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Chapter 1

Introduction

1.1 Magnetoelastic coupling: an overview

Nowadays, nearly all modern shops use special tags fixed on merchandise to prevent
shoplifting. A common type of these tags are the so-called acoustomagnetic or mag-
netostrictive tags that are often used in clothes shops and cause, if active, a penetrant,
periodic sound produced by the detectors at the exit of the shop. These tags take advan-
tage of the magnetoelastic coupling, an effect that makes it possible for them to convert
magnetic energy into mechanical energy. They usually consist of a thin, magnetostrictive
amorphous metal strip that reacts to an external magnetic field in form of vibrations and of
a semi-hard magnet strip that works as a biasing magnet in order to increase the strength
of the produced signal and to activate or deactivate the tag [65] (see Figure 1.1). The
magnetic signal emitted by the detectors meets the resonance frequency of the amorphous
metal strip in the tag and causes a vibration of the strip, which in turn involves a change
of its magnetization. The detectors, on the other hand, react to this change with an AC
voltage, which finally activates the alarm.

This prominent example shows one of the numerous applications of magnetostrictive
materials and the magnetoelastic coupling. Magnetostrictive materials belong to the class
of smart materials that experience a change in their shape, dimensions, stiffness or vis-
cosity due to the influence of an external field, such as a temperature or pressure field, an
electric field or, as in the case of magnetostrictive materials, the magnetic field. The term
“smartness” may refer to different characteristics like self-adaptibility, self-sensing, mem-
ory and multiple functionalities [77]. Among prominent smart materials are piezoelectric

Figure 1.1: Cut-away view of a typical acousto-magnetic tag
(distributed under a CC0 1.0 license).
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Material ∆l/l0 [10−6] T [°C] E [GPa] ρ [g/cm3]

Fe -14 770 285 7.88
Ni -50 358 210 8.9
Co -93 1120 210 8.9
Tb 3000 (-196°C) -48 55.7 8.33
Dy 6000 (-196°C) -184 61.4 8.56

TbFe2 1753 424 9.06
Terfenol-D 1620 380 25-35 9.25

SmFe2 -1560 403 8.53
Samfenol-D -1125

CoFe2O4 (single-crystal) 600-900 520 141.6
CoFe2O4 (polycrystalline) 230 520 141.6

Metglass 2605SC 60 370 25-200 7.32

Table 1.1: Common magnetostrictive materials and their characteristic properties (after
[46, 108]).

materials that induce a voltage due to an elastic deformation (applied e.g. in headphones
or speakers), photo- or thermochrome materials, that change their colors due to temper-
ature or ultraviolet light (used in sunglasses or thermometers with colored scale), shape
memory alloys, which “remember” their original shape after the deformation (applied in
modern medicine) and piezomagnetic materials, which generate a magnetic field in conse-
quence of an applied mechanical field.
Magnetostrictive materials react to a magnetic field with a change in their dimensions,
which is sometimes referred to as magnetostriction, and vice versa. Magnetostriction can
be detected in most ferromagnetic materials like iron, cobalt and nickel, as long as they
are affected by a sufficiently strong magnetic field. The magnetostriction they experience
is measurable, yet of rather small magnitude. However, it can be increased by alloying
different materials. Certain alloys such as Terfenol-D, a terbium-disposium-iron-mix (de-
noted by TbxDy1−xFe2) developed in the 1980s under a program funded by the U.S. Navy,
can exhibit several thousand times greater magnitudes and are thus called giant magne-
tostrictive materials [41, 56]. Another common magnetostrictive material is Metglass, an
amorphous metallic glass developed by the companies AlliedSignal from New Jersey and
Vakuumschmelze in Hanau. In contrast to common metals, it has a non-crystalline struc-
ture and combines unique physical and magnetic properties. Its effective Young’s modulus
(characterizing the stiffness of the material), for example, can be considerably reduced due
to magnetization, a phenomenon characterized as the so-called ∆E-effect, which will be
described in the next subsection.
Table 1.1 provides some typical values of properties like magnetostriction (measured as
the ratio of change in length ∆l and the initial length l0 of the specimen), temperature
T , elastic modulus E and density ρ of the most common magnetostrictive materials. Al-
though the experienced strains merely reach values of up to 0.1%, they are sufficient to
be applied as oscillators in sonar systems, as energy converters or, for example, as actors
that transfer electric signals to mechanical motion. Potential applications also include
vibration control and hydraulics. Moreover, magnetostrictive materials come into opera-
tion as variable-stiffness-devices, transducers (see Figure 1.2) and high-strain-actuators in
mechanical systems, as artificial muscles as well as sensors and actuators in robotics. The
magnetostrictive effect is also responsible for the “electric hum”, the special noise that can
be heard in the vicinity of high-power electrical devices and machines such as transform-
ers. A thorough discussion of industrial applications can be found e.g. in Farshad and Le
Roux [57] or Jolly et al. [74].
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Figure 1.2: Sketch of a transducer with a magnetostrictive core surrounded by a magnetizing coil
and magnetic enclosure (distributed under a CC0 1.0 license).

In the following sections, we will give a brief overview of the different types of magnetism,
as well as a discussion of the cause and effect of magnetostriction and magnetomechanical
coupling.

1.1.1 Classes of magnetic materials

In this section, we characterize and classify the magnetic properties of different materials.
While describing the different magnetic phenomena, we will use notions and terms such
as magnetization, magnetic susceptibility, current and magnetic field without a detailed
explanation of what they represent in the context of electromagnetic theory. An elaborate
characterization of most notions that are of importance within the scope of the thesis will
be given in Chapter 2, while a few concepts will only be mentioned with a reference to
suitable literature.
The magnetic properties of materials are strongly influenced by their crystalline structure
and microstructure [82]. Depending on how materials respond to a magnetic field, they
can be classified into five groups: diamagnets, paramagnets, ferromagnets, ferrimagnets
and antiferromagnets.
Although rather weak in its nature, the property of diamagnetism can be ascribed to all
materials. In contrast to paramagnetic or ferromagnetic materials, diamagnets are re-
pelled rather than attracted by an externally applied magnetic field. Their characteristics
are a negative magnetization (as long as the applied magnetic field is non-zero) and a
negative magnetic susceptibility. This class of materials includes, among others, copper,
gold, silver, quartz and water.
Paramagnetic materials have the interesting property that, in the presence of an external
magnetic field, their atomic magnetic moments are partially aligned in the direction of the
field, which implies a positive value of susceptibility and magnetization. Iron-bearing ma-
terials like aluminium, titanium, iron oxyde, as well as magnesium, calcium and platinum
belong to the paramagnetic class. In contrast to ferromagnetic materials, paramagnets
have a zero magnetization in the absence of an external magnetic field.

In ferromagnetic materials, the magnetic moments show a parallel alignment and thus
have a great magnitude of magnetization, even when the external magnetic field is re-
moved. Only few materials occuring in the nature are ferromagnetic, among which are
iron, nickel, cobalt, as well as most of their alloys. Ferromagnetic materials and their al-
loys are widely used in industrial and technical applications and are essential components
of electromagnetic and electromechanical devices. Most of the typical permanent magnets
we use in our everyday life are ferromagnets or ferrimagnets [62]. An important property
of ferromagnetic materials is their hysteresis behavior, the ability to retain a “memory”
of the external magnetic field, even after it is removed. Figure 1.3 shows an example
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Figure 1.3: Magnetic hysteresis loop (after [62]).

of a hysteresis loop of a ferromagnetic material, a plot of the magnetic flux density B
over the magnetic field H. Starting from point a, the magnetic field is increased, which
results in an increase of the magnetic flux density until it reaches the so-called saturation
point b. Now, all magnetic dipoles are aligned and a further increase of the magnetic field
would not affect the flux density any more. Reducing the magnetic field, we would expect
to follow the same trace back until the flux density reaches the value zero. Instead, the
flux density (and thus the magnetization) decreases only up to a certain point, leaving a
residual value when the magnetic field is zero (point c). At this point, we can only get
rid of the remaining magnetization through a negative value of H (i.e. the magnetic field
has to change its direction). As the negative field increases, the flux density tends to zero
(point d) and reaches its (negative) saturation point e. Note that, although the magnetic
field is zero in the points a, c and f , the flux density takes different values. Thus, we can
conclude that the magnetic flux density and the magnetization of the material depend on
the applied field as well as on the “magnetic history” [62].
Ferrimagnetic and antiferromagnetic materials are related to each other in that both
material types exhibit an anti-parallel alignment of the magnetic moments. These oppos-
ing moments are however not equal in ferrimagnetic materials and they retain a certain
amount of spontaneous magnetization, a magnetization on the microscopic scale which has
a magnitude that is independent of position but a direction that varies in different points
of the structure [25]. Moreover, a certain analogy with ferromagnets has been observed.
For a detailed description of the similarities and differences of these material classes, re-
fer to [82] and [103]. Common ferrimagnetic materials are ferrits, while antiferomagnetic
properties were detected in some salts of metals such as manganoxide. The giant mag-
netostrictive material Terfenol-D mentioned in the previous section is also classified into
the group of ferrimagnets. Figure 1.4 depicts the orientations of the magnetic moments of
different classes of materials.

1.1.2 The magnetostrictive effect

Having been introduced to the different classes of magnetic materials, we now want to
throw a glance to coupling effects that can be observed in some of them.
The first insight into the coupling that occurs between the magnetic and mechanical fields

12



a) paramagnetism b) ferromagnetism

c) antiferromagnetism d) ferrimagnetism

Figure 1.4: Magnetic moments of paramagnetic, ferromagnetic, antiferromagnetic and
ferrimagnetic materials (after [82]).

was gained from James Joule’s observations in 1842 [75]. Joule found out that a sample
of iron experienced a change of length under the influence of a magnetic field. This effect,
which is also called Joule magnetostriction, is volume-preserving and occurs in all ferro-
and ferrimagnetic materials. As explained in the previous section, a parallel alignment of
the magnetic moments of these materials can be observed. Their crystalline structure is
divided into regions of uniform magnetization, called domains, which experience a rotation
and migration of domain walls once an external magnetic field is applied to the material
(see Figure 1.5). This is due to the property of the anisotropic crystalline material to
minimize its free energy by changing its structure in such a way that the magnetic domains
are aligned in the direction of the magnetic field. The deformation that arises from the
Joule magnetostriction is independent of the sign (the direction) of the magnetic field.
When a magnetic field is acting on magnetic matter, the sample is magnetized. The Villari
effect [111] or inverse magnetostriction describes the change of this magnetization as a
result of a mechanical stress that is imposed on the sample. This reversible effect is mostly
used in sonar applications [89].
The change of the material’s modulus of elasticity (Young’s modulus) is characterized by
the ∆E-effect. This effect is particularly present in giant magnetostrictive materials such
as Terfenol-D or Metglass and is utilized e.g. in broadband sonar systems [45].
The Wiedemann effect is comparable to the Joule effect but related to the appearance
of shear strain (rather than tensile or compressive strain) under magnetic influence. The
inverse Wiedemann effect or Mateucci effect, on the other hand, occurs e.g. in amorphous
wires with a helical domain structure resulting from twisting the wire, which induces a
change in its magnetization.
The Joule effect and the Villari effect are the most widely used magnetostrictive effects.
The above phenomena and other typical phenomena linked to the magnetostrictive effect
are described in detail in [19] or [89].

1.1.3 Magnetostrictive vs. piezomagnetic materials

The magnetomechanical coupling effects that can be observed in piezomagnetic and mag-
netostrictive materials have certain parallels. Yet, there is a fundamental difference be-
tween them: While the piezomagnetic effect refers to the magnetic field arising in the
matter from an applied deformation, the inverse magnetostrictive effect cannot generate

13



∆l

H = 0

H

Figure 1.5: Sketch of the rotation of magnetic domains (represented by magnetic dipoles) in
direction of the magnetic field H

.

a magnetic field purely from applying mechanical stress - it merely characterizes a change
in the magnetization of the material. Moreover, the relationship between the magnetic in-
fluence and the induced strain is linear in piezomagnetic materials, while magnetostrictive
materials in general show a non-linear behavior. Piezomagnetism is a rather rare effect
that only occurs in centro-symmetric crystals [112] with certain crystallographic and mag-
netic symmetry relations (see also Chapter 3).
However, in most applications, magnetostrictive materials are biased : A magnetic bias
is applied in form of a magnetic field that magnetizes the material [5, 40], and a me-
chanical bias is used in form of a (compressive) pre-stress. The benefit of biasing is the
characterization of the behavior of the underlying magnetostrictive material by the lin-
ear piezomagnetic coupling equations, which are in analogy with the linear relations of
piezoelectricity. This procedure is very common in literature linked with the modeling of
magnetoelastic coupling phenomena, see e.g. [56, 70] and will be discussed in detail in the
Chapters 3 and 4.

1.2 Current state of research

Due to their distinctive features such as high controllability, self-sensing and self-adaptabi-
lity, magnetostrictive materials have attracted considerable interest in the recent years,
see e.g. the works of Dorfmann et al. [49, 50, 51], Kankanala and Tryantifyllidis [78] and
Steigmann [104].
The theoretical background for the magnetoelastic coupling provide, among others, Brown
[25], Hutter and van den Veen [69], Pao [90], as well as Truesdell and Toupin [109].
Kankanala and Tryantifyllidis [78] classified the modeling approaches used in literature
into two categories: While models based on the so-called “direct” method use conserva-
tion laws of continuum mechanics [83, 90, 106, 109], models based on the “energy method”
aim at the minimization of a suitable (potential) energy function [25, 83, 107]. Those using
a direct approach are based on the Eulerian description referring to the current config-
uration, whereas energy formulations exploit the Lagrangian formalism related to the
reference configuration (the latter ansatz is also used for the derivation of the equations
of motion of (linear) elasticity, presented in Section 2.1). Kankanala and Tryantifyllidis
[78] use both approaches to derive constitutive equations for magnetoelastic coupling and
show that they lead to the same results.
More recent models also include micromechanical approaches that establish a link between
the material’s microstructure and its effective macroscopic properties (see e.g. [13]). Mi-
cromechanical models of magnetostrictive materials are usually based on the approach of
Jiles and Atherton [72, 73] that focuses on modeling the migration process of the mag-
netic domain walls. Such models on the micro-scale are in general able to give a precise
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prediction of the material behavior but have the big drawback of involving high numerical
computation costs [82]. Models like the Preisach approach [94] operate on the macro scale
and are thus more efficient. This approach can be modified to incorporate different types
of magnetic hysteresis behavior, see e.g. [1, 105].
Another modeling technique is based on thermodynamical principles, describing the be-
havior of the material by a suitable free-energy function depending on the magnetization
and the strain [114, 116, 117]. These models capture the hysteresis behavior of the mate-
rial by splitting the independent variables into reversible and irreversible parts, where the
irreversible parts characterize the internal state of magnetization. Linnemann [82] sets up
a constitutive model in the same manner, focusing on the splitting of the magnetic field
and mechanical strains as independent variables, thus enabling a facilitated implementa-
tion of the constitutive equations into the Finite Element formulation.
Obtaining an exact solution of the coupled magnetoelastic equations has been proven to
be rather difficult. The computation of exact solutions suggested in the publications of
Pucci and Saccomandi [96], as well as Dorfmann and Ogden [47, 48, 52, 53] relied on the
assumption of infinite geometries such as cylinders or slabs of infinite length (but finite
radius). This assumption is strongly connected with the incorporation of continuity con-
ditions on the interfaces of two different materials (such as the magnetoelastic material
and the surrounding vacuum or air region) described by Kovetz [80], for example. Thus,
finding the exact solution of coupled magnetoelastic boundary problems in finite regions
constitutes a considerable challenge, even in case of limiting to simple geometries, which
increases the need for suitable numerical methods.
For the numerical treatment of coupled piezomagnetic and magnetoelastic problems, dif-
ferent variational formulations and numerical solutions schemes have been introduced in
the recent years. Bustamante et al. [28] use a finite-difference method to solve a non-
linear magnetoelastic problem with a simple geometry, while the work of Barham et al.
[8] studies the deformation of a magnetoelastic membrane. One of the first variational
principles suggested for the magnetoelastic coupling was due to Brown [25] who used the
magnetization and the elastic deformation function as independent variables. This par-
tial variational formulation was supplemented with a third variable, the magnetic vector
potential and developed into a full variational principle by Kankanala and Tryantifyllidis
[78], whereas Steigmann [104] introduced a similar formulation based on the magnetic field
rather than the magnetization. The work of Bustamante et al. [28] focuses on a purely
phenomenological approach using the magnetic field and the magnetic induction instead of
the magnetization to develop variational principles for non-linear magnetoelasticity under
static conditions. The authors present different variational and energy formulations based
on the magnetic scalar and vector potentials. Due to the numerous analogies between the
magnetoelastic and electroelastic concepts, these formulations can be directly transferred
to the electro-elastostatic case [29]. In a recent paper, Salas and Bustamante [99] study
the influence of the magnetic field on a cylinder of finite length surrounded by free space
and present numerical simulations based on the Finite Element method, while another
publication treats a finite strain problem involving the deformation of a slab surrounded
by vacuum under the influence of a magnetic field applied far away [30].

1.3 Scope and outline of the thesis

This thesis draws attention to the mathematical aspects of the modeling of magnetoelastic
coupling. As depicted in the last section, a considerable amount of work has been done
so far to characterize magnetoelastic coupling and magnetostrictive materials, as well as
magnetosensitive and magnetorheological elastomers. Early publications mostly focus on
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deriving appropriate constitutive equations for the description of various material classes.
They utilize different approaches based on changing independent quantities, including
material properties such as non-linear and hysteresic behavior, geometric peculiarities
and micromechanical considerations. More recent works are concerned with variational
formulations and numerical solutions of different coupled magnetoelastic boundary value
problems. However, none of the works found so far in the literature deals with fundamental
aspects like the structure of the obtained coupled system of partial differential equations
and the questions of existence, uniqueness and stability of the corresponding solution.
The present thesis is therefore aimed to fill this gap and to establish ties between the
fields of mathematics and (mechanical) engineering by examining the coupled multi-field
problem within the framework of the theory and numerics of partial differential equations
and functional analysis.
On the one hand, the thesis intends to set up a basic, comprehensible and clearly-arranged
model for the linear magnetoelastic coupling in magnetostrictive materials. It offers a pro-
found analysis of the problem starting from the derivation of the coupled system using a
special case of Hamilton’s principle in analogy to the approaches of the elasticity theory.
Although this basic model requires a strongly simplified setting such as the assumptions of
linearity (considering only small strains and neglecting magnetic hysteresis) and stationar-
ity of the elastic field, it provides a thorough insight into the concept of magnetoelasticity
and gives a better understanding of the coupling. After setting the foundation, the model
can then be extended to cover more complex settings such as geometric and material
non-linearities and time-dependence of both elastic and electromagnetic fields.

On the other hand, the thesis deals with the question of how the use of different ap-
proaches in the characterization of the magnetic and elastic fields and their constitutive
equations affects the structure and solvability of the resulting problem. Making use of
two common techniques for solving Maxwell’s equations that describe the behavior of the
magnetic field, the (total) magnetic scalar potential and magnetic vector potential formu-
lations, as well as the concepts of energy and co-energy treating dualities of notions in
elasticity and electromagnetism (described e.g. by Bossavit [15, 17] and Preumont [95]),
we show that the magnetic scalar potential approach results in a coupled penalized saddle
point problem, while the vector potential approach yields a symmetric system of partial
differential equations for the magneto-quasistatic setting as well as for the full Maxwell
system in the frequency domain.
For the scalar potential setting, the existence and uniqueness of the problem can be shown
using the theory of mixed problems developed by Brezzi [24]. In particular, we prove an
inf-sup condition for the continuous and discrete problems and obtain unique solvability
as well as suitable estimates for the influence of perturbations of the given data on the
solution. In the second case, the coupled magnetostatic and magnetoquasi-static electro-
magnetic problems are treated separately, since both problems are of different nature: As
the magnetic vector potential is not unique, the coupled problems based on the vector
potential as independent variable need additional gauging. In the time-varying case, the
gauging can be directly incorporated into a system through the addition of a penalization
term, which yields the unique solvability for both strong and weak (variational) forms.
In the magnetostatic case, the uniqueness of the variational problem can be achieved by
casting the problem into a mixed setting with the help of a Lagrange multiplier. These
differences are also incorporated in the coupled case, which leads to interesting structures
of the resulting systems. After a thorough analysis of the coupled problem in various set-
tings, numerical simulations are carried out that show the mutual influence of the magnetic
and elastic fields for an Euler-Bernoulli beam and for a thin plate in the state of plane
stress. While many simulations of the magnetoelastic coupling presented in the literature
are carried out by codes like COMSOL (e.g. the works of Bustamante [99]), where pro-
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gramming steps including the definition of the geometry, the meshing, the implementation
of the finite element functions, etc. are automatized, the coupled models presented in this
thesis are implemented into the software MATLAB, which enables an active intervention
and control over each step of the numerical analysis.

The thesis consists of four main chapters. Chapter 2 provides a detailed insight into
the theories of linear elasticity and linear magnetostatics. In Section 2.1, the governing
equations of linear elasticity and their derivation based on a minimum energy principle are
presented and the equations of motion are characterized in their strong and variational
form. Moreover, appropriate function spaces for the elastic field quantities are introduced
and the existence, uniqueness and stability (influence of perturbations) of the solution to
the boundary value problem of linear elasticity is discussed.
In Section 2.2, we follow the same procedure by presenting and discussing various forms of
Maxwell’s equations, setting up electromagnetic boundary value problems in the station-
ary and time-dependent cases and considering their solvability in strong and weak forms.
Suitable potential formulation based on the magnetic scalar potential and the magnetic
vector potential are established that enable the solution of Maxwell’s equations in a more
convenient way than their original formulation in terms of the magnetic field and magnetic
flux density. As in the case of linear elasticity, appropriate function spaces are identified
that are of particular importance for the vector potential formulation, where, in contrast
to the scalar case, the governing equation is given in a “curl-curl”-form and entails a thor-
ough analysis of function properties and boundary conditions. The distinct treatment of
the static and time-varying cases for the vector potential formulation is due to the struc-
ture of the resulting system of equations: While in the magnetostatic case, the problem
is brought into a mixed form to guarantee its unique solvability, the eddy current and full
Maxwell settings in the frequency domain yield a symmetric problem.
This chapter lays the foundation for the subsequent analysis of the magnetoelastic cou-
pling carried out in Chapter 3 and Chapter 4, which offer two approaches into coupled
magnetoelasticity based on the two different potential formulations pictured in Chapter
2. Although magnetostrictive materials, which we focus on, have in general a non-linear
behavior, we can enforce linearity by assuming only small strains and neglecting magnetic
hysteresis. This simplification can be justified by using biased magnetostrictive materials,
as depicted in Section 3. The initial biased state is incorporated into the linear equations
through the constant material and coupling parameters in tensor form. On the basis of
these constitutive equations, the coupled system of partial differential equations is derived
using Hamilton’s principle. In their structure and organization, Chapters 3 and 4 are
in accordance with the introductory Chapter 2, which enables to draw direct parallels
between the coupled and uncoupled cases. However, there are significant differences be-
tween the problems derived on the basis of the two potential formulations. First of all, a
formulation relying purely on a magnetic scalar potential can only be used in current-free
regions, as an irrotational magnetic field is required to enable the existence of a magnetic
scalar potential. Second, the constitutive equations and the energy approach chosen in
Chapter 3 lead to a coupled magnetoelastic saddle point problem with a penalty term.
On the contrary, the reformulation of the coupled constitutive equations in terms of the
magnetic flux density and elastic stress rather than the magnetic field and the elastic
strain results in a symmetric coupled system of partial differential equations in Chapter 4.
The approach used for the constitutive equations thus strongly influences the structure of
the resulting problem. This phenomenon can be ascribed to the duality of formalisms in
elasticity and electromagnetic theory and the notions of energy and co-energy: While in
Chapter 3, the Lagrangian used in the variational principle is a combination of an elastic
energy and a magnetic co-energy function, whose different signs lead to a mixed problem,
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reformulating the constitutive equations results in a Lagrangian consisting of two energy
functions (having the same sign) and thus yielding a symmetric problem in Chapter 4.
This aspect can also be visualized by considering the coupled free-energy (density) func-
tion of the system. In order to reformulate the coupled free energy function in terms of the
pairing “elastic strain and magnetic flux density” instead of “elastic strain and magnetic
field”, we need a Lagrange-Fenchel transformation of the energy function, which results
in a change of signs of the different terms within the function.
Independent of the chosen formulation, the existence and uniqueness of the resulting prob-
lems can be proven by setting up an appropriate framework for the coupled problem, as
shown in Chapters 3 and 4. Corresponding numerical simulations for different 1D and 2D-
settings carried out with MATLAB can be found in Chapter 5. Finally, a brief summary
and outlook are given in Chapter 6.
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Chapter 2

Fundamentals

This chapter gives a thorough insight into the theories of linear elasticity and electrody-
namics and lays the foundations for the analysis of the coupled magnetoelastic models
presented in Chapters 3 and 4.
In the course of this chapter, as well as in all following chapters, we will use a bold notation
to refer to vector-valued or tensor-valued quantities and a non-bold notation for scalars.

2.1 Linear elasticity

In this section, we briefly outline the basic concepts and notions of linear elasticity, in-
cluding elastic material laws, the equations of motion in strong and weak forms, as well
as their derivation based on Hamilton’s principle, following Atkinson and Han [4] and
Simeon [102]. Appropriate function spaces are presented and the existence, uniqueness
and continuous dependence of the solution to a linear elastic boundary value problem on
the given data are discussed.

2.1.1 General framework

Consider an elastic body subjected to volume forces such as gravitation and surface trac-
tions such as tensile or compressive forces. Assuming that the body undergoes only small
strains and deformations, the setting can be described by a linear elastic boundary value
problem. In order to set up and examine such a boundary value problem, we need to
define the quantities that describe the mechanical behavior and the deformation of the
material in the first instance.
Let Ω be an open, connected and bounded subset of R3, i.e. a bounded domain in R3. We
assume that Ω has a connected Lipschitz boundary ∂Ω with an outer unit normal vector
n ∈ R3.
Moreover, let ∂Ω = ΓD ∪ ΓN be a non-overlapping decomposition of the boundary, i.e.
ΓD ∩ΓN = ∅ with open, connected subsets ΓD and ΓN . On the Dirichlet boundary ΓD, we
prescribe the motion, while on the Neumann boundary ΓN we specify the surface traction.
Let T denote a time interval. Due to the impact of external forces on the material, the
body undergoes a deformation characterized by the time-dependent displacement field

u ∶ Ω × T → R3, u(x, t) = (u1(x, t), u2(x, t), u3(x, t))T .

As a result, every point x ∈ Ω in the undeformed body (the so-called reference configu-
ration) moves to the position x + u(x, t) (see Figure 2.1). Note that we assume an or-
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Figure 2.1: Sketch of the body in the deformed and reference configurations.

thonormal reference frame that does not change in time. The deformation F ∶ Ω→ R3 ×T
then assigns to each material point x ∈ Ω in the reference configuration its deformed state
F (x, t) at time t. In terms of u, the deformation F can be expressed as

F (x, t) = x +u(x, t).

We assume that the deformation is orientations-preserving, i.e.

det∇F > 0.

The gradient ∇F with respect to the space variable x is the 3×3-Jacobian of the function
F , defined as

∇F (x, t) ..= (∂Fi(x, t)
∂xj

)
i,j=1,2,3

.

Using the displacement field u, we can express the Dirichlet boundary condition as

u(x, t) = u0(x, t) on ΓD, (2.1)

where u0 is a given function that characterizes the displacement on the boundary segment
ΓD. Another deformation measure is the strain, given e.g. by the second order Green
Lagrange strain tensor (neglecting the arguments x and t).

E = 1

2
(∇u +∇uT +∇uTu).

In terms of the deformation F , the tensor E can be expressed as

E = 1

2
(∇F T∇F − I),

where ∇F T∇F is the right Cauchy-Green deformation tensor and I is the identity tensor.
Note that ∇F alone is not suitable as a strain measure since in contrast to the Green-
Lagrange tensor, it is not invariant under translations and rotations. As the name suggests,
the Green-Lagrange strain tensor is based on the Lagrangian description referring to the
coordinates of the undeformed body, which is more suitable for expressing constitutive
relations than the Eulerian description. The corresponding linearized strain tensor is a
symmetric tensor denoted by ε ∈ R3×3,

ε(u) = 1

2
(∇u +∇uT ). (2.2)
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Figure 2.2: Components of the Cauchy stress tensor acting on a cubic element.

To describe the behavior of the material, we need a constitutive relation, a material law
linking two specific material quantities. The linear elastic constitutive law relates the
strain ε with the mechanical stress σ, describing the pressure that arises from inner forces
on the surface of an infinitesimal volume element in the deformed state of the body.
Like the strain, the stress σ is a symmetric tensor (proven, along with the existence and
uniqueness of the tensor, by Cauchy (e.g. in [35]), which is the reason why σ is often
called the Cauchy stress tensor) having the form

σ =
⎛
⎜
⎝

σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

⎞
⎟
⎠
.

The Cauchy stress tensor is used for stress analysis of materials undergoing small de-
formations and thus having a uniform stress distribution. For large deformations, other
measures of stress such as the Piola-Kirchhoff stress tensor [18] are useful. Figure 2.2
illustrates the stress tensor on a cubic element. The normal stresses σ1, σ2, σ3 are defined
to be positive for tensile stress and negative for compressive stress. The first subscript of
the shear stresses σij (often denoted by τij) i ≠ j, characterizes the direction of the normal
to the surface where the stress acts, while the second subscript specifies the direction of
the stress. The sign convention of shear stresses is displayed in Figure 2.3. Due to its
reference to the deformed system, the Cauchy stress tensor is sometimes also called a true
stress tensor.
Strains are regarded to be positive (negative) if they are caused by positive (negative)
stresses. There are two types of notations for the components of the strain tensor, the
notation using the engineering shear strains γij and the tensor shear strain notation εij ,
which are linked by the relation

γij = 2εij , i ≠ j.

Referring to an originally square element, engineering shear strain induces a rotation of the
element in addition to the deformation, whereas the tensor shear strain merely represents
extension and distortion of angles. The material’s response to external forces is described
by Hooke’s law

σ(u) = C ∶ ε(u), (2.3)

a linear constitutive relation between stress and strain. Here, C ∈ R3×3×3×3 is the so-called
mechanical stiffness tensor, a constant material tensor of order four. Note that the double
dot notation (∶) is used to describe the double inner product of tensors. In componentwise
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Figure 2.3: Sign convention for shear stresses.

notation, Hooke’s law (2.3) reads

σij =
3

∑
k,l=1

Cijklεkl for i, j = 1, ..,3. (2.4)

The fourth order tensor C has in general 36 components. Using the symmetries of the
stress and strain tensors, as well as examining the characteristics of the strain energy,
however, one can show that C is symmetric [4], i.e.

Cijkl = Cjikl = Cklij = Cijlk. (2.5)

Furthermore, we can assume that C is bounded,

Cijkl ∈ L∞(Ω) for all i, j, k, l ∈ {1, ..,3}, (2.6)

and pointwise stable [4, 97], i.e.

ε ∶ C ∶ ε ≥ α∣ε∣2, (2.7)

where α > 0 is a constant and ∣ ⋅ ∣ denotes the matrix norm

∣ε∣2 =
3

∑
i,j=1

εijεij .

The property of pointwise stability of tensors corresponds to the positive definiteness of
matrices. Note that for two second order tensors, calculating the double inner product
corresponds to computing the trace of their product.
Exploiting the symmetries of C, σ and ε, it is possible to rewrite the constitutive relation
(2.4) in a more compact form in terms of vectors and matrices. Following the scheme

Tensor-subscription 11 22 33 23 or 32 13 or 31 12 or 21
Matrix-subscription 1 2 3 4 5 6,

the elasticity tensor turns into a matrix C ∈ R6×6. Using the Voigt notation [113], the
stress and strain tensors are represented as vectors,

σ ..= (σ1, σ2, σ3, σ4, σ5, σ6)T = (σ11, σ22, σ33, τ23, τ31, τ12)T, (2.8)

ε ..= (ε1, ε2, ε3, ε4, ε5, ε6)T = (ε11, ε22, ε33, γ23, γ31, γ12)T. (2.9)

In this chapter, we will retain the tensorial notation of σ and ε, especially for the deriva-
tion of the equations of motion. The vector notation will come into play in Chapters 3
and 4 within the context of the coupling of the elastic and magnetic fields. To avoid the
introduction of additional variables, we will use the same notations for the vector and ma-
trix forms of stress and strain, as well as for the matrix and tensor forms of the elasticity
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matrix.
For general anisotropic materials having no material symmetry planes, C has 21 indepen-
dent material constants. This number can be reduced for material classes having certain
symmetry properties, such as orthotropic, transversely isotropic or isotropic materials [18].
In the most simple, homogeneous and isotropic case, the matrix C has the form

C = E

(1 + ν)(1 − 2ν)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 (1 − 2ν)/2 0 0
0 0 0 0 (1 − 2ν)/2 0
0 0 0 0 0 (1 − 2ν)/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.10)

with 2 independent material constants, Young’s modulus E and Poisson’s ratio ν. Isotropic
materials have the same material properties in all axial directions. Transversely isotropic
materials, in contrast, have the same material properties in a symmetry plane (isotropy
plane) and different properties in the direction perpendicular (transverse) to it. Their
elasticity matrix has the same structure as the matrix above, however, it has 5 indepen-
dent material constants depending on the axial directions (see Chapter 3). The isotropic
material constants E and ν can be expressed using the Lamé moduli λ̂ and µ̂ (e.g. in [4]),

ν = λ̂

2(λ̂ + µ̂)
, E = µ̂(3λ̂ + 2µ̂)

λ̂ + µ̂
,

and the linear elastic isotropic Hooke’s law then reads [34]

σ = λ̂(trace ε)I + 2µ̂ε.

In the next section, we will use the quantities introduced here to set up an energy principle
and derive the strong and weak (variational) formulations of the linear elastic boundary
value problem.

2.1.2 Derivation of the elastic boundary value problem

We aim at deriving a boundary value problem by using Hamilton’s principle, a principle
of least action requiring the motion of a conservative system to be such that the integral

I =
t1

∫
t0

(T −U)dt (2.11)

is stationary [9], where T now denotes the kinetic energy and U the potential energy of
the system. The equations of motion can be deduced from this principle as necessary
conditions. In his original work [63], Hamilton formulated the principle in an equivalent
form, stating that in a conservative system, the actual motion is conform to the equation

t1

∫
t0

δ(T −U)dt = 0, (2.12)

for all admissible motions, i.e. the variation of expression (2.11) vanishes. If a displacement
field u satisfies the requirement (2.12), then its perturbation u+ θv with the variation θv
for θ ∈ R satisfies Equation (2.12) as well. Furthermore, we require that u − θv fulfills the
Dirichlet boundary condition (2.1), implying that

v(x, t) = 0 ∀x ∈ ΓD, (2.13)
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for admissible functions v = v(x, t) at any fixed time t0 ≤ t ≤ t1. Additionally, the variation
should not affect the starting point t0 and the end point t1 of the deformation path, i.e.

v(x, t0) = v(x, t1) = 0 ∀x ∈ Ω, (2.14)

for arbitrary but fixed time points t0 and t1. Now we can express Hamilton’s principle in
the form

d

dθ
J(θ)∣θ=0 = 0, (2.15)

with the function J(θ) defined as

J(θ) =
t1

∫
t0

T (u + θv) −U(u + θv)dt. (2.16)

The kinetic energy T is of the form

T (u) = 1

2
∫
Ω

ρu̇ ⋅ u̇ dx, (2.17)

with ρ being the constant mass density of the material and u̇ denoting the partial derivative
of u with respect to time t. Note that we use the dot notation (⋅) to denote the scalar
product of vectors.
The total potential energy U =W −Wext is composed of the strain energy, i.e. the energy
stored in the linear elastic material due to the deformation, given by

W (u) = 1

2
∫
Ω

σ(u) ∶ ε(u) dx, (2.18)

as well as the potential energy of the exterior forces [35, 102],

Wext(u) = −∫
Ω

u ⋅β dx − ∫
ΓN

u ⋅ τ ds, (2.19)

where β(x, t) ∈ R3 is the density of volume forces such as gravity, and τ (x, t) ∈ R3

describe the (given) surface tractions on the Neumann boundary ΓN . Assuming sufficient
smoothness, Equation (2.15) now yields

t1

∫
t0

⎡⎢⎢⎢⎢⎢⎣
∫
Ω

ρv̇ ⋅ u̇ dx − ∫
Ω

σ(u) ∶ ε(v) dx + ∫
Ω

v ⋅β dx + ∫
ΓN

v ⋅ τ ds

⎤⎥⎥⎥⎥⎥⎦
dt = 0. (2.20)

In order to get rid of the time derivative of the function v in Equation (2.20), we perform
integration by parts with respect to t and obtain

t1

∫
t0

∫
Ω

ρv̇ ⋅ u̇ dx dt =
⎡⎢⎢⎢⎢⎣
∫
Ω

ρv ⋅ u̇ dx

⎤⎥⎥⎥⎥⎦

t1

t0

−
t1

∫
t0

∫
Ω

ρv ⋅ ü dx dt.

Due to Equation (2.14), both integrals on the right hand side are zero and we get the
relation

t1

∫
t0

⎛
⎜
⎝
∫
Ω

ρv ⋅ ü +σ(u) ∶ ε(v) − v ⋅β dx − ∫
ΓN

v ⋅ τ ds
⎞
⎟
⎠

dt = 0, (2.21)
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for all admissible v. Due to the definition (2.2) of the strain tensor, we can rewrite the
expression

∫
Ω

σ(u) ∶ ε(v) dx = ∫
Ω

σ(u) ∶ ∇v dx,

and apply Gauss’ divergence theorem to the product σ(u(x, ⋅))v(x, ⋅), which yields an
integral identity that will be again presented, among other integral relations for Lipschitz
domains, in the second part of this chapter (Equation (2.102)). To apply the divergence
operator on the tensor σ, we defined the vector divergence componentwise as

(divσ)i ..=
3

∑
j=1

∂σij

∂xj
, (2.22)

i.e. the i-th component of the vector divergence of σ is the divergence of the i-th row of
σ. Using this definition, we obtain

∫
Ω

σ(u) ∶ ε(v) dx = −∫
Ω

v ⋅ (divσ(u)) dx + ∫
ΓN

v ⋅ (σn) ds,

with n = n(x) denoting the outer unit normal vector of ΓN . Inserting the above equation
into (2.21) results in the variational formulation

t1

∫
t0

∫
Ω

v ⋅ (ρü − divσ(u) −β) dx dt +
t1

∫
t0

∫
ΓN

v ⋅ (σ(u)n − τ ) ds dt = 0. (2.23)

The relation (2.23) holds for all admissible v, i.e. all fields v satisfying the requirements
(2.13) and (2.14). In particular, if v(x, t) = 0 is true for all x ∈ ΓN , the boundary integral
in Equation (2.23) is zero. Applying the Fundamental Lemma of Calculus of Variations
(e.g. in [36]), we conclude that

v ⋅ (ρü − divσ −β) = 0

for all admissible v. This, in turn, implies that

v ⋅ (σn − τ ) = 0,

also in case that v(x, t) ≠ 0 on the Neumann boundary ΓN . These two equations represent
the strong form of the linear elastic hyperbolic problem:

Problem (LE): For each t ∈ [t0, t1] find u(⋅, t) ∈ C2(Ω) such that

ρü(x, t) = divσ(u(x, t)) +β(x, t) in Ω, (2.24)

with the initial conditions

u(x, t0) = ut0(x),
u̇(x, t0) = u̇t0(x),

the Dirichlet boundary condition

u(x, t) = u0(x, t) on ΓD,

and the Neumann boundary condition

σ(u(x, t))n(x) = τ (x, t) on ΓN .
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To establish a relation between σ and u, the above system of equations is supplemented
with the constitutive equation (2.3).

The weak form of the linear elastic boundary value problem can be obtained by multi-
plication of Equation (2.24) with now time-independent test functions v(x) satisfying the
Dirichlet condition (2.13). Integrating over Ω, we then obtain the so-called principle of
virtual work (in [102]),

∫
Ω

ρv ⋅ ü dx + ∫
Ω

σ(u) ∶ ε(u) dx = ∫
Ω

v ⋅β dx + ∫
ΓN

v ⋅ τ ds,

for all v that vanish on the Dirichlet boundary ΓD. In order to state the complete weak
form of the problem, in the last step, we need to define the appropriate function spaces
for u and v.

2.1.3 Function spaces

Let the (Lebesgue-measurable) domain Ω be a subset of R3. For a real-valued function
f ∶ Ω→ R, we define the norm

∣∣f ∣∣Lp(Ω) ..=
⎛
⎜
⎝
∫
Ω

∣f(x)∣p dx
⎞
⎟
⎠

1
p

(2.25)

and the corresponding Lebesgue spaces

Lp(Ω) ..= {f ∣ ∣∣f ∣∣Lp(Ω) < ∞}.

In the following, we focus on the cases p = 1 and p = 2. For two functions f, g ∶ Ω → R we
define their inner product in L2(Ω) by

(f, g)L2(Ω)
..= ∫

Ω

f(x)g(x) dx. (2.26)

Then, the norm (2.25) can be expressed as

∣∣f ∣∣L2(Ω) =
√

(f, f)L2(Ω).

Finally, we say that the functions f and g are identical in L2(Ω) if

∣∣f − g∣∣L2(Ω) = 0,

i.e. if the functions are only different on sets of measure zero. In the following, we will
denote the inner product and the norm in L2(Ω) with the subscript 0 to simplify the
notation, i.e.

(f, g)0
..= (f, g)L2(Ω), ∣∣f ∣∣0 ..= ∣∣f ∣∣L2(Ω).

The space L2(Ω) is complete with respect to the metric induced by the norm defined in
(2.25) and a Hilbert space with the scalar product defined in (2.26) (for a proof, refer e.g.
to [22]). For f, g ∈ L2(Ω), the Cauchy-Schwarz inequality

∫
Ω

∣f(x)g(x)∣ dx ≤ ∣∣f ∣∣L2(Ω) ∣∣g∣∣L2(Ω) (2.27)
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holds. It is a special case of the Hölder inequality [22] which gives a general estimate for
the norm ∣∣fg∣∣L1(Ω) of functions f ∈ Lp(Ω) and g ∈ Lq(Ω) for p, q ≥ 1 and 1 = 1/p + 1/q.
For Φ ∈ C∞

0 (Ω), where

C∞
0 (Ω) ..= {Φ ∈ C∞(Ω) ∣ supp Φ is compact},

and the support of Φ is given by

supp Φ ..= {x ∈ Ω ∣ Φ(x) ≠ 0},

we define the partial derivatives

DαΦ ∶= ∂ ∣α∣Φ

∂xα1
1 ...∂xαnn

,

with the multi-index α = (α1, ..., αn), ∣α∣ = ∑ni=1 αi. Then, the weak derivative of a function
f ∈ L2(Ω) is a function g ∈ L2(Ω) that satisfies the relation

∫
Ω

g(x)Φ(x) dx = (−1)∣α∣ ∫
Ω

f(x)DαΦ(x) dx (2.28)

for all Φ ∈ C∞
0 (Ω). If a function g ∈ L2(Ω) with the above property exists, we set g =Dα

wf .
Furthermore, the set of locally integrable functions of the domain Ω is described by

L1
loc

..= {f ∣ f ∈ L1(K) for all compact subsets K ⊂ Ω}.

With the above definitions, we can finally introduce the function spaces that are essential
for the characterization of the solutions to the weak linear elastic boundary value problem.
We define the Sobolev norm of a function f ∈ L1

loc(Ω) for which the weak derivatives
Dα
wf ∈ L2(Ω) exist for all ∣α∣ ≤m, m ∈ N as

∣∣f ∣∣Hm(Ω)
..=

⎛
⎝ ∑∣α∣≤m

∣∣Dα
wf ∣∣

2
L2(Ω)

⎞
⎠

1
2

. (2.29)

The corresponding semi-norm is obtained by setting ∣α∣ = m in the above definition. The
Sobolev space

Hm(Ω) ..= {f ∈ L1
loc(Ω) ∣ ∣∣f ∣∣Hm(Ω) < ∞} (2.30)

is a Hilbert space [22] with the inner product of two functions f, g ∈Hm(Ω) defined as

(f, g)Hm(Ω)
..= ∑
∣α∣≤m

(Dα
wf,D

α
wg)0.

The norm can be expressed in terms of the inner product as

∣∣f ∣∣Hm(Ω)
..=

√
(f, f)Hm(Ω).

We are particularly interested in the space H1(Ω) or its vector counterpart H1(Ω)3, which
is defined as the space of all vector-valued functions v ∶ Ω → R3 whose components are
elements of H1(Ω). As in the case of the space L2(Ω), we will denote the inner product,
norm and semi-norm in H1(Ω) by the subscript 1, i.e.

(f, g)1
..= (f, g)H1(Ω), ∣∣f ∣∣1 ..= ∣∣f ∣∣H1(Ω) , ∣f ∣1 ..= ∣f ∣H1(Ω).

For the linear elastic problem, we define the function spaces

V ..= H1(Ω)3 = {v = (v1, v2, v3)T ∣ vi ∈H1(Ω) for i = 1,2,3}, (2.31)

V0
..= {v ∈ V ∣ vi = 0, i = 1,2,3, on ΓD}. (2.32)
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The space V, as well as its subspace V0 are Hilbert spaces with the inner product

(u,v)V ..=
3

∑
i=1

(ui, vi)1 = ∫
Ω

u ⋅ v dx.

With these preliminaries, we are finally able to state the weak or variational form of the
problem of linear elasticity [54, 102]:

Problem (LE)wt : For each t ∈ [t0, t1], find u(⋅, t) ∈ V that satisfies the Dirichlet bound-
ary condition

u(x, t) = u0(x, t) on ΓD (2.33)

and the equation
(ρü,v)V + a(u,v) = l(v) ∀v ∈ V0 (2.34)

with the initial conditions

(u(x, t0),v)V = (ut0 ,v)V ∀v ∈ V0 (2.35)

(u̇(x, t0),v)V = (u̇t0 ,v)V ∀v ∈ L2(Ω)3, (2.36)

specifying the initial displacement and initial velocity of a material point x ∈ Ω. The initial
data ut0 and u̇t0 are functions of the space coordinate x. In this formulation, a ∶ V×V0 → R
is a bilinear form defined as

a(u,v) ..= ∫
Ω

σ(u) ∶ ε(v) dx, (2.37)

while l ∶ V0 → R is a linear form given by

l(v) ..= ∫
Ω

v ⋅β dx + ∫
ΓN

v ⋅ τ ds. (2.38)

2.1.4 The trace space

The Dirichlet boundary condition (2.33) is not directly incorporated into the weak for-
mulation (LE)w or into the definition of the function space V but rather remains in the
strong form. This is due to the fact that in H1(Ω), Ω ⊂ Rn, the pointwise evaluation of a
function is not defined for n ≥ 2, as in this case, singularities may arise and the restriction
of the function u to the boundary may not make sense. Thus, we cannot require that
u0 ∈ V.
The above consideration is the result of the Sobolev inequality theorem (e.g. in [22]) which
states that for a positive integer m with m > n/2, all functions u ∈ Hm(Ω), Ω ⊂ Rn are
continuous and bounded. The suitable framework for defining this type of boundary con-
ditions is given by so-called trace spaces. The idea behind trace spaces is the interpretation
of the boundary of a domain Ω as an (n − 1)−dimensional manifold and the restriction of
functions in n-dimensional Sobolev spaces to (n−1)−dimensional functions. This concept
is explained in detail in [22]. To define the trace space, we make use of the following
inequality for functions over Lipschitz domains ([22], Section 1.6),

∣∣v∣∣0 ≤ C ∣∣v∣∣
1
2
0 ∣∣v∣∣

1
2
1 ∀v ∈H1(Ω),

with a constant C > 0. The bounded linear trace operator γ ∶ H1(Ω) → L2(∂Ω) can now
be defined such that

γf = f ∣∂Ω for f ∈H1(Ω) ∩C1(Ω),
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i.e. γf is the restriction of the function f to the boundary ∂Ω. and

∣∣γf ∣∣0 ≤ C ∣∣f ∣∣1 for f ∈H1(Ω).

Note that the extension of the above inequality from functions f ∈ H1(Ω) ∩ C1(Ω) to
functions f ∈H1(Ω) is valid due to the completeness of L2(Ω) [102]. The mapping γ is in
general not surjective and the image of γ constitutes the trace space

H
1
2 (∂Ω) ⊂ L2(∂Ω).

Alternatively, ∂Ω can be restricted to the Dirichlet boundary ΓD and the corresponding

space is given by H
1
2 (ΓD). Moreover, it is possible to extend these definitions to three-

dimensional spaces, i.e. H
1
2 (ΓD)3 and we can finally conclude that the boundary function

u0 is an element of the space H
1
2 (ΓD)3.

2.1.5 Existence and uniqueness of the solution

A possibility to incorporate the Dirichlet boundary condition into the weak problem dis-
cussed in the previous sections is to include it as an additional constraint with the help of
Lagrange multipliers. This leads to the transient saddle point problem of linear elasticity,
which is elaborately discussed e.g. in [102] and which will not be the focus of our attention.
As the models presented in this work involve either stationary or quasi-static elastic fields,
we draw our focus to the stationary problem of linear elasticity with homogeneous Dirich-
let boundary conditions. In this case, the term ρü(x, t) vanishes and the strong form reads

Problem (LE): Find u(x) ∈ C2(Ω)3 such that

divσ(u(x)) = −β(x) in Ω, (2.39)

holds, together with the Dirichlet boundary condition

u(x) = 0 on ΓD, (2.40)

and the Neumann boundary condition

σ(u(x))n(x) = τ (x) on ΓN . (2.41)

The above strong system represents an elliptic boundary value problem. Using the func-
tion space V0 defined in (2.32), the corresponding weak forms is

Problem (LE)w: Find u ∈ V0 such that

a(u,v) = l(v) for all v ∈ V0, (2.42)

with the bilinear form a(⋅, ⋅) and the linear functional l(⋅) as defined in (2.37) and (2.38).

Note that l ∈ V ′0, where V ′0 is the dual space of V0. We say that a(⋅, ⋅) is bounded (or,
equivalently, continuous) if there is a constant c1 > 0 such that

∣a(u,v)∣ ≤ c1 ∣∣u∣∣V ∣∣v∣∣V (2.43)

holds for all u,v ∈ V0. Similarly, the linear functional is said to be continuous if

∣l(v)∣ ≤ c2 ∣∣l∣∣V ′0 ∣∣v∣∣V
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for a constant c2 > 0. Here, ∣∣l∣∣V ′0 = sup
0≠v∈V0

∣l(v)∣
∣∣v∣∣V0

is the operator norm.

Moreover, a(⋅, ⋅) is called coercive if ∃ α > 0 such that the inequality

a(u,u) ≥ α ∣∣u∣∣2V (2.44)

is true for all u ∈ V0.
If a(⋅, ⋅) and l(⋅) are continuous and a(⋅, ⋅) is coercive, the Lax-Milgram lemma (e.g. in [4]
or [22]) guarantees the existence and uniqueness of the solution to Equation (2.42).
While the continuity is straightforward, the coercivity of a(⋅, ⋅) can be shown on the basis
of Korn’s inequality [22, 34], which states that there is a constant C = C(Ω) such that for
all v ∈ V0,

∣∣v∣∣V ≤ C(Ω)
⎛
⎝

3

∑
i,j=1

∣εij(v)∣20 +
3

∑
i=1

∣vi∣20
⎞
⎠

1
2

.

For a proof, refer e.g. to [54] or [58].

2.1.6 Influence of perturbations

Finally, we focus on the question of how perturbations of the given right-hand side data, i.e.
of the linear functional l ∈ V ′0 involving the known volume and surface force terms, influence
the solution of the problem. A boundary value problem such as (LE)w is called well-posed
if it can be uniquely solved and, additionally, the solution depends continuously on the
given data. The property of continuous dependence on the right-hand side is sometimes
referred to as stability of the solution in the literature (see e.g. [14]). Although this term
is a bit misleading, we will adopt the expression stability estimate when referring to an
estimate for the norm of the solution depending on the norm of the given data.
The question of finding a suitable stability estimate for the solution u of the problem
(LE)w is again answered by the Lax-Milgram lemma. Exploiting the continuity and
coercivity properties presented in the previous section, we obtain the inequality chain

∣∣u∣∣2V ≤
1

α
∣a(u,u)∣ = 1

α
α∣l(u)∣ ≤ c2

α
∣∣l∣∣V ′ ∣∣u∣∣V ,

where α is the coercivity constant of a(⋅, ⋅) and c2 is the continuity constant of l(⋅).
Concluding, we obtain the estimate

∣∣u∣∣V ≤
c2

α
∣∣l∣∣V ′ , (2.45)

indicating that the boundary value problem (LE)w is indeed well-posed.
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E B

Figure 2.4: (a) Electrostatic field of a point charge and (b) magnetostatic field of a long wire,
pointing out of the plane (after [62]).

2.2 Classical electrodynamics

This section follows the outline of Section 2.1: After introducing the basics of electromag-
netic theory and various formulations of Maxwell’s equations, we focus on their solution.
Strong and weak formulations are presented, function spaces are introduced and the ex-
istence and uniqueness of the solutions is discussed for different settings. The section
concludes with the derivation of suitable stability estimates for the solution.

2.2.1 Maxwell’s equations

In his publication “A Dynamical Theory of the Electromagnetic Field” from 1865 [84],
James Clerk Maxwell introduced a set of equations that form the foundation of classical
electrodynamics. These equations were based on experimental observations of phenomena
of electricity and magnetism, primarily made by Coulomb, Gauss, Biot and Savart, as
well as Ampère and Faraday. Maxwell recapitulated their laws, which at first glance
seemed rather disparate, and merged them into a mutual context, creating one of the
most significant accumulations of empirical facts in physics. Maxwell’s laws form a set of
partial differential equations which, in their original form, were written componentwise,
since the short hand notations for the curl and div operators were not yet introduced at
that time. His laws were later reformulated in terms of vector calculus, which gave them
a more compact and precise form. Thus, a total of four partial differential equations (in
space and time) were created, describing the behavior of the electric and magnetic fields
in vacuum:

divE = 1

ε0
ρ Gauss’ law, (2.46)

divB = 0 (2.47)

curlE = −∂B
∂t

Faraday’s law, (2.48)

curlB = µ0j + µ0ε0
∂E

∂t
, Ampère’s law, (2.49)

where E [ V
m
] is the electric field intensity, ρ [ A

m3 ] the charge density, ε0 [ A
2s4

kgm3 ] the permit-

tivity of free space, B [ V s
m2 ] the magnetic flux density, µ0 [ NA2 ] the magnetic permeability

of free space and j [ A
m2 ] the electric current density.

Maxwell’s laws describe the nature of the electric and magnetic fields: While the electric
field “diverges away from a positive charge”, the magnetic field “curls around a current”
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[62], see Figure 2.4. Together with the Lorentz force law

F = q(E + v ×B), (2.50)

which describes the force acting on a particle of charge q and velocity v in the presence
of an electric field E and a magnetic field B, as well as Newton’s second law, Maxwell’s
equations constitute the basis of classical electrodynamic theory.
Note that the equations stated above are valid in vacuum with the constants ε0 and µ0.
Inside polarized matter, one has to distinguish between so-called free and bound charges
and currents. Following Griffiths [62], we divide the total charge density ρ into a free part
ρf and a bound part

ρb ..= −divP ,

which is generated by an electric polarization P

ρ = ρf − divP .

The total current density j consists of the free current density jf , a bound current density

jb
..= curlM ,

resulting from the magnetization M , and a polarization current density

jp
..= ∂P

∂t
,

which is generated by a change in the electric polarization, i.e.

j = jf + curlM + ∂P
∂t

.

These changes imply that Gauss’ law can be written as

divD = ρf ,

where
D = ε0E +P (2.51)

denotes the electric displacement [ A
m2 ] and Ampère’s law is transformed to

curlB = µ0 (jf + curlM + ∂P
∂t

) + µ0ε0
∂E

∂t
.

Introducing the magnetic field intensity H [A
m
], defined as

H = 1

µ0
B −M , (2.52)

Ampère’s law turns into

curlH = jf +
∂D

∂t
.

Summing up, the new form of Maxwell’s equations in terms of free charges and currents
is

divD = ρf , (2.53)

divB = 0, (2.54)

curlE = −∂B
∂t

, (2.55)

curlH = jf +
∂D

∂t
. (2.56)
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∂B
∂t

E

jf +
∂D
∂t

H

Figure 2.5: (a) Faraday’s law: A time-varying magnetic field generates an electric field. (b)
Ampère’s law: The electric current density and the displacement current induce a magnetic field

(after [81]).

Equations (2.53) and (2.54) describe the electric and magnetic Gauss laws. Faraday’s law
(2.55) states that the electric field is generated by a time-varying magnetic field (see Figure
2.5(a)). Ampère’s law (2.56) indicates that the magnetic field is induced by currents in
coils as well as by time-varying electric fields (Figure 2.5(b)). The expression

∂D

∂t
=∶ jD

is characterized by the term displacement current.
To complete these equations, we need the constitutive equations relating the magnetic
flux density B and the magnetic field H, as well as the electric field E and the electric
displacement D. For linear materials, the polarization P and the magnetization M are
proportional to the electric field E and the magnetic field H, respectively,

P = ε̂0χlE, (2.57)

M = χmH, (2.58)

where χl and χm are the electric and magnetic susceptibilities (dimensionless) and

ε̂ = ε̂0(I +χl)

is the permittivity of the material. In vacuum, the electric susceptibility χl vanishes and
thus ε̂ = ε0 = ε0I, with I denoting the 3 × 3 identity matrix. One can also define the
dimensionless relative permittivity

ε̂r ..= I +χl =
1

ε0
ε̂.

Similarly,
µ = µ0(I +χm)

is the permeability of the material. In vacuum, µ = µ0 = µ0I. The dimensionless relative
permeability is defined via

µr
..= I +χm = 1

µ0
µ.

Note that for homogeneous anisotropic materials, the above defined material parameters
are tensor-valued, i.e. the (relative) permeability µ and the (relative) permittivity ε̂ are
symmetric and uniformly positive definite matrices [2]. The susceptibilities χl and χm are
second order tensors as well.
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With this generalization, the linear constitutive equations relating the electric and mag-
netic field quantities read

B = µH, (2.59)

D = ε̂E, (2.60)

jf = σ̂E. (2.61)

The last equation is Ohm’s law with σ̂ characterizing the electric conductivity (tensor) of
the material. In regions containing conducting materials, the current density jf is often
expressed as the sum jf = σ̂E + jI , where jI denotes the impressed or source current
density (see e.g. [79]).

Magnetoquasistatic fields

Current loops appearing in a conductor as a consequence of a time-varying magnetic field
are generally referred to as eddy currents. Problems involving only eddy currents can
be regarded as quasistatic field problems based on the assumption that in the usual low
frequency operation range, the displacement current can be neglected, since

∣∣jf ∣∣ >> ∣∣∂D
∂t

∣∣

for a norm ∣∣⋅∣∣ in R3. This approximation is applicable in the modeling of devices working
at power frequencies, e.g. for the analysis of power losses or the prediction of transient
problems [2, 3]. Eddy currents also provide a possibility of detecting flaws in conductive
materials by using a coil with an alternating current. The coil generates eddy currents in
the medium, which leads to different amplitudes of the impedance in regions with flaws.
Ammari and Buffa [3] showed that the eddy current model is a first-order approximation
of the general Maxwell equations and, with an additional condition on the current density,
can even yield a second-order approximation in the frequency.
The eddy current approximation of Maxwell’s equations is

divD = ρf , (2.62)

divB = 0, (2.63)

curlE = −∂B
∂t

, (2.64)

curlH = jf . (2.65)

Since div curlH = div jf = div(σ̂E +jI) = 0, the impressed current density jI has to fulfill
the condition div jf = 0 in non-conducting regions (where σ̂ = 0).

Boundary and interface conditions

Maxwell’s differential equations must be supplemented by appropriate boundary and in-
terface conditions. Discontinuities of the fields E, D, B and H arise at interfaces of two
different materials, as well as at (boundary) surfaces carrying a charge density or a current
density. The corresponding conditions can be derived from the integral form of Maxwell’s
equations. Consider a domain Ω ⊂ R3 with boundary surface ∂Ω (and outer unit normal
n), which is itself bounded by a closed loop L. Then, applying Gauss and Stokes’ integral
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laws to Equations (2.53)–(2.56), we get

∫
∂Ω

D ⋅n ds = ∫
Ω

divD dx = ∫
Ω

ρf dx, (2.66)

∫
∂Ω

B ⋅n ds = ∫
Ω

divB dx = 0, (2.67)

∫
L

E ⋅ dl = ∫
∂Ω

(curlE) ⋅n ds = −∫
∂Ω

∂B

∂t
⋅n ds, (2.68)

∫
L

H ⋅ dl = ∫
∂Ω

(curlH) ⋅n ds = ∫
∂Ω

(jf +
∂D

∂t
) ⋅n ds. (2.69)

While the electric flux lines start and close at electric charges (Equation (2.66)), magnetic
charges do not exist (Equation (2.67)). Equation (2.68) shows that the integral of the
electric field along any closed loop L equals to the integral of the time variation of the
magnetic flux density over the surface ∂Ω enclosed by the loop. Similarly, Equation (2.69)
states that the integral of the magnetic field along any closed loop L is equal to the integral
of the current densities flowing across the area ∂Ω bounded by the loop L. The boundary
and interface conditions can now be directly deduced from the above integral relations.
On the interface of two dielectric materials with D1 and D2, the normal component of
the electric displacement is discontinuous,

nI ⋅ (D2 −D1) = ρf , (2.70)

where nI denotes the outer unit normal of the interface. On the interface of two materials
having the magnetic flux densities B1 and B2,

nI ⋅ (B2 −B2) = 0. (2.71)

Similarly,

nI ⋅ (j2 − j1) = nI (
∂D1

∂t
− ∂D2

∂t
) (2.72)

holds on the interface of two magnetic materials, where we have suppressed the subscript
“f” for the current density. In case that only magnetoquasistatic fields are present, the
normal component of the current density is continuous (charge conservation law),

nI ⋅ (j2 − j1) = 0. (2.73)

On the interface of two materials having different electric field intensities E1 and E2, we
have

nI × (E2 −E1) = 0, (2.74)

i.e. the tangential component of the electric field intensity is continuous. Similarly,

nI × (H2 −H1) =KI , (2.75)

where KI denotes the current density on the interface.
The corresponding conditions on the boundary ∂Ω with outer unit normal vector n read

D ⋅n = −ρf , (2.76)

B ⋅n = 0, (2.77)

jf ⋅n = −∂D
∂t

⋅n, (2.78)

E ×n = 0, (2.79)

H ×n = K. (2.80)
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The condition (2.77) can be generalized to

B ⋅n = −B̃, (2.81)

where B̃ = B̃(x, t) is a fictitious magnetic surface charge density, and the negative sign
indicates that positive surface charges are associated with positive values of B̃ [11, 81].

Potential formulations

Maxwell’s equations (2.53) – (2.56), together with suitable boundary and interface con-
ditions as well as the corresponding constitutive equations, represent a uniquely solvable
system of partial differential equations for the magnetic and electric fields [87]. However,
as the derivatives occur in form of the divergence or curl of these fields, solving the result-
ing system can be rather challenging. Hence, the choice of a suitable independent variable
is essential for reducing the complexity of the problem.
According to the Helmholtz decomposition (e.g. in [87]), in simply-connected domains
Ω ⊂ R3 with a connected boundary every field u ∈ L2(Ω)3 can be written as

u = ∇p + curla, (2.82)

with uniquely defined scalar and vector potentials p and a (whose function spaces will
not yet be specified at this point). Ampère’s law (2.56) suggests that in current-free
regions, i.e. jf = 0, the curl of the magnetic field vanishes in the static case, enabling the
introduction of a total magnetic scalar potential Ψ with

H = −∇Ψ. (2.83)

Similarly, Equation (2.55) gives rise to an electric scalar potential V with

E = −∇V (2.84)

in the static case. Note that the negative sign in (2.84) is a direct consequence of Coulomb’s
law on point charges, and the sign convention for the magnetic scalar potential was deter-
mined on the basis of its electrostatic analogue [71, 110].
Using scalar potentials, Maxwell’s equations can be reduced to a single elliptic second-
order partial differential equation in the magnetostatic, as well as the electrostatic case.
Inserting Equation (2.83) into Equation (2.54) and using the constitutive equation (2.52)
and the linear relation (2.58), we obtain the magnetostatic Laplace-type equation

−div(µ∇Ψ) = 0. (2.85)

Alternatively, defining the effective magnetic charge density [59]

ρm = −divM ,

we obtain the Poisson equation
µ0∆Ψ = −ρm.

Boundary conditions (2.77) and (2.80) suggest that

(µ∇Ψ) ⋅n = 0 or (µ∇Ψ) ⋅n = −B̃ on ΓH

−∇Ψ ×n =K on ΓB.

Analogously, Equations (2.84) and (2.53) along with (2.51) result in

−ε0∆V = ρf − divP = ρ (2.86)
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Another possibility is the usage of the magnetic vector potential, which can be introduced
for all regions where a current density j is defined. The more general concept of the
magnetic vector potential suffers the disadvantage of an increasing number of unknowns
for 3D problems. Therefore, a combination of the scalar potential in current-free regions
and the vector potential in other parts proves to be rather efficient. A collection of different
potential formulations and their combination can be found in [81].
The introduction of the magnetic vector potentialA in simply-connected regions is enabled
by Equation (2.54),

B = curlA. (2.87)

In this way, (2.54) is automatically satisfied and Ampère’s law (2.56) turns into

curl(µ−1 curlA) = jf + ε̂
∂E

∂t
. (2.88)

Using equation (2.55), we can choose A such that [2]

E = −∂A
∂t

.

The above formulation often includes an electric scalar potential, V as well [2, 71], i.e.

E = −∂A
∂t

−∇V.

In the course of the thesis, however, we use formulations solely based on the magnetic
vector potential A, neglecting V , e.g. by using a modified vector potential [55].
In summary, we obtain

curl(µ−1 curlA) + ε̂∂
2A

∂t2
= jf . (2.89)

As described in the previous section, the total free current density may contain the im-
pressed current density jI (see e.g. [2]),

jf = σ̂E + jI = −σ̂
∂A

∂t
+ jI ,

so that Ampere’s law in terms of the magnetic vector potential reads

curl(µ−1 curlA) + ε̂∂
2A

∂t2
+ σ̂∂A

∂t
= jI , (2.90)

and is referred to as the full Maxwell system in A-formulation. The corresponding bound-
ary conditions for A are

(µ−1 curlA) ×n =K on ΓH , (2.91)

(curlA) ⋅n = 0 or (curlA) ⋅n = −B̃ on ΓB. (2.92)

Conditions (2.92) imply that
div(A ×n) = −B̃

and we can define a function a = a(x, t) such that

diva = B̃,

and
n ×A = a. (2.93)
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In the time-harmonic case, assuming

jI(x, t) = Re(jI(x)eiωt),
A(x, t) = Re(A(x)eiωt),

with frequencies ω, the time derivatives in Equation (2.90) can be written as

∂A

∂t
= iωA and

∂2A

∂t2
= −ω2A,

thus yielding the full Maxwell system in the frequency domain,

curl(µ−1 curlA) + (iωσ̂ − ω2ε̂)A = jI . (2.94)

Summarizing, this type of problems can be written in the form

curl(µ−1 curlA) +κA = jI . (2.95)

with κ ∈ C3×3. As we have seen before, the case ω = 0, i.e. κij = 0 for all i, j = 1, ...,3,
corresponds to the magnetostatic setting and

κ = iωσ̂ − ω2ε̂ (2.96)

describes the time-harmonic case. For low frequencies ω, the second term in the definition
of κ can be neglected and we obtain the eddy current or magnetoquasistatic system in the
frequency domain,

curl(µ−1(curlA)) + iωσ̂A = jI . (2.97)

which is a widely used approximation of the full Maxwell system (see e.g. [3]). Schmidt
et al. [100] derived estimates for the modeling error made by choosing the eddy current
approximation and showed that the error is strongly influenced by the geometry of the
model.
Furthermore, we introduce a third formulation of Ampére’s law that can be obtained by
applying implicit time stepping methods on Equation (2.90). Depending on the time step
τ , the matrix κ ∈ R3×3

+ can be approximated by

κ ≈ 1

τ
σ̂ + 1

τ2
ε̂.

Summarizing these three cases in a single formulation with κ ∈ C3×3 or κ ∈ R3×3 and choos-
ing appropriate boundary conditions, the strong form of the electromagnetic problem can
be written as

Problem (EM): Find A ∶ Ω→ R3 or A ∶ Ω→ C3 such that

curl(µ−1 curlA) +κA = jI in Ω (2.98)

holds, together with the Dirichlet boundary condition

A ×n = 0 on ΓD,

and the Neumann boundary condition

(µ−1 curlA) ×n =K on ΓN .

If the domain Ω consists of regions with different materials, additional interface conditions
have to specified. Note that the material parameter matrices µ, σ and ε̂ have different
values in different material regions.
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In the magnetostatic or eddy current case involving a non-conducting region (σ̂ = 0),
the magnetic vector potential is not unique, since

∇× (A +∇φ) =B

for every scalar field φ. The lack of uniqueness can be cured by additionally defining the
divergence of A, i.e. by setting

ν divA = 0,

according to the Coulomb gauge. Ampère’s law is then modified through an additional
penalization term, e.g. in the quasi-static case [32, 43, 88],

curl(µ−1(curlA)) − ∇(ν divA) = jI , (2.99)

where ν is a suitable average of the entries of µ−1 [2], and supplemented with the boundary
conditions

A ⋅n = 0 on ΓD, (2.100)

div ⋅A = 0 on ΓN . (2.101)

Note that in electromagnetic literature, the boundary of the domain Ω is usually decom-
posed into non-overlapping parts ΓPMC and ΓPEC referring to perfect magnetic conductors
and perfect electric conductors, rather than into ΓD and ΓN known from the continuum
mechanics. In this respect, the boundary condition (2.100) should be prescribed on ΓH
and the condition (2.101) on ΓB. Yet, in this work, we will keep the usual convention of
decomposing into Dirichlet and Neumann boundaries since its usage is more convenient
within the framework of magnetoelastic coupling.
Although the gauged formulation of Ampère’s law yields a unique solution, the numerical
approximation of the equation, of course, involves certain errors in the satisfaction of the
Coulomb gauge, especially in regions where the values of the magnetic reluctivity ν = µ−1

are rather low (e.g. in ferromagnetic regions) [11]. This, in turn, results in errors in fulfill-
ing the equation, which makes the gauged formulation not always suitable for numerical
implementation. Alonso Rodriguez and Valli [2] showed that their formulation of an eddy
current problem with the above penalization term yields good convergence results using
nodal finite elements if the domain Ω is a convex polyhedron (which is mostly satisfied
in real-life applications). However, it is worth mentioning that the eddy current model
used by these authors involves a modification of the solution by assuming the satisfaction
of the Coulomb gauge on the whole problem region containing both conducting and non-
conducting domains. We will come back to this issue in Chapter 4, where we adopt the
approach offered by Alonso Rodriguez and Valli for the coupled eddy current problem.

On the discrete level, gauging can be avoided by using an alternative formulation based
on edge elements, which was introduced, among others, by B́ıró [31] and Ren and Ida [98].
Although in this case, the resulting system is singular, one can still obtain satisfactory
convergence results with iterative solvers for compatible right-hand sides jI with div jI = 0
[2]. In our further considerations of Maxwell’s equations, especially for their variational
treatment, we will adopt the ungauged formulation and postpone the discussion of the
gauged approach to Chapter 4 within the setting of magnetoelastic coupling.

2.2.2 Integral relations in Lipschitz domains

Before deriving the weak formulation of Maxwell’s equations, we need to introduce certain
integral identities that are valid in Lipschitz domains. This section gives an overview
of the important integral relations [87] which follow from Gauss’ divergence theorem for
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Lipschitz domains (e.g. in [86, 87]).
Let Ω ∈ R3 be a bounded Lipschitz domain with boundary ∂Ω and its unit outer normal
vector n. Then, the following identities hold.

(a) For functions u ∈ C1(Ω)3 and φ ∈ C1(Ω),

∫
Ω

φdivu dx = −∫
Ω

∇φ ⋅u dx + ∫
∂Ω

φ(u ⋅n) ds. (2.102)

(b) (Green’s first identity) For functions φ ∈ C1(Ω) and ψ ∈ C2(Ω),

∫
Ω

φ∆ψ dx = −∫
Ω

∇ψ∇φ dx + ∫
∂Ω

φ(∇ψ ⋅n) ds. (2.103)

(c) (Green’s second identity) For functions f, g ∈ C2(Ω),

∫
Ω

f∆g − g∆f dx = ∫
∂Ω

f(∇g ⋅n) − g(∇f ⋅n) ds. (2.104)

(d) For functions u,v ∈ C1(Ω)3,

∫
Ω

v ⋅ (curlu) dx = ∫
Ω

u ⋅ (curlv) dx + ∫
∂Ω

v ⋅ (u ×n) ds. (2.105)

Equations (2.102) and (2.105) can be extended to cover functions in Sobolev spaces using
appropriate density arguments [87].

2.2.3 Energy of electromagnetic fields

In this section, we briefly introduce the concept of energy in electromagnetic systems.
Consider a coil flown with the line current I (charge per unit time passing through the
wire) generating a magnetic field with flux density B. The flux of the magnetic field
through a surface S with outer normal vector n is given by

Φ = ∫
S

B ⋅n dx, (2.106)

and is proportional to the current,
Φ = LI. (2.107)

The proportionality constant L (depending on the geometry of the loop of wire) is the
self-inductance of the wire. The so-called electromotive force induced in the coil is given
by

E = −LdI

dt
,

so the total work per unit time (against this force) can be expressed as

∂Wm

∂t
= −EI = LI dI

dt
.

Hence,

Wm = 1

2
LI2. (2.108)
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The magnetic flux (2.106) through a surface S bounded by the curve L can also be ex-
pressed in terms of the magnetic vector potential A as

Φ = ∫
S

B ⋅n ds = ∫
S

(curlA) ⋅n ds = ∫
L

A ⋅ dl.

Using now Equation (2.107), the total work has the form

Wm = 1

2
∫
L

(AI) ⋅ dl.

Passing on from line currents I to volume currents j for the magnetic domain Ω, we obtain

Wm = 1

2
∫
Ω

(A ⋅ j) dx. (2.109)

Inserting Ampère’s law (2.56) yields in the static case

Wm = 1

2µ0
∫
Ω

A ⋅ (curlB) dx.

Using the identity
div(A ×B) =B ⋅ (curlA) −A ⋅ (curlB),

and integration by parts, the total energy can be written as

Wm = 1

2µ0

⎡⎢⎢⎢⎢⎣
∫
Ω

B ⋅B dx − ∫
∂Ω

A ⋅ (B ×n) ds

⎤⎥⎥⎥⎥⎦
, (2.110)

where ∂Ω, as usual, denotes the boundary of Ω with normal vector n.
Choosing a larger domain of integration in (2.109) does not change the value of Wm as
the current density j is zero outside Ω. Yet, increasing the integration domain in (2.110)
should result in a larger volume integral as the integrand is positive. In order for Wm

to stay constant, this would imply a decreasing boundary integral. In the limit, this
consideration yields

Wm = 1

2µ0
∫
Ω

B ⋅B dx,

which is the amount of energy stored in a magnetic field. In materials with a magnetization
M , the constitutive relation

1

µ0
B =H +M ,

can be used to express the stored energy in terms of B, H and M as

Wm = 1

2
∫
Ω

H ⋅B dx + 1

2
∫
Ω

M ⋅B dx.

Since in linear materials, the magnetization is proportional to the magnetic field, i.e.

M = χmH,

we obtain

Wm = 1

2
∫
Ω

(µrH) ⋅B dx.
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A similar approach can be used for the electrostatic energy [62], yielding

We =
1

2
∫
Ω

D ⋅E dx + 1

2
∫
Ω

P ⋅E dx,

where P is the electric polarization. Again, for linear media, the energy stored in a static
electric field can be written as

We =
1

2
∫
Ω

(ε−1
r D) ⋅E dx.

Hence, the total (potential) energy stored in an electromagnetic field in the absence of
magnetization and electric polarization is

Wem = 1

2
∫
Ω

(H ⋅B +D ⋅E) dx.

In the electrodynamic case we have to consider the work done by the electromagnetic
forces on moving charges q. For a charge q moving an amount dl = vdt with velocity v,
Lorentz’ force law (2.50) yields

dW = dWe + dWm = F ⋅ dl = q(E + v ×B) ⋅ v dt = qE ⋅ v. (2.111)

Note that
dWm = Fm ⋅ dl = q(v ×B) ⋅ v dt = 0,

implying that magnetic forces do no work. Now inserting the relations q = ρdx and ρv = j
into Equation (2.111), we conclude that

dW

dt
= ∫

Ω

E ⋅ j dx.

Ampère’s law (2.49),

E ⋅ (curlB) = µ0 (E ⋅ j + ε0E ⋅ ∂E
∂t

) ,

together with the identity

E ⋅ (curlB) =B ⋅ (curlE) − div(E ×B),

turn Faraday’s law (2.55) into

∫
Ω

E ⋅ j dx = ∫
Ω

1

µ0
B (−∂B

∂t
) dx − ∫

Ω

1

µ0
∇ ⋅ (E ×B) dx − ∫

Ω

ε0E
∂E

∂t
dx.

In a final step, we apply Gauss’ integral formula and the product rule,

dW

dt
= −1

2

∂

∂t

⎡⎢⎢⎢⎢⎣
∫
Ω

1

µ0
B ⋅B dx + ∫

Ω

ε0E ⋅E dx

⎤⎥⎥⎥⎥⎦
− 1

µ0
∫
∂Ω

E ⋅ (B ×n) ds.

Inserting the following relations for linear media,

1

µ0
B = µrH,

ε0E = ε−1
r D,
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the energy conservation equation can be derived,

dW

dt
= − d

dt
∫
Ω

1

2
((µrH) ⋅B + (ε−1

r D) ⋅E) dx − 1

µ0
∫
∂Ω

E ⋅ (B ×n) ds. (2.112)

The first integral characterizes the total energy stored in the electromagnetic field, while
the surface integral gives the amount of energy flowing through the bounding surface ∂Ω
of Ω with normal vector n. Note that the integrand is reformulated into

E ⋅ (B ×n) = (E ×B) ⋅ ds,

where S ..= E ×B is the Poynting vector describing the energy flux density [62].

2.2.4 Weak formulation of Maxwell’s equations

As we have seen in Section 2.2.1, the usage of a potential approach reduces the set of
Maxwell’s equations to a single partial differential equation with a convenient structure.
On the one hand, the scalar potential approach leads to a Poisson equation which is well-
known and thus not of particular interest for numerical investigation. On the other hand,
the usage of such a potential is limited to static problems in current-free regions, which
is why the vector potential approach is more common in electromagnetic literature. In
this section, we will deal with weak formulations of Equation (2.95) for different settings
depending on the parameter matrix κ, following [101]. In this context, the existence and
uniqueness of the weak solution will be discussed and appropriate function spaces will be
introduced.

Consider now a bounded domain Ω ⊂ R3 with a Lipschitz boundary ∂Ω = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅ with outer (unit) normal vector n and the equation

curl(µ−1 curlA) +κA = jI . (2.113)

for κ ∈ C3×3. Multiplying this equation with appropriate test functions Ã (the correspond-
ing function spaces will be discussed after the derivation of the weak form) and integrating
over Ω yields for all Ã,

∫
Ω

curl(µ−1 curlA) ⋅ Ã +κA ⋅ Ã dx = ∫
Ω

jI ⋅ Ã dx.

Using integration by parts,

∫
Ω

curl(µ−1 curlA) ⋅ Ã dx = ∫
Ω

(µ−1 curlA) ⋅ (curl Ã) dx − ∫
∂Ω

((µ−1 curlA) ×n) ⋅ Ã ds,

we obtain

∫
Ω

(µ−1 curlA) ⋅ (curl Ã) +κA ⋅ Ã dx − ∫
∂Ω

(µ−1 curlA ×n) ⋅ Ã ds = ∫
Ω

jI ⋅ Ã dx (2.114)

The boundary integral corresponds to the condition

(µ−1 curlA) ×n =K on ΓN (2.115)

i.e. the tangential component of the magnetic field H = µ−1 curlA is known on the Neu-
mann boundary. Possible Dirichlet boundary conditions for A and its test functions Ã
are

A ×n = 0, Ã ×n = 0 on ΓD, (2.116)
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and thus B ⋅n = curlA ⋅n = 0. Summing up, the weak formulation of the problem is

Problem (EM)w: Find A with A ×n = 0 on ΓD such that

∫
Ω

(µ−1 curlA) ⋅ (curl Ã) +κA ⋅ Ã dx = ∫
∂Ω

K ⋅ Ã ds + ∫
Ω

jI ⋅ Ã dx (2.117)

holds for all Ã with Ã ×n = 0 on ΓD. Note that as K = (µ−1∇×A) ×n is orthogonal to
the normal vector n, the integrand of the surface integral can also be written as

Ã ⋅ ((µ−1 curlA) ×n) = Ãt ⋅ ((µ−1 curlA) ×n),

i.e. only the tangential component Ãt = n × Ã ×n of Ã affects the Neumann integral.

2.2.5 Function spaces and weak differential operators

So far, the function space of A and Ã has not been specified for the above problem.
For this purpose, we need the definition of weak differential operators with distributional
derivatives.
Consider functions w ∈ L2(Ω) and u,v ∈ L2(Ω)3. Then, ∇w ∈ L2(Ω)3 is called the weak
gradient, divv ∈ L2(Ω) is called the weak divergence and curlu ∈ L2(Ω)3 the weak curl if
the following relations hold for all f ∈ (C∞

0 (Ω))3 and g ∈ C∞
0 (Ω),

∫
Ω

∇w ⋅ f dx = −∫
Ω

w divf dx, (2.118)

∫
Ω

(divv)g dx = −∫
Ω

v ⋅ ∇g dx, (2.119)

∫
Ω

curlu ⋅ f dx = ∫
Ω

u ⋅ curlf dx. (2.120)

On the basis of the above definitions, we are now able to introduce the following function
spaces. The function space

H(div,Ω) ..= {w ∈ (L2(Ω))3 ∣ divw ∈ L2(Ω)}

is the completion of C∞(Ω)3 with respect to the norm

∥w∥H(div,Ω)
..= (∥w∥2

0 + ∥divw∥2
0)

1
2,

where ∥ ⋅ ∥0 and ∥ ⋅ ∥0 denotes the norms in L2 and L2(Ω)3, respectively. H(div,Ω) is a
Hilbert space itself and obviously

H1(Ω)3 ⊂H(div,Ω) ⊂ L2(Ω)3.

In addition, we define the space

H0(div,Ω) ..= {w ∈H(div,Ω) ∣w ⋅n = 0 on ∂Ω}

as the space of all functions in H(div,Ω) whose normal component vanishes on the bound-
ary ∂Ω. The space H0(div,Ω) is the closure of C∞

0 (Ω)3 under the ∥ ⋅ ∥H(div,Ω) - norm (see
e.g. [87]). If Dirichlet boundary conditions are prescribed on a part of the boundary, the
corresponding space can be defined as

HΓ(div,Ω) ..= {w ∈H(div,Ω) ∣w ⋅n = 0 on ΓD},
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with n, as usual, denoting the outer normal on the boundary ΓD. If we define the space

Xdiv ..= {w ∈ C∞(Ω)3 ∣w ⋅n = 0 on ΓD},

then HΓ(div,Ω) is the closure of Xdiv with respect to the ∥ ⋅ ∥H(div,Ω)-norm. For a proof,
refer e.g. to [87].
Similarly, we can define the closure of the space

Xcurl ..= {w ∈ C∞(Ω)3 ∣w ×n = 0 on ΓD},

with respect to the ∥ ⋅ ∥H(curl,Ω)-norm, which yields the Hilbert space

H(curl,Ω) ..= {w ∈ (L2(Ω))3 ∣ curlw ∈ L2(Ω)3},

equipped with the norm

∣∣w∣∣H(curl,Ω)
..= (∥w∥2

0 + ∥ curlw∥2
0)

1
2.

This space is of particular importance as it corresponds to the space of finite energy
solutions to Maxwell’s equations. We can limit the space so that the Dirichlet boundary
condition A ×n = 0 is satisfied, obtaining the Hilbert space

HΓ(curl,Ω) ..= {w ∈H(curl,Ω) ∣w ×n = 0 on ΓD}.

Note that we assume the existence of the partial derivatives in the distributional sense in
the above definitions.
So far, we are only concerned with the function spaces H(curl,Ω) and HΓ(curl,Ω). The
function space H(div,Ω) and its subspaces will come into play when using the gauged
formulation, see Chapter 4.

An important connection between the spaces H(div,Ω) and H(curl,Ω) is given by the
following exact sequence for a simply connected domain Ω ⊂ R3, which is called De Rham
- complex (see e.g. [12] or [101]):

R↪H1(Ω) ∇Ð→H(curl,Ω) curlÐÐ→H(div,Ω) divÐ→ L2(Ω) → 0.

Hence, every divergence-free vector field in the space H(div,Ω) can be considered as
the curl of another vector field in H(curl,Ω). The corresponding De Rham complex for
homogeneous boundary conditions is

0↪H1
0(Ω) ∇Ð→H0(curl,Ω) curlÐÐ→H0(div,Ω) divÐ→ L2(Ω) Ð→ R .

Note that the hook arrow ↪ indicates a monomorphism.

Returning to the (ungauged) Ampère’s law, we can now state the complete weak for-
mulation of the problem including the appropriate function spaces:

Problem (EM)w: Find A ∈HΓ(curl,Ω), such that

∫
Ω

(µ−1 curlA) ⋅ curl Ã +κA ⋅ Ã dx − ∫
∂Ω

K ⋅ Ã ds = ∫
Ω

jI ⋅ Ã dx (2.121)

holds for all Ã ∈HΓ(curl,Ω).
Note that, depending on the setting, the vector potential is real-valued, A ∶ Ω → R3

(magnetostatic case or system obtained from implicit time stepping methods) or complex-
valued, A ∶ Ω→ C3 (eddy current system or full Maxwell system in the frequency domain).
Thus, the above-defined function spaces refer to the L2(Ω)3 space over the fields R3 or
C3. However, as it is not common to specify the field in the definition of these spaces, we
will use the same notation for the real and complex cases, assuming that the choice of the
corresponding space is clear from the context of the problem.
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2.2.6 Differential operators on surfaces

To define tangential boundary conditions for elements of the space H(curl,Ω), we have
to set up some general preliminaries concerning differential operators on a surface. The
following definitions hold for a bounded domain Ω with a C2-boundary Γ = ∂Ω but can
be extended to cover the case of a Lipschitz domain [26]. Instead of considering the whole
boundary Γ, it is possible to reduce it to a C2-surface or a Lipschitz continuous surface
Σ ⊂ Γ. Let

L2
t (Γ) ..= {u ∈ (L2(Γ))3 ∣ u ⋅n = 0}

denote the space of surface tangential vector fields in L2(Γ) together with the standard
L2(Γ)-norm. The surface gradient of a function f ∈H1(Γ) can be defined by a parametric
representation of Γ [87]. Writing x ∈ Γ as

x = (x1(u1, u2), x2(u1, u2), x3(u1, u2)),T

the surface gradient ∇Γ ∶H
1
2 (Γ) → L2

t (Γ) can be defined by

∇Γf =
2

∑
i,j=1

gij
∂f

∂ui

∂x

∂uj
,

with gij being the entries of the inverse of the matrix G given by

Gij =
∂x

∂ui

∂x

∂uj

for i, j = 1,2. Furthermore, by duality, we can introduce the adjoint operators

divΓ ∶ L2
t (Γ) →H− 1

2 (Γ)
and

curlΓ ∶ L2
t (Γ) →H− 1

2 (Γ),
as well as

curlΓ ∶H
1
2 (Γ) → L2

t (Γ).

Note that the negative superscript characterizes the dual space of H
1
2 (Γ).

For a function u ∈ L2
t (Γ), the surface divergence divΓu satisfies

∫
Γ

(divΓu)f ds = −∫
Γ

∇Γf ds,

for all f ∈H
1
2 (Γ) and the surface vector curl of a function f ∈H

1
2 (Γ) is defined by

curlΓ f ..= ∇Γf ×u for u ∈ L2
t (Γ)

(hence it is just the rotated gradient of the function f). The surface scalar curl can be
defined using Stokes’ theorem,

∫
Γ

(curlΓu)f ds = ∫
Γ

u ⋅ (curlΓ f) ds ∀f ∈H
1
2 (Γ).

Note that the integrals are meant as duality pairings. For the above-defined operators,
the following relations hold for a function u ∈ L2

t (Γ):
curlΓu = −divΓ(u ×u),
divΓu = curlΓ(u ×u).

Finally, the surface Laplacian

∆Γ ∶H
1
2 (Γ) →H− 1

2 (Γ)

of a function f ∈H
1
2 (Γ) is defined by

∆Γf ∶= divΓ(∇Γf) = − curlΓ(curlΓ f).
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2.2.7 Traces of H(div) and H(curl)

In this section, we briefly present appropriate function spaces for the generalized boundary
values Ã×n and Ã⋅n. As we have seen in Section 2.1.4, the elastic Dirichlet boundary data

u0 were elements of the trace space H
1
2 (ΓD)3 corresponding to the Sobolev spaces H1(Ω)3.

Similar traces can be defined for functions in C(Ω)3 ∩H(div,Ω) and C(Ω)3 ∩H(curl,Ω)
for a bounded Lipschitz domain Ω. The trace theorems (e.g. in [87, 101]) state that

(a) For a function u ∈ C(Ω)3 ∩ H(div,Ω) there exists a unique continuous operator

γn ∶H(div,Ω) →H− 1
2 (Γ) with the property

γnu(x) = u(x) ⋅n(x) ∀x ∈ Γ.

(b) For a function u ∈ C(Ω)3 ∩ H(curl,Ω) there exists a unique continuous operator

γt ∶H(curl,Ω) →H− 1
2 (Γ)3 satisfying

γtu(x) = u(x) ×n(x) ∀x ∈ Γ.

In contrast to γn, the trace operator γt for H(curl,Ω) is not surjective. Since (A×n)⋅n = 0,
the functions γtA are elements of the space

H
− 1

2
t (Γ)3 ..= {s ∈H− 1

2 (Γ)3 ∣ s ⋅n = 0 on Γ}.

Hence, not all elements of H− 1
2 (Γ)3 are tangential to Γ, as the trace map γt requires. A

way out of this problem is to reduce the codomain of the tangential trace map to the space
of tangential traces v ×n∣Γ on Γ for a function v ∈H(curl,Ω),

H− 1
2 (div,Γ) ..= {u ∈H− 1

2
t (Γ)3 ∣ divΓu ∈H− 1

2 (Γ)},

where divΓ denotes the surface divergence on Γ defined in Section 2.2.6. This space is a
Hilbert space with the graph norm

∣∣u∣∣
H− 1

2 (div,Γ)
..= (∣∣u∣∣2

H
− 1

2
t (Γ)3

+ ∣∣divΓu∣∣
H− 1

2 (Γ)
)

2

and the trace map

γ∗t ∶H(curl,Ω) →H− 1
2 (div,Γ)

is surjective. For details and a proof, refer to [87]. Note that for a smooth boundary Γ

(or a smooth surface Σ ⊂ Γ), the space H
− 1

2
t (Γ)3 is equal to the space [2]

H
1
2
x (Γ)3 ..= {(v ×n)∣Γ ∣ v ∈H1(Ω)3},

as well as to

H
− 1

2
T (Γ)3 ..= {(n × v ×n)∣Γ ∣ v ∈H1(Ω)3}.

The dual space of H− 1
2 (div,Γ) is the space of all tangential components (n × v ×n)∣Γ for

a vector v ∈H(curl,Ω) given by

H− 1
2 (curl,Γ) ..= {u ∈H− 1

2
x (Γ)3 ∣ curlΓu ∈H− 1

2 (Γ)},

with the graph norm

∣∣u∣∣
H− 1

2 (curl,Γ)
..= (∣∣u∣∣2

H
− 1

2
x (Γ)3

+ ∣∣curlΓu∣∣2
H− 1

2 (Γ)
)

1
2

.
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The spaces H− 1
2 (div,Γ) and H− 1

2 (curl,Γ) are Hilbert spaces [87]. Moreover, the trace
map

γT ∶H(curl,Ω) →H− 1
2 (curl,Γ),

is well-defined. Notice that u ∈ H− 1
2 (curl,Γ) holds if and only if (u × n) ∈ H− 1

2 (div,Γ),
and

divΓ(u ×n) = curlΓu ∀u ∈H− 1
2 (div,Γ).

This setting allows to extend the definitions of the operators ∇Γ and curlΓ for f ∈H
1
2 (Γ)

using duality via

∫
Γ

(∇Γf) ⋅u ds = −∫
Γ

(divΓu)f ds ∀u ∈H− 1
2 (div,Γ),

∫
Γ

(curlΓ f) ⋅u ds = ∫
Γ

(curlΓu)f ds ∀u ∈H− 1
2 (curl,Γ),

which yields ∇Γf ∈H− 1
2 (curl,Γ) and curlΓ f ∈H− 1

2 (div,Γ) [2].
With the results from above, we can characterize the boundary values A ⋅n and A×n as

elements of the trace spaces H− 1
2 (Γ) and H− 1

2 (div,Γ), respectively.

2.2.8 Existence and uniqueness of the solution

In this section, we aim to prove the existence and uniqueness of a solution to the problem
(EM)w defined in Section 2.2.4. For this purpose, we will treat the cases κij ∈ R+, κij = 0
and κij ∈ C for all i, j = 1, ..,3 separately, following [101].

For K ∈ {R,C}, define the bilinear form

b̂ ∶HΓ(curl,Ω) ×HΓ(curl,Ω) → K

with
b̂(A, Ã) = ∫

Ω

(µ−1 curlA) ⋅ curl Ã +κA ⋅ Ã dx, (2.122)

as well as the linear form l̂ ∶HΓ(curl,Ω) → K,

l(Ã) = ∫
Ω

jI ⋅ Ã dx + ∫
ΓN

K ⋅ Ãt ds, (2.123)

with Ãt = n × Ã ×n. The weak form of the problem can then be written as

Problem (EM)w: Find A ∈HΓ(curl,Ω), such that

b̂(A, Ã) = l̂(Ã) (2.124)

holds for all Ã ∈HΓ(curl,Ω).

The case κij ∈ R+

In order to apply the Lax-Milgram lemma to the problem (EM)w, we have to show the
continuity of b̂(⋅, ⋅) and l̂(⋅) in a first step. The linear form l(⋅) can be splitted into the
linear functionals L1 and L2, with

l̂(Ã) = L1(Ã) +L2(Ã) = ∫
Ω

jI ⋅ Ã dx + ∫
ΓN

K ⋅ Ãt ds.
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The linear functional L1 is obviously continuous,

∣L1(Ã)∣ ≤ ∣∣jI ∣∣0 ∣∣Ã∣∣
0
≤ ∣∣jI ∣∣0 ∣∣Ã∣∣

H(curl,Ω)
,

where ∣∣⋅∣∣0 denotes the norm in L2(Ω)3. The tangential trace γt with γtÃ = Ã × n is a
continuous operator on H(curl,Ω), i.e.

∣∣γtÃ∣∣
H− 1

2 (ΓN )3
≤ c ∣∣Ã∣∣

H(curl,Ω)

for a constant c. Furthermore, from the surjectivity of γ∗t we can deduce that for K ∈
H− 1

2 (div,Γ) there exists an Â ∈H(curl,Ω) such that

γ∗t Â =K.

The trace theorem [87] for the trace operators γ∗t and γT implies that for all Ã ∈H(curl,Ω)

[K,γT Ã]Γ = (curl Â, Ã)0 − (Â, curl Ã)0,

where (⋅, ⋅) is the inner product in L2(Ω)3 and [⋅]Γ describes the duality product in the

space H− 1
2 (div,Ω). Thus, we can conclude that for a fixed K ∈ H− 1

2 (div,Γ), the linear
functional L2 ∶H(curl,Ω) → R defined as

L2(Ã) = [K,γT Ã]Γ = ∫
Γ

K ⋅ γT Ã ds = (curl Â, Ã)0 − (Â, curl Ã)0

is continuous since
∣L2(Ã)∣ ≤ c ∣∣Â∣∣

H(curl,Ω)
∣∣Ã∣∣

H(curl,Ω)

and therefore
∣L2(Ã)∣ ≤ ∣∣K ∣∣

H− 1
2 (div,Γ)

∣∣Ã∣∣
H(curl,Ω)

,

as, due to the relation γ∗t Â =K, the functional L2 is independent of Â. Summing up, for
the linear form l̂, we obtain the estimate

l̂(Ã) ≤ C ∣∣Ã∣∣
H(curl,Ω)

(∣∣jI ∣∣0 + ∣∣K ∣∣
H− 1

2 (div,Γ)
)

for a constant C ∈ R.
For κij ∈ R+ for all i, j = 1,2,3, the bilinear form b̂(⋅, ⋅) is continuous,

b̂(A, Ã) ≤ β̂ ∣∣A∣∣H(curl,Ω) ∣∣Ã∣∣
H(curl,Ω)

,

with the constant
β̂ ..= max{ max

i=1,2,3
µ−1
ii , max

i=1,2,3
κii},

where µ−1
ii denote the entries of the matrix µ−1. Furthermore, b̂(⋅, ⋅) is coercive,

b̂(A,A) ≥ α̂ ∣∣A∣∣2H(curl,Ω),

with the constant
α̂ ..= min{ min

i=1,2,3
µ−1
ii , min

i=1,2,3
κii}.

Note that we assumed the parameter matrices µ and κ to have a diagonal structure
with positive entries. The verification of the above-mentioned properties will be given in
Chapter 4 for a material class satisfying this assumption.
The Lax-Milgram lemma now directly yields a unique solution of the weak problem.
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The case κij ∈ C

In case that the bilinear form b̂(⋅, ⋅) is not coercive, we can still obtain a unique solution
by requiring that

sup
A∈HΓ(curl,Ω)

b̂(A, Ã)
∣∣A∣∣H(curl,Ω)

≥ γ ∣∣Ã∣∣
H(curl,Ω)

for all Ã ∈HΓ(curl,Ω), (2.125)

for a constant γ > 0 according to the generalized Lax-Milgram lemma [4].
This result can be applied to the case κij ∈ C for i, j = 1,2,3, i.e.

κij = Re(κij) + i Im(κij),

with Im(κij) ≠ 0. Following [101], we split the strong form into its real and imaginary
part, by rewriting

A = Re(A) + i Im(A),
jI = Re(jI) + i Im(jI),

and obtain the real system

curl(µ−1 curl Re(A)) +Re(κ)Re(A) − Im(κ) Im(A) = Re(jI),
curl(µ−1 curl Im(A)) + Im(κ)Re(A) +Re(κ) Im(A) = Im(jI),

where Re(A) = (Re(Ai))i and Im(A) = (Im(Ai))i, i = 1,2,3 are the vectors of the real and
imaginary parts of the coefficients of A (the same convention holds for jI). The matrices
Re(κ) = Re(κij)i,j=1,2,3 and Im(κ) = Im(κij)i,j=1,2,3 are defined in the same way.
To obtain the weak form of the system, we multiply the equations by Re(Ã) and Im(Ã),
respectively, perform the usual partial integration and add the two resulting equations to
obtain a single weak problem:

Problem (EM)wC : Find (Re(A), Im(A)) ∈HΓ(curl,Ω) ×HΓ(curl,Ω), such that

b̂ ((Re(A), Im(A)), (Re(Ã), Im(Ã))) = l̂ ((Re(Ã)), Im(Ã)) (2.126)

holds for all (Re(Ã), Im(Ã)) ∈ HΓ(curl,Ω) ×HΓ(curl,Ω). Suppressing the arguments for
the sake of clarity, b̂(⋅, ⋅) and l̂(⋅) can be written as

b̂(⋅, ⋅) = ∫
Ω

µ−1(curl Re(A)) ⋅ (curl Re(Ã)) dx

+ ∫
Ω

µ−1(curl Im(A)) ⋅ (curl Im(Ã)) dx

+ ∫
Ω

Re(κ) [Re(A) ⋅Re(Ã) + Im(A) ⋅ Im(Ã)] dx

+ ∫
Ω

Im(κ) [Re(A) ⋅ Im(Ã) − Im(A) ⋅Re(Ã)] dx

l̂(⋅) = ∫
Ω

Re(jI) ⋅Re(Ã) + Im(jI) ⋅ Im(Ã) dx

+ ∫
ΓN

K ⋅ (Re(Ãt) + Im(Ãt)) ds.
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As in the real case, b̂(⋅, ⋅) and l̂(⋅) are continuous and we merely have to verify the condition
(2.125). Hence, we have to find A = (Re(A), Im(A)) ∈HΓ(curl,Ω)×HΓ(curl,Ω) such that

b̂(⋅, ⋅) ≥ γ ∣∣(Re(Ã), Im(Ã))∣∣
H(curl,Ω)

∣∣(Re(A), Im(A))∣∣H(curl,Ω)

for all Ã = (Re(Ã), Im(Ã)) ∈HΓ(curl,Ω). Choosing

A = ((Re(A)), Im(A)) ..= (Re(Ã), Im(Ã)) + γ̂(Im(Ã),−Re(Ã)), (2.127)

for a constant γ̂ > 0, inserting (2.127) into the bilinear form b̂(⋅, ⋅) and assuming that κ
and µ are diagonal matrices as required above, we obtain

b̂(⋅, ⋅) = ∫
Ω

(µ−1 curl Re(Ã)) ⋅ curl Re(Ã) dx + ∫
Ω

(µ−1 curl Im(Ã)) ⋅ curl Im(Ã) dx

+ ∫
Ω

γ̂ (µ−1 curl Im(Ã) ⋅ curl Re(Ã) −µ−1 curl Re(Ã) ⋅ curl Im(Ã)) dx

+ ∫
Ω

Re(κ) [Re(Ã)Re(Ã) + Im(Ã) Im(Ã)] dx

+ ∫
Ω

γ̂ Im(κ) [Im(Ã) Im(Ã) +Re(Ã)Re(Ã)] dx

≥ min
i=1,2,3

µ−1
ii (∣∣curl Re(Ã)∣∣2

0
+ ∣∣curl Im(Ã)∣∣2

0
)

+ min
i=1,2,3

Re(κii) (∣∣Re(Ã)∣∣2
0
+ ∣∣Im(Ã)∣∣2

0
)

+ γ̂ min
i=1,2,3

Im(κii) (∣∣Im(Ã)∣∣2
0
+ ∣∣Re(Ã)∣∣2

0
)

= min
i=1,2,3

µ−1
ii ∣∣curl Ã∣∣2

0
+ ( min

i=1,2,3
Re(κii) + γ̂ min

i=1,2,3
Im(κii)) ∣∣Ã∣∣2

0
.

Now setting

γ̂ ..=
min
i=1,2,3

µ−1
ii − min

i=1,2,3
Re(κii)

min
i=1,2,3

Im(κii)
,

we obtain the estimate

sup
A∈HΓ(curl,Ω)

b̂((Re(A), Im(A)), (Re(Ã), Im(Ã))) ≥ γ ∣∣Ã∣∣
H(curl,Ω)

,

with
γ ..= min

i=1,2,3
µ−1
ii ,

which implies the existence and uniqueness of the solution to the problem with κ ∈ C3×3.

The case κij = 0

In a next step, we will consider a magnetostatic problem, which is obtained from setting
κij = 0 for all i, j = 1,2,3. In this case, the bilinear form

b̂(A,A) = ∫
Ω

µ−1 curlA ⋅ curl Ã dx,
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is not coercive: For A = ∇φ, where φ is a scalar potential function, we have b̂(∇φ,∇φ) = 0,
whereas the corresponding norm ∣∣∇φ∣∣2H(curl,Ω) = ∣∣∇φ∣∣20 does not vanish. We therefore
require

∫
Ω

jI ⋅ ∇ψ dx = −∫
Ω

div jIψ dx + ∫
∂Ω

(jI ⋅n)ψ dx = 0 for all ψ ∈H1(Ω). (2.128)

Note that in this case,

∫
ΓN

K ⋅A ds = 0,

asK = µ−1 curl∇ψ = 0. Partial integration implies that div jI = 0 in Ω and jI ⋅n = 0 on the
boundary ∂Ω, i.e. the right-hand side has to be compatible. Since neither the Lax-Milgram
lemma nor its generalization can be applied here, the weak problem is reformulated as a
saddle point problem.
Adding the condition

∫
Ω

A ⋅ ∇ψ dx = 0 for all ψ ∈H1(Ω),

the weak formulation turns into

Problem (EM)ws : Find (A, φ) ∈HΓ(curl,Ω) ×H1(Ω), such that

b̂(A, Ã) + d̂(Ã, φ) = l̂(Ã) for all Ã ∈HΓ(curl,Ω), (2.129)

d̂(A, ψ) = 0 for all ψ ∈H1(Ω), (2.130)

with the definitions

b̂(A, Ã) = ∫
Ω

(µ−1 curlA) ⋅ (curl Ã) dx (2.131)

d̂(A, ψ) = ∫
Ω

A ⋅ ∇ψ dx, (2.132)

l̂(Ã) = ∫
Ω

jI ⋅ Ã dx + ∫
ΓN

K ⋅A ds. (2.133)

In fact, the space H1(Ω) of the functions ψ can even be replaced by the quotient space
H1(Ω)/R, as every ψ + c, c ∈ R is a solution of the above weak system as well.
The existence and uniqueness of this problem is guaranteed by Brezzi’s Splitting Theorem
[23] (presented in detail in Chapter 3), which states that a saddle point problem of the form
(EM)ws with continuous bilinear forms and a continuous linear functional has a unique
solution if the bilinear form b̂(⋅, ⋅) is coercive on the kernel

ker(D̂) ..= {A ∈HΓ(curl,Ω) ∣ d̂(A, ψ) = 0∀ψ ∈H1(Ω)},

and, additionally, the bilinear form d̂(⋅, ⋅) satisfies the inf-sup condition (also called
Ladyshenskaya-Babuška-Brezzi condition or LBB-condition)

inf
ψ∈H1(Ω)

sup
A∈HΓ(curl,Ω)

d̂(A, ψ)
∣∣ψ∣∣1 ∣∣A∣∣H(curl,Ω)

≥ β̂, (2.134)

for a constant β̂ > 0, where ∣∣ψ∣∣1 denotes the norm in the Sobolev space H1(Ω).
The coercivity of b̂(⋅, ⋅) on ker(D̂) can be shown by using the Friedrichs-type inequality

c ∣∣curlA∣∣0 ≥ ∣∣A∣∣0 (2.135)
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with c > 0 for all A ∈H(curl,Ω) satisfying

∫
Ω

A ⋅ ∇ψ dx = 0 for all ψ ∈H1(Ω), (2.136)

which is proven on the basis of a Helmholtz decomposition of A (shown, e.g. in [101]).
Inequality (2.135) implies that

(c + 1) ∣∣curlA∣∣20 ≥ ∣∣A∣∣20 ∣∣curlA∣∣0 + ∣∣curlA∣∣20
≥ 1

c
∣∣A∣∣20 + ∣∣curlA∣∣20

≥ min{1,
1

c
}(∣∣A∣∣20 + ∣∣curlA∣∣20),

for all A ∈H(curl,Ω) satisfying condition (2.136). Hence,

b̂(A, Ã) = ∫
Ω

(µ−1 curlA) ⋅ curlA dx = ∫
Ω

min
i=1,2,3

µ−1
ii ∣∣curlA∣∣20 dx

≥ α̂(∣∣A∣∣20 + ∣∣∇ ×A∣∣20) = α̂ ∣∣A∣∣H(curl,Ω),

where the constant α̂ is given by

α̂ ..=
min
i=1,..,3

µ−1
ii min{1, 1

c}

c + 1
.

Thus, the coercivity requirement is fulfilled.
The LBB-condition (2.134) can be proven by showing the equivalent formulation

sup
A∈HΓ(curl,Ω)

d̂(A, ψ)
∣∣A∣∣H(curl,Ω)

≥ β̄ ∣∣∇ψ∣∣0 ∀ψ ∈H1(Ω),

with β̄ > 0. Now we can choose A ∈HΓ(curl,Ω) with A = ∇ψ and obtain

sup
A∈HΓ(curl,Ω)

d̂(A, ψ)
∣∣A∣∣H(curl,Ω)

≥
∣∣∇ψ∣∣20
∣∣∇ψ∣∣0

= ∣∣∇ψ∣∣0 .

Finally, we mention that in case κii ∈ R− for all i = 1,2,3, the coercivity of the bilinear
form b̂(⋅, ⋅) or the satisfaction of the ellipticity condition on ker(D̂) are in general not
guaranteed. However, one can show that a unique solution of the corresponding weak
problem is not obtained only for a discrete set of choices κij ∈ R− [79, 101]. This case will
not be discussed in the thesis.

2.2.9 Influence of perturbations

For the case κii ∈ R+, i = 1,2,3, the Lax-Milgram lemma yields the stability estimate

∣∣A∣∣H(curl,Ω) ≤
1

α̂
∣∣l̂∣∣

H(curl,Ω)′
= 1

α̂
(∣∣jI ∣∣0 + ∣∣K ∣∣

H− 1
2 (div,Γ)

) (2.137)

where H(curl,Ω)′ denotes the dual space of H(curl,Ω). Thus, the solution depends con-
tinuously on the right-hand side data K and jI . For very small values of min

i=1,2,3
κii, the

stability estimate does not yield satisfactory results any more.
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If κ ∈ C3×3 with Im(κii) > 0, the generalized Lax-Milgram lemma yields the stability
estimate

∣∣A∣∣H(curl,Ω) ≤
1

min
i=1,2,3

µ−1
ii

∣∣l̂∣∣
H(curl,Ω)′

≤ 1

min
i=1,2,3

µ−1
ii

(∣∣jI ∣∣0 + ∣∣K ∣∣
H− 1

2 (div,Γ)
) . (2.138)

If, however, Im(κii) → 0, the stability estimate fails, i.e. the imaginary part of κii “stabi-
lizes the problem” in this case [101].
Finally, in the magnetostatic case, Brezzi’s theorem yields the stability estimate

∣∣A∣∣H(curl,Ω) + ∣∣Ψ∣∣1 ≤ c ∣∣l̂∣∣H(curl,Ω)′
.
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Chapter 3

The Coupled Model: Magnetic
Scalar Potential Formulation

Having introduced the basic modeling and analysis aspects of linear elasticity and elec-
trodynamics, we are finally able to take the next step by coupling the two concepts in
a single model. As the title suggests, the model presented in this chapter uses the total
scalar potential formulation of Maxwell’s equations, which was introduced in Section 2.2.1.
Its derivation based on a special case of Hamilton’s principle is similar to the derivation
of the linear elastic equations of motion presented in Section 2.1.2. In this way, a coupled
system of partial differential equations can be obtained for the elastic and magnetic quan-
tities, which serves as a basis for further analysis.
The structure of the chapter follows the development of the model from its physical origin
to the discussion of whether or not it is (uniquely) solvable. The derivation of the coupled
magnetoelastic model is presented in Section 3.1, leading to the strong and weak forms of
the coupled equations. Section 3.2 is concerned with the analysis of the structure of the
coupled problem in the continuous case. We show that the resulting system of equations
constitutes a saddle point problem with a penalty term. Using appropriate tools from
functional analysis, the existence and uniqueness of the solution to this system is shown
and the corresponding function spaces are discussed. In particular, we prove a continu-
ous and discrete inf-sup condition for a class of magnetostrictive materials having certain
coupling properties. In Section 3.4.2 the general results are specified to a two-dimensional
model under the assumption of plane stress.

3.1 Derivation of the coupled model

Consider a magnetostrictive material that is assumed to be homogeneous at the macro-
scopic level and forms a body whose undeformed state we denote by the domain Ω ⊂ R3.
We aim at examining the behavior of the material due to the influence of external magnetic
and mechanical fields. On the one hand, the application of the magnetic field will cause
a change in the elastic strain of the material. On the other hand, the magnetization of
the material will be affected by the mechanical stress. We suppose that the deformation
of the body has no effect on the magnetic field outside the material and thus the coupling
occurs only in the material itself. Furthermore, we assume that

• only small strains and deviations from the initial magnetization state are considered,

• the material behavior is linear and reversible,
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• the process is time-independent,

• the system energy is conservative and that

• no hysteresis effects occur.

In general, magnetostrictive materials show a non-linear material behavior. As explained
in Section 1.1.3, the linearity assumption can be satisfied by applying a magnetic bias
using a DC voltage or a permanent magnet, as well as a mechanical bias in terms of
a prestress, such that for small variations from the initial magnetization and stressed
state, the material can be reasonably characterized by a linear model. The biasing can be
additionally used to produce so-called “giant” dynamic strains in some applications [39].
In the following, we will retain the notation introduced in Chapter 2 and define the gradient
∇v of a vector field as the Jacobian

∇v ..= ( ∂vi
∂xj

)
i,j=1,2,3

and the divergence divσ of a second order tensor σ as

divσ ..= ∇T ⋅σT =
⎛
⎝

3

∑
j=1

∂σij

∂xj

⎞
⎠
i=1,2,3

.

The deformation of the body is characterized by the displacement field u ∶ Ω → R3 or the
strain ε(u) ∶ Ω→ R3×3 using the linear relation

ε(u) = ∇u +∇u
T

2
.

The magnetic influence is described by the magnetic field H ∶ Ω → R3 and the magnetic
flux density B ∶ Ω → R3. Furthermore, σ ∶ Ω → R3×3 denotes the second order Cauchy
stress tensor (see Chapter 2).

3.1.1 Constitutive equations

Due to the analogy to piezomagnetic materials, the constitutive equations of biased mag-
netostrictive materials can be derived using a thermodynamical ansatz and considering the
Taylor approximation of the coupled free-energy density function Ψ(ε,H) that depends
on the elastic strain ε and the magnetic field H. Since only a linear approximation is
considered, Ψ can be written as [82, 95]

Ψ(ε,H) = 1

2
H ⋅ ∂2Ψ

∂H∂H
⋅H + ε ∶ ∂2Ψ

∂ε∂H
⋅H − 1

2
ε ∶ ∂

2Ψ

∂ε∂ε
∶ ε, (3.1)

where the first summand describes the stored magnetic energy, the second one represents
the magnetomechanical part and the third term the stored mechanical energy. The second
order derivatives in Equation (3.1) are assumed to be constant and result in the material
tensors

µε ..= ∂2Ψ

∂H∂H
, e ..= ∂2Ψ

∂ε∂H
, CH ..= ∂2Ψ

∂ε∂ε
. (3.2)

The fourth order tensor CH ∈ R3×3×3×3 is defined as the tensor of linear elasticity for a
constant magnetic field. As explained in Chapter 2, it can be reduced to a symmetric,
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positive definite matrix. Furthermore, µε ∈ R3×3 is the second order magnetic permeability
tensor for constant strain. Adopting the piezomagnetic nomenclature, µε can be consid-
ered as a diagonal matrix with positive entries µii > 0, i = 1,2,3. The coupling tensor
e ∈ R3×3×3 is of order three but can be reduced to a matrix in R6×3 for materials with a
certain polycrystalline structure. This transformation will be explained in Section 3.4.1
The coupled elastic and magnetic quantities can be determined as derivatives of the energy
density function. In the resulting linearized constitutive relations, the bias is included in
the constant material tensors. In this manner, a system of coupled constitutive relations
is obtained, similar to those of piezoelectric or piezomagnetic materials:

σ(ε,H) = −∂Ψ

∂ε
= CH ∶ ε − e ⋅H,

B(ε,H) = ∂Ψ

∂H
= eT ∶ ε +µεH. (3.3)

Note that the elastic strain ε and the magnetic field H are the independent variables in
the above system of equations, whereas the stress σ and the magnetic flux density B are
coupled variables depending on both mechanical and magnetic quantities.
The dot product (single inner product) of the third order tensor e and the vector H can
be defined componentwise by

(e ⋅H)ij ..=
3

∑
k=1

eijkHk.

Similarly, the double inner product of eT and the second order tensor ε has the compo-
nentwise definition

(eT ∶ ε)k ..=
3

∑
j,k=1

ekijεji.

The product CH ∶ ε was already defined in Section 2.1 and yields a second order tensor.
Throughout the thesis, we will use the dot notation to refer to the single inner product
of a third order tensor and a vector, as defined above, as well as to the scalar product of
two vectors. Since only few third order tensors will appear in the presented models, the
notation will not cause ambiguity.
Assuming a static curl-free magnetic field, we can use the magnetic scalar potential Ψ ∶
Ω→ R with H = −∇Ψ. Then, the above system can is reformulated as

σ(u,Ψ) = CH ∶ ε(u) + e ⋅ ∇Ψ,

B(u,Ψ) = eT ∶ ε(u) −µε∇Ψ. (3.4)

3.1.2 Strong and weak formulations

Let Ω ⊂ R3 describe the magnetoelastic domain. As in the previous chapters, we suppose
that Ω is an open, bounded and simply connected set in R3 with a Lipschitz continuous
boundary ∂Ω. Furthermore, let ΓD and ΓN , as well as Γc,D and Γc,N denote the (non-
overlapping) elastic and magnetic Dirichlet and Neumann boundaries, respectively, with
∂Ω = ΓD∪ΓN and ∂Ω = Γc,D∪Γc,N . Furthermore, we assume that ΓD ⊆ Γc,D and prescribe
homogeneous Dirichlet boundary conditions, i.e.

u = 0 on ΓD and Ψ = 0 on Γc,D.

Moreover, by τ = σ(u,Ψ) ⋅ n and −B̃ = B(u,Ψ) ⋅ n, τ ∈ R3, B̃ ∈ R, we denote the
prescribed values of σ(u,Ψ) and B(u,Ψ) on the boundaries ΓN and Γc,N , respectively,
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with the outer normal vector n ∈ R3. We use a special case of Hamilton’s principle applied
to the stationary setting using the Lagrangian L of the system,

L =Wmag −U, (3.5)

where Wmag is the magnetic energy and U is the potential energy defined as

U(u,Ψ) = 1

2
∫
Ω

σ(u,Ψ) ∶ ε(u) dx − ∫
ΓN

u ⋅ τ ds, (3.6)

Wmag(u,Ψ) = 1

2
∫
Ω

H(Ψ) ⋅B(u,Ψ) dx − ∫
Γc,N

ΨB̃ ds. (3.7)

The Lagrangian is the difference between the internal mechanical and magnetic energies
and does not include terms representing the electric energy or kinetic energy. The potential
energy U and the magnetic energy Wmag can each be expressed as sum of the strain en-
ergy or magnetostatic energy, respectively, and terms defining elastic and magnetic surface
forces, as explained in Chapter 2. The idea behind the different signs of the magnetic and
mechanical energy terms can be ascribed to the distinction of energy and coenergy, indi-
cating that the choice of the independent variables in the constitutive equations influences
the signs of the magnetic and mechanical terms in (3.5). In the above energy formulation,
the magnetic part can be characterized as a coenergy term with H as the independent
(uncoupled) variable, while the formulation of the mechanical part constitutes an energy
term with the uncoupled variable ε. We will come back to this issue in Chapter 4 with an
elaborate discussion of the constitutive equations deriving from different considerations of
the system’s energy and coenergy.
The functions U and Wmag depend on the elastic displacement u and the magnetic scalar
potential Ψ since the coupling is implemented by the dependent variables σ andB through
the constitutive equations (3.4).

To derive the strong and weak formulations of the coupled problem, a variational ap-
proach can be used. Consider the variations θv for u and θΦ for Ψ with test functions
v ∶ Ω → R3 and Φ ∶ Ω → R and a parameter θ ∈ R. The admissible test functions and
the perturbed variables u + θv and Ψ + θΦ must satisfy the given homogeneous Dirichlet
boundary conditions

v(x) = 0, u + θv = 0 on ΓD,

Φ(x) = 0, Ψ + θΦ = 0 on Γc,D.

For the function J ∶ R→ R defined as

J(θ) ..=Wmag(u,Ψ + θΦ) −U(u + θv,Ψ),

the principle states that
dJ(θ)
dθ

∣
θ=0

!= 0.

Inserting the constitutive equations (3.4) into the expressions for the magnetic and elastic
energies leads to

J(θ) = 1

2
∫
Ω

−∇(Ψ + θΦ)(eT ∶ ε(u) −µε∇(Ψ + θΦ)) dx − ∫
Γc,N

(Ψ + θΦ)B̃ ds

− 1

2
∫
Ω

(CH ∶ ε(u + θv) + e ⋅ ∇Ψ) ∶ ε(u + θv) dx + ∫
ΓN

(u + θv) ⋅ τ ds. (3.8)
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Differentiation with respect to θ yields

0 = dJ(θ)
dθ

∣
θ=0

= 1

2
∫
Ω

2(µε∇Ψ)∇Φ −∇Φ(eT ∶ ε(u)) dx − ∫
Γc,N

ΦB̃ ds

− 1

2
∫
Ω

(CH ∶ ε(v)) ∶ ε(u) +σ(u,Ψ) ∶ ε(v) dx + ∫
ΓN

v ⋅ τ ds, (3.9)

where the relation ∇Φ ⋅ (µε∇Ψ) = ∇Ψ ⋅ (µε∇Φ) has been taken into account.
Using the definition of the strain tensor, we can reformulate:

∫
Ω

σ(u,Ψ) ∶ ε(v) dx = ∫
Ω

σ(u,Ψ) ∶ ∇v dx. (3.10)

The transformation (3.10) requires the coupled tensor σ(u,Ψ) to be symmetric. Its elastic
part CH ∶ ε(u) is symmetric by definition, whereas the term e ⋅H yields a second order
tensor G whose components are defined by the single inner product

Gij =
3

∑
k=1

eijkHk.

Due to the definition

eijk =
∂2Ψ

∂εijHk

and the symmetry of the strain tensor, the third order tensor e is symmetric in the
components i and j, which directly yields the symmetry of G. Furthermore, Gauss’
theorem implies that

∫
ΓN

v ⋅ (σ(u,Ψ)n) ds = ∫
Ω

σ(u,Ψ) ∶ ∇v dx + ∫
Ω

v ⋅ divσ(u,Ψ) dx,

and thus

∫
Ω

σ(u,Ψ) ∶ ε(v) dx = ∫
Ω

σ(u,Ψ) ∶ ∇v dx

= ∫
ΓN

v ⋅ (σ(u,Ψ)n) ds − ∫
Ω

v ⋅ divσ(u,Ψ) dx. (3.11)

Similar computations can be carried out for the magnetic scalar potential Ψ and the elastic
strain ε,

∫
Ω

(µε∇Ψ) ⋅ ∇Φ dx = ∫
Γc,N

Φ(µε∇Ψ) ⋅n ds − ∫
Ω

Φ div(µε∇Ψ) dx , (3.12)

∫
Ω

(CH ∶ ε(u)) ∶ ε(v) dx = ∫
ΓN

v ⋅ (CH ∶ ε(u))n ds − ∫
Ω

v ⋅ div(CH ∶ ε(u)) dx , (3.13)

where (CH ∶ ε(v)) ∶ ε(u) = (CH ∶ ε(u)) ∶ ε(v) holds due to the commutativity of the
double inner product of second order tensors.
Inserting Equations (3.11)–(3.13) into the expression (3.9) results in

0 = ∫
Ω

v ⋅ (1

2
divσ + 1

2
div(CH ∶ ε(u))) dx − ∫

Ω

Φ div(µε∇Ψ) + 1

2
∇Φ ⋅ (eT ∶ ε(u)) dx

− ∫
ΓN

v ⋅ (1

2
σ(u,Ψ)n + 1

2
(CH ∶ ε(u))n − τ) ds − ∫

Γc,N

−Φ ((µε∇Ψ) ⋅n − B̃) ds. (3.14)
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Once again applying Green’s formula

∫
Ω

∇Φ ⋅ (eT ∶ ε(u)) dx = ∫
Γc,N

Φ(eT ∶ ε(u)) ⋅n ds − ∫
Ω

Φ div(eT ∶ ε(u)) dx,

finally, the variational formulation of the coupled problem can be derived,

0 = ∫
Ω

v ⋅ (1

2
divσ(u,Ψ) + 1

2
div(CH ∶ ε(u))) dx

+ ∫
Ω

Φ(−div(µε∇Ψ) + 1

2
div(eT ∶ ε(u))) dx

− ∫
ΓN

v ⋅ (1

2
σ(u,Ψ)n + 1

2
(CH ∶ ε(u))n − τ) ds

− ∫
Γc,N

Φ((−µε∇Ψ)n + 1

2
(eT ∶ ε(u)) ⋅n + B̃) ds (3.15)

for all admissible v and Φ. In particular, if v = 0 on ΓN and Φ = 0 on Γc,N , Equation
(3.15) reduces to

0 = ∫
Ω

v ⋅ (1

2
divσ(u,Ψ) + 1

2
div(CH ∶ ε(u))) ds

+ ∫
Ω

Φ(div(µε∇Ψ) + 1

2
div(eT ∶ ε(u))) ds, (3.16)

which suggests that both integrals must vanish. Using the fundamental lemma of calcu-
lus of variations [44], we can deduce that the integrands of both integrals must vanish,
too. In case that v and Φ are not equal to zero on the Neumann boundaries, the above
considerations lead to the equation

0 = ∫
ΓN

v ⋅ (1

2
σ(u,Ψ)n + 1

2
(CH ∶ ε(u))n − τ) ds

+ ∫
Γc,N

Φ((−µε∇Ψ) ⋅n + 1

2
(eT ∶ ε(u)) ⋅n + B̃) ds, (3.17)

yielding the Neumann boundary conditions for the elastic and magnetic boundaries.
With this preliminary work, we can finally state the strong form of the coupled problem:

Problem (CP ) ∶ Find (u,Ψ) ∈ C2(Ω)3 ×C2(Ω), such that

div(CH ∶ ε(u)) + 1

2
div(e ⋅ ∇Ψ) = 0 in Ω,

1

2
div(eT ∶ ε(u)) − div(µε ⋅ ∇Ψ) = 0 in Ω,

with Dirichlet boundary conditions

u = 0 on ΓD,

Ψ = 0 on Γc,D,
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and Neumann boundary conditions

(CH ∶ ε(u) + 1

2
e ⋅ ∇Ψ)n = τ on ΓN ,

(1

2
eT ∶ ε(u) −µε∇Ψ) ⋅n = −B̃ on Γc,N ,

where the linearity of the divergence operator has been used.
Following back the steps of the above derivation, the weak formulation of (CP ) can be
deduced. Multiplication of the strong form with test functions v, v = 0 on ΓD, and Φ with
Φ = 0 on Γc,D, integration and use of Green’s formula yields the system of equations

0 = ∫
ΓN

v ⋅ (CH ∶ ε(u)) ⋅n ds − ∫
Ω

∇v ∶ (CH ∶ ε(u)) dx

+ 1

2
∫

ΓN

v ⋅ (e ⋅ ∇Ψ)n ds − 1

2
∫
Ω

∇v ∶ (eT ⋅ ∇Ψ) dx,

0 = 1

2
∫

Γc,N

Φ(e ∶ ε(u)) ⋅n ds − 1

2
∫
Ω

∇Φ ⋅ (e ∶ ε(u)) dx

− ∫
Γc,N

Φ(µε∇Ψ) ⋅n ds + ∫
Ω

∇Φ ⋅ (µε∇Ψ) dx,

which finally results in the following weak formulation:

0 = ∫
Ω

∇v ∶ (CH ∶ ε(u) + 1

2
eT ⋅ ∇Ψ) dx − ∫

ΓN

v ⋅ (CH ∶ ε(u) + 1

2
eT ⋅ ∇Ψ)n ds,

0 = ∫
Ω

∇Φ ⋅ (1

2
e ∶ ε(u) −µε∇Ψ) dx − ∫

Γc,N

Φ(1

2
e ∶ ε(u) −µε∇Ψ) ⋅n ds. (3.18)

The system (3.18) can be reformulated in terms of bilinear forms and linear functionals.
Let the spaces of test functions be defined as

V ..= (H1(Ω))3,

V0
..= {v ∈ V ∣ vi = 0 on ΓD, i = 1,2,3},

M ..=H1(Ω),
M0

..= {Φ ∈ M ∣ Φ = 0 on Γc,D}.

The above function spaces are Hilbert spaces with corresponding norms ∣∣⋅∣∣V and ∣∣⋅∣∣M.
Then, the weak form of the coupled problem reads:

Problem (CP )w ∶ Find (u,Ψ) ∈ V0 ×M0, such that

a(u,v) + c(v,Ψ) = l(v) v ∈ V0,

c(u,Φ) − b(Ψ,Φ) =m(Φ) Φ ∈ M0,
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with

a(u,v) = ∫
Ω

∇v ∶ (CH ∶ ε(u)) dx = ∫
Ω

(CH ∶ ε(u)) ∶ ε(v) dx, (3.19)

b(Ψ,Φ) = ∫
Ω

∇Φ ⋅ (µε∇Ψ) dx, (3.20)

c(v,Ψ) = 1

2
∫
Ω

∇v ∶ (e ⋅ ∇Ψ) dx = 1

2
∫
Ω

ε(v) ∶ (e∇Ψ) dx, (3.21)

l(v) = ∫
ΓN

v ⋅ τ ds, (3.22)

m(Φ) = − ∫
Γc,N

ΦB̃ ds, (3.23)

where the bilinear forms a ∶ V0 × V0 → R and b ∶ M0 ×M0 → R correspond to the purely
elastic and purely magnetic influence, respectively, the bilinear form c ∶ V0 ×M0 → R
describes the coupling between the two fields and the linear functionals l ∶ V0 → R and
m ∶ M0 → R represent the magnetic and elastic surface forces.

So far CH, µε and e only appeared in their general form as tensors. However, exploiting
the symmetries of the tensors of linear elasticity and following the Voigt notation (Sec-
tion 2.1), the above expressions can be simplified. This will be especially useful in the
next section, where the examination of the properties of the system and its bilinear forms
requires a vivid formulation of the respective expressions.
Instead of using tensors of order three and higher, we can thus restrict ourselves to tensors
of order one and two. The stress and strain tensors then have the representation (see
Section 2.1),

σ = (σ1, σ2, σ3, σ4, σ5, σ6)T ..= (σ11, σ22, σ33, σ23, σ13, σ12)T,
ε = (ε1, ε2, ε3, ε4, ε5, ε6)T ..= (ε11, ε22, ε33,2ε23,2ε13,2ε12)T. (3.24)

In a similar manner, the coupling tensor e ∈ R3×3×3 can be turned into a 6 × 3 - matrix.
An examination with respect to the underlying crystallographic structure of the given
material allows a further simplification of the matrix [92]. A detailed characterization of
the above matrices for a specific material class will be given in Section 3.4.1.
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3.2 Existence and uniqueness of the solution

Having derived the strong and weak form of the coupled magnetoelastic problem in the
previous section, we will now analyze the structure of the resulting system of partial
differential equations and address the question of existence and uniqueness of its solution.
To accomplish this, we first need to verify some important properties of the aforementioned
bilinear forms. We start with showing the basic property of continuity for all three bilinear
forms. For the analysis, we will switch from the general tensor notation to the vector and
matrix-notation and assume that CH ∈ R6×6, e ∈ R6×3 and ε,σ ∈ R6.

Lemma 3.1. The bilinear forms a ∶ V0 × V0 → R, b ∶ M0 ×M0 → R and
c ∶ V0 ×M0 → R defined in (3.19) – (3.21) are continuous.

Proof. The continuity of the bilinear form of linear elasticity is already known (see e.g.
[21]). To prove the continuity of the bilinear form b(⋅, ⋅), we have to show that there exists
a constant b0 > 0, such that

∣b(Ψ,Φ)∣ ≤ b0∥Ψ∥1∥Φ∥1 for all Ψ,Φ ∈ M0,

where ∥Ψ∥1 denotes the H1(Ω)-norm and ∣Ψ∣1 the corresponding seminorm, as defined in
the previous chapter. Using Equation (3.20), the following estimate can be made,

b(Ψ,Φ) = ∫
Ω

3

∑
i=1

µii (
∂Ψ

∂xi
)( ∂Φ

∂xi
) dx

≤ max
i=1,2,3

µii
3

∑
i=1
∫
Ω

∣ ∂Ψ

∂xi

∂Φ

∂xi
∣ dx

≤ µM
3

∑
i=1

¿
ÁÁÁÀ∫

Ω

( ∂Ψ

∂xi
)

2

dx∫
Ω

( ∂Φ

∂xi
)

2

dx,

where µM ..= max
i=1,2,3

µii, µii > 0 and the last step follows from the Cauchy-Schwarz-inequality

[85] for the Hilbert space L2(Ω). On the other hand,

∥Ψ∥1∥Φ∥1 ≥ ∣Ψ∣1∣Φ∣1 =

¿
ÁÁÁÀ∫

Ω

3

∑
i=1

( ∂Ψ

∂xi
)

2

dx

¿
ÁÁÁÀ∫

Ω

3

∑
i=1

( ∂Φ

∂xi
)

2

dx

=

¿
ÁÁÁÀ

3

∑
i=1

3

∑
j=1
∫
Ω

( ∂Ψ

∂xi
)

2

dx∫
Ω

( ∂Φ

∂xj
)

2

dx

≥

¿
ÁÁÁÀ

3

∑
i=1
∫
Ω

( ∂Ψ

∂xi
)

2

dx∫
Ω

( ∂Φ

∂xi
)

2

dx.

Using the concavity of the root function on R+
0 ,

√
1

2
A + 1

2
B > 1

2

√
A + 1

2

√
B ∀A,B ∈ R+

0 , A ≠ B
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we can finally estimate:

√
2µM∥Ψ∥1∥Φ∥1 ≥

√
2µM

¿
ÁÁÁÀ

3

∑
i=1
∫
Ω

( ∂Ψ

∂xi
)

2

dx∫
Ω

( ∂Φ

∂xi
)

2

dx

> µM
⎛
⎜
⎝

3

∑
i=1

¿
ÁÁÁÀ∫

Ω

( ∂Ψ

∂xi
)

2

dx∫
Ω

( ∂Φ

∂xi
)

2

dx
⎞
⎟
⎠

≥ b(Ψ,Φ),

where the relation
1

2
√

2

√
A +B +C > 1

4

√
A + 1

2
(
√
B +

√
C)

has been used. Thus, continuity holds with the constant b0 ..=
√

2µM .
The continuity of c(⋅, ⋅) can be proven in a similar manner. Since c(v,Ψ) has the form

c(v,Ψ) = 1

2
∫
Ω

∂v1

∂x1
(

3

∑
i=1

ei1
∂Ψ

∂xi
) + ∂v2

∂x2
(

3

∑
i=1

ei2
∂Ψ

∂xi
) + ∂v3

∂x3
(

3

∑
i=1

ei3
∂Ψ

∂xi
)

+ (∂v2

∂x3
+ ∂v3

∂x2
)(

3

∑
i=1

ei4
∂Ψ

∂xi
) + (∂v1

∂x3
+ ∂v3

∂x1
)(

3

∑
i=1

ei5
∂Ψ

∂xi
)

+ (∂v1

∂x2
+ ∂v2

∂x1
)(

3

∑
i=1

ei6
∂Ψ

∂xi
) dx,

with vi, i = 1,2,3 denoting the components of v, we can use again Cauchy-Schwarz and
the concavity of the root function to obtain

1

2
c(v,Ψ) ≤ 1

4
max
i=1,2,3,
l=1,...,6

∣eij ∣
3

∑
i,l=1

∫
Ω

∣∂vi
∂xl

(
3

∑
k=1

∂Ψ

∂xk
)∣ dx

≤ 1

4
eM

3

∑
i,l=1

3

∑
k=1

¿
ÁÁÁÀ∫

Ω

(∂vi
∂xl

)
2

dx∫
Ω

( ∂Ψ

∂xk
)

2

dx

< eM
3

∑
i,l=1

¿
ÁÁÁÀ∫

Ω

(∂vi
∂xl

)
2

dx
3

∑
k=1
∫
Ω

( ∂Ψ

∂xk
)

2

dx

< eM

¿
ÁÁÁÀ

3

∑
i,l=1

∫
Ω

(∂vi
∂xl

)
2

dx

¿
ÁÁÁÀ

3

∑
k=1
∫
Ω

( ∂Ψ

∂xk
)

2

dx

= eM ∣∣v∣∣V ∣∣Ψ∣∣M ,

with eM ..= max
i,j

∣eij ∣ for i = 1,2,3 and j = 1, ...,6.

Moreover, the bilinear forms a(⋅, ⋅) and b(⋅, ⋅) are obviously symmetric and non-negative
for all v ∈ V0 and Φ ∈ M0. Hence, the coupled system can be interpreted as a saddle point
problem with the penalty term b(Ψ,Φ).
For a classical saddle point problem, i.e. in the absence of the bilinear form b(⋅, ⋅), Brezzi’s
Splitting Theorem [23] the fundamental theorem for saddle point problems, provides cri-
teria for unique solvability.

Theorem 3.1. (based on Brezzi’s Splitting Theorem) A classical saddle point problem of
type (CP )w with b(⋅, ⋅) = 0 and continuous bilinear forms a(⋅, ⋅) and c(⋅, ⋅), where a(⋅, ⋅)
is symmetric and non-negative on V0, has a unique solution, if and only if the following
conditions hold:
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(a) The bilinear form a(⋅, ⋅) is elliptic on the kernel

kerC ..= {v ∈ V0 ∣ c(v,Ψ) = 0 ∀Ψ ∈ M0},

that is,
∃α > 0 s.t. a(v,v) ≥ α ∣∣v∣∣2V ∀v ∈ kerC. (3.25)

(b) The bilinear form c(⋅, ⋅) satisfies the inf-sup condition (LBB condition)

∃β > 0 s.t. inf
Ψ∈M0

sup
v∈V0

c(v,Ψ)
∣∣v∣∣V ∣∣Ψ∣∣

M

≥ β. (3.26)

In this context, the following definition of stability in the sense of Babuška [6, 7] is of
importance.

Definition 3.1. A saddle point problem is said to be stable or inf-sup stable, iff the LBB
condition is fulfilled.

Braess [20] used the notion of stability to characterize the unique solvability of classical
saddle point problems.
For penalized saddle point problems, additional conditions have to be imposed on the bi-
linear forms. A sufficient condition is the boundedness and non-negativity of the bilinear
form b(⋅, ⋅) defining the penalty term [20, 21]. The penalty term can be regarded as a
perturbation that, in most cases, stabilizes the saddle point problem.

Remark 3.1. Note that in the formal definition of a saddle point problem with a penalty
term, the bilinear form characterizing the penalty term is not necessarily defined on the
whole Hilbert space M0, but rather on a dense subset Mc ⊂M0. However, if the bilinear
form is bounded on Mc, it can be continued to a continuous function and we can set
Mc =M0.

The next theorem shows that all conditions stated above are satisfied for the coupled
magnetoelastic saddle point problem (CP )w. Before stating the theorem, we need to
characterize a certain property of the coupling matrix e in the first instance.

Definition 3.2. (Minimal positivity) Let A be a matrix in R6×3. We say that A satisfies
the minimal positivity property iff its components aij fulfill the requirement

Â ..= min
k=1,...,6

Âk > 0, (3.27)

with Âk defined as

Â1
..= 1

2
(a11 + a51 + a61),

Â2
..= 1

2
(a22 + a42 + a62),

Â3
..= 1

2
(a33 + a43 + a53),

Â4
..= 1

2
(a12 + a21 + a41 + a52 + a61 + a62),

Â5
..= 1

2
(a13 + a31 + a41 + a51 + a53 + a63),

Â6
..= 1

2
(a23 + a32 + a42 + a43 + a52 + a63).
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Theorem 3.2. The coupled saddle point problem (CP )w with bilinear forms and linear
functionals as defined in (3.19) – (3.23) has a unique and uniformly bounded solution if
the coupling matrix e fulfills the minimal positivity requirement (3.27).

Remark 3.2. Note that the property of minimal positivity serves as a purely mathematical
characteristic of the coupling tensor. So far, no physical interpretation of this property
could be found.

Proof. Lemma 3.1 states that all three bilinear forms are continuous on the corresponding
spaces. Moreover, both a(⋅, ⋅) and b(⋅, ⋅) are obviously symmetric and non-negative on V0

andM0, respectively. Thus, only the conditions (3.25) and (3.26) of Theorem 3.1 need to
be verified.
The bilinear form a(⋅, ⋅) is in fact coercive on the whole space V0 rather than just on the
kernel kerC ⊂ V0, which follows directly from Korn’s inequality. To show the inf-sup con-
dition for the bilinear form c(⋅, ⋅), we will prove the equivalent formulation:

Show that ∃β > 0 s.t.

sup
v∈V0

c(v,Ψ)
∥v∥V

≥ β∥Ψ∥M ∀Ψ ∈ M0.

The coupled bilinear form c(v,Ψ) is given by

c(v,Ψ) = 1

2
∫
Ω

∂v1

∂x1
(

3

∑
i=1

e1i
∂Ψ

∂xi
) + ∂v2

∂x2
(

3

∑
i=1

e2i
∂Ψ

∂xi
) + ∂v3

∂x3
(

3

∑
i=1

e3i
∂Ψ

∂xi
)

+ (∂v2

∂x3
+ ∂v3

∂x2
)(

3

∑
i=1

e4i
∂Ψ

∂xi
) + (∂v1

∂x3
+ ∂v3

∂x1
)(

3

∑
i=1

e5i
∂Ψ

∂xi
)

+ (∂v1

∂x2
+ ∂v2

∂x1
)(

3

∑
i=1

e6i
∂Ψ

∂xi
) dx,

Choosing vi = Ψ for i = 1,2,3, we obtain

c(v,Ψ) = 1

2
∫
Ω

2
3

∑
i=1

( ∂Ψ

∂xi
)

2

Êi +
∂Ψ

∂x1

∂Ψ

∂x2
Ê4 +

∂Ψ

∂x1

∂Ψ

∂x3
Ê5 +

∂Ψ

∂x2

∂Ψ

∂x3
Ê6 dx,

with Êi, i = 1, ..,6 as given in Definition 3.2. Since e satisfies the minimal positivity
property (3.27), i.e.

Ê ..= min
i=1,...,6

Êi > 0,

we obtain the estimate

c(v,Ψ) ≥ 1

4
Ê ∫

Ω

4
3

∑
i=1

( ∂Ψ

∂xi
)

2

+
3

∑
i,j=1
i≠j

∂Ψ

∂xi

∂Ψ

∂xj
dx

= 1

4
Ê ∫

Ω

3

∑
i=1

( ∂Ψ

∂xi
)

2

dx

+ 1

4
Ê ∫

Ω

3

∑
i=1

( ∂Ψ

∂xi
)

2

+ ( ∂Ψ

∂x1
+ ∂Ψ

∂x2
)

2

+ ( ∂Ψ

∂x1
+ ∂Ψ

∂x3
)

2

+ ( ∂Ψ

∂x2
+ ∂Ψ

∂x3
)

2

dx.

Hence,

c(v,Ψ) ≥ 1

4
Ê∣v∣2V +

1

4
Ê ∫

Ω

ε(v) ⋅ ε(v) dx,
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with ∣v∣V denoting the seminorm in V =H1(Ω)3, and we obtain the estimate

c(v,Ψ) ≥ 1

4
Ê ∫

Ω

ε(v) ∶ ε(v) dx ≥ 1

4
ÊC ′∥v∥2

V ,

with a constant C ′ = C ′(Ω,ΓD) from Korn’s inequality. For

∣∣v∣∣V =

¿
ÁÁÀ 3

∑
i=1

∣∣vi∣∣21,

the following estimate holds,

∥v∥V =

¿
ÁÁÀ 3

∑
i=1

(∥vi∥0 + ∣vi∣1)2 ≥

¿
ÁÁÀ 3

∑
i=1

∣vi∣21

=

¿
ÁÁÁÀ∫

Ω

3

∑
i,j=1

( ∂vi
∂xj

)
2

dx,

where ∣∣⋅∣∣0 and ∣∣⋅∣∣1 denote the L2(Ω)-norm and the H1(Ω)-norm, respectively. On the
other hand,

∥Ψ∥1 =
√

(∥Ψ∥0 + ∣Ψ∣1)2 ≤
√
s2 + 1∣Ψ∣1,

with a constant s = s(Ω) from the Poincaré-Friedrichs-inequality [21], assuming that Ω
can be included in a cube with side length s. Using the above estimates for ∥v∥V and
∥Ψ∥1, we derive the following chain of inequalities:

sup
v∈V0

c(v,Ψ)
∣∣v∣∣V

≥ c(v,Ψ)
∣∣v∣∣V

≥ 1

4
ÊC ′ ∣∣v∣∣V ≥

1

4
ÊC ′

¿
ÁÁÁÀ∫

Ω

3

∑
i,j=1

( ∂vi
∂xj

)
2

dx

=
√

3

4
ÊC ′

¿
ÁÁÁÀ∫

Ω

3

∑
i=1

( ∂Ψ

∂xi
)

2

dx ≥ β ∣∣Ψ∣∣M ,

with β defined as

β ..=
√

3ÊC ′

4
√
s2 + 1

.

Remark 3.3. Since the constant in the inf-sup estimate depends on the components of the
coupling matrix e, the estimate in the proof of Theorem 3.2 does not provide a satisfactory
bound for weakly magnetostrictive materials, i.e. for eij → 0. However, as mentioned in
Chapter 1, we are focusing on giant magnetostrictive materials used in most industrial
applications. Hence, we can assume the constant Ê from the proof of Theorem 3.2 to be
“sufficiently large”. In Chapter 5 we will provide a set of typical values for the coupling
matrix of the giant magnetostrictive material Terfenol-D, for which the minimal positivity
assumption from Definition 3.2 is satisfied.

Note that, to obtain a unique solution, the continuity requirement for the bilinear form
b(⋅, ⋅) in a penalized saddle point problem of type (CP )w can be dropped if the coercivity
of the bilinear form a(⋅, ⋅) holds on the whole space V0 (see [20], [67]). This is the case
in our model. As the next lemma shows, the coercivity condition is also fulfilled for the
bilinear form b(⋅, ⋅).
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Lemma 3.2. The bilinear form b(⋅, ⋅) defined in (3.20) is coercive on the space M0.

Proof. For Ψ ∈ V0, the following estimates hold:

r ∣∣Ψ∣∣21 = r(∣∣Ψ∣∣20 + ∣Ψ∣21) ≤ r(s2 + 1)∣Ψ∣21 = r(s2 + 1)∫
Ω

3

∑
i=1

( ∂Ψ

∂xi
)

2

dx

≤ (s2 + 1)∫
Ω

3

∑
i=1

µii (
∂Ψ

∂xi
)

2

dx = (s2 + 1)b(Ψ,Ψ),

where the parameter s stems from the Poincaré-Friedrichs inequality and r ..= min
i=1,2,3

µii.

Thus, coercivity holds with the constant

γ ..= r

(s2 + 1)
.

As a consequence, both a(⋅, ⋅) and b(⋅, ⋅) are positive definite and define inner products
on the corresponding spaces.

Remark 3.4. Since b(⋅, ⋅) is coercive, the existence and uniqueness of the problem (CP )w
follows directly from the application of the Lax-Milgram lemma to the composite bilinear
form

A ∶ (V0 ×M0)×(V0 ×M0) → R, A((u,Ψ), (v,Φ)) = a(u,v)+ c(v,Ψ)− c(u,Φ)+ b(Ψ,Φ),

which transfers the system of two coupled equations to a problem with a single equation:

Problem. Find (u,Ψ) ∈ V0 ×M0, such that

A((u,Ψ), (v,Φ)) = l(v) −m(Φ) ∀(v,Φ) ∈ V0 ×M0. (3.28)

Using the coercivity of the bilinear forms a(⋅, ⋅) and b(⋅, ⋅) (as well as the continuity of
all three bilinear forms), we obtain

α ∣∣v∣∣2V0
+ γ ∣∣Φ∣∣2M0

≤ a(v,v) + b(Φ,Φ)
= a(v,v) + b(Φ,Φ) + c(v,Φ) − c(v,Φ) = A((v,Φ), (v,Φ)),

implying that there exists a constant δ ..= min(α, γ) such that

A((v,Φ), (v,Φ)) ≥ δ ∣∣(v,Φ)∣∣2V×M for all (v,Φ) ∈ V0 ×M0,

where
∣∣(v,Φ)∣∣2V×M ..= ∣∣v∣∣2V + ∣∣Φ∣∣2M .

Hence, the composite bilinear form A is continuous and coercive and the Lax-Milgram
lemma yields the existence and uniqueness of the solution (u,Ψ) of the above problem.
However, exploiting the coercivity of the uncoupled bilinear forms does not necessarily
let us avoid showing the inf-sup condition for c(⋅, ⋅). In fact, the stability estimate that
can be obtained by using just the coercivity property as explained above does not yield a
satisfactory result for our problem. This aspect will be picked up in the next section.
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3.3 Influence of perturbations

As we have seen in the previous section, the main requirement in showing the unique
solvability of the problem (CP )w was the satisfaction of the inf-sup condition (3.26) for
the coupled bilinear form c(⋅, ⋅). Furthermore, in Remark 3.4 we proved that the existence
and uniqueness of the solution can also be directly deduced from the Lax-Milgram lemma.
Nevertheless, one can show that the stability estimate obtained from the latter approach
is not satisfactory.

Let α and γ denote the coercivity constants of the bilinear forms a(⋅, ⋅) and b(⋅, ⋅).
Equation (3.28) yields

∣∣(u,Ψ)∣∣2V×M = ∣∣u∣∣2V + ∣∣Ψ∣∣2M = 1

α
a(u,u) + 1

γ
b(Ψ,Ψ) ≤ max{ 1

α
,

1

γ
}(a(u,u) + b(Ψ,Ψ))

= max{ 1

α
,

1

γ
} ∣l(u) −m(Ψ)∣

≤ max{ 1

α
,

1

γ
} ∣∣l̃(u,Ψ)∣∣

(V×M)′
∣∣(u,Ψ)∣∣V×M,

where l̃(u,Ψ) ..= l(u) −m(Ψ) and

∣∣l∣∣V ′ ..= sup
v∈V0

l(v)
∣∣v∣∣V

and ∣∣m∣∣M′
..= sup

Ψ∈M0

m(Ψ)
∣∣Ψ∣∣M

are the norms of the dual spaces V ′ and M′ of V and M, respectively. Thus, we obtain

∣∣(u,Ψ)∣∣V×M ≤ max{ 1

α
,

1

γ
} ∣∣l̃(u,Ψ)∣∣

(V×M)′
.

Taking a look at the coercivity constant

γ =
min
i=1,..,3

µii

(s2 + 1)

of the bilinear form b(⋅, ⋅) we can conclude that 1/γ has a magnitude of 103 and higher
due to the very small values of magnetic permeability for magnetostrictive materials. The
coercivity constant α of the elastic bilinear form depends on the elasticity matrix CH whose
values usually have a dimension range between 10−11 and 10−9 (see e.g. the material data
of Terfenol-D presented in Chapter 5). Thus, the constants in the above estimate do not
provide a proper bound for the norm of the solution.
This problem can be cured by additionally requiring that c(⋅, ⋅) fulfills the inf-sup condition
with a constant β. The inf-sup stability can then be used to obtain better estimates for
the norms ∣∣u∣∣V and ∣∣Ψ∣∣M. For certain choices of the bilinear form c(⋅, ⋅), Boffi et al. [12]
have derived stability estimates for the solution of saddle point problems of type (CP )w.
Before stating these estimates, we need some introductory definitions.

Let C ∶ V0 → M′
0 and CT ∶ M0 → V ′0 be the linear operators associated with the

continuous bilinear form c(⋅, ⋅). Furthermore, we define K ..= kerC and H ..= kerCT, as well
as their orthogonal complements

K⊥ ..= {v ∈ V0 ∣ (v,w)V = 0 ∀w ∈K},

and
H⊥ ..= {Ψ ∈ M0 ∣ (Ψ,Φ)M = 0 ∀Φ ∈H},
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where (⋅, ⋅)V and (⋅, ⋅)M denote the scalar products in the Hilbert spaces V =H1(Ω)3 and
M=H1(Ω), respectively.
Boffi et al. derive a stability estimate by considering the cases of homogeneous right-
hand sides l = 0 and m = 0 separately, exploiting the symmetry of the problem and using
linearity to sum up the estimates for these two cases. Moreover, they suggest the splitting
of the functions v, Ψ into a part lying in K and H, respectively, and a part lying in the
corresponding orthogonal complement. A similar procedure is applied to the functionals
l(⋅) and m(⋅), i.e.

v = v0 + v̄, Ψ = Ψ0 + Ψ̄, l = l0 + l̄, m =m0 + m̄,

with v0 ∈ K, v̄ ∈ K⊥, Ψ0 ∈ H, Ψ̄ ∈ H⊥, l0 ∈ K ′, l̄ ∈ (K⊥)′ = K0, m0 ∈ H ′, m̄ ∈ (H⊥)′ = H0.
The spaces

K0 ..= {l ∈ V ′0 ∣ l(v) = 0 ∀ v ∈K},
H0 ..= {m ∈ M′

0 ∣m(Ψ) = 0 ∀ Ψ ∈H},

are the polar spaces of K and H, respectively.
Note that, due to linearity,

l(v) = l0(v0) + l̄(v̄), m(Ψ) =m0(Ψ0) + m̄(Ψ̄).

Theorem 3.3. (Stability estimates after Boffi et al.) The problem (CP )w with continuous
and coercive bilinear forms a(⋅, ⋅) and b(⋅, ⋅) and a continuous bilinear form c(⋅, ⋅) as defined
in (3.19) – (3.21) fulfilling the inf-sup condition (3.26) has a unique solution (u,Ψ) ∈
V0 ×M0 that satisfies the stability estimate

∣∣u∣∣V + ∣∣Ψ∣∣M ≤ C(α, γ, a0, c0, δ)(∣∣l∣∣V ′ + ∣∣m∣∣M′),

where α and γ, as well as a0 and c0 are the coercivity and continuity constants of a(⋅, ⋅)
and b(⋅, ⋅), respectively, C is a constant and δ > 0 is defined as

δ ..= inf
Ψ∈H⊥

sup
v∈V0

c(v,Ψ)
∣∣v∣∣V ∣∣Ψ∣∣M

= inf
v∈K⊥

sup
Ψ∈M0

c(v,Ψ)
∣∣v∣∣V ∣∣Ψ∣∣M

.

More precisely,

∣∣u∣∣V ≤ C1 ∣∣l̄∣∣K0 +C2 ∣∣l0∣∣K′ +C3 ∣∣m̄∣∣H0 +C4 ∣∣m0∣∣H′ ,

∣∣Ψ∣∣M ≤ C̃1 ∣∣l̄∣∣K0 + C̃2 ∣∣l0∣∣K′ + C̃3 ∣∣m̄∣∣H0 + C̃4 ∣∣m0∣∣H′ ,

where the constants Ci and C̃i, i = 1, ..,4 depend on α, γ, a0, c0, δ.

We skip the rather technical and extensive proof of the above theorem at this point and
refer to [12] for the exact forms of the stability constants.

3.4 Numerical treatment

While in the previous sections we discussed the structure and solvability of the coupled
magnetoelastic problem in the continuous case, we now concentrate on its numerical treat-
ment. The first step towards this aim leads us to a thorough analysis of the material
tensors for polycrystalline magnetostrictive materials, using a common representative of
this material class, the grain-oriented Terfenol-D, a material used in many applications
[38, 39, 56, 60]. For simplicity, the coupled model will be reduced to the two-dimensional
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case, considering a thin magnetostrictive plate in the loading case of plane stress. After
introducing the 2D problem, we will transfer the already presented solvability conditions
to the discrete case and show that they are valid independent from the chosen discretiza-
tion. In addition, also an algebraic approach to the solvability of the coupled saddle point
problem will be discussed and parallels to the formerly mentioned conditions will be drawn.

3.4.1 Magneto-elastic coupling properties of polycrystals

In general, the magnetic properties of polycrystalline ferromagnetic materials (which are
almost all ferromagnets serving industrial purposes, see e.g. [27]) depend on their crys-
tallographic texture, that is, on the size, shape, orientation and arrangement of their
microscopic grains, the crystallites. Due to the highly anisotropic nature of magnetostric-
tion, it is strongly influenced by the crystallographic direction of the magnetization and
the mechanical (pre-)stress applied on the material. To describe the coupling properties of
the material, it is thus essential to characterize the behavior of the body under symmetry
operations, which is reflected by the coupling tensor e.

Within this framework, we briefly introduce the notions of polar vectors (polar tensors),
that are used to represent translations, mechanical forces, velocity, acceleration or momen-
tum and axial vectors or pseudovectors (pseudotensors), which are usually associated with
angular velocity, angular momentum or torque.
To explain these concepts, we consider a coordinate transformation described by a matrix
L = (lij)i,j=1,2,3 that converts an (orthonormal) basis {bj}, j = 1,2,3, of R3 into a new
(orthonormal) basis {b̃i}, i = 1,2,3. The transformation law of a polar vector

v =
3

∑
i=1

vibi,

with components vi, i = 1,2,3, is given by

ṽ =
3

∑
i=1

ṽib̃i,

where ṽi = ∑3
j=1 lijvj . If the transformation is an inversion, i.e. changing a right-handed

coordinate system into a left-handed one (or vice versa), then

L =
⎛
⎜
⎝

−1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠
,

and the basis bi, i = 1,2,3, changes its sign under the inversion, i.e. b̃i = −bi. The vector
ṽ can then be written as

ṽ =
3

∑
i=1

ṽib̃i =
3

∑
i=1

(−vi)(−bi) = v,

indicating that a polar vector remains unchanged under a transformation of the coordinate
system.
Consider now the cross product y = v ×w of v and a polar vector w ∈ R3. The resulting
vector is an axial vector that transforms to

ỹ = (
3

∑
i=1

−vi(−bi)) ×
⎛
⎝

3

∑
j=1

−wj(−bj)
⎞
⎠
=

3

∑
i,j=1

vjwj(−bi × −bj).
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I Ĩ

B B̃

Figure 3.1: Illustration of the axial vector B representing the magnetic flux density and the polar
vector I in a reflection across a plane (dashed line).

As the cross product −bi × −bj yields a basis vector b̃k, the vector ỹ flips its sign with
respect to the new coordinate system, i.e.

ỹ =
3

∑
k=1

ykb̃k = −
3

∑
k=1

ỹkb̃k.

Summing up, we notice that while the polar vector v ∈ R3 transforms according to the
relation

ṽi =
3

∑
j=1

lijvj , i = 1, ...,3,

the axial vector y ∈ R3 turns into

ỹi = detL
3

∑
j=1

lijyj , i = 1, ...,3.

The sign of an axial vector therefore depends on the choice of the coordinate system,
more precisely, on its “handedness”, the associated direction of rotation. Now the idea
behind the term pseudovector becomes clear: While axial vectors have the same manner
of composition as “proper” vectors, their transformation law is different.
The magnetic field and flux density vectors H and B are examples of axial vectors. Figure
3.1 shows the reflection of a loop of a current-carrying wire that creates a magnetic flux
density B. While the current vector I is just reflected across the plane, the magnetic flux
density vector B is additionally reversed.

The concept of polar and axial vectors can also be applied to tensors. A second order
polar tensor T = (tij)i,j=1,2,3, for example, transforms to the tensor T̃ via

t̃ji =
3

∑
k,l=1

ljkliltkl, (3.29)

an axial tensor S = (sij)i,j=1,2,3 turns into the tensor S̃ with coordinates

s̃ji = detL
3

∑
k,l=1

ljkliltkl. (3.30)

The elasticity tensor CH and the magnetic permeability tensor µε are polar tensors, while
the magnetoelastic coupling tensor e is an axial tensor [60].
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In the following, we will focus on examining the magnetoelastic coupling matrix resulting
from the third-order tensor e with respect to the underlying symmetry structure of the
crystal. The symmetry group of a crystal includes all operations on the crystal that
leave its structure invariant. Such operations can be a translation, a rotation about an
axis, an inversion through a point, a reflection through a plane or a combination of these
operations. Different types of crystal lattices can be defined according to their symmetry
operations, such as lattices having translation group symmetries, point group symmetries
or space group symmetries. While the translation group consists of operations {I ∣T}
with an identity rotation I and a translation T , the point group operations have the form
{α ∣0}, where α describes a symmetry operation at a point. The operations of the space
group, on the other hand, are characterized by the pattern {α ∣T}, combining both point
symmetry operations and translations.
According to the Neumann principle, a fundamental principle of crystal physics (see. e.g.
[92]), a material tensor of a crystal must include the spatial symmetry of the crystal
structure, i.e. all symmetry operations of the crystal’s point group. For the axial matrix
e, Neumann’s principle suggests that if a transformation L is an element of the point
group of the crystal, the components

ẽji = detL
6

∑
k=1

3

∑
l=1

ljklilekl (3.31)

of the transformed matrix ẽ should coincide with the elements ekl, k = 1, ..,6, l = 1, ...,3,
of the original matrix. The grain-oriented Terfenol-D, the polycrystalline ferromagnetic
material we use in our model, can be categorized in the 6/mm∗m∗ crystallographic sym-
metry group1 [40, 60], meaning that the material shows hexagonal anti-symmetry with
respect to one of the spatial axes. Neumann’s principle implies that the structure of a
material tensor must reflect the anti-symmetries of the crystal structure. An axial tensor,
however, should not change its form under anti-symmetry transformations. Fuentes [60]
showed that the conditions (3.30) implicate that the piezomagnetic coupling matrix dT of
the grain-oriented Terfenol-D has the following structure,

dT =
⎛
⎜
⎝

0 0 0 0 d51 0
0 0 0 d51 0 0
d13 d13 d33 0 0 0

⎞
⎟
⎠
,

assuming anti-symmetry with respect to the x3-axis. Due to the anti-symmetry operations,
certain components dij of the transformed matrix have to be imposed with a minus sign
and vanish according to the requirement of invariance, creating the specific form of the
above matrix. The matrix dT results from a different formulation of the piezomagnetic
constitutive equations and can be transformed into the matrix eT via the relation eT =
dTCH. As eT characterizes the magnetic properties of the same material, we can directly
transfer the above result to our model. This, of course, has implications for the structure
of the elasticity matrix CH of the material. Requiring that the matrix dTCH has the
same form as the matrix dT , we obtain the following conditions for the components of the
symmetric elasticity matrix CH

C5i = 0 = Ci5 for i = 1, ...,6, i ≠ 5,

C4i = 0 = Ci4 for i = 1, ...,6, i ≠ 4,

Ci6 = 0 = C6i for i = 1,2,3,

1The asterisk is used to denote anti-symmetries in the crystal structure.
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which lead to the block-diagonal form of the elasticity matrix,

CH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

This special structure of the elasticity matrix suggests a certain material anisotropy. More
precisely, elasticity matrices of the above form are ascribed to orthotropic or transversely
isotropic material behavior. Indeed, polycrystalline ferromagnetic materials are isotropic
in unpolarized (unbiased) condition and gain the features of a transversely isotropic mate-
rial due to magnetic polarization [39, 56]. In other words, the properties of the polarized
material are isotropic in the directions perpendicular to the magnetization direction. The
coupling matrix dT presented above corresponds to a material with magnetic polarization
direction x3, having transversely isotropic material properties with respect to this direc-
tion. In the next section, we will present detailed forms of the elasticity matrix CH and
the coupling matrix e for a two-dimensional model in case of plane stress. Additionally, we
will slightly change the assumptions on the structure of the coupling matrix e described
above and require a magnetic polarization in x1-direction, obtaining transverse isotropy
with respect to this coordinate axis. The matrix eT is then given by

eT =
⎛
⎜
⎝

e11 e21 e31 0 0 0
0 0 0 0 0 e62

0 0 0 0 e53 0

⎞
⎟
⎠
. (3.32)

3.4.2 Reduction to 2D

The coupled system of partial differential equations derived in Section 3.2 has been kept
rather general. Reducing the model to the two-dimensional case provides a better insight
into the structural details of the material matrices and the different bilinear forms.
We focus now on a two-dimensional body, by misuse of notation again denoted by Ω ⊂ R2

for the sake of clarity, characterized by a thin magnetostrictive plate (see Figure 3.2) in
the loading state of plane stress. We assume that the plate is made of the grain-oriented
Terfenol-D magnetically polarized in x1-direction, as explained in the previous section.
The plane stress - assumption requires that all internal forces act on the (x1, x2) - plane,
i.e.

σ = σ(x1, x2), ε = ε(x1, x2), σ33 = σ13 = σ23 = 0, ε13 = ε23 = 0

Using the Voigt notation, σ and ε can be written as,

σ = (σ1, σ2, σ3)T ..= (σ11, σ22, σ12)T , ε = (ε1, ε2, ε3)T ..= (ε11, ε22,2ε12)T .

Furthermore,

u = u(x1, x2), H =H(x1, x2), B =B(x1, x2), Φ = Φ(x1, x2).

The transversely isotropic elasticity matrix for constant magnetic field takes the form

CH = 1

E1 − ν2
12E2

⎛
⎜
⎝

E2
1 ν12E1E2 0

ν12E1E2 E1E2 0
0 0 G12(E1 − ν2

12E2)

⎞
⎟
⎠
,

74



x1

x2

Figure 3.2: Sketch of the magnetostrictive plate with its principle material directions.

with Ei, i = 1,2, denoting Young’s modulus in the axial direction i, ν12 being Poisson’s ratio
for the (x1, x2) - plane and G12 describing the pre-magnetization in x1-direction. Equation
(3.32) together with the plane stress - setting indicate that the magnetic permeability
matrix at constant strain, µε and the coupling matrix e must have the form,

µε =
⎛
⎜
⎝

µ11 0 0
0 µ22 0
0 0 µ22

⎞
⎟
⎠
, e =

⎛
⎜
⎝

e11 0 0
e21 0 0
0 e62 0

⎞
⎟
⎠
. (3.33)

Considering the above assumptions, the elastic, magnetic and coupled bilinear forms are
eventually given by

a(u,v) = r∫
Ω

1

E1 − ν2
12E2

(E2
1

∂u1

∂x1

∂v1

∂x1
+ ν12E2E1 (

∂u1

∂x1

∂v2

∂x2
+ ∂u2

∂x2

∂v1

∂x1
)

+ E1E2
∂u2

∂x2

∂v2

∂x2
+G12(E1 − ν2

12E2) (
∂u1

∂x2
+ ∂u2

∂x1
)(∂v1

∂x2
+ ∂v2

∂x1
)) dx,(3.34)

b(Ψ,Φ) = r∫
Ω

µ11
∂Ψ

∂x1

∂Φ

∂x1
+ µ22

∂Ψ

∂x2

∂Φ

∂x2
dx, (3.35)

c(v,Ψ) = r
1

2
∫
Ω

e11
∂v1

∂x1

∂Ψ

∂x1
+ e21

∂v2

∂x2

∂Ψ

∂x1
+ e62 (

∂v1

∂x2
+ ∂v2

∂x1
) ∂Ψ

∂x2
dx, (3.36)

where r is the (constant) thickness of the plate.

3.4.3 Solvability in the discrete case

Let Ω ⊂ R2 and consider finite dimensional subspaces Vh ⊂ V0 and Mh ⊂ M0 of the
Hilbert spaces defined in Section 3.1.2, where h > 0 denotes the mesh parameter. Then,
the Galerkin approximation (e.g. in [21] or [22]), of the coupled saddle point problem reads

Problem (CP )wh ∶ Find (uh,Ψh) ∈ Vh ×Mh, such that

a(uh,vh) + c(vh,Ψh) = l(vh) ∀vh ∈ Vh,
c(uh,Φh) − b(Ψh,Φh) = m(Φh) ∀Φh ∈Mh.

In contrast to problems with a single bounded, coercive bilinear form, the well-posedness
of discrete saddle point problems, in general, cannot be automatically deduced from their
continuous counterpart: On the one hand, the coercivity of the bilinear form a(⋅, ⋅) on the
kernel kerC does not necessarily imply its coercivity on the kernel

(kerC)h ..= {vh ∈ Vh ∣ c(vh,Ψh) = 0 ∀Ψh ∈Mh}.
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This is the case for the Stokes Problem (e.g. in [21]), for example. On the other hand, the
discrete inf-sup condition on Vh ×Mh cannot be directly deduced from the continuous one
on V0 ×M0 since the supremum over a set Y is greater than or equal to the supremum
over a subset Yh ⊂ Y .
In the coupled magnetoelastic saddle point problem (CP )wh, however, the continuity of
the bilinear form c(⋅, ⋅) as well as the coercivity of the bilinear forms a(⋅, ⋅) and b(⋅, ⋅) on
the corresponding discrete spaces are directly inherited from the continuous case. The
discrete inf-sup condition is then the only assumption that needs verification. In this
context, special attention has to be paid to the appropriate choice of the discrete spaces
Vh and Mh. Difficulties arise again for the Stokes problem, where the discrete inf-sup
condition is not fulfilled for certain choices of the discrete spaces (for details refer to [21]).
We will return to this issue after presenting the proof of the next theorem. Before stating
the theorem, we briefly introduce some notations referring to Lagrangian finite element
spaces without going further into the details of the Finite Element Method and refer the
reader to the corresponding literature (e.g. [21, 22, 68]).
Let Th = {T1, ..., TM} be a partition of the domain Ω ⊂ R2 into elements Ti,

Ω =
M

⋃
i=1

Ti,

having each a maximum diameter 2h. Moreover, let Pk denote the space of polynomials
of degree ≤ k. The space

Sk(Ω,Th) ..= {vh ∈ L2(Ω) ∣ vh∣T ∈ Pk for allT ∈ T }

is called the (conforming) Lagrangian finite element space of degree k.
The following theorem shows that by selecting Lagrangian finite elements for the dis-
cretization, we can prove that the discrete inf-sup condition for c(⋅, ⋅) is satisfied with a
constant independent of the mesh parameter h.

Theorem 3.4. For Vh = Sk(Ω,Th)2 and Mh = Sk(Ω,Th), the bilinear form c(⋅, ⋅) defined in
(3.36) with a coupling matrix e that fulfills the minimal positivity property (3.27) satisfies
the discrete inf-sup condition

∃β̂ > 0 such that inf
Ψh∈Mh

sup
vh∈Vh

c(vh,Ψh)
∥vh∥V∥Ψh∥M

≥ β̂, (3.37)

with a constant β̂ independent of h.

Proof. Note that the theorem is proven for the reduced bilinear form obtained by the spe-
cification of the material class in Section 3.4.2. The proof for the general three-dimensional
case is analogous. As in the continuous case, we want to show the equivalent formulation

sup
vh∈Vh

c(vh,Ψh)
∥vh∥V∥Ψh∥M

≥ β̂

for a β̂ > 0. Using the Finite Element Method, we partition the domain Ω ⊂ R2 into L
elements Tl. For vh ∈ Vh and Ψh ∈Mh,

c(vh,Ψh) =
L

∑
l=1

c(vh,Ψh)Tl,

where c(vh,Ψh)Tl is the bilinear form of the element Tl. Denoting n = dimVh and m =
dimMh, we can use the basis functions wi ∈ Vh, i = 1, ..., n and Ψ̃j ∈ Mh, j = 1, ..,m, to
express vh and Ψh as

vh =
n

∑
i=1

Wiwi,
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with coefficients Wi and

Ψh =
m

∑
j=1

PjΨ̃j .

with coefficients Pj . However, since the components (vh)r, r = 1,2 belong to the same
discretization space as Ψh, we can choose them in such a way that

(vh)r = Ψh =
m

∑
j=1

PjΨ̃ ∈ Sk(Ω,Th).

As in the proof of the continuous inf-sup condition (Theorem 3.2), we now obtain the
estimate

c(vh, Ψ̃h)
∣∣vh∣∣V

≥ 1

4
ÊC ′ ∣∣vh∣∣V ≥ β̂ ∣∣Ψh∣∣M

with

Ê ..= min{e11

2
,
e62

2
, e21 + e62} > 0

from Definition 3.27. The mesh-independent constant β̂ is given by

β̂ ..=
√

2

4
√
s2 + 1

ÊC ′,

where C ′ and s depend on Ω.

Note that in the proof of the above lemma, the special choice of the elastic and magnetic
basis functions as polynomials of the same degree enables the use of Korn’s inequality. This
is a major difference to the Stokes problem, where the pairs (Sk, Sk), k ≥ 1 do not satisfy
the inf-sup condition, leading to singularities in the resulting system [10, 24].
In case that the basis functions wi, i = 1,2 and Ψ̃ are polynomials of different degrees,
another type of proof has to be considered using the properties of the discretization.

Remark 3.5. Let α > 0 and γ > 0 denote the coercivity constants of the bilinear forms
a(⋅, ⋅) and b(⋅, ⋅), respectively (Lemma 3.2). Furthermore, let a0, b0, c0 ∈ R+ denote the
continuity constants of a(⋅, ⋅), b(⋅, ⋅) and c(⋅, ⋅), respectively (Lemma 3.1). Finally, let β̂ > 0
denote the constant from the discrete inf-sup condition for c(⋅, ⋅) as defined in the proof of
Theorem 3.4.
Then, using a result from Brezzi and Fortin [24], which can be interpreted as an analogon
of Céa’s Lemma (e.g. in [22]), we can provide an error bound for the solution (uh,Ψh) ∈
Vh ×Mh of the discrete problem (CP )wh ensuring the convergence of the Galerkin method:

∥u −uh∥V + ∥Ψ −Ψh∥M ≤K (a0, b0, c0,
1

α
,
b0
γ
,

1

β
) inf
vh∈Vh

∥u − vh∥V + inf
Ψh∈Mh

∥Ψ −Φh∥M,

where (u,Ψ) ∈ V0 × M0 is the solution of the continuous problem (CP )w and K is a
non-linear function that is bounded on bounded subsets.

3.4.4 Algebraic approach

Let us now consider an algebraic approach to the solvability of the discrete coupled saddle
point problem (CP )wh. As in the proof of Theorem 3.4, consider bases (wi)i=1,..n and
(Ψ̃j)j=1,..m of Vh and Mh respectively. Then, uh ∈ Vh and Ψh ∈ Mh have the following
basis represantation,

uh =
n

∑
i=1

Wiwi, Ψh =
m

∑
j=1

PjΨ̃j , (3.38)
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with coefficient vectors W = (Wi)i=1,...,n and P = (Pj)j=1,...,m. Furthermore, by L ∈ Rn we
denote the vector (l(wi))i=1,...,n and by M ∈ Rm the vector (m(Ψj))j=1,...,m. Inserting the
expressions (3.38) into the discrete problem (CP )wh yields the block linear system

( A C

CT −B)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

(r
s
) = ( L

M
) , (3.39)

with

A = (a(wi,wj))i,j ∈ Rn×n,

B = (b(Ψi,Ψj))i,j ∈ Rm×m,

C = (c(wi,Ψj))i,j ∈ Rn×m

and the saddle point matrix A ∈ R(n+m)×(n+m). The matrices A and B are symmetric
and positive definite due to the properties of the corresponding bilinear forms. Since the
matrix A is non-singular, the saddle point matrix A can be factorized in the following
way [10]:

A = ( I 0

CTA−1 I
)(A 0

0 S
)(I A−1C

0 I
) ,

where
S = −(B +CTA−1C)

is the Schur complement of A in A. The block triangular factorization of A implies that
A is invertible if and only if S is non-singular. The regularity of S is fulfilled since B is
positive definite, leading to a symmetric and negative definite matrix S.
Obviously, the positive definiteness of the matrix B is a sufficient condition for the regu-
larity of the Schur complement S and thus for the regularity of the saddle point matrix
A. If the symmetric matrix B is only positive semidefinite, the Schur complement S is a
symmetric negative semidefinite matrix and regularity holds iff

ker(B) ∩ ker(C) = {0}.

Another sufficient condition for the regularity of S is the full-rank condition for the matrix
C, indicating that the associated operator C ∶ M0 → V ′0, with V ′0 being the dual space of
V0, is injective. In fact, with some minor effort we can see that the requirement

kerC = {0}

is the algebraic analogon of the discrete inf-sup condition (following [61]):
Let c(⋅, ⋅) satisfy the discrete inf-sup condition (3.37) with a constant β̂h (not necessarily
independent of h), i.e.

sup
vh∈Vh

c(vh,Ψh)
∥vh∥V

≥ β̂h∥Ψh∥M ∀Ψh ∈Mh and β̂h > 0.

For vectors V ∈ R,n W ∈ Rn and P ∈ Rm representing the coefficients of vh, wh ∈ Vh and
Ψh ∈Mh in the basis representation (3.38), define the norms

∥V ∥Vh ..= ∥vh∥V , ∥V ∥∗ ..= sup
W ∈Rn

V ⋅W
∥W ∥Vh

, ∥P ∥Mh
..= ∥Ψ∥M. (3.40)

Then, replacing vh and Ψh by the vectors V and P , the inf-sup condition turns into

sup
V ∈Rn

(CTV ) ⋅P
∥V ∥∗

≥ βh∥P ∥Mh ∀P ∈ Rm and βh > 0.
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With the definition of the norm ∥.∥∗ from Equation 3.40, the condition finally states

∥CP ∥∗ ≥ β̂h∥P ∥Mh
∀P ∈ Rm and β̂h > 0,

directly implying the injectivity of the operator C and the full-rank condition for C. This
relation is of particular importance for the numerical verification of the inf-sup condition
for the coupling matrix C, further discussed in Chapter 5.
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Chapter 4

The Coupled Model: Magnetic
Vector Potential Formulation

As we have seen in the previous chapter, the special choice of the constitutive equations and
the energy functions in the Lagrangian resulted in a coupled magnetoelastic saddle point
problem. In this chapter, we will follow another approach based on the magnetic vector
potential A instead of the total magnetic scalar potential Ψ. Under certain conditions,
this approach, which uses a reformulation of the coupled constitutive equations, leads to
a symmetric system.
Why does the rearrangement of the variables and the use of a vector potential influence the
structure and type of the resulting system? This question is closely linked to the concepts
of energy and coenergy, which were discussed in the context of electromechanical and
piezoelectric systems by Preumont [95]. Bossavit [17] introduced a differential-geometric
approach to magnetoelasticity showing that both elasticity and electromagnetism can be
treated within the same framework, making it easier to understand the mutual influence
of the magnetic and elastic fields. He discussed some possibilities of choosing the coupled
magnetoelastic energy functions, stating that the choice of the energy function and the
magnetic and elastic quantities it depends on strongly influences the structure of the
resulting problem. As we will see in the next section, the different types of energy functions
arise from a Legendre-Fenchel transformation that changes the constitutive laws for the
magnetic and elastic variables and the signs of certain terms in the coupled energy density
function. Bossavit [17] predicted in his work that the choices of the pairings B and ε, as
well as H and σ as variables of the total energy function lead to a standard minimization
problem, whereas in the case of the pairings B and σ or H and ε, a saddle point problem
has to be solved. This difference arises from the duality of the formulations based on
mechanical stress on the one hand and strain on the other hand (discussed, e.g. by Ciarlet
et al. [37]), as well as the magnetic field H on the one hand and the magnetic flux density
B on the other hand (see e.g. Hiptmair’s work [66]).

After introducing the concepts of energy and coenergy in the first section of this chapter,
we will proceed by deriving a model based on the magnetic flux density B and the strain
ε as independent variables, in a similar way as presented in Chapter 3. Taking B instead
of H implies the usage of the magnetic vector potential A with B = curlA instead of the
formerly-used magnetic scalar potential Ψ with H = −∇Ψ. The resulting model conforms
with Bossavit’s predictions, as in this case a fully-symmetric problem is achieved, which,
in the first instance, can be regarded as an advantage over the system with saddle point
structure. However, in the general three-dimensional case, the analysis of the new coupled
system involves some challenges. Since the choice of A with B = curlA is not unique, it
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requires additional gauging, e.g. by the Coulomb gauge ν divA = 0. Moreover, due to the
curl-curl formulation, the standard Sobolev space H1(Ω) has to be replaced by appropriate
function spaces like the H(curl,Ω)-space in the ungauged case and H(curl,Ω)∩H(div,Ω)
in the gauged (mixed) formulation. In the planar case, these problems do not arise as
the gauging condition is automatically fulfilled, and the magnetic vector potential has
only a single out of plane - component which leads to a reduction of the (coupled) three-
dimensional Ampère’s law to a single partial differential equation.

In the course of the chapter, we will discuss the solvability of the new problem and its
reduction to the 2D case. In this context, the magnetostatic and time-varying cases will
be examined separately since they constitute essentially different formulations, as it was
already shown in the introductory chapter.

4.1 The energy - coenergy approach

Before introducing the notion of coenergy for coupled magnetoelastic systems, first of
all, we illustrate its relevance in Newtonian mechanics (following Preumont [95]). The
commonly-used expression for the kinetic energy of a particle traveling with a velocity v
and constant mass m is

T ∗(v) = 1

2
mv2.

The above energy term was marked with an asterisk for a special reason: It is not the term
we obtain straightaway when deriving an expression for the kinetic energy of a Newtonian
particle. If we consider a particle traveling with a linear momentum p(v) in a certain
direction x, the force acting on the particle is given by Newton’s law

f = dp

dt
,

and the increment work can be computed as

fdx = dp

dt
dx = vdp.

Thus, the total work that is required to increase the momentum from state 0 to state p is
described by the kinetic energy

T (p) =
p

∫
0

v(p̃) dp̃.

Using now the constitutive equation p(v) =mv of Newtonian mechanics, we obtain

T (p) = p2

2m
.

The energy can also be expressed in terms of the velocity rather than the momentum.
This leads to a complementary energy function

T ∗(v) =
v

∫
0

p(ṽ) dṽ,

called the kinetic coenergy function. Figure 4.1(a) illustrates the two complementary
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v
p = mv

p

T ∗(v)

T (p)

dv

dp

(p, v)

v

p

T ∗

T

p = mv√
1−v2/c2

Figure 4.1: Velocity-momentum relation in Newtonian mechanics and special relativity [95].

energy functions for Newtonian mechanics. The coenergy term can be derived from the
energy term by a Legendre transformation,

T ∗(v) = pv − T (p). (4.1)

The Legendre-transformation is an important tool of convex analysis and is in general used
to derive the Hamiltonian formalism out of Lagrangian’s or certain thermodynamic prin-
ciples. We will use the following definition to derive the different coupled magnetoelastic
energy functions.

Definition 4.1. (Legendre transform, [16]) Let X be a Hilbert space with scalar product
(⋅, ⋅) and Φ ∈ X → R a differentiable function with the gradient ∇Φ(x). If the map x ↦
∇Φ(x) is invertible in the neighborhood of the point x, the function

Ψ(y) = (y, f−1(y)) −Φ(f−1(y)) (4.2)

defined in the neighborhood of y = f(x) is called Legendre transform of the function Φ.
Obviously, Φ(x) can be expressed as

Φ(x) = (f(x), x) −Ψ(f(x))

and ∇Ψ(y) = x.

Equation (4.1) follows directly from Equation (4.2) with (p, v) ..= pv for p, v ∈ R .
This concept can also be applied to the equations of linear elasticity and electrodynamics:
While the elastic energy is a function of the strain ε, the elastic coenergy is a function
of the stress σ; while the magnetic energy is based on the magnetic flux density B, the
magnetic coenergy depends on the magnetic field H [17, 95].
Due to the linear constitutive laws, however, the distinction between kinetic energy and
coenergy is usually not necessary in the uncoupled linear elastic or magnetic cases, since
the two energy terms coincide, as illustrated for Newtonian mechanics in Figure 4.1(a).
This is the reason why the term

T ∗(v) = 1

2
mv2

is generally referred to as the kinetic energy in the literature. Since in mechanics, the
variational principles are mostly based on virtual displacements, this choice seems rather
reasonable. When the relation between p and v is not linear any more, which is valid for
example for special relativity,

p = mv√
1 − v2/c2

,
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Figure 4.2: Maxwell’s house:
duality in electromagnetism

(after [15, 42]).

with c being the speed of light, then the two energy terms are not equal in case of high
velocities v (see Figure 4.1(b)).
The duality between the magnetic flux density B and the magnetic field H, as well as the
corresponding potentials A and Ψ, is illustrated in Figure 4.2. Electromagnetic quantities
such as B, H and j build the “floors” of a house, while the operators div, grad and curl
connecting them characterize the “pillars”. The “building” constructed in such a way was
introduced by Bossavit [15] and called Maxwell’s house.
The distinction between energy and coenergy is also required for coupled systems, since

the energy function depends on both elastic and magnetic variables. Preumont [95] dis-
cussed this issue for coupled electromechanical systems, listing some possible choices of
Lagrangians used in Hamilton’s principle for uncoupled mechanical, electromagnetic, as
well as for coupled electromagnetic systems. In all cases, the Lagrangian is defined as the
difference between the coenergy and energy functions. For mechanical systems, we have

L = T ∗ −U,

i.e. the Lagrangian is the difference between the kinetic coenergy and the potential energy.
For electromagnetic systems, a possible Lagrangian could be

L =W ∗
mag −Wel,

representing the difference between the magnetic coenergy and the electric energy of the
system. For a coupled electromechanical system,

L = T ∗ +W ∗
mag −U −Wel (4.3)

could be a possible choice. In order to derive the coupled system based on magnetic scalar
potential in Chapter 3, we transferred these results directly to our coupled magnetoelastic
model, which seems reasonable as there is a strong analogy between electromechanical
and magnetomechanical (e.g. piezoelectric and piezomagnetic) systems. In (3.5), our La-
grangian was similar to (4.3), with T ∗ and Wel being zero. An alternative formulation for
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the Lagrangian of the magnetoelastic system is

L = T ∗ +W ∗
el −U −Wmag , (4.4)

with W ∗
el denoting the electrical coenergy and Wmag the magnetic energy. Again, T ∗

and Wel are zero for static magnetic and elastic fields. Thus, depending on the type of
constitutive equations we are using, we have alternating energy and coenergy terms in the
formulation of the Lagrangian. The coupled magnetoelastic energy function depends on
(σ,H) or (B, ε), while the pairings (ε,H) or (σ,B) lead to a coupled magnetoelastic
coenergy function. In the constitutive equations suggested by the IEEE Standard on
Magnetostrictive Materials [70], σ and H are considered as independent variables,

ε = SH ∶ σ + d ⋅H,

B = µσH + dT ∶ σ,

where SH = (CH)−1 is the elastic compliance for constant magnetic field, µσ is the mag-
netic permeability for constant stress and b is the magnetoelastic coupling tensor. Chang-
ing the independent variables in these equations yields

σ = CH ∶ ε − e ⋅H,

B = eT ∶ ε +µεH, (4.5)

with the coupling matrix
e ..= CH ∶ d

and the permeability for constant strain,

µε ..= µσ − dT ∶ e.

These are the constitutive equations we used in our model based on the magnetic scalar
potential presented in Chapter 3. The free-energy density function corresponding to these
constitutive equations is the coenergy function

Ψ∗(ε,H) = 1

2
H ⋅ (µεH) + ε ∶ (e ⋅H) − 1

2
ε ∶ CH ∶ ε, (4.6)

and σ and B can be derived as

σ = −∂Ψ∗(ε,H)
∂ε

= −e ⋅H +CH ∶ ε

B = ∂Ψ∗(ε,H)
∂H

= µεH + eT ∶ ε.

The coupled coenergy function Ψ∗(ε,H) is the Legendre-transformation of the coupled
energy function

Ψ(ε,B) = −Ψ∗(ε,H) +H ⋅B (4.7)

with respect to the variable H. It is obvious that the use of the coupled coenergy function
Ψ∗(ε,H) leads to a saddle point problem due to the different signs of the elastic and
magnetic terms in (4.6). To avoid this, we can choose constitutive equations based on the
coupled energy function Ψ(ε,B), rearranging the equations (4.5) in terms of σ and H:

σ = CB ∶ ε − f ⋅B, (4.8)

H = µ−εB − fT ∶ ε.

The tensor
CB ..= CH + (e ⋅µ−ε) ⋅ eT
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describes the elastic matrix for constant magnetic flux density B and

f ..= e ⋅µ−ε

is the new coupling tensor. The free-energy density function Ψ(ε,B) can then be com-
puted using (4.6) and (4.7)

Ψ(ε,B) = H ⋅B − 1

2
H ⋅ (µεH) − ε ∶ (e ⋅H) + 1

2
ε ∶ CH ∶ ε

= (µ−εB −µ−ε(eT ∶ ε)) ⋅B − 1

2
(µ−εB −µ−ε(eT ε)) ⋅µε (µ−εB −µ−ε(eT ε))

− (eT ∶ ε) ⋅ (µ−εB −µ−ε(eT ∶ ε)) + 1

2
ε ∶ CH ∶ ε

= 1

2
B ⋅µ−εB − ε(f ⋅B) + 1

2
ε ∶ CB ∶ ε.

The matrices corresponding to the tensors CB, µ−ε and f retain the properties of their
predecessors, such as positive definiteness and specific features like a diagonal structure.
Consider the class of polycrystalline magnetostrictive materials presented in Section 3.4.1.
Due to the specific structure of the coupling matrix d, the coupling matrix e is given by

e = CHd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d11 0 0
d21 0 0
d21 0 0
0 0 d43

0 0 d53

0 d53 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C11d11 +C12d21 +C13d21 0 0
C12d11 +C22d21 +C23d21 0 0
C13d11 +C23d21 +C33d21 0 0

0 0 C44d43

0 0 C55d53

0 C66d53 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The matrix dTe = dTCHd is a diagonal matrix with positive entries. Its componentwise
expansion yields

dTe = diag (d2
11C11 + 2d11d21(C12 +C13) + d2

21(C22 + 2C23 +C33), d2
53C66, d

2
43C44 + d2

53C55) .

Since CH is symmetric and its components Cij are positive, we have the estimate

d2
11C11 + 2d11d21(C12 +C13) + d2

21(C22 + 2C23 +C33) ≥ C̃(d11 + d21)2 ≥ 0

with
C̃ ..= min{C11, (C12 +C13), (C22 + 2C23 +C33)}.

Moreover, the reference values for the polycrystalline Terfenol-D used in Section 3.4.2
suggest that the dimension of the components of dTCHd is smaller than the dimension
of the entries of µσ, implying that µ−ε is a diagonal matrix with positive entries as well.
Furthermore, if CH is positive definite, then we have

xTCBx = xTCHx +xTeµ−εeTx
≥ (eTx)Tµ−εeTx = yTµ−εy ≥ 0

for all x ∈ R6 and y = eTx. The last inequality is due to the positive definiteness of a
diagonal matrix with positive entries. Finally, the coupling matrix f = eµ−ε is of the same

85



form as e, since its structure is invariant under the multiplication with the diagonal matrix
µ−ε.
After specifying the properties of the system matrices, we can now use the constitutive
equations presented above to derive a new coupled system based on the magnetic vector
potential.

4.2 The magnetic vector potential model

In analogy to Chapter 3, we will present a derivation of the new coupled model using the
example of the magnetostatic case. Furthermore, we will discuss the uniqueness of the
magnetic vector potential and present different settings for the coupled problem, stating
the strong and weak formulations of the coupled problem for each of the considered cases.

4.2.1 Derivation of the coupled model

Following the same steps as described in Section 3.1, we use the Lagrangian

W = −U −Wmag ,

as suggested in (4.4). Note that the kinetic coenergy T ∗ and electrical coenergy W ∗
el are

initially zero, as we deal with a static problem in the first instance. Since we are now
considering ε and B as independent variables, we have to introduce several changes to our
setting from Chapter 3. Remember that the model presented in Chapter 3 was based on
H as an independent variable and we thus assumed that the magnetic field was generated
by a permanent magnet, requiring the absence of any currents in the model. This enabled
the use of the magnetic scalar potential Ψ with H = −∇Ψ. In the present model, however,
the magnetic flux density B serves as the uncoupled variable, and since B satisfies

divB = 0,

it is reasonable to introduce the magnetic vector potential A defined as curlA = B.
Obviously, curlA fulfills the above requirement of a divergence-free magnetic flux density.
While in the previous setting, the magnetic field satisfied the homogeneous equation

curlH = 0,

to ensure the existence of a (total) magnetic scalar potential, the new model does not need
such a requirement, allowing the magnetic field to be generated by a current-carrying coil.
Note that in electromagnetic simulations, coils are commonly not modeled as separate
conducting regions but are incorporated into the model by a given current density.
Suppose that the coil is arranged next to the magnetostrictive body and generates a
magnetic field in the air region surrounding the material. Hence, we have to distinguish
between the material domain Ωc ⊂ R,3 where the subscript refers to the term “conducting”
and the total domain R3 ⊃ Ω = Ω0 ∪Ωc, where Ω0 describes the surrounding air or vacuum
region. We denote by ΓD and Γc,D, the Dirichlet boundaries of the elastic and magnetic
field in the conducting region Ω, respectively, and by Γ0,D the Dirichlet boundary of the
air region. Similarly, ΓN and Γc,N characterize the corresponding elastic and magnetic
Neumann boundaries of the domain Ωc. The interface between the non-conducting region
Ω0 and the conducting region Ωc is denoted by ΓI and assumed to be fixed. Let n denote
the outer unit normal vector of the boundaries of Ωc and of Ω0, as well as of the interface
ΓI .
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Figure 4.3: 2D sketch of the model geometry with boundaries and interface (based on [81]).

In all models presented in this chapter, we apply the magnetic vector potential on the
whole electromagnetic domain Ω. This is the general, though not very economic way
of solving a static electromagnetic problem. Another possibility is the combined use of
the magnetic vector potential A in the conducting region and a reduced magnetic scalar
potential Φ or the total magnetic scalar potential Ψ in the air region, as suggested, e.g.
in [81]. This solution method significantly reduces the number of unknowns but has the
drawback of imposing additional interface conditions to couple the two different potentials
in the model. The use of additional electromagnetic variables might not be beneficial for
the coupled magnetoelastic problem as it increases the complexity of the model. Figure
4.3 shows a two-dimensional sketch of the magnetostrictive material placed in a region
filled with air. A coil driven with the impressed current density jI ∶ Ω0 → R3 generates the
magnetic flux density B0 ∶ Ω0 → R3 and the magnetic field H0 ∶ Ω0 → R3 in the air region.
The corresponding quantities of the conducting region are Bc and Hc. The mechanical
displacement u is now defined on the domain Ωc, i.e. u ∶ Ωc → R3.
To be able to state the strong form of the coupled system in the whole domain Ω, we
have to extend the above definitions and introduce material parameters as discontinuous
functions on Ω. This is a common notation used in the literature concerned with elec-
tromagnetic problems as it reduces the number of the resulting equations and provides
a clearly represented model. Ampere’s law is then presented in a single vector-valued
equation on Ω involving differential operators applied to quantities with jumping material
parameters instead of two vector-valued equations on the domains Ω0 and Ωc.
We consider the magnetic vector potential A ∶ Ω→ R3 with B = curlA as the independent
variable of the magnetic part of the problem. The total magnetic flux density B ∶ Ω→ R3

is defined as

B(x) =
⎧⎪⎪⎨⎪⎪⎩

B0 x ∈ Ω0,

Bc x ∈ Ωc,

and the total magnetic field H ∶ Ω→ R3 is defined in the same manner.
The normal component of the magnetic flux density is assumed to be vanishing on the
boundary Γ0,D of the air region. Moreover, a homogeneous condition is also set on the
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Dirichlet boundary Γc,D of the material.

A ×n = 0 on Γ0,D ∪ Γc,D.

To incorporate the above-mentioned changes into the constitutive equations, we define the
magnetic permeability tensor µ by,

µ(x) ..=
⎧⎪⎪⎨⎪⎪⎩

µ0 x ∈ Ω0,

µε otherwise,

where µ0
..= µ0I denotes the 3 × 3 vacuum permeability tensor. The inverse µ−1 is then

given by

µ−1(x) ..=
⎧⎪⎪⎨⎪⎪⎩

µ−1
0 x ∈ Ω0,

µ−ε otherwise.

The coupling tensor f can be generalized to

f̂(x) ..=
⎧⎪⎪⎨⎪⎪⎩

0 x ∈ Ω0

f otherwise,

which implies that the total magnetic field vector H is given by

H(x) ..=
⎧⎪⎪⎨⎪⎪⎩

H0 = µ−1
0 curlA(x) x ∈ Ω0,

Hc = µ−ε curlA(x) − fT ⋅ ε(u(x)) otherwise.

To avoid confusion, we drop the subscript “f” denoting the free current in Chapter 2 and
define the total current density vector

j(x) ..=
⎧⎪⎪⎨⎪⎪⎩

j0 x ∈ Ω0,

jc otherwise.

Note that in the magnetostatic setting, there is no current flow in the conductor, i.e.
jc = 0. The current density in the vacuum or air region is defined by the impressed
current density, i.e. j0 = jI . Ampere’s law curlH = j implies that jI must be a solenoidal
field. Finally, the elastic displacement field can be generalized to Ω by setting u(x) = 0
for x ∈ Ω0.
On the magnetic Neumann boundary of the magnetostrictive material, we impose the
condition

Hc ×n =K,

with K denoting the surface current density. Finally, the continuity conditions

Hc ×n = H0 ×n,
Bc ⋅n = B0 ⋅n,

hold on the interface ΓI of the material and vacuum/air region.

Summing up, we can state the expression for the total energy of the magnetoelastic
system, formulating it in terms of the general tensor-valued notation in the first instance,
as done in Chapter 3.

L = −U −Wmag

= −1

2
∫
Ω

H(u,A) ⋅B(A) dx + ∫
Ω

A ⋅ j dx + ∫
Γc,N

A ⋅K ds

− ∫
Ωc

σ(u,A) ∶ ε(u) dx + ∫
ΓN

u ⋅ τ ds, (4.9)
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where τ and K are the elastic and magnetic surface tractions on the corresponding Neu-
mann boundaries. Note that

∫
Ω

H ⋅B dx = ∫
Ωc

(µ−ε curlA − fT ∶ ε) ⋅ curlA dx + ∫
Ω0

µ−1
0 curlA ⋅ curlA dx

and

∫
Ω

A ⋅ j dx = ∫
Ωc

A ⋅ jc dx + ∫
Ω0

A ⋅ j0 dx.

Defining the function

J(θ) ..= −Wmag(u,A + θÃ) −U(u + θv,A),

with admissible test functions

v(x) = 0 on ΓD and Ã(x) ×n = 0 on Γc,D,

and inserting the relation curlA =B, as well as the constitutive equations (4.8), we obtain

J(θ) = d

dθ
∣
θ=0

⎡⎢⎢⎢⎢⎣
−1

2
∫
Ω

[µ−1 curl(A + θÃ)) − f̂
T
∶ ε(u)] ⋅ curl(A + θÃ) dx

+ ∫
Ω

(A + θÃ) ⋅ j dx + ∫
Γc,N

(A + θÃ) ⋅K ds

− 1

2
∫
Ωc

(CB ∶ ε(u + θv) − f ⋅ curlA) ∶ ε(u + θv) dx + ∫
ΓN

(u + θv) ⋅ τ ds

⎤⎥⎥⎥⎥⎥⎦
.

Differentiating with respect to θ results in

0 = 1

2
∫
Ω

2(µ−1 curlA) ⋅ curl Ã − (f̂
T
∶ ε(u)) ⋅ curl Ã dx − ∫

Ω

Ã ⋅ j dx − ∫
Γc,N

Ã ⋅K ds

+ 1

2
∫
Ωc

(CB ∶ ε(u)) ∶ ε(v) +σ(u,A) ∶ ε(v) − f ⋅ (curlA) ∶ ε(v) dx − ∫
ΓN

v ⋅ τ ds.

Using the same arguments and reformulations as in the derivation of the model based on
scalar potential, as well as the relations

∫
Ω

(µ−1 curlA) ⋅ curl Ã dx = ∫
Ω

Ã ⋅ (curl(µ−1 curlA)) dx

− ∫
Γc,N

(Ã ×n) ⋅ (µ−ε curlA) ds,

∫
Ω

(f̂
T
∶ ε(u)) ⋅ curl Ã dx = ∫

Ω

Ã ⋅ curl(f̂
T
∶ ε(u)) dx

− ∫
Γc,N

(Ã ×n) ⋅ (fT ∶ ε(u)) ds,
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for the coupled magnetic part, we obtain the equation

0 = ∫
Ω

Ã ⋅ [curl(u−1 curlA) − 1

2
curl(f̂

T
∶ ε(u)) − Ã ⋅ j] dx

− ∫
Ωc

v ⋅ [div (CB ∶ ε(u)) − 1

2
div (f ⋅ curlA)] dx

+ ∫
Γc,N

1

2
(Ã ×n)(fT ∶ ε(u)) ds + ∫

Γc,N

(Ã ×n)(−µ−ε ⋅ curlA) ds − ∫
Γc,N

Ã ⋅K ds

+ ∫
ΓN

v ⋅ [(CB ∶ ε(u) − 1

2
f ⋅ (curlA)) ⋅n − τ] ds.

Note that although the differential operators are applied to discontinuous quantities, the
integration over the whole domain Ω implies a summation of integrals over its subsets Ωc

and Ω0. Therefore, the known integral relations over Lipschitz domains are still valid for
this setting.
Using the relation

(Ã ×n) (1

2
fT ∶ ε(u) −µ−ε curlA) = Ã ⋅ [−1

2
fT ∶ ε(u) +µ−1 curlA] ×n,

the variational formulation of our new coupled problem can be written as

0 = ∫
Ω

Ã ⋅ [curl(µ−1 curl×A) − 1

2
curl(f̂

T
∶ ε(u)) − j] dx

+ ∫
Ωc

v ⋅ [−div(CB ∶ ε(u)) + 1

2
div(f ⋅ curlA)] dx

+ ∫
Γc,N

Ã ⋅ [(µ−ε curlA − 1

2
(fT ∶ ε(u))) ×n −K] ds

+ ∫
ΓN

v ⋅ [(CB ∶ ε(u) − 1

2
f ⋅ curlA)n − τ] ds, (4.10)

for all admissible v and Ã. Considering the cases v = 0 on ΓN and Ã ×n = 0 on Γc,N , as
well as v ≠ 0 on ΓN and Ã×n ≠ 0 on Γc,N separately and making use of the fundamental
lemma of calculus of variations as we did for the previous model, we can state the strong
form of the new coupled problem for sufficiently smooth u and A,

Problem (CP )A∗∶ Find (u,A), such that

div(CB ∶ ε(u)) − 1

2
div(f ⋅ curlA) = 0 in Ωc,

curl(µ−1 curlA) − 1

2
curl(f̂

T
∶ ε(u)) = j in Ω,

with Dirichlet boundary conditions

u = 0 on ΓD,

A ×n = 0 on Γc,D ∪ Γ0,D

and Neumann boundary conditions

(CB ∶ ε(u) − 1

2
f ⋅ (curlA)) ⋅n = τ on ΓN ,

(µ−ε curlA − 1

2
fT ∶ ε(u)) ×n = K on Γc,N .
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4.2.2 The uniqueness issue

The uniqueness of the vector potential has not been assumed so far. As mentioned before,
uniqueness can be ensured by an additional gauging condition. The most commonly used
gauge is the Coulomb gauge (e.g. in [2])

divA = 0,

valid in the considered domain, with the boundary condition

A ⋅n = 0,

which stems from Gauss’ integral law.

Remark 4.1. Remember that in a general geometrical setting, the above conditions do
not necessarily guarantee the uniqueness of a function in a region Ω. The elements of the
finite-dimensional space of harmonic functions defined as

H(m,Ω) ..= {w ∈ L2(Ω)3 ∣ curlw = 0, divw = 0 in Ω, w ⋅n = 0 on ∂Ω},

with ∂Ω denoting the boundary of Ω and n the corresponding normal vector, are irrota-
tional, solenoidal and tangential and are thus examples of non-trivial vector fields satisfying
the above-mentioned uniqueness assumptions. In this case, additional conditions have to
be imposed (for a detailed insight, refer to [2]). If, however, Ω is a simply connected region,
which is the case in most engineering applications, no additional uniqueness conditions are
required.

At the discrete level, the construction of a suitable finite element space with divergence-
free functions is not straightforward. A way out is to impose the divergence-free condition
by introducing Lagrange multipliers or by adding a penalization term (see e.g. Coulomb
[43], B́ıró and Preis [32] or Preis et al. [93]).
In the following, we will consider three different settings for Maxwell’s equations. As
explained in Chapter 2, assuming that the electric field can be expressed as E = −∂A∂t ,
Ampere’s law takes the form

curl(µ−1 curlA) −σ∂A
∂t

+ ε̂∂
2A

∂t2
= jI . (4.11)

Here, σ and ε̂ are the total magnetic conductivity and permittivity tensors, defined as

σ(x) =
⎧⎪⎪⎨⎪⎪⎩

0 x ∈ Ω0,

σc otherwise,

with σc being the conductivity of the material and

ε̂(x) =
⎧⎪⎪⎨⎪⎪⎩

ε0I x ∈ Ω0,

εc otherwise,

where ε0 is the vacuum permittivity, I ∈ R3×3 denotes the identity tensor and εc is the
permittivity of the material. Note that all of the above-defined tensors are of order two
and, as in the case of the magnetic permeability, can be assumed to have a diagonal
structure for the considered material class of polycrystalline magnetostrictive materials.
In terms of the parameter tensor κ, the above equation reads

curl(µ−1 curlA) +κA = jI . (4.12)
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In the magnetostatic case, κ = 0 in Ω and supp(jI) = Ω0. Therefore, as in the previous
section, we introduce a total current density vector j with

j(x) =
⎧⎪⎪⎨⎪⎪⎩

jI x ∈ Ω0,

0 otherwise,

and express the magnetostatic Ampere law in Ω as

curl(µ−1 curlA) = j. (4.13)

In this case, the magnetic vector potential is not uniquely defined and additional gauging
is required.
In the time-harmonic case, assuming that the time-harmonic current density and magnetic
vector potential can be expressed as

j̃I(x, t) = Re(jI(x)eiωt),
Ã(x, t) = Re(A(x)eiωt),

where A ∶ Ω → C3 and jI ∶ Ω → C3 are complex-valued functions and ω denotes the
frequency, we obtain the full Maxwell system in the frequency domain with

κ = iωσ − ω2ε̂.

Note that the time-harmonic Maxwell system is satisfied by the field A ∶ Ω → C3, as well
as by its real and imaginary parts.
Since κ ≠ 0 on the whole domain Ω, the vector potential A is uniquely defined and
no gauging is needed. In the eddy current approximation of Maxwell’s equations in the
frequency domain, κ vanishes in Ω0 and gauging is required only for the air region. Finally,
in case that κ ∈ R3×3

+ , the vector potential is again uniquely defined on the whole domain.
Note that the impressed current density is present in the differential equation for the
material domain in all cases except the magnetostatic case, where there is no current flow
in the conductor.
The derivation of the coupled models with κ ∈ C3×3 follows the same steps as presented in
Section 4.2.1 by additionally including the term

1

2
∫
Ω

(κA) ⋅A dx

into the magnetic energy functional and will therefore be omitted in this work. We will
directly present and discuss the strong and weak forms of the coupled models for the
above-mentioned settings in the following sections.

4.2.3 The coupled problem in the magnetostatic case

In the magnetostatic case, we obtain uniqueness by enforcing the Coulomb gauge on the
whole domain Ω through an additional condition. Then, the strong form of the coupled
problem for sufficiently smooth u and A reads

Problem (CP )A ∶ Find (u,A) such that

div(CB ∶ ε(u)) − 1

2
div(f ⋅ curlA) = 0 in Ω,

curl(µ−1 curlA) − 1

2
curl(fT ∶ ε(u)) = j in Ω,

divA = 0 in Ω.
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In addition to the boundary and interface conditions defined in Section 4.2.1, the gauging
entails the boundary conditions

A ⋅n = 0 on Γ0,D ∪ Γc,D,

divA = 0 on Γc,N .

To obtain the weak form of the coupled gauged magnetostatic problem (CP )A, we
reformulate it as a saddle point problem, following the procedure explained in Chapter 2.
Since A is only defined up to a gradient of a scalar function ψ ∈H1(Ω), we require that

∫
Ω

A ⋅ ∇ψ dx = 0,

for all ψ ∈H1(Ω). Moreover, we use the function spaces

V ..= H1(Ωc)3,

V0
..= {v ∈ V ∣ v = 0 on ΓD},

for the elastic displacement and the space

HΓ(curl,Ω) ..= {w ∈H(curl,Ω) ∣w ×n = 0 on Γc,D ∪ Γ0,D},

for the magnetic vector potential. Note that the current density jI is an element of
the space L2(Ω)3, while the Neumann boundary value K belongs to the trace space

H− 1
2 (div,Γc,N) (see Chapter 2).

With the above definitions, we obtain the following weak problem:

Problem (CP )A,w ∶ Find (u,A, φ) ∈ V0 ×HΓ(curl,Ω) ×H1(Ω), such that

a(u,v) − c̃(A,v) = l(v) for v ∈ V0,

−c̃(Ã,u) + b̄(A, Ã) + d(Ã, φ) = m̃(A) for Ã ∈HΓ(curl,Ω),
d(A, ψ) = 0 for ψ ∈H1(Ω),

with bilinear forms and linear functionals defined as

a(u,v) = ∫
Ωc

∇v ∶ (CH ∶ ε(u)) dx = ∫
Ωc

(CH ∶ ε(u)) ∶ ε(v) dx, (4.14)

b̄(A, Ã) = ∫
Ω

(µ−1 curlA) ⋅ curl Ã dx, (4.15)

c̃(v,A) = 1

2
∫
Ωc

curlA ⋅ (fT ∶ ε(v)) dx, (4.16)

d(A, ψ) = ∫
Ω

A ⋅ ∇ψ dx, (4.17)

l(v) = ∫
ΓN

vτ ds, (4.18)

m̃(A) = ∫
Γc,N

K ⋅ Ã ds + ∫
Ω

jI ⋅ Ã dx. (4.19)
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4.2.4 The coupled problem for the eddy current setting

To obtain uniqueness of the solution in the magnetoquasistatic case, we adopt the tech-
nique of adding a penalization term to Ampere’s law, which is a common approach for
eddy current models based on the vector potential (see e.g. Biró and Preis [32], Rodriguez
and Valli [2]). It suggests the modification of Ampère’s law in the non-conducting domain
(where gauging is required) by adding the term ∇(ν divA), where ν is a suitable average
of the entries of µ−1

c . According to Rodriguez and Valli [2], ν is used as an auxiliary con-
stant and does not necessarily have to be equal to the magnetic reluctivity (the inverse
of the magnetic permeability). However, it can be physically interpreted as an equivalent
to a reluctivity. In case that the magnetic permeability is a constant, i.e. for isotropic
materials, ν = 1/µ is a reasonable choice [43].
For convenience, we adopt the approach suggested by Rodriguez and Valli [2] and require
the magnetic vector potential as well as the current density jI to be solenoidal on the whole
domain Ω, although this method yields only a modified solution to the (coupled) magne-
toquasistatic Maxwell’s equations in frequency domain. Instead of the original Maxwell’s
equations, we thus solve

curl(µ−1 curlA) − ∇(ν divA) + iωσA − 1

2
curl(f̂

T
∶ ε(u)) = jI , (4.20)

with

ν =
⎧⎪⎪⎨⎪⎪⎩

ν0 x ∈ Ω0,

νc otherwise,

under the assumptions ν divA = 0 and div jI = 0 on Ω.
In addition to the above modification, we have to require thatA⋅n vanishes on the Dirichlet
boundaries of the model and that divA = 0 on the Neumann boundary of the material.
Summing up, the full set of boundary conditions for the magnetic vector potential is given
by

µ−1
c curlA ×n =K on Γc,N , (4.21)

νc divA = 0 on Γc,N , (4.22)

A ⋅n = 0 on Γc,D, (4.23)

A ×n = 0 on Γc,D, (4.24)

A ⋅n = 0 on Γ0,D, (4.25)

A ×n = 0 on Γ0,D. (4.26)

The constant νc is usually kept in the Neumann boundary condition (4.22) as νc divA can
be physically interpreted as a magnetic flux through the surface Γc,N .
The new boundary conditions can be reproduced by the following consideration: Taking
the divergence on both sides of (4.20), we obtain

−div (∇(ν divA)) + div(iωσA) = div jI ,

which, due to the assumption div jI = 0 and the condition div(iωσA) = 0 from the
ungauged formulation results in

−div∇(ν divA) = 0,

a Laplace equation in the scalar variable ν divA for the domain Ω. In the domain Ω0,
this equation has the solution divA ≡ 0 if the boundary conditions (4.25) and (4.26) hold.
The conditions (4.22)–(4.24), on the other hand, ensure that divA = 0 on the boundary
of the domain Ωc.
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Remark 4.2. Due to the transformation

curl(curlA) − ∇(divA) = −∆A,

the penalization leads to a Poisson equation for the vector potential A in the magnetically
linear, homogeneous and isotropic case. For anisotropic materials, the transformation can
be interpreted as a general vector-valued Laplacian. From the variational point of view, one
does not gain much from the transformation, since the boundary conditions still remain in
the curl-curl and div-div form. The gauging thus turns a parabolic-semi-elliptic equation
to a parabolic-elliptic equation.

Based on the above transformations, the strong form of the gauged coupled problem for
sufficiently smooth u ∶ Ω→ R3 and A ∶ Ω→ C3 reads

Problem (CP )Aeddy,C ∶ Find (u,A), such that

div(CB ∶ ε(u)) − 1

2
div(f ⋅ curlA) = 0 in Ωc,

curl(µ−1 curlA) + iωσA −∇(ν divA) − 1

2
curl(f̂

T
∶ ε(u)) = jI in Ω,

with Dirichlet boundary conditions,

u = 0 on ΓD,

A = 0 on Γc,D ∪ Γ0,D,

Neumann boundary conditions

(CB ∶ ε(u) − 1

2
f ∶ curlA) ⋅n = τ on ΓN ,

(µ−ε curlA − 1

2
fT ∶ ε) ×n = K on Γc,N ,

ν divA = 0 on Γc,N ,

and interface conditions

Hc ×n = H0 ×n on ΓI ,

Bc ⋅n = B0 ⋅n on ΓI .

Remark 4.3. The above modified strong system can be derived from the variational prin-
ciple in the same manner as the unmodified one by adding the term

1

2
∫
Ω

ν(divA)2 dx

to the magnetic energy functional and carrying out the same transformation steps.

Before stating the weak formulation, we note that due to the additional boundary
conditions, the function space for the magnetic vector potential is given by

VC0 ..=HΓ(curl,Ω) ∩HΓ(div,Ω),

with spaces HΓ(curl,Ω) and HΓ(div,Ω) as defined in Chapter 2.
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Problem (CP )A,weddy,C ∶ Find (u,A) ∈ V0 × VC0 , such that

a(u,v) − c̃(A,v) = l(v) for v ∈ V0,

−c̃(Ã,u) + b̃(A, Ã) = m̃(A) for Ã ∈ VC0 ,

with real and complex-valued bilinear forms and linear functionals defined as

a(u,v) = ∫
Ωc

∇v ∶ (CH ∶ ε(u)) dx = ∫
Ω

(CH ∶ ε(u)) ∶ ε(v) dx, (4.27)

b̂(A, Ã) = ∫
Ω

(µ−1 curlA) ⋅ (curl Ã) + (ν divA)div Ã + (iωσA) ⋅ Ã dx, (4.28)

c̃(v,A) = 1

2
∫
Ωc

(curlA) ⋅ (fT ∶ ε(v)) dx, (4.29)

(4.30)

l(v) = ∫
ΓN

v ⋅ τ ds, (4.31)

m̃(A) = ∫
Γc,N

K ⋅ Ã ds + ∫
Ω

jI ⋅ Ã dx. (4.32)

4.2.5 The coupled problem for the full Maxwell system

The strong form of the coupled problem for the full Maxwell system in the frequency
domain with κ = iωσ − ω2ε̂ for sufficiently smooth u ∶ Ω→ R3 and A ∶ Ω→ C3 is given by

Problem (CP )At,C ∶ Find (u,A), such that

div(CB ∶ ε(u)) − 1

2
div(f ⋅ curlA) = 0 in Ωc,

curl(µ−1 curlA) +κ ⋅A − 1

2
curl(f̂

T
∶ ε(u)) = jI in Ω,

with Dirichlet boundary conditions,

u = 0 on ΓD,

A ×n = 0 on Γc,D ∪ Γ0,D,

Neumann boundary conditions

(CB ∶ ε(u) − 1

2
f ∶ curlA) ⋅n = τ on ΓN ,

(µ−ε curlA − 1

2
fT ∶ ε) ×n = K on Γc,N ,

and interface conditions

Hc ×n = H0 ×n on ΓI ,

Bc ⋅n = B0 ⋅n on ΓI .

The corresponding weak form is
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Problem (CP )A,wt,C ∶ Find (u,A) ∈ V0 ×HΓ(curl,Ω), such that

a(u,v) − c̃(A,v) = l(v) for v ∈ V0,

−c̃(Ã,u) + b̃(A, Ã) = m̃(A) for Ã ∈HΓ(curl,Ω),

with real and complex - valued bilinear forms and linear functionals

a(u,v) = ∫
Ωc

∇v ∶ (CH ∶ ε(u)) dx = ∫
Ω

(CH ∶ ε(u)) ∶ ε(v) dx, (4.33)

b̃(A, Ã) = ∫
Ω

(µ−1 curlA) ⋅ curl Ã +κA ⋅ Ã dx, (4.34)

c̃(v,A) = 1

2
∫
Ωc

curlA ⋅ (fT ∶ ε(v)) dx, (4.35)

l(v) = ∫
ΓN

v ⋅ τ ds, (4.36)

m̃(A) = ∫
Γc,N

K ⋅ Ã ds + ∫
Ω

jI ⋅ Ã dx. (4.37)

4.3 Existence and uniqueness of the solution

As we have seen in Chapter 2, the approach for proving the existence and uniqueness of
the weak solution to Ampère’s law is strongly dependent on the value of the parameter
matrix κ. For κij ∈ R+, i, j = 1,2,3, the bilinear form b̃(A, Ã) is coercive, which enables
the application of Lax-Milgram. In the magnetostatic case, κij = 0 for i, j = 1, ...,3 and
the requirement of coercivity is not fulfilled any more, so the problem is cast into a saddle
point framework. In this section, we will discuss the existence and uniqueness of the weak
solution to the coupled problem for these two cases. For the proofs, we return from the
general tensor notation to the more specific vector and matrix notation, as done in Chapter
3, with material parameter matrices as defined at the outset of this chapter.

4.3.1 The coupled problem for κij ∈ R+

In analogy to the previous models, we denote the coupled problem with κij ∈ R+ by

(CP )A,wt,R . In contrast to the full Maxwell system in the frequency domain, the bilinear
forms and linear functionals in the weak formulation of this problem are real-valued and
A, Ã ∈HΓ(curl,Ω). The matrix κ defined as

κ(x) ..=
⎧⎪⎪⎨⎪⎪⎩

κ0 x ∈ Ω0,

κc otherwise,

is the linear combination of the diagonal matrices σ and ε̂ and has therefore a diagonal
structure for the underlying material class. To show the existence and uniqueness of the
solution, we would like to apply the Lax-Milgram lemma to the composite bilinear form

Ã((u,A), (v, Ã)) ..= a(u,v) + b̃(A, Ã) − c̃(v,A) − c̃(u, Ã) (4.38)

for all (u,A), (v, Ã) ∈ V0×HΓ(curl,Ω), as done for the scalar potential model (see Remark
3.4). The coupled system hence reduces to the single equation

Ã((u,A), (v, Ã)) = l(v) + m̃(Ã) ∀(v, Ã) ∈ V0 ×HΓ(curl,Ω).
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Although the coupled part c̃(⋅, ⋅) is obviously not symmetric, the composite bilinear form
is symmetric in (u,A),

Ã((u,A), (v, Ã)) = a(u,v) + b̃(A, Ã) − c̃(u, Ã) − c̃(v,A)
= a(v,u) + b̃(Ã,A) − c̃(v,A) − c̃(u, Ã) = Ã((v, Ã), (u,A)).

The continuity of the bilinear forms a(⋅, ⋅) and b̃(⋅, ⋅) is inherited from the uncoupled
problem in Chapter 2. As the next lemma proves, continuity also holds for the coupled
bilinear form c̃(⋅, ⋅).

Lemma 4.1. The coupled bilinear form c̃ ∶ V0 × HΓ(curl,Ω) → R defined in (4.35) is
continuous.

Proof. The bilinear form c̃(v,A) can be written as

c̃(v,A) = 1

2
∫
Ωc

ε(v) ⋅ (f curlA) dx

= 1

2
∫
Ωc

3

∑
k=1

∂vk
∂xk

(
3

∑
i=1

fki(curlA)i) dx + 1

2
∫
Ω

(∂v2

∂x3
+ ∂v3

x2
)

3

∑
i=1

f4i(curlA)i

+ (∂v1

∂x3
+ ∂v3

∂x1
)

3

∑
i=1

f5i(curlA)i) + (∂v1

∂x2
+ ∂v2

∂x1
)

3

∑
i=1

f6i(curlA)i) dx

≤ f̃

2
∫
Ω

∣
3

∑
i=1

(curlA)i)(
3

∑
i=1

∂vi
∂xi

+ (∂v2

∂x3
+ ∂v3

∂x2
) + (∂v1

∂x3
+ ∂v3

∂x1
) + (∂v1

∂x2
+ ∂v2

∂x1
))∣ dx,

where (curlA)i denotes the i-th component of the vector curlA and

f̃ ..= max
i,j=1,...,6

∣fij ∣.

Componentwise application of the Cauchy-Schwarz inequality and the use of the triangle
inequality yields the estimate

c(v,A) ≤ f̃
3

∑
i=1

⎛
⎜
⎝
∫
Ωc

(curlA)2
i dx

⎞
⎟
⎠

1
2

3

∑
j=1

3

∑
k=1

⎛
⎜
⎝
∫
Ωc

(∂vk
∂xj

)
2

dx
⎞
⎟
⎠

2

.

Eventually, exploiting the (strict) concavity property of the square root function,

1

4
(

3

∑
i=1

√
yi) ≤

1

2
(1

2

√
y1 +

1

2

√
y2) +

1

2

√
y3 ≤

1√
2

√
1

2
(y1 + y2) +

√
y3 ≤

1√
2

¿
ÁÁÀ 3

∑
i=1

yi

for all yi ≥ 0, i = 1,2,3, which implies that

1

42
(

9

∑
i=1

√
yi) ≤ 1

2

¿
ÁÁÀ 9

∑
i=1

yi,
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we obtain

c̃(v,A) ≤ f̃
3

∑
i=1

⎛
⎜
⎝
∫
Ωc

(curlA)2
i dx

⎞
⎟
⎠

1
2

3

∑
k=1

3

∑
j=1

⎛
⎜
⎝
∫
Ω

(∂vk
∂xj

)
2

dx
⎞
⎟
⎠

1
2

≤ 42

2
f̃

3

∑
i=1

⎛
⎜
⎝
∫
Ω

(curlA)2
i dx

⎞
⎟
⎠

1
2 ⎛
⎜
⎝

3

∑
k=1

3

∑
j=1
∫
Ωc

(∂vk
∂xj

)
2

dx
⎞
⎟
⎠

1
2

≤ 43

2
√

2
f̃
⎛
⎜
⎝

3

∑
i=1
∫
Ω

(curlA)2
i dx

⎞
⎟
⎠

1
2 ⎛
⎜
⎝

3

∑
k=1

3

∑
j=1
∫
Ω

(∂vk
∂xj

)
2

dx
⎞
⎟
⎠

1
2

≤ 42
√

2f̃ ∣∣A∣∣H(curl,Ω) ∣∣v∣∣V0
.

Continuity is thus satisfied with the constant

c̃0
..= 42

√
2f̃ .

Lemma 4.2 uses this result to prove the continuity of the composite bilinear form Ã(⋅, ⋅).

Lemma 4.2. The composite bilinear form
Ã(⋅, ⋅) ∶ (V0 ×HΓ(curl,Ω)) × (V0 ×HΓ(curl,Ω)) → R defined in (4.38) is continuous.

Proof. We have to show that the bilinear form satisfies

Ã((u,A), (v, Ã)) ≤ ã ∣∣(u
A

)∣∣
V0×H(curl,Ω)

∣∣(v
Ã

)∣∣
V0×H(curl,Ω)

= ã

√
(∣∣u∣∣2V0

+ ∣∣A∣∣2H(curl,Ω))(∣∣v∣∣
2
V0
+ ∣∣Ã∣∣2

H(curl,Ω)
)

for a constant α̃ ≥ 0. Exploiting the continuity properties of the bilinear forms a(⋅, ⋅), b̃(⋅, ⋅)
and c̃(⋅, ⋅), where a0, b̃0 and c̃0 denote the corresponding continuity constants, and using
the concavity of the root function as shown in the proof of Lemma 4.1, we obtain

1

2
Ã((u,A), (v, Ã)) = 1

2
(a(u,v) + b̃(A, Ã) − c̃(v,A) − c̃(u, Ã))

≤ 1

2
(a0 ∣∣u∣∣V0

∣∣v∣∣V0
+ b̃0 ∣∣A∣∣H(curl,Ω) ∣∣Ã∣∣

H(curl,Ω)

− c̃0 ∣∣v∣∣V0
∣∣A∣∣H(curl,Ω) − c̃0 ∣∣u∣∣V0

∣∣Ã∣∣
H(curl,Ω)

)

= 1

2

⎡⎢⎢⎢⎣
((a0 ∣∣u∣∣V0

∣∣v∣∣V0
− c̃0 ∣∣v∣∣V0

∣∣A∣∣H(curl,Ω))
2
)

1
2

+ ((b̃0 ∣∣A∣∣H(curl,Ω) ∣∣Ã∣∣
H(curl,Ω)

− c̃0 ∣∣u∣∣V0
∣∣Ã∣∣

H(curl,Ω)
)

2
)

1
2
⎤⎥⎥⎥⎦

≤ [1

2
(a0 ∣∣u∣∣V0

∣∣v∣∣V0
− c̃0 ∣∣v∣∣V0

∣∣A∣∣H(curl,Ω))
2

+ 1

2
(b̃0 ∣∣A∣∣H(curl,ω) ∣∣Ã∣∣

H(curl,Ω)
− c̃0 ∣∣u∣∣V0

∣∣ÃH(curl,Ω)∣∣)
2
]

1
2

= [1

2
(a2

0 ∣∣u∣∣
2
V0

∣∣v∣∣2V0
− 2ã0c̃0 ∣∣v∣∣2V0

∣∣u∣∣V0
∣∣A∣∣H(curl,Ω) + c̃

2
0 ∣∣v∣∣

2
V0

∣∣A∣∣2H(curl,Ω))
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+ 1

2
(b̃20 ∣∣A∣∣2H(curl,Ω) ∣∣Ã∣∣2

H(curl,Ω)
− 2b̃0c̃0 ∣∣u∣∣V0

∣∣A∣∣H(curl,Ω) ∣∣Ã∣∣2
H(curl,Ω)

+ c̃2
0 ∣∣Ã∣∣2

H(curl,Ω)
∣∣u∣∣2V0

)]
1
2

≤ [max{a2
0, b̃

2
0, c̃

2
0}

1

2
(∣∣u∣∣2V0

∣∣v∣∣2V0
+ ∣∣v∣∣2V0

∣∣A∣∣2H(curl,Ω)

+ ∣∣A∣∣2H(curl,Ω) ∣∣Ã∣∣2
H(curl,Ω)

+ ∣∣Ã∣∣2
H(curl,Ω)

∣∣u∣∣2V0
)

− c̃0 ∣∣u∣∣V0
∣∣A∣∣H(curl,Ω) (a0 ∣∣v∣∣2V0

+ b̃0 ∣∣Ã∣∣2
H(curl,Ω)

)]
1
2

≤ max{a0, b̃0, c̃0}√
2

∣∣(u
A

)∣∣
V0×H(curl,Ω)

∣∣(v
Ã

)∣∣
V0×H(curl,Ω)

.

Hence, continuity is satisfied with the constant

ã ..= 2 max{a0, b̃0, c̃0}√
2

.

The next lemma guarantees the coercivity of the bilinear form b(⋅, ⋅) in HΓ(curl,Ω).
Lemma 4.3. The bilinear form b̃ ∶HΓ(curl,Ω) →HΓ(curl,Ω) defined in (4.34) is coercive.

Proof.

b̃(A,A) = ∫
Ω

(µ−1 curlA) ⋅ curlA + (κA) ⋅A dx

= ∫
Ωc

(µ−ε curlA) ⋅ curlA + (κcA) ⋅A dx + ∫
Ω0

(µ−1
0 curlA) ⋅ curlA + (κ0A) ⋅A dx

=
3

∑
i=1
∫
Ωc

µ−εij (curlA)2
i dx +

3

∑
i=1
∫
Ωc

κciiA
2
i dx

≥ min
i=1,..,3

{µ−εii , µ−1
0,ii}

3

∑
i=1
∫
Ω

(curlA)2
i dx + min

i=1,..,3
{κcii, κ0

ii}
3

∑
i=1
∫
Ω

A2
i dx

≥ min
i=1,..,3

{µ−εii , µ−1
0,ii, κ

c
ii, κ

0
ii} ∣∣A∣∣2H(curl,Ω) ,

where κ0
ii and κcii, as well as µ−εii and µ−1

0,ii denote the components of the matrices κ and µ−1

in the air region and the conducting domain, respectively. As in the proof of the previous
lemma, (curlA)i denotes the i-th component of the vector curlA. Thus, coercivity holds
with the constant

γ̃ ..= min{ min
i=1,..,3

{µ−εii , µ−1
0,ii}, min

i=1,..,3
{κcii, κ0

ii}}.

To show the coercivity of the composite bilinear form Ã((⋅, ⋅), (⋅, ⋅)), we need to find a
suitable estimate for the part −2c̃(u,A). Such an estimate will be derived in the proof of
the next theorem.

Theorem 4.1. The coupled magnetoelastic problem (CP )A,wt,R has a unique solution
(u,A) ∈ V0 ×HΓ(curl,Ω) if the underlying material satisfies the property

max
i=1,...,6

∑3
j=1 µ

−ε
jj e

2
ij

min
i=1,...,6

(CHii +∑
3
j=1 µ

−ε
jj e

2
ij)

≤ 1, (4.39)
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where the indices denote the scalar components of the respective tensors.

Proof. We want to apply the Lax-Milgram lemma to the problem

Find ((u,A), (v, Ã)) ∈ V0 ×HΓ(curl,Ω), such that

Ã((u,A), (u,A)) = l(u) + m̃(A),

with Ã((⋅, ⋅), (⋅, ⋅)) defined in (4.38). The coercivity of Ã((⋅, ⋅), (⋅, ⋅)) in Ω0 follows directly
from the coercivity of b̃(⋅, ⋅), as the bilinear forms a(⋅, ⋅) and c̃(⋅, ⋅) vanish in Ω0. To show
the coercivity in Ωc, we are seeking for an estimate for the coupled bilinear form c̃(⋅, ⋅) in
terms of the bilinear forms a(⋅, ⋅) and b̃(⋅, ⋅). Componentwise expansion of the expression
for c̃(⋅, ⋅) yields

c̃(u,A) = 1

2
∫
Ωc

(curlA) ⋅ (fT ε(u)) dx = 1

2
∫
Ω

3

∑
j=1

(curlA)j
6

∑
i=1

fijεi dx

= 1

2

3

∑
j=1

µ−εjj ∫
Ω

(curlA)j
6

∑
i=1

eijεi dx,

where εi denotes the i-th component of the strain ε and µ−εjj denotes the j-th diagonal

entry of µ−ε. The product fT ε is given componentwise by

(fT ε)j =
6

∑
i=1

µ−εjj eijεi, j = 1,2,3.

Making use of the Hölder and the triangle inequalities, as well as the estimate

2xy ≤ x2 + y2 for x, y ∈ R,

we obtain the inequality chain

c̃(u,A) ≤ 1

4

3

∑
j=1

µ−εjj (2 ∣∣(curlA)j ∣∣0 ∣∣
6

∑
i=1

eijεi∣∣
0

)

≤ 1

4

3

∑
j=1

µ−εjj
⎛
⎝
∣∣(curlA)j ∣∣20 + ∣∣

6

∑
i=1

eijεi∣∣
2

0

⎞
⎠

≤ 1

4

3

∑
j=1

µ−εjj ∣∣(curlA)∣∣20 +
1

4

3

∑
j=1

µ−εjj

6

∑
i=1

e2
ij ∣∣εi∣∣

2
0

= 1

4

3

∑
j=1

µ−εjj ∫
Ω

(curlA)2
j dx + 1

4

6

∑
i=1

⎛
⎝

3

∑
j=1

µ−εjj e
2
ij

⎞
⎠∫

Ω

ε2i dx

≤ 1

4
b̃(A,A) + 1

4
max
i=1,...,6

⎛
⎝

3

∑
j=1

µ−εjj e
2
ij

⎞
⎠

6

∑
i=1
∫
Ω

ε2i dx.

The next step consists of showing that the second term in the last expression of the
inequality chain can be estimated from above by a multiple of the bilinear form a(⋅, ⋅).
Due to the positive definiteness of the matrix CB = CH + eµ−εeT, we can estimate a(⋅, ⋅)
via

a(u,u) =
6

∑
i=1
∫
Ω

CBii ε
2
i dx +

6

∑
i,j=1,
i≠j

CBij εiεj dx ≥
6

∑
i=1

CBii ∫
Ω

ε2i dx ≥ min
i=1,...,6

CBii

6

∑
i=1
∫
Ω

ε2i dx,
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where CBii denotes the ii-th component of the matrix CB. Each diagonal component CBii
is given by

CBii = CHii +
3

∑
j=1

µ−εjj e
2
ij .

Since (4.39) holds, we obtain

c̃(u,A) ≤ 1

4

⎛
⎜
⎝
b̃(A,A) + max

i=1,...,6

3

∑
j=1

µ−εjj e
2
ij

a(u,u)
min
i=1,...,6

CBii

⎞
⎟
⎠
≤ 1

4
(a(u,u) + b̃(A,A),

and, consequently,

a(u,u) + b̃(A,A) − 2c̃(u,A) ≥ 1

2
(a(u,u) + b̃(A,A)) ≥ 1

2
(α ∣∣u∣∣2V + γ̃ ∣∣A∣∣2H(curl,Ω)),

with α and γ̃ denoting the coercivity constants of a(⋅, ⋅) and b̃(⋅, ⋅). The Lax-Milgram
lemma now immediately yields the existence and uniqueness of a solution
(u,A) ∈ V0 ×HΓ(curl,Ω) to the coupled weak problem (CP )At,R.
Note that for the polycrystalline Terfenol-D (see Tables 5.1 and 5.2 for material data),
assumption 4.39 is satisfied since the dimensions of the components of CHii are between
1010 and 1011, whereas the values of

3

∑
j=1

µ−εjj e
2
ij

have a dimension range between 109 and 1011.

4.3.2 The coupled problem in the magnetostatic case

Consider the coupled saddle point problem (CP )A,w from Section 4.2.3. The continuity
of the bilinear form c̃(⋅, ⋅) was already proven in the previous section. The continuity of
d(⋅, ⋅) is straightforward:

Lemma 4.4. The bilinear form d ∶ HΓ(curl,Ω) ×H1(Ω) → R defined in (4.17) is contin-
uous.

Proof.

d(A,Ψ) = ∫
Ω

A∇ψ dx ≤
⎛
⎜
⎝
∫
Ω

AA dx
⎞
⎟
⎠

1
2 ⎛
⎜
⎝
∫
Ω

∇ψ∇ψ dx
⎞
⎟
⎠

1
2

= ∣∣A∣∣0 ∣ψ∣1 ≤ ∣∣A∣∣H(curl,Ω ∣∣ψ∣∣H1(Ω) ,

where we again used the Hölder inequality.

The structure of the problem becomes more vivid if we consider its algebraic form, as
done in Section 3.4. The system has a symmetric matrix with the block structure

E =
⎛
⎜⎜
⎝

A −C̃ 0

−C̃T B̄ D
0 DT 0

⎞
⎟⎟
⎠
,
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with matrices A ∈ Rn×n, C̄ ∈ Rn×m and D ∈ Rm×k for some m,n, k ∈ N. Setting

A ..=
⎛
⎝
A −C̃
−C̃T B̄

⎞
⎠
∈ R(n+m)×(n+m) and B ..= (0 DT ) ∈ Rk×(n+m),

the composite system matrix can be rewritten to

O = (A BT
B 0

) ,

which, itself, has a structure of a block-saddle point problem.
The sufficient conditions for showing the non-singularity of the above composite system
matrix have already been discussed in Section 3.4. The matrix O is non-singular if the
operator B ∶ Rk → Rn+m corresponding to the matrix B is surjective (or, equivalently, if
BT is injective) and the matrix A ∈ Rn+m×n+m is positive definite on the kernel of B [24].
In the infinite-dimensional case, these conditions translate to the conditions given by
Brezzi’s Splitting theorem (see Chapter 3). On the one hand, we require the coercivity of
the composite bilinear form Ā ∶ V0 ×HΓ(curl,Ω) → R, defined as

Ā((u,A), (v, Ã)) ..= a(u,v) − c̃(v,A) − c̃(u, Ã) + b̄(A, Ã)

on the kernel

K ..= {(u, Ã) ∈ V0 ×HΓ(curl,Ω)} ∣ d̃((u, Ã), φ) = 0 ∀ φ ∈H1(Ω)},

where d̃ ∶ V0 ×HΓ(curl,Ω) ×H1(Ω) is defined as

d̃((u, Ã), φ) = d(Ã, φ).

The above coercivity requirement implies that a(⋅, ⋅) must be elliptic on the whole space
V0, b̄(⋅, ⋅) must be coercive on the kernel

K̃ ..= {Ã ∈HΓ(curl,Ω) ∣ d(Ã, φ) = 0∀φ ∈H1(Ω)},

and the remaining term −2c̃(u, Ã) has to be estimated in terms of a(⋅, ⋅) and b̄(⋅, ⋅), as
shown in the proof of Theorem 4.1. The first two conditions are fulfilled for the uncoupled
elastic and magnetic bilinear forms.
On the other hand, an inf-sup condition for d̃((u, Ã), φ) has to be satisfied, which, however,
directly follows from the corresponding inf-sup condition for d(⋅, ⋅), presented in Chapter 2.
Finally, the estimate

c̃(u,A) ≤ 1

4
(a(u,u) + b̃(A,A)),

obtained in the proof of Theorem 4.1 holds for all Ã ∈HΓ(curl,Ω) and thus also for all Ã
satisfying

∫
Ω

Ã∇φ dx = 0 ∀φ ∈H1(Ω).

completing the requirements for the existence and uniqueness of the solution to the coupled
magnetostatic saddle point problem.

For the sake of completeness, we note that the estimates for the continuous dependence
of the solution on the data can be obtained in the same manner as discussed in the
Chapters 2 and 3 and will therefore not be presented in this chapter. Instead, we will
briefly introduce the special case of a two-dimensional setting, which significantly reduces
the complexity of the problem.
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4.4 Reduction to 2D

The uniqueness of the magnetic vector potential is always valid in the two-dimensional
case, as the magnetic vector potential has only one out-of-plane component A3(x1, x2),
implying that the Coulomb gauge divA = 0 is automatically satisfied. In the uncoupled
magnetostatic case, Maxwell’s three-dimensional system of equations thus reduces to

curl(µ−1 curlA) =
⎛
⎜⎜⎜
⎝

0
0

− 1
µ22

(∂
2A3

∂x2
1
) − 1

µ11
(∂

2A3

∂x2
2
)

⎞
⎟⎟⎟
⎠
=
⎛
⎜
⎝

0
0
j3

⎞
⎟
⎠
,

resulting in the single equation

−div(µ−1∇A3) = j3,

where Ai and ji, i = 1, ..,3, denote the spatial components of the magnetic vector potential
and the current density, respectively.
In the coupled magnetoelastic model, however, the additional term −1

2 curl(fT ∶ ε(v))
leads to non-zero components j1 and j2 of the current density if the coupling matrix f is
dense:

curl(fT ∶ ε(v))

=

⎛
⎜⎜⎜⎜⎜
⎝

f13
∂2v1

∂x2∂x1
+ f23

∂2v2

∂x2∂x2
+ f63 ( ∂2v1

∂x2∂x2
+ ∂2v2

∂x2∂x1
)

−f13
∂2v1

∂x2
1
− f23

∂2v2

∂x1∂x2
− f63 (∂

2v1

∂x2
2
+ ∂2v2

∂x2∂x1
)

f12
∂2v1

∂x2
1
+ f22

∂2v2

∂x1∂x2
+ f62 ( ∂2v1

∂x1∂x2
+ ∂2v2

∂x2
1
) − f11

∂2v1

∂x2∂x1
− f21

∂2v2

∂x2
2
− f61 (∂

2v1

∂x2
2
+ ∂2v2

∂x2∂x1
)

⎞
⎟⎟⎟⎟⎟
⎠

.

Taking the transversely-isotropic plane stress-plate model from Section 3.4.2 as a basis,
we can reduce the number of non-zero components of the coupling matrix f , since

f = eµ−ε =
⎛
⎜⎜
⎝

e11

µε11
0 0

e21

µ11
0 0

0 e62

µε22
0

⎞
⎟⎟
⎠
.

Setting all but the components f11, f21 and f62 to zero, we obtain the single scalar coupled
equation

−( 1

µε22

∂2A3

∂x2
1

+ 1

µε11

∂2A3

∂x2
2

) − 1

2
(f11

∂2v1

∂x2∂x1
+ f21

∂2v2

∂x2
2

− f62 (
∂2v1

∂x1∂x2
+ ∂

2v2

∂x2
1

)) = j3.

On the other hand, the relation

div(CH ∶ ε(u)) − 1

2
div(f curlA) = 0

yields a scalar equation with the coupling term

div(f curlA) = f11
∂2A3

∂x1∂x2
+ f21

∂2A3

∂x2
2

.
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With these considerations, we can write the bilinear forms b̄(⋅, ⋅) and c̃(⋅, ⋅) in their new
form as

b̄(A, Ã) = ∫
Ω

(µ−ε curlA) ⋅ curl Ã dx = ∫
Ω

1

µε22

∂A3

∂x1

∂Ã3

∂x1
+ 1

µε11

∂A3

∂x2

∂Ã3

∂x2
dx

=∶ b̄(A3, Ã3)

c̃(v,A) = 1

2
∫
Ωc

curlA ⋅ (fT ε(v)) dx

= 1

2
∫
Ω

∂A3

∂x2
(f11

∂v1

∂x1
+ f21

∂v2

∂x2
) − ∂A3

∂x1
f62 (

∂v1

∂x2
+ ∂v2

∂x1
) dx

=∶ c̃(v,A3)

The bilinear form b̄(A3, Ã3) for the scalar component A3 is almost identical to the bilinear
form b(Ψ,Φ) for the magnetic scalar potential from Chapter 3 with interchanged compo-
nents µεii, i = 1,2. Analogously, the coupled bilinear form c̃(v,A) has a similar structure
as the bilinear form c(v,Ψ) with minor differences due to the usage of the curl instead of
the gradient.
Since the magnetic part of the coupled problem is now based on the single variable A3,
the space HΓ(curl,Ω) used for the functions A in the three-dimensional model becomes
superfluous: Instead, we simply require A3 ∈H1(Ω). The coercivity of b̄(⋅, ⋅) in H1(Ω)3 is
automatically satisfied and the bilinear form c̃(⋅, ⋅) fulfills the estimate from Theorem 4.1
for all A ∈H1(Ω)3.
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Chapter 5

Numerical Simulations

After an extensive theoretical treatment of the coupled magnetoelastic saddle point prob-
lem and its discrete counterpart, we now focus on the numerical analysis and simulations
of specific 1D and 2D problems. Within this framework, we will present two different
models:
In an initial, one-dimensional quasi-static model of a magnetostrictive Euler-Bernoulli
beam [64], attention will be drawn only on the weak coupling, that is, on the impact of an
external magnetic field on the strain and displacement of the beam. The model is slightly
different from the general model presented in Chapter 3 as it examines the bending of
the beam and includes time-dependency. However, it follows the same steps of derivation
using Hamilton’s principle and, thanks to its vivid and comprehensible structure, offers a
possibility of demonstrating the coupling effect by showing the deformation of the body
at different time steps as a consequence of the applied magnetic field.
The second model, which serves as a basis for the numerical verification of the two-way-
coupled model from Chapter 3, is the two-dimensional model of the magnetostrictive plate
in the state of plane stress already introduced in Subsection 3.4.2.
After defining the exact model geometries, material parameters and the loading, as well as
the appropriate Finite Element spaces, the results of the numerical simulations carried out
with the software MATLAB will be illustrated for both models. The second model will be
additionally analyzed with respect to the properties of the dicretized system. Aspects such
as the course of the energy norm of the coupled model, as well as the full-rank condition
mentioned in Section 3.4.3 will be discussed and used as a verification of the theoretical
results.

5.1 1D model: the Euler-Bernoulli beam

The one-dimensional model of a beam in a magnetic field can be regarded as a reduced form
of an actuator. A giant magnetostrictive actuator generally consists of a magnetostrictive
rod, typically made of a giant magnetostrictive material such as Terfenol-D, surrounded
by an excitation coil that is provided by a time-dependent current generating a varying
magnetic field in the rod. Moreover, it contains permanent magnets which produce the
steady magnetic bias field and a prestress spring washer that applies a compressive load
to the rod. Figure ?? shows a two-dimensional sketch of the geometry of such an actua-
tor. In our model, we will adopt the basic structure of the actuator, yet making several
simplifying assumptions in order to neglect the parts that have no significant effect on the
mathematical model. Suppose the rod is represented by an Euler-Bernoulli beam. It is
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Figure 5.1: Sketch of the cross-section of a giant magnetostrictive actuator (based on [115]).

clamped at the left end and free to move at the right end. The spring washer providing the
compressive force is left out of the geometry as we are merely interested in the influence of
the magnetic field on the body. Since our model is based on the total magnetic scalar po-
tential defined only in current-free regions, the coil as the source of the magnetic field has
to be replaced by permanent magnets. For convenience, only the biasing magnets will be
considered. As in the general model from the previous section, the air domain surround-
ing the body is neglected. This is a plausible simplification in our case, as we focus on
small deformations of the body within the framework of linear theory. Consider a planar
Euler-Bernoulli beam with rectangular cross-section and length l, which is placed into the
magnetic field and undergoes deformations in the (x1, x2) - plane, with x1 denoting the
longitudinal axis of the beam. Due to the assumptions of the Euler-Bernoulli beam theory,
the behavior of the body is fully determined by the longitudinal and lateral displacements
of the neutral fiber, denoted by w1 and w2, respectively, depending on the longitudinal
coordinate x1. Considering only small displacements and slopes, the displacement field of
the beam can be written as (see, e.g. [102]),

u1(x1, t) = w1(x1, t) − x2w
′
2(x1, t),

u2(x1, t) = w2(x1, t),
u3(x1, t) = 0,

where the derivative refers to differentiation with respect to x1.
Furthermore, the following boundary conditions are chosen: The left end of the beam is
clamped, i.e.

w1(0, t) = 0, w2(0, t) = 0, w′
2(0, t) = 0,

and the right end is left free. In addition, we assume that the magnetic influence is
described by a given constant magnetic flux density vector B ∈ R2.
As in the general model from the previous section, we extend the constitutive relation of
linear elasticity by an expression including the magnetic influence,

σ = CHε − ẽB,

with the coupling matrix ẽ ..= eµ−1 and CH and e as defined in Section 3.1. Using this
equation along with the expression for linearized strain of the beam, the strain energy
reads

W (u,B) = 1

2
∫
Ω

σ(u) ∶ ε(u) dx = 1

2
Eb2

l

∫
0

w′
1(x1)2 dx1 +

1

2
EI

l

∫
0

(w′′
2 (x1))2 dx1

− (
n

∑
k=1

ẽ1kBk)
⎛
⎜
⎝
A

l

∫
0

w′
1(x1) dx1 −

b3

2

l

∫
0

w′′
2 (x1) dx1

⎞
⎟
⎠
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with A = b2 denoting the cross-sectional area of the beam, E the modulus of elasticity and
I = b3/12 the axial moment of inertia. Notice that the magnetic influence is characterized
by a volume force term on the right-hand side.
Inserting the above equation into Hamilton’s principle, neglecting additional volume and
surface force terms like gravity and mechanical traction and using the same variational
approach as described in Section 3.1, we end up with the following time-dependent varia-
tional problem:

Problem: For all t find w(., t) ∈ V B with

V B ∶= {w̃ ∈H1((0, l)) ×H2((0, l))∣ w̃1(0, t) = w̃2(0, t) = w̃2
′(0, t) = 0},

such that
⟨ρẅ,v⟩ + a(w,v) = l(v) for all v ∈ V B,

where

⟨ρẅ,v⟩ = b2
l

∫
0

ρv ⋅ ẅ dx1,

a(w,v) = 1

2
EA

l

∫
0

w′
1(x1)v′1(x1) dx1 +

1

2
EI

l

∫
0

w′′
2 (x1)v′′2 (x1) dx1,

⟨l,v⟩ = (
n

∑
k=1

D1kBk)
⎛
⎜
⎝
A

l

∫
0

v′1(x1) dx1 −
b3

2

l

∫
0

v′′2 (x1) dx1

⎞
⎟
⎠
,

with ρ denoting the density of the material.

To discretize w1 and w2 with the Finite Element Method, we choose quadratic and cubic
finite elements, i.e. functions w1

h ∈ V
B

2,h
..= S2(Ω,Th) for w1 and w2

h ∈ V
B

3,h
..= S3(Ω,Th) for

w2. To maintain the simple structure of the model, the whole beam is discretized as a
single element.
Including the boundary conditions, we thus obtain

w1(x, t) = x2 (−4c3(t) + 2c4(t)) + x (4c3(t) − c4(t)) ,
w2(x, t) = x3(−2c1(t) + c2(t)) + x2(3c1(t) − c2(t)),

where the coefficients c1 and c2 are linked with the lateral displacement and its derivative
at the right end of the beam, whereas the coefficients c3 and c4 yield the longitudinal
displacement in the middle and the right end of the beam, respectively.

For the numerical simulations, the values l = 0.3m, b = 0.008m for the dimensions of the
beam have been taken, as well as the material parameters E = 25GPa and ρ = 9250kg/m3

of Terfenol-D [89]. All simulations presented in this work have been carried out with the
MATLAB version R2012a.

Figure 5.2 shows the results for the stationary loading case as well as for a sequence of
static simulations. In both cases, the value of the magnetic field has been set to B = 1T .
In the latter case, the (quasi-static) time-dependence was characterized by choosing a
magnetic field that is exponential in time. It can be seen that the beam experiences a
longitudinal extension and vertical deflection under the pure influence of the magnetic
field. Due to the clamped boundary condition at the left end, the deformed shape of the
beam is nonlinear (see Fig. 5.2(a) and (b)).
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Figure 5.2: Displacements w1 and w2 of neutral fiber for stationar and quasi-static loading

5.2 2D model: the plane stress - plate

The one-dimensional beam model from the last subsection showed the impact of the mag-
netic field on the mechanical deformation of the body. In this section, we will take a
step further and numerically simulate the inverse effect as well, additionally extending the
model to 2D.
Consider again the thin magnetoelastic plate from Section 3.4.2. Zero Dirichlet bound-
ary conditions for the displacement u imposed on one side of the plate describe the fixed
bearings that restrict the translational movement of the plate in its plane, while Neumann
boundary conditions on the opposite side specify the uniaxial tension applied to the plate
in x1-direction. Analogously, the magnetic scalar potential Ψ is set to zero on the Dirichlet
boundary, while the specification of the normal component of the magnetic flux density B
on the Neumann boundary defines a “magnetic surface traction”. Note that, as mentioned
in Section 3.4.3, the mechanical and magnetic boundaries coincide.
For the simulations with MATLAB, material parameters of a polycrystalline Terfenol-D
were taken from the work of Claeyssen et al. [39] and adapted to the model of a trans-
versely isotropic two-dimensional body stressed in x1 direction (see Table 5.1). However,
since the constitutive relations used in [39] are based on σ and H as independent variables
rather than on ε and H as in Equation (3.3),

ε = SHσ + dH,

B = dTσ +µσH,

where d is a suitable magnetoelastic coupling matrix, SH is the elastic compliance matrix
for constant H and µσ is the magnetic permeability matrix for constant σ, we make use of
the modifications presented in Section 4.1 in order to adapt the parameters to our model.
Solving the above equations for σ and B, we obtain

σ = CHε − (CHd)H,

B = dT (CHε) − dT (CHdTH) +µσH.

The matrices e and µε are given by

e = CHd, µε = µσ − dTe.

Furthermore, τ and B̃, the prescribed values of the mechanical and magnetic quantities on
the Neumann boundary, are computed by inserting the values of the mechanical and mag-
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Magnetic permeabilities µ11 = 3.77 ⋅ 10−6, µ22 = 1.012 ⋅ 10−5

Compliance components SH11 = 3.8 ⋅ 10−11, SH22 = 4.4 ⋅ 10−11

S12 = −1.65 ⋅ 10−11, S66 = 11 ⋅ 10−11

Magnetoelastic coupling coefficients d11 = 8.5 ⋅ 10−9, d12 = −4.3 ⋅ 10−9

d26 = 16.5 ⋅ 10−9

Initial bias σ1 = 30 ⋅ 106, H1 = 100 ⋅ 103

Table 5.1: Material parameters of polycrystalline Terfenol-D, taken from [39]
(without measurement units).

Young’s moduli E1 = 2.6 ⋅ 1010, E2 = 2.27 ⋅ 1010

Poisson’s ratio ν12 = 0.429

Shear modulus G12 = 1/11 ⋅ 1011

Magnetoelastic coupling coefficients e11 = 213.30, e12 = −17.66, e26 = 150

Mechanical and magnetic surface forces τ1 = 8.67 ⋅ 106, B̃ = 0.434

Table 5.2: Material parameters for the magnetostrictive plate (without measurement units).

netic bias given in Table 5.1 into the above constitutive equations. Using these relations,
the quantities from Table 5.1 can be adapted to our model (see Table 5.2).
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Figure 5.3: 2D sketch of geometry with boundaries and an example of a coarse discretization
(mesh parameter h = 1/

√
2)

For the sake of simplicity, Ω = [0,1] × [0,1] has been chosen as domain of integration
with the thickness r = 0.1. Both the displacement u and the magnetic scalar potential Ψ
have been discretized with linear 2D finite elements using a triangular mesh. A sketch of
the geometry and its boundaries with a coarse mesh are presented in Figure 5.3.
Figure 5.4 shows the results of the numerical simulations, which are in accordance with
the theoretical considerations: Due to the joint influence of the mechanical and magnetic
tractions, the body experiences longitudinal displacement that is zero at the side fixed by
the Dirichlet conditions and increases over the length of the plate to find its maximum at
the opposite side, where the Neumann boundary conditions are prescribed (Figure 5.4a).
Similarly, the distribution of lateral displacement shown in Figure 5.4b corresponds to the
contraction in consequence of a tensile force, which is increased because of the coupling.
Note that the origin of the Cartesian coordinate system was set to the midpoint of the
left side of the square domain, which induces the symmetrical distribution of the lateral
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displacement over the length of the plate.

(a) u1, side view [m] (b) u2, top view [m] (c) Ψ, side view [A/m]

Figure 5.4: Distributions of the coupled mechanical and magnetic quantities: (a) longitudinal and
(b) lateral displacements, (c) scalar potential. The color distribution shows the course of the
plotted quantities from the (absolute) lowest value (blue) to the (absolute) highest one (red).

Due to the special form of the elastic coupling tensor in (3.33), the magnetic field mainly
affects the longitudinal direction, acting as a magnetic tensile force. Finally, Figure 5.4c
depicts the distribution of the (coupled) magnetic scalar potential, which is similar to
the distribution in Figure 5.4a, but has a negative incline and negative values due to the
definition of the potential.

A common way to demonstrate the validity of the numerical method is the computation
of the energy norms of the considered quantities. In the uncoupled case, e.g. in linear
elasticity, the energy norm of the solution is always greater than or equal to the energy
norm of its numerical approximation:

If u ∈ V fulfills the equation

a(u,v) = l(v) for all v ∈ V

and uh ∈ Vh fulfills
a(uh,vh) = l(vh) for all vh ∈ Vh,

then, defining the error err ..= uh −u, we get

a(err,uh) = a(uh,uh) − a(u,uh) = l(uh) − l(uh) = 0,

since uh ∈ V. Consequently, exploiting the symmetry of the bilinear form a(⋅, ⋅), we obtain

a(u,u) = a(uh−err,uh−err) = a(uh,uh)−2a(err,uh)+a(err,err) = a(uh,uh)+a(err,err),

which yields the inequality a(u,u) ≥ a(uh,uh) due to the positive definiteness of a(⋅, ⋅).
In the coupled case, however, the term a(uh,err) does not vanish,

a(uh,err) = c(uh,Ψ) − c(uh,Ψh),

which implies that

a(u,u) = a(uh,uh) + 2c(uh, errmag) + a(err,err),

with errmag
..= Ψh −Ψ. Analogously,

b(Ψ,Ψ) = b(Ψh,Ψh) − 2c(err,Ψ) + b(errmag, e
rr
mag).
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Hence, depending on the values of the components of the magnetoelastic coupling tensor e,

the energy norms (UTAU)
1
2 and (Ψ̃T

BΨ̃)
1
2 of the numerical solutions U and Ψ̃ converge

to an upper or lower bound with growing mesh refinement. For the values given in Table
5.2, the energy norms converge to a lower bound, as shown in Figure 5.5a.

The last step of the numerical analysis of our model is the numerical verification of the
inf-sup condition from Section 3.4.3. For this purpose, the singular value decomposition
(SVD) of the coupling matrix C has been computed. In Section 3.4.3 we showed that the
inf-sup condition was equivalent to the algebraic full rank - condition for the matrix C.
The SVD provides a possibility to check this condition by computing the smallest singular
value of the coupling matrix C:

Let σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 be the singular values of the matrix C in descending order. If
we define t as the index of the smallest non-zero singular value in the above ordering, i.e.

σ1 ≥ ... ≥ σt > σt+1 = ... = σp = 0,

then, rank(C) = t. Hence, we can conclude that C ∈ Rn×m has full rank iff t = n.
We therefore need to check if all singular values of the matrix C resulting from our
discretization are positive.
Furthermore, one can show that if equality holds in the (discrete) inf-sup condition with
the constant β̄ > 0, then β̄ coincides with the least singular value of the matrix C (refer
e.g. to [12]). Consequently, to show the inf-sup stability of our numerical method, we
have to verify that β̄ is bounded from below by a constant β̂ that is independent from the
discretization h.
In Figure 5.5b, the least singular value σp of C is plotted over 1/h, showing that σp
converges with increasing h to a fixed value, which is in the limit independent from the
discretization. Again, as in the case of the energy norms, the least singular value does not
necessarily have to be decreasing with increasing geometry refinement. This result verifies
that inf-sup condition for the coupled magnetoelastic saddle point problem numerically,
yielding the unique solvability of the discrete problem.
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Figure 5.5: Energy norms of the (a) elastic and (b) magnetic solutions and (c) smallest singular
value σmin of coupling matrix C.
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Chapter 6

Summary and Outlook

In this thesis, we derived and analyzed coupled magnetoelastic models to describe the
behavior of polycrystalline magnetostrictive materials using the linearized constitutive
equations of piezomagnetic materials and a special formulation of Hamilton’s principle for
the coupled system. The linearity assumption was satisfied by considering biased magne-
tostrictive materials and small deviations of the external electromagnetic and mechanical
fields from the initial biased state. Two different approaches were used in this context, a
formulation based on the total magnetic scalar potential Ψ, the negative gradient of the
magnetic field, and a formulation using the magnetic vector potential A, whose curl is de-
fined to be the magnetic flux density. In the framework of the scalar potential formulation,
the influence of the external static magnetic field was incorporated by permanent magnets,
while the vector potential approach was formulated in current-carrying regions including
both static magnetic and transient electromagnetic fields. The elastic (displacement) field
was assumed to be static for all of the introduced models.

On the one hand, the distinctive feature of this work was the analysis of the coupled
magnetoelastic problem resulting from these two formulations with regard to its structure,
strong and weak formulations, the corresponding function spaces and the existence and
uniqueness of the solutions. We showed that the model based on the magnetic scalar
potential and elastic displacement field as independent variables can be interpreted a
saddle point problem with a penalty term. The main focus in proving the unique solvability
of this saddle point problem lay on the verification of an inf-sup condition (LBB-condition)
from Brezzi’s theorem for the class of polycrystalline magnetostrictive materials. The inf-
sup condition also yielded a valuable stability estimate, an evaluation of the influence of
perturbations of the given data on the solution of the coupled problem. After dealing
with the continuous setting, we proved that the inf-sup condition is also satisfied for its
discrete counterpart, showing that the constant in the inf-sup estimate does not depend
on the discretization parameter but solely on the geometry.

Furthermore, the strong and weak formulation of models using the magnetic vector
potential and the elastic displacement as independent variables were presented for the
magnetostatic and -quasistatic settings, as well as for the full Maxwell system in the fre-
quency domain. In the time-varying case, the existence and uniqueness of the solutions
to the weak formulations was shown by adding the two mutually coupled partial differen-
tial equations and applying the Lax-Milgram lemma on the resulting composite bilinear
form. To prove the coercivity of this bilinear form, suitable estimates for the coupled
elasto-magnetic bilinear form were derived. In the magnetostatic case, the coupled system
represents a block-saddle point problem whose solvability could be directly deduced from
the uncoupled case using the previously mentioned estimates for the coupled bilinear form
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and applying Brezzi’s theorem.

On the other hand, we discussed the impact of a reformulation of the constitutive equa-
tions in terms of the dual magnetic variables on the structure of the resulting coupled
system. We showed that by choosing constitutive equations that depend on the elastic
strain and magnetic field and making use of the corresponding coenergy function in the
Lagrangian, we obtain a coupled problem with a saddle point structure, whereas taking
the magnetic flux density instead of the magnetic field and using the corresponding energy
function leads to a symmetric problem in the time-varying case. In the magnetostatic case,
we enforce the mixed structure of the coupled problem through an additional condition to
cure the lack of uniqueness of the magnetic vector potential. These results are in accor-
dance with Bossavit’s predictions [17] and Preumont’s work [95] for piezoelectric systems.

So far, we have only dealt with linear material behavior. In a next step, these mod-
els can be enhanced by considering non-linearity. One way to incorporate this behavior
is to derive the corresponding constitutive relations by using Taylor approximations of
higher order for the coupled free-energy density function. The Standard Square constitu-
tive model suggested by Carman and Mitrovic [33], for example, characterizes a quadratic
dependence of the coupled quantities on the mechanical stress and the magnetic field.
Another possibility of extending the linear setting is to decompose the elastic and mag-
netic quantities into a reversible and an irreversible part, as discussed in the introductory
chapter and as seen, e.g. in the paper of Kaltenbacher et al. [76]. They suggest to describe
the irreversible magnetic flux density by a Preisach hysteresis operator and to model the
irreversible part of the strain as a polynomial function of the magnetic hysteresis operator.
Finally, a third idea is to change the constitutive equations by assuming non-constant ma-
terial parameters such as the magnetic permeability and the elasticity tensor. Following
this assumption, we would obtain a model similar to the one developed by Poutala et al.
[91]. The authors suggest a model for the weak coupling in a magnetostrictive material,
that is, they only consider the influence of the magnetic mechanical strain on the mag-
netic field by requiring a dependence of the magnetic permeability on the strain. The
corresponding function is then obtained by measurements and corresponding numerical
simulations.
Moreover, the models presented in this thesis can be extended by including the time-
dependence of the mechanical displacement field: While the systems based on the magnetic
vector potential considered time-varying magnetic fields, the mechanical displacement was
assumed to be stationary. In case of the scalar potential formulation, one would have to
deal with a transient saddle point problem with a penalty term and go back to suitable
techniques for the analysis of mixed problems developed by Brezzi et al. (e.g. in [24]) to
prove the existence and uniqueness of the solution. As the transient problem of elasticity
represents a hyperbolic system of partial differential equations, referring to the theory of
Duvaut and Lions [54] might be helpful for proving the unique solvability of the coupled
system resulting from the vector potential formulation.

The numerical simulations of the models can be supplemented with suitable three-
dimensional examples. In the case of the magnetic vector potential, a three-dimensional
numerical treatment involves the use of curl-conforming edge elements (Nédelec elements)
for the discretization of the magnetic vector potential in the ungauged formulation and
nodal finite elements in the gauged one, as depicted, for example, in [2].
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[3] Ammari, H., Buffa, A., and Nédélec, J.-C. A justification of eddy currents
model for the Maxwell equations. SIAM Journal on Applied Mathematics 60/5
(2000), 1805–1823.

[4] Atkinson, K., and Weimin, H. Theoretical Numerical Analysis: A Functional
Analysis Framework. Springer, New York, 2001.

[5] Auld, B. A. Magnetoelastic phenomena. In Magnetism and Magnetic Materials:
1965 Digest, R. L. White and K. A. Wickersheim, Eds. Academic Press, New York-
London, 1965.

[6] Babuska, I., and Aziz, A. Survey lectures on the mathematical foundations of
the finite element method. In The Mathematical Foundation of the Finite Element
Method with Applications to Partial Differential Equations, A. Aziz, Ed. Academic
Press, New York-London, 1972, pp. 3–363.
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