L‘x

,;M“"’:zg

FORSCHUNG - AUSBILDUNG - WEITERBILDUNG

Bericht Nr. 124

QUASISTATIONARY SOLUTIONS OF THE
BOLTZMANN EQUATION

A.V.|Bobylev'

tKeldish Institute of Appl. Mathematics
Academy of Sciences of Russia
Miusskaya Sq. 4

125047 Moscow, Russia
UNIVERSITAT KAISERSLAUTERN
Fachbereich Mathematik
Postfach 3049

D -67653 Kaiserslautern







Quasistationary Solutions of the Boltzmann
Equation !

A.V.Bobylev *

Department of Mathematics
University of Kaiserslautern
P.0O. Box 3049
67653 Kaiserslautern
Germany

Abstract

Equations of quasistationary hydrodynamics are derived from the
Boltzmann equation by using the modified Hilbert approach. The
physical and mathematical meaning of quasistationary solutions
are discussed in detail.

1 Introduction

The incompressible Navier-Stokes equations (INSE) were derived in [1,2]
from the Boltzmann equation (BE) by using a special time-scaling, precisely
t - oo, the Knudsen number Kn - 0, {Kn remains finite. Therefore one
can say that INSE describe a quasistationary hydrodynamics for the BE.
However an additional restriction was used in the derivation of INSE from
BE: the solution of BE was assumed to be absolute Maxwellian distribution
in the limiting case Kn = 0. In the present paper, as well as in [3], we refuse
of this assumption and derive more general equations of quasistationary hy-
drodynamics. In contrast to the previous paper [3], where some results of
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the Chapman-Enskog expansion were used, we derive below these equations
directly from BE. Besides we discuss in detail the physical and mathematical
meaning of quasistationary solutions for both Navier-Stokes and Boltzmann
equations.

Let us consider the Boltzmann equation for a distribution function f(z,v,t)
(z € R* v € R*t € R, denote respectively space coordinate,velocity and
time)

ft+U'fa::5_II(faf)af|t=0:an (1)

where - means a scalar product, I(f, f) denotes the collision integral, e de-
notes the Knudsen number, that is a small parameter of this problem. For
simplicity we consider in this paper the initial value problem in infinite space
R? with an equilibrium (absolute Maxwell) distribution in infinity.

The equation (1) is written in dimensionless variables, so that all (except
g) typical parameters of the problem (length, thermal velocity, ets.) are of
order of unity. Roughly speaking, one can distinguish three typical time
scales: (1) ¢; ~ ¢ is the free path time; (2) ¢, ~ 1 is the typical macroscopic
time(the period of sonic waves); (3) #3 ~ ¢! is the typical time of dissipative
processes (viscosity,heat transfer). Therefore we can write down formally the
general solution of (1) as a function of the three time-variables

flz,v,t) = fi(z,v;t/e,t, etle), (2)

that is the standard trick of perturbation theory, the dependence on ¢ being
supposed to be formally-analytical in the neighborhood of the point ¢ = 0.

When we discuss the so-called normal solutions of the Boltzmann equation
[4] we in fact consider the special class of the functions (2) depending on two
time-variables only

f(.T,U,t):fg(l',?];t,é’t‘@). (3)

It is important to consider separately two arguments ¢ and et inspite
of analitic (linear) dependence on ¢ of the second time variable. Putting
f(z,v,t) = fij(z,v;tle) we obtain the standard Hilbert expansion [4] that
includes some terms increasing with time as et already in the first order ap-
proximation in respect to e. We can consider the standard Chapman-Enskog
method as one of possible ways to take into acccount correct dependence on
"slow” time et.




Finally we can define also the subclass of the normal solutions (3) that
includes the dependence on "slow” time &t only, i.e.

fla,v,t) = falz,v;etle). | (4)

Such solutions will be called quasistationary. Omitting subscript 3 of the
function f; and changing the time variable ¢ — t, we obtain the quasista-
tionary form of the Boltzmann equation

efitv fo=c"U (S S) (5)

Thus, it is clear that the quasistationary solutions are the special case of
the normal solutions of the Hilbert class [4]. For constructing the solutions
of (5) we will use the modified Hilbert approach.

2 Modified Hilbert expansion

We consider a formal solution of the equation (5)

f= i e falx, v t) (6)

n=0
and obtain ,
B .
I(f()afo) =0,v- ’é}j‘ = [(anfl) + 1(f1~f0)~
Ofn- Ofn & ;
- ];tl "}‘“U‘éir‘ 31§[(fks‘/‘n+lw-k)an:: 1,2, ... (7)

We introduce the following notations:
: , : i , :
Pn = /dvfn(v),J(”) = /dt}fn('v)'v,Q(") = ;)»/dvfn(‘v)‘vlvlz,

n 1 . .
Pi(k) = /dvfn(v)v,»vk,pn = §/dvfn(v)|v|2,z, k=1,23.

Using the well-known properties of the collision integral

/dvr,-(u){l(f,g)ﬂ(g, Y =0,i=0,1,2,34,70=1,ra= o], rs = v, k = 1,2,3,
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one can find the solvability conditions for the equations (7)

divJ© = 0,divQ©® =0, 9 por_ 0:k=1,23; - 8
dz; ¥

Opn1 s r(n) aJp api(kn),,_ 3 Opn—1
ot +div/™ =0, ot + Ox; _0’2 ot

for n = 1,..., where the standard summation rule (2 = 1,2,3) is used. It is
clear that fo is a locally Maxwellian distribution with parameters satisfying
the stationary Euler equations. We choose the Maxwellian distribution with
zero mean velocity

+divQ™ =0, (9)

fo = po(2nTo) ™ exp(—[v[*/2Tp),

and with po(z,t) and Ty(z,t) satisfying the condition po(z,t)To(z,t) = po(?).
Then the equations (8) are satisfied for any functions po(t) and po(z,1).
Remark.The first difference with the standard Hilbert expansion is the
following: the solvability conditions for fi are not sufficient for finding fo, so
that we need to consider higher approximations to define fo.
We choose functions p,J and p as basic hydrodynamical parametezs and
put by definition

T(fl], 1‘,) = To(.’L', t) = po(t)/po(ﬂ), t)
Then we represent f, in the form

Pl

7

fo= 54 (anT) ey Y J) P pnf

T 21 R

where
/dvf,f(u)r,-(v) —0,i=0,...4.
We put
PA = [dvft (), Q1 [ doftw)oiol?/2
and obtain from equations (9)

-1 4. oIV ap apLt)
“Pn-1 d (n) =0 k LA ik
o +divJ ot T 3, IS

(10)
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ai:;{l gd v/ vzz:wédwmxn:u--

Hence, we obtain integral equations

O TN SRR (7 3!

6f71_“ i

It : +uv- —3!: Zlfkyfn+1 k *‘I(f(h :“+1)+[(f$+17.f0)371: 17
k=

for functions f-(n = 1,...) and differential equations (10) for hydrodynamical

parameters p,, J,,p(n = 0,1,...). The first equations read

dPo

O

| O _ ar;"

') .
= 0= po = polt), Eﬁq + divJM = y =

(0) _
d 0. ot dxy ox;

2
%’;—0 + »dl JOT = w{idin“”, ?—?”l + divJ® =0,
o T3 .

L pk(2)
dIp1 Ly O s d])g () Py
v 2 ) — ,wd ) 5 = LI
ot e 3 d vJ® 3 e ot ()Jk 0x;

For simplicity we consider the problem in the whole space with equilib-

rium conditions in infinity, i.e.

0 = 0, py — pu, = const, p, — 0, J0 s 0,p, = 0

(11)

Po = Poo == const, J!

for [z] — co,n =1,.
Then po(t) = po = a)nsi The equation for fi* reads

‘(')fo f() . or [_UM.M.»_ B
z ()T T( (}1-)( b 2) - I(j()ﬂ f} + fl ,f()

[ts solution is well-known (see [4] or any other textbook on kinetic theory):

2NT) Jv)* 5., OT
Lo 234
t==57 G 3 %
where A(7") denotes the standard Chapman-Enskog heat transfer coefficient.
Hence, we obtain
aT

- O Q (77) 0.1‘

—)(2nT) % exp(~fol*/2T),

O

}l}i’zf&-wé‘:iéin
KN&SFSFM;’?&M



Taking into account boundary conditions (10) we can consider the first
equations (9) and their solutions

pod = py = const,p; =0, 9o +divJ® = 0,divJOT = —g—div/\(T)gradT.

Jt
We introduce the mean velocity u(z, ) by formula po(z,t)u(z,t) = JV(z,1)
and write down the above equations in the form
91 + le =0 L divy = divA(T')gradT (12)
at T 9 2p0 - g o
Thus we obtain two scalar equations for two hydrodynamical variables T'
and v = {uy, us,us}. In the simplest one-dimensional case u; = u,uy = uz =
0 we can reduce the system to a single heat transfer equation

INT)OT 81 9 2MT)aT

U= R

5po 8z’ LT Ox 5poTl Oz

In multidimensional case the equations (12) are not sufficient to define T
and 1, therefore we should consider also the equation for J(1)

on o™ 9 e
ot Dz ok

Let p = p®/py, then we obtain

with P1® defined by the equation for fi

9o 8f1 S
| —a—t—+v Pz (f1,f1)—f(f0,f2)+](f2,fo)_ (14)

Using the well-known results of the Chapman-Enskog expansion [4] and
some elementary properties of the collision integral we obtain the following
formula for Pit(z):

du;  pA(T),.. 0T  K,0T oT

_ K Dot 97
Oxy, Po (K 292,07, + T Ox; Oz s

Pouu
Py = Tt < 2u(T) (15)
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1 1.
< Ay >= 5 (An + Agi) = :jéikA;i. (16)

with constant coefficients K, and K3(K, = K; = 3 for Maxwell molecules
and K, = 2.418, K3 = 0.219 for hard spheres [4,6]).

Hence, we obtain directly from the Boltzmann equation a closed system
of hydrodynamical equations (12), (13), (15) for unknown functions 7', u, p.
These equations were firstly derived in [3] by using the Chapman-Enskog
expansion, it is proved above that the same result follows directly from the
Boltzmann equation (5), if we assume that its solution admits an asymptotic
expansion

f=foteh+efatefst .

including terms at least of the third order on e. In the stationary case the
equations are the same as the so-called SNII" (Slow Non-Isothermal Flow)
equations [6].

Remark. To solve the equation (14) and other integral equations for
fi51 it is very convenient to use the following identities

Z Z ny\ (g < lv)zk‘(u .w)MHU“Z(rLIA;ﬁ)(U .w)"'r“ > (), (17)
}171 A?Q

ky =0 ky =0
where ny; = 0,1, ..., and w is any unit vector,
< p(v) o) >=I(fod, for). fo = A exp(~alv]*).
For the proof it is sufficient to notice that
< exp(0]v]? + v W) exp(0v]* 4 dv - w) >=0
for any ¢ and 8. Expanding in power series on § and § we obtain identities

(17).

3 Quasistationary solutions of the Navier-
Stokes equations

We consider here for comparison the Navier-Stokes equations for variables
1 1 5
p = /dvf('v),u = ?/dz,)f('v)v,p =3 / dvf(v)(v —u)* = pT (18)
} [y '

oy

{



denoting density p, mean velocity u € R> and pressure p = pT,T being
gas temperature. It follows from the Boltzmann equation (1) that the hy-
drodynamical variables p(z,t),u(z,t), p(z,t) satisfy the following exact (but
unclosed) system of equations:

O, D o0 9
Bt + 5 P =0, 5"t iz, ——(pujug + pbix + o) = 0,

8( +3 +—(?~[ (pu® + 5p) + 2( +4¢)] =0 19
o7 (pu® +3p) G i’ + 5p urOik + 4i) (19)

where the following notations are used: ¢ = v — u(x, 1),

oi(z,1) /dvf (z,v,8)(cicx — ~—|c| ik ), /dvf (z,v,t)elc|*  (20)

To close the above written equations we use the Navier-Stokes approxi-
mation

Jui w2 .
o = -eu(T)(a%k 5 = Shadivu),g = —eA(T)gradl, (1)

with the known coeflicients of viscosity (7) and heat transfer A\(1)[4, 5].
We put in (19), (21)

t=ct,p=po[l +en(f)+*p(z,t) + .., u =iz, 1) + ..., p = pla, 1) + ..

and pass to the limit ¢ — 0. Then we omit the sign "tilde” and obtain

g—? + divpu = 0, gpodivu = divA(T)gradT, p, = pT = const, (22)

1 Ou 0 e, %, Ju; T

LOue Ouey 00 0 ) 0w _ M1y

T ot dz~ Oz Oz, dxy, Po

The same equations (22) can be obtained from (12), (13), (15) if we
put Ky = K3 = 0 in (15). Thus, the Burnett terms in (15) indicate the
important difference between ”"exact” equations (12), (13), (15) and their
Navier-Stokes approximation (22). The difference disappears if we consider
isothermal solutions. Then T' = const, p = const,
0 op

.0
divu = 0, (3? +u- —8—;)u + T nAu,p=pl,n=Tu(T)=const (23)




i.e. we obtain in this case the incompressible Navier-Stokes equations.

However if T' # const then the two different systems of quasistationary
hydrodynamics equations can result in essentially different solutions. The
difference was discussed in detail in [3], therefore we will not consider this
question here.

Let us consider the connection between quasistationary solutions and
spectral properties of the linearized Navier-Stokes equations. The linearized
near po = 1,pa = 1,ug = 0 equations (19), (21) for small fluctuations p,u,p
read A

pt + divu = 0,u, + gradp = E—‘/'%(»)—gradc‘livu + epoAu,
5. 2
e+ gdxvu = §5)\ o(Ap = Ap), o = p(1), o = A(1).

Using the Fourier transformation
= /d;rp(;r) exp(—tk - x), u{k) = /dlu( ) exp(—1k - z), (24)

= /d.rp(;z:)c‘.xp(w?'ﬂT ST,

we obtain the following system of ODE with constant coeflicients:

5 2e g
oo+ ik u) = 0,p, + %(l\v-u) Sk p = p) = 0,

ue + thp + —— /lo W [ cu) +F 3ul =0,

Wl)

where the sign "hat” is omitted.
We put

U= w— -+ ut N T

|| &1
then denote & = |k| and obtain

pe + thw = 0,p, + §z’kw + 2¢o kK (p—-p)=0 (25)

3 3

0
2w = 0, u) + epokut =0

wy + thp




Therefore
ut(t) = u™(0) exp(—epuok®t), (26)

and the general solution for p,w,p may be written as a linear combination
of three exponentials exp(\; 2 3t), with Ay 23 (eigenvalues of the system (25))
satisfying the equation

3A3 4+ 4K (o 4 Xo/2) + BAK® + 2ok = 0.
Asymptotics of roots for £ — 0 reads
Mg~ +(5/3) Y%k — (26/3)(po + Ao/5)k, Az = —(2/5)eXok?. (27)

It is clear that complex roots Ay o(¢) correspond to the sound propagation,
while the real root A;(¢) corresponds to the heat tranfer process. Moreover
there exists, in accordance with (26), the double root

)\4 = /\5 ~ ‘“‘5/.L0k2, (28)

that corresponds to viscosity of gas.
For brevity we do not consider functions p(¢;¢) and w(t;¢). In general
case the density p(t;e) satisfying the equations (25) is given by formula

3

p(tie) =3 pile) explhi(e)t], (29)

=1

where regular at ¢ = 0 functions p;(¢) depend also on initial values po, wo, po.

It follows from (27) that quasistationary solutions have the following gen-
eral form:

p(t;e) = pa(e) exp[As(e)t], pr = p2 =0, (30)
since all solutions with p; 9 # 0 contain singular at ¢ = 0 terms in respect to
variable { = et. In some sense we can consider quasistationary solutions as a
result of the averaging over rapid oscillations.

Hence, the physical meaning of quasistationary solutions is connected
with a special choice of initial conditions, such that their time evolution are
defined by viscosity and heat transfer processes, but the sound propagation.
These solutions may be considered as constructed on dissipative modes be-
longing to the orthogonal subspace in respect to sonic modes, i.e. eigenvectors
coresponding to eigenvalues A, 5 in (28).
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The situation is more complicated in the non-linear case. However we
can understand it at least qualitatively on the basis of the Poincare normal
form theorem [7]. Roughly speaking we can assume that for ”small” initial
data there exists a formally-analitical transformation F(p, @, p) of the general
solution (p,1,p) of linearized equations to the general solution (p,u,p) of
nonlinear equations. Then it becomes clear that a quasistationary solution of
nonlinear equations appears to be a result of the transformation F(pq, iy, Py)
of certain quasistationary solution F(pq, ,, py) of linearized equations. Thus,
it is a class of special solutions of the nonlinear Navier-Stokes equations
constructed on dissipative modes (viscosity and heat transfer) only.

All considerations were made for the Fourier transformed functions p, i, p
since the solutions seem to be more simple in the Fourier representation.
However it is not difficult to generalize the considerations to functions p, u,p
in the physical space.

4 Quasistationary solutions and spectrum of
the linearized Boltzmann operator

We consider briefly the same problem for the Boltzmann equation.Putting
F=aU+F) S = 27) P exp(=P[2), F = 0for|z] = 00 (31)

we obtain from (1)

Fid o Fo= = [L(F) + QUF, F)), (32)

<

with

TuL(E) = I(fars fu F) + I(faa B fan) S QUFVF) = I(faa B fin 7).

For comparison we will also consider the linearized equation, i.e. the
linear part of (32)

R ) (33)
We put
b(k) = / dz®(z) exp(—ik - ), (34)

I1




and then consider the Fourier transformed linerized equation and the corre-
sponding eigenvalue problem

B, + ik vd = éL(d)), (k) + ik - o]® = -i.L(q»). | (35)

It is well known that ReA(k) < 0, moreover the following fact is valid for
intermolecular potentials with finite radius of action [5].

If £ is small enough and |k| is bounded, then there exist exactly 5 bounded
(for ¢ — 0) eigenvalues, the rest of the spectrum satisfies inequality ReA(k) <
—B/e, 8 > 0. Therefore the general solution of the equation (35) for ¢ — 0

reads ;

B(tie) = 3 Bi(e) exp[M(e)t] + Olexp(—Bt/e)] (36)
n=1
An asymptotic behaviour for ¢ — 0 of these bounded eigenvalues A;(e)(z =
1,..,5) is given by the same formulas (27),(28), as for the Navier-Stokes
equations.
We obtain from (36) an asymptotic formula

5

D, (1) =Y ®i(e) exp[Ai(e)t], (37)

n=1

that is similar to formulas (26), (29) for the Navier-Stokes equations. We no-
tice that ®;(e)(¢ = 1, ...,5) are projections of the initial condition ®(t = 0) =
®, onto the proper subspace of the Boltzmann linearized operator, that cor-
responds to eigenvalues \;(¢ = 1,...,5). Therefore to obtain the asymptotic
solution (37) we do not need to know exactly the initial condition ®(k,v),
it 1s suflicient to know its projection onto 5-dimensional proper subspace of
the Boltzmann linearized operator. It is the exact mathematical contents of
the so-called "reduction of description” in kinetic theory of gases [4,5]. At
the limit point ¢ = 0 the projections ®;(¢) are equivalent to the standard
hydrodynamical quantities, i.e. density, mean velocity and temperature.

Passing now to the "slow” time-variable et we discard in (37) rapidly oscil-
lating terms and obtain quasistationary solution of the linearized Boltzmann
equation in the form

5

O,(t;e) = Z ®;(e) exp[Ai(e)t], (38)

n=3
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that is quite similar to formulas (26),(30) for the Navier-Stokes equations. We
notice that in the quasistationary case we obtain the additional "reduction
of description” since the solution (38) is completely defined by the projection
of the initial condition onto 3-dimensional proper subspace.

Hence, we can define the normal solutions of the Hilbert class as so-
lutions constructed on hydrodynamical modes (two sonic modes and three
dissipative ones) and the quasistationary solutions as solutions constructed
on dissipative modes only. We can also consider the special solutions con-
structed on two viscous modes and separately the solutions constructed on
single heat transfer mode. Then in the first case the incompressible Navier-
Stokes equations will arise while in the second case we shall obtain the heat
transfer equation.

Finally we remark that a qualitative generalization of these considerations
to the nonlinear Boltzmann equation (32) can be done by the same approach
as described above for the Navier-Stokes equations. We put

F(k) = /d:z:F(;r)exp(mik - )

and obtain the equation
Fi+k-vF = ~»[L( N+ Q(F, )], (39)

where  denotes the Fourier representation of the operator Q, the sign "hat”
is omitted. Following the same way, as in the previous section, we assume
that there exists a formally-analytical transformation A, such that the func-
tion

el

FreAR)=0+> A(d,...0)

n=1
satisfies the nonlinear equation (39) for any solution ®(k,v,t) of the linear
equation (35). The notation A,(...) means independent on time t n-linear
operator. Then an asymptotic behaviour of I for & — 0 can be formally
described as

Fos(tie A{Z‘I’ e)exp[Ai(e)t]} (40)

in accordance with formula (37). It is a formal representation of the normal
Hilbert solution to the nonlinear Boltzmann equation (39). Therefore we

13




can conclude that such solutions in the nonlinear case are also constructed
on hydrodynamical modes only. As to quasistationary solutions F, they are
given by formula

Fy(tie) = ALY ®i(e) exp[Xi(e)t]},

n=3

so that they are constructed on dissipative modes similarly to the linear
* case. If in this formula®; = 0, then such solution is constructed on viscous
modes only, its leading asymptotic terms for £ — 0 being described by the
incompressible Navier-Stokes equations.
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