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Chapter 1

Introduction

Section 1.1 provides the background and the motivation for the problems addressed in this thesis that
arise in the context of sustainable logistics operations. Section 1.2 presents the structure of this work
highlighting the contribution of each chapter.

1.1. Background

The worldwide economic growth of the last century has given rise to a vast consumption of goods while
globalization has led to large streams of goods all over the world. The production, transportation, stor-
age, and consumption of all these goods, however, have created grave environmental problems. Global
warming, caused by large-scale emissions of greenhouse gases, is today one of the major environmental
concerns (Dekker et al., 2013). According to a recently published report by the Intergovernmental
Panel on Climate Change (IPCC), the global greenhouse gas emissions have to be lowered by at least
45% by 2030 in comparison with the levels observed in 2010, reaching “net zero” around 2050, to have
a likely chance of limiting the increase in global mean temperature to 1.5°C, which is vital to mitigate
environmental changes like extreme weather, rising sea levels, and the decline of Arctic sea ice. The
IPCC calls for “rapid, far-reaching and unprecedented changes in all aspects of society” (IPCC, 2018).

Moreover, according to the United Nations (UN), more people globally are expected to join the middle
class over the next two decades. While beneficial for individual prosperity, this will further increase
demand for already constrained natural resources. The “material footprint” of an economy refers
to the total amount of raw materials extracted globally—across the entire supply chain—to meet
that economy’s final consumption demand. People rely on such materials to meet basic needs—for
food, clothing, water, shelter, infrastructure, and numerous other aspects of life. Across much of the
developing world, an increase in the material footprint is inevitable to enhance the living standards of
growing populations. At the same time, it is crucial to reduce reliance on raw materials and increase
their recycling to decrease pressure and impact on the environment. Should the global population
reach 9.6 billion by 2050, the equivalent of almost three planets could be required to provide the
natural resources needed to sustain current lifestyles (UN, 2018).

The 2030 Agenda for Sustainable Development proclaimed by the UN articulates these issues of miti-
gating climate change and of ensuring sustainable consumption and production patterns in sustainable
development goals (SDGs)1 No 13 and No 12, respectively.
1https://www.un.org/sustainabledevelopment/
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The logistics sector represents an important lever for achieving these goals. On the one hand, it belongs
to the major contributors to the world’s greenhouse gas emissions and plays a key role in reducing
the dependency of our economy on non-renewable and especially emission-intensive energy sources
(Smokers et al., 2014). In 2016, transportation in particular accounted for 21% of the greenhouse
gas emissions worldwide (International Energy Agency, 2018). In the light of the world population
prospect mentioned above, a dramatically rising demand for products and thus a strong growth in
goods transportation can be expected. Without measures to improve the efficiency and to reduce
the carbon intensity of the transport sector, this will strongly increase the use of fossil fuels and the
associated emissions of greenhouse gases (Smokers et al., 2014).

Logistics service providers have recognized the use of battery electric vehicles (BEVs) to be an effective
means to make their operations more climate-efficient. Among them the Deutsche Post DHL Group
which could achieve a 30% improvement in carbon efficiency in 2016 compared to the 2007 baseline
thanks to an environmental protection program called GoGreen, which especially relies on the deploy-
ment of the StreetScooter, the group’s own BEV for delivering mail and parcels (Appel, 2017). By
the end of 2017, already 5000 StreetScooters were on the road in Germany and over the long term,
DHL plans the transition of their entire fleet to BEVs (Bönnighausen, 2017; Appel, 2017).

However, the large-scale adoption of BEVs still faces a number of hurdles to overcome. While poor
driving range and limited attractiveness have long been the main bottlenecks for BEV uptake, with
prices declining and ranges expanding, the management consulting firm McKinsey predicts that if
consumers purchase BEVs at the expected rates in the next five to ten years, a lack of recharging
infrastructure might become the remaining obstacle to a widespread adoption (Knupfer et al., 2017).

The base-case scenario of a consumer survey of buyers considering BEVs conducted by McKinsey
in 2016, suggests that approximately 140 million BEVs could be on the road by 2030 in China, the
European Union, and the United States. The more aggressive scenario even sees this number doubled.
Besides varying BEV adoption levels across regions, structural aspects lead to a highly localized
demand for recharging stations. For example, a city like Los Angeles with many single-family low-rise
homes which have parking garages will have extremely different recharging-infrastructure needs in
comparison with New Delhi, where unorganized street parking prevails. The structural limitations
of highly dense urban cities, which are characterized by larger proportions of on-street and large-
commercial-garage parking, are the catalysts for increased public-charging demand (Knupfer et al.,
2017).

In environments where the recharging infrastructure is not (yet) existent, mobile recharging possi-
bilities seem to be an interesting alternative. Recently, the Italian company E-GAP2 began to offer
mobile recharging for BEVs. Upon request per mobile application, a recharging van equipped with
fast recharging technology meets with a BEV in need for a recharge at its current or a predefined
future parking location.

On the other hand, transport-related efforts contributing to achieving a responsible production and
consumption as pursued by SDG No 12 may be found in the context of reverse logistics. Reverse
logistics can be defined as the process of planning, implementing, and controlling backward flows of
raw materials, in-process inventory, packaging and finished goods, from a manufacturing, distribution,
or consumption point, to a point of recovery or point of proper disposal (Dekker et al., 2013). Especially
2http://www.e-gap.com
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the recovery aspect is in line with SDG No 12. By optimizing the re-use of products, the utilization
of raw materials is reduced and waste processing becomes more efficient. The extreme case of a fully
circular production (the cradle-to-cradle ideal as envisioned by McDonough and Braungart, 2010)
would produce zero waste (Smokers et al., 2014).

To effectively plan these logistics operations and to exploit their full potential with respect to achieving
the environmental goals, techniques from the domain of operations research (OR) are reasonably
applied to design corresponding decision support systems. In the scientific literature, transportation
tasks are frequently represented as vehicle-routing problems (VRPs, Vigo and Toth, 2014). The basic
VRP aims at determining a set of delivery routes each starting and ending at a single depot to visit
a set of customers such that the total travel cost are minimized. Numerous variants of the VRP
incorporating real-world constraints and conditions have been proposed, among them the capacitated
VRP (CVRP), where vehicles are characterized by a limited freight capacity (see, e.g., Irnich, Toth,
and Vigo, 2014) and the VRP with time windows (VRPTW), where customers are associated with
specific time intervals within which their service must start (see, e.g., Bräysy and Gendreau, 2005a;
Bräysy and Gendreau, 2005b). The CVRP and its extensions are N P-hard and thus only relatively
small-sized instances can be solved by means of exact algorithms. Therefore, numerous metaheuristic
solution methods have been proposed to provide solutions for instances of sizes faced in practical
applications (Laporte, Ropke, and Vidal, 2014).

To consider the utilization of BEVs in the route planning, corresponding routing models need to ade-
quately address the characteristics of BEVs. For example, despite improvements in battery technology
in recent years, the maximum driving range of BEVs might not always be sufficient to perform typical
delivery tours in one run or to reach customers located far away from the depot. Therefore, visits
to recharging or battery swap stations (BSSs) need to be properly integrated into the route planning
process, especially if the respective infrastructure is sparse.

The task of planning the BEV infrastructure, i.e., determining the appropriate locations for recharging
stations or BSSs may be reasonably modeled as location-routing problem (LRP) in which decisions on
the location of facilities are jointly taken with decisions on the routing of vehicles. LRPs arise from
the observation that taking these types of decisions independently of one another may lead to highly
suboptimal planning results, even if the location decisions are aimed for the long term (Drexl and
Schneider, 2014).

The deployment of mobile means for recharging or swapping the vehicle battery leads to the inter-
dependence between the vehicle routes. This results from the necessity for the vehicles to meet at
a location in order to perform the transfer operation. Thus, in addition to the usual task covering
constraints, further synchronization requirements between the vehicles arise. Consequently, corre-
sponding problems are referred to as VRPs with multiple synchronization constraints (VRPMSs) in
the scientific literature (Drexl, 2012). While in many VRP variants, the vehicle routes are independent
of each other, modifications to a route in a VRPMS might render the entire solution infeasible in the
worst case.

Finally, as described above, reverse logistics means that in addition to the distribution of goods to the
customers, e.g., re-usable packaging and goods to be recycled or remanufactured have to be transported
in the reverse direction. If both tasks have to be performed simultaneously at the customer locations, a
routing problem in the literature commonly referred to as VRP with simultaneous pickup and delivery
(VRPSPD) arises (see, e.g, Dethloff, 2001). In the classical CVRP, the vehicle load monotonically
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decreases along a route depending on the delivered customer demands. This is not true for VRPSPDs
where the additional existence of pickup demands results in a rather fluctuating load profile, which
calls for the implementation of sophisticated capacity evaluation procedures in respective solution
methods.

1.2. Organization and Contribution

This thesis addresses the above described challenges for sustainable logistics operations and investi-
gates (1) the integration of intermediate stops in the route planning of transportation vehicles, which
especially becomes relevant when BEVs with limited driving range are considered, (2) the combined
planning of the battery replacement infrastructure and of the routing for BEVs, (3) the use of mobile
load replenishment or refueling possibilities in environments where the respective infrastructure is not
available, and (4) the additional consideration of the flow of goods from the end user backwards to
the point of origin for the purpose of, e.g., recapturing value or proper disposal. We3 utilize models
and solution methods from the domain of OR to gain insights into the investigated problems and thus
to support managerial decisions with respect to these issues. Note that, due to the diversity of the
problems addressed in this thesis, we refrain from providing an entirely unified notation. Instead, we
introduce the notation used in each chapter anew thus allowing each chapter to be read on its own.

Chapter 2 introduces some basic concepts that are relevant for the problems and approaches addressed
in this thesis. As the CVRP lies at the core of all problems investigated in this work, we provide a
thorough description of the problem. In addition, we present the basic principles of the metaheuristic
approaches that we adapt in this work.

In Chapter 3, we introduce a route planning model that considers intermediate stops for the trans-
portation vehicles. The vehicle-routing problem with intermediate stops (VRPIS) features a set of
intermediate facilities at which vehicles may stop en-route to replenish the goods to be delivered or
to refuel. With respect to the first application case, intermediate replenishment stops are used in
distribution systems where the products to be delivered are stored at several facilities with the goal
of reloading the delivery vehicles without having to return to a central depot. The second aspect is
especially relevant when considering the utilization of BEVs. Then, the intermediate facilities may
represent recharging stations that allow to recharge the vehicle battery or battery swap stations at
which vehicles can swap their depleted battery for a fully charged one. In contrast to the obligatory
customer visits, these stops are optional and aim at keeping the vehicles operational.

As VRPIS extends the N P-hard CVRP by several combinatorial aspects, we develop an adaptive
variable neighborhood search (AVNS) heuristic to provide solutions for the VRPIS. We assess the
competitiveness of the proposed approach on benchmark instances from the literature for two special
cases of the VRPIS, namely for the green VRP and the VRP with intermediate replenishment facilities.
Moreover, we consider an additional special case of the VRPIS, the electric VRP with recharging
facilities (EVRPRF). We design two sets of small and large EVRPRF instances based on well-known
CVRP benchmarks. On the small instances, we assess the performance of our AVNS in comparison
to the commercial solver IBM ILOG CPLEX4. Finally, we analyze the effect of the problem-specific
3To improve readability, the first person plural is used to indicate the author of this thesis throughout the work as
commonly done in the scientific literature.

4https://www.ibm.com/analytics/cplex-optimizer
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components that explicitly address intermediate facilities on solution quality and computation time.
Chapter 3 has been published in a similar form in Schneider, Stenger, and Hof (2015).

In Chapter 4, we study the battery swap station location-routing problem with capacitated electric
vehicles (BSS-EV-LRP) that has been introduced by Yang and Sun (2015). In the BSS-EV-LRP, a
homogeneous fleet of BEVs with limited driving range and capacity is stationed at a single depot and
has to serve a set of customers with given demands. To stay operational, the BEVs can stop at BSSs
to perform a replacement of the depleted vehicle battery. From an algorithmic point of view, BSSs
can thus be modeled as intermediate facilities. However, in the BSS-EV-LRP, an additional strategic
component has to be considered: While in the VRPIS, the number and locations of intermediate
facilities are given ex ante, the BSS-EV-LRP calls for the determination of the BSS locations to open
from a set of candidate locations with given construction cost.

Using the AVNS algorithm introduced in Chapter 3, we show how algorithms designed for VRPIS
can generally be extended to address the BSS-EV-LRP. In numerical studies, we investigate the
performance of our extended AVNS and its components on the BSS-EV-LRP benchmark from the
literature and on a newly introduced instance set for the BSS-EV-LRP, which is more meaningful
with regard to the necessity of utilizing BSSs. We use this new set to additionally investigate the
effect of varying construction cost on the location of BSSs. The contents of Chapter 4 have been
published in a similar form in Hof, Schneider, and Goeke (2017).

Chapter 5 introduces the vehicle-routing problem with time windows and mobile depots (VRPTWMD).
The VRPTWMD is characterized by a fleet of delivery vehicles (DVs) and a fleet of support vehicles
(SVs). Depending on the application context, an SV may either serve as a mobile depot to restore the
load capacity of the DVs for the customer demand to be delivered or the DVs’ fuel capacity thus acting
as a mobile refueling station. To serve in one of the described ways, an SV must meet with a DV at
a location, and both vehicles must stay at that location until the capacity transfer terminates. The
possible meeting points may encompass specific customer locations and dedicated transfer locations.
In the former case, a transfer may only take place when the DV serves the respective customer. The
order in which a DV performs the service at a customer and the transfer with the SV takes place is a
decision variable.

We develop an adaptive large neighborhood search (ALNS) heuristic combined with a path relinking
(PR) approach, called ALNS-PR, to address the VRPTWMD. Our ALNS-PR makes use of problem-
specific components that explicitly consider the existence of resource transfers and is able to evaluate
fuel, load, and time window violations in constant time. We generate two sets of VRPTWMD in-
stances: A set of small-sized instances that we can solve exactly with the commercial solver CPLEX
to assess the performance of ALNS-PR on the VRPTWMD and a set of more realistically sized in-
stances that we use to analyze the usefulness of certain components of our algorithm and the effect of
different problem characteristics on the structure of the identified solutions. In addition, we evaluate
the competitiveness of our algorithm on benchmark instances for the related two-echelon multiple-trip
VRP with satellite synchronization.

In Chapter 6, we investigate a class of vehicle-routing problems with simultaneous pickup and delivery
(VRPSPD). In VRPSPDs, customers may require (i) delivery service of goods originating at the
depot, and (ii) pickup service for goods which need to be returned to the depot. Consequently, route
planning tasks arising in the context of reverse logistics may be adequately represented as VRPSPDs.
In addition to the standard VRPSPD, we investigate (i) the VRPSPD with time limit (VRPSPDTL),
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which imposes a maximum duration on the vehicle routes, (ii) the VRPSPD with time windows (VRP-
SPDTW), where customers are associated with time intervals in which their service must start, (iii) the
VRP with divisible deliveries and pickups (VRPDDP), which allows to satisfy a customer’s pickup and
delivery requests in two separate visits, (iv) the previously unstudied VRP with restricted mixing of
divisible deliveries and pickups (VRPRMDDP), which additionally requires that a certain percentage
of the vehicle capacity must remain unoccupied when both types of demand are simultaneously loaded,
and (v) the previously unstudied VRPDDP with time windows (VRPDDPTW). In order to study
the suitability of our solution method for an even larger variety of problems, we perform additional
experiments on instances for the VRP with mixed deliveries and pickups (VRPMDP) and the VRP
with restricted mixing of deliveries and pickups (VRPRMDP), which represent special cases of the
VRPSPD(TL) and the VRPRMDDP, respectively, in which each customer is associated with only one
type of demand.

We again develop an ALNS-PR hybrid to provide solutions for the investigated variants and special
cases of the VRPSPD. Besides approaches with general validity for VRPs, we implement algorithmic
components that explicitly take the load characteristics of VRPSPDs into account. In extensive
numerical studies, we analyze the benefits of the algorithmic innovations and the competitiveness of
our algorithm on benchmark instances from the literature. The contents of this chapter will appear
as Hof and Schneider (forthcoming).

Finally, we summarize the findings of this thesis and provide an outlook on future research opportu-
nities in Chapter 7.
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Chapter 2

Fundamental Concepts

In this section, we provide some fundamental concepts that are relevant for the problems investigated
in this thesis. In Section 2.1, we introduce the capacitated vehicle-routing problem (CVRP) which
builds the foundation of all problems addressed in this work. We give a thorough description and
provide an exact mathematical formulation of the problem.

Section 2.2 lays the foundations for the solution methods developed in this thesis. To this end, we
present the basic principles of the metaheuristic paradigms that have been adapted in this work.

2.1. The Capacitated Vehicle-Routing Problem

The CVRP is the most studied version of the VRP. Although the CVRP itself is primarily relevant in
the academic context, it lies at the core of most VRP variants studied in the literature. The CVRP
seeks to determine a cost-minimal set of routes performed by a fleet of homogeneous vehicles located
at a single depot. Each route starts and ends at the depot and the cumulated demand of all customers
visited on a route must not exceed the capacity of the associated vehicle. Each customer is served by
exactly one vehicle (Irnich, Toth, and Vigo, 2014).

In the following, we provide a formal definition of the CVRP as mixed-integer program. Let C �

t1, ..., nu denote the set of n customers and let 0 and n � 1 denote instances of the same depot
corresponding to the start and end of each vehicle route, respectively. Moreover, let V denote the set
containing the depot and the customers. We use indices 0 and n�1 to indicate which depot instances
are contained in the set, i.e., V0 � t0u Y C, Vn�1 � tn� 1u Y C, and V0,n�1 � t0u Y tn� 1u Y C.

The CVRP can then be defined on a complete directed graph G � pV0,n�1,Aq with the set of arcs
A � tpi, jq : i, j P V0,n�1, i � ju. Each arc pi, jq P A is associated with a travel distance cij and a
travel time tij . Each customer i P C has a nonnegative demand ui. A homogeneous fleet of m vehicles
with capacity q is based at the depot.

Moreover, the following decision variables are used in the model: ai specifies the time and li the load
level on arrival at vertex i. Finally, binary decision variables xij take value 1 if vertex j is visited
after vertex i and 0 otherwise. Based on this notation, we formulate the mixed-integer program of the
CVRP as follows:

min
¸
iPV0

¸
jPVn�1

cijxij (2.1)
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¸
iPV0ztju

xij � 1 @j P C (2.2)

¸
iPV0ztju

xij �
¸

iPVn�1ztju

xji � 0 @j P C (2.3)

¸
jPVn�1

x0j ¤ m (2.4)

ai � tijxij �Mp1 � xijq ¤ aj @i P V0, j P Vn�1, i � j (2.5)

0 ¤ ai ¤ R @i P V0,n�1 (2.6)

lj ¤ li � ui � qp1 � xijq @i P V0, j P Vn�1, i � j (2.7)

0 ¤ li ¤ q @i P V0,n�1 (2.8)

xij P t0, 1u @i P V0, j P Vn�1, i � j (2.9)

The goal of the CVRP is to minimize the total distance traveled expressed by objective function (2.1).
Constraints (2.2) guarantee that each customer is visited exactly once. Flow conservation is provided
via Constraints (2.3) by requiring that at each customer, the number of incoming arcs is equal to the
number of outgoing arcs. The number of arcs leaving the depot is limited to the number of available
vehicles in Constraints (2.4). Constraints (2.5) prevent the formation of subtours by establishing
time feasibility for arcs leaving customers and the depot. The range of the arrival time is defined
in Constraints (2.6). Feasibility with respect to the vehicle load is ensured by Constraints (2.7) and
(2.8). Finally, the binary variables are defined in (2.9).

2.2. Metaheuristic Solution Methods for VRPs

Even the basic CVRP proves to be very challenging as it degenerates to the N P-hard one-dimensional
bin-packing problem if all arc weights are zero (Coffman, Garey, and Johnson, 1984). Despite con-
siderable effort put in the development of sophisticated mathematical programming decomposition
algorithms since the VRP was first introduced in Dantzig and Ramser (1959), only relatively small
instances can be solved optimally and run-times highly vary. However, instances faced in practical
applications are often large and characterized by numerous real-world constraints which calls for the
development of efficient metaheuristic solution methods that are able to obtain adequate solutions in
reasonable and predictable computation times (Laporte, Ropke, and Vidal, 2014).

Metaheuristics are typically high-level strategies which guide underlying problem-specific heuristics
to enhance their performance. The main goal is to avoid the disadvantages of purely greedy local
search procedures by intelligently combining different concepts for exploring and exploiting the search
space and thus allowing the search to escape from local optima. This may encompass the acceptance
of worsening moves during the search or the generation of new starting solutions for the local search
not entirely at random but in an intelligent, biased way (Osman and Laporte, 1996; Gendreau and
Potvin, 2005). In contrast to exact methods, metaheuristics are approximation algorithms as they
do not guarantee to obtain the global optimum of an optimization problem. Instead, they aim at
achieving a reasonable trade-off between solution quality and computational effort.

Metaheuristics may be classified with respect to the number of solutions considered at each iteration.
We distinguish between (i) single-solution and (ii) population-based metaheuristics. While in single-
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solution methods, only a single solution is modified at any time in the search, population-based
methods aim at concurrently evolving a multiplicity of solutions (Gendreau and Potvin, 2005).

The solution methods presented in this thesis are composed of components from both categories of
metaheuristics. In the following, we first provide the foundations for the single-solution approaches
adapted in this work, namely simulated annealing (SA), variable neighborhood search (VNS), and
large neighborhood search (LNS) in Sections 2.2.1, 2.2.2, and 2.2.3, respectively. Finally, we describe
the basic concept of path relinking (PR), the population-based approach utilized in this work, in
Section 2.2.4.

2.2.1. Simulated Annealing

SA, first proposed in Kirkpatrick, Gelatt, and Vecchi (1983) and Černý (1985), is a randomized local
search procedure that implements a strategy to escape from local optima by accepting worse solutions
with a certain probability which is decreased in the course of the search.

The algorithm is inspired by the physical annealing process used to obtain low-energy states of solids.
In condensed matter physics, annealing denotes a process in which a solid is first melted by increasing
its temperature and then allowed to cool very slowly until it achieves its most regular crystal lattice
configuration possible (i.e., its minimum lattice energy state), and thus is free of crystal defects
(Nikolaev and Jacobson, 2010). In a combinatorial optimization context, a solution corresponds to a
state of the physical system and the objective function value to the associated energy (Gendreau and
Potvin, 2005).

A pseudocode representation of the SA algorithm is shown in Figure 2.1 (Blum and Roli, 2003).
At each iteration, the current solution S is modified by randomly selecting a solution S 1 from the
neighborhood N pSq of S. A neighborhood of a solution is typically implicitly defined in form of a
class of transformations, i.e., neighborhood operators applicable to a solution. If the new solution S 1

improves on S, it is always accepted and replaces S as the starting point for the subsequent iteration.
Otherwise, the new solution is accepted according to the Metropolis criterion (Metropolis et al., 1953),
where the probability of acceptance is related to the magnitude of the cost increase and a temperature
parameter ϑ:

e
�pfpS1q�fpSqq

ϑ .

Consequently, a solution is more likely to be accepted if the temperature is high and the magnitude
of the cost increase is low. SA starts with an initial temperature ϑ0 which is incrementally decreased
according to a predefined cooling schedule where a certain number of iterations are performed at each
temperature level. Assuming an infinite number of iterations, it can be proven that SA–contrary to
most heuristics–asymptotically converges to a global optimum. Finite-time implementations, however,
do not provide such a guarantee which compromises the practical benefit of this observation (Gendreau
and Potvin, 2005).

2.2.2. Variable Neighborhood Search

VNS has been introduced by Mladenović and Hansen (1997) and follows the idea of exploring increas-
ingly distant neighborhoods of a solution to escape from local optima. More precisely, the procedure
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2 Fundamental Concepts

S Ð generateInitialSolution()
ϑÐ ϑ0
while termination conditions not satisfied do

S 1 Ð generateRandomSolution(N pSq)
if fpS 1q   fpSq then

S Ð S 1

else
Accept S 1 as new solution with probability e

�pfpS1q�fpSqq
ϑ

end if
update(ϑ)

end while

Figure 2.1.: Simulated annealing in pseudocode.

moves to the next neighborhood as soon as the local optimum of the current neighborhood is obtained.
Figure 2.2 provides an overview of the VNS paradigm in pseudocode (Hansen et al., 2010).

Define the set of neighborhood structures Nκ with κ � 1, ..., κmax

Generate initial solution S
κÐ 1
while termination conditions not satisfied do
{Shaking}
S 1 Ð generateRandomSolution(NκpSq)
{Local Search}
S2 Ð performLocalDescent(S 1)
if fpS2q   fpSq then

S Ð S2

κÐ 1
else
κÐ κ mod κmax � 1

end if
end while

Figure 2.2.: Variable neighborhood search in pseudocode.

Given a set of predefined neighborhood structures {Nκ | κ � 1, ..., κmax}, a perturbation phase (also
called shaking) generates a random solution S 1 in the first neighborhood of the current solution S
from which a local descent is subsequently performed. If the obtained local optimum S2 does not
improve on the incumbent, the next neighborhood structure is selected and the procedure repeated.
The search is restarted from the first neighborhood when either an improving solution has been found
or every neighborhood structure has been explored. VNS terminates as soon as a stopping condition,
e.g., a maximum number of iterations without improvement, is met (Gendreau and Potvin, 2005).

2.2.3. Large Neighborhood Search

LNS was originally proposed by Shaw (1998) and is based on a ruin-and-recreate principle. More
precisely, at each iteration, a destroy method is applied to destruct a typically large portion of the
current solution and a repair method subsequently rebuilds the destroyed solution. The destroy
method generally contains an element of stochasticity to favor the recreation of different parts of a
solution at every invocation of the method. The neighborhood N pSq of a solution S is then defined as
the set of solutions that can be reached by successively applying the destroy and the repair method to
S. If the solution S 1 obtained in this way improves on the current one S, S 1 replaces S as the starting
point for the subsequent iteration. Otherwise, S is again destroyed and rebuilt. Figure 2.3 shows the
LNS procedure in pseudocode (Pisinger and Ropke, 2010).
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Generate initial solution S
while termination conditions not satisfied do

S 1 Ð repairSolution(destroySolution(S))
if fpS 1q   fpSq then

S Ð S 1

end if
end while

Figure 2.3.: Large neighborhood search in pseudocode.

Contrary to many local-search-based methods, the basic LNS metaheuristic does not search the entire
neighborhood of a solution but rather samples the neighborhood. However, the large neighborhood
allows LNS to navigate the solution space and thus to overcome local optima easily, even if the problem
instance is tightly constrained (Pisinger and Ropke, 2010).

2.2.4. Path Relinking

PR was originally proposed by Glover (1997) as a complementary intensification strategy that seeks
to discover improving solutions on the trajectories between elite solutions obtained by another meta-
heuristic like, e.g., tabu search (Resende et al., 2010). To this end, starting from an initial solution,
PR generates new solutions by successively incorporating characteristics of a guiding solution into the
current solution. In other words, by selecting moves that introduce attributes contained in the guiding
solution, a path in the neighborhood space leading toward the guiding solution is created. Instead
of merely encouraging the selection of moves that decrease the diversity between both solutions, PR
subordinates all other considerations to the goal of introducing the attributes of the guiding solution
(Laguna and Marti, 1999).

For the purpose of illustration, Figure 2.4 shows two exemplary paths, i.e., sequences of moves that
connect a high-quality solution A to a high-quality solution B found during the search. The solid line
indicates the path obtained by applying a typical local-search-based heuristic that seeks to minimize
the objective function value but implements some strategy to escape from local optima. The dashed
line depicts the path followed by the PR procedure. The paths differ because PR prioritizes the
incorporation of attributes of the guiding solution. In this way, improving solutions may be discovered
that are not in the neighborhood of the solutions visited by the original path (solution C).
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Figure 2.4.: Example of a path obtained via the path relinking procedure in comparison to the path followed
by a local-search-based approach (Laguna and Marti, 1999).

For this reason, PR may reasonably complement metaheuristics that generate a sequence of locally
optimal feasible solutions like SA, VNS, ALNS, or as initially mentioned, tabu search. To hybridize
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PR with these approaches, a diverse pool of high-quality solutions found during the search, called elite
set, is usually employed. Depending on the specific PR implementation, each locally optimal solution
obtained in the course of the search is relinked with one or more solutions contained in the elite set.
The elite set is initially empty and limited in size. Each locally optimal solution produced by the
metaheuristic and each solution returned by PR is considered as a candidate for inclusion in the elite
set. If the set is not yet filled, any solution that differs from the solutions already contained in the
set may be added. Otherwise, a simple strategy may consist in accepting a solution to be included if
it improves on the worst solution currently contained in the elite set. The new solution then replaces
the previous worst solution (Resende et al., 2010).
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Chapter 3

Considering Intermediate Stops in Route Planning

3.1. Introduction

Intermediate stops have to be considered in many practical vehicle routing applications, e.g., for
(i) replenishment of the goods to be delivered, (ii) refueling (or recharging in case of battery electric
vehicles), or (iii) unloading of collected goods or disposal of waste. These stops differ from regular
customer stops in two aspects: First, they are optional, and second, they depend on the state of
the vehicle with respect to load and fuel level (which decides the latest possible moment at which an
intermediate stop has to occur). Contrary to optional customer stops, e.g., in vehicle-routing problems
(VRPs) with profits (Archetti, Speranza, and Vigo, 2014), intermediate stops are not directly related
to customer service or profit maximization but aim at keeping the vehicle operational.

As mentioned above, major applications of intermediate stops are good replenishment, refueling and
waste disposal, which are detailed in the following. Intermediate replenishment stops are used in
distribution systems with several facilities storing the products to be delivered (Angelelli and Mansini,
2002; Crevier, Cordeau, and Laporte, 2007; Tarantilis, Zachariadis, and Kiranoudis, 2008). The aim
is to avoid returning to a central depot in order to reload the delivery vehicle. Concrete applications
can be found in the distribution of heating oil (Prescott-Gagnon, Desaulniers, and Rousseau, 2014),
road maintenance (Amaya, Langevin, and Trépanier, 2007), or in city logistics, where city freighters
may visit satellite facilities in order to be replenished (Crainic, Ricciardi, and Storchi, 2009).

Intermediate stops for unloading operations are common in waste collection or snow ploughing. Here,
intermediate disposal sites need to be visited, at the latest, when the maximal capacity of the vehicle
is reached (see, e.g., Kim, Kim, and Sahoo, 2006; Benjamin and Beasley, 2010).

Intermediate refueling stops occur in several practical applications. For example, several companies
keep contracts with gas station chains in order to get special rates at the respective stations, which
makes it profitable to consider refueling stops in the route planning. Without such contracts, this
is not the case because the network of gas stations is generally quite dense in developed countries.
The refueling topic gains further relevance by the strong growth in alternative fuels, namely biodiesel,
ethanol, hydrogen, methanol, natural gas, or propane, for which only a sparse infrastructure is exis-
tent. Finally, battery electric vehicles (BEVs) need to stop to recharge during longer routes due to
their limited driving range (Conrad and Figliozzi, 2011; Schneider, Stenger, and Goeke, 2014). BEV
technologies have recently gained importance due to city logistics concepts, which aim at reducing the
negative external effects of urban freight transportation. In this context, BEVs seem to be a very good
choice as they have no local emissions, operate very efficiently at the stop-and-go level and have low
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noise levels (Wang and Lin, 2013). Moreover, BEVs are defined to be emission-free by EU regulation
No 510/2011 and are therefore a major means to comply with laws and regulations on emissions.

We are the first to introduce the VRP with intermediate stops (VRPIS), a routing model that con-
siders visits to intermediate facilities in order to keep vehicles operational. The necessity to visit an
intermediate facility depends on the fuel and/or the load level of a delivery vehicle. The time spent at
a facility is defined as a function of the fuel and load level on arrival. By abstracting from the actual
purpose of the intermediate stop, be it for replenishment, refueling, or disposal, our problem defini-
tion comprises several problems with specific applications proposed in the literature. The objective of
VRPIS is to minimize the total costs composed of travel costs and fixed costs for the deployment of
vehicles.

VRPIS extends the N P-hard capacitated VRP (CVRP) by several combinatorial aspects, which
makes exact methods unsuitable for solving large problem instances in fast computation time. We
develop a heuristic solution approach, namely an adaptive variable neighborhood search (AVNS),
which combines ideas of VNS (Hansen and Mladenović, 2001) and adaptive large neighborhood search
(ALNS, see Pisinger and Ropke, 2007). This method has been successfully applied to single and multi-
depot routing problems (see Stenger et al., 2013; Stenger, Schneider, and Goeke, 2013). To assess
the performance of our AVNS, we perform computational studies on benchmark instances of VRPIS
variants previously studied in the literature.

Moreover, we investigate the electric VRP with recharging facilities (EVRPRF) as a special case of
VRPIS. EVRPRF models the routing decision of logistics service providers employing BEVs. The
driving range of a vehicle is restricted by the maximum battery capacity and a distance-related energy
consumption along the route, which determines the battery charge. We simplify several real-world
characteristics and do not consider the influence of vehicle load, vehicle speed, and grades on energy
consumption. The battery can be recharged at any of the available recharging facilities. For this
problem, we generate a set of small benchmark instances, which are used to assess the solution quality
of our method in comparison to the commercial solver CPLEX. In addition, detailed results for a set
of large instances are provided.

This chapter is organized as follows. In Section 3.2, we review the related literature. Section 3.3
presents the problem description and the mathematical models of VRPIS and of the special case
EVRPRF. The AVNS solution method is detailed in Section 3.4. Computational tests to assess the
performance of the proposed method are described in Section 3.5. The chapter is summarized and
concluded in Section 3.6.

3.2. Literature Review

This section gives short reviews of the following strands of literature related to VRPIS and EVRPRF:
(i) VRPs with intermediate replenishment or disposal stops, (ii) VRPs with refueling or recharging
stops, and (iii) refueling problems occurring in other application areas.

Crevier, Cordeau, and Laporte (2007) introduce the multi-depot VRP with inter-depot routes (MD-
VRPI), which considers intermediate depots at which vehicles can be replenished with goods during
the course of a route. The authors develop a heuristic procedure that combines ideas from adaptive
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memory programming (Rochat and Taillard, 1995), tabu search (TS) and integer programming. Al-
though the multi-depot case is described, all proposed benchmark instances consider only one depot at
which the vehicle fleet is stationed. Therefore, Tarantilis, Zachariadis, and Kiranoudis (2008) rename
the problem to VRP with intermediate replenishment facilities (VRPIRF) and we adopt this acronym
for the remainder of this thesis. They propose a hybrid guided local search heuristic that follows a
three-step procedure. First, an initial solution is constructed by means of a cost-savings heuristics.
Second, a VNS algorithm is applied using a TS in the local search phase. Third, the solution is further
improved by means of a guided local search.

Prescott-Gagnon, Desaulniers, and Rousseau (2014) propose three metaheuristics to solve a VRP aris-
ing in heating oil distribution, considering intra-route replenishments, heterogeneous vehicles, optional
customer visits and time windows. The authors design a TS, an LNS based on the TS and a column
generation heuristic and report computational results obtained on test instances derived from a real-
world dataset. Other problems similar to VRPIRF arise in the collection of waste (see, e.g., Angelelli
and Mansini, 2002; Kim, Kim, and Sahoo, 2006; Coene, Arnout, and Spieksma, 2010; Benjamin and
Beasley, 2010), in snow clearance (Perrier, Langevin, and Campbell, 2007), or in road maintenance
and marking (Amaya, Langevin, and Trépanier, 2007; Salazar-Aguilar, Langevin, and Laporte, 2013).
A recent review of the literature on waste collection can be found in Beliën, De Boeck, and Van Ackere
(2014).

Hemmelmayr et al. (2013) study the periodic VRP with intermediate facilities (PVRP-IF) in the
context of waste collection. The authors introduce a hybrid solution approach consisting of a VNS
using dynamic programming to insert intermediate facilities. The solution procedure is also applied
to the VRPIRF problem instances provided by Crevier, Cordeau, and Laporte (2007) and Tarantilis,
Zachariadis, and Kiranoudis (2008) and is able to outperform both approaches.

The literature on routing problems with refueling stops is still relatively scarce. Conrad and Figliozzi
(2011) present the recharging VRP, in which vehicles with limited range have the possibility of recharg-
ing en route at certain customer locations. The recharging time is assumed to be fixed. The impact of
maximum driving range, recharging time, and time window existence is studied using a selection of the
VRP with time windows (VRPTW) instances of Solomon (1987). Moreover, bounds are formulated
to predict average tour lengths. Erdoğan and Miller-Hooks (2012) propose the green VRP (G-VRP),
which considers a limited fuel capacity of the vehicles and the possibility of refueling at facilities along
the route with a fixed refueling time. Neither capacity restrictions nor time window constraints are
considered. The authors propose two heuristics to solve the G-VRP. The first is a modified Clarke
and Wright savings algorithm (MCWS) which creates routes by establishing feasibility through the
insertion of refueling facilities, merging feasible routes according to savings, and removing redundant
facilities. The second heuristic is a density-based clustering algorithm (DBCA) designed as cluster-first
and route-second approach.

Schneider, Stenger, and Goeke (2014) develop a hybrid heuristic approach that combines VNS with
TS to address the electric VRP with time windows (E-VRPTW). Contrary to the EVRPRF studied
in this chapter, their E-VRPTW includes time windows but features no maximal route duration
constraints. Moreover, their objective is hierarchical and inspired by the objective function used in
heuristic methods for the VRPTW: They first minimize the number of employed vehicles and only
minimize traveled distance second, whereas we follow the objective of minimizing total costs composed
of travel costs and fixed vehicle costs. Their VNS/TS is able to significantly improve on the results
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of Erdoğan and Miller-Hooks (2012) on the G-VRP instances and achieves convincing results on the
VRPIRF instances, although the method is not specifically designed for this type of problem.

Refueling problems are also investigated in other application areas, e.g., the refueling of aircraft or
locomotives. In Barnes et al. (2004), tanker aircraft stationed at several bases have to be assigned
to receiver aircraft in order to perform refueling in midair. Raviv and Kaspi (2012) deal with the
optimal refueling schedule of locomotives pulling trains, i.e., the determination of the yards at which
the locomotives have to be refueled.

3.3. Problem Definition

This section presents a mixed-integer program of the VRPIS (Section 3.3.1) and derives the formulation
of the special case EVRPRF (Section 3.3.2).

3.3.1. The Vehicle-Routing Problem with Intermediate Stops

We start with the introduction of some necessary notation. Let C � t1, ..., nu denote the set of n
customers and let F denote the set of facilities. The set F itself comprises the set of refueling facilities
FF , the set of replenishment or unloading/disposal facilities (in the following denoted as loading
facilities) FL, and the set FFL of facilities where both refueling and loading is possible (from now
on referred to as combined facilities), i.e., F � FF Y FL Y FFL. We use a set of dummy vertices
F 1 to allow several visits to the facilities in F (see, e.g., Bard et al., 1998; Schneider, Stenger, and
Goeke, 2014). Further, let vertices 0 and n � 1 denote instances of the same depot representing the
start and end of each vehicle route. To indicate which depot instances are included in a fictive set
X , the respective depot instances are used as indices, i.e., X0 � X Y t0u, Xn�1 � X Y tn � 1u and
X0,n�1 � X Y t0u Y tn � 1u. Finally, let V 1 � C Y F 1 denote the set of all customers and visits to
facilities.

Then, VRPIS can be defined on the complete directed graph G � pV 1
0,n�1,Aq with the set of arcs

A � tpi, jq : i, j P V 1
0,n�1, i � ju. Arcs pi, jq P A are associated with a cost cij , a distance dij , and

a travel time tij . A homogeneous fleet of m vehicles with load capacity q, fuel capacity p, and fixed
costs per use cfix is stationed at the depot. Fuel capacity is expressed in distance units and denotes
the distance that can be traveled with maximum fuel level.

Each customer i P C has a positive demand ui and service time tsi . Each facility visit j P F 1 is
associated with a docking time tdj , which marks the time span between the arrival at the facility and
the beginning of the actual refueling and/or loading process. The time span for the refueling and
loading process is determined by functions Φf pfjq and Φlpljq respectively. It may depend on the fuel
level fj (the cargo level lj) on arrival at the facility. Visiting a facility j P FF completely refills the
fuel tank of a vehicle and vehicles are fully replenished or unloaded at facilities in FL. For combined
facilities, we assume that vehicles are fully loaded and are simultaneously refueled during the time
span occupied by the loading process. The increase in fuel during that time span is given by the
function Θpljq, which depends on the loading time and thus on the load level lj on arrival at the
facility. A refueling process at a combined facility that takes longer than the loading time is modeled
by a visit to a refueling facility in FF with the same location as the combined facility. Each facility is
assumed to have an unlimited fuel and cargo capacity, respectively, and can be simultaneously used
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by any number of vehicles. This assumption seems adequate for many real-world scenarios but clearly
represents a simplification for scenarios in which capacity and loading possibilities are constrained.

To represent working hour restrictions of real-world applications, we assume that the arrival time of
all vehicles at depot instance n� 1 may not exceed the maximum route duration tmax . The following
variables are used in the model: aj specifies the time on arrival at vertex j, fj the fuel level, and lj the
load level. Binary decision variables xij take value 1 if vertex j is visited after vertex i and 0 otherwise.
Thus, the mixed-integer program of VRPIS is as follows (Table 3.1 summarizes the notation):

Sets
0, n� 1 instances of the depot
C set of customers � t1, ..., nu
F 1
F set of visits to refueling facilities

F 1
L set of visits to loading facilities

F 1
FL set of visits to combined facilities

F 1 set of visits to all intermediate facilities, F 1 � F 1
F Y F 1

L Y F 1
FL

V 1 set of all customers and visits to facilities C Y F 1

V 1
0,n�1 set of all vertices V 1

0,n�1 � V 1 Y t0u Y tn� 1u
V 1

0 set of all vertices excluding depot instance n� 1, V 1
0 � t0u Y V 1

V 1
n�1 set of all vertices excluding depot instance 0, V 1

n�1 � tn� 1u Y V 1

A set of arcs, A � tpi, jq : i, j P V 1
0,n�1, i � ju

Parameters
cfix fixed cost per used vehicle
cij travel costs between vertices i and j
dij distance between vertices i and j
ui demand of customer i (ui � 0 if i R C)
m number of available vehicles
p maximal fuel capacity of a vehicle expressed as possible range without refueling
q maximal loading capacity of a vehicle
tij travel time between vertices i and j
tmax maximum route duration
tdi docking time at intermediate facility i
tsi service time at customer i (tsi � 0 if i R C)

Functions
Θpliq function returning the amount that is refueled at vertex i during the loading

process, given the current load level li
Φf pfiq function returning the refueling time at a refueling facility depending on fuel

level fi
Φlpliq function returning the loading time at a loading facility depending on the

current load level li

Decision variables
ai decision variable specifying the arrival time at vertex i
fi decision variable specifying the fuel level at vertex i expressed in distance units
li decision variable specifying the load level at vertex i
xij binary decision variable indicating if arc pi, jq P A is traversed

Table 3.1.: Sets, parameters, functions, and decision variables of the VRPIS model.

min
¸

iPV 1
0

¸

jPV 1
n�1,i�j

cijxij �
¸

jPV 1

cfixx0j (3.1)

17



3 Considering Intermediate Stops in Route Planning

¸

iPV 1
0,i�j

xij � 1 @j P C (3.2)

¸

iPV 1
0,i�j

xij ¤ 1 @j P F 1 (3.3)

¸

jPV 1

x0j ¤ m (3.4)

¸

iPV 1
0,i�j

xij �
¸

iPV 1
n�1,i�j

xji � 0 @j P V 1 (3.5)

0 ¤ ai ¤ tmax @i P V 1
0,n�1 (3.6)

ai � ptij � tsi qxij � tmaxp1� xijq ¤ aj @i P C Y t0u, j P V 1
n�1, i � j (3.7)

ai � ptij � tdi qxij � Φf pfiq � tmaxp1� xijq ¤ aj @i P F 1
F , j P V 1

n�1, i � j (3.8)

ai � ptij � tdi qxij � Φlpliq � tmaxp1� xijq ¤ aj @i P F 1
L Y F 1

FL, j P V 1
n�1, i � j (3.9)

0 ¤ fj ¤ fi � dijxij � pp1� xijq @i P C Y F 1
L, j P V 1

n�1, i � j (3.10)

0 ¤ fj ¤ p� dijxij @i P F 1
F Y t0u, j P V 1

n�1, i � j (3.11)

0 ¤ fj ¤ fi �Θpliq � dijxij � pp1� xijq @i P F 1
FL, j P V 1

n�1, i � j (3.12)

fi �Θpliq ¤ p @i P F 1
FL (3.13)

0 ¤ lj ¤ li � uixij � qp1� xijq @i P C Y F 1
F , j P V 1

n�1 , i � j (3.14)

0 ¤ lj ¤ q � uixij @i P t0u Y F 1
L Y F 1

FL, j P V 1
n�1, i � j (3.15)

xij P t0, 1u @i P V 1
0, j P V 1

n�1, i � j (3.16)

The goal of the VRPIS is to minimize the sum of the total travel cost and the fixed vehicle cost, ex-
pressed by the objective function (3.1). Constraints (3.2) ensure that every customer must be visited,
while optional intermediate stops are ensured by Constraints (3.3). Constraints (3.4) guarantee that
the number of routes does not exceed the number of available vehicles. Flow conservation is given
by Constraints (3.5). Constraints (3.6) limit the arrival time at each vertex to the maximum route
duration. Time feasibility for arcs leaving customers or the depot is defined by Constraints (3.7). The
same is ensured for arcs leaving refueling facilities and loading facilities in Constraints (3.8) and (3.9).
Constraints (3.10) control the fuel feasibility for arcs leaving customers or loading facilities and Con-
straints (3.11) guarantee that a refueling facility is left in a completely refueled state. The fuel increase
during loading at combined facilities is defined in Constraints (3.12). Constraints (3.13) guarantee that
no refueling beyond the maximal fuel capacity is possible at combined facilities. Constraints (3.14)
control the load feasibility for arcs leaving customers or refueling facilities. Constraints (3.15) ensure
that vehicles leave loading facilities and the depot in a fully loaded state. Binary decision variables
are defined in Constraints (3.16).

3.3.2. New Special VRPIS Case: The Electric Vehicle-Routing Problem with Recharg-
ing Facilities

As described above, we investigate the EVRPRF as a special case of the VRPIS. The VRPIS model
is transformed into a formulation of the EVRPRF as follows:

• No intermediate cargo loading takes place. Therefore, no loading facilities are present in the
EVRPRF and sets FL and FFL are empty and Constraints (3.9), (3.12), and (3.13) can be
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neglected. To allow for recharging at the depot, dummy instances of 0 are now contained in the
set F 1

F .
• We assume a linear recharging process of the vehicle battery, depending on a given average

recharging speed g. Since the fuel capacity is expressed as the maximum travel range without
refueling, g describes the increase of range per time unit. Thus, the function for the refueling
time is defined as: Φf pfiq �

p�fi
g .

3.3.3. Special Cases from the Literature: G-VRP and VRPIRF

To assess the performance of our AVNS, we conduct tests on instances of the special VRPIS cases
G-VRP and VRPIRF and compare our results to those presented in the literature (see Section 3.5).

G-VRP can be addressed as special case of VRPIS as follows:

• As no loading at intermediate facilities is considered in G-VRP, all related constraints of VRPIS
are omitted.

• cfix is set to zero because no vehicle cost are considered in G-VRP.
• The refueling time Φf pfiq is set to zero and docking time tdi is set to the fixed service time of

the G-VRP instances.

VRPIRF can be addressed as special case of VRPIS as follows:

• Since the VRPIRF instances do not consider refueling possibilities, all refueling related con-
straints of VRPIS are omitted.

• Loading time Φlpliq is set to zero because only a fixed docking time tdi occurs when visiting a
loading facility.

• The maximum route duration tmax is reduced by tdi in order to account for a docking operation
at the depot at the end of a route, which is considered in the VRPIRF.

• No vehicle deployment costs are considered in the VRPIRF, so cfix is set to zero.

Table 3.2 clarifies the relation between VRPIS and the special cases considered in this chapter by
comparing the properties of each problem.

3.4. An Adaptive Variable Neighborhood Search Algorithm for the
VRPIS

In this section, we describe in detail our AVNS algorithm for solving VRPIS. AVNS follows the VNS
diversification paradigm of searching in increasingly large neighborhoods (for a detailed introduction

EVRPRF VRPIRF G-VRP VRPIS

fixed vehicle cost X X

refueling possible X X X

loading possible X X

fuel/load dependent service times X X

fixed docking time X X X X

Table 3.2.: Relation between VRPIS, the introduced special case EVRPRF as well as the special cases from
the literature VRPIRF and G-VRP.
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to standard VNS, see Hansen and Mladenović, 2001). However, routes and vertices involved in the
shaking step of AVNS are not selected entirely at random but are determined by problem-specific
rules and the past search performance of these rules. AVNS has previously provided promising results
for MDVRP, VRP with private fleet and common carriers (VRPPC), multi-depot VRPPC (Stenger
et al., 2013) and the prize collecting VRP with non-linear cost (Stenger, Schneider, and Goeke, 2013).

The choice of AVNS is motivated by two factors. First, the high complexity of VRPIS makes it
necessary to use an algorithm with strong diversification possibilities. Pretests have shown that
classical local-search-based algorithms, like TS, often get stuck in local traps from which they are
not able to escape. By contrast, the shaking step of our AVNS modifies up to four routes and moves
sequences of up to six vertices in one iteration, which proved to be of vital importance to find promising
solutions. Moreover, VNS algorithms presented in the literature have previously shown convincing
performance on VRPs with intermediate stops (see, e.g., Tarantilis, Zachariadis, and Kiranoudis,
2008). Second, to ensure acceptable runtimes on large problem instances, a high efficiency of the search
is required. The adaptive mechanism of AVNS takes into account the problem-specific characteristics
of VRPIS and adapts based on the recent search performance. Thus, it efficiently guides the search
to improving solutions. To sum up, combining the strong diversification of VNS with an adaptive
mechanism results in a highly efficient heuristic, characterized by short computing times and high-
quality results.

A pseudocode overview of the AVNS is given in Figure 3.1. First, the set of neighborhood structures
{Nκ | κ � 1, ..., κmax} is defined. Next, an initial solution S is constructed by means of a modi-
fied version of the savings algorithm by Clarke and Wright (1964), which considers the insertion of
intermediate stops (Section 3.4.1), and the solution is subsequently improved by a local search (see
Section 3.4.3).

In the AVNS component, a guided shaking step is used to diversify the search, producing a random
solution S 1 within the κ-th neighborhood of S (Section 3.4.2.1). The adaptive mechanism is charac-
terized by problem-specific selection methods for the routes and vertices to be shaken instead of an
entirely random selection. Besides methods which have proven their effectiveness in previous works,
we design specific methods which take the characteristics of intermediate stops into account (Section
3.4.2.2). Each of the selection methods is chosen according to a probability, which is dynamically
updated during the search depending on the performance of the method (Section 3.4.2.3).

Subsequently, a greedy local search procedure is applied to obtain the local optimum S2 (Section 3.4.3).
In this step, classical operators as well as operators which are able to rearrange intermediate stops
are used. If S2 is accepted, it replaces S and κ is reset to one. Otherwise, S2 is discarded and κ is
increased by one, i.e., the next neighborhood is selected. We reset to the overall best solution after
a certain number of iterations without improvement. The search is stopped after a given number of
iterations without improvement of the best solution.

As described above, we adapt the algorithmic framework of AVNS to the specifics of VRPIS by
incorporating problem-specific knowledge into the selection methods of our adaptive component and
into the local search component. Numerical tests have proven the positive effects of these novel
methods on the solution quality and run-time of our algorithm (see Section 3.5.3.3 for details).
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Define the neighborhood structures Nκ with κ � 1, ..., κmax

Generate initial solution S
Improve initial solution by local search
κÐ 1
repeat
{Adaptive Shaking}
Select route and vertex selection method and generate S 1 P NκpSq
{Local Search}
S2 Ð localSearch(S 1)
{Acceptance Decision}
if accept(S2) then

S Ð S2

κÐ 1
else
κÐ κ mod κmax � 1

end if
Update weights of route and vertex selection methods

until given number of iterations without improvement reached

Figure 3.1.: Pseudocode of the AVNS heuristic for solving VRPIS.

3.4.1. Initialization with Modified Savings Algorithm

A modification of the savings algorithm, introduced by Clarke and Wright (1964), is used to quickly
generate initial vehicle routes that include intermediate stops. We allow the initial solution to be in-
feasible with respect to fuel, load, or duration constraints. The steps of our modified savings algorithm
are the following:

1. Generate back-and-forth tours for all customers. If such a tour is already infeasible concerning
fuel, perform the cost-optimal insertion of a refueling facility into the respective route (see
Section 3.4.3 for details).

2. Evaluate potential cost savings for merging each pair of routes and sort the merge moves in
decreasing order.

3. Out of the remaining merge moves, select the two routes with highest cost savings and merge
them if the maximum route duration is not exceeded. If no merge with positive cost savings
exists, stop.

4. Evaluate the resulting route:
a) If fuel or load violations emerge in the resulting route, try to resolve them by adding

intermediate facilities at the optimal position.
b) If the facility insertion leads to a duration violation, cancel the previous merging and

continue with Step 3.
c) If the resulting route starts or ends with an intermediate facility, i.e., no merging according

to customer-related cost savings can be performed at this position, try to connect the
facility with one of the remaining routes such that the cost increase is minimized and all
constraints are still met (see Figure 3.2).

5. Continue with Step 3

The resulting number of routes may exceed the number of available vehicles. In this case, the route
with the smallest cumulated customer demand is dissolved and its customers are inserted into the
remaining routes at the cost-optimal position. Load capacity, fuel capacity, and duration violations
are handled by means of a penalizing cost function, see Section 3.4.4. The process of dissolving routes
is repeated until the required number of vehicles is reached. Subsequently, the solution is improved
by a local search step (see Section 3.4.3).
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Figure 3.2.: Merging of routes that start or end with an intermediate facility. Removed arcs are shown with
dashed lines, inserted arcs with dotted lines.

3.4.2. The Adaptive Shaking

In the shaking step of our AVNS, new solutions are generated according to predefined neighborhood
structures (Section 3.4.2.1). Problem-specific methods are used for the selection of the routes and
vertices to be involved in the shaking (Section 3.4.2.2). The algorithm guides the shaking step by
adapting the selection probabilities of these methods according to their previous performance during
the search (Section 3.4.2.3).

3.4.2.1. Shaking Neighborhoods

Similar to Stenger et al. (2013), two operators are employed in order to generate neighboring solutions:
A sequence relocation and a cyclic exchange operator, originally introduced by Thompson and Orlin
(1989). The cyclic exchange moves vertices between routes in a cyclic fashion. It is characterized
by two parameters: the number of routes involved Ω and the maximum number of vertices to be
exchanged Γmax .

For each route k, the vertex sequence Ψk
jk,Γk with start vertex jk and length Γk is transferred to route

k � 1 at the former position of sequence Ψk�1
jk�1,Γk�1

. In Figure 3.3, the cyclic exchange operator is
depicted with Ω � 3 routes, exchanging Γ1 � 1, Γ2 � 2, and Γ3 � 2 vertices. Note that if the total
number of existing routes gets below the number of routes to cycle, Ω is reduced accordingly. Similarly,
Γk has to be adjusted if it exceeds the number of vertices of route k, denoted with |Vk|.

Sequence relocation represents a restriction of the cyclic exchange operator. A vertex sequence is
relocated from one route to another, and the latter keeps all of its former vertices. Thus, Γmax � 0
applies for the second route.

Table 3.3 shows the neighborhood structures employed within the search. After six sequence relocation
neighborhoods, the search continues with 18 cyclic exchange neighborhoods, considering Ω � 2 to
Ω � 4 routes between which up to Γmax � 6 vertices can be transferred. Sequence lengths with up to
Γmax � 4 vertices are randomly chosen within the interval r0,minpΓmax , |Vk|qs. Sequence lengths with
more than four customers are defined to be fixed.

3.4.2.2. Selection Methods

Instead of determining the routes and vertices to be involved in the shaking entirely at random, the
AVNS algorithm guides the shaking step to a certain extent. For this purpose, several methods are
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kk+2k+1k

Γ = 1 Γ = 2 Γ = 2

Figure 3.3.: Example of a cyclic exchange with three routes.

κ Type Ω Γmax κ Type Ω Γmax

1 sequence relocation 2 1 13 cyclic exchange 3 1
2 sequence relocation 2 2 14 cyclic exchange 3 2
3 sequence relocation 2 3 15 cyclic exchange 3 3
4 sequence relocation 2 4 16 cyclic exchange 3 4
5 sequence relocation 2 5 17 cyclic exchange 3 5
6 sequence relocation 2 6 18 cyclic exchange 3 6
7 cyclic exchange 2 1 19 cyclic exchange 4 1
8 cyclic exchange 2 2 20 cyclic exchange 4 2
9 cyclic exchange 2 3 21 cyclic exchange 4 3
10 cyclic exchange 2 4 22 cyclic exchange 4 4
11 cyclic exchange 2 5 23 cyclic exchange 4 5
12 cyclic exchange 2 6 24 cyclic exchange 4 6

Table 3.3.: Neighborhood structures examined within the shaking step of the AVNS.
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implemented which bias the route and vertex sequence selection. On the one hand, we use methods
which have proven their effectiveness in previous works on routing problems. On the other hand,
we design problem-specific methods which take into account the new characteristics of intermediate
stops, e.g., the associated detours required. Each of the methods is chosen with a certain probability,
which is dynamically updated during the search depending on the success of the method in former
iterations. The selection methods and the adaptive mechanism are detailed in the following.

Route Selection The first of the Ωκ routes of the current neighborhood Nκ is chosen according to
one of the following five route selection methods:

1. Random: The probability of being selected is equal for every route.
2. Route length: The probability of a route for being selected is proportional to the associated

travel distance. The intention is to remove vertices from long routes and reinsert them into
shorter routes in order to reduce the total costs.

3. Route length per demand unit: The selection probability of a route is proportional to the relation
of the total distance and the cumulated demand of a route. This criterion shall lead to an
improvement of inefficient routes.

4. Facility density: The probability is proportional to the ratio of the number of intermediate stops
to the number of customers within a route. The goal is to favor routes that possibly contain
redundant facility visits.

5. Facility detour : The probability is proportional to the total detour resulting from intermediate
stops. This is intended to reduce the associated detours and thus the overall costs.

After choosing the first route by means of one of the procedures above, the other routes to be involved
in the shaking are iteratively determined as follows: The next route is randomly chosen from the set
of all remaining routes that are spatially closer than a predefined threshold dmax to the previously
selected route (cp. Stenger et al., 2013).

Vertex Sequence Selection Once the routes to be involved are determined, the vertex sequences
to be removed from each route must be identified. The following three methods are used for this
selection decision:

1. Random: Each vertex sequence is chosen with the same probability.
2. Distance to next route: The probability of selecting a vertex sequence is inversely proportional

to the distance of the sequence to the route into which it will be inserted. This is measured by
the sum of the vertex distances to the center of gravity of the target route.

3. Distance to neighboring vertices: The probability of selecting a sequence is proportional to the
distance of the sequence to the surrounding vertices. It is given by the sum of the distance
between the first vertex and its predecessor and the distance between the last vertex and its
successor. Removing a sequence which is far apart from the other vertices of the route can
reduce the total costs.

3.4.2.3. Adaptive Mechanism

At each shaking step, the choice of the route and vertex selection methods is based on probabilities.
Each method is assigned the same probability at the beginning of the search. The probability of each
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method is then dynamically updated in the course of the search depending on its success in improving
the current solution. To select the methods, we use the roulette-wheel selection procedure as proposed
by Pisinger and Ropke (2007) for ALNS. Given h selection methods, each method s is assigned a
weight ws. The probability of selecting method s is then defined by ws{

°h
i�1wi. After γ AVNS

iterations, the weight of each method is updated based on its success during these iterations. The
performance of a method is measured by a scoring system. A score of nine is added to the total score of
a method whenever it achieved a new overall best solution, a score of three if the current solution was
improved and a score of one if the solution is worse than the current one but accepted according to the
acceptance criterion. If øs denotes the current score of method s and χs the number of applications of
the method since the last weight update, then the new weight is calculated as ws � wsp1 � ρq � ρ øs

χs
.

The system parameter ρ P r0, 1s allows to control to what extent the past value of the weight influences
the new one. The values øs and χs are reset to zero after each update.

3.4.3. Local Search

The solution generated within the shaking step is subsequently improved by several greedy local search
procedures. All operators are implemented such that the first improving move is accepted.

First, potential fuel or load violations within a route are handled by adding visits to intermediate
facilities. If the distance between two consecutive refueling facility visits exceeds the fuel capacity of
the vehicle, the fuel level drops below zero at a certain point. Hence, at least one refueling facility
must be visited before this point. Let φ denote the position of the last visited refueling facility and
σ that of the last vertex reachable from there. The best insertion position is therefore determined
within the path tφ�1, ..., σ�1u. For each possible position, the cost for inserting the closest refueling
facility i P FF is calculated. The insertion with the lowest cost increase is performed, but in this step,
insertions leading to feasible solutions are always preferred to infeasible solutions. The insertion of
loading facilities is carried out in analogous fashion.

In a second step, we aim to improve the routing by means of the following operators, which are applied
in random order. The 2-opt operator replaces two edges by two new ones (Lin, 1965). A restricted
variant of the Or-Opt exchange (Or, 1976) replaces three existing edges by three new ones such that a
sequence of three vertices is relocated (Stenger et al., 2013). The intra-route relocate operator moves
a customer to a different position within a route (Savelsbergh, 1992). This operator is also defined for
moving facilities. Finally, a facility replacement operator evaluates for each facility visit of each route
whether replacing the facility visit with a visit to a different facility decreases the routing costs.

This block is followed by an application of a facility removal operator, which aims at removing re-
dundant facility visits. In a final step, we apply two inter-route operators. The inter-route relocate
operator moves a customer from its current route to another, and the exchange operator interchanges
two customers between two routes (Savelsbergh, 1992).

3.4.4. Penalty Determination

Tightly constrained problems often let the local search get stuck in local optima quickly. It is therefore
reasonable to temporarily allow constraint violations and impose penalty costs on infeasible solutions
(see, e.g., Cordeau, Gendreau, and Laporte, 1997; Vidal et al., 2012). We define the total penalty
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costs of a solution as Costpenalty � δC � υC � δD � υD � δU � υU , with δC denoting the penalty factor for
capacity violations, υC the capacity violation of the solution, δD the duration penalty factor, υD the
duration violation of the solution, δU the fuel penalty factor, and υU the fuel violation of the solution.

All penalty factors are initialized to δ0 and dynamically varied within the interval rδmin , δmaxs. After
a given number of local search iterations η� with a violation of the respective constraint, the penalty
factor is increased by factor δupdate. Analogously, after η� feasible iterations, the penalty factor is
reduced by factor δupdate. Preliminary tests showed that choosing different values for η� and η� limits
cycling of the local search, especially in small-sized problems.

3.4.5. Acceptance Decision

The solution S2 obtained by the local search procedure is compared to the current solution S. If S2 is
accepted, it replaces S as initial solution and κ is reset to one. Standard VNS implementations usually
model the local search as a simple descent step, i.e., S2 is only accepted if it is improving on S. We
use a criterion inspired by simulated annealing (SA) to control solution acceptance. This approach
was originally proposed by Hemmelmayr, Doerner, and Hartl (2009) and also applied in Stenger et al.
(2013).

Improving solutions are always accepted, while non-improving ones are accepted with probability

e
�pfpS2q�fpSqq

ϑ .

The temperature parameter ϑ is decreased from its initial value ϑ0 by factor ϑ� after every AVNS
iteration. After ε non-improving main iterations, the current solution is reset to the best solution
found so far. Solution diversification is increased by resetting ϑ to ϑ0 after ε solution resets.

3.5. Computational Studies

This section presents the computational studies to examine the effectiveness of the AVNS. We perform
tests on available instances developed for the routing problems G-VRP (Erdoğan and Miller-Hooks,
2012) and VRPIRF (Crevier, Cordeau, and Laporte, 2007; Tarantilis, Zachariadis, and Kiranoudis,
2008), which are both special cases of VRPIS. In addition, we design two sets of benchmark instances
for the EVRPRF introduced in Section 3.3.2. A set of small instances is used to assess the quality of
our solutions by comparing them to the solutions obtained with the commercial solver CPLEX. A set
of large instances is used to prove the ability of our algorithm to deal with realistically-sized problems
in terms of computational effort. Detailed results are provided to enable a comparison with future
methods developed for the EVRPRF. To the best of our knowledge, our numerical studies cover all
special cases of the VRPIS investigated in the literature.

Section 3.5.1 describes the test environment and the parameter setting. The computational results
obtained on the special cases of the VRPIS from the literature are presented in Section 3.5.2. Sec-
tion 3.5.3 details the generation of EVRPRF instances and the results obtained on this benchmark.
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3.5.1. Computational Environment and Parameter Setting

The AVNS is implemented as single-thread code in Java. Tests are conducted on a desktop computer
with an Intel Core i5 2.67 GHz processor with 4 GB RAM, running Windows 7 Professional. All
numerical tests are carried out with the same parameter setting, which was determined during the
development and testing of our algorithm.

To determine this parameter setting, we follow the approach described in Ropke and Pisinger (2006b).
As test instances, we selected a reasonably large subset of the test instances of all VRPIS special cases.
Then, we use the parameter setting that we have found during the development of our algorithm as
basis for the tuning. Here, we stepwise refine the value of each parameter. In detail, we adjust the
value of a single parameter while all remaining parameters are fixed. With every parameter setting, we
perform 20 runs on the selected subset of test instances. The setting which produces the best average
result is kept and the procedure is repeated with the next parameter. The resulting parameter setting
is reported in Table 3.4.

In detail, the table shows the setting for the number of iterations after which the probabilities are
updated (γ), the parameter ρ, which weighs the old weight and the new scores in the weight update of
the selection methods within the adaptive mechanism, the initial (δ0), minimal (δmin), and maximal
(δmax) penalty factors, the penalty update factor (δupdate), the numbers of iterations after which the
penalty costs are decreased (η�) and increased (η�), the initial temperature (ϑ0), the temperature
reduction factor (ϑ�), and the number of resets of the current solution to the best solution found after
which the temperature is reset to its initial value (ε).

AVNS Penalties SA

γ 30 δ0 1000 ϑ0 50
ρ 0.3 δmin 10 ϑ� 0.9995

δmax 10000 ε 4
δupdate 1.5
η� 2
η� 3

Table 3.4.: Overview of the final parameter setting of AVNS chosen for the numerical studies.

In order to achieve reasonable runtimes on the investigated test instances, we set the maximum number
of iterations without improvement (ω) and the number of non-improving iterations after which the
current solution is reset to the best solution found (µ) as follows: For EVRPRF, we set ω equal to
2000 and µ to 50, for VRPIRF, we use ω � 500 and µ � 25. Additional tests on VRPIRF showed
that a higher iteration number does not significantly improve the solution quality.

3.5.2. Experiments on Problems with Intermediate Stops from the Literature

To assess the performance of our AVNS, we conduct tests on instances of the special VRPIS cases
G-VRP and VRPIRF and compare our results to those presented in the literature.

3.5.2.1. Green-VRP

The benchmark instances designed for the G-VRP (see Section 3.2) consist of five sets. Four sets
contain ten instances each comprising 20 customers (which are either uniformly distributed or clus-
tered) and between two and ten refueling facilities. The fifth set represents a case study conducted
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by the authors and consists of twelve instances involving between 111 and 500 customers and 21 to
28 facilities. Note that customers that either cannot be served within the maximum route duration or
whose service requires visiting more than one refueling stop must be identified and removed from the
test instances. The geographical coordinates given in the instances have to be converted to distances
between vertices by means of the Haversine formula using an average earth radius of 4182.45 miles.

Tables 3.5 and 3.6 show the results of AVNS on the small and the large G-VRP instances, respectively.
We compare our results to those of the MCWS and DBCA heuristics of Erdoğan and Miller-Hooks
(2012) and the VNS/TS of Schneider, Stenger, and Goeke (2014). For each problem instance, we
report the problem name and the best-known solution (BKS) provided by either Erdoğan and Miller-
Hooks (2012) or Schneider, Stenger, and Goeke (2014). For the MCWS and DBCA of Erdoğan and
Miller-Hooks (2012), we give only the result of the better of the two algorithms for each instance.
It was originally determined as the best of multiple runs (fb in the table), but the exact number of
runs is not given in the paper. For the VNS/TS of Schneider, Stenger, and Goeke (2014) and the
AVNS, fb corresponds to the best solution found in ten runs. For all algorithms, we further provide
the percentage gap of fb to the BKS (∆b) and the number of served customers (n). For VNS/TS and
AVNS, we also display the average computing time of ten runs (ta) in minutes, for the algorithms of
Erdoğan and Miller-Hooks (2012), no runtimes were reported. The run-times of VNS/TS and AVNS
are directly comparable as both algorithms are coded in Java and executed on the same computer.
Moreover, we report the average solution quality of the ten runs for the AVNS (fa). Finally, averages
of the runtimes and relative gaps to the BKS over the complete set of instances are given at the end
of the table.

For the small G-VRP instances (Table 3.5), AVNS finds the BKS for all instances. Thus, the AVNS is
able to clearly outperform the methods of Erdoğan and Miller-Hooks (2012), even if for each instance
only the best results provided by either MCWS or DBCA are considered. For the comparison with
the VNS/TS of Schneider, Stenger, and Goeke (2014), note that the large gap of �19.05% to the
BKS for instance S2_10i6s is not meaningful because Schneider, Stenger, and Goeke (2014) identify
one more customer to be reachable for this instance. However, even disregarding this instance, AVNS
yields better solution quality than VNS/TS for one instance and is able to match the quality for all
other instances. Moreover, compared to the VNS/TS approach, it runs nearly four times as fast on
average. The results further prove the robustness of the developed algorithm: For the large majority
of instances, the average solution quality of the ten runs fa is equal to the quality of the best run fb;
for the remaining instances, the gap is quite small.

On the large-sized G-VRP instances (Table 3.6), the AVNS algorithm finds new BKS for all instances
and achieves an average gap to the previous BKS of more than 1%. Moreover, the speed of the AVNS
is remarkable, using approximately 4% of the runtime of the VNS/TS of Schneider, Stenger, and
Goeke (2014).

3.5.2.2. VRP with Intermediate Replenishment Facilities

The VRPIRF (see Section 3.2) considers intermediate replenishment facilities for the goods to be de-
livered. We run tests on two instance sets. The set of Crevier, Cordeau, and Laporte (2007) comprises
22 instances consisting of 48-216 customers, three to six intermediate facilities, and four to six avail-
able vehicles. The customers are clustered around the facilities. The set of Tarantilis, Zachariadis,
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MCWS/DBCA VNS/TS AVNS

Inst. BKS n fb ∆b(%) n fb ∆b(%) ta(min) n fb ∆b(%) fa ta(min)

20c3sU1 1797.49 20 1797.51 0.00 20 1797.49 0.00 0.69 20 1797.49 0.00 1797.49 0.16
20c3sU2 1574.77 20 1613.53 2.46 20 1574.77 0.00 0.64 20 1574.78 0.00 1574.78 0.15
20c3sU3 1704.48 20 1964.57 15.26 20 1704.48 0.00 0.64 20 1704.48 0.00 1704.48 0.13
20c3sU4 1482.00 20 1487.15 0.35 20 1482.00 0.00 0.65 20 1482.00 0.00 1482.00 0.17
20c3sU5 1689.37 20 1752.73 3.75 20 1689.37 0.00 0.67 20 1689.37 0.00 1689.37 0.18
20c3sU6 1618.65 20 1668.16 3.06 20 1618.65 0.00 0.67 20 1618.65 0.00 1618.65 0.15
20c3sU7 1713.66 20 1730.45 0.98 20 1713.66 0.00 0.64 20 1713.66 0.00 1713.66 0.19
20c3sU8 1706.50 20 1718.67 0.71 20 1706.50 0.00 0.67 20 1706.50 0.00 1706.50 0.16
20c3sU9 1708.81 20 1714.43 0.33 20 1708.81 0.00 0.66 20 1708.82 0.00 1708.82 0.19
20c3sU10 1181.31 20 1309.52 10.85 20 1181.31 0.00 0.64 20 1181.31 0.00 1181.31 0.23

20c3sC1 1173.57 20 1300.62 10.83 20 1173.57 0.00 0.62 20 1173.57 0.00 1173.57 0.38
20c3sC2 1539.97 19 1553.53 0.88 19 1539.97 0.00 0.58 19 1539.97 0.00 1539.97 0.21
20c3sC3 880.20 12 1083.12 23.05 12 880.20 0.00 0.25 12 880.20 0.00 880.20 0.15
20c3sC4 1059.35 18 1091.78 3.06 18 1059.35 0.00 0.53 18 1059.35 0.00 1077.71 0.23
20c3sC5 2156.01 19 2190.68 1.61 19 2156.01 0.00 0.60 19 2156.01 0.00 2156.01 0.14
20c3sC6 2758.17 17 2883.71 4.55 17 2758.17 0.00 0.71 17 2758.17 0.00 2758.17 0.14
20c3sC7 1393.99 6 1701.40 22.05 6 1393.99 0.00 0.18 6 1393.99 0.00 1393.99 0.04
20c3sC8 3139.72 18 3319.74 5.73 18 3139.72 0.00 0.62 18 3139.72 0.00 3139.72 0.08
20c3sC9 1799.94 19 1811.05 0.62 19 1799.94 0.00 0.60 19 1799.94 0.00 1799.94 0.16
20c3sC10 2583.42 15 2644.11 2.35 15 2583.42 0.00 0.45 15 2583.42 0.00 2600.39 0.09

S1_2i6s 1578.12 20 1614.15 2.28 20 1578.12 0.00 0.71 20 1578.12 0.00 1578.12 0.16
S1_4i6s 1397.27 20 1541.46 10.32 20 1397.27 0.00 0.75 20 1397.27 0.00 1397.27 0.16
S1_6i6s 1560.49 20 1616.20 3.57 20 1560.49 0.00 0.73 20 1560.49 0.00 1560.49 0.20
S1_8i6s 1692.32 20 1882.54 11.24 20 1692.32 0.00 0.74 20 1692.32 0.00 1692.32 0.17
S1_10i6s 1173.48 20 1309.52 11.59 20 1173.48 0.00 0.71 20 1173.48 0.00 1173.48 0.24
S2_2i6s 1633.10 20 1645.80 0.78 20 1633.10 0.00 0.75 20 1633.10 0.00 1633.10 0.19
S2_4i6s 1505.06 19 1505.06 0.00 19 1532.96 1.85 0.88 19 1505.07 0.00 1505.07 0.14
S2_6i6s 2431.33 20 3115.10 28.12 20 2431.33 0.00 0.78 20 2431.33 0.00 2431.33 0.13
S2_8i6s 2158.35 16 2722.55 26.14 16 2158.35 0.00 0.57 16 2158.35 0.00 2158.35 0.09
S2_10i6s 1958.46 16 1995.62 1.90 17 1958.46 0.00 0.61 16 1585.46 -19.05 1585.46 0.15

S1_4i2s 1582.20 20 1582.20 0.00 20 1582.21 0.00 0.63 20 1582.21 0.00 1582.21 0.13
S1_4i4s 1460.09 20 1580.52 8.25 20 1460.09 0.00 0.68 20 1460.09 0.00 1460.09 0.16
S1_4i6s 1397.27 20 1541.46 10.32 20 1397.27 0.00 0.75 20 1397.27 0.00 1397.27 0.16
S1_4i8s 1397.27 20 1561.29 11.74 20 1397.27 0.00 0.82 20 1397.27 0.00 1397.27 0.17
S1_4i10s 1396.02 20 1529.73 9.58 20 1396.02 0.00 0.85 20 1396.02 0.00 1396.02 0.23
S2_4i2s 1059.35 18 1117.32 5.47 18 1059.35 0.00 0.51 18 1059.35 0.00 1069.42 0.23
S2_4i4s 1446.08 19 1522.72 5.30 19 1446.08 0.00 0.60 19 1446.08 0.00 1449.17 0.21
S2_4i6s 1434.14 20 1730.47 20.66 20 1434.14 0.00 0.69 20 1434.14 0.00 1445.35 0.20
S2_4i8s 1434.14 20 1786.21 24.55 20 1434.14 0.00 0.75 20 1434.14 0.00 1434.14 0.20
S2_4i10s 1434.13 20 1729.51 20.60 20 1434.13 0.00 0.78 20 1434.13 0.00 1455.31 0.24

Avg. 8.12 0.05 0.65 -0.48 0.17

Table 3.5.: Results of AVNS on the small-sized G-VRP instances by Erdoğan and Miller-Hooks (2012). The
results are compared to those of the MCWS/DCBA of Erdoğan and Miller-Hooks (2012) and
the VNS/TS of Schneider, Stenger, and Goeke (2014). BKS denotes the previously best known
solution. fb denotes the best solution found (for VNS/TS and AVNS in ten runs), ∆b the gap to
the BKS in percent and n the number of served customers. For VNS/TS and AVNS, the average
computing time in minutes is given (ta). For AVNS, we additionally report the average solution
quality of ten runs (fa). Numbers in bold indicate the best solution found.
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MCWS/DBCA VNS/TS AVNS

Inst. BKS n fb ∆b(%) n fb ∆b(%) ta(min) n fb ∆b(%) fa ta(min)

111c_21s 4797.15 109 5626.64 17.29 109 4797.15 0.00 21.76 109 4770.47 -0.56 4791.53 1.78
111c_22s 4802.16 109 5610.57 16.83 109 4802.16 0.00 23.56 109 4776.81 -0.53 4797.31 1.94
111c_24s 4786.96 109 5412.48 13.07 109 4786.96 0.00 21.90 109 4767.14 -0.41 4790.84 2.16
111c_26s 4778.62 109 5408.38 13.18 109 4778.62 0.00 25.12 109 4767.14 -0.24 4782.60 2.04
111c_28s 4799.15 109 5331.93 11.10 109 4799.15 0.00 24.17 109 4765.52 -0.70 4781.26 1.73
200c 8963.46 190 10413.59 16.18 192 8963.46 0.00 76.65 192 8886.00 -0.86 8970.14 3.61
250c 10800.18 235 11886.61 10.06 237 10800.18 0.00 120.90 237 10487.15 -2.90 10531.20 3.67
300c 12594.77 281 14229.92 12.98 283 12594.77 0.00 182.23 283 12374.49 -1.75 12514.78 4.94
350c 14323.02 329 16460.30 14.92 329 14323.02 0.00 232.03 329 14103.66 -1.53 14271.56 7.11
400c 16850.21 378 19099.04 13.35 378 16850.21 0.00 305.12 378 16697.21 -0.91 16839.23 12.70
450c 18521.23 424 21854.17 18.00 424 18521.23 0.00 525.52 424 18310.60 -1.14 18512.47 13.19
500c 21170.90 471 24517.08 15.81 471 21170.90 0.00 356.01 471 20609.67 -2.65 20874.50 19.51

Avg. 14.40 0.00 159.58 -1.18 6.20

Table 3.6.: Results of AVNS on the large-sized G-VRP instances by Erdoğan and Miller-Hooks (2012). The
results are compared to those of the MCWS/DCBA of Erdoğan and Miller-Hooks (2012) and
the VNS/TS of Schneider, Stenger, and Goeke (2014). BKS denotes the previously best-known
solution. fb denotes the best solution found (for VNS/TS and AVNS in ten runs), ∆b the gap to
the BKS and n the number of served customers. For VNS/TS and AVNS, the average computing
time in minutes is given (ta). For AVNS, we additionally report the average solution quality of ten
runs (fa). Numbers in bold indicate the best solution found.

and Kiranoudis (2008) contains 54 instances with 50-175 customers, three to eight facilities, and two
to eight vehicles.

Tables 3.7 and 3.8 show the results of our AVNS on the instances of Crevier, Cordeau, and Laporte
(2007), compared to the results of these authors (CCL), those of Tarantilis, Zachariadis, and Ki-
ranoudis (2008) (TZK), of the VNS/TS of Schneider, Stenger, and Goeke (2014), and the VNS of
Hemmelmayr, Doerner, Hartl, and Rath (2013) (HDHR). For each instance, we report the instance
name and the previously known BKS as determined by the four comparison methods. In Table 3.7, we
report for all algorithms the average solution quality of ten runs (fa), the gap of the average solution
to the BKS (∆a) and the average computing time in minutes (ta). Finally, averages of the runtimes
and the gaps to the BKS over the complete set of instances are given at the end of the table. Note that
a direct comparison of run-times is only valid for AVNS and VNS/TS. The other methods are partly
coded in different programming languages and were run on different platforms to obtain the reported
computation times. The best solution quality obtained by any of the methods on each instance is
indicated in bold.

In Table 3.8, we report the best solution found (fb) and the gap of the best solution to the BKS
(∆b). The best solution reported by Crevier, Cordeau, and Laporte (2007), Schneider, Stenger, and
Goeke (2014), Hemmelmayr et al. (2013), and our AVNS are based on ten runs, those of Tarantilis,
Zachariadis, and Kiranoudis (2008) are the best solutions ever found with the final parameter setting,
which we indicated with an asterisk. Finally, we report for our AVNS the best solutions found during
the overall testing in column AVNS.

Concerning the entire instance set of Crevier, Cordeau, and Laporte (2007), a comparison of AVNS is
only possible with CCL, VNS/TS, and HDHR because TZK only provide solutions for the first subset
of the instances. AVNS is able to improve on the solution quality of CCL and VNS/TS concerning the
best as well as the average quality. Moreover, the runtimes of AVNS are clearly faster than those of
VNS/TS. AVNS is not able to match the solution quality of HDHR, which is superior to all comparison
methods in terms of solution quality.

In Table 3.9, the results of AVNS on the test instances of Tarantilis, Zachariadis, and Kiranoudis
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CCL TZK VNS/TS HDHR AVNS AVNS

Inst. BKS fb ∆b(%) fb� ∆b�(%) fb ∆b(%) fb ∆b(%) fb ∆b(%) f ∆(%)

a1 1179.79 1203.39 2.00 1179.79 0.00 1179.79 0.00 1179.79 0.00 1179.79 0.00 1179.79 0.00
b1 1217.07 1217.07 0.00 1217.07 0.00 1217.07 0.00 1217.07 0.00 1217.07 0.00 1217.07 0.00
c1 1866.76 1888.22 1.15 1883.05 0.87 1897.30 1.64 1866.76 0.00 1893.53 1.43 1882.46 0.84
d1 1059.43 1059.43 0.00 1059.43 0.00 1060.10 0.06 1059.43 0.00 1059.43 0.00 1059.43 0.00
e1 1309.12 1309.12 0.00 1309.12 0.00 1309.12 0.00 1309.12 0.00 1309.12 0.00 1309.12 0.00
f1 1570.41 1592.25 1.39 1572.17 0.11 1584.06 0.87 1570.41 0.00 1579.89 0.60 1577.63 0.46
g1 1181.13 1190.93 0.83 1181.13 0.00 1181.99 0.07 1181.13 0.00 1181.13 0.00 1181.13 0.00
h1 1545.50 1566.75 1.37 1547.24 0.11 1566.19 1.34 1545.50 0.00 1555.52 0.65 1553.75 0.53
i1 1922.18 1945.73 1.23 1925.99 0.20 1953.39 1.62 1922.18 0.00 1956.70 1.80 1934.08 0.62
j1 1115.78 1144.41 2.57 1117.20 0.13 1115.78 0.00 1115.78 0.00 1115.78 0.00 1115.78 0.00
k1 1576.36 1586.92 0.67 1580.39 0.26 1586.64 0.65 1576.36 0.00 1591.81 0.98 1577.98 0.10
l1 1863.28 1897.74 1.85 1880.60 0.93 1902.72 2.12 1863.28 0.00 1907.15 2.35 1894.69 1.69

Avg. 1.09 0.22 0.70 0.00 0.65 0.35

a2 997.94 1000.24 0.23 997.94 0.00 997.94 0.00 997.94 0.00 997.94 0.00
b2 1291.19 1307.28 1.25 1301.21 0.78 1291.19 0.00 1291.19 0.00 1291.19 0.00
c2 1715.60 1751.45 2.09 1732.19 0.97 1715.60 0.00 1730.14 0.85 1715.60 0.00
d2 1856.84 1877.03 1.09 1892.62 1.93 1856.84 0.00 1878.89 1.19 1874.12 0.93
e2 1919.38 1974.13 2.85 1940.52 1.10 1919.38 0.00 1943.61 1.26 1937.84 0.96
f2 2230.32 2298.51 3.06 2292.40 2.78 2230.32 0.00 2292.84 2.80 2268.54 1.71
g2 1152.92 1162.58 0.84 1158.21 0.46 1152.92 0.00 1158.21 0.46 1152.92 0.00
h2 1575.28 1593.40 1.15 1597.41 1.41 1575.28 0.00 1576.86 0.10 1576.86 0.10
i2 1919.74 1978.70 3.07 1934.09 0.75 1919.74 0.00 1945.24 1.33 1944.74 1.30
j2 2247.70 2303.01 2.46 2293.40 2.03 2247.70 0.00 2281.86 1.52 2281.86 1.52

Avg. 1.81 1.22 0.00 0.95 0.65

Tot. Avg. 1.42 0.94 0.00 0.79 0.49

Table 3.8.: Comparison of the results on the VRPIRF instances of Crevier, Cordeau, and Laporte (2007) to
those of TZK, CCL, VNS/TS, and HDHR based on the best run. Note that the value given in
column fb� for TZK corresponds to the best solution ever found with the final parameter setting.
For all other methods, fb refers to the best out of ten runs. ∆b denotes the gap to BKS. We also
provide the best solutions found during our overall testing in column AVNS. Numbers in bold
indicate the best solution found.

(2008) are compared to those of TZK, the VNS/TS of Schneider, Stenger, and Goeke (2014), and
HDHR. The reported measures are the same as in Tables 3.7 and 3.8. Concerning the average gap
to the BKS, the AVNS is able to improve on the results of TZK and VNS/TS based on average as
well as best solution quality. AVNS is not able to match the solution quality of HDHR, which again
outperforms all other methods concerning solution quality. AVNS is able to provide two new BKS
during the ten test runs and four new BKS during the overall testing. Run-times are observably faster
than those of VNS/TS.

3.5.3. Experiments on EVRPRF Instances

In this section, we conduct numerical studies on EVRPRF instances. Section 3.5.3.1 describes the
generation of the EVRPRF instances in more detail. Section 3.5.3.2 presents the computational results
of our AVNS on the new instances.

3.5.3.1. Generation of EVRPRF Instances

Our EVRPRF instances are based on the benchmark instances for the CVRP introduced by Christofides
and Eilon (1969) and Golden et al. (1998). In order to generate valid EVRPRF instances, the following
adjustments are made: The service time tsi of each customer i P C is set to ten time units. The battery
capacity p of each vehicle is equal to the amount of electricity required to travel 60% of the average
route length of a high-quality solution of the respective CVRP instance. The CVRP solutions are
taken from the website http://neumann.hec.ca/chairedistributique/data/vrp/old/ for the instances of
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3 Considering Intermediate Stops in Route Planning

Christofides and Eilon (1969) and from the paper of Mester and Bräysy (2007) for the instances of
Golden et al. (1998). The fixed costs per vehicle cfix are calculated by dividing the objective function
value of the respective high-quality CVRP solution by the number of vehicles employed in this solu-
tion (rounded up to the next multiple of 20). The recharging speed g is set such that recharging the
amount p takes 30 time units. Due to the additional time-consumption of visiting recharging facili-
ties, the maximum route durations given by Christofides and Eilon (1969) and Golden et al. (1998)
are increased by tsi multiplied with the average number of customers per route in the corresponding
high-quality CVRP solution.

Further, each problem instance is complemented with eleven recharging facilities, of which one is
located at the depot. The docking time tdi of each recharging facility i P FF is set to five time units.
The procedure for locating the recharging facilities is illustrated in Figure 3.4. First, we generate a
circle around the depot with a radius that corresponds to the maximal distance dmax of any customer
to the depot. From this circle, we create a circular ring using the radii r1 � 0.3 dmax and r2 � 0.8 dmax

and divide this ring into ten sectors of identical size. Within each of these circle ring sectors, we
iteratively draw possible locations for the recharging facility in a random fashion until the following
two criteria are met: (i) the location does not coincide with a customer location, and (ii) the distance
of the possible location to all previously placed recharging facilities exceeds a given threshold. This
threshold is continuously decreased after a certain number of the generated random points have not
met this criterion.

In this way, we generate a total of 34 large EVRPRF instances, 14 based on the instances of Christofides
and Eilon (1969) and 20 based on those of Golden et al. (1998). In addition, we create a set of small
problem instances as follows: For each of the large EVRPRF instances of Christofides and Eilon
(1969), we generate four small instances by (i) drawing five, ten, 15, and 20 customers of the original
instances and removing the remaining ones, and (ii) solving the thus generated instances with our
AVNS and removing the recharging facilities that are not used in the produced solutions. In this
way, 56 small instances are generated, which are denoted by the identifier of the underlying CVRP
instance (CE plus instance number) followed by the number of customers (#C) and the number of
facilities (#F) in the instance. For example, CE-01-05C2F denotes the instance obtained from the
CVRP instance CE-01, containing five customers and two facilities.

3.5.3.2. Results on the EVRPRF Instances

We solve the small EVRPRF instances by means of our AVNS and compare our results to those of
the commercial solver CPLEX. Ten AVNS runs are conducted for each problem instance. CPLEX is
given a time limit of 7200 seconds for each instance and we generate three dummy vertices for each
recharging facility to represent visits to the facility. The results are presented in Table 3.10. For
CPLEX, we report the solution f and the runtime t in seconds. If CPLEX terminates before the end
of the time limit, the given solution is optimal. Otherwise, the result corresponds to the best upper
bound found within the time limit. For the AVNS, we give the best solution found in the ten runs
(fb), the relative gap of this solution to the CPLEX solution (∆b), the average solution (fa), the gap
of the average solution to CPLEX (∆a) and the average runtime in seconds (ta).

While CPLEX is only able to solve twelve out of 56 instances to optimality, AVNS is able to provide
high-quality solutions with an average runtime of just above one second. Concerning the best solution,
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3 Considering Intermediate Stops in Route Planning

CPLEX AVNS

Inst. f t(s) fb ∆b(%) fa ∆a(%) ta(s)

CE-01-05C2F 292.55 914 292.55 0.00 292.55 0.00 0.23
CE-02-05C1F 195.78 24 195.78 0.00 195.78 0.00 0.17
CE-03-05C1F 225.49 34 225.49 0.00 225.49 0.00 0.16
CE-04-05C2F 207.09 3988 207.09 0.00 207.09 0.00 0.23
CE-05-05C2F 261.72 68 261.72 0.00 261.72 0.00 0.39
CE-06-05C2F 382.72 51 382.72 0.00 382.72 0.00 0.36
CE-07-05C2F 508.96 91 508.96 0.00 508.96 0.00 0.26
CE-08-05C2F 227.70 75 227.70 0.00 227.70 0.00 0.19
CE-09-05C3F 389.60 217 389.60 0.00 389.60 0.00 0.33
CE-10-05C2F 322.42 17 322.42 0.00 322.42 0.00 0.40
CE-11-05C3F 435.71 72 435.71 0.00 435.71 0.00 0.33
CE-12-05C4F 286.50 7200 286.50 0.00 286.50 0.00 0.37
CE-13-05C4F 494.33 7200 494.33 0.00 494.33 0.00 0.47
CE-14-05C5F 322.63 7200 322.63 0.00 322.63 0.00 0.61

CE-01-10C2F 439.92 7200 439.92 0.00 439.92 0.00 0.99
CE-02-10C4F 433.39 7200 433.39 0.00 433.39 0.00 0.67
CE-03-10C4F 312.87 7200 312.87 0.00 312.87 0.00 0.76
CE-04-10C5F 338.90 7200 338.90 0.00 338.90 0.00 1.98
CE-05-10C6F 397.11 1343 397.11 0.00 397.11 0.00 2.21
CE-06-10C4F 544.12 7200 544.12 0.00 544.12 0.00 0.38
CE-07-10C3F 533.65 7200 533.65 0.00 533.65 0.00 0.35
CE-08-10C4F 429.21 7200 429.21 0.00 430.70 0.35 0.48
CE-09-10C5F 736.75 7200 736.75 0.00 736.75 0.00 0.47
CE-10-10C5F 645.73 7200 645.73 0.00 645.73 0.00 0.41
CE-11-10C3F 428.14 7200 428.14 0.00 428.14 0.00 1.03
CE-12-10C6F 499.53 7200 499.53 0.00 499.66 0.03 1.00
CE-13-10C4F 447.75 7200 447.75 0.00 447.75 0.00 1.38
CE-14-10C7F 417.64 7200 417.64 0.00 417.64 0.00 2.68

CE-01-15C4F 491.70 7200 491.70 0.00 491.70 0.00 1.00
CE-02-15C5F 586.13 7200 586.13 0.00 587.43 0.22 0.69
CE-03-15C3F 498.00 7200 498.00 0.00 498.00 0.00 1.22
CE-04-15C5F 488.38 7200 488.38 0.00 488.38 0.00 1.87
CE-05-15C6F 489.54 7200 489.54 0.00 489.54 0.00 1.40
CE-06-15C5F 611.58 7200 611.58 0.00 611.58 0.00 0.64
CE-07-15C5F 876.38 7200 876.38 0.00 876.38 0.00 0.46
CE-08-15C4F 605.26 7200 605.26 0.00 607.97 0.45 0.86
CE-09-15C5F 754.09 7200 754.09 0.00 754.09 0.00 0.54
CE-10-15C5F 515.30 7200 515.30 0.00 515.30 0.00 0.58
CE-11-15C3F 483.14 7200 483.14 0.00 483.14 0.00 2.10
CE-12-15C7F 595.82 7200 595.82 0.00 595.82 0.00 1.94
CE-13-15C4F 459.06 7200 459.06 0.00 459.06 0.00 3.19
CE-14-15C6F 428.83 7200 428.83 0.00 428.83 0.00 1.80

CE-01-20C6F 718.64 7200 718.64 0.00 718.64 0.00 1.05
CE-02-20C6F 637.97 7200 637.41 -0.09 637.41 -0.09 1.08
CE-03-20C4F 526.62 7200 526.62 0.00 526.62 0.00 2.26
CE-04-20C6F 509.02 7200 509.02 0.00 509.02 0.00 2.74
CE-05-20C5F 526.41 7200 526.41 0.00 526.41 0.00 2.19
CE-06-20C5F 602.24 7200 602.24 0.00 602.24 0.00 1.00
CE-07-20C6F 909.96 7200 895.52 -1.59 915.45 0.60 0.53
CE-08-20C4F 806.08 7200 802.46 -0.45 803.19 -0.36 0.71
CE-09-20C5F 919.69 7200 773.20 -15.93 773.20 -15.93 0.57
CE-10-20C7F 893.96 7200 889.74 -0.47 889.74 -0.47 0.96
CE-11-20C3F 662.05 7200 662.05 0.00 662.05 0.00 2.96
CE-12-20C7F 622.46 7200 622.46 0.00 622.46 0.00 2.18
CE-13-20C4F 697.26 7200 697.26 0.00 697.26 0.00 2.57
CE-14-20C8F 614.58 7200 600.98 -2.21 602.98 -1.89 2.53

Avg. 5780.25 -0.37 -0.31 1.09

Table 3.10.: Comparison of the AVNS results on the generated small-sized EVRPRF instances with CPLEX.
For CPLEX, f denotes the objective function value and t the total runtime in seconds. The
maximum duration for CPLEX was set to 7200 seconds. For AVNS, fb denotes the best solution
found in ten runs, fa the average solution of ten runs, ∆b and ∆a the gaps to the CPLEX solution,
and ta the average computing time in seconds.
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r1

r2

dmax

Figure 3.4.: Locating recharging facilities.

the quality of all optimal CPLEX solutions and all CPLEX upper bounds is matched or improved.
The robustness of our AVNS is again proven by a negative average gap of the average AVNS solutions
to the CPLEX solutions.

Finally, we provide the results of our AVNS on the large EVRPRF instances in Table 3.11. The
instances are denoted by the identifier of the underlying CVRP instance (CE or G, respectively, plus
instance number) followed by the number of customers (#C) in the instance. The same measures as
for the AVNS results on the small instances are reported. Here, no results for comparison are available,
however, we want to provide researchers tackling the EVRPRF in the future with the possibility to
compare their results with those of our AVNS. Moreover, we can show that our AVNS is able to
provide solutions to the large instances within reasonable runtimes.

AVNS AVNS

Inst. fb fa ta(min) Inst. fb fa ta(min)

CE-01-050C 1148.73 1148.73 3.31 G-01-240C 12363.17 12476.44 23.81
CE-02-075C 1895.52 1903.06 3.60 G-02-320C 18253.91 18390.20 40.34
CE-03-100C 1822.43 1825.80 11.81 G-03-400C 22504.96 24069.90 41.68
CE-04-150C 2344.28 2353.74 14.19 G-04-480C 29334.38 29787.80 41.67
CE-05-199C 3164.90 3180.26 19.01 G-05-200C 12995.39 13135.66 39.31
CE-06-050C 1053.82 1056.98 1.70 G-06-280C 17135.69 17206.53 41.67
CE-07-075C 2040.79 2046.01 1.47 G-07-360C 20650.82 21833.96 41.68
CE-08-100C 1703.03 1709.49 4.74 G-08-440C 25211.37 25861.50 41.69
CE-09-150C 2354.09 2375.32 5.67 G-09-255C 1564.96 1573.69 41.62
CE-10-199C 2856.10 2885.45 8.20 G-10-323C 1863.69 1880.54 39.63
CE-11-120C 2250.00 2273.21 13.86 G-11-399C 2232.24 2259.98 41.74
CE-12-100C 1960.85 1976.11 3.98 G-12-483C 2540.14 2583.65 41.80
CE-13-120C 2232.42 2318.04 9.53 G-13-252C 2000.50 2034.28 15.00
CE-14-100C 1808.34 1834.67 6.06 G-14-320C 2455.81 2477.32 19.95

G-15-396C 3591.95 3633.86 28.64
G-16-480C 4264.65 4294.46 35.73
G-17-240C 1667.67 1682.53 14.77
G-18-300C 2251.71 2273.29 18.27
G-19-360C 3655.12 3690.33 34.29
G-20-420C 4603.23 4633.80 34.82

Avg. 7.65 33.90

Table 3.11.: Results of AVNS on large EVRPRF instances. fb corresponds to the best solution found in ten
runs and fa denotes the average solution of ten runs. The average computing time in minutes is
given by ta.
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3.5.3.3. Influence of Problem-Specific Components

Finally, Table 3.12 shows a comparison of our AVNS to an AVNS without the problem-specific compo-
nents addressing intermediate stops (denoted as AVNS-without) on the VRPIRF instances of Crevier,
Cordeau, and Laporte (2007). For each instance, we report the instance name and the BKS. Moreover,
we provide the average solution found in the ten runs (fa), the gap of the average solution to the BKS
(∆a) and the average run time in minutes (ta) for both methods. Finally, averages of the runtimes
and the gaps to the BKS over the complete set of instances are given at the end of the table. The
results show that adding the problem-specific components clearly improves the solution quality while
notably reducing run-times.

3.6. Conclusion

This chapter presents an adaptive variable neighborhood search (AVNS) to address the vehicle-routing
problem with intermediate stops (VRPIS), in which vehicles are required to stop at certain facilities
along their route in order to remain operational. The competitiveness of the proposed approach is
demonstrated on benchmark instances from the literature designed for the green VRP and the VRP
with intermediate replenishment facilities, which both represent special cases of VRPIS. Our AVNS
algorithm shows a convincing performance compared to the methods from the literature and is able
to obtain numerous new best solutions.

As a special case of the VRPIS, we additionally consider the electric VRP with recharging facilities
(EVRPRF). We design two sets of small and large EVRPRF instances based on well-known CVRP
benchmarks. On the small instances, our AVNS, using a runtime of approximately one second, is able
to match or improve all results obtained by the commercial solver CPLEX within a time limit of two
hours.
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AVNS AVNS � without

Inst. BKS fa ∆a(%) ta(min) fa ∆a(%) ta(min)

a1 1179.79 1184.57 0.41 0.64 1186.85 0.60 0.78
b1 1217.07 1218.21 0.09 4.19 1219.47 0.20 8.99
c1 1866.76 1925.41 3.14 32.98 1923.19 3.02 37.85
d1 1059.43 1061.50 0.20 0.55 1062.24 0.27 1.08
e1 1309.12 1312.75 0.28 5.08 1312.46 0.25 5.95
f1 1570.41 1601.40 1.97 34.99 1611.08 2.59 39.62
g1 1181.13 1183.75 0.22 1.69 1187.66 0.55 2.67
h1 1545.50 1567.22 1.41 14.08 1571.66 1.69 25.43
i1 1922.18 1974.97 2.75 35.11 1977.47 2.88 42.05
j1 1115.78 1116.82 0.09 2.02 1119.00 0.29 2.73
k1 1576.36 1600.42 1.53 10.74 1598.56 1.41 27.30
l1 1863.28 1916.07 2.83 40.59 1921.14 3.11 41.95

Avg. 1.24 15.22 1.40 19.70

a2 997.94 997.94 0.00 0.72 998.39 0.05 1.06
b2 1291.19 1300.42 0.72 4.83 1297.52 0.49 10.18
c2 1715.60 1741.55 1.51 18.32 1747.94 1.89 29.12
d2 1856.84 1903.15 2.49 30.64 1916.31 3.20 38.91
e2 1919.38 1957.80 2.00 41.60 1988.88 3.62 41.33
f2 2230.32 2313.08 3.71 42.80 2330.63 4.50 42.07
g2 1152.92 1158.21 0.46 2.20 1158.57 0.49 3.63
h2 1575.28 1586.24 0.70 21.20 1608.81 2.13 26.98
i2 1919.74 1971.27 2.68 41.10 1982.83 3.29 40.28
j2 2247.70 2303.67 2.49 41.93 2344.55 4.31 41.77

Avg. 1.68 24.53 2.40 27.53

Tot. Avg. 1.44 19.46 1.86 23.26

Table 3.12.: Comparison of the results of our final AVNS implementation to those obtained by our AVNS
without the problem-specific methods explicitly addressing intermediate stops (AVNS-without)
on the VRPIRF instances of Crevier, Cordeau, and Laporte (2007). fa denotes the average
solution quality of ten runs. The gap of the average solution found to the BKS is given by ∆a

and the average computing time in minutes by ta. Numbers in bold indicate the best solution
found.
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Chapter 4

Integrated Infrastructure Planning and Routing for Electric Vehicles

4.1. Introduction

The battery swap station location-routing problem with capacitated electric vehicles (BSS-EV-LRP)
has recently been introduced by Yang and Sun (2015) in the context of planning a battery swapping
infrastructure for the deployment of battery electric vehicles (BEVs) by a logistics company.

In the BSS-EV-LRP, a homogeneous fleet of BEVs with limited driving range and capacity is stationed
at a single depot and has to serve a set of customers with given demands. To stay operational, the
BEVs can stop at battery swap stations (BSSs) to swap their depleted battery for a fully charged one.
Now, the BSS-EV-LRP calls for the simultaneous determination of (i) the BSS locations to open from
a set of BSS candidate locations with given construction cost, and (ii) the routes of the BEVs so as
to minimize the sum of the total travel cost and the cost for constructing the BSSs. Each customer
has to be visited exactly once; visits to constructed BSSs are optional. Vehicle routes are feasible if
(i) at any point of the route, the load of the vehicle does not exceed its capacity, and (ii) the traveled
distance between the depot and a visit to a BSS or two consecutive visits to BSSs does not exceed
the driving range of the vehicle. In the paper by Yang and Sun (2015), two versions of the problem
are introduced: In the basic version, the maximal number of visits to each BSS is restricted to one
visit per vehicle, in the extended version, multiple visits per vehicle are allowed. In this chapter, we
restrict ourselves to the extended version because the paper by Yang and Sun (2015) does not report
detailed computational results for the basic model.

The BSS-EV-LRP classifies as a location-routing problem (LRP), in which decisions on the location
of facilities are jointly taken with decisions on the routing of vehicles (for recent surveys on LRPs,
see Lopes et al., 2013; Drexl and Schneider, 2014; Prodhon and Prins, 2014; Cuda, Guastaroba, and
Speranza, 2015). Note that, in contrast to the classical capacitated LRP, which aims at determining
the locations of capacitated depots at which the vehicles must start and end their routes, the goal of the
BSS-EV-LRP is to locate intermediate BSSs at which vehicles may conduct optional battery swaps en
route. In addition, the motivation for dealing with the BSS-EV-LRP is based on ecological aspects. A
“green” LRP is also investigated by Koç et al. (2016) which does not consider BEVs and respective BSSs
but aims at minimizing emissions by considering the depot location, fleet composition, and routing of
vehicles. Furthermore, the BSS-EV-LRP is closely related to approaches for the planning of recharging
infrastructure, i.e., the deployment of (i) recharging or battery swap stations (MirHassani and Ebrazi,
2013; Nie and Ghamami, 2013; He et al., 2013; Wen et al., 2014; Mak, Rong, and Shen, 2014; Arslan
and Karaşan, 2016), and (ii) charging lanes which allow for recharging the vehicle battery while driving
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(Chen, He, and Yin, 2016). Since the BSS-EV-LRP degenerates to the N P-hard capacitated vehicle-
routing problem (CVRP) if the driving range of the vehicles is sufficiently large, exact methods are
not suitable to solve larger problem instances within short run-time. Yang and Sun (2015) propose
two metaheuristics for the BSS-EV-LRP – a four-phase adaptive large neighborhood search (ALNS)
heuristic, called SIGALNS, and an iterated modified Clarke and Wright savings (MCWS) heuristic
including a tabu search (TS) phase, called TS-MCWS. The authors assess the performance of these
algorithms on modified benchmark instances from the literature (see Section 4.3.1 for a detailed
description of BSS-EV-LRP benchmarks).

In this chapter, we show how algorithms for variants of the VRP with intermediate stops (VRPIS),
including VRPs with intermediate replenishment facilities (also known as multidepot VRPs with
interdepot routes, see Crevier, Cordeau, and Laporte, 2007; Hemmelmayr et al., 2013; Muter, Cordeau,
and Laporte, 2014; Markov, Varone, and Bierlaire, 2016), and VRPs with BEVs or alternative-fuel
vehicles (Erdoğan and Miller-Hooks, 2012; Adler and Mirchandani, 2014; Schneider, Stenger, and
Goeke, 2014; Goeke and Schneider, 2015; Liao, Lu, and Shen, 2016; Desaulniers et al., 2016; Roberti
and Wen, 2016) can be extended to address the BSS-EV-LRP. We explain the procedure using the
example of an adaptive variable neighborhood Search (AVNS) algorithm, originally developed for
the VRPIS in Schneider, Stenger, and Hof (2015). However, the general ideas can be transferred
to modify other VRPIS algorithms in the literature in a similar fashion. In the VRPIS, vehicles
may stop at different types of intermediate facilities to replenish the goods to be delivered, to refuel
or to unload collected goods or waste. From an algorithmic viewpoint, BSSs can be modeled as
intermediate facilities in the VRPIS. However, the major difference between the two problems is that,
in the VRPIS, the number and locations of intermediate facilities are given and thus no decisions on
the locations of facilities are made. To incorporate this type of decision, we add the construction cost
of an intermediate facility, i.e., of a BSS, to the objective function value if the intermediate facility is
visited at least once in the vehicle routes.

In the numerical studies, we investigate the performance of our extended AVNS and its components
on the BSS-EV-LRP benchmark instances proposed by Yang and Sun (2015). The AVNS is able to
strongly improve the results of Yang and Sun (2015) and provides new best solutions for the large
majority of instances, namely for 23 out of 24 instances, with an average improvement of nearly 10%.
Moreover, we significantly reduce the number of utilized BSSs on numerous instances. Therefore, we
generate an additional instance set for the BSS-EV-LRP, which is more meaningful with regard to
the necessity of utilizing BSSs, and we use this benchmark set to investigate the influence of varying
construction cost on the location decision.

The chapter is organized as follows. Section 4.2 describes how to extend the AVNS for VRPIS to
address the BSS-EV-LRP and Section 4.3 presents the numerical experiments to assess the performance
of the extended AVNS. The main findings are briefly summarized in Section 4.4.

4.2. AVNS for the BSS-EV-LRP

In this section, we illustrate how to extend our AVNS for the VRPIS to be able to solve the BSS-
EV-LRP. To keep the chapter concise, our description focuses on the main algorithmic elements and
the extensions compared to the original algorithm for solving the VRPIS. For more details on the
algorithmic components, the reader is referred to Schneider, Stenger, and Hof (2015).
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AVNS enhances the VNS paradigm originally introduced by Mladenović and Hansen (1997) by a guided
shaking step which relies on problem-specific selection methods for the routes and vertices involved in
the shaking. The probability for choosing a selection method is adapted based on its performance in
previous iterations. AVNS has been successfully applied to several VRP variants (Stenger, Schneider,
and Goeke, 2013; Stenger et al., 2013; Schneider, Stenger, and Hof, 2015). Note that, in Todosijević
et al. (2016), the term AVNS has been used to describe a method with a different adaptive component:
Here, the order of the neighborhoods in the local search phase is adaptively selected.

A pseudocode overview of the extended AVNS is given in Figure 4.1. First, the set of neighborhood
structures {Nκ | κ � 1, ..., κmax} used in the shaking step is defined. In the original version of the
algorithm, visits to intermediate facilities could only be rearranged in a stepwise fashion by means of
the local search, i.e., a visit is removed from a route, relocated within the route, or replaced by a visit
to a different facility. In the BSS-EV-LRP, in which the utilization of a BSS incurs a construction cost,
this is no longer sufficient to escape from local optima concerning the BSS configuration. Therefore,
we introduce two additional neighborhood structures, called facility removal and facility replacement,
for the shaking step of the extended AVNS. Facility removal completely removes a random BSS from
the current solution by removing all visits to this BSS. Facility replacement removes all visits to a
randomly selected BSS from the current solution and replaces them with visits to a different BSS,
which is arbitrarily chosen among the rτ |J |s closest BSSs. Here, J corresponds to the set of all
candidate BSSs and τ denotes the percentage of BSS candidate sites considered.

Define the neighborhood structures Nκ with κ � 1, ..., κmax

Generate initial solution S
S Ð localSearch(S)
Initialize best solution S� Ð S
while number of iterations without improvement not reached do
κÐ 1
repeat
Select route and vertex selection method and generate S 1 P NκpSq
S2 Ð localSearch(S 1)
if accept(S2,S) then

S Ð S2

κÐ 1
if S2 improves on S� then

S� Ð S2

end if
else
κÐ κ� 1

end if
Update weights of route and vertex selection methods
Update penalty factors

until κ � κmax � 1
end while

Figure 4.1.: Pseudocode of the extended AVNS for solving BSS-EV-LRP.

Table 4.1 shows the neighborhood structures used in the shaking step: six sequence relocation, 18 cyclic
exchange (Thompson and Orlin, 1989), four facility removal, and four facility replacement operators
are implemented. Each neighborhood structure is characterized by two parameters: the number of
routes involved Ω and the maximum number of vertices to be relocated Γmax . In case of the facility
removal and facility replacement neighborhoods, Ω corresponds to the number of routes that contain
at least one visit to a BSS (indicated by a dash in the table), and Γmax is the maximum number of
distinct BSSs to be entirely, i.e., including all associated visits, removed or replaced.
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κ Type Ω Γmax κ Type Ω Γmax

1 sequence relocation 2 1 17 cyclic exchange 3 1
2 sequence relocation 2 2 18 cyclic exchange 3 2
3 sequence relocation 2 3 19 cyclic exchange 3 3
4 facility removal – 1 20 facility removal – 3
5 sequence relocation 2 4 21 cyclic exchange 3 4
6 sequence relocation 2 5 22 cyclic exchange 3 5
7 sequence relocation 2 6 23 cyclic exchange 3 6
8 facility replacement – 1 24 facility replacement – 3
9 cyclic exchange 2 1 25 cyclic exchange 4 1
10 cyclic exchange 2 2 26 cyclic exchange 4 2
11 cyclic exchange 2 3 27 cyclic exchange 4 3
12 facility removal – 2 28 facility removal – 4
13 cyclic exchange 2 4 29 cyclic exchange 4 4
14 cyclic exchange 2 5 30 cyclic exchange 4 5
15 cyclic exchange 2 6 31 cyclic exchange 4 6
16 facility replacement – 2 32 facility replacement – 4

Table 4.1.: Neighborhood structures used within the shaking step of the extended AVNS. For the facility
removal and replacement neighborhoods, the dash indicates that all routes containing at least one
visit to a BSS are considered in the shaking.

During the search, infeasible solutions, i.e., solutions that do not respect the load or battery capacity,
are allowed and handled by means of a dynamic penalty mechanism. More precisely, constraint
violations are transformed into penalty costs by multiplying with a dedicated dynamic penalty factor
for each constraint. The penalty factors are dynamically updated depending on how many iterations
the corresponding constraint has been continuously satisfied or violated. The initial solution S is
constructed by means of the modified savings algorithm of Schneider, Stenger, and Hof (2015), which
is extended to the insertion of BSSs by considering the respective construction cost. The initial solution
is directly improved by a greedy local search procedure that uses the classical operators 2-opt (Lin,
1965) and Or-opt (Or, 1976) in intra-route fashion, relocate (Savelsbergh, 1992) in intra- and inter-
route fashion, and inter-route exchange (Savelsbergh, 1992). In addition, problem-specific operators
to insert, rearrange, and remove visits to BSSs, which are adapted from Schneider, Stenger, and Hof
(2015) by integrating the construction cost of BSSs, are applied. All operators are applied in random
order following a first improvement strategy. An operator is reused as long as it is able to achieve an
improvement of the current solution.

The following main phase of our algorithm is repeated until ω iterations without improvement are
reached. In the shaking step, a random solution S 1 within the κ-th neighborhood of S is generated.
Instead of a random selection, the adaptive mechanism uses specific selection methods for the routes
and vertices to be involved. Here, we adopt the set of methods presented in Schneider, Stenger, and
Hof (2015), which consists of (i) selection methods with a general validity for VRPs, and (ii) selection
methods which take into account the characteristics of intermediate facilities (BSSs) like necessary
detours and the density of BSSs in routes. Each of the selection methods is chosen according to a
roulette-wheel selection procedure as proposed by Pisinger and Ropke (2007), and the selection prob-
abilities are dynamically updated based on success. Each method k is initially assigned the same
weight wk. Given h different selection methods, the probability of selecting method k is calculated as
wk{

°h
i�1wi. After γ AVNS iterations, the weight of each method is updated based on its performance

during this period. The performance of a method is measured using a scoring system. We add a score
of nine to the total score of a method whenever it achieved a new overall best solution, a score of three
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if the new solution improves on the current and a score of one if the current solution is deteriorated
but the new solution is accepted according to an acceptance mechanism inspired by simulated anneal-
ing (SA). Let φk denote the current score of method k and χk the application frequency of the method
since the previous weight update, then the new weight is calculated as wk � wkp1� ρq � ρφk{χk. The
reaction factor ρ P r0, 1s allows to balance the influence of the past weight value and the score-based
increment on the resulting new weight. The values φk and χk are reset to zero after each update.

Subsequently, the local search step described above is applied to obtain the local optimum S2. In
contrast to the initialization phase, we perform local search only on the routes involved in the preceding
shaking step. If S2 is accepted based on the SA acceptance criterion, it replaces S and κ is reset to
one. Otherwise, S2 is discarded and the next neighborhood is selected. The temperature parameter
of the SA is initially set to a value such that a relative deterioration of the current solution S by ∆SA

is accepted with a probability of 50%. The temperature is decreased after every AVNS iteration such
that the acceptance probability of a deterioration of ∆SA is equal to 0.001% after θ iterations.

We reset S to the overall best solution S� after µ main iterations without improvement of the current
best solution. For the purpose of diversification, we reset the temperature parameter to its initial
value after ε solution resets.

Summarizing, the differences of the presented extended AVNS to the original algorithm described
in Schneider, Stenger, and Hof (2015) are (i) the new facility-related neighborhood structures in the
shaking step, and (ii) the modified SA acceptance mechanism, which calculates the initial and minimal
temperature values based on a relative solution deterioration parameter and associated acceptance
probabilities instead of using predetermined values. As will be shown in Section 4.3, the introduced
modifications are necessary to obtain high-quality solutions for the BSS-EV-LRP.

4.3. Computational Studies

This section presents the computational studies to assess the performance of the extended AVNS for
the BSS-EV-LRP. Section 4.3.1 describes the benchmark instances used in our experiments. The
parameter setting of our algorithm is presented in Section 4.3.2. In Section 4.3.3, we analyze the
influence of specific algorithmic components on the performance of our algorithm. We report detailed
results on the benchmark instances for the BSS-EV-LRP in Section 4.3.4. Finally, we investigate the
influence of different construction costs on the location of BSSs in Section 4.3.5.

4.3.1. Benchmark Instances

Yang and Sun (2015) modify several CVRP benchmark instances from the literature (available at
http://neo.lcc.uma.es/vrp/vrp-instances) to generate BSS-EV-LRP instances. A first set of small-
sized instances contains ten instances of Augerat et al. (1995), which feature 16 to 70 customers and
two to ten vehicles. A second set of medium-sized instances consists of twelve instances of Rochat
and Taillard (1995) with 75, 100, or 150 customers. A third set of large-sized instances includes two
instances of Golden et al. (1998) with 255 and 480 customers, respectively. A fourth set of very small-
sized instances, which is used for a comparison of their algorithms with the commercial solver CPLEX,
contains six instances. Three of them are derived from the instance P-n16-k8 of Augerat et al. (1995),
the other three are created based on instance RY-att48 of Rinaldi and Yarrow (1985), which originally
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contains 48 customers. For all instances, each customer location represents a candidate site for a BSS.
The battery capacity B is set to r1.2 dmaxs, where dmax corresponds to the maximal distance between
any two vertices in the instance, and the construction cost of all BSSs is set to r0.5Bs.

In order to ensure the comparability of our results to those obtained by Yang and Sun (2015), the
following information, which is either missing or incorrectly described in their paper, needed to be
obtained via personal communication with the authors:

• In the instances derived from those of Augerat et al. (1995) and in the very small-sized instances
based on the instance of Rinaldi and Yarrow (1985), the authors do not use the first vertex as
depot, as intended, but locate the depot at coordinates p1,�1q.

• For comparison with CPLEX, the very small-sized instances based on instance P-n16-k8 of
Augerat et al. (1995) are generated by keeping the last n � 6, 7, 8 customers of the instance
and removing the remaining ones. In contrast to the statement in Yang and Sun (2015), the
instances based on instance RY-att48 of Rinaldi and Yarrow (1985), however, are created by
selecting the first n � 12, 15, 20 customers of the instance. Moreover, the authors neglect to
state that the load capacity is assumed to be 40 for the very small-sized Augerat et al. (1995)
instances, and 8 for the Rinaldi and Yarrow (1985) instances. For all other instances, the load
capacity value given in the respective instance file is used.

As will be shown in Section 4.3.4, our algorithm is able to strongly reduce the number of used BSSs
compared to the results reported by Yang and Sun (2015). For numerous instances, we find solutions
in which zero or only a very small number of BSSs need to be constructed. Moreover, because
the candidate sites for constructing BSSs are located at the customer locations, there is no need
to adequately incorporate detours to BSSs into the planning process. Therefore, we introduce more
meaningful instances with respect to the necessity of using BSSs. We generate 34 new instances for the
BSS-EV-LRP by modifying the instances for the electric VRP with recharging facilities (EVRPRF)
proposed in Schneider, Stenger, and Hof (2015). The EVRPRF instances are derived from CVRP
instances by Christofides and Eilon (1969) and Golden et al. (1998). In order to generate new BSS-
EV-LRP instances, we keep the following properties of the EVRPRF instances:

• the battery capacity B of each vehicle corresponds to the amount of electrical energy required
to travel 60% of the average route length of a high-quality solution of the respective CVRP
instance

• each original CVRP instance is extended by ten potential BSS locations and a swapping possi-
bility at the depot.

The remaining EVRPRF characteristics, i.e., maximum route duration, customer service times, dock-
ing times, fuel-level-dependent refueling times, and vehicle deployment costs are omitted. We assume
BSS construction cost equal to the objective function value of the high-quality CVRP solution asso-
ciated with the respective EVRPRF instance rounded up to the nearest integer. In Section 4.3.5, we
investigate the influence of this parameter on the location of BSSs.

Each new BSS-EV-LRP instance is denoted by the prefix BSS followed by the identifier of the un-
derlying CVRP instance (CE or G, plus instance number) and the number of customers (#C) in the
instance. We refer to the set of new benchmark instances as HSG (Hof, Schneider, Goeke) set.
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4.3.2. Computational Environment and Parameter Setting

All experiments were conducted on a desktop computer with an Intel Core i7 processor at 2.8 GHz
and 8 GB of RAM, running Windows 7 Professional. In all tests, we performed five runs on each
instance.

During the development of our algorithm, we identified a subset of key parameters with a stronger
influence on solution quality and run-time compared to the remaining parameters. Starting from a
well-performing base setting determined during our testing activities, we consecutively refine the value
of each key parameter. To this end, we examine three values for each parameter. We keep the best
value as the final setting for the respective parameter and proceed with tuning the next parameter.

More precisely, we use the small and medium-sized instances introduced in Yang and Sun (2015) (see
Section 4.3.1 for a detailed description), to successively tune the following parameters: the relative
solution deterioration ∆SA, which determines the initial and minimal temperature as well as the
temperature reduction factor of the SA acceptance mechanism, the cooling period θ, the reaction
factor ρ used in the adaptive mechanism, the number of iterations γ after which the weight updates
are performed, and the percentage of the closest facilities τ considered in the context of the facility
replacement neighborhood. The results of the parameter tuning are presented in Table 4.2. For each
parameter, we provide the average of the gaps of the best solutions found to the respective best-known
solutions (BKS) from the literature in percent (∆b). The final value for each parameter is marked in
bold. For the relative solution deterioration ∆SA, we additionally report the average of the average
run-times over all tested instances (ta) in seconds due to the large impact of this parameter on the
run-time of our algorithm. Here, we select the second value because of the disproportionate growth of
run-times for higher parameter values.

SA
∆SA 0.005 0.01 0.03
Avg. ∆b(%) -8.73 -8.92 -8.93
Avg. ta(s) 15.67 18.94 39.34

θ 50 200 500
Avg. ∆b(%) -8.80 -8.92 -8.83

AVNS
ρ 0.4 0.5 0.6
Avg. ∆b(%) -8.89 -8.92 -8.83

γ 10 20 30
Avg. ∆b(%) -8.86 -8.92 -8.98

τ 0.1 0.2 0.3
Avg. ∆b(%) -8.71 -8.98 -8.72

Table 4.2.: Results of different parameter settings on the small and medium-sized instances introduced in Yang
and Sun (2015). The best setting for each parameter is marked in bold and used as the final setting.
For each parameter, we provide the average gap of the best solutions found to the BKS from the
literature (∆b) in percent. For the relative solution deterioration ∆SA, we additionally provide the
average of the average run-times (ta) across all tested instances in seconds. We consider the second
value as the best trade-off between solution quality and run-time for this parameter.

For the remaining parameters, we choose the same setting as in the original AVNS for the VRPIS.
More precisely, we set (i) the initial penalty factor δ0 � 1000, the minimal penalty factor δmin � 10,
the maximal penalty factor δmax � 10000, the penalty update factor δupdate � 1.5, the number of
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iterations after which the penalty factors are decreased η� � 2 and increased η� � 3, and (ii) the
number of solution resets after which the SA temperature is reset ε � 4.

Moreover, in order to achieve reasonable run-times, we set the number of non-improving iterations
used as stopping criterion to ω � 50 for the largest of the newly generated BSS-EV-LRP instances (the
ones based on the CVRP instances of Golden et al. (1998), see Section 4.3.1 for a detailed description)
and ω � 200 for the remaining instances. The number of iterations after which the current solution is
reset to the overall best solution µ is set to 20.

4.3.3. Influence of Algorithmic Components

This section investigates the effect of the different components of our algorithm on the solution quality
and run-time. To this end, we consecutively deactivate (i) the facility removal operator (Configuration
I), (ii) the facility replacement operator (Configuration II), and (iii) the adaptive mechanism in the
shaking step (Configuration III). Moreover, we analyze the effect of using a more thorough local search
implementation by incorporating a variable neighborhood descent (VND) approach (Configuration
IV). This transforms our algorithm into an adaptive general VNS (AGVNS) as defined in Hansen
et al. (2010). Instead of randomly selecting the next local search operator in each iteration, we apply
all operators in a predefined order while maintaining a first improvement strategy.

Table 4.3 shows the order in which the operators are applied for each route involved in the preceding
shaking step. The treatment of potential battery charge violations by applying the facility insertion
operator is followed by increasingly complex intra-route operators aiming at rearranging customer and
facility visits. The intra-route block is concluded by removing redundant facilities. Finally, customer
exchange and relocation operators are applied between the current route and the remaining routes.
Whenever an operator achieves an improvement of the current solution, we reset κ to 1, i.e., apply
the first operator to the current route again. Otherwise, we increase κ by 1, and the next operator is
selected. After all operators have been applied to the current route, we proceed with the next route.

κ Type Scope

1 facility insertion intra-route
2 customer relocation intra-route
3 facility relocation intra-route
4 facility replacement intra-route
5 Or-Opt intra-route
6 2-Opt intra-route
7 facility removal intra-route
8 customer exchange inter-route
9 customer relocation inter-route

Table 4.3.: Neighborhood structures used within the VND step of the AGVNS.

In Table 4.4, we compare Configurations I-IV to our extended AVNS (marked in bold). More precisely,
we report the average gap of the best solutions found to the BKS (∆b) in percent, the total number of
used BSSs (

°
`) and the average of the average run-times (Avg. ta) in seconds for each configuration

and set of benchmark instances.

Starting from our extended AVNS, the deactivation of each component (Configurations I-III) leads to
a significant decrease in solution quality on each instance set. The computation time can be improved
by omitting the facility-related neighborhood structures (Configurations I and II). Configuration II,
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which does not make use of the facility replacement neighborhood structure, yields by far the worst
solution quality among all investigated configurations. Disabling the adaptive selection of the route
and vertex selection methods in the shaking step (Configuration III) also results in a decrease in com-
putation time. Interestingly, Configuration III is able to obtain the smallest number of constructed
BSSs on the instance set by Yang and Sun (2015). The decreased solution quality in comparison to
the extended AVNS, however, hints at a better capability of the AVNS to identify the appropriate
BSS construction sites. While the AGVNS variant (Configuration IV) is able to improve the solution
quality of the extended AVNS on the instance set by Yang and Sun (2015), it shows a significantly
worse performance on the set HSG. This may be explained by the fact that the increased diversifi-
cation effect introduced by the random order of neighborhood structures in our original local search
implementation has a beneficial impact on the search compared to the rigid structure of the VND com-
ponent, which restarts the search in the smallest neighborhood after each improvement. The VND
implementation thus shows a stronger intensification behavior which seems to be disadvantageous on
the newly generated instances. In addition, the results indicate a clearly increased time consumption
of the VND component. On the benchmark instances by Yang and Sun (2015), AGVNS on average
takes almost three times as long as our extended AVNS.

Summarizing, the presented results suggest that the extended AVNS provides the best trade-off be-
tween solution quality and run-time among the investigated configurations.

Components

facility removal 3 7 X X X

facility replacement 3 X 7 X X

adaptive mechanism 3 X X 7 X

VND 7 7 7 7 X

algorithm AVNS I II III (VNS) IV (AGVNS)

Yang and Sun (2015)
Avg. ∆b(%) -9.81 -9.74 -9.06 -9.71 -9.89
°
` 19 20 18 17 18

Avg. ta(s) 73.00 48.40 49.26 63.61 197.25

HSG
Avg. ∆b(%) 0.64 0.75 6.39 0.85 2.64
°
` 157 157 164 157 161

Avg. ta(s) 1539.86 1353.53 718.40 1246.62 2070.50

Total
Avg. ∆b(%) -3.68 -3.59 0.00 -3.52 -2.55
°
` 176 177 182 174 179

Avg. ta(s) 932.88 813.47 441.52 757.10 1295.36

Table 4.4.: Comparison of algorithmic configurations.

4.3.4. Detailed Results on Established and New Benchmark Instances

We first compare the results of the extended AVNS on the set of very-small-sized instances to those of
CPLEX (with a time limit of 10800 seconds as reported by Yang and Sun, 2015), and to those of the
SIGALNS of Yang and Sun (2015). Note that in the entire discussion of results, we restrict the direct
comparison to the SIGALNS because it provides clearly better solution quality than TS-MCWS for
the large majority of test instances (20 out of 24), using only a fraction of the run-time.
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Table 4.5 reports, for each instance, the name, the number of customers to be served (n), and the
best-known solution (BKS) as determined by CPLEX and the algorithms TS-MCWS and SIGALNS
of Yang and Sun (2015). For CPLEX, the best upper bound (UB), the gap to the BKS (∆UB), and
the run-time (t) in seconds are reported. Solutions found by CPLEX within the given time limit are
optimal. For SIGALNS and AVNS, the best solution found in five runs (fb), the gap of the best
solution to the BKS (∆b), and the average computing time (ta) in seconds are reported. Finally,
averages of the run-times and of the gaps to the BKS over the complete instance set are given at the
end of the table. CPLEX is only able to solve three of the six instances to optimality. SIGALNS
and AVNS provide identical results, which match or improve the results obtained by CPLEX. Both
algorithms show similar run-times with a slight advantage of the AVNS. We are aware that a direct
comparison of the run-times on different computers is never accurate, however, as all algorithms were
tested on modern desktop computers, a rough comparison seems possible. Yang and Sun (2015) used
a Dell PC Inspiron 545S with an Intel Core Duo, 2.93 GHz processor and 2 GB of RAM for their
testing.

CPLEX SIGALNS AVNS

Inst. n BKS UB ∆UB(%) t(s) fb ∆b(%) ta(s) fb ∆b(%) ta(s)

P-n6-k2 6 426.86 426.86 0.00 10.51 426.86 0.00 1.73 426.86 0.00 0.67
P-n7-k3 7 428.60 428.60 0.00 489.69 428.60 0.00 1.93 428.60 0.00 0.38
P-n8-k3 8 597.16 597.16 0.00 1853.04 597.16 0.00 2.00 597.16 0.00 0.47

RY-n12-k2 12 52792.61 53117.67 0.62 10800 52792.61 0.00 1.91 52792.61 0.00 1.20
RY-n15-k3 15 52985.62 53901.78 1.73 10800 52985.62 0.00 1.86 52985.62 0.00 2.24
RY-n20-k4 20 63919.20 - - 10800 63919.20 0.00 2.22 63919.20 0.00 5.52

Avg. 0.47 4790.65 0.00 1.94 0.00 1.74

Table 4.5.: Comparison of AVNS results on the very small-sized instances of Yang and Sun (2015) to those of
CPLEX and SIGALNS, where n denotes the number of customers, BKS the previous best-known
solution of the respective instance, UB the best upper bound obtained by CPLEX, ∆UB the gap of
UB to the BKS in percent, t the associated total run-time in seconds, fb the best solution found in
five runs, ∆b the gap of fb to the BKS in percent, and ta the average computing time in seconds.
Numbers in bold indicate the best solution found for each instance. Averages of the run-times and
the gaps to the BKS over the complete set of instances are given at the end of the table.

Next, we compare the performance of AVNS to that of SIGALNS on the sets of small, medium, and
large-sized instances proposed by Yang and Sun (2015). Table 4.6 reports the same measures as
Table 4.5, but additionally, the number of vehicles used in the best solution (m), and the number of
BSSs used in the best solution (`) are reported for both algorithms. Moreover, in column AVNS, we
report the gaps ∆ of the best solutions encountered during our entire testing activities to the BKS
from the literature in percent for each instance. Values in bold indicate the best solution found for
each instance.

Concerning solution quality, our extended AVNS is able to significantly improve on the results of
SIGALNS: We provide new best solutions for 23 out of 24 instances and improve on the previous BKS
by 9.81% on average. Considering all solutions ever encountered, we observe an average improvement
of 10.25%. With regard to run-times, AVNS is roughly as fast as SIGALNS on the small instances,
and, on average, notably faster on the remaining medium-sized and large instances. This hints at a
better scalability of our approach, but a clear statement is difficult due to the small number of large
instances considered by Yang and Sun (2015). Finally, the robustness of our AVNS is demonstrated
by the small deviations of the average objective function values from the best ones (  1% on average).
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SIGALNS AVNS AVNS

Inst. n BKS m ` fb ∆b(%) ta(s) m ` fb ∆b(%) ∆a(%) ta(s) ∆(%)

P-n16-k8 16 1281.95 8 1 1281.95 0.00 2.58 8 1 1282.38 0.03 2.40 1.66 0.03
P-n19-k2 19 471.39 2 1 471.39 0.00 2.78 2 1 468.08 -0.70 -0.70 1.98 -0.70
P-n21-k2 21 478.64 2 1 478.64 0.00 3.13 2 1 472.74 -1.23 -1.13 1.93 -1.23
P-n23-k8 23 1360.51 8 1 1360.51 0.00 3.14 8 1 1347.04 -0.99 -0.53 4.15 -1.19
P-n40-k5 40 893.23 5 1 893.23 0.00 6.18 5 1 857.70 -3.98 -3.88 8.42 -3.98
P-n45-k5 45 939.63 5 2 939.63 0.00 7.69 5 1 872.23 -7.17 -6.06 12.12 -7.25
P-n50-k7 50 1196.48 7 2 1196.48 0.00 8.52 7 2 1130.44 -5.52 -3.74 15.18 -5.52
P-n55-k8 55 1247.10 7 2 1247.10 0.00 20.13 7 2 1170.04 -6.18 -5.12 16.25 -6.19
P-n60-k10 60 1684.24 10 3 1684.24 0.00 24.50 10 2 1556.38 -7.59 -6.63 33.57 -8.25
P-n70-k10 70 1738.98 10 3 1738.98 0.00 35.93 10 2 1632.87 -6.10 -5.19 21.30 -7.11

Avg. P 0.00 11.46 -3.94 -3.06 11.66 -4.14

tai75a 75 1924.32 10 4 1924.32 0.00 53.69 10 0 1664.08 -13.52 -13.43 8.84 -13.52
tai75b 75 1607.22 10 3 1607.22 0.00 76.73 10 1 1471.57 -8.44 -7.80 12.10 -8.66
tai75c 75 1602.15 9 4 1602.15 0.00 75.11 9 0 1381.20 -13.79 -12.24 18.11 -13.79
tai75d 75 1643.63 9 3 1643.63 0.00 51.06 9 0 1405.45 -14.49 -14.38 5.44 -14.88
tai100a 100 2467.90 12 4 2467.90 0.00 118.80 12 0 2179.28 -11.70 -10.47 19.79 -11.78
tai100b 100 2393.34 12 5 2393.34 0.00 134.42 11 0 1948.73 -18.58 -18.33 10.46 -18.92
tai100c 100 1683.69 11 4 1783.45 5.93 123.29 11 1 1598.72 -5.05 -5.02 27.76 -5.54
tai100d 100 1918.81 12 4 1926.96 0.42 188.95 11 0 1609.06 -16.14 -14.63 20.80 -16.36
tai150a 150 3620.34 15 4 3620.34 0.00 329.67 15 0 3194.41 -11.76 -11.59 58.89 -13.53
tai150b 150 3354.00 14 7 3354.00 0.00 367.24 14 0 2815.80 -16.05 -16.01 45.23 -16.84
tai150c 150 2879.32 15 5 2879.32 0.00 337.44 15 0 2403.41 -16.53 -16.05 43.44 -16.78
tai150d 150 3121.36 15 5 3121.36 0.00 492.06 14 0 2744.54 -12.07 -11.26 84.91 -12.60

Avg. tai 0.53 195.71 -13.18 -12.60 29.65 -13.60

GWKC_09 255 787.52 14 5 790.99 0.44 1798.23 14 3 666.05 -15.42 -14.13 1017.08 -17.53
GWKC_16 480 2182.47 38 14 2359.08 8.09 10695.97 37 0 1693.34 -22.41 -21.85 262.64 -24.02

Avg. GWKC 4.27 6247.10 -18.92 -17.99 639.86 -20.77

Avg. tot. 0.62 623.22 -9.81 -9.07 73.00 -10.25
°

tot. 88 19

Table 4.6.: Results of our extended AVNS in comparison to SIGALNS on the small, medium, and large-
sized instances introduced in Yang and Sun (2015). We report the number of customers (n), the
previously best-known solution (BKS) for each instance, the number of vehicles used in the best
solution (m), the number of BSSs located in the best solution (`), the best solution found in five
runs (fb), the gap of fb to the BKS (∆b) in percent, and the average computing time (ta) in seconds
for each solution method. In addition, for AVNS, the gap of the average solution quality to the
BKS (∆a) in percent is given. Column AVNS contains the gaps of the best solutions encountered
during our entire testing activities to the BKS (∆) in percent. Values in bold indicate the best
solution found for each instance. Averages of the run-times, the gaps to the BKS, and the total
numbers of deployed BSSs over the complete set of instances are given at the end of the table.
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Concerning the structure of the identified solutions, we note that the extended AVNS is able to reduce
the number of employed vehicles for four instances. More importantly, we are able to strongly reduce
the overall number of BSSs that are constructed from 88 to 19 BSSs. This result shows that our
approach is able to successfully capture the locational aspect of the BSS-EV-LRP, and is therefore
likely able to also produce high quality solutions in settings where the construction cost is higher
compared to the routing cost.

In Table 4.7, we compare the results obtained by our extended AVNS on the newly generated BSS-
EV-LRP instance set HSG to the best solutions encountered during the entire testing (AVNS). We
provide the same measures as in the previous tables. In addition, f corresponds to the best solution
ever obtained during our experiments.

On the new instances, AVNS also shows a reasonable scaling behavior. The increased deviations
between the best and average solution values, however, suggest an increased difficulty of the new
benchmarks in comparison with the instances from the literature. Mainly, the results in Table 4.7 are
provided as comparison for future methods that address the BSS-EV-LRP.

4.3.5. Influence of BSS Construction Costs on the Location Decision

Finally, we use the newly generated BSS-EV-LRP instances to analyze the influence of varying con-
struction costs on the location of BSSs. Table 4.8 shows a comparison of the total number of con-
structed BSSs (

°
`) for different cost configurations. The construction costs are given as decreasing

fractions of the associated high-quality CVRP objective function value of each original CVRP instance.
We additionally investigate the case where no construction costs for BSSs are incurred, i.e., cBSS � 0.

In total, we can observe a high utilization of BSSs across all investigated cost configurations. As
expected, the number of constructed BSSs increases with decreasing construction costs. In the case
of construction costs equal to zero, BSSs are constructed on roughly 83% of all available candidate
sites. The newly proposed instances thus properly capture the requirement of incorporating BSSs
into the planning process. Finally, in order to demonstrate the importance of explicitly taking the
locational aspect of the BSS-EV-LRP into account, we generate solutions using the AVNS version
as described in Schneider, Stenger, and Hof (2015), i.e., without the facility-related neighborhood
structures in the shaking step and without considering BSS construction cost. Next, we transform the
resulting objective function values into BSS-EV-LRP solution values by adding the number of used
BSSs multiplied with the different construction costs. The average deviation of the best BSS-EV-
LRP solution values to the associated transformed solution values (∆trans) in percent is additionally
reported for each cost value in Table 4.8. The results show that the transformed solutions are always
significantly inferior to the solutions obtained when the construction costs and the characteristics of
the BSS-EV-LRP are explicitly taken into account. Even if the construction costs are equal to zero,
we can observe a notable average gap. This indicates the usefulness of the innovations introduced to
the original algorithm designed for VRPIS.

4.4. Conclusion

This chapter showed how to successfully extend a solution method for vehicle-routing problems with
intermediate stops (VRPIS), namely an adaptive variable neighborhood search (AVNS), to address the
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AVNS AVNS

Inst. cBSS m ` f m ` fb ∆b(%) ∆a(%) ta(s)

BSS-CE-01-050C 525 5 3 2251.28 5 3 2251.28 0.00 1.88 21.27
BSS-CE-02-075C 836 11 5 5246.86 10 5 5289.42 0.81 1.96 52.53
BSS-CE-03-100C 827 8 5 5041.80 8 5 5082.19 0.80 1.65 74.12
BSS-CE-04-150C 1029 12 6 7562.31 12 6 7585.37 0.30 3.87 305.95
BSS-CE-05-199C 1296 17 7 10707.74 18 7 10857.38 1.40 2.20 1077.33
BSS-CE-06-050C 556 5 4 2858.60 5 4 2858.60 0.00 1.28 25.39
BSS-CE-07-075C 910 10 5 5623.78 11 5 5631.51 0.14 0.86 41.14
BSS-CE-08-100C 866 8 5 5313.16 8 5 5316.05 0.05 0.86 91.96
BSS-CE-09-150C 1163 12 6 8299.77 12 6 8349.88 0.60 4.04 244.02
BSS-CE-10-199C 1403 17 7 11492.39 18 7 11535.24 0.37 0.97 1033.48
BSS-CE-11-120C 1043 7 3 4282.24 7 3 4336.92 1.28 4.14 125.57
BSS-CE-12-100C 820 10 6 5985.95 10 6 6030.06 0.74 4.24 56.60
BSS-CE-13-120C 1550 7 4 7431.28 7 4 7431.28 0.00 2.20 310.90
BSS-CE-14-100C 867 10 7 7188.93 10 7 7259.73 0.98 4.10 79.38

Avg. CE 0.53 2.45 252.83
°

CE 73 73

BSS-G-01-240C 5628 9 1 20092.03 9 1 20473.11 1.90 16.29 386.10
BSS-G-02-320C 8448 10 1 27672.59 10 1 27672.59 0.00 18.86 2185.04
BSS-G-03-400C 11037 9 1 24505.46 9 1 24597.82 0.38 10.57 10166.99
BSS-G-04-480C 13625 10 1 29154.81 10 1 29834.44 2.33 3.36 2285.80
BSS-G-05-200C 6461 5 1 13399.61 5 1 13730.16 2.47 6.71 94.92
BSS-G-06-280C 8413 7 1 17753.50 7 1 18372.15 3.48 5.93 203.62
BSS-G-07-360C 10182 9 1 21923.28 9 1 22025.98 0.47 3.23 470.95
BSS-G-08-440C 11664 10 1 25886.27 10 1 25886.27 0.00 0.65 16505.95
BSS-G-09-255C 584 14 2 1905.73 14 2 1905.73 0.00 2.09 918.13
BSS-G-10-323C 742 16 3 3164.25 17 3 3173.22 0.28 0.95 1605.55
BSS-G-11-399C 919 18 3 3894.70 18 3 3931.24 0.94 1.10 1699.24
BSS-G-12-483C 1108 20 3 4686.10 20 3 4710.75 0.53 1.30 4705.93
BSS-G-13-252C 860 27 7 7187.78 27 7 7187.78 0.00 0.28 253.71
BSS-G-14-320C 1082 31 9 11145.76 31 9 11145.76 0.00 0.41 340.49
BSS-G-15-396C 1346 34 8 12540.50 35 8 12606.99 0.53 0.81 695.11
BSS-G-16-480C 1623 38 8 15304.30 38 8 15304.30 0.00 0.26 1368.95
BSS-G-17-240C 708 23 7 5900.81 24 7 5919.87 0.32 1.42 97.90
BSS-G-18-300C 998 28 7 8410.97 28 7 8410.97 0.00 0.74 187.71
BSS-G-19-360C 1367 35 9 14159.06 34 9 14238.38 0.56 1.09 693.10
BSS-G-20-420C 1821 39 10 20756.73 39 10 20794.43 0.18 0.66 3950.33

Avg. G 0.72 3.84 2440.78
°

G 84 84

Table 4.7.: Results of our AVNS algorithm on the newly introduced BSS-EV-LRP instance set HSG in compar-
ison with the results obtained during our entire testing activities (AVNS). The BSS construction
costs associated with each instance are denoted by cBSS , m denotes the number of vehicles used
in the best solution, ` the number of BSSs located in the best solution, f the best solution ever
obtained, fb the best solution found in five runs, ∆b the gap of fb to f in percent, ∆a the gap of
the average solution quality to f in percent, and ta the average computing time in seconds.
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cBSS� 1 1/2 1/4 1/8 1/16 0
°
` 157 161 162 168 186 281

Avg. ∆trans(%) -34.87 -30.11 -23.79 -15.91 -9.22 -2.27

Table 4.8.: Analysis of (i) the effect of different construction costs on the total number of located BSSs and
(ii) the average deviation in solution quality compared to the transformed solution values obtained
by the original AVNS version described in Schneider, Stenger, and Hof (2015).

battery swap station location-routing problem with capacitated electric vehicles (BSS-EV-LRP). On
benchmark instances from the literature, the extended AVNS proves able to significantly improve the
previously known best solutions – provided by the SIGALNS and TS-MCWS of Yang and Sun (2015)
– for the large majority of instances. Moreover, the AVNS strongly reduces the number of constructed
BSSs in the solutions compared to SIGALNS. We additionally provide new BSS-EV-LRP instances
which are more meaningful concerning the necessity of using BSSs. We use the new instances to show
that (i) decreasing construction costs lead to the expected increase in the number of located BSSs,
and (ii) the proposed methodological innovations related to BSSs and the explicit consideration of the
BSS construction costs have a beneficial impact on the solution quality.
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Chapter 5

Utilizing Mobile Depots in Urban Logistics

5.1. Introduction

There are numerous practical vehicle-routing applications, in which vehicles are employed as mobile
depots to support another fleet of vehicles that operate to perform certain tasks. The mobile depots
supply the task vehicles with resources required to fulfill the associated tasks. Corresponding ap-
plications are especially found in the city logistics context. In two-echelon distribution systems, for
instance, small vehicles are used to navigate narrow streets and to deliver/collect goods or to collect
waste, and larger vehicles serve as mobile depots to replenish the goods to be delivered or to receive
collected goods or waste at accessible intermediate facilities (Cuda, Guastaroba, and Speranza, 2015;
Zhou et al., 2018). Access in urban centers may not only be restricted with respect to the dimensions
of the vehicles but also due to regulations on emissions, which makes some areas only accessible for
environmentally-friendly vehicles such as, e.g., battery electric vehicles (Breunig et al., 2019). An
interesting future application may thus be the support of a company’s fleet of battery electric vehicles
by means of mobile recharging stations or mobile battery swapping stations. More generally, mobile
refueling stations may be reasonably employed if alternative-fuel vehicles are utilized in a region where
the respective infrastructure is sparse. Future delivery concepts may also involve the use of unmanned
aerial vehicles (drones) to resupply vehicles with the goods to be delivered (Dayarian, Savelsbergh,
and Clarke, 2018). A further application area in the urban context is snow ploughing. Large volumes
of snow plowed from roads and walkways may exceed the available space along roadways and walkways
for snow storage, and therefore require disposal by some means. Most commonly, snow is loaded into
trucks using some kind of snow loaders and then transported to disposal sites (Perrier, Langevin, and
Campbell, 2007). Similar use cases occur in street sweeping and bitumen delivery (Rivers, 2002). Fi-
nally, road painting represents an application in a non-urban context, where mobile depots are used to
refill the paint tanks of the painting vehicles (Amaya, Langevin, and Trépanier, 2010; Salazar-Aguilar,
Langevin, and Laporte, 2013).

To capture the routing decisions of the described applications in a generalized fashion, we introduce
the vehicle-routing problem with time windows and mobile depots (VRPTWMD) in this chapter. The
VRPTWMD is characterized by a fleet of delivery vehicles (DVs) and a fleet of support vehicles (SVs).
While the DVs operate to satisfy the delivery demands of a set of customers, each SV can serve as
mobile depot to restore either the load capacity for the goods to be delivered or the fuel capacity of the
DVs. Note that we assume the “or” to be exclusive and that all SVs restore the same capacity type.
To serve in one of the described ways, an SV must meet with a DV at a location, and both vehicles
must stay at that location until the capacity transfer terminates. The possible meeting points may
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encompass certain customer locations and dedicated transfer locations. In the former case, a transfer
may only take place when the DV serves the respective customer, i.e., each customer is visited exactly
once. The order in which a DV performs the service at a customer and the transfer with the SV is
a decision variable, but may in some cases be imposed by the customer time window, the maximal
route duration, or a lack of capacity to meet the customer demand.

Figure 5.1 shows an example solution of a VRPTWMD instance with three DVs and two SVs. Five
transfers are performed, three of which take place when serving customers 1, 5, and 9. In addition, two
dedicated transfer vertices are used in the example. The superscripts s and t at the transfer customers
indicate the respective task orders of the DVs, denoting service first and transfer first, respectively.
Consequently, at customers 1 and 9, the service is performed before the transfer whereas at customer
5, the transfer operation is performed first.

Dedicated transfer vertex

Depot

Customer

DV route

SV route

4

1s

6

9s

5t

7

8

11
10

12
3

2

Figure 5.1.: Example solution to the VRPTWMD employing three DVs and two SVs that perform five trans-
fers.

The contributions of the chapter are the following: We formally describe the VRPTWMD as a mixed-
integer program using a compact formulation with arc flow variables and present optimal solutions
on small problem instances obtained by the commercial solver CPLEX. In addition, we develop an
effective and efficient adaptive large neighborhood search (ALNS) that is complemented by a path
relinking (PR) approach, called ALNS-PR, to provide solutions for large problem instances. Besides
components with general validity for VRPs, our ALNS-PR makes use of techniques that explicitly
take transfers into account. Another important algorithmic contribution consists in move evaluation
procedures enabling our algorithm to evaluate fuel, load, and time window violations in constant time.

In extensive numerical studies, we first investigate the usefulness of the problem-specific ALNS com-
ponents and of our PR implementation. In addition, we evaluate the competitiveness of our algorithm
on benchmark instances of the two-echelon multiple-trip VRP with satellite synchronization (2E-
MTVRP-SS), which has been proposed by Grangier et al. (2016). The 2E-MTVRP-SS can be viewed
as a variant of the VRPTWMD where first-level vehicles corresponding to SVs have to meet with
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second-level vehicles (DVs) to enable them to fulfill the customer requests. Our ALNS-PR is able to
significantly improve the large majority of previous best solutions with clearly shorter runtimes com-
pared to the ALNS of Grangier et al. (2016). Finally, we use newly generated VRPTWMD instances
to analyze the influence of certain problem characteristics, like deployment cost and load capacity of
the SVs, on the structure of the resulting solutions.

We define the VRPTWMD in Section 5.2. Our ALNS-PR algorithm is presented in Section 5.3, and
the numerical studies are described in Section 5.4. Finally, we summarize and conclude the chapter
in Section 5.5.

5.2. Problem Definition

In this section, we present a mixed-integer program of the VRPTWMD using the following notation:
Let C denote the set of n customers and 0 and n � 1 instances of the same depot representing the
start and end of each vehicle route, respectively. Transfers are possible at dedicated transfer vertices
contained in set D and at specific customers contained in set Ct � C. To account for the possibility of
several visits of each vehicle to a dedicated transfer vertex i P D, we introduce a set of dummy vertices
D1. Then, T denotes the set of all possible transfer locations, i.e., T � CtYD1. For the synchronization
of both vehicle types, we need to ensure unique arrival times at depot instance n � 1 in each vehicle
route. Therefore, we introduce additional dummy visits to vertex n � 1, which are contained in set
Ve. We further denote V 1 as the set of all vertices and visits to dedicated transfer vertices. We use
indices to indicate which depot instances are considered in a vertex set, i.e., V 1

0 � C Y D1 Y t0u,
V 1
n�1 � C Y D1 Y Ve, and V 1

0,n�1 � C Y D1 Y t0u Y Ve.

The VRPTWMD can be defined on a complete directed graph G � pV 1
0,n�1,Aq with the set of arcs

A � tpi, jq : i P V 1
0, j P V 1

n�1, i � ju. Each arc pi, jq P A is associated with a travel cost cij , a travel
time tij , and a fuel consumption fij . Each customer i P C is associated with a nonnegative demand ui,
a nonnegative service time si, and a hard time window rei, lis within which the service of this customer
must start. A homogeneous fleet of DVs with fixed deployment cost cD, maximum route duration TD,
load capacity LD, and fuel capacity F is based at the depot.

Depending on the application context, SVs may either replenish the load or the fuel capacity of the
DVs. The fleet of SVs is also homogeneous and stationed at the depot. Each SV is characterized
by a fixed cost cS , a maximum route duration T S , and a load capacity LS for the DV resource that
may be replenished. To perform a transfer, an SV and a DV must meet at a transfer location i P T
and stay at this location until the transfer, for which a fixed transfer time τ is incurred, terminates.
Each transfer thus calls for exact simultaneous operation synchronization of the associated DV and
SV (Drexl, 2012). Note that a transfer performed at a customer location i P Ct does not have to take
place within the time window of the respective customer and at any transfer location, both vehicles
may wait until the other one arrives. We refer to the resource capacity that may be replenished as R
and assume that R is always fully restored at each transfer.

We use the following decision variables in our model: aD
i (aS

i ) specifies the arrival time of a DV (an
SV) at vertex i. Binary variables pi take value 1 if a transfer takes place at vertex i and 0 otherwise.
If a transfer is scheduled at a customer vertex i P Ct, the order in which the DV performs the service
and is replenished by the SV is defined using the binary decision variables oi (transfer first: oi � 1,
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service first: oi � 0). We further introduce variables qi, bi, and Ωi to specify the load level of a DV, the
fuel level of a DV, and the load level of an SV upon arriving at vertex i, respectively. Finally, binary
decision variables xij (yij) take value 1 if arc pi, jq is traversed by a DV (an SV) and 0 otherwise. We
summarize the notation in Table 5.1.

5.2.1. Base Model of the VRPTWMD

We first present a base model with general validity for all resources that captures the routing and
synchronization requirements of both vehicle types. In the base model, each resource reduces depend-
ing on the respective consumption type but upon meeting of a DV and an SV, no actual resource
replenishment takes place. Subsequently, we introduce the necessary additional constraints and mod-
ifications to the base model to obtain the model variants VRPTWMD-F and VRPTWMD-L, which
consider the possibility to replenish the DVs’ fuel (Section 5.2.2) and load capacity (Section 5.2.3),
respectively.

The mixed-integer program of the base model is as follows:

min
¸
iPV 10

¸
jPV 1n�1

cijpxij � yijq �
¸

jPCYD1

pcDx0j � cSy0jq (5.1)

¸
iPV 10ztju

xij � 1 @j P C (5.2)

¸
iPV 10ztju

xij ¤ 1 @j P D1 (5.3)

¸
iPV 10ztju

yij ¤ 1 @j P T (5.4)

¸
iPV 10ztju

xij �
¸

iPV 1n�1ztju

xji � 0 @j P C Y D1 (5.5)

¸
iPV 10ztju

yij �
¸

iPV 1n�1ztju

yji � 0 @j P T (5.6)

aD
i � ptij � siqxij � τpi � TDp1 � xijq ¤ aD

j @i P V 1
0, j P V 1

n�1, i � j (5.7)

aS
i � ptij � τqyij � T Sp1 � yijq ¤ aS

j @i P V 1
0, j P V 1

n�1, i � j (5.8)

0 ¤ aD
i ¤ TD @i P V 1

0,n�1 (5.9)

0 ¤ aS
i ¤ T S @i P V 1

0,n�1 (5.10)

eip1 � oiq ¤ aD
i � τoi ¤ li @i P V 1

0,n�1 (5.11)

ei � psi � tijqxij � TDp2 � oi � xijq ¤ aD
j @i P V 1

0, j P V 1
n�1, i � j (5.12)

aS
k � tik ¤ aD

j � tij � sioi � TDp2 � xij � yikq @i P T , j, k P V 1
n�1, i � j, i � k (5.13)

aD
i � τ � sip1 � oiq � T Sp1 � yikq ¤ aS

k � tik @i P T , k P V 1
n�1, i � k (5.14)

pj �
¸

iPV 10,i�j
yij @j P T (5.15)

oi ¤ pi @i P C (5.16)

bj ¤ bi � fijxij � F p1 � xijq @i P V 1
0, j P V 1

n�1, i � j (5.17)

0 ¤ bi ¤ F @i P V 1
0,n�1 (5.18)
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Sets
0, n� 1 instances of the depot
C set of customers
D1 set of visits to dedicated transfer vertices
Ct subset of customers at which transfers are possible
T set of possible transfer locations, T � Ct YD1

Ve set of visits to depot instance n� 1
V 1

0 set of customers, visits to dedicated transfer vertices, and depot instance 0,
V 1

0 � C YD1 Y t0u
V 1
n�1 set of customers, visits to dedicated transfer vertices, and visits to depot in-

stance n� 1, V 1
n�1 � C YD1 Y Ve

V 1
0,n�1 set of all vertices and visits, V 1

0,n�1 � C YD1 Y t0u Y Ve
A set of arcs, A � tpi, jq : i P V 1

0, j P V 1
n�1, i � ju

Parameters
cij travel cost on arc pi, jq P A
cD fixed cost DV
cS fixed cost SV
ui demand of vertex i (ui � 0 if i R C)
LD load capacity DV
LS load capacity SV
fij fuel consumption on arc pi, jq P A
F fuel capacity DV
tij travel time on arc pi, jq P A
si service time at vertex i (si � 0 if i R C)
τ transfer time
TD maximum route duration DV
TS maximum route duration SV
ei earliest start of service at vertex i
li latest start of service at vertex i

Decision variables
aD
i decision variable specifying the arrival time of a DV at vertex i
aS
i decision variable specifying the arrival time of an SV at vertex i
pi binary decision variable indicating if a transfer takes place at vertex i
oi binary decision variable specifying the precedence of transfer and service at

vertex i (if oi � 1, the transfer is executed before the service)
bi decision variable specifying the fuel level of a DV upon arriving at vertex i
qi decision variable specifying the load level of a DV upon arriving at vertex i
Ωi decision variable specifying the load level of an SV upon arriving at vertex i
xij binary decision variable indicating if arc pi, jq is traversed by a DV
yij binary decision variable indicating if arc pi, jq is traversed by an SV

Table 5.1.: Sets, parameters, and decision variables used in the VRPTWMD model.
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qj ¤ qi � ui � LDp1 � xijq @i P V 1
0, j P V 1

n�1, i � j (5.19)

0 ¤ qi ¤ LD @i P V 1
0,n�1 (5.20)

0 ¤ Ωi ¤ LS @i P V 1
0,n�1 (5.21)

xij , yij P t0, 1u @i P V 1
0, j P V 1

n�1, i � j (5.22)

pi, oi P t0, 1u @i P T (5.23)

The goal of the VRPTWMD is to minimize the sum of the total travel cost and the fixed vehicle cost,
expressed by the objective function (5.1).

Constraints (5.2) guarantee that each customer must be visited by a DV. Constraints (5.3) and (5.4)
ensure optional visits to dedicated transfer vertices for DVs and to all possible transfer locations
for SVs, respectively. Flow conservation for DVs and SVs is given by Constraints (5.5) and Con-
straints (5.6), respectively. Constraints (5.7) guarantee time feasibility for arcs traversed by DVs and
Constraints (5.8) for arcs traversed by SVs. Constraints (5.9) and (5.10) limit the arrival times of DVs
and SVs at each vertex to the respective maximum route durations. Constraints (5.11) and (5.12)
ensure that service starts within the time window of each customer taking into account the task order
at the respective vertex. Constraints (5.13) and (5.14) ensure the synchronization of DVs and SVs by
equating the DV’s transfer end time and the SV’s departure time.

Constraints (5.15) guarantee that a transfer location is visited by an SV if a transfer is scheduled at the
respective vertex. Constraints (5.16) ensure that the task order at customer vertices becomes relevant
only if a transfer is scheduled. Constraints (5.17) and (5.18) guarantee fuel, and Constraints (5.19)
and (5.20) load feasibility for arcs traveled by DVs without considering the possibility of replenishing
the respective capacities. The range of the SVs’ load is defined in Constraints (5.21). Finally, the
binary decision variables are defined in Constraints (5.22) and (5.23).

5.2.2. Model VRPTWMD-F with Fuel Replenishment

In case of possible replenishments of the DVs’ fuel capacity, i.e., R � F , Constraints (5.17) need to
be replaced by the following constraints to obtain model VRPTWMD-F:

bj ¤ bi � b1i � fijxij � F ppi � p1 � xijqq @i P V 1
0, j P V 1

n�1, i � j (5.24)

b1i ¤ Fpi @i P V 1
0 (5.25)

b1i ¤ bi @i P V 1
0 (5.26)

bi � F p1 � piq ¤ b1i @i P V 1
0 (5.27)

Ωj ¤ Ωi � pF � biq � LSp1 � yijq @i P V 1
0, j P V 1

n�1, i � j (5.28)

Constraints (5.24) link the fuel levels at vertex i and its successor j. If no fuel transfer takes place at
vertex i, the fuel level upon arrival at vertex j is calculated similarly to Constraints (5.17) in the base
model, i.e., as the fuel level at vertex i reduced by the amount of fuel consumed on the arc between
both vertices. Otherwise, the fuel level at vertex i is replenished to its full capacity before traveling to
vertex j. Thus, in the second case, bi has to be omitted in Constraints (5.24), which can be expressed
as bip1 � piq. To avoid quadratic terms, we introduce the additional variable b1i. Constraints (5.25)–
(5.27) ensure that bi is eliminated in Constraints (5.24), i.e., b1i � bi if pi � 1. Otherwise, pi � 0 leads
to the omission of F in the inequality and to b1i � 0.
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Constraints (5.28) ensure the load feasibility for SVs which leave a transfer location depending on the
amount of fuel transferred to the DV.

5.2.3. Model VRPTWMD-L with Load Replenishment

If the load capacity of DVs can be replenished, i.e., R � LD, we need to replace Constraints (5.19) in
the base model by the following constraints to obtain model variant VRPTWMD-L:

qsi ¤ qi � φi � LDoi � ui @i P V 1
0 (5.29)

φi ¤ LDoi @i P V 1
0 (5.30)

φi ¤ qi @i P V 1
0 (5.31)

qi � LDp1 � oiq ¤ φi @i P V 1
0 (5.32)

qj ¤ qsi � ς 1i � ς2i � LDppi � ξiq � LDp1 � xijq @i P V 1
0, j P V 1

n�1, i � j (5.33)

ς 1i ¤ LDpi @i P V 1
0 (5.34)

ς 1i ¤ qsi @i P V 1
0 (5.35)

qsi � LDp1 � piq ¤ ς 1i @i P V 1
0 (5.36)

ς2i ¤ LDoi @i P V 1
0 (5.37)

ς2i ¤ qsi @i P V 1
0 (5.38)

qsi � LDp1 � oiq ¤ ς2i @i P V 1
0 (5.39)

ξi ¤ oi @i P V 1
0 (5.40)

ξi ¤ pi @i P V 1
0 (5.41)

pi � p1 � oiq ¤ ξi @i P V 1
0 (5.42)

Ωj ¤ Ωi � pLD � φi � qsi � ς2i q � LSp1 � yijq @i P V 1
0, j P V 1

n�1, i � j (5.43)

While in the base model, the load level of a DV monotonically decreases along a route depending on
the delivered customer demands, we now need to additionally consider scheduled transfer operations
that restore the current load level of a DV to LD. In contrast to fuel, load is not consumed along
arcs but upon service at customers. The evaluation of the load feasibility thus depends on the order
of tasks executed at a customer. Therefore, we introduce variable qsi to specify the load level of a DV
after service at vertex i.

Constraints (5.29) define qsi depending on the load level upon arrival qi and the order of tasks oi
at vertex i. More precisely, if no load transfer takes place or the service is performed before the
transfer (oi � 0), the load level upon arrival qi is reduced by the demand ui of customer i to obtain qsi .
Otherwise, if oi � 1, the DV’s load level is fully replenished before the customer is served. Thus, in this
case, the load level after service corresponds to the load capacity LD reduced by the demand and qi has
to be omitted in Constraints (5.29) which can be expressed as qip1� oiq. To linearize this expression,
we introduce variable φi. Depending on oi, Constraints (5.30)–(5.32) control the consideration of φi
in Constraints (5.29).

Constraints (5.33) then link the load level after service at the current vertex i to the load level upon
arrival at its successor j. Here, we need to consider the task order at vertex i again. If no transfer
takes place or the service is performed after the transfer (pi � 0 _ ppi � 1 ^ oi � 1q), the load level
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upon arrival at vertex j is equal to the load level after service qsi . Thus, we need to link qsi to pi and
oi which may be expressed as qsi p1 � pi � oiq. We again linearize the resulting quadratic terms by
introducing the additional auxiliary variables ς 1i and ς2i , which are defined in Constraints (5.34)–(5.39).
Otherwise, if the service is performed before the transfer (pi � 1^ oi � 0), qj corresponds to the fully
replenished load capacity LD. To linearize the quadratic expression LDpip1�oiq, we introduce variable
ξi which is defined in Constraints (5.40)–(5.42).

Finally, Constraints (5.43) ensure the load feasibility of SVs depending on the task order at transfer
vertex i. More precisely, either the load level upon arrival (oi � 1) or the load level after service
(oi � 0) is considered to determine the amount of load transferred to the DV. The additional variables
used in the VRPTWMD-L model are summarized in Table 5.2.

Decision variables
qsi decision variable specifying the load level of a DV after serving vertex i
φi auxiliary variable used to linearize the link between qi and oi
ς 1i auxiliary variable used to linearize the link between qsi and pi
ς2i auxiliary variable used to linearize the link between qsi and oi
ξi auxiliary variable used to linearize the link between pi and oi

Table 5.2.: Additional decision variables used in model variant VRPTWMD-L.

5.3. Adaptive Large Neighborhood Search with Path Relinking for
the VRPTWMD

In this section, we describe our hybrid solution method of ALNS and PR for the VRPTWMD. A
pseudocode overview of ALNS-PR is given in Figure 5.2.

S Ð generateInitialSolutionpq
Initialize best solution S� Ð S
Initialize set of elite solutions E ÐH
while number of iterations without improvement ¤ ω do
if S already visited or set of elite solutions E not completely filled then

S 1 Ð performALNS(S)
else

S 1 Ð performPathRelinkingpS, Eq
end if
S 1 Ð performLocalSearchpS 1q
E Ð evaluateInclusion(S 1)
if acceptSA(S 1,S) then

S Ð S 1

if S 1 improves on S� then
S� Ð S 1

end if
end if
updatePenaltyFactorspSq

end while

Figure 5.2.: Pseudocode of the ALNS-PR algorithm.

During the search, we allow infeasible solutions, i.e., solutions not respecting all constraints, but
handle them by means of a dynamic penalty mechanism. More precisely, we transform constraint
violations into penalty costs by multiplying the respective value with a dedicated penalty factor for
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each constraint that is dynamically updated during the search. The penalty mechanism and the
determination of constraint violations are described in Section 5.3.1.

To generate an initial solution, we employ a construction heuristic that is able to handle violations of
R by inserting transfers and constructing initial SV routes (Section 5.3.2). To avoid the generation of
infeasible precedence relations when inserting a transfer, we make use of a cycle-detection mechanism
which is detailed in Section 5.3.3. We subsequently try to improve the resulting solution S by applying
the local search implementation described in Section 5.3.4.

The following improvement phase is repeated until a maximum number ω of iterations without im-
provement of the current best solution S� is reached. In each iteration, we decide whether to apply
the ALNS or the PR component to the current solution S. Our PR component relies on a dynamic
set E of elite solutions that are recombined with new solutions found during the search. Therefore,
if the current solution S has already been encountered before in the search, or the elite set is not
completely filled, i.e., |E | is smaller than the maximum size λ of the elite set, we apply our ALNS
component to S (Section 5.3.5). If the ALNS component has been applied in the current iteration, we
update the selection probabilities of its components according to the adaptive mechanism described
in Section 5.3.5. Otherwise, if S represents a new solution and the elite set E is filled, PR is applied
between S and the solutions contained in E (Section 5.3.6).

In each case, we subsequently aim at improving the solution returned by the selected component via
local search. The resulting solution S 1 is then evaluated regarding its inclusion in the set of elite
solutions E with the goal of balancing quality and diversity among the elite solutions. As long as E is
not completely filled, any feasible solution is added. Otherwise, S 1 is included and replaces the worst
solution contained in E if it is feasible, and

• improves on the best solution in E , or
• an SA-based comparison with the worst solution in E similar to the mechanism described in

Section 5.3.7 turns out in favor of the candidate solution S 1, and the inclusion of S 1 does not
deteriorate the average diversity among all elite solutions. We measure the diversity between
solutions in terms of the number of arcs exclusively contained in one of both solutions (see
Section 5.3.6).

Our SA acceptance mechanism then decides if S 1 replaces S as the current solution for the subsequent
iteration (Section 5.3.7). After µ iterations without improvement, we reset S to S�. For the purpose
of diversification, we set the SA temperature back to its initial value and S to a solution randomly
chosen from the elite set after ε solution resets. The probability of an elite solution to be selected is
proportional to the diversity between this solution and S�.

Finally, the penalty factors are updated depending on the number of consecutive ALNS-PR iterations
during which the respective constraint has been satisfied or violated in solution S 1 (Section 5.3.1).

5.3.1. Solution Evaluation and Penalty Mechanism

For tightly constrained problems like the VRPTWMD, it is beneficial to temporarily tolerate constraint
violations to be able to explore the solution space more flexibly. Therefore, we allow infeasible solutions
during the search but impose dynamic penalty costs for violating the respective constraints. A solution
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S is then evaluated according to a generalized cost function fgenpSq:

fgenpSq � fpSq � δLDυLDpSq � δLSυLSpSq � δFυF pSq � δTWυTW pSq,

where fpSq denotes the objective function value of solution S, δLD, δLS , δF , and δTW the penalty
factors for DV load, SV load, fuel, and time window violations, and υLDpSq, υLSpSq, υF pSq, and
υTW pSq the current DV load, SV load, fuel, and time window violations in solution S, respectively.

Starting from the initial value δ0, each penalty factor is dynamically varied during the search within the
interval rδmin , δmaxs. After η� consecutive ALNS-PR iterations with S 1 violating a certain constraint,
the associated penalty factor is increased by multiplying by factor δupdate. Analogously, after η�

iterations without violating a certain constraint, the respective penalty factor is decreased by dividing
by δupdate.

To efficiently evaluate potential moves with respect to the associated changes in constraint violations,
solution methods for VRPs rely on the quick retrieval of the required solution information. This is
particularly important for the VRPTWMD, where the interdependence of routes due to transfers may
otherwise necessitate the recalculation of the entire solution. We store vertex-specific information that
allows us to evaluate changes in resource and time window violations in Op1q.

Before we detail the evaluation of constraint violations, we first introduce some necessary notation:
Let a sequence of vertices x0, i, ..., n� 1y define a route, where 0 and n� 1 correspond to instances
of the same depot representing the start and end of the route, respectively. We denote the direct
predecessor of vertex i as i� and the direct successor of i as i�. Moreover, let Vr denote the set
of vertices that are visited by route r. In addition, we introduce the set DD of visits to dedicated
transfer vertices contained in DV routes, the set C� � Ct of customers at which a transfer is currently
performed, the set C� � CzC� of customers at which no transfer is currently performed, and the set
T S of SV visits. A solution S is defined as the union of the set of DV routes SD and the set of SV
routes SS , i.e., S � SD Y SS . Finally, in our algorithm, we use the following operators to modify a
given solution:

• Insertion of a customer i P C�

• Insertion of a dedicated transfer, i.e., insertion of the associated DV visit i P DD and SV visit
i1 P T S

• Insertion of a customer i P C�, i.e., insertion of i and the associated SV visit i1 P T S

• Assignment of a transfer status to a customer i P CtzC�, i.e., C� Ð C�Ytiu^ C� Ð C�ztiu and
insertion of the associated SV visit i1 P T S

• Removal of a customer i P C�

• Removal of a dedicated transfer, i.e., removal of the associated DV visit i P DD and SV visit
i1 P T S

• Removal of a customer i P C�, i.e., removal of i and the associated SV visit i1 P T S

• Removal of the transfer status of a customer i P C�, i.e., C� Ð C� Y tiu ^ C� Ð C�ztiu and
removal of the associated SV visit i1 P T S

In the following descriptions of the evaluation of constraint violations, we always refer to the general
case of performing transfers at customer locations. However, note that transfers at dedicated transfer
vertices may be evaluated in similar fashion considering that si � 0 and ui � 0 for each dedicated
transfer visit i P DD thus rendering the task order irrelevant.
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5.3.1.1. Calculation of Fuel Violations

To efficiently evaluate fuel violations in DV routes, we adopt the idea introduced in Schneider, Stenger,
and Goeke (2014) for the E-VRPTW and define the following two variables for each vertex i: fÑi
represents the amount of fuel consumed since the last fuel transfer or the depot (in case no fuel
transfer is scheduled or R � F ) and fÐi is the amount of fuel required to reach the next fuel transfer
or the depot. Both variables are calculated as follows:

f
Ñ

i �

$''&
''%

0 if i � 0,

fi�i else if i� � 0 _ ppi� � 1 ^R � F q,

f
Ñ

i� � fi�i else.

f
Ð

i �

$''&
''%

0 if i � n� 1,

fii� else if i� � n� 1 _ ppi� � 1 ^R � F q,

f
Ð

i� � fii� else.

The fuel violation of a solution S can then be determined as the sum of the individual violations for
each fuel segment, i.e., at each fuel transfer and upon returning to the depot:

υF pSq �
¸
rPSD

� ¸
iPVr:pi�1^R�F

maxpfÑi � F, 0q � maxpfÑn�1 � F, 0q
�
.

Figure 5.3 shows an example route containing six vertices (ignoring customer 7 for now) to illustrate
the calculation of the variables fÑi and fÐi assuming that R � F . Fuel consumptions between vertices
are given on the arcs. Moreover, we assume F � 10, and at each transfer and the end depot, we
indicate if the fuel capacity is satisfied (green) or exceeded (red) in the respective segment.
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Figure 5.3.: Example to illustrate the fuel evaluation for different cases of vertex insertions.

The calculation of the new fuel violation for a route segment resulting from the insertion ν�j of a
vertex j between vertices i and k requires to differentiate between the insertion of a customer (j P C�)
and the insertion (j P DD _ j P C�) or assignment (j P CtzC�) of a transfer if R � F . If j P C�,
depending on whether fuel transfers are scheduled at the potential new predecessor i or the potential
new successor k of customer j to be inserted, the new fuel violation of the corresponding route segment
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is defined as:

υF pν�j q �

$'''''&
'''''%

maxpfÑi � f
Ð

k � fij � fjk � F, 0q if ppi � 0 ^ pk � 0q _R � F ,

maxpfÐk � fij � fjk � F, 0q else if pi � 1 ^ pk � 0,

maxpfÑi � fij � fjk � F, 0q else if pi � 0 ^ pk � 1,

maxpfij � fjk � F, 0q else if pi � 1 ^ pk � 1.

We illustrate the cases above by evaluating the insertion of customer 7 for different insertion positions
as shown in Figure 5.3. More precisely, we evaluate the insertion of customer 7 between (i) customers
1 and 2, (ii) transfer vertex 3t and customer 4, (iii) customer 4 and transfer vertex 5t, and (iv) transfer
vertices 5t and 6t. Assuming that R � F , the corresponding violations are then calculated as follows:

υF pν�7 q �

$'''''&
'''''%

(i): maxpfÑ1 � f
Ð

2 � f17 � f72 � 10, 0q � maxp3 � 4 � 4 � 1 � 10, 0q � 2,

(ii): maxpfÐ4 � f37 � f74 � 10, 0q � maxp2 � 4 � 4 � 10, 0q � 0,

(iii): maxpfÑ4 � f47 � f75 � 10, 0q � maxp2 � 4 � 5 � 10, 0q � 1,

(iv): maxpf57 � f76 � 10, 0q � maxp1 � 1 � 10, 0q � 0.

If R � F , the new fuel violation caused by the insertion of a transfer (of the other resource) is evaluated
similarly as in the customer case. Otherwise, if R � F , the insertion (j P DD _ j P C�) or assignment
(j P CtzC�) of a transfer splits the respective route segment into two segments and the associated fuel
consumptions need to be compared separately to the fuel capacity F. Then, we need to distinguish
the following four cases with respect to the existence of fuel transfers at vertices i and k:

υF pν�j q �

$''''''''&
''''''''%

maxpfÑi � f
Ð

k � fij � fjk � F, 0q if R � F ,

maxpfÑi � fij � F, 0q � maxpfjk � f
Ð

k � F, 0q else if pi � 0 ^ pk � 0,

maxpfij � F, 0q � maxpfjk � f
Ð

k � F, 0q else if pi � 1 ^ pk � 0,

maxpfÑi � fij � F, 0q � maxpfjk � F, 0q else if pi � 0 ^ pk � 1,

maxpfij � F, 0q � maxpfjk � F, 0q else if pi � 1 ^ pk � 1.

We use Figure 5.3 to illustrate the calculation for each case, now assuming that a fuel transfer is
scheduled at customer 7. Note that in case of fuel, the task order at a customer does not affect the
calculation of the fuel violation (indicated with 7s{t). The resulting fuel violations are given as follows:

υF pν�7s{tq �

$'''''''''''''''''&
'''''''''''''''''%

(i): maxpfÑ1 � f17 � 10, 0q � maxpf72 � f
Ð

2 � 10, 0q

� maxp3 � 4 � 10, 0q � maxp1 � 4 � 10, 0q � 0,

(ii): maxpf37 � 10, 0q � maxpf74 � f
Ð

4 � 10, 0q

� maxp4 � 10, 0q � maxp4 � 2 � 10, 0q � 0,

(iii): maxpfÑ4 � f47 � 10, 0q � maxpf75 � 10, 0q

� maxp2 � 4 � 10, 0q � maxp5 � 10, 0q = 0,

(iv): maxpf57 � 10, 0q � maxpf76 � 10, 0q

� maxp1 � 10, 0q � maxp1 � 10, 0q � 0.

To determine the new fuel violation for a route segment after removing vertex i, we need to distinguish
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between the actual removal of a vertex and the conversion of a transfer vertex into a regular customer,
i.e., only the removal of its transfer status. Both cases differ with respect to the fuel consumption
required to connect the two partial routes adjacent to the route position being modified. We define
variable f�i that specifies the respective fuel consumption to consider:

f�i �

#
fi�i� if actual vertex removal,

fi�i � fii� if status conversion.

This value can now be used in the calculation of the new fuel violation in a segment caused by removal
operation ν�i which additional needs to distinguish four cases depending on whether fuel transfers are
scheduled at the predecessor and successor of vertex i:

υF pν�i q �

$'''''&
'''''%

maxpfÑi� � f
Ð

i� � f�i � F, 0q if ppi� � 0 ^ pi� � 0q _R � F ,

maxpfÐi� � f�i � F, 0q else if pi� � 1 ^ pi� � 0,

maxpfÑi� � f�i � F, 0q else if pi� � 0 ^ pi� � 1,

maxpf�i � F, 0q else if pi� � 1 ^ pi� � 1.

For the purpose of illustration, Figure 5.4 shows an extended example route for which we want to
evaluate the removal of (i) customer 7 between customers 1 and 2, (ii) customer 8 between transfer
vertex 3t and customer 4, (iii) customer 9 between customer 4 and transfer vertex 5t, and (iv) customer
10 between transfer vertices 5t and 6s. The corresponding fuel violations are calculated as follows:

υF pν�i q �

$'''''&
'''''%

(i) i = 7: maxpfÑ1 � f
Ð

2 � f12 � 10, 0q � maxp3 � 4 � 4 � 10, 0q � 1,

(ii) i = 8: maxpfÐ4 � f34 � 10, 0q � maxp9 � 2 � 10, 0q � 1,

(iii) i = 9: maxpfÑ4 � f45 � 10, 0q � maxp8 � 2 � 10, 0q � 0,

(iv) i = 10: maxpf56 � 10, 0q � maxp2 � 10, 0q � 0.
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Figure 5.4.: Example to illustrate the fuel evaluation for different cases of vertex removals.

For any operation, the change in fuel violation is then calculated as the difference between the fuel
violation caused by the operation and the current fuel violation in the respective fuel segment.

5.3.1.2. Calculation of Load Violations for DVs

To evaluate load violations in DV routes, we define lÑi as the cumulated demand delivered since the
last load transfer or the depot and lÐi as the cumulated demand to be delivered until the next load
transfer or the depot for each vertex i. While fuel is only consumed along arcs, the load capacity LD

reduces upon performing service at a customer. Thus, the calculation of both load variables requires
the consideration of task orders at the current vertex and at its predecessor and successor if load
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transfers are scheduled to correctly assign the respective demands to the adjacent route segments:

l
Ñ

i �

$'''''&
'''''%

0 if i � 0,

l
Ñ

i� � ui else if ppi� � 0 ^ pi � 0q _R � LD,

l
Ñ

i� � uip1 � oiq else if pi� � 0,

ui�oi� � uip1 � oiq else.

l
Ð

i �

$''''''''&
''''''''%

0 if i � n� 1,

l
Ð

i� � ui else if ppi� � 0 ^ pi � 0q _R � LD,

l
Ð

i� � uioi else if pi� � 0 ^ pi � 1,

ui�p1 � oi�q � ui else if pi� � 1 ^ pi � 0,

ui�p1 � oi�q � uioi else if pi� � 1 ^ pi � 1.

The total load violation in the DV routes of a solution S can then be calculated by summing up
the individual violations for each load segment, i.e., at every load transfer and upon returning to the
depot:

υLDpSq �
¸
rPSD

� ¸
iPVr:pi�1^R�LD

maxplÑi � LD, 0q � maxplÑn�1 � LD, 0q
�
.

Figure 5.5 shows an example to illustrate the calculation of lÑi and lÐi based on a load capacity LD � 10
and the assumption of R � LD. In the displayed situation, all segments are load-feasible. However,
note that switching the task order at vertex 3t would lead to a violation of the load capacity due to
the additional consideration of its demand in the preceding load segment instead of the succeeding
(less utilized) one.

The calculation of the new load violation for a load segment after inserting a vertex also requires
the consideration of task orders if load transfers take place at the potential new predecessor and
successor. Analogous to the fuel evaluation, we additionally need to distinguish between the insertion
of a customer (j P C�) and the insertion (j P DD _ j P C�) or assignment (j P CtzC�) of a transfer
in case of R � LD. The new load violation for a load segment caused by inserting a customer j P C�

between vertices i and k is defined as:

υLDpν�j q �

$'''''&
'''''%

maxplÑi � l
Ð

k � uj � LD, 0q if ppi � 0 ^ pk � 0q _R � LD,

maxpuioi � l
Ð

k � uj � LD, 0q else if pi � 1 ^ pk � 0,

maxplÑi � ukp1 � okq � uj � LD, 0q else if pi � 0 ^ pk � 1,

maxpuioi � ukp1 � okq � uj � LD, 0q else if pi � 1 ^ pk � 1.

Using Figure 5.5a, we evaluate the insertion of customer 7 between (i) customers 1 and 2, (ii) transfer
vertex 3t and customer 4, (iii) customer 4 and transfer vertex 5s, and (iv) transfer vertices 5s and 6t,
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(a) Customer insertion
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(b) Load transfer vertex insertion
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Figure 5.5.: Example to illustrate the load evaluation for different cases of vertex insertions.

this time with respect to potential load violations:

υLDpν�7 q �

$'''''&
'''''%

(i): maxplÑ1 � l
Ð

2 � u7 � 10, 0q � maxp2 � 6 � 3 � 10, 0q � 1,

(ii): maxpu3o3 � l
Ð

4 � u7 � 10, 0q � maxp3 � 5 � 3 � 10, 0q � 1,

(iii): maxplÑ4 � u5p1 � o5q � u7 � 10, 0q � maxp4 � 4 � 3 � 10, 0q � 1,

(iv): maxpu5o5 � u6p1 � o6q � u7 � 10, 0q � maxp0 � 0 � 3 � 10, 0q � 0.

If R � LD, the load violation for both customer and transfer insertion/assignment is evaluated in
identical fashion. Otherwise, if R � LD, the insertion (j P DD _ j P C�) or assignment (j P CtzC�) of
a transfer splits the respective load segment in two segments which have to be evaluated separately
with respect to LD. The order of tasks at the vertex j to be inserted determines which of both load
segments its demand is assigned to:

υLDpν�j q �

$''''''''&
''''''''%

maxplÑi � l
Ð

k � uj � LD, 0q if R � LD,

maxplÑi � ujp1 � ojq � LD, 0q � maxpujoj � l
Ð

k � LD, 0q else if pi � 0 ^ pk � 0,

maxpuioi � ujp1 � ojq � LD, 0q � maxpujoj � l
Ð

k � LD, 0q else if pi � 1 ^ pk � 0,

maxplÑi � ujp1 � ojq � LD, 0q � maxpujoj � ukp1 � okq � LD, 0q else if pi � 0 ^ pk � 1,

maxpuioi � ujp1 � ojq � LD, 0q � maxpujoj � ukp1 � okq � LD, 0q else if pi � 1 ^ pk � 1.

Now, assume that a load transfer is scheduled at customer 7 which is performed before the service
(o7 � 1) as shown in Figure 5.5b. The resulting load violations for the different insertion positions are
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then calculated as:

υLDpν�7tq �

$'''''''''''''''''&
'''''''''''''''''%

(i): maxplÑ1 � u7p1 � o7q � 10, 0q � maxpu7o7 � l
Ð

2 � 10, 0q

� maxp2 � 0 � 10, 0q � maxp3 � 6 � 10, 0q � 0,

(ii): maxpu3o3 � u7p1 � o7q � 10, 0q � maxpu7o7 � l
Ð

4 � 10, 0q

� maxp3 � 0 � 10, 0q � maxp3 � 5 � 10, 0q � 0,

(iii): maxplÑ4 � u7p1 � o7q � 10, 0q � maxpu7o7 � u5p1 � o5q � 10, 0q

� maxp4 � 0 � 10, 0q � maxp3 � 4 � 10, 0q � 0,

(iv): maxpu5o5 � u7p1 � o7q � 10, 0q � maxpu7o7 � u6p1 � o6q � 10, 0q

� maxp0 � 10, 0q � maxp3 � 0 � 10, 0q � 0.

When removing a vertex, we need to distinguish between the actual removal of a vertex and the
removal of its transfer status analogous to the fuel evaluation. Therefore, we define variable l�i to
specify the additional load to consider to connect both partial routes:

l�i �

#
0 if actual vertex removal,

ui if status conversion.

The calculation of the new load violation for a load segment after the removal ν�i of a vertex i then
also requires the consideration of task orders if load transfers take place at the adjacent vertices:

υLDpν�i q �

$'''''&
'''''%

maxplÑi� � l
Ð

i� � l�i � LD, 0q if ppi� � 0 ^ pi� � 0q _R � LD,

maxpui�oi� � l
Ð

i� � l�i � LD, 0q else if pi� � 1 ^ pi� � 0,

maxplÑi� � ui�p1 � oi�q � l�i � LD, 0q else if pi� � 0 ^ pi� � 1,

maxpui�oi� � ui�p1 � oi�q � l�i � LD, 0q else if pi� � 1 ^ pi� � 1.

We use Figure 5.6 to illustrate the load evaluation for the removal of (i) customer 7 between customers
1 and 2, (ii) customer 8 between transfer vertex 3t and customer 4, (iii) customer 9 between customer
4 and transfer vertex 5s, and (iv) customer 10 between transfer vertices 5s and 6t, assuming that
R � LD:

υLDpν�i q �

$'''''&
'''''%

(i) i = 7: maxplÑ1 � l
Ð

2 � 0 � 10, 0q � maxp2 � 6 � 0 � 10, 0q � 0,

(ii) i = 8: maxpu3o3 � l
Ð

4 � 0 � 10, 0q � maxp3 � 8 � 0 � 10, 0q � 1,

(iii) i = 9: maxplÑ4 � u5p1 � o5q � 0 � 10, 0q � maxp7 � 4 � 0 � 10, 0q � 1,

(iv) i = 10: maxpu5o5 � u6p1 � o6q � 0 � 10, 0q � maxp0 � 0 � 0 � 10, 0q � 0.

For any operation, the change in load violation is then calculated as the difference between the load
violation caused by the operation and the current load violation in the respective load segment.

5.3.1.3. Calculation of Load Violations for SVs

We evaluate load violations in SV routes similar to load violations in DV routes. However, while
the customer demands to be delivered by the DVs are fixed and given by the problem instance,
the demands that need to be satisfied by the SVs are dynamically created depending on the DVs’
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Figure 5.6.: Example to illustrate the load evaluation for different cases of vertex removals.

consumption of the replenishable resource R. The amount uS
i1 to be replenished by an SV at visit

i1 P T S corresponds to the resource amount consumed by the DV at the connected visit i P DD or
i P C� since the last transfer or the depot, limited to the respective capacity:

uS
i1 �

#
minpfÑi , F q if R � F ,

minplÑi , LDq if R � LD.

Based on these prerequisites, we define lSÑi1 as the cumulated resource amount replenished since the
depot and lSÐi1 as the cumulated resource amount to be replenished until the depot for each SV visit
i1:

lS
Ñ

i1 �

#
0 if i1 � 0,

lS
Ñ

i1� � uS
i1 else.

lS
Ð

i1 �

#
0 if i1 � n� 1,

lS
Ð

i1� � uS
i1 else.

The SV load violation of a solution S can then be calculated as the sum of the violations upon
returning to the depot for all SV routes:

υLSpSq �
¸
rPSS

maxplSÑn�1 � LS , 0q.

Figure 5.7 illustrates the calculation of uS
i1 , lS

Ñ

i1 , and lSÐi1 for an example SV route that is connected
to a DV route via three transfers. In the example, we assume R � F and LS � 20. The displayed SV
route is thus feasible with respect to load capacity LS .
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Figure 5.7.: Example to illustrate the load evaluation for SVs.

69



5 Utilizing Mobile Depots in Urban Logistics

Finally, the new load violation resulting from inserting a visit j1 into an SV route between visits i1

and k1 is calculated as:

υLSpν�j1 q � maxplSÑi1 � lS
Ð

k1 � uS
j1 � LS , 0q,

and from removing a visit i1 from an SV route as:

υLSpν�i1 q � maxplSÑi1� � lS
Ð

i1� � LS , 0q.

For any operation, the change in SV load violation is then calculated as the difference between the
load violation caused by the operation and the current load violation in the regarded SV route.

5.3.1.4. Calculation of Time Window Violations

To efficiently evaluate time window violations, we make use of the approach that has been proposed
by Nagata, Bräysy, and Dullaert (2010) and enhanced by Schneider, Sand, and Stenger (2013). Here,
a time window violation is considered only once at the vertex where it occurred. Then, based on
the notion of time travel, it is assumed that the vehicle performs the service at this customer at the
latest feasible moment, i.e., at the end of the time window of the customer. In this way, violations are
not accumulated along succeeding vertex sequences which, on their own, are feasible with respect to
the associated time windows. In the classical VRPTW, this assumption allows to compute changes
in time window violation for conventional inter-route moves in Op1q. We adapt this approach to the
VRPTWMD by taking into account the synchronization of the DVs and SVs.

Following Nagata, Bräysy, and Dullaert (2010), we define extended earliest and latest time variables
for each vertex. The term “extended” indicates the possibility of time travels.

Calculation of earliest times We start with introducing the extended earliest time variables, i.e.,
extended arrival time aD

i of a DV, arrival time aS
i1 of an SV, departure time dD

i of a DV, departure
time dS

i1 of an SV, and service start time a1i at vertex i. In addition, aT
i1 denotes the transfer start time

at vertex i and the associated support visit i1 P T S . Starting at the beginning of the planning horizon,
i.e., aD

0 � aS
0 � dD

0 � dS
0 � a10 � aT

0 � e0, the extended earliest times are recursively calculated from
the depot of each route in forward direction. Figure 5.8a exemplifies the calculation of the extended
earliest times. Here, the value on each arc represents the travel time tij between the associated vertices
i and j. In addition, we assume τ � 5 and si � 5 @i P C.

For any vertex succeeding the depot, the extended earliest arrival time aD
i of a DV is calculated as the

sum of the extended earliest departure time dD
i� at its predecessor and the travel time ti�i between

the two vertices:

aD
i � dD

i� � ti�i .

The extended earliest departure time dD
i depends on the last task performed at vertex i:

dD
i �

#
a1i � si if pi � 0 _ ppi � 1 ^ oi � 1q,
aT
i1 � τ if pi � 1 ^ oi � 0.
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If no transfer is scheduled or the service is performed after the transfer, the DV may leave as soon as
the service terminates, i.e., at the point in time corresponding to the extended earliest service start
time a1i plus the service time si . Otherwise, if the transfer is scheduled after the service, the earliest
departure time of the DV coincides with the earliest end of the transfer operation calculated as earliest
transfer start time aT

i1 plus transfer time τ .

The extended earliest service start time a1i also depends on the task order at vertex i:

a1i �

#
minpmaxpaD

i , eiq, liq if oi � 0,
minpmaxpaT

i1 � τ, eiq, liq if oi � 1.

More precisely, in case no transfer takes place at customer i or the service is scheduled before the
transfer, the service can start as soon as the vehicle has arrived but not before the earliest start of
service ei. In case a transfer is performed first, the service may start as soon as the transfer is finished
and the time window is open. In both cases, the vehicle has to travel back in time if the resulting
time exceeds the latest start of service li.

The extended earliest arrival time aS
i1 of an SV at vertex i1 is analogously defined based on the extended

earliest departure time dS
i1�

at its predecessor:

aS
i1 � dS

i1�
� ti1�i1 .

An SV can leave as soon as the transfer terminates. Thus, the extended earliest departure time dS
i1 of

an SV at vertex i1 is given as:

dS
i1 � aT

i1 � τ.

Finally, the extended earliest transfer start time aT
i1 is determined as follows:

aT
i1 �

#
maxpaS

i1 , a
1
i � siq if oi � 0,

maxpaS
i1 , a

D
i q if oi � 1.

If the customer service is executed first, the transfer may start as soon as the service is finished and
the SV has arrived. Otherwise, the transfer begins as soon as both vehicles are present at the transfer
location.

To illustrate the synchronization of both vehicles, first consider vertex 3t in Figure 5.8a. Here, the
transfer operation is scheduled before the service and may thus start as soon as both vehicles have
arrived:

aT
31 � maxpaS

31 , a
D
3 q � maxp10, 22q � 22.

The service can then start when the transfer terminates:

a13 � minpmaxpaT
31 � τ, e3q, l3q � minpmaxp22 � 5, 20q, 30q � 27.

The DV can leave after the service:

dD
3 � a13 � s3 � 27 � 5 � 32,
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and the SV after the transfer:

dS
31 � aT

31 � 5 � 22 � 5 � 27.

At vertex 5s, the service is performed first. Because the DV arrives earlier than the earliest start of
service, it has to wait until the time window is open:

a15 � minpmaxpaD
5 , e5q, l5q � minpmaxp8, 10q, 15q � 10.

The transfer can then begin as soon as the service is finished and the SV has arrived:

aT
51 � maxpaS

51 , a
1
5 � s5q � maxp32, 10 � 5q � 32.

Finally, both vehicles can leave after the transfer terminates, i.e., dD
5 � dS

51 � aT
51 � τ � 32 � 5 � 37.

Calculation of latest times Moreover, for each vertex i and the possibly associated support visit
i1 P T S , we define extended latest times, i.e., the extended latest arrival time zD

i of a DV, latest
arrival time zS

i1 of an SV, latest departure time wD
i of a DV, latest departure time wS

i1 of an SV, latest
service start time z1i, and latest transfer start time zT

i1 . The extended latest times are recursively
calculated backwards from the depot of each route based on the end of the planning horizon, i.e.,
zD

n�1 � zS
n�1 � wD

n�1 � wS
n�1 � z1n�1 � zT

n�1 � ln�1 . Thus, each extended latest time represents the
latest point in time at which the corresponding event has to take place such that no (additional) time
window violation occurs at succeeding vertices. The example in Figure 5.8a additionally illustrates
the calculation of the extended latest times.

For any preceding vertex i, the extended latest departure time wD
i of a DV is calculated based on the

extended latest arrival time zD
i� at its successor:

wD
i � zD

i� � tii� .

The DV has to arrive at a vertex before the first task starts. Thus, depending on the task order at
vertex i, zD

i corresponds to the extended latest service start time z1i or the extended latest transfer
start time zT

i1 . However, in case of performing the transfer first, we also need to consider the actual
arrival time aS

i1 of the associated SV at vertex i1. If the SV is currently arriving later than zT
i1 , no

benefits result from an arrival of the DV earlier than aS
i1 . The time window violation caused by the late

arrival of the SV is not affected. Thus, in this case, we only need to consider the additional violation
that occurs if the DV’s time of arrival exceeds aS

i1 . Integrating this rationale, zD
i is then determined

as:

zD
i �

#
z1i if oi � 0,
maxpzT

i1 , a
S
i1q if oi � 1.

For calculating the extended latest service start time z1i, we need to distinguish two cases again with
respect to the task order at vertex i. If no transfer takes place or the service is scheduled after
the transfer, the DV may leave after the service terminates. Thus, the service must end before the
extended latest departure time wD

i . Otherwise, if the service is executed first, it must be finished
before the extended latest transfer start time zT

i1 . Analogous to the calculation of zD
i , however, the
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end of service may be postponed until the arrival aS
i1 of the SV associated with the transfer if it exceeds

zT
i1 .

In both cases, we subtract the service time si from the respective reference time to obtain the extended
latest service start time z1i. In addition, the service must start within the respective time window which
leads to:

z1i �

$&
% maxpminpwD

i � si, liq, eiq if pi � 0 _ ppi � 1 ^ oi � 1q,
max

�
min

�
maxpzT

i1 , a
S
i1q � si, li

�
, ei

	
if pi � 1 ^ oi � 0.

The extended latest departure time of an SV at vertex i1 is analogously defined as for a DV based on
the extended latest arrival time zS

i1�
at its successor:

wS
i1 � zS

i1�
� ti1i1� .

The extended latest arrival time zS
i1 of an SV at vertex i1 depends on the extended latest transfer start

time zT
i1 and, analogous to the DV-related calculations, on the actual time the corresponding DV is

ready to transfer. An SV may arrive later than zT
i1 if the arrival time (oi � 1) or the service end time

(oi � 0) of the associated DV already violates this threshold. The extended latest arrival time zS
i1 is

then defined as:

zS
i1 �

#
maxpzT

i1 , a
D
i q if oi � 1,

maxpzT
i1 , a

1
i � siq if oi � 0.

Finally, the extended latest transfer start time zT
i1 is calculated as follows:

zT
i1 �

#
min

�
wS
i1 � τ, wD

i � τ
�

if oi � 0,
min

�
wS
i1 � τ, z1i � τ

�
if oi � 1.

If the transfer is performed last, it has to be finished before the latest departure time of both vehicles.
Otherwise, if the transfer is performed before the service, the latest transfer start time must be set
such that the latest departure time of the SV and the latest service start time can be met.

Consider for example transfer vertex 5s in Figure 5.8a again. Because the transfer is performed after
the service, both vehicles may leave after the transfer terminates. The latest transfer start time zT

51 is
thus calculated as:

zT
51 � min

�
wS

51 � τ, wD
5 � τ

	
� min p42 � 5, 30 � 5q � 25.

Based on zT
51 , the latest start of service z15 can then be determined taking into account the actual

arrival time aS
51 of the SV:

z15 � max
�

min
�

maxpzT
51 , a

S
51q � s5, l5

�
, e5

	
� max

�
min

�
maxp25, 32q � 5, 15

�
, 10
	
� 15.

Thus, the DV must not arrive later than the latest start of service, i.e., zD
5 � 15 and the SV not later

than the latest start of transfer:

zS
51 � maxpzT

51 , a
1
5 � s5q � maxp25, 15 � 5q � 25.
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At transfer vertex 3t, the service is performed last. The latest service start time z13 is thus calculated
based on the latest departure time wD

3 of the DV:

z13 � maxpminpwD
3 � s3, l3q, e3q � maxpminp33 � 5, 30q, 20q � 28.

The latest transfer start time zT
31 is then given as:

zT
31 � minpwS

31 � τ, z13 � τq � minp20 � 5, 28 � 5q � 15.

Finally, the DV must have arrived at:

zD
3 � maxpzT

31 , a
S
31q � maxp15, 10q � 15,

and the SV at:

zS
31 � maxpzT

31 , a
D
3 q � maxp15, 22q � 22.

The arrival of the SV could thus be postponed beyond the latest transfer start time because of the
DV’s late arrival.

Based on these prerequisites, we are able to evaluate changes in time window violation caused by the
operations described in Section 5.3.1 in Op1q. In contrast to the classical VRPTW, however, a time
window violation does not necessarily occur in the route that is currently modified if transfers exist.
This is why in the VRPTWMD, a time window violation cannot be assigned to a specific route in
straightforward fashion. Therefore, we estimate the change in time window violation caused by an
insertion or removal operation ν using a surrogate ∆υ̃TW , which is calculated as the difference between
the new time window violation υ̃TW pνq caused by the respective operation and the current time window
violation υ̃TW

i originating at the route position i that is being modified, i.e., ∆υ̃TW � υ̃TW pνq� υ̃TW
i .

This procedure is detailed in the following.

Evaluation of insertions To evaluate insertions, we need to distinguish again between the actual
insertion of a vertex and the assignment of a transfer to a customer that is already part of the solution.
In the former case of inserting a vertex j between vertices i and k in a DV route, we define the current
time window violation υ̃TW

k as the time window violation originating at the potential new successor
k of the vertex j to be inserted:

υ̃TW
k � maxpaD

k � zD
k , 0q.

If the insertion operation corresponds to the assignment of a transfer to a customer j P CtzC�, the
current time window violation represents the time window violation occurring at j plus succeeding
violations based on the departure time at j:

υ̃TW
j � maxpaD

j � lj , 0q � maxpdD
j � wD

j , 0q.

In the case of a transfer insertion/assignment, we additionally need to consider the change in time
window violation resulting from inserting the associated SV visit j1 P T S between visits i1 and k1. We
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(b) Extended earliest times after insertion of customer 7
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Figure 5.8.: Example to illustrate the evaluation of time window violations.
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define the current time window violation originating at k1 as:

υ̃TW
k1 � maxpaS

k1 � zS
k1 , 0q.

To determine the time window violation caused by insertion ν�j , we first calculate the resulting arrival
time ajpν�q at the vertex j to be inserted. In case of a DV route, the new arrival time is calculated
as follows:

aD
j pν

�
j q � dD

i � tij .

Then, the time window violation caused by the insertion of a customer j P C� is defined as the violation
occurring at j itself plus succeeding violations resulting from a late arrival at its new successor k:

υ̃TW pν�j q � maxpaD
j pν

�
j q � lj , 0q � max

�
min

�
maxpaD

j pν
�
j q, ejq, lj

�
� sj � tjk � zD

k , 0
	
.

Consider for example the insertion of customer 7 in Figure 5.8a. The resulting situation is depicted in
Figure 5.8b. The current time window violation originating at customer 2, the potential new successor
of customer 7 amounts to:

υ̃TW
2 � maxpaD

2 � zD
2 , 0q � maxp13 � 10, 0q � 3.

The new arrival time at customer 7 is calculated as:

aD
7 pν

�
7 q � dD

1 � t17 � 9 � 3 � 12.

Using aD
7 pν

�
7 q, the new time window violation caused by the insertion can be determined as:

υ̃TW pν�7 q � maxpaD
7 pν

�
7 q � l7, 0q � max

�
min

�
maxpaD

7 pν
�
7 q, e7q, l7

�
� s7 � t72 � zD

2 , 0
	

� maxp12 � 10, 0q � max
�

min
�

maxp12, 5q, 10
�
� 5 � 3 � 10, 0

	
� 2 � 8 � 10.

Thus, the insertion would cause an increase in time window violation of ∆υ̃TW � 10�3 � 7 (compare
the total time window violations in Figures 5.8a and 5.8b).

In case of inserting or assigning a transfer, we additionally need to consider the associated support
visit j1 P T S to be inserted between visits i1 and k1. The new arrival time at j1 is given as:

aS
j1pν

�
j1 q � dS

i1 � ti1j1 .

The time window violation caused by the insertion of the DV visit j P DD or the customer j P C�

associated with the transfer, or the assignment of a transfer status to customer j P CtzC� can then be
determined depending on the task order at j:

υ̃TW pν�j q �

#
maxpaD

j pν
�
j q � lj , 0q � maxpaT

j1 pν
�
j q � τ � tjk � zD

k , 0q if oj � 0,
maxpaT

j1 pν
�
j q � τ � lj , 0q � maxpa1jpν�j q � sj � tjk � zD

k , 0q if oj � 1.

More precisely, if the service is performed first, the evaluation of the potential service-related time
window violation at j is based on the new arrival time aD

j pν
�
j q at this visit. The DV may leave after
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the transfer terminates. Thus, potential succeeding violations are calculated based on the new transfer
start time aT

j1 pν
�
j q. Otherwise, if the transfer is performed first, a time window violation occurs at j

if the new transfer end time exceeds the latest start of service lj . Potential succeeding violations now
depend on the new service start time a1jpν�j q. Analogously to the calculation of the earliest times, if
oj � 0, the service may start as soon as the DV has arrived, or if oj � 1, as soon as the transfer ends
and the time window is open:

a1jpν
�
j q �

#
min

�
maxpaD

j pν
�
j q, ejq, lj

�
if oj � 0,

min
�

maxpaT
j1 pν

�
j q � τ, ejq, lj

�
if oj � 1.

The transfer in turn may begin as soon as both vehicles have arrived at the transfer location and, if
oj � 0, the service is finished:

aT
j1 pν

�
j q �

#
maxpaS

j1pν
�
j q, a

1
jpν

�
j q � sjq if oj � 0,

maxpaS
j1pν

�
j q, a

D
j pν

�
j qq if oj � 1.

The insertion of support visit j1 associated with the transfer causes time window violations if the new
transfer start time exceeds the end of the planning horizon ln�1 or the new arrival time at its successor
the associated threshold:

υ̃TW pν�j1 q � maxpaT
j1 pν

�
j1 q � ln�1 , 0q � maxpaT

j1 pν
�
j1 q � τ � tj1k1 � zS

k1 , 0q.

Finally, to calculate the change in time window violation resulting from the insertion or assignment
of a transfer, we need to take into account both the DV and the SV values:

∆υ̃TW � υ̃TW pν�j q � υ̃TW pν�j1 q � υ̃TW
k � υ̃TW

k1 .

Evaluation of removals We define the current time window violation for the removal of a vertex
as the time window violation occurring at the vertex i to be removed plus succeeding violations based
on the departure time at i. In case of removing a vertex from a DV route, the current time window
violation is calculated as follows:

υ̃TW
i � maxpaD

i � li, 0q � maxpdD
i � wD

i , 0q,

and in case of removing an SV visit i1 P T S as:

υ̃TW
i1 � maxpaS

i1 � li1 , 0q � maxpdS
i1 � wS

i1 , 0q.

To obtain the new time window violation caused by the removal ν�i of a vertex, we need to distinguish
between the removal of a customer i P C� and the removal of a transfer i P DD or i P C�. For the
customer case, the time window violation resulting from concatenating both adjacent partial routes
is given as:

υ̃TW pν�i q � maxpdD
i� � ti�i� � zD

i� , 0q.
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More precisely, a time window violation occurs if the new arrival time at the successor exceeds the
associated latest arrival time.

To illustrate these calculations, consider customer 2 to be removed in Figure 5.8a. The resulting
situation is shown in Figure 5.8c. The current time window violation originating at customer 2 is
given as:

υ̃TW
2 � maxpaD

2 � l2, 0q � maxpdD
2 � wD

2 , 0q � maxp13 � 15, 0q � maxp18 � 11, 0q � 7.

The new time window violation after the removal is calculated as:

υ̃TW pν�2 q � maxpdD
1 � t13 � zD

3 , 0q � maxp9 � 4 � 15, 0q � 0,

which leads to ∆υ̃TW � 0 � 7 � �7. Thus, as shown in Figure 5.8c, the time window of customer 6
is not violated anymore after the removal of customer 2.

The removal of a transfer requires the consideration of both associated visits. With respect to the DV
visit removal, we need to further distinguish between the actual removal of visit i P DD or customer
i P C� and only the removal of the transfer status of customer i P C�. If the visit or customer is
entirely removed, the resulting time window violation is calculated in identical fashion as in the case
of i P C�. Otherwise, if only the transfer status is removed, we need to evaluate a possibly new service
start and departure time at customer i P C�:

υ̃TW pν�i q � maxpaD
i � li, 0q � max

�
min

�
maxpaD

i , eiq, li
�
� si � wD

i , 0
	
.

Finally, the time window violation resulting from removing the SV visit i1 associated with the transfer
is also defined analogously to the customer case:

υ̃TW pν�i1 q � maxpdS
i1� � ti1�i1� � zS

i1� , 0q.

Again, the calculation of the change in time window violation resulting from the removal of a transfer
requires to take into account the influence of the removal of the DV and the SV visit:

∆υ̃TW � υ̃TW pν�i q � υ̃TW pν�i1 q � υ̃TW
i � υ̃TW

i1 .

5.3.2. Initialization

We generate an initial solution S with mD � r
°
iPC ui{L

Ds DV routes, i.e., with the minimum number
of DV routes without considering the possibility of load replenishments. We initialize each route with
a seed customer. To this end, we sort all customers in ascending order of their latest start time of
service li. The seed customers are then determined by selecting the first mD entries. Subsequently, we
successively insert the remaining customers into the routes at their cost-minimal position according to
fgenpSq. As soon as a route violates R, we add transfers until the route becomes R-feasible again. This
transfer insertion procedure is also applied later in the search. While in the initialization phase, there
is at most one route segment violating R at a time, several segments of a route may become infeasible
with respect to R during the search. In the following, we therefore describe the general procedure for
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inserting transfers that is applicable to an arbitrary number of R-infeasible route segments. Figure 5.9
shows the respective pseudocode.

while route violates R do
ν�best ÐH
for each R-infeasible route segment do
ιÐ getPositionOfLastFeasibleCustomer()
κÐ getPositionOfPrecedingTransfer(ι)
ν� Ð getBestTransferInsertionOnPath(κ� 1, ι� 1,DD Y CtzC�)
if ν�best � H_ ν� improves on ν�best then
ν�best Ð ν�

end if
end for
S Ð performTransferInsertion(ν�best)

end while

Figure 5.9.: Pseudocode of the transfer insertion procedure.

For each R-infeasible route segment, we can identify the last customer that can still be served without
violating R. Let ι denote the position of this customer and κ the position of the last transfer or
the depot preceding this customer. Now, we determine the best transfer insertion on the path from
position κ�1 to position ι�1 for each infeasible route segment. For each dedicated transfer vertex, we
need to evaluate each possible combination of insertion position on the respective path and SV route
insertion position. In addition, we need to evaluate the assignment of a transfer to each customer
i P Ct currently served on the path for both possible orders of tasks. Note that whenever we insert a
transfer, we need to ensure that no infeasible precedence relations, i.e., precedence relations between
a vertex and itself are created. To this end, we utilize the cycle-detection mechanism described in
Section 5.3.3 to detect invalid transfer insertions. The overall best insertion according to fgen among
all allowed insertions is then performed.

We subsequently try to further improve the initial solution by applying a local search step (see Sec-
tion 5.3.4).

5.3.3. Cycle Detection

As mentioned above, if multiple transfers can be performed in a route as in the VRPTWMD, the
creation of infeasible precedence relations, i.e., cycles, has to be avoided. A cycle implies a precedence
relation between a vertex and itself (Masson, Lehuédé, and Péton, 2013).

Figure 5.10 shows an example insertion of an additional transfer into a DV route and an SV route
that are already connected by a transfer. More precisely, DV visit 5t is inserted between customers 3
and 1, and the corresponding support visit 51 between 41 and the depot. As shown in Figure 5.10b,
after the insertion, there is a path from each vertex on the cycle to itself, i.e., each vertex on the cycle
is its own predecessor and successor, which is clearly inconsistent.

To efficiently detect cycles when inserting a transfer, especially if the interdependence between routes
is more complex than depicted in the example, we adapt the approach described by Grangier et al.
(2016). In detail, we define a set Γ�

k for each vertex k containing all (direct and indirect) successors
of k. Now, let i denote a transfer visit to be inserted into a DV route between i� and i�, and j1

the associated visit to be inserted into an SV route between j1� and j1�. Then, the insertion of the
regarded transfer would introduce a cycle if j1� P Γ�

i� or i� P Γ�
j1� .
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The displayed insertion thus creates a cycle because the new predecessor 41 of 51 is a successor of
customer 1, the new direct successor of 5t, i.e., 41 P Γ�

1 � t4s, 41, 2u (with respect to Figure 5.10a).

(a) Feasible precedence relations

24s

4'

5t

5'

DV

SV

3 1

(b) Cycle created

24s

4'

5t

5'

DV

SV

3 1

Figure 5.10.: Introduction of a cycle due to the invalid insertion of an additional transfer.

5.3.4. Local Search

After the generation of the initial solution (and after every application of the ALNS or the PR
component), we aim at improving the current solution by means of a local search procedure. Our
local search follows a first-improvement strategy and is stopped when no further improvement of the
current solution can be identified.

We first handle violations of R by inserting (additional) transfers according to the procedure described
in Section 5.3.2. Next, we store each customer i P C� and transfer i P DDYC� currently performed in
the solution in a list B and perturb its order. Now, we iteratively relocate each vertex in B with the
goal of improving the current solution. More precisely, if the currently considered vertex corresponds
to a customer i P C�, we remove this customer and reinsert it at the best position. If the current vertex
corresponds to a transfer i P DD Y C�, we first remove both associated visits from the corresponding
DV and SV routes. We subsequently evaluate all possible insertions for this transfer, i.e., each possible
combination of (i) DV route insertion position, and (ii) SV route insertion position, which does not
introduce a cycle, and if i P C�, (iii) task order. The best insertion among all possibilities is then
performed. If the resulting solution improves on the previous one, we restart the local search at the
first element of B. Otherwise, we proceed with the next vertex. The main phase of the local search
stops when all vertices in B have been considered and no further improvement could be achieved.

Finally, we remove unnecessary transfers from the solution. More precisely, while there are transfers
which can be removed without increasing the violation of R, we perform the removal associated with
the greatest cost reduction.
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5.3.5. The Adaptive Large Neighborhood Search Component

The LNS paradigm follows the idea of iteratively destroying and repairing solutions by removing
and reinserting relatively large numbers of customers (Shaw, 1998). ALNS extends this approach
by deploying several competing removal and insertion operators which are chosen at each iteration
depending on their previous performance in the search. To this end, each operator is assigned a
selection probability, which is dynamically updated during the search (Ropke and Pisinger, 2006b).

Highly complex problems like the VRPTWMD call for the utilization of solution methods that offer
strong diversification capabilities. While classical local-search-based algorithms, like, e.g., tabu search,
often get stuck in local optima from which they are not able to escape, ALNS allows to modify large
parts of a solution at once and thus to overcome local traps more easily. This has been demonstrated
by ALNS algorithms for classical VRP variants (see, e.g., Ropke and Pisinger, 2006b; Ropke and
Pisinger, 2006a; Pisinger and Ropke, 2007; Hemmelmayr, Cordeau, and Crainic, 2012) as well as
for VRPs with multiple synchronization constraints (see, e.g., Masson, Lehuédé, and Péton, 2012;
Grangier et al., 2016). Figure 5.11 shows our ALNS implementation in pseudocode.

{Randomly choose option 1 or option 2, i.e., route removal (1) or any removal operator (2)}
if option 1 selected _ (option 2 ^ route-based removal operator based on probabilities π� selected then
{Apply randomly selected route-based removal operator}
S 1 Ð removeRouteSegment(S)

else if option 2 ^ vertex-based removal operator based on probabilities π� selected then
{Determine number of vertices to remove depending on scope of operator and probabilities π||}
n� Ð drawNumberOfVerticesToRemove(π||)
{Apply randomly selected vertex-based removal operator}
S 1 Ð removeV ertices(S, n�)

end if
if customers previously removed then
{Apply randomly selected customer insertion operator based on probabilities π�}
S 1 Ð insertCustomers(S 1, π�)

end if
if transfers previously removed then
{Apply randomly selected transfer insertion operator based on probabilities π�}
S 1 Ð insertTransfers(S 1, π�)

end if

Figure 5.11.: Pseudocode of our ALNS component.

To destroy the current solution, we use two types of removal operators (see Section 5.3.5.1): The
first type of operators, called route-based removal operators, removes an entire structure, i.e., route
or route segment from a solution at each iteration. The second type of operators is able to remove a
certain number of vertices that may belong to different routes or segments. The latter are denoted as
vertex-based removal operators.

To stronger influence the reduction of the number of employed vehicles and thus the vehicle deployment
cost, we randomly decide between two options at the beginning of each ALNS iteration, i.e., whether
to apply (i) a route removal operator, or (ii) any of the implemented removal operators to the current
solution S. Each option is selected with a probability of 50%. In the first case, we randomly select a
route removal operator out of four implemented variants, which entirely removes a DV or an SV route
from S. The choice of the operator is performed according to a roulette-wheel selection procedure
based on the probability vector π�, which is dynamically updated during the search according to the
adaptive mechanism described in Section 5.3.5.3.
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If the second option is selected, we first select a removal operator from the set of all removal operators,
i.e., all route-based and vertex-based removal operators based on probabilities π�. If a vertex-based
removal operator has been selected, we subsequently determine the number of vertices that are removed
from S. While ALNS implementations for classical VRP variants are usually only concerned with the
removal and reinsertion of customers, the VRPTWMD offers a variety of possibilities in this regard.
Therefore, we implement several variants for each vertex-based removal operator with respect to the
scope of the associated removal operation:

Customers exclusively removes customers (i P C�) from the current solution.
Transfers exclusively removes transfers, i.e., the associated DV (i P C�YDD) and SV visits (i1 P T S)

from a solution. Respective operator variants can only be selected if transfers exist in the current
solution.

All vertices may remove all types of vertices.
Transfer states turns transfer vertices in DV routes (i P C�) into regular customers and removes

the corresponding SV visits (i1 P T S) from the solution. The associated operator variants can
only be selected if transfers are scheduled at customers in the current solution.

We additionally experimented with rearranging partial transfers, i.e., only one of both associated visits
at each iteration while the respective counterpart stays in the current solution. However, as shown
in Section 5.4.3, it proved to be of vital importance to simultaneously consider the DV and the SV
level to escape from local optima. The upper part of Table 5.3 gives an overview of the vertex-based
removal operator variants with respect to the type of the permitted removal operation.

Scope

Customers Transfers All vertices Transfer states

Removal operators
Random 3 3 3 3

Cluster 3 3

Worst 3 3 3 3

Relatedness 3 3

Neighbor graph 3 3 3

Synchronization offset 3 3

Route selection policies
Cost 3 3 3 3

Distance 3 3 3 3

Efficiency 3 3 3 3

Synchronization offset 3 3 3 3

Transfer density 3 3

Table 5.3.: Vertex-based removal operator variants and compatibility of route selection policies with respect
to the type of the removal operation.

In the literature, the number of customers to be removed from a solution is usually determined
by randomly selecting the percentage of customers to remove from a relatively large interval Ψ|| �

rς
||
min , ς

||
maxs (Ropke and Pisinger, 2006b; Hemmelmayr, Cordeau, and Crainic, 2012). However, we

observed that ideal removal percentages are highly instance-dependent. Therefore, we split Ψ|| into
several sub-intervals similar to Goeke and Schneider (2015). Then, we select a sub-interval based on
dynamic probabilities π|| and randomly determine the number n� of vertices to remove from S within
this interval. Note that the maximum number of vertices than can be removed is defined by the scope
of the selected removal operator. For example, if the currently selected operator aims at removing
customers, the selected removal percentage is applied to value |C�|.
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After the removal step, both regular customers and transfers may have to be reinserted. Because
transfer insertion consists of two insertions, one on the DV and one on the SV level, we separately
insert customers and transfers using different insertion operators (Section 5.3.5.1) to allow a fair
comparison of insertion operations with respect to insertion cost. The selection of both insertion
operators is performed according to probabilities π�.

5.3.5.1. Removal and Insertion Operators

We use the following route-based removal operators:

Route removal DV removes all visits associated with a DV route and is implemented in two variants
where the route to be removed (i) is randomly selected, or (ii) corresponds to the route with the
smallest cumulated demand in the current solution.

Route removal SV is defined analogously to route removal DV but for SV routes.
Segment removal removes all vertices on a segment of a DV route starting with a transfer and ending

with the predecessor of the next transfer or of the depot. Segment removal is implemented in
two variants where the transfer defining the segment to be removed is (i) randomly selected,
or (ii) corresponds to the transfer, which shows the largest synchronization offset (see Grangier
et al., 2016, for a similar approach). We define the synchronization offset ∆sync

i for a transfer
i P C� YDD as the absolute deviation between the time the DV would be ready to transfer and
the arrival time of the SV:

∆sync
i �

#
|a1i � si � aS

i | if oi � 0,
|aD
i � aS

i | if oi � 1.

In the following, we describe the vertex-based removal operators. We assume that an operator iter-
atively removes n� vertices from the current solution independent of the type(s) of vertices it may
remove. Note that the removal of a transfer vertex corresponds to the removal of both associated
visits from the corresponding DV and SV routes. The removal of a transfer state, in which only the
respective SV visit is removed while the associated customer stays in the solution, also counts as one
removed vertex.

Random removal randomly removes vertices from S until n� vertices are removed.
Cluster removal was first introduced by Ropke and Pisinger (2006b) and aims at removing vertices

that are located close to each other. Initially, we select a route and the first vertex to be removed
from this route at random. Subsequently, the following steps are repeated until n� vertices are
removed from the current solution: We randomly choose a vertex among the already removed
ones and identify the route r which yields the smallest average distance of its vertices to the
selected vertex. Next, we apply Kruskal’s algorithm (Kruskal, 1956) to solve the minimum-
spanning-tree (MST) problem to the sub-graph composed of the vertices of route r. Let nr
denote the number of vertices served by route r. We abort the execution of the MST algorithm
as soon as the number of generated edges is equal to nr � 2, i.e., two sub-trees remain from
which one is randomly chosen for removal. If the size of the selected cluster exceeds the number
of remaining vertices to be removed, we randomly remove vertices from the cluster until n�

vertices are removed.
Relatedness removal is based on the idea that vertices that are in some sense similar are likely to

be interchangeable in the subsequent insertion step (Shaw, 1997). The relatedness of two vertices
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i and j is measured in terms of the travel cost cij between them, the difference in their demands
|ui� uj |, and the difference between the earliest start times of their time windows |ei� ej |. The
relatedness measure Ri,j of two vertices i and j is thus calculated as follows:

Ri,j � χc
cij

max
i,jPCYDD

pcijq
� χd

|ui � uj |

max
iPC

puiq � min
iPC

puiq
� χe

|ei � ej |

max
iPC

peiq � min
iPC

peiq
.

Each component is weighted with a parameter χ and normalized using the respective extreme
values across the set of all customers and dedicated transfers C Y DD given by solution S.
Initially, we select a route and the first vertex to be removed from this route at random. Then,
at each iteration, we first randomly select a vertex from the already removed ones. Next, all
remaining vertices are stored in a list B in ascending order of their relatedness value with respect
to the selected vertex. From this list, we draw the vertex at position t|B|ζχ

rel
u, where ζ is a

random number P r0, 1q and χrel a parameter ¥ 1, which allows to balance the influence of
randomness and relatedness on the selection. We repeat this procedure until n� vertices are
removed.

Worst removal, as originally introduced by Ropke and Pisinger (2006b), aims at removing vertices,
which appear to be unfavorably positioned in the current solution with respect to the additional
routing cost caused by visiting them. All vertices are stored in a list B and sorted in descending
order of the cost reduction resulting from their removal. At each iteration, we choose the vertex
at position t|B|ζχ

worst
u. Again, ζ is a random number P r0, 1q, and χworst ¥ 1 allows to control

the randomness of the selection.
Neighbor graph removal, proposed in Ropke and Pisinger (2006a), is based on exploiting infor-

mation about promising visiting orders gathered in the course of the search. More precisely, a
complete directed and weighted auxiliary graph, called the neighbor graph, is introduced, whose
vertices correspond to the vertices in the problem instance. Each arc pi, jq is weighted with the
objective function value of the best solution found so far in which vertex j is visited directly
after vertex i. Initially, the weight of each arc is set to positive infinity and dynamically updated
during the search.
All vertices in S are stored in a list B and sorted in descending order of a score which is based
on the present visiting orders. More precisely, the score for each visit to a vertex i is calculated
by summing up the weights of the arcs pi�, iq and pi, i�) in the neighbor graph, where i� and
i� correspond to the predecessor and successor of i, respectively. At each iteration, the operator
removes the vertex at position t|B|ζχ

nb
u with random number ζ P r0, 1q and χnb ¥ 1. After the

removal of vertex i, the neighbor scores of vertices i� and i� are updated accordingly.
Synchronization offset removal aims at removing poorly synchronized transfers. At each itera-

tion, this operator removes the transfer which shows the maximum synchronization offset until
n� transfers are removed. The synchronization offset ∆sync

i for a transfer i P C�YDD is defined
analogously to the respective segment removal variant.

To reinsert the previously removed vertices, we use several insertion operators. For each operator
variant, the selection of the insertion to be performed at each iteration is conducted independently
of the scope of the operator but the number of insertions to consider differs depending on the type
of vertices to reinsert. More precisely, for each customer i P C�, each DV route insertion position
has to be evaluated. For each transfer i P C� Y DD to be inserted, we need to evaluate each possible
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combination of (i) DV route insertion position, and (ii) SV route insertion position, which does not
introduce a cycle, and if i P C�, (iii) task order. Moreover, in case of a previous removal of transfer
states, we subsequently assign transfers to n� customers (i P CtzC�) that are served in the current
solution, i.e., for which the DV route position is given but for the associated SV visit, each possible
SV route insertion position has to be considered. We use the following insertion operators:

Greedy insertion determines the best insertion for each vertex at each iteration. The vertex asso-
ciated with the overall best insertion is inserted accordingly.

GRASP insertion is inspired by the metaheuristic introduced in Feo and Resende (1989). The
best insertion is determined for each remaining vertex and stored in a list B which is sorted in
ascending order of cost increase. At each iteration, the next vertex to be inserted is randomly
selected among the best tχGRASP |B|u remaining insertions. Here, χGRASP corresponds to a
number P p0, 1q.

Regret insertion was proposed by Ropke and Pisinger (2006b) and tries to overcome the myopic
behavior of greedy insertion by implementing a look-ahead strategy. More specifically, a regret-k
value is calculated for each vertex as the difference between the cost increase resulting from the
cheapest insertion of this vertex into the k-best DV route and its optimal insertion into the best
DV route. At each iteration, we perform the best insertion of the vertex associated with the
largest regret value. We implement regret insertion for k � 2, 3, 4. Note that we only use this
operator for the insertion of customers and transfers but not for the assignment of transfers to
customers that are already served in the current solution.

5.3.5.2. Route Selection and Evaluation of Removal and Insertion

Besides removal operators that rely on removing vertices without considering the properties of the
routes they are currently assigned to, we implement operators which aim at removing vertices from
routes with certain characteristics. More precisely, several route selection policies can be applied
by route and segment removal (random variants) and by random, cluster, and relatedness removal.
Besides policies with general validity for VRPs, we use new ones specifically designed for the VRP-
TWMD.

In addition to a purely random selection, we implement the following policies that determine routes
according to a roulette-wheel selection mechanism based on specific criteria:

Cost selects a route with a probability proportional to the cost of the route including penalty costs.
Distance is based on the length of a route. The selection probability of a route increases with the

associated traveled distance.
Efficiency aims at identifying inefficient routes, i.e., routes that are characterized by large detours to

cover a relatively small quantity of customer or transfer demands. The probability of a route to
be selected is proportional to the ratio of the associated traveled distance and the total demand
in this route.

Synchronization offset favors routes containing possibly poorly synchronized transfers. To this
end, this policy selects a route with a probability proportional the cumulated synchronization
offset over all transfers performed in a route that is calculated similarly as in the synchronization
offset removal operator.

Transfer density aims at realizing cost savings by removing unnecessary transfers. The selection
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probability of a route is proportional to the ratio of the number of transfers and the total number
of vertices in this route.

With respect to the route-based removal operators, route removal DV and segment removal are able
to use all selection policies, whereas transfer density is not defined for route removal SV. Moreover,
the lower part of Table 5.3 shows the compatibility of the route selection policies and the vertex-based
removal operators random, cluster, and relatedness removal with respect to the scope of the removal
operation. Once a compatible removal operator has been selected, we subsequently select a policy
based on probabilities πr . The selected route selection policy is used by the current removal operator
for the entire iteration.

Moreover, for the purpose of guiding the search towards still unexplored areas, we create two additional
variants for each scope-related variant of worst removal and for greedy insertion, GRASP insertion,
and regret insertion that differ in how the corresponding operation is evaluated. Besides the basic
operator variants that evaluate the associated operation based on the change in routing cost according
to the generalized cost function (∆fgen), we implement variants that employ the evaluation measures:

1. diversification ∆fdiv , which augments the change in routing cost by a diversification penalty
based on past arc occurrence frequencies:

∆fdivpν,Sq � ∆fgenpν,Sq � κ
fgenpSq
pn� ntq

d ¸
pi,jqPA�

ν

hpi, jq.

Here, ∆fgenpν,Sq represents the change of the objective function value of solution S caused by
removal or insertion operation ν, κ a real-valued parameter to control the amount of diversifica-
tion, fgenpSq the current objective function value of solution S, n the number of customers given
by the problem instance, nt the number of transfers currently scheduled in solution S, hpi, jq
the occurrence frequency of arc pi, jq in previously generated solutions, and A�

ν the set of arcs
generated by operation ν, and

2. noise ∆fnoise, which multiplies the change in routing cost due to operation ν by a random
number ζ drawn from the interval rζmin , ζmaxs (see Ropke and Pisinger, 2006b; Hemmelmayr,
Cordeau, and Crainic, 2012, for a similar approach):

∆fnoisepν,Sq � ∆fgenpν,Sqζ.

5.3.5.3. Adaptive Mechanism

In each ALNS iteration, we perform the choice of removal interval, removal operator, route selection
policy (if applicable), and insertion operator(s) according to a roulette-wheel selection procedure
as proposed in Ropke and Pisinger (2006b) based on the probability vectors π||, π�, πr , and π�,
respectively. More precisely, given a set of adaptive components denoted as X P t||,�, r,�u, the
selection probability of component i P X is calculated as πi � wi{

°
jPX wj , where wi corresponds to

the weight of component i. All components of a set X are initially assigned the same weight and
dynamically updated depending on their past search performance. We measure the performance of
an adaptive component by means of a scoring system. We add a score of σbest to the current score of
a component whenever it contributed to improve the current best solution S�, a score of σimp if the
new solution S 1 improves on the current one S and has never been encountered before, and a score
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of σacc if S 1 is worse than S but accepted according to our SA acceptance mechanism and has never
been generated before in the search. We keep track of the solutions already visited in the course of
the search by means of a solution memory.

The weight of each component is updated every γ ALNS iterations based on the performance of the
component during this interval. Let øi denote the current score of component i and βi the number
of applications of the component since the last weight update. Then, the new weight is calculated as
wi � wip1 � αq � αøi{βi. The reaction factor α P r0, 1s allows to control the sensitivity of the weight
adjustment with respect to the performance of the component. We reset the values of øi and βi to
zero after each update.

5.3.6. The Path Relinking Component

The PR paradigm as originally proposed by Glover (1997) represents an intensification strategy that
exploits the observation that good solutions often share common characteristics. To this end, PR
investigates the trajectories between elite solutions obtained during the search with the goal of dis-
covering improving solutions in the process. More precisely, PR consists in iteratively transforming
an initial solution into a guiding solution, thus creating a path of solutions between them. This is
realized by successively incorporating characteristics of the guiding solution into the initial solution.
The diversity between both solutions is thus stepwise decreased.

PR reasonably complements our ALNS component, which mainly serves the purpose of diversifying
the search. We aim at discovering improving solutions that are not reachable via local search by
investigating the trajectories between promising solutions located in distant regions of the search space.
The successful hybridization of well-known metaheuristics for VRP variants with PR approaches is
also demonstrated by, e.g., Ho and Gendreau (2006), Villegas et al. (2011), and Nguyen, Prins, and
Prodhon (2012). Figure 5.12 shows our PR implementation in pseudocode.

S 1 ÐH
for each solution Se P E do

{Initialize current and guiding solution}
Sc Ð S
Sg Ð Se
B Ð initV ertexListpq
{Determine arcs exclusively contained in guiding solution and initialize path length}
A� Ð getDifferingArcs(S, Sg)
pÐ |A�|
for each vertex i P B do
{Adjust transfer status of vertex if necessary}
Sc Ð equalizeVertex(i,Sg)
Sc Ð performRelocation(i,Sc,A�)
if Sc � S ^ Sc � Sg ^ pS 1 � H_ Sc improves on S 1) then

S 1 Ð Sc
end if
A� Ð updateDifferingArcs(Sc)
if |A�|   tp1� ρq � pu then
break

end if
end for

end for

Figure 5.12.: Pseudocode of our PR component.
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Whenever we find a solution S that has never been encountered before in the search and the elite set
E is filled, we apply our PR procedure between S and all solutions contained in E . To this end, we set
for each solution Se in E , the current solution on the solution path Sc to the initial solution S and the
guiding solution Sg to Se. If Sg utilizes a higher number of vehicles, we need to equalize both vehicle
numbers by adding empty routes of the respective type(s) to Sc accordingly.

We explain the following steps of our PR implementation using Figure 5.13, which illustrates the
transformation of an initial solution into a guiding solution for an example instance composed of
n � 10 customers. The guiding solution deploys five and the initial solution four DVs. Thus, we need
to add an empty DV route to Sc. In both solutions, nt � 3 transfers are scheduled that are served by
one SV. All routes start and end with the depot vertices 0 and n� 1 � 11, respectively.

Initially, we determine those arcs that are contained in Sg but not in the initial solution S and store
them in the set of differing arcs A�. In our example, there are seven arcs which are exclusively
contained in Sg (marked as 7). Our PR procedure now aims at iteratively incorporating the arcs
in A� into the current solution, thus stepwise approaching the guiding solution. However, because
the guiding solution is locally optimal (with respect to the penalty costs valid at the time of its
discovery), we deem it unlikely to find improving solutions in its immediate proximity. Therefore,
we only investigate a fraction ρ of the solution path. To this end, we use a modified version of our
local search described in Section 5.3.4 which is stopped as soon as the number of remaining differing
arcs is smaller than the fraction p1 � ρq of the initial cardinality of A�. However, for the purpose of
illustration, Figure 5.13 shows the creation of the entire solution path, leading to the rediscovery of
the guiding solution in iteration 3.

As in the local search, we first store all vertices contained in Sc in a list B with random order and
iteratively try to relocate each vertex. It is important to note that, if the number of visits to dedicated
transfer vertices in Sc is smaller than the corresponding number in Sg, we initially create the missing
visits to the respective transfer locations and add them to list B.

If the current vertex is a customer, we first check if its transfer state complies with that of its coun-
terpart in the guiding solution. More precisely, if a transfer is scheduled at a customer i in Sc but not
in Sg, we remove the transfer status of customer i and thus the associated SV visit from Sc. On the
other hand, if no transfer is scheduled at customer i in Sc but it is in Sg, we assign a transfer to i with
the respective task order as executed in Sg. We perform the corresponding support visit insertion
that maximizes the number of created differing arcs. Ties are broken based on the change in routing
cost according to fgen . In our example, the transfer state needs to be removed from customer 4 and
assigned to customer 2.

Subsequently, we evaluate the relocation of the regarded vertex. In contrast to the local search, we
only allow the removal of a vertex if at least one of the arcs to be removed is not contained in the
guiding solution. In case the relocation is permitted, we subsequently perform the reinsertion that
maximizes the number of created differing arcs with ties again broken via fgen .

For example, assume that customer 5 is selected first. It may not be relocated from route DV1
because both arcs p10, 5q and p5, 11q are matching arcs, i.e., part of both solutions. Instead, we
skip this customer and move to customer 9 whose relocation is permitted because only arc p0, 9q is
contained in the guiding solution. The removal of customer 9 leads to the creation of the differing
arc p0, 8q. Then, we reinsert customer 9 into the empty route DV5. In this way, two differing arcs
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are created, namely p0, 9q, which has previously been removed, and p9, 11q. Set A� is dynamically
updated accordingly. We set the best solution S 1 to Sc if (i) Sc differs from S and Sg, and (ii) S 1 has
not been initialized yet, or Sc improves on S 1. Now, assume that customer 4s is the next vertex to
consider. In the guiding solution, no transfer takes place at customer 4. Therefore, we first remove
the transfer status from customer 4 and the corresponding support visit 41 from Sc. Then, customer
4 is relocated within the same route, introducing arcs p2, 1q, p1, 4q, and p4, 11q. Finally, a transfer is
scheduled at customer 2 in Sg but not in Sc. Thus, we need to assign a transfer to customer 2 and
insert the corresponding support visit 21 between the support visits 101 and 31, which introduces the
remaining differing arcs p10, 2q and p2, 3q.

Iteration Route Sc Sg Arcs created in Sc

0 DV1 0 - 10t - 5 - 11 0 - 10t - 5 - 11
DV2 0 - 6 - 3s - 11 0 - 6 - 3s - 11
DV3 0 - 2 - 4s - 1 - 11 0 - 2s 7 1 7 4 7 11
DV4 0 - 9 - 8 - 7 - 11 0 7 8 - 7 - 11
DV5 0 - 11 0 - 9 7 11
SV1 0 - 101 - 41 - 31 - 11 0 - 101 7 21 7 31 - 11

1 DV1 0 - 10t - 5 - 11 0 - 10t - 5 - 11
DV2 0 - 6 - 3s - 11 0 - 6 - 3s - 11
DV3 0 - 2 - 4s - 1 - 11 0 - 2s 7 1 7 4 7 11
DV4 0 - 8 - 7 - 11 0 - 8 - 7 - 11 (0,8)
DV5 0 - 9 - 11 0 - 9 - 11 (9,11)
SV1 0 - 101 - 41 - 31 - 11 0 - 101 7 21 7 31 - 11

2 DV1 0 - 10t - 5 - 11 0 - 10t - 5 - 11
DV2 0 - 6 - 3s - 11 0 - 6 - 3s - 11
DV3 0 - 2 - 1 - 4 - 11 0 - 2s - 1 - 4 - 11 (2,1), (1,4), (4,11)
DV4 0 - 8 - 7 - 11 0 - 8 - 7 - 11
DV5 0 - 9 - 11 0 - 9 - 11
SV1 0 - 101 - 31 - 11 0 - 101 7 21 7 31 - 11

3 DV1 0 - 10t - 5 - 11 0 - 10t - 5 - 11
DV2 0 - 6 - 3s - 11 0 - 6 - 3s - 11
DV3 0 - 2s - 1 - 4 - 11 0 - 2s - 1 - 4 - 11
DV4 0 - 8 - 7 - 11 0 - 8 - 7 - 11
DV5 0 - 9 - 11 0 - 9 - 11
SV1 0 - 101 - 21 - 31 - 11 0 - 101 - 21 - 31 - 11 (10,2), (2,3)

Figure 5.13.: Example application of our PR procedure.

5.3.7. Acceptance Decision

As an additional way of promoting diversification, we employ a mechanism inspired by SA to decide
if solution S 1 should replace S as starting point for the next iteration.

While solutions that improve S are always accepted, we accept worse solutions with probability
e�pfgenpS1q�fgenpSqq{ϑ. Initially, we set the temperature parameter ϑ to a value such that a deterioration
of the current solution S by ∆SA is accepted with a probability of 50%. We decrease the temperature
after every ALNS-PR iteration such that the acceptance probability of a relative deterioration of ∆SA

is equal to 0.1% after a cooling period of θ iterations.
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5.4. Computational Studies

In this section, we present the numerical studies to evaluate the performance of our ALNS-PR. We
begin with the description of the benchmark instances that we use to test our algorithm in Section 5.4.1.
Subsequently, we present the computational environment and the parameter setting for our solution
method (Section 5.4.2). In Section 5.4.3, we investigate the contribution of specific components on
the performance of our algorithm. In Section 5.4.4, we assess the competitiveness of our ALNS-PR
on the 2E-MTVRP-SS benchmark from the literature. Finally, we present our detailed results on the
new VRPTWMD instances in Section 5.4.5 and analyze the effect of different problem characteristics
on the solution structure in Section 5.4.6.

5.4.1. Benchmark Instances

In this section, we present the benchmark instances used in our computational experiments. We first
describe the 2E-MTVRP-SS instances from the literature that we use to assess the competitiveness
of our algorithm (Section 5.4.1.1) and subsequently present the generation scheme to create instances
for the VRPTWMD (Section 5.4.1.2).

5.4.1.1. 2E-MTVRP-SS Instances

The 2E-MTVRP-SS proposed by Grangier et al. (2016) is characterized by two fleets of vehicles: First-
level vehicles carry requests from a city distribution center (CDC) to satellite facilities and second-level
vehicles transport these requests from the satellites to the customers. Each second-level vehicle may
perform multiple trips starting from different satellites. The 2E-MTVRP-SS can thus be interpreted
as a variant of the VRPTWMD where the second-level vehicles corresponding to DVs have to meet
with first-level vehicles that act as SVs at dedicated transfer vertices, the satellites, to be enabled to
fulfill the customer requests. Thus, Ct � H applies in the 2E-MTVRP-SS. In addition, note that each
DV starts empty and its load is not necessarily replenished to its full capacity at a transfer but only
to the amount required to serve the customers contained in the succeeding trip to the next transfer
or the depot. Grangier et al. (2016) further assume a hierarchical objective function minimizing the
number of SVs first, the number of DVs second, and the travel cost third. To achieve this, we set
cS � 1000 and cD � 250 for these instances.

The 2E-MTVRP-SS instances are derived from the 56 VRPTW instances with 100 customers proposed
by Solomon (1987). In these instances, the customers are clustered (prefix c), randomly distributed
(prefix r), or a mixture of both (prefix rc). In addition, each instance is either characterized by narrow
time windows and small vehicle capacities (prefix c1/r1/rc1) or large time windows and large vehicle
capacities (prefix c2/r2/rc2).

To obtain 2E-MTVRP-SS instances, the authors extend each original VRPTW instance by a CDC
and eight satellite facilities. The depot in the original instance corresponds to the depot of the
DVs. Because the CDC is located farther away from the customers than the DV depot, the authors
additionally extend the boundaries of each original customer time window by a certain offset to
guarantee the feasibility of each request. No transfer time is incurred upon meeting of a DV and an
SV. Finally, let L denote the capacity given in the original instance. Then, the authors set LD � 0.5L
and LS � 4L for the instances of type 1 and LD � 0.25L and LS � 2L for the instances of type 2.
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5.4.1.2. Generation of VRPTWMD Instances

To create VRPTWMD instances, we also make use of the well-known VRPTW instances by Solomon
(1987). We assume that transfers are only possible at the customer locations, i.e., Ct � C and D � H.
Thus, no additional vertices need to be located.

For each application context, we create 56 VRPTWMD instances, by setting R to a certain percentage
of the corresponding average resource utilization in a high-quality solution of the respective VRPTW
instance. More precisely, if (i) R � F , we set F to 70% of the average route length in the high-quality
solution of the respective original VRPTW instance, or (ii) R � LD, we set LD to 70% of the average
cumulated demand per route in the high-quality solution of the respective original VRPTW instance
with the lower bound being the maximum demand given in the instance.

Each resulting capacity value is rounded down to the next multiple of ten and the remaining capacities
are either taken from the original instance or set to a sufficiently large value if not provided in the
instance. The VRPTW solution values are taken from https://www.sintef.no/projectweb/top/vrptw/
solomon-benchmark/100-customers/.

The load capacity LS of the SVs is set to 4R. Moreover, to keep the time consumption due to transfers
within the same order of magnitude as the time values defined in the original instance, we set the
transfer time τ to the service duration given in the instance. To account for the additional time
consumption, we increase the latest start of service li by 0.05l0 for each vertex i. The fixed costs
cD per used DV are calculated by dividing the objective function value of the respective high-quality
VRPTW solution by the number of vehicles employed in this solution (rounded up to the next multiple
of 10). We assume the deployment of SVs to be twice as expensive, i.e., we set cS � 2cD.

In Section 5.4.6, we analyze the influence of (i) the capacity of the replenishable resource R, (ii) the
ratio of LS and R, (iii) the ratio of the SV and the DV deployment cost, and (iv) the transfer time
on the solution structure.

In addition, we generate a set of small VRPTWMD instances as follows: For the first VRPTW instance
of each group (c1/r1/rc1/c2/r2/rc2), we create three small VRPTW instances by drawing five, ten,
and 15 customers of the original instance at random and removing the remaining ones. In addition,
we divide the vehicle capacity of the original instance by four. We subsequently solve the resulting
18 small VRPTW instances using our ALNS-PR without the consideration of transfers. Finally, we
derive 36 small VRPTWMD instances similar to the procedure described above to obtain the large
VRPTWMD instances. More precisely, we use the solutions obtained on the small VRPTW instances
to calculate the vehicle capacities and costs for each VRPTWMD variant.

All instances are denoted by the prefix VRPTWMD, followed by the capacity type that may be replen-
ished via transfers, the identifier of the underlying VRPTW instance, and the number of customers
in the instance. For example, VRPTWMD-F-c101-5 denotes the VRPTWMD instance which allows
the replenishment of the DVs fuel capacity, is obtained from the VRPTW instance c101, and contains
five customers.

5.4.2. Computational Environment and Parameter Setting

Our ALNS-PR is implemented as single-thread code in Java. All tests were performed on a Windows
10 Professional desktop computer with an Intel Core i5-6600 processor running at 3.30 GHz and 16
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GB RAM. In all experiments, we performed ten runs on each instance.

During the development of our solution method, we identified a subset of parameters with a stronger
impact on the solution quality than the remaining parameters. We adopt the procedure proposed in
Ropke and Pisinger (2006b) to refine the setting of these key parameters. More precisely, starting from
a reasonably well-performing parameter setting obtained during the development of our algorithm, we
successively refine the setting of each key parameter. To this end, we evaluate three values for each
parameter on a subset of ten randomly selected VRPTWMD-F instances. The best value is kept as
the final setting for the respective parameter and we subsequently proceed with tuning the next one.
In Table 5.4, we report the results of the parameter tuning.

ALNS
Ψ|| [0.01, 0.1] [0.01, 0.25] [0.01, 0.4]
Avg. ∆b(%) 0.16 1.03 0.57

α 0.6 0.7 0.8
Avg. ∆b(%) 0.58 0.16 0.04

χworst 1 2 3
Avg. ∆b(%) 0.57 0.04 0.65

χrel 1 2 3
Avg. ∆b(%) 2.00 0.04 0.00

χc, χu, χe 1, 2, 4 2, 1, 2 4, 2, 1
Avg. ∆b(%) 0.00 0.29 0.68

χnb 1 2 3
Avg. ∆b(%) 1.57 0.00 0.46

χGRASP 0.05 0.1 0.15
Avg. ∆b(%) 0.00 0.59 0.59

κ 0.5 0.7 0.9
Avg. ∆b(%) 0.29 0.00 0.46

rζmin , ζmax s r0.95, 1.05s r0.9, 1.1s r0.85, 1.15s
Avg. ∆b(%) 0.66 0.00 0.08

PR
λ 5 10 15
Avg. ∆b(%) 0.62 0.00 2.39

ρ 0.5 0.7 0.9
Avg. ∆b(%) 0.26 0.00 0.19

Penalties
δupdate 1.1 1.5 2
Avg. ∆b(%) 0.00 0.19 0.98

SA
∆SA 0.005 0.01 0.015
Avg. ∆b(%) 0.34 0.00 0.60

θ 50 100 200
Avg. ∆b(%) 0.30 0.00 0.55

Table 5.4.: Results of different parameter settings on a randomly drawn subset of ten VRPTWMD-F instances
structured according to the associated algorithmic components. For each parameter, we examine
three values and provide for each value the respective average gap of the best solutions found to
the BKS as determined during our entire testing activities (∆b) in percent. The best setting for
each parameter is marked in bold and used as the final setting.

For the ALNS, we refine the boundaries of the removal interval (Ψ||), the reaction factor for the weight
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adjustment of the adaptive components (α), the parameters to control the degree of randomness in
specific removal operators (χworst , χrel , and χnb), the weights used to calculate the relatedness measure
between two customers (χc, χu, and χe), the percentage of best insertions considered by the GRASP
insertion operator (χGRASP), the factor used to calculate the diversification penalty (κ), and the
interval from which a random number is drawn to augment the change in routing cost by noise
(rζmin , ζmaxs).

For the PR component, we investigate the influence of the size of the elite set (λ) and the percentage
of the solution path which we investigate in each PR execution (ρ). Finally, we tune the penalty
update factor (δupdate) and the relative solution deterioration (∆SA) used to determine the initial and
minimal temperature and the cooling period (θ) of our SA-inspired acceptance mechanism. For each
parameter, we provide the average of the gaps of the best solutions found to the respective best-known
solution (BKS) as determined during our entire testing activities in percent (∆b). The best and thus
final value for each parameter is marked in bold.

The complete parameter setting is shown in Table 5.5. We additionally report the general ALNS-PR
parameters maximum number of iterations without improvement (ω) and number of non-improving
iterations after which the current solution is reset to the current best (µ). For the experiments on the
new VRPTWMD instances, we set ω � 2000 and for the 2E-MTVRP-SS instances, we set ω � 500 to
obtain competitive computation times.

For our ALNS component, we additionally provide the scores to measure the success of the adaptive
components (σbest , σimp, and σacc) and the number of iterations after which the weights of the adaptive
components are updated (γ). We further report the initial (δ0), minimum (δmin), and maximum (δmax)
penalty factors and the numbers of ALNS-PR iterations after which the penalty factors are increased
(η�) as well as decreased (η�). Finally, the parameters for the SA-inspired acceptance mechanism are
complemented by the number of solution resets after which the temperature is reset to its initial value
and the current solution is set to a solution randomly drawn from the elite set (ε).

ALNS-PR ALNS PR Penalties SA

ω 2000{500 Ψ|| r0.01, 0.1s λ 10 δ0 10 ∆SA 0.01
µ 200 σbest , σimp, σacc 6, 9, 3 ρ 0.7 δmin 0.1 θ 100

α 0.8 δmax 10 000 ε 2
γ 20 δupdate 1.1
χnb 2 η� 2
χworst 2 η� 2
χrel 3
χc, χu, χe 1, 2, 4
χGRASP 0.05
κ 0.7
rζmin , ζmax s r0.9, 1.1s

Table 5.5.: Final parameter setting of our ALNS-PR structured according to algorithmic components.

5.4.3. Influence of Algorithmic Components

In this section, we investigate the contribution of specific components of our ALNS-PR algorithm. To
this end, we again use ten randomly selected VRPTWMD-F instances.

With respect to the ALNS, we analyze the effect of the problem-specific route selection policies (syn-
chronization offset and transfer density) and removal operators (synchronization offset and segment
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removal). In addition, we are interested in the impact of rearranging partial transfers, i.e., only one
of both visits associated with a transfer instead of the entire transfer. To this end, we implement
an algorithmic variant that separately relocates DV or SV visits at each ALNS iteration where the
respective counterparts stay in the current solution. Moreover, we assess the effect of our PR approach
on the solution quality.

To measure the individual contribution of each component, we successively disable each component
and keep the remaining components enabled. We then compare the results obtained with the respec-
tive configuration to those of our full ALNS-PR where all components are active. In Table 5.6, we
summarize the results of the component study. In particular, we compare the average percentage gaps
of the best solutions found to the BKS (Avg. ∆b) of each algorithmic configuration. The configuration
representing our full ALNS-PR is shown in bold.

Components

Route selection
Synchronization offset 3 7 X X X X X X

Transfer density 3 X 7 X X X X X

ALNS operators
Synchronization offset removal 3 X X 7 X X X X

Segment removal random 3 X X X 7 X X X

Segment removal synchronization 3 X X X X 7 X X

Consider only entire transfers 3 X X X X X 7 X

Path relinking 3 X X X X X X 7

Avg. ∆b(%) 0.00 0.18 0.72 0.17 0.52 0.59 1.53 0.11

Table 5.6.: Comparison of the performance of different algorithmic configurations.

We can observe a notable decrease in solution quality for each reduced algorithmic configuration
ranging from 0.11% to 1.53% compared to the full algorithm. The problem-specific route selection and
removal operators used in the ALNS step appear to adequately address the existence of transfers and
the associated synchronization requirements. On the contrary, the consideration of partial transfers
in the ALNS step seems to considerably impede the search and shows by far the most significant
deviation. This hints at the importance of jointly considering both the DV and the SV level to
overcome local optima in the VRPTWMD. Finally, the results show that our ALNS is reasonably
complemented by the proposed PR approach.

5.4.4. Results on 2E-MTVRP-SS Instances

In Table 5.7, we present our results on the 2E-MTVRP-SS instances proposed by Grangier, Gendreau,
Lehuédé, and Rousseau (2016) in comparison to the results obtained by the same authors on these
instances (GGLR).

For each instance, we report the number of SVs (mS), the number of DVs (mD), and the objective
function value (f) associated with the BKS as reported by Grangier et al. (2016). For GGLR and
ALNS-PR, we report the absolute deviation of the number of employed SVs (∆mS ) and of the number
of employed DVs (∆mD) in the best solution found in ten runs to the respective best-known vehicle
numbers, the percentage gap of the best solution quality of ten runs to the BKS (∆b), the percentage
gap of the average solution quality of ten runs to the BKS (∆a), and the average run-time (ta) in
minutes. For ALNS-PR, we additionally report the objective function value of the best solution of ten
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runs (fb). Moreover, averages of the run-times, the gaps to the BKS, and the total absolute deviations
of the number of employed vehicles to the BKS over the complete set of instances are given at the
end of the table. In addition, we provide the average of the gaps of the best solution quality to the
BKS across all instances where we obtain the previous best-known vehicle numbers (Avg. (∆m � 0)).
Finally, to favor a fair run-time comparison, we translate the run-times of both methods into a common
time measure that takes into account the processors used. To this end, we relate the Passmark score
(see www.passmark.com) of the processor used by GGLR to the score of our i5-6600. The resulting
times in minutes are given as tc.

The results obtained by ALNS-PR are quite impressive. We are able to improve the previous BKS
for 49 out of 56 instances. In detail, we reduce the number of employed DVs by 11 across the entire
set of instances. With respect to the instances where we achieve the best-known vehicle numbers, we
are able to improve the previous BKS by �3.21% on average. Even if we calculate the average over
the entire set of instances, we observe a notable average improvement of �2.67%. In addition, the
speed of ALNS-PR is remarkable. ALNS-PR only spends roughly 38% of the time required by GGLR.
Moreover, ALNS-PR proves to be quite robust showing an average deviation of the average solution
quality to the BKS of less than one percent. Considering that GGLR only allow feasible solutions
during the search, the presented results might hint at the benefits of temporarily allowing infeasible
solutions in tightly constrained problems like the 2E-MTVRP-SS and the VRPTWMD.

5.4.5. Results on VRPTWMD Instances

In this section, we present our results on the small VRPTWMD instances in comparison with the
commercial solver CPLEX. As comparison for future methods that address the VRPTWMD, we
provide our detailed results on the large VRPTWMD benchmark in Appendix A.

Table 5.8 shows the results of ALNS-PR and those of CPLEX on the small VRPTWMD-F and VRP-
TWMD-L instances. For CPLEX, we report for each instance, the number of SVs (mS), the number
of DVs (mD), the best upper bound (UB), and the run-time (t) in seconds. CPLEX is given a time
limit of 7200 seconds and we allow a maximum of ten visits to the end depot n�1. Solutions found by
CPLEX within the given time limit are optimal. For ALNS-PR, we provide the absolute deviation of
the number of employed SVs (∆mS ) and of the number of employed DVs (∆mD) in the best solution
to the respective vehicle numbers found by CPLEX, the best solution quality of ten runs (fb), the
percentage gap of the best solution quality of tens runs to UB (∆b), the percentage gap of the average
solution quality of ten runs to UB (∆a), and the average run-time (ta) in seconds. In addition, averages
of the run-times, the gaps to UB, and the total absolute deviations of deployed SVs and DVs are given
for each set of instances.

CPLEX is able to solve 24 out of 36 instances, i.e., all instances with five and ten customers to
optimality. With respect to the best solution quality, the results of ALNS-PR match or improve
the quality of all optimal CPLEX solutions and all CPLEX upper bounds while showing significantly
lower average run-times of only a few seconds. With respect to the structure of the identified solutions,
we are able to reduce the number of employed DVs for two VRPTWMD-F instances. Finally, the
robustness of our ALNS-PR is again indicated by the small deviations of the average solution quality
to the best solution quality.
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BKS GGLR ALNS-PR

Instance mS mD f ∆mS
∆mD

∆b(%) ∆a(%) ta(min) ∆mS
∆mD

fb ∆b(%) ∆a(%) ta(min)

c101 3 11 2022.4 0 0 0.00 1.73 52.4 0 0 1936.05 -4.27 -2.35 16.52
c102 3 10 1947.6 0 0 0.00 1.40 88.5 0 0 1966.35 0.96 3.35 18.38
c103 3 9 1880.7 0 0 0.00 3.51 56.7 0 0 1868.38 -0.65 2.45 22.00
c104 3 9 1811.1 0 0 0.00 2.55 58.9 0 0 1777.13 -1.88 2.54 27.21
c105 3 10 1934.0 0 0 0.00 1.30 61.7 0 0 1807.66 -6.53 -1.79 15.22
c106 3 10 1945.0 0 0 0.00 1.52 71.9 0 1 1838.05 -5.50 -0.11 15.31
c107 3 10 1888.9 0 0 0.00 0.74 43.7 0 0 1837.02 -2.75 0.28 15.96
c108 3 10 1875.3 0 0 0.00 1.88 47.4 0 0 1813.15 -3.31 0.42 16.77
c109 3 9 1863.1 0 0 0.00 3.12 69.8 0 0 1817.21 -2.46 2.46 18.42
c201 2 3 1389.3 0 0 0.00 1.79 65.0 0 0 1275.00 -8.23 -4.19 8.80
c202 2 3 1305.0 0 0 0.00 0.99 51.7 0 0 1289.12 -1.22 4.34 15.40
c203 2 3 1272.7 0 0 0.00 0.78 61.7 0 0 1269.69 -0.24 5.29 24.27
c204 2 3 1237.9 0 0 0.00 1.89 64.0 0 0 1181.24 -4.58 5.94 18.94
c205 2 3 1312.1 0 0 0.00 0.82 39.8 0 0 1247.37 -4.93 0.46 8.38
c206 2 3 1312.6 0 0 0.00 1.22 40.5 0 0 1217.65 -7.23 -0.30 13.93
c207 2 3 1280.4 0 0 0.00 2.05 42.1 0 0 1217.36 -4.92 2.14 13.53
c208 2 3 1278.3 0 0 0.00 1.70 41.5 0 0 1231.19 -3.69 3.05 15.47
r101 2 19 2333.5 0 0 0.00 0.80 48.2 0 0 2192.80 -6.03 -3.74 7.50
r102 2 18 2136.8 0 0 0.00 0.75 56.1 0 -1 1995.05 -6.63 -6.08 8.64
r103 2 13 1942.7 0 0 0.00 0.65 70.7 0 0 1860.60 -4.23 -7.11 13.87
r104 2 10 1777.2 0 0 0.00 1.55 98.9 0 -1 1603.66 -9.76 -7.84 20.68
r105 2 14 2096.8 0 0 0.00 1.99 44.9 0 0 1984.69 -5.35 -5.45 10.38
r106 2 12 1992.4 0 0 0.00 1.79 62.7 0 0 1821.93 -8.56 -5.61 15.70
r107 2 11 1779.2 0 0 0.00 2.12 67.3 0 -1 1675.62 -5.82 -1.56 17.67
r108 2 10 1654.3 0 0 0.00 2.90 60.4 0 -1 1546.95 -6.49 -1.94 18.06
r109 2 12 1925.9 0 0 0.00 2.95 60.4 0 0 1756.52 -8.79 -3.84 18.17
r110 2 12 1833.6 0 0 0.00 3.02 70.5 0 -1 1754.27 -4.33 -0.36 14.33
r111 2 12 1770.8 0 0 0.00 2.35 76.2 0 -1 1684.81 -4.86 0.85 20.81
r112 2 11 1746.0 0 0 0.00 3.14 78.3 0 -1 1664.30 -4.68 -2.34 21.66
r201 1 4 1587.8 0 0 0.00 1.68 33.7 0 0 1537.15 -3.19 0.89 11.57
r202 1 3 1530.8 0 0 0.00 1.14 72.7 0 0 1481.01 -3.25 -0.78 13.31
r203 1 3 1255.1 0 0 0.00 1.85 56.1 0 0 1213.16 -3.34 0.64 22.52
r204 1 2 1191.7 0 0 0.00 0.70 122.7 0 0 1110.16 -6.84 -2.83 16.17
r205 1 3 1319.1 0 0 0.00 2.95 36.5 0 0 1312.70 -0.49 4.15 10.97
r206 1 3 1228.3 0 0 0.00 1.89 52.1 0 0 1219.57 -0.71 2.23 21.62
r207 1 3 1140.2 0 0 0.00 1.53 65.0 0 -1 1186.66 4.07 6.68 24.72
r208 1 2 1050.2 0 0 0.00 3.08 59.8 0 0 1010.05 -3.82 3.73 15.78
r209 1 3 1258.7 0 0 0.00 1.34 46.3 0 0 1235.64 -1.83 2.08 12.11
r210 1 3 1279.8 0 0 0.00 1.61 53.8 0 0 1264.88 -1.17 2.65 15.40
r211 1 3 1118.2 0 0 0.00 2.75 65.7 0 -1 1278.68 14.35 4.27 16.16
rc101 3 16 2577.0 0 0 0.00 1.41 46.8 0 0 2511.19 -2.55 0.15 12.78
rc102 3 14 2407.1 0 0 0.00 2.22 66.2 0 0 2423.26 0.67 2.63 16.02
rc103 3 11 2476.9 0 0 0.00 2.62 121.8 0 0 2128.90 -14.05 -9.68 18.48
rc104 3 11 2125.9 0 0 0.00 1.77 82.6 0 -1 2003.53 -5.76 -2.05 22.06
rc105 3 15 2542.6 0 0 0.00 2.35 61.4 0 0 2564.89 0.88 -0.44 14.20
rc106 3 13 2494.9 0 0 0.00 3.60 74.4 0 0 2299.56 -7.83 -4.33 19.09
rc107 3 13 2271.1 0 0 0.00 1.76 80.5 0 -1 2362.09 4.01 4.09 21.17
rc108 3 12 2202.9 0 0 0.00 1.21 84.7 0 0 2181.81 -0.96 2.60 19.74
rc201 1 4 1787.6 0 0 0.00 2.62 36.3 0 0 1796.32 0.49 5.03 9.18
rc202 1 4 1513.8 0 0 0.00 2.01 102.5 0 -1 1811.46 19.66 10.89 14.32
rc203 1 3 1416.2 0 0 0.00 2.44 53.7 0 0 1408.91 -0.51 4.43 13.71
rc204 1 3 1188.2 0 0 0.00 1.99 60.1 0 0 1184.06 -0.35 4.53 19.18
rc205 1 4 1693.7 0 0 0.00 1.24 61.7 0 0 1635.92 -3.41 1.05 16.32
rc206 1 3 1583.1 0 0 0.00 2.78 76.2 0 0 1538.72 -2.80 2.72 12.51
rc207 1 3 1449.8 0 0 0.00 4.10 60.7 0 0 1495.71 3.17 8.78 11.07
rc208 1 3 1257.3 0 0 0.00 3.51 66.3 0 0 1292.04 2.76 5.70 13.70

Avg. 0.00 1.98 63.4 -2.67 0.69 16.18
Avg. (∆m � 0) -3.21
°

0 0 0 -11

Processor type Xeon X5675 i5-6600
Processor speed 3.07 GHz 3.30 GHz
Passmark score 1402 2098
tc(min) 42.37 � 10 16.18 � 10

Table 5.7.: Results of ALNS-PR and GGLR on the 2E-MTVRP-SS instances proposed by Grangier et al.
(2016).
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CPLEX ALNS-PR

Instance mS mD UB t(s) ∆mS ∆mD
fb ∆b(%) ∆a(%) ta(s)

VRPTWMD-F-c101-5 1 3 819.87 0.39 0 0 819.87 0.00 0.00 0.44
VRPTWMD-F-c101-10 1 4 990.61 434.49 0 0 990.61 0.00 0.00 4.80
VRPTWMD-F-c101-15 1 7 1613.79 7200 0 -1 1514.52 -6.15 -5.19 23.61
VRPTWMD-F-c201-5 0 2 443.03 0.92 0 0 443.03 0.00 0.00 0.16
VRPTWMD-F-c201-10 1 2 1012.56 1074.61 0 0 1012.56 0.00 0.00 0.81
VRPTWMD-F-c201-15 1 3 1228.47 7200 0 -1 1208.47 -1.63 -0.98 6.28
VRPTWMD-F-r101-5 0 4 674.21 1.61 0 0 674.21 0.00 0.00 0.13
VRPTWMD-F-r101-10 1 5 802.05 264.86 0 0 802.05 0.00 0.00 5.11
VRPTWMD-F-r101-15 2 5 1313.71 7200 0 0 1313.71 0.00 1.57 15.49
VRPTWMD-F-r201-5 1 2 716.59 7.80 0 0 716.59 0.00 0.00 0.26
VRPTWMD-F-r201-10 1 2 758.34 4944.37 0 0 758.34 0.00 0.60 1.71
VRPTWMD-F-r201-15 1 2 962.91 7200 0 0 962.91 0.00 0.00 7.87
VRPTWMD-F-rc101-5 1 2 683.53 1.19 0 0 683.53 0.00 0.00 0.29
VRPTWMD-F-rc101-10 1 5 1387.00 227.68 0 0 1387.00 0.00 0.00 1.71
VRPTWMD-F-rc101-15 2 6 1789.29 7200 0 0 1789.29 0.00 0.67 25.90
VRPTWMD-F-rc201-5 1 1 708.31 5.79 0 0 708.31 0.00 0.15 0.65
VRPTWMD-F-rc201-10 0 4 1111.38 3941.19 0 0 1111.38 0.00 0.00 0.27
VRPTWMD-F-rc201-15 1 2 951.13 7200 0 0 941.78 -0.98 -0.69 5.43

Avg. 3182.62 -0.49 -0.21 5.61
°

0 -2

VRPTWMD-L-c101-5 0 3 517.64 4.65 0 0 517.64 0.00 0.00 0.17
VRPTWMD-L-c101-10 0 5 720.95 83.98 0 0 720.95 0.00 0.00 0.91
VRPTWMD-L-c101-15 1 5 1299.41 7200 0 0 1288.34 -0.85 -0.85 10.39
VRPTWMD-L-c201-5 0 2 421.81 9.67 0 0 421.81 0.00 0.00 0.15
VRPTWMD-L-c201-10 0 3 848.09 439.17 0 0 848.09 0.00 0.00 0.45
VRPTWMD-L-c201-15 0 4 999.33 7200 0 0 999.33 0.00 0.00 0.96
VRPTWMD-L-r101-5 0 3 550.34 2.23 0 0 550.34 0.00 0.00 0.14
VRPTWMD-L-r101-10 1 4 740.32 1080.77 0 0 740.32 0.00 0.23 4.75
VRPTWMD-L-r101-15 1 5 1064.15 7200 0 0 1064.15 0.00 0.22 6.04
VRPTWMD-L-r201-5 0 3 576.98 18.97 0 0 576.98 0.00 0.00 0.13
VRPTWMD-L-r201-10 0 4 680.99 2444.95 0 0 680.99 0.00 0.00 0.42
VRPTWMD-L-r201-15 0 4 882.60 7200 0 0 882.60 0.00 0.00 2.34
VRPTWMD-L-rc101-5 0 3 580.23 3.68 0 0 580.23 0.00 0.00 0.14
VRPTWMD-L-rc101-10 0 5 1062.09 173.80 0 0 1062.09 0.00 0.00 0.31
VRPTWMD-L-rc101-15 1 5 1256.62 7200 0 0 1256.62 0.00 0.28 2.19
VRPTWMD-L-rc201-5 0 3 558.51 24.98 0 0 558.51 0.00 0.00 0.15
VRPTWMD-L-rc201-10 0 3 927.02 1087.07 0 0 927.02 0.00 0.00 0.80
VRPTWMD-L-rc201-15 1 1 841.77 7200 0 0 841.77 0.00 0.00 6.85

Avg. 2857.02 -0.05 -0.01 2.07
°

0 0

Table 5.8.: Comparison of the results of ALNS-PR and CPLEX on the small VRPTWMD-F and VRPTW-
MD-L instances.
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5.4.6. Effect of Different Problem Characteristics

In this section, we investigate the effect of (i) the DVs’ capacity of the replenishable resource, (ii) the
ratio of the SVs’ load capacity and the capacity of the replenishable resource, (iii) the ratio of the SV
and the DV deployment cost, and (iv) the time incurred for each transfer operation on the structure of
the VRPTWMD solutions. To this end, we first draw ten VRPTWMD instances for each application
context at random. Based on these instances, we generate modified sets of instances for each problem
characteristic by varying the respective value. The results on these instances are then compared to
those obtained on the original ones.

In addition, we analyze the savings that can be achieved by treating the task order at a customer as
a decision variable. To this end, we solve each original VRPTWMD-F instance where we scheduled
at least one transfer again under the more rigid assumption of always executing the transfer first. We
then compare the results obtained in this way with the original ones.

Vehicle capacities In Figure 5.14, we present the total number of deployed SVs (
°
mS), the total

number of deployed DVs (
°
mD), the total number of performed transfers

°
nt, and the average

travel distance (Avg. TD) across all considered instances for different capacities of the replenishable
resource R for each application context. More precisely, we vary the percentage that we use to obtain
R from the respective resource consumption occurring in the high-quality solutions to the original
VRPTW instances (see Section 5.4.1.2). In particular, we generate modified instances for 60%, 80%,
and 90%. The value used to create the original VRPTWMD instances (70%) is marked in bold. Note
that for VRPTWMD-F, we are not able to obtain a feasible solution for each considered instance with
respect to the 60% capacity configuration. Therefore, we do not report results for this scenario and
configuration.

Unsurprisingly, the number of employed SVs strongly correlates with the number of performed trans-
fers. Both measures monotonically decrease with increasing resource capacity in both application
scenarios. However, in case of R � LD, no transfers seem to be necessary for a capacity percentage
of 80% and higher, whereas fuel transfers are scheduled even for the least restrictive capacity config-
uration of 90%. Moreover, we observe a slight decrease in the number of employed DVs and of the
average travel distance with decreasing capacity restriction.

Figure 5.15 shows the effect of different ratios of the SVs’ load capacity LS and R, namely 1, 2, 3, and
4, on the same measures. With respect to R � F , the number of necessary resource transfers only
slightly fluctuates around the mean value of 48. As a consequence, an increasing number of SVs have
to be utilized with decreasing load capacity LS to meet this demand. However, this has no significant
effect on the number of employed DVs or the traveled distance.

Although the effect described for the fuel scenario can also be observed for the load scenario initially,
no transfers are performed at all for a capacity ratio of two and lower. While the depletion of the fuel
capacity prevents a DV from moving in space, it is still able to reach every vertex with empty load
capacity. Thus it seems reasonable to exchange SVs for a higher number of less expensive DVs as the
difference between their capacities decreases. Here, the traveled distance is also barely affected. This
is basically true for the large majority of investigated configurations because all vehicles are based at
the same depot and no detours to dedicated transfer locations are necessary.
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Figure 5.14.: Effect of different capacities of the replenishable resource R.
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Figure 5.15.: Effect of different ratios of load capacity LS and replenishable resource R.
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Figure 5.16.: Effect of different ratios of the DV and SV deployment cost.
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Figure 5.17.: Effect of different transfer times.
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Vehicle cost Figure 5.16 displays the effect of different ratios of the SV and DV deployment cost. We
investigate the values 1, 2, 3, and 50. The latter value is used to model the hierarchical minimization
of vehicles. With respect to fuel, an increase of the SV deployment cost only leads to a slight decrease
in the number of performed transfers and thus employed SVs. In turn, the number of employed DVs
slightly increases. This hints again at the necessity of fuel replenishments to achieve feasibility of
deliveries.

In the load scenario, the benefits of considering transfers vanish quickly as the utilization of SVs
becomes more expensive. At a cost ratio of 3 already, we do not observe the use of transfers anymore.

Transfer time In Figure 5.17, we investigate the effect of different transfer times based on varying
percentages of the service times given in the original VRPTW instances. In detail, we investigate
50%, 100%, 150%, and 200%.

Interestingly, the number of employed fuel SVs remain constant for the first three values and suddenly
increase significantly in the case of 200%. As the time consumption associated with transfers rises,
some time windows seem to become impossible to satisfy with the initial vehicle configuration at this
point. Thus, a higher parallelization of tasks needs to be achieved by utilizing additional SVs and
DVs.

For the load scenario, we again observe a clear trend of discarding the use of transfers as the problem
setting becomes increasingly constrained.

Task order Finally, in Table 5.9, we show an aggregated comparison of the results obtained under
the assumption of always executing the transfer first (oi � 1) to those obtained when the task order
is treated as a decision variable, i.e., oi P t0, 1u.

oi � 1 oi P t0,1u

mS mD nt ∆mS ∆mD ∆nt ∆b(%)

58 377 266 -1 -7 -9 -1.08

Table 5.9.: Impact of treating the task order at a customer as a decision variable.

The results show that the flexibility of deciding which task is performed first allows a cost saving of
�1.08%, on average. Moreover, in total, we are able to save one SV–as a consequence of requiring
nine transfers less–and seven DVs.

5.5. Conclusion

In this chapter, we introduce the generic vehicle-routing problem with time windows and mobile depots
(VRPTWMD) that is characterized by a fleet of support vehicles (SVs) and a fleet of delivery vehicles
(DVs). Depending on the application scenario, the SVs serve as mobile depots to replenish either the
fuel or the load capacity of the DVs.

We present a mixed-integer program for the VRPTWMD and optimal solutions on small problem
instances for each application context. In addition, we develop an adaptive large neighborhood search
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algorithm, complemented by a path relinking approach (ALNS-PR) to address large instances for the
VRPTWMD.

In extensive numerical studies, we first show that the omission of the problem-specific components and
of our PR implementation leads to a notable decrease in solution quality. Moreover, we demonstrate
the competitiveness of our approach on benchmark instances for the related two-echelon multiple-trip
VRP with satellite synchronization. We are able to significantly improve the large majority of the
previous best-known solutions, namely 49 out of 56, while spending remarkably less computation time
in comparison to the state-of-the-art algorithm from the literature.

Finally, on newly generated VRPTWMD instances, we analyze the effect of different problem char-
acteristics, namely (i) the DVs’ capacity of the resource that may be replenished, (ii) the ratio of the
SVs’ load capacity and the DVs’ capacity of the replenishable resource, (iii) the ratio of the SV and the
DV deployment cost, and (iv) the time incurred for each transfer operation on the solution structure.
We observe that fuel transfers are essential in each problem configuration to be able to serve cus-
tomers that are located far away from the depot. In contrast, we note a clear trend of discarding the
use of load transfers as the problem setting becomes increasingly constrained with respect to transfer
operations, i.e., due to a decreasing load capacity of the SVs, rising cost for the utilization of SVs,
and an increasing time consumption associated with transfers. In addition, we show that treating the
task order at a customer as a decision variable yields significant savings compared to a more rigid
assumption of, e.g., always performing the transfer operation first.
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Chapter 6

Reverse Logistics: Simultaneous Pickup and Delivery

6.1. Introduction

In this chapter, we study a class of VRPs with simultaneous pickup and delivery (VRPSPDs), in which
customers may require (i) delivery service of goods originating at the depot, and (ii) pickup service for
goods which need to be returned to the depot. VRPSPDs arise, for instance, in the context of reverse
logistics. Reverse logistics is defined as the process of planning, implementing, and controlling the
flow of, e.g., raw materials or finished goods from the point of consumption to the point of origin for
the purpose of recapturing value or proper disposal by The Council of Logistics Management (Stock,
1992).

In particular, this chapter is motivated by a practical application occurring at DHL Freight in Sweden.
There, the logistics company operates about 1400 vehicles which are based at 25 depots. Up to 50 000
customers requiring bulky goods and parcels to be delivered and to be picked up need to be served on
a daily basis amounting to approximately 18 million shipments per year. This scenario can be modeled
as a multi-depot VRPSPD whose scale calls for its decomposition into several VRPSPDs which need
to be solved efficiently. In a first step, we aim at developing a solution method that is flexible enough
to address the VRPSPD and its variants from the literature, and that provides competitive results on
these problems.

In addition to the standard VRPSPD, we investigate (i) the VRPSPD with time limit (VRPSPDTL),
which imposes a maximum duration on the vehicle routes, (ii) the VRPSPD with time windows
(VRPSPDTW), where customers are associated with time intervals in which their service must start,
(iii) the VRP with divisible deliveries and pickups (VRPDDP), which allows to satisfy a customer’s
pickup and delivery requests in two separate visits, (iv) the previously unstudied VRP with restricted
mixing of divisible deliveries and pickups (VRPRMDDP), which additionally requires that a certain
percentage of the vehicle capacity must remain free when both types of demand are loaded at the
same time, and (v) the previously unstudied VRPDDP with time windows (VRPDDPTW).

Because the standard VRPSPD and its variants extend the N P-hard capacitated VRP (CVRP),
heuristic solution methods are a suitable choice for solving larger problem instances of practical rele-
vance in short computation time.

For the VRPSPD, the most successful heuristics are the parallel iterated local search algorithm by
Subramanian et al. (2010), that makes use of the variable neighborhood descent paradigm with random
neighborhood ordering and is embedded in a multi-start framework, the approach of Zachariadis,
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Tarantilis, and Kiranoudis (2010), which is characterized by a memory structure to store and recombine
promising vertex sequences, the iterated local search of Subramanian, Uchoa, and Ochi (2013), that is
combined with a set partitioning approach, the unified hybrid genetic search by Vidal et al. (2014a),
and the variable neighborhood search (VNS) algorithm of Polat et al. (2015) that is extended by a
perturbation mechanism.

For the VRPSPDTL, the approaches of Subramanian, Uchoa, and Ochi (2013), Polat et al. (2015),
and that of Kalayci and Kaya (2016), which combines an ant colony system with a VNS algorithm,
are the best-performing heuristics.

For the VRPSPDTW, Wang and Chen (2012) propose a co-evolution genetic algorithm and respective
benchmark instances that are derived from instances for the VRP with time windows (VRPTW).
Wang et al. (2015) are able to improve on numerous results reported by Wang and Chen (2012) using
a parallel simulated annealing (SA) algorithm.

The VRPDDP is introduced by Nagy et al. (2015). The authors use a reactive tabu search algorithm
to investigate the conditions under which the division of customer demands is beneficial. Recently,
Polat (2017) presented cooperative VNS—a parallel approach based on the VNS paradigm—for the
VRPDDP, which is able to obtain new best solutions for the large majority of the instances proposed
by Nagy et al. (2015).

The VRPRMDDP is inspired by the investigations of Nagy, Wassan, and Salhi (2013) and Hoff et al.
(2009). Nagy, Wassan, and Salhi (2013) introduce the VRP with restricted mixing of deliveries and
pickups (VRPRMDP), which accounts for the difficulty of rearranging the vehicle load by requiring
that a certain percentage of the vehicle capacity must remain unoccupied when both pickup and
delivery demands are simultaneously loaded. In the VRPRMDP, each customer may demand pickup
or delivery service but not both. The VRPRMDDP generalizes the VRPRMDP by assuming that
customers can be associated with both types of demand that may be satisfied in two separate visits
as in the VRPDDP. A related problem is investigated by Hoff et al. (2009). The authors aim at
generating so-called “lasso” routes for the VRPDDP by exclusively satisfying delivery requests at the
beginning of each route. Then, as soon as a certain percentage of the vehicle capacity has been freed,
the remaining customers of the route may be visited for pickup and delivery. Similar to the motivation
of the VRPRM(D)DP, ensuring a minimum percentage of free vehicle capacity before allowing pickups
aims at improving the accessibility of the items still to be delivered. Finally, the initial delivery path
is visited in reverse order to fulfill the remaining pickup requests before returning to the depot. The
VRPRMDDP thus differs from the problem studied by Hoff et al. (2009) in that the given percentage of
vehicle capacity must be free as long as the vehicle load consists of a mixture of both types of demand
and not only before entering the pickup-and-delivery part of the route. In addition, no particular
shape is imposed on the vehicle routes in the VRPRMDDP.

Ropke and Pisinger (2006a) proposed an adaptive large neighborhood search (ALNS) algorithm for a
class of VRPs with backhauls that was also applied to a small subset of VRPSPD instances but could
not compete with the state-of-the-art approaches specifically tailored to the VRPSPD. The contri-
bution of this chapter is to propose a more effective ALNS heuristic combined with a path relinking
(PR) approach, called ALNS-PR, to address the VRPSPD and its variants. Besides established ALNS
components with general validity for VRPs, we introduce an innovative removal operator and route
selection policies that explicitly take the load characteristics of VRPSPDs into account.
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In extensive computational studies, we show that the algorithmic components, especially the hybridiza-
tion with PR and the newly proposed ALNS operator, positively impact the quality of the obtained
solutions and significantly accelerate the convergence rate of the search. Moreover, we demonstrate
the competitiveness of our approach on established benchmark instances for VRPSPD variants pro-
posed in the literature. We improve numerous previous best-known solutions (BKS), especially on
VRPSPDTL, VRPSPDTW, and VRPDDP instances. Moreover, we introduce a new VRPDDPTW
benchmark and report results on these instances. In addition, we analyze the savings achievable by
dividing customer demands by comparing the VRPDDPTW results to VRPSPDTW results obtained
on the new instances. To demonstrate the suitability of our solution method for an even larger variety
of problems, we perform additional experiments on instances for (i) the VRP with mixed deliveries
and pickups (VRPMDP), which represents a special case of the VRPSPD(TL) in which each customer
is associated with only one type of demand, and (ii) the VRPRMDP, the special case of the VRP-
RMDDP. Here, our approach also achieves convincing results and is able to obtain numerous new best
solutions.

The remainder of this chapter is structured as follows: Our ALNS-PR algorithm is explained in detail
in Section 6.2. We describe the numerical studies to evaluate the performance of the proposed approach
in Section 6.3. The chapter is summarized and concluded in Section 6.4.

6.2. Adaptive Large Neighborhood Search with Path Relinking for
VRPSPDs

In this section, we describe our solution method that combines an ALNS algorithm with a PR approach.
A pseudocode overview of the ALNS-PR is given in Figure 6.1.

S Ð generateInitialSolutionpq
Initialize best solution S� Ð S
Initialize set of elite solutions E ÐH
while number of iterations without improvement not reached do
if S already visited or set of elite solutions E not completely filled then
{Perform single ALNS iteration and local search on subset K of routes drawn from S}
S 1 Ð performALNS(S,K)
S 1 Ð performLocalSearchpS 1,Kq

else
S 1 Ð performPathRelinkingpS, Eq
S 1 Ð performLocalSearchpS 1q

end if
E Ð evaluateInclusion(S 1)
if accept(S 1,S) then

S Ð S 1

if S 1 improves on S� then
S� Ð S 1

end if
end if
updatePenaltyFactorspSq

end while

Figure 6.1.: Pseudocode of the ALNS-PR algorithm for solving VRPSPDs.

The initial solution S is generated by means of the savings algorithm introduced by Clarke and Wright
(1964) (Section 6.2.2) and improved by a local search procedure (Section 6.2.5).
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The following main phase of our algorithm is then repeated until a maximum number of iterations ω
without improvement of the current best solution S� is reached. In each iteration, we decide whether
to apply the ALNS or the PR component to the current solution S. Our PR component relies on a
dynamic set E of elite solutions that are recombined with new solutions found during the search. If
the current solution S has already been visited before, or the elite set is not completely filled, i.e.,
|E | is smaller than the maximum size λ of the elite set, a single iteration of our ALNS component is
performed. We apply ALNS and the following local search step only to a subset K of routes drawn
from the current solution S that are closely located to each other (Section 6.2.3), resulting in solution
S 1. We observed a beneficial impact on solution quality and run-time compared to the application of
both components to the entire solution.

Otherwise, if S represents a new solution and the elite set E is filled, PR is applied between S and the
solutions contained in E (Section 6.2.4). Subsequently, we perform local search on the best solution
S 1 returned by the PR routine.

For the resulting solution S 1, we evaluate if it should be included in the set of elite solutions E . As
long as E is not completely filled, any feasible solution is added. Otherwise, S 1 is included and replaces
the worst solution contained in E if it is feasible, and

• improves on the best solution in E , or
• an SA-based comparison with the worst solution in E similar to the mechanism described in

Section 6.2.6 turns out in favor of the candidate solution S 1, and the inclusion of S 1 does not
decrease the average diversity among all elite solutions. We measure the diversity between
solutions in terms of the number of arcs exclusively contained in one of both solutions (see
Section 6.2.4).

This procedure aims at balancing quality and diversity of the elite solutions.

Next, the SA acceptance mechanism decides if S 1 replaces S as the current solution for the subsequent
iteration (Section 6.2.6). After µ iterations without improvement, we reset S to S�. For the purpose
of diversification, we set the SA temperature back to its initial value and S to a solution randomly
chosen from the elite set after ε solution resets. The probability of an elite solution to be selected is
proportional to the diversity between this solution and S�.

Infeasible solutions, i.e., solutions not respecting all constraints are allowed and handled by means
of a dynamic penalty mechanism. More precisely, we transform constraint violations into penalty
costs by multiplying the respective value with a dedicated penalty factor for each constraint. The
penalty factors of solution S are dynamically updated during the search depending on the number of
consecutive ALNS-PR iterations during which the respective constraint has been satisfied or violated
(Section 6.2.1). Moreover, if the ALNS component has been applied in the current iteration, we
update the selection probabilities of its components according to the adaptive mechanism described
in Section 6.2.3.

Handling time windows and divisible demands Heuristic optimization for the classical VRPTW
is usually conducted under the assumption of a hierarchical objective function with the main goal of
minimizing the number of employed vehicles (Bräysy and Gendreau, 2005a). This is also true for the
investigated problem variants VRPSPDTW and VRPDDPTW. If customer time windows are present,
we enable a vehicle minimization phase if the current solution S is feasible and the number of unsuc-
cessful vehicle reduction attempts is smaller than a nonnegative integer ιrem . Then, our ALNS tries
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to remove a route from the current solution, and in our PR component, we ignore elite solutions that
utilize a higher number of vehicles than S for relinking. On the other hand, if S has been infeasible
for ιadd iterations, we add an empty route to S. In the following description of our solution method,
we explicitly point out the additional modifications that become necessary when time windows need
to be taken into account.

Finally, to consider the possibility of satisfying a customer’s pickup and delivery requests via two
separate visits as in the VRPDDP(TW) and the VRPRMDDP, we extend the previously described
algorithm by an additional phase. Any VRPDDP can be transformed into a VRPMDP with twice
as many customers where each (partial) customer either requires pickup or delivery service but not
both. The same is true for the VRPRMDDP which can be transformed into a VRPRMDP of double
size. To this end, each customer of an original VRPDDP(TW) or VRPRMDDP instance is replaced
by (i) a duplicate of that customer having a delivery demand equal to the delivery demand of the
original customer and a pickup demand equal to zero, and (ii) a duplicate having a delivery demand
equal to zero and a pickup demand equal to the pickup demand of the original customer. Naturally,
doubling the instance size significantly increases the computational effort required by any solution
method. Therefore, we refrain from duplicating each customer at the beginning of the search. Instead,
we first apply the main phase of our algorithm as previously described under the assumption of
indivisible customer demands. After ω iterations without improvement of the current best VRP-
SPD(TW) solution S�, we duplicate each customer in S� and in each current elite solution. We
subsequently repeat the main phase of our algorithm using half of the initial value of ω as stopping
condition with the goal of obtaining an improved VRPDDP(TW) or VRPRMDDP solution.

6.2.1. Solution Evaluation and Penalty Determination

In order to increase the flexibility in exploring the solution space, our ALNS-PR temporarily tolerates
constraint violations by imposing dynamic penalty costs on infeasible solutions. The objective function
value of a solution S is then determined using a generalized cost function fgenpSq which includes penalty
costs for violating the capacity and time window constraints:

fgenpSq � fdistpSq � δCυCpSq � δTWυTW pSq.

Here, fdistpSq denotes the total traveled distance of solution S. The penalty factor for capacity (time
window) violation is denoted as δC (δTW ), and the current capacity (time window) violation in solution
S is given by υCpSq (υTW pSq).

All penalty factors are initially set to δ0 and dynamically varied within the interval rδmin , δmaxs.
After η� consecutive ALNS-PR iterations during which S has been infeasible with respect to a certain
constraint, the associated penalty factor is increased by factor δupdate. Analogously, after η� iterations
without violating a certain constraint, the respective penalty factor is divided by the factor δupdate.

In contrast to the classical CVRP, the vehicle load in the VRPSPD and its extensions does not
monotonically decrease or increase along a route but rather fluctuates. Therefore, for a solution to
the VRPSPD, feasibility with respect to the vehicle capacity is given if for each vertex i of each route,
the total demand picked up until vertex i plus the total demand still to be delivered at vertex i does
not exceed the vehicle capacity. Thus, even for intra-route moves, capacity evaluations cannot be
performed in constant time without introducing additional data structures. We efficiently evaluate
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capacity violations by implementing similar data structures as described in Zachariadis, Tarantilis,
and Kiranoudis (2010), which rely on storing forward and backward demand and load quantities for
each vertex in a route. Given a route r and let Vr denote the set of vertices visited by r, Q the vehicle
capacity, and li the vehicle load at vertex i, we define the capacity violation of route r as the maximum
violation of the vehicle capacity encountered along all vertices of r:

υCprq � max
iPVr

pmaxpli �Q, 0qq.

Time window violations are calculated based on the principle of time travel as described in Nagata,
Bräysy, and Dullaert (2010) and Schneider, Sand, and Stenger (2013). After considering a time window
violation only once at the vertex of occurrence, it is assumed that the vehicle is allowed to perform
service at the latest feasible moment, i.e., at the end of the time window of the regarded customer.
This procedure ensures that violations are not accumulated along actually feasible succeeding vertex
sequences. Using this approach, the computation of changes in time window violation for conventional
inter-route moves can be conducted in Op1q.

As stated in the previous section, in the case of VRPSPD variants with customer time windows,
we are faced with a hierarchical objective function with the main goal of minimizing the number of
employed vehicles. Then, fgen becomes the secondary objective function that needs to be evaluated if
two solutions utilize the same number of vehicles.

6.2.2. Initialization with Savings Algorithm

In order to quickly generate an initial solution, we implement an adaption of the savings algorithm
introduced by Clarke and Wright (1964) consisting of the following steps:

1. Generate back-and-forth tours for all customers.
2. Calculate the cost saving for each pair of customers resulting from merging the associated routes

as s � c0i � c0j � cij , where cij corresponds to the distance between two vertices i and j, and
sort the savings in decreasing order.

3. While there are positive cost savings, merge the associated routes if this does not result in
any constraint violation. Note that, if both routes either start or end with the customers
corresponding to the current saving value, we need to reverse the order of customer visits in
one route before the merging can be performed. However, this is usually undesirable in settings
where tight time windows need to be considered. In addition, due to the resulting shift of pickup
and delivery demands, a reversal of the route direction might render an initially feasible route
infeasible with respect to the capacity constraint. Thus, if the route reversal would lead to any
constraint violation, the merging is not performed.

After the merging procedure, the resulting number of routes may exceed the number of available
vehicles. In this case, we identify the route in which the maximum load encountered along all customer
visits is minimum. This route is then dissolved, and each customer inserted at the cheapest position
in the remaining routes. Capacity and time window violations are handled by imposing penalty costs
according to the generalized cost function (see Section 6.2.1). We repeat the process of dissolving
routes until the number of routes complies with the number of available vehicles.

The obtained solution is subsequently improved by a local search step (see Section 6.2.5).
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6.2.3. The Adaptive Large Neighborhood Search Component

The LNS paradigm, originally introduced by Shaw (1998), consists in iteratively destroying and subse-
quently repairing solutions by removing and reinserting relatively large numbers of customers. ALNS
extends this approach by deploying several competing removal and insertion operators which are cho-
sen at each iteration depending on their previous search performance. To this end, each operator is
assigned a selection probability which is dynamically updated during the search (Ropke and Pisinger,
2006b). ALNS has been successfully applied to several VRP variants (see, e.g., Ropke and Pisinger,
2006b; Ropke and Pisinger, 2006a; Pisinger and Ropke, 2007; Hemmelmayr, Cordeau, and Crainic,
2012).

In our solution approach, the ALNS component mainly serves the purpose of diversifying the search.
Figure 6.2 shows a single iteration of our ALNS implementation in pseudocode.

K Ð getNearestRoutes(S, πd)
if vehicle minimization enabled then

S 1 Ð removeRoute(S, K)
else
n� Ð drawNumberOfCustomersToRemove(π||, K)
{Apply randomly selected removal operator based on probabilities π�}
S 1 Ð removeCustomers(S, K, n�, π�)

end if
{Apply randomly selected insertion operator based on probabilities π�}
S1 Ð insertCustomers(S 1, K, π�)

Figure 6.2.: Pseudocode of our ALNS component.

First, we determine the subset of routes K from which customers are removed and subsequently
reinserted. To this end, a seed route is randomly selected. The remaining routes to be contained
in K are identified by repeating the following procedure: For each route not yet in K, we calculate
the average distance of its customers to all customers already contained in K. If this value is smaller
than ςd max

i,jPV
pcijq, where ςd P p0, 1s is called distance threshold factor, and max

i,jPV
pcijq corresponds to the

maximum distance between any two vertices in the problem instance, the respective route is added to
the subset. To increase the flexibility of the subset generation, at each ALNS iteration, ςd is randomly
selected from list Ψd � pςdmin , ς

d
min�0.05, ..., ςdmax �0.05, ςdmaxq with the minimum and maximum values

ςdmin and ςdmax being multiples of 0.05. Each value in Ψd is assigned a probability from vector πd , which
is dynamically updated during the search according to the mechanism described in Section 6.2.3.3.

If the vehicle minimization phase is currently enabled, we use the route removal operator (Section
6.2.3.1) to remove a route contained in K from the current solution. Otherwise, we first select the
number of customers that are removed from K. In most LNS implementations, this is done by randomly
selecting the percentage of customers to remove from a relatively large interval Ψ|| � rς

||
min , ς

||
maxs.

However, to account for the observation that ideal removal percentages are highly instance-dependent,
we split Ψ|| into five sub-intervals (Goeke and Schneider, 2015). At each ALNS iteration, we select a
sub-interval based on dynamic probabilities π||. The number n� of customers to remove from K is then
randomly determined within the selected interval. The customer removal is subsequently performed
by means of a removal operator that is selected based on probabilities π�.

Finally, we select an insertion operator (Section 6.2.3.1) according to probabilities π� and successively
reinsert the previously removed customers into the routes of K.
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6.2.3.1. Removal and Insertion Operators

To remove customers from the previously determined subset of routes K, we use the following operators:

Random removal randomly removes customers from K until n� customers are removed.
Cluster removal was first introduced by Ropke and Pisinger (2006b) and aims at removing cus-

tomers that are located close to each other. First, we select a route and the first customer to
be removed from this route at random. Subsequently, the following steps are repeated until n�

customers are removed from the current solution: We randomly choose a customer among the
already removed customers and identify the route r which yields the smallest average distance of
its customers to the selected customer. Next, we apply Kruskal’s algorithm (Kruskal, 1956) for
solving minimum-spanning-tree (MST) problems to the sub-graph composed of the customers of
route r. Let nr denote the number of customers served by route r. We abort the execution of the
MST algorithm as soon as the number of generated edges is equal to nr � 2, i.e., two sub-trees
remain from which one is randomly chosen for removal. If the size of the selected cluster exceeds
the number of remaining customers to be removed, we randomly remove customers from the
cluster until n� customers are removed.

Relatedness removal follows the idea of removing customers that are considered similar and thus
likely to be interchangeable (Shaw, 1997). The relatedness of two customers i and j is measured
in terms of the distance cij between them, the difference in their delivery as well as pickup
demands |dd

i � d
d
j | and |d

p
i � d

p
j |, respectively, and the difference between the earliest start times

of their time windows |ei � ej |. Each partial relatedness measure is weighted with a parameter
χ and normalized using the respective extreme values across the set of all customers C given by
the problem instance. The relatedness measure Ri,j of two customers i and j is thus calculated
as follows:

Ri,j � χc
cij

max
i,jPC

pcijq
�χd

|dd
i � dd

j |

max
iPC

pdd
i q � min

iPC
pdd
i q
�χp

|dp
i � dp

j |

max
iPC

pdp
i q � min

iPC
pdp
i q
�χe

|ei � ej |

max
iPC

peiq � min
iPC

peiq
.

Initially, we select a route and the first customer to be removed from this route at random. Then,
we first randomly select a customer from the already removed customers. Next, all remaining
customers in K are stored in a list of size L in ascending order of their relatedness value with
respect to the selected customer. From this list, we draw the customer at position tLζχ

rel
u, where

ζ is a random number P r0, 1q and χrel a parameter ¥ 1, which allows to balance the influence
of randomness and relatedness on the selection. We repeat this procedure until n� customers
are removed.

Worst removal as originally introduced by Ropke and Pisinger (2006b) aims at removing customers
which appear to be unfavorably positioned in the current solution with respect to the additional
routing cost caused by serving them. All customers contained in the current subset K are stored
in a list of size L and sorted in descending order of the cost reduction resulting when removing
them from the current solution. At each iteration, we choose the customer at position tLζχ

worst
u.

Again, ζ is a random number P r0, 1q, and χworst ¥ 1 allows to control the randomness of the
selection.

Neighbor graph removal, proposed in Ropke and Pisinger (2006a), is based on exploiting infor-
mation about promising orders of customer visits gathered in the course of the search. More
precisely, a complete directed and weighted auxiliary graph, called the neighbor graph, is intro-
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duced, whose vertices correspond to the customers contained in the current subset of routes K.
Each arc pi, jq is weighted with the objective function value of the best solution found so far in
which customer j is visited directly after customer i. Initially, the weight of each arc is set to
positive infinity and dynamically updated during the search.
All customers in K are stored in a list of size L and sorted in descending order of a score which
is based on the current visiting orders in the routes of K. More precisely, the score for each
customer i is calculated by summing up the the weights of the arcs pi�, iq and pi, i�) in the
neighbor graph, where i� and i� correspond to the predecessor and successor of i, respectively.
At each iteration, the operator removes the customer at position tLζχ

nb
u with random number

ζ P r0, 1q and χnb ¥ 1. After the removal of customer i, the neighbor scores of customers i� and
i� are updated accordingly.

Route removal removes all customers from the route in K with the smallest maximum load encoun-
tered along all customers. As stated before, we exclusively apply this removal operator if the
vehicle minimization phase is currently enabled.

Load balance removal aims at specifically taking the load characteristics of the VRPSPD and its
extensions into account. Intuitively, customers with high pickup demands should be visited
late while customers with high delivery demands should be served early in a route. We try to
identify and rearrange customer visits which seem to be unfavorably positioned with respect to
the associated demand quantities and the capacity utilization in the corresponding route. To
this end, we first select a route r from K at random. Next, we calculate a position score øpos

i for
each customer i in r:

øpos
i � pi

dp
i°

jPVr d
p
j

� p|Vr| � 1 � piq
dd
i°

jPVr d
d
j

,

where pi corresponds to the current insertion position of customer i. All customers contained in
route r are stored in a list of size L in ascending order of their position score. We subsequently
draw the customer from position tLζχ

load
u. Analogous to the previous operators, ζ corresponds

to a random number P r0, 1q, and χload ¥ 1 controls the influence of the position score on the
customer selection.

To reinsert the previously removed customers into the routes of subset K, we use one of the following
insertion operators:

Greedy insertion is implemented in two variants:
1. At each iteration, the best insertion position is determined for each of the remaining cus-

tomers. The customer associated with the smallest cost increase is inserted accordingly.
2. The procedure is similar to the first variant except that we do not allow the reinsertion

of a customer into the route it had been removed from in the previous removal step. A
comparable approach called greedy insertion forbidden is used by Hemmelmayr, Cordeau,
and Crainic (2012).

GRASP insertion is inspired by the metaheuristic introduced in Feo and Resende (1989). The
best insertion is determined for each remaining customer and stored in a list of size L which is
sorted in ascending order of cost increase. At each iteration, the next customer to be inserted is
randomly selected among the best tχGRASPLu remaining insertions. Here, χGRASP corresponds
to a number P p0, 1q.

Regret insertion was also proposed by Ropke and Pisinger (2006b) and tries to overcome the myopic
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behavior of greedy insertion by implementing a look-ahead strategy. More specifically, a regret-k
value is calculated for each customer as the difference between the cost increase resulting from
the cheapest insertion of this customer into the k-best route and its optimal insertion into the
best route from K. At each iteration, we perform the best insertion of the customer associated
with the largest regret value. We implement regret insertion for k � 2, 3, 4.

Random insertion aims at solution diversification by inserting each customer at a random position
of a randomly selected route from K.

6.2.3.2. Route Selection and Evaluation of Removal and Insertion

While some of the previously described removal operators rely on removing customers without consid-
ering the properties of the routes they belong to, we additionally use operators which aim at removing
customers from routes with certain characteristics. To this end, we use various route selection policies
which are combined with the corresponding removal operators (see Schneider, Stenger, and Hof, 2015,
for a similar approach).

Besides a purely random selection, we implement the following policies that determine routes according
to a roulette wheel selection mechanism based on specific criteria:

Cost selects a route with a probability proportional to the cost of the route including penalty costs.
Distance is based on the length of a route. The selection probability of a route increases with the

associated traveled distance.
Efficiency aims at identifying inefficient routes, i.e., routes that are characterized by large detours

to cover a relatively small quantity of customer demands. The probability of a route to be
selected is proportional to the ratio of the associated traveled distance and the average capacity
utilization in this route.

High average utilization selects a route with a probability proportional to the average capacity
utilization in the route.

Low average utilization determines a selection probability for each route that is inversely propor-
tional to the respective average capacity utilization.

High maximum load performs the route selection according to a probability that increases with
the maximum load encountered along all customers served in a route.

Low maximum load selects each route based on a probability inversely proportional to the maxi-
mum load encountered along all customers of the route.

The last four selection policies focus on the utilization of the vehicle capacity or the fluctuating nature
of the vehicle load along routes arising in the investigated problem variants. Obviously, both variants of
the average utilization and maximum load policies pursue opposing strategies. However, the adaptive
mechanism of our ALNS component is able to successfully identify the appropriate strategies for the
problem instance at hand, see Section 6.3.3.

With respect to compatibility, random removal, cluster removal, and relatedness removal are able to
make use of each selection policy. The load balance removal operator exclusively employs the high
average utilization policy. Once a compatible removal operator has been selected, we subsequently
select a policy based on probabilities πr . The selected route selection policy is used by the current
removal operator for the entire iteration.
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Moreover, to guide the search towards yet unexplored areas, we implement two additional variants
of worst removal, greedy insertion, GRASP insertion, and regret insertion that differ in how the
corresponding operation is evaluated. Besides the basic operator variants that assess the associated
operation based on the change in routing cost according to the generalized cost function (∆fgen), we
implement variants that employ the evaluation measures:

1. diversification ∆fdiv , which additionally considers a diversification penalty based on historic arc
occurrence frequencies:

∆fdivpo,Sq � ∆fgenpo,Sq � κ
fgenpSq
n

d ¸
pi,jqPA�

o

hpi, jq,

where ∆fgenpo,Sq corresponds to the change of the objective function value of solution S caused
by removal or insertion operation o, κ to a real-valued parameter to control the amount of
diversification, fgenpSq to the current objective function value of solution S, n to the number of
customers given by the problem instance, hpi, jq represents the occurrence frequency of arc pi, jq
in previously generated solutions, and A�

o the set of arcs generated by operation o, and
2. noise ∆fnoise, which multiplies the change in routing cost caused by operation o by a random

number ζ drawn from the interval rζmin , ζmaxs (see Ropke and Pisinger, 2006b; Hemmelmayr,
Cordeau, and Crainic, 2012, for a similar approach):

∆fnoisepo,Sq � ∆fgenpo,Sqζ.

6.2.3.3. Adaptive Mechanism

At each ALNS iteration, the choice of distance threshold factor, removal interval, removal operator,
route selection policy (if applicable), and insertion operator is performed according to a roulette wheel
selection procedure as proposed in Ropke and Pisinger (2006b) based on the probability vectors πd ,
π||, π�, πr , and π�, respectively. More precisely, given a set of adaptive components denoted as
X P td, ||,�, r,�u, the selection probability of component i P X is calculated as πi � wi{

°
jPX wj ,

where wi corresponds to the weight of component i. All components of a set X are initially assigned
the same weight and dynamically updated during the search depending on their performance. The
performance of an adaptive component is measured in terms of a scoring system. A score of σbest is
added to the current score of a component whenever a new overall best solution is found, a score of
σimp if the new solution S 1 improves on the current one S and has never been encountered before, and
a score of σacc if S 1 is worse than S but accepted according to the SA acceptance mechanism and has
never been encountered before in the search.

We maintain a solution memory to keep track of already obtained solutions and allow our algorithm
to fill this memory for 100 ALNS-PR iterations before any weight update takes place. The weight of
each component is then updated every γ ALNS iterations based on its performance during this period.
If øi denotes the current score of component i and βi the number of applications of the component
since the last weight update, then the new weight is determined as wi � wip1 � αq � αøi{βi. The
factor α P r0, 1s allows to control the reaction speed of the weight adjustment to the performance of
the component. The values of øi and βi are reset to zero after each update.
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6.2.4. The Path Relinking Component

PR represents an intensification strategy which was originally proposed by Glover (1997) and aims at
discovering promising solutions on the trajectories between elite solutions obtained during the search.
Based on the assumption that good solutions are likely to share common characteristics, PR consists
in creating a path of solutions between an initial and a guiding solution in the hope of obtaining
improving solutions in the process. The initial solution is transformed into the guiding solution by
successively incorporating characteristics of the guiding solution, thus stepwise decreasing the diversity
between them.

The PR component complements our ALNS, which primarily focuses on diversifying the search. By
connecting promising solutions located in distant regions of the search space, we aim at discovering
improving solutions that are not reachable via local search. Ho and Gendreau (2006), Fallahi, Prins,
and Calvo (2008), and Nguyen, Prins, and Prodhon (2012), for instance, show how to successfully
hybridize well-known metaheuristics for routing problems with PR approaches. Figure 6.3 shows our
PR implementation in pseudocode.

S 1 ÐH
for each solution Se P E do

{Initialize current and guiding solution}
Sc Ð S
Sg Ð Se
{Determine arcs exclusively contained in guiding solution and initialize path length}
A� Ð getDifferingArcs(S, Sg)
pÐ |A�|
while |A�| ¥ tp1� ρq � pu do
mbest ÐH
for each arc pi, jq P A� do

{Determine move which creates arc yielding the least cost change}
mÐ getBestMoveToCreateArc(i, j)
if mbest � H_m improves on mbest then
mbest Ð m

end if
end for
Sc Ð performMove(Sc, mbest)
if Sc � S ^ Sc � Sg ^ pS 1 � H_ Sc improves on S 1) then

S 1 Ð Sc
end if
{Remove arcs created by previously performed move from set of differing arcs}
A� Ð A�zA�

mbest
end while

end for

Figure 6.3.: Pseudocode of our PR component.

Whenever a solution S has been encountered for the first time in the search, it is passed to our PR
algorithm. For each solution Se contained in the elite set E , we set the current solution on the solution
path Sc to the initial solution S and the guiding solution Sg to Se. In general, we perform PR between
S and all elite solutions in E . However, if we are currently trying to reduce the number of vehicles,
only solutions in the elite set with a number of routes less than or equal to the number of routes in S
are considered for relinking. Otherwise, if Sg utilizes a higher number of vehicles, we need to equalize
both vehicle numbers by adding empty routes to S accordingly.

We explain the following steps of our PR implementation using Figure 6.4, which illustrates the
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transformation of an initial solution into a guiding solution for an example instance composed of eleven
customers. Both solutions consist of five routes each starting and ending with the depot vertex 0.
Initially, we determine those arcs that are contained in Sg but not in the initial solution S and store
them in set A�. The goal of our PR procedure is now to iteratively incorporate the arcs in A� into
the current solution. In our example, there are ten such differing arcs which are exclusively contained
in Sg (marked as 7).

Iteration Route Sc Sg Arcs created in Sc

0 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0
B 0 - 5 - 0 0 - 5 - 0
C 0 - 2 - 10 - 0 0 7 7 7 10 7 4 7 0
D 0 - 1 - 9 - 8 - 0 0 - 1 7 8 7 2 7 0
E 0 - 4 - 7 - 6 - 0 0 7 6 7 9 7 0

1 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0
B 0 - 5 - 0 0 - 5 - 0
C 0 - 2 - 7 - 10 - 0 0 7 7 - 10 7 4 7 0 p7, 10q
D 0 - 1 - 9 - 8 - 0 0 - 1 7 8 7 2 7 0
E 0 - 4 - 6 - 0 0 7 6 7 9 7 0

2 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0
B 0 - 5 - 0 0 - 5 - 0
C 0 - 2 - 7 - 10 - 0 0 7 7 - 10 7 4 7 0
D 0 - 1 - 8 - 0 0 - 1 - 8 7 2 7 0 p1, 8q
E 0 - 4 - 6 - 9 - 0 0 7 6 - 9 - 0 p6, 9q, p9, 0q

3 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0
B 0 - 5 - 0 0 - 5 - 0
C 0 - 7 - 10 - 0 0 - 7 - 10 7 4 7 0 p0, 7q
D 0 - 1 - 8 - 2 - 0 0 - 1 - 8 - 2 - 0 p8, 2q, p2, 0q
E 0 - 4 - 6 - 9 - 0 0 7 6 - 9 - 0

4 A 0 - 3 - 11 - 0 0 - 3 - 11 - 0
B 0 - 5 - 0 0 - 5 - 0
C 0 - 7 - 10 - 4 - 0 0 - 7 - 10 - 4 - 0 p10, 4q, p4, 0q
D 0 - 1 - 8 - 2 - 0 0 - 1 - 8 - 2 - 0
E 0 - 6 - 9 - 0 0 - 6 - 9 - 0 p0, 6q

Figure 6.4.: Example application of our PR procedure.

During the execution of PR, we avoid destroying matching arcs, i.e., arcs contained in both solutions.
To this end, we connect the vertices incident to matching arcs to fixed vertex sequences that are treated
as atomic units and not allowed to be split. Initially, there are two fixed sequences for each customer
i, Γ�

i � py, ..., iq and Γ�
i � pi, ..., zq, corresponding to the fixed vertex sequence ending with customer

i and the fixed vertex sequence starting with customer i, respectively. Both sequences associated with
a customer only contain this customer at the beginning. Consequently, for customer 3 that is served
by route A in Figure 6.4, Γ�

3 � Γ�
3 � p3q initially holds.

Before applying the main phase of our PR approach, we fix all arcs that are already contained in
both solutions. An arc pi, jq, where i and j correspond to customers, is fixed by merging the vertex
sequences Γ�

i � py, ..., iq and Γ�
j � pj, ..., zq. The result of the merging is stored in Γ�

y and Γ�
z ,

i.e., Γ�
y � Γ�

z � py, ..., i, j, ..., zq. We then remove Γ�
i and Γ�

j from the set of fixed vertex sequences.
Consider arc p3, 11q, that is contained in both example solutions to be fixed first. This requires merging
of Γ�

3 and Γ�
11, leading to Γ�

3 � Γ�
11 � p3, 11q. From now on, arc p3, 11q is not allowed to be removed

from Sc anymore. In other words, Γ�
3 and Γ�

11 may not be removed from the fixed sequence they are now
part of and are therefore removed from the sequence set. In case the regarded arc starts (ends) with
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the depot vertex 0, the corresponding depot visit is inserted at the beginning (end) of Γ�
j � pj, ..., zq

(Γ�
i � py, ..., iq), leading to the modified sequence Γ�

z � p0, j, ..., zq (Γ�
y � py, ..., i, 0q) and discarding

Γ�
j (Γ�

i ). For example, fixing arc p0, 3q in Figure 6.4 after arc p3, 11q results in Γ�
11 � p0, 3, 11q and

the removal of Γ�
3 .

Next, we successively incorporate the arcs from A� into the current solution, thus advancing on the
solution path between S and Sg. Because the guiding solution is close to a local optimum, it is unlikely
to discover improving solutions in its immediate proximity. Therefore, we refrain from exploring the
entire path between both solutions and restrict the search to a fraction of ρ of the solution path. More
precisely, we repeat the following steps until the number of remaining differing arcs is smaller than
the fraction p1 � ρq of the initial cardinality of A�:

For each arc in A�, we determine the best move that inserts this arc into the current solution. Consider
arc pi, jq to be created in Sc. We distinguish five cases with respect to the creation of pi, jq:

1. If Γ�
i and Γ�

j do not contain the depot, two moves are possible: (i) Sequence Γ�
i may be moved

before Γ�
j , or (ii) sequence Γ�

j can be relocated after sequence Γ�
i . Assume arc p7, 10q to be

created in Sc in the first iteration of our example application. Then, we may relocate customer
7 from route E to route C, i.e., Γ�

7 before Γ�
10. Alternatively, it is allowed to move customer 10

from route C to route E, i.e., Γ�
10 after Γ�

7 .
2. If one of both sequences starts or ends with the depot, we only allow the relocation of the vertex

sequence that is not connected to the depot. Sequence Γ�
1 � p0, 1q in Figure 6.4, for instance,

may not be relocated to create arc p1, 8q.
3. If Γ�

i starts and Γ�
j ends with the depot, and both sequences are part of the same route, arc

pi, jq can only be implicitly created by relocating all vertices lying between i and j.
4. If Γ�

i starts and Γ�
j ends with the depot, and both sequences are served in different routes, the

2-opt� operator which is described in Section 6.2.5 is applied to merge the two route segments.
5. Finally, if the arc to be created starts (ends) with the depot, we determine the best relocation

for Γ�
j (Γ�

i ) among the routes where the start (end) depot visit is not part of a fixed vertex
sequence.

The overall best move out of the set of best moves per arc is subsequently applied to the current
solution Sc. We set the best solution S 1 to Sc if (i) Sc does not correspond to the initial solution S or
the guiding solution Sg, and (ii) S 1 has not been initialized yet, or Sc improves on S 1.

Moreover, we remove the matching arcs created by the previously performed move from A� and update
the set of fixed vertex sequences accordingly. Note that each move might introduce more differing
arcs than the currently considered arc into Sc. Take for example iteration 2 in Figure 6.4. Here, we
identify the relocation of sequence Γ�

9 � p9q from its former position in route D to the last position
in route E as the best move to introduce arc p9, 0q into Sc. In doing so, three differing arcs, namely
p1, 8q, p6, 9q, and the regarded arc p9, 0q are created simultaneously and subsequently removed from
A�. Next, the associated fixed vertex sequences need to be updated. Assume this is done according to
the previously mentioned order of arcs. Then, we merge Γ�

1 � p0, 1q and Γ�
8 � p8q into Γ�

8 � p0, 1, 8q,
Γ�

6 � p6q and Γ�
9 � p9q into Γ�

9 � Γ�
6 � p6, 9q, and attach the depot to Γ�

9 , leading to Γ�
6 � p6, 9, 0q.

Finally, Γ�
1 , Γ�

8 , Γ�
6 , Γ�

9 , and Γ�
9 are removed from the sequence set.

For the purpose of illustration, Figure 6.4 shows the creation of the entire solution path, leading to
the equalization of both solutions in iteration 4.
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6.2.5. Local Search

In the initialization phase and after each application of our ALNS and PR components, a local search
procedure is applied.

Our local search implements a best-improvement strategy and is stopped when no further improving
move can be identified. We use a composite neighborhood composed of the following operators: A
relocate operator, originally introduced in Savelsbergh (1992) is implemented which moves a customer
from its position to a different position in the same or a different route. Moreover, we use an exchange
operator (Savelsbergh, 1992) which is able to swap customers between and within routes. The 2-opt
operator replaces two arcs of a single route by two new ones reversing the order of customers between
the vertices incident to the removed arcs (Lin, 1965). Finally, we implement a 2-opt* operator as an
inter-route modification of the 2-opt operator which removes one arc from each route and reconnects
the first part of the first route with the second part of the second route and vice versa (Potvin and
Rousseau, 1995). A reversal of the route orientation, which is usually undesirable in problems with
time windows, is hereby avoided.

In order to speed up the search, we maintain a set of modified routes, which is initially filled with
the routes that have been altered by the preceding algorithmic component. We restrict the evaluation
and thus application to those moves that involve at least one route from this set. The set of modified
routes is dynamically updated during the execution of the local search, i.e., a previously unchanged
route is added to the set after being modified by a local search move.

6.2.6. Acceptance Decision

To decide if the solution S 1 returned by the local search should replace S, we use an acceptance
mechanism based on SA.

While solutions that improve S are always accepted, we accept worse solutions with probability

e
�pfgenpS1q�fgenpSqq

ϑ .

The temperature parameter ϑ is initially set to a value such that a deterioration of the current solution
S by ∆SA is accepted with a probability of 50%. The temperature is decreased after every ALNS-
PR iteration such that the acceptance probability of a relative deterioration of ∆SA is equal to 1%
after a cooling period of θ iterations.

6.3. Computational Studies

In this section, we present the computational studies conducted to evaluate the performance of our
ALNS-PR. The benchmark instances used for testing our algorithm are presented in Section 6.3.1.
Section 6.3.2 describes the experimental environment and the setting of the algorithmic parameters.
In Section 6.3.3, we analyze the influence of specific components of our algorithm on solution quality
and computation time. Finally, in Section 6.3.4, we discuss the competitiveness of our approach on
VRPSPD, VRPSPDTL, VRPMDP, VRPSPDTW, VRPDDP, and VRPRMDP benchmark instances
from the literature and present first results for VRPRMDDP and VRPDDPTW instances.
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6.3.1. Benchmark Instances

In the following, we describe the benchmark instances that we use in our computational studies
structured according to problem type.

6.3.1.1. VRPSPD Instances

To assess the performance of ALNS-PR for the VRPSPD, we use the instances proposed by Salhi and
Nagy (1999), from now on referred to as set Salhi-VRPSPD, Dethloff (2001), denoted as set Dethloff,
and Montané and Galvão (2006), for which the subset of instances with up to 200 customers is called
Montané-Medium and the whole set Montané-All.

The set Salhi-VRPSPD is based on a CVRP benchmark introduced in Christofides, Mingozzi, and
Toth (1979), that contains 14 instances with 50 to 199 customers which are randomly distributed in ten
instances and clustered in the remaining ones. Salhi and Nagy (1999) use seven of the CVRP instances
that do not contain a maximum route duration and customer service times to generate seven VRPSPD
instances by splitting the original customer demands into delivery and pickup demands based on a
ratio of the customer coordinates. This subset of instances is referred to as X set. Another subset of
seven instances (Y set) is generated from the X-series of instances by swapping the delivery and pickup
demands of every other customer. Unfortunately, these instances are not consistently treated in the
literature. Some authors swap the delivery and pickup demands of every customer instead of every
other customer or round the distances and demand quantities. We do not round, but we exchange
the demands of every customer in set X. Note that the latter assumption results in identical optimal
solutions for both variants of each instance where the routes of one solution correspond to the reversed
routes of the other. However, to the best of our knowledge, all authors presenting the best-performing
heuristics for the VRPSPD have generated these instances according to this assumption. Thus, to
be able to compare our results to those of the state-of-the-art heuristics for the VRPSPD, we had to
interpret these instances in identical fashion.

Set Dethloff contains 40 VRPSPD instances with 50 customers and three or eight vehicles. Half of the
instances, denoted as SCA, are characterized by a uniform distribution of the customer coordinates.
In the other 20 instances, denoted as CON, half of the customers are uniformly distributed, and the
remaining customers located in clusters.

The benchmark Montané-All contains 18 instances with 100, 200, and 400 customers that are derived
from a respective subset of the VRPTW instances proposed in Solomon (1987) and Gehring and
Homberger (1999). The customers are clustered (prefix C), randomly distributed (prefix R), or a
mixture of both (prefix RC). The authors create VRPSPD instances by omitting the time window
constraints and assigning a discrete pickup demand to each customer that is randomly drawn from
the interval used to generate the delivery demands in the original instances.

6.3.1.2. VRPSPDTL Instances

VRPSPDTL instances are proposed by Salhi and Nagy (1999), called Salhi-VRPSPDTL, and Polat
et al. (2015), which we from now on refer to as Polat-VRPSPDTL.

Set Salhi-VRPSPDTL is composed of 14 instances which are generated according to the same proce-
dure as described in Section 6.3.1.1 to generate VRPSPD instances using the remaining seven CVRP
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instances of Christofides, Mingozzi, and Toth (1979) which contain a maximum route duration and
customer service times.

The Polat-VRPSPDTL instances are created by first converting the CVRP instances of Christofides
and Eilon (1969) to VRPSPD instances according to the approach described in Nagy et al. (2015) and
then adding time limits. The instances do not contain customer service times.

6.3.1.3. VRPMDP Instances

To demonstrate the competitiveness of our approach on an even larger variety of problems, we ad-
ditionally perform experiments on instances for the VRPMDP that represents a special case of the
VRPSPD(TL). The VRPMDP instances have been introduced by Salhi and Nagy (1999) and are from
now on referred to as Salhi-VRPMDP.

The set Salhi-VRPMDP is created by generating three VRPMDP instances based on each original
instance of the CVRP benchmark of Christofides, Mingozzi, and Toth (1979) by assigning every second
(H), fourth (Q), or tenth (T) customer a pickup demand equal to the original delivery demand and a
delivery demand equal to zero.

6.3.1.4. VRPSPDTW Instances

Two sets of VRPSPDTW instances are provided by Wang and Chen (2012), which we denote as
Wang-Medium, and Wang et al. (2015), from now on referred to as Wang-Large.

The instances of set Wang-Medium are created by adding pickup demands to the 56 VRPTW instances
with 100 customers proposed by Solomon (1987). In addition to the customer distribution described
in Section 6.3.1.1, each instance is either characterized by narrow time windows and small vehicle
capacities (prefix C1/R1/RC1) or large time windows and large vehicle capacities (prefix C2/R2/RC2).

Wang-Large contains 30 large-scale instances with 200, 400, 600, 800, and 1000 customers which are
derived from a subset of the VRPTW instances introduced in Gehring and Homberger (1999) by
adding pickup demands.

6.3.1.5. VRPDDP Instances

For the VRPDDP, we use three instance sets of Nagy et al. (2015), which we label as Nagy-VRPDDP1,
Nagy-VRPDDP2, and Nagy-VRPDDP3 and two sets of instances proposed by Polat (2017), which
we denote as Polat-VRPDDP1 and Polat-VRPDDP2. All VRPDDP instances are based on VRPSPD
and VRPSPDTL instances and solved under the assumption of divisible customer demands.

The sets Nagy-VRPDDP1, Nagy-VRPDDP2, and Nagy-VRPDDP3 are based on the 28 instances of
Salhi-VRPSPD and Salhi-VRPSPDTL with distances and demands rounded to the nearest integer.
The set Nagy-VRPDDP1 corresponds to the unchanged original instances. Taking the original set as
a basis, the delivery and pickup demands of each customer are increased by multiplying each value by
four and adding ten percent of the vehicle capacity in order to obtain instance set Nagy-VRPDDP2.
The instances for benchmark Nagy-VRPDDP3 are created by adding 75% of the vehicle capacity to
the delivery demand and 20% of the vehicle capacity to the pickup demand of every odd customer
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and adding 20% of the vehicle capacity to the delivery demand and 75% of the vehicle capacity to
the pickup demand of every even customer. Again, the resulting demand values are rounded to the
nearest integer. Moreover, for the instances with a maximum duration imposed on the vehicle routes,
we assume that the service time associated with a customer is incurred twice if it is served via two
separate visits. Polat (2017) interprets these instances differently and considers only half of the original
service time for each visit of a divided customer.

The instances of set Polat-VRPDDP1 are based on the VRPSPD benchmark Dethloff. Polat-VRP-
DDP2 corresponds to the instances of Montané-Medium.

6.3.1.6. VRPRMDDP Instances

For the VRPRMDDP, we use the VRPDDP instances proposed by Hoff et al. (2009), denoted as Hoff.

These instances are based on 35 CVRP instances of VRPLIB (http://www.or.deis.unibo.it/research_
pages/ORinstances/VRPLIB/VRPLIB.html) containing seven to 484 vertices and two to 25 vehicles.
The authors first create VRPSPD instances by setting the delivery demand of each customer i to the
demand di given in the original instance and the pickup demand of each even customer to t0.8 diu and
of each odd customer to t1.2 diu. The demands of each customer are considered to be divisible and
the original vehicle capacities remain unchanged.

To obtain VRPRMDDP instances, we solve these VRPSPD instances also under the assumption of
divisible customer demands and subject to varying percentages of unavailable vehicle capacity in case
both pickup and delivery demands are part of the vehicle load. The percentages used correspond to
those suggested by Hoff et al. (2009).

6.3.1.7. VRPRMDP Instances

We additionally assess the performance of our algorithm on three sets of instances for the VRPRMDP
which represents a special case of the VRPRMDDP. These instances have been proposed by Nagy,
Wassan, and Salhi (2013) and are from now on referred to as Nagy-VRPRMDP1, Nagy-VRPRMDP2,
and Nagy-VRPRMDP3.

The three sets are derived from the instances for the VRP with backhauls introduced by Goetschal-
ckx and Jacobs-Blecha (1989) and Toth and Vigo (1999), and the instances of set Salhi-VRPMDP,
respectively, by assuming different percentages of the vehicle capacity that must remain unoccupied
when both demand types are simultaneously loaded.

6.3.1.8. VRPDDPTW Instances

Finally, we generate a new set of VRPDDPTW instances, denoted as HS, by modifying the VRP-
SPDTW instances contained in Wang-Medium similar to the approach described in Section 6.3.1.5.

More precisely, we add 20% of the vehicle capacity to the delivery demand and 5% of the vehicle
capacity to the pickup demand of every odd customer and 5% of the vehicle capacity to the delivery
demand and 20% of the vehicle capacity to the pickup demand of every even customer. Note that we
do not round and that the resulting demand quantities are limited to the vehicle capacity. Again, the
whole service time is incurred for each partial visit of a divided customer.
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6.3.2. Computational Environment and Parameter Setting

Our ALNS-PR is implemented as single-thread code in Java. All tests were performed on a Windows
10 Professional desktop computer with an Intel Core i5-6600 processor running at 3.30 GHz and 16
GB RAM. In all experiments, we performed ten runs on each instance.

In the course of the development of our algorithm, we observed that some parameters have a stronger
impact on solution quality compared to the remaining parameters. Starting from a reasonably well-
performing parameter setting found during the development of our method, we successively refine the
setting of each such key parameter (Ropke and Pisinger, 2006b). To this end, we use ten instances
randomly drawn from Salhi-VRPSPD and Salhi-VRPSPDTL and evaluate three values for each key
parameter. The best value is kept as the final setting for the respective parameter, and we subsequently
proceed with tuning the next one. The results of the parameter tuning are presented in Table 6.1.

In particular, we successively tune the following parameters: the factor which controls how fast the
adaptive weight adjustment reacts to the performance of the adaptive ALNS components (α), the
parameters to control the degree of randomness in specific removal operators (χworst , χload , χrel , and
χnb), the percentage of best insertions considered by the GRASP insertion operator (χGRASP), the
factor to control the amount of diversification in operation evaluation measure ∆fdiv (κ), the interval
from which a random number is drawn in the context of evaluation measure ∆fnoise (rζmin , ζmaxs),
the size of the elite set (λ), the percentage of the solution path which we investigate in each PR
execution (ρ), the minimum penalty factor (δmin), the penalty update factor (δupdate), the relative
solution deterioration (∆SA) used to determine the initial and minimal SA temperature, and the
cooling period (θ) of our SA-inspired acceptance mechanism.

For each parameter, we provide the average of the gaps of the best solutions found to the respective
BKS from the literature in percent (∆b). The final value for each parameter is marked in bold.

The complete parameter setting is shown in Table 6.2. With respect to the main ALNS-PR routine,
we additionally report the maximum number of iterations without improvement (ω), the number of
non-improving iterations after which the current solution is reset to the current best (µ), the maximum
number of unsuccessful vehicle reduction attempts (ιrem), and the number of iterations during which
the feasibility of the current solution could not be restored and whereupon an empty route is added
(ιadd). To achieve a competitive solution quality and computation times on the different sets of
benchmark instances, we set ω � 4000 for all VRPSPD benchmarks and the sets Salhi-VRPSPDTL,
Salhi-VRPMDP, Polat-VRPDDP1, and Polat-VRPDDP2. For the remaining benchmarks, we set
ω � 500.

For our ALNS component, we additionally provide the boundaries of the removal interval (Ψ||) and the
distance threshold interval (Ψd), the scores to evaluate the performance of the adaptive components
(σbest , σimp, and σacc), the number of iterations after which the weights of the adaptive components
are updated (γ), and the weights used to calculate the relatedness measure between two customers
(χc, χd, χp, and χe).

We further report the initial (δ0) and maximum (δmax) penalty factors, and the numbers of ALNS-PR
iterations after which the penalty factors are increased (η�) as well as decreased (η�).

Finally, we provide the number of solution resets after which the SA temperature is reset to its initial
value, and the current solution is set to a solution randomly drawn from the elite set (ε).
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ALNS
α 0.1 0.2 0.3
Avg. ∆b(%) 0.02 0.00 0.01

χworst 3 4 5
Avg. ∆b(%) 0.01 0.00 0.02

χload 3 4 5
Avg. ∆b(%) 0.02 0.03 0.00

χrel 3 4 5
Avg. ∆b(%) 0.01 0.02 0.00

χnb 3 4 5
Avg. ∆b(%) 0.01 0.03 0.00

χGRASP 0.2 0.3 0.4
Avg. ∆b(%) 0.02 0.00 0.02

κ 0.5 0.7 0.9
Avg. ∆b(%) 0.02 0.00 0.02

rζmin , ζmax s r0.95, 1.05s r0.9, 1.1s r0.85, 1.15s
Avg. ∆b(%) 0.03 0.00 0.02

PR
λ 5 10 15
Avg. ∆b(%) 0.01 0.00 0.01

ρ 0.5 0.7 0.9
Avg. ∆b(%) 0.01 0.00 0.01

Penalties
δmin 0.01 0.1 1
Avg. ∆b(%) 0.02 0.00 0.02

δupdate 1.1 1.5 2
Avg. ∆b(%) 0.00 0.01 0.02

SA
∆SA 0.001 0.01 0.05
Avg. ∆b(%) 0.01 0.00 0.01

θ 100 200 300
Avg. ∆b(%) 0.00 0.02 0.02

Table 6.1.: Results of different parameter settings on a randomly drawn subset of VRPSPD and VRPSPDTL
instances structured according to the associated algorithmic components. For each parameter, we
examine three values and provide for each value the respective average gap of the best solutions
found to the BKS from the literature (∆b) in percent. The best setting for each parameter is
marked in bold and used as the final setting.
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ALNS-PR ALNS PR Penalties SA

ω 4000{500 Ψ|| r0.01, 0.25s λ 10 δ0 10 ∆SA 0.01
µ 500 Ψd p0.2, ..., 0.5q ρ 0.7 δmin 0.1 θ 100
ιrem 200 σbest , σimp, σacc 6, 9, 3 δmax 10 000 ε 3
ιadd 100 α 0.2 δupdate 1.1

γ 20 η� 2
χload 5 η� 2
χnb 5
χworst 4
χrel 5
χc, χd, χp, χe 2, 1, 1, 1
χGRASP 0.3
κ 0.7
rζmin , ζmax s r0.9, 1.1s

Table 6.2.: Final parameter setting of our ALNS-PR structured according to algorithmic components. Each
column provides the parameters deployed in the respective component of our algorithm and their
setting used for the remaining experiments.

We are aware that the use of the different algorithmic components, which have a significant positive
effect on the performance of our method (see Section 6.3.3) is associated with a relatively high total
number of parameters. However, as shown in Table 6.1, ALNS-PR is very robust with respect to
changes in the parameter values provided that the values stay within the same orders of magnitude
as the reported values thus somewhat mitigating this drawback.

6.3.3. Influence of Algorithmic Components

In this section, we analyze the effect of specific components of our ALNS-PR algorithm on solution
quality and computation time. For this purpose, we again use ten instances randomly drawn from the
instance sets Salhi-VRPSPD and Salhi-VRPSPDTL.

We investigate the contribution of

1. specific ALNS components, namely the decomposition of the original problem into subsets of
closely located routes, the route selection policies, the evaluation measures ∆fdiv and ∆fnoise,
the newly introduced load balance removal operator, and the random insertion operator, and

2. our PR implementation.

To this end, we consecutively disable each component while keeping the remaining components enabled.
The corresponding results are compared to those obtained by our full ALNS-PR algorithm. More
precisely, in Table 6.3, we contrast the average percentage gaps of the best solutions found to the
BKS from the literature (Avg. ∆b) of each algorithmic configuration. Furthermore, ∆t denotes the
percentage deviation of the average of the average run-times per instance of each configuration to the
respective value of our full ALNS-PR (shown in bold).

For each reduced algorithmic configuration, we observe a decrease in solution quality compared to
our complete approach with a maximum deviation of the best solution quality of 0.09%. Moreover,
the large majority of variants also shows a significant increase in computation time if the respective
component is omitted. This indicates that the associated components accelerate the convergence rate
of the search by helping to discover promising solutions early.

If the current solution is not decomposed in the ALNS step, we observe a run-time increase of roughly
30%. Moreover, omitting the introduced route selection policies slows down computation by roughly
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Components

Decomposition 3 7 X X X X X X X X X X X X

Route selection
Cost 3 X 7 X X X X X X X X X X X

Distance 3 X X 7 X X X X X X X X X X

Efficiency 3 X X X 7 X X X X X X X X X

High avg. util. 3 X X X X 7 X X X X X X X X

Low avg. util. 3 X X X X X 7 X X X X X X X

High max. load 3 X X X X X X 7 X X X X X X

Low max. load 3 X X X X X X X 7 X X X X X

Evaluation
∆fnoise 3 X X X X X X X X 7 X X X X

∆fdiv 3 X X X X X X X X X 7 X X X

ALNS operators
Load balance removal 3 X X X X X X X X X X 7 X X

Random insertion 3 X X X X X X X X X X X 7 X

Path relinking 3 X X X X X X X X X X X X 7

Avg. ∆b(%) 0.01 0.03 0.05 0.05 0.10 0.03 0.03 0.02 0.03 0.02 0.02 0.03 0.03 0.04
∆t(%) 30.09 16.58 21.04 11.28 -0.32 25.85 13.18 15.60 36.75 -2.26 32.47 7.74 110.46

Table 6.3.: Comparison of the performance of different algorithmic configurations.

15%, on average. A negligible speed-up with a decrease in solution quality can be obtained when the
high average utilization selection policy is not employed. Deactivating evaluation measure ∆fnoise in
the ALNS step seems to impede the search in finding good solutions early and thus to decelerate its
convergence rate by over 36%. On the other hand, the omission of ∆fdiv results in a slight speed-up
of roughly 2%. However, we prefer the increased solution quality by utilizing this component over
the small decrease in computation time that can be observed if it is omitted. Furthermore, the newly
introduced load balance removal operator seems to properly capture the characteristics of the VRP-
SPD. By deactivating the new operator, the resulting algorithmic configuration additionally takes
roughly a third of the time spent by our full ALNS-PR algorithm. In addition, the results hint at an
appropriate diversification behavior of the random insertion operator. Besides the increase in solution
quality, its utilization results in a noticeable acceleration of the search.

Finally, the hybridization of our ALNS with the described PR implementation yields the most signif-
icant increase in convergence speed. Using only our ALNS algorithm more than doubles the compu-
tation time required compared to the proposed hybrid approach.

6.3.4. Computational Results on Benchmark Instances

This section presents the results obtained by our ALNS-PR algorithm on the benchmark instances
from the literature for the VRPSPD, the VRPSPDTL, the VRPMDP (Section 6.3.4.1), the VRP-
SPDTW (Section 6.3.4.2), the VRPDDP (Section 6.3.4.3), the VRPRMDDP and the VRPRMDP
(Section 6.3.4.4), and on the newly proposed VRPDDPTW instances (Section 6.3.4.5).

With respect to the benchmarks from the literature, we present aggregate views on the performance
of all relevant heuristics. The corresponding detailed results can be found in Appendix B.
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6.3.4.1. Results on VRPSPD, VRPSPDTL, and VRPMDP Instances

In Table 6.4, we present the summarized results of all relevant heuristics on the VRPSPD (Salhi-VRP-
SPD, Dethloff, Montané-Medium, and Montané-All) and VRPSPDTL (Salhi-VRPSPDTL and Polat-
VRPSPDTL) benchmark instances. The upper part of the table shows the state-of-the-art heuristics
that have been applied to the VRPSPD but not the VRPSPDTL; the lower part of the table contains
the most successful approaches that provide solutions for both problem types, including our ALNS-PR,
which is the only method applied to each set of instances.

For each benchmark, we report the average percentage gap of the best solution quality based on several
runs to the BKS (Avg. ∆b) for each method that has been tested on the benchmark. The average
percentage gap of the average solution quality to the BKS (Avg. ∆a) is provided for those instance
sets for which this measure is available for the large majority of comparison algorithms. The BKS
for the benchmarks Salhi-VRPSPD and Dethloff are taken from Subramanian et al. (2010), for the
benchmarks Montané-Medium, Montané-All, and Salhi-VRPSPDTL from Subramanian, Uchoa, and
Ochi (2013), and for the benchmark Polat-VRPSPDTL from Polat et al. (2015).

Moreover, we translate the run-times of all methods into a common time measure that takes into
account the processors used. To this end, we relate the Passmark scores (see www.passmark.com)
of the processors used in the computational studies of the papers to the score of our i5-6600. Each
Passmark score is referring to the performance of a single core of the respective processor. In case of
parallel solution approaches, we multiply the translated run-times by the number of utilized threads as
reported in the corresponding paper. In addition, the run-times are multiplied by the number of runs
performed by the respective algorithm. The resulting times in seconds are given as tc. We are aware
that, due to the use of different operating systems and programming languages, an exact run-time
comparison is never possible. However, this procedure is the closest we can get to a fair comparison.

In the following, we list the algorithms that are compared in Table 6.4 and explain how to interpret
the corresponding results and run-times:

• For ZTK (Zachariadis, Tarantilis, and Kiranoudis, 2010) the number of runs performed to obtain
the best solution reported is unknown (marked as ? in the table) and the run-time is based on
the time elapsed when the best solution was found.

• The results of SDBOF (Subramanian, Drummond, Bentes, Ochi, and Farias, 2010) are based
on 50 runs performed by 256 parallel threads and the average time per run.

• For GKA (Goksal, Karaoglan, and Altiparmak, 2013), VCGP (Vidal, Crainic, Gendreau, and
Prins, 2014a), SUO (Subramanian, Uchoa, and Ochi, 2013), and KK (Kalayci and Kaya, 2016),
the table provides results based on ten runs and the average time per run.

• P (Polat, 2017) uses six parallel threads and performs ten runs. The run-time is based on the
average time required to obtain the best solution reported.

• For PKKG (Polat, Kalayci, Kulak, and Günther, 2015), the results are based on ten runs and
the time of the best run for benchmarks Salhi-VRPSPD and Salhi-VRPSPDTL, and on the
average time per run for benchmark Polat-VRPSPDTL.

• The results reported for ALNS-PR are based on ten runs and the average time per run.
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Our ALNS-PR belongs to the best-performing approaches showing an average gap of the best solutions
to the BKS of 0.00% on the sets Salhi-VRPSPD, Dethloff, and Salhi-VRPSPDTL, and competitive
run-times with regard to the most successful heuristics that allow a fair comparison. On set Montané-
All, SUO is the only approach able to obtain the BKS for each instance while also spending by far the
most computation time. The slightly worse solution quality achieved by ALNS-PR is accompanied by
a run-time advantage of roughly 56% compared to SUO. The best trade-off between solution quality
and run-time on these instances can be achieved by VCGP. On set Polat-VRPSPDTL, we improve
three out of seven previous BKS (see Table B.5 in Appendix B) and note an average improvement of
�0.15% while spending only a fraction of the run-time required by PKKG. It is further noteworthy,
that we are able to improve two previous BKS on set Salhi-VRPSPDTL during our entire testing
activities (see Table B.4 in Appendix B). The robustness of our ALNS-PR is indicated by the small
deviations of the average solution quality to the best solution quality.

In Table 6.5, we additionally provide an aggregated comparison of our results to those of SUO and
VCGP on instance set Salhi-VRPMDP. Again, our ALNS-PR shows a competitive solution quality
while improving two previous BKS (see Appendix Table B.6). The BKS are taken from Vidal et al.
(2014b).

SUO VCGP ALNS-PR

Benchmark Avg. ∆b(%) Avg. ∆a(%) tc(s) Avg. ∆b(%) Avg. ∆a(%) tc(s) Avg. ∆b(%) Avg. ∆a(%) tc(s)

Salhi-VRPMDP 0.00 0.09 1101.20 0.00 0.06 457.20 0.00 0.18 1172.72

Table 6.5.: Comparison of the results of ALNS-PR to those of SUO and VCGP on the VRPMDP benchmark
Salhi-VRPMDP.

6.3.4.2. Results on VRPSPDTW Instances

Table 6.6 shows an aggregated view on the performance of ALNS-PR and WMZS (Wang, Mu, Zhao,
and Sutherland, 2015) on the VRPSPDTW benchmark sets Wang-Medium and Wang-Large, based
on the BKS reported by Wang and Chen (2012) and Wang et al. (2015). For WMZS, the results are
based on 66 threads and the time of the best run. The total number of runs performed is unknown.
In addition to the previously reported measures, we provide for each method and set of instances, the
total absolute deviation of the number of employed vehicles in the best solution to the best-known
vehicle number (

°
∆m).

WMZS ALNS-PR

Benchmark
°

∆m Avg. ∆b(%) tc(s)
°

∆m Avg. ∆b(%) tc(s)

Wang-Medium 0 1.12 3961.32 � ? -17 -2.32 421.20
Wang-Large 0 0.00 170 326.86 � ? -102 -16.93 19 076.30

Table 6.6.: Comparison of the results of ALNS-PR to those of WMZS on the VRPSPDTW benchmark sets
Wang-Medium and Wang-Large.

On benchmark Wang-Medium, our ALNS-PR is able to reduce the number of employed vehicles for 17
out of 56 instances. On each of the remaining instances, we match the best-known vehicle number and
significantly reduce the associated traveled distance for 31 instances (see Table B.7 in Appendix B).
The average gaps of the best solution quality to the BKS are calculated across all instances where the
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reported vehicle number is equal to the previous best-known number of vehicles. For ALNS-PR, we
note an average improvement of the previous BKS of �2.32%.

On set Wang-Large, we reduce the number of vehicles for 22 out of 30 instances by an average count
of five vehicles. For the remaining instances, we match the previous best-known vehicle number and
significantly reduce the associated traveled distance. In contrast to Wang-Medium, we now consider
all instances for calculating the average gap of the best solution quality to the BKS, i.e., even instances
for which we obtain a smaller number of vehicles. In general, a reduction of the number of employed
vehicles may increase the traveled distance. However, as shown in Table B.8 in Appendix B, for each
except one instance where we employ fewer vehicles, we also achieve a notable reduction of the previous
best traveled distance as reported by WMZS. On average, we observe a gap of the best solution quality
to the BKS of �16.93%.

Finally, it is remarkable that on both benchmark sets, ALNS-PR spends in total only a fraction of
the time required by a single run of algorithm WMZS.

6.3.4.3. Results on VRPDDP Instances

In this section, we analyze the performance of our ALNS-PR on the VRPDDP benchmarks Nagy-
VRPDDP1, Nagy-VRPDDP2, Nagy-VRPDDP3, Polat-VRPDDP1, and Polat-VRPDDP2. To this
end, we compare our results on these instances to those of the algorithms NWSA (Nagy, Wassan,
Speranza, and Archetti, 2015) and P (cp. Section 6.3.4.1).

With respect to NWSA, the authors initially conducted experiments using a reactive tabu search
algorithm that first determines a VRPSPD solution, which is then transformed into a VRPMDP
solution with twice as many customers (cp. Section 6.2). Subsequently, the authors develop several
algorithmic variants that duplicate not all but only those customers identified to be promising for
division according to the insights gained from the previous experiments. The following comparison
with NWSA is based on the algorithmic version called DVA, which additionally makes use of an
operator that allows for dividing customers during the execution of the algorithm and showed the best
performance on average. The results reported for NWSA are based on a single run and the associated
run-time. Unfortunately, we could not obtain a Passmark score for the processor used by NWSA
(UltraSPARC-IIIi). Following P, we use an equivalent Intel Pentium 4 processor running at 1.90 GHz
(Passmark score: 209) to translate the run-times reported by NWSA.

Table 6.7 shows the aggregated results of NWSA, P, and ALNS-PR on the different VRPDDP instance
sets. P and ALNS-PR provide solutions for each set of VRPDDP benchmark instances; NWSA has
only been applied to the sets Nagy-VRPDDP1 and Nagy-VRPDDP2. Therefore, we do not report
results for NWSA on set Nagy-VRPDDP3. For ALNS-PR, we additionally report the total number
of customers that have been divided in the best solutions on each benchmark (

°
nd). Unfortunately,

this measure is neither reported for NWSA nor P.

On the instances of sets Nagy-VRPDDP1, Nagy-VRPDDP2, and Nagy-VRPDDP3, algorithm P is
able to match or significantly improve each previous BKS reported by the authors NWSA. Our ALNS-
PR further improves the results of P by �1.42% (Nagy-VRPDDP1), �0.40% (Nagy-VRPDDP2),
and �0.61% (Nagy-VRPDDP3) on average while showing notably faster computation times. More
precisely, the total time spent by ALNS-PR is significantly lower than the time required to obtain
the best solution by a single run of method P on each of the three benchmarks. This is even more
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NWSA P ALNS-PR

Benchmark Avg. ∆b(%) tc(s) Avg. ∆b(%) tc(s)
°
nd Avg. ∆b(%) tc(s)

Nagy-VRPDDP1 3.98 11.99 0.00 12 484.00 36 -1.42 586.50
Nagy-VRPDDP2 2.86 10.25 0.00 25 001.00 865 -0.40 490.40
Nagy-VRPDDP3 - - 0.00 28 480.00 1743 -0.61 351.30
Polat-VRPDDP1 - - 0.00 735.00 23 -0.06 348.20
Polat-VRPDDP2 - - 0.01 30 379.80 12 -0.03 5378.30

Table 6.7.: Comparison of the results of ALNS-PR to those of the heuristics of NWSA and P on the VRP-
DDP benchmark sets Nagy-VRPDDP1, Nagy-VRPDDP2, Nagy-VRPDDP3, Polat-VRPDDP1,
and Polat-VRPDDP2.

remarkable taking into account our more restrictive interpretation of service times in case of divided
customers on these instances. As shown in Table B.9 in Appendix B, our ALNS-PR is able to improve
the previous BKS for 20 instances in Nagy-VRPDDP1, for 20 instances in Nagy-VRPDDP2, and
for 26 instances in Nagy-VRPDDP3 out of 28 instances each. Moreover, only roughly 1% of all
customers are divided on set Nagy-VRPDDP1, 27% on Nagy-VRPDDP2 and roughly 55% on Nagy-
VRPDDP3. Interestingly, NWSA report a total of 61 divided customers on Nagy-VRPDDP1 for their
basic approach while only 36 customers are identified by ALNS-PR to be divided. This might hint
at a better capability of our ALNS-PR to identify and reassemble partial customers that have been
unnecessarily divided in the course of the search.

Our ALNS-PR is superior to P also on the recently introduced VRPDDP benchmarks Polat-VRP-
DDP1 and Polat-VRPDDP2. We improve the previous best results by �0.06% and �0.03% on average,
and obtain seven and two new BKS, respectively (see Tables B.10 and B.11 in Appendix B). For
Polat-VRPDDP1, the BKS are taken from Polat (2017) and for Polat-VRPDDP2 from Subramanian,
Uchoa, and Ochi (2013) and Polat (2017). Moreover, ALNS-PR is roughly twice as fast as P on set
Polat-VRPDDP1 and nearly six times as fast on set Polat-VRPDDP2.

6.3.4.4. Results on VRPRMDDP and VRPRMDP Instances

In this section, we first investigate the VRPRMDDP on the benchmark Hoff. As explained in Sec-
tion 6.1, Hoff et al. (2009) study a problem different to the VRPRMDDP. Therefore, the results
obtained by Hoff et al. (2009) on these instances are not comparable to our VRPRMDDP results,
and we do not report them. In Table 6.8, we present our results for 100%, 80%, 60%, 40%, 20%, and
10% of unavailable vehicle capacity when both demand types are simultaneously loaded as compari-
son for future solution approaches considering the VRPRMDDP. For each instance and configuration,
we report the best solution found in ten runs (fb) and the average computing time (ta) in seconds.
As expected, we observe a decrease of the average solution quality with increasing restriction of the
vehicle capacity in case of mixed loads.

In Table 6.9, we provide an aggregated comparison of the results of our ALNS-PR on the VRPRMDP
benchmarks Nagy-VRPRMDP1, Nagy-VRPRMDP2, and Nagy-VRPRMDP3 for 100%, 75%, 50%,
25%, and 10% of unavailable vehicle capacity in case of mixed loads to the respective BKS as reported
by Nagy, Wassan, and Salhi (2013).

For each benchmark and capacity configuration, the average over the best solutions found by ALNS-
PR significantly improves the previous BKS. As shown in Appendix B, our ALNS-PR is able to match
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ALNS-PR

100% 80% 60% 40% 20% 10%

Inst. fb ta(s) fb ta(s) fb ta(s) fb ta(s) fb ta(s) fb ta(s)

NE-007-02 118.00 0.37 118.00 0.15 118.00 0.10 118.00 0.14 110.00 0.14 110.00 0.16
NE-011-04 3485.00 0.37 3485.00 0.23 3485.00 0.17 3464.00 0.48 3287.00 0.34 3287.00 0.62
NE-013-04 406.00 0.49 406.00 0.29 394.00 0.36 343.00 0.40 322.00 0.37 343.00 0.56
E-016-03 416.79 1.29 403.60 1.50 372.74 1.50 338.06 1.51 318.66 1.71 297.80 1.49
E-016-05 444.63 0.92 444.63 1.14 433.95 0.89 394.47 0.94 378.56 1.00 361.49 0.82
E-021-04 526.56 2.32 526.45 2.72 482.86 2.44 456.37 2.29 404.37 2.40 396.07 2.40
E-021-06 582.42 2.07 578.30 1.45 565.80 1.34 529.74 1.85 512.77 1.45 492.12 1.50
E-022-04 514.02 1.97 514.02 2.34 506.94 2.21 457.70 2.31 424.59 2.14 385.51 2.41
E-022-06 594.50 2.03 594.50 1.87 582.80 2.21 562.14 1.65 521.99 1.93 505.79 1.16
E-023-03 886.11 2.91 822.33 2.73 705.82 2.79 609.73 3.50 569.88 2.00 569.88 2.00
E-026-08 739.40 2.32 739.40 2.35 711.58 2.73 702.31 2.12 674.43 2.98 647.96 2.73
E-030-03 750.70 6.54 690.72 7.55 669.63 8.26 652.88 7.06 561.09 7.83 547.45 8.71
NE-031-07 1080.00 11.40 1097.00 4.92 1061.00 4.91 1046.00 5.60 1014.00 4.76 1046.00 5.89
E-031-09 747.02 3.82 749.31 5.08 729.07 3.80 702.84 3.89 669.22 4.81 649.37 3.77
E-033-04 1038.37 8.67 1011.15 9.65 981.20 9.29 952.63 8.99 887.39 11.64 857.23 8.12
E-036-11 841.97 5.54 841.97 5.25 820.21 5.04 796.31 6.92 755.13 5.79 756.30 4.44
E-041-14 1007.64 7.44 1009.49 7.13 996.94 4.95 960.17 5.50 939.49 6.06 923.99 6.82
E-045-04 935.77 20.14 903.00 33.62 806.48 30.33 778.91 33.49 754.94 31.21 747.37 21.46
E-048-04 54428.06 20.65 49698.22 19.08 44541.01 16.44 41873.60 18.60 40565.89 14.32 40307.62 16.27
E-051-05 840.67 33.46 793.58 30.47 734.39 26.70 649.25 26.10 593.25 38.16 564.13 24.49
E-072-04 350.11 96.02 320.61 114.85 304.89 113.68 274.82 101.81 266.88 167.47 250.24 234.72
E-076-07 1065.54 96.49 1008.57 64.73 892.80 70.54 788.39 58.76 714.72 78.09 700.12 54.61
E-076-08 1097.27 77.76 1054.82 61.59 958.90 56.54 868.75 52.79 794.19 51.96 762.46 65.96
E-076-10 1162.38 67.37 1116.48 61.93 1048.03 58.92 969.55 56.79 912.08 48.32 892.80 62.08
E-076-15 1260.44 45.89 1240.89 41.96 1191.77 39.10 1147.70 34.86 1091.64 40.94 1069.10 29.85
E-101-08 1287.94 170.87 1170.39 136.03 1048.93 154.46 952.96 161.15 870.84 144.55 842.93 90.28
E-101-10 1092.46 156.48 1066.41 117.72 1018.71 81.33 956.57 88.90 893.99 89.20 867.30 63.47
E-101-14 1421.65 172.72 1379.64 119.68 1307.14 84.41 1209.70 90.45 1160.63 99.47 1141.95 68.10
E-121-07 1342.72 488.75 1295.64 449.57 1239.97 403.34 1163.31 501.13 1104.29 454.93 1074.05 441.60
E-135-07 1579.66 722.38 1542.31 904.35 1457.63 1088.64 1388.67 1048.27 1285.91 1598.00 1256.57 1202.25
E-151-12 1483.47 650.49 1411.54 351.15 1281.87 350.67 1177.97 377.30 1096.94 331.31 1077.48 358.61
E-200-16 1813.70 1597.81 1801.92 708.79 1685.09 769.74 1580.38 911.10 1479.02 922.16 1483.75 746.02
E-200-17 1764.09 1590.04 1683.03 731.01 1560.29 641.37 1470.23 747.93 1387.36 771.41 1362.05 681.96
E-262-25 7029.52 3848.94 6897.87 1239.63 6689.25 1294.97 6426.36 1663.84 6200.79 1612.11 6061.35 1373.77
E-484-19 1639.21 14192.01 1497.65 14926.82 1367.96 14855.63 1274.26 18167.54 1199.36 19426.40 1188.81 16185.15

Avg. 2736.39 688.82 2568.98 576.27 2364.36 576.85 2229.65 691.31 2134.95 742.21 2109.34 622.12

Table 6.8.: Results on the VRPRMDDP benchmark Hoff for different percentages of unavailable vehicle ca-
pacity in case of mixed loads.

ALNS-PR

100% 75% 50% 25% 10%

Benchmark Avg. ∆b(%) Avg. ta(s) Avg. ∆b(%) Avg. ta(s) Avg. ∆b(%) Avg. ta(s) Avg. ∆b(%) Avg. ta(s) Avg. ∆b(%) Avg. ta(s)

Nagy-VRPRMDP1 -9.36 15.63 -8.09 18.37 -6.10 20.88 -4.17 21.61 -2.71 21.49
Nagy-VRPRMDP2 -8.05 9.18 -5.73 9.88 -4.03 10.27 -2.66 11.06 -1.95 10.50
Nagy-VRPRMDP3 -10.67 28.65 -7.83 27.46 -5.80 34.14 -4.62 35.58 -4.20 39.46

Table 6.9.: Comparison of the results of ALNS-PR to the BKS as reported by Nagy, Wassan, and Salhi
(2013) on the VRPRMDP benchmark sets Nagy-VRPRMDP1, Nagy-VRPRMDP2, and Nagy-
VRPRMDP3 for different percentages of unavailable vehicle capacity in case of mixed loads.
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or improve every previous BKS of the sets Nagy-VRPRMDP1 (Table B.12) and Nagy-VRPRMDP3
(Table B.14) and the large majority of BKS of set Nagy-VRPRMDP2 (Table B.13) while using average
run-times clearly below one minute. Nagy, Wassan, and Salhi (2013) do not report the computation
times of their approach, and therefore no precise comparison is possible.

6.3.4.5. Results on VRPDDPTW Instances

In Table 6.10, we finally provide detailed results on the newly generated VRPDDPTW instances as
comparison for future methods that address the VRPDDPTW. Moreover, in order to analyze the
savings achievable by dividing customer demands, we compare the VRPDDPTW solutions to VRP-
SPDTW solutions obtained by our ALNS-PR on the new instances. We provide for each instance,
the name and the number of customers, and for both problem types, the number of employed vehicles
(m) and the best solution found in ten runs (fb). For the VRPDDPTW, we additionally report the
absolute deviation of the number of employed vehicles in the best solution to the vehicle number in
the corresponding best VRPSPDTW solution, the number of divided customers in the best solution
(nd), the percentage gap of the best solution to the best VRPSPDTW solution (∆b), and the average
computing time (ta) in seconds.

Out of 56 instances, our ALNS-PR identifies 38 instances for which the division of demands is benefi-
cial. In total, 652 customers are divided, allowing for a reduction of the number of employed vehicles
by 23 compared to the VRPSPDTW case. On average, the traveled distance on the instances with an
equal number of vehicles can be improved by �1.83% if dividing demands is permitted. Finally, our
ALNS-PR shows reasonable computation times of less than one minute on average.

6.4. Conclusion

We present an adaptive large neighborhood search algorithm combined with a path relinking approach,
called ALNS-PR, to address a class of VRPs with simultaneous pickup and delivery (VRPSPD).

In extensive numerical studies, we first demonstrate the usefulness of the proposed algorithmic compo-
nents. We show that the omission of each component leads to a decrease in solution quality. Moreover,
we find that especially the hybridization of our ALNS component with the proposed PR implemen-
tation, and the introduction of an innovative ALNS operator, which explicitly considers the load
characteristics of the VRPSPD and its variants, significantly accelerate the convergence rate of the
search.

The competitiveness of the proposed approach is demonstrated on benchmark instances from the
literature. On established instances, ALNS-PR can compete with the state-of-the-art approaches
for the corresponding problems. With respect to the more recently introduced problem variants,
especially on VRPSPDTL, VRPSPDTW, and VRPDDP instances, our method proves to be superior
to the majority of comparison algorithms and provides numerous new best solutions.

Our ALNS-PR is therefore suitable to tackle the practical application occurring at DHL Freight in
Sweden that particularly motivated this chapter. There, up to 50 000 customers need to be served
from multiple depots. The scale of the resulting multi-depot VRPSPD suggests its decomposition
into several VRPSPDs that can be solved independently. Future research thus needs to address the
necessary algorithmic modifications to appropriately decompose a corresponding large-scale instance.
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ALNS-PR

VRPSPDTW VRPDDPTW

Inst. n m fb m ∆m nd fb ∆b(%) ta(s)

HS-cdp101 100 23 2345.75 23 0 0 2345.75 0.00 27.04
HS-cdp102 100 23 1840.89 23 0 0 1840.89 0.00 31.10
HS-cdp103 100 22 1799.17 22 0 17 1761.04 -2.12 30.44
HS-cdp104 100 22 1752.16 22 0 8 1652.09 -5.71 34.93
HS-cdp105 100 23 2085.45 23 0 0 2085.45 0.00 22.86
HS-cdp106 100 22 2772.87 22 0 0 2772.87 0.00 27.39
HS-cdp107 100 22 2684.66 22 0 0 2684.66 0.00 25.92
HS-cdp108 100 22 2378.12 22 0 0 2378.12 0.00 25.79
HS-cdp109 100 22 1982.66 22 0 0 1982.66 0.00 29.35
HS-cdp201 100 17 1611.83 17 0 7 1486.13 -7.80 66.93
HS-cdp202 100 17 1461.67 16 -1 13 1803.94 23.42 52.97
HS-cdp203 100 17 1422.22 16 -1 13 1411.96 -0.72 71.46
HS-cdp204 100 17 1394.54 16 -1 12 1385.99 -0.61 60.97
HS-cdp205 100 17 1433.86 16 -1 26 2202.92 53.64 73.98
HS-cdp206 100 17 1421.85 16 -1 24 2102.17 47.85 50.61
HS-cdp207 100 17 1409.30 17 0 6 1396.02 -0.94 57.86
HS-cdp208 100 17 1421.41 16 -1 17 2184.17 53.66 64.15

HS-rdp101 100 22 1965.84 22 0 0 1965.84 0.00 25.92
HS-rdp102 100 21 2031.76 21 0 0 2031.76 0.00 36.01
HS-rdp103 100 21 1662.40 21 0 0 1662.40 0.00 35.77
HS-rdp104 100 20 1906.62 20 0 0 1906.62 0.00 42.75
HS-rdp105 100 21 1967.15 21 0 0 1967.15 0.00 26.10
HS-rdp106 100 20 2467.94 20 0 0 2467.94 0.00 39.30
HS-rdp107 100 20 1962.77 20 0 27 1925.47 -1.90 38.56
HS-rdp108 100 20 1623.36 20 0 4 1608.53 -0.91 36.84
HS-rdp109 100 21 1668.95 21 0 0 1668.95 0.00 31.83
HS-rdp110 100 20 2239.71 20 0 0 2239.71 0.00 35.61
HS-rdp111 100 21 1637.16 21 0 0 1637.16 0.00 33.30
HS-rdp112 100 20 1657.49 20 0 0 1656.78 -0.04 32.43
HS-rdp201 100 15 2337.05 15 0 10 2090.14 -10.57 52.64
HS-rdp202 100 15 1572.11 14 -1 39 1936.52 23.18 105.56
HS-rdp203 100 15 1635.94 14 -1 28 2256.06 37.91 113.51
HS-rdp204 100 15 1314.99 14 -1 17 1675.77 27.44 108.30
HS-rdp205 100 15 1671.05 14 -1 43 2202.27 31.79 92.56
HS-rdp206 100 15 1547.44 14 -1 31 1854.27 19.83 94.33
HS-rdp207 100 15 1350.41 14 -1 34 1678.72 24.31 98.72
HS-rdp208 100 15 1333.82 14 -1 31 1415.20 6.10 109.50
HS-rdp209 100 15 1609.23 14 -1 22 2069.46 28.60 79.36
HS-rdp210 100 15 1544.21 14 -1 41 1965.03 27.25 116.10
HS-rdp211 100 15 1365.45 15 0 11 1209.21 -11.44 117.33

HS-rcdp101 100 23 2340.21 23 0 1 2336.11 -0.18 23.69
HS-rcdp102 100 22 2435.76 22 0 19 2320.66 -4.73 32.72
HS-rcdp103 100 22 2173.06 22 0 10 2038.64 -6.19 45.59
HS-rcdp104 100 22 2011.60 22 0 12 1967.52 -2.19 56.28
HS-rcdp105 100 22 2588.82 22 0 0 2588.82 0.00 22.42
HS-rcdp106 100 22 2386.96 22 0 1 2374.35 -0.53 28.48
HS-rcdp107 100 22 2121.41 22 0 11 2033.68 -4.14 36.16
HS-rcdp108 100 22 2021.30 22 0 7 1999.16 -1.10 37.99
HS-rcdp201 100 16 2004.33 15 -1 17 2859.48 42.67 72.38
HS-rcdp202 100 16 1716.64 15 -1 12 1672.16 -2.59 82.14
HS-rcdp203 100 16 1588.73 15 -1 17 1518.74 -4.41 64.54
HS-rcdp204 100 16 1584.29 15 -1 10 1464.00 -7.59 91.59
HS-rcdp205 100 16 1874.17 15 -1 8 2239.42 19.49 60.44
HS-rcdp206 100 16 1693.38 15 -1 16 1973.35 16.53 78.13
HS-rcdp207 100 16 1689.49 15 -1 17 1602.60 -5.14 80.79
HS-rcdp208 100 16 1572.66 15 -1 13 1445.75 -8.07 82.49

Avg. -1.83 56.28
°

-23 652

Table 6.10.: Results on the newly generated VRPDDPTW benchmark HS.
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Chapter 7

Summary, Conclusion, and Outlook

This thesis addresses several challenges faced in the context of sustainable logistics from the perspective
of operations research. We develop respective models and solution methods to provide decision support
for planning operations that have to (1) integrate intermediate stops at, e.g., recharging stations into
the routes of transportation vehicles, (2) jointly take decisions on the location of battery swap stations
(BSSs) with decisions on the routing of battery electric vehicles (BEVs), (3) consider possible resource
transfers between vehicles, and (4) simultaneously manage the flow of goods to the end consumers as
well as back to the point of origin.

This chapter summarizes the contents of this thesis, lists its major contributions and provides possible
avenues for future research.

7.1. Summary and Conclusion

In Chapter 2, we introduce the capacitated vehicle-routing problem (CVRP) which builds the common
foundation of all problems investigated in this thesis. In addition, we describe the basic principles
of the metaheuristic concepts simulated annealing (SA), variable neighborhood search (VNS), large
neighborhood search (LNS), and path relinking (PR) that we utilize to develop the solution methods
presented in this work.

In Chapter 3, we study the VRP with intermediate stops (VRPIS), which considers the possibility for
vehicles to stop en route to replenish the goods to be delivered or to refuel at appropriate facilities.
To provide solutions for the VRPIS, we develop an adaptive VNS (AVNS) heuristic. The shaking step
is based on sequence relocation and cyclic exchange neighborhood structures. Our algorithm guides
the shaking step by adapting the selection probabilities of the methods which determine the routes
and vertices involved in the shaking based on the past performance of these methods. We implement
problem-specific methods that explicitly take the characteristics of intermediate stops like necessary
detours to respective facilities or the facility density in routes into account. A local search procedure
that makes use of classical operators as well as operators able to insert, rearrange, and remove visits
to intermediate facilities is employed to perform the local descent in each investigated neighborhood.
To further diversify the search, we use an acceptance mechanism inspired by SA.

On benchmark instances from the literature for the two VRPIS special cases green VRP and VRP with
intermediate replenishment facilities, our AVNS algorithm shows a convincing performance compared
to the approaches from the literature and is able to obtain numerous new best solutions. More-
over, we consider an additional special case of the VRPIS, the electric VRP with recharging facilities
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(EVRPRF). We design two sets of small and large EVRPRF instances based on well-known CVRP
benchmarks. On the small instances, we show in comparison to the commercial solver CPLEX, that
our AVNS is capable of identifying highly efficient vehicle routes making use of the available recharg-
ing stations. Finally, we perform experiments that clearly prove the usefulness of the introduced
algorithmic innovations regarding the characteristics of intermediate stops.

In Chapter 4, we investigate the battery swap station location-routing problem with capacitated elec-
tric vehicles (BSS-EV-LRP). To address the BSS-EV-LRP, we extend our AVNS algorithm originally
designed for VRPIS by incorporating the BSS construction cost into the objective function and in-
troducing the new facility-related neighborhood structures facility removal and facility replacement in
the shaking step. Our extended AVNS is able to significantly improve the results of the comparison
algorithm SIGALNS by Yang and Sun (2015) and provides new best solutions for the large majority
of instances, namely for 23 out of 24, showing an average improvement of nearly 10%. Moreover,
the AVNS strongly reduces the number of constructed BSSs in the solutions compared to SIGALNS.
Therefore, we generate new BSS-EV-LRP instances which are more meaningful concerning the neces-
sity of using BSSs. Additional experiments on the new instances show that (i) decreasing construction
costs lead to the expected increase in the number of located BSSs, and (ii) the proposed methodolog-
ical innovations related to BSSs and the explicit consideration of the BSS construction costs have a
beneficial impact on the solution quality.

In Chapter 5, we introduce the VRP with time windows and mobile depots (VRPTWMD), which
is characterized by a fleet of delivery vehicles (DVs) and a fleet of support vehicles (SVs) that may
replenish the fuel or load capacity of the DVs. We develop an adaptive LNS (ALNS) heuristic combined
with a PR approach, called ALNS-PR, to address the VRPTWMD. At each ALNS iteration of our
ALNS-PR algorithm, several sub-components like removal and insertion operators to be applied to the
current solution are selected based on probabilities that are dynamically updated during the search.
In addition, our ALNS-PR makes use problem-specific operators and route selection policies that aim
at capturing the characteristics of transfer operations. Finally, we develop move evaluation procedures
that allow us to evaluate changes in fuel, load, and time window violations in constant time. With
respect to the latter, we adapt the time travel approach proposed by Nagata, Bräysy, and Dullaert
(2010) to the synchronization of both vehicle types.

We generate two sets of VRPTWMD instances. On a set of small-sized instances, the comparison
with the commercial solver CPLEX shows that our ALNS-PR is able to obtain high-quality solutions
and thus to appropriately capture the necessity of performing transfers and the associated deployment
of SVs. On large VRPSPD instances, we demonstrate the usefulness of the implemented transfer-
related algorithmic components and of our PR approach. In addition, we use the large VRPTWMD
instances to study the effect of different problem characteristics on the solution structure. We find
that fuel transfers are essential in each problem configuration to be able to serve customers that are
located far away from the depot. In contrast, the utilization of load transfers quickly diminishes as
the problem setting becomes increasingly constrained with respect to transfer operations, i.e., due to
a decreasing load capacity of the SVs, rising cost for the utilization of SVs, and an increasing time
consumption associated with transfers. We further demonstrate that the flexibility gained from treat-
ing the task order at a customer as a decision variable results in notable cost savings compared to the
assumption of always executing the transfer operation before the service. Moreover, we demonstrate
the competitiveness of our approach on benchmark instances for the related two-echelon multiple-trip
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VRP with satellite synchronization. We are able to significantly improve the large majority (49 out of
56) of the previous best-known solutions, while spending remarkably less computation time than the
corresponding state-of-the-art algorithm from the literature.

Finally, Chapter 6 investigates a class of VRPs with simultaneous pickup and delivery (VRPSPDs). To
provide solutions for the investigated VRPSPD variants, we again use a hybrid algorithm composed of
ALNS and PR. We show that each component is necessary to achieve a high solution quality. Especially
the hybridization of our ALNS component with the proposed PR approach, and the introduction of an
innovative ALNS operator, which explicitly considers the fluctuating nature of the vehicle load arising
in the VRPSPD and its variants, significantly accelerate the convergence rate of the search.

With respect to the competitiveness of the proposed method, on established instances, ALNS-PR can
compete with the state-of-the-art approaches for the corresponding problems. Regarding the more
recently introduced problem variants, especially on the instances for the VRPSPD with time limit,
the VRPSPD with time windows, and the VRP with divisible deliveries and pickups, our method
outperforms the majority of comparison algorithms. This is also true for the special cases VRP
with mixed deliveries and pickups and VRP with restricted mixing of deliveries and pickups, where
ALNS-PR shows a convincing performance and provides numerous new best solutions.

7.2. Outlook

With regard to the problems addressed in this thesis, several promising avenues for future research
come to mind. The BSS-EV-LRP model might be reasonably augmented by the consideration of
recharging stations with different recharging technologies that, depending on the construction cost,
offer varying recharging speeds. The latter is crucial in problem settings where tight time windows
need to be taken into account. Moreover, as described in Section 1, future recharging demand is
expected to be highly localized. Thus, investors in recharging infrastructure will most likely have to
face construction cost for recharging stations or BSSs that additionally depend on the attractiveness
of the associated locations which should also be adequately addressed by respective planning models.

Integrating a heterogeneous fleet of SVs into the VRPTWMD model that allows to replenish both
the fuel and the load capacity of the DVs could further increase its utility for practical applications.
Especially the small and possibly electrically powered DVs employed in urban distribution systems
rely on a frequent resupply of both resources.

Another interesting and challenging application scenario that could enrich the VRPTWMD model
consists in the replenishment of the time capacity of the DVs in the form of driver exchanges. A
similar problem occurring in long-distance road transport is studied by Drexl et al. (2013). There, a
driver who needs to rest visits a relay station where another driver takes over the truck and continues
the tour. The drivers may be transported between the relay stations using shuttle vans which thus
may be viewed as SVs.

Similar to fuel, time is consumed along arcs as travel time and similar to load, at vertices in form
of service, transfer, and possibly waiting times. Time is always changing. Moreover, in contrast to
the resource types already considered, time changes may propagate through the entire solution as
it is the case with changes in time window violation. Therefore, the evaluation of changes in time
violation does not only require the consideration of the route segment currently being modified but
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also the succeeding segments connected via transfers. Thus, innovative preprocessing procedures likely
become necessary to quickly retrieve the required solution information and thus to efficiently evaluate
the respective changes.

In addition, it seems worthwhile to consider two- or three-dimensional loading constraints and to
investigate different loading patterns in the VRPSPD variants with restricted mixing of deliveries and
pickups especially with respect to different types of loading access (rear or side loading) determined
by the specific transportation vehicles used. While two- and three-dimensional versions of the basic
VRPSPD are studied by Zachariadis, Tarantilis, and Kiranoudis (2016) and Koch, Bortfeldt, and
Wäscher (2018), respectively, similar studies with regard to other VRPSPD variants are, to the best
of our knowledge, still open for investigation.

Finally, practical reverse logistics applications are usually characterized by multi-echelon distribution
and collection systems involving collection centers where goods to be returned are consolidated before
they are transported to different rework sites like repair and refurbishing or remanufacturing centers.
While this assumption is generally incorporated in respective network design problems (see, e.g., Min,
Ko, and Ko, 2006; Srivastava, 2008), the vehicle-routing literature exclusively considers single-stage
networks, to the best of our knowledge. Thus, a combination of VRPSPDs with the VRPIS or the
VRPTWMD models appears to be another beneficial future research direction.
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Appendix A

Detailed Results on the Large VRPTWMD Instances

In Table A.1, we report our results on the large-sized VRPTWMD instances. For each instance,
we report the number of employed SVs (mS), the number of employed DVs (mD), the number of
performed transfers (nt), the best solution quality of ten runs (fb), the average solution quality of ten
runs (fa), and the average run-time (ta) in minutes.
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ALNS-PR ALNS-PR

Instance mS mD nt fb fa ta(min) Instance mS mD nt fb fa ta(min)

VRPTWMD-F-c101-100 2 11 10 2733.08 2781.55 16.51 VRPTWMD-L-c101-100 0 14 0 2457.57 2494.88 3.46
VRPTWMD-F-c102-100 2 10 9 2599.14 2674.51 17.61 VRPTWMD-L-c102-100 0 14 0 2421.27 2455.88 8.57
VRPTWMD-F-c103-100 2 10 9 2453.50 2481.25 20.96 VRPTWMD-L-c103-100 1 11 5 2306.72 2358.41 14.90
VRPTWMD-F-c104-100 2 10 9 2431.28 2437.90 17.26 VRPTWMD-L-c104-100 1 11 5 2299.81 2318.12 16.06
VRPTWMD-F-c105-100 2 10 9 2442.08 2467.52 14.12 VRPTWMD-L-c105-100 0 14 0 2478.00 2485.19 3.78
VRPTWMD-F-c106-100 2 10 8 2448.04 2453.12 15.59 VRPTWMD-L-c106-100 1 12 4 2458.14 2466.67 6.21
VRPTWMD-F-c107-100 2 10 9 2436.08 2445.15 13.61 VRPTWMD-L-c107-100 1 11 6 2353.09 2401.72 12.11
VRPTWMD-F-c108-100 2 10 9 2437.54 2454.77 18.77 VRPTWMD-L-c108-100 1 11 6 2346.27 2422.21 12.08
VRPTWMD-F-c109-100 2 10 9 2420.61 2427.12 18.38 VRPTWMD-L-c109-100 1 11 5 2302.15 2316.63 14.21
VRPTWMD-F-c201-100 1 3 3 1716.20 1716.20 7.35 VRPTWMD-L-c201-100 0 5 0 1686.39 1701.56 9.99
VRPTWMD-F-c202-100 1 3 3 1716.20 1716.20 8.30 VRPTWMD-L-c202-100 0 5 0 1679.62 1693.40 10.90
VRPTWMD-F-c203-100 1 3 3 1707.04 1707.04 9.06 VRPTWMD-L-c203-100 0 5 0 1670.82 1691.77 13.41
VRPTWMD-F-c204-100 1 3 3 1703.70 1708.85 12.65 VRPTWMD-L-c204-100 0 5 0 1665.73 1691.27 15.63
VRPTWMD-F-c205-100 1 3 3 1715.81 1715.81 7.27 VRPTWMD-L-c205-100 0 5 0 1683.43 1697.16 10.70
VRPTWMD-F-c206-100 1 3 3 1715.64 1715.64 8.94 VRPTWMD-L-c206-100 0 5 0 1680.33 1694.65 11.92
VRPTWMD-F-c207-100 1 3 3 1700.96 1700.96 7.99 VRPTWMD-L-c207-100 0 5 0 1679.30 1695.85 13.09
VRPTWMD-F-c208-100 1 3 3 1710.91 1713.96 10.89 VRPTWMD-L-c208-100 0 5 0 1683.04 1709.52 11.49
VRPTWMD-F-r101-100 2 17 11 3662.07 3864.94 28.16 VRPTWMD-L-r101-100 1 22 5 3957.22 4065.35 8.47
VRPTWMD-F-r102-100 2 15 10 3317.31 3484.08 43.55 VRPTWMD-L-r102-100 1 18 5 3372.45 3423.87 17.27
VRPTWMD-F-r103-100 2 12 9 3023.22 3161.02 20.48 VRPTWMD-L-r103-100 1 15 5 3117.50 3141.23 16.12
VRPTWMD-F-r104-100 1 11 7 2703.05 2825.35 15.97 VRPTWMD-L-r104-100 0 13 0 2635.74 2652.47 7.39
VRPTWMD-F-r105-100 2 15 11 3473.73 3599.23 32.23 VRPTWMD-L-r105-100 1 16 4 3297.58 3405.64 5.17
VRPTWMD-F-r106-100 1 14 6 3169.41 3276.13 17.05 VRPTWMD-L-r106-100 1 13 5 3052.44 3158.80 14.53
VRPTWMD-F-r107-100 1 12 6 2956.61 3091.30 14.56 VRPTWMD-L-r107-100 1 11 5 2777.37 2850.42 7.55
VRPTWMD-F-r108-100 1 11 7 2561.93 2580.84 16.94 VRPTWMD-L-r108-100 1 10 4 2434.37 2500.03 7.59
VRPTWMD-F-r109-100 1 13 6 2993.76 3134.54 15.15 VRPTWMD-L-r109-100 0 15 0 2914.72 2954.54 3.27
VRPTWMD-F-r110-100 1 12 6 2945.85 3068.54 11.69 VRPTWMD-L-r110-100 0 14 0 2844.86 2858.59 5.18
VRPTWMD-F-r111-100 1 12 6 2785.95 2887.52 19.70 VRPTWMD-L-r111-100 0 14 0 2686.75 2705.65 5.34
VRPTWMD-F-r112-100 1 11 6 2565.59 2602.94 19.60 VRPTWMD-L-r112-100 0 13 0 2503.01 2514.71 7.33
VRPTWMD-F-r201-100 0 5 0 2678.97 2931.32 8.33 VRPTWMD-L-r201-100 1 3 3 2909.69 2962.59 40.28
VRPTWMD-F-r202-100 0 4 0 2574.24 2586.86 20.99 VRPTWMD-L-r202-100 0 5 0 2955.09 2985.90 26.25
VRPTWMD-F-r203-100 0 4 0 2135.89 2278.45 13.25 VRPTWMD-L-r203-100 0 5 0 2456.58 2479.50 37.45
VRPTWMD-F-r204-100 0 3 0 2001.58 2012.67 32.30 VRPTWMD-L-r204-100 0 3 0 2000.19 2020.29 35.36
VRPTWMD-F-r205-100 0 4 0 2275.01 2387.75 11.35 VRPTWMD-L-r205-100 0 5 0 2620.83 2641.36 30.71
VRPTWMD-F-r206-100 0 4 0 2107.73 2392.88 16.84 VRPTWMD-L-r206-100 1 2 4 2335.66 2429.55 37.93
VRPTWMD-F-r207-100 0 3 0 2152.78 2161.82 17.06 VRPTWMD-L-r207-100 0 3 0 2164.07 2182.43 37.10
VRPTWMD-F-r208-100 0 3 0 1812.87 1827.24 16.30 VRPTWMD-L-r208-100 0 3 0 1814.41 1832.75 58.89
VRPTWMD-F-r209-100 0 4 0 2078.61 2151.37 6.29 VRPTWMD-L-r209-100 0 5 0 2377.01 2408.40 13.26
VRPTWMD-F-r210-100 0 5 0 2460.34 2477.76 10.62 VRPTWMD-L-r210-100 0 5 0 2476.71 2529.02 18.14
VRPTWMD-F-r211-100 0 3 0 2097.00 2122.78 17.25 VRPTWMD-L-r211-100 0 3 0 2122.25 2136.64 18.97
VRPTWMD-F-rc101-100 2 15 8 4242.55 4271.36 8.85 VRPTWMD-L-rc101-100 0 20 0 4461.93 4481.06 1.99
VRPTWMD-F-rc102-100 1 14 5 3666.29 3713.42 5.59 VRPTWMD-L-rc102-100 0 16 0 3674.26 3705.35 2.19
VRPTWMD-F-rc103-100 1 13 5 3269.30 3367.73 6.22 VRPTWMD-L-rc103-100 1 13 6 3370.14 3439.39 5.27
VRPTWMD-F-rc104-100 2 10 11 3122.02 3207.89 23.24 VRPTWMD-L-rc104-100 1 11 6 2945.61 3055.69 4.98
VRPTWMD-F-rc105-100 2 13 9 3938.66 4057.33 13.07 VRPTWMD-L-rc105-100 0 18 0 4018.99 4053.76 2.70
VRPTWMD-F-rc106-100 1 13 5 3445.26 3462.81 5.29 VRPTWMD-L-rc106-100 0 16 0 3623.63 3670.89 2.31
VRPTWMD-F-rc107-100 2 11 9 3320.32 3444.54 14.29 VRPTWMD-L-rc107-100 1 13 5 3302.09 3395.00 6.74
VRPTWMD-F-rc108-100 2 11 9 3210.36 3236.20 16.88 VRPTWMD-L-rc108-100 0 14 0 3016.02 3051.28 4.07
VRPTWMD-F-rc201-100 0 6 0 3341.83 3355.56 4.57 VRPTWMD-L-rc201-100 0 6 0 3374.71 3430.88 13.68
VRPTWMD-F-rc202-100 0 4 0 2927.56 2968.02 7.07 VRPTWMD-L-rc202-100 0 5 0 3364.69 3419.64 19.12
VRPTWMD-F-rc203-100 0 4 0 2319.15 2340.31 3.87 VRPTWMD-L-rc203-100 0 5 0 2679.15 2737.09 24.73
VRPTWMD-F-rc204-100 0 5 0 2144.81 2155.55 18.57 VRPTWMD-L-rc204-100 1 2 3 2017.89 2113.53 32.19
VRPTWMD-F-rc205-100 0 6 0 3063.61 3069.07 3.50 VRPTWMD-L-rc205-100 1 3 4 3038.58 3103.55 20.03
VRPTWMD-F-rc206-100 0 5 0 2976.26 3003.37 6.03 VRPTWMD-L-rc206-100 0 5 0 3006.75 3065.14 14.37
VRPTWMD-F-rc207-100 0 4 0 2388.17 2436.27 6.30 VRPTWMD-L-rc207-100 0 5 0 2747.22 2788.09 25.07
VRPTWMD-F-rc208-100 0 4 0 1876.40 1882.54 4.06 VRPTWMD-L-rc208-100 0 5 0 2175.51 2202.88 15.31

Avg. 14.26 15.05

Table A.1.: Results of ALNS-PR on the large-sized VRPSPD instances.
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Appendix B

Detailed Results on the Benchmark Instances for the VRPSPD Vari-
ants from the Literature

In the following, we present the detailed results on the benchmark instances for the VRPSPD variants
from the literature structured according to problem type.

VRPSPD Tables B.1, B.2, and B.3 show detailed comparisons of our ALNS-PR with the state-of-
the-art approaches for the VRPSPD on the benchmarks Salhi-VRPSPD, Dethloff, and Montané-All
(including Montané-Medium), respectively.

We report for each instance, the name, the number of customers (n), and the BKS from the literature.
For each method, we provide the percentage gap of the best solution found in several runs to the BKS
(∆b) and the average computing time (ta), the time elapsed when the best solution was found (tb), the
average time elapsed when the best solution was found (tab), or the total time of the best run (t) in
seconds (see Section 6.3.4 for details on how to interpret the results of the comparison algorithms). In
Table B.3, the percentage gap of the average solution quality to the BKS (∆a) is additionally given.
Values in bold indicate the best solution quality for each instance. Averages of the gaps to the BKS
and the run-times are reported after the detailed results per instance at the end of each table.

VRPSPDTL In Tables B.4 and B.5, we present the detailed results on the VRPSPDTL benchmarks
Salhi-VRPSPDTL and Polat-VRPSPDTL, respectively.

In the course of our computational experiments, we were able to obtain two new BKS on the instances
of Salhi-VRPSPDTL. In addition to the previously reported measures, we therefore report in Table B.4,
the best solutions encountered during our entire testing activities (f) and the corresponding percentage
gaps to the previous BKS (∆) in column ALNS-PR.

On set Polat-VRPSPDTL, we improve three out of seven previous BKS based on ten runs. The
corresponding absolute solution values are given in column fb of Table B.5.

VRPMDP Table B.6 contains the detailed results on the VRPMDP benchmark Salhi-VRPMDP.

VRPSPDTW Tables B.7 and B.8 show the detailed results on the VRPSPDTW instance sets
Wang-Medium and Wang-Large, respectively.
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature

In addition to the previous measures, we report the number of employed vehicles in the best solution
(m) and the absolute deviation of the number of vehicles in the best solution found to the previous
best-known vehicle number (∆m) for each instance and solution method.

With respect to Table B.8, note that we identified the WMZS solutions on instances RC2_8_1 and
RC2_10_1 to be infeasible (indicated by asterisks). The average route lengths of 1789.81 and 2119.78
calculated for both solutions exceed the latest arrival times at the depot given in the corresponding
instances of 1573 and 1821, respectively. Therefore, we omit these instances when analyzing the
solution quality of both comparison algorithms.

VRPDDP We report our detailed results for the VRPDDP on the benchmarks Nagy-VRPDDP1,
Nagy-VRPDDP2, and Nagy-VRPDDP3 in Table B.9 and on the benchmarks Polat-VRPDDP1 and
Polat-VRPDDP2 in Tables B.10 and B.11, respectively. We report the same measures as in the
previous tables, and additionally for ALNS-PR, the number of customers that have been divided in
the best solution found (nd) for each instance.

VRPRMDP Finally, we provide the detailed results for the VRPRMDP on the benchmarks Nagy-
VRPRMDP1, Nagy-VRPRMDP2, and Nagy-VRPRMDP3 for different percentages of unavailable
vehicle capacity in case of mixed loads in Tables B.12, B.13, and B.14, respectively.
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature

ZTK SDBOF GKA KK P ALNS-PR

Inst. n BKS ∆b(%) tb(s) ∆b(%) ta(s) ∆b(%) ta(s) ∆b(%) ta(s) ∆b(%) ta(s) ∆b(%) ta(s)

SCA3-0 50 635.62 0.00 2.50 0.00 2.31 0.00 4.90 0.00 4.77 0.00 4.77 0.00 19.37
SCA3-1 50 697.84 0.00 2.50 0.00 2.28 0.00 0.80 0.00 5.24 0.00 5.76 0.00 14.59
SCA3-2 50 659.34 0.00 2.90 0.00 2.14 0.00 0.40 0.00 7.47 0.00 8.22 0.00 22.38
SCA3-3 50 680.04 0.00 2.30 0.00 2.49 0.00 1.00 0.00 5.20 0.00 6.24 0.00 11.74
SCA3-4 50 690.50 0.00 2.90 0.00 2.18 0.00 0.30 0.00 4.96 0.00 3.97 0.00 11.95
SCA3-5 50 659.90 0.00 3.00 0.00 2.23 0.00 2.00 0.00 5.18 0.00 5.70 0.00 16.41
SCA3-6 50 651.09 0.00 3.10 0.00 2.51 0.00 0.80 0.00 4.68 0.00 5.15 0.00 17.31
SCA3-7 50 659.17 0.00 2.80 0.00 2.49 0.00 1.60 0.00 6.06 0.00 6.67 0.00 12.38
SCA3-8 50 719.47 0.00 3.50 0.00 2.26 0.00 0.50 0.00 4.51 0.00 4.96 0.00 12.73
SCA3-9 50 681.00 0.00 4.70 0.00 1.90 0.00 0.80 0.00 7.08 0.00 8.50 0.00 15.45
SCA8-0 50 961.50 0.00 2.70 0.00 3.37 0.00 4.80 0.00 5.33 0.00 5.33 0.00 11.69
SCA8-1 50 1049.65 0.00 3.80 0.00 2.89 0.00 6.80 0.00 5.62 0.00 6.74 0.00 7.33
SCA8-2 50 1039.64 0.00 3.90 0.00 2.38 0.00 10.20 0.00 6.05 0.00 5.45 0.00 9.42
SCA8-3 50 983.34 0.00 2.60 0.00 2.98 0.00 13.00 0.00 8.39 0.00 8.39 0.00 9.24
SCA8-4 50 1065.49 0.00 2.40 0.00 2.81 0.00 3.00 0.00 6.07 0.00 6.07 0.00 7.96
SCA8-5 50 1027.08 0.00 3.40 0.00 3.31 0.00 4.10 0.00 6.96 0.00 5.57 0.00 13.51
SCA8-6 50 971.82 0.00 2.70 0.00 3.51 0.00 1.60 0.00 7.76 0.00 6.98 0.00 10.09
SCA8-7 50 1051.28 0.00 5.10 0.00 3.12 0.00 3.40 0.00 8.14 0.00 9.77 0.00 10.38
SCA8-8 50 1071.18 0.00 3.60 0.00 2.92 0.00 0.80 0.00 7.06 0.00 7.06 0.00 10.21
SCA8-9 50 1060.50 0.00 4.80 0.00 2.18 0.00 7.30 0.00 5.29 0.00 5.82 0.00 9.09

CON3-0 50 616.52 0.00 4.70 0.00 3.12 0.00 2.10 0.00 6.80 0.00 6.12 0.00 8.21
CON3-1 50 554.47 0.00 2.20 0.00 2.83 0.00 1.30 0.00 5.01 0.00 4.01 0.00 14.49
CON3-2 50 518.00 0.00 3.10 0.00 2.77 0.00 1.30 0.00 7.55 0.00 9.06 0.00 10.42
CON3-3 50 591.19 0.00 3.20 0.00 2.34 0.00 0.50 0.00 5.75 0.00 6.90 0.00 22.12
CON3-4 50 588.79 0.00 2.30 0.00 2.63 0.00 3.20 0.00 3.90 0.00 3.12 0.00 9.67
CON3-5 50 563.70 0.00 3.70 0.00 2.69 0.00 0.40 0.00 6.86 0.00 6.17 0.00 8.95
CON3-6 50 499.05 0.00 3.70 0.00 2.75 0.00 2.30 0.00 8.54 0.00 9.39 0.00 10.77
CON3-7 50 576.48 0.00 1.90 0.00 2.75 0.00 2.60 0.00 4.26 0.00 4.69 0.00 11.05
CON3-8 50 523.05 0.00 3.80 0.00 2.46 0.00 1.00 0.00 3.89 0.00 3.89 0.00 8.03
CON3-9 50 578.25 0.00 2.20 0.00 3.37 0.00 2.90 0.00 6.33 0.00 5.70 0.00 8.02
CON8-0 50 857.17 0.00 4.40 0.00 3.65 0.00 5.20 0.00 5.40 0.00 4.86 0.00 5.21
CON8-1 50 740.85 0.00 3.30 0.00 3.02 0.00 2.90 0.00 8.46 0.00 6.77 0.00 5.69
CON8-2 50 712.89 0.00 2.70 0.00 3.08 0.00 2.10 0.00 4.79 0.00 3.83 0.00 9.50
CON8-3 50 811.07 0.00 2.80 0.00 3.99 0.00 2.80 0.00 7.21 0.00 6.49 0.00 4.69
CON8-4 50 772.25 0.00 2.80 0.00 3.69 0.00 3.60 0.00 6.70 0.00 6.70 0.00 7.40
CON8-5 50 754.88 0.00 5.70 0.00 4.18 0.00 3.40 0.00 5.74 0.00 6.31 0.00 5.84
CON8-6 50 678.92 0.00 3.40 0.00 4.09 0.00 7.90 0.00 4.36 0.00 4.80 0.00 5.33
CON8-7 50 811.96 0.00 2.50 0.00 4.03 0.00 3.00 0.00 8.38 0.00 9.22 0.00 4.12
CON8-8 50 767.53 0.00 3.20 0.00 3.42 0.00 3.20 0.00 6.16 0.00 4.93 0.00 4.98
CON8-9 50 809.00 0.00 3.80 0.00 3.48 0.00 2.40 0.00 7.19 0.00 6.47 0.00 4.81

Avg. 0.00 3.27 0.00 2.92 0.00 3.06 0.00 6.13 0.00 6.16 0.00 10.56

Processor type T5500 Xeon Xeon Xeon E5-2650 Xeon E5420 i5-6600
Processor speed 1.66 GHz 2.66 GHz 3.16 GHz 2.00 GHz 2.50 GHz 3.30 GHz
Passmark score 584 1015 1345 1302 1073 2098
tc(s) 0.91 � ? 1.41 � 256 � 50 1.96 � 10 3.82 � 10 3.15 � 6 � 10 10.56 � 10

Table B.2.: Detailed results of ALNS-PR and the state-of-the-art heuristics for the VRPSPD on the Dethloff
benchmark.
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature

PKKG ALNS-PR

Inst. n BKS ∆b(%) ∆a(%) ta(s) fb ∆b(%) ∆a(%) ta(s)

CE51-5 50 570 0.00 0.00 98.39 570 0.00 0.00 1.69
CE76-7 75 735 0.00 0.00 250.75 728 -0.95 0.11 6.17
CE76-8 75 778 0.00 0.35 507.78 777 -0.13 -0.10 4.81
CE76-10 75 878 0.00 0.17 344.06 878 0.00 0.18 4.10
CE76-14 75 1091 0.00 0.11 321.56 1091 0.00 0.10 4.46
CE101-8 100 956 0.00 0.05 416.56 955 -0.10 0.25 10.03
CE101-14 100 1175 0.00 0.30 10264 1177 0.17 0.56 13.71

Avg. 0.00 0.14 323.18 -0.15 0.16 5.21

Processor type Core 2 Duo T5750 i5-6600
Processor speed 2.00 GHz 3.30 GHz
Passmark score 678 2098
tc(s) 104.44 � 10 5.21 � 10

Table B.5.: Detailed results of ALNS-PR in comparison to PKKG on the VRPSPDTL benchmark Polat-VRP-
SPDTL.

SUO VCGP ALNS-PR

Inst. n BKS ∆b(%) ∆a(%) ta(s) ∆b(%) ∆a(%) ta(s) fb ∆b(%) ∆a(%) ta(s)

CMT1H 50 465.02 0.00 0.00 2.07 0.00 0.00 41.40 465.02 0.00 0.01 16.89
CMT1Q 50 489.74 0.00 0.00 1.52 0.00 0.00 33.00 489.74 0.00 0.28 16.99
CMT1T 50 520.06 0.00 0.00 1.60 0.00 0.00 31.20 520.06 0.00 0.00 18.06
CMT2H 75 662.63 0.00 0.00 5.16 0.00 0.00 61.20 662.63 0.00 0.00 32.78
CMT2Q 75 731.26 0.00 0.02 8.03 0.00 0.03 87.60 732.67 0.19 0.26 19.12
CMT2T 75 782.77 0.00 0.00 7.56 0.00 0.00 49.80 782.77 0.00 0.11 27.84
CMT3H 100 700.94 0.00 0.00 17.65 0.00 0.00 116.40 700.94 0.00 0.16 103.94
CMT3Q 100 747.15 0.00 0.00 9.70 0.00 0.00 79.80 747.15 0.00 0.00 77.42
CMT3T 100 798.07 0.00 0.00 28.76 0.00 0.00 97.20 798.07 0.00 0.33 83.16
CMT12H 100 629.37 0.00 0.00 13.93 0.00 0.00 89.40 629.37 0.00 0.11 66.25
CMT12Q 100 729.25 0.00 0.00 17.37 0.00 0.00 91.80 729.25 0.00 0.17 45.76
CMT12T 100 787.52 0.00 0.00 6.79 0.00 0.00 57.00 787.52 0.00 0.00 31.84
CMT11H 120 818.05 0.00 0.00 63.18 0.00 0.00 271.80 818.05 0.00 0.01 195.73
CMT11Q 120 939.36 0.00 0.00 20.35 0.00 0.00 179.40 939.36 0.00 0.00 114.33
CMT11T 120 998.80 0.00 0.00 19.91 0.00 0.00 140.40 998.80 0.00 0.00 69.97
CMT4H 150 828.12 0.00 0.42 80.24 0.00 0.18 340.20 828.12 0.00 0.50 185.30
CMT4Q 150 915.27 0.00 0.00 58.92 0.00 0.02 250.80 915.27 0.00 0.23 177.80
CMT4T 150 990.39 0.00 0.00 50.42 0.00 0.00 150.00 990.39 0.00 0.25 205.52
CMT5H 199 978.74 0.00 0.00 1531.73 0.00 0.19 297.00 978.74 0.00 0.41 577.38
CMT5Q 199 1104.87 0.00 0.08 1627.78 0.00 0.19 347.40 1104.87 0.00 0.42 493.59
CMT5T 199 1218.77 0.00 0.12 1802.81 0.00 0.14 357.60 1218.77 0.00 0.18 331.88

CMT6H 50 555.43 0.00 0.35 1.08 0.00 0.00 27.00 555.43 0.00 0.06 9.35
CMT6Q 50 555.43 0.00 0.31 1.08 0.00 0.00 27.00 555.43 0.00 0.00 9.37
CMT6T 50 555.43 0.00 0.22 1.15 0.00 0.00 27.60 555.43 0.00 0.00 9.69
CMT7H 75 900.12 0.05 0.08 4.47 0.00 0.05 61.80 900.12 0.00 0.14 33.31
CMT7Q 75 900.69 0.00 0.21 4.90 0.00 0.04 71.40 900.69 0.00 0.19 31.05
CMT7T 75 903.05 0.00 0.00 4.77 0.00 0.00 43.80 903.05 0.00 0.00 28.97
CMT8H 100 865.50 0.00 0.00 7.78 0.00 0.00 78.60 865.50 0.00 0.00 70.57
CMT8Q 100 865.50 0.00 0.00 7.50 0.00 0.00 79.20 865.50 0.00 0.08 69.52
CMT8T 100 865.54 0.00 0.00 7.18 0.00 0.00 78.60 865.54 0.00 0.09 57.46
CMT14H 100 821.75 0.00 0.00 5.37 0.00 0.00 57.60 821.75 0.00 0.00 24.33
CMT14Q 100 821.75 0.00 0.00 5.47 0.00 0.00 58.20 821.75 0.00 0.00 20.91
CMT14T 100 826.77 0.00 0.00 6.30 0.00 0.00 69.00 826.77 0.00 0.00 26.31
CMT13H 120 1542.86 0.00 0.11 73.82 0.00 0.00 168.60 1542.86 0.00 0.06 107.14
CMT13Q 120 1542.86 0.00 0.08 69.87 0.00 0.00 171.00 1542.86 0.00 0.10 74.40
CMT13T 120 1542.86 0.00 0.08 73.59 0.00 0.01 171.60 1541.14 -0.11 0.11 87.14
CMT9H 150 1160.68 0.00 0.13 77.95 0.00 0.00 219.60 1160.68 0.00 0.10 186.17
CMT9Q 150 1161.24 0.00 0.04 80.64 0.00 0.01 207.60 1161.24 0.00 0.27 182.04
CMT9T 150 1162.55 0.00 0.16 83.29 0.00 0.00 220.80 1162.55 0.00 0.40 166.36
CMT10H 199 1372.47 0.00 0.35 550.45 0.00 0.66 393.60 1372.20 -0.02 0.79 265.66
CMT10Q 199 1374.18 0.00 0.38 537.66 0.00 0.31 474.60 1374.18 0.00 0.81 315.90
CMT10T 199 1381.04 0.00 0.52 501.65 0.00 0.71 329.40 1381.04 0.00 0.90 258.24

Avg. 0.00 0.09 178.13 0.00 0.06 147.79 0.00 0.18 117.27

Processor type i7 Opteron 250 i5-6600
Processor speed 2.93 GHz 2.40 GHz 3.30 GHz
Passmark score 1297 649 2098
tc(s) 110.12 � 10 45.72 � 10 117.27 � 10

Table B.6.: Detailed results of ALNS-PR in comparison to SUO and VCGP on the VRPMDP benchmark
Salhi-VRPMDP.
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature

BKS WMZS ALNS-PR

Inst. n m f ∆m fb ∆b(%) t(s) ∆m fb ∆b(%) ta(s)

cdp101 100 11 992.88 0 992.88 0.00 36 0 976.04 -1.70 19.30
cdp102 100 10 955.31 0 955.31 0.00 38 0 941.49 -1.45 28.11
cdp103 100 10 897.65 0 958.66 6.80 34 0 892.98 -0.52 48.03
cdp104 100 10 878.93 0 944.73 7.49 35 0 871.40 -0.86 46.51
cdp105 100 11 983.10 0 989.86 0.69 37 -1 1053.12 7.12 15.97
cdp106 100 11 878.29 0 878.29 0.00 37 -1 967.71 10.18 17.36
cdp107 100 11 911.90 0 911.90 0.00 41 -1 987.64 8.31 18.06
cdp108 100 10 951.24 0 1063.73 11.83 39 0 932.88 -1.93 18.22
cdp109 100 10 940.49 0 947.90 0.79 21 0 910.95 -3.14 38.45
cdp201 100 3 591.56 0 591.56 0.00 86 0 591.56 0.00 24.37
cdp202 100 3 591.56 0 591.56 0.00 91 0 591.56 0.00 46.09
cdp203 100 3 591.17 0 591.17 0.00 88 0 591.17 0.00 44.19
cdp204 100 3 590.60 0 594.07 0.59 90 0 590.60 0.00 51.76
cdp205 100 3 588.88 0 588.88 0.00 90 0 588.88 0.00 36.35
cdp206 100 3 588.49 0 588.49 0.00 88 0 588.49 0.00 36.39
cdp207 100 3 588.29 0 588.29 0.00 85 0 588.29 0.00 39.83
cdp208 100 3 588.32 0 599.32 1.87 83 0 588.32 0.00 34.47

rdp101 100 19 1653.53 0 1660.98 0.45 43 0 1650.80 -0.17 22.86
rdp102 100 17 1488.04 0 1491.75 0.25 29 0 1486.12 -0.13 20.89
rdp103 100 14 1216.16 0 1226.77 0.87 41 -1 1297.01 6.65 17.83
rdp104 100 10 1000.65 0 1000.65 0.00 45 0 984.81 -1.58 28.40
rdp105 100 14 1399.81 0 1399.81 0.00 45 0 1377.11 -1.62 17.58
rdp106 100 12 1275.69 0 1275.69 0.00 37 0 1252.03 -1.85 27.54
rdp107 100 11 1082.92 0 1082.92 0.00 35 -1 1121.86 3.60 18.79
rdp108 100 10 962.48 0 962.48 0.00 41 -1 965.54 0.32 20.60
rdp109 100 12 1160.00 0 1181.92 1.89 46 -1 1194.73 2.99 16.08
rdp110 100 11 1106.52 0 1106.52 0.00 45 -1 1148.20 3.77 19.13
rdp111 100 11 1065.27 0 1073.62 0.78 41 -1 1098.84 3.15 22.15
rdp112 100 10 966.06 0 966.06 0.00 51 -1 1010.42 4.59 28.63
rdp201 100 4 1280.44 0 1286.55 0.48 84 0 1253.23 -2.12 33.44
rdp202 100 4 1100.92 0 1150.31 4.49 123 -1 1191.70 8.25 46.71
rdp203 100 3 950.79 0 997.84 4.95 102 0 946.28 -0.47 84.91
rdp204 100 2 848.01 0 848.01 0.00 120 0 833.09 -1.76 111.52
rdp205 100 3 1046.06 0 1046.06 0.00 116 0 994.43 -4.94 80.35
rdp206 100 3 959.94 0 959.94 0.00 134 0 913.68 -4.82 89.88
rdp207 100 2 899.82 0 899.82 0.00 85 0 890.61 -1.02 82.51
rdp208 100 2 739.06 0 739.06 0.00 127 0 726.82 -1.66 100.25
rdp209 100 3 930.26 0 947.80 1.89 111 0 909.16 -2.27 86.59
rdp210 100 3 983.75 0 1005.11 2.17 164 0 939.37 -4.51 82.84
rdp211 100 3 812.44 0 812.44 0.00 98 -1 904.44 11.32 85.87

rcdp101 100 15 1652.90 0 1659.59 0.40 47 -1 1776.58 7.48 10.59
rcdp102 100 13 1522.76 0 1522.76 0.00 41 -1 1583.62 4.00 19.19
rcdp103 100 11 1344.62 0 1344.62 0.00 45 0 1283.52 -4.54 29.08
rcdp104 100 10 1268.43 0 1268.43 0.00 47 0 1171.65 -7.63 22.57
rcdp105 100 14 1581.26 0 1581.54 0.02 46 0 1548.96 -2.04 16.95
rcdp106 100 13 1418.16 0 1418.16 0.00 41 -1 1392.47 -1.81 20.47
rcdp107 100 11 1360.17 0 1360.17 0.00 35 0 1255.06 -7.73 21.22
rcdp108 100 11 1169.57 0 1169.57 0.00 38 -1 1198.36 2.46 19.52
rcdp201 100 4 1513.72 0 1513.72 0.00 64 0 1406.94 -7.05 26.68
rcdp202 100 4 1211.12 0 1273.26 5.13 72 -1 1414.55 16.80 39.94
rcdp203 100 3 1123.58 0 1123.58 0.00 78 0 1050.64 -6.49 83.95
rcdp204 100 3 822.02 0 897.14 9.14 80 0 798.46 -2.87 94.85
rcdp205 100 4 1371.08 0 1371.08 0.00 62 0 1297.65 -5.36 33.58
rcdp206 100 3 1166.88 0 1166.88 0.00 66 0 1146.32 -1.76 59.36
rcdp207 100 3 1089.85 0 1089.85 0.00 75 0 1061.84 -2.57 79.06
rcdp208 100 3 862.89 0 862.89 0.00 73 0 828.14 -4.03 72.78

Avg. 1.12 65.93 -2.32 42.12
°

0 -17

Processor type 2 x Xeon E5-2650 i5-6600
Processor speed 2.00 GHz 3.30 GHz
Passmark score 1910 (15283/8) 2098
tc(s) 60.02 � 66 � ? 42.12 � 10

Table B.7.: Detailed results of ALNS-PR in comparison to WMZS and the previous BKS on the VRPSPDTW
benchmark Wang-Medium.
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature

WMZS ALNS-PR

Inst. n m fb t(s) m ∆m fb ∆b(%) ta(s)

C1_2_1 200 21 3169.52 62 20 -1 2846.20 -10.20 55.54
C1_4_1 400 42 8135.35 147 40 -2 7533.03 -7.40 220.13
C1_6_1 600 69 19720.65 257 63 -6 15594.21 -20.92 765.79
C1_8_1 800 88 32801.92 1054 82 -6 27035.71 -17.58 1495.17
C1_10_1 1000 110 52328.78 2418 102 -8 44764.64 -14.46 2253.40
C2_2_1 200 6 1972.97 112 6 0 1931.44 -2.10 194.73
C2_4_1 400 14 5085.08 279 12 -2 4144.84 -18.49 776.51
C2_6_1 600 20 9509.15 926 18 -2 7830.16 -17.66 1652.55
C2_8_1 800 27 14573.93 3636 24 -3 11759.05 -19.31 3022.47
C2_10_1 1000 33 23981.11 6529 30 -3 17088.50 -28.74 5009.45

R1_2_1 200 22 5083.39 89 20 -2 4849.80 -4.60 113.46
R1_4_1 400 42 12202.62 237 40 -2 10671.70 -12.55 537.22
R1_6_1 600 62 25729.28 581 59 -3 22306.17 -13.30 1211.12
R1_8_1 800 93 51949.49 1869 80 -13 39348.17 -24.26 3082.84
R1_10_1 1000 115 77993.35 4539 100 -15 58912.62 -24.46 4651.74
R2_2_1 200 5 4372.17 295 5 0 4042.67 -7.54 186.02
R2_4_1 400 9 14119.64 735 9 0 8952.24 -36.60 506.62
R2_6_1 600 13 27294.11 2439 13 0 17459.41 -36.03 1558.88
R2_8_1 800 19 48611.60 7663 18 -1 27270.04 -43.90 3429.95
R2_10_1 1000 22 67441.51 21379 22 0 42117.48 -37.55 5604.70

RC1_2_1 200 20 3865.18 81 19 -1 3652.18 -5.51 77.05
RC1_4_1 400 40 10036.82 193 38 -2 9772.56 -2.63 401.10
RC1_6_1 600 60 20535.26 733 57 -3 19679.75 -4.17 946.06
RC1_8_1 800 88 32801.92 1620 75 -13 38431.09 17.16 2234.79
RC1_10_1 1000 102 66883.49 3483 93 -9 63953.66 -4.38 4325.54
RC2_2_1 200 4 2662.75 216 4 0 2021.49 -24.08 338.41
RC2_4_1 400 13 7229.22 791 12 -1 6621.94 -8.40 681.44
RC2_6_1 600 20 22837.36 2860 16 -4 12693.19 -44.42 2607.91
RC2_8_1 800 22* 39375.78* 6026 60 38 26652.10 -32.31 2827.44
RC2_10_1 1000 29* 61473.68* 13793 75 46 40643.56 -33.88 6460.91

Avg. 2834.73 -16.93 1907.63
°

-102

Processor type 2 � Xeon E5-2650 i5-6600
Processor speed 2.00 GHz 3.30 GHz
Passmark score 1910 (15283/8) 2098
tc(s) 2580.71 � 66 � ? 1907.63 � 10

Table B.8.: Detailed results of ALNS-PR in comparison to WMZS on the VRPSPDTW benchmark Wang-
Large.
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature

P ALNS-PR

Inst. n BKS ∆b(%) tab(s) nd fb ∆b(%) ta(s)

SCA3-0 50 635.62 0.00 8.59 2 629.84 -0.91 27.31
SCA3-1 50 697.84 0.00 8.07 0 697.84 0.00 56.29
SCA3-2 50 659.34 0.00 12.33 0 659.34 0.00 40.64
SCA3-3 50 680.04 0.00 9.36 0 680.04 0.00 38.88
SCA3-4 50 690.50 0.00 7.14 0 690.50 0.00 27.37
SCA3-5 50 659.90 0.00 9.69 0 659.90 0.00 31.04
SCA3-6 50 651.09 0.00 7.21 0 651.09 0.00 32.71
SCA3-7 50 659.17 0.00 9.33 0 659.17 0.00 32.12
SCA3-8 50 719.47 0.00 8.93 0 719.47 0.00 26.19
SCA3-9 50 681.00 0.00 9.63 0 681.00 0.00 28.49
SCA8-0 50 961.50 0.00 9.38 0 961.50 0.00 18.18
SCA8-1 50 1049.65 0.00 9.44 0 1049.65 0.00 17.66
SCA8-2 50 1039.64 0.00 11.62 0 1039.64 0.00 19.82
SCA8-3 50 979.13 0.00 52.08 1 979.13 0.00 16.92
SCA8-4 50 1065.49 0.00 10.20 0 1065.49 0.00 18.67
SCA8-5 50 1027.08 0.00 13.02 1 1022.02 -0.49 15.31
SCA8-6 50 969.50 0.00 69.31 1 969.50 0.00 17.59
SCA8-7 50 1051.28 0.00 17.58 3 1047.78 -0.33 17.85
SCA8-8 50 1071.18 0.00 12.71 0 1071.18 0.00 17.31
SCA8-9 50 1057.26 0.00 100.79 1 1057.26 0.00 13.91

CON3-0 50 616.52 0.00 9.18 0 616.52 0.00 48.67
CON3-1 50 554.47 0.00 6.01 0 554.47 0.00 40.44
CON3-2 50 518.00 0.00 14.50 0 518.00 0.00 64.45
CON3-3 50 591.19 0.00 11.04 0 591.19 0.00 57.85
CON3-4 50 588.79 0.00 4.37 0 588.79 0.00 53.80
CON3-5 50 563.70 0.00 9.26 0 563.70 0.00 60.18
CON3-6 50 499.05 0.00 13.15 1 498.55 -0.10 62.10
CON3-7 50 576.48 0.00 8.43 0 576.48 0.00 47.41
CON3-8 50 523.05 0.00 6.61 1 521.71 -0.26 59.11
CON3-9 50 578.25 0.00 9.12 0 578.25 0.00 57.71
CON8-0 50 857.12 0.00 96.91 1 857.12 0.00 31.63
CON8-1 50 739.44 0.00 110.83 1 739.44 0.00 24.77
CON8-2 50 706.51 0.00 52.36 1 706.51 0.00 28.29
CON8-3 50 811.07 0.00 10.82 1 808.66 -0.30 39.34
CON8-4 50 771.30 0.00 40.25 1 771.30 0.00 26.86
CON8-5 50 754.88 0.00 7.81 0 754.88 0.00 31.99
CON8-6 50 678.92 0.00 6.10 0 678.92 0.00 29.12
CON8-7 50 811.96 0.00 11.40 0 811.96 0.00 31.33
CON8-8 50 766.99 0.00 31.09 1 766.99 0.00 29.68
CON8-9 50 797.69 0.00 102.94 6 796.40 -0.16 53.76

Avg. 0.00 23.96 -0.06 34.82
°

23

Processor type Xeon E5420 i5-6600
Processor speed 2.50 GHz 3.30 GHz
Passmark score 1073 2098
tc(s) 12.25 � 6 � 10 34.82 � 10

Table B.10.: Detailed results of ALNS-PR in comparsion to P on the VRPDDP benchmark Polat-VRPDDP1.
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P ALNS-PR

Inst. n BKS ∆b(%) tab(s) nd fb ∆b(%) ta(s)

r101 100 1009.95 0.00 67.04 0 1009.95 0.00 122.14
r201 100 666.20 0.00 59.58 0 666.20 0.00 321.07
c101 100 1220.18 0.00 26.42 0 1220.99 0.07 132.86
c201 100 662.07 0.00 30.78 0 662.07 0.00 148.76
rc101 100 1058.94 0.00 33.39 2 1057.40 -0.15 126.81
rc201 100 672.92 0.00 32.62 0 672.92 0.00 211.76
R1_2_1 200 3353.80 0.04 1780.00 5 3340.19 -0.41 523.52
R2_2_1 200 1665.58 0.00 1401.84 0 1665.58 0.00 1248.30
C1_2_1 200 3628.51 0.04 4082.55 0 3632.31 0.10 410.28
C2_2_1 200 1726.59 0.00 1123.42 0 1726.59 0.00 1114.79
RC1_2_1 200 3303.70 0.04 2168.18 5 3304.81 0.03 457.95
RC2_2_1 200 1560.00 0.00 1074.29 0 1560.00 0.00 1635.74

Avg. 0.01 990.01 -0.03 537.83
°

12

Processor type Xeon E5420 i5-6600
Processor speed 2.50 GHz 3.30 GHz
Passmark score 1073 2098
tc(s) 506.33 � 6 � 10 537.83 � 10

Table B.11.: Detailed results of ALNS-PR in comparison to P on the VRPDDP benchmark Polat-VRPDDP2.
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature
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B Detailed Results on the Benchmark Instances for the VRPSPD Variants from the Literature
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