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ABSTRACT.

Ever since establishment of portfolio selection theory by Markowitz (1952), the use of standard
deviation as a measure of risk has heavily been criticized. The aim of this thesis is to refine
classical portfolio selection and asset pricing theory by using a downside deviation risk measure.
It is defined as below-target semideviation and referred to as downside risk.

Downside efficient portfolios maximize expected payoff given a prescribed upper bound for
downside risk and, thus, are analogs to mean-variance efficient portfolios in the sense of Markowitz.
The present thesis provides an alternative proof of existence of downside efficient portfolios and
identifies a sufficient criterion for their uniqueness. A specific representation of their form brings
structural similarity to mean-variance efficient portfolios to light. Eventually, a separation theo-
rem for the existence and uniqueness of portfolios that maximize the trade-off between downside
risk and return is established.

The notion of a downside risk asset market equilibrium (DRAME) in an asset market with
finitely many investors is introduced. This thesis addresses the existence and uniqueness problem
of such equilibria and specifies a DRAME pricing formula. In contrast to prices obtained from the
mean-variance CAPM pricing formula, DRAME prices are arbitrage-free and strictly positive.

The final part of this thesis addresses practical issues. An algorithm that allows for an
effective computation of downside efficient portfolios from simulated or historical financial data
is outlined. In a simulation study, it is revealed in which scenarios downside efficient portfolios

outperform mean-variance efficient portfolios.



But perhaps there is an alternative. Perhaps some other measure of portfolio
risk will serve in a two parameter analysis for some of the utility functions which
are a problem to variance. For example, in Chapter 9 of Markowitz (1959) I

propose the “semi-variance” S as a measure of risk where
S = E(Min(0,R — ¢)?)

where ¢c=E(R) [below-mean semivariance] or c is a constant independent of
choice of portfolio [below-target semivariance]. Semi-variance seems more plau-
sible than variance as a measure of risk, since it is concerned only with adverse

deviations.

HARRY M. MARKOWITZ, FOUNDATIONS OF PORTFOLIO THEORY.

Nobel Lecture.
December 7, 1990. Baruch College, The City University of New York, New York, USA.
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Introduction

Motivation

The recent financial crisis with its unprecedented economic implications has revived research into
the role of risk measures for the stability of financial markets. While alternative measures have
long been known, most models of portfolio selection still use the standard deviation for measuring
risk. Mean-variance portfolio selection theory, together with the classical capital asset pricing
model (CAPM) continues to be the theoretical basis for investment advice, e.g., see Levy (2011).
Standard deviation, however, is a rather poor measure of risk, because it does not distinguish
between downside and upside deviations. Typically, an investor will only fear the downside risk
of receiving payoffs below a certain target value that determines the threshold between gains and
losses. In finance, most often the mean payoff serves as such a target but other thresholds such as
the payoff of a safe bond are plausible as well. In a similar way, a regulator of a financial system is
concerned with the risk of large losses rather than the “risk” of large gains. Her emphasis must be
on unfavorable states in which public funds of a government as a lender of last resort are needed

to bail out financial institutions.

The significance of the mean-variance analysis until today is remarkable. As is well known,
Markowitz (1952, 1959) decided to quantify risk by the variance, but what may less well be known,
he favored another measure: semivariance. Already in his seminal book, Markowitz (1959) devoted
the entire Chapter 9 to discuss semivariance. There, he argued that “analyses based on S [semi-
variance| tend to produce better portfolios than those based on V' [variance|” and later Markowitz
et al. (1993) claimed that because “an investor worries about underperformance rather than over-
performance, semideviation is a more appropriate measure of investor’s risk than variance”. What
may be the reason why, despite all its well-known limitations, the foundation of finance still rests
to a large extent on the mean-variance analysis? Markowitz (1959) suggested because variance has
an edge over semivariance “with respect to cost, convenience, and familiarity”.

Familiarity has become less of an issue over time and today it is widely accepted in theory and
validated empirically that variance as a measure of risk is insufficient when trying to explain the
risk-taking behavior of agents. Mao (1970a,b) launched research into decision models beyond mean-

variance. He constructed lotteries which all have the same mean and the same variance but differ

8



INTRODUCTION 9

in skewness. When asked to choose among these lotteries in an experiment, business executives
unanimously preferred lotteries with positive skewness, at least when their investment was large.
Mao argues that the risk-taking behavior is consistent with below-target semivariance as a concept
of risk, cf. Mao (1970b, p. 355). Based on a conceptual comparison of expectation-variance (EV)
with expectation-semivariance (ES) decision criteria, Mao examined how portfolio rankings change
when the EV criterion is replaced by the ES criterion, see Mao (1970a, p. 673). Building on these
findings, Fishburn (1977) formalized a notion of risk associated with below-target returns for uni-
variate random payoffs. Refining Porter (1974), he showed that stochastic dominance of either first,
second, or third degree implies mean-semivariance dominance.

The difference in convenience stems from the fact that the mean-variance framework allows for
closed form solutions, e.g., for efficient portfolios, which can be computed from mean and covari-
ance matrix only. However, as pointed out by Grootveld & Hallerbach (1999), so far nobody
succeeded in aggregating semivariances for a portfolio of random payoffs. Therefore, existence re-
sults in the mean-semivariance framework, see, e.g., Jin et al. (2006); Rockafellar et al. (2006b),
remain rather abstract. In addition, derivation of mean-semivariance efficient sets requires as input
the entire joint distribution of returns, cf. Estrada (2008).

Mean-semivariance efficient portfolios are costlier to compute, because an iterative algorithm has

to be executed.

This thesis aims at overcoming the weaknesses of standard deviation as a measure of risk and,
thus, the limitations of mean-variance analysis. The idea is to improve the methodology of risk
measurement while retaining as many features of the mean-variance framework as possible.
According to Rockafellar et al. (2006a), there are two categories: general deviation measures as
generalizations of standard deviation, and coherent risk measures in the sense of Artzner et al.
(1999). We will introduce a downside deviation risk measure, denoted by ®, as a hybrid measure
that combines favorable features of either category. On the one hand side, ® is a deviation measure
that measures nonconstancy such as standard deviation. Unlike standard deviation, however, ®
does not average over all possible deviations. Instead, it only takes into account deviations that
are below a prespecified threshold. In our context, such risky deviations constitute losses. For
this reason, it is also a risk measure that “evaluates the overall seriousness of possible losses”, see
Rockafellar et al. (2006a). In the sequel, © will be referred to as downside risk for short.

We argue that our downside risk measure is best suitable for risk management and portfolio selec-
tion. We further establish that the capital asset pricing model, whose equilibrium formulation was
introduced by Sharpe (1964), Lintner (1965) and Mossin (1966), can be refined when standard de-
viation is replaced by downside risk. By doing so, we establish a framework within which portfolio
selection and asset pricing theory can be performed conveniently.

Eventually, we show that, at a little extra computational expense, mean-downside-risk efficient
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portfolios can be calculated in the same way as mean-variance efficient ones. Furthermore, com-
putational power today is not the bottleneck that is was when modern portfolio theory had been
being developed. Hence, financial practitioners can readily apply and benefit from the portfolio

selection methodology proposed in this thesis.

We close this introductory section with two motivating examples that point at the limitations of
mean-variance analysis. In the course of the present thesis, we elaborate how downside risk can

overcome these limitations.

The first example is a numerical illustration of the Borch Paradox. Johnstone & Lindley (2013)
state: “the Norwegian insurance theorist and economist Karl Borch (1969) [...] proved, he claimed,
that it is impossible to draw indifference curves in the mean-variance (u,0?) or mean-standard-
deviation (i, o) plane”. The Borch Paradox gave rise to an important but generally little-known
philosophical literature relating mean-variance analysis and decision theory under uncertainty.
Johnstone & Lindley (2013) give a comprehensive overview of this debate, including Baron’s (1977)
rebuttal of Borch.

EXAMPLE 0.1 (The Borch Paradox. Johnstone & Lindley (2013)).

Suppose an investor, who considers only mean and standard deviation of an asset, is indifferent
between (p1,01) = (10,15) and (u2, 02) = (20,25).

Then, we construct two assets. Asset 1 pays 25€ with probability 0.5 and -5 € with probability
0.5. Asset 2 pays 45 € with probability 0.5 and -5 € with probability 0.5.

Obviously, a rational decision maker should prefer asset 2 over asset 1 because both assets yield
the same payoff if they lose, they have the same probability of winning (or losing), but asset 2 pays
45 € instead of 25 € if it wins.

Mean and standard deviation of these assets, however, are (1, 01) = (10, 15) and (u2, 02) = (20, 25).
Hence an investor, who considers only mean and standard deviation, would be indifferent between

asset 1 and asset 2. O

The numbers are not crucial, since Borch (1969) provided a proof for arbitrary pairs (u1,01), (p2, 02).
Observe that the investor requires a higher mean to compensate for a higher standard deviation.
This kind of risk aversion is also not necessary in Borch’s demonstration.

Note further that asset 2 strictly stochastically dominates asset 1, but it is not strictly preferred
over asset 1 in terms of mean and standard deviation. In Section 2.1, we analyze the interplay
between various portfolio selection criteria, one of which is stochastic dominance.

Example 0.1 underlines the weakness of standard deviation as a measure of risk. The standard

deviation of asset 2 is larger because its payoff in the winning state is higher. No rational investor
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would consider such an upside deviation as risky. The downside deviation measure which we con-
struct in Chapter 1 distinguishes between upside and downside deviations and thus measures what

investors actually fear: the risk of losing money.

The second example is an even more distinct contestation against mean-variance analysis. Exam-
ple 0.1 revealed that an investor may be indifferent between two assets where one of them stochas-
tically dominates the other. In Example 0.2 we show that an even more preposterous situation may

occur: an investor may prefer an asset which is almost surely dominated.

ExAMPLE 0.2.
Suppose a risk averse investor who considers mean and standard deviation only. She wants to be
compensated for a higher standard deviation with a higher mean payoff.
Let a > 1 and consider two assets,

a with probability %

We = and wg := 0.

0 with probability 1 — é
It is immediate that for any a > 1 the relation w, > wq holds, i.e., w, dominates wqy almost surely.
Figure 1 shows the (u,o)-plane. The point (0,0) represents the (u,o)-pattern of wg and the solid
line depicts all (u,o)-profiles between which the investor is indifferent. Since Elw,] = 1 and
o(wg) = va— 1, the (u,o)-patterns of w,, for a > 1, are located on the dotted horizontal line
starting at (0, 1).

n

(Elwol, o(wo))

0 (Wa,) o(wz)

FIGURE 1. Almost sure dominance and mean-variance preferences.
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For a risk averse investor, there exists ag > 1 such that she is indifferent between (E[wo],o(wo))
and (Elwg,], 0(wg,)). It follows that this investor then prefers (Efwo], o(wp)) over (E[ws], o(wa)),
for all a > ag, although wg > wy.

Hence, the investor prefers an asset that yields a payoff which is less or at best equal in any state

of nature. O

Main Results and Structure of the Thesis

In this section, we give a detailed nontechnical overview of the results of this thesis. Further
information and all bibliographical references can be found in the respective chapters. In order
to improve readability, Chapters 1-4 each have an appendix, which contains lengthy proofs and

technical lemmas.

The general setting for this thesis is specified in Chapter 1. A static one-period economy
is considered, where a finite number of investors has to transfer their wealth from date 0 to date
1. Each of them can choose between a risk-free asset, for example a bond, which pays a constant
return and several risky assets (e.g., stocks) with random payoffs. Investors want to achieve a mean

payoff as high as possible, while trying to avoid risk as much as possible.

As a next step, the methodology to measure downside risk is introduced. Downside
risk of a random payoff w.r.t. some (nonrandom) target payoff is defined as the square root of
the mean squared difference between the payoff and the target in case the payoff is below target.
The target payoff determines the threshold separating gains from losses. This means that only
risky below-target deviations are taken into account when computing downside risk. If the target
is chosen to be the expected payoff, downside risk coincides with semideviation, which is the square
root of lower semivariance.

On the on hand, downside risk is an asymmetric, surplus invariant deviation measure which fulfills
properties such as relevance, positive homogeneity, subadditivity, convexity and continuity. All
general deviations measures, in particular standard deviation, have these properties in common,
compare Rockafellar et al. (2006a). Thus, we can hope that most, if not all, results of portfolio
selection and asset pricing theory established in the mean-variance framework remain valid in a
similar form when standard deviation is replaced by downside risk.

On the other hand, downside risk averages over risky deviations only, such that it evaluates the
overall seriousness of possible losses. In that sense it is also a risk measure that fulfills properties
like lower range dominance and monotonicity. As a consequence, downside risk overcomes the
deficiencies of standard deviation that have been revealed by the examples of the motivating section.
Eventually, we introduce the concept of a downside cosemivariance matrix which is symmetric and

positive semidefinite. It is a downside analogon to the covariance matrix.
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Chapter 2 develops a portfolio selection theory in the spirit of Markowitz (1952). We
suppose that preferences of an investor are formalized by a utility function which is a function of
the mean 91 and the downside risk ®. Then, the decision problem of an investor is of the form

max U(M(x),D(x)).

x€RK

Firstly, we argue that an optimal portfolio x* induces a payoff that is almost surely undominated
and undominated in the sense of stochastic dominance. Further, if U(m,d) = m — ad?, the payoff
of x* maximizes expected utility for a properly chosen Bernoulli utility function. For this reason,
we confine our analysis to the mean-downside-risk framework.
Secondly, we introduce downside efficient portfolios, denoted by x%(dy), that are solutions to
nax M(x) s.t. D(x) < do
for some dy > 0. These are optimally downside diversified portfolios and analogs to mean-variance
efficient portfolios in the sense of Markowitz (1952). We prove existence of downside efficient port-
folios and identify invertibility of the downside cosemivariance matrix as sufficient criterion for
their uniqueness. Since invertibility of the covariance matrix is the prerequisite for uniqueness of
mean-variance efficient portfolios, the requirements do not become stronger when replacing stan-
dard deviation by downside risk. Moreover, we characterize the form of downside efficient portfolios
which turns out to be structurally equivalent to the form of mean-variance efficient portfolios.
Thirdly, the set of all attainable risk-return profiles is established. In contrast to the mean-variance
framework, this set turns out do be an asymmetric cone. Its upper boundary is the downside
efficient frontier that describes the maximal achievable mean payoff, given a prescribed level of
downside risk.
Fourthly, the downside efficient frontier is used to formulate and prove a separation theorem. It
states that the investment decision separates into two parts. An investor has to determine her indi-
vidually optimal amount of downside risk d* and her individually optimal, i.e., downside efficient,
portfolio mix. Then, x* = x9%¢(d*) = d*x%(1).
Finally, a portfolio selection theory without a riskless asset is developed. It turns out that the set
of all attainable risk-return profiles then has the form of an asymmetric aircraft cone. For dy large
enough, downside efficient portfolios exist. Existence and uniqueness of a tangential portfolio are
not guaranteed and require further prerequisites which are specified in Proposition 2.5. Chapter 2

closes with a reformulation of the separation theorem for the case with only risky assets.

Based on the individually optimal investment given by the separation theorem, we analyze an
asset market with several investors in Chapter 3. The market portfolio, which constitutes

the current stock of shares of risky assets, is distributed among the investors. A downside risk asset
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market equilibrium (DRAME) is an allocation of assets that is individually optimal and market-
clearing. To sidestep the difficulties in the multidimensional asset market, we solve the existence
and uniqueness problem for equilibria in the simpler space spanned by the risk-free asset and the
payoff of the market portfolio. It turns out that this simple space has the same equilibria as the
original asset market.

A DRAME pricing formula is established which is structurally very similar to the mean-variance
CAPM pricing formula. The fact that covariance in the CAPM pricing formula is replaced by
downside cosemivariance brings some remarkable economic implications. Above all, equilibrium
asset prices are arbitrage-free and strictly positive in the mean-downside-risk framework. These
findings contrast strongly with the traditional CAPM pricing formula which allows for arbitrage
opportunities as well as negative stock prices.

A downside security market line is derived with downside beta coefficients in analogy to CAPM
betas. We further show that the market portfolio attains the highest possible Sortino ratio at
equilibrium prices and, thus, offers the best downside-risk-return trade-off among all potential

portfolios.

In the final chapter, practical issues are investigated. As a preliminary step, portfolio se-
lection theory is reformulated in terms of return rather than in terms of prices and payoffs because
practitioners usually work with returns. Then, we analyze to what extend downside efficient port-
folios improve on mean-variance efficient portfolios. To do so, we carry out a simulation, where
three scenarios with increasing default probabilities are simulated.

For each scenario, the downside efficient and the mean-variance efficient portfolio mix are computed.
Portfolio compositions differ as the mean-variance efficient portfolio mix spreads its weights more
equally whereas the downside efficient mix puts more weight on the safest asset and less weight on
all other assets.

To compare the riskiness of the respective portfolios, we re-scale them to have the same mean return.
If the asset market is calm in the sense that default rates are zero, downside efficient portfolios are
as risky as mean-variance efficient ones. Hence, an investor can just as well stick to mean-variance
efficient portfolios. However, when market disruptions and defaults have a strictly positive proba-
bility, downside efficient portfolios are much safer. Investors holding a downside efficient portfolio
mix are by far better secured against huge losses which may cause bankruptcy.

When compared to mean-variance efficient portfolios, downside efficient portfolios do not perform
worse in the calm scenario but strictly better in the dangerous scenarios. Therefore, investors should
not spare the small additional computational expense and rely on downside efficient portfolios in-

stead.

Conclusions and prospects for future research close this thesis.
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Notation

We briefly introduce the general notation used in the present thesis. Further notation will be
introduced in the course of this thesis.

In the present thesis, the word “positive” means > 0 whereas “strictly positive” means > 0. The

same convention applies to the terms “negative”, “greater”, “less”; “increasing”, “decreasing”’; “convex”,

“concave”, “is preferred to” =, “is strictly preferred to” >, “dominates” as well as for the set inclusions
“subset” C and “strict subset” C. The symbol := is used for definitions.

We will use some standard abbreviations in this thesis. The abbreviation i.e. stands for id est and
e.g. stands for exempli gratia. By w.r.t. we abbreviate “with respect to” and by w.l.o.g. “without
loss of generality”. The word “confer” is abbreviated by cf. and s.t. stands for “subject to” and is

used when formulating optimization problems.

As usual, R denotes the set of real numbers, R the set of positive and R, the set of strictly
positive real numbers. R_ is the set of negative real numbers. The K-fold Cartesian product of R
is termed R¥. We further label multidimensional objects in bold print, e.g., X = (1, ...,zx) € RX,
and denote by (x,y) := Zszl z1yy the standard Euclidean scalar product on R, Moreover, V
denotes the gradient operator w.r.t. the variable x and % is the partial derivative operator w.r.t.
T

Let V be a real vector space. For vy, ...,uny € V, we denote by span {v1,...,vy} the linear span, i.e.,

the set of all linear combinations of the vectors vy, ..., vn.

Uncertainty is modeled by a probability space (€2, F,P). § describes the possible states of nature,
F is the sigma algebra of observable events and P is their probability measure.

Let B(R) label the Borel sigma algebra on R. Then, a real random variable is a measurable function
q: (2, F,P) — (R,B(R)). (In)equalities between real random variables are to be viewed in the
sense of holding almost surely.

Let £2() be the set of square integrable real random variables. For ¢,r € £2(Q), the expected
value is given by E[q] = [, ¢(w)P(dw), the inner product by E [gr], the L?-norm by ||¢|| = VE?]
and the positive part by ¢y = max{q,0}. The notation E% means taking the expectation over the
subset Z C Q: Eg [q] == [, q(w) P(dw).

A portfolio solving the Markowitz (1952) optimization problem is called efficient, mean-variance
efficient or (p, o)-efficient portfolio. In continuous text, we often use the term “variance”, whereas
in formulas the standard deviation o is employed most of the time. Volatility is a synonym for

standard deviation.

Finally, we mention that all numerical simulations in the present thesis are done with the statistical

software tool R. Moreover, the open source typesetting program LyX is used.



CHAPTER 1

Downside Risk

To start with, the general setting of this thesis is introduced in Section 1.1. We specify the invest-
ment possibilities and characterize investors by means of their preferences, beliefs and endowments.
In Section 1.2, we define downside risk as a below-target deviation measure, adapted from Fishburn
(1977). Afterwards, we discuss crucial properties of downside risk. We argue that it combines
beneficial characteristics of general deviation measures as well as risk measures. Therefore, it is

eminently suitable for portfolio selection.

1.1. The Model

We consider a one-period economy with dates 0 and 1. Uncertainty occurs at date 1 and is modeled
by a probability space (2, F,P).

1.1.1. Financial Market.

The financial market offers K risky assets with prices p1,...,px € R at time 0 and random payoffs
q,---,qx € L£2(Q) at time 1. Furthermore, there is a riskless investment possibility, e.g., a bond,
which pays a constant gross rate of return ry > 0 per unit. Its price is normalized to 1, so that the
bond is taken as numéraire. The vector 7 := E [q] — rop € R¥ represents the mean excess payoffs
of the risky assets. Let .# := span{ro,qi,...,qx} denote the marketed subspace spanned by the
financial assets. .# is a closed finite-dimensional subspace of £2(2).

Risky assets are in strictly positive net supply, denoted by m € Rf 1, and the riskless asset is in zero
net supply.! We call m market portfolio of the economy and e, := (q,X,) market payoff. There are

no short sale constraints.

An investment is a pair (z9,x) € R x RX consisting of the number of shares of the bond zy and
a portfolio x = (z1, ...,vx ) of risky assets, where x;, denotes the number of shares of the k*" risky
asset. Investment (zo,x) has a date-0 price z¢ + (p,x) € R and promises a random future payoff
rozo + (q,X) € A at time 1.

LAs the normal m usually stand for the mean, we use the typewriter type m to denote the market portfolio. It is the
only exception in this thesis where a multidimensional item is not labeled in bold face. Any object related to the
market portfolio will receive an m as index.

16
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1.1.2. Investors.
There is a finite number I of investors operating in the asset market. Each investor i = 1,...,I is
characterized by a utility function U?, which is a function of mean and risk of future payoff of her
investment, and a probability distribution P? of the random payoff vector q, which captures her
beliefs about the stock market. We assume that the investor takes into consideration only mean
and risk when evaluating an investment.? This assumption is totally in line with the setting in
standard portfolio selection theory & la Markowitz and with CAPM theory built upon it. We only
presume that mean is a good and risk is a bad, i.e., investors prefer a higher expected payoff and a

less risky payoff. In Chapters 2 and 3, we require the utility functions to fulfill further properties.

Relative to the market, an investor is atomistic. This means, firstly, she has no market power, i.e.,
she is a price taker. Secondly, her demand for shares of bond and risky assets is small compared to

the aggregate supply and can thus be satisfied instantly.

Assume investor i to be endowed with shares of the risk-free and the risky assets (z,x*) € R x RX.
Note that z§ € R and x* € RX, which means that an investor can be endowed with short sold
assets, i.e., she can be indebted at date 0. Furthermore, an investor’s endowment is, in general,
risky because shares of risky assets x’ € R¥ promise an uncertain payoff <q7 xi>. On the other
hand, an investor can very well be endowed risklessly when x* = 0.

Investor i’s endowment (z{,x?) yields a date-1 payoff
(1) ¢ =roz)+ (q,x") € A.

Thus, we can equivalently suppose an investor to be equipped with a random endowment ¢ € .,
as done by Dana (1999) and others.
We abstract from taxes and transaction costs and assume assets to be liquid. Hence, investor 7 can

monetize her endowment at time 0 to obtain a monetary endowment
(2) el = xé + <p,Xi> eR.

Among others, Wenzelburger (2010) assumed investors to be endowed with e’ € R at date 0. He
interpreted e’ as units of a nonstorable consumption good and supposed that consumption only
takes place at date 1. We consider an investor who wants to transfer wealth from date 0 to date 1
and interpret e’ as money.

Thus, the setting with endowment in shares of the risk-free and the risky assets (z,x) € R x R¥
can easily be converted to an equivalent endowment with random date-1 payoffs € € .# or with
deterministic monetary endowments ¢! € R. We will switch between these types of endowment

whenever appropriate.

2This means that she takes into account neither any higher moments, nor the entire probability distribution.
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At date 0, an investor can choose any investment whose price does not exceed her monetary en-
dowment. Due to monotonicity of utility, investor ¢ will solely choose an investment (z(,x) that
fulfills the budget constraint

(3) e =9+ (p,x).

Holding a feasible investment (xo,x) at time 0 promises investor i a random future payoff

(4) w'(x,p) := rozo + (q, X) @ roe’ + (q — rop, X) € A

at time 1. Since there are no borrowing constraints on the bond, any portfolio of risky assets

x € R can be purchased.® Future wealth w’(x, p) is the crucial figure for investor 7. She wants to

have achieve a future wealth as high as possible, while avoiding risk as much as possible.

Mean payoff, which actually influences utility, equals

(5) M (x,p) := E [w'(x,p)] = roe’ + (m,x) € R.

The risk of future payoff, which is the second determinant of utility, will be introduced next.

1.2. Definition of Downside Risk

As motivated in the introduction, standard deviation is an insufficient risk measurement method,
both from a theoretically point of view and when trying to validate the risk-taking behavior of
investors empirically. For this reason, we associate risk with below-target payoffs as introduced by
Fishburn (1977) in his landmark paper.

Fishburn (1977) established the following general form of a downside deviation risk measure for

one-dimensional square integrable real random variables.

DEFINITION 1.1 (Downside Risk of a Payoft).

Let w € .# be a random payoff and let F,, be its distribution function. Let further ¢t € R be a
nonrandom target payoff which determines the threshold between gains and losses.

Then, the downside risk of w w.r.t. ¢ is defined by

(6) D(w, 1) = \// (t — 2) Fy(d2). 0

The target payoff may be specified in three different ways.
Firstly, it may be a number, e.g., t = 0, with the interpretation that the investor is bankrupt, if

she misses a target future payoff of 0.

3Since initial endowment e’ and riskless rate of return ro are given and investors are price takers, investor ¢ merely
chooses a portfolio of risky assets x. Her bond holdings are then given by z9 = e’ — (p, x).
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EXAMPLE 1.1 (The Borch Paradox with Downside Risk).
Consider again the two assets from Example 0.1. Asset 1 pays 25€ with probability 0.5 and -5 €
with probability 0.5. Asset 2 pays 454€ with probability 0.5 and -5€ with probability 0.5. In
terms of mean and standard deviation, these assets are characterized by (p1,01) = (10,15) and
(12, 02) = (20, 25).
When measuring risk by standard deviation, asset 2 is riskier. When using downside risk with t = 0
instead, asset 1 and asset 2 are equally risky, because for both assets a loss of 5€ occurs with
probability 0.5. Their downside risk is then

V5205 = =N ~ 3.5.

V2

Hence, asset 2 strictly dominates asset 1 w.r.t. mean and downside risk because its mean is strictly
greater and its downside risk is equal when compared to asset 1. A downside-risk averse investor,

thus, prefers asset 2 and the Borch Paradox is resolved. O

Secondly, it may be a coeflicient derived from the probability distribution of future payoff such
as mean future payoff ¢t = F [w]. This choice makes downside risk coincident with semideviation
defined as the square root of the lower semivariance.

A third possibility is to choose a reference payoff derived from individual endowment, e.g., t = rge’.
This choice can be motivated as follows. By investing her whole endowment e’ into the bond,
investor 4 obtains rge’ at time 1 almost surely. By investing a part of her endowment in risky
assets, she has the chance to get a higher payoff but faces the risk of getting less than rge’. In view

of portfolio theory, roe’ may therefore be seen as the natural target payoff.

Formula (6) reveals that downside risk entirely depends on the loss distribution of future wealth.
This surplus invariance may be formalized as D(w,t) = D(min {w, t} ,t), meaning that realizations
that yield a future wealth above its target are irrelevant for deriving downside risk. Hence, gains
cannot compensate the risk stemming from losses. This is a fundamental difference to standard
deviation which is obtained by averaging over all possible outcomes. Thus, downside risk is precisely

tailored to measure what investors actually fear: losses.

Since investor i’s future payoff depends on her portfolio choice x, we introduce the notion of down-
side risk of a portfolio. It is defined as the square root of the mean squared difference between the
portfolio payoff (q,x) and some target payoft (t,x), which the portfolio payoff may miss. Rewrit-
ing equation (6), using the well-known change-of-variable formula, e.g., see Ash (1972, Theorem

1.6.12), we obtain the following definition, where we employ D(x,t) as a shorthand notation for
D({a.x), (t,x))."

“We use the calligraphic D(w,t) to denote downside risk of a one-dimensional random variable w w.r.t. a target
payoff t € R and the Fraktur D(x,t) for the downside risk of a portfolio x € RE w.r.t. a target vector t € RE. The
same rule also applies to other notations like the mean.
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DEFINITION 1.2 (Downside Risk of a Portfolio).
Let x € RX be a portfolio of risky assets and t € R¥ a target vector for the payoff vector q.
Then, the downside risk of portfolio x w.r.t. t is defined by

(7) D(x,t) = \//Q ((t — q(w),x), )* P(dw) = \/E [(<t _q, x>+)2] O

The target vector t corresponds to the target payoff ¢ in the following way. If ¢t = E[w], then
t = E[q], so that ©(x, F[q]) becomes the semideviation of the portfolio payoft (q,x).

On the other hand, setting t = rop, the target payoff becomes rg (p,x) which is the amount the
investor would have obtained if she had invested (p,x) prudently in the bond rather than buying
the risky portfolio x. With this choice, D (x, rop) becomes the below-target semideviation of (q, x)
with target ro (p,x) and corresponds to ¢t = rpet.

Most of the results developed in this thesis will hold true for all choices of t. Some results, however,

require a specific form of the target vector, which we will indicate whenever necessary.

REMARK 1.1.
In terms of the L?—norm, downside risk can be expressed as D(x,t) = ||(t — q,x)_||.

Unlike standard deviation, downside risk is not symmetric, i.e., in general, D(x,t) # D(—x,t). O

Asymmetry is a favorable feature of downside risk. Since upward and downward movements of risky
assets are, in general, not symmetric, purchasing a portfolio should pose a different risk than short

selling the same portfolio. Downside risk is able to account for such asymmetric payoff distributions.

We close this section by stating the crucial assumption that no nontrivial portfolio is risk-free. This
assumption will be in effect for the whole thesis, except in Chapter 3 where we will relax it. We

will not state it explicitly in every assertion.

ASSUMPTION 1.
D(x,t) > 0 whenever x # 0.

Assumption 1 is a simultaneous requirement on the target vector and on the payoff distribution.
Given a fixed target, we restrict the probability distribution of the payoffs such that Assumption 1
holds or, vice versa, for a given distribution of payoffs, we allow only target vectors for which
Assumption 1 is fulfilled. In Chapter 3, which is about equilibrium asset pricing, the target vector,
e.g., for t = rgp, may be determined by equilibrium asset prices with a priori no guarantee that
Assumption 1 holds. In Chapter 3, we will therefore prove that, given a fixed payoff distribution,
the equilibrium target vector (whether it is price-dependent or not) does not allow for risk-free
nontrivial portfolios.

Assumption 1 implies that no asset is redundant, neither the bond nor any risky asset. Indeed,
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it is not possible to exactly replicate an asset’s payoff from the other assets. Suppose w.l.o.g.
that asset 1 were redundant. Then, there exist as,...,ax € R such that ¢; = 22{22 QEqr. Since
x = (—1,9,....,ax) # 0 is then a portfolio with (q,%) = 0, we have D(x,t) = <t,5<>+.5 As a
consequence, D(x,t) =0 or D(—x,t) = 0. This contradicts Assumption 1. By a similar argument,
the risk-free asset is not redundant. Note that there do not have to exist redundant assets when

Assumption 1 is not in effect.

1.3. Properties of Downside Risk

In this section, we establish important properties of downside risk and compare them with properties
of other popular risk measures such as standard deviation and value-at-risk (VaR). It turns out that,
for a suitable choice of the target vector, ® improves on these other measures of risk in the sense
that it fulfills desirable properties such as monotonicity and subadditivity which are violated by
standard deviation and VaR, respectively. Moreover, we provide an economic interpretation of the

properties of downside risk and outline their significance for risk management.

We start with a central definition.

DEFINITION 1.3 (Risky Set and Downside Cosemivariance Matrix).
The set of all realizations yielding a portfolio payoff below its target,

(8) %(X,t) = {w € Ql <t,X> > <q(w)7x>} €F,

is called risky set of portfolio x.
The matrix C(x,t), whose (k,1)*® entry is defined as

(9) Cru(x,t) = /@ o = 00 (0 ) P,

is called downside cosemivariance matriz of q w.r.t. portfolio x. O

Downside cosemivariance depends on portfolio x, because the choice of the portfolio determines
the risky set Z(x,t). In other words, by choosing a portfolio, the investor defines “upside” and
“downside” risk.

The matrix C(x,t) turns out to be symmetric and positive semidefinite. It thus becomes the
downside analog of the covariance matrix V, whereby Cg;(x,t) is the downside cosemivariance

between the payoffs of assets k and [ w.r.t. portfolio x.

5Note that portfolio X which yields a constant payoff of 0 is not riskless if <t,i)+ > 0. This is a fundamental
difference to standard deviation where a payoff is riskless if and only if it is constant. It is the reason why we cannot
replace Assumption 1 by the assumption of non-redundancy.
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LEMMA 1.1 (Properties of the Downside Cosemivariance Matrix).

The downside cosemivariance matrixz fulfills the following properties:

i) Downside risk may be rewritten as

(10) D(x,t) = /(x,C(x,t)x).

it) The matriz C(x,t) is symmetric and positive semidefinite.
iti) C(x,t) is invertible if and only if for any z € RE \ {0}:

(11) B({w € Z(x,t) | {t — q(w),z) # 0}) > 0.

i) C(x,t) is null-homogeneous in x, i.e., C(Ax,t) = C(x,t) for all A > 0.

PROOF.
i)
(x, C(x, t)x) = / (x, (t — q())(t — q(w))x) P(dw)
R(x,t)
2 ® 2
:/ (t —q(w),x)” P(dw) = / ((t — q(w),x>+) P(dw).
B(x,t) Q
ii) Symmetry follows immediately from equation (9). Let x,z € RX be arbitrary. Then
(z,C(x,t)z) = f%(x t) (t — q(w), z)? P(dw) > 0 implies positive semidefiniteness.
iii) Let x € RX and z € RX \ {0} be arbitrary. (z, C(x,t)z) = f%(x t) t — q(w),2z)? P(dw) is
a strictly positive number if and only if P({w € Z(x,t) | (t — q(w),z) # 0}) > 0.
iv) Let A > 0. Since

(t, Ax) > (q(w), Ax) <= (t,%) > (q(w), %),

it follows that Z(\x,t) = Z(x,t). This implies C(Ax,t) = C(x, t). O

Property i) reveals the structural similarity of downside risk to standard deviation which is given by
o(x) = /(x, Vx), where V is the covariance matrix of q. Property ii) connotes that the downside
cosemivariance matrix has the same algebraic properties as the covariance matrix V. In mean-
variance analysis, invertibility of V is always assumed. Property iii) gives a sufficient criterion for
invertibility of C(x,t). Null-homogeneity of C(x,t) is a technical property which is used in many

proofs in this thesis.

One of our main goals is to reformulate portfolio selection and asset pricing theory using downside
risk rather than standard deviation. Therefore we show two things.
First, downside risk is constructed as a deviation measure and, thus, has a similar structure to

standard deviation. It measures the deviations of the portfolio payoff (q,x) from the target payoff
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(t,x) in case the target payoff is missed. The structural similarity between downside risk and
standard deviation will enable us to solve a portfolio optimization problem in the sense of Markowitz
(1952), to formulate a separation theorem and to derive an asset pricing formula.

Second, we establish that downside risk overcomes the shortcomings of standard deviation in terms
of risk measurement. Although heavily used in finance to address problems involving risk, deviation
measures are not risk measures in the sense of Artzner et al. (1999). As pointed out by Rockafellar
et al. (2006a), deviation measures measure uncertainty, in the sense of nonconstancy, but do not
evaluate the “overall seriousness of possible losses” as risk measures do. Downside risk is designed
to overcome this vulnerability. It is a deviation measure by construction but the crucial point is
that only deviations below a target, which constitute losses, contribute to downside risk. Thus,

downside risk measures risky deviations which justifies its name.

1.3.1. ®(x,t) as a Deviation Measure.
General deviation measures, as introduced by Rockafellar et al. (2006a), generalize the concept of
standard deviation. Downside risk fulfills a set of properties which all general deviation measures

have in common.

PROPOSITION 1.1 (Properties of D(x,t) as a Deviation Measure).
Downside risk D (x,t) satisfies the following properties.

i) Relevance:
D(0,t) =0 and D(x,t) > 0 for all x # 0.
i1) Positive Homogeneity :
for all X > 0, D(Ox, t) = AD(x, t).
i11) Subadditivity:
for any portfolios x,x' € RE, D(x +x/,t) < D(x,t) + D (¥, t).

iv) D(x,t) is finite everywhere and convex, hence also continuous in x.

PRrROOF.

i) ©(0,t) = 0 is immediate. D(x,t) > 0 for x # 0 is equivalent to Assumption 1.
ii) Positive homogeneity follows from null-homogeneity of C(x,t), c¢f. Lemma 1.1.
iii) (t —q,x+x), <(t—q,x), +(t —q,x), together with the triangle inequality of the
norm |||, implies subadditivity.
iv) qr. € L2(), for k = 1,..., K implies finiteness, properties ii) and iii) of Proposition 1.1
imply convexity. For the fact that finite convex functions on R¥ are continuous see Rock-
afellar (1970, Theorem 10.1). O

The interpretation of Proposition 1.1 is straightforward. Property i) states that any nonzero port-

folio poses a downside risk. Property ii) is a scaling property. It implies that, for instance, doubling
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the amount invested into a portfolio doubles its downside risk. Subadditivity ensures that diversifi-
cation does not create extra risk. Indeed, the downside risk of the merged portfolio x +x’ does not
exceed the sum of the downside risks of the single portfolios x and x’. Observe that VaR — a heavily
used risk measure based on quantiles — is not subadditive, e.g., see Artzner et al. (1999, Section
3.3). In this sense, downside risk has an advantage over VaR. Eventually, positive homogeneity and

subadditivity imply convexity of downside risk.

1.3.2. D(x,t) as a Measure of Risk.

The following Proposition underpins the ability of ®(x,t) to measure risk.

PROPOSITION 1.2 (Properties of D(x,t) as a Downside Risk Measure).
Downside risk D(x,t) fulfills

i) Lower Range Dominance:
©(X7 t) < <t7 X> - infweﬂ <q(w)7 X>'
i1) Monotonicity in t:
zp >0 = 52-D(x,t) > 0.
iit) If, in addition, t = rop, then ®© is monotone in x in the sense that

w'(x,p) = w'(x',p) = D(x,70p) < D(X',7op).

PROOF.

i) For any @ € Q :(t,x) — inf,cq (q(w),x) > (t — q(®),x), > 0, due to Assumption 1.
ii) Follows from Proposition 1.3 given in the appendix of this chapter.
iii) Let x,x’ € RX be two portfolios with w(x,p) > w'(x/,p). Then, equation (4) yields
(rop —q,%x) < (rop —q,x’), implying (rop — q,x), < (rop —q,x’),. Consequently,
[[(rop — a,x)_.|| < ||{rop — a,x')_||- O

Property i) ensures that the downside risk is bounded by the largest possible below-target deviation,
which constitutes the worst case. A deviation measure not fulfilling lower range dominance is not
reasonable for measuring risk, because it overestimates the risk inherent in a portfolio. Since
payoffs cannot be less than inf,co (q(w), x), losses cannot be greater than (t,x) —inf,cq (q(w), x).
Standard deviation, which takes into account upside deviations as well as downside deviations,
is not dominated by the lower range. Thus, it may assign unreasonably high risk to a financial
position.

Monotonicity in the entries of t has an intuitive interpretation if the target vector is chosen to be rgp.
If an investor wants to buy asset k and its price py increases, ceteris paribus, the portfolio becomes
more expensive. At the same time it becomes more risky because its target payoff (rop, x) increases
and its realized random payoff (q,x) is more likely to miss this target, given a fixed probability

distribution of q. Conversely, for an investor who wants to sell asset k short, an increase in its price
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reduces downside risk of the portfolio. By a similar argument, an increasing riskless rate of return
o increases downside risk. On the contrary, a decreasing risk-free rate of return (e.g., interest rate)
makes an investment in risky assets more attractive, not only because they offer a higher expected
excess return but also because their downside risk decreases.

In our view, Property iii) is the most important property when measuring risk, i.e., evaluating
prospective losses. If a portfolio x yields a higher future payoff in any state of nature, its losses
are always smaller and its profits are always higher. In particular, its ruin probability is lower:
w'(x,p) = w'(x’, p) implies P(w'(x,p) < 0) < P(w’(x/, p) < 0). Hence, the portfolio x is less risky
compared to portfolio x’. Downside risk accounts for this monotonicity relation whereas standard

deviation does not.

We conclude that downside risk with target vector t = rgp, which is a specific below-target semidevi-
ation, is an excellent choice. It fulfills all important properties of a plausible deviation risk measure.
Most importantly, to the best of our knowledge, it is the only monotone deviation measure. Thus,

it unambiguously outperforms standard deviation.

1.A. Appendix to Chapter 1

LEMMA 1.2
Let a,x € RE be arbitrary. Then,

Vx ((a, X>+)2 =2(a,x), a.

PROOF. Let x’ € RX be arbitrary. We consider 3 cases:

i) (a,x’) > 0. Then, (a,x), = (a,x) > 0 for all x in the vicinity of x" and thus

Vx ((a, x’>+)2 = Vi (a,x)’ =2(ax)a=2(ax), a

+

ii) (a,x’) < 0. Then, (a,x), =0 for all x in the vicinity of x’ and thus

+

Ve ((a,x),)° = Vi0=0=2(a,x), a.

iii) (a,x’) = 0. Then, let (x,,) be a sequence with (a, x,) # 0 and lim,,_, o x,, = x’. Then,

neN
. 2 1),711) . o /
nhﬁn;(} Vx ((a, xn>+) = nlgrolo2 (a,xp),a=2(a,x), a
Thus, we have differentiability everywhere and the derivative is continuous. O
PropoOsSITION 1.3.
Let x, > 0. Then,
9 o t) = L/ (t — q(w),x). P(dw)
oty Y T D, b) Jo AW '
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PROOF. Since z > 0 = x # 0, we can divide by D(x,t) > 0 and the chain rule implies

0 1 0 2
aTk@(th) = majk/ﬂ(@—qw)vxﬁ) P(dw).

The integral [, ((t —q(w), x>+)2 P(dw) is continuously differentiable w.r.t. t; and we can exchange
differentiation and integration, compare, e.g., Schilling (2005, Theorem 11.5). Lemma 1.2 implies

the assertion. O



CHAPTER 2

Portfolio Selection Theory

In this chapter, we analyze how a downside-risk averse investor selects her individually optimal
portfolio. To do so, we formulate a portfolio optimization problem where we assume that preferences
of an investor are characterized by a utility function depending on mean payoff and downside risk
only, see (12). In the sequel, we compare this ansatz with other portfolio selection criteria. Next,
the notion of downside efficient portfolios is introduced. These are optimally downside diversified
portfolios and analogs to mean-variance efficient portfolios in the sense of Markowitz (1952). In
the subsequent section, all attainable risk-return profiles are characterized. Moreover, a separation
theorem is formulated and proven. Eventually, we address the problem of portfolio selection without

a risk-free asset.

To improve readability, the following simplified notation will henceforth be in effect. We omit the
upper index i since the investment decision of an arbitrary investor is analyzed. Her beliefs about
the stock market are captured via the probability distribution P? = P.

Asset prices are assumed to be parametrically fixed, thus p will not be denoted explicitly. So, given
prices, an investor, equipped with initial endowment e € R, chooses a portfolio of risky assets x
which yields a random future payoff w(x) € .# with mean M (x).

All results of this chapter hold independently of the specific choice of a target vector. Thus, we
assume t to be arbitrary but fixed and analyze an investor’s portfolio choice given that target. We
skip “t” throughout this chapter and employ the notation ®(x), C(x), Z(x).

As outlined in Section 1.1.2, an investor’s preferences are characterized by a utility function U

which is a function of mean and downside risk of future payoff. In Chapters 2 and 3, we require
the utility function to fulfill the following properties.

ASSUMPTION 2.

U:RxRy — R, (m,d) — U(m,d) is continuously differentiable, strictly increasing in mean,

strictly decreasing in downside risk and strictly concave.®

Within this setting, the decision problem of an investor takes the form

(12) max U(M(x),D(x)).

xERK
6The presumption of strict concavity can be mitigated to strict quasiconcavity at the expense of technicalities.

27
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2.1. Portfolio Selection Criteria

Considering the utility induced by mean and downside risk is just one possibility to evaluate port-
folios (or their payoffs). In this section, we show how the mean-downside-risk framework is related

to concepts like stochastic dominance and expected utility theory.

We analyze the interplay between different portfolio selection criteria in the marketed subspace .Z .
For a payoff w € .# with distribution function F,, we denote its mean by M(w) = Elw], its down-
side risk by D(w) = \/fioo (t — 2)? F,y(dz) and its expected utility by EU(w) := [*_u(z) Fy(dz),

where u: R — R is a Bernoulli utility function. This representation dates back to von Neumann &

Morgenstern (1947). Newer approaches to evaluate random payoffs are prospect theory, developed
by Kahneman & Tversky (1979) and refined in 1992, as well as the recent works by Ké&szegi &
Rabin (2006, 2007) who elaborated on reference-dependent preferences and risk attitudes.

As a first step, several partial order relations on .# are defined.

DEFINITION 2.1 (Partial Order Relations on .#).
Let w,w’ € .# and let F,,, F,,, be their distribution functions.

i) Almost sure dominance (or statewise dominance) is defined via
w5 w = w(w) > w'(w)for allw € Q.
ii) M-D dominance is defined via
w = pp W= M(w) = M(w') and D(w) < D(w').
iii) Stochastic dominance of first degree is defined via
w=psw <= F,(2) < Fy(z)for allz € R.

iv) Stochastic dominance of second degree is defined via
z z
wmgsw = / Fu(y)dy < / Fy(y)dyfor all z € R.
v) Stochastic dominance of third degree is defined via

z Yy z Yy
w =g w :<:>/ (/ F,(x) dm) dy < / (/ Fy (x) dx) dy for all 2 € Rand

M(w) = M(w'). O

Strict dominance is defined when at least one equation on the right-hand side in the above definitions
is strict, respectively. It is possible to define stochastic dominance of even higher degrees, but we

restrict our analysis to the first three degrees.
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In another line of research, Jean (1971, 1972, 1973), Ingersoll (1975) and Schweser (1978), among
others, extended Markowitz’s mean-variance decision model by adding the third moment of a payoff.
They formulated a multidimensional optimization problem in which the expected value p and

2 is minimized. More formally, for two

skewness v of a payoff is maximized, while its variance o
payoffs w,w’ € 4 with (u,o,v), (', 0’,v"), their relation is defined via

Wy w = p=p,v>rvando <o

The problem with this setting is that much of the results are confined to a qualitative analysis. It
is generally impossible, for example, to derive an explicit representation of the set of undominated
portfolios. This is a reason why “u — ¢ — v dominance” did not become prevalent and why we do

not focus on this relation, here.

In the following definition, we specify when an order relation is stronger than another, when two

order relations are congruent and we formally define the notion of an efficient set.

DEFINITION 2.2.

Let =4, =B be two order relations on .Z.

We say that =4 implies =g if for any w,w’ € .# with w =4 w’ the relation w =g w’ holds.
Relation > 4 can then be interpreted as a stronger relation than »=p.

Two order relations > 4 and > p will be called congruent if =4 implies > g and =g implies > 4.
The efficient set w.r.t. =4 (or A eflicient set) is defined as the set of all payoffs that are strictly
undominated w.r.t =4, i.e., the set {w € 4 | ' € M W' =4 w}. O

Obviously, almost sure dominance implies stochastic dominance of either degree and > pg implies

~ss implies =rs.

Less obviously, stochastic dominance (of either first, second, or third degree) implies M-D domi-
nance. This result is an immediate corollary of Fishburn (1977, Theorem 3). He refined a similar
result by Porter (1974) who showed the assertion for second degree stochastic dominance and semi-
variance. As a consequence, the M-D efficient set is a subset of the stochastic dominance efficient

set.

In contrast, stochastic dominance does not imply mean-variance dominance, when defined analo-
gously to M-D dominance. Example 0.1 in the introduction provides an illustration for two random
variables where one strictly dominates the other in terms of stochastic dominance but not w.r.t.
mean and variance. This is one of many points of criticism concerning portfolio selection and asset

pricing theory in a mean-variance framework.
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Almost sure dominance, which is the strongest of the five orders defined above, also implies M-D
dominance. Indeed, = 45 implies > pg implies >p;p. But, almost sure dominance does not imply
mean-variance dominance as shown in Example 0.2. Even a random variable that yields a higher
payoff in any state of nature is not necessarily preferred by an investor who considers mean and
variance only. This fact should be a solemn warning to all theorists and practitioners who apply

mean-variance analysis and the CAPM unhesitatingly.

To complete the analysis, we introduce 2 total order relations.

DEFINITION 2.3 (Total Order Relations on .#).
Let w,w' € A, let F,,, F be their distribution functions and let U satisfy Assumption 2.
i) M-D utility dominance is defined via
w zypy W= UM(w),D(w)) > UM(w'), D(w')).
ii) Expected utility dominance is defined via

w =py w <= EU(w) > EU(w"). O

Due to monotonicity properties of U, which are given in Assumption 2, M-D dominance implies

M-D utility dominance.

Further, it is well-known that stochastic dominance implies expected utility dominance.

LEMMA 2.1 (Stochastic Dominance Implies Expected Utility Dominance).
Let w,w' € A and presume sufficient differentiability of u.

i) If w =pg w', then w =gy w' for every Bernoulli utility function with v’
u

> 0.
"> 0 and v” <0.
">0,u” <0 and

it) If w =gg w', then w =gy w' for every Bernoulli utility function with
i) If w =pg w', then w =gy w' for every Bernoulli utility function with u
u” > 0.

PROOF. Lemma 1 in Fishburn (1977). O

Now, we analyze the interplay between expected utility theory and mean-downside-risk utility
functions satisfying Assumption 2. As pointed out by Fishburn (1977, p. 120): “It is entirely
possible that a decision maker’s preferences satisfy a mean-risk utility model without also satisfying
the von Neumann and Morgenstern axioms for expected utility”. Therefore, we specify conditions

under which M-D utility dominance is congruent with expected utility dominance.
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PRrROPOSITION 2.1.
Assume =ppy and =gy are congruent. Then, the Bernoulli utility function, which is unique up

to positive linear transformations, function takes the form

q z forallz>t
(13) u(z) ==
z—alt—2)? forallz <t
for some a > 0.
PROOF. Theorem 2 in Fishburn (1977). O

The coefficient « describes the investor’s downside-risk aversion. Figure 2, which is based on Fish-
burn (1977, Figure 1), displays the behavior of the downside quadratic Bernoulli utility function
ud9. For payoff realizations above the target ¢, the investor is downside-risk neutral — u%9 is linear
for z >t — and for below-target realizations she is downside-risk averse, i.e., u9 is strictly concave
for z < t. The Bernoulli utility function given in (13) can be considered as downside version of a

quadratic Bernoulli utility function
(14) ud(z) =z — az?

which makes a mean-variance efficient portfolio coincident with an expected utility maximizing

portfolio.

u®(z)

t t+1 0

FIGURE 2. Bernoulli utility functions with o = 1. Left: ud9 given by (13). Right:
u9 given by (14).
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A major drawback of quadratic utility given by (14) is that it exhibits negative marginal utility
beyond a point of personal satiation, thereby penalizing too high payoffs, compare Johnstone &
Lindley (2013). In contrast, the downside quadratic Bernoulli utility function is strictly mono-
tonically increasing. Thus, 1% models the behavior of an investor who, on the one hand, is risk
averse if the payoff constitutes a loss and, on the other hand, prefers high payoffs over low payoffs.
It therefore keeps the strength of quadratic Bernoulli utility functions (their ability to model risk

aversion) while overcoming their weakness of non-monotonicity.

Presuming u(z) = u%9(z), expected utility solely depends on mean and downside risk

o0

o) t
(15) EU(w) = / u(z) Fy(dz) & / 2 Fy(dz) — a/ (t — 2)? Fyy(dz) = M(w) — aD(w)>.
Hence, the expected utility functional with Bernoulli utility function 199 becomes equivalent to the

M-D utility function U(m,d) = m — ad? which satisfies Assumption 2. Figure 3 illustrates the

resulting indifference curves which turn out do be quadratic in the (m, d)-plane.

m U4
Us
Us

U

FIGURE 3. Indifference curves for ao = 1.

The following corollary is the reverse statement of Proposition 2.1.

COROLLARY 2.1.
Let a > 0 be given and set u = ul, where ud? is defined by (13), as well as U(m,d) = m — ad?.
Then, =y pu and > gy are congruent.

PROOF. For o > 0, u = v and U(m,d) = m — ad?, we obtain congruence since

EU(w) = M(w) — aD(w)? = UM (w), D(w)). O
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The following Theorem summarizes the findings of this section and their implications to portfolio

selection theory. It thereby justifies that we analyze an investor who solves max U(M(x),D(x))
x€ER

for a utility function U that fulfills Assumption 2.

THEOREM 2.1.
Let U fulfill Assumption 2, let x* € RX be a solution to portfolio optimization problem (12) and let
w(x*) € A be its payoff.

i) w(x*) is undominated w.r.t. =y py by construction and thus undominated w.r.t. >=pnp
and w.r.t. = ag.
it) w(x*) is undominated in the sense of stochastic dominance of either degree.
i) If U(m,d) = m — ad?, then w(x*) also mazimizes expected utility for the downside qua-

dratic Bernoulli utility function given by (13).

As a consequence, w(x*) improves on the payoff of a mean-variance efficient portfolio w(xf),

*ff) is itself neither undominated w.r.t > 45 nor w.r.t. stochastic dominance. Further,

because w(x
w(x*") can maximize expected utility only for a quadratic, thus non-monotonic, Bernoulli utility
function. In contrast, the downside quadratic Bernoulli utility function (13) is strictly monotonically

increasing and concave.

A solution x* to (12) yields a payoff that is optimal in terms of mean and downside risk as well as
undominated w.r.t = ¢ and w.r.t. stochastic dominance. Thus we call x* not only M-D optimal

but the individually optimal portfolio.

2.2. Downside Efficient Portfolios

How should an investor diversify a portfolio of risky assets optimally w.r.t. mean and downside
risk? Markowitz (1952) was the first to address this problem in the mean-variance framework, when
he introduced the notion of mean-variance efficient portfolios. He chose variance as a measure of
risk because it is unproblematic to aggregate variances of single assets’ payoffs to the variance of
a portfolio’s payoff. Almost 60 years ago, Markowitz (1959, pp. 188-194 and pp. 287-297) himself
already had reservations about variance as a measure of risk. There, he proposed five alternative risk
measures, one of which was below-target semivariance, and analyzed a model with semivariances in
Chapter 9. But it took nearly five decades until existence of mean-semivariance efficient portfolios
could be established by Jin et al. (2006). This existence result, however, is rather abstract and
an analytically rigorous derivation of a downside analog of a mean-variance efficient portfolio is

missing.

The difficulty is to aggregate downside deviation measures for a portfolio of risky assets. As pointed

out by Grootveld & Hallerbach (1999), so far nobody succeeded in aggregating downside risks.
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However, the representation of downside risk via the downside cosemivariance matrix, see (10), will

enable us to aggregate downside risk and to derive downside efficient portfolios.

DEFINITION 2.4 (Downside Efficient Portfolios).
A solution to the optimization problem

(16) max M(x) s.t. D(x) < do,

xERK

given some prescribed level of downside risk dy > 0, is called downside efficient portfolio and denoted
by x9(dg).” O

We assume 7 # 0 throughout this section. If w = E[q] — rop = 0, then the objective function
of (16) is constant, M (x) = rge, compare (5). Hence, every feasible solution, e.g., x = 0, is optimal.

In this case, downside efficient portfolios are not unique.

As a first step, we define and characterize the feasible set and the optimal solution set of (16) which

will be referred to as the set of all downside efficient portfolios.

DEFINITION 2.5.
Given dy > 0, we denote the set of all feasible portfolios of optimization problem (16) by

(17) H(do) = {x e RF | D(x) < dp}
and the set of all downside efficient portfolios by
(18) F(dy) = {x e # (dy) | M(x) = zenﬁﬁo)sﬁ(z)}. O

Our first result concerns the existence of feasible as well as downside efficient portfolios.

THEOREM 2.2 (Existence of Downside Efficient Portfolios).
The sets (17) and (18) are nonempty, convexr and compact. Moreover, both sets are positively

homogeneous w.r.t. d:

H(d) = {dx | x € # (1)}, #(d) = {dx | x € (1)} .

PROOF. Obviously, 0 € .Z(d) for all d > 0. Convexity of % (d) follows from convexity of ©.
The set £ (d) is closed, since it is the inverse image of the closed set [0, d] under the continuous
function ©. On the principle of Rockafellar (1970, Corollary 8.7.1) and © being convex and contin-
uous, if any set of the form {x € R¥|D(x) < d} is bounded, then all such sets must be bounded.
By Proposition 1.1 i), #(0) = {0}. Since #(d) C R¥, closedness and boundedness imply com-
pactness. Positive homogeneity follows from positive homogeneity of ©.

"Observe that the case do = 0 is trivial as D(x) = 0 <= x = 0. Alternatively, we also could have considered the
optimization problem mir}( D(x) s.t. M(x) > mo for some mo > roe.
xR
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Since the feasible set £ (d) is nonempty and compact and 9(x) is a continuous function, there
exists x9¢(d), such that

M(x%(d)) = zgl;?d)im(z).

Any set of type {x € # (d)| (m,x) > m} is convex and compact due to convexity and compactness
of ' (d) and linearity of (m,x). Hence, the set

L(d) = {X e x(d)| (m,x) > zgl(}?z(d) (w,z)}

is convex and compact. Let x%(1) € .#(1) and suppose that x' € ¢ (d) with (m,x) > d (mw,x%(1))
existed. Then, 2x’ € /(1) and  (m,x') > (w,x%(1)), which contradicts x%(1) € .(1). O

Theorem 2.2 establishes existence of downside efficient portfolios. Similar results are derived by Jin
et al. (2006) for semivariance and by Rockafellar et al. (2006b) for general deviation measures. We
go one step further by providing a specific representation for downside efficient portfolios, which,

to the best of our knowledge, has not been obtained in literature so far.

PROPOSITION 2.2 (Characterization of Downside Efficient Portfolios).
Let w # 0. Then, the following applies.

i) Any x%(dy) is of the form

do ref

(19) x%(dy) = mx ,

where x™f £ 0 is a solution to the equation C(x)X = .

ii) Any solution x™f to C(x)x = m yields a downside efficient portfolio via (19).

iii) If x& and x5 are two solutions to C(x)x = m, then their downside risks and means are
equal, i.e., D(xF) = D(xF") and M(xF") = M(x5H).

PROOF.

i) Observe first that x9¢(0) = 0, because it is the only feasible portfolio. Let dy > 0.
Then, each maximizer xde(do) is different from zero, because it is a boundary solution,
i.e., D(x%(dy)) = do.® Thus, objective function M(x) as well as inequality constraint
D(x) — dy < 0 of optimization problem (16) are continuously differentiable at x9¢(dy)
with non-vanishing gradient, cf. Proposition 2.6. Hence, the Karush-Kuhn-Tucker (KKT)
conditions have to be satisfied.

As a consequence, there exists a constant A > 0 such that

(35) A

AV, (D (x%(do)) — do) = WC(xde(do))xde =7 =V, M(x*(dy)),

8This follows since the objective function 9M(x) of optimization problem (16) is linear, thus unbounded. So, each
maximizer of (16) has to be a boundary solution.
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or equivalently, x9¢(dy) solves

(20) Cx)x = 3T
Null-homogeneity of C(x) implies that 0 # d%xde(do) =: x"f solves C(x)x = m. Further,
d
dy = D(x%(dp)) = 709( x*) = A =D (x") > 0.

ii) Suppose x"f # 0 solves C(x)x = m. Then %Xref is a solution to equation (20) for

=D (x"™) >0, ie, @(‘i’ref) x"*f fulfills the KKT conditions of optimization problem (16).
Since (16) is a convex optimization problem with linear objective function, the KKT
conditions are not only necessary but also sufficient for optimality.

iii) Let x7f, x5f be solutions to C(x)x = 7. Then,

<C (Xlief)xrlef X'i_ef> <7'r Xref>

@) D) = LI - SR = (s (1)) = (1) = 9055,
NGRS
where (m,x%(1)) is a strictly positive number if and only if w # 0. The last assertion
follows from (21), recalling that M(x) = roe + (m, x). O

ref

The portfolio x"', which will henceforth be referred to as reference portfolio, determines the optimal

ref

miz of risky assets, while the factor % scales the portfolio to risk dy. In particular, x™' is itself

downside efficient for dy = D (x").

From convexity of the optimal solution set .(dy) we know that optimization problem (16) admits
either a unique solution or a continuum of solutions. To guarantee uniqueness, we need a suitable
strict convexity property of the feasible set J# (dp), at least in a neighborhood of a downside efficient
portfolio x9¢(dp). In general, however, the required version of strict convexity is not available, see,
e.g., Rockafellar et al. (2006b). We will therefore provide a sufficient criterion for uniqueness of

the downside efficient portfolio.

THEOREM 2.3 (Uniqueness of Downside Efficient Portfolios).
Let w # 0 and let X" be a solution to C( )x = . If C(x™") is invertible, then x"" is the unique

solution to C(x)x = 7 and x%(dy) = @(xref) x'f is, thus, the unique downside efficient portfolio.

PROOF. Assume xf # x5f are two distinct solutions to C(x)x = w. Let x := x — x5f £ 0

be their difference. In Proposition 2.7 in the appendix to this chapter we show

P({w € Z(x¥) | (t — a(w),%) # 0}) = 0.
But since C(x§f) is assumed to be invertible, P({w € Z(x¥f) | (t — q(w),z) # 0}) > 0 for any

z € RE\ {0}, due to Lemma 1.1. This is a contradiction. Hence, there can only be one solution to
C(x)x = m. O
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Invertibility of C(x") is a rather mild assumption. In mean-variance analysis, its analog, invert-
ibility of the covariance matrix V, is always required. Moreover, the equation Vx = 7 has a unique

ref)fl

solution if and only if V is invertible. This solution is then explicit. In contrast, x"f = C(x T

is still an implicit equation with no a priori guarantee for a closed form solution.

REMARK 2.1.

If C(x"f) is invertible, the unique downside efficient portfolio can be represented as
do

(Cxef)~tm, )

ref)—lﬂ_.

Xde (do) =

The structural similarity to mean-variance analysis is now immediate, because a mean-variance

efF( oo

. . . _ _1 . . . .
efficient portfolio is of the form x*" (o) = 7MV 7, with 'V being the covariance matrix of
the payoff vector q and o denotes the upper bound for standard deviation, see, e.g., Wenzelburger

(2010) and references therein. O

In this section, we introduced the notion of downside efficient portfolios and proved their existence.
The innovative part is the characterization of x9¢(dy) in Proposition 2.2 and the sufficient criterion
for uniqueness given in Theorem 2.3. Representation of downside efficient portfolios is structurally
similar to mean-variance efficient portfolios. This similarity raises hope that most if not all results
developed along the lines of mean-variance analysis still hold true when replacing the poor risk
measure standard deviation \/m by the superior downside risk \/m . Indeed, we are

now in a position to establish a separation theorem which will be stated in Theorem 2.4 below.

2.3. Attainable Risk-Return Profiles

The form of the decision problem (12) shows that not the portfolio but its risk-return profile, i.e.,
its mean payoff and downside risk, determine the investor’s utility.” This observation gives rise to

the following definition whose properties turn out to be crucial for our separation theorem.

DEFINITION 2.6 (Attainable Risk-Return Profiles).

Given some 7 € R¥ | the set of all attainable risk-return profiles is defined by

(22) o = {(d,m)eR+xR|ElxeRK st. d=D(x) andm:sm(x)}. O

Observe that an investor is indifferent between any two portfolios which yield the same mean payoff
and the same downside risk. In view of Proposition 2.2 iii), we may thus choose a reference portfolio
x"*f that stipulates the mix of risky assets and take x¢(dy) as the corresponding downside efficient

portfolio with risk dy.

gActually, we should speak of a downside-risk-return profile. However, the expression risk-return profile gained
acceptance in portfolio theory as a fixed term.
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As a downside efficient portfolio depends on downside risk dy, we consider its mean as a function

of dy and define the downside efficient frontier as the curve
(23) et Ry — R, dr— Mx*(d)).

It describes the maximal mean payoff that is achievable given a prescribed level d of downside risk.
By Proposition 2.2 iii), ¢ is well-defined even if more than one downside efficient portfolio with risk
d exist, as each maximizer of (16) yields the same mean payoff. The downside efficient frontier
turns out to be a straight line with slope ®(x"f) > 0 and thus becomes the downside analog of the

efficient frontier in classical mean-variance analysis, e.g., see Wenzelburger (2010).

LEMMA 2.2 (Downside Efficient Frontier).
Let w # 0 and let x"* be a solution to C(x)x = .

Then, the downside efficient frontier takes the form
(24) e(d) = roe + pd,

where p := D (x"F) > 0.

ProOOF. Using positive homogeneity, we obtain
de de (21)
e(d) = roe + (m,x%(d)) = roe + d{m,x%(1)) =" roe + pd.

Since x"f #£ 0, p = D(x"f) is a strictly positive number, due to Assumption 1. O

The downside efficient frontier (24) may also be referred to as downside capital market line, because
it is the downside analogon to the mean-variance capital market line.
Observe two characteristics of its slope p. First, by Proposition 2.2 iii), p does not depend on the

f

particular choice of the reference portfolio x™'. Second, p depends on asset prices p and on the

investor’s subjective beliefs about the stock market given by P, because a reference portfolio x"f
itself depends on p and P.

We call p the market price of downside risk, since it denotes the relative price of one unit of d
expressed in units of m. Conversely, % can be interpreted as market price of mean, because to get

an additional unit of m an investor has to “pay” the price of % extra units of d.

We are now in position to characterize the set of all attainable risk-return profiles.

PROPOSITION 2.3 (Attainable Risk-Return Profiles).
Let  # 0 be given. Then, the set of all attainable risk-return profiles takes the form

(25) d:{(d,m)€R+xR|roe—[)d§m§TOe+pd},

where p:=D(x) >0 and X # 0 is a solution to C(x)x = —r.
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PROOF. The upper boundary of & is clear. The lower bound is defined by the solutions to

the optimization problem min M(x) s.t. D(x) < do, where dy > 0 is some prescribed level of risk.
x€ER

Since this optimization problem is equivalent to max — M(x) s.t. D(x) < dp, existence of the
x€ER

corresponding solutions x%(dy) can be established analogously to the existence of downside efficient

portfolios. They take the form
do
X)
D(x)
where x is a solution to the equation C(x)x = —mr. These portfolios may be viewed as the most

Xdi(do) —

downside inefficient portfolios whose downside risk does not exceed dy. Using positive homogeneity,

we obtain
(26) i(d) = roe + (m,x9(d)) = roe + d{m,x%(1)) = roe — pd.

Since the objective function 9(x) is continuous and the set 27(d) := {x € R¥ | D(x) =d} is
compact, M(Z'(d)) = [i(d), e(d)]. O

m

roe — pd

FIGURE 4. Feasible portfolios in the m-d-plane.

Proposition 2.3 states that the set of all attainable risk-return profiles & is a closed cone with vertex
roe, depicted in Figure 4. Its upper boundary is the downside efficient frontier ¢ that describes the
maximal achievable mean payoff, given a prescribed level of downside risk. Its lower boundary is

the straight line (26) which characterizes the least downside efficient portfolios possible, given a
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prescribed level of downside risk. It may therefore be termed “downside inefficient” frontier. Note
that in general p # p. The resulting asymmetry of </ is not surprising since downside risk is

asymmetric, compare Remark 1.1.

2.4. Separation Theorem

Analogously to the classical mean-variance analysis, it is intuitively clear that, due to the mono-
tonicity of the utility function characterizing risk preferences, an investor will only hold portfolios

located on the downside efficient frontier.

To formally establish a well-defined asset demand, recall the concept of a limiting slope as introduced
in Nielsen (1987). The slope of any indifference curve in the m — d plane is given by the marginal

rate of substitution between downside risk and expected payoff

ou
%= (m,d
(27) S(m,d) := —735( . )

om (ma d)
S(m,d) may be used as a measure of the investor’s risk aversion. Due to Assumption 2, S(m,d) is
strictly positive, continuous and strictly increasing along indifference curves. By Hiriart-Urruty &

Lemarechal (2013, Prop. 3.2.5), all indifference curves have the same limiting slope
(28) pu =sup{S(m,d) | (m,d) e R xR} > 0.

From convex analysis (see, e.g., Rockafellar (1970)) it is well known that py is either positive and

finite or plus infinity.

The downside efficient frontier (24) is now used to formulate our separation theorem. A similar sepa-
ration theorem in a mean-variance framework was first proved by Tobin (1958) and later by Lintner
(1965) and Merton (1972).

THEOREM 2.4 (Separation Theorem).
Under the hypothesis of Assumption 2, for any p € RX and P such that p < py, the optimization

problem (12) has a mazimizer x* € RE which is given by

d*x%(1) ifm#0

(29) x* =
0 ifm=0
where
(30) d* := argmax U(rpe + pd, d)
=0

18 the indwidually optimal amount of downside risk. Moreover, X* is unique if and only if the

downside efficient portfolio x%¢(1) is unique.
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PROOF. The proof will proceed in several steps

i) At first, we show the assertion for the case w = 0. Observe that m# = 0 = M(x) = e
for all x € RX. Since D(x) > 0 for all x # 0 and ©(0) = 0, monotonicity properties of U,
cf. Assumption 2, now imply U(rge,0) > U(IM(x),D(x)) for all x # 0. This shows that
x* = 0 is the unique maximizer if = = 0. If  # 0, then x%(1) is well-defined. So, for the
following steps, let 7 # 0.

ii) Now, we show that an optimal solution x* of (12) has to be downside efficient, i.e., a
maximizer of (16) with dy = D (x*). Assume this is not the case, i.e., there is a feasible
portfolio X' € £ (dy) with M(x’) > M(x*). But then, again due to the monotonicity
properties of the utility function, U(9M(x'), D (x’)) > U(M(x*), D(x*)). This contradicts
optimality of x*. Thus, x* = x%(D(x*)) = D (x*)x%(1).

iii) We know 90t(x9¢(d)) = roe+pd. And as any solution of (12) has to be downside efficient, we
can plug in the downside efficient frontier in the utility function (again due to monotonicity
properties of U). Thereby, we reduce the multidimensional optimization problem (12) to

an equivalent one-dimensional one:
31 U d,d).
(31) max U(roe + pd, d)

Hence, x* = d*x%(1) is a solution to (12) if and only if d* solves (31).
iv) The existence and uniqueness of
d* = argmax U(roe + pd, d)
d>0
can be proven as in the mean-variance case, because optimization problem (31) does not
depend on the measure of risk. Compare, e.g., Wenzelburger (2010). This completes the
proof. O

The bottom line is that the prerequisites of Theorem 2.4 are the same as in the case of mean-
variance analysis, see, e.g., Wenzelburger (2010, Theorem 1): no redundant assets, a continuously
differentiable, strictly concave utility function with mean payoff as a good and downside risk as a
bad, and the assumption that p < py. In particular, the requirements, under which a well-defined
utility maximizing portfolio is obtained, do not become more restrictive when replacing standard

deviation by downside risk.

Note further that, at a sufficiently low price of risk, the investor’s utility maximizing willingness to

take on downside risk may be zero.

The downside efficient mix of risky assets x%(1) is independent of investor’s preferences and initial
endowment. Given a target vector t € RX and prices p € R, it just depends on the investor’s

beliefs about the asset market, and, in particular, on the choice of the risk measure. Using the
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same measure of risk and having the same beliefs, rich and poor investors hold the same mix of
risky assets, highly risk averse investors hold the same portfolio mix as slightly risk averse ones.
Only d*, which determines the amount invested into the optimal mix of risky assets, depends on

preferences and endowment.

m

Us
Uz

U

roe + pd

To€

F1GURE 5. Optimal downside risk.

Figure 5 illustrates how d* is determined. In optimum, the marginal rate of substitution between
downside risk and expected payoff S(roe + pd*, d*) has to be equal to the market price of downside
risk p.

2.5. Portfolio Selection Without a Risk-Free Asset

A natural question that arises is how portfolio selection theory changes if there is no risk-free asset.
This requires certain modifications which will be discussed next. Without a risk-free asset, the

whole endowment has to be invested in risky assets, i.e., e = (p,x). Let

(32) 2= {xeR" | (p,x) =¢}

denote the set of all feasible portfolios. The investor’s future wealth associated with the portfolio x
becomes the following random variable @ (x) := (q,x) with mean 9(x) := (E[q],x).'° Downside
risk of portfolio x remains unchanged ®(x) = H(t -q,x), H

10We use the hat icon " to indicate the setting without bond.
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In this section, we assume p # 0, because otherwise any portfolio has a price of 0 and the set & is

the empty set unless e = 0.

As done in Section 2.2, we define downside efficiency. A solution to the following decision problem
is referred to as downside efficient portfolio x9¢(dy)

(33) max M(x) s.t. D(x) < do.

As a preliminary step, we characterize the set & of all feasible portfolios.

PROPOSITION 2.4.
Let p # 0. Then the set of feasible portfolios & has the following properties.

i) P #0.
ii) & is a closed set.
i11) There exists Xmin € & such that D (Xmin) = Minke » D (X) =: dmin-

PROOF. Properties i) and ii) are immediate.
For any d > 0, the feasible set ¢ (d) := 2N {x € R | D(x) < d} of optimization problem (33)
is compact. There exists d large enough, such that ¢ (d) # (. Since downside risk D(x) is
continuous, there exists Xmin such that D (Xmin) = min, -3 D(x). For every x € 2\ J#(d) it
holds that D (Xmin) < d < D(x). Since £ (d) C £, it follows that D (Xmin) = minke » D(x). O

The portfolio Xmi, is the downside analog to the minimum variance portfolio in mean-variance
analysis and D (Xmin) = dmin is the minimal downside risk that can be achieved by purchasing risky
assets only. Hence, X, is the least downside risky portfolio. In Lemma 2.3 in the appendix,
we give a technical characterization of X, and show that dy, is proportional to e, in particular
dmin =0<=¢€e=0.

We proceed by proving existence of downside efficient portfolios, by characterizing the set of at-

tainable risk-return profiles and by formulating a separation theorem.

THEOREM 2.5 (Existence of Downside Efficient Portfolios Without Bond).

Let p # 0.

For dy < dmin, the optimization problem (33) has no feasible solution. For dy > dmin, there exists a
downside efficient portfolio X% (dy).

PROOF. Since the compact feasible set .# (dg) of (33) is nonempty for dy > dmin and the

objective function M(x) is continuous, there exists %% (dp). O
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DEFINITION 2.7 (Attainable Risk-Return Profiles Without Bond).
We define the set of all attainable risk-return profiles by

o = {(d,m)€R+xR|HxE<@s.t.d=®(x) andmzifft(x)}. O

The set </ has specific properties which can be derived as follows. Analogously to the case with a

risk-free asset, it can be shown that there exists a least downside efficient portfolio. This portfolio is

a solution to mi& M(x) s.t. D(x) < do and denoted by %% (dy). Analogously to the boundaries (23)
xE

and (26), we set the functions

1 [dmin,00) — R, d s M(x%(d))
10 [dmin,0) = R, d— MxY(d)).
With these definitions we obtain the following result which characterizes the shape of o and specifies

conditions under which a tangential portfolio exists.

PROPOSITION 2.5.
Let e # 0 and p # 0. Then, the set of all attainable risk-return profiles is a closed and convex set
which takes the form

(34) %:{(d,m)eR+xR|d2dmm and E(d)gmgé(d)}

and has the following properties.

i) Its upper boundary ¢ is a concave, increasing curve starting at (dmin, M(X9®(dmin))) and its
lower boundary{ is a convex, decreasing curve starting at (dmin,ﬁ?(&di(dmin))).
i1) o C &, with & as given in Definition 2.6.
i) If sgn((p,x'8f>) = sgn(e), we set diay = 7 o ; > dmin. Then, there is a tangential point

p’xref

between ¢ and e at dian, i-€., ¢(dwan) = ¢(dwan). Moreover, this point of tangency is unique

ref

and the corresponding tangential portfolio is given by Xian 1= ﬁx

PRrROOF. We only prove the properties for ¢ since the corresponding properties for i are obtained
by an analogous reasoning.

Property ii) is immediate since (0,79e) € & but (0,7ge) ¢ < for e # 0.

When a riskless asset exists, the downside efficient portfolio x%(dian) = x'f has price e.

€
<p,xref>
Hence, x9(dian) is also feasible and, thus, downside efficient when there is no bond. This proves

dtan 2 dmin and E(dtan) = e(dtan)~
Note that <p, xde(oz)> # e for any d # dan. As a consequence x%(d) is not feasible in the absence

of a risk-free asset. Thus, the expected payoff e(d) cannot be achieved without a bond. This implies

¢(d) < e(d) and proves uniqueness of the tangential point.
The behavior of the curve ¢ can be constructed as follows. Since ¢ (d) € £ (d') for d < d', & is
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increasing. Consider &de(dmin) and Xde(do) for some arbitrary dy > dmnin- They are represented via

(demin, DX (drmin))), (do, MM(%%(dp))) in the d — m—plane and their connecting line is the function

f:00,1 — R%

dmin dO
Ao A(aﬁz@de(dmin)))”l”) <Dﬁt<f<“e<do>>>'

Convexity of D, cf. Proposition 1.1, implies D (x*) < Admin + (1 — A)dp for a convex combination
x* 1= AXY(dmin) + (1 — N)%%(dg), A € [0,1]. Due to monotonicity property of downside efficient
portfolios, M (%% (D(x))) = M(x*). This proves concavity of ¢ and is illustrated in Figure 6. [

m

/ 0
M(x*(do))

x%(do)
(D (xY)) o
M(x*(D(x)))

M(x*) (//?

9N (Xmin) i
\;m)

d
dmin - D(xY) dy

FIGURE 6. Attainable risk-return profiles without bond.

Figure 6 provides an illustration of the shape of o for e # 0 in case of a unique downside risk
minimizing portfolio. In this case X% (dmin) = Xmin = X% (dmin). The set of all attainable risk-return

profiles 7 has the form of an asymmetric aircraft cone.

If, however, initial endowment equals zero, then xm,;, = 0 and ¢(0) = ¢(0), i.e., & and < have a
common vertex rather than a tangential point. If, in addition, <p,xmf> = 0, then any downside
efficient portfolio is feasible without a riskless asset since <p,xde(d)> = % <p,xref> =0=e¢e. Asa
consequence, ¢(d) = e(d) for all d > 0 such that uniqueness of the point of contact between e and ¢

does no longer hold.

Figure 7 displays the characteristics of ¢ (for e # 0) in case of a unique tangential point with e

and provides a standard interpretation of the Separation Theorem 2.4. If the individually optimal
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amount of downside risk d* = argmax U (roe+pd, d) is greater than di.n, then the utility maximizing
d>0

portfolio is located on ¢ and to the right of the tangential portfolio (depicted as d5 > dian). This
means the investor borrows money from the bond and invests it in the downside efficient portfolio
mix of risky asset. Conversely, if d* = d} < dian, then x* lies to the left of x*" meaning that money

is invested into the riskless asset.

di dmin dran d;

FIGURE 7. Tangential portfolio versus optimal portfolio with bond.

We complete this section with a reformulation of the separation theorem for a utility maximizing
investor who is not allowed to invest into a risk-free asset. It shows that such an investor wants to

hold a downside efficient portfolio that accounts for the absence of a riskless investment opportunity.

THEOREM 2.6.
Under the hypotheses of Assumption 2, let p # 0 and limg_, o ¢'(d) < puy. Then, the optimization

problem

ma U(9(x), D (x))

has a mazximizer X* € &2, given by

where

d* := argmax U(e(d),d)
d>dmin

is the individually optimal amount of risk.



PORTFOLIO SELECTION THEORY a7

PrOOF. With suitable adjustments, the proof is completely analogous to the proof of Theo-
rem 2.4. O

As done in Sections 2.2 - 2.4, we could show that mean-variance portfolio selection theory without
a risk-free asset is structurally preserved when reformulating it in terms of downside risk. Again,

prerequisites do not become stronger when replacing standard deviation by downside risk.

2.A. Appendix to Chapter 2

PROPOSITION 2.6 (Gradient of D(x,t)).
Let x # 0. Then,

(35) ViD(x,t) = C(x,t)x.

D(x,t)
PROOF. Since x # 0, we can divide by ®(x,t) > 0 and from the chain rule, we get
1

V. D(x,t) = mv"/g ((6 = qw), %), ) B(dw).

The integral [, ((t — q(w),x>+)2 P(dw) is continuously differentiable w.r.t. z,k = 1,..., K and
we can exchange differentiation and integration, compare, e.g., Schilling (2005, Theorem 11.5).

Lemma 1.2 yields

VoD (x,t) = ﬁ / (t — a(w), %), (t - q(w)) P(dw)
1
= 7©(x,t) C(x,t)x. U

PROPOSITION 2.7.
Let  # 0 and suppose existence of two solutions x & # x5 to C(x)x = w. Let x := xf — x5 be

their difference.
Then, 0 # % € BX and P({w € 2(x) | {6 — q(w),%) # 0}) = 0.

ProoF. Let xf, x5 € RX be two distinct solutions to C(x)x = . The proof will proceed in

several steps.

i) As a first step, we show that (t —q, x'ff>+ =(t—q, szef>+ € £2(Q) although x7f # x[f.

Due to Proposition 2.2 ii) xf and x5 have the same mean

M) = M) =2 '
and downside risk

O e R
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In particular, xf, x5" € .7(d®f). For A € (0,1) define x* := AxF + (1 — A\)x5f. Then,

M(x) = m" and, since L? is a Hilbert space, and thus strictly convex,
_ _ ref _ ref
D) = [ (6= a, xE + (1 - x|

< H)\ t—q,Xref>+ <t—q, ref>+H
< dref’ if <t —q, Xref>+ <t —q, ref>+ )

This is a contradiction to x'£f € .7 (d"*f). Hence, <t -q, X'Ef>+ <t -q, r‘5“>+.
ii) Since the optimal solution set is convex, x* = x5 + Ax € .7(d"*) for any \ € [0,1]. By

the same argument as in the first step, we get
ref ref
(36) (t—a,x5 + %), = (t—a,x),
for any A € [0,1].
iii) For an arbitrary but fixed w € Q, the function
f;w): R— Ry, A— f(\w) = (<t —q(w), x5+ AX) )

is continuously differentiable w.r.t A by Lemma 1.2 and constant on [0,1] by ii). Its

derivative equals

(37) o Niw) =2(t —q(w), x5+ %), ((t —q(w)), %)
iv) Since f(-;w) is constant on [0, 1],
(1) = 26— a(w), x5)., (6~ a(), %
=0.
a) w ¢ Z(xfH) = (t —q(w),x"), =0.
b) we Z(xF) = (t — q(w) 'ef> > 0= (t — q(w),x) = 0.
C)=>P({w€9?( ) | (t —a(w), %) # 0}) =0. 0

LEMMA 2.3 (Characterization of Xpmin)-
Let p # 0.

Then, the downside risk minimizing portfolio Xmin takes the following form.

i) Let e > 0 and let X # 0 be a solution to C(x)x = p.
Then, Xmin = B, x>x and dmin = ﬁ Moreover, Xmin is unique if C(X) is invertible.

ii) If e =0, then Xmin = 0 and dmin = 0.

iii) Let e < 0 and let X # 0 be a solution to C(x)x = —p.

Then, Xmin = 7

€ —x and dmin = Moreover, Xmin is unique if C(X) is invertible.

P.X) )
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PRrROOF.

i) We consider the minimization problem min 1D (x)?s.t. (p,x) = e > 0. A solution exists
due to Proposition 2.4 iii), such that we can apply the KKT theorem. Let x be a solution
e

to C(x)x =p and A = BE = ﬁ > 0. Then Xmin := AX solves

V,(%’D(x)2 2 C(x)x = Ap = AV« ((p,x) —e).

Further,

(& € €

dnin = D (Xmin) = v/ (Ximin, CXrmin)Xmin) = v/ (A%, Ap) = \/ RN

If C(%) is invertible, then %X is the unique solution to C(x)x = p (which follows from a
analogous argument as used for Theorem 2.3) and Xpy;n is thus uniquely determined.

ii) If e = 0, then 0 is a feasible portfolio and it is the only portfolio with downside risk equal
to 0.

iii) We consider the minimization problem min D (x)?s.t. (p,x) = e < 0. A solution exists
due to Proposition 2.4 iii), such that we can apply the KKT theorem. Let X be a solution

e —

to C(x)x = —p and A = ) > 0. Then Xmin := AX solves

e
_Q(,‘()z

(35)

VigD(x)? £ Clx)x = A(-p) = AVule — (p.x).

Further,

€ € e<0 —€

Amin = Q(Xmin) = \/<Xmina C(Xmin)xmin> = \/<)\5(7 —)\P> = \/<p’5(> @(5()2 <5(7p> = @(5()

If C(x) is invertible, then % is the unique solution to C(x)x = —p (which follows from a

analogous argument as used for Theorem 2.3) and Xpn is thus uniquely determined. O

It is essential that the Lagrange multiplier \ is strictly positive because C(x) is null-homogeneous

only for A > 0, as shown Lemma 1.1. In a mean-variance framework, we have x™ := V~!p and

x™ ;= V71(—p) = —x™ such that ——tz=xX™ = ——x™ i.e., both cases coincide. But when
o) o)

using downside risk, in general <p—15(>5< #* <p—1x>5vc That is why we need the case analysis, here.



CHAPTER 3

Equilibrium Asset Pricing

In this chapter, we develop an equilibrium asset pricing model. Based on Theorem 2.4, we specify
conditions under which a unique asset market equilibrium exists. Moreover, we derive a pricing
formula which turns out to yield arbitrage-free and strictly positive equilibrium asset prices. This
finding contrasts strongly with mean-variance pricing as embodied in the capital asset pricing model,
compare Levy (2007) who specified conditions for a CAPM equilibrium with positive prices. The
equilibrium formulation of the CAPM, which is one of the most central achievements in financial
economics, dates back to Sharpe (1964), Lintner (1965) and Mossin (1966). Furthermore, we
show that the market portfolio, which constitutes the current stock of shares of assets, attains the
highest possible Sortino ratio at equilibrium prices. Hence, it has the best risk-return profile among

all possible portfolios. Finally, a downside security market line is derived.

As a first step, we briefly recall the setting and refine notation as well as assumptions for this
chapter.'! There are I investors, characterized by their preferences, beliefs and endowments.

The preferences of any investor i = 1,..., I are given by a utility function U? that fulfills Assump-
tion 2. The slope of any indifference curve of investor 7 is given by the marginal rate of substitution
S%(m,d) and the limiting slope is denoted by pg:.

We suppose that all investors have homogeneous beliefs, i.e., P! =P for all i = 1,..., I.

Further, each investor is endowed with shares of the risk-free and the risky assets (z},x") € R x RE|
which yields a payoff € = roz}+ <q, xi> € ./ . Endowment ¢’ has a monetary equivalent z§ + <p, Xi>.
Risky assets are in strictly positive net supply m = Zle x' ¢ Rf .+ and the riskless asset is in zero
net supply 21'1:1 xf = 0. We call m market portfolio of the economy and €, = (q,m) market payoff.

ASSUMPTION 3.
The risky assets are shares of ordinary stocks, i.e., the support of qi is Ry, fork =1,.., K. We

further assume that neither the risky assets nor the riskless asset is redundant.

Due to Assumption 3, there may now exist risk-free nontrivial portfolios. Let 0 # % € Rf , then
(@,%) > 0. If £ € RE which implies ( — q,%) < 0, then D(%,t) = H<E _q, §<>+H — 0. Thus, we

cannot presume Assumption 1 in this chapter, but have to verify it for each assertion.

HThe setting is introduced in great detail in Section 1.1.

50
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Eventually, we restrict our analysis to the target vector t = rop. It is the target vector that makes
downside risk monotone in x as shown in Proposition 1.2 iii) and can thus be considered as natural
target vector. All but one of the results, established in this chapter, carry over to other targets
directly.

NOTATION 1.
In this chapter, we express the dependency on prices explicitly, e.g., w(p) := F[q] — rop-

ref (

Further, a reference portfolio, i.e., a solution to C(x,rop)x = m(p) is referred to as x™'(p) and

(38) p(p) := D(x"(p),mop) > 0

denotes the market price of downside risk. Moreover, we denote the price of the market portfolio

by pn := (p,m) and use the alternative notation D(ey, 7opn) = D (m, rop) whenever appropriate. [

As a second preliminary step, we reformulate how a downside-risk averse investor chooses her

individually optimal amount of downside risk and, thus, her individually optimal portfolio.

PRrROPOSITION 3.1.
Under the hypothesis of Assumption 2 and for any p € RE such that p(p) € (0, py), investor i’s

individually optimal investment x"*(p) € R is given by

Q% _ wz (p) Xref
(39) x"*(p) = ) (p)
where
(40) ¢ (p) == arg max U (ro(z + (p,x")) + p(p)d, d)

d>0

1s the individually optimal amount of downside risk at prices p.

Proposition 3.1 is a reformulation of the Separation Theorem (compare Theorem 2.4) where the

dependence on prices is denoted explicitly. The term —i<x"f(

1
p(p) <
efficient portfolio with downside risk 1 and investor i’s individual demand for downside risk is given
by *(p) in formula (40). Note that, due to Assumption 2, 1‘(p) is well-defined for all p € R¥
with p(p) < pyi.
In particular, each investor holds the same mix of risky assets. Only the amount of money invested

p) in formula (39) is a downside

into it differs with different preferences and endowments. This is straightforward if x"f(p*) is

unique. However in case of non-uniqueness, we have to presume that each investor holds the same

downside efficient portfolio mix and call the resulting equilibrium symmetric.'?

12Gince every individually optimal portfolio has the same downside risk and the same mean payoff, it induces the
same utility to an investor. Hence, all individually optimal portfolios are equivalent from the investor’s point of view.
Thus, the assumption of symmetry is admissible, here.
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We are now in a position to establish equilibrium asset pricing theory. In Section 3.1 we introduce
two equilibrium concepts. On the one hand, a downside risk asset market equilibrium (DRAME) is
given by a market-clearing price vector and an individually optimal allocation of riskless and risky
assets among the investors. On the other hand, we define an equilibrium in the space spanned by
the risk-free asset and the market payoff. Both equilibrium concepts are equivalent and the latter
one represents a mean downside risk equilibrium. In Section 3.2 we prove existence and give a
sufficient criterion for uniqueness of these equilibria. Furthermore, we provide an example where a
unique DRAME exists. Eventually, in Section 3.3, we discuss economic implications of equilibrium
asset pricing theory using downside risk of payoff. Equilibrium prices turn out to be arbitrage-
free as well as strictly positive and the market portfolio attains the highest possible Sortino ratio
at equilibrium prices. In addition, we establish a downside security market line and a valuation

formula to calculate the fair price of financial options.

3.1. Equilibrium Concepts

There is a substantial amount of literature on existence and uniqueness of CAPM equilibria, see,
e.g., Nielsen (1987, 1988, 1990a,b), Allingham (1991) and Dana (1993a,b, 1999). We follow the basic
line of reasoning in Dana (1999). There, the K-dimensional existence and uniqueness problem for
equilibria in the asset market is brought down to a two-dimensional problem in the space generated
by the riskless asset and the market portfolio. The latter equilibrium simultaneously represents an

equilibrium in the market for mean and downside risk.

3.1.1. Downside Risk Asset Market Equilibria.
A downside risk asset market equilibrium is denoted by its acronym DRAME and defined in the
marketed space .# = span{rg, qi1, ..., ¢x }-

Observe that there is a bijection between the space of all possible investments R x R¥ and the space
of all possible payoffs .#. We therefore identify an investment (xg,x) € R x R® with its payoff

€ =rozo + (q,x) € .4 and call € “investment”, too.

LEMMA 3.1.
The mapping
RxRE — #,
(w0,%) > € = roz0 + (q, X)

is bijective.
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PRrROOF. The mapping is surjective, because .# = span{ro,q1, ...,k }.
Suppose a payoff is generated by two different investments, i.e., 7oz + (q,X) = € = roz( + (q, X},
for (zg,x) # (xf,x’). Then, the assumption of non-redundancy, stated in Assumption 3, is violated,
since 0 = ro(xo — x(,) + (q,x — x’). This is a contradiction. Hence, we have injectivity and, thus,

bijectivity. O

The investors are endowed with €' = roz} + <q, xi> € M, fori=1,...,1, such that Z{Zl € = €.

Investor i can choose any investment from her budget set

(41) B(e',p) := {e =rowo + (q,X) € M | 20 + (P, X) < T} + <p,xi>} C ..

Due to monotonicity properties of investor i’s utility function given in Assumption 2, she will always

choose zg = z} + <p, xi> — (p, x), such that mean and downside risk of her investment are given by
M(e) = Elé]
D(e,ro(xp + (P, x"))) = [[(ro(xg + (P x")) = (rowo + (g, %))+ |
ro(zh + (P, x")) = 7025 + (P, x") — (P, %)) — (@, %))+
rop — q,x)_ || = D(x,7op).

I
—~ ~

A DRAME is then an allocation of risk-free and risky assets, such that each investor holds an

individually optimal investment and the asset market is cleared.

DEFINITION 3.1 (Equilibrium Concept I - DRAME).

Let py := min{py:,i = 1,...,I} > 0 denote the smallest limiting slope of all investor’s indifference
curves.

A DRAME consists of a price vector p* € R¥ with p(p*) € (0, pr) and an allocation of investments
eb*,...,el* € ., such that

i) each €“* is individually optimal at prices p*, i.e., for i =1, ..., I it solves

ax Ut (M9, Dlerala + (b, %)

i) and the allocation is feasible, i.e.,
Z € = 6. O
i=1

NOTATION 2.
In the following, we denote by S := span{rg,en} C 4 the two-dimensional marketed subspace
spanned by the risk-free asset and the market payoff. O
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THEOREM 3.1 (Characterization of DRAMES).

Let the assumptions of this chapter be fulfilled. Let p*,e“*,...,el"* constitute a DRAME and let
pr = (p*,m) be the corresponding equilibrium price of the market portfolio.

Then, the following holds:

i) The allocation of assets is given by
v'(p )* p;) PP )*
D(Gm, Topm) D(Emﬂ ropm)

it) The aggregate demand for downside risk equals the aggregate downside risk of the market

(42) € =1y <x6 + <p*,xi> — € .

portfolio, i.e.,

1

(43) > %' (p") = Dlea;rop;) > 0.

i=1
iii) The market-clearing prices satisfy
(44) p" = Elqr(p,)],
where the price kernel is given by

Elex|—7r0Pn
1 1+ ﬁ (Topm - em).t,_

(45) K(pn) = — —= ]
70 1+ el s El(ropa — ea) ]
PROOF. See Section 3.A.1 in the appendix to this chapter. 0

Due to equation (42), in equilibrium, the individually optimal allocation of risky assets is achieved
when each investor holds a positive fraction of the market portfolio m. This fraction is determined
by her preferences and her endowment. The bond position is given by the monetization of investor
1’s initial endowment minus the equilibrium price of her individually optimal fraction of the market

portfolio. The equilibrium investment (xé’*, xb*) € R x RE for i =1,...,I, amounts to

Tk W(P*)
(46) T D(m,rop*)
(47) xé’* =xh + <p*,xi> — <p*,xi’*> .

This specific portfolio allocation given by (46) and (47) connotes that a DRAME is completely
determined by a price vector p* which makes the market portfolio the individually optimal portfolio

ref(p*).

mix and thus collinear to x

Equation (43) has to be understood as market clearing condition for downside risk. Note further
that neither the market payoff €, nor the individually optimal portfolios are risk-free at equilibrium

prices. This observation is nontrivial as pointed out in the consideration after Assumption 3.

Formulas (44) and (45) deserve a separate section.
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3.1.2. Pricing Formula and Price Kernel.
Equilibrium asset prices are best understood when formulas (44) and (45) are rearranged in coor-

dinate form®'3:

(18) b= o (Bl = D Bl au) o~ )]

The term E [(rop}, — qi) (ropl — €n) _J is the downside analogon to the covariance of ¢i and €,. It is
referred to as downside cosemivariance between asset k and the market payoff. Note that downside
cosemivariance is not symmetric which is not surprising as downside risk is asymmetric. We take
the positive part of (rops — €n), but not of (ropj — gr). Since each investor holds a fraction of the
market portfolio in equilibrium, only realizations w € Q with rop} > €,(w) pose a risk.

We observe a similarity to classical CAPM pricing. Asset k’s equilibrium price equals its discounted
expected payoff minus a risk premium. This risk premium equals expected excess payoff of the
market portfolio divided by its squared downside risk times downside cosemivariance between asset
k and the market payoff. The equilibrium expected excess payoff of the market portfolio is strictly
positive, otherwise the market portfolio would not be individually optimal. Hence, the sign of the
risk premium depends on the downside correlation of asset k’s payoff with the market payoff in case
the market payoff misses its target.

According to Wenzelburger (2009), in equation (48), the term in the parentheses “is called certainty
equivalent of the k' asset because this value may be treated as the certain amount of the asset’s

proceeds before discounting it” to obtain pj;.

COROLLARY 3.1.
The equilibrium price of the market portfolio is strictly less than its discounted expected payoff and
strictly greater than zero,

1
0 < p; < —FEle)
o

The equilibrium market price of downside risk equals the equilibrium Sortino ratio of the market

payoff, i.e.,
N Elen] — rop;
(49) p(p*) = Blea] = rorg

> 0.
D(€m7 Top;;)

PROOF. Assume the opposite: pf > %E[em]. Then, the market portfolio has a negative ex-
pected excess payoff and a strictly positive downside risk at equilibrium prices. Thus, it cannot be
the individually optimal portfolio mix since the portfolio x = 0 has zero expected excess payoff and

zero downside risk. This is a contradiction.

13Compaure Appendix 3.A.1 for a detailed calculation.
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If, on the other hand, p¥ < 0, then D(ey, ropk) = ||(ropk — €n)+|| = 0 since e, > 0 > rop:. This
however is a contradiction to D(ey, rop;) > 0, compare Theorem 3.1 and its proof in Section 3.A.1.

Equation (49) follows from equation (83) in the appendix. O

The price kernel x(py) in (45) is a square integrable, real random variable, i.e, an element of £2(Q)
But, in contrast to the analogous theorem in Dana (1999, Proposition 2.2), it is not an element
of . Since p} is just a shorthand notation for (p*,m), pricing formula (44) is still implicit. It

connotes that knowing p is sufficient for knowing p*.

The price kernel x(p,) defines a continuous linear functional ¢(p,) € £2(£2)’ via
p(pa) : L7(Q) — R,
e — Elex(pn)].

LEMMA 3.2.
For any p, € (O, %E[emD, one share of the bond is priced by ¢(py) to 1

(50) Elror(pa)] = 1

and the market payoff ey to py

(51) Elenti(pn)] = pa-

PROOF. For any p, € (O7 %E[em]) the following holds:

(Blea] — rops)

70Pn = Elén] — (Elén] — r0pn) = Elen] — D€, T0Pn)?

E[(T0pm - 6m)(’r‘opm - 6m)+]

= E[ ] M [Gm(Topm - €m)+ TOpm( [(em],?“opzz))m) E[(TOPm - 6m)+]
E[Gm] pm E[ ] T pm *
<~ T0Pn (1 + mE‘ T()pm =F |:6m ( m ( T0Pp — 6m)+>:|

Eleg|—ropn
1L+ D([JT;S (ToPn — €n)

Tol+ %E[(Topm — €n)]

When applied at equilibrium p} := (p*,m), ¢(pi) prices any payoff ¢ € .# consistently to its

equilibrium monetization. For an arbitrary € = roZo + (q,X) € A:

(52) Elér(py)] = %o Elror(py)] + <E[qﬁ(p3§)]7 X> =T + (P, %)



EQUILIBRIUM ASSET PRICING 57

3.1.3. Equilibrium in the Space 7.
Theorem 3.1 motivates the introduction of the concept of an equilibrium in the space #. Due to
Corollary 3.1 it suffices to consider prices of the market portfolio in the open interval (O, %E[eﬂ)
In this section, we follow the lines of Dana (1999) and define an equilibrium in the space spanned
by the riskless asset and the market portfolio. Afterwards, we characterize equilibria in the space
€. Eventually, we establish that the equilibrium concepts DRAME and equilibrium in J# are

equivalent.

To define an equilibrium concept in the space 7, we need to project the investors’ endowments
€', ..,el € A on . Endowment € = roz} + <q7 xi> € M stems from endowment in shares of
riskless and risky assets (z,x’) € R x R¥. Initially owned shares of the bond z{ are projected
with the identity map. The projection of the shares of risky assets, initially owned by investor i, is
constructed in such a way that the monetization of her original endowment equals the monetization
of her projected endowment. The interpretation is that investor ¢ sells her endowment of risky
assets to obtain <p,xi> and buys shares of the market portfolio worth <p,xi>. The projection is

thus price-dependent and given by the following mapping which is well-defined for p, € (O, %E [em}) ,
e =roxy+ (q,x") €M +— & =roxh+ el €A
rh —

(p.x")

53 x' o =L
(53) Dn

We choose this monetization-invariant projection, because investor i’s demand for downside risk
¥ (p) does not depend on her endowment €' = roz} + <q, xi> € . directly. Instead, it depends on
the monetization of her endowment z + (p,x’) € R, compare (40). Hence, it does not matter if
an investor is endowed with €' € .# or with € € 2 as long as the monetization is the same. The
monetization-invariant projection guarantees that investor i’s demand for downside risk does not

change when she is equipped with €% € J# instead of €' € .Z.

The investors ¢ = 1, ..., I are endowed with
(54) e = roxf + eqrl € A,

such that Z{:l e' = ¢ and thus, in particular Z{Zl xh =0, Z{Zl xl =1.

Due to Lemma 3.2, investor i’s endowment ¢’ has a monetary equivalent
(55) ‘T%) ermxxi = E[gi“(pm)}y
such that she can choose any investment from her budget set

(56) B, pa) = {e € # | Eler(p)] < Ele'rn(pa)]} 2 B(e,p) N 2.
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NOTATION 3.
By z¢ € R we denote the amount of shares of the market portfolio m € R¥ initially owned by
investor i, i.e., the risky part of her endowment. Furthermore, x, is the number of shares of the

market portfolio in investment € = rozg + €x2q € 7. O

Hence, we define an equilibrium in the space 5 as an allocation of the risk-free asset and the
market portfolio, such that each investor holds an individually optimal investment and the asset

market is cleared.

DEFINITION 3.2 (Equilibrium in the Space J¢).
An equilibrium in the space J# consists of a price for the market portfolio p} € (O, %E [em]> and

an allocation of payoffs e1*, ... el* € J#, such that

i) each £"* is individually optimal at price p?, i.e., for i = 1,...T it solves

max  U'(M(e), D(e, ro E[e's(p;)]),
e€AB(et,py)

ii) and the allocation is feasible, i.e.,
I
Z e = €. O
i=1

The asset market 57 offers one riskless and one risky asset: the market portfolio. Thus, it constitutes
the special case K = 1 and we can apply the separation theorem as developed in Section 2.4. We

therefore briefly reformulate portfolio selection theory with one risky asset.

Due to monotonicity properties of investor i’s utility function, cf. Assumption 2, she will always
choose 19 = E[e'k(pn)] — pua, such that downside risk of investment € = rozg + €y € B(c%, pu)
is given by

D(e,roBle'w(pa)]) = I((rops — €n)an)+ || = D (2, Topa)-

Let m(py) := Elen] — ropn denote the expected excess market payoff. Further, the risky set of

investment € = roxg + €,y and the downside semivariance of €, w.r.t. € are given by
R (T, ropn) = {w € Q| ropntn > en(w)n}
C(&n, ropn) = E%(xm,ropm)[(ropm - GM)z] = 0.

As there is only one risky asset, there is no downside cosemivariance but downside semivariance. A
solution to C(xy, Topu)Tn = 7(pu), referred to as reference amount of shares of the market portfolio,

ref

is labeled ! (p,) and

o(pn) = D(mzrnef(pm)a 70Pn)

is the market price of downside risk.



EQUILIBRIUM ASSET PRICING 59

LEMMA 3.3.
For p, € (0, %E[emD, we have

Elen] — 10Pa

ref _

(57) o (pn) = Dlca, ropn)? >0,
E[em] — T0Pn

58 ) = ———— > 0.

( ) Q(p ) D(ﬁmﬂ”opm)

Moreover, when understood as functions of p, € (O iE[em]), T

’TO

ref
m

(pn) and o(pn) are continuous and
strictly decreasing with
(59) lim o(py) = +oo,
Pn—0
(60) im  o(pa) = 0.

Pn—> % Eea]

Thus, o(pa) constitutes a bijection between (0, %E[em]) and Ry;.

PROOF. p, < %E[em] = 7(pa) > 0 and, hence, a solution z'f(py) to C (g, 70Pn)Tn = 7(Pn)

has to be strictly positive. Thus, C(z(pn), 70pa) = D(€m,70pa)? > 0 and equation (57) follows.

Furthermore,

o(pn) =D (x;lef (Pn)s T0Pn)

ref

= ||((ropa — €a)ag) 4|

ref

=T (pm)p(€m77"0pm)~ U

PROPOSITION 3.2 (Separation Theorem for One Risky Asset).
Under the hypothesis of Assumption 2 and for any py € (O, %E[emo with p(pa) € (0, pyi), investor

i’s individually optimal amount of shares of the market portfolio xi*(py) € R is given by

(6) 5 ) =
where
(62) U (pa) = arg max U'(roE[e'k(pa)] + 0(pa)d, d)

18 investor i’s individually optimal amount of downside risk at price py.

PROOF. Since p, € (0,%E[em]), we have 2™ (p,) = % > 0 by Lemma 3.3. The

assertion follows from the separation theorem stated in Proposition 3.1. O

Similar as in Theorem 3.1, we are now in a position to characterize equilibria in the space #. The

proof is the same as for Theorem 3.1 and Corollary 3.1.



EQUILIBRIUM ASSET PRICING 60

COROLLARY 3.2 (Characterization of Equilibria in the Space ).

Let the assumptions of this chapter be fulfilled. Let pi,eb*, ... el*

constitute an equilibrium in the
space F.

Then, the following holds:

i) The allocation of assets is given by

» i . U(pa V' (P
(95) S (E[E%(p Wl ‘“D(em,( ro;;)) " 6‘“D(em,( roz)a,z)'
it) The aggregate demand for downside risk equals the aggregate downside risk of the market
payoff, i.e.,
I
(64) > V(p2) = Dle, rop}) > 0.
i=1

i11) The market-clearing prices satisfy
* 1 * *
(65) Pn = % (E [Em} - Q(pm)p(eﬂﬁropm)) .
iv) The market price of downside risk equals the Sortino ratio of the market payoff, i.e.,
Elen) — ropy

> 0.
D(Gm, Top;)

(66) o(py) =

The following theorem confirms that the asset market .# has the same equilibria as the restricted
asset market . Dana (1999) states an analogous assertion, but a formal proof is missing in her

paper. The proof, we provide here, is constructive.

THEOREM 3.2 (Equivalence of Equilibria).
Let the assumptions of this chapter be satisfied. Then, the following holds:

i) Let the investors i = 1,...,I be endowed with €= roxé + <q, Xi> e M.
If p* € RE and e¥*, ..., el* € .4 constitute a DRAME, then pf,eb*, ...,el* where
Pn=(P" %) €R,
*,Xi
L*> c %

m

e =roxh + €n ,

et =€ e S,

fori=1,....1 represent an equilibrium in the space F .



(68)
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i) Let the investors i =1,..., I be endowed with € = roz + exxi € .
I,%

Ifp: € R and b, ....el* € A constitute an equilibrium in the space H, then p*,eb*, ..., el
given by
¢ = roz} + (q,zim) € A,
p* = Elar(p,)] € R,
e =t e

fori=1,....I represents a DRAME.

PRrROOF.

i) The allocation is obviously feasible and e"* € (g%, pi) = ZB(e', p*) N A because of the
monetization-invariant projection of endowments. For i = 1,...,1, e* = "* € JZ is
the individually optimal payoff in the space .# by Theorem 3.1. Thus, it must also be
individually optimal in the subspace 7.

ii) Feasibility is again clear. In Lemma 3.2, we showed that p* := E[qk(p])] implies

(p*,m) = El(q,m) s(p})] = Elear(p)] 2= p2.

Moreover, it follows from equations (85) and (84), which are given in the appendix to this
chapter, that

Elea] — rop;y
* . m C *
m(p*) Dle, rop)? (m,7op™)m
Hence,
ref(p*) _ E[Em] - ’ropx:

D(en, Top)? "

solves C(x, rop*)x = mw(p*), i.e., the market portfolio m is collinear to a reference portfolio
at prices p*. Furthermore,

Elea] — ropg
D(én, T0pg)

Equation (67) implies that the monetary equivalents of endowments are the same, i.e.,

p(p*) = = o(pn)-

E[(—Zili(p;” = rox(i) + p;x; = roxf) + <p*, x;m>

and, together with (69), it follows that
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Due to the separation theorem (cf. Proposition 3.1), the individually optimal portfolio of

risky assets at prices p* equals
ie gy 39 V(PY) er, sy (68 YN(PY) () U(pp)
72 X" = X = — 7 mnm = —
(72 )= 0 P o) Dl ram)™ Do o)
Consequently, the individually optimal payoff in .# is given by

€’ = 71o|xg+ , TpM) — Po + €
0 < 0 <p > P D(6m7 TOp;) D(€m7 TOp;xkl)
(70) SRR 029 v (p)
— E 7 _ m n m
"o ( [8 K;(pmﬂ P D(Emv Top;) e D(Ema rOp;;)
(6:3) gi’* c %
which completes the proof. O

Theorem 3.2 connotes that there exists a DRAME if and only if there exists an equilibrium in the
space . In addition, the equilibrium allocation of assets is the same. It follows that a DRAME

is unique if and only if the corresponding equilibrium in J# is unique.

In Section 3.2, we will exploit the simpler structure of the space spanned by the risk-free asset and
the market portfolio, and address the problem of existence and uniqueness of asset market equilibria
in the space 7. Before we do so, we argue that an equilibrium in the space J# represents a mean

downside risk equilibrium.

3.1.4. Mean Downside Risk Equilibria.
A mean downside risk equilibrium is an individually optimal and market-clearing allocation of mean
and downside risk among the I investors. From the Separation Theorem, reformulated for one risky
asset in Lemma 3.2, we already know the form of the downside efficient frontier ro (2} +pu?)+0(pn)d.
It gives the maximal, at price p, achievable mean s.t. a prescribed level d of downside risk. We

further know that W¢(p,) is the individually optimal amount of downside risk for investor i at price

Pu-

Let pi,eb*, ..., el"* constitute an equilibrium in the space J#.

For i =1,...,I, mean and downside risk of

« 4 ¥ (p2) w(p2)
i et ®\] ok m m
¢ ( ()] me(em,mp;;)) ® Dlen, rop)

are given by
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and
(e, ro Bl w(l)) = || (roBle'n(pi)] - &),
\I,i * T (%
_ (rop;i (a) . V') )
D(én, Top;) D(én;Top;) +
__Y) ]
- D(Gm,Top;) ||(T0pm 6m)*F”
= U (p})-
It follows that 2/ M(e7*) = Ele], since Y1_, £7* = ¢, and
I . . I .
> D(e, roElE's(py)]) = Y V' (p;) = Dlen, rop7)
i=1 i=1

because of equation (64) in Corollary 3.2. Hence, the market for mean and the market for downside
risk are cleared.
Moreover, D(e"*, roEle'k(py)]) = Vi(p:) is the individually optimal amount of downside risk by

construction. Also,

ME) = 1y (E[a%(p;)]—pim>+ [6’“]1%
(66

56) roE[e'k(py)] + o(pf) ¥ (pf)

is the maximal mean that is achievable given downside risk is smaller than W¢(p}), and thus the
individually optimal amount of mean s.t. downside risk is less than ¥¢(p}).

To sum up, the allocation M(e%*), D(e"* 1o E[e'k(py)]), for i = 1,...,1, is an allocation of mean
and downside risk that is individually optimal at price p} and market-clearing. As a consequence,
it represents a mean downside risk equilibrium. The equilibrium market price of downside risk is

then given by o(py).

3.2. Existence and Uniqueness of Downside Risk Asset Market Equilibria

Firstly, we establish that the existence and uniqueness problem for equilibria in the space J# is in
fact one-dimensional. Secondly, we prove that such an equilibrium always exists if the assumptions
of this chapter are met. As a consequence, a DRAME in the marketed space .# always exists.
Thirdly, we give a sufficient criterion which guarantees uniqueness. Eventually, we provide an

example where a unique DRAME exists.

From Corollary 3.1 we know that it suffices to consider prices p, € (0, %E[em]) The following

lemma connotes that the domain of prices of the market portfolio may have to be restricted further.
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LEMMA 3.4.

Under the hypothesis of Assumption 2, let Wi(py,) be investor i’s individually optimal demand for
downside risk and let U (py) := Zle Ui(py) denote the aggregate demand for downside risk.

Then, there exists pn € Ry such that V(py) is well-defined and continuous for all p, € (&, %E[em])

PROOF. Leti € {1,...,I} be arbitrary. Wi(p,) is well-defined for all p, € Ry with o(ps) < py:-

In Lemma 3.3, we showed that
1
0: <O7 E[em]) — Ryt
To

Pn > 0(Pn)

is a continuous bijection. Thus, we can set p. to be the unique solution to o(p,) = py:, if the
limiting slope of investor i’s indifference curves is finite. If pui = 00, we set ﬁ = 0. Then, ¥Ui(p,) is
well-defined for all p, € (ﬁ, %E [em]). Continuity of ¥* follows from continuity of ¢ and continuity
of investor ¢’s utility function U*, cf. Assumption 2.

As a consequence, ¥(py) is well-defined and continuous for all p, > p, := max {pin li=1,.., I}. O

The following proposition points out that the existence and uniqueness problem for equilibria in

the space ¢ is one-dimensional.

PROPOSITION 3.3.
If the assumptions of this chapter are fulfilled, then a solution p} € (&, %E[em]) to

(73) \Ij(pm) = D(ema TOpm>
completely determines an equilibrium in the space € by

' (p;) ' (pg)
) + € D(

i,*: E 7 * ¥
¢ ( €5 pa)l = Pa B rope) p—

fori=1,.. 1.

PROOF. A solution p} € (&, %E[em}) to U(pn) = D(€n, 7opn) determines investor i’s individu-
ally optimal amount of shares of the market portfolio
v (pp)
D, ropt)’

due to Proposition 3.2 and therewith the individually optimal allocation of payoffs el*, ...,el* € #

2y (pg) =

among the I investors.
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This allocation is market-clearing since

I I
. . \I;(p ) \I/(p*)
et =1 EEe'vi)] —phe— 2 | + e
; ’ (; sl =2 D(€n, Top;) D(em, T0py)
= ro(Eleari(p})] = P}) + & = €n. O

Proposition 3.3 is somehow a reversal of Corollary 3.2, where the corresponding assertion reads as
follows. If pi,eb*, ..., el* constitute an equilibrium in the space ., then p solves (73). Thus, the
problem of finding equilibria in the space . boils down to the problem of finding solutions to the
one-dimensional equation (73). Note that the analog equation (43) in the space .# is K-dimensional

and, thus, much more difficult to solve.

THEOREM 3.3 (Existence of Equilibria).
Let the assumptions of this chapter be fulfilled. Then, there exists an equilibrium in the space FZ.

PROOF. In Section 3.A.2 in the appendix to this chapter, we show that equation (73) has a
solution pj. This solution determines an equilibrium in the space ¢ by Proposition 3.3. O

By Theorem 3.2, there exists a DRAME in the marketed space ..

PROPOSITION 3.4 (Uniqueness of Equilibria).
Let, in addition the assumptions of this chapter, ¥ be a monotonically decreasing function. Then,

the equilibrium is unique.

PRrROOF. Downside risk of the market portfolio D(ey, 70pn) = ||(Topn — €n)+ || is strictly increasing

in py. If ¥ is decreasing in p,, there can only be one solution to equation (73). O

Hence, two central results of CAPM equilibria can be reproduced when replacing standard deviation
by downside risk. These equilibria exist if utility functions fulfill some regularity conditions, stated
in Assumption 2, and are unique if aggregate demand for downside risk fulfills a monotonicity prop-
erty. In fact, the monotonicity requirement guaranteeing uniqueness of DRAMES is weaker than the
monotonicity requirement for CAPM equilibria. In Proposition 3.4, we require aggregate demand
for downside risk to be a decreasing function whereas for CAPM equilibria strict monotonicity of

aggregate demand for risk is required, see, e.g., Dana (1999) or Wenzelburger (2010).

In the mean-variance framework with one risky asset, the market price of standard deviation is
defined by
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where o, is the standard deviation of the market payoff. Similar to o(pn), oMV (pa) is strictly
decreasing in py.

Let
I

UMV (p,) i= 3 arg max U (ro (ah + pazi) + o™ (pa)o, o)
i=1 20
denote the aggregate demand for standard deviation.'*

The asset market is then cleared for a price p; that solves
(74) UM (pn) = 0w,

compare Wenzelburger (2010). Aggregate demand for standard deviation has to equal standard
deviation of the market payoff.

Condition (74) is structurally equivalent to equation (73). The crucial difference is that oy is a
constant whereas the downside risk of the market payoff D(ey, ropn) is strictly increasing in py.
Therefore, we can mitigate the strict monotonicity requirement that is necessary in the mean-

variance framework. The schematic Figure 8 provides an illustration.

o d D(Emv TOpm)

On

T (pg) U (pa)
DPn Pn

market-clearing prices

FI1GURE 8. Uniqueness of equilibria. Mean-variance versus mean-downside-risk framework.

As a consequence, in the mean-downside-risk framework, asset market equilibria are unique for a
broader range of investors’ preferences.

14Originally, oMV is called market price of risk and UMV aggregate demand for risk, compare Wenzelburger (2010).

Since we do not consider standard deviation as risk, we rename these items accordingly.
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EXAMPLE 3.1 (An Additive Separable Utility Function).
Suppose each investor is characterized by a utility function of the form U?(m,d) = m— ﬁdz , where
9 > 0 denotes investor i’s risk tolerance. Let ¥ = Y 1_, 9% > 0 denote aggregate risk tolerance.

Consider investor 7’s willingness to take downside risk

) ) 1
U*(p,) = arg max <T0E[€Zﬂ(pm)] + o(pn)d — ,d2) .
d>0 29

The first order condition implies W¥(p,) = ¥ o(p,) which is a strictly decreasing function. Thus, a

unique equilibrium exists. The equilibrium allocation of the market portfolio is given by

g — VR  _ ¥pn) _ Pelpp) _ V" -
" Dlew,rops) ¥(pz) dolpy) 9V

3.3. Economic Implications

In the previous section, existence and uniqueness of downside risk asset market equilibria have been
established. Moreover, a DRAME pricing formula has been specified. In this section, we analyze
the ensuing economic implications.

We argue in the complete marketed space .# and consider investments € = rozg + (q, X).

3.3.1. Arbitrage-Free DRAME Prices.
A major drawback of the CAPM, probably the most severe one, is that equilibrium prices are not
arbitrage-free as demonstrated by Dybvig & Ingersoll (1982). Starting from the standard mean-
variance CAPM pricing formula, they provide an explicit example which constitutes an arbitrage
opportunity. Our DRAME pricing formula (48) differs from the original CAPM pricing formula
only through the fact that we replaced asset k’s covariance with the market payoff by its downside

cosemivariance. Yet, this change makes equilibrium prices arbitrage-free.

Investor ¢ can monetize her endowment and invest this money in the risk-free asset which yields a
payoff ro(z + <p7 x’>) An arbitrage opportunity is a portfolio which yields a future payoff that is
almost surely greater than rq(xf + <p7 xi>) and with a strictly positive probability strictly greater

than this amount.

DEFINITION 3.3 (Arbitrage Opportunity).

A pair (p,X), consisting of a price vector and a portfolio, constitutes an arbitrage opportunity, if

(75) P((q,%) > 70 (P,%)) = 1,
(76) P({q,x) > ro (p,%)) > 0.

b3

A price vector p is said to be arbitrage-free, if there does not exist a portfolio X making (p,X) an

arbitrage opportunity. O
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Since
wi(x7 p) = 7/'O(xé + <pvxl>) + <q - Top,X> )
equations (75) and (76) are equivalent to

P(w'(p,x) = ro(zh + (p,x"))) = 1
P(w'(p, %) > 7‘0(1‘6 + <f),xi>)) > 0.
For target vector t = rop, arbitrage opportunities are riskless:

D(%,70p) = || (rop — a, %), || 2 0.

Moreover, conditions (75) and (76) imply (w(p), %) = (E[q] — rop,X) > 0.

THEOREM 3.4 (Arbitrage-Free DRAME Prices).
DRAME prices p*, given by formula (44), are arbitrage-free.

PROOF. Let pf = (p*,m) be the equilibrium price of the market portfolio. Recall that the
individually optimal portfolio of risky assets at DRAME prices is x** = %m with mean
M (x"*, p*) = roEe"k(py)] + p(p*)Y"(p*) and downside risk D (x"*,rop*) = ¢*(p*), compare
formula (46).

Now, assume there is a portfolio X making (p*,X) an arbitrage opportunity. Then, (mw(p*),x) > 0

and we can choose A > 0 large enough, such that A (m(p*),x) > p(p*)¢*(p*). This implies
M (A%, p*) = roBlew(py)] + A (m(p"), %) > M (x"*, p*),

while D(\xX,7op*) = 0 < D(x>*,rop*). As a consequence, at prices p*, the portfolio Ax induces a

greater utility to investor ¢ than x*
U (O (A%, p*), D(AX, rop*)) > U (M (x"*, p*), D(X"*, rop*)).

This, however, contradicts individual optimality of x** at DRAME prices p*. O

The reason why DRAME prices p*, given by formula (44), are arbitrage-free and CAPM prices are
not, stems from the fact that arbitrage is defined in terms of monotonicity. An arbitrage opportunity
at equilibrium prices is a portfolio which yields a future payoff that is almost surely greater than
roE[e'r(p:)] and with a strictly positive probability strictly greater than this amount. For target
vector t = rop, downside risk is monotone w.r.t. portfolio choice as shown in Proposition 1.2 iii).
Hence, arbitrage opportunities are downside risk-free. Standard deviation, however, is a non-
monotonic deviation measure. Thus, arbitrage portfolios are not risk-free when measuring risk by
standard deviation, because they create a nonconstant payoff. Moreover, arbitrage portfolios do
not even have to be efficient in the sense of Markowitz. As a consequence, CAPM prices allow for

arbitrage opportunities.
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To asses arbitrage opportunities as “risky” and “inefficient” portfolios emphasizes the dubiousness
and danger of using standard deviation as a measure of risk. Portfolio selection and asset pricing

theory should not be based on such a doubtful risk measure.

Since the monotonicity property is crucial, the absence of arbitrage opportunities only holds for
target vector t = rop. The result stated in Theorem 3.4 is the only result in this chapter that does
not carry over to other targets.

3.3.2. Strictly Positive DRAME Prices.
In this chapter, risky assets are assumed to be shares of ordinary stocks. Thus their payoffs are
positive, i.e., for k=1,.. K
qr(w) = 0 for all w € Q.
Then, a negative equilibrium price makes asset k downside riskless, since it always yields a payoff
above its target ropj. In addition, its negative price in combination with its positive payoff makes

it an arbitrage opportunity.

The following proposition states that DRAME prices are strictly positive. This result is particularly

remarkable because the mean-variance CAPM allows for negative stock prices.

PROPOSITION 3.5 (Strictly Positive DRAME Prices).
Given Assumption 3, DRAME prices are strictly positive, i.e., p;, >0 for allk =1, ... K.

PRrOOF. Due to Corollary 3.1, pf < %E[em] and, by Assumption 3, ¢ = 0. Then, in the
DRAME pricing formula (44) each term is positive and the assertion follows. O

3.3.3. Downside Security Market Line.
Next, we compute a downside analogon to the beta coefficients, which will yield a downside security

market line.

ProOPOSITION 3.6 (Downside Security Market Line).

In equilibrium, the downside security market line corresponding to asset k is given by

(77) Elqk] — ropk = By, (Elea] — rops) ,
where
gt e El(rop; — ax) (ropy — €n) ]
" D(en, 10p;)?
1s called downside beta coefficient of asset k and plays the role of the classical beta coefficients.

PRrROOF. The assertion directly follows from equation (48). O
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The downside beta coefficient of asset k equals the equilibrium downside cosemivariance of asset k’s
payoff with the market payoff, scaled by the squared equilibrium downside risk of €,. It describes
the relative riskiness of asset k£ w.r.t. the market payoff.

Estrada (2007) also introduced downside betas. He, however, defined them to be symmetric and

used the mean as target:

gD - E[min {(R; — u;),0} min {(Ry; — MM),O}].
‘ Elmin {(Ras — puar) , 0]

He defined his downside beta coefficients as a matter of choice, and symmetry is, no doubt, a nice

mathematical property. But, as downside risk is not symmetric, why should downside cosemivari-
ance or downside beta coefficients be? Moreover, his downside beta coefficients are always positive.
Thus, they cannot account for negative downside correlations which is their major weakness. We
instead derive our downside betas from the DRAME pricing formula. If the asset market is in
equilibrium, then the corresponding downside security market line (77) dictates the form of the

downside beta coefficients, which turn out to be asymmetric.

THEOREM 3.5.

Proposition 3.6 can straightforwardly be generalized to arbitrary portfolios x € RE :

(78) E[(q,x)] — 70 (P", x) = 8"(x) (Elea] — T0Pn) ,

i El(rop* — a.) (rop — ),

* ToP —q,X) (ToPp — €n

Br(x) = v -
D(€n, rop)

being the downside beta coefficient of portfolio x.

Hogan & Warren (1974) derived a similar security market line, using asymmetric cosemivariances.
The difference is that their market portfolio is defined as a point of tangency to the capital market
line, whereas we use the current stock of shares available on the asset market. Bawa & Lindenberg
(1977, Theorem 4) generalize the findings of Hogan & Warren (1974) to a mean-lower-partial-
moment framework. In both papers, their security market line is derived under the assumption
that the asset market is in equilibrium. A formal proof, under which prerequisites this assumption
is met, is missing, there. In this thesis, instead, we establish existence and uniqueness of asset

market equilibria in the mean-downside-risk framework before characterizing these equilibria.

3.3.4. Sortino Ratio of the Market Payoff.
The Sortino ratio, introduced by Sortino & Price (1994), is a performance measure in the downside
risk framework. It is defined to be the expected excess payoff of a portfolio divided by its downside

risk. The Sortino ratio is the downside analogon to the Sharpe ratio, cf. Sharpe (1994).
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COROLLARY 3.3.
Let p* denote the vector of DRAME prices, pi = (p*,m) and let x be an arbitrary portfolio. Then,
the equilibrium Sortino ratio of its payoff is bounded from above by the equilibrium Sortino ratio of

the market payoff
E[<qa X” —To <p*a X>

79 < ).
(79) S < (o)
Proor. Dividing (78) by D (x,rop*) yields
Blia,x) = ro(0%,%) _ Blea] = ropg Elirop” — a.x) (ropt — ).
:D(X, rOp*) D(Gm, rOprl) @(X, TOP*) ' D(ema 7‘0]3;;)
(49) o El{rop” —a,x) (rop; — €a),]

PP rop™ —a %), [ [ropz — ea) |
El{rop* — a,x), (ropy — €n) ;]

PP N . .
[trop™ — a.%), [ [(ropz — ea), |

The Cauchy-Schwarz inequality implies the assertion. O

This corollary connotes that the market payoff attains the highest possible Sortino ratio at DRAME
prices. This means it has the best downside-risk-return profile among all potential portfolios.

Therefore, each investor wants to hold a fraction of the market portfolio in equilibrium.

3.3.5. Valuation Formula.

We close this section by stating a valuation formula for arbitrary payoff patterns.

DEFINITION 3.4 (Valuation Formula).
Let € € .4 be a random payoff and let pX = (p*,m) be the equilibrium price of the market portfolio.
The valuation formula of payoff € at prices p* is defined as v(e) = E [ex(p})]. O

Observe that v(e) solely depends on pZ. It can be considered as the monetization of the replicating
investment (z§,x) of e. The replicating investment of € is defined via e = roz§ + (q,x). Since
M = span{rg,qi, ...,k }, any payoff pattern e € .# can be replicated by purchasing or selling
marketed assets. In that sense, v(e) represents the present value of the random future payoff € at

DRAME prices p*. In finance, it is used to calculate the fair date-0 price of financial options.

Dybvig & Ingersoll (1982) construct a random payoff which is always positive but the CAPM valua-
tion formula assigns a strictly negative value to it. Thus, they create an arbitrage opportunity. Here,
however, with t = rop*, a positive random payoff ¢ will always get a strictly positive equilibrium

present value v(e).
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The valuation formula can be rearranged such that v(e) is a solution to

_ 1 Elea] — ropy .
0= (P19 Bt Pl — 0 Gl ~l )

The equilibrium present value of € is thus its discounted expected value minus a risk premium.

3.A. Appendix to Chapter 3

3.A.1. Proof of Theorem 3.1.
From Proposition 3.1, we get the form of the individually optimal payoff at DRAME prices

) et (b (o) = U (o)) 4 B (ax (o) €

The market clearing condition

I I .
o L) ) - S0
=t = ZE - ( ’ > p(p*) <p ’ (p )>> + p(p ) <q7 p )>

together with the assumption of non-redundancy stated in Assumption 3, implies
I .

Zi:l d}l(p*) ref (%

== xC(pY)

p(p*)

Hence, it follows that in equilibrium the market portfolio has to be collinear with the reference

portfolio. Note that equation (81) implies Zi[:l Yi(p*) >0, since m € RE, .

Combining equations (39) and (81) yields

(81)

= m.

82 x" = ————n.
(82) (p") ST o)

By computing downside risk, we get
D(x"(p*), rop") = ¢'(p*)

from formula (39) and ‘
¥'(p7)
Zf=1 Yi(p*)

from equation (82). This implies 25:1 Y (p*) = D(en, rop;) and equations (42) and (43) are proven.

D (o), o) = Dlcw o)

Multiplying equation (81) with C(m, rop*) = C(x"*f(p*), rop*) yields

_ Zf:l Y (p*) C

ref (_x sy oref sy (43) 12 (emv Top;) *
X , T X = — T s
p(p*) ( (p ) op ) (p ) ( )

Clmrop”Jn p(p*)

which implies

& o = - (Pl - 52 Cmmpn).

T0 €m, T()p;;)
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Equation (49) follows immediately from

p(p*)
D(Em, TOP;)

83

ropl = o (p*ym) =) B [(q,m)] — (C(m, rop™)m,m) = Elea] — p(p*)D(em, rop}).

When we plug in

C(m, 7op")m = E[(rop” — q) (rop” — q,m) |
(84) = E[(rop" — a) (ropy — €n) ]

and p(p*) = % in equation (83), we get the coordinate form of equilibrium asset prices

given in (48).
The following computation gives the form of the price kernel (44)

Elen] — rops
rop* = Elq) — ———=2F [(rop" — q) (rop; — €n
op [q} D(emrop;;)g [( oP q)( 0P, )+]
* E[Em] - TOP; * E[Em] - TOp; *
= E[Cﬂ — Top D(Gm, TOp*)2 E [(T.Opm - 6m)+] + D(Gm, Top*)2 E [q (T.Opm - 6m)+]
<~

(85) Top” (1 + WE [(ropy — 6m)+}> =F [q (1 + W (rops — 6m)+>:| .

This completes the proof. O

3.A.2. Proof of Theorem 3.3.

As a preliminary step, we analyze the individually optimal demand for downside risk.
For investor i, equipped with &' = rox} + euxl € ), let
(86) 5 (pn) := 22D (€, ToPn)

denote the amount of shares of the market portfolio initially owned by investor ¢ multiplied with
the downside risk of the market payoff at price py.

The market portfolio is the only risky asset available on the asset market 2. Consequently, the
downside risk of investor i’s endowment solely stems from the number of shares xi of the market
portfolio initially owned by her. If z¢ > 0, then 6'(pn) = D(e', 10 E['k(pn)]), but for i < 0, it
holds 0 > 6% (pa) # D(e%, roEle'k(pa)]) > 0. Hence, §%(p,) is a combined measure of the downside
risk of investor i’s endowment and of the downside correlation between investor i’s endowment &
and the market payoff €, (which is either +1 or —1). It thus evaluates the relative riskiness of &'

w.r.t €, at price py.

The following corollary reveals that §?(p,) can be interpreted as an allocation of the downside risk

of the market portfolio at price p, among the I investors.
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COROLLARY 3.4.

. I I
Since Y, | € = e, we have Y, xy =1, and thus

I
Z (V (pm) = D(enn rOpm)'
i=1

LEMMA 3.5.

Individual demand for downside risk can be rewritten as

(87) U (py) = ar%l;noax UYE[€'] + o(pn)(d — 6 (pn)), d).

Lla]-rops - (). Note further that

PROOF. Due to equation (58) in Lemma 3.3, o(p,) = Dlerone)

roE[e"(pa)] = ro(x + patn) = roxg + Elen]an — (Elea] — r0pn) 1y = Ele'] — 7 (pa) .-

Therewith, we have

U (py) = argmax U'(roE[e"k(pn)] + 0(pa)d, d)

d>0
= arg max Ui(E[ei] — W(pm)x,fl + o(pn)d, d)
d>0
= argmax U'(E[e"] + 0(pa)(d — 6" (pn)), d). O

Note that o(ps)d*(pa) is a risk premium which has to be subtracted in the utility function, since
investor 7 is endowed with shares of risky assets rather than with money. Compare pricing for-
mula (48) and the discussion thereafter on the role of the risk premium. E[e’] + o(py)(d — 6*(pa)) in
equation (87) is a reformulation of the downside efficient frontier (24) which describes the maximal

achievable mean given a prescribed level d of downside risk.

LEMMA 3.6.
Fori=1,...,1, 5 (py) is bounded on (0, %E[em]), ie.,

0l i= sup{W(pm)\ | pu € (0, :OE[GmD} < oo.

PROOF. D(ey, ropn) is continuous in p,, with D(e,,0) = 0 < oo, because €, > 0 by Assump-
tion 3, and D(ey, Eleq]) < oo since e, € L£2(2). It follows that D(eq, ropa) is bounded on (0 %E[eﬂ)

’r

and, thus, 0*(p,) is bounded on (O7 %E[em]) O

We are now in a position to establish that equation (73) always has a solution.
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PROPOSITION 3.7.
Provided that the Assumptions 2 and 8 are fulfilled, there exists a solution pk to equation (73).

PROOF. The basic line of reasoning in this proof is adopted from Koch-Medina & Wenzelburger
(2018).
Observe that \I!(%E[em]) =0 < D(én, Eleq]). If we show existence of some p? € (pl, % [em]> with
U(p) > D(en, rop?), the intermediate value theorem for continuous functions implies existence of
Py with W(pg) = D(éa, 70py)-
Fori=1,...,1,d € R, and p, € (0, %E[em}), we define

Fi(d,pa) == UN(ELE'] + o(pa)(d — 6" (pa)), d).-

The function d — fi(d, p,) is continuously differentiable as well as strictly concave, due to As-
sumption 2, and therefore either strictly increasing, strictly decreasing or attains a unique inner

maximum at W’(p,) = arg max f'(d, p,). We distinguish two cases: finite and infinite limiting slope
>

of indifference curves.

Case 1. Let investor j be the investor whose limiting slope of indifference curves is smallest
and finite: py; = o(pn) < 00. Note that o(pn) < 00 <= pn > 0. We show that

li{n W/ (py) = 00 > D(€n, Topn), Which implies the assertion.
Pa P -

Assume the opposite, i.e., 1i{‘n U (p,) < co. Then there exists d € Ry and a sequence
P \Pa

(Pn)nen C (pl, %E[Gm]) with nlingopn = Pu, such that Vi (p,) =:d, — d. By construc-

n—oo
tion, %—J;(dn,pn) < 0 for n € N and, by continuity, %(J,pl) < 0. Hence, d — fj(d,pl)
1
. aE[em]).
On the other hand, %(d, Pn) = 0 s equivalent to o(pa) = S7(E[e?]4 0(pa)(d—67 (pn)), d).

This, however, is the case for all d € Ry since o(pa) equals the limiting slope of investor

cannot be a strictly increasing function on (0,

j’s indifference curves py;. Thus f7(d,py) is an increasing and therewith, due to strict
concavity, a strictly increasing function, which is a contradiction.

Case 2. When all investors are characterized by indifference curves with infinite limiting slopes,
then py = 0.
Since limiting slopes of indifference curves are continuous, and, due to Lemma 3.6, §¢(py)

is bounded on (0, %E[em]), we have
_ - 1 A
5 = sup { SB[ € (0,5 Bl ) £5'0u) > 0} < o
0

Set S :=max{S?|i=1,...,I} < oo and choose pQ € (O, %E[em]) such that o(p?) > S.

This choice is possible since ligog(pm) = 00, cf. equation (59).
Pa
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If % (pQ) < 0, then ¥i(p?) > 0 > &' (p?).
If 5*(pQ) > 0, then

of
od

This condition, however, is always fulfilled because, we set p2, such that

U (p) > 6°(p9) <= == (6" (), pn) > 0 <= S*(E[¢'], 6" (py)) < o(py)-

o(pd) > S = S = SUE[E'], 5 (p2)).

Hence, U(pQ) = 321, WI(p0) > S21_, 6°(pY) = D(en, 7o) O



CHAPTER 4

Practical Issues

A natural question that arises is to what extent the theoretical results obtained in the previous
chapters can be applied by financial practitioners. Moreover, it is of interest how much the per-
formance of a downside efficient portfolio improves on the performance of a mean-variance efficient
portfolio. Is it worth to determine downside efficient portfolios which is computationally more
costly? Or could large investors, e.g., banks or pension funds, just as well rely on the simpler and

well-understood concept of mean-variance efficiency?

Because practitioners usually work with returns, we briefly reformulate the portfolio selection
methodology developed in Chapter 2 in terms of returns rather than in terms of prices and pay-
offs. Concepts like downside cosemivariance matrix, reference portfolio, downside efficiency and
market price of downside risk can be reproduced. In contrast to Section 3.3, where DRAME prices
were assumed, we establish a downside security market line without the hypothesis of equilibrium.
Furthermore, downside efficient portfolios attain the highest possible Sortino ratio, regardless of
whether asset prices are in equilibrium or not. These findings are particularly remarkable, because

equilibrium asset prices are the crucial presumption in mean-variance capital asset pricing theory.

In Section 4.2, we perform a simulation study to investigate how far downside efficient portfolios
differ from mean-variance efficient portfolios. To do so, three scenarios with increasing probabilities
of default for risky assets are considered.

Although portfolio compositions differ in each scenario, downside efficient portfolios are not better
than efficient ones, when default probabilities are zero. They yield the same mean and are equally
risky. Thus, when asset markets are calm, the concept of (i, o)-diversification is sufficient to secure
investors and there is no need to do the costlier computation of downside efficient portfolios.

If, however, market disruptions and defaults have a strictly positive probability, downside efficient
portfolios unambiguously outperform efficient portfolios in the sense of Markowitz. Yielding the
same mean return, downside efficient portfolios protect investors better against large losses which
may cause bankruptcy.

Eventually, we provide an iterative algorithm to compute the downside efficient portfolio mix and

give some remarks concerning implementation and computational expense.

7
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4.1. Portfolio Selection Using Returns

We briefly reformulate the setting and essential concepts of portfolio selection using returns rather

than prices and payoffs. Proofs and interpretations can be reviewed in Chapter 2 and Section 3.3.

In this chapter, the K risky assets are not described by date-0 prices and random date-1 payoffs,
but they are characterized by a random return vector r = (r1,...,7x). For investing 1 € in asset k
at date 0, an investor will get a positive random gross return of r, € at date 1. The return of each

risky asset is modeled as a real square integrable random variable, i.e., 7, € £2(Q) for k = 1,..., K.

An investor splits her initial wealth among the risk-free and the risky assets. In this chapter we
denote by y = (y1,...,yx) € RE a vector of portfolio weights, i.e., y;. is the relative amount of

money invested in risky asset k.'> The relative amount invested in the risk-free asset is then given
K
by yo =1 =2 51 Y-

The realized rate of return on portfolio y amounts to

K
(88) R(y) :== ZT’kyk =719+ (r—ro,y),

k=0
where ro = (rg,...,70) € RX. It is decomposed in the risk-free rate of return and the excess return
of portfolio y.
Its mean is given by
(89) M(y) = ER()] = 1o+ (m,y),

where 7 := E[r] — ro denotes the mean excess return vector.

Downside risk of return R € span{rg, ...,k } w.r.t. some target return Rr € R is defined as
(90) D(R,Rr) = |(Rr — R).||.

Ryp determines the threshold between gains and losses, e.g., Ry = 1, Ry = E[R] which yields lower
semideviation or R = rg. We choose Ry = r( in this chapter, because it may be seen as an
economically natural target. By investing everything into the bond, an investor obtains R(0) = rg
for sure. By investing a part of her wealth in risky assets, she has the chance to realize a higher

return but faces the risk of getting less than rg.

5To avoid ambiguity, we use yj to denote the relative portion of the investor’s wealth that is invested in asset k,
whereas xj, labels the number of shares of asset k that are held in portfolio x. Thus, yj is a relative number and xy,
is an absolute number.
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Observe that downside risk is increasing in the target return:
ro > 1) => ||(r0 — R)+|| > H(r6 — R)+|| .

Thus, a lower riskless rate of return (e.g., interest rate) makes portfolios less risky when investors
use downside risk as a measure of risk. Besides higher expected excess return, this further explains
why investors increase their demand for risky assets when interest rates are low. The following

example provides a numerical illustration.

EXAMPLE 4.1.

Suppose the financial market offers a riskless investment opportunity with ry = 1.02 and let a
portfolio § be given, whose realized rate of return R := R(y) is uniformly distributed on the
interval [1.01,1.03]. Then, D(R, () > 0 because the realized return can drop below the safe return
of the risk-free asset.

If, however, the riskless rate of return declines to 7, = 1.002, then the portfolio ¥ becomes downside-
risk-free, i.e., D(R, ry) = 0, because its realized rate of return cannot be worse than 7.

Note that the distribution of R and, thus, its standard deviation does not change while its downside

risk decreases when the target return declines. O

DEFINITION 4.1 (Portfolio’s Downside Risk).
For a given portfolio y € R¥, we define its downside risk by

(91) D(y) :=D(R(y),r0) = ||(ro — 1, ¥) |- O

The setting of this chapter is as general as possible. There are no assumptions on the investor’s
preferences such as a specific form of utility function. The only suppose is that investors prefer
higher expected return and lower downside risk. This is a very natural assumption. Clearly, there
are people who like gambling. Thus, the hypothesis that investors prefer lower volatility can be
questioned. But no rational investor prefers a higher risk of losing money.

Furthermore, we do not presume the asset market to be in equilibrium. Equilibrium asset prices are
the crucial requirement making the standard CAPM market portfolio efficient. However, the theory
developed in the course of this section will apply to an equilibrium as well as a non-equilibrium

setting.

ASSUMPTION 4.

In this chapter, we, firstly, assume that an investor considers only M(y) as a good and D(y)
as a bad when evaluating portfolio y, and, secondly, that no nontrivial portfolio is risk-free, i.e.,
y#0=9(y) > 0.
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4.1.1. Scaled Reference Portfolio and Downside Efficiency.
As a preliminary step, we introduce the downside cosemivariance matrix of returns in the same way

as we did in Definition 1.3. It will be used to introduce the notion of a scaled reference portfolio.

DEFINITION 4.2 (Risky Set and Downside Cosemivariance Matrix of Returns).

The set of all realizations yielding a future return below its target
Z(y) ={w e Q| R(y) <ro},
={we Q| (r(w) —re,y) <0} € F
is referred to as risky set of portfolio y.

The symmetric and null-homogeneous matrix C(y), whose (k,1)'" entry is defined as

(92) Culy) = E%(y) [(7"0 =) (ro — Tl)] )

is called downside cosemivariance matrix of r w.r.t. portfolio y. O

The scaled reference portfolio is a scaled version of the reference portfolio which has been defined

in Section 2.2.

DEFINITION 4.3 (Scaled Reference Portfolio).

As shown in Proposition 2.2, there is a solution y"f to the equation

Cly)y = .

With the strictly positive scaling factor

1 it Sy =0

otherwise

1
|21{«<:1 y;:f

we define the scaled reference portfolio

(93) ysref — ,Uyref. 0

ref

Since there are no assumptions on the probability distribution of the asset returns, y™' as well as

the scaled reference portfolio may have negative entries. Consequently, Zszl Y€ can be strictly
positive, zero or strictly negative.

Thus, the relative amount invested into or borrowed from the bond y(s)'ef =1- Zszl yi’ef is either
0,1 or 2.

If Zszl Y > 0, then y**f describes an investment of one monetary unit into risky assets and
nothing in the bond. For Zle y,’ff < 0, one monetary unit of risky assets is sold short and
yf{ef = 2. When Zszl y,'ff =0, then y*¢f = y"f is a costless investment into risky asset and, thus,

one monetary unit is invested in the bond.
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NOTATION 4.
In this chapter, the scaled reference portfolio turns out to be the crucial building block. Therefore,
we denote its return by R¥f := R(y**f) and its downside risk by D(R**f) = D (y*"f). O

Next, we establish that downside efficient portfolios can be characterized by the scaled reference

portfolio y**f. A solution to the optimization problem

(94) max M(y) s.t. D(y) < do,
yERK

for some upper bound dy > 0, is called a downside efficient portfolio and denoted by y9(dy). The

corresponding amount of money allocated to or borrowed from the risk-free asset is then given by
K
Y6<(do) = 1 — 324, yi(do).

The following two assertions are immediate corollaries of portfolio selection theory developed in

Chapter 2. Their interpretation remains the same and can be reviewed in Sections 2.2 and 2.3.

COROLLARY 4.1 (Downside Efficient Portfolios).
Let w # 0. Then, there exists a downside efficient portfolio y% (dy). It can be represented as

do sref

(95) yde(do) = WY )

i.e., downside efficient portfolios are positive multiples of y*f. If C(y**") is invertible, the downside

efficient portfolio is unique.

PROOF. The assertion follows from Theorem 2.2, Proposition 2.2 and Theorem 2.3 when we

apply the following identities
C(y*) = C(vy™) = C(y™),
@(ysref) @(Uyref) _ U@(yref). O

As already established in Chapter 2, downside efficient portfolios are boundary solutions to opti-

mization problem (94), i.e.,

(96) D(y*(d)) = d.
NOTATION 5.
We use y% := y9(1) as a shorthand notation. O

COROLLARY 4.2 (Price of Risk and Downside Efficient Frontier).

The market price of downside risk is defined as the following positive constant

(97) p =Dy = (m,y%*).
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Therewith, the downside efficient frontier, which is defined as the function
e: Ry — R, d— M(y*™(d)),
takes the form

(98) e(d) = ro + d(m,y%) = 1o + pd.

4.1.2. Sortino Ratio and Downside Security Market Line.
Sortino ratio and downside security market line have already been introduced in Section 3.3 under
the hypothesis of equilibrium asset prices. In this section, we show that these notions can still be

established without the equilibrium assumption.

PROPOSITION 4.1 (The Sortino Ratio of a Downside Efficient Portfolio).
For any d > 0,

de — 1o (89) (m,yde 95 0
m e B 0 e,

In particular, &(y*f) = p.

Thus, the Sortino ratio of every downside efficient portfolio equals the market price of downside risk.
Since DRAME prices make the market portfolio downside efficient, the equilibrium Sortino ratio of
the market portfolio equals the equilibrium market price of downside risk as stated in equation (49)

in Theorem 3.1.

The CAPM security market line is by construction an equilibrium concept. Utilizing the scaled

sref

reference portfolio y*®" we are able to relax the assumption of equilibrium asset prices and still

establish the notion of a downside security market line.

PROPOSITION 4.2 (Downside Security Market Line for Asset k).

The downside security market line for asset k takes the form
(100) Elre] —ro = By (B[E™™] — ro),

where
El(ro — k) (1"0 - Rsref)
D(Rsref)2

N

(101) Br =

is called downside beta coefficient of asset k w.r.t. the scaled reference portfolio y*¢f and plays the

role of the classical B coefficient.
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PROOF.
Elrg] — 1o = m, = (Cly™)y™),, = liﬂ%‘(ymf) [(ro = r&) (ro — )] 4
= Bl(ro — 1) {ro —1,y"") | m
—
_ Bl - T;)(i,rs?ef_);’ymf>+] .
- e (B =) .

The form of the downside security market line for an arbitrary portfolio y follows immediately.

COROLLARY 4.3 (Downside Security Market Line for a Portfolio).

The downside security market line for an arbitrary portfolio y € RX is given by
(102) E[R(y)] = ro = B(y) (E[R™] =),

where

El(ro — R(y)) (ro — B**) ]
D(Rsref)2

1s called downside beta coefficient of portfolio y w.r.t. the scaled reference portfolio.

(103) Bly) =

PRrROOF.

K
ERMY) o= (y,m) = > mm
k=1

K
(1&0) Zﬂk (E[Rsref] _ TO) Ui
k=1

(101) El(ro —r,y) (10 — Ref) ]
’D(Rsref)2
El(ro — R(y)) (ro — B¥) ]
D(Rsref)Q

(E[Rsref] o 7,0)

(B[R] — o) . O

In Corollary 3.3, we showed that no portfolio can have a higher Sortino ratio than the market
portfolio at DRAME prices. Now, we are in a position to establish that no portfolio can have a

larger Sortino ratio than the y**f, no matter if the asset market is in equilibrium or not.
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PROPOSITION 4.3 (Boundedness of Sortino Ratio).

Let y be an arbitrary portfolio. Then its Sortino Ratio is bounded from above
(104) S(y) < p.

ProOF. Dividing (102) by D(y) yields

E[R(y)] —ro (o3 Ellro = B(y)) (ro = B™) ] B[R] — ¢

W0y o D) 2 )
ooy Bllro = B)) (0 = ), ] o
B < D) Y
< El(ro — R(y)), (ro — R**f) ] & ().
D)D)
The Cauchy-Schwarz inequality implies the assertion. O

Proposition 4.3 connotes that the scaled reference portfolio has the highest possible Sortino ratio,
e., it has the best downside-risk-return profile among all tradeable portfolios. Consequently, an

investor wants to hold a positive multiple of ys'ef.

4.2. A Simulation Study

We employ simulated asset returns to compare efficient portfolios in the sense of Markowitz with
downside efficient portfolios. The simulation settings are adapted from Jarrow & Zhao (2006).
Monte-Carlo simulations with a sample size of 100,000 are executed. This extraordinarily large
sample size is chosen to circumvent difficulties in the course of estimating covariance and downside
cosemivariance matrices. We emphasize that sample covariance matrix as well as sample downside
cosemivariance matrix are estimated from the simulated data. In fact, the downside cosemivariance
matrix has to be estimated from a smaller effective sample size, because only realizations that yield
a return below its target are taken into account for estimation. Hence, its mean squared estimation
error is at least as large as the covariance matrix’s one. Thus, improvements caused by replacing
efficient by downside efficient portfolios do not stem from a more accurate estimation but from a
better diversification structure.

When estimating the downside efficient scaled reference portfolio, the challenge is that the matrix

rf) is invertible, then y'f is the

equation C(y)y = 7 may have multiple solutions. If, however, C(y
unique solution to C(y)y = m, cf. Corollary 4.1. The advanced statistical method of shrinkage, see,
e.g., Ledoit & Wolf (2004), guarantees invertibility and numerical stability of the sample downside
cosemivariance matrix (and for the sample covariance matrix as well). But even if the downside
cosemivariance matrix is invertible, the implicit equation y = C(y) ™! has to be solved numerically.

sref

The iterative algorithm to calculate y*®' is outlined in the appendix to this chapter.
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Hence, when applied to simulated or historical financial data, the shrinkage technique ensures that
the downside efficient portfolio can be computed in the same way as the efficient portfolio in the
sense of Markowitz. The only difference is that y**f has to be calculated iteratively, cf. Algorithm 1,

¢ff can be calculated directly by formula (105).

which is computationally more costly, whereas y
In our idealized setting, we obtained a numerically stable, invertible estimate of C(-) and thus
a unique scaled reference portfolio in any Monte-Carlo simulation such that shrinkage was not

necessary.

We investigate portfolios consisting of K = 5 risky assets, called A, B, C, D and E, and a riskless
asset with rg = 1. We assume them to be independent. Each risky asset has a default probability
¥y and its non-default return distribution is assumed to be log-normal with mean p; and variance
o for k=1,..,5.

A realization of the return vector r is generated as follows. We draw a random vector 8, consisting
of 5 independent Bernoulli random variables with parameters 91, ..., 95 and a random vector n of 5

independent log-normally distributed random variables with parameters (g1, 071), ..., (45, 05). Then,
r=(1-0)0on.

where 1 = (1,...,1) € R® and ® denotes the term-by-term multiplication of two vectors.

The parameters are calibrated to mimic a time frame of one year. Volatility of the non-default
component n is set to be 10% for all 5 assets and their expected excess returns range from 3% to
23 %.

Three scenarios are considered. First, a scenario without defaults, i.e., ¥ = ... = ¥5 = 0, is
implemented. In this scenario, returns are log-normally distributed. Secondly, we mirror settings
from Jarrow & Zhao (2006). There, default rates are 0%, 0.3%, 1%, 3%, 7%. Thirdly, we adapt
Jarrow’s settings by doubling default probabilities and call this scenario “dangerous”. Parameters

of the simulated returns are reported in Table 1 on the following page.

Already in the log-normal scenario, we detect downside risk’s superiority over standard deviation.
From asset A to E nothing changes except the increasing mean. A higher mean together with a
constant standard deviation makes an asset safer, because this upwards shift makes returns less
likely to be smaller than 1 (which are losses). Downside risk accounts for this feature but standard
deviation ignores it. In other words, 52 % of its deviation are risky for asset A, while only 3%
are risky for asset E. The remaining 97 % of deviation of asset E, which do not involve losses,
constitute chance rather than risk! In scenarios with defaults, we observe that standard deviation
as well as downside risk increase with increasing default probability. This is not surprising since the
additional possibility of a default increases dispersion. More remarkably, downside risk increases

much stronger than standard deviation. For instance in Jarrow’s scenario, downside risk of E is
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’ Scenario H H A \ B \ C \ D \ E ‘
Default Probability || 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Mean 1.030 | 1.041 | 1.060 | 1.115 | 1.230

Log-Normal

Standard Deviation || 0.100 | 0.100 | 0.100 | 0.100 | 0.100
Downside Risk 0.052 | 0.047 | 0.038 | 0.019 | 0.003

Default Probability || 0.000 | 0.003 | 0.010 | 0.030 | 0.070
Mean 1.030 | 1.037 | 1.050 | 1.081 | 1.144

Jarrow Standard Deviation || 0.100 | 0.116 | 0.145 | 0.215 | 0.329
Downside Risk || 0.052 | 0.073 | 0.106 | 0.175 | 0.265
Default Probability || 0.000 | 0.006 | 0.020 | 0.060 | 0.140
Mean 1.030 | 1.034 | 1.039 | 1.048 | 1.057
Dangerous

Standard Deviation || 0.100 | 0.128 | 0.179 | 0.283 | 0.438
Downside Risk 0.052 | 0.090 | 0.147 | 0.247 | 0.375

TABLE 1. Asset statistics.

more than 5 times as high as A’s downside risk while standard deviation is only slightly more than

tripled.

Next, we compare an investor holding a (u, o)-efficient portfolio with an investor holding a downside
efficient portfolio. Therefore, the optimal portfolio weights for an efficient scaled reference portfolio
in the sense of Markowitz!'%
1
105 M — ——V7Ix
1o R

sref

and for the downside efficient scaled reference portfolio y*'" given by (93), respectively, are com-

puted and comparatively displayed in Figure 9. Dark bars represent portfolio weights of the (u, o)-

efficient portfolio mix. Light bars display portfolio weights of the downside efficient portfolio mix.

Comparison of Portfolio Weights in the Log-Normal Scenario Comparison of Portfolio Weights in Jarrow's Scenario Comparison of Portfolio Weights in the Dangerous Scenario

#Eﬂﬂﬂ

FIGURE 9. Portfolio weights in three scenarios.
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16y, denotes the covariance matrix of the return vector r. In any simulation, we obtained |<1, V*17r>| > 0, such
that y°ff is well-defined.
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In any scenario, the efficient portfolio mix spreads the weights more equally, while the downside
efficient portfolio mix puts more weight on the safest asset and less weight on the other assets. We
also observe that the absolute difference in portfolio composition is larger in scenarios with defaults.
The largest absolute difference occurs for the portfolio weight of the safest asset and amounts to
0.069 in the log-normal scenario, 0.181 in Jarrow’s scenario and 0.149 in the dangerous scenario.
Note that relative differences are remarkably high, e.g., almost 70 % for asset A in Jarrow’s scenario.

Portfolio weights’ differences are summarized in Table 2.

] Scenario H H A \ B \ C \ D \ E ‘
yeff 0.062 0.086 0.126 0.238 0.487
Log-Normal yoref 0.033 0.066 0.118 0.227 0.557

absolute difference || —0.029 | —0.020 | —0.009 | —0.012 0.069
relative difference || —0.469 | —0.232 | —0.068 | —0.049 0.143

yeff 0.266 | 0248 ] 0.210 [ 0.158 | 0.118
Jarrow yorer 0.448 0.222 | 0.146 | 0.104| 0.081
absolute difference 0.181 | —0.026 | —0.064 | —0.054 | —0.037
relative difference 0.681 | —0.106 | —0.305 | —0.343 | —0.314
yef 0413 [ 0294] 0.168[ 0.083] 0.042
yoref 0.562 0.220 | 0.115| 0.065 | 0.038
Dangerous

absolute difference 0.149 | —0.075 | —0.053 | —0.019 | —0.003
relative difference 0.362 | —0.254 | —0.313 | —0.223 | —0.083

TABLE 2. Differences in portfolio weights of efficient versus downside efficient port-
folio mix. The largest difference is highlighted in bold print each.

To facilitate comparing efficient and downside efficient portfolio compositions concerning their risk-
iness, we rescale the downside efficient portfolios to the same mean return as the efficient ones.
Thus, we obtain the following scaled downside efficient portfolios

sde — m(yeff)
m(ysref)

sref

In the log-normal scenario, the remaining money is invested into the risk-free bond, in the scenarios

with default, money is borrowed from the bond (see, Table 3).

] yde ]l A ] B|] C ] D | E | Bond
Log-Normal || 0.031 | 0.061 | 0.109 | 0.210 | 0.515 0.075

Jarrow 0.526 | 0.261 | 0.171 | 0.122 | 0.095 | —0.174
Dangerous || 0.583 | 0.228 | 0.120 | 0.067 | 0.040 | —0.037

TABLE 3. Portfolio weights of scaled downside efficient portfolios.
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ff and y*¥ concerning their riskiness. Yielding the same mean, the

Eventually, we compare y
efficient portfolio has (by construction) lower variance but higher downside risk. For each scenario,
a boxplot illustrates the distribution of the returns. The log-normal scenario is displayed in green,
Jarrow’s scenario in blue and the dangerous scenario in black. The length of the whiskers is
chosen to be the twofold interquartile range. Realized returns outside the whiskers are considered
to be outliers. These extraordinarily large, respectively small, returns are of particular interest.
Figure 10 shows that there is almost no difference between efficient and scaled downside efficient
return distribution in the log-normal scenario. In scenarios with positive default probabilities,
however, there are discernible differences, especially in the tails. We observe more exceedingly large
and less very small returns realized by the scaled downside efficient portfolio. In particular, the

largest gains are achieved by y*% while the largest losses arise from y*ff.

Return Distributions
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FicUurE 10. Boxplots in three scenarios.

In scenarios with default, a downside-risk averse investor purchasing y*! borrows money from the

sde eff

bond. Despite more money being invested into risky assets, y*® is safer than y*", because the

scaled downside efficient portfolio exhibits a better diversification structure.
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A volatility-averse investor tries to minimize standard deviation by purchasing assets with a low (or
even negative) correlation, such that a low return of a certain asset is compensated by a large return
of another asset. The other side of that coin is that not only small returns (which are potential
losses) but also large returns (gains) are mitigated by the diversification effect.

However, when minimizing downside risk, an investor does not necessarily want to hold a portfolio
mix of risky assets with a weak overall correlation. Instead, she prefers assets with a small downside
correlation, which is the correlation in case of a loss. By focusing on realizations with R(y*%) < 1,

the downside correlation is smaller than the overall correlation, which explains why the smallest

sde eff

returns of y*% are greater than those of y*f. On the other hand, the portfolio structure of yd®
ignores correlations in case of returns larger than 1, such that gains are not mitigated by “upside
diversification”. Therefore, we observe more extraordinarily large returns for y*¢ than for y*.

This approach of downside-risk averse investors is called downside diversification.

A numerical analysis confirms the graphical insights. Although both portfolios differ, their riskiness
is the same in the log-normal scenario — only for the maximal loss (that occurred in 100,000
simulations) we observe a negligible difference of 0.1 %. The reason is that the log-normal scenario
is not risky (enough). The largest loss is less than 7% and the expected shortfall is even negative.
As downside risk takes into account the shortfall of an investment, i.e., realized returns below

ro = 1, there is no opportunity to improve on the efficient portfolio w.r.t. riskiness.

log-normal Jarrow dangerous

yefF ysde yefF ysde yefF ysde

Mean 1.152 1.152 || 1.057 1.057 1.035 1.035

Standard Deviation 0.057 0.057 || 0.072 0.077 0.070 0.073

Downside Risk 0.001 0.001 || 0.038 0.034 0.039 0.036

Maximum Loss 0.066 0.067 || 0.548 0.486 0.491 0.416

g1 (R(+)) 1.028 1.028 || 0.830 0.840 0.817 0.847

ESy9(R(+)) —0.011 | —0.011 || 0.227 0.210 0.249 0.203

P(R(-) < 0.9) 0.000 0.000 || 0.045 0.033 0.035 0.033
P(R(-) < 0.75) 0.000 0.000 || 0.0027 | 0.0016 || 0.0042 | 0.0014

TABLE 4. Riskiness of y*f and ysd.

However, in scenarios with default, other measures of riskiness, which are displayed in detail in
Table 4, point out the superiority of y*%. Maximal loss as well as expected shortfall at level 1% are
lower, the 1 %-quantile is higher. More precisely, maximal loss is more than 6 % smaller in Jarrow’s
scenario and about 7.5 % smaller in the dangerous scenario. Expected shortfall is 1.7 % down in
Jarrow’s scenario, respectively 4.6 % in the dangerous one. These numbers do not seem to be very
impressive at first glance. But be aware of the scale of the return data. Mean net returns are 5.7 %

and 3.5%. In such a setting, single-figure percentages are of great importance. Even an absolute
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difference of just one percent is highly significant. Additionally, the probability of a loss of more
than 25 %, which may constitute a state of insolvency, is much higher for efficient portfolios. In
the dangerous scenario, it is approximately three times as high as for the scaled downside efficient
portfolio!

Eventually, we compare Jarrow’s scenario with the dangerous scenario where default probabilities
are twice as high. For the (u,o)-efficient portfolio, expected shortfall increases from 22.7% to
24.9% and the probability of a very large loss of more than 25 % rises from 0.27 % to 0.42 % (which
is a relative increase of over 50 %!). These observations may not be surprising, since the higher
probability of default should cause larger losses. Therefore it is particularly remarkable that the
expect shortfall and the probability of a loss of more than 25% decrease for the scaled downside

efficient portfolio! Although the scenario becomes more dangerous, the investment in y*# does not.

We summarize findings of this section.

Portfolio compositions remarkably differ between the (u, o)-efficient and the downside efficient port-
folio mix. Downside efficient portfolios put more weight on the safest asset and less weight on all
other assets.

When scaled to the same mean, the riskiness of efficient compared to downside efficient portfolios
differ, depending on the nature of the scenario. In the calm scenario, i.e., for log-normally dis-
tributed returns, downside efficient portfolios are as risky as the efficient ones. In more dangerous
scenarios with defaults, downside efficient portfolios are much safer than efficient portfolios. In-
vestors holding a downside efficient portfolio mix are better secured against exceedingly large losses,
in particular against insolvency.

Improvement in security becomes the larger, the more the return distribution deviates from log-

normality. The higher default probabilities are, the more distinct the decrease of the probability of

sde eff

very large losses when holding y*°¢ instead of y*"', compare Table 4.

All in all, if the financial market is calm and the probability distribution of asset returns is (at
least close to) log-normal, it does not matter if an investor holds an efficient or a downside efficient
portfolio: mean return and riskiness are the same. Since the asset market is in such a calm
mode most of the time, we do not see many banks going bankrupt. But in a turbulent market
environment where disruptions and defaults have a strictly positive probability, e.g., during the
recent financial crisis, some financial institutes became insolvent. In such a dangerous scenario the
downside efficient portfolio mix unambiguously outperforms the efficient portfolio mix. Yielding
the same mean return, it offers a better protection against downside shocks. A better downside

diversified portfolio structure might have saved several investors from bankruptcy.

Even Markowitz (1959) himself stated that “semi-variance is the more plausible measure of risk
[than variance]” but he decided to formulate portfolio optimization in terms of mean and variance,

because variance is mathematically easier to handle. Since nowadays computational power is not
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the bottleneck that is was when modern portfolio theory was developed, there is no need to still
rely on variance as a measure of risk. The high rate of convergence of Algorithm 1 together with
the arithmetic speed of modern computers enable banks, insurance companies or pension funds to
apply the concept of optimal downside diversification when making investment decisions.

Due to the considerations of this section, the downside efficient portfolio mix may be considered
as a general improvement over the efficient portfolio mix. It is not worse if the financial market is
calm but it is strictly better in dangerous scenarios. Consequently, we advise investors to choose

downside efficient portfolios rather than (u, o)-efficient ones.

4.A. Appendix to Chapter 4

Given ry = 1 and 100, 000 simulated return vectors r(!), ..., r(100.000) ¢ R5 the downside efficient

sref

scaled reference portfolio y*' is calculated as follows.

sref

Algorithm 1 Computation of y

i) Estimate the expected excess return vector
100,000

_ U) _
=100, 000 ; T e

ii) Choose an appropriate initial portfolio y).
iii) In the n*! iteration, i.e. for n =1,2,3, ...
a) Determine the risky realizations, i.e., introduce the following indicator variable for all
j €{1,...,100,000}

f(n) it <r(j) —rg,y(”)> <0
7710 otherwise '

b) Estimate the downside cosemivariance matrix C(™ via

(n) 1w () ()
Ch’ = 100,000 ; 5j (ro —ry’)(ro—1r"")
for k,l =1,...,5.
c¢) Update the portfolio vector
y( D) 1 (C™)1p

= C
(1, (Ct) 1)
iv) Repeat step iii) until a stopping criterion is fulfilled.

There are several possible choices of the initial portfolio y(!). For instance, y(") = (0.2,0.2,0.2,0.2, 0.2)

or y(I) = 7 are reasonable approaches. We choose
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because we supposed that, though not identical, the structure of y*¢f and y*f

might be similar
if covariance and downside cosemivariance patterns do not differ too much. Figure 9 justifies our
approach. We also tried y( = (0.2,0.2,0.2,0.2,0.2) and y") = 7 which yielded the same results
for y**f but more iteration had to be executed until the algorithm stopped.
We specify

Hy<n+1> —y®

< 0.000001
1

as stopping criterion, which is a very conservative choice. The stopping rule triggered termination of
the algorithm after 4-7 iterations. This high rate of convergence underlines the direct applicability

of portfolio selection using downside risk to practical issues.



Conclusion

By his seminal contributions, Markowitz (1952, 1959) pioneered modern portfolio theory. Building
on his ideas, Tobin (1958), Sharpe (1964), Lintner (1965), Mossin (1966) and Merton (1972),
to name but a few, further developed portfolio selection and equilibrium asset pricing theory.
Markowitz (1959) decided to quantify risk by variance but, from the very beginning, he favored
another measure of risk: semivariance, cf. Estrada (2008). In this thesis, we quantified risk by the
square root of the below-target semivariance, referred to as downside risk. Thereby we showed how
to improve the risk measurement methodology while retaining all theoretical insights from portfolio
selection and equilibrium asset pricing theory. Furthermore, the mean-downside-risk framework

can be applied to financial data with a little additional computational expense.

All concepts developed in the mean-variance framework can be refined by downside
risk. Two tabular comparisons summarize how portfolio selection and equilibrium asset pricing
theory structurally preserve.

When replacing the covariance matrix of payoffs V by the portfolio-dependent downside cosemi-

variance matrix C(x), compare Definition 1.3, we obtained the following.

Mean-Variance Framework Mean-Downside-Risk Framework
There exists a solution to There exists a solution to
max M(x) s.t. /(x, Vx) < 0y. max M(x) s.t. /(x,C(x)x) < do.
xERK xERK
eff — g0 sref ref de —_ do ref ref
x*"(o9) S where X" £ 0 x%(dp) rrRTrarial where x™" #£ 0
is a solution to the equation Vx = . is a solution to the equation C(x)x = .
x*f () is unique, if V is invertible. x%(dp) is unique, if C(x"f) is invertible.

Efficient frontier: Downside efficient frontier:

¢(0) = roe + o4/ (xref, Vxref), e(d) =roe + d\/<x'ef, C(xref)xref).

TABLE 5. Efficiency.

93
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Similar to the mean-variance framework, we established a separation theorem for downside-risk
averse investors. Downside efficient portfolios have an advantage over mean-variance efficient port-
folios, because their payoffs w(x%(dy)) are almost surely undominated and undominated w.r.t.
stochastic dominance. This need not be the case for w(x*(o¢)). Furthermore, w(x%(dy)) max-
imizes expected utility for a strictly increasing Bernoulli utility function whereas w(x*% (o)) is
consistent with expected utility theory for quadratic, i.e., non-monotonic, Bernoulli utility func-
tions only.

A downside risk asset market equilibrium (DRAME) is defined analogously to a mean-variance

CAPM equilibrium. It is an individually optimal and market-clearing allocation of assets.

Mean-Variance Framework Mean-Downside-Risk Framework
A mean-variance CAPM equilibria exists. A DRAME exists.
It is unique if the aggregate demand for stan- It is unique if the aggregate demand
dard deviation WMV (p,) is strictly decreasing. for downside risk ¥(py) is decreasing.
CAPM pricing formula: DRAME pricing formula:
* Elex]—Top) % Elen]—ropy
pL = % E [Qk] _ [ ]amZ OILX P = % (E[qk:] — 7’D([€m],rop(:}fp)2 X
E[(Elqr] — k) (Elea] — €a)]) - E[(ropk — ar)(rops — €)+]) -
The market payoff €, attains the highest The market payoff €, attains the highest
possible Sharpe ratio at equilibrium prices. possible Sortino ratio at equilibrium prices.
Security market line: Downside security market line:
Elgx] = ropy, = Br (Elea] — ropy) , Elqi] — Top[z = B (Elen] — TO?;) ;
- E[(Elqs]—qx)(E[ea]—€n)] « . El(ropy—ar)(rop; —€n)
B = TG B = = Dl

TABLE 6. Equilibria.

We did not only construct a pricing formula and a security market line under the hypothesis of
equilibrium in the mean-downside-risk framework.!” Instead, we proved existence of DRAMEs and
derived the corresponding pricing formula and downside security market line. Note further that
uniqueness is achieved under a milder requirement. The major improvement is that DRAME prices
are always arbitrage-free and strictly positive whereas the CAPM pricing formula, in general, allows

for arbitrage opportunities and negative stock prices.

Financial practitioners can readily apply and benefit from the portfolio selection
methodology using downside risk. The usage of the shrinkage technique ensures a numeri-

cally stable and invertible estimate of the downside cosemivariance matrix. Hence, the downside

17This was already done by Hogan & Warren (1974) and generalized by Bawa & Lindenberg (1977).
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efficient portfolio can be derived in the same way as the mean-variance efficient one. Since down-
side efficient portfolios are characterized implicitly, numerical calculations are costlier. The effective
implementation via Algorithm 1 (see appendix to Chapter 4), its high rate of convergence and the
increased arithmetic speed of modern computers minimize the additional computational expense.
In a simulation study, we recalibrated (u,o)-efficient and downside efficient portfolios, such that
they yielded the same mean return. We verified that downside efficient portfolios protect investors
better from large losses in turbulent market scenarios. When market disruptions and defaults of
assets have a strictly positive probability, downside efficient portfolios unambiguously outperform
mean-variance efficient portfolios. Value-at-risk, expected shortfall, maximal loss and the probabil-
ity of a loss of more than 25 %, every single one of them is greater for the mean-variance efficient
portfolio. Above all, we found no scenario where downside efficient portfolios perform worse.
Yielding the same mean payoff, downside efficient portfolios turned out to be as safe as mean-
variance efficient portfolios in calm scenarios and substantially safer in dangerous scenarios. Thus,

investors should rely on downside efficient portfolios.

A number of further research avenues are possible.

An immediate extension is to analyze a dynamic multiperiod model instead of the static model
with two dates which is proposed in this thesis. Wenzelburger (2017) suggests a dynamic approach
where returns are generated by an exogenous stochastic process and develops mean-variance port-
folio theory, there. This setting seems to allow for a refinement of portfolio theory using downside
risk.

Further, it would be interesting to examine existence and uniqueness of downside risk asset market
equilibria under the paradigm of heterogeneous beliefs. This assumption is more realistic but ana-
lytically much more demanding than the setup with homogeneous beliefs.

Another extension would be to incorporate short sale constraints or other types of regulatory frame-
work such as capital adequacy requirements for investors. This question to what extend downside
risk can be incorporated in financial regulation and banking theory calls for future research.

All these possible advancements are outside the scope of the present thesis. They are open questions

to succeeding generations of financial economists.
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