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Abstract

A nonequilibrium situation governed by kinetic equations with different Knudsen
numbers in different subdomains is discussed. We consider a domain decomposition
problem for Boltzmann- and Euler equations, establish the correct coupling condi-
tions and prove the validity of the obtained coupled solution. Moreover numerical
examples comparing different types of coupling conditions are presented.

1 Introduction

The Boltzmann equation and the more classical gas dynamics equations (such as Euler
or Navier-Stokes equations) are used to model hypersonic gas flows. Numerical simula-
tions of such flows are useful for example in the design of space vehicles, in particular in
understanding the behavior of the early phases of reentry flights.

Such flows are usually far from any kind of local equilibrium states. This means that
variants of the Boltzmann equation have to be used as first principle equations instead
of the Euler or Navier-Stokes equations. However, when the mean free path of molecules
becomes small, all numerical methods for the Boltzmann equation become exceedingly
expensive in computing time. Therefore, gas dynamics equations should be used whenever
possible — in other words, near local equilibrium states in situations where the local mean
free path is small and outside of shock and boundary layers. These considerations prompt
the use of domain decomposition strategies, where the Boltzmann equation is to be solved
only in regions others than those mentioned above.

Once the regions described by the gas dynamics equations are determined, the next major
problem is the matching of the Boltzmann domain with the Euler or Navier- Stokes
domain. This question is far from being an easy one, as the equations to couple and the
numerical schemes used to solve them are of very different nature.

The approach usually employed in numerical procedures, see Bourgat et al. [3] or Lukschin
et al. [16], is the following: The boundary conditions at the interface for the aerodynamic
equation are determined from the Boltzmann distribution function by equalizing the mo-
ments or fluxes. The boundary condition for the Boltzmann equation at the interface, i.e.
the ingoing function for the Boltzmann region is given by a Maxwellian distribution with



the aerodynamic quantities as parameters. For an equilibrium situation at the interface
these coupling conditions are the appropriate ones.

If we consider instead nonequilibrium states at the interface, then the above coupling
conditions will not lead to the correct results. Here the matching requires a more exact
analysis. It can be done by modelling the interface region by a transition layer. We refer
here to Golse [9]. Asymptotic analysis leads to a kinetic linear half space problem. The
asymptotic values of the solution of this problem determine the aerodynamic boundary
conditions at the interface. The outgoing flux of the half space problem gives the ingo-
ing distribution function for the Boltzmann region at the interface. Kinetic half space
problems have been widely considered. A mathematical investigation of these problems
is done, e.g., in Arthur and Cercignani [2], Bardos et al. [4], Bensoussan et al. [5], Cercig-
nani [7], Coron et al. [8], Greenberg et al. [12]. Many numerical investigations for various
different, situations have been performed by Sone and coworkers, see [1, 17].

Obviously the direct solution of the half space problem would be much too expensive.
We could as well solve the Boltzmann equation also in the aerodynamic region. More-
over, from the above we see that only the asymptotic states and the outgoing fluxes are
really required. In Golse/Klar [11] we developed a fast numerical scheme which computes
approximately these two things by a Chapman Enskog type expansion procedure. This
makes the approach reasonable from a numerical point of view.

For a different approach to the coupling problem we refer to Illner/Neunzert [13].

The paper is organized as follows:

In Section 2 we describe the physical situation under consideration.

In Section 3 we consider a simple model problem and introduce the coupling conditions
given by the analysis of the kinetic layer. We investigate whether the coupled solution
obtained with these coupling conditions is the correct one, i.e. whether it is near to the
kinetic solution in the whole domain. It is proved that, if the Knudsen number € in the
aerodynamic region tends to 0, the analysis of the kinetic layer gives the correct coupling
conditions up to order e.

In Section 4 we extend the analysis to the linearized Boltzmann equation coupled with
the linearized Euler equations and point out the correct conditions in this case.

In Section 5 we present some numerical examples for the model problem in section 3
comparing the above coupling conditions with the ones obtained by equalizing moments or
fluxes. Moreover numerical results for the 3-dimensional BGK model are shown comparing
again the different types of coupling conditions.

2 The physical problem

The physical situation in a domain D in R% d = 1,2,3 is supposed to be described by
the Boltzmann equation linearized around a constant Maxwellian state with parameters
p,u = (1,1, U3),T. The domain D is divided into two subdomains D; and D,. We
assume the mean free paths to be €; in D; and €5 in Dy. After shifting velocities v — v+4
one obtains the equations



. 1 o
atﬂp(z) + (v + 1) - VwQD(Z) + ZQQ(M: 90(1)) =0, (2.1)

where the index i=1,2 stands for the the regions D; and D, respectively, ¢ = ¢ (z,v,1),
x € Di, v = (v1,v2,v3) €ER?, t €[0,00), & € R*. Q is the Boltzmann collision operator
with a suitable collision kernel and M is the constant Maxwellian state with parameters
(p,0,T), i.e.,

We assume that ¢ = € in Dy is small such that an approximation of the Boltzmann
equation by macroscopic equations is valid. €; in Dy is fixed.

One should keep in mind that from a physical point of view the difference between the
mean free paths in D; and Dy should be small for the linearized problem treated here,
since we are linearizing around a global Maxwellian state. However we are making here a
preliminary attempt to solve the coupling problem, that should work as well for nonlinear
problems, where strikingly different mean free paths may appear. Concentrating more on
the mathematical aspects of the problem, one may therefore also think of ¢; in D; to be
large compared to €5 in Ds.

The aerodynamic equation in Ds is the compressible Euler equation linearized around the
constant state (p,u,T).

The aim is now to approximate the global kinetic solution in the whole domain D by the
solution of the following coupling problem : In the domain D; we solve the kinetic equation
(2.1) with mean free path ¢;. In the domain D, we solve the macroscopic equation . The
problem is to determine the correct coupling conditions at the interface between the two
equations and to investigate the resulting solution of the coupling problem.

3 Coupling Conditions and Physical Correctness of
the Coupled Solution for a Simple Model Problem

We consider here for simplicity a one dimensional geometry xz € [—L, L] with an interface
at x = 0. The physical situation is described by model kinetic equations with different
mean free paths €¢; and € in the domains Dy = [—L, 0] and Dy = [0, L].

The kinetic equations in D;,7 = 1,2 are here

00" + (v1 + u) o™ + =(I = K)o =0, (3.1)

€
where z € D;,v = (v1,---,oy) ESCRN ) N=1,2,3,t € [0,00). S is assumed to be the
unit ball around 0 in RY | u € [—1,1]\{0} is a constant and K an integral operator

Ko(z,v,t) = /l_f(v,v')@(x,v',t)dv',
s



k symmetric in v and v',0 < k; < k(v,v') < ko, where ki, ks are some constants, and
[ k(v,v")dv" = 1. In particular K is an operator in £2(S) with || K|l < 1. Moreover,
s

the collision operator I — K has as collision invariants only constants.

We assume again €3 := € in Dy to be small such that an aerodynamic approximation of
the kinetic equation is valid. The aerodynamic equation in Dy associated to (3.1) is a
simple linear advection equation

0,0 + ud,0 = 0,u € [—1,1\{0}. (3.2)

Coupling the solution of (3.1) with ¢ in D; and the solution of (3.2) in D, one tries to
obtain a coupled solution that approximates the global kinetic one. I.e. the reference
solution to which the coupled solution is compared will be the solution of the kinetic
equation in the whole domain with different mean free paths €; in D; and €; = € tending
to 0 in Ds.

We describe now more precisely the coupled solution.
Let ¢ be the solution of (3.1) in D; and

QD(I)(—L,’IJ7t) = f+(’l),t), v +u>0
go(l)(x,v,O) = h(z,v).

Let © be the solution of (3.2) in Dy with
O(z,0) = g(z)

and
O(L,t) = f-(1),

if u <0.

fy+ is assumed to be uniformly bounded in v and ¢ with v € S and ¢ € [0,T],T fixed
but arbitrary. f_,h, g are also assumed to be uniformly bounded in z, v, ¢ with ¢ € [0, 7T
and ¢ € Dy,v € S and z € D, respectively. We assume all data to be as smooth as
required and the necessary compatibility conditions for initial and boundary conditions
to be satisfied in order to avoid problems connected with nonsmoothness.

It remains to fix the coupling conditions. Taking the usual ones, i.e. equality of moments
or fluxes as described in Section 5, will in general lead to wrong results. See Section 5
for numerical examples. One has to make a more exact analysis of the situation near
the interface. We neglect the boundary layer at + = L and proceed for the transition
layer in a way similar to the usual boundary layer expansions, see e.g., Cercignani [6]:
We assume the distribution function in the aerodynamic region to be equal up to order
€ to the solution of the macroscopic equation plus a kinetic layer term concentrated in a
region in Dy around the interface. The size of this region is of order e. This corresponds
to a scaling of the space coordinate x in the layer like #. This means that we have to find
a solution ®(z,v,t) of the kinetic equation to order € in the domain Dy in the form
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d(z,v,t) = @(a:,t)—i—x(%,v,t)

+ EW(E,U, t)+ eW(x,v,t).
€
® must fulfill

D1 + (v1 + u)9,® + %(1 _ K)(®) = 0(e).

The distribution function ¢! in D; and the distribution function ® in D, are moreover
assumed to be continuous at the interface z = 0, i.e. ®(0,v,t) = ¢ (0,v,t) up to order
€

®(0,v,t) = (0, v,t) + 0(e).

Computing 0;® + (v, + u)d,P one obtains

3 (@ + X(%) + eW(%) + eW) + (v1 + u)0y (O + eW)

o+ u)%@xx(%) + (o1 + )0 ().

To order € this must be equal to

_%(1_ K) (@ +X(§) + eW(%) + eW) .

Comparing the terms of order ¢! yields the half space problem

(01 +u)dax + (I — K)(x) =0

with x(oo,v,t) = 0, because the influence of the layer term must be concentrated near
the interface. Assuming an ingoing flux of the form

x(0,v,t) = M (0,v,t) — a(t), v, +u > 0

with a(t) arbitrary, there is a unique solution x of this problem for u > 0, see e.g.,
Greenberg et al. [12]. In particular a can not be prescribed, it is determined by the
solution. For u < 0 the equation has a unique solution, if a(t) is fixed in advance.

Terms of order 0 cancel if

00+ (v +u)0,0+ I —-K)(W)=0

is satisfied and if a halfspace problem for W is fulfilled. The above equation is uniquely
solvable, if © fulfills the macroscopic equation.
Considering the boundary values at £ = 0 we obtain
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®(0,v,t) = 0O(0,t) + x(0,v,t) + 0(e).

Now for u > 0 it is easily seen that ©(0,t), the boundary condition for (3.2), has to be
chosen equal to a(t) and (0, v,t) equal to x(0,v,t) + ©(0,%) for v; + u < 0 to achieve
to order €

®(0,v,t) = p1(0,v,1).

For u < 0 there is no need of a boundary condition for (3.2) at x = 0. This corresponds
to the solvability of the halfspace equation, if a(t) is prescribed. a(t) must be defined by
0(0,t) and (0, v,t),v; +u < 0 has to be chosen as before. Then again the same result
is obtained.

Due to this analysis the coupling conditions are found in the following way: Let xg be
the solution of the kinetic linear half space problem

(v +u)0rxg + (I —K)xg =0, z€]0,00) (3.3)
xu(0,v,1) = 1 (0,v,t), v +u>0.

For u > 0 the solution yg is unique. Solving (3.3) one obtains the asymptotic value
xu(00,t). We note, that xg(0o,t) does not depend anymore on v, since the asymptotic
value is always a collision invariant and since in this simple case the collision operator
has only the constants as collision invariants. Moreover, we get xg(0,v,t),v; + u < 0.
These values will give us the coupling conditions: The condition at the interface for the
aerodynamic equation is given by

0(0,t) = xm (00, t).
The condition for the kinetic equation in [—L,0] at =0 is
©1(0,v,t) = xu(0,v,1), vi +u < 0.

For u < 0 one needs a constraint to obtain again a unique solution. It will be given by the
solution of the aerodynamic equation O(z,t) with boundary condition f_(t) at + = L :
xu(0o,t) = 0(0,t). Solving (3.3) for v < 0 with this constraint gives x4 (0, v,t), v1+u < 0
and ¢ (0,v,t), v; +u < 0 is obtained as before.

¢©M and O fulfilling the coupling and boundary conditions will be called the solution of
the coupling problem. The reference solution in [—L, L] to which the coupled solution is
compared is the solution of (3.1) in D; and D, with € fixed and e, = ¢, the boundary
conditions

eD(=L,v,t) = fi(v,t), vy 4+u>0
eP(L,v,t) = f. (1), v+u<0
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and the coupling conditions

e (0,v,1) = ¢P(0,v,1).

The initial conditions are

(pgl)(xavao) = h(m,v) V.TEDl
0@ (2,0,0) = g(z) Vo€ D,

oM is also indexed since it depends on € by the coupling conditions.

The transition and boundary layer terms are modelled by functions, that are solutions
of stationary kinetic linear half space problems. The value of these layer functions at
infinity is zero, in order to restrict their influence to the interface and boundary regions.
The layer functions are, at = 0, the function y;

Xl(CL’,U,t) = XH(‘T’ v, t) - XH(OO’t)

and, at © = L, the function x, where xs(z,v,t) is for u > 0 the solution of

(vi+u)dex2+ (I —K)x2 =0, € (—00,0] (3.4)
XZ(O:U’t):ff(t)_e(L,t), U1+U<0

with the condition
X2(—00,t) = 0.

For v < 0 we define
X2 = 0

Using a perturbation expansion, like e.g., in Bensoussan et al. [5] or Bardos et al. [4],
and the above mentioned results on the linear half space problem one can then prove the
following theorem, see Klar [14].

Theorem 3.1
1. For T fized but arbitrary there is a unique coupled solution
(W, 0) with M) € L2(D; x S x [0,T]) and © € L>(D, x [0,T))
fulfilling the above conditions and a unique reference solution

(oM @) with o € L2°(D; x S x [0,T]),i=1,2 Ve > 0.

€

2. There exists a constant C' > 0 such that in D, the following is true:

[t — M| < €C.



3. In Dy we get

l® — [O(z,1) + xal

T xz— L
zavat) + XZ(TaUat)]”oo S 605

where ©, x1 and X2 do not depend on e.

Remark: We mention that in general - in contrast to the global kinetic reference solution
- there will be a jump in the macroscopic quantities of the coupled solution at the interface.
The coupled solution is a correct approximation for small € of the global kinetic solution
only outside of boundary and interface layers in Ds.

4 Coupling Conditions for Linearized Boltzmann and
Euler Equations

We return in this section to the equations considered in section 2 and describe here the
extension of the coupling conditions developed in the preceding section to the full Boltz-
mann and Euler equations linearized around a constant state p, i, T with 4 = (i1, s, i3).
We restrict ourselves again to a 1-dimensional geometry x € [—L, L] and refer to the
remark at the end of this section for possible extensions to the multidimensional case.
The kinetic equations in D;,7 = 1,2 , with D; = [-L,0] and Dy = [0, L], are the Boltz-
mann equations from section 2

. ) 1 _ .
O + (vr + 1) - Opp + —2Q(M, ) = 0. (4.1)
The aerodynamic equation in Dy is the compressible linearized Euler equation

8,0 + A9,0 = 0, (4.2)

with z € [0, L], © = (p, u1, up, us, T). Let ¢ > 0 defined by ¢* = 2T be the speed of sound.
A is given by the following matrix

2 p 0 0 0
% g 0 0 1
A=|10 0 @ 0 0
0 0 0 @ O
0 22 0 0

5
Now the coupling of (4.1) in D; = [—L,0] and (4.2) in Dy = [0, L] is considered and
compared to the solution of the Boltzmann equation in the whole domain [—L, L]. We
concentrate in the following on the coupling conditions at x = 0 disregarding the boundary
conditions at x = L and z = —L.

The system (4.2) is diagonalizable with Eigenvalues \; = 41,1 = 1,2,3,\s = U1 + ¢, A5 =
1 — ¢. One needs at x = 0 for (4.2) 0,1, 4 or 5 boundary conditions for the characteristic
variables according to the value of @, ie. 4, < —¢c,—c < 4 < 0,0 < U < ¢, U >c
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respectively. Here and in the following we assume u; # 0, ¢, —c.

Simply using the equality of moments or fluxes at + = 0 will - as in Section 3 - not lead
to the correct results, as we shall see from the simulations in Section 5. An analysis like
in section 3 leads to the consideration of

(U1 + ﬂl)awa + QQ(M, XH) = 0, x € [0, OO) (43)
XH(Oa,U’t) = QO(I)(O,’U,t), v+ U > 0

where (1)(0, v,t) is the distribution function in D; at = 0. This equation has a unique
solution, see Coron et al [8] or Greenberg et al. [12], if - according to the values of @
- a number of constraints is imposed. One needs 5,4,1 or 0 constraints if 4, < —c,
—c < <0,0 <1 <ec, U > c respectively with ¢2 = gT as before. Solving the half
space problem gives the asymptotic value

as(t) v = 3T\ -
xu(oo,v,t) = (p Z\/_\/_ T 5T )M

According to the number of constraints one already has 5,4, 1 or 0 equations for aqg, . . ., a4.
This means that for u; < —c,—c < u; <0, 0 < u; < cor 4y > c we obtain 0,1,4 and 5
new conditions on the asymptotic values ay, ..., a4 respectively. This fits exactly to what
is needed for the Euler equations as already mentioned by Golse [9].

We restrict ourselves from now on to supersonic flows; |a,| > c.

For #; > ¢ the half space problem is solved for prescribed incoming fluxes without any
constraints. This gives the asymptotic values ag(t), a;(t), as(t), i = 1,2, 3.

The 'macroscopic density function’ in D is a linearized Maxwellian with parameters given
by the solution of the Euler equations:

Spmacro(xa v, t) = M(lf)?m,t),u(m,t),T(m,t)) (U)

with

v; T w2 = 3T\ -
Mlm _ M.
(P, T ( Z \/_ \/_ T 2T )

Mo ,u0,70,) (V)-

At £ = 0 this is

Comparing it to xu (oo, v,t) one obtains

p(0,t) = ao(t)
ui(0,t) = a;(t), i=1,2,3 (4.4)
T(0,t) = a4(t)

Thus the solution of the half space problem gives us the boundary conditions required for
the Euler equations with @; > c at =0, i.e. p(0,t),u(0,t),7T(0,1).
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Moreover the outgoing flux xz(0,v,t),v1 + u; < 0 gives (0, v,t),v1 +u; < 0, i.e. the
boundary condition at x = 0 for the domain D;.

Remark: If o(1)(0,v,t),v; + @, > 0 is a linearized Maxwellian
<P(1)(0: v,t) = M(I,Z;T(ll)(t),u(l)(t),T(l)(t))(U)a vy + Uy >0,

we get o
xu(00,v,t) = o (0,v,1) = M (4w iy r 1y (0); V0 € RE,

This yields equality of the macroscopic quantities p(0,t) = pV(¢), u(0,t) = uM(¢),T(0,t) =
TW(t). For general functions oM (0,v,t),v; + @ > 0 this is usually not the case. The
moments of p()(0,v,t) do not coincide with p(0,),u(0,t),T(0,t). One obtains a jump
in the macroscopic quantities.

For 7, < —c the situation is the following: To solve the half space problem 5 constraints on
the solution are necessary. Comparing the macroscopic density function, with parameters
given by the solutions of the Euler equations, with the asymptotic value x (oo, v,t), we
get the necessary number of constraints. Remark that for u; < —c we do not need any
boundary condition at x = 0 for the Euler equation in D,. We can then solve the half
space problem, which yields ¢(V)(0,v,t) = xu(0,v,t), v1 +u; < 0.

Remark: In the multidimensional case one can proceed in the same way. Suppose that
the interface ¥ divides the computational domain €2 into subdomains €2; and €2,. At each
point x € ¥ one has to solve a one dimensional half space problem with coordinate axis
along the unit normal n(z) to ¥ at the point z. This will lead for each z € X to the
correct boundary conditions.

5 Numerical Results

In this section we investigate the coupling procedure proposed in Sections 3 and 4 nu-
merically. The coupling conditions described there are compared with the ones obtained
by equalizing moments or fluxes. This means that they are determined by the following
procedures:

For the model equations in Section 3 and v > 0 the following equations are used to
determine ©(0,t) from (1) (0, v, )

/(p(l)(O,v,t)dv = /@(O,t)dv

S S

and
(01 + u) (0, v, t)dv = / (v, +u)O(0, t)dv

v1+u>0 v1+u>0

respectively. The ingoing function for the Boltzmann region ¢ (0,v,t),v1 +u < 0 is
determined from ©(0,¢) by

©W(0,v,t) = ©(0,1), v; +u < 0.
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©(0,t) must not be prescribed for u < 0. ¢ (0,v,t),v; +u < 0 is given by a function
O(t) independent of v s.t. the equality of moments is fulfilled. The equality of fluxes does
in this case not give any conditions on the ingoing function. We simply take ¢™(0,v,t) =

©(0,1),v1 +u < 0.

For the Euler equation in Section 4 the boundary values p(0,t),u(0,%) and T(0,t) are
found for w; > ¢ by

/ |U|2 ‘P(l)(OWJ)dU:/ |U|2 _(lzT(LO,t)u(O,t),T(O,t))(U)dv
v v
and
1
(vi+a)| v | eP0,v,t)dv
v1+a1>0 |'U|2
1 — .
= [ @a)| v | Mouenmen @)
v1+141>0 "U‘z
respectively.

The ingoing function for the Boltzmann region is for v; + u; < 0

‘P(l) (0,v,t) = Mgf)?o,t),u(o,t),T(o,t)) (v).
For the other values of @; one can proceed in an analogous way.

Concerning the coupling conditions obtained by the analysis of the kinetic half space
problem, it should be remarked that a fast approximate solver, yielding asymptotic states
and outgoing distributions, is essential. In particular since for multidimensional problems
the halfspace problem has to be solved at each point of the interface. We determine
the coupling conditions here by the first step of the numerical scheme mentioned in the
introduction and described in detail in Golse/Klar [11], see also Klar [14]. We remark
that for #; = 0 the first step of the scheme reduces to the so called variational method,
see Golse [10] or Loyalka [15].

In the following figures the mean free paths differ strongly in the two domains. In this case
the considered types of coupling conditions give strikingly different results. Concerning
the physical aspect of this assumption see the discussion in section 2.

In Figure 1 we consider the model problem (3.1) in section 3 with v € § = [—1,1]

1
and K¢ = 1 [ ¢(v)dv. The macroscopic quantity [ W (z,v,t)dv in D, and O(x,t) the
1

solution of (3.2) in D, is shown at a fixed time ¢ = T so large that a stationary state
is obtained. We took ¢ = 1 and v = 0.3 > 0. For ¢ € [0,7] the ingoing function at
x = —L was chosen as f,(v,t) = v, at x = L we took f_(t) = 1. The figure shows the 3
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kinds of coupling conditions. Moreover the kinetic solution in the whole domain with the
parameters ¢; = 1 and e = 0.01 is shown.

FIGURE 1: TRANSPORT - EULER u=0.3

075 T T T T T T T T
0.7 Kinetic — 4
Layer-Analysis ----
Fluxes -----
Moments -
0.65 E

035 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1
X
Figure 2 shows the same but in contrast to Figure 1 u is here less than 0,u = —0.3.
FIGURE 2 : TRANSPORT - EULER u=-0.3
105 T T T T T T T T
1 -
0.95 | E

Kinetic —
Layer-Analysis ---- 4
Fluxes -----
Moments -
08 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1
X
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In Figure 3 the 3-dimensional BGK model is considered, i.e. in D; we consider equa-
tion (4.1) with ¢ = 1 and substitute the following expression for the collision operator

2Q(M, ) :

3 2 _ 2 _ _
(p—(/gpdv+2w/vicpdv+|v‘2 3/‘U|3 390dv>M
i=1

with

_ of?
M = — .
(2m)372 eXp( 2)

We linearized here around p =T = 1.
5

In D, the Euler equations (4.2) are solved. %, is equal to 1.4, i.e. bigger than ¢ = /3.
The ingoing function at z = —L is f(v,t) = vi(Jv|> = 5)M for t € [0, T).

The figure shows the temperature [ WT_?’cp(l) (z,v,t)dv on Dy and T'(z,t) on Ds.

Again the 3 types of coupling conditions are shown together with the kinetic solution in
the whole domain with ¢; = 1 and ¢; = 0.002.

FIGURE 3 : BGK - EULER TEMPERATURE
24 T T T T T T T T

22+ Kinetic —

Layer-Analysis ----

Fluxes -----
Moments -

18

14 F .

0.8 1 1 1 1 1 1 1 1

Remark:

As can be seen in the figures the usual coupling conditions may in certain cases lead to
completely wrong results. The kinetic layer analysis combined with only the first step
of the above mentioned numerical scheme for half space problems however leads to a
considerable improvement. The coupled solution is a good approximation of the true
kinetic solution outside of boundary and interface layers.
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