even more individual fields as long as
n ≤ d, which allows for the calculation of the Jacobi set through the calculation of
the Pareto sets.

Considering the two-dimensional can data set in Figure 6.1, the points p ∈ P are
those locations where the gradients of both functions point in parallel and in oppo-
site directions. The points p ∈ J \P are the locations where the gradients point in the
same direction. Hence J \P includes all points with parallel gradient vectors, a com-
mon direction over all fields of steepest ascent. Note how the Jacobi set connects the
components in the Pareto set through one-dimensional paths. Hence, in this thesis,
J \P can be interpreted as connections of the components in P which form the fastest
paths through the domain following the gradients of the individual fields. Future
work towards multifield visualization and topological structures should include a
study of this observation to aim for an incorporation of Jacobi and Pareto sets to
build global structures and connections.

As an additional remark, note that both the Jacobi set and the Pareto set behave
in a zigzag, serpentine-like manner instead of continuous lines. This nicely shows
how the triangulation of the domain creates spurious elements in both sets, similar
to the observations by Mascarenhas and Snoeyink [113].



6.2. Comparison of the Pareto set with the Jacobi set 77

(a) (b)

(c) (d)

FIGURE 6.2: Pareto sets and Jacobi sets for a two-dimensional exam-
ple with three similar Gaussian functions. Subfigure 6.2(a) illustrates
one of the three functions as a hight map. The remaining images each
show the Jacobi set (white lines) for one of the three possible pairings
of the Gaussian functions. All images also show the Pareto set for the

multifield containing all three functions together.

The second data set consists of three artificial fields obtained from sums of Gaus-
sians (see Section 3.3). Each individual field has three minima and maxima. The
location of the minima and maxima are only slightly perturbed among the three
fields. Figure 6.2(a) shows an illustration of one of the individual fields. The Jacobi
sets are calculated and colored as in the previous figure. However, since Jacobi sets
are only defined for n ≤ d, the set is calculated separately for each two-pairings of
the individual fields, shown in the three Figures 6.2(b), 6.2(c), and 6.2(d). The Pareto
set based on all three fields is also shown in these figures with the same coloring as
in Figure 6.1, but by additionally using yellow for Pareto optima.

Note that the Pareto sets for each pairing of two fields can be calculated through
the intersection of the corresponding Jacobi sets and the Pareto set of the complete
multifield. Hence, it is sufficient to only calculate the Pareto set once. Also note how



78 Chapter 6. Comparison

the Jacobi sets from all three figures, if combined, build the border of the components
in the Pareto set. An assumption and additional direction of future research is that
this introduces, together with the main proof, a new approach to calculate Pareto
sets for a large number of fields through the unified Jacobi sets for small number of
fields.

Relevance

The previous proofs prove the following three subset and equivalence relations:

(i) P+ = J+

(ii) P− = J−

(iii) P ⊆ J

The previous subsection also provided the equivalence relation cl{P+
1 ∪P

+
2 } = J1 for

the case of two individual fields. The discussed concept can, however, be extended
to an arbitrary number of fields. This and the translation of the Jacobi and Pareto set
definition to linear programs provide new approaches to calculate those sets.

New calculation tools and a better understanding of both sets and their relation
towards each other are immediate results.

It is also hypothesized that an equality between Jacobi sets and the critical points
defined in the Morse decomposition approach [156] holds, subsequently resulting in
J+ = C+. However, Pareto sets and Jacobi sets are only two possible approaches to
define criticality in multifield scalar data. There are also other methods to achieve
this, as well as approaches specifically tailored to vector or tensor multifields. Thus,
this chapter is an important contribution towards understanding the general con-
cepts of multifield topology and its practical application, for example for simplifica-
tion techniques.

6.3 Comparison of the Pareto Set with the Joint Contour Net

As stated in Section 4.1, the design of a fast algorithm to calculate the reachability
graph is difficult, since a major obstacle is that the graph is based on continuous
ascending paths between the critical regions. However, in contrast to other related
path-based concepts like the Morse-Smale complex, for each point the steepest gra-
dient does not exists in a multifield scenario but rather a range of ascending direc-
tions. Hence, instead of point to point connections, it is only possible to compute a
connection between a point and a set of points, making the reachability graph calcu-
lation exponentially more complicated.

In addition, the connections have to be traced for every connected component
in the Pareto set, making it prone to small local structures. Note that in multifield
scenarios, local structures in each separate field are cumulative and either create
large, significant structures, or simply increase the number of small, insignificant
structures drastically in the combined data.
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To improve the calculation of the Pareto set and its reachability graph, the rela-
tion between this concept and an approach by Carr et al. [30, 29], the Joint Contour
Net (JCN), is analyzed. As stated in the beginning of this chapter, these studies
are also important to place the concepts in context with each other. In contrast to the
previous section, the results indicate that JCNS and the Pareto set have more in com-
mon than just a subset relation, as was the case for the Jacobi and the Pareto set. This
highlights the significance of the two methods, JCN and Pareto set, by showing how
different approaches and view points yield similar results and visualizations. Fur-
thermore, in combination with the close relation between JCNs and the Reeb space,
in this section a similar relation is implied between the Pareto set and a common
multifield topology structure, the Reeb space.

The results are presented in several stages around the Topology-based method in
Visualization (TopoInVis) conference series [88, 17] and the master thesis by Jan Bor-
mann [16] inspired by that work.

6.3.1 Related Work for Joint Contour Nets

As part of Section 6.1, the Pareto set concept is compared superficially with other
multifield approaches like Jacobi sets [52] and Joint Contour Nets [30, 29] in terms
of domain restrictions as well as their individual advantages and drawbacks.

Chattopadhyay et al. [36] analyze the projection of the Jacobi set into the Reeb
space, introducing the Jacobi structure of a Reeb space. This structure separates the
Reeb space into simple components which can be measured in a scaling-invariant
manner. This can directly be used as a multifield topology-based simplification ap-
proach [37].

In another direction, Tierny and Carr [161] recently use the Jacobi set to efficiently
calculate the Reeb space [53]. Both Chattopadhyay et al. and Tierny and Carr present
good examples of how the combination of two related concepts results in improve-
ments, both algorithmically and in terms of understanding multifield topology.

Hence the relation between Reeb space and Jacobi set, and, in the previous sec-
tion, the relation between Jacobi set and Pareto set, are already studied. To close the
loop, i.e. the relation between Pareto sets and the Reeb space, the Joint Contour Net
is considered as an intermediate step. The JCN is proposed as an approximation of
the Reeb space [30, 118], and, at least for 2D data, it is easier to calculate than the
continuous Reeb space itself.

6.3.2 Definition of the Joint Contour Net

For a brief summary on JCN, the multifield data is given as a set of n fields f =
(f1, . . . , fn) over a common domain such that fi : S 7→ R are continuous, piecewise
linear Morse functions with S a triangulated manifold of dimension d, i.e. a simplical
complex.

Furthermore, an interval-based rounding function r : R 7→ R is assumed with
r(x) = bx/δc+β, δ the interval size and β some offset, although, w.l.o.g. it is assumed
that β = 0 holds throughout this chapter. The discretized data r ◦ f = (r ◦ f1, . . . r ◦
fn) is separated into connected components, so-called slabs, such that two adjacent
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points x, y ∈ S are in the same slab if ∀ni=1r◦fi(x) = r◦fi(y). Alternatively, x and y are
in the same slab if there is a continuous path p : [0, 1] 7→ S from x to y, i.e. p(0) = x,
p(1) = y such that r ◦ f(p(i)) is constant for all 0 ≤ i ≤ 1. Figure 6.3 illustrates the
creation of slabs in a simple one-dimensional example with two functions.

A B C0

4

0

1

2

3

FIGURE 6.3: The left image shows two functions f and g colored in
red and blue, respectively, with an image interval from zero to four.
The right image overlays the functions with their discretized versions
round(f) and round(g) colored similarly with round(x) = bxc, the
floor function. The yellow colored regions A, B, and C indicate the

slabs for the joint level set for c = (1, 2).

To create the JCN, each slab is associated with a node. Two nodes are connected
by an edge, if the corresponding slabs are adjacent. Note that in contrast to the
reachability graph, the JCN uses undirected edges. A more detailed introduction on
JCNs and its application can be found, for example, in work by Carr and Duke or by
Nam et al. [29, 123].

Note how the size of the slabs depends on the round-function, such that the
coarseness of that function allows a user to adjust the level of detail of the JCN. The
changes in the JCN based on this coarseness parameter is another option to analyze
the data. Note that this option does not exist in the Pareto set concept as presented
in this thesis.

For an alternative approach to JCN, note that for the rounding function, round−1(c)
is a continuous n-dimensional interval in Rd with a lower bound li and an upper
bound ui in each of the n dimensions. Each slab containing x, with f(x) = c, can
also be defined by a set of isosurfaces f−1i (li) and f−1i (ui) for each 1 ≤ i ≤ n. In
Figure 6.3 the slabs A, B, and C are bounded by fibers with f(x) = 1 or f(x) = 2,
and g(x) = 2 or g(x) = 3.

Note that the contour for li ∈ R is equivalent to the set of fibers for all c ∈ Rn
with ci = li such that this set builds a fiber surface [34]. Hence, the domain M can
either be separated into slabs by a round-function or by a set equivalent to contours
or fiber surfaces, respectively.

Increasing the number of used fiber surfaces to infinity without using the same
contour twice or, analogously, an infinitely fine round-function will result in a struc-
ture equivalent to the Reeb space.

6.3.3 Translation into Directed Joint Contour Net

The JCN does not have a notation of ascending or descending direction between
adjacent slabs. The definition of the Pareto set, however, is based on it. Hence, it
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is unavoidable to integrate both concepts. Therefore, in this thesis the directed Joint
Contour Net (dJCN) is introduced by replacing the undirected edges of the JCN with
directed ones.

Definition 6.3.1. The directed Joint Contour Net dJCN = (V,E) is a directed graph.
Let r : R 7→ R be some rounding function such that the bijection b maps each connected
component of r ◦ f to a node V . Given two adjacent components S1, S2 with points s1 ∈ S1
and s2 ∈ S2 (

(b(S1), b(S2)) ∈ E
)
⇔ ∀ni=0r ◦ fi(s1) ≥ r ◦ fi(s2).

With this, direction is introduced into the approximation of the Reeb space and
this effect is used to compute an approximation of the Pareto Set. The structure of
the dJCNs depends strongly on the rounding function. By refining that function, i.e.
by decreasing the interval size and thus the size of the individual slabs, the number
of slabs and therefore the number of nodes in the dJCN increases. Therefore, a series
of rounding functions can be defined with the identity function as the limit, which
leads to a series of dJCNs with the original domain as the limit. Such a series is
called the refinement series of dJCN.

The limit of refinement

A Pareto maximum is a point x with a neighborhood U(x) around x such that each
point y ∈ U(x) is either x ≺� y or x � y. Alternatively, Pareto maxima can be
defined through the global ascending set C+(x), such that x cannot reach any other
point y ∈ S, i.e. no monotone increasing path p+ to a dominating point y with y � x
exists.

Analogously, Pareto minima are defined as points which cannot be reached via
a monotone path from a dominated point y with y � x. In both cases, y is not re-
stricted to any neighborhood. To conclude, Pareto optimal points are surrounded
by incomparable points, which makes them Pareto minimal and maximal simulta-
neously.

Obviously, this notion can be extended to slabs quite easily. A slab is called
Pareto maximal if it cannot reach a dominating slab. On the other side, a slab is
minimal if it cannot be reached from a dominated slab. For dJCNs, this simplifies
to: A Pareto maximum slab has no outgoing edges and a minimum has no ingoing
edges. As a reminder, in dJCNs there is only an edge if at least one of the rounded
scalar functions changes.

The following set of examples illustrates how closely critical slabs and the Pareto
set are related, even under this straight-forward definition. This is demonstrated
by applying dJCN and Pareto set calculations to the LAMPS data set [30] and some
artificial data sets. With this analysis, further relationships between both concepts
are revealed.

LAMPS stands for “Limited Area Mesoscale Prediction System”. It is an atmo-
spheric simulation, which is distributed with the VIS5D system, and provides a set
of 10 scalar fields, including wind, temperature, pressure, and specific humidity.
The application focuses on the east/west component (U) and the north/south com-
ponent (V) of a simulated wind field.
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Note that as a preprocessing step, the LAMPS data is smoothed with a Gaussian
filter [125] before calculating the Pareto set, as described in Section 4.5. This removes
smaller, noise-based features, which is automatically done by the round-function in
the dJCN method. For more details see the corresponding section in Chapter 5.

In the following figures, the dJCN and the Pareto set for this and other, artificial,
data sets are presented. In the right images, Pareto extrema are colored red, green, or
yellow, depending on whether their ascending, descending, or both sets are empty,
respectively. In the left images, the nodes of the dJCNs corresponding to critical
slabs are colored red and blue, depending on the existence of only incoming or only
outgoing edges, respectively. Otherwise, the nodes are colored green. The size of
the nodes also indicates the size of the corresponding slabs. Note that in the later
images, green nodes are reduced to transparent points to avoid obscuring.

(a) (b)

FIGURE 6.4: dJCN and Pareto set for a synthetic example based on a
height and a distance function.

Figure 6.4 shows the dJCN and Pareto set for a synthetic example based on two
fields. At each point, the first field is equal to the distance towards the center of
the domain, while the second field is equal to the height in y-direction. Note how
the pyramid-shaped component of Pareto extrema in the lower middle corresponds
to the row of critical nodes at the same location in the dJCN image. This figure
also shows some issues of the Pareto set calculation with degenerated functions,
especially locations where adjacent vertices have the same function values. Such
functions together with the triangulation of the data result in faulty Pareto extrema
left and right to the mentioned pyramid-shape and the domain border. Note that
this does not seem to be an issue for the calculation of the dJCN.

To consider further synthetic data sets, two and three Gaussian functions, respec-
tively, are used to create a multifield (see Section 3.3). Therefore, for each individ-
ual field, a set of, fixed points in R2 for images 6.5(a) and 6.5(b) and in R3 for im-
ages 6.5(d) and 6.5(c) is given. The Gaussian function value is calculated as the sum
of the exponentiated and weighted distance maps for these fixed points. For these
examples, between the underlying functions only the location of the fixed points is
moved by some degree.
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(a) (b)

(c) (d)

FIGURE 6.5: dJCNs and Pareto sets for two synthetic examples based
on a set of Gaussian functions in 2D and 3D, respectively. Critical
slabs in (a) and (b) and the Pareto extrema in (b) and (d) are colored
similarly, with minima shown in red for both concepts, and maxima
either in blue (dJCN) or green (Pareto sets). Also, (b) shows isosur-

faces in blue and gray for the 2D functions.

As with the previous images, note the correspondence between most of the con-
nected components of Pareto extrema with the groups of colored nodes in the dJCN.
However, there are also Pareto extrema which cannot be linked to a critical slab. This
is for example the case for the central component in Figure 6.5(a) and the larger two
components in Figure 6.5(d), which are both bordered by triangles colored in red and
green. Those components correspond to the location of saddle points in terms of a
single-field topology. Therefore, and also due to large slab widths (see the isosur-
faces in Figure 6.5(b)), the corresponding the corresponding nodes in the dJCN have
incoming as well as outgoing edges. Hence, 6.5(a) does not contain critical slabs in
the image center, even though 6.5(a) clearly shows Pareto extrema at this position.
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(a) (b)

FIGURE 6.6: dJCN and Pareto set for the multifield function based on
the U and V component of the LAMPS data set. The grid has over
21000 vertices which results in 95200 tetrahedrons. For the dJCN, the
slab width is set to 5 for each underlying function. The calculation of

895 nodes and 1667 edges took around 25 seconds.

The last example is based on the LAMPS data set introduced in the beginning of
this section. Figure 6.6 presents the Pareto set and the dJCN, for which each node is
positioned in the barycenter of its corresponding slab. The figure shows how both
visualizations have problems with critical elements in 3D data. Interactivity, i.e. ro-
tation, zoom, etc., with the dJCN and the Pareto set helps to identify corresponding
components of Pareto extrema and groups of critical nodes. While some of these
pairs are highlighted through yellow circles a future, complete identification of all
links has to be computer-based, for example based geometric distance between crit-
ical slabs and components in the Pareto sets.

Note that some critical nodes in 6.6(a) do not seem to correspond to any Pareto
extremum in 6.6(b). However, also note that Pareto extrema that lie on the frontal
domain border are made completely transparent to avoid occlusions.

A main similarity between Pareto sets and dJCN illustrated through these exam-
ples can be proven directly.

Theorem 6.3.1. In the limit of a refinement series of dJCNs the union of all Pareto extremal
slabs is equivalent to the Pareto set.

Proof. The limit of the series of the rounding functions is the identity. Therefore the
limit of the slabs are just single points or areas with the same scalar value and the
applied definitions are equivalent.

6.3.4 Recognition of Pareto maxima and minima through a dJCN

In coarse refinements, connected components of Pareto maxima and minima can be
merged into one slab. This raises the question at which step in the refinement series
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all Pareto features are present in separated slabs in the dJCN. In order to decide when
all connected components of Pareto maxima and minima are finally represented in
their own critical slabs, the concept of persistence is applied.

Lemma 6.3.2. After finite many refinement steps each Pareto maximal and minimal slab
intersects exactly one connected component of the Pareto set.

Proof. A merge of two connected components of Pareto maxima or minima into the
same slab is only possible, if the refinement interval is larger than the persistence
between any two points of the components for any of the scalar fields. Otherwise,
the slabs containing them would be separated by at least one edge. Hence, if the
interval size is smaller than the smallest persistence between any two components
over all scalar fields, all connected components of the Pareto set are separated from
each other.

Note that, after this step is reached and under the assumption of a monotone
refinement series, further refinement cannot merge existing slabs and thus undo this
separation.

Note that from this point on, for the remaining part of the chapter, results mainly
from the master thesis by Jan Bormann [16] and from conference proceedings of the
TopoInVis 2017 [17] are used.

6.3.5 Recognition of Pareto optima through a dJCN

Pareto optimal regions are maximal and minimal at the same time. By definition,
no connections to adjacent slabs are allowed. Hence, at any slab border, one scalar
function has to be on the upper and one on the lower bound of the rounding func-
tion. In practical cases, this is only true in the limit of the refinement series.

For example, assume a triangulation of a 2-manifold with three functions and
three vertices: A,B and C. The values are f(A) = (0.5, 0, 0), f(B) = (0, 0.5, 0) and
f(C) = (0, 0, 1). Notice that all points in the triangle are incomparable to each other.
Each function only increases in the direction of one vertex and decreases if it moves
towards the other two. So, all points in the triangle are Pareto optimal. But, as ex-
emplarily shown in Figure 6.7, for all rounding functions the slabs have connections
and therefore do not fulfill the condition for Pareto optimal slabs.

The above examples show a general pattern. Scalar functions may divide the
simplices at different points. In consequence, slabs will have connections although,
they contain only incomparable points. This can be avoided by generalizing the
notion of Pareto extremality.

6.3.6 Definition of ε-Pareto extrema

To summarize the problematic of the above definition of Pareto optimal slabs, let x,
y, and z be three adjacent but incomparable points with fi(x) < f(y)i < f(z)i and
fj(x) > f(y)j > f(z)j . Assume furthermore, that a rounding function r exists such
that r ◦ fi(x) = r ◦ f(y)i = r ◦ f(z)i but also r ◦ fi(x) < r ◦ f(y)i < r ◦ f(z)i. Thus, all
points are in separate slabs and connected with directed edges. Hence, non of these
slabs are identified as Pareto optimal, because the definition only considers directly
adjacent slabs.
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(a)

A B

C

(b)

FIGURE 6.7: An example with Pareto optimal points in slabs which
are not marked as such. Pareto maximal slabs are marked in green.
Pareto minimal slabs are shown in red, while white areas correspond

to regular slabs.

Therefore, the general idea is to define a neighborhood around each point in
which the criteria for Pareto extremality are ignored, thus allowing it to consider
longer paths in the dJCN beyond the direct adjacent nodes. The neighborhood is
defined by the Chebyshev distance [28] CDistf (x, y) := maxni=1 |fi(x) − fi(y)| for
any two points x, y ∈ S . A point is called ε-Pareto maximum iff it cannot reach a
point with Chebyshev distance of more than ε via a monotone increasing path. In
other words,

Definition 6.3.2. Given an ε > 0, a point x ∈ S is defined as a ε-Pareto maximum, iff

∀y∈Sx y ⇒ CDistf (x, y) ≤ ε.

Analogously, ε-Pareto minimum and optimum are defined and again, extend this
notion to ε-Pareto extremal slabs. For completion, Pε(f) denotes the set of all ε-Pareto
extrema, i.e. ε-Pareto maxima, minima, and optima. By definition, this notion is an
over approximation of the Pareto set, and if ε = 0 holds, it converts to the original
definition.

Proof. To see this equality, ε is replaced in the above definition with zero such that
CDistf (x, y) ≤ 0 has to hold, and therefore f(x) = f(y). Assuming that x  y is
true, f(x) = f(y) implies that all points along the corresponding path between x and
y have the same multifield value. However, since f is assumed to be a smooth Morse
function, this is only true for y = x. Hence, {y ∈ S | x  y} \ {x} has to be empty
for x being a ε-Pareto maximum (ε = 0). This is equivalent to the definition of Pareto
maxima based on global ascending sets, see Definition 4.3.2 and Lemma 4.3.1.

As a reminder, the example in Figure 6.7 shows that the above definition of
Pareto optimal slabs cannot identify Pareto optimal slabs as such although they con-
tain Pareto optimal points, even for very fine rounding functions. The definition of
ε-Pareto optima, however, is designed to provide just that. To prove this, additional
notations are needed. Therefore, with the help of the gradients, the most increasing
and most decreasing scalar field for each point is identified. For each Pareto opti-
mum x and each direction v, the quotient of the absolute values of the most increas-
ing and most decreasing gradient over all separate fields fi is called the changing rate
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of x towards v. The maximal changing rate is denoted with ch. Note that the chang-
ing rate is well defined, since x is assumed to be a Pareto optimum, i.e. surrounded
by incomparable points such that at least one ascending and one descending field
exists in each direction. Also, f is assumed piecewise linear, such that the gradients
are piecewise constant. Hence, the maximum of all changing rats exists.

Lemma 6.3.3. Let the interval size of the rounding function be smaller than the quotient of
ε and ch, then all Pareto optimal points are in ε-Pareto optimal slabs.

Proof. Given a Pareto optimal point x ∈ S , w.l.o.g. x = 0, some path p starting at
x in direction v, the slab containing x can only be classified as ε-Pareto optimum,
if along the path p at least one field increases and one field decreases, both with a
value change of more than δ, the interval size of r. Then, the corresponding path in
the dJCN can neither be classified as ascending nor descending path. Furthermore,
these value changes need to appear within a Chebyshev distance of ε with respect
to f around x. Otherwise, the ascending or descending subpath of p within the
Chebyshev distance is sufficient to make x neither a ε-Pareto maximum nor ε-Pareto
minimum, respectively.

Hence, it is possible to approximate, from below, the number increasing and
decreasing value changes along p within Chebyshev distance of ε that would result
in slabs changes along the corresponding path in the dJCN. If both numbers are
larger than 1, the p cannot be used to disqualify x as a ε-Pareto optimum.

Therefore, let y be the first point along p for which maxi(|fi(x) − fi(y)|) ≥ ε.
W.l.o.g. it can be assumed that the maximal argument of this Chebyshev distance
is i = 1 such that f1(x) − f1(y) = ε. For all other arguments, i.e. i 6= 1, it holds
that fi(x) − fi(y) < ε. Furthermore, since x is Pareto optimal, it is possible to find a
minimal point y′ between x and y and an argument j, w.l.o.g. j = 2, with f2(x) −
f2(y

′) < 0. Otherwise, an ascending path from x to y exists and therefore x could
neither be Pareto maximal and, thus nor Pareto optimal.

The number of slab changes c1 based on f1 is therefore approximated from be-
low: f1(x)−f1(y)δ = ε

δ . For an approximation of c2, the slab changes based on f2, it can
be assumed that both f1 and f2 have the flattest ascend and descend possible and,
w.l.o.g. have f1(x) = f2(x) = 0. In other words, f1(t) = a ·twith f1(y)

y and f2(t) = b ·t
with f2(y′)

y .

Following this assumption, the location of y is defined through ε and the gradient
of f1:

f1(y) = ε = a · y ⇒ y =
ε

a
.

The number of slab changes c2 based on f2 is therefore:

|f2(y)

δ
| = c2 ⇒ c2 = | ε · b

a · δ
| = ε| b

a
| · 1

δ
.

Since it is assumed that i = 1 is the maximal argument for a point y with Cheby-
shev distance CDistf (x, y) = ε, it follows that |f1(x) − f1(y)| ≥ |f2(x) − f2(y)| and
thus, | ba | ≤ 1. Therefore, c2 ≤ c1 is the lower boundary for direction v.



88 Chapter 6. Comparison

This argument, illustrated in Figure 6.8, can be done analogously for every path
originating from x to conclude the proof.

f1(x) + ε

(x, f1(x))

(y, f1(y))

(y, f2(y))

FIGURE 6.8: Illustration of the number of slab changes between point
x and y for two fields f1, f2.

With a lower bound for the interval size given, the following theorem is a direct
result.

Theorem 6.3.4. For almost all refinement steps all connected components of Pareto extrema
are contained in ε-Pareto extremal slabs.

Note that by decreasing ε to zero the over approximation is reduced, but more
slabs to compute. On the other hand, by choosing a rounding accuracy a limit of the
approximation rate of Pareto slabs can be set.

6.3.7 Proof-of-Concept Examples over constant 2D-grids

In the first results in Figures 6.4, 6.5, and 6.6, the dJCN is computed with the naive
definition of critical slabs through modified code provided by Haemish Carr, while
the following visualizations result from Jan Bormann’s implementations.

Regarding the latter, to support the changing ε and interval size, Bormann uses
an alternative implementation of the slabs in contrast to existing literature [29, 123].
Assuming the grid is evenly triangulated, each triangle is recursively separated into
equally sized subtriangles based on the interval size and the corresponding round-
ing function r. Therefore, triangles are split, if for any two centroids x and y of the
resulting subtriangles and any field fi, r(fi(x)) 6= r(fi(y)) holds. In other words, the
triangulation is refined until the the slab borders are closer to the triangle edges than
to the triangle centroids.

In a second step, the slabs are approximated by iteratively clustering triangles.
Therefore, two neighboring triangles are grouped together, if their centroids are in-
side the rounding interval, i.e. r(fi(x)) = r(fi(y)), for all fields i. This allows for fast
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recalculation of the slabs if the interval size is changed.

An easy example showing all types of ε-Pareto extrema is based on three shifted
Gaussian functions, similar to the two used for the first images in Figure 6.5.

Figure 6.12 shows how the connected components of the Pareto set are over-
approximated by ε-Pareto extremal slabs. Note how the shape of the extremal slabs
in 6.9(a) is similar to the Pareto extrema in image 6.9(b). Also note the classification
into Pareto minimal, maximal, and optimal slabs that matches the classification of
the Pareto extrema in 6.9(b). This effect can be improved with increased refinement
at the cost of a higher number of slabs. The implementation is not restricted by
the number of fields or the complexity of the data, as demonstrated in the example
shown in Figure 6.10.

(a) Critical slabs (b) Pareto set

FIGURE 6.9: Pareto extremal points and slabs colored in green, red,
and yellow depending on their type. In (b) the three individual fields

are indicated by a selection of contour lines.

For the fields in Figure 6.10, again Gaussian functions with slightly moved ex-
trema are used. Movement occurs parallel to the horizontal and vertical axes such
that the components of the Pareto set result in cubic shapes. As in previous sections,
some irregularities (marked with blue circles) can be noticed. They can be attributed
to the coarseness of the triangulation. Note how those irregularities appear in the
critical slabs 6.10(a), depending on the interval size of the rounding function.

Furthermore, currently neither dJCNs nor any other approach can indicate where
critical slabs appear after further refinement of the rounding function. This prohibits
stepwise, local refinement, i.e. refinement only around critical slabs.

Reachability Graph

To visualize additional information about the Pareto set, a connected component
in the Pareto set reaches another, if a monotone ascending path between any two
points of those components exist. Obviously, this also implies that a path between
the slabs containing those points exist in the dJCN. Furthermore, since the ε-Pareto
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(a) Critical slabs (b) Pareto set

FIGURE 6.10: Pareto extremal points and slabs colored as in Figure 6.9
but the data set contains an increased number of fields and each indi-

vidual field has more single-field extrema.

optimality is also defined through reachability, the same ideas are applied to prove
similar properties for the reachability graph, especially regarding its approximation
by a dJCN.

FIGURE 6.11: Two 1D fields (top), a dJCN (center) for a 2D extension
of the fields, and the corresponding reachability graph (bottom).

The next example shows two 1D scalar fields fi : [0, 10] 7→ R in the upper part
of Figure 6.11, each with a distinct, obvious maximum in the center. The fields are
extended to 2D with fi(x, y) = f(x) for y ∈ [0, 1] and i ∈ {0, 1}. The grid is tri-
angulated, and the resulting slabs are shown in the center part of the figure using
Bormann’s implementation. Colors indicate the slab status, while green lines con-
nect neighboring triangles only if their centroids are comparable, i.e. if they are either
dominating or dominated.

A Union-Find algorithm [158] combines neighboring Pareto extremal slabs of the
same type and provides the nodes for the reachability graph. Edges are created by
running a path-finding algorithm on the dJCN. In this case, breadth-first-search is
used. In summary, this results in the following procedure:

• Create the dJCN

• Calculate the ε-Pareto set
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• Identify clusters of Pareto extremal slabs through Union-Find

• Build the reachability graph through Breadth-First-Search on the dJCN

6.3.8 Discussion

In this section, the connection between JCNs and Pareto sets are not only visually
shown, but their relation is also proven and quantified. In detail, the following
contributions to the study of multifield topology-based analysis techniques are pro-
vided:

• The first, naive definition of critical slabs shows potential for visualization, but
is disproved to be a direct translation of the complete Pareto set.

• Therefore, the ε-based definition of Pareto sets is introduced, both in context of
simplical complexes and the dJCN.

• The presented theorem proves, in the limit of the refinement series and under
the ε parameter, that critical slabs are equivalent to Pareto sets such that the
dJCN can be used as an approximation of the Pareto set.

• Furthermore, through the intermediate definition of ε-Pareto minima and max-
ima, the error between Pareto sets and dJCNs and the resolution of the round-
ing interval can be limited.

In summary, it is possible to approximate the Pareto set through the dJCN and to
limit its error to some degree. The dJCN, furthermore be used to approximate the
reachability graph using simple path finding algorithms for graph structures in con-
trast to existing, computationally expensive approaches on piecewise linear struc-
ture. It is also shown that the error limit between the critical slabs and the Pareto
set is reached after a finite amount of refinement steps. However, it is not possible
to efficiently calculate ch and thus the necessary resolution of the rounding function
beforehand. Note that a naive calculation requires roughly the same computational
effort as the calculation of the Pareto set itself, thus providing no faster runtime.

The results are implemented and applied to a set of artificial data sets with mul-
tiple fields and discussed the implications of this section for the general relations
between Pareto sets and the Reeb space. While the latter could provide an error-less
identification of the Pareto set, so far, it is apparent that a fast method to construct
the reachability graph out of the Reeb space exist. With this, directions for future
work include utilizing simplification approaches based on JCN or the Reeb space to
efficiently remove local structures from multifield visualizations.

Reeb space

The JCN is an approximation of the Reeb space, a generalization of the Reeb graph
in multifield data. In detail, given the equivalent class x ∼ y iff both points belong
to the same path connected component of the preimage f−1(f(x)) = f−1(f(y)), the
Reeb space is the space of all equivalent classes with the quotient topology inherited
from S (see Section 3.2.3). Obviously, JCN slabs converge to these preimage compo-
nents for an infinitely fine rounding function. Thus, it is reasonable to discuss the
Reeb space as a means to calculate the Pareto sets and the reachability graph.
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FIGURE 6.12: Pareto extremal points and slabs colored in green, red,
and yellow depending on their type.

The Reeb space has the advantage of being continuous and not an approxima-
tion, as the JCN. Thus, the original definition of Pareto sets can be applied instead
of the detour of ε-Pareto set. Let for two points x, y ∈ S , x → y hold, such that a
continuous ascending path from x to y exists. Then, there is also an ascending path
in the Reeb space from the equivalent class containing x to the class containing y.
Therefore, corresponding to the definitions in Section 6.3.3, points in the the Reeb
space can be defined as Pareto minimal, Pareto maximal, or Pareto optimal. Like Ja-
cobi structures, the Pareto set can be extracted from the Reeb space. See for example
the work by Chattopadhyay et al. [36] for comparison. The extraction is improved
by the fact that the Pareto set can be considered a subset of the border of the Reeb
space projected onto the image space of the multifield.

However, the main advantage of the dJCN, i.e. the graph structure allowing for
a quick computation of an approximated reachability graph, is not given anymore.
It is therefore reasonable to hypothesize that the calculation of the ascending and
descending paths is equally expensive in both the domain S and in the Reeb space.
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Chapter 7

Application Scenarios

Besides defining the Pareto sets and showing their relationship to existing tech-
niques, it is important to demonstrate their potential application in real-world sce-
narios to better understand, when and how Pareto sets might be a useful tool for
visualization and exploration. This also provides an overview of possible extensions
of the Pareto set concept and its combination with other visualization tools. Follow-
ing this goal, the application of Pareto sets in three scenarios that can broadly be
labeled as problems requiring multifield data analysis are described in this chapter.
In each of these scenarios, the data sets are either based on simulation ensembles,
contain multiple variables or time steps, or are otherwise semantically related. Indi-
vidual fields are associated with the same triangulated domain, given either in 2D
or in 3D. Hence, the definitions and algorithms from Chapter 4 can be applied.

7.1 Vortex Detection

One possible application of the multifield method is its usage to integrate multiple
criteria for vortex detection in fluid flow or weather simulations. The general idea
is that, while many criteria for vortex detection exist, each of them incorporates an
individual level of result uncertainty. This is due to different criteria models, uncer-
tainty or missing data in the initial conditions of a simulation, or other factors. It is
therefore reasonable to consider a variety of different criteria at once to compensate
for this uncertainty.

Using the Pareto set for this combination is described in the following two sub-
sections, whereas the first describes a scenario from fluid simulation, while the sec-
ond considers a similar scenario from a meteorological simulation. Note that both
subsections are basic, proof of concept scenarios for the usability of Pareto sets.
Other, more detailed scenarios are introduced in Section 7.2 and 7.3.

7.1.1 Scenario 1: Vortex detection in fluid simulations

This scenario is based on the Can data set, which is already mentioned in Section 5.4.
The images and results can also be found in earlier work [91]. The data itself re-
sults from a CFD (computational fluid dynamics [190, 176]) simulation of flow in
a fluid-filled cylinder (courteously provided by M. Rütten, DLR Göttingen). It is
represented on a tetrahedral mesh of approximately 750K elements and describes
the transient flow of a highly viscous fluid in a cylinder at rest. In this simulation,
fluid motion is induced by the rotating top of the cylinder. The data set is a simple
example of a flow simulation with the aim to identify vortices using several vortex
criteria. In the focus of this subsection are the Q-criterion as well as λ2, vorticity, and
pressure values and the corresponding extremal points. Such simulations are often
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found in aircraft or car design, where the localization of air turbulence and vortices
are essential for a fuel efficient design.

As a scalar quantity, the vorticity ω reflects the local strength of rotation and be-
comes maximal at the vortices’ centers but can also indicate shear in boundary lay-
ers, similar to the fluid pressure criteria. As another vortex indicator, the Q-criterion
q is positive where rotation dominates shear and is also maximal in vortex centers.
The variable λ2 (see Jeong and Hussain [97] for definition) becomes minimal in vor-
tices, therefore, to get a good match with the maxima for the other fields, the nega-
tion of this field,−λ2, is considered instead. See, for example, Jeong and Hussain [97]
for further details on those criteria.

FIGURE 7.1: Color maps of the scalar fields going from blue for low
values to red for high scalar values.

In summary, all criteria indicate vortices via extremality, however disagree on the
exact location of detected vortices and might contain mis-classifications. Therefore,
the Pareto set seems like a natural choice to integrate these measures for a more
reliable detection, since it provides extremal regions, elements of E(f), on which all
criteria agree.

Next to the 3D data, additional input is generated as a two-dimensional slice par-
allel to and containing the cylinder’s central axis. As the flow is relatively smooth
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and exhibits a high degree of rotational symmetry, this is sufficient to identify mean-
ingful structures. The images in Figure 7.1 illustrate the component scalar fields on
the slice.

The Pareto set for the combination of the four fields in Figure 7.1 is shown in
the two images in Figure 7.2. While a common maximum in the center bottom is
obvious in the color maps of the individual fields (Figure 7.1), other features, for ex-
ample the three layers of wing-like structures in the center of the domain along the
central axis, are almost impossible to identify without the Pareto set. Images 7.2(b)
shows a color-based domain decomposition as all ascending and descending sets of
all connected components of the Pareto set are visualized in different, but transpar-
ent colors. Thereby, the presented colors are the results of overlapping ascending
and descending sets and their corresponding transparent colors. Hence, the domain
is visually separated by color and each color corresponds to an equivalence class of
points that can reach and can be reached by the same set of connected component
of the Pareto set. This visualization is more time efficient than the actual calculation
of the equivalence classes but open to color bleeding. However, it is sufficient and
hints at the complexity of creating the reachability graph. The decomposition fur-
thermore shows how the mentioned wing-like structures extend and are connected
to each other.

(a) reachability graph (b) domain decomposition

FIGURE 7.2: The Pareto set for the fields in Figure 7.1. (a) shows also
the corresponding reachability graph, while (b) shows a visualiza-
tion of all ascending and descending sets of all connected components

contained in the Pareto set.

In general, note how all criteria agree to the extent that vortices appear either
along the central axis or around the bottom or sides of the container, but not in be-
tween. The latter is indicated by the absence of Pareto extrema in this area. Also
note that the Pareto optimal region at the bottom is rather large, meaning that area
where the four fields are incomparable, i.e. disagree in a common direction/behav-
ior, is extensive.

Other visualizations are shown in Figure 7.3, where the Pareto set contains only
two fields, λ2 and the Q-criterion. Image 7.3(a) provides a 3D view on the can data
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set. Instead of the wing structures seen in the 2D slices, it is now possible to identify
layers of cone-shaped structures around the central axis. Figure 7.3(b) shows the
Pareto extrema of an axial cross-section of the data set augmented by H±(x). The
cones are colored in light green and red, respectively. The images demonstrate one
possible option to explore the data, by highlighting the ascending and descending
set of a regular point to indicate a vortex region up to the point where the vortex
breaks down. This approach shows close details but no global behavior. This might
become slightly confusing due to the many, small ascending and descending cones.
Therefore, in Figure 7.3(c), H±(x) are colored gray while the incomparable points
are left white.

(a) 3D view (b) ascending and descending sets of a point

(c) comparable (d) LIC

FIGURE 7.3: Pareto extrema in a can flow simulation. While (a) de-
picts Pareto extrema in the 3D volume, the other images focus on an
axial slice of the dataset. The different visualizations highlight differ-

ent aspects. See main text for details.

Note how the Pareto region A is surrounded by narrow, almost invisible cones,
while the cones around regionB are wider. This provides a rough estimation on how
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much the gradients of λ2 and the Q-criterion match in this Pareto-optimal region.
Therefore, while A will consist more of incomparable points and less of true optima,
i.e. optima in at least one of the criteria, B is more like a hillside for both fields.
For this thesis, a possible approach is investigated using the size of H±(x) inside
the triangle to measure the agreement between the individual fields in the following
Section 7.3.

Alternatively, Figure 7.3(d) shows a line integral convolution (LIC) visualization,
using the angle bisections of H+

σ (x) as vector with the size of H+
σ (x) as length. Note

that in regions with large ascending cones, i.e. where the individual fields agree with
each other, the image gets fuzzier. In contrast, in regions with smaller cones, i.e. the
ascending and descending paths are more narrow, the image stays sharp. This pro-
vides a very rough and approximated view on the local ascending and descending
sets, the averaged gradients of the individual fields, and some indication about their
agreement. While this is still not an optimal approach to visualize the multifield, it
provides a good overview of possible extensions to the Pareto set visualization as
well as a proof-of-concept.

7.1.2 Scenario 2: Atmospheric Hurricane Data

FIGURE 7.4: The path of hurricane Isabel during September 06-19
2003. The black box indicates the spatial area and the white box in-
dicates the time window contained in the data set. The background
image containing the hurricane track and the development of its in-

tensity is from a paper by Gautam et al. [66].

In climatology and meteorology, simulation data sets play a key role in analyzing at-
mospheric processes and events. Such data sets commonly consist of time-varying,
multivariate 2D and 3D fields - properties that aggravate their visualization and
analysis. Using the IEEE Visualization 2004 Contest Hurricane Isabel data produced
by the Weather Research and Forecast (WRF) model (courtesy of NCAR [124] and the
U.S. National Science Foundation (NSF)), the Pareto set is used to identify vortices,
corresponding to features of the Hurricane Isabel. It demonstrated how Pareto Sets
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can be utilized to identify and visualize global features that correspond to common
extremal areas in a set of spatially corresponding scalar fields. As in the previous
subsection, the multifield can consist of a combination of different vortex criteria,
but here, different height levels are considered instead of just one axis-parallel slice.
Additionally, arrays of subsequent time steps are studied to track changing behavior
of selected variables over time as well. The visual result were also presented dur-
ing the 32nd Conference on Environmental Information Processing Technologies by
Kathrin Häb [92].

Spatial Dimensions: Longitude 83.00W - 62.00W (2139.00 km)
Latitude 23.70N - 41.70N (2004.00 km)
Height 00.00 km - 19.84 km

Spatial Resolution: 500 x 500 x 100 grid cells (δx ≈ 4.28 km,
δy ≈ 4 km,
δz ≈ 0.198 km)

Number of Time Steps: 48 (δt = 1 h,
Sept 16-18, 2003)

Number of Variables: 13

TABLE 7.1: Hurricane Isabel data produced by the Weather Research
and Forecast (WRF) model, courtesy of NCAR and the U.S. National

Science Foundation (NSF) [106].

The hurricane Isabel moved 2003 along the US coast as illustrated in Figure 7.4.
The image shows the hurricane’s path, the observed spatial domain (black box) and
the observed time window (white box) contained in the data set. For more details
about this illustration, see Gautam et al. [66]. In all images for this subsection, a
satellite images of the corresponding observed spatial domain (North Atlantic Ocean
west of Florida retrieved from Bing [12]) is used as background to provide geograph-
ical context to the different Pareto sets that are given as overlays.

FIGURE 7.5: Features of hurricane Isabel. The image is from the In-
ternational Space Station (15. September 2003) [180]).
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Note that this application is not part of the IEEE Contest but a presentation for
the 32nd Conference on Environmental Information Processing Technologies (EIPT)
which toke place during the 96th Annual Meeting of the American Meteorological
Society 2016 (AMS) in New Orleans, USA. Hence, some publications regarding the
visualizations and analysis of the hurricane data set exist [1, 117, 151, 66, 47, 187, 46,
13, 70]. However, these works only use single- or multifield tools without consid-
ering topological aspects. The data is provided in context of the IEEE Visualization
2004 contest [106] and is summarized in the Table 7.1.

While possible, it is not reasonable to calculate the Pareto set of all 48x13 = 624
fields at once. The semantic relation between fields from different time steps and
different variables is simply to low to create meaningful results. Hence, subsets of
fields are chosen in which at least two of the three criteria time step, variable and
height layer, are the same. The application goal is inspired by work from Joshi et
al. [151] that analyzes and visualizes hurricane features like the hurricane eye or the
eye wall, shown in Figure 7.5 and the location and time of start of the hurricane
dissipation.

Time-varying near-ground pressure

FIGURE 7.6: Pareto set, colored in green, red, and yellow depend-
ing in the Pareto extremal type, for air pressure simulated 20 meter
above sea level. The multifield contains 21 fields, each representing

one hour time steps (see Figure 7.8 and 7.7.

Figure 7.6 shows the Pareto set for time steps 10 to 30 for the pressure near the
ground level (approximately 20m above sea level). Each time step corresponds to
one hour such that similar behavior of the individual fields can be assumed. In
the focus is a high pressure center in the image center which is marked by a Pareto
optimal region (yellow area) surrounded by Pareto maxima (green line). It clearly
indicates the general direction of the hurricane center. This statement is verified in



100 Chapter 7. Applications

Figure 7.8 and 7.7. The figures show the air pressure for first time step (t = 10) and,
in a multiview, for the remaing ten time steps, respectively, as gray scale map with
the Pareto set from Figure 7.6 as an overlay. Dark gray indicates high air pressure
such that each image shows a clear pressure maximum moving along the hurri-
cane path shown in Figure 7.1. Note that a multiview of all individual fields, as in
Figure 7.7, is not suitable to present all pressure maps at once such that either the
enlarged view of selected images (see Figure 7.8) or a summary, for example with
the Pareto set concept, is necessary.

(a) t = 11 (b) t = 12 (c) t = 13 (d) t = 14 (e) t = 15

(f) t = 16 (g) t = 17 (h) t = 18 (i) t = 19 (j) t = 20

(k) t = 21 (l) t = 22 (m) t = 23 (n) t = 24 (o) t = 25

(p) t = 26 (q) t = 27 (r) t = 28 (s) t = 29 (t) t = 30

FIGURE 7.7: Pareto set as shown in Figure 7.6 with a grayscale map
based on the air pressure 20m above sea level at different time steps t

indicated by the image labels.

While the Pareto set provides a good summary of the 20 time steps and com-
pensates for uncertainty in the individual fields, it does not indicate if the hurricane
moves towards or away from the coast line. However, note that it is possible to
move a time window, for example 10 steps, along the time line to compensate for
this drawback and allow the trace of the hurricane center over time.
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FIGURE 7.8: Pareto set as shown in Figure 7.6 with a grayscale map
based on the air pressure 20m above sea level at time step 10.

Height-varying wind speed

The images in Figures 7.9 provide the wind speed at time step 20 for different sets
of height layers. Especially with 3 to 6 layers, two main characteristics of the hur-
ricane, the eye and the eye wall, are clearly visible as Pareto minima (green) and
Pareto maxima (red), respectively. It shows that the eye is very stable throughout
the height of the hurricane, resulting in a small point-like component in the center.
Note on the other hand, that due to the rotation of the hurricane, a circular Pareto
maximal component corresponding to the eye wall appear. There, local maxima in
the individual fields or different height layers are positioned in a spiral pattern and
thus cumulate to almost a circle in the Pareto set.

(a) 3 layers (b) 4 layers (c) 5 layers (d) 6 layers

(e) 7 layers (f) 8 layers (g) 9 layers (h) 10 layers

FIGURE 7.9: The Pareto set for different numbers of hight layers at
time step 20, i.e. around September 16, 20:00 UTC.



102 Chapter 7. Applications

As a third remark, note that a hurricane starts to spread out in the higher atmo-
sphere such that the conical eye wall becomes wider in higher levels and also that
the wind speed at sea level is almost incomparable to the wind speed above 15km.
Hence, the Pareto-optimal regions become too large to provide meaningful results if
too many height layers are included in the multifield, as shown in image containing
10 height layers.

(a) 3 layers (b) 4 layers (c) 5 layers (d) 6 layers

(e) 7 layers (f) 8 layers (g) 9 layers (h) 10 layers

FIGURE 7.10: The Pareto set for different numbers of hight layers at
time step 45, i.e. around September 17, 21:00 UTC.

T same height layers of wind speed can be analyzed for a different time step, for
example for the last one. This is shown in the images in Figure 7.10. Due to occlusion
of the satellite image in the background, the presumed location of the hurricane is
marked with a blue circle. Again, features like the hurricane eye and the eye wall
can be identified. However, it appears as if size, shape and distance between the
features identified by the Pareto set method changed, when comparing the image
of this later time step to that of the earlier. Those changes might be founded in the
hurricane slowing down to a category 2 hurricane (see Figure 7.4).

Due to the lower category and therefore less rotation, the wind speed maxima
in the eye wall move less when adding higher layers and therefore resulting in less
circular Pareto maximal regions. The center, less vertical, seems to tip over such that
the corresponding Pareto minimal region is more a line than a point. And further-
more, the height level at which the hurricane starts to fan out is lower, such that
the Pareto optimal regions appear larger in Figure 7.10 as opposed to those with the
same set of height layers in Figure 7.9.

In summary, the analysis of Pareto sets not only allows to locate hurricane fea-
tures, but also, when compared over time, can indicate when the hurricane starts
to dissipates. Quantifiable measures like the component size corresponding to the
hurricane eye or its distance to the components corresponding to the eye wall, can
even provide a measurement for the degeneration.
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7.1.3 Results

Throughout this section, it is shown that the Pareto set is able to detect vortices, even
with distinct features like hurricane eyes and corresponding eye walls. However, the
actual values of the individual fields are not visualized, since the presented concept
is only based on the gradients. While this is intended by the Pareto set design, it
prohibits explicit visualizations showing which field is responsible for Pareto opti-
mality inside the Pareto set.

The scenarios also show how reliant the visualization is on the semantic relation
between the fields. Even a small set of fields, as shown in Figure 7.2 or 7.10, can
cause large Pareto optimal regions, i.e. areas of incomparable points, even when the
fields are supposed to represent the same phenomenon, for example the position
of vortices. The results of this section support the previous assumption that Pareto
sets are more likely to be useful for ensemble data set, in which the fields are based
on similar simulation models or measurement techniques but, for example, with
changed initial conditions or parameters.

7.2 Quality Control in Car Manufacturing

The second application is based around real-world data from car manufacturing
processes, in detail their quality control. Quality control and maintenance is a vital
part of the car manufacturing process, since it is mandatory that the produced parts
fit together in each assembly step. Hence, divergences between parts and their re-
spective target shape must be uncovered, such that the responsible assembly step or
machine can be further evaluated or repaired.

Nearly every car part has to be checked to identify incorrect working stations or
devices and/or wear of the machine parts. For the quality control, the manufactured
part is clamped into a frame or held by a robot arm, resembling spatial positions as
precisely as possible for a good registration of the actual part and its quota. Small
deviations are accounted for by the measurement software. For sheet metal, there
are several methods of quality control. In this section two techniques are in the focus:
tactile measurements and optical measurements.

Tactile measurements are conducted, e.g., by a high precision robot arm that
leads a small probe head to the sheet surface, generating one measurement point
for each feature in a predefined inspection plan [111]. For optical measurements, a
scanning device, e.g. a stereoscopic camera system, is used to generate point data for
a contiguous part of the surface, creating millions of measurement points regardless
of the tactile measurement plan [135]. Both methods can be used independently or
together. However, new possibilities arise for visualization and analysis from the
denser and orders-of-magnitude larger set of data points resulting from the optical
system.

To investigate these possibilities, the Pareto set approach is tested using so-collected
optical measurements. These data sets are represented as triangulated point clouds
(meshes) with millions of triangles, given for example as STL-files [153]. For prac-
tical applications, it is mandatory that the measurements are always connected to
the correct quota, measurement plan and measurement plan version. To facilitate
this task, most companies use a measurement data management system (MDM).
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The method proposed in this scenario can, for example, be included into the widely
used eMMA software suite by Kronion [104]. That way, it can easily be integrated
into the workflow, providing a useful complement during all steps from prototyping
to series production.

The results and work, presented in the following can be found in previous work [90]
as well as in projects by Nils Feige in cooperation with Kronion [104].

7.2.1 Scenario Overview: Data Set and Application Goal

The Pareto set visualization is applied to a set of seven 3D-scans of a trunk lid. The
first scan is arbitrarily chosen as quota with a grid consisting of over 1.7 million
triangles. The distance maps from the quota geometry to the other six scans are
depicted in Figure 7.11. Note, that since the scans are all of the same trunk lid, the
results visualize problematic areas for the 3D scanner rather than actual wear of the
machines involved in building these lids.

(a) original distance map #1 (b) original distance map #2 (c) original distance map #3

(d) original distance map #4 (e) original distance map #5 (f) original distance map #6

FIGURE 7.11: Selection of distance maps based on 3D scans of the
same car trunk lid, displayed color-coded on the quota grid. The col-
orscale ranges from black (zero deviation from the quota) over red to

yellow (high deviation from the quota).

Nevertheless, the general goal is to enhance the insight into the data by aggre-
gating information from an entire set of measurements into one simple view that
automatically highlights areas where all distance maps show the same behavior.
The resulting visualization should indicate the location of areas with systematic er-
rors in the production process, which in general might stem from worn punching
press tools or other sources like faulty transport processes. These locations should
be furthermore distinguishable from other locations that are generated through un-
certainty caused by the sensor arrays [21]. Thus, the method, in contrast to simply
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averaging the distance values over multiple measurements, should not show ran-
dom outliers in one function as a systematic error.

Preprocessing of the measurement data

To calculate the distance map between the quota and an actual (produced) part, two
triangulated meshes are needed. While the actual data always stems from a trian-
gulated 3D point scan, the quota could also be a triangulated CAD geometry. The
distance between every scan point of the actual part to the surface of the triangu-
lation of the quota is then saved in the closest vertex of the quota triangulation. If
multiple points of the actual part are mapped onto the same vertex, the distance
value is averaged. Hence, every scanned actual part results in a distance map over
a common grid. Given multiple car frames of the same production line, their scans
result in a scalar multifield such that each vertex stores a vector, each entry repre-
senting a distance between the quota and one scans.

For some applications, it is not necessary or not feasible to scan the entire surface
of an actual part. Thus, only partial scans are produced and provided for compar-
ison. In these cases, it should be avoided to consider regions on the quota lacking
corresponding data from the actual part as an error in the actual part. Vertices on the
quota without an equivalent on the actual part are assigned zero distance. Hence,
such distance mapping is highly asymmetric.

Initial inspection of the data revealed it to be strongly noisy. Large areas of all
distance maps had only small distance values with little, local changes. It is hy-
pothesized that these small-scale variations are due to small errors in the scanning
process. To filter out this noise, a Gaussian smoothing method is applied to each dis-
tance map. This smoothing assigns each vertex a new distance value based on the
weighted average of its neighbors. The neighbors are identified by traversing along
the edges using breadth-first search, only considering neighbors within a fixed depth
level. The weights are Gaussian functions based on the Euclidean distance between
the neighbors and the vertex [125].

7.2.2 Definition of the Weighted Pareto Sets

To implement the visualization, the Pareto set is utilized. As a reminder, note that
every maximum of any field fi is also a Pareto maximum of f and is therefore in-
cluded in one of those connected components E(f). But, as presented in the 1D
example in Figure 7.12, a Pareto extremal region does not indicate that all fields fi
have an extremum inside this component.

Figure 7.12 presents the Pareto maxima, Pareto minima, and the Pareto optima,
marked by a red bar, a green bar, and a yellow overlay, respectively, for three 1D-
fields f1, f2, and f3. (see Chapter 4). Note how only f2 contributes to the Pareto
extremal region labeled A, i.e. by omitting f2 from the multifield, all points in A
would become regular.

To tackle the application goal, the focus lies on regions in which most distance
maps have a maximum, i.e. to which many fields contribute. Other Pareto optimal
regions however, to which only a small number of fields contribute, are of less inter-
est since those possibly count towards uncertainty in the optical scans. Hence, each
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f1

f2

f3 A

FIGURE 7.12: A simple 1D example with three functions f1, f2 and
f3 and the corresponding Pareto extrema colored in red for Pareto
minima, green for Pareto maxima, and (transparent) yellow for Pareto

optima.

Pareto optimal region receives a weight corresponding to the number of contribut-
ing fields, to allow an automatically distinction between important and unimportant
regions.

Definition 7.2.1. The weighted Pareto set Pw(f) for a multifield f = (f1, . . . , fn) is a
Pareto set with weighted components E(f). The weight function w+ : E 7→ N is defined for
all connected components E ∈ E(f) such that 0 ≤ w+(E) ≤ k is the number of fields fi for
which at least one point x ∈ E is maximal in terms of single-field topology, i.e.

w+(E) = |{x ∈ E | ∂

∂x
fi(x) = 0 ∧ ∂2

∂x2
fi(x) < 0}|.

Given the distance map, in which high distance indicates high wear, only max-
ima need to be considered instead of counting all extremal points. A component
E ∈ E can be measured as a region in which w+(E) of the individual fields have
at least one maximum. High values of w+(E) indicate that inside this region many
fields differ from the quota geometry and therefore advocate that systematic errors,
for example by wear, appear in the production process.

In summary, while the Gaussian smoothing reduces noise and those maxima in
the separate distance maps with only a small local value difference are eliminated,
the weighting of the components in the Pareto set can, remove those, which are
only based on a small number of distance maps. Hence, a user can focus on those
areas where a large number of distance maps indicate the location of relatively large
distance, which are areas that might be affected by wear.

7.2.3 Results

The following figures show the weighted Pareto sets for those six fields, presented
in Figure 7.11, after a Gaussian smoothing. Each caption indicates the number of
smoothing iterations (I), the full width at half maximum (FWHM) that defines the
width of the Gaussian bell curve, and the maximal depth level of the neighborhood
(ND). See Section 5.1 for more details regarding the Gaussian smoothing.

In Figures 7.13, 7.14, and 7.15, the color scale encodes the following properties:
Red indicates a regular vertex and a weighting of zero while the color scale from
blue to green indicates Pareto extremal vertices with a weighting from one to six,
meaning that one to six distance maps have a maximum in this area. Higher weights
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(a) overview (b) front middle

FIGURE 7.13: The weighted Pareto set on the trunk lid for the six
distance maps shown in Figure 7.11 after a Gaussian smoothing with
parameters I: 10, FWHM: 6, and ND: 5. Regions are colored based on

their weights, going from red (0) over blue (3) to green (6).

(a) overview (b) front middle

FIGURE 7.14: Image analogous to Figure 7.13 with different smooth-
ing parameters (I: 20, FWHM: 3, and ND: 5). Note how the oversim-

plification removed most of the features visible in Figure 7.13.

indicate that there is an area of systematic errors, the detection of which is the main
goal of the proposed algorithm. The color for the triangles and edges are linearly
interpolated based on their adjacent vertices.
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Figure 7.14 illustrates that the search for suitable smoothing parameters is neces-
sary. While still some areas of interest exists (colored in green), most regions disap-
pear due to oversimplification.

FIGURE 7.15: Image similar to Figure 7.13 (smoothing parameters I:
10, FWHM: 3, ND: 3). Note how most of the Pareto extrema can be

found on slopes of the trunk lid.

As can be seen in Figures 7.13, 7.14, and 7.15, the most problematic regions, indi-
cated by the green color, are those located on the slopes of the lid. Since the scanned
part did not change during sampling, it is assumed that these are regions where
the scanner produces the highest errors. While this result is understandable and
supports the verification of the approach, other regions of interest can also be no-
ticed, which could not easily be detected through observation of the separate dis-
tance maps. Note, for example, the encircled Pareto maximal area in Figure 7.15,
which which cannot be explained easily. The high weights indicated by their light
green color and the fact that the areas remain even under different smoothing param-
eters, see 7.13(b) and 7.14(b), suggest interesting behavior. All areas lead to focused
analysis and improvement in understanding the data.

To further demonstrate the influence of the smoothing parameters on the result-
ing Pareto set the Appendix A include a set of images based on the same distance
functions as Figures 7.13 and 7.14. The parameter setting for each image can be re-
trieved from the included parameter table.
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In conclusion, the weighted Pareto set allows for a better distinction between dif-
ferent connected components in the Pareto set and thus providing more information
about the individual fields and how they contribute to the Pareto optimality. Note
that in this scenario, it is not necessary to know which distance maps are actually
indicate wear. Instead, the focus in this application is rather laid on retrieving a
quantifiable measure that implies systematic errors.

With respect to future work, since wear is a gradual process, averaging over
multiple measurements before calculating the Pareto sets might be a promising ap-
proach in order to aggregate data stemming from similar wear-off stages. It is also
possible that the Pareto regions move over the surface. In this case, feature track-
ing algorithms could be applied to highlight the temporal development of wear-off
processes. Both can be combined into the time-window idea from the previous ap-
plication scenario described in Section 7.1.

To further support a user-driven exploration of the data, other approaches are
possible, including the representation of the Pareto sets through hierarchical abstrac-
tion. Here, connected components can, for example, be clustered into meaningful
groups. Currently, the recalculation of the Pareto sets with new parameters is too
slow for an immediate visualization of changes, which makes the performance im-
provement of the Pareto set computation a mandatory task in the near future.

7.3 Comparing Ensemble Members of Climate Projections

The third application scenario focuses on climate research and its challenges regard-
ing visualization. In climate research, ensemble simulations are often carried out to
capture the statistical behaviour of the climate system; the spread of the results rep-
resents the range of potential future climate behavior. Furthermore, it was shown
that, within multi-model ensembles, the so-called "mean model" consistently out-
performs individual models in nearly every respect [69]. Ensemble simulations can
be used to assess uncertainties in the model-based prediction of atmospheric vari-
ables [45, 159]. These uncertainties are usually quantified using statistical measures
applied to the varying results of the members belonging to an entire ensemble of cli-
mate simulations [40]. For this, the inter-model standard deviation (ISD) is a simple,
but frequently applied summarizing estimate (see, e.g., [168]).

Inter-model standard deviation for a multifield f with at least two individual
fields (n > 1) over a manifold M is a map g : M 7→ R, defined as

g(x) :=

√∑n
i=1(fi(x)− ¯f(x))2

n− 1
.

The term ¯f(x) is the mean value over all individual fields at point x, i.e.

¯f(x) :=
1

n
·
n∑
i=1

fi(x).

The ISD or square root of the variance measures how far the individual fields are
spread out and thus quantifies the amount of point-wise variation or dispersion in
the multifield [14]. Critical points in the ISD-map, especially maxima, can be used
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to locate regions with high uncertainty in the climate projections. However, the ISD
does not provide more information, neither locally, for example why uncertainty or
dispersion exists at these locations, nor globally.

In the visualization community, the problem of analyzing climate ensemble sim-
ulations has been tackled using various approaches, ranging from tailored mapping
techniques for a certain combination of key measures [19] to interactive frameworks
for the multi-level exploration of ensembles [134].

Regarding visual analysis of climate ensembles, Poco et al. systematically define
domain-specific intents for analyzing model similarity and develop a system aimed
at exploring the differences between members in a climate ensemble [129]. In a fur-
ther paper, Poco and co-authors propose an iterative approach to understanding dif-
ferences between ensemble members using not one but several difference measures
[130] and leverage this to understand the relation between criteria to and outputs
of climate models. Similarly, Wang et al. [171] describe a visual analysis approach
to examine parameter-dependence of climate model output. They utilize various
linked views such as e.g. heat maps, and in particular develop a nested variant of
parallel coordinate plots. Rautenhaus et al. [137] used a similar approach but also
included 3D-visualizations like isosurfaces and normal curves in their linked views.

More general, considering multiple linked views, Potter et al. [133] conclude that
systems employing these typically results in clearer presentation and improved vi-
sual analysis. While their approach is general in nature, they demonstrate this on
weather forecast and climate ensembles, where this technique is particularly effec-
tive, and apply statistical visualizations specifically as individual views [132]. Their
approach is captured in the ViSUS-CDAT system [134]. Focusing on predictive qual-
ity of climate ensembles, Böttinger et al. [19] systematically visualize variables of
climate ensembles concurrently with predictive skill and ensemble spread.

In the application targeted in the current section, the Pareto set concept is not
used as a stand-alone tool for the analysis of the data set under consideration (com-
pare Section 7.1 and 7.2). It is rather combined with other visualization methods,
such as simple color maps of statistical measures and glyphs.

The results presented in this section are created in cooperation with Kathrin Feige
and Michael Böttinger and results are partially presented during the Vis in Practice
Workshop [89] at the VIS Conference 2017, Phoenix, USA.

7.3.1 Scenario Overview: Application Goal

In the application scenario described in this section, the goal is not only to identify
regions of similar and dissimilar behaviors of the individual fields in the ensem-
ble data set, but also to enhance the data exploration. This includes visual feed-
back about the quality of similarity, thus allowing a more detailed differentiation
between locations where the climate models behave more or less similar. Therefore,
in addition to the previously applied binary separation of the domain into regular
and Pareto extremal region, the goal is to build a continuous map between these
two types. This map can then be combined with the visualization of other mea-
sures, such as the ISD. This is a valuable addition, since it enables a comparison
between the neighborhood-based Pareto set approach and features appearing in the
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ISD-map [191, 40], which is computed point-wise.

To furthermore enhance the exploration, it is important to visualize which fields
contribute to the presented Pareto set. In the focus are the identification of outliers
and subgroups of fields behaving similarly. This delivers deeper insight on how
different climate models, initial conditions, or boundary conditions contribute to
differences in the behavior of the resulting climate projections.

7.3.2 Enhanced Visualization of the Pareto Set

In the first examples in Section 4.1, the ascending and descending sets are visualized
directly, colored in less saturated green and red, respectively. In contrast to that,
the Pareto optimal regions are highlighted using (opaque) yellow regions, as is also
shown in Figure 4.9. To target the application goal of showing more information
than the binary domain separation into regular and Pareto extremal points, the direct
visualization of the ascending and descending set is replaced using a grayscale map
that corresponds to the opening angles.

As a reminder, the opening angle α+(x) of a point x ∈ S is defined as the opening
angle of the ascending cone H+(x) at x (see Definition 5.2.1), primarily in the case
of S being in a 2D simplical complex with piecewise linear fields. For the semantic
of α+, note that, if α+(x) is small, at least two fields strongly disagree in a common
ascending direction. This means that even small changes in the values belonging
to these two fields can transform the regular point into a Pareto extremum. In con-
trast, if α+(x) is large, all fields strongly agree and the area of common ascending or
descending directions is large. Note that, due to the piecewise linear fields, α+ is a
piecewise constant functions of S with values between 0 and π. Due to the linearity,
the opening angle cannot be larger than π.

For further exploration, it is advantageous to delineate regions within the do-
main that show similar opening angles. Thus, intuitively speaking and with regard
to the application focused here, the domain is decomposed into regions showing
similar topological relationships between climate ensemble members.

Definition 7.3.1. The discretized version of α+ is defined as β+σ (x) := dα+
σ (x)/ce denoted

as decomposing function with some refinement value c ∈ [1, π].

The connected components of the level sets of β+σ , i.e. {x ∈ S | β+σ (x) = v}
for all v ∈ β+σ (S), correspond to regions that are similarly close to becoming Pareto
extremal. In the context of the incremental algorithm, level sets only have to be
recalculated for triangles with changing defining indices and changing β+, if new
fields are added to the analysis.

In this section, β+ is visualized as a gray scale map over the domain, going from
white for β+(x) = 0, to dark gray for β+(x) = 1, excluding those regions already
colored as Pareto set. An example is shown in Figure 7.16, where the dark gray
region becomes smaller, the more similar the fields under comparison are. Both
images present two Gaussian functions, all with a maximum near the center. In Im-
age 7.16(a) the maxima are further away than in Image 7.16(b). Thus, in the second
image the fields are more similar than in the first one which is reflected in the lighter
gray colors in the background (a grayscale map based on β+).
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(a) (b)

FIGURE 7.16: An illustration of the opening angle visualization based
on two functions. Both functions (distance functions based on two
different centers) are indicated by contour lines. The Pareto set based
in these two function is colored in green while the opening angles are

visualized as a grayscale map.

Comparing this image with Figure 7.3 in Section 7.1, where ascending and de-
scending cones are simply shown with a constant color over a white background,
the comparable area around a point. Note that for the remainder of this section, if a
grayscale legend at the right of images exists, it corresponds to α+, while the images
uses the quantized version β+. Decomposing the domain based on β+ meets one of
the goals defined for this application, since an additional visual cue for the robust-
ness of non-Pareto-optimal regions is added to the map. The α+-map not only shows
how similar the individual fields are to each other, but also if small changes in the
field gradients can transform a regular point into a Pareto-optimum, hence the term
of robustness.

As a final remark note that the α+-map can also be defined for any d-dimensional
simplical complex, where it would, for example correspond to the intersection size
between the ascending set and a d-dimensional globe.

7.3.3 Glyph-Based Visualization of Field Contribution

While the domain decomposition, i.e. the α+-map, enables a closer exploration of the
multifield structures of a data set, the contribution of individual fields to the degree
of Pareto optimality is not visualized, especially not inside Pareto-optimal regions.

To address this issue and thus the second application goal, a glyph-based visu-
alization technique is utilized. In contrast to color maps or graphs, glyphs can con-
dense high-dimensional information for discrete regions through single icons [15,
39]. They are regularly used in the context of tensor fields visualization [101], but
are also applied for climate analysis [142] and topology [147].

As a reminder, the gradients ∇fi inside a triangle are constant for each field.
Thus, each triangle can be assigned a multi-vector equivalent to the gradients at its
centroid. Furthermore, using the definition H+

σ (x) from Section 4.1 and results from
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Section 6.2, i.e. that a point is Pareto optimal iff the gradients are linearly dependent
with the scalar restricted to non-negative values, it is reasonable to provide informa-
tion about the Pareto extrema and regular points based on their multi-vectors.

This is done through tailored glyph design based on work by Häb et al. [80]. This
design is used to visualize the gradient direction for each field, clusters of similar
vectors, representatives of these clusters, and outliers. Outliers, i.e. single vectors
with deviating directions from the clusters, indicate local dissimilar behavior of the
corresponding projection and climate model. Hence, the glyphs are designed such
that representatives and outliers can easily be identified while clutter from multiple
similar vectors is avoided.

Glyph Design

For the visualization, alternative glyph designs are considered but rejected for the
final implementation since they do not match the requirements described above.

Based on an evaluation by Fuchs et al. [61], the work focuses on radial glyphs are
considered here, since they provide an effective way to representing multifield data
in their spatial context. The vectors can either be shown directly in a cyclic glyph or
indirectly, for example through density distribution. Both design ideas are shown
in Figure 7.17 with the distribution visualized both continuously and discretized in
a commonly used clock glyph [60]. Clock glyphs and pie-charts [144] subdivide a
circle into several cones of equal size and, in the example, the gray scale indicates
the density of vectors in each cone. This provides a good overview of the general
directions in the vector set as well as clusters of vectors pointing in similar directions,
and is therefore suitable to compare a set of vectors. Hence, this design can also be
useful to explore the separated regions of the domain based on the similarity of the
glyphs.

(a) (b) (c)

FIGURE 7.17: Three glyph designs that could be used to visualize
the directions in a vector set. However, none of these designs can

highlight outliers sufficiently well.

However, such indirect encoding does not provide information about specific
vectors such as outliers or representatives for groups of similar vectors. Further-
more, depending on the glyph size, the existence of outliers might be obscured.
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Hence, a direct encoding of the vectors can used for an arrow-based glyph de-
signs [4]. Figure 7.17(a) shows such a design. Note that a simple color code could be
applied to identify the individual fields under investigation. For clusters of similar
vectors, however, occlusion might distort the color perception and result in wrong
identification.

Therefore, Häb et al. added an angle offset p to the arrow-based design. Each
vector v is transformed into a minor circular sector with the angles between v and
the two radii of the sector set to p and−p, respectively, resulting in a central angle of
2p for the circular sector itself.

If two sectors overlap due to similar corresponding vectors, the overlapping re-
gion is removed by reducing the size of both sectors. The two radii bordering that
region are moved to the center of the overlap while the other two radii of the sectors
stay the same, so that both sectors are defined by a new adapted angle offset p′ to-
wards the former overlap, and the previous offset p in the other direction [80]. See
Figure 7.18 for a schematic illustration of this pairwise overlap removal.

FIGURE 7.18: Modified illustration from [80] of a glyph for three gra-
dients.

Note that for multiple vectors with multiple overlaps, any sequence of pairwise
removal operations result in the same set of distinct circular sectors.

With this approach, fields with similar gradients and thus large overlaps of the
corresponding cicular sectors are transformed into small slices after the overlap re-
moval. In contrast, large sectors without overlap visually highlight outliers, i.e. the
value distribution of the field corresponding to that sector is different to that of the
remaining fields. Thus, the size of the sector visually encodes how distinct the in-
cluded fields are from each other.



7.3. Comparing Ensemble Members of Climate Projections 115

For clusters of similar vectors, overlap removal yields the vectors at the cluster
borders to be visualized as larger sectors than those inside the cluster. This auto-
matically highlights possible representatives of those clusters by making the sectors
defining their borders more prominent than those inside. These vectors can be called
the representatives of a cluster, since for regular points, they represent the defining
indices (see Subsection 4.5.2).

Averaged and Detailed Glyphs

To provide an overview of the components contributing the domain decomposition
described before, a single vector set is created for each component. Each vector in
this set is the averaged result of all vectors corresponding to the same field over all
triangles inside the component. Hence, each set contains n vectors v ∈ Rd with n
the number of individual fields and d the domain dimension. The resulting averaged
glyph is then placed at the centroid of all involved triangle centers. The averaged
glyph is depicted as an overlay over the spatially contiguous region corresponding
to the connected component. To avoid visual clutter, the glyph only appears when a
certain region is selected.

While the glyphs provide an overview over local topological structures, averag-
ing over a field’s angles might visually distort the impression of the actual angles. To
compensate for this issue, for larger components, a further decomposition is applied
based on a regular grid over the whole domain. This is due to the fact that Pareto
optimal regions cannot be further separated by refining the decomposing function
β+. This grid refinement can be done continuously or in discrete steps depending
on processing power and domain size. Obviously, the finest resolution is to replace
the average glyph representing an entire region by the glyphs corresponding to the
triangles belonging to the selected connected component. These glyphs, based only
on the multifield values inside a single triangle, are denoted as detailed glyphs.

Note that in this design no further information such as, for example, the scalar
values of individual fields, is added. The reason for this is that information based on
the scalar values might be counter-intuitive to the opening angle visualization sur-
rounding the glyphs. It is furthermore reasonable to assume that, in most cases, the
length is not distinguishable in the glyphs for the most detailed resolution (compare
Figure 7.27). As for the averaged glyphs, however, it could be advantageous to re-
late the sector lengths to statistical measures such as the variance of the summarized
vector set.

7.3.4 Scenario Overview: Global and Regional Climate Ensembles

For projections of climate change, researchers make use of a multitude of simulation
runs to assess the uncertainties that are associated with the projection of key vari-
ables. Following this goal, the enhanced Pareto set visualization and the introduced
glyph-design are applied to projection of average near-surface air temperature dif-
ferences (∆Tas) between a reference period (1961-1990) and the end of the 21st cen-
tury (2070-2099). The average over the 30 year periods, a time-range over which
climate is defined [154], generalizes weather information and filters out small time
events and seasonal effects.



116 Chapter 7. Applications

On the global level, the analyzed climate projections are conducted using the
MPI-ESM model, which is part of the CMIP5 multi-model ensemble [68]. A set of
four projections are considered, all forced by the same emission path RCP8.5, but
differing in the horizontal resolution of the ocean component and in the number of
vertical model layers of the atmospheric component, later indicated by the suffixes
’LR’ (low resolution) or ’MR’ (medium resolution). Figure 7.19 shows color maps for
∆Tas of the four individual fields. The images and similar color maps shown in this
section are provided in cooperation with K. Feige through R code [136].

(a) R1LR (b) R2LR

(c) R3LR (d) R1MR

FIGURE 7.19: Each image shows ∆Tas for a different climate projec-
tion, as indicated by the image label. While the overlay of a world
map provides spatial context, comparison between different projec-
tions is obviously difficult using only such a simple multi-window

view.

On the regional level, agreement and disagreement between several subsets of
the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections [22] are explored.
The data in the archive originate from global climate ensemble simulations, varying
in terms of the applied modeling system, the employed initialization strategies and
other boundary conditions. These simulations, gathered by the World Climate Re-
search Program (WCRP), specifically from phase 3 and 5 of the Coupled Model In-
tercomparison Project (CMIP), are then downscaled to the contiguous United States.
For this study, gridded monthly average near-surface air temperatures (Tas) at a spa-
tial resolution of 1/8o from the archive [22] are used, but limited to those projections
conducted by the models CSIRO-MK3-6 (Commonwealth Scientific and Industrial
Research Organization, Australian), CCSM4 (National Center for Atmospheric Re-
search, USA), and CanESM2 (Canadian Centre for Climate Modelling and Analysis,
Canada) during CMIP5. Note that the Pareto sets are computed and visualized in-
dividually for each model family.

For all ensembles regarded here, ∆Tas is given as point data in a Cartesian grid
with two dimensions. Each grid cell is split into two triangles, resulting in a con-
nected simplicial complex S without holes. The data, given at the vertices of S, are
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extended to multifield functions by using barycentric interpolation f = (f1, . . . , fn).
Hence, each underlying function fi : S 7→ R, 1 ≤ i ≤ n is piecewise linear and
corresponds to one specific projection.

7.3.5 Results

Global Climate Projections

For the analysis of the global-scale ensemble, the Pareto set visualization is applied
in two sequential steps. First, regions are identified where both a classic scalar-based
method as well as the Pareto set approach imply a divergence between the climate
projections. Then, in a second step, the glyph visualization is used to explore, which
projection is responsible for these features.

FIGURE 7.20: The ISD-map for four global climate projections based
on the MPI-ESM model over a 192x96 grid.

As a scalar-based method, the standard deviation of ∆Tas, denoted Σ∆Tas is
presented in Figure 7.20. For the Pareto set visualization, the projections are prepro-
cessed with one iteration of a Gaussian smoothing over a distance of three neigh-
bors per triangle. Using this smoothing step, high spatial frequencies and purely
local structures are removed to focus on the general trends within the data, which
would otherwise be difficult to detect. This is due to the fact that for the Pareto set
calculation, the noise from the individual projections are commutative. Since the
smoothing only takes a small neighborhood around each point into account, it only
removes of minor components of the Pareto set as shown in Figure 7.21, where the
results belonging to a smoothed and not smoothed data set are contrasted.

With both Figures at hand, it is possible to identify four types of regions, con-
taining both Pareto sets and high Σ∆Tas-values, either or none. As stated above, of
primary interest are regions where both approaches indicate an important feature.
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(a) No smoothing

(b) Smoothed

FIGURE 7.21: A world map with the Pareto set visualization as over-
lay. The opening angles in each triangle are presented as a transparent
grayscale map, with dark gray indicating a small opening angles, and
thus high divergence between the projections. Note for example, that

incomparability mostly appears over the oceans.

To better identify those regions, both images are merged into one Figure 7.22 us-
ing additional visualization tools (ParaView and R). In this figure, the background
contains the map of Σ∆Tas from Figure 7.20. As compared to Figure 7.20, the color
saturation is increased to compensate for an overlay, which shows Pareto extremal
areas colored red, green, and yellow depending on their Pareto status and the open-
ing angle as a transparent grayscale map. Note that with this overlay, a 2D color
space is created with white to blue in one dimension and white to gray in the second
dimension.
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FIGURE 7.22: A merge between Figure 7.20 and the smoothed Im-
age 7.21(b). The background contains the map of Σ∆Tas from Fig-
ure 7.20, while the Pareto-set visualization is presented as an overlay.

With this visualization, one can, for example, focus at a region near the south
end of Africa, based on the dark blue color in the Σ∆Tas layer, and nearby Pareto-
extremal regions and high opening angle values (indicated by darker transparent
gray areas near the Pareto extrema) that appear in the overlay. Other regions, where
only one of the two approaches indicate a large feature, for example in the Philip-
pine Sea for Pareto sets or between Greenland and New Foundland for the ISD-map,
might also be interesting, but the analysis is focused to features present in both ap-
proaches. Note that in the case of the Philippine region, one can assume that appear-
ing Pareto extrema correspond to the vortices created by the Kuroshio current (see
Figure 7.23), part of the North Pacific ocean gyre [93, 85, 7].

In the second analysis step, the glyphs are used for the focused area by selecting
components of the Pareto set or sections resulting from the domain decomposition.
The area detail shown in Figure 7.22 visualize the Pareto sets colored red, green
and yellow and, as a grayscale map, the opening angles. Exemplarily, three sec-
tions near the high Σ∆Tas values seen in the overview images are selected, which
is highlighted by slightly darker colors and associated glyphs in the Pareto set visu-
alization. The colors of each glyph segment correspond to one of the four climate
projections:

r1i1p1-MR_echam6 in black,

r1i1p1-LR_echam6 in orange,

r2i1p1-LR_echam6 in green, and

r3i1p1-LR_echam6 in turquoise.

Note that the black segment is isolated in each of the three glyphs, indicating an
outlier. The black segment corresponds to the MPI-ESM-MR projection, which dif-
fers to the LR-projection amongst others in a higher resolution over the ocean tiles,
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FIGURE 7.23: The Kuroshio current is the west side of the clockwise
North Pacific ocean gyre. The image is from the free media repository

from the Wikipedia website. [183]

which makes it eddy-permitting. This is a structural model difference, which results
in a different capability to resolve ocean eddies which could be responsible for the
diverging climate signal projected here.

Regional Climate Projections

In the second application example, the uncertainty within a set of downscaled cli-
mate projections over the contiguous United States is analyzed. A preliminary cal-
culation of the Pareto set for all 70 projections included in the entire CMIP5 en-
semble showed that the topological differences between the ensemble members are
too strong to analyze them as a whole. On the other hand, the differences between
the gradients in the predicted average near-surface air temperatures, regarded sep-
arately for both time windows (reference period (1961-1990) and end of simulation
period (2070-2099)), are each very small. Hence, three smaller, but still reasonable
subsets of the entire ensemble are chosen, whereas each subset corresponds to sim-
ulations conducted using the same model (CSIRO-MK3-6, CCSM4, and CanESM2)
and emission path RCP8.5. Thus, only the uncertainties due to different initial con-
ditions are visualized and investigated. The separate set contain 5,5, and 10 projec-
tions, respectively.

Similar, but not completely consistent behavior can be found in all three subsets,
such as large, topologically regular regions in the south east of the USA and clusters
of Pareto extrema in and around the Rocky Mountains. This can be observed in the
examples (d) - (f) shown in Figure 7.24 and compared to the standard deviation map
for the same subsets in Figure 7.24 (a) - (c).

Again, the Σ∆Tas-values are overlaid with the Pareto sets and opening angle
visualization, as done in the previous section for the global-scale ensemble. This
enables us to identify similarities and differences between these approaches, exem-
plarily shown for CSIRO-MK3-6 in Figure 7.25(a). Note, for example, the similarity
between both visualizations near the Canadian border around North Dakota. How-
ever, since both techniques are different – the standard deviation is computed for
isolated points, while the Pareto set concept is based on gradient directions – one can
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FIGURE 7.24: The first row, images (a)-(c), show the ISD-map for dif-
ferent subsets of projections based on the same climate model indi-
cated by their subtitles but with different initial conditions. Images
(d)-(f) show a world map and the Pareto set visualization for the same

subsets.

also find large differences in their identified features, for example along the moun-
tain regions in the eastern USA.

In contrast to the global-scale results discussed before, the connected compo-
nents of Pareto extrema are larger and more numerous for the regional-scale ensem-
bles. This leads us to the assumption that the projections that are responsible for
these dissimilarities might change throughout components. To analyze the effect of
single projections towards the Pareto set visualization, an alternative approach than
the one used for the global ensemble is used. Therefore, the data set is visualized
with the glyph-based approach and a β+-map instead of the ISD-map. A possible
option is to select several regions with high topological divergence, i.e. components
of Pareto-optimal regions or simply regular regions showing low opening angles, as
demonstrated in Figure 7.25(b) and 7.26. In each image, the glyphs for the selected
regions are calculated and, based on their visualization, one or two projections are
removed to analyze their contribution to topological divergence.

According to the two glyphs in Figure 7.25(b), in both selected components
the projections CSIRO-MK3-6-0.i with i from 8 to 10 might be responsible for the
large size of the Pareto set since each of the three projections seem to be an outlier
in at least one of the glyphs. Figure 7.26 shows the section of the same domain after
CSIRO-MK3-6-0.9 and CSIRO-MK3-6-0.10 are sequentially removed. Note how both
previously selected regions are now separated into much smaller Pareto-optimal re-
gions.

As shown in Figure 7.26, this approach can be repeated considering even more
individual regions. To avoid confusion, it is possible to highlight a specific glyph
segment corresponding to the same projection throughout all glyphs in Figure 7.26(a).
This facilitates the identification of regions, in which a specific projection is isolated,
allowing for an overview over the contributors to a large group of Pareto extremal
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(a) with ∆Tas-values (b) with glyphs

FIGURE 7.25: Image (a) shows a merge between the Σ∆Tas-values
(Figure 7.24(c)) and the Pareto sets and opening angle visualization
(Figure 7.24(f)) for the climate projections based on CSIRO-MK3-6
over the United States. In (b), two larger Pareto extremal regions
are selected and highlighted in a slightly darker orange, to identify
possible projections, responsible for this large topological divergence.
Note that the Σ∆Tas-color map is removed in (b) to make it easier to

connect the glyph segments to their corresponding projection.

(a) with 8 projections (b) without csiro-mk3-6-0.1

FIGURE 7.26: A section of the United States with the Pareto set
and opening angle visualization for the CSIRO-MK3-6.i projections,
1 ≤ i ≤ 8. In (a), a selection of eight Pareto extremal regions is cho-
sen to analyze, which projections are responsible for the topological
divergence around this section of the USA. Image (b) shows the same
section after CSIRO-MK3-6-0.1 is removed from the set of projections.

Note the decreasing extent of the Pareto-optimal regions.

regions. Hence, it becomes possible to see if the disagreement between the models
over a larger area can be attributed to a certain ensemble member.

The visualization of the detailed glyphs at a higher resolution, on the other hand,
provides a better understanding of individual model behavior inside those regions.
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FIGURE 7.27: A detailed visualization of a region, selected in Fig-
ure 7.26(a). The numbers i in each glyph segment indicate the corre-

sponding projection CSIRO-MK3-6-0.i.

Figure 7.27 shows such detailed visualization for one of the selected regions in Fig-
ure 7.26(a). Note how the averaging process, resulting in the overview glyph, dis-
torted the information that the black segments, corresponding to projection CSIRO-
MK3-6-0.1, is only a distinct outlier in a portion of the Pareto region. In other parts,
the orange or the turquoise segments, i.e. projection CSIRO-MK3-6-0.3 and CSIRO-
MK3-6-0.7, respectively, are even more distinct from the rest of the projections. This
is reflected in the Pareto set shown in Figure 7.26(b), for which CSIRO-MK3-6-0.1 is
removed from the set of projections. Note how the Pareto optimal regions that used
to be in the red encircled areas disappeared, while the Pareto set in the blue encircled
area is only reduced. While note yet implemented for this data set, further sequen-
tial insertion and removal of projections is a possible tool to study the contribution
of the individual projections towards the Pareto set. This allows to temporarily in-
sert an additional projection to the multifield and to study, for example, the change
of robustness. Using this technique, regions where the added field shows a different
topological behavior than the original multifield, can be identified more easily.

Larger Numbers of Projections

To present the capability of Pareto sets as a visualization technique for more than 5
to 10 projections, this paragraph considers all available projections for Tas for April
2020. Each field corresponds to a different modeling system employed in the context
of CMIP3 based on the emission path SRES B1. For testing purposes, also a CCSM3
projection (run 4) based on the SRES A2 is included, resulting in a total of 40 dif-
ferent projections. The goal is to identify locations where the climate models did
not produce topologically similar results. Since, the data set is only based on one



124 Chapter 7. Applications

month instead of a long time period, the visualization does not provide information
regarding the climate, but only regarding the different projections.

(a) BCCR-BCM2 (b) CGCM3.1.1 (c) CGCM3.1.2

(d) CGCM3.1.3 (e) CGCM3.1.4 (f) CGCM3.1.5

FIGURE 7.28: Grayscale map of Tas for April 2020 as projected by
six modeling systems employed in CMIP3. References to the models
can be found in [22]. Darker greys refer to lower and lighter greys to

higher temperatures.

Figure 7.28 shows the distribution of Tas for six of the 40 climate projections
as grayscale maps. The scalar fields seem very similar, making them difficult to
distinguish using a multi-view display.

FIGURE 7.29: The Pareto set for 40 projections. The box indicates a
region where further investigation is done, see Figure7.30.

To compare the projections, the Pareto set is computed as seen in Figure 7.29.
Note the dark gray coloring in the mark area covering Florida, that indicate a low
robustness and, therefore, a less similar behavior among the individual fields. To
further explore the contribution of individual fields to the Pareto optimal regions in
the marked area, the glyph-based visualization is applied. As the results shown in
Figure 7.30 b-f suggest, a small subset of projections disagree with the majority of the
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7.30: Using glyphs to explore diverging model behavior.

simulations. In particular, the violet (HadCM3, run 1) glyph sector exhibit distinct
orientations in all shown examples, while the turquoise sector (CCSM3, SRES A2,
run 4) also stands out in two of the shown cases. As already assumed above, the
CCSM3 projection corresponds to the artificially included outlier, which is based on
a different emission scenario than the remaining projections.

Note that the computation of the Pareto set and the α+-map is local, i.e. is done
for each simplex separately. Hence, with the implementations outlined in Section 4.5,
the calculations should, in theory, scale linearly with respect to increase numbers of
fields and simplices. To support this assumption, that the runtime to visualize the
Pareto set remains reasonable even for large numbers of fields, Table 7.2 lists the
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Data set Incremental Direct MT
Year #Var CMIP [sec.] [sec.] [sec.]
2016 20 3 592 311 2625
2016 40 3 1176 551 3237
2011 39 3 1256 484 3194
2011 70 5 2312 924 7913
2020 39 3 1273 502 3238
2020 70 5 2255 848 7807

TABLE 7.2: Data set characteristics and run time in seconds for differ-
ent Pareto set calculations

runtimes for different Pareto set algorithms, applied on the data sets similar to those
presented in this section, in detail the averaged air temperature over the United
States. Each data set contained the averaged value over the month April in the year
indicated by the first column. The second column (#Var) indicates the number of
fields included in the different multiple data sets. All fields are projections based
on models using different emission others and either CMIP3 or CMIP5, indicated by
the third column. The last three columns present the runtime in seconds. The first
algorithms calculate the Pareto set sequentially, i.e. the Pareto set is recalculated after
each field is added sequentially, saving and using the defining indices. The second
one, denoted Direct, calculates the Pareto set only after all fields are loaded, still us-
ing the defining indices but without the computational overhead of initializing the
sequential calculation process. Thus, this runtime does not include repeated space
allocation or function initialization, but it also excludes the capability of visualizing
interim results. The last column of the table shows the run time using the march-
ing triangle method, which is here denoted as MT. The implementation guidelines
for the algorithms can be found in Section 4.5. For the computation, an Intel Core 2
Quad CPU with 2.40GHz per core and 8GB memory is used.

The table shows that a main obstacle in the current implementation is the amount
of computational overhead. Also note that the time in all columns more or less
doubles if the number of individual fields doubles; slightly more for the MT-column
and slightly less for the other two.

Discussion

In this application scenario, several improvements towards the analysis and visual-
ization of multifield data through Pareto sets are added.

• The domain is decomposed into regions based on similar field behavior / ro-
bustness. The used α+-map can be combined or compared to common visual-
ization methods such as the ISD-map.

• To visualize/analyze individual fields and their contribution to the Pareto set,
the applied domain decomposition is complemented by a glyph-based visu-
alization. With this approach the identification of fields behaving similarly is
eased, but also highlights corresponding outliers.

The results of this application imply several tasks for future work. First, the inte-
gration of variance information into the averaged glyphs might be advantageous
in cases, where the averaging distorts the actual gradient directions. On the other
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hand, if the distortion is only due to averaging over larger region, this can be solved
by either refining the decomposition or by additionally separating the regions, for
example, based on a regular grid.

Second, using the glyphs, regions might be further separated and visualized,
on top of the separation method based on opening angles. Distance measures be-
tween the used circular glyphs are already at hand, for example in work by Häb et
al. [79], or alternatively, the gradient set approach by Nagaraj et al. [122]. Both can be
used with standard clustering algorithms to separate the domain and to provide an
overview over larger sections of the domain. This can even be extended to compare
different combinations of multi-fields, such as, e.g., projections that are grouped by
certain criteria.

Subsection 7.3.5 shows that the approach also works for large numbers of indi-
vidual fields. However, in the context of climate studies, i.e. data over long-term
periods like Σ∆Tas, the Pareto set approach produces better visual results for mul-
tifields containing at most 10 fields and are created with the same climate model. A
possible explanation for this limitation is that, while climate models produce topo-
logically similar short-term projections, the created long-term climate projections are
rather unrelated when compared to projections from other models. This assumption
needs to be further investigated and shows another example, how the Pareto set vi-
sualization opens and guides future research topics.

In summary, the improvements in this section provide an exploratory tool that
allows users to closely investigate the composition of multifield data sets, identify-
ing topologically interesting regions, and showing why those regions are interesting.
The additional information about the individual fields displayed by the glyph sum-
maries is also a first step to solve some of the open tasks, laid out in the previous
Section 7.1 and 7.2, like the visualization of the contribution of individual fields to
the Pareto set.
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Chapter 8

Conclusion

In this thesis, concepts from multiobjective optimization are adapted to define ex-
tremal points in multifields and thus to identify regions of similar or dissimilar topo-
logical behavior among the individual fields with respect to ascending and descend-
ing directions. All necessary definitions and algorithms are presented to implement,
extend or improve the Pareto set concept and also its interior structure, visualized
through the reachability graph. Common multifield obstacles like noise and data
complexity are discussed and handled through simplification approaches.

Examples and application scenarios are provided and processed to show the
interpretation, utility, and potential of the Pareto set in visualization applications.
While describing those scenarios, further improvements of the Pareto set are pre-
sented as well as its integration with other visualization tools. Improvements and
extensions include:

• the weighted Pareto set, that assigns weights to the connected components
inside the Pareto set based on extremal points in the individual fields and thus
allow to assess the relevance of the different components in the considered
application scenario,

• the robustness term, that provides a measure of how close a regular point is to
become Pareto extremal due to small changes in the values of the individual
fields and thus provides a continuous decomposition of non-Pareto optimal
points, and

• the glyph-based visualization of regular and Pareto optimal regions based on
averaged gradients to visualize outliers and subgroups of similar fields in
those regions with respect to their gradients.

The Pareto set, in combination with the reachability graph and the listed improve-
ments allow for a simple visualization and exploration of scalar multifield data sets
to support domain experts in a variety of applications.

As there are currently several concurrent approaches tailored to the topologi-
cal study of multifields, a detailed discussion of similarities and differences of the
Pareto approach to these methods is provided. The corresponding sections prove
the close subset relationship between the Pareto set and the Jacobi set, assuming a
restriction of number of individual fields by the domain dimension, and present a
parameterized approximation of the Pareto set through the directed Joint Contour
Tree that directly implies a similar relation with the Reeb space topology. This is sup-
ported through related work by Wan [169], in which the author define Morse theory
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for two fields based on Pareto optimality. However, the concept as presented in this
thesis remains topology-based which is sufficient for visualization and application
purposes.

8.1 Discussion, Limitation and Relevance

With the Pareto set concepts presented in this thesis, it is possible to handle contin-
uous and, as this is particularly relevant for practical applications, piecewise linear
multifields over simplicial complexes with an arbitrary number of individual fields
without restrictions to the domain dimension. This is especially vital if the scenario
contains far more than 10 or 20 individual fields. However, based on the defini-
tion of Pareto optima, once a point is Pareto optimal, i.e. surrounded by incompara-
ble neighborhoods, considering additional fields cannot reverse it to a regular one.
Hence, increasing the number of fields will never decrease the size of the Pareto set.
Therefore, it is required that the individual fields are related and to a small degree
similar, which is, for example, the case for ensemble data sets that are based on re-
peated simulation runs. If the fields included into the analysis become too different,
it is possible that the entire domain becomes Pareto optimal. While a naive visual-
ization approach would lack any information about which fields are responsible for
Pareto-optimality, adding corresponding glyphs provides these details (see Subsec-
tion 7.3.3).

In general, the Pareto set can be directly visualized onto the geometry of the
domain; a feature not available for concepts like the Reeb space. This allows for a
domain decompositions, for example based on robustness (compare Section 7.3.2).
Also the combination with other visualization methods, geographical information
and glyphs is possible.

In contrast to statistical measures such as average, standard deviation, especially
ISD, or correlation, the fields are only compared by their topology and gradients
such that the Pareto set is invariant to scaling factors or a variable’s unit. However,
the results remain sensitive to field inversion, i.e. the Pareto set changes if instead
of a field fi, its inversion −fi is considered. This detail makes Pareto sets very suit-
able to visualize maximal and minimal behavior among multiple different scalar
fields and also distinguishes between these two types of extremal behavior. This is
a feature that previous definitions of Pareto optimality, for example in the work by
Smale [150], do not include.

Additionally and in contrast to existing approaches like JCN, Jacobi sets, etc., di-
rectional information of the individual fields are incorporated into the analysis. This
not only allows for the introduction of ascending and descending sets in the multi-
field representation but it also makes the definition of robustness and the utilization
of the presented glyph design possible.

The directional information is furthermore used to define the reachability graphs,
an approach to visualize the global structure of the Pareto set aling with the con-
nections between its subregions. This inspired the definition of the dJCN (Defini-
tion 6.3.1 in Subsection 6.3.3). Note that like JCNs, contour trees, and Reeb graphs,
the nodes of theRG(f) are not directly linked to geometrical positions in the domain.
Like the contour trees [174], different multifields f, g can have the same reachability
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graph RG(f) = RG(g) (appropriately node renaming assumed). Hence, following
work by Harvey and Wang [82], this can be used to visualize high-dimensional mul-
tifields.

Besides naive approaches like changing the rounding function for JCNs, this
work is amongst one of the first to address the simplification of scalar multifield
structures. Although other simplification approaches, for example the Jacobi sets,
already exist, they pose restrictions on the number of fields and dimensions and are
invariant to gradients. The ideas introduced in this thesis work in theory and smaller
examples, but are not yet scalable to larger data sets, as they are limited by the high
computational effort to create the reachability graph as a support structure.

However, excluding the reachability graph and focusing only on the Pareto set,
the implementation is easily parallelizable, since Pareto extremity is calculated lo-
cally. Therefore, the current implementation already uses multiple threads to com-
pute the Pareto set. With respect to increasing field numbers, the concepts and
the computational effort of their implementation scales well for 2D domains. For
higher-dimensional domains, however, scaling is limited because ascending and de-
scending sets are calculated through the marching tetrahedrons algorithm for the
three-dimensional case, or linear programming for domain dimensions higher than
three. For two dimensional cases, the approach using defining indices (see Subsec-
tion 4.5.2) scales linearly with increasing field numbers. The same scalability holds
for the domain size, i.e. the number of simplices. As a reminder, the implementation
is only outlined for two- and three dimensional domains due to the application-
orientated focus of the thesis.

8.2 Outlook

While the mentioned limitations are open tasks itself, additional open questions, and
possible improvements and directions for future work are mentioned throughout
the dissertation. Those include:

• While this work is based on topological notions and is ultimately aimed at
describing a concept of topology for multifields, the visualization so far can
only be classified as topology-based. A mathematically detailed and precise
definition of multifield topology and a detailed investigation into its properties
is therefore a high priority for future work.

• As mentioned in the previous sections, simplification is necessary for multi-
field data. So far, the presented approach is sound but rather inefficient. Addi-
tionally, in Chapter 4, small irregularities are encountered at the Pareto set bor-
ders: : Here, sometimes small sections occur as Pareto maxima, although they
should be Pareto minima according to the included functions, and vice versa.
These errors are attributed to the fact that continuous fields are triangulated
onto simplicial complexes. Both efficient global simplification and efficient lo-
cal removal of those irregularities are an open task.

• Since Pareto optimality can be formulated for the continuous case, a limitation
to simplicial complexes – which is considered throughout all chapters of this
thesis to allow for a concise presentation and implementation – might be un-
necessary. This would make it possible to analyze a larger variety of multifield
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representations using the Pareto set concept. Furthermore, with the alterna-
tive definitions of Pareto extrema based on ascending and descending paths, it
might also be possible to apply the concept to vector fields, similar to the idea
of Morse decomposition.

• Chapter 7 shows several scenarios, in which Pareto sets could be a useful anal-
ysis tool. It is also shown, how this technique could be combined with ad-
ditional approaches. However, topology-based approaches for multifields are
not yet used as regular as their counterparts for single-field data sets. Hence,
more work is necessary to improve the presence of Pareto sets and other con-
cept in the research community around multifield analysis and visualization.

In summary, in this dissertation, a full and complete description of the Pareto set
concept is presented as ground work for future applications of multifield data anal-
ysis and is open for a wide variety of future work and improvements. These im-
provements can extend the basic approach or can be tailored to individual applica-
tion scenarios. Possible scenarios include those presented in the application section,
but may also be found in a wide range of research and industrial areas relying on
uncertainty, time-varying, and ensemble data sets in general.

Hence, to answer the research question of this dissertation, the Pareto set con-
cept is capable to visualize multifield data in different applications and has close
relationships towards other topology-based approaches, but also its own specific
advantages and drawbacks. Next to visualization, the concept can be extended to
support the detailed exploration of multifield data sets. In this thesis, definitions
and efficient implementation guidelines are provided to create the visualization and
support the exploration, and enables the research community to easily enhance the
Pareto set concept. Possible improvements range from theoretical to practical levels,
making the concept even more valuable such that the Pareto set concept, after this
thorough introduction, can be considered among one of the topology-based tools for
multifield visualization and analysis.
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Appendix A

Supplemental materials for
Section 7.2

The following images show the weighted Pareto set based on the same distance func-
tions as Figures 7.13 and 7.14. The parameter setting for each image can be retrieved
from Table A.1. The weighted Pareto set is colored as described in Section 7.2. Low-
est weights (0) and regular areas are colored in red, and the highest weights (6) are
colored in green.

ID Iter. FWHM ND
1 10 6 4
2 10 6 5
3 20 6 5
4 20 10 5
5 10 10 5
6 10 10 4
7 10 10 3
8 10 10 2
9 20 3 5
10 20 3 4
11 20 3 3
12 20 3 2
13 20 6 4
14 20 6 3
15 20 6 2
16 20 10 4

ID Iter. FWHM ND
17 20 10 3
18 20 10 2
19 10 6 3
20 10 6 2
21 10 3 5
22 10 3 4
23 10 3 3
24 10 3 2
25 5 10 5
26 5 10 4
27 5 10 3
28 5 10 2
29 5 6 5
30 5 6 4
31 5 6 3
32 5 6 2

TABLE A.1: Parameter settings for the Gaussian smoothing used to
create different weighted Pareto set visualizations are indicated by

the image ids in the first column.
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(1) (2) (3)
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(10) (11) (12)
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(16) (17) (18)
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