
VISUAL ANALYSIS FOR

GRAPHS, NETWORKS AND FLOWS

Vom Fachbereich Informatik der

Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte

DISSERTATION

von

TOBIAS M. POST

Datum der wissenschaftlichen Aussprache: 22.03.2018

Dekan: PROF. DR. STEFAN DESSLOCH

Berichterstatter: PROF. DR. HANS HAGEN

Berichterstatter: PROF. DR. BERND HAMANN

D 386

iii

Abstract

Graphs and flow networks are important mathematical concepts that enable the mo-

deling and analysis of a large variety of real world problems in different domains

such as engineering, medicine or computer science. The number, sizes and com-

plexities of those problems permanently increased during the last decades. This led

to an increased demand of techniques that help domain experts in understanding

their data and its underlying structure to enable an efficient analysis and decision

making process.

To tackle this challenge, this work presents several new techniques that utilize con-

cepts of visual analysis to provide domain scientists with new visualization metho-

dologies and tools. Therefore, this work provides novel concepts and approaches for

diverse aspects of the visual analysis such as data transformation, visual mapping,

parameter refinement and analysis, model building and visualization as well as user

interaction.

The presented techniques form a framework that enriches domain scientists with

new visual analysis tools and help them analyze their data and gain insight from

the underlying structures. To show the applicability and effectiveness of the presen-

ted approaches, this work tackles different applications such as networking, product

flow management and vascular systems, while preserving the generality to be ap-

plicable to further domains.

v

Contents

1 Introduction 1

1.1 Application Areas of Graphs, Networks and Flows 1

1.2 The Need of Visual Analysis for Graphs, Networks and Flows 2

1.3 Contributions and Structure of this Work 3

2 Flow Tracking in Software-Defined Networking 5

2.1 Summary . 5

2.2 Related Work . 6

2.3 Methods . 7

2.3.1 Overview . 7

2.3.2 Flow Tracking . 10

2.4 Results . 13

2.5 Conclusion . 15

3 Visual Analysis of Cyber-Physical Production Systems 17

3.1 Introduction . 17

3.2 Related Work . 18

3.2.1 Data Analysis in Cyber-Physical Production Systems 19

3.2.2 Visualization Tools in Production Planning 21

3.3 Methods . 22

3.3.1 Characterization of the Simulated Production System 23

3.3.2 Visualization . 25

Flow View . 26

Workload View . 35

Production View . 36

3.4 Conclusions . 38

vi

4 Analysis of High-dimensional Data 43

4.1 Introduction . 43

4.2 Related Work . 44

4.3 Methods and Results . 44

4.4 Conclusion . 48

5 Graph Extraction using Fast 3D Thinning 49

5.1 Summary . 49

5.2 Related Work . 50

5.3 Methods . 52

5.3.1 Local Neighborhood Lookup Tables 52

5.3.2 Thinning Algorithm . 55

5.4 Results and Discussion . 57

5.5 Conclusion . 59

6 Visual Analysis of Network Bottlenecks 61

6.1 Summary . 61

6.2 Related Work . 62

6.2.1 Visualization of Minimum Cuts 63

6.2.2 Ensemble Visualization of Flow Networks 63

6.3 Single Bottlenecks . 64

6.3.1 Methods . 64

Flow Networks . 64

Maximum Flows . 66

Minimum Cuts . 68

6.3.2 Results . 71

Ensemble Visualization . 71

Scalability . 73

6.4 Cascaded Bottlenecks . 74

6.4.1 Methods . 74

6.4.2 Results . 75

6.5 Conclusion . 76

vii

7 Discussion and Conclusion 83

7.1 Summary . 83

7.2 Implications . 85

Bibliography 89

ix

List of Figures

1.1 Visual Analytics Scheme . 2

2.1 Schematic Path Comparison . 8

2.2 SDN Overview . 9

2.3 Schematic Flow Tracking . 10

2.4 Flow Tracking . 12

2.5 SDN Results . 13

3.1 Factory Model . 26

3.2 Flow View . 27

3.3 Product Flow Details . 29

3.4 Product Flow Closeup . 30

3.5 Product Flow Sequence . 32

3.6 Machine Workloads . 34

3.7 Workload View . 40

3.8 Production View . 41

4.1 Scaling Invariance . 45

4.2 Pareto Factors . 47

5.1 Neighborhood Encoding Scheme . 54

5.2 Pseudocode . 55

5.3 Thinning Sequence . 56

5.4 Thinning Results . 58

5.5 Timings . 59

6.1 Flow Networks . 65

6.2 Maximum Flows . 67

x

6.3 Minimum Cuts . 69

6.4 Ensemble Visualization . 72

6.5 Scalability . 78

6.6 Cascaded Bottlenecks . 79

6.7 Forward Network . 80

6.8 Forward/Backward Distances . 81

6.9 Interactions . 82

xi

List of Tables

3.1 Work Plan . 23

5.1 Thinning Criteria . 53

1

Chapter 1

Introduction

Graphs, networks and flows are important concepts with an increased demand for

visual analysis. This chapter motivates the need of research for this kind of visual

analysis and explores potential application areas suitable for these concepts. Based

hereon, this work presents different approaches for the visual analysis of graphs and

flow networks that will be summarized in the following.

1.1 Application Areas of Graphs, Networks and Flows

Graphs, composed of nodes and edges, can be utilized to model and analyze a large

variety of real world problems. Examples can be found in engineering, medicine,

computer science and other domains. This list of examples can be continued exten-

sively, covering all areas of research from molecular and genetic maps to biochemical

pathways and protein functions [36].

Flows indicate the amount of movement and extend graphs to form flow net-

works. Examples for real world problems that can be modeled with flows or net-

works are network traffic [67], public traffic [104], product and material flows, com-

puter networks, and data mining tasks for social media [76]. Flow networks are an

important tool in these domains to identify main streams, bottlenecks, invariances

and even security issues.

Although flows and networks are able to model a bigger variety of real world

problems, their examination and analysis is more complex due to an increased de-

gree of freedom and number of parameters. Therefore, domain scientists that are

working with flow networks require suitable tools to model, adapt, control and ana-

lyze these networks. This effect is strengthened by the observation that datasets

2 Chapter 1. Introduction

FIGURE 1.1: The process of visual analytics as shown by Keim et
al. [54]. Visualization plays a central role in gaining new knowledge.

permanently became larger and more complex during the last decades. This led to

an increased demand of analysts and decision makers, who need to be able to under-

stand their data, identify critical aspects or situations and adapt the setting of their

graphs or flow networks when required.

1.2 The Need of Visual Analysis for Graphs, Networks and

Flows

The term visual analytics was formed by Keim et al. [54]. They proposed the visual

analytics process as : Analyse First - Show the Important - Zoom, Filter and Analyse Furt-

her - Details on Demand (see Figure 1.1). This paradigm became a suitable solutions

for a variety of problems covering physics, astronomy, business, environmental mo-

nitoring, security and medicine. As the visual analysis process shows, visualization

plays a fundamental role to retrieve new insights from datasets and can be utilized

to understand the underlying structures, thereby enabling an efficient analysis and

decision making process in a variety of applications.

In the article of Keim et al. [54] networks where also mentioned as an potential

application of visual analytics. This is caused by the fact that domain scientists need

to be involved in the data processing loop to perform a meaningful analysis. In

addition, the real world scenarios that can be modeled and analyzed by graphs and

1.3. Contributions and Structure of this Work 3

flow networks are constantly increasing, introducing novel challenges. Therefore,

the main goals for visual analysis of graphs and flow networks are stated as:

• Integration of massive information flows, covering data transformation, clea-

ning and filtering [62]

• Provide meaningful visual representations that allow intuitive user interacti-

ons. This especially includes the visualization of network meta information. [62,

13]

• Development of techniques that identify changes and invariances in graphs or

networks, covering the identification of undesired behavior, clustering of the

data and the detection of bottlenecks in network flows.

Therefore, the goal of this work is to provide techniques that are able to tackle the

mentioned challenges using the concept of visual analysis to help domain scientists

to analyze and understand graph and flow network based datasets more efficient

and reliable.

1.3 Contributions and Structure of this Work

In this work novel concepts and techniques for the visual analysis of graphs, net-

works and flows are presented and their significance to real world applications is

shown, covering the domains of engineering, medicine and computer science, and

is structured as follows.

Software-definened networks (SDN) is a novel configuration technique that has

the potential to become the future backbone of computer networking. SDNs have

to be simulated and analyzed to identify applicable configuration settings for real

world applications. To determine the quality of a SDN configuration, its packet flow

is an important indicator for the analysis. This work presents an interactive system

for the analysis of SDN data. An intuitive overview of the SDN hierarchy and the

underlying packet flow is provided. The ability to track packets through the SDN

by interlinked multiple views forms an novel interactive analysis tool for SDN data

(see Chapter 2).

4 Chapter 1. Introduction

Another real world scenario that can be modeled by flow networks are cyber-

physical production systems. This work presents a user-guided visual analysis ap-

proach that can answer relevant questions concerning the behavior of cyber-physical

systems. The approach generates visualizations of aggregated views that capture an

entire production system as well as specific characteristics of individual data featu-

res (see Chapter 3).

A flow network often does not solely contain the information of its nodes, con-

nections and flows. In many cases, the single entities of a graph or flow network

can consist of multi-dimensional attributes that can be relevant for domain experts.

To include this data in the visual analysis process, this work offers a scale-invariant

measure based on Pareto optimality that is able to indicate the quality of data points

with respect to the Pareto front. In cases where datasets contain noise or parameters

cannot easily be expressed or evaluated mathematically, the presented measure pro-

vides a visual encoding of the environment of a Pareto front to enable an enhanced

visual inspection (see Chapter 4).

In many application graphs or networks cannot be determined directly from the

available data. An example are image-based methods where some data needs to be

converted to graphs. To tackle these cases, a concept called thinning can be used

to provide a one pixel wide representation of visible objects in an image. Therefore,

this work presents a novel thinning approach based on a pre-evaluated moving local

neighborhood, resulting in an efficient and robust technique (see Chapter 5).

An important aspect of flow networks is the identification of bottlenecks. To

tackle this challenge, this work enhances the comparability of different network con-

figurations by utilizing ensemble visualization techniques. In addition, it introduces

a novel approach to identify cascaded bottlenecks and evaluate their properties. The

presented interactive techniques enable users to explore and analyze planar flow

networks (see Chapter 6).

In its entirety this work covers multiple aspects of visual analysis for graphs, net-

works and flows in different domains, and shows their applicability and efficiency

for a variety of applications.

5

Chapter 2

Flow Tracking in Software-Defined

Networking

2.1 Summary

The constantly increasing digitalization of the modern society raises problems in

conventional networking such as high complexity, inconsistent policies and scalabi-

lity issues [80, 31]. To tackle these problems, new networking methodologies such

as software-defined network/ing (SDN) are required. In contrast to conventional

networks where each networking node is configured separately, SDNs provide con-

troller elements that are able to administrate groups of nodes. This chapter consi-

ders each networking node to be administered by exactly one controller element,

resulting in a hierarchy for the SDN.

The indirect administration of networking nodes enables SDNs to separate the

control plane and the data plane of a network. Although this concept holds the po-

tential to be the future backbone of networking, it also raises new challenges in the

field of network segmentation and security, traffic engineering, as well as network

provisioning and configuration [59]. Due to these challenges, SDNs are not yet wi-

dely applied in real world scenarios. Instead, network analysts run SDN simulations

with different settings in order to understand the effects of SDN design choices to

the resulting network behavior. An important factor that indicates the quality of the

SDN settings is the resulting flow of packets through the network [51].

6 Chapter 2. Flow Tracking in Software-Defined Networking

To analyze the flow of a network, visualization is a common tool. Although va-

rious successful network and flow visualization techniques are available, they can-

not be applied directly to review a flow in a SDN (see Section 2.2). This is mainly

caused by a combination of two effects: First, current approaches do not cover the

hierarchical structure and the resulting packet flows of SDNs. Second, current ap-

proaches that utilize videos for time-dependent data often result in a phenomenon

called change blindness [107].

This chapter is based on the work of Post et al. [94] and presents visualizations

forming an interactive analysis tool for SDN data in Section 2.3. A linked view sy-

stem is presented that relates the hierarchical overview of a SDN to the resulting

packet flow through selected elements of the network. By utilizing an interactive

brushing and linking approach, network analysts can select nodes or packets of

the network and visually track them in a static flow view. This view is designed

to identify coherences of packet paths throughout the SDN while avoiding change

blindness. Additional interlinked tabular views help in displaying node and packet

properties.

Therefore, this chapter contributes:

• Intuitive visualizations of SDN data

• Visually guided flow tracking in SDNs

To show the applicability of the presented visualizations, the analysis of a simu-

lated SDN dataset is tackled in Section 2.4 and concluded in Section 2.5.

2.2 Related Work

The following section will discuss the recent work targeting the visualization of

SDNs as well as network flow visualization techniques.

An overview of network visualization techniques can be found in the work of

Guimares et al. [32]. Also, several tools [6, 47, 69] are suitable to review SDN con-

troller nodes and their connections. Unfortunately, these tools focus only on the

topology of the controller elements within a SDN. In contrast to that, this chapter

presents visualizations enabling the analysis of all network nodes within an SDN.

2.3. Methods 7

To visualize the flow in a network, statistical methods such as graphs, showing

the amount of network traffic per node [86] or node connectivity matrices [117, 45],

can be used. Although these techniques provide a suitable overview, they do not

make use of a network layout technique. A spatial flow visualization can be achie-

ved by utilizing particles that flow between nodes in a network [112] or utilizing

a space-time cube [4]. Although this gives a visual representation of the flow in a

network, it introduces visual clutter and can cause change blindness due to animati-

ons. In contrast, this chapter presents a static flow visualization that resolves change

blindness while relating to the underlying network layout.

To reduce visual clutter, edge bundling [40, 83] summarizes similar connections

between nodes. This concept can be extended to distinguish between flow directions

[105] or bundle time-varying flow data [81]. As SDNs induce a hierarchical struc-

ture (see Section 2.3), classical edge bundling methods cannot be used in this case.

Instead, hierarchical edge bundling is required [39]. This technique was already

successfully applied to time-varying data [46]. In [41] connections between hierar-

chically organized structures are bundled. These techniques are used as a starting

point for the visualization of SDN in this chapter. Also, the technique of visualizing

a storyline with respect to a hierarchy as shown in [68, 98] is extended and adapted

to SDN.

2.3 Methods

The following section presents an interactive analysis tool to examine the topology

of a given SDN and the flow of packets within. The user is able to specify a temporal

interval of interest, referenced as the window. Additionally, networking nodes or

packets of interest can be monitored or tracked within the SDN.

2.3.1 Overview

In SDN, controller elements administrate groups of networking nodes. This chapter

considers each networking node being administered by exactly one controller ele-

ment. This leads to a hierarchical tree representation for the SDN. The root node

represents the whole SDN. The children of the root node represent the individual

8 Chapter 2. Flow Tracking in Software-Defined Networking

controller elements, referred to as control nodes in the following. The children of

a specific controller element (control node) are the nodes in the network that are

administered by this controller, referred to as physical nodes, referenced by their IP

addresses. The children of one administered node (physical node) are the port nodes

of this specific IP node.

FIGURE 2.1: Schematic comparison of the physical and logical paths
for the same transmission within a SDN. The physical path goes di-
rectly from the source port to the destination port, while the logical
path ascends the hierarchy from the source port up to the root note

and then descends down to the destination port.

So the logical path of a transmitted packet follows this hierarchical tree by ascen-

ding from the sending port, IP and control node and by descending to the receiving

control node, IP and port (see Figure 2.1). In contrast to that, the real physical path

of the transmission is only between physical nodes/ports. Still, it is beneficial to un-

derstand the logical processes and paths, and to examine the hierarchical nature of

the underlying logic. To achieve this, a suitable visual representation like shown in

the following is required.

This chapter provides a visualization for an overview of a SDN. In this overview

all active nodes in the selected time window are visualized. An active node is a leaf

node of the SDN tree that is receiving or sending a network packet within the given

time window. To visualize all active nodes in the SDN and the induced hierarchy,

the active nodes in the SDN hierarchy are drawn recursively. Here, each node is

surrounded by its child nodes in a circular manner as shown in Figure 2.2.

As only active nodes are shown in the network overview, there exist at least one

2.3. Methods 9

(a) (b)

(c) (d)

FIGURE 2.2: Overview of a SDN simulation for a selected time win-
dow. Images (a)-(c): All active nodes in the selected time window
are visualized according to different levels of granularity for the SDN
hierarchy. A connecting spline is drawn between each sending and
receiving node. Image (d): Visual enhancement of user selected no-

des and links by highlighting.

sending or receiving event for these nodes in the user selected time window. The-

refore, sent packets are visualized by a spline connecting the involved active nodes.

The displayed logical path of a packet passes through the different hierarchy levels

of the SDN. All nodes that are passed by a packet on its logical path are used as sam-

pling points for the drawn spline. As a result, the logical path of a packet through

the hierarchy of the SDN is visually encoded. In order to avoid visual clutter, the

splines are summarized through a hierarchical edge bundling approach [39]. This

10 Chapter 2. Flow Tracking in Software-Defined Networking

results in a fast and intuitive visualization of packets and their way through the SDN

hierarchy.

It is possible to select groups of nodes or connections in the overview of the SDN

as shown by a magenta color in Figure 2.2 (right image). Here, the selected elements

are visually highlighted. Selecting a node that is not a leaf node in the SDN hierarchy

results in selecting the whole sub-tree of this inner node. Also, different detail levels

of a SDN can be shown. For example, it is possible to only visualize the root node

and the control nodes of a SDN. Therefore, it is possible to focus on specific aspects

of the network.

Although this gives a suitable first overview of nodes and their connections in

a SDN, it is important to understand the amount of incoming and outgoing traffic

for the considered nodes. Also, a tracking of packets to find common source or des-

tination nodes as well as the identification of equal or diverging physical or logical

paths is desired. Therefore, the presented overview is extended by a flow tracking

view in the following.

2.3.2 Flow Tracking

The packet flow in a network is an important feature that helps analysts to deter-

mine the quality of the used SDN settings. Although the presented overview of the

SDN is a suitable starting point to understand a SDN’s hierarchy, the highlighting

in Figure 2.2 cannot distinguish between incoming and outgoing packets of a node.

Also, a selected edge between nodes only shows a small part of the path that packets

passing through this selected connection travel.

FIGURE 2.3: Schematic tracking of packets traveling through a se-
lected node (magenta), color-coded as incoming (red) or outgoing

(blue).

2.3. Methods 11

To address these challenges, the overview can be extended by using different

highlighting colors for incoming (red) and outgoing (blue) packets, as seen in Fi-

gure 2.5. Packets related to the selected SDN elements (nodes or edges) can be trac-

ked through their content ID. For a specific packet, a selected node or edge is passed

at a certain point in time. Other nodes or connections in the SDN are passed at an

earlier (red) or later (blue) point in time by this packet (see Figure 2.3). This results

in a visually guided flow tracking of packets through the SDN. Arrows, color gra-

dients or diverging colors can further improve an intuitive visualization while the

line width could be used to display the amount of accumulated network traffic.

Although this improves the highlighting in the overview, the disability to di-

rectly compare the path of packets remain an unsolved problem. As shown in Fi-

gure 2.2, distinguishing single edges becomes challenging due to visual clutter when

an increasing number of edges is selected. This is caused by the effect of an increa-

sing number of highlighted edges intersecting each other in the view.

To tackle the mentioned problems, the presented system presents an additional

view shown in Figure 2.5 that displays the selected SDN elements (magenta color)

and the network packet traffic passing through them. This flow tracking view is

inspired by subway maps. In subway maps, different stations of a train are sorted by

their destination order, and their visual representation is connected through a spline.

As subway maps form a successful visualization to understand the differences and

similarities of multiple subway lines, the goal is to apply this concept to packet flows

in SDN data, as shown in Figure 2.4. In the case of a SDN a “train" is a packet and

its “stations" are the nodes the packet visits in the SDN. To integrate the different

time steps selected in the current time window, time is used as the x-axis of the

visualization.

In this visualization each active leaf node obtains a horizontal line that is aligned

in parallel to the x-axis. To incorporate the hierarchy of the SDN into the visualiza-

tion, the line representation of these active leaf nodes are sorted by their logic within

the SDN. For each inner active node a box is drawn that includes its active child

nodes, meaning that the whole active sub-tree of the node is included. This is done

for all active nodes and all hierarchy levels recursively. For each selected node, all

related sent and received packets are traced over the user defined time window. This

12 Chapter 2. Flow Tracking in Software-Defined Networking

FIGURE 2.4: High contrast version of a flow tracking view for selected
SDN nodes (magenta) and their links. Time is used as the x-axis and
each active node is represented by a horizontal line. Packets that flow
through the SDN are represented by edge-bundled and colored spli-
nes connecting the visited nodes. The hierarchy of the SDN is visually
preserved by the boxes in the background containing each other hier-
archically. The closeup clearly shows that even the ports as the lowest

level of the hierarchy are represented.

is achieved by tracking the individual packet’s content ID, thereby identifying diffe-

rent packets representing the same content. So in general, for each packet’s content

passing through a selected element in the SDN, the flow graph of visited nodes is

displayed.

To visualize the tracked packets, the path of each packet is visualized by a spline

connecting all nodes a packet is visiting. Circles are used to mark the points in time

when a packet visits a networking node. A hierarchical edge bundling approach

[41] is used to bundle edges with regard to the SDN’s hierarchy to avoid visual

clutter and identify coherent paths for multiple packets. As before in the overview

2.4. Results 13

FIGURE 2.5: Application of the presented system to a simulated SDN
dataset. Upper left: Overview of the SDN hierarchy. Nodes selected
by the user are highlighted. Red and blue lines indicate incoming and
outgoing packets, respectively. Upper middle: Tree view of active no-
des and their properties. Upper right: List of all tracked packets and
their properties indicated by the user’s selection. Lower left: Flow
view of the tracked packets. Lower right: Closeup (white circle) of

the bottleneck identified by the flow tracking view.

visualization, transparency is used to blend out tracked packets at the borders of

the given time window. Each spline is colored by a unique color depending on the

content ID of the respective packet to distinguish individual packets and flows in

the visualization.

This visualization provided the ability to monitor user selected elements within

the SDN and to track individual networking packets over different hierarchy levels

in the SDN. Low level physical flows in addition to high level logical flows can be

tracked and analyzed and coherent flows and bottlenecks in the SDN design can be

identified.

2.4 Results

The presented system was tested with a simulated SDN dataset. As mentioned in

Section 2.1, the concept of SDN is quite novel and not yet applied in many scenarios.

14 Chapter 2. Flow Tracking in Software-Defined Networking

Resulting from that, suitable real world datasets are not widely available. Instead,

this chapter uses a simulated SDN dataset generated by the method presented by

Nandi [80] to gain insight and show the effectiveness of the presented visualization

methods for SDN.

The results in Figure 2.5 show how the presented system can be used to visualize

and analyze SDNs. The overview shows the active nodes in the selected time win-

dow of the dataset and a highlighting of nodes that are selected by the user (upper

left image). In addition to that, the flow through these nodes is tracked and shown

by the a red/blue highlighting. Based on the user’s selection, the all views are up-

dated. The tree view (upper middle image) shows the SDN hierarchy and all active

networking nodes with their accumulated properties. All packets involved in the

flow tracking are shown in the tabular view (upper right image). These views help

in analyzing and configuring the SDN.

The flow tracking view (lower left image) presents a static visualization of packet

paths. Although the source and destination of some packets (yellow splines) vary in

this example, the view indicates that these packets all follow the same logical path.

Through the intuitive design of the flow tracking view, the common control nodes

can easily be detected. Furthermore, the visualization is able to visually highlight

bottlenecks in the SDN design. As Figure 2.5 (lower left image) demonstrates, a

larger number of packets (blue splines) is sent through only one networking node

(white circle). The lower right image shows a closeup of this feature where indi-

vidual port nodes/boxes become visible. Therefore, this visualization helps identi-

fying security issues or unequal packet distributions in the SDN design through this

visually guided flow tracking.

The overview of the system forms an easy to understand visualization that repre-

sents the hierarchy of the SDN. Pairs of sending and receiving nodes are connected

through a spline that indicates a packet’s flow through the SDN hierarchy. This re-

presentation allows to easily understand the connection between nodes in the SDN

hierarchy. The used hierarchical edge bundling avoids clutter while giving the user a

suitable overview of the SDN hierarchy and its packet flow. Focusing, highlighting

or color shifting can help in identifying individual paths and countervail obfusca-

tion.

2.5. Conclusion 15

For a further investigation of user selected nodes and packet paths, the flow

tracking view is presented. The use of the subway map methodology allows a vi-

sually guided tracking of packet paths through the SDN. The box representation

with connecting splines provides the possibility to track packets throughout the net-

work and therefore visually highlight common paths in different hierarchy levels.

Using small circles to represent networking nodes being visited at certain points in

time prevent the recognition of false intersections. As all time steps in the selected

time window are visualized simultaneously, the user is not confronted with change

blindness problems that often occur in dynamic visualizations. Also, the used edge

bundling enables the identification of similar packet paths an helps network analysts

in adjusting their configuration design.

The presented approach is highly interactive as the user can select nodes or edges

in each presented view while the remaining views are updated accordingly. So all

views are interlinked dynamically. In its entirety, the presented system offers a suit-

able solution to analyze SDN data, allow a visually guided tracking of packet flows

and therefore assist network analysts in identifying problematic settings in the SDN.

2.5 Conclusion

The SDN technology is an immature but upcoming networking technique that requi-

res further investigation through simulations by network analysts to become appli-

cable in real world scenarios. Therefore, this chapter presents a linked view system

to allow network analysts to review SDNs, their hierarchies and the flow of packets

within. The latter is known to be an important factor for the quality of SDN set-

tings. The presented system is capable of of visualizing a SDN’s hierarchy and the

packet flow through this hierarchy. For further investigation of the flow, the system

contains a flow view to analyze and compare the paths of different packets, find

coherences and identify weak spots in the SDN design.

17

Chapter 3

Visual Analysis of Cyber-Physical

Production Systems

3.1 Introduction

The “industrial internet” refers to developments triggered by new information and

communication technologies (ICT) in industry. Terms like Industry 4.0, Cyber Phy-

sical Production Systems (CPPS) or Smart Factory are associated with the same phe-

nomenon of industrial systems using ICT in production by applying cyber-physical

methodologies. The most prominent feature of a CPPS is the interconnection of its

different manufacturing elements such as machine tools or workpieces and the re-

sulting amount of production data [79].

It is expected, that these technologies will make it possible to handle the increa-

sing complexity of production systems and to cope with current trends and challen-

ges [53]. Shorter product life cycles and mass customization are leading to higher

numbers of product variants and ever smaller lot sizes, making it necessary to adapt

a production system in a fast, efficient way.

With the goal of increasing the flexibility of a production system, decentralized

concepts within production planning and control have been discussed in theory [65].

Yet, their application in industry has not been widely spread [78]. The availability

of modern ICT, as discussed under the term of “Industrial Internet”, is expected to

have a highly positive effect on the applicability of such concepts [53].

The enormous amount of data generated by cyber-physical systems makes it ne-

cessary to devise approaches for refinement, for the data to become truly helpful

18 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

to human decision-makers. Also, to identify ways to make machines “intelligent”,

data analysis and visualization tools are becoming essential. Hence, the effort of this

chapter was driven to a large degree by developing new and more effective ways to

analyze and visualize production data, allowing humans to have quick access to just

the needed, most relevant information.

This chapter is based on the work of Post et al. [92] and introduces a visual ana-

lysis approach that captures the performance of a production system in an intuitive

manner. For example, bottlenecks and excess capacities are identified and visually

highlighted, thereby guiding the user in the analysis. The impact of changes applied

to a manufacturing system can be analyzed by utilizing the presented visualizations.

Additionally, the approach can generate an aggregated view of an entire system or

focus on merely the most interesting features captured in a data set. The developed

tool supports a performance driven and yet detailed analysis by enabling a highly

efficient evaluation of production data and by guiding a user to ask important ques-

tions. An exemplary production system is simulated to depict the characteristics of

the visualizations and to show the applicability and effectiveness of the presented

analysis tool.

This chapter is structured as follows: The next section provides an overview

of related work and defines requirements for data analysis and visualization tools

for complex production systems. Section 3.3 describes the underlying simulated

production system and focuses on the methodologies used in the presented analysis

and visualization tool. Finally, this chapter is concluded by summarizing the main

contributions in Section 3.4.

3.2 Related Work

This section will summarize related work in data analysis and visualization tools

for cyber-physical production systems and derive the resulting requirements for a

visual analysis tool.

3.2. Related Work 19

3.2.1 Data Analysis in Cyber-Physical Production Systems

The data available in a cyber-physical production system can be used to make pro-

duction systems more flexible. In this context, flexibility can be understood, on the

one hand, as the transformability of the system to engineering changes on medium

or long term perspective. On the other hand, flexibility can be understood as achie-

ved by decentralized production control on a short term view.

It is obvious, that the vast amount of data is not useable without refinement.

Therefore, user friendly tools for data analysis and visualization are needed [106].

Examples for engineering changes are the reconfiguration, addition, substitution

or removal of production equipment, e.g. machine tools, in a manufacturing system

[99]. They usually have extensive impacts on the manufacturing system due to the

manifold interrelationships among production objects [73] and hence need careful

analysis and planning before implementation. The change in one element might

result in the disruption of the process chains, material flow or information flow.

Therefore, tools are required that can analyze the effects of envisaged engineering

changes in a fast and comprehensive manner [72].

Tools that support the planning and analysis of changes in manufacturing sys-

tems can be found within the concept of the digital factory [20]. Simulation and eva-

luation software for products and material flows can be applied in order to analyze

processes and their changes. However, such software tools require specific know-

how and qualified personnel to use them and to keep them up to date, and are not

specialized on engineering changes [102].

A framework specialized for analyzing impacts of engineering changes to exis-

ting manufacturing systems is proposed by Malak et al. [72]. Here, the alternative

solutions for engineering changes are visualized in a 3D virtual environment where

effects on factory layout and material flow can be seen in a spatial context. Although

a three-dimensional virtual environment displays information intuitively, and thus

gives a realistic feeling of the modeled factory, it shows only partial views of the

factory and does not guide the user to the information needed.

For the fast and effective analysis of impacts to engineering changes, both, ag-

gregated and detailed views, are necessary. To enable the overall evaluation of the

20 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

given situation, e.g. to examine process chain and information flow consistency, the

available data needs to be visualized in an aggregated manner. On the other hand,

scalability of the data is required to allow the user to focus on single products or ma-

chines, and to well defined time steps of special interest. An essential requirement

is to guide the user to the most interesting features of the regarded system, and to

show critical issues. Therefore, comparative and interactive data highlighting inte-

grated in the spatial context of the factory is needed. Different perspectives focusing

on machines, products and material flows within the visualization tool need to be

distinguished and interlinked in an interactive manner.

In contrast to the planning of engineering changes, decisions in production cont-

rol need to be taken in real-time with limited information. The concept of self-control

in a decentralized production system is based on the ability of several elements of

the system (e.g. machine tools or work pieces) to act and decide autonomously. In

contrast to that, in the centralized approach, planning is accomplished by a superor-

dinated planning entity. Therefore, especially for decentralized production control

with a multitude of decision makers, a fast recognition of data patterns is necessary

to adapt the behavior and decision rules of the acting elements.

The applicability of different self-organization concepts is tested in several rese-

arch projects by using prototype factories (e.g. [15, 120, 66]). As the implementation

of such prototypes with real machinery involves considerable effort and expenses,

they are therefore not meant for real scale experiments. Thus, the amount and com-

plexity of data can still be managed manually, so tools for visual evaluation and

optimization of the concepts are missing. Ilsen et al. propose a test field based on a

multi-agent system to test several self-organization concepts against each other in a

real sized but virtual environment [48]. Here, several different decision routines, e.g.

for machine tool selection or production order, are possible. This case shows, that in

the analysis of decentrally controlled production data, the impacts of different de-

cision routines need to be visualized. Further, there is a need to identify patterns

on an aggregated data level to derive the system’s sensitivity to changes of decision

routines. As a consequence, aggregated views displaying the overall performance in

a spatial context, and detailed views representing the perspective of single elements,

are necessary to understand an entire system.

3.2. Related Work 21

To summarize, one major issue for data visualization is to be intuitively under-

standable. Therefore, an interactive guidance for the user is required, which makes

it easy to find interesting features in a data sets. To get a quick but comprehensive

overview of the status of the production system, different perspectives on an aggre-

gated level are needed. These have to be interlinked to navigate through the per-

spectives. Beside the aggregated views, scalability is a further required functionality

that enables to select single hotspots and establish detailed comparisons between

machines, products or time steps. Embedding the data into the spatial context of

the factory is needed to give the user a realistic and intuitive understanding of the

factory and its performance.

3.2.2 Visualization Tools in Production Planning

Various approaches [87, 95, 70, 110] present tools to visualize the performance of

a production system. They mainly consist of strategies on stacking or combining

single visualization entities, as workload or production time graphs for different

machines or points in time. The main disadvantage of these approaches is, that they

do not provide spatial context or user guidance, which was identified to be essential

for data analysis in cyber-physical production systems.

The visualization of product flows is an important task in the field of production

planning. Embedding such flows into an underlying geometric model was already

used in other domains like economical trade visualizations [111] and urban traffic

visualizations [100]. There, money transfers are embedded into geographical maps

and vehicle flows are embedded into traffic maps, respectively. The presented work

makes use of this approach and transfers it to the domain of cyber-physical pro-

duction systems by embedding product flows into virtual factories.

Wu and Acharya [116] present an approach to visualize the workload of a ma-

chine with a stacked box representation of the products waiting for this specific ma-

chine. Although this representation shows the order and number of waiting pro-

ducts, the approach does not provide a spatial context and only takes a certain point

in time into account. Therefore, this chapter extends the approach of Wu and Acha-

rya by applying it to a whole time window and embedding it into a spatial context

for all machines at once.

22 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

Doil et al. [19] present an exploration system based on a virtual reality envi-

ronment that allows users to choose different manufacturing settings. Because this

is an intuitive way to handle manufacturing settings, this chapter also provides a

three-dimensional representation of the factory that is compatible with a virtual re-

ality environment. In addition to the approach of Doil et al., important aspects for

factory planning like product flows or machine workloads are visualized directly in

this spatial context.

The visualization of production times is handled in the work of Zhang [119].

Their approach presents a comparative visualization of production times where the

user can examine the production times under certain conditions. Although that is

a good representation of the production times, their scatterplot alignment makes it

hard to compare different products. In contrast to that, this chapter visually captures

the development of manufacturing time against degree of completion. Here, all pro-

ducts are aligned consistently, enhancing the user to directly compare production

times.

Ertek et al. [24] visualize statistical features of production times for different ma-

nufacturing settings. Their approach can compare production times resulting from

these settings, but no user guidance to find good settings is provided. In addition to

that, the visualizations presented in the current work highlight interesting features

and thereby guide the user in the analysis of manufacturing settings.

Based on the derived requirements and the found issues in production planning,

this chapter shows the development of a visual analysis tool for virtual manufactu-

ring systems.

3.3 Methods

The following sections will describe the production system that is simulated to obtain

the data used for analysis, and the methodologies to visually analyze this data and

guide the user to interesting features.

3.3. Methods 23

3.3.1 Characterization of the Simulated Production System

In a first step, a simulation is used to acquire production data of a virtual factory. All

of the factory’s components like the machine tools and the product workpieces are

virtual as well. Each machine has a machine type and each product a product type,

so there are different types of virtual products and machines.

The work plan, i.e. the order of operations required to produce a final product,

is given externally and can not be changed (see Table 3.1). Thus, the product type

defines which operations need to be processed sequentially to finish the product,

while the machine type defines the operation the machine is capable of.

Product Operation Production Process Time
Type Number Technology [min/pc]
A 1 Milling 52

2 Milling 65.3
3 Drilling 200
4 Tapping 211.1

B 1 Milling 83.3
2 Turning 163.9
3 Drilling 100
4 Tapping 88.9
5 Turning 16.4

C 1 Turning 185.8
2 Drilling 300
3 Turning 142.1

TABLE 3.1: Work plan describing the individual operations perfor-
med for each product type and their according processing times.

The ability of machines of a certain type to perform an operation with specific

requirements is encoded into the machine type. For example, if the machines of

a certain type are able to drill holes, but their accuracy cannot be guaranteed to

be high enough for a certain operation, their machine type marks this operation as

not performable. Though, other machines might be able to perform this operation

with the required accuracy. Thus, the technological capabilities are encoded into the

machine types.

The material removal rate (MRR) may vary during operations depending on ma-

terial type, cutting speed and depth, cutting aids, tool type or other factors. This le-

ads to different process times, even for operations with the same production techno-

logy. The required set-up times for each operation are included in the resulting pro-

cessing times that are given in Table 3.1.

24 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

To finish the production of a product, all of its operations need to be processed in

order, while each operation takes a certain time. Since in the presented example no

machine is capable of performing all operations, the products have to be processed

on different machines sequentially. So the current operation of a product is first

finished on one machine, and then the product is transported to another machine.

Since this new machine might be busy, the product is enqueued. To do so, each

machine has a queue of waiting products that are processed in order of arrival (first

in - first out).

If there are different machines of the same type, the question arises, which of

these machines should process a certain product. This question can not be answered

in a perfectly optimal way for real-life sized problems due to its high computational

complexity. So an optimal solution can not be calculated in a feasible time, but heu-

ristics can be evaluated efficiently to come close to an optimal solution of product

distributions. This chapter uses the heuristic of always choosing the machine that

will have processed the product’s individual operation first. Other heuristics could

be considered as well, but since the choice of heuristic is not important for the de-

monstration of the presented analysis tool, the described heuristic is chosen out of

simplicity reasons.

Another issue is the optimal arrangement of machines in the factory. This pro-

blem is also computationally very expensive and cannot be solved optimally in a

feasible time for a larger number of machines. Therefore, the arrangement of ma-

chines in the presented example was chosen as demonstrated in the next section by

simply distributing groups of identical machines within the factory.

The transportation times of products between the machines depend highly on

the arrangement of those machines. Since the production batches in the used exam-

ple are very large, the resulting transportation times are very small in comparison.

Therefore, the transportation times are visually disappearing in this example. Still,

the methodologies that are presented in the next section are easily extendable in a

straightforward way to also visually include transportation times, as will be seen

shortly. In the presented example, a free transportation model is used. Naturally,

other simulations could use restricted transportation routes to implement conveyor

belts or other transportation methods.

3.3. Methods 25

The production data used for the analysis describes which product and which

operation is performed on which machine at which point in time. To acquire this

data, each product type is virtually produced 30 times in a simulation, while starting

with a product of type A, then B and C, and then repeating this loop 30 times with

a temporal gap of 10 minutes in between the products. This means, a new product

of a specific type starts its virtual manufacturing every 30 minutes. To analyze the

gathered production data, the visualizations and methodologies described in the

following sections are used.

3.3.2 Visualization

Based on the requirements developed in Section 3.2, a tool for the user-guided visual

analysis of simulated production data was designed as described below. The tool is a

linked view system, visualizing the manufacturing process under different aspects.

This means, that there are different views, each showing the same data but having a

focus on different aspects. The presented tool contains a flow view, a workload view

and a production view.

Additionally, the views are interlinked by transferring user interactions like se-

lection and highlighting of products, product types or machines from one view to all

views. Another user interaction is to choose a time window by manipulating a point

in time and an interval size in all views. Then, this time window will be considered

for visualization. This enables the user to zoom in and out onto certain interesting

points in time.

All of the views of the system only show the data that occurs during this chosen

time window, thereby treating this window consistently for all views. By doing so,

the user is enabled to focus on certain features while the overall picture is preserved.

This helps the user in building a mental map of the production data. Since all views

of the presented system always show data for the same time window or selection, a

cognitive transition from one view to the others is straightforward.

After the virtual manufacturing system is simulated once, the whole tool and

its views work in real-time to provide flexibility of interactions to the user. The

presented tool can be used to analyze virtual factories, provide user guidance for

later optimization or comparison, and help in decision making.

26 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

FIGURE 3.1: Visual representation of the factory model and its ma-
chines. Here, the setup contains two milling machines, two turning

machines, one drilling machine and two tapping machines.

The overall goal is the optimization of the production process in the virtual fac-

tory (see Figure 3.1) with respect to a diversity of parameters. Still, this optimization

cannot be done fully automatically because of its high computational complexity.

This stresses the importance of the presented tool to support users in their analysis

tasks. Although the optimal solution is unknown to users, the presented tool can be

used to iteratively improve factory settings. By that, users are enabled to approx-

imate an optimal solution, thereby finding a sufficient solution and gain a certain

confidence in their production process.

The realization for each view of the tool is presented in the following sections.

Flow View

The flow view provides the most general and intuitive visualization and helps crea-

ting an overview of the virtual manufacturing system by containing different visual

elements (see Figure 3.2).

The geometric model of the factory and its machines is displayed to form a basis

for an embedding into a three-dimensional virtual context. To reduce the visual

occlusion of other graphical elements, semi-transparency is used for the geometric

model. Using a three-dimensional model of a factory as a spatial context is a familiar

working environment for analysts and domain experts who are used to these kinds

3.3. Methods 27

FIGURE 3.2: Flow view of a virtual production system showing the
geometric model of the factory and its machines, the product flow for
all products color-coded by product type and the machine workloads

for all machines.

of visualizations and interactions. Also, due to its simplicity and intuitiveness, this

embedding is suitable for presentations.

The product flow extends this natural environment to allow the tracking of pro-

ducts throughout the factory as described later. This results in a direct visual feed-

back on the emergent behavior of the products in combination with the used heuris-

tic method for distributing products onto machines. A user can see what machines

individual products were processed on, and how the products are distributed.

In addition to the visualization of the product flow, the presented view contains

a visualization for machine workloads. Here, the workload for each machine is dis-

played by showing the machine’s queue for several points in time. These graphical

elements are attached to the individual machines, leading to a direct visual feedback

on the performance of machines and their queues. Also, the visual embedding into

a spatial context supports a higher degree of intuitive understanding.

28 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

Combining multiple elements in one view results in a tool that is capable of ana-

lyzing factory arrangements and mechanisms. The realization of the product flow

and the machine workload is shown in the following.

Product Flow: The product flow is the combination of the trajectories formed from

all the products moving throughout the factory over time. This is demonstrated in

Figure 3.2, while the images in Figure 3.3 show a more detailed look on the proper-

ties of the product flow.

A spline [26] is a piecewise polynomial function of a fixed degree. It can smoothly

interpolate a sequence of points without fluctuating too much, so it is well suited to

follow a trajectory. These splines are used to represent the product flow by visuali-

zing a spline segment for each moving product.

Instead of visualizing the “real” transportation routes between machines, the

spline representations show the topological routes of the products, meaning the or-

der in which machines are visited. If real transportation routes were provided as a

model or restrictions in the transportation were known, these “real” paths could be

used instead.

The supporting points of a spline are set to the machine positions that perform

the respective production steps of a product, with an additional random offset to

avoid visual clutter among multiple splines. The smoothness of the splines helps

the user to follow the progress of individual products. The splines are visualized

using Gouraud shaded [37] tubes. This means, that small tubes are used for their

geometric models, and that these geometries are lit by a light source to enhance the

natural understanding of their shape and progress. Additionally, alpha-blending the

spline representations help making them halfway transparent to further distinguish

individual spline tubes while preserving an overall picture of all spines. Figure 3.4

shows a closeup of both milling machines from Figure 3.2 that demonstrates these

visual effects.

Like all other data mining and visual analysis approaches, this method has its

limits. Large numbers of products or product types can lead to visual clutter and

increased confusion. Fortunately, for the chosen spline representation there exist

methods like attribute-driven edge bundling [84] or hierarchical clustering of flow

3.3. Methods 29

(a) (b)

(c) (d)

FIGURE 3.3: Detailed views of the product flow demonstrating the
visualization of different properties: (a) product types color-coded,
(b) product completion ratios ranging from white over magenta and
blue to cyan (compare Figure 3.8), (c) relative waiting times and (d)
relative processing times per product ranging from green over yellow

to red.

maps [85] to compensate or mitigate those effects. In addition to that, general filte-

ring and data aggregation techniques can be used to analyze and compare facets of

interest in the production data.

By utilizing these visualizations, an intuitive tool for the examination of proper-

ties in the product flow is introduced. By color-coding different properties, the user

is guided to interesting events and locations in the simulated production system.

Figure 3.3 shows four examples for different properties. In these visualizations, the

lower left dot represents the factory’s entrance position for all products, while the

lower right dot is the exit position when the products are fully manufactured. Also,

30 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

FIGURE 3.4: Closeup of the product flows demonstrating different
methods to reduce visual clutter.

for demonstration purposes, the images only feature one drilling machine (top right

dot in each image).

Figure 3.3(a) shows the overall product flow for three different types of products.

Here, each spline has a color given by the respective product’s type, coded as red,

green and blue. This enables the user to follow and distinguish products by their

specific type. Also, the user can see how products of the same type are split up

and distributed onto different machines for certain production operations. In the

example in Figure 3.3(a) this directly generates inside into the unequal distribution

of blue products.

Another alternative to showing product types in the product flow is to visually

encode the waiting or processing times of products. In Figure 3.3(c) the relative

waiting time of an operation (in respect to the mean waiting time of all operations of

the respective product type) is coded as color. Here, the colors range from green over

yellow to red. For a product of a certain type, green means, that an operation has a

low waiting time compared to the other operations of the same product type. Yellow

represents an average waiting time, while red encodes a high waiting time. This

highly intuitive visualization method guides the user to machines where products

have to wait longer than average before being processed, like the single drilling

machine in this example.

Besides the presented properties, further attributes like production time can be

visualized. By mapping the values of such an attribute directly to colors, bottlenecks

of production steps can be seen for the products individually. Mapping relative

3.3. Methods 31

attribute values, i.e. values set in comparison to the values of all other products

of the same type, extends this mechanism and enables the user to visually analyze

bottlenecks for an entire product type.

Although this is a powerful tool to locate weaknesses in the factory design, this

flow visualization can not show single product locations and their waiting positions.

Therefore, an extension of the overall flow visualization is required.

This issue is tackled by restricting the overall product flow visualization to the

user defined time window. Here, only the positions of a product within this tempo-

ral window are displayed. A product is moving within the time window defined by

the user, resulting in a path segment of a certain length. If a product moves slowly

caused by longer transportation, waiting or production times, the respective path

segment will become shorter. In contrast, if a product moves faster, the respective

path segment will become longer, since the product travels a longer distance within

the given time interval. Figure 3.5 shows an example for equally large time windows

moving forward in time (left to right image), thereby resulting in products moving

through the virtual factory. The user is enabled to see that the overall flow slows

down with increasing time, since the single drilling machine in the top-right corner

of each frame is a bottleneck.

To determine the position of a product moving from a machine A to a machine

B for a specific time, the route between machine A and B is divided into three parts.

The first third of this route represents the operation of the product being processed

at machine A. The middle third represents the transportation of the product from

machine A to machine B. The last third of the route represents the time the product

waits in queue to be processed by machine B. So if the product just finished its wai-

ting period and starts being produced by machine A, the position of this product is

the position of machine A. If the product just finished its production period at ma-

chine A and starts traveling to machine B, the position of this product is one third of

the path from machine A to B. If the product reaches machine B and starts waiting

to be processed by machine B, the position of this product is two thirds of the path

from machine A to B. And if the product finished its waiting period and starts being

produced by machine B, the product’s position is the position of machine B.

The advantage of linearly interpolating the position for transportation, waiting

32 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

(a) (b) (c)

(d) (e)

FIGURE 3.5: Sequence of product flows for a short temporal window
moving forward in time (left to right image), resulting in products

moving through the virtual factory.

and production phases is, that a product’s position advances when the product’s

status is increased. This is the case when either the product’s transportation advan-

ces, the remaining time the product has to wait in a queue decreases, or when the

product’s degree of completion increases during production. By that – in addition to

spatial processes like transportation – temporal processes like waiting or being pro-

duced are transferred into motion, thereby achieving a high level of intuitiveness.

This method forms a visual encoding of the product flow and its efficiency, and

allows the user to follow single products over the whole production time. Additi-

onally, it is possible to identify machines with bottlenecks resulting in a high pro-

duction time. Furthermore, the user can see the location of the products of different

types and the amount of products that are produced within the concerned time win-

dow. Also, choosing the time window to be the whole simulated time interval results

in Figure 3.3(a).

Although this is a powerful visualization, it is hard to identify the order in which

3.3. Methods 33

multiple products line up in queue to wait for a certain machine. This is overcome

by the visualization of the machine workload.

Machine Workload: To tackle the problem of requiring additional insight into the

waiting queue of a machine, the presented approach embeds a suitable visualiza-

tion for each machine’s workload into the three-dimensional factory model (see Fi-

gure 3.2). By doing that, the spatial context of the virtual factory model is preserved

and hence the intuitiveness is increased.

For each point in time of the time window defined by the user, all products in

the waiting queue of a machine are shown in their unique product type’s color. For

consistency reasons, this is the same color as used in the flow view.

The waiting products are visualized as stacked boxes. Each box has a black frame

to distinguish successive products of the same color, meaning the same product type.

For each particular product, the height of the respective box corresponds to the re-

maining production time this product will need at the machine it is waiting for. The

product a machine is currently working on is located at the bottom of the stack,

while recently enqueued products are added at the top.

A single stack represents the waiting queue of a machine at a certain point in

time. The height of the stack equals the accumulated height of all boxes, thereby

visualizing the workload of the machine. Instead of limiting this visualization to a

single point in time, a stack for each point in time of the user defined time window is

visualized. This is consistent with the flow visualization. Additionally, the current

point in time is marked for better orientation. This results in a visualization that

is able to provide visual feedback on the development of a machine’s workload in

contrast to showing only a single point in time.

The result is a visualization for each machine’s workload, representing the exact

amount of waiting products and their production time and order for each specific

point in time. Figure 3.6 visualizes the workload of the first drilling machine from

the example shown in Figure 3.2. Figure 3.6 shows, that the products waiting in

the machine’s queue are quite unordered. This indicates, that rearranging the pro-

ducts in the machine’s queue into blocks of the same product type might have a

high potential in minimizing time losses due to tool changes within the machine.

34 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

When considering set-up times, this could speed up the average production time

by decreasing the overall set-up time. As this example shows, the user can intuiti-

vely analyze machine queues with respect to the number or types of products, their

workloads and even trends over time.

In addition to showing the real order of products in a machine’s queue, the user

is provided with the possibility to sort the individual stacks of the visualization by

product type. By doing that, the insight into the order of the products in the queue is

lost, but instead, a more direct visual feedback on the number and the accumulated

production time is gained for all the products of a certain type, as the bottom image

of Figure 3.6 shows.

(a)

(b)

FIGURE 3.6: Unsorted (a) and sorted (b) workload of the first drilling
machine showing the development of the machine’s queue with its

individual products waiting to be processed.

Although the flow view is a suitable tool to review several aspects of the manu-

facturing process, it is not able to compare the workloads of different machines or

the influence of design changes in the factory layout on production times, e.g. for

identifying bottlenecks in the production. This is tackled by further views that are

introduced in the following.

3.3. Methods 35

Workload View

The flow view lacks the ability to directly compare the workload of the machines in

the virtual factory. Therefore, a workload view is provided as shown in Figure 3.7

for the example used in Section 3.3.2. This view consists of a workload graph for

each machine, visualizing the different graphs positioned on top of each other. To

make the workloads comparable, the same coordinate system is used for all graphs,

meaning that the workloads of all the machines have the same x-coordinate for an

arbitrary point in time.

Consistent to previous visualizations, not only a single workload for a single

point in time is shown per machine, but the workloads for all points in time of the

user-defined time window are displayed. This provides insight into the develop-

ment of a machine’s workload over time, and offers the possibility to temporally

zoom in onto interesting features. Since the workload graphs for all machines are

linked, they always remain comparable. Additionally, the current point in time is

highlighted for better orientation.

Here, the focus lies on the magnitude of a machine’s workload, meaning the

accumulated production times of all products in the machine’s queue (compare to

height of graph in Figure 3.6). To not overload the visualization, only important in-

formation is included. Thus, all information about the individual products forming

this workload is neglected.

The workload of a machine is shown in the foreground as the height of the re-

spective graph. At each point in time, the highest workload of all machines is calcu-

lated and displayed in the background as a second graph with a light gray color. So

the background is the same for all graphs. This helps in comparing the workload of

different machines.

The color of the graph in the foreground representing a machine’s actual wor-

kload ranges from white to blue, thereby encoding the ratio of the machine’s wor-

kload to the globally highest workload by color. This means, that a high relative

workload results in a blue color, whereas in contrast, a low relative workload results

in a white color. This enables the user to relate the workload of individual machi-

nes to the globally worst workload, thereby intuitively identifying critical machines

36 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

dependent on time.

Multiple machines of the same type with a high workload may indicate a need

for more machines of this type, while multiple machines of the same type with a

low workload may indicate redundant machines. If both occurs for different points

in time, the user may want to redistribute the workloads. Because of that, the intro-

duced visualization is a good basis for analyzing machine workloads.

It is not necessary to optimize a machine in general, but at specific points in time,

when bottlenecks occur. The presented visualization helps identifying these inte-

resting points in time and the corresponding critical machines, which then can be

investigated and optimized further. As the visualization is intentionally not embed-

ded into the three-dimensional factory model, it also provides a good overview of

machine workloads and their critical features.

Production View

A missing feature of the previous views is to examine the production times for all

products of a specific type. This is done in the production view. The specific pro-

duct type can be chosen by the user, or an instance of the production view can be

displayed for each product type in parallel. Figure 3.8 shows the production view

for product type C with its three production operations (compare Table 3.1).

The top image of Figure 3.8 shows, that each individual product is visualized as

one slice. Although the manufacturing of different products starts at different points

in time, they are shown aligned in the production view to ensure comparability. This

allows the user to visually analyze production times.

A time against degree of completion graph is shown per product on its indivi-

dual slice. This means, that the x-axis measures the time since the start of the manu-

facturing of the individual product. The y-axis measures the degree of completion

for each product.

Since each product’s slice is parallel to the xy-plane, the remaining z-axis measu-

res the individual products themselves. As all products of the same type start their

manufacturing at different points in time, the z-axis can also measure this temporal

offset.

3.3. Methods 37

With increasing manufacturing time (x-axis), each product’s degree of comple-

tion (y-axis) increases from zero (purple color) until it reaches a value of one (cyan

color), meaning a fully manufactured product. The level of completion is calculated

by dividing the elapsed process time through the overall process time of a product.

Here, halfway completed operations are taken into account by interpolating their

relative level of completion linearly.

The resulting horizontal lines that can be seen in Figure 3.8 represent periods of

time in which the individual product is not processed. Instead, the product is wai-

ting in a queue for the respective machine to start producing the next operation of

this product. Several products with the same degree of completion lead to visual

plateaus. This is caused by equal operations being finished for several products.

Since plateaus are caused by a number of products waiting for the next operation to

begin, the vanishing of a plateau indicates that there are no more waiting products

for the upcoming operation. In general, transitions between neighboring plateaus

represent processing phases, while the plateaus themselves represent inactive pha-

ses, i.e. transportation or waiting phases.

The two lower images in Figure 3.8 show the same data as the top image but

without possible occlusion problems. Here, the lower left image clearly shows the

different process phases, while the completion ratio is visualized by color analog to

the top image. The begin and end of process phases are highlighted by thin black

lines. It becomes clear why optimizing machine workloads and thereby inactive

phases is that important for optimizing the overall manufacturing times by compa-

ring the time intervals of process versus inactive phases.

The lower right image shows an overview of the amount of products that have

exceeded a certain completion ratio after a given manufacturing time, ranging from

none (white color) to all products (blue color). This visualization focuses more on

the temporal trend of the products’ completion, thereby enabling the user to identify

interesting features based on the distribution the product’s completion ratios during

the manufacturing process.

In contrast to displaying only two-dimensional graphs for the minimum, the

38 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

maximum or the average production times for all products of the same type, the pre-

sented visualizations are capable of providing trend analyzes over the whole manu-

facturing time, while still preserving a high level of intuitiveness. The views are also

able to show interesting features like drastic changes in manufacturing time. This

is not only possible for the overall production time of a product, but also for each

individual operation. Yet, the user is enabled to get an overview over all products

of the same type. Furthermore, the user is visually guided to operations that take

longest or increase the production time most. At last, a visual exploration of changes

in production times is possible by comparing the resulting production views based

on different factory setups.

The presented flow view, workload view and production view focus on diffe-

rent aspects and form a combined system of interlinked views allowing the user to

examine production properties and factory performance.

3.4 Conclusions

This chapter introduced a tool for analysis and visualization of manufacturing data

generated by cyber-physical production systems. The tool displays manufacturing

data in an intuitive format that communicates relevant information to a human ex-

pert. To enable an overall understanding of a manufacturing system’s state and

process, aggregated views were generated. In addition, the visualizations can focus

on individual machines or products and zoom in onto interesting time steps. The

user is guided between the interlinked views showing machine workloads, state of

workpieces being manufactured, or material flows. Bottlenecks or excess machining

capacities can visually be highlighted, thus guiding the user to interesting locations

and events. The influence of changes of the factory setup, e.g. addition, removal or

reconfiguration of machining tools, can be simulated, analyzed and evaluated.

To support more realistic analysis and visualization of process chains, proper-

ties like machine accuracies and criteria like costs or lead times are a natural and

straightforward extension of the presented manufacturing system.

The presented visual analytics tool can be used to show the impact when using

3.4. Conclusions 39

different decision rules for production planning and control. Thus, this tool is suita-

ble for the analysis of the behavior of self-controlled production environments. Here,

the presented tool provides access to and visualizations of the detailed, underlying

data and its patterns.

Considering the ever increasing size and complexity of data created by today’s

production systems, opportunities exist to greatly increase the flexibility of pro-

duction systems with a focus on time or cost reduction, rapid adaptation to new ma-

nufacturing demands and product quality control. The presented approach holds

the potential to evaluate these opportunities by mining production data and ana-

lyzing different engineering changes, thereby adding value to the decision-making

process.

40 Chapter 3. Visual Analysis of Cyber-Physical Production Systems

(a)

(b)

FIGURE 3.7: Workload view showing a workload for each machine in
the virtual factory, thereby guiding the user to machines potentially
being overloaded or redundant at certain interesting points in time.
Image (a) shows a configuration with a single drilling machine, while
image (b) reduces the overall production time (see scale of time axis)

dramatically by using two drilling machines.

3.4. Conclusions 41

(a)

(b) (c)

FIGURE 3.8: Production view for all products of type C showing in-
active and processing phases of their three operations under different
aspects of manufacturing time, manufacturing begin and degree of

completion.

43

Chapter 4

Analysis of High-dimensional Data

4.1 Introduction

The representation of data quality within a high-dimensional dataset was mentio-

ned as one of the top challenges in information visualization [61]. This is especially

the case when a dataset contains noise or parameters such as aesthetics that cannot

easily be evaluated mathematically. Although Pareto optimality is a widely used

concept to identify optimal points in a high-dimensional space, hidden dimensions

justify to not only consider optimal but also nearly optimal points. So the concept of

Pareto optimality has to be extended to obtain measures on how efficient data points

are.

Therefore, this chapter is based on the work of Post el al. [88] and introduces

the Pareto factors describing three different ways to evaluate the relative amount of

data points that are more efficient than the evaluated point in the sense of Pareto

optimality. By utilizing these new measures, it is possible to evaluate the quality of

all given data points and thereby guide users not only to points on the Pareto front,

but also to interesting solutions near the Pareto front. The new measures can be

embedded into established visualization techniques such as scatterplots or parallel

coordinates in a straightforward manner as will be shown in this chapter.

Therefore, this chapter contributes:

• Scale-invariant and flexible measures based on Pareto optimality, called Pareto

factors

• Visual encoding of Pareto factors in established information visualization techni-

ques

44 Chapter 4. Analysis of High-dimensional Data

4.2 Related Work

Pareto optimality is a widely used concept to identify optimal high-dimensional

points in an arbitrary space [25, 27]. This section summarizes visualization techni-

ques that are based on the concept of Pareto optimality.

Different applications such as fishery or architecture use Pareto optimality to

identify interesting data points[82, 7]. Although this directly results in a set of opti-

mal data points, these domains are usually confronted with various dimensions not

well expressible or previously unknown. Therefore, this paper extends the defini-

tion of Pareto optimality.

Ruotsalainen et al. [101] use the gradient of the Pareto front to help the user na-

vigate through this front to find interesting solutions. Although this is a suitable

technique to navigate through Pareto optimal points only, hardly to express quali-

ties like aesthetics require to consider solutions that are not quite Pareto optimal as

well. Instead of being completely Pareto optimal, these solutions might have other

properties such as aesthetics that are improved. This can be accomplished with the

measures introduced in this chapter.

Witowski et al. [115] perform a study on how several known visualization techni-

ques can be applied to visualize the Pareto front. They point out that a combination

of several tools is most promising to visualize the Pareto front in a suitable way.

These techniques can be extended by the measures introduced in this chapter, the-

reby enabling users to evaluate the quality of found solutions with respect to Pareto

optimality.

4.3 Methods and Results

In compensation criteria like the Kaldor-Hicks efficiency [108] known from econo-

mics, a data point is defined to be more efficient if the sum of all gains is greater than

the sum of all losses in comparison to another data point. Here, an optimal point

is a data point for that no other data point is more efficient. Figure 4.1(a) shows

the optimal point B in blue and all other points in dark gray. Point A is no Kaldor-

Hicks optimum because there exists a more efficient point above the diagonal going

4.3. Methods and Results 45

through point A, and point B is optimal because there exists no such point for B. The

problem with this kind of measure is that it is not invariant to anisotropic scaling.

Figure 4.1(b) shows the same set of data points, this time scaled anisotropically by

a factor of three in the horizontal direction. Here, point B is not optimal any more

because there exist more efficient points and point C becomes the new optimum.

To avoid this problem, this chapter is based on Pareto optimality which is scale-

invariant [28]. A data point x is more efficient than another point y regarding Pareto

optimality if x is greater than y in at least one dimension and not smaller in all other

dimensions. Then, a data point is Pareto optimal if there exists no other data point

that is more efficient. Figures 4.1(c) and 4.1(d) show the same data points with the

same scalings as before, this time evaluated with Pareto optimality. As can be seen,

the blue Pareto optimal points remain optimal after anisotropic scaling.

(a) (b)

(c) (d)

FIGURE 4.1: A set of data points with different scalings. (b) and (d)
are anisotropically scaled by a factor of three. (a) and (b) show the
optimality towards a compensation criterion and (c) and (d) show
Pareto optimality (blue points are optimal). From (a) to (b) the opti-
mum changes from point B to point C, meaning that this measure is
dependent on the (anisotropic) scale. In contrast to that, the Pareto
optimality in (c) and (d) is scale-invariant with multiple points being

optimal.

To provide information on how far away from optimality non Pareto optimal

points are, this chapter introduces novel measures as described in Equations 4.1, 4.2,

and 4.3. The relations <p and >p respectively mean less and more efficient in the

sense of Pareto optimality as described above. Here, x⃗1, . . . , x⃗n are the given data

46 Chapter 4. Analysis of High-dimensional Data

points and p< (.), p> (.) and p<> (.) are the new measures called Pareto factors. These

measures preserve scale-invariance since <p and >p are also invariant to anisotropic

scaling.

The measure p< (.) provides the relative number of less Pareto efficient data

points to all points. This behaves like a distance to the least Pareto efficient points

(compare to second row of Figure 4.2). The measure p> (.) provides the complement

of the relative number of more Pareto efficient data points to all points. This behaves

like a distance to the most Pareto efficient points (compare to third row of Figure 4.2).

And the measure p<> (.) is a combination of both previous measure and provides

the relative number of less Pareto efficient data points to points that are either less

or more Pareto efficient. This behaves likes a distance between the least and most

Pareto efficient data points (compare to forth row of Figure 4.2).

p< (x⃗i) =
N< (x⃗i)

n − 1
(4.1)

p> (x⃗i) = 1 − N> (x⃗i)

n − 1
(4.2)

p<> (x⃗i) =
N< (x⃗i)

N< (x⃗i) + N> (x⃗i)
(4.3)

with

N< (x⃗i) =
∣∣ { x⃗j ∈ {x⃗1, . . . , x⃗n} : x⃗j <p x⃗i

} ∣∣ (4.4)

N> (x⃗i) =
∣∣ { x⃗j ∈ {x⃗1, . . . , x⃗n} : x⃗j >p x⃗i

} ∣∣ (4.5)

Normalizing these measures to range from zero to one for all data points yields

what will be called the normalized Pareto factors and is useful for evaluation, weig-

hting or visual analysis. Until now, the user cannot choose how far all data points

are considered or how far only Pareto optimal points are of interest. To compensate

this, the normalized Pareto factors are raised to some user defined power. Figure 4.2

4.3. Methods and Results 47

shows the effect of different exponents, where higher exponents focus on Pareto op-

timal points only, while lower exponents preserve an overview over all data points.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

FIGURE 4.2: The introduced Pareto factors are used to evaluate the
quality of data points with respect to Pareto optimality. The first
row shows a scale-dependent compensation measure as a compari-
son. The second, third and forth rows show the new Pareto factors
p<, p>, and p<>, respectively. A scatterplot visualization is extended
showing the value of the measures using a color scale ranging from
yellow (0.0) over cyan (0.5) to blue (1.0). The effect of different expo-
nents is shown for the exponents 0.0, 0.25, 1.0, 4.0, 16.0 and ∞ (from
left to right). As shown, the different measures favor points near the

least or most Pareto efficient data points differently.

Figure 4.2 shows how the Pareto factors can be applied to established informa-

tion visualization techniques like scatterplots. A color range from yellow (Pareto

factor of 0.0) over cyan (0.5) to blue (1.0) is used. Users can interactively manipulate

the used exponent to focus more or less on the Pareto optimal points only. The ap-

plicability of the presented measure is not limited to scatterplots only but can also be

applied to scatterplot matrices, parallel coordinate plots, or star plots, for example.

Within these techniques, the presented Pareto factors allows to evaluate the quality

of data points.

48 Chapter 4. Analysis of High-dimensional Data

4.4 Conclusion

This chapter introduced novel measures for the quality of data points in a high di-

mensional space based on Pareto optimality. It was shown that the introduced me-

asures are scale-invariant and enable the evaluation of the efficiency of data points

with respect to Pareto optimality. Based on these measures, it was possible to visu-

ally extend established information visualization techniques. This helps to not only

consider Pareto optimal data points that might not be the desired solution for pro-

blems with noise or hard to evaluate parameters like aesthetics. Instead, also nearly

Pareto optimal solutions can be analyzed to find a desired tradeoff.

49

Chapter 5

Graph Extraction using Fast 3D

Thinning

5.1 Summary

In many applications graphs and networks need to be analyzed, although they are

not defined directly through the input datasets. A often occurring example are image

data. Often, these images capture objects, that can be represented as a graph or

flow network. Example application, that obtain image data as an input and need to

transform those images into graphs and networks are face recognition [44], vascular

trees [97] and text recognition [35]. Therefore, the input images need to be transfor-

med into a graph or a flow network before the visual analysis of the extracted graphs

can be performed, which is a task of the image processing field.

To understand the shape of different objects in an image and therefore offering

the first step to transform an image into a graph, centerlines are a common tool.

They offer a geometric and topological representation, which allows further exami-

nations [56]. To obtain a centerline, thinning is often the first step, where voxels

are successively deleted until a skeleton remains [96]. The resulting skeleton can be

further used to obtain a graph that can be examined using visual analytics metho-

dologies.

Unfortunately, the properties of a skeleton are not unique and alter depending

on the use case in different application [17]. Independent from the application, ske-

letons need to fulfill specific requirements to be suitable for further examinations.

First, skeletons require a one pixel thickness, to be analyzed properly. Additionally,

50 Chapter 5. Graph Extraction using Fast 3D Thinning

interesting structures of an image are usually segmented, resulting in a discrete bi-

nary mask, which needs to be handled by the thinning algorithm. Furthermore, the

thinning result requires the ability to capture the geometry of the thinned objects

as well as possible. This means, that the skeleton needs to preserve the length of

an object and it needs to be located in the object’s center. Moreover, the topological

properties of the object have to be retained. This means that, connected components

or branches need to be presented by a skeleton with the same properties. Finally, as

thinning often needs to be computed for various objects, a fast computation is requi-

red. Depending on the application, these list of properties needs to be extended.

Therefore, this chapter is based on the work of Post et al. [90, 91] and presents a

fast and robust thinning approach (Section 5.3). The algorithms remove successively

voxels from the input object by evaluating a moving local neighborhood until the

desired skeleton remains. In order to achieve a fast computation, all possible neig-

hborhood settings are stored in a lookup table. To provide skeleton outputs with

different properties, the presented method allows the use of different lookup table.

To show the effectiveness of the presented solution, this chapter offers a runtime

comparison with the widely used ITK library and demonstrates skeletons obtained

with the presented approach (Section 5.4).

5.2 Related Work

The following section will give an overview on thinning algorithm classes and pre-

sents relevant examples and their properties.

Reviews of thinning approaches are provided by Lam et. al [60] (2D) and Saed

et. al [103] (3D). They stated, that thinning methods can be divided into iterative and

non-iterative approaches. Iterative approaches start with an object that is thinned by

iteratively deleting border voxels using a specific scheme until the skeleton remains.

This category itself can be divided into parallel and sequential approaches where se-

quential approaches check for each voxel separately whether it can be deleted or not.

Parallel thinning algorithms decide in each iteration for which can be deleted. These

algorithms often differentiate between the direction from where voxels are deleted

5.2. Related Work 51

and alter their iterations based on them. Depending on the amount of different ite-

rations an algorithm performs the number of cycles for a parallel thinning algorithm

can be determined.

Thinning can be performed for grey scale images as shown in [77, 18]. Although

these algorithms can handle arbitrary image data, their computational effort increa-

ses. Additionally, in medical image processing thinning is applied to a preprocessed

image where the object to be thinned is already determined via a segmentation step.

This results in a binary image that does not benefit from the flexibility of a grey-

scale image thinning. Therefore, this paper addresses binary images as the medical

domain does not require a grey scale thinning approach.

Thinning methods for binary images are available as sequential [38] or parallel

approaches [3, 1]. Their common drawback is the thinning result computed without

concerning the local neighborhood of a voxel. They result in skeletons that do not

have a thickness of one voxel. As mentioned before, this is an important requirement

in medical image processing. To solve this problem, this paper presents a thinning

algorithm based on local neighborhood evaluations, that outputs a skeleton with a

thickness of one voxel.

Various methods [8, 21, 71, 74] use a moving local neighborhood window to

evaluate if a voxel can be deleted or not. Unfortunately, they do not preserve the

geometric and topological properties of the examined medical object. Therefore,

this paper presents a thinning method based on local neighborhood evaluation that

results in a skeleton suitable for medical image processing.

Lee et. al [64] presented a parallel, topology and geometry preserving algorithm

that results in a skeleton with a thickness of one voxel. Therefore, this algorithm

is able to fulfill the mentioned requirements for skeletonization of medical image

data. The approach is implemented in different libraries [75, 42]. The underlying

algorithm determines deletable voxels by checking different properties. Although

the approach is based on a lazy evaluation (if one property does not hold, the remai-

ning do not need to be checked) this approach can be computationally expensive.

Therefore, this paper presents a fast implementation that is able to identify deletable

voxels correctly, fast and with an equal time consumption in all possible cases by

using a lookup table.

52 Chapter 5. Graph Extraction using Fast 3D Thinning

5.3 Methods

The following section describes how thinning can be performed by using lookup

tables. In addition, the section shows a general procedure for parallel thinning that

can utilize arbitrary lookup tables to increase the flexibility.

5.3.1 Local Neighborhood Lookup Tables

In order to determine deletable voxels, a moving local neighborhood, as shown in

Lee et al.’s approach [64], is used. Therefore, the work states a family of thinning

algorithms that can be utilized to obtain skeletons fulfilling different properties from

an binary image data. In each thinning algorithm, a list of criteria (see Table 5.1) is

used to evaluate the moving local neighborhood. Their three sets of used criteria

and the different thinning results will be explained in the following.

Simple thinning (T1), requiring criteria C1 − C4, results in a skeleton that preser-

ves the object’s geometry and topology, while neglecting line-like branches.

Instead, the implementation of a medial axis thinning (T2), which additionally

preserved the length of an object, requires criteria C1 −C5. In addition to the proper-

ties of the simple thinning algorithm, condition C5 avoids a shortening of line-like

structures, which outputs a medial axis.

To achieve a medial surface thinning (T3) as a thinning result, criteria C1 − C4

and C6 are required. Criteria C6 verifies, if the observed voxel is embedded in the

medial surface or its border. If this is the case, the voxel is not allowed to be deleted,

thereby remaining the medial surface of the structure.

In the algorithms presented by Lee et al. the moving local neighborhood deter-

mines, if a voxel is deletable, by checking the applied criteria according to their order

in Table 5.1. This evaluation is performed until either a criteria is not fulfilled (voxel

will not be deleted) or all criteria are fulfilled (voxel will be deleted). Depending on

the criteria, that causes the computation to stop, the runtime for a local neighbor-

hood evaluation varies. As a result, the runtime of the approach depends on the

presence of slow cases in the input object, whereas a dependency of the image size

is preferred.

5.3. Methods 53

Formula Usage Intuition

C1 f (v) = 1 T1, T2,
T3

The current voxel has to be
filled.

C2 f (v − d) = 0 T1, T2,
T3

Considering the current di-
rection of thinning, the pre-
decessor of the voxel is not
allowed to be filled.

C3 E(v) = 0 T1, T2,
T3

The Euler characterists of a
point needs to be unchan-
ged. This means, that the
geometric properties of the
thinned object are preserved

C4 S(v) = 1 T1, T2,
T3

The considered point needs
to be a simple point. This
means, that removing this
point, remains the objects
topology.

C5 |{n : n ∈
N26(v)∧ f (n) =
1}| > 1

T2 The number of neighbors
in a local neighborhood of
a point needs to be higher
than one. This prevents
shortening line-like structu-
res and therefore keep their
length.

C6 ¬∀i ∈ {1...8} :
Index(N2

i (v)) ∈
{153, 165, 170,
195, 204, 240} ∨
|N2

i (v)| ≤ 3

T3 The voxel is not allowed to
be a medial surface point or
the edge of a medial surface
while considering the oc-
tants in the voxel neighbor-
hood, as shown in Lee et al’s
work. The method presents
a lookup table deciding we-
ather a voxel belongs to the
medial surface or not. The
list of matching cases (iden-
tified by their number) was
extended to obtain correct
results.

TABLE 5.1: Thinning criteria of the presented lookup tables and their
intuition. The different use of these criteria alters the output of the

thinning result.

54 Chapter 5. Graph Extraction using Fast 3D Thinning

FIGURE 5.1: Scheme for neighborhood encoding with example out-
put. The moving local neighborhood evaluates the single voxels of
the volume by encoding its neighborhood setting to a lookup index.
This index can be used to determine weather a voxel needs to be de-

leted or not.

As the evaluation output of the moving local neighborhood remains the same in

the entire computation of the thinning algorithm, their result can be computed in

advance and stored in a lookup table. Based on that, the algorithm does not need to

recheck all criteria again during its runtime. Instead it can request the output of the

current neighborhood setting in the lookup table and therefore requiring an constant

time consumption for each voxel evaluation.

To achieve a standardized indexing scheme for arbitrary lookup tables, the pre-

sented method of Post et al. [90] is used as shown in Figure 5.1. The table index is

calculated by stringing together the filled (value 1) and not filled voxels (value 0)

from the local neighborhood, except for the current voxel value itself. As this value

needs to be checked in the thinning procedure as well, this would not lead to a re-

duction of time consumption. In total, the resulting lookup table holds 226 entries,

storing all possible settings of a voxel’s local neighborhood. This results in a 8MiB

file, that can be loaded in less then one second. For each of the presented thinning

strategies (simple thinning, medial axis thinning and medial surface thinning) our

approach provides a separate lookup table. Each of the provided tables can be used

as a basis for the thinning algorithm. Besides the presented lookup tables, novel

lookup tables can be created if they match the presented index scheme shown in

Figure 5.1.

5.3. Methods 55

FIGURE 5.2: Pseudocode for parallel thinning, using arbitrary lookup
tables.

5.3.2 Thinning Algorithm

The following pseudocode sketches the optimized thinning procedure and shows

how the lookup table is used to successively remove voxels until the skeleton re-

mains:

As an initial step, the input image is enlarged in each direction by adding a voxel

with the values of 0. Still, the thinning algorithm works on the original image voxels.

Resulting from the border duplication, there are no special border cases to consider

for the thinning procedure. In the original image, the algorithm needs to check each

voxel if it belongs to the border what can be computational expensive. This problem

can be avoid by the enlarged border.

After that, the actual thinning can be started. Each iteration consists of 6 cycles

that alter the direction d of the thinning (up, down, right, left, forward, backward).

This ensures, that the remaining skeleton lies as close to the center of the thinned

object as possible.

In each iteration all voxels of the input image are evaluated by the moving local

neighborhood. If their corresponding entry in the lookup table (LookupTable(v))

identifies the current voxel as deletable, it is stored in a list of Candidates. This list

holds all voxels that fulfill the five deletion criteria and thus they are candidates to

56 Chapter 5. Graph Extraction using Fast 3D Thinning

(a) K = 0 (b) K = 42 (c) K = 84

(d) K = 126 (e) K = 168 (f) K = 210

FIGURE 5.3: Simple thinning applied to an artificial dataset showing
the thinning result after K iterations.

be removed.

After all voxels are evaluated and the list of Candidates is filled, the algorithm

rechecks the lookup table for all Candidates sequentially. If the checked voxel is still

deletable it is finally deleted in the image. This can change the local neighborhood

of voxels in the list of Candidates what makes the recheck necessary. The recheck of

a voxel needs to be followed directly by its deletion, as simultaneous deletion could

lead to topological or geometrical changes of the skeleton.

After the recheck and final deletions, the next cycle starts from a different di-

rection, working on the manipulated image. This is repeated until the image cannot

be modified any longer from any of the thinning directions.

As Lee et al. showed, this results is a skeleton that has a thickness of one, preser-

ves the geometric as well as the topological properties of the thinned object.

Figure 5.3 shows the progress of the thinning procedure while thinning an ar-

tificial dataset. The thinning results after 0, 42, 84, 126, 168 and 210 iterations can

be reviewed. The images show that the thinning procedure successively removes

voxels from the original set of voxels until a skeleton with the thickness of one voxel

remains which is located in the center of the original object.

5.4. Results and Discussion 57

5.4 Results and Discussion

In order to show the effectiveness of the presented approach, this section presents a

comparative study to the widely utilized ITK implementation. The standard imple-

mentation, that is provided in ITK Version 4.8 [52, 43] can be applied to a 3D dataset.

As the implemented method performs a single thinning procedure in each layer of

the three-dimensional input image, it can not be guaranteed, that the connection

between the layers is preserved. Instead, the implementation of the ITK Journal,

which uses Lee’s medial axis thinning, is considered for a comparative study [42].

To obtain fair results, the algorithm was uncoupled from the ITK framework to pro-

vide an equal datastructure for the tested approaches. In order to complete the study,

the simple- and medial axis approaches of Lee et al. where added to the ITK imple-

mentation.

The resulting skeletons can be seen in Figure 5.4. Therefore, four datasets (box

cross, hollow cube, engine [114] and vessels) are thinned with the three thinning

approaches presented in this chapter as well as the ITK implementation. As the

results show (see Table 5.5), our solution is able to perform thinning tasks up to twice

as fast as the approach of Lee et al. . The factor of speedup is highly depending of

the relative amount of hard to evaluate neighborhoods, where the approach of Lee

et al. needs to check various criteria and the lookup table approach only requires a

constant evaluation time.

The presented approach outputs a correct result, that fulfills the criteria encoded

in the lookup tables. The system is designed flexible, as arbitrary lookup tables can

be loaded, if they provide the described file format. The presented method contains

three lookup tables for simple thinning, medial axis thinning and medial surface

thinning. As Lee et al. showed, their criteria are able to delete the maximum number

of voxels in each iteration correctly. Their implementation in combination with the

presented lookup table approach lead to a minimal computational effort, if a parallel

algorithm design is not considered.

58 Chapter 5. Graph Extraction using Fast 3D Thinning

FIGURE 5.4: Example datasets and their thinning results. From top
to bottom: Box cross dataset, hollow cube, machine engine and ves-
sels. Left to right: original object, medial surface thinning, medial axis
thinning and simple thinning. The results show, how the different
encoded criteria output altering thinning results. According to the
special needs in different applications, the table can be selected. As
these examples show, medial surface thinning is beneficial for plate
lite structures (e.g. engine), wheres medial axis thinning shows good

results for tube like structures (e.g. vessels).

5.5. Conclusion 59

FIGURE 5.5: Comparison of the presented approach with the ITK
journal implementation. The ITK solution for medial axis thinning
was decoupled from the general ITK framework to allow a fair com-
parison to the presented solution. It was possible to alter the imple-
mentation of the used criteria to allow simple- and medial surface
thinning as presented by Lee et al. . As a result, all algorithms can
be compared to the presented solution. The results show, that the
lookup table approach implemented in uor approach is able to per-
form thinning tasks up to twice as fast as the implementation of Lee

et al.’s approach.

5.5 Conclusion

This paper presents a local neighborhood-based thinning implementation utilizing

a lookup table. Therefore, the algorithm is optimized to allow a fast and robust

thinning. The obtained implementation is able to generate a one pixel wide skeleton

that preserves the geometry and topology of the examined objects. As the lookup ta-

ble approach of the moving local neighborhood reduces the computational effort of

finding deletable voxels to a constant cost, the underlying algorithm is accelerated.

The presented approach offers three different thinning approach: simple thinning,

medial axis thinning and medial surface thinning. The required lookup tables are

provided to be reused in an arbitrary framework .

61

Chapter 6

Visual Analysis of Network

Bottlenecks

6.1 Summary

The analysis of flows is an important topic in various applications such as cyber se-

curity [50], biological pathways [118] and cyber physical manufacturing systems [55].

In particular, one aim of designing a manufacturing system is to identify weaknesses

in the manufacturing system’s layout in an early planning stage to minimize costs,

raise the product quality and shorten production times. An important factor to op-

timize production system is the identification and elimination of bottlenecks [63].

The analysis of bottlenecks in cyber physical manufacturing systems can be des-

cribed by flow networks with machines as nodes/vertices and product flows as ed-

ges of the network. Depending on the factory setting, each of these edges has a

specific capacity, describing the maximum amount of products that can flow bet-

ween the two connected machines. To identify the bottleneck of a manufacturing

system, the correlating flow network is subject of analysis. Contrary to intuition,

the bottleneck of a flow network is not a single edge between two nodes. Instead, a

bottleneck is a whole set of edges. The minimum cut of a flow network can help in

describing these bottlenecks. This cut separates the nodes of the flow network into

two groups: one that can be reached by the network’s source, and the other being

the remaining nodes. In this mathematical setup, the question arises how to identify

the true bottleneck edge in the group of minimum cut edges, how to visually encode

62 Chapter 6. Visual Analysis of Network Bottlenecks

this bottleneck, and how to compare various network configurations and their re-

sulting bottlenecks. A sufficient solution targeting all mentioned problems was not

provided so far, as shown in section “Related Work".

This chapter is based on the work of Post et al. [89, 93] and extends the definition

of a minimum cut in a flow network by separating the nodes of a flow network into

three groups: nodes that can be reached from the source, nodes that can reach the

sink of the network, and the remaining nodes. This definition allows an enhanced

classification of edges crossing these regions to identify those specific edges that are

the bottlenecks of the network. To define an intuitive visualization for bottlenecks

in a network, this chapter presents an intuitive visualization based on Voronoi di-

agrams [30] derived from the underlying graph’s node layout. This chapter uses

color-coded regions to indicate bottleneck transition of a flow network. Based on

these regions, an ensemble visualization technique for multiple configurations of

a flow network is presented in this chapter. The resulting ensemble visualization

indicates common bottlenecks and differences in the underlying configurations by

an intuitive color-coding of Voronoi cells (section “Methods"). Section “Conclusion"

will summarize this chapter.

Therefore, this chapter contributes:

• An extended definition of the minimum cut in flow networks

• An intuitive visualization of a minimum cut in a flow network

• An intuitive ensemble visualization for multiple configurations of a flow net-

work

6.2 Related Work

This section will present the state of the art in minimum cut visualization as well as

ensemble visualizations for flow networks.

6.2. Related Work 63

6.2.1 Visualization of Minimum Cuts

Vehlow et al. [113] presented a state of the art report summarizing available network

drawing methods with the goal of grouping the nodes of graphs. Although they pre-

sented a large variety of graph-drawing algorithms, an intuitive visual mapping of

the minimum cut itself was not presented. In contrast to that, the presented appro-

ach introduces a visual encoding for the minimum cut based on Voronoi cells.

Brandes et al. [12] presented a planar visualization for the minimum cut in flow

networks by arranging a network in an rectangular manner and adding a poly-line

to indicate the cut. This method is widely used in open source solutions as [58, 57,

34]. Although this method gives a suitable first indication of the minimum cut, it

can not indicate edges in a flow network that represent a bottleneck for the network.

The presented approach utilizes the method of Brandes et al. as a starting point

and refines the definition of a minimum cut to enhance transitions that form the

bottleneck of the considered system.

6.2.2 Ensemble Visualization of Flow Networks

The ensemble visualization of graphs is an important feature to allow a comparative

investigation of their behavior. A state of the art report was given by Borgo et al. [33].

They presented a large variety of visualization techniques for graph ensemble. The

relevant techniques will be discussed below.

Using the third dimension to stack different network configurations on top of

each other was presented by Brandes et al. [11] and Itoh et al. [49]. Although this

provides a good overview over the capacity values in the considered network con-

figurations, the approach is not able to indicate common bottlenecks. In contrast to

that, the presented approach uses a visualization based on regions that indicate the

specific location of nodes with respect to the bottleneck of a network.

Temporal variance [5, 9, 10], variety-based edge visualization and selective accu-

mulated visualization [9] form techniques that are visualizing the variety of occur-

ring capacity constraints in a network ensemble. Although they provide an inte-

ractive visualization for an overview of the occurring capacity values, they lack the

ability to indicate common bottlenecks. Therefore, the presented approach allows to

64 Chapter 6. Visual Analysis of Network Bottlenecks

identify common bottlenecks of a given ensemble of a network’s capacity configura-

tions.

Cesario et al. [14] presented a technique to visualize graph ensembles by visu-

ally encoding multiple capacities per edge. This enables users to get an overview of

different network configurations, but lacks the ability to show the resulting bottle-

necks. In contrast to that, this chapter focuses on the visualization and accumulation

of bottlenecks and their propagation.

Boyandin et al. [10] presented a visualization of graph capacities that are aligned

in a plane and can therefore be reviewed in total. Although, the line representation

of the minimum cut could be added to each of these representations easily, it would

be hard to identify their similarities. Therefore, this chapter presents a single visuali-

zation for the entire ensemble that is able to indicate stable and divergent bottleneck

regions.

6.3 Single Bottlenecks

The analysis of bottlenecks in flow networks is an essential task for many real world

applications in planning and engineering. This section will introduce a method to

visually inspect single bottleneck fronts in planar flow networks. Also, a method to

analyze the propagation of bottlenecks for a network with an ensemble of different

configurations will be demonstrated.

6.3.1 Methods

Flow Networks

This chapter will rely on the general definition of flow networks with a single source

and sink, which will be presented below. Figure 6.1 shows an example for such a

flow network. A network N = (G, c, s, t) consists of a directed graph G = (V, E) with

a finite set of vertices V and a set of directed edges E ⊆ V × V. Here, the edges

should not include self loops or multiple edges in the same direction between any

two nodes. The capacity function c : E → R+ assigns a non-negative capacity value

to every edge in the network. The vertices s, t ∈ V with s ̸= t should be the only

source and sink in the network, respectively.

6.3. Single Bottlenecks 65

FIGURE 6.1: Flow network consisting of vertices, directed edges, a
source and sink vertex, and a flow and capacity value per edge. The
capacity limits the flow. Except the source and sink, all vertices pre-

serve the flow.

A flow f : E → R+ is a function assigning a non-negative flow value to each edge

in the network. Hence, a flow network is a network together with a specific flow on it.

There are several constraints that have to apply for such a flow. The flow should be

limited by the capacity, so ∀e ∈ E : f (e) ≤ c(e), meaning, that the flow along an edge

is never larger than the edge’s capacity. Also, all vertices except the source and sink

should preserve the flow, so ∀v ∈ V \ {s, t} : ∑(w,v)∈E f (w, v) = ∑(v,w)∈E f (v, w),

meaning, that the total incoming flow is equal to the total outgoing flow for a vertex.

For the source, the total outgoing flow is larger than the total incoming flow, and for

the sink this is reversed.

The value of a s-t-flow | f | = ∑(s,w)∈E f (s, w)− ∑(w,s)∈E f (w, s) is the value of the

outgoing flow of the source s minus its incoming flow. Since all vertices except the

source s and sink t preserve the flow, this is the same as the value of the incoming

flow of the sink s minus its outgoing flow. This chapter focuses on planar flow

networks, so to restrict the general definition of (flow) networks to planar (flow)

networks, the respective graph G should be planar. This means, that G can be plotted

in a 2D plane without edges crossing each other. Figure 6.1 shows an example for a

planar flow network with a proper embedding into the image plane.

66 Chapter 6. Visual Analysis of Network Bottlenecks

Maximum Flows

A maximum flow f̂ on a network N has the largest value among all possible flows

on N, so there exists no other flow f with | f | > | f̂ |. Maximum flows are interes-

ting, since lower capacity constraints could be used to achieve flows with smaller

values. This means, that given capacity constraints limit maximum flows only. So

to evaluate the full potential of networks, the maximum flows have to be analyzed.

This leads to the question of how to find a maximum flow for a given network. The

method of Ford and Fulkerson [29] is a general approach to find such a maximum

flow. Figure 6.2 shows the individual steps of this approach. To understand this

approach, the definition of a residual network needs to be understood.

For the flow networks in Figure 6.2(a)-6.2(g), the respective residual networks are

shown in Figure 6.2(b)-6.2(h). For a given flow network N = (G, c, s, t) with flow f

the residual network is defined as N f = (G f , c f , s, t) with G f = (V, E f). So the vertices

V and the source s and sink t of the residual network are the same as the ones of the

given network, though the edges E f and their capacities c f change. The edges and

capacities of the residual network are defined as follows. For each edge (v, w) ∈ E a

forward edge (v, w) is added to E f if f (v, w) < c(v, w). The capacity of such a new

forward edge (v, w) is set to c f (v, w) = c(v, w)− f (v, w). For each edge (v, w) ∈ E a

backward edge (w, v) is added to E f if f (v, w) > 0. The capacity of a new backward

edge (w, v) is set to c f (w, v) = f (v, w). Following this definition, a residual network

describes the amount of flow that can be added to an edge before the capacity limit

is reached (forward edge), and the amount of flow that can be subtracted from an

edge before a negative flow would arise (backward edge).

The method of Ford and Fulkerson now operates on these residual networks. For

a flow network in Figure 6.2(a)-6.2(g) the residual network in Figure 6.2(b)-6.2(h)

is calculated. A directed path from the source to the sink is found in the residual

network. This path is called an augmenting path, since the flow of the edges in the

original network on this path can be improved, thereby increasing the value of the

overall flow in the network. So for a forward edge in the residual network the flow

of the original edge is increased, and for a backward edge in the residual network

the flow of the original edge is decreased. This procedure is iterated as long as no

6.3. Single Bottlenecks 67

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 6.2: Iterations of the Ford and Fulkerson method to improve
the flow of a network. To a given flow network (left images), the
residual network is calculated and a path from source to sink is found
(right images). This augmenting path is used to increase the flow
along the path’s edges in the original network. When no more path is

found (image (h)), the flow is a maximum flow (image (g)).

more augmenting paths can be found in the residual network. It can be shown, that

the value of the resulting flow is maximal, so the resulting flow is a maximum flow.

Figure 6.2(g) shows the maximum flow with a value of 5.

The algorithm of Edmonds and Karp [22] uses a breadth-first-search from the

source to always find a shortest augmenting path in the residual network. This

ensures the termination of the algorithm as well as a polynomial bound of the al-

gorithm’s run-time, leading to an efficient algorithm to find maximum flows. It can

68 Chapter 6. Visual Analysis of Network Bottlenecks

be shown, that the run-time complexity of this algorithm is in O(|V| · |E|2), meaning

that the run-time is bounded asymptotically by k · |V| · |E|2 for a fixed constant k, |V|

vertices and |E| edges, and therefore is not dependent on the capacities. Although

even faster algorithms with a complexity of nearly up to O(|V| · |E|) are known, the

method of Ford and Fulkerson was demonstrated above, as the shown definitions

like augmenting paths will be used in the following.

Minimum Cuts

To find bottlenecks in networks, maximum flows could be considered. As the max-

imum flow in Figure 6.2(g) shows, there are exhausted edges. For these edges the

flow value equals the capacity value, so the flow can not be increased any further. An

example for such an edge is the edge (Source, B) with values “2/2". One could ea-

sily think, that increasing the capacity of this edge would result in a larger maximum

flow, meaning, that this edge would be called a bottleneck edge in the following. It

turns out, that this early intuition is wrong, and an increase of the capacity of this

edge would not increase the value of the maximum flow. To countervail this effect,

this chapter focuses on cuts instead of flows.

A s-t-cut C = (S, S′) is a partition of the vertices V into the disjunct sets S ⊂ V

with s ∈ S and S′ ⊂ V with t ∈ S′ such that S ∪ S′ = V. The capacity of a s-t-cut

|C| = ∑(v,w)∈E : v∈S ∧ w∈S′ c(v, w) is the sum of the capacities of edges from a vertex

in S to a vertex in S′. A minimum cut Č of a network N has the smallest capacity

among all possible cuts of N, so there exists no other cut C with |C| < |Č|.

The max-flow min-cut theorem [23] from graph and optimization theory states

| f̂ | = |Č|, so the value of a maximum flow is equal to the capacity of a minimum

cut and vice versa. This means, that instead of considering maximum flows for

the analysis of the performance and bottlenecks of networks, minimum cuts can be

utilized.

The standard approach to find a minimum cut for a given network is to first

calculate the maximum flow as described above, and then collect all vertices that

are reachable from the source vertex in the resulting final residual network. Those

vertices form the set Š of the cut, with Š′ = V \ Š being the set of remaining vertices.

The desired minimum cut then is Č = (Š, Š′).

6.3. Single Bottlenecks 69

(a) (b)

(c) (d)

FIGURE 6.3: Residual network of an exemplary network with maxi-
mum flow (compare Figure 6.2(h)) with vertices/edges reachable for-
wards from source or backwards from sink (left images), and the ori-
ginal network with minimum cut and classified Voronoi cells (right
images). The classical construction of a minimum cut (upper ima-
ges) suggest wrong bottleneck edges, while the new extended con-
struction (lower images) shows the true bottleneck transitions (blue

to black).

Figure 6.3(a) shows the residual network of the maximum flow (compare Fi-

gure 6.2(h)), the collection of vertices starting from the source in blue, and the remai-

ning vertices in white. To enhance the intuitiveness of the visualization and enable

users to easily analyze minimum cuts, Figure 6.3(b) colors the Voronoi cells [30] of

each vertex by a partition specific color, blue for the vertices in S and white for all

other vertices in S′. The Voronoi cell of a vertex is the area that is closer to this vertex

then to all other vertices. By using Voronoi cells that share a common border to other

cells of the same color, regions for both partitions of the minimum cut are formed.

As can be seen, the previously considered edge (Source, B) starts and ends in the

blue region and can not be increased to increase the value of the maximum flow.

Hence, this edge is not a bottleneck edge. In general, for all edges ending in S (blue

region) by construction there exists a directed path in the residual network from the

source to the endpoint of the edge. So instead of increasing the capacity of such an

edge, the flow along this path could be improved. So an edge ending in S (blue

region) can not be a bottleneck edge. In contrast to this, one could investigate the be-

havior of an edge starting in the blue region and leading to the white region. As and

70 Chapter 6. Visual Analysis of Network Bottlenecks

example, the edge (A, C) with values “3/3" is considered. But again the intuition

fails and the considered edge is not a bottleneck edge.

This shows, that the general definition of a cut is not enough to find bottleneck

edges. To compensate this shortcoming, this chapter extends the construction of a

minimum cut by adding a third set T ⊂ V to the partition. Figure 6.3(c) and 6.3(d)

show the same visualizations as before, but this time all vertices that have a directed

path to the sink in the residual network are collected in the set T and colored in black.

All vertices that are not reached from the source or do not reach the sink form the set

R ⊂ V with R = V \ (S ∪ T) and are left white. So the new partition is P = (S, R, T)

(blue / white / black regions) with disjoint sets S, R, T ⊂ V, and S ∪ R ∪ T = V, and

s ∈ S and t ∈ T.

Analog to before, all edges starting in T (black region) can not be bottleneck

edges, since by construction there exists a directed path in the residual network from

the starting point of the edge to the sink. All edges ending in R (white region) also

can not be bottleneck edges, since by construction they do not have a directed path in

the residual network from their endpoint to the sink. Increasing the capacity of such

an edge could increase the value of a flow from the source to the edge’s endpoint,

but not to the sink. So the overall flow would not increase, hence the edge is no

bottleneck. Out of analog reasons, edges starting in R (white region) also can not be

bottleneck edges.

The only edges left that can be bottlenecks are edges starting in S (blue region)

and leading to T (black region). As can be seen in Figure 6.3(d), the edge (B, D) with

values “2/2" is of this kind and is a bottleneck edge, so increasing the capacity of

this edge would lead to a larger maximum flow (compare Figure 6.4(c)). In general,

not only some, but all edges leading from S (blue region) to T (black region) are

bottleneck edges.

Proof: Let (v, w) ∈ E with v ∈ S and w ∈ T be an edge leading from S (blue re-

gion) to T (black region). By construction, there exists a directed path (v1, v2, ..., vn)

with v1, v2, ..., vn ∈ V and v1 = s and vn = v in the residual network from the source

s to the starting point v of the edge. By construction there also exists a directed path

6.3. Single Bottlenecks 71

(w1, w2, ..., wm) with w1, w2, ..., wm ∈ V and w1 = w and wm = t in the residual net-

work from the endpoint w of the edge to the sink t. If both paths had a common ver-

tex vi = wj, the path (s = v1, v2, ..., vi−1, vi = wj, wj+1, ..., wm−1, wm = t) would be an

augmenting path, and hence the given flow would not have been a maximum flow.

So both paths are disjoint and do not increase the overall flow without modifying

c(v, w). Also, the flow f (v, w) of the given edge equals its capacity c(v, w), because

otherwise the edge (v, w) would be included in the residual network and the path

(s = v1, v2, ..., vn = v, w = w1, w2, ..., wn = t) would be an augmenting path. But

by modifying the capacity c(v, w) to a greater value c′(v, w) > c(v, w) it holds, that

f (v, w) < c′(v, w), so the edge (v, w) will be included in the modified residual net-

work. This leads to an augmenting path (s = v1, v2, ..., vn = v, w = w1, w2, ..., wn = t)

that can be used to increase the value of the overall flow. Hence, increasing the ca-

pacity of an edge from S to T increases the value of the maximum flow, so all edges

from S (blue region) to T (black region) are bottleneck edges.

So the overall approach works by first performing a max-flow calculation fol-

lowed by two separate breadth-first-searches in the residual network starting for-

wards from the source and backwards from the sink, respectively. Since the residual

network has the same number of vertices and at most twice the number of edges

than the original network, the run-time complexity of the breadth-first-searches is in

O(|V| + |E|), meaning that the complexity and limitations of the overall approach

are dependent only on which max-flow algorithm is chosen, as described above.

6.3.2 Results

Ensemble Visualization

The visualization in Figure 6.3(d) (compare Figure 6.4(a)) intuitively shows the dif-

ferent regions of a network with maximum flow. By construction, there is enough

capacity left to increase the flow from the source to the vertices in the blue region.

On the other hand, there is enough capacity left to increase the flow to the network’s

sink from one of the vertices in the black region. The white region consists of the

remaining vertices that are not able to increase the flow in either direction. So to

identify bottlenecks for a single network, users can intuitively consider transitions

72 Chapter 6. Visual Analysis of Network Bottlenecks

from a blue to a black region. Since multiple Voronoi cells form regions, in general

there is not just a single bottleneck edge, meaning a single transition, but a closed

front of bottleneck transitions. In addition to that, the different regions deliver in-

sight into whether vertices and edges are in front of the overall bottleneck front or

behind it.

(a) (b)

(c) (d)

(e)

FIGURE 6.4: Ensemble of the same network with four different ex-
emplary capacity configurations leading to four different maximum
flows and minimum cuts (images (a)-(d)). Transitions from a blue to
a black region are bottlenecks. The samples of the ensemble are accu-
mulated and averaged, thereby giving an overview of stable regions
(fully blue or black) and the progress of the bottlenecks (image (e)).

In real world application there often is the need to compare results for different

layouts or configurations. Here, the capability to get an overview of different capa-

city configurations for the same underlying graph is desired. To tackle this problem,

Figure 6.4(a)-6.4(d) show an ensemble of networks, their maximum flow and the

different regions of the extended minimum cut. The different configurations were

chosen arbitrarily to demonstrate a variety of possible scenarios. The individual

Voronoi cells are accumulated and averaged as shown in Figure 6.4(e).

6.3. Single Bottlenecks 73

Fully blue or black regions in the accumulated image indicate a completely stable

location in front of or behind the bottleneck, respectively. Fully white regions never

occur in any other (blue or black) region. The advantage of having chosen a blue /

white / black color theme is, that these colors accumulate uniquely. A region that

is bluer appears more often before the bottleneck front in the individual ensemble

members, while blacker regions appear more often behind the bottleneck. The same

holds for whiter regions in the accumulated image that appear more often in neither

of the two (blue or black) regions.

Fully blue, black or white regions indicate a stable behavior of the respective ver-

tices in all ensemble members regardless of their different capacity configurations.

In contrast to that, regions with a not so well defined color indicate unstable regi-

ons, meaning a divergent behavior for the different ensemble members. Also, a fully

blue to fully black transition indicates a stable bottleneck regardless of the different

ensemble configurations. Overall, the presented visualization methodologies ena-

ble an intuitive identification of network bottlenecks and the analysis of bottleneck

propagation for an ensemble of a network with different capacity configurations.

Scalability

To demonstrate the scalability of the method presented in Section 6.3.1, a larger rand-

omly generated flow network is analyzed in Figure 6.5. The source of the flow net-

work is on the left side of the images, and the blue region in Figure 6.5(b) is where

flow can travel freely from the source. On the other side, the sink is on the right

side of the images, and the black region is from where flow can travel freely to

the sink. The edges leading from the blue to the black region form the bottleneck

front. Because the presented flow network is quite large, the vertex and edge labels

in Figure 6.5(a) were intentionally omitted to not further overload the image. Even

though, the visualization in Figure 6.5(b) is able to clearly shows the bottleneck front

of interest.

74 Chapter 6. Visual Analysis of Network Bottlenecks

6.4 Cascaded Bottlenecks

This section focuses on cascaded bottlenecks, multiple bottleneck fronts occurring

sequentially after another. A method to analyze those bottlenecks in planar flow

networks is presented and its effectiveness is demonstrated.

6.4.1 Methods

Section 6.3.1 has demonstrated a method to visually analyze single bottleneck fronts

in planar flow networks. Here, transitions from S (blue region) to T (black region)

were bottlenecks. As Figure 6.6(a) shows, there are cases where there are no direct

edges leading from S to T since the blue and the black region are separated spatially.

These flow networks do not have a single bottleneck front but cascaded bottlenecks

sequentially following one another. The question arises on how the overall flow can

be increased, since there is no single edge with a capacity limit that can be increased

to do so.

To develop a method to analyze cascaded bottlenecks in planar flow networks,

the strongly connected components (SCCs) [2] of the residual networks are evalu-

ated (see Figure 6.6(b)). The SCCs can be calculated efficiently by Tarjan’s algo-

rithm [109] which has a run-time that is linear in the number of vertices and edges.

The general definition of strongly connected components is a unique (except permuta-

tion) decomposition C1 ∪ ...∪Ck = V of the vertices V into a minimal number of dis-

junct sets C1, ..., Ck ⊆ V of mutually reachable vertices with ∀ v, w ∈ Ci : v reaches w

for all i ∈ {1, ..., k}. So the components have maximal size and there is a directed

path from each vertex to each other vertex within the same SCC, and no directed

path either to or from the vertices of another SCC. Since the residual graph is the

graph of the residual flow (see Section 6.3.1), its SCCs indicate candidates for the

bottlenecks. Additional flow can move freely within one SCC, while crossing the

boundary between two neighboring SCCs might rise the need to increase the capa-

city value of this particular edge (see Figure 6.6(b)).

The boundaries of the SCCs from Figure 6.6(b) are used to show the cascaded

bottlenecks of interest in Figure 6.7(a). Since there is no single edge with a capacity

value that could be increased to increase the overall flow, the question arises on

6.4. Cascaded Bottlenecks 75

which capacity values to increase. To tackle this question, the forward graph (see

Figure 6.7(b)) is constructed. For a given flow network N = (G, c, s, t) with directed

graph G = (V, E) and flow f the forward graph is defined as the weighted graph

GF = (V, EF, wF). So the vertices V are the same as the ones of the given network,

though the edges EF with their new weights wF change. The edges and weights of

the forward graph are defined as follows. For each edge (v, w) ∈ E with f (v, w) <

c(v, w) a forward edge (v, w) with weight wF(v, w) = 0 is added to EF. For each edge

(v, w) ∈ E with f (v, w) = c(v, w) a forward edge (v, w) with weight wF(v, w) = 1

is added to EF. And for each edge (v, w) ∈ E with f (v, w) > 0 a backward edge

(w, v) with weight wF(w, v) = 0 is added to EF. The definition of the backward graph

GB = (V, EB, wB) is analogous but with reversed edge orientations.

The forward and backward graphs can now be utilized to calculate the distance

of the shortest weighted path from source and sink to each vertex, respectively (see

Figure 6.8). These distances will now be called forward distance and backward distance,

respectively. This can be done efficiently by Dijkstra’s algorithm [16] in O(|E| +

|V| · log|V|) run-time. The construction of the forward and backward graphs ensure

that only forward edges that are saturated in the flow network increase the distance.

When those edges are used in a shortest path within the forward or backward graph,

their capacity values need to be increased to be able to transport additional flow.

Since shortest paths are used, it is ensured that only a minimal number of these

network edges have to be adapted to increase the overall flow. In the following it

is demonstrated how this can be applied to develop a method to analyze cascaded

bottlenecks.

6.4.2 Results

The methodologies presented in Section 6.4.1 can be utilized to develop a method to

interactively analyze cascaded bottlenecks in planar flow networks (see Figure 6.9).

Here, for each strongly connected component (SCC) all combinations of one edge

going in and one edge going out of the same component are connected by a minimal

augmenting path in the residual network (see Section 6.3.1). Additional flow can

travel freely on these paths, while the incoming and outgoing edges themselves have

the potential to be bottlenecks. In contrast to that, by construction, a transition from

76 Chapter 6. Visual Analysis of Network Bottlenecks

a SCC of one color to a SCC of another color always indicates a bottleneck, since the

forward or the backward distance has changed between SSCs. This is the reason for

the construction and visualization of the forward/backward distance as color-coded

components in Figure 6.9.

The augmenting paths within each SCC are shown as spline segments in Fi-

gure 6.9. Each segment can by selected by the user. Though, not all possible seg-

ments are shown. To enhance the usability and restrict the selection to meaningful

segments, the segments are filtered and unwanted segments are discarded. Here, all

segments that start or end with an edge decreasing in forward distance or increasing

in backward distance are omitted. These segments lead to SCCs that can be reached

more efficiently by a different path and are therefore discarded.

When a continuous path from source to sink is formed by the selected segments,

this path is used to increase the capacities of bottleneck edges along the path. The

capacities are increased by the minimal residual flow of a non-bottleneck edge along

the path. This way, after updating the maximum flow computations, at least one

non-bottleneck edge on the path becomes saturated and the overall flow is increased

as much as possible without adjusting non-bottleneck edges. This process describes

one iteration shown in Fig 6.9 per row and demonstrates the effectiveness of the

presented interactive method to analyze cascaded bottlenecks.

6.5 Conclusion

This chapter has introduced a novel approach to visualize and compare bottlenecks

in flow networks for real world applications like cyber physical manufacturing sy-

stems. Therefore, product flows and constraints of a manufacturing system were

mapped to a network. This chapter extended the definition of a minimum cut of a

network to identify bottleneck edges. This extended definition was used as a basis

to visualize minimum cuts and bottlenecks in production systems based on Voro-

noi regions. This approach allowed a fast and intuitive identification of bottleneck

transitions in a flow network.

6.5. Conclusion 77

As the planning of production systems involves the comparison of different fac-

tory settings, various configurations of a network need to be compared. This chap-

ter has presented an ensemble visualization technique based on the visualization of

extended minimum cuts. The presented examples demonstrated, that the ensem-

ble visualization technique indicates stable and divergent bottleneck transitions and

regions, thereby enabling users to visually identify and analyze similarities and dif-

ferences of bottlenecks for an ensemble of flow network configurations.

78 Chapter 6. Visual Analysis of Network Bottlenecks

(a)

(b)

FIGURE 6.5: Randomly generated planar flow network with 5000 ver-
tices and 10000 directed edges (image (a)), and its extended minimum
cut (image (b)). Edges going from the blue to the black region are

bottleneck edges, thereby forming a bottleneck front.

6.5. Conclusion 79

(a)

(b)

FIGURE 6.6: A planar flow network and its extended minimum cut
(image (a)). The spatial separation of the blue and black regions
shows that the flow network does not have a single bottleneck front.
A method to analyze cascaded bottlenecks is required. The strongly
connected components for the residual network are shown color-
coded (shades of purple), and their transitions form candidates for

the cascaded bottlenecks of interest (image (b)).

80 Chapter 6. Visual Analysis of Network Bottlenecks

(a)

(b)

FIGURE 6.7: The flow network from Figure 6.6(a) with its cascaded
bottleneck candidates (image (a)). This flow network is used for the

construction of the forward graph (image (b)).

6.5. Conclusion 81

(a)

(b)

(c)

FIGURE 6.8: The forward/backward graphs are used to calculate the
shortest forward/backward distance from the source/sink to each
vertex, respectively (images (a) and (b)). The distances range from
0 (rich color) to 2 (pale color). By utilizing different color channels
both distances can be displayed simultaneously in an unambiguous

way (image (c)).

82 Chapter 6. Visual Analysis of Network Bottlenecks

(a) (b)

(c) (d)

(e) (f)

FIGURE 6.9: Iterations of the feedback loop. The current flow net-
work and all its filtered path segments are displayed as splines
(white) in the left images. The user can select path segments (ma-
genta) and thereby construct a path from source to sink (right ima-
ges). This path is applied by increasing edge capacities on the path
accordingly and calculating the increased overall flow for the next ite-
ration below. Only the capacities of edges leading from one to another
component might need to be adjusted. The component colors indicate
the relative effort to send flow from the source to the component (blue
color), or from the component to the sink (black color). Richer colors
indicate relatively less effort and thereby less bottlenecks that need to

be overcome to increase the overall flow.

83

Chapter 7

Discussion and Conclusion

This chapter will give a summary of the contributions and resulting implications in

the area of visual analysis for graphs, networks and and flows.

7.1 Summary

Graphs and flow networks are important concepts to model a huge variety of real

world problems. Their increasing sizes and complexities raise the need for efficient

and intuitive techniques to allow the analysis and decision making for domain scien-

tists from different domains.

Based on the visual analysis principle Analyse First - Show the Important - Zoom,

Filter and Analyse Further - Details on Demand this work presents a variety of visual

analysis methodologies that are suitable to understand and examine graphs and net-

work flows. In particular, the contributions of this work are listed below.

Flow Tracking in Software-Defined Networking : In order to understand the flow

patterns in software-defined networks this work offers an intuitive overview of the

SDN hierarchy and the underlying packet flow. The ability to track packets through

the SDN and to interlink multiple views of the SDN forms an interactive analysis

tool that is successfully applied to a simulated dataset.

Visual Analysis of Cyber-Physical Production Systems : The behavior of cyber-

physical production systems can be hard to understand without proper visualiza-

tion. Therefore, this work generates visualizations of aggregated views that capture

84 Chapter 7. Discussion and Conclusion

an entire production system as well as specific characteristics of individual data fe-

atures. To show the applicability and effectiveness of the presented methodologies,

an exemplary production system is simulated and analyzed.

Analysis of High-dimensional Data : Besides the topology of graphs and flow

networks, domain scientists are also interested in a variety of properties of graphs

and networks. Those properties can often be high-dimensional. This work offers a

scale-invariant measure based on Pareto optimality that provides a visual encoding

of the environment of a Pareto front to enable an enhanced visual inspection.

Graph Extraction using Fast 3D Thinning : A variety of applications require data

transformation steps to extract the graph or flow network of interest. Therefore, this

work presents a novel thinning approach for 3D image data that can be utilized to

generate graphs and flow networks. This new lookup-table approach is fast and

robust which was demonstrated by multiple examples.

Ensemble Visualization of Network Bottlenecks : Bottlenecks are an important

aspect when considering flow networks. In order to compare the bottlenecks re-

sulting from different flow network settings, this work introduces intuitive visual

mechanisms enabling domain experts to visually analyze stable regions of a net-

work and identify critical transitions. Those transitions form a varying bottleneck

front for different configurations of network restraints. To tackle this challenge, this

work enhances the comparability of different network configurations by utilizing

ensemble visualization techniques.

Visual Analysis of Cascaded Network Bottlenecks : As bottlenecks in flow net-

works can form different fronts that follow one another, users require a mechanism

to understand these cascaded bottlenecks. They can lead to a variety of combinati-

ons to improve a network which the need to be analyzed. This work introduces a

novel approach to identify cascaded bottlenecks and evaluate their properties. The

presented interactive technique enables users to explore and analyze the different

combinations to improve planar networks.

7.2. Implications 85

7.2 Implications

This work showed the importance and the potential of visual analysis for graphs,

networks and flows. The need of visual analysis is driven by the permanently in-

creasing size and complexity of datasets as well as the number of applications that

benefit from these techniques. The presented work showed that different domains

and applications have varying requirements and demand a suitable selection of ana-

lysis techniques. Therefore, this work offered a variety of visual analysis techniques

that are suitable for graphs and flow networks.

As visual analysis consists of multiple steps, each of these steps need to be imple-

mented, thus users from different domains can make reliable decisions based on the

gained insight. This work provided suitable solutions for different steps of the visual

analysis pipeline to gain this insight, covering data transformation, visual mapping,

parameter refinement and analysis, model building and visualization as well as user

interaction.

In its entirety this work and the presented concepts and techniques form a fra-

mework that enriches domain scientists with new visual analysis tools and metho-

dologies that help users in analyzing their data and gain insight from the underlying

structures. The applicability and effectiveness of the presented approaches were de-

monstrated by tackling different domains and applications in this work while pre-

serving the generality to be applicable to further domains.

87

Curriculum Vitae

Schulausbildung

1992–2001 Abitur am Friedrich-Spee-Gymnasium, Geldern

Wehrdienst

2001–2002 Moritz-von-Nassau-Kaserne, Emmerich

Studium

2002–2011 Diplom an der RWTH Aachen University

Berufstätigkeit

2011–2012 RWTH Aachen University

2013–2014 Technische Universität Kaiserslautern

Promotion

2014–2018 Doktorgrad an der Technischen Universität Kaiserslautern

89

Bibliography

[1] M. Ahmed and R. Ward. “A rotation invariant rule-based thinning algorithm

for character recognition”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 24.12 (2002), pp. 1672–1678. ISSN: 0162-8828. DOI: 10.1109/

TPAMI.2002.1114862.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey Ullman. Data Structures and Al-

gorithms. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1983. ISBN: 0201000237.

[3] Carlo Arcelli and Gabriella Sanniti di Baja. “A One-Pass Two-Operation Pro-

cess to Detect the Skeletal Pixels on the 4-Distance Transform”. In: IEEE Trans.

Pattern Anal. Mach. Intell. 11.4 (1989), pp. 411–414.

[4] B. Bach et al. “A Review of Temporal Data Visualizations Based on Space-

Time Cube Operations”. In: In USENIX LISA. 2000, pp. 305–317.

[5] Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. “GraphDiaries:

Animated Transitions and Temporal Navigation for Dynamic Networks”. In:

IEEE Transactions on Visualization Computer Graphics 20.5 (2014), pp. 740–754.

[6] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An Open

Source Software for Exploring and Manipulating Networks. 2009.

[7] Maryam Booshehrian et al. “Vismon: Facilitating Analysis of Trade-Offs, Un-

certainty, and Sensitivity In Fisheries Management Decision Making”. In:

Computer Graphics Forum (2012). ISSN: 1467-8659. DOI: 10 . 1111 / j . 1467 -

8659.2012.03116.x.

[8] Gunilla Borgefors, Ingela Nystrm, and Gabriella Sanniti Di Baja. “Computing

skeletons in three dimensions”. In: Pattern Recognition 32.7 (1999), pp. 1225 –

1236.

https://doi.org/10.1109/TPAMI.2002.1114862
https://doi.org/10.1109/TPAMI.2002.1114862
https://doi.org/10.1111/j.1467-8659.2012.03116.x
https://doi.org/10.1111/j.1467-8659.2012.03116.x

90 BIBLIOGRAPHY

[9] Ljudmilla Borisjuk et al. “Integrating data from biological experiments into

metabolic networks with the DBE information system”. In: In Silico Biology

5.2 (2004), pp. 93–102.

[10] Ilya Boyandin, Enrico Bertini, and Denis Lalanne. “A Qualitative Study on

the Exploration of Temporal Changes in Flow Maps with Animation and

Small-Multiples”. In: Computer Graphics Forum 31.3pt2 (2012), pp. 1005–1014.

[11] Ulrik Brandes and Steven R. Corman. “Visual Unrolling of Network Evolu-

tion and the Analysis of Dynamic Discourse”. In: Information Visualization 2.1

(2003), pp. 40–50.

[12] Ulrik Brandes, Sabine Cornelsen, and Dorothea Wagner. “How to Draw the

Minimum Cuts of a Planar Graph”. In: Graph Drawing: 8th International Sym-

posium Proceedings. Springer Berlin Heidelberg, 2001, pp. 89–119.

[13] Lothar Braun et al. “Flow-inspector: a framework for visualizing network

flow data using current web technologies”. In: Computing 96.1 (2014), pp. 15–

26.

[14] Nathaniel Cesario, Alex Pang, and Lisa Singh. “Visualizing node attribute

uncertainty in graphs”. In: Proc. SPIE 7868 (2011), 78680H–78680H–13.

[15] Moritz Chemnitz et al. “SOPRO - Advancements in the self-organising pro-

duction”. In: IEEE Conference on Emerging Technologies and Factory Automation

(ETFA), 2010. Ed. by ETFA 2010. Piscataway, NJ: IEEE, 2010, pp. 1–4. ISBN:

978-1-4244-6850-8. DOI: 10.1109/ETFA.2010.5641198.

[16] Thomas H. Cormen et al. Introduction to Algorithms, Third Edition. 3rd. The

MIT Press, 2009. ISBN: 0262033844, 9780262033848.

[17] Nicu D. Cornea, Deborah Silver, and Patrick Min. “Curve-Skeleton Proper-

ties, Applications, and Algorithms”. In: IEEE Transactions on Visualization and

Computer Graphics 13.3 (May 2007), pp. 530–548.

[18] Michel Couprie, Nivando Bezerra, and Gilles Bertrand. “A Parallel Thin-

ning Algorithm for Grayscale Images”. In: Discrete Geometry for Computer Ima-

gery. Ed. by Rocio Gonzalez-Diaz, Maria-Jose Jimenez, and Belen Medrano.

Vol. 7749. Springer Berlin Heidelberg, 2013, pp. 71–82.

https://doi.org/10.1109/ETFA.2010.5641198

BIBLIOGRAPHY 91

[19] F. Doil et al. “Augmented Reality for Manufacturing Planning”. In: Procee-

dings of the Workshop on Virtual Environments 2003. ACM, 2003, pp. 71–76.

[20] Denis V. Dorozhkin et al. “Coupling of interactive manufacturing operati-

ons simulation and immersive virtual reality”. In: Virtual Reality 16.1 (2012),

pp. 15–23. ISSN: 1359-4338. DOI: 10.1007/s10055-010-0165-7.

[21] Ulrich Eckhardt and Gerd Maderlechner. “Invariant Thinning.” In: IJPRAI

7.5 (1993), pp. 1115–1144.

[22] Jack Edmonds and Richard M. Karp. “Theoretical Improvements in Algo-

rithmic Efficiency for Network Flow Problems”. In: J. ACM 19.2 (1972), pp. 248–

264.

[23] P. Elias, A. Feinstein, and C. Shannon. “A note on the maximum flow through

a network”. In: Information Theory, IEEE Transactions on 2.4 (1956), pp. 117–

119.

[24] Gurdal Ertek et al. “Visual and analytical mining of transactions data for pro-

duction planning and marketing”. In: Intelligent Manufacturing Systems. 2004,

pp. 848–859.

[25] Petri Eskelinen and Kaisa Miettinen. “Trade-off analysis approach for inte-

ractive nonlinear multiobjective optimization”. In: OR Spectrum (2011).

[26] Gerald Farin, ed. Curves and Surfaces for CAGD. A Practical Guide.: A Practical

Guide. 5th ed. Morgan Kaufmann Series in Computer Graphics and Geome-

tric Modelling, 2001.

[27] Allan M. Feldman and Roberto Serrano. Welfare Economics and Social Choice

Theory. 2. Springer, 2006.

[28] Mark Fleischer. “Scale Invariant Pareto Optimality: A Meta–formalism for

Characterizing and Modeling Cooperativity in Evolutionary Systems”. In:

Proceedings of the 7th Annual Conference on Genetic and Evolutionary Compu-

tation. GECCO ’05. ACM, 2005, pp. 233–240.

[29] L. R. Ford and D. R. Fulkerson. “Maximal Flow through a Network.” In: Ca-

nadian Journal of Mathematics 8 (1956), pp. 399–404.

https://doi.org/10.1007/s10055-010-0165-7

92 BIBLIOGRAPHY

[30] Steven Fortune. “Voronoi Diagrams and Delaunay Triangulations”. In: Hand-

book of Discrete and Computational Geometry. Ed. by Jacob E. Goodman and

Joseph O’Rourke. CRC Press, Inc., 1997, pp. 377–388.

[31] O. N. Foundation. Software-Defined Networking (SDN) Definition. “https://www.

opennetworking.org/sdn-resources/sdn-definition". 2016.

[32] V. T. Guimares et al. “A Survey on Information Visualization for Network and

Service Management”. In: IEEE Communications Surveys Tutorials 18.1 (2016),

pp. 285–323.

[33] Steffen Hadlak, Heidrun Schumann, and Hans-Jrg Schulz. “A Survey of Multi-

faceted Graph Visualization”. In: Eurographics Conference on Visualization (Eu-

roVis) - STARs. Ed. by R. Borgo, F. Ganovelli, and I. Viola. The Eurographics

Association, 2015. DOI: 10.2312/eurovisstar.20151109.

[34] Steven Halim. VisuAlgo. “https://visualgo.net/maxflow". Accessed: 2017-01-

26.

[35] Y. M. Y. Hasan and L. J. Karam. “Morphological text extraction from ima-

ges”. In: IEEE Transactions on Image Processing 9.11 (2000), pp. 1978–1983. ISSN:

1057-7149.

[36] Ivan Herman, Guy Melançon, and M. Scott Marshall. “Graph Visualization

and Navigation in Information Visualization: A Survey”. In: IEEE Transacti-

ons on Visualization and Computer Graphics 6.1 (Jan. 2000), pp. 24–43. ISSN:

1077-2626. DOI: 10.1109/2945.841119.

[37] H.Gouraud. Continuous shading of curved surfaces. 5th ed. Rosalee Wolfe, 1998.

[38] C. J. Hilitch. “Linear Skeletons From Square Cupboards”. In: Machine Intelli-

gence 4. Ed. by B. Meltzer and Donald Michie. Edinburgh University Press,

1969, p. 403.

[39] Danny Holten. “Hierarchical Edge Bundles: Visualization of Adjacency Rela-

tions in Hierarchical Data”. In: IEEE Transactions on Visualization and Computer

Graphics 12.5 (Sept. 2006), pp. 741–748.

https://doi.org/10.2312/eurovisstar.20151109
https://doi.org/10.1109/2945.841119

BIBLIOGRAPHY 93

[40] Danny Holten and Jarke J. van Wijk. “Force-directed Edge Bundling for Graph

Visualization”. In: Proceedings of the 11th Eurographics / IEEE - VGTC Confe-

rence on Visualization. EuroVis’09. Berlin, Germany: The Eurographs Associa-

tion, 2009, pp. 983–998.

[41] Danny Holten and Jarke J. Van Wijk. “Visual comparison of hierarchically

organized data”. In: Comput. Graph. Forum (2008).

[42] H. Homann. Implementation of a 3D thinning algorithm. “http://hdl.handle.

net/1926/1292". Oct. 2007.

[43] H. Homann. “Implementation of a 3D thinning algorithm”. In: (Oct. 2007).

[44] Rein-Lien Hsu, M. Abdel-Mottaleb, and A. K. Jain. “Face detection in color

images”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 24.5

(2002), pp. 696–706. ISSN: 0162-8828. DOI: 10.1109/34.1000242.

[45] Christopher Humphries et al. “ELVIS: Extensible Log VISualization”. In: Pro-

ceedings of the Tenth Workshop on Visualization for Cyber Security. VizSec ’13.

ACM, 2013, pp. 9–16.

[46] C. Hurter et al. “Bundled Visualization of DynamicGraph and Trail Data”. In:

IEEE Transactions on Visualization and Computer Graphics 20.8 (2014), pp. 1141–

1157.

[47] Hyperglance Inc. hyperglance. “https://www.hyperglance.com/". 2016.

[48] R. Ilsen, H. Meissner, and J. C. Aurich. “Virtual Test Field for Sustainability

Assessment of Cybertronic Production Systems”. In: 43rd Proceedings of the

North American Manufacturing Research Institution of SME. Ed. by NAMRI/SME.

2015.

[49] M. Itoh et al. “Visual Exploration of Changes in Passenger Flows and Tweets

on Mega-City Metro Network”. In: IEEE Transactions on Big Data 2.1 (2016),

pp. 85–99.

[50] J. Jaffe. “Bottleneck Flow Control”. In: IEEE Transactions on Communications

29.7 (1981), pp. 954–962.

https://doi.org/10.1109/34.1000242

94 BIBLIOGRAPHY

[51] Manar Jammal et al. “Software defined networking: State of the art and re-

search challenges”. In: Computer Networks 72 (2014), pp. 74 –98. DOI: http:

//dx.doi.org/10.1016/j.comnet.2014.07.004. URL: http://www.

sciencedirect.com/science/article/pii/S1389128614002588.

[52] Hans J. Johnson et al. The ITK Software Guide. Third. In press. Kitware, Inc.

2013. URL: http://www.itk.org/ItkSoftwareGuide.pdf.

[53] H. Kagermann, W. Wahlster, and J. Helbig. Recommendations for implementing

the strategic initiative INDUSTRIE 4.0: Final report of the Industrie 4.0 Working

Group. acatech – National Academy of Science and Engineering, 2013.

[54] Daniel A. Keim et al. “Visual Data Mining”. In: ed. by Simeon J. Simoff, Mi-

chael H. Böhlen, and Arturas Mazeika. Berlin, Heidelberg: Springer-Verlag,

2008. Chap. Visual Analytics: Scope and Challenges, pp. 76–90. ISBN: 978-3-

540-71079-0. DOI: 10.1007/978-3-540-71080-6_6.

[55] M. Kikolski. “Identification of production bottlenecks with the use of Plant

Simulation software”. In: Ekonomia i Zarzadzanie 8.4 (2017), pp. 103–112.

[56] C. Kirbas and F.K.H. Quek. “Vessel extraction techniques and algorithms:

a survey”. In: Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE

Symposium on. 2003, pp. 238–245.

[57] S Klamt and A von Kamp. “An application programming interface for Cell-

NetAnalyzer”. In: BioSystems 105 (2011), pp. 162–168.

[58] S Klamt, J Saez-Rodriguez, and E D Gilles. “Structural and functional analy-

sis of cellular networks with CellNetAnalyzer”. In: BMC Systems Biology 1 (2

2007), open access.

[59] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”.

In: Proceedings of the IEEE 103.1 (2015), pp. 14–76.

[60] Louisa Lam, Seong-Whan Lee, and Ching Y. Suen. “Document Image Analy-

sis”. In: ed. by Lawrence O’Gorman and Rangachar Kasturi. IEEE Computer

Society Press, 1995. Chap. Thinning Methodologies&Mdash;a Comprehen-

sive Survey, pp. 61–77.

https://doi.org/http://dx.doi.org/10.1016/j.comnet.2014.07.004
https://doi.org/http://dx.doi.org/10.1016/j.comnet.2014.07.004
http://www.sciencedirect.com/science/article/pii/S1389128614002588
http://www.sciencedirect.com/science/article/pii/S1389128614002588
http://www.itk.org/ItkSoftwareGuide.pdf
https://doi.org/10.1007/978-3-540-71080-6_6

BIBLIOGRAPHY 95

[61] Robert S. Laramee and Robert Kosara. “Challenges and Unsolved Problems”.

In: Human-Centered Visualization Environments: GI-Dagstuhl Research Seminar,

Dagstuhl Castle, Germany, March 5-8, 2006, Revised Lectures. Ed. by Andreas

Kerren, Achim Ebert, and Jörg Meyer. Springer Berlin Heidelberg, 2007, pp. 231–

254.

[62] Bongshin Lee et al. “Task Taxonomy for Graph Visualization”. In: Proceedings

of the 2006 AVI Workshop on BEyond Time and Errors: Novel Evaluation Met-

hods for Information Visualization. BELIV ’06. Venice, Italy: ACM, 2006, pp. 1–

5. ISBN: 1-59593-562-2. DOI: 10.1145/1168149.1168168.

[63] Chi G. Lee and Sang C. Park. “Survey on the virtual commissioning of ma-

nufacturing systems”. In: Journal of Computational Design and Engineering 1.3

(2014), pp. 213 –222.

[64] Ta-Chih Lee, Rangasami L. Kashyap, and Chong-Nam Chu. “Building Skele-

ton Models via 3-D Medial Surface/Axis Thinning Algorithms”. In: CVGIP:

Graph. Models Image Process. 56.6 (1994), pp. 462–478. ISSN: 1049-9652.

[65] Paulo Leitão. “Agent-based distributed manufacturing control: A state-of-

the-art survey”. In: Engineering Applications of Artificial Intelligence 22.7 (2009),

pp. 979–991. DOI: 10.1016/j.engappai.2008.09.005.

[66] Paulo Leitão and Francisco Restivo. “ADACOR: A holonic architecture for

agile and adaptive manufacturing control”. In: Computers in Industry 57.2

(2006), pp. 121–130. ISSN: 01663615. DOI: 10.1016/j.compind.2005.05.005.

[67] Bingdong Li et al. “Review: A Survey of Network Flow Applications”. In:

J. Netw. Comput. Appl. 36.2 (Mar. 2013), pp. 567–581. ISSN: 1084-8045. DOI:

10.1016/j.jnca.2012.12.020.

[68] Shixia Liu et al. “StoryFlow: Tracking the Evolution of Stories”. In: IEEE Tran-

sactions on Visualization and Computer Graphics 19.12 (Dec. 2013), pp. 2436–

2445.

[69] LiveAction. NetFlow Visualizations. “http://www.liveaction.com/netflow- vi-

sualization/". 2016.

https://doi.org/10.1145/1168149.1168168
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1016/j.compind.2005.05.005
https://doi.org/10.1016/j.jnca.2012.12.020

96 BIBLIOGRAPHY

[70] C.-T. Lu, A. P. Boedihardjo, and J. Zheng. “AITVS: Advanced Interactive Traf-

fic Visualization System”. In: IEEE Computer Society, 2006, p. 167.

[71] C.Min Ma and Milan Sonka. “A Fully Parallel 3D Thinning Algorithm and

Its Applications”. In: Computer Vision and Image Understanding 64.3 (1996),

pp. 420 –433.

[72] R. C. Malak and J. C. Aurich. “Software Tool for Planning and Analyzing

Engineering Changes in Manufacturing Systems”. In: Procedia CIRP 12 (2013),

pp. 348–353. ISSN: 22128271. DOI: 10.1016/j.procir.2013.09.060.

[73] R. C. Malak, X. Yang, and J. C. Aurich. “Analysing and Planning of Engi-

neering Changes in Manufacturing Systems”. In: The 44th CIRP Conference on

Manufacturing Systems. Ed. by N. A. Duffie and M. F. DeVries. 2011.

[74] Antoine Manzanera et al. “A unified mathematical framework for a compact

and fully parallel n-D skeletonization procedure”. In: Proc. SPIE, Vol. 3811,

Vision Geometry VIII. July 1999, pp. 57–68.

[75] Matlab Central - File Exchange. “http://www.mathworks.com/matlabcentral/

fileexchange/43400-skeleton3d". Accessed: 2016-02-12.

[76] Nasrullah Memon et al. “Social Network Data Mining: Research Questions,

Techniques, and Applications.” In: Data Mining for Social Network Data. Ed.

by Nasrullah Memon et al. Vol. 12. Annals of Information Systems. Springer,

2010, pp. 1–7. ISBN: 978-1-4419-6286-7.

[77] Samira S. Mersa and Ahmed M. Darwish. “A new parallel thinning algorithm

for gray scale images”. In: IEEE Nonlinear Signal and Image Proc. Conf. 1999,

pp. 409–413.

[78] L. Monostori, J. Váncza, and S.R.T. Kumara. “Agent-Based Systems for Ma-

nufacturing”. In: Annals of the CIRP 55.2 (2006), pp. 697–720.

[79] László Monostori. “Cyber-physical Production Systems: Roots, Expectations

and R&D Challenges”. In: Procedia CIRP 17 (2014), pp. 9–13. ISSN: 22128271.

DOI: 10.1016/j.procir.2014.03.115.

https://doi.org/10.1016/j.procir.2013.09.060
https://doi.org/10.1016/j.procir.2014.03.115

BIBLIOGRAPHY 97

[80] Sunit Kumar Nandi. “Topology generators for Software Defined Network

testing”. In: International Conference on Electrical, Electronics, and Optimization

Techniques (2016).

[81] Quan Nguyen, Peter Eades, and Seok-Hee Hong. “StreamEB: Stream Edge

Bundling”. In: Proceedings of the 20th International Conference on Graph Dra-

wing. GD’12. Redmond, WA, 2013, pp. 400–413.

[82] SMYJ Oh et al. “Process-driven BIM-based optimal design using integration

of EnergyPlus, genetic algorithm, and pareto optimality”. In: Proceedings of

the IBPSA building simulation 2011 conference, Sydney, Australia (2011), pp. 894–

901.

[83] V. Peysakhovich, C. Hurter, and A. Telea. “Attribute-driven edge bundling

for general graphs with applications in trail analysis”. In: 2015 IEEE Pacific

Visualization Symposium (PacificVis). 2015, pp. 39–46.

[84] V. Peysakhovich, C. Hurter, and A. Telea. “Attribute-Driven Edge Bundling

for General Graphs with Applications in Trail Analysis”. In: 2015 IEEE Pacific

Visualization Symposium (PacificVis). 2015, pp. 39–46.

[85] Doantam Phan et al. “Flow Map Layout”. In: IEEE Information Visualization

(InfoVis). 2005, pp. 219–224.

[86] Dave Plonka. “Flowscan: A network traffic flow reporting and visualization

tool”. In: In USENIX LISA. 2000, pp. 305–317.

[87] Dave Plonka. “FlowScan: A Network Traffic Flow Reporting and Visualiza-

tion Tool”. In: Proceedings of the 14th USENIX Conference on System Adminis-

tration. USENIX Association, 2000, pp. 305–318.

[88] Tobias Post et al. “A High-Dimensional Data Quality Metric using Pareto

Optimality”. In: EG/VGTC Conference on Visualization (EuroVis) - Posters. doi:

10.2312/eurp.20171187. 2017.

[89] Tobias Post et al. “Ensemble Visualization of Bottlenecks in Planar Flow Net-

works”. In: Physical Modeling for Virtual Manufacturing Systems and Processes.

Vol. 869. Applied Mechanics and Materials. Trans Tech Publications, 2017,

pp. 234–243.

98 BIBLIOGRAPHY

[90] Tobias Post et al. “Fast 3D Thinning of Medical Image Data based on Local

Neighborhood Lookups”. In: EG/VGTC Conference on Visualization (EuroVis) -

Short Papers. doi: 10.2312/eurovisshort.20161159. 2016.

[91] Tobias Post et al. “OpenThinning: Fast 3D Thinning based on Local Neig-

hborhood Lookups”. In: IEEE Visualization Conference (Vis) - Workshop on Vi-

sualization in Practice. 2016.

[92] Tobias Post et al. “User-Guided Visual Analysis of Cyber-Physical Production

Systems”. In: ASME Journal of Computing and Information Science in Engineer-

ing (JCISE) 17.2 (2017). doi: 10.1115/1.4034872, p. 021005.

[93] Tobias Post et al. “Visual Analytics of Cascaded Bottlenecks in Planar Flow

Networks”. In: Leipzig Symposium on Visualization in Applications (LEVIA).

urn: nbn:de:bsz:15-qucosa2-328032. 2018.

[94] Tobias Post et al. “Visually Guided Flow Tracking in Software-Defined Net-

working”. In: IEEE Symposium on Visualization for Cyber Security (VizSec). doi:

10.1109/VIZSEC.2016.7739586. 2016.

[95] Kristin Potter et al. “Ensemble-Vis: A Framework for the Statistical Visua-

lization of Ensemble Data”. In: IEEE Workshop on Knowledge Discovery from

Climate Data: Prediction, Extremes. 2009, pp. 233–240.

[96] Bernhard Preim and Charl P. Botha. Visual Computing for Medicine: Theory,

Algorithms, and Applications. 2nd ed. Morgan Kaufmann Publishers Inc., 2013.

[97] F. K. H. Quek and C. Kirbas. “Vessel extraction in medical images by wave-

propagation and traceback”. In: IEEE Transactions on Medical Imaging 20.2

(2001), pp. 117–131. ISSN: 0278-0062. DOI: 10.1109/42.913178.

[98] Khairi Reda et al. “Visualizing the Evolution of Community Structures in

Dynamic Social Networks”. In: EuroVis’11. 2011, pp. 1061–1070.

[99] G. Reinhart et al. “Cycle-Oriented Manufacturing Technology Chain Plan-

ning”. In: Proceedings of the 3rd International Conference on Changeable, Agile,

Reconfigurable and Virtual Production (CARV). 2009.

https://doi.org/10.1109/42.913178

BIBLIOGRAPHY 99

[100] Richard K Brail Richard E Klosterman, ed. Planning Support Systems: Integra-

ting Geographic Information Systems, Models, and Visualization Tools. 1st ed. Esri

Press, 2001.

[101] Henri Ruotsalainen, Elina Madetoja, and Jari Hämäläinen. “Navigation on a

Pareto-optimal front utilizing gradient in formation in interactive multiob-

jective optimization”. In: International Conference on Engineering Optimization

(2008).

[102] M. Sacco et al. “Virtual Factory Manager”. In: Virtual and mixed reality. Ed.

by Randall Shumaker. Vol. 6773-6774. LNCS sublibrary. SL 3, Information

systems and applications, incl. internet/web, and HCI. Heidelberg and New

York: Springer, 2011, pp. 397–406. ISBN: 978-3-642-22023-4.

[103] Khalid Saeed et al. “K3M: A universal algorithm for image skeletonization

and a review of thinning techniques.” In: Applied Mathematics and Computer

Science 20.2 (2010), pp. 317–335.

[104] R. Scheepens et al. “Visualization, Selection, and Analysis of Traffic Flows”.

In: IEEE Transactions on Visualization and Computer Graphics 22.1 (2016), pp. 379–

388. ISSN: 1077-2626. DOI: 10.1109/TVCG.2015.2467112.

[105] David Selassie, Brandon Heller, and Jeffrey Heer. “Divided Edge Bundling

for Directional Network Data”. In: IEEE Trans. Visualization & Comp. Graphics

(Proc. InfoVis) (2011).

[106] Ulrich Sendler, ed. Industrie 4.0: Beherrschung der industriellen Komplexität mit

SysLM. Xpert.press. Berlin Heidelberg: Springer, 2013. ISBN: 978-3-642-36916-

2. DOI: 10.1007/978-3-642-36917-9.

[107] Daniel J. Simons and Daniel T. Levin. “Change blindness”. In: Trends in Cog-

nitive Sciences 1.7 (1997), pp. 261 –267.

[108] Edward Stringham. “Kaldor-Hicks Efficiency and the Problem of Central Plan-

ning”. In: Quarterly Journal of Austrian Economics 4.2 (2001), pp. 41–50.

[109] Robert Tarjan. “Depth first search and linear graph algorithms”. In: SIAM

JOURNAL ON COMPUTING 1.2 (1972).

https://doi.org/10.1109/TVCG.2015.2467112
https://doi.org/10.1007/978-3-642-36917-9

100 BIBLIOGRAPHY

[110] Teryl Taylor et al. “FloVis: Flow Visualization System”. In: CATCH. 2009,

pp. 186–198.

[111] The World Bank. TradeMap Visualizer. 2011. URL: http://devdata.worldbank.

org/TradeMapVisualizer/DataVisualizer.html.

[112] Uncharted. TorFlow. “https://torflow.uncharted.software/". 2016.

[113] Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. “Visualizing Group Struc-

tures in Graphs: A Survey”. In: Computer Graphics Forum (2016), n/a–n/a.

ISSN: 1467-8659. DOI: 10.1111/cgf.12872.

[114] VolVis. “http://volvis.org". Accessed: 2016-03-09.

[115] Katharina Witowski, Martin Liebscher, and Tushar Goel. “Desicion Making

in Multi-Objective Optimization for Industrial Applications - Data Mining

and Visualization of Pareto Data”. In: European LS-DYNA Conference (2009).

[116] Peter Y. Wu and Sushil Acharya. “Visualizing Capacity and Load: A Pro-

duction Planning Information System for Metal Ingot Casting”. In: CONISAR

Proceedings 4.1823 (2011).

[117] Ling Xiao, John Gerth, and Pat Hanrahan. “Enhancing Visual Analysis of

Network Traffic Using a Knowledge Representation.” In: IEEE VAST. IEEE

Computer Society, 2006, pp. 107–114.

[118] H Yu et al. “The Importance of Bottlenecks in Protein Networks: Correlation

with Gene Essentiality and Expression Dynamics”. In: PLoS Computational

Biology 3.4 (2007).

[119] Ping Zhang. “Visualizing production planning data”. In: Computer Graphics

and Applications, IEEE. Vol. 16. 1996, pp. 7–10.

[120] D. Zühlke. “SmartFactory - A Vision becomes Reality”. In: 13th IFAC Sym-

posium on Information Control Problems in Manufacturing (INCOM 09). Ed. by

Natalia Bakhtadze and Alexandre Dolgui. Vol. 13. V.A. Trapeznikov Institute

of Control Sciences, Russia: International Federation of Automatic Control,

2009. ISBN: 978-3-902661-43-2.

http://devdata.worldbank.org/TradeMapVisualizer/DataVisualizer.html
http://devdata.worldbank.org/TradeMapVisualizer/DataVisualizer.html
https://doi.org/10.1111/cgf.12872

	Introduction
	Application Areas of Graphs, Networks and Flows
	The Need of Visual Analysis for Graphs, Networks and Flows
	Contributions and Structure of this Work

	Flow Tracking in Software-Defined Networking
	Summary
	Related Work
	Methods
	Overview
	Flow Tracking

	Results
	Conclusion

	Visual Analysis of Cyber-Physical Production Systems
	Introduction
	Related Work
	Data Analysis in Cyber-Physical Production Systems
	Visualization Tools in Production Planning

	Methods
	Characterization of the Simulated Production System
	Visualization
	Flow View
	Workload View
	Production View

	Conclusions

	Analysis of High-dimensional Data
	Introduction
	Related Work
	Methods and Results
	Conclusion

	Graph Extraction using Fast 3D Thinning
	Summary
	Related Work
	Methods
	Local Neighborhood Lookup Tables
	Thinning Algorithm

	Results and Discussion
	Conclusion

	Visual Analysis of Network Bottlenecks
	Summary
	Related Work
	Visualization of Minimum Cuts
	Ensemble Visualization of Flow Networks

	Single Bottlenecks
	Methods
	Flow Networks
	Maximum Flows
	Minimum Cuts

	Results
	Ensemble Visualization
	Scalability

	Cascaded Bottlenecks
	Methods
	Results

	Conclusion

	Discussion and Conclusion
	Summary
	Implications

	Bibliography

