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Abstract

In this thesis, we deal with the worst-case portfolio optimization problem occuring in
discrete-time markets.

First, we consider the discrete-time market model in the presence of crash threats. We
construct the discrete worst-case optimal portfolio strategy by the indifference principle
in the case of the logarithmic utility. After that we extend this problem to general util-
ity functions and derive the discrete worst-case optimal portfolio processes, which are
characterized by a dynamic programming equation. Furthermore, the convergence of
the discrete worst-case optimal portfolio processes are investigated when we deal with
the explicit utility functions.

In order to further study the relation of the worst-case optimal value function in discrete-
time models to continuous-time models we establish the finite-difference approach. By
deriving the discrete HJB equation we verify the worst-case optimal value function in
discrete-time models, which satisfies a system of dynamic programming inequalities.
With increasing degree of fineness of the time discretization, the convergence of the
worst-case value function in discrete-time models to that in continuous-time models are
proved by using a viscosity solution method.
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Zusammenfassung

Diese Arbeit befasst sich mit der Worst-Case-Portfoliooptimierung in diskreten Märkten.

Zunächst betrachten wir das zeitdiskrete Marktmodell bei vorhandener Mglichkeit eines
Crashs. Im Falle des logarithmischen Nutzens konstruieren wir den diskreten Worst-
Case optimalen Portfolioprozess mit Hilfe des Indifferenzprinzips. Danach erweitern wir
dieses Problem auf allgemeine Nutzenfunktionen und leiten die diskreten Worst-Case
optimalen Portfolioprozesse ab, die durch eine Gleichung ein dynamisches Optimierung-
problems gekennzeichnet sind. Darüber hinaus wird die Konvergenz der diskreten Worst-
Case optimalen Portfolioprozesse fr verschiedene Nutzenfunktionen untersucht.

Um die Beziehung der Worst-Case-Optimalwertfunktion bei zeitdiskreten Modellen und
zeitstetigen Modellen weiter zu untersuchen, wird der Finite-Differenzen-Ansatz ver-
wendet. Durch Herleitung der diskreten HJB-Gleichung verifizieren wir die Worst-Case
Optimalwertfunktion in zeitdiskreten Modellen, die ein System von dynamischen Pro-
grammierungleichungen erfüllt. Mittels einer Viskositätslösungsmethode wird gezeigt,
dass die Worst-Case-Wertfunktion in zeitdiskreten Modellen gegen jene aus zeitstetigen
Modellen konvergiert, wenn der Feinheitsgrad der Zeitdiskretisierung gegen 0 strebt.
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Chapter 1.

Introduction

In the last few decades, financial mathematics has become an important and rapidly
expanding field of modern science, both in mathematics and economics. One of the
classical problems in financial mathematics is the portfolio optimization problem, that
is, optimizing investments for an investor with a given utility function and a fixed initial
endowment. In order to deal with these problems, we need at first to model the financial
markets with different mathematical models by considering the possible times of the
asset price changes during the time interval. Two kinds of mathematical models, which
are discrete-time financial market models and continuous-time financial market models,
have been developed and actively investigated to attack the portfolio optimization prob-
lem.

The continuous-time models, in which investors are allowed to make investment decisions
at any time, were developed from the 70’s of the last century. Black and Scholes[5] first
used the geometric Brownian motion to model the price processes of stocks in 1973. Sub-
sequently, based on the work of Black and Scholes Merton[33] pioneered the continuous-
time approach to the portfolio optimization problem. He applied classical stochastic
control methods to the optimal terminal wealth problem in the Black-Scholes market.
Since Merton’s pioneering work, many complete theories and powerful approaches [for
instance, Korn[23], Karatzes and Shreve[21]] have been developed to solve the portfolio
optimization problem in the continuous-time setting.

Compared to the continuous-time models, discrete-time models are more preferable from
the computational and practical point of view. For studying the portfolio optimization
problem in discrete-time models, the single-period market is a nature model and has
the advantage of being mathematically simple. Markowitz[31], whose mean-variance
portfolio selection is the most important single-period model, is the definitive refer-
ence on single-period portfolio management. Multi-period models are much more real-
istic than single-period ones. The multi-period portfolio optimization problem has also
been deeply studied. Samuelson[45] obtained the optimal decision for the discrete-time
consumption-investment model with the objective of maximizing the expected utility of
consumption by using the stochastic dynamic programming approach. Duffie[12] pro-
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Chapter 1. Introduction

vided good treatments of both continuous-time and discrete-time models. The method
of dynamic programming, as well as the martingale method for the optimal consump-
tion and investment problems, were developed in Pliska[41]. Sometimes the Markovian
property is required to facilitate the study of these models. We can also look at the
works by Bertsekas[4], Puterman[44], Bäuerle and Rieder[2] about the Markov decision
processes and the applications to finance.

The drawback of the classical stock models is that the model is not able to fully explain
extreme stock price movements, which are often observed at the markets and can cause
large financial losses for investors. To be prepared for such a situation and avoid large
losses for the investor is a desirable goal. Therefore, the modeling of a crash or of large
stock price movements incorporated into the optimal portfolio problem has become an
active research area in financial mathematics. A natural idea to replace the classical
models is the stock price dynamics with a jump diffusion processes(see Merton[35]).
And many of the work done relied on modeling stock prices as lévy processes(see Aase[1]
and Kallsen[20]). The approaches in these models only lead to optimal strategies which
hedge a risk coming from the jump possibility over the investment period. In particular,
it is difficult to estimate jump intensities and sizes, moreover, the investor following such
strategies may still suffer large losses during a crash. As a contrast to that, we will take
the so-called crash model which was firstly introduced by Hua and Wilmott[19]. In this
model, it is assumed that only both the maximal number of crashes in a given time
interval and the biggest possible size of crashes are known. More precisely, they distin-
guished between the ’normal times’, where the stock prices are assumed to follow general
Brownian motion, and the ’crash times’, where the stock prices are given by a sudden fall
by an unknown factor which they assumed to be bounded by a known constant. Korn
and Wilmott[29] took up this crash model and first studied the worst-case portfolio op-
timization problem in the continuous-time setting. By an indifference argument they
showed how to derive the worst-case optimal portfolio processes for logarithmic utility.
Korn and Menkens[26] extended this approach to a more general market setting and
Korn[24] extended it to the problems in an insurance context. Korn and Steffensen[28]
showed that the value function can be found by solving the so-called HJB-system. In
Korn and Seifried[27] a new martingale approach is presented to find an indifference
strategy. Further studies on the worst-case portfolio problem in continuous-time setting
are [50], [10], [11] and [3] .

In contrast to continuous-time models of worst-case portfolio optimization problems, rel-
atively little work has been done in discrete-time models. Nevertheless, some interesting
real-life problems are not tractable in the framework of continuous-time setting. The
optimal portfolio in continuous-time models is calculated under the assumption that
investors can trade continuously. If trading is possible at discrete points in time only,
these optimal strategies can no longer be implemented. In practice, however, this can
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Chapter 1. Introduction

never be achieved, since trading even on fully electronic systems is only possible at dis-
crete points in time. Furthermore, investors may not want to adjust their portfolio too
frequently because of the so-called transaction costs. This motivates us to consider the
worst-case portfolio optimization problem in discrete-time setting. Furthermore, if the
parameters in the discrete-time financial markets are chosen appropriately, this discrete-
time models can be seen as an approximation of the continuous-time models(for instance,
Black-Scholes model). This observation serves as another reason for the importance of
considering the worst-case portfolio optimization problem in discrete-time setting. The
objective of this thesis is to deal with the worst-case portfolio optimization problem for
discrete-time market models.

Outline of this thesis

Chapter 2 gives an overview of the portfolio optimization problem in continuous-time
models with and without crashes. First of all, we consider the Merton problem in which
the investor aims to maximize her expected utility of terminal wealth in a Black-Scholes
model. After that, we describe the crash model introduced by Hua and Wilmott and
show the optimal worst-case portfolio processes by different approaches.

In Chapter 3 we start by considering the discrete-time financial market model. We define
portfolio strategies and characterize the absence of arbitrage in this market. Next, we
investigate the dynamic programming method for the discrete-time portfolio optimiza-
tion problem and present the corresponding numerical examples.

Chapter 4 describes first the set up of the crash model in the discrete-time financial mar-
ket. In Section 2 we derive the worst-case optimal portfolio processes in discrete-time
for the logarithmic utility function by an indifference argument. After this we turn to
a more general study of the worst-case portfolio optimization problem in discrete-time.
Section 3 is devoted to provide a system of dynamic programming equations and verify
the optimal strategies as a system of difference equations. In section 4 these results will
be applied to the power-utility, log-utility and exponential-utility functions.

In Chapter 5 we turn our focus to establish a new approach, a finite-difference approach.
We first consider the discrete Itô formula introduced by Fujita. In Section 2 the discrete-
HJB equation is derived and the relation between the value function of the discrete-time
portfolio problem and the discrete-HJB equation is investigated. Moreover, we extend
the discrete-time financial market to allow for crashes in the stock price. Our aim is
to solve the worst-case portfolio optimization in discrete-time setting by considering the
discrete-HJB equation. The result is a verification theorem asserting that a so-called
Bellmann system determines the value function. This result and the characterization
of the solution are illustrated by some explicit examples. Some connections between
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Chapter 1. Introduction

discrete-time and continuous-time crash models are considered in Section 4. We show
that, with increasing degree of fineness of the time discretization, the value function in
the discrete-time crash model converges to that of the continuous-time crash model.

Finally, our thesis is complemented by a summary and an outlook on future research at
the end.
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Chapter 2.

The worst-case portfolio optimization in
continuous-time

For the portfolio optimization problem in continuous time and in discrete time we have
two different financial market settings. Here we will take a look at the portfolio opti-
mization in continuous time. The market setting in discrete time we will discuss in the
next chapter. In the following we consider the optimal terminal wealth problem in the
Black Scholes market which was first solved in Merton[34]. A more extensive overview
of methods and models in continuous time portfolio optimization can be found in R.
Korn[23].

2.1. The portfolio optimization in continuous-time

Here we state the Merton model[34], which marks the starting point of stochastic control
methods in portfolio optimization.

Let (Ω,F , P ) be a complete probability space with sample space Ω, σ-field F and prob-
ability measure P , und let F be a filtration which satisfies the usual conditions. (A
filtration F satisfies the usual conditions if it is right-continuous and F0 contains all
P-null sets of F .) We furthermore assume that (Ω,F , P ) supports a one-dimension
standard Brownian motion W = (W (t))t≥0 with respect to F und fix a finite time hori-
zon T > 0.

We consider the financial market consisting of a riskless bond and one risky security.
The price dynamics of the bond, denoted by Bt, and the price dynamics of the stock,
denoted by St, are given by

dBt = rBtdt (2.1)

dSt = µStdt+ σStdWt (2.2)

with constant market coefficients µ > r and the volatility σ 6= 0.
Let x > 0 be the investor’s initial wealth. We assume that π is a self-financing trading

5



Chapter 2. The worst-case portfolio optimization in continuous-time

strategy and the strategy π is admissible for the initial value x. We denote the set of
all admissible strategies on [t, T ] with X(t) = x by A(t, x). Here, we call the portfolio
process (π) self-financing if the wealth process X(t) corresponding to an initial capital
x satisfies the following stochastic differential equation{

dX(t) = rX(t)dt+X(t)π(t)(µ− r)dt+ π(t)σX(t)dWt,
X(0) = x

(2.3)

The portfolio process will be called admissible on [t, T ] if it is self-financing and has a
non-negative wealth process.
So the portfolio problem asks for a self-financing strategy (π) in a suitable class A of
admissible trading strategies which maximizes the expected utility

J(x;π, c) = E (u(X(T ))) (2.4)

for some terminal time T and the utility function u . Let

V (t, x) = sup
π∈A

J(x;π) (2.5)

be the value function of the portfolio optimization problem. Merton [34] used the so-
called Bellman principle:

V (t, x) = sup
π∈A

E (V (θ,X(θ))) (2.6)

where θ is a stopping time taking values in [t, T ]. The Bellman principle which allows
us to transform the original problem into two subproblems works well in a discrete time
setting. In the continuous-time case, Korn[25] considered the Hamilton-Jacobi-Bellman
equation ( HJB equation) by using the Itô formula. The corresponding HJB-equation
has the form{

sup
π∈A
{1

2π
′πσ2x2Vxx(t, x) + ((r + π′(µ− r))x)Vx(t, x) + Vt(t, x) = 0,

V (T, x) = u(x)
(2.7)

One can show that under certain conditions this equation has a unique solution and this
solution is indeed our value function V . For example, if U = 1

γx
γ , we obtain the optimal

strategy (π∗) in a setting with only one stock as

π∗(t) =
1

1− γ
µ− r
σ2

(2.8)

and for example, if U = log x, the optimal strategy (π∗) is given by

π∗(t) =
µ− r
σ2

(2.9)

The form of the optimal trading strategies are illustrated in Figure 2.1. Note that the
optimal portfolio strategy π∗(t) is constant.
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Figure 2.1.: The optimal trading strategies π∗0 for the power utility function in a Merton
type market

2.2. The worst-case portfolio optimization in continuous-time

A drawback of the standard geometric Brownian-motion-based models is that the model
is not able to fully explain extreme stock price movements, which are often observed at
the markets. Sudden price falls of the whole market, so-called crashes, are not incorpo-
rated into the standard continuous-path framework.

A natural idea to replace the Brownian motion is the stock price dynamics with a jump
diffusion[37] or to consider price proceses which are driven by lévy processes(see kallsen
[20]). Since in these models the distribution of the jump times and sizes is known to
the investor, this leads to optimal strategies which hedge the risk coming from the jump
possibility on average over the whole period. In particular it is difficult to estimate jump
intensities and sizes. Motivated by the desire to be able to model market crashes, Hua
and Wilmott [19] introduced their so-called crash model. The stock prices are assumed
to follow geometric Brownian motion in normal times. The crash feature of the stock
price at a crash time is given by a sudden fall by an unknown factor, which they assumed
to be bounded by an explicitly known constant, but the true distribution of the jumps
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Chapter 2. The worst-case portfolio optimization in continuous-time

remains unknown. Subsequently Korn and Wilmott [29] used the framework of Hua and
Wilmott where they focus on the uncertainty of the number, time and height of possible
market crashes and optimize over the worst-case bounds of the trading strategies. They
assume that the stock and bond dynamics in normal times are given by

dBt = rBtdt,B0 = 1 (2.10)

dSt = µStdt+ σStdwt, S0 = p1 (2.11)

with constant market coefficients µ > r and σ 6= 0. At a crash time τ , which is modeled as
a stopping time, the stock suddenly drops by a relative amount of k with 0 ≤ k ≤ k∗ < 1.
Here, k∗ is assumed to be the biggest possible crash height. In a crash scenario (τ, k),
we have

S(τ) = (1− k)S(τ−) (2.12)

No assumptions are made about the distribution of the crash time or height. Moreover,
the investor is assumed to expect the worst-possible crash scenario to occur. Let Xπ

be the wealth process corresponding to the portfolio process π(t) and the initial wealth
of x. Instead, the idea is to find the trading strategy which performs the best in the
worst-case scenario.

Definition 2.1: Let U be an utility function. The worst-case portfolio optimization
problem can be expressed as follows:

sup
π∈A

inf
τ,k
E(U(Xπ(T ))) (2.13)

where the final wealth Xπ(T ) in the case of a crash of size k at time τ given by

Xπ(T ) = (1− π(τ)k)X̃π(T ) (2.14)

with X̃π(T ) the wealth process in the standard crash-free market model and is given as
the unique solution to the stochastic differential equation

dX̃π(t) = X̃π(t)(r + π(t)(µ− r))dt+ π(t)σX̃π(t)dwt,

X̃π(0) = x

This worst-case portfolio optimization problem could be formulated: For every admissi-
ble trading strategy π, determine the crash time τ and size k which yields the minimal
expected utility at terminal time. This is the so-called worst-case bound for the strategy
π. The optimal trading strategy is then defined to be the trading strategy with the
maximal worst-case bound. The optimization problem is hence a version of Wald’s max-
imin model ([51]) which means that the investor chooses a strategy at first and presents
this strategy to her opponent market who chooses the crash scenario. In Korn and
Menkens[26] and Korn and Seifried [27] we can see an overview of different approaches
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to this type of problem.

The worst-case portfolio optimization problem in continuous time has first been studied
in Korn and Wilmott[29] for logarithmic utility. Since at most one crash can occur it
is straightforward to argue that after the occurrence of the crash the investor should
invest according to the optimal strategy in the Merton model. Korn and Wilmott used
the indifference strategy to solve this worst-case portfolio problem, where they found a
portfolio process that makes the investor indifferent about two extreme cases:

• A crash of maximize size k∗ happens immediately.

• No crash happens at all.

In the log-utility case, this can be done by solving the equation

E[log(Xπ∗
t,x(T ))] = V0(t, (1− π∗(t)k)x) (2.15)

in which the worst-case optimal strategy π satisfies the following differential equation

π′(t) = − σ2

2k∗
(1− π(t)k∗)(π(t)− π∗)2 (2.16)

with the obvious final condition
π(T ) = 0 (2.17)

Then the optimal strategy is given by the solution to this ordinary differential equation
up to the crash time. After the crash, the investor invest according to the standard
crash-free market model. Korn and Willmott showed that for any other strategy π there
exists one crash scenario in which π∗ performs better. π∗ is indeed optimal.

Theorem 2.2: [29] In the log-utility case, the portfolio process π∗ such that the corre-
sponding expected log-utility after an immediate crash equals the expected log-utility given
no crash occurs which is given as the solution π∗ of the differential equation

π′(t) =
1

k∗
(1− π(t)k∗)(π(t)(µ− r)− 1

2
((πσ)2 + (

µ− r
σ

)2)

π(T ) = 0

and satisfies

0 ≤ π∗ ≤ 1

k∗

is an optimal portfolio process for the worst-case problem.

9
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Figure 2.2.: The optimal trading strategies for log utility function with and without crash
possibility

Figure 2.2 illustrates the worst-case optimal strategy π∗ and the crash-free optimal
strategy in a Merton type market π0. Note that the worst-case optimal portfolio process
π∗ is a nonconstant process which is decreasing with time. And even at the initial time
t = 0 the optimal strategy in the presence of crash is below the crash-free strategy π0.

Korn and Wilmott [29] extended these results to n > 1 crashes. It can be shown that
the strategy π∗ in the presence of n crashes is given as the solution of

(πn,∗(t))′ = − σ2

2k∗
(1− πn,∗(t)k∗)(πn,∗(t)− πn−1,∗(t))2 (2.18)

with the obvious final condition
πn,∗(T ) = 0 (2.19)

This approach is extended to a more general market setting by Korn and Menkens
[26]. They extend these results to power utility and changing market coefficients after
the occurrence of a crash by deriving a dynamic programming equation for the value

10
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function. The price dynamics of the bond and the risky asset after the crash scenario
(τ, k) are then assumed to be given by

dB1(t) = r1B1(t)dt,B1(τ) = B0(τ) (2.20)

dS1(t) = µ1S1(t)dt+ σ1S1(t)dwt, S1(τ) = (1− k)S0(τ) (2.21)

with constant market coefficients r1, µ1 and σ1 6= 0 after the crash.
We denote by

Ψ1 = r1 +
(µ1 − r1)2

2σ2
1

and

Ψ0 = r0 +
(µ0 − r0)2

2σ2
0

the utility growth potentials in the respective markets. Then it allows them to show
that the crash hedging strategy πch is given by the solution of the differential equation

(πch(t))′ = − 1

k∗
(1− πch(t)k∗)(

(σ0)2

2
(πch(t)− π∗0(t))2 + Ψ1 −Ψ0) (2.22)

with final condition
πch(T ) = 0

This strategy makes the investor indifferent between no crash occurrung at all until
the investment horizon and the immediate worst possible crash, we have to compare
the markets before and after the crash. Note that the equation 2.22 reduces to the
equation 2.16 if the market coefficients do not change after a crash. The optimal portfolio
strategy before the crash for an investor who wants to solve the worst case portfolio
optimization problem is given by

π∗(t) = min{πch(t), π∗0}

A more detailed discussion of the effects of changing market coefficients after a crash
can be found in Korn and Menkens [26].

Presently, there are also two other approaches to solve this kind of problem: a control
approach as used in Korn and Steffensen [28] and a martingale approach as chosen in
Korn and Seifried [27].

Korn and Steffensen interpret the worst-case setting as a game between the market and
the investor. While the market is allowed to choose a crash sequence, the investor chooses
the portfolio process. The stock price dynamics are modeled by

dSt = µStdt+ σStdwt − kStdNt (2.23)

11
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where Nt is a process which counts the number of the crashes. They derive a system of
inequalities that they call the HJB-system and thereby obtain optimality of the worst-
case portfolio process. For V ∈ C1,2 we define the differential operator LπV by

LπV (t, x) = Vt(t, x) + Vx(t, x)(r + π(µ− r))x+
1

2
Vxx(t, x)π2σ2x2

and for n ∈ N we define the value function V n(t.x) by

V n(t.x) = sup
π∈A(t,x)

inf
N∈B(t,n)

E(U(Xπ(T )))

Theorem 2.3: [28]

• Assume that v0(t, x) is a classical solution of

sup
π∈A(t,x)

Lπv0(t, x) = 0

v0(T, x) = U(x)

which is polynomially bounded, and that

p0(t.x) = arg sup
π∈A(t,x)

Lπv0(t, x)

is an admissible control function. Then we have

V 0(t.x) = v0(t, x)

and the optimal control function exists and is given by

π0∗(t.x) = p0(t, x)

• For n ∈ N and every function vn ∈ C1,2, define the sets A′n(t, x) and A′′n(t, x) by

A′n(t, x) = {π : π ∈ A, 0 6 Lπvn(t, x)} (2.24)

A′′n(t, x) = {π : π ∈ A, 0 6 vn−1(t, x(1− kπ))− vn(t, x)} (2.25)

respectively. Assume that there exists a polynomially bounded C1,2-solution of

0 ≤ sup
π∈A′′n(t,x)

[Lπvn(t, x)]

0 ≤ sup
π∈A′n(t,x)

[vn−1(t, (1− πk∗)x)− vn(t, x)]

0 = sup
π∈A′′n(t,x)

[Lπvn(t, x)] sup
π∈A′n(t,x)

[vn−1(t, (1− πk∗)x)− vn(t, x)]

vn(T, x) = U(x)

12
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and that

pn(t, x) := arg sup
π∈A′′n(t,x)

[Lπvn(t, x)]

θn(t, x) := sup
s≥t

[vn−1(s, (1− πk∗)Xπ(s))− vn(s,Xπ(s)) ≤ 0]

where Xπ(t) = x and s is astopping time, is a pair of admissible control functions.
Then

V n(t.x) = vn(t, x)

and the optimal control functions exist and are given by

πn∗(t, x) := pn(t, x)

τn∗(t, x) := θn(t, x)

In Korn and Steffensen [28] expilcit examples are solved when the utility function is the
negative exponential utility function or of the form U(x) = 1

γx
γ , γ 6= 0. With the help

of the Bellman system , we can drive an ordinary differential equation for the optimal
strategy πn∗(t)

(πn∗(t))′ =
1

k
(1− πn,∗(t)k)((µ− r)(πn,∗(t)− πn−1,∗(t))

−(1− γ)(σ0)2

2
((πn,∗(t))2 − (πn−1,∗(t))2)

πn∗(T ) = 0

One can show via induction that its solution satisfies

0 ≤ πn∗(t) ≤ π∗n−1(t) ≤ · · ·π∗0(t)

is unique.
Figure 2.3 illustrates the worst-case optimal strategy π∗1(t) and the crash-free optimal
strategy in a Merton type market π0 for power utility function. They look very similar
to the optimal portfolio processes of Figure 2.2. The optimal portfolio process is a
nonconstant process which decreases with time.

In contrast to the dynamic programming approach, the martingale approach to the
worst-case portfolio problem is based on martingale optimality arguments and the idea
that the market acts as an opponent to the investor. Korn and Seifried [27] generalizes
the results by considering the worst-case portfolio problem as a controller-vs-stopper
game. They set the process W π(t) by

W π(t) = V 0(t, 1− π(t)k∗)Xπ(t) (2.26)

13
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Figure 2.3.: The optimal trading strategies for power utility function with and without
crash possibility

for t ∈ [0, T ] and W π(∞) := V 0(T,Xπ(T )). To construct an indifference strategy π̂
which turns the process W π(t) into a martingale we obtain the ordinary differential
equation

π̂′(t) =
(1− γ)(σ)2

2k∗
(1− π̂(t)k∗)(π̂(t)− π0∗(t))2 (2.27)

for π̂ and then show that this is sufficient for π̂ to be an indifference strategy. The
optimal strategy in the pre-crash market for the worst case portfolio problem is given
by the indifference strategy π̂. After the crash, the Merton strategy π0∗ = µ−r

(1−γ)σ2 .

The worst-case portfolio optimization problem has also been considered in other sit-
uations: Hua and Wilmott[19] considered worst-case option pricing in a discrete-time
setting. Korn[24] applied the worst-case modeling approach in the investment for Insur-
ers. Menkens[32] considered the worst-case problem given the probability of the crash.
Desmettre, Korn and Seifried[11] analyzed the worst-case consumption portfolio opti-
mization problem over an infinite time horizon and also considered the robust worst case
optimal investment with respect to the choice of the maximum crash size[10]. Belak and

14
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Sass[3] considered the worst-case portfolio optimization problem under transaction costs.
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Chapter 3.

The discrete-time model and the portfolio
optimization in discrete-time

3.1. The discrete-time market model

A discrete time financial model is built on a finite probability space (Ω,F , P ) with sam-
ple space Ω, σ-algebra filtration F = (Ft)t=0,...,N and the probability measure P . The
σ−field Ft usually models the events which can be observed up to time t. From now on
we asume that F0 = ∅,Ω,FT = P (Ω) and ∀w ∈ Ω, P (w) > 0.

The market consists of two financial assets, whose prices at time t are given by the
non-negative random variables Bt, St, measurable with respect to Ft. The asset B =
{Bt; t = 0, 1, ..., T} is the riskless asset and we have B0 = 1. If the return of the riskless
asset over time is equal to r, the price of the riskless asset evolves as

Bt+1 = (1 + rt)Bt = (1 + r)n (3.1)

There is a risky security processes St, where St is a non-negative stochastic process for
each t = 1, 2, ..., T . The the price of the risky security St evolves according to

St+1 = (1 + R̃t)St (3.2)

where R̃t is the return process corresponding to the price process St and we could
equivalently write

St+1 = RtSt (3.3)

with Rt = 1 + R̃t and Rt > 0 P -almost surely.
We assume that the random vectors R1, ..., RT are independent identically distributed
sequences of random variables.

Definition 3.1: A trading strategy is defined as a (Ft)-adapted stochastic process
φ = (φ0

t , φ
1
t ) where φit denotes the number of shares of asset i held in the portfolio at

time t.
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Remark 3.2. Note that the components φit is allowed to be negative. In particular
φ0
t < 0 implies that a loan is taken such that we receive the amount |φ0

t | at time t and
pay back the amount (1 + r)|φ0

t | at time t+ 1. If φ1
t < 0 this corresponds to a short sale

of the asset.

The value x := φ0
0B0 + φ1

0S0 is called the initial value of φ.
The wealth process Xt corresponding to φ with initial value x is defined by

Xt = φ0
tBt + φ1

tSt

Denote by Xt− the wealth process at time t before trading, then we have

Xt− = φ0
t−1Bt + φ1

t−1St

and the wealth process at time t after trading follows

Xt+ = φ0
tBt + φ1

tSt

Definition 3.3: A strategy is called self-financing when the following equation is
satisfied for all t ∈ {0, 1, ..., T − 1}

φ0
t−1Bt + φ1

t−1St = φ0
tBt + φ1

tSt

Remark 3.4. The self-financing equation can be equivalently expressed as

Xt+1 −Xt = φ0
t∆Bt + φ1

t∆St

Definition 3.5: Let φ be a self-financing trading strategy with corresponding wealth
process X(t) > 0 P−a.s. for all t, then the process πt with

πt =
φ1
tSt
Xt

is called a self-financing portfolio process.

The fraction of wealth invested in the bond is given by

1− πt = π0
t =

φ0
tBt
Xt

.

Then the self-financing condition implies

Xt+1 = Xt + φ0
t∆Bt + φ1

t∆St

= Xt + φ0
tBtr + φ1

tSt(Rt − 1)

= Xt +Xt(π
0
t r + πt(Rt − 1))

= Xt(1− pi1t + π0
t r + πtRt)

= Xt(π
0
t (1 + r) + πtRt)

= Xt(π
0
t (1 + r) + πtRt)

= Xt((1 + r) + πt(Rt − 1− r)) (3.4)

18
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This recursive formula is important for the wealth evolution which will be used in the
following.
From the remark 3.2 borrowing and short-sale is allowed but the wealth process must
be positive at all times.

Definition 3.6: A self-financing strategy π or a self-financing portfolio process is ad-
missible if the corresponding wealth process satisfies Xt ≥ 0 for all t.

We denote by A(x) the set of admissible portfolio processes.
As usual we have to eliminate the arbitrage opportunities in the financial market.

Definition 3.7: A self-financing portfolio strategy π is called an arbitrage opportu-
nity with the following property for the initial capital x0 ≤ 0

Xπ
0 = x0 ≤ 0, P (Xπ

T ≥ 0) = 1, P (Xπ
T > 0) > 0.

Amarket model is arbitrage free, if no arbitrage opportunities exist.
An arbitrage opportunity is an investment strategy which leads to a positive profit with
a positive probability. In real markets such arbitrage opportunity exists but it disappear
soon after it is found by traders. Therefore, the absence of the arbitrage opportunities
is our main asumption in the market.

Remark 3.8. The absence of arbitrage opportunities in market models is also charac-
terized by the existence of the equivalet risk-neutral measure or martingal measure. This
equivalence is very improtant for the pricing and hedging contigent claims in complete
markets.

In the following we present two special cases of the discrete-time model.

3.1.1. Binomial model

The binomial model or Cox-Ross-Rubinstein model is an important special case of the
discrete-time model. We shall begin by recalling the Bernoulli process. The stochastic
process {Yt; t = 1, 2, ...} is said to be a Bernoulli process with parameter p if the random
variables Yt are i.i.d. and

P{Yt = 1} = 1− P{Yt = 0} = p ∈ (0, 1)

The underlying sample space Ω consists of all the sequences of the form

w = (0, 1, 0, 0, 1, 1, ...)

We consider our securities market model which features just a finite number T of periods.
Now each state w has T components and the probability measure is given by

P (w) = pn(1− p)T−n
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Let the process {Nt; t = 1, 2, ...} be defined as Nt = Y1 + Y2 + · · ·+ Yt, then

P (Nt = n) =

(
t

n

)
pn(1− p)t−n

We consider the market with only one risky asset whose price is St at time t, and a
riskless asset whose return is r over the period of time. St is modelled as follow:

St+1 = StRt (3.5)

where Rt are i.i.d. and such that

Rt =

{
u with probab. p
d with probab. 1− p

Then we have the representation

Rt = uYt + d(1− Yt)

Then the price of the risky asset is given by

St = S0u
Ntdt−Nt

and

P (St = S0u
Ntdt−Nt) =

(
t

n

)
pn(1− p)t−n

Remark 3.9. • In this binomial market model the no-arbitrage condition is satisfied
only when the model parameters satisfy:

d < 1 + r < u

Otherwise there would be an arbitrage opportunity.

If 1 + r ≤ d, we can invest the stock price through a credit at time 0 and get a
positive profit in the future time. This is called the arbitrage opportunity.
If 1 + r ≥ u, investing a bond via a stock short selling is also such an arbitrage
opportunity.

• It is possible to approximate the price process of the Black-Scholes-Merton model
in continuous time by the price process of the binomial model in discrete time when
we choose the suitable parameters u, d and p. This approach has been suggested
by Cox and Rubinstein[8]. And the detail about the weak convergence in financial
market can be found in Prigent[43].
A particular choice of parameters in the binomial model is given by

u = exp(σ
√

∆t), d = exp(−σ
√

∆t)

p =
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t, 1 + r = exp(rc∆t)

which are proposed by Cox[7].
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3.1.2. Discrete Black-Scholes model

In the standard Black-Scholes-Merton market model it is assumed that the stock price
evolves according to

dBt = rBtdt

dSt = µStdt+ σStdwt

where Wt is a Wiener process.
Here we consider a discrete approximation to this continuous time model. If we take a
time step ∆t , the dynamic processes of the bond price and the stock price satisfy

Bt+∆t = Bt exp(r∆t)

St+∆t = St exp((µ− 1

2
σ2)∆t+ σ(wt+∆t − wt))

In this case Rt has a lognormal distribution. Let xt = log(Rt) = log( St
St−1

) then we have

xt = µ̃+ σ̃Zt (3.6)

where µ̃ = (µ− 1
2σ

2)∆t, σ̃ = σ
√

∆t and Zt = wt−wt−1√
∆t

is a sequence of standard normal

i.i.d. random variables.

3.2. Portfolio optimization in discrete-time

In this section we introduce the classical portfolio problem in discrete time of maximizing
the expected utility of terminal wealth.
By the self-financing property the recursive expression of the wealth process Xt with
respect to portfolio strategy πt is given by:

Xt+1 = Xt((1 + r) + πt(Rt − 1− r)) (3.7)

Then we obtain the final wealth process XT as following

XT = X0((1 + r) + π0(R0 − 1− r)) · · · ((1 + r) + πT−1(RT−1 − 1− r))

= x

T−1∏
t=0

((1 + r) + πt(Rt − 1− r))

with the initial wealth X0 = x.

Definition 3.10: Let a function u : D → R be strictly concave, strictly increasing and
continuous on D, then u is called a utility function.
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Example 3.11: • the log-utility function. u(X) = log(X) and D = (0,∞).

• the power utility function. u(X) = 1
γX

γ with 0 < γ < 1 and D = (0,∞).

• the exponential utility function. u(X) = −e−θx with θ > 0 and D = R.
C

Note that for an arbitrage strategy π the expectation of the utility of the terminal
wealth is not necessarily defined. Hence the investor maximizes the expected utility of
his investment under the constraint that the expectation is finite.

Definition 3.12: Let u(·) be a utility function, and Xπ
t be the wealth process. The

portfolio problem in discrete time is to calculate

V0(t, x) = sup
π∈A′(x)

E(u(Xπ
T )) (3.8)

with {
Xt = x
A′(x) = {π ∈ A(x) | E(u(Xπ

T )) <∞}

and to find an admissible strategy π∗ s.t. E(u(Xπ∗
T )) = V0.

We denote by V0(t, x) the value function of the optimization problem in discrete time.

3.2.1. Dynamic programming

Now we investigate at first the one-period utility maximization problem. Then the
formulation of the one-period utility optimization problem is given by :

V0(x) = sup
π
E(u(x(1 + r + π(R− 1− r)))) (3.9)

In order to get the well-defined A′(x) we assume two cases:

• D = R, u is bounded from above.

• D = (0,∞), E(R) <∞.
By the Jensen’s inequality we have

E(u(x(1 + r + π(R− 1− r)))) ≤ u(E(x(1 + r + π(R− 1− r))))
= u((x(1 + r + πE(R− 1− r))))
≤ C(1 + x(1 + r + πE(R− 1− r)))

with C ∈ R.
since u is concave, the utility function u(x) can be bounded from above by an
affine linear function c(1 + x) which imples the second inequality.
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For the one-period utility optimization problem of

V0(x) = sup
π
E(u(x(1 + r + π(R− 1− r)))) (3.10)

we want to show that the existence of the optimal portfolio strategy π∗ is equivalent
to the absence of arbitrage opportunities. The similar proof of the following theorem is
shown in Foeller and Schied[16] and Baeuerle and Rieder[2].

Theorem 3.13: Let u ba a utility function which satisfies the assumption, then it holds:

• There are no arbitrage opportunities if and only if there exists a measurable func-
tion π∗ such that E(u(x(1 + r + π∗(R− 1− r)))) = V0(x).

• There exists at most one maximizer if the market model is non-redundant.

• The function V0(x) is strictly increasing, strictly concave and continuous on D.

Remark 3.14. A financial market is called non-redundant only when there exists no
asset which can be replicated by a linear combination of the other assets.

Now we focus on the multiperiod extension of the portfolio optimization problem in
discrete time. Suppose we have the utility function u : (0,∞) → R. From the theorem
above we state the following assumption on the financial market which is used through-
out this section.

Assumption:

• The market is arbitrary-free.

• E(‖Rt‖) <∞ for all t.

In the discrete-time model, the multi-period portfolio optimization problem can be
writen as:

V0(t, x) = sup
πt,πt+1,··· ,πT−1

E(u(Xπ
T )) (3.11)

π = (πt, πt+1, · · · , πT−1) is the optimal control sequence.
When we are faced with such a sequence of decisions, the method called dynamic pro-
gramming may reduce the computational difficulties. The dynamic programming idea for
the portfolio optimization problem in discrete time is already introduced by Pilska[41].
The main idea of the dynamic programming is that the optimal decision to make now
should be consistent with the intention to act optimally in all future periods. If we know
the optimal strategy starting at time t + 1, then the problem of determination of the
optimal strategy at time t can be reduced to one-period problem. That means dynamic
programming can simplify a multiperiod decision problem by breaking it down into a
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sequence of one-priod problems.
In the case of our optimal portfolio problem, let us define Ut(x) as the optimal value
process with

Ut(x) = sup
πt,...,πT

{E(u(Xπ
T )) | Ft}. (3.12)

Ut(x) is a Ft measurable random variable.
When t = T , we have

UT (x) = u(x), (3.13)

and t < T

Ut(x) = sup
πt,...,πT

{E(u(Xπ
T )) | Ft}

= sup
πt
{E(Ut+1(Xt+1(πt))) | Ft}.

Then from the equation (3.4) we can get the following dynamic programming equation
for the sequence π0, ..., πT{

Ut(x) = sup
πt
{E(Ut+1(x((1 + r) + πt(Rt − 1− r))))}

UT (x) = u(x).
(3.14)

Now we state some properties of the optimal value processes Ut(x). We use the formu-
lation in Baeuerle and Rieder[2] and refer to the same book for the proof.

Lemma 3.15: Let u(·) be a utility function, then for the multiperiod terminal wealth
problem it holds: The optimal value function Ut(x) in each stage are strictly increasing,
strictly concave and continuous.

Theorem 3.16: [2] The value function can be computed recursively by the dynamic
programming equations{

Ut(x) = sup
πt
{E(Ut+1(x((1 + r) + πt(Rt − 1− r))))}

UT (x) = u(x)
(3.15)

and there exist maximizers π∗t of Ut(x) and the strategy (π∗0, · · · , π∗T−1) is optimal for
the portfolio optimization problem.

The dynamic programming equation (3.14) can be used to compute an optimal solution
to the problem (3.8) by computing the optimal value functions Ut(x) in a backwards
recursive manner. Based on the first-order necessary conditions and the strict con-
cavity of function Ut(x) we obtain maximizers π∗t of Ut+1, and the portfolio strategy
(π∗0, · · · , π∗T−1) is optimal for the optimization problem. The dynamic programming
provides a bonus: you have a solution for all possible values of the initial wealth x.
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For some utility function, the portfolio optimization problem (3.8) can be solved rather
explicitly.

Power utility:
Let us suppose that the utility function in problem (3.8) is of the form

u(x) =
1

γ
xγ

with 0 < γ < 1, x ∈ [0,∞)
Then the one-period optimal value function U(x) satisfies

U(x) = sup
π∈A(x)

{E(u(x((1 + r) + π(R− 1− r))))}

= sup
π∈A(x)

{E(
1

γ
(x((1 + r) + π(R− 1− r))))γ}

=
1

γ
xγ sup

π∈A(x)
{E((1 + r) + π(R− 1− r))γ}

Here we define a function Pt := sup
πt∈A(x)

{E((1 + r) + πt(Rt − 1− r))γ}.

From the dynamic programming equation (3.14) we have that
when t = T , we have

UT (x) =
1

γ
xγ (3.16)

and for t = T − 1

UT−1(x) = sup
πT−1

{E(UT (x((1 + r) + π(RT−1 − 1− r))))}

= sup
πT−1

{E(
1

γ
(x((1 + r) + π(RT−1 − 1− r)))γ)}

=
1

γ
xγ sup

πT−1

{E((1 + r) + π(RT−1 − 1− r))γ}

=
1

γ
xγPT−1

Then, the optimal strategy πT−1 = argPT−1 is the optimal solution of PT−1(x).
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and for t = T − 2

UT−2(x) = sup
πT−2

{E(UT−2(x((1 + r) + π(RT−2 − 1− r))))}

= sup
πT−2

{E(
1

γ
(x((1 + r) + π(RT−2 − 1− r)))γPT−1(x))}

=
1

γ
xγPT−1 sup

πT−2

{E((1 + r) + π(RT−2 − 1− r))γ}

=
1

γ
xγPT−1PT−2

we can get the optimal strategy πT−2 = argPT−2.
and so on, we can conclude that the optimal value function in power utility are given by Ut(x) = 1

γx
γ
T−1∏
s=t

Ps

UT (x) = 1
γx

γ
(3.17)

and the optimal portfolio strategy πt is the optimal solution of Pt.
Therefore if the return of the stock price Rt are identically distributed for all t, then
πt ≡ π is independent of t.
If we assume that we have one stock and the price process of the stock follows the
binomial model as described in section 3.1.1. Then we have that

Rt =

{
u with probab. p
d with probab. 1− p

then

Pt = sup
πt∈[0,1]

{E((1 + r) + πt(Rt − 1− r))γ}

= sup
π∈[0,1]

{((1 + r) + π(u− 1− r))γp+ ((1 + r) + π(d− 1− r))γ(1− p)}

Let κ = 1
1−γ , then the optimal portfolio strategy is of the form

π∗ =
(1 + r)

(u− 1− r)(1 + r − d)
∗ pκ(u− 1− r)κ − (1− p)κ(1 + r − d)κ

(pκ(u− 1− r)κγ + (1− p)κ(1 + r − d)κγ)
(3.18)

In the standard continuous-time Black-Scholes-Merton model from the chapter, the op-
timal portfolio strategy in the case of power utility is of the form

π∗c (t) =
1

1− γ
µ− rc
σ2

(3.19)
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where µ is the drift of the stock, σ is the volatility and rc is the risk-free interest rate in
continuous time.
Because the Black-Scholes-Merton model can be approximated by the binomial model
if we choose the parameters of the binomial model appropriately, we expect that the
optimal portfolio strategy (3.18) in binomial model converges to the expression (3.19) in
continuous time. If we define:

u = exp(σ
√

∆t), d = exp(−σ
√

∆t)

p =
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t, 1 + r = exp(rc∆t)

then by using the taylor series expansion for the exponential function exp(∆t) we can
obtain

lim
∆t↓0

π∗(∆t) =
1

1− γ
µ− rc
σ2

(3.20)

Logarithmic utility:
Here we assume that the utility function in porblem (3.8) is given by

u(x) = log x

Then the one-period optimal value function U(x) satisfies

U(x) = sup
π∈A(x)

{E(u(x((1 + r) + π(R− 1− r))))}

= sup
π∈A(x)

{E log(x((1 + r) + π(R− 1− r)))}

= log x+ sup
π∈[0,1]

{E log((1 + r) + π(R− 1− r))}

Here we define a function Pt := sup
πt∈A(x)

{E log((1 + r) + πt(Rt − 1− r))}.

From the dynamic programming equation (3.14) we have that
when t = T , we have

UT (x) = log x (3.21)

and for t = T − 1

UT−1(x) = sup
πT−1

{E(UT (x((1 + r) + π(RT−1 − 1− r))))}

= sup
πT−1

{E(log(x((1 + r) + π(RT−1 − 1− r))))}

= log x+ sup
πT−1

{E log((1 + r) + π(RT−1 − 1− r))}

= log x+ PT−1
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we can get the optimal strategy πT−1 = argPT−1 is the optimal solution of PT−1(x).
and for t = T − 2

UT−2(x) = sup
πT−2

{E(UT−2(x((1 + r) + π(RT−2 − 1− r))))}

= sup
πT−2

{E(log(x((1 + r) + π(RT−2 − 1− r))) + PT−1)}

= log x+ PT−1 + sup
πT−2

{E log((1 + r) + π(RT−2 − 1− r))}

= log x+ PT−1 + PT−2

we can get the optimal strategy πT−2 = argPT−2.
and so on. We can conclude that the optimal value function in the case of log utility is
of the form  Ut(x) = log x+

T−1∑
s=t

Ps

UT (x) = log x

(3.22)

and the optimal portfolio strategy πt is the optimal solution of Pt.
Therefore πt ≡ π is also independent of t if the return of the stock price Rt are identically
distributed for all t. Specially in the binomial model as described in section 3.1.1, we
have that

Pt = sup
πt∈[0,1]

{E log((1 + r) + πt(Rt − 1− r))}

= sup
π∈[0,1]

{log((1 + r) + π(u− 1− r))p+ log((1 + r) + π(d− 1− r))(1− p)}

then the optimal portfolio strategy is given by

π∗ =
(1 + r)(p(u− d) + d− 1− r)

(u− 1− r)(1 + r − d)
(3.23)

The optimal portfolio strategy in the case of log utility in the standard continuous-time
Black-Scholes-Merton model is given by

π∗c (t) =
µ− rc
σ2

(3.24)

where µ is the drift of the stock, σ is the volatility and rc is the risk-free interest rate in
continuous time.
If we define the same parameters as following:

u = exp(σ
√

∆t), d = exp(−σ
√

∆t)

p =
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t, 1 + r = exp(rc∆t)
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we can get

lim
∆t↓0

π∗(∆t) =
µ− rc
σ2

(3.25)

Exponential utility:
The utility function in this case is given by

u(x) = −e−θx

for some θ > 0.
Then the one-period optimal value function U(x) satisfies

U(x) = sup
π∈[0,1]

{E(u(x((1 + r) + π(R− 1− r))))}

= sup
π∈[0,1]

{E(−e−θx((1+r)+π(R−1−r)))}

= sup
π∈[0,1]

{E(−eθx(1+r)−θxπ(R−1−r))}

= −e−θx(1+r) sup
π∈[0,1]

{E(e−θxπ(R−1−r))}

Comparing to the examples of the log-utility and power-utility, the situation for the
exponential utility is totally different. The separation of the term with respect to x and
the term with respect to π in the optimal value function is not possible. Therefore, we
consider no longer the portfolio strategy πt, but the amount of money which is invested
in the risky stock at a time with the notation πtXt.
Here we denote that π̂t = πtXt, then define the function Pt(x) as following

Pt = sup
π̂t∈R
{E(e−θ(1+r)T−t−1π̂t(R−1−r))} (3.26)

Because the utility function is bounded from above, we have that the supremium of the
equation (3.26) exists.
From the dynamic programming equation (3.14) we have that
when t = T , we have

UT (x) = −e−θx (3.27)

and for t = T − 1

UT−1(x) = sup
πT−1

{E(UT (x((1 + r) + πT−1(R− 1− r))))}

= sup
πT−1

{E(−e−θx((1+r)+πT−1(R−1−r)))}

= −e−θx(1+r) sup
π̂T−1∈R

{E(e−θπ̂T−1(R−1−r))}

= −e−θx(1+r)PT−1
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then we can get the optimal strategy πT−1 = argPT−1 .
and for t = T − 2

UT−2(x) = sup
πT−2

{E(UT−1(x((1 + r) + πT−2(R− 1− r))))}

= sup
πT−2

{E(−e−θx(1+r)((1+r)+πT−2(R−1−r))PT−1)}

= −e−θx(1+r)2PT−1 sup
π̂T−2∈R

{E(e−θ(1+r)π̂T−2(R−1−r))}

= −e−θx(1+r)2PT−1PT−2

then we can obtain the optimal strategy πT−2 = argPT−2.
and so on, we can conclude that the optimal value function in exponential utility are of
the form  Ut(x) = −e−θx(1+r)T−t

T−1∏
s=t

Ps

UT (x) = −e−θx
(3.28)

and the optimal portfolio strategy πt is the optimal solution of Pt.
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Chapter 4.

The worst-case portfolio optimization in
discrete-time

4.1. The discrete-time crash model

In this section, we specify the discrete-time worst-case market model and formulate the
worst-case optimization problem in discrete time. This model is an extension of the
discrete-time market model and allows for a crash in stock prices. As in the worst-case
market model in continuous time introduced by Hua and Wilmott [19] and taken up by
Korn and Wilmott [29], we consider a market consisting of a risk-less bond and one risky
security with prices in normal times given by{

Bt+1 = (1 + r)Bt, B0 = 1
St+1 = StRt, S0 = s0

(4.1)

with constant market coefficient r, and independent and identically distributed random
variables Rt. We assume that the mean of the stock return E(Rt) exceeds the risk-less
return factor of 1 + r, i.e.

Assumption (M): Mean stock return exceeds the risk-less return.

E(Rt) > 1 + r > 0 . (4.2)

At the crash time τ , the stock price can suddenly fall by a relative amount k ∈ [0, k∗],
where 0 < k∗ < 1 (the biggest possible crash height) is given. Then, in a crash scenario
(τ, k) we have

Sτ+1 = (1− k)Sτ . (4.3)

Moreover we fix the terminal time T > 0. Let further Ft, t = 0, 1, ..., T be the filtration
generated by the stock price. We then call a real-valued, Ft-adapted stochastic process
a portfolio process. As usual, this process describes the fraction of the investor’s total
wealth X(t) that is allocated to the stock at time t. The corresponding position will
then be hold until time t + 1 where a possible reallocation happens. Obviously, 1 − πt
equals the fraction of wealth invested in the risk-less asset.
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Let X(t) be the wealth process corresponding to the self-financing portfolio strategies
πt, then we have the wealth process at a crash time τ by the following lemma.

Lemma 4.1: The wealth process Xτ+1 at crash time τ corresponding to the trading
strategy πτ is given by

Xτ+1 = (1 + r − πτ (r + k))Xτ (4.4)

Proof: Let ψ = (ψ0, ψ1) be the trading strategy, then

Xτ+1 = ψ0
τ+1Bτ+1 + ψ1

τ+1Sτ+1

= ψ0
τBτ+1 + ψ1

τSτ+1

= ψ0
τBτ (1 + r) + ψ1

τSτ (1− k)

= (1− πτ )Xτ (1 + r) + πτXτ (1− k)

= Xτ ((1 + r)− πτ (r + k))

Therefore for a possible crash scenario (τ, k) with t ≤ τ ≤ T the dynamics of the wealth
process are given by

Xt+1 = Xt((1 + r) + πt(Rt − 1− r)) t ∈ [0, τ − 1] ∪ [τ + 1, T − 1] (4.5)

Xτ+1 = (1 + r − πτ (r + k))Xτ (4.6)

where x > 0 denotes the initial wealth. We will call a self-financing portfolio process
admissible if the corresponding wealth process X(t) stays non-negative. We denote this
by π ∈ A(x).

In the following sections, we first restrict ourselves to the case that at most one crash
can occur within the investment period [t, T ]. Details how to extend our results to the
general case of at most n crashes by an iterative procedure will be given later.
Let us point out that the optimal portfolio process after the crash has happened coincides
with the optimal one in the crash-free setting. Thus, we only have to consider portfolio
processes where the final wealth XT in the case of a crash of size k at time τ ≤ T − 1 is
given by

XT = x

τ−1∏
t=0

((1+r)+πt(Rt−1−r))∗(1+r−πτ (r+k))∗
T−1∏
t=τ+1

((1+r)+π̃∗t (Rt−1−r)) (4.7)

with π̃∗t being the optimal strategy in the crash-free setting if such a strategy π̃t exists.
To relate the latter one to a corresponding optimization problem in discrete time, let
u(.) be a utility function (i.e. a strictly concave and increasing differentiable function)
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and Xπ
t be the wealth process. Then, the portfolio problem in the crash-free setting is

given by its value function

V0(t, x) = sup
π∈A(x)

Et,x(u(Xπ(T )) (4.8)

where we simply assume that there is no crash possibility at all. For our considerations
in the following, we make the fundamental assumption from now on:

Assumption (O): Existence of an optimal admissible portfolio.
We assume that for each pair (t, x) ∈ [0, T ]× (0,∞) there exists an optimal admissible
deterministic portfolio process π̃∗ in the sense of

V0(t, x) = Et,x(u(X π̃∗(T ))) . (4.9)

This assumption is in particular satisfied for all the examples considered in this article.
Further, it is satisfied if the stock price can attain only a finite number of possible prices.
However, this is not the definite collection of all examples where this is the case.
To introduce the worst-case problem in the crash setting, the worst-case bound for
the expected utility from using π before the crash is defined as

W (t, x, π) = inf
t≤τ≤T,0≤k≤K∗

Et,x(u(Xπ
T )) (4.10)

where we already assume that after the crash an optimal portfolio process in the crash-
free setting is followed. The worst-case portfolio problem in discrete time then is
to calculate

V1(t, x) = sup
π∈A(x)

W (t, x, π) (4.11)

and to find an admissible strategy π∗ such that W (t, x, π∗) = V1(t, x). We denote by
V1(t, x) the value function of the worst-case portfolio optimization problem.
As motivated by Korn and Wilmott [29] in continuous time, there are two competing
effects, a high crash loss if a high portfolio process is chosen and a bad performance
if a low one is preferred. To cope with this, they show how to derive the worst-case
optimal portfolio strategy by an indifference argument. In the next section, we look for
an optimal portfolio strategy by using a similar indifference principle in the worst-case
portfolio problem in discrete time in the case of log utility.

4.2. Indifference strategies

In this section, we consider the special case of the logarithmic utility function:

u(x) = ln(x), x > 0 (4.12)
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of course, still under Assumptions (M) and (O). In this case, we have the following
representation of the value function in the discrete-time crash-free model

V 0(t, x) = ln(x) + (T − t)Et,x(ln(1 + r + π̃∗(R− 1− r))) (4.13)

with the corresponding optimal portfolio strategy

π̃∗ = arg sup
π∈A(x)

{Et,x(ln((1 + r) + π(R− 1− r)))} . (4.14)

We make the assumption which is e.g. satisfied in the binomial model setting (see e.g.
Kröner [30]):

Assumption (L): Constant log-optimal portfolio.
The stock price model in the crash-free setting admits a unique positive optimal constant
portfolio process π̃∗ in Equation (4.14).

Remark 4.2. As πt is independent of Rt and all the Rt are independent and identically
distributed, we can in the following often drop the index t in Rt when only expectations
are considered. Note that due to the independence of Rt of the past price history, R = Rt
is also independent of every choice of an admissible portfolio process πt. As the expected
value in Equation (4.14) is independent of (t, x), Assumption (L) mainly can be seen as
a reformulation of Assumptions (O) and (M).

Before solving the above worst-case portfolio problem in discrete-time, we consider at
first the following two extreme strategies.

• If the investor chooses to use the optimal strategy in the crash-free setting π0∗,
then the worst-case scenario is given by a crash of maximal height k∗. From the
representation of the final wealth XT we can easily verify that the exact crash time
has no impact on the resulting value function. Therefore, we obtain the following
worst-case bound from the worst crash scenario happing immediately:

V 0(t+ 1, x(1 + r − π0∗(r + k∗))) (4.15)

= ln(x) + ln(1 + r − π0∗(r + k∗)) + (T − t− 1)E(ln(1 + r + π0∗(R− 1− r)))

• If the investor chooses π̂t = 0 before the crash, the worst-case scenario is that no
crash happens at all. Then the worst-case bound equals

ln(x) + (T − t) ln(1 + r) (4.16)

The Comparison of the worst-case bounds of 4.15 and 4.16 above leads to the following
conclusions: Which one of the above strategies yields a better worst-case bound depends
on the left investment time T − t. If the remaining investment time T − t is big enough,
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the worst-case bound of the first strategy is better. Then a strategy which takes more
risk leads to a better worst-case bound when T − t is big. When the remaining invest-
ment time T − t is small, the pure bond strategy yields the higher worst-case bound.
Therefore a strategy which is more risk averse delivers a higher worst-case bound when
T − t is small. That means that an optimal strategy should take decreasing risk with
the decrease of its remaining investment time. Accordingly, one can easily infer that a
constant portfolio process can not be optimal with respect to the worst-case criterion.

4.2.1. Indifference strategy: Optimality

From the conclusion above we devote to look for a portfolio strategy that could balance
between good performance of the final wealth process when no crash happens and a
corresponding loss when a crash happens. Thus we search for a portfolio strategy which
makes the investor indifferent between two extreme cases:

• The crash of maximal size k∗ happens immediately.

• No crash happens at all.

This is exactly the indifference principle from Korn and Wilmott [29].

Remark 4.3. We consider in this section only the positive portfolio strategies 0 ≤ πt ≤
π0∗. The one reason for this is that the strategy which attain negative values would
be dominated by its positive part in the worst-case sense. Additionally, if we take any
portfolio process π > π0∗, we have the worst-case bound which satisfies

W (t, x, π) = inf
t≤τ<T,0≤k≤K∗

E(u(Xπ
T ))

= inf
t≤τ<T,0≤k≤K∗

E(u(x
τ−1∏
t=0

((1 + r) + πt(R− 1− r)) ∗ (1 + r − πτ (r + k))

∗
T−1∏
t=τ+1

((1 + r) + π0∗(R− 1− r))))

As the utility function u is strict increasing, the high portfolio strategy π > π0∗ at the
time of the crash leads to a decrease of the total wealth as well as the optimal portfolio
strategy π0∗ brings a higher utility from the final wealth. Therefore,

W (t, x, π) < W (t, x, π0∗).

That means, π0∗ leads to a better worst-case bound than any portfolio process π > π0∗.

Before we explore how to derive the optimal strategy of the multi-period portfolio opti-
mization in discrete-time, we consider first the single-period case.
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Proposition 4.4: 1. The optimal portfolio process π∗0 for the single-period worst-case
portfolio optimization equals 0 .

2. The optimal portfolio strategy above satisfies the indifference principle.

Proof:

1. In the one-period worst-case portfolio problem, the worst-case scenario is a crash
with maximal size k∗ for every positive π0 > 0. Then the worst-case bound of π0

satisfies:

E(ln(X1))

= E(ln(x(1 + r − π0(r + k∗))))

= ln(x) + ln(1 + r − π0(r + k∗))

Because the utility function ln(x) increases in x, we have

ln(1 + r − π0(r + k∗)) < ln(1 + r)

Therefore the pure bond strategy leads to a better worst-case bound. We can
conclude that the pure bond strategy π0 = 0 is the optimal portfolio strategy in
the one-period worst-case portfolio problem.

2. The expected utilities of the final wealth for strategy π∗0 = 0 corresponding to the
two extreme cases above satisfy the following representations:

• A crash of maximal size k∗ happens immediately

E(ln(X1)) = ln(x) + ln(1 + r − π∗0(r + k∗)) = ln(x) + ln(1 + r)

• No crash happens at all

E(ln(X1)) = ln(x) + E(ln(1 + r + π∗0(R− 1− r))) = ln(x) + ln(1 + r)

These two representations are coincident with each other. Therefore the optimal
portfolio strategy in the one-period worst-case portfolio problem satisfies the in-
difference principle .

We now turn to the multi-period setting:
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Proposition 4.5: Under Assumption (L), there exists a portfolio process π∗ which sat-
isfies the indifference principle if there exists a solution to the equations

π∗t+1 =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t ) (4.17)

∗ eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗t (R−1−r))), 0 < t < T − 1

π∗T−1 = 0

with
0 ≤ π∗t ≤ π̃∗, t ∈ {0, 1, ..., T − 1} (4.18)

and π̃∗ being the optimal portfolio process in the crash-free model in discrete time.

Proof: The expected utility of the portfolio process π∗ corresponding to the case that a
crash of maximal size k∗ happens immediately satisfies:

V 0(t+ 1, x(1 + r − π∗t (r + k∗))) (4.19)

= ln(x) + ln(1 + r − π∗t (r + k∗)) + (T − t− 1)E(t,x)(ln(1 + r + π̃∗(R− 1− r))).

The expected utility for the portfolio process π∗ that corresponds to the scenario that
no crash happens at all has the following form:

E(t,x)(ln(X̃π∗
T ))(x) = ln(x) +

T−1∑
s=t

E(t,x)(ln(1 + r + π∗s(R− 1− r))) . (4.20)

Having these two equations, we now prove the claims of the proposition via backward
induction on the time t. For t = T − 1, the form of π∗t follows from Proposition 1. We
thus consider the

Start of the induction with t=T-2:
The equality of the expected utilities of Equations (4.19) and (4.20) is equivalent to

ln(1 + r − π∗T−2(r + k∗)) + E(T−2,x)(ln(1 + r + π̃∗(R− 1− r)))
= E(T−2,x)(ln(1 + r + π∗T−2(R− 1− r))) + ln(1 + r) .

Collecting all expectations on the right side of the equation and then applying the
exponential function leads to

1 + r − π∗T−2(r + k∗) = (1 + r) exp
(
E(T−2,x)(ln(1 + r + π∗T−2(R− 1− r)))

−E(T−2,x)(ln(1 + r + π̃∗(R− 1− r)))
)
.

Dividing both sides of the equation by r + k∗ followed by a division by the exponential
function term of the right-hand side and shifting all terms to the right side yields the
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required form of Equation (4.17). For this, also note that π∗T−1 = 0 then appears
implicitly on the left side.
We can now continue with the

Induction step t+ 1 7→ t:
The equality of the expected utilities of Equations (4.19) and (4.20) is equivalent to

ln(1 + r − π∗t (r + k∗)) + (T − t− 1)E(t,x)(ln(1 + r + π̃∗(R− 1− r)))

=
T−1∑
s=t

E(t,x)(ln(1 + r + π∗s(R− 1− r))) .

By induction we now have

ln(1 + r − π∗t (r + k∗)) + (T − t− 1)E(t,x)(ln(1 + r + π̃∗(R− 1− r)))

= E(t,x)(ln(1 + r + π∗t (R− 1− r))) +
T−1∑
s=t+1

E(t,x)(ln(1 + r + π∗s(R− 1− r)))

= E(t,x)(ln(1 + r + π∗t (R− 1− r)))
+E(t,x)(ln(1 + r − π∗t+1(r + k∗))) + (T − t− 2)E(t,x)(ln(1 + r + π̃∗(R− 1− r)))

which yields

ln(1 + r − π∗t (r + k∗)) + E(t,x)(ln(1 + r + π̃∗(R− 1− r)))
= E(t,x)(ln(1 + r + π∗t (R− 1− r)) + ln(1 + r − π∗t+1(r + k∗)))

Collecting the ln-terms on one side, the expectation terms on the other side of the
equation, applying the exponential function, and then solving for π∗t+1 yields the desired
recursive formula

π∗t+1 =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t ) ∗ eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗t (R−1−r))),

for all 0 < t < T − 1. If now there exists a solution π∗ to the recursive equations above,
the deterministic strategy π∗ satisfies the indifference principle by construction

E(t,x)(ln(X̃π∗
T )) = V 0(t+ 1, x(1 + r − π∗t (r + k∗))) . (4.21)

Remark 4.6. a) Existence of an indifference strategy: It remains to prove the
existence of a solution to the recursive equations

π∗t+1 =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t ) (4.22)

∗ eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗t (R−1−r))), 0 < t < T − 1

π∗T−1 = 0

38



Chapter 4. The worst-case portfolio optimization in discrete-time

with
0 ≤ π∗t ≤ π̃∗ . (4.23)

For this, note that for π∗t = 0, the right hand side of Equation 4.22 has the form

1 + r

r + k∗
− (

1 + r

r + k∗
)eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗t (R−1−r))) < 0 ≤ π∗t+1

and for π∗t = π̃∗, we obtain the right hand side of Equation (4.22) as

1 + r

r + k∗
− (

1 + r

r + k∗
− π̃∗) = π̃∗ ≥ π∗t+1 .

Moreover, the right hand side of Equation (4.22) is increasing for π∗t ∈ [0, π̃∗]. Therefore,
by continuity there exists a solution π∗t of Equation (4.22).

Even more, by the above considerations there exists a unique deterministic portfolio
process π∗t solving Equation (4.22). To see this, note that π∗T−1 = 0 is obviously de-
terministic. As then by induction the left-hand side of Equation (4.22) is always deter-
ministic, we get the existence of a constant (and thus deterministic) value π∗t solving
Equation (4.22) by using the argument given above to show the existence of a solution
as it in particular works for a constant.

b) For the portfolio strategy π∗ that satisfies the indifference principle, the representa-
tion of the worst-case bound if a crash happens at time τ immediately with t < τ < T
is given by:

Et,x(V 0(τ + 1, X̃π∗
τ (1 + r − π∗τ (r + k∗))))

= E(t,x)(ln(X̃π∗
τ )) + ln(1 + r − π∗τ (r + k∗)) + (T − τ − 1)E(ln(1 + r + π̃∗(R− 1− r))) .

As the indifference principle is satisfied for all t, we have

Et,x(V 0(τ + 1, X̃π∗
τ (1 + r − π∗τ (r + k∗)))) = E(t,x)(ln(X̃π∗

τ )) +
T−1∑
s=τ

E(ln(1 + r + π∗s(R− 1− r)))

= ln(x) +
τ−1∑
s=t

E(t,x)(ln(1 + r + π∗s(R− 1− r))) +
T−1∑
s=τ

E(t,x)(ln(1 + r + π∗s(R− 1− r)))

= E(t,x)(ln(X̃π∗
T )) = V 0(t+ 1, x(1 + r − π∗t (r + k∗))) .

Therefore, we have exactly the same expected worst-case bound for all possible times of
the crash. By the indifference principle, the exact crash time is no longer important for
the investor.

As the next step, we prove that the deterministic strategy π∗ uniquely determined by the
Equations (4.17) indeed solves the worst-case portfolio optimization problem in discrete
time (4.11).
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Theorem 4.7: (Worst-case optimal portfolio process for logarithmic utility in discrete
time)
Under Assumption (L), in the log-utility case, the deterministic portfolio strategy uniquely
determined by the Equations (4.17) is optimal for the worst-case portfolio optimization
problem in discrete time 4.11.

Proof: Assume that there exists an admissible portfolio process π with a better worst-
case bound than the strategy π∗ which satisfies the recursive equations (4.17).

From the explicit form of V0(t + 1, x(1 + r − πt(r + k∗))) it must satisfy that πt < π∗t
almost surely to have a higher worst-case bound if a crash happens immediately.
Furthermore, the expected utility for the portfolio process π corresponding to the sce-
nario if no crash happens at all satisfies:

E(t,x)(ln(X̃π
T )) = ln(x) +

T−1∑
s=t

E(ln(1 + r + πs(R− 1− r)))

< ln(x) + E(ln(1 + r + π∗t (R− 1− r))) +
T−1∑
s=t+1

E(ln(1 + r + πs(R− 1− r))) .

The inequality is a consequence of the strictly increasing function E(ln(1 + r+π(t)(R−
1−r))). If the portfolio strategy π leads to a higher worst-case bound than π∗ in the no-
crash scenario, then there exists a smallest deterministic time tm with t+1 ≤ tm ≤ T −1
so that

E(ln(1 + r + πtm(R− 1− r))) > E(ln(1 + r + π∗tm(R− 1− r))) , (4.24)

because π∗ has the same worst-case bound in the no-crash scenario according to the
indifference property of π∗.

We first want to show that E(ln(1 + r+ πs(R− 1− r))) ≤ E(ln(1 + r+ π∗s(R− 1− r))),
when E(πs) ≤ E(π∗s) for t ≤ s ≤ T − 1.

If E(πs) ≤ E(π∗s), the concavity of the log utility function implies for any such πs

ln(1 + r + πs(R− 1− r))− ln(1 + r + π∗s(R− 1− r))
≤ ln′(1 + r + π∗s(R− 1− r))(R− 1− r)(πs − π∗s) .

Taking the expectation on the both sides, noting that π∗s is deterministic and that R is
independent of both π∗s and πs, we have

E(ln(1 + r + πs(R− 1− r)))− E(ln(1 + r + π∗s(R− 1− r)))
≤ E

(
ln′(1 + r + π∗s(R− 1− r))(R− 1− r)

)
E(πs − π∗s) .

Note that the validity of this relation is implied by the facts that π∗ is a deterministic
strategy and that π∗s and πs are both independent of R.
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Using the optimality of π̃∗ in the crash-free setting, π∗s ≤ π̃∗ leads to

E(ln′(1 + r + π∗s(R− 1− r))(R− 1− r)) ≥ 0 .

Therefore, if E(πs) ≤ E(π∗s), we obtain

E(ln(1 + r + πs(R− 1− r)))− E(ln(1 + r + π∗s(R− 1− r))) ≤ 0 .

Hence, the inequality

E(ln(1 + r + πtm(R− 1− r))) > E(ln(1 + r + π∗tm(R− 1− r))) (4.25)

implies E(πtm) > E(π∗tm).

The worst-case bound at exactly this time tm if a crash happens at tm immediately
satisfies:

E(t,x)(V0(tm + 1, X̃π
tm(1 + r − πtm(r + k∗))))

= E(t,x)(ln(X̃π
tm)) + E(ln(1 + r − πtm(r + k∗))) + (T − tm − 1)E(ln(1 + r + π̃∗(R− 1− r)))

≤ E(t,x)(ln(X̃π
tm)) + ln(1 + r − E(πtm)(r + k∗)) + (T − tm − 1)E(ln(1 + r + π̃∗(R− 1− r)))

< E(t,x)(ln(X̃π
tm)) + ln(1 + r − E(π∗tm)(r + k∗)) + (T − tm − 1)E(ln(1 + r + π̃∗(R− 1− r))) .

From the explicit form of the wealth process Xtm , we obtain:

E(t,x)(ln(X̃π
tm)) = ln(x) +

tm−1∑
s=t

E(ln(1 + r + πs(R− 1− r))) .

By E(ln(1 + r+πs(R− 1− r))) ≤ E(ln(1 + r+π∗s(R− 1− r))) for all t < s < tm, we get

E(t,x)(ln(X̃π
tm)) ≤ ln(x) +

tm−1∑
s=t

E(ln(1 + r + π∗s(R− 1− r))) = E(t,x)(ln(X̃π∗
tm)) ,

thus,

E(t,x)(V0(tm + 1, X̃π
tm(1 + r − πtm(r + k∗))))

< E(t,x)(ln(X̃π∗
tm)) + ln(1 + r − E(π∗tm)(r + k∗)) + (T − tm − 1)E(ln(1 + r + π̃∗(R− 1− r)))

= E(t,x)(V0(tm + 1, X̃π∗
tm(1 + r − π∗tm(r + k∗)))) .

As we have exactly the same expected worst-case bounds of the optimal strategy π∗

for all possible times of the crash, we get a contradiction to our assumption that the
admissible strategy π delivers a higher worst-case bound than π∗.

Remark 4.8. 1. From the explicit form of the equations 4.17 and the above theorem
we can conclude that there only exists one optimal portfolio strategy in our model.
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2. For a constant portfolio process which often play an important role in portfolio
optimization problem, we can also introduce the optimal constant portfolio strategy
π as shown in [Korn, Wilmott][29]. The worst-case bound of the crash that happens
immediately before the time horizon T is given by:

E(t,x)(ln(Xπ
T ))

= ln(x) + (T − t− 1)E(ln(1 + r + π(R− 1− r))) + ln(1 + r − π(r + k∗))

By taking the first derivative of the right hand side of the above equation with
respect to π and setting this derivative equal to zero, we have

(T − t− 1)
n∑
i=1

Ri − 1− r
1 + r + π(Ri − 1− r)

pi

=
r + k∗

1 + r − π(r + k∗)

Therefore the constant portfolio process π satisfies

(T − t− 1)E(
R− 1− r

1 + r + π(R− 1− r)
) =

r + k∗

1 + r − π(r + k∗)
(4.26)

4.2.2. Numerical example

Example 4.9: (The binomial setting)
To illustrate the performance of the worst-case optimal strategy compared to the crash-
free optimal strategy, we assume that the stock price process follows the binomial model
with parameters 0 < d < 1 + r < u (the up- and down-multipliers of the stock price)
and 0 < p < 1 (the probability of a multiplication of the stock price by u at time t).
Then, the optimal portfolio π̃∗ in the discrete-time crash-free model is given by

π̃∗ =
(1 + r)(p(u− d) + d− 1− r)

(u− 1− r)(1 + r − d)
. (4.27)

The indifference quations (4.17) read as

π∗t+1 =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t )eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗t (R−1−r)))

=
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t )e

ln(
1+r+π̃∗(u−1−r)
1+r+π∗t (u−1−r) )∗p+ln(

1+r+π̃∗(d−1−r)
1+r+π∗t (d−1−r) )∗(1−p)

=
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t )

(1 + r + π̃∗(u− 1− r))p(1 + r + π̃∗(d− 1− r))1−p

(1 + r + π∗t (u− 1− r))p(1 + r + π∗t (d− 1− r))1−p(4.28)

with
π∗T−1 = 0 .
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Figure 4.1.: The optimal trading strategies π∗t with and without crash possibility

Remark 4.6 implies the existence of a unique solution π∗t of Equation (4.28) which we
compute numerically. Figure 4.1 shows that π∗t is decreasing with time for the choices
of r = 0.05, u = 1.4918, d = 0.67, p = 0.5375, k = 0.05 and T = 10. Hence, in the
multi-period case the investor always has a positive position in the stock, but decreases
it to protect against losses when the time horizon is approached. Only in the last single
period, she invests everything in the bond. Furthermore, π∗0 is always smaller than π̃∗0,
but the difference is getting smaller as the investment horizon T becomes bigger. C

Example 4.10: (The binomial setting for jump model)
In order to show that our techniques can extend to much more general situations. We
consider here the case of discontinuous asset prices. We assume that the risk-free bond
Bt and risky stock process St are modeled as{

Bt = ertB0, B0 = 1

St = S0(1 + η)N(t), S0 = s0

where N(t) is the standard poisson process with parameter λt.
Then the price dynamics of the bond and the stock with respect to the poisson process
are given by {

dBt = Btrdt,
dSt = StηdN(t).

Therefore, the wealth process X(t) with the self-financing portfolio process π(t) satisfies
the following stochastic differential equation

dXπ(t) = Xπ(t)(1− π(t))rdt+Xπ(t)π(t)ηdN(t) (4.29)
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with the initial wealth value X(0) = x.
Let T1, T2, · · · , TN(t) be the successive jump times until time t, the Equation (4.29) is
then solved as

Xπ(t) = xe
∫ t
0 (1−π(s))ds

N(t)∏
i=1

(1 + π(i)η) .

In the case of logarithmic utility function we obtain the following expected utility of the
final wealth

E(lnXπ(T )) = lnx+ E(

∫ T

0
(1− π(s))ds) + λTE(ln(1 + π(TN(T ))η)) ,

then we can get an optimal admissible deterministic portfolio process

π∗pn =
λη − r
rη

,

which is drived by solving the portfolio optimization problem max
π∈A(x)

E(lnXπ(t)).

By using the theorem of the law of small numbers it can be shown that the stock price
movements in binomial model converge to the log-poisson jump model as n→∞.Let us
choose the appropriate parameters of the binomial model by

u = 1 + η, d = 1

1 + r̃ = er
t
n , p = λ

t

n
,

then we have the limit of the optimal portfolio π̃∗ with the Equation (4.27) as n→∞:

lim
n→∞

π̃∗ =
λη − r
rη

,

which is consistent with the optimal portfolio strategy π∗pn for the jump model above.
Now we can drive the optimal worst-case portfolio strategy for the jump model. Defining
the same parameters in binomial model, we have

π∗t+∆t =
er∆t

er∆t − 1 + k∗
−(

er∆t

er∆t − 1 + k∗
−π∗t )

(er∆t + π̃∗(1 + η − er∆t))λ∆t(er∆t + π̃∗(1− er∆t))1−λ∆t

(er∆t + π∗t (1 + η − er∆t))λ∆t(er∆t + π∗t (1− er∆t))1−λ∆t
,

and for ∆t → 0 we obtain the ordinary differential equation of the optimal worst-case
portfolio process for the jump model

(π∗t )
′ = (1− π∗t

k∗
)(r(π∗pn − π∗t ) + λ log

1 + π∗t η

1 + π∗pnη
) .

C
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4.2.3. Generalizations: An arbitrary number of possible crashes

So far we limited the maximal number of the crashes only to one. We can extend this to
an arbitrary upper bound for the number of crashes by a backward induction principle.
In such a situation of at most n crashes of size k ∈ [0, k∗], we have the following theorem:

Theorem 4.11: If we allow for at most n crashes of size k ∈ [0, k∗] in the discrete-
time market model with the logarithmic utility function, then under Assumption (L) the
deterministic worst-case optimal portfolio process π∗n(t) if still at most n crashes can
appear is given by the following system of equations:

π∗j (t+ 1) =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗j (t)) (4.30)

∗ expE(ln(1+r+π∗j−1(t+1)(R−1−r)))−E(ln(1+r+π∗j (t)(R−1−r))), 0 < t < T − 1

π∗j (T − 1) = 0

with
0 ≤ π∗j (t) ≤ π∗j−1(t) .

Here, π∗j (t) denotes the worst-case optimal portfolio process if still at most j crashes can
occur. Note further that above we used the notation π∗0(t) = π̃∗.

Proof: The proof is done via induction on n, the maximum number of crashes. For n = 1,
all assertions follow from Proposition 4.5. Let us therefore assume that the above claims
are satisfied for n− 1. Then, the expected utility of the portfolio process corresponding
to the case that a crash of maximal size k∗ happens immediately satisfies:

V n(t+ 1, x(1 + r − π∗n(t)(r + k∗))) (4.31)

= ln(x) + ln(1 + r − π∗n(t)(r + k∗)) +
T−1∑
s=t+1

E(t,x)(ln(1 + r + π∗n−1(s)(R− 1− r))) .

Using this, we obtain the form of Equations (4.30) similar to those in Proposition 4.5.
The reason for the constraints 0 ≤ π∗j (t) ≤ π∗j−1(t) follows from our general Assumption
(M) and the form of the proof of Theorem 4.7. The rest of the proofs for existence and
optimality is totally similar to the case of n = 1.

4.3. Dynamic programming

In the previous section we showed how to derive the optimal portfolio strategy for the
discrete-time worst-case problem by an indifference approach in the case of the loga-
rithmic utility function. For general utility functions u(x), the above methods of proof
cannot be imitated directly as they very much benefited from the additive form of both
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the value function in the crash-free setting and the expected utility of the final wealth
under the assumption of no crash. This, however, is only valid for the logarithmic utility
function. We thus present a different approach in this section.
Indeed, we focus on the worst-case portfolio problem in discrete time for general util-
ity functions by applying the dynamic programming approach. The main idea of the
dynamic programming approach in portfolio optimization in discrete time is to break a
multi-period decision problem up into a sequence of one-period problems. It will help
us to reduce the difficulty to verify the optimality.
We only give the basic case when at most one crash can occur within the investment
period [t, T ]. Extending our results to the general case of at most n crashes by an
iterative procedure is notationally cumbersome and will be omitted.

Still, the worst-case portfolio problem in discrete time under the threat of a
crash is defined by its value function:

V1(t, x) = sup
πt,··· ,πT−1

inf
τ
Et,x(u(Xπ(T ))) . (4.32)

To implement the procedure using the dynamic programming principle in the case of
our worst-case portfolio problem, we denote by Ut(x)the worst-case optimal value
function at time t as well as by Ũt(x) as the crash-free optimal value function
at time t. The dynamic programming equation for the discrete-time crash-free model
has the form of

ŨT (x) = u(x)

Ũt(x) = sup
πt
{E(Ũt+1(x((1 + r) + πt(R− 1− r))) | Ft)} . (4.33)

To motivate a dynamic programming equation for the worst-case problem in the crash
model, let Ut(x) denote the value function when still one crash is possible. Noting that
the main principle of dynamic programming for the discrete-time optimization problem
is that the optimal decision to make now should be consistent with the intention to act
optimally in all future periods, we transfer this to the crash setting. If we know the
optimal worst-case portfolio process starting at time t+1, then the determination of the
optimal worst-case portfolio process starting at time t can be reduced to a one-period
problem. In the one-period worst-case portfolio problem at time t there exist only two
possible crash scenarios. The first one is that the crash happens immediately at time
t. In this case, the value function U1

t (x) satisfies the following dynamic programming
principle

U1
t (x) = sup

πt
E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft) . (4.34)

If no crash occurs in the next period the representation of the value function U2
t (x) is

given as
U2
t (x) = sup

πt
E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft) . (4.35)
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By combining these two cases we can heuristically derive the worst-case optimal value
function Ut(x) based on the worst-case optimal value function Ut+1(x):

Ut(x) = sup
πt

min {E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft), (4.36)

E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft)
}
.

The value of Ut(x) at time t = T satisfies (see also Proposition 4.14)

UT (x) = u(x) .

Therefore, the dynamic programming equation for the worst-case portfolio optimization
problem under the threat of a crash is given as

UT (x) = u(x) (4.37)

Ut(x) =

sup
πt

min{E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft), E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft)} .

Of course, by this heuristic derivation, we have not shown any kind of optimality. This
has to be proved separately. However, if this is shown then by using this dynamic
programming equation (4.39), we can compute the optimal worst-case portfolio strategy
and the worst-case optimal value function Ut(x) in a recursive way.

Our main aim now is to prove the following theorem that justifies our heuristic approach
:

Theorem 4.12: (Verification Theorem)
Let u be a utility function. We further assume that the Assumptions (M) and (O) are
satisfied together with Assumption (D):
Let the value function Ut be concave, strictly increasing and continuously differentiable
in x, and let the function

f(π) := E (Ut+1(x(1 + r + π(R− 1− r))|Ft) , t = 0, 1, ..., T − 1 (4.38)

be strictly increasing on [0, π̃∗t ] with the maximum of f(π) attained in π̃∗t , the optimal
deterministic portfolio process in the crash-free setting.

Then there exist unique deterministic maximizers π∗t of the value function which can be
computed recursively by the dynamic programming equation

UT (x) = u(x) (4.39)

Ut(x) =

sup
πt

min{E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft), E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft)} ,

such that the portfolio strategy π∗ = (π∗0, · · · , π∗T−1) is optimal for the worst-case portfolio
problem.
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Remark 4.13. Of course, Assumption (D) is a strong requirement, but will be satisfied
in all our examples presented below.

4.3.1. The characterization and the optimality

Before we give the proof of the verification theorem, we will show how to construct the
candidates for the optimal strategies appearing in the verification theorem. Afterwards,
we show that these candidates are indeed the optimal solutions of the worst-case portfolio
problem in discrete time .
The optimal strategy π∗T−1 for the single-period worst-case portfolio problem is derived
as in the log-utility case.

Proposition 4.14: The optimal portfolio process πT−1 equals 0 for the single-period
worst-case portfolio optimization of the terminal time T .

Proof: In the single-period worst-case portfolio problem at time T − 1, the worst-case
scenario is a crash with maximal size k∗ happening immediately for every positive πT−1 >
0. Then the worst-cse bound of πT−1 satisfies:

ET−1,x(u(XT ))

= E(u(x(1 + r − πT−1(r + k∗))) | FT−1)

= u(x(1 + r − πT−1(r + k∗)))

Because the utility function u(x) decreases in πT−1, we have

u(x(1 + r − πT−1(r + k∗))) < u(1 + r)

Therefore the pure bond strategy leads to a better worst-case bound. We can conclude
that the pure bond strategy πT−1 = 0 is the optimal portfolio strategy for the single-
period worst-case portfolio problem at time T − 1.

Remark 4.15. If we consider the optimal value function UT−1(x) at time T−1 by using
the dynamic programming equations 4.39, we have that

UT−1(x)

= sup
πT−1

min{E(UT (x(1 + r + πT−1(R− 1− r))) | FT−1),

E(ŨT (x(1 + r − πT−1(r + k∗))) | FT−1)}
= sup

πT−1

min{E(u(x(1 + r + πT−1(R− 1− r))) | FT−1),

E(u(x(1 + r − πT−1(r + k∗))) | FT−1)}
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For any πT−1 ≥ 0 , we obtain

sup
πT−1

min{E(u(x(1 + r + πT−1(R− 1− r))) | FT−1),

E(u(x(1 + r − πT−1(r + k∗))) | FT−1)}
= sup

πT−1

u(x(1 + r − πT−1(r + k∗)))

Therefore,

UT−1(x) = sup
πT−1

u(x(1 + r − πT−1(r + k∗)))

≤ u(x(1 + r))

Thus πT−1 = 0 is the optimal strategy which delivers the best worst-case bound by
dynamic programming equations. This result is coincident with the optimal strategy
from the above Proposition.

Next we want to show that the candidate for the optimal strategy obtained as a solution
to the dynamic programming equation 4.39 exists.

Lemma 4.16: Under the assumptions of Theorem 4.12, there exists a portfolio process
π∗t which satisfies

E(Ut+1(x(1 + r + π∗t (R− 1− r))) | Ft)
= E(Ũt+1(x(1 + r − π∗t (r + k∗))) | Ft)

for all x > 0 and all t ∈ {0, 1, ..., T − 1}.

Proof: Let us start in defining the functions

f(π) = E(Ut+1(x(1 + r + π(R− 1− r))) | Ft) ,
g(π) = E(Ũt+1(x(1 + r − π(r + k∗))) | Ft) = Ũt+1(x(1 + r − π(r + k∗))) .

As it can easily be shown (by induction using the dynamic programming equation)
that Ũt+1(x) is a strictly increasing function, we have that g(π) is a strictly decreasing
function.

By Assumption (D), the crash-free optimal portfolio strategy π̃∗t yields the maximum of
the function f(π). If now the investor chooses the pure bond strategy π = 0, we have

f(0) = Ut+1(x(1 + r)), g(0) = Ũt+1(x(1 + r)) .

If the optimal strategy π̃∗ in the crash-free model is not worst-case optimal, the value
function under the crash-free model is better than the value function of the crash model,
if not, the two value functions are at most equal. Therefore, we get

g(0) ≥ f(0) . (4.40)
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If the investor chooses the optimal deterministic strategy in the crash-free model π̃∗t , we
have

f(π̃∗t ) = E((Ut+1(x(1 + r + π̃∗t (R− 1− r)))) | Ft),
g(π̃∗t ) = Ũt+1(x(1 + r − π̃∗t (r + k∗))) .

The worst-case scenario of this optimal strategy π̃∗t at time t + 1 is given by a crash of
the maximum size k∗ which leads to the worst-case bound of

Ũt+1(x(1 + r − π̃∗t (r + k∗))) .

Thus, we obtain the following inequality:

E((Ut+1(x(1 + r + π̃∗t (R− 1− r)))) | Ft) ≥ Ũt+1(x(1 + r − π̃∗t (r + k∗))) .

Hence, we arrive at
f(π̃∗t ) ≥ g(π̃∗t ) . (4.41)

The two Inequalities (4.40) and (4.41) imply the existence of a unique deterministic
portfolio process π∗t ∈ [0, π̃∗t ] for all t ∈ {0, 1, ..., T − 2} with

E(Ut+1(x(1 + r + π∗t (R− 1− r))) | Ft) = E(Ũt+1(x(1 + r − π∗t (r + k∗))) | Ft)

which is what we wanted to show.

Now let us get back to consider the right side of the value function

sup
πt

min{E(Ut+1(x(1+r+πt(R−1−r))) | Ft), E(Ũt+1(x(1+r−πt(r+k∗))) | Ft)} . (4.42)

Lemma 4.16 above yields that the supremum in (4.42) is attained for the smallest πt
which satisfies

E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft) ≥ E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft)

or the portfolio strategy πt with the biggest πt with

E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft) ≤ E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft) .

The value functions E(Ut+1(x(1+r+πt(R−1−r))) | Ft) and E(Ũt+1(x(1+r−πt(r+k∗))) |
Ft) are both continuous, therefore we obtain the supremum when we have the equality

E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft) = E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft) .

In Lemma 4.16, we already showed the existence of those portfolio strategies along the
dynamic programming equations and derived how to construct the candidates of the
optimal portfolio strategies. In the following we show that the derived candidates are
indeed the optimal solutions of the worst-case portfolio problem in discrete time.
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The proof of Theorem 4.12: Assume that there exists an admissible portfolio
process π = (πt, · · · , πT−1) with a better worst-case bound than the portfolio process
π∗ = (π∗t , · · · , π∗T−1) obtained by the dynamic programming equation 4.39 as proved by
Lemma 4.16. We show the non-existence of such a portfolio process π via backward
induction in time.

t = T − 1:
Here, we must have πT−1 = 0 = π∗T−1 due to Proposition 4.14.

t = j ∈ {0, 1, ..., T − 2}:
Now we assume that the portfolio process (πj , · · · , πT−1) leads to a better worst-case
bound than (π∗j , · · · , π∗T−1), and (πj+1, · · · , πT−1) has the same worst-case bound as
(π∗j+1, · · · , π∗T−1). Then, as we have

E(Ũj+1(x((1 + r)− π∗j (r + k∗))) | Fj) = E(Uj+1(x((1 + r) + π∗j (R− 1− r))) | Fj) ,

we must have both strict inequalities

E(Ũj+1(x((1 + r)− πj(r + k∗))) | Fj) > E(Ũj+1(x((1 + r)− π∗j (r + k∗))) | Fj) ,(4.43)

E(Uj+1(x((1 + r) + πj(R− 1− r))) | Fj) > E(Uj+1(x((1 + r) + π∗j (R− 1− r))) | Fj) .(4.44)

Due to the fact, that both πj and π∗j are F-measurable, the first inequality leads to

Ũj+1(x((1 + r)− πj(r + k∗))) > Ũj+1(x((1 + r)− π∗j (r + k∗)))

and thus to
πj < π∗j (4.45)

almost surely (see also the argument for Ũt(x) being increasing in x at the beginning of
the proof of Lemma 4.16). As the function f(πt) as defined in Lemma 4.16 is increasing,
we obtain

E(Uj+1(x((1 + r) + πj(R− 1− r))) | Fj) ≤ E(Uj+1(x((1 + r) + π∗j (R− 1− r))) | Fj)

which is in contradiction to the strict inequality (4.44). Thus, the assumption of the
existence of an admissible portfolio strategy π yielding a bigger worst-case bound than
π∗ is proved to be wrong.

4.3.2. Numerical examples

We present some examples of the solution of the worst-case portfolio problem via the
dynamic programming equation to illustrate our theory with the most popular utility
functions.
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Power utility

Let us start to consider the case of power utility

u(x) =
1

γ
xγ , γ < 1, γ 6= 0 .

To apply our just obtained results, we have to check if indeed all assumptions of The-
orem 4.12 are satisfied. For this, we first look at the crash-free setting. By using the
corresponding dynamic programming equations, one can directly show that we have

Ũt(x) =
1

γ
xγh(t) (4.46)

with
h(t) = (E ((1 + r + π̃∗(R− r − 1)γ))T−t (4.47)

where the constant portfolio process π̃∗ is determined as the solution of the maximization
problem

E ((1 + r + π̃∗(R− r − 1)γ) = sup
π∈(−∞,∞)

E ((1 + r + π̃(R− r − 1))γ) .

By the general assumption (O) on the market model, the supremum is indeed attained.
Due to the multiplicative form of the wealth process and the independence of the returns
Rt from the past price evolutions combined with the identical distributions of Rt ∼ R,
the optimal portfolio process has to be a constant one. Further, by Assumption (M), we
have

π̃∗ > 0 .

We next consider the form of the value function of the worst-case problem and claim
that we have

Ut(x) =
1

γ
xγH(t) (4.48)

for a suitable positive, deterministic and decreasing function H(t) with H(t) ≤ h(t).
Starting from UT (x) = xγ/γ and using π∗T−1 = 0, we have

UT−1(x) = (1 + r)γxγ/γ

which constitutes the start of the induction on T − t with t = 1. Let us assume that we
have proved the representation (4.48) for t−1. We will now prove it for t. We then have

UT−t(x) = sup
πT−t

min {E(UT−t+1(x(1 + r + πT−t(R− 1− r))) | FT−t),

E(ŨT−t+1(x(1 + r − πT−t(r + k∗))) | FT−t)
}

=
xγ

γ
sup
πT−t

min {H(T − t+ 1)E ((1 + r + πT−t(R− 1− r))γ | FT−t) ,

h(T − t+ 1)(1 + r − πT−t(r + k∗))γ} =:
xγ

γ
H(T − t) .
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Note that the supremum in the equation above is independent of x and is given by a
deterministic function of time as – again – the randomness in the optimization prob-
lem is only given by R which is independent of FT−t. Note that the maximum of
E ((1 + r + πT−t(R− 1− r))γ | FT−t) is attained for the crash-free optimal portfolio pro-
cess π̃∗ and the function increases in π on [0, π̃∗]. For the second term h(T − t+ 1)(1 +
r − πT−t(r + k∗))γ the optimal portfolio value would be zero and decreases in π. As,
however, h(T − t+ 1) ≥ H(T − t+ 1), the optimal value π∗T−t has to be in [0, π̃∗].As the
two functions containing πT−t are identical for all times t < T − 1, but their multipliers
H(T − t+ 1), h(T − t+ 1) are larger than their counterparts at the next time step, we
have also proved that the value of the supremum is bigger at time T − t than at time
T − t+ 1. Thus, we have

0 < H(T − t) ≤ H(T − t+ 1)

where the positivity is implied by the positivity of all ingredients of the optimization
problem and the fact that it has a positive lower bound which is attained for choosing
π(T − t) = 0.
Thus, Assumption (D) is satisfied. We can thus make full use of the claims of Theo-
rem 4.12.
Due to Theorem 4.12, we have

E(Ut+1(x(1+r+πt(R−1−r))) | FT−t) = E(Ũt+1(x(1+r−πt(r+k∗))) | FT−t) (4.49)

for the optimal portfolio process in the crash setting. Using the form of the value function
in the crash-free setting, we obtain

E(Ũt+1(x(1 + r − πt(r + k∗))) | FT−t)

=
1

γ
(x(1 + r − πt(r + k∗)))γ

T−1∏
s=t+1

E(1 + r + π∗s(R− 1− r))γ . (4.50)

Applying the dynamic programming equation in E(Ut+1(x(1 + r + πt(R − 1 − r)))) we
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get

E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft)
= E(sup

πt+1

min{E(Ut+2(x(1 + r + πt(R− 1− r))(1 + r + πt+1(R− 1− r))) | Ft+1),

E(Ũt+2(x(1 + r + πt(R− 1− r))(1 + r − πt+1(r + k∗))) | Ft+1)} | Ft)
= E(E(Ut+2(x(1 + r + πt(R− 1− r))(1 + r + π∗t+1(R− 1− r))) | Ft+1) | Ft)
= E(E(Ũt+2(x(1 + r + πt(R− 1− r))(1 + r − π∗t+1(r + k∗))) | Ft+1) | Ft)
= E(Ũt+2(x(1 + r + πt(R− 1− r))(1 + r − π∗t+1(r + k∗))) | Ft)

=
1

γ
xγE((1 + r + πt(R− 1− r))γ(1 + r − π∗t+1(r + k∗))γ | Ft)

∗
T−1∏
s=t+2

E(1 + r + π̃∗(R− 1− r))γ . (4.51)

By comparing Equations 4.50 and 4.51, the optimal strategy π∗t has to satisfy

1

γ
xγ(1 + r − π∗t (r + k∗))γ

T−1∏
s=t+1

E(1 + r + π̃∗(R− 1− r))γ

=
1

γ
xγE((1 + r + π∗t (R− 1− r))γ(1 + r − π∗t+1(r + k∗))γ | Ft) ∗

T−1∏
s=t+2

E(1 + r + π̃∗(R− 1− r))γ

which directly leads to

(1 + r − π∗t (r + k∗))γE(1 + r + π̃∗(R− 1− r))γ

= E((1 + r + π∗t (R− 1− r))γ(1 + r − π∗t+1(r + k∗))γ | Ft) .

As we have that E(1 + r + πt(R− 1− r))γ > 0 in the interval [0, π̃∗], we can transform
this into the following recursive relation for the optimal strategy

π∗t+1 =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t )(

E(1 + r + π̃∗(R− 1− r))γ

E(1 + r + π∗t (R− 1− r))γ
)
1
γ (4.52)

with
π∗T−1 = 0

where the latter equation follows from Proposition 4.14.
To show the existence of a solution π∗t ∈ [0, π̃∗] of Equation 4.52, note first that right
hand side of Equation 4.52 is increasing for π∗t ∈ [0, π̃∗]. However, if we choose π∗t = 0
on the right hand side, we obtain (by backward induction starting at time t = T − 2)

1 + r

r + k∗
− (

1 + r

r + k∗
) ∗ (

E(1 + r + π̃∗](R− 1− r))γ

(1 + r)γ
)
1
γ < 0 ≤ π∗t+1 .
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For the choice of π∗t = π̃∗ on the right hand side of Equation 4.52, we obtain

1 + r

r + k∗
− (

1 + r

r + k∗
− π̃∗) = π̃∗ ≥ π∗t+1 .

Therefore, there indeed exists a unique solution π∗t of Equation 4.52.
To continue our example, we now have to choose a stock price model so that we can
explicitly check the remaining assumptions of Theorem 4.12. If we assume that the
price process of the stock follows the binomial model (as in the case of our log-utility
example), then the remaining assumptions of Theorem 4.12 follow immediately. Further,
by calculating the relevant expectation in Equation 4.47, the crash-free optimal portfolio
strategy π̃∗ is of the form

π̃∗ =
(1 + r)

(u− 1− r)(1 + r − d)
∗ pκ(u− 1− r)κ − (1− p)κ(1 + r − d)κ

(pκ(u− 1− r)κγ + (1− p)κ(1 + r − d)κγ)
.

Thus, we obtain the recursive formula for the worst-case optimal strategy as follows

π∗t+1 =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t )

∗((1 + r + π̃∗(u− 1− r))γp+ (1 + r + π̃∗(d− 1− r))γ(1− p)
(1 + r + π∗t (u− 1− r))γp+ (1 + r + π∗t (d− 1− r))γ(1− p)

)
1
γ

which again has to be solved numerically.
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Figure 4.2.: The optimal trading strategies π∗t with and without crash possibility

Figure 4.2 compares the optimal trading strategies π∗t with and without crash possibility
for power utility for the choices of r = 0.05, u = 1.4918, d = 0.67, p = 0.5375, k = 0.05
and T = 10. The worst-case optimal trading strategies π∗t is decreasing with time when
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we approach the time horizon. Only in the last single period starting in T − 1, the
fraction of risky investments is reduced to zero.

Approximation of the Black-Scholes-Merton Model. Using the above results in
the binomial setting, we now introduce a general time step ∆t with the intention to let it
tend to zero to approximate the geometric Brownian motion model of the stock price in
the Black-Scholes-Merton setting via a sequence of binomial models. For this, we define
the parameters of the binomial model by

u = eσ
√

∆t, d = e−σ
√

∆t

1 + r = er̃∆t, p =
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t .

For notational simplicity, we will in the following use the abbreviation r for the interest
rate again. With the above choice, it is well-known that this sequence of binomial models
converges weakly to the geometric Brownian motion with parameters µ and σ2.
The recursive formula for the worst-case optimal portfolio process π∗t+∆t now has the
form of

π∗t+∆t =
er∆t

er∆t − 1 + k∗
− (

er∆t

er∆t − 1 + k∗
− π∗t )(

A

B
)

with

A = ((er∆t + π̃∗(eσ
√

∆t − er∆t))γ(
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t)

+(er∆t + π̃∗(e−σ
√

∆t − er∆t))γ(
1

2
− 1

2

µ− 1
2σ

2

σ

√
∆t))

1
γ ,

B = ((er∆t + π∗t (e
σ
√

∆t − er∆t))γ(
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t)

+(er∆t + π∗t (e
−σ
√

∆t − er∆t))γ(
1

2
− 1

2

µ− 1
2σ

2

σ

√
∆t))

1
γ .

We expect the worst-case optimal discrete-time strategy computed by the dynamic pro-
gramming equations to be close to the expression in the continuous-time model, at least
for small values of ∆t. To check this, we compute

lim
∆t→0

π∗t+∆t − π∗t
∆t

= lim
∆t→0

1

∆t

((
er∆t

er∆t − 1 + k∗
− π∗t

)
−
(

er∆t

er∆t − 1 + k∗
− π∗t

)
A

B

)
= lim

∆t→0

1

∆t

((
er∆t

er∆t − 1 + k∗
− π∗t

)
B −A
B

)
=

1

k∗
(1− k∗π∗t ) lim

∆t→0

B −A
B∆t

.
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To examine, the above limit, let A = (A1 +A2)
1
γ with

A1 = (er∆t + π̃∗(eσ
√

∆t − er∆t))γ(
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t) ,

A2 = (er∆t + π̃∗(e−σ
√

∆t − er∆t))γ(
1

2
− 1

2

µ− 1
2σ

2

σ

√
∆t) .

Using the Taylor expansion of first order for the exponential function and then binomial
series expansion, we have

A1 =
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆t+

1

2
γ(r∆t+ π̃∗(σ

√
∆t+

σ2

2
∆t− r∆t))

+
1

2
γπ̃∗

µ− 1
2σ

2

σ
σ∆t+

γ(γ − 1)

4
(π̃∗)2σ2∆t+O(∆t2)

and

A2 =
1

2
− 1

2

µ− 1
2σ

2

σ

√
∆t+

1

2
γ(r∆t+ π̃∗(−σ

√
∆t+

σ2

2
∆t− r∆t))

+
1

2
γπ̃∗

µ− 1
2σ

2

σ
σ∆t+

γ(γ − 1)

4
(π̃∗)2σ2∆t+O(∆t2) .

Using the binomial series expansion again, we obtain

A = (A1 +A2)
1
γ = 1 + r∆t+ π̃∗(µ− r)∆t+

(γ − 1)

2
(π̃∗)2σ2∆t+O(∆t2) ,

B = (B1 +B2)
1
γ = 1 + r∆t+ π∗t (µ− r)∆t+

(γ − 1)

2
(π∗t )

2σ2∆t+O(∆t2) .

Therefore, taking the limit of ∆t→ 0 leads to

lim
∆t→0

(B) = 1 = lim
∆t→0

(A)

and

lim
∆t→0

B −A
∆t

= lim
∆t→0

(π∗t − π̃∗)(µ− r)∆t+ (γ−1)
2 ((π∗t )

2 − (π̃∗)2)σ2∆t+O(∆t2)

∆t

= (π∗t − π̃∗)(µ− r) +
(γ − 1)

2
((π∗t )

2 − (π̃∗)2)σ2 = −(1− γ)

2
σ2(π∗t − π̃∗)2 .

This then leads to

lim
∆t→0

π∗t+∆t − π∗t
∆t

= − 1

k∗
(1− k∗π∗t )

(1− γ)

2
σ2(π∗t − π̃∗)2 .

In particular, the limit on the left hand side of this equation exists and equals dπ∗t . Thus,
the optimal portfolio strategy computed by the dynamic programming equations 4.39
converges to the optimal control of the worst-case portfolio problem in continuous time.
Figure 4.3 illustrates this convergence of the worst-case optimal portfolio process in
discrete time to the worst-case optimal portfolio process in continuous time for decreasing
values of ∆t.
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Figure 4.3.: The convergence of the optimal trading strategies π∗t with crash possibility

Log Utility

In the log utility case,
u(x) = ln(x) ,

it can directly be verified that all assumptions of Theorem 4.12 are satisfied that do
not depend on the particular choice of the stock price model. The optimal strategy
πt can then be obtained from the dynamic programming equations 4.39 by solving the
indifference requirement

E(Ut+1(x(1 + r + πt(R− 1− r)))) = E(Ũt+1(x(1 + r − πt(r + k∗))))

with

E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft)

= ln(x) + ln(1 + r − πt(r + k∗)) +

T−1∑
s=t+1

E ln(1 + r + π̃∗(R− 1− r))

and

E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft)
= E(Ũt+2(x(1 + r + πt(R− 1− r))(1 + r − π∗t+1(r + k∗))) | Ft)
= lnx+ E ln(1 + r + πt(R− 1− r)) + E(ln(1 + r − π∗t+1(r + k∗)) | Ft)

+
T−1∑
s=t+2

E ln(1 + r + π̃∗(R− 1− r)) .
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Therefore the optimal strategy π∗t satisfies the following equation:

E(ln(1 + r + π∗t (R− 1− r))) + E(ln(1 + r − π∗t+1(r + k∗)) | Ft)
= ln(1 + r − π∗t (r + k∗)) + E(ln(1 + r + π̃∗(R− 1− r))) .

Due to ln(x) being concave and increasing, Assumption (M) yields

E ln(1 + r + πt(R− 1− r)) > 0

in the interval [0, π̃∗]. Then, the recursive formula for the optimal strategy is given by

π∗t+1 =
1 + r

r + k∗
− (

1 + r

r + k∗
− π∗t ) ∗ expE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗t (R−1−r))), π∗T−1 = 0

which is consistent with the result by the indifference approach as shown in previous
section.

Exponential Utility

The exponential utility function is given by

u(x) = −e−θx

for some θ > 0.
Compared to the examples of log utility and power utility, the situation for the expo-
nential utility is totally different. First of all, the separation of the term with respect to
x and the term with respect to π in the optimal value function is not possible already in
the crash-free setting. Therefore, we no longer consider the portfolio strategy πt to de-
scribe the investor’s strategy. Instead it will turn out that the amount of money which is
invested in the risky stock at time t given by πtXt is the appropriate term. Further, the
exponential utility has a finite slope in x = 0. As a consequence, the optimal strategy
does no longer automatically ensure the positivity of the corresponding optimal final
wealth. On the other hand, this at least does not cause theoretical problems as the
maximization problem of the expected terminal wealth is also well-defined in that case,
which is not allowed in the previous cases of log utility and power utility.
So let us in the following slightly misuse the notation of πt (and the corresponding opti-
mal values π∗t ,π̃

∗
t ) to now denote the amount of money invested in the risky asset. Then,

in the crash-free setting, it can be shown (via induction) that using the corresponding
dynamic programming equation, we obtain the value function as

Ũt(x) = −e−θx(1+r)T−t
T−1∏
s=t

E
(
e−θπ̃

∗
s (R−r−1)(1+r)T−s−1

)
.
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Here, the values π̃∗s are determined as the solutions of

−E
(
e−θπ̃

∗
s (R−r−1)(1+r)T−s−1

)
= sup

π∈(−∞,∞)
−E

(
e−θπ(R−r−1)(1+r)T−s−1

)
.

Note that due to the independence of Rt of Ft and the fact that there is no requirement
on the wealth process Xt in the exponential utility case, it is enough to consider the op-
timization problem for constant values π. Further, due to Assumption (M), the optimal
amount of money invested in the stock will be positive at each time s. Even more, in
the case of r = 0, it is optimal for the crash-free setting to keep the amount of money
invested in the risky asset fixed. Gains and losses of stock investment will then always
be allocated to the position of the riskless investment.
In principle, the shift from the portfolio process to the process of money invested in the
risky asset does not allow a direct application of Theorem 4.12. However, it can be shown
that by dropping the requirement of a non-negative wealth process, one can imitate all
the steps leading to Theorem 4.12 (compare [24] for the continuous-time case). Thus,
the corresponding dynamic programming equations yields the following relation for the
optimal amount of money invested in the stock:

E(Ut+1(x(1 + r) + π∗t (R− 1− r)) | Ft) = E(Ũt+1(x(1 + r)− π∗t (r + k∗)) | Ft)

with

E(Ũt+1(x(1 + r)− π∗t x(r + k∗)) | Ft)

= −e−θx(1+r)T−teθ(1+r)T−t−1π∗t (r+k∗)
T−1∏
s=t+1

Ee−θ(1+r)T−s−1π̃∗s (R−1−r)

and

E(Ut+1(x(1 + r) + π∗t (R− 1− r)) | Ft)
= E(Ũt+2(x(1 + r + π∗t (R− 1− r))(1 + r − π∗t+1(r + k∗))) | Ft)

= −e−θx(1+r)T−tE(e−θ(1+r)T−t−1π∗t (R−1−r)eθ(1+r)T−t−2π∗t+1(r+k∗))
T−1∏
s=t+2

Ee−θ(1+r)T−s−1π̃∗s (R−1−r) .

Therefore we have

E(e−θ(1+r)T−t−1π∗t (R−1−r)eθ(1+r)T−t−2π∗t+1(r+k∗))

= eθ(1+r)T−t−1π∗t (r+k∗)E(e−θ(1+r)T−t−2π̃∗t+1(R−1−r))

which can be reordered as

eθ(1+r)T−t−2π∗t+1(r+k∗)

eθ(1+r)T−t−1π∗t (r+k∗)
=
E(e−θ(1+r)T−t−2π̃∗t+1(R−1−r))

E(e−θ(1+r)T−t−1π∗t (R−1−r))
.
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This results in a recursive formula for the optimal amount of the money π∗t :

π∗t+1 = π∗t (1 + r) +
1

θ(1 + r)T−t−2(r + k∗)
ln(

E(e−θ(1+r)T−t−2π̃∗t+1(R−1−r))

E(e−θ(1+r)T−t−1π∗t (R−1−r))
)

with
π∗T−1 = 0 .

If we assume that the price process of the stock follows the binomial model, we obtain
the crash-free optimal trading strategy (the amount of money invested in the stock) as
follows

π̃∗t =
ln p(u−1−r)

(1−p)(1+r−d)

θ(1 + r)T−t−1(u− d)

Thus, the recursive Equation for the optimal worst-case strategy is given by

π∗t+1 = π∗t (1 + r) +
1

θ(1 + r)T−t−2(r + k∗)

∗ ln(
e−θ(1+r)T−t−2π̃∗t+1(u−1−r)p+ e−θ(1+r)T−t−2π̃∗t+1(d−1−r)(1− p)
e−θ(1+r)T−t−1π∗t (u−1−r)p+ e−θ(1+r)T−t−1π∗t (d−1−r)(1− p)

) .
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(b) r = 0.05

Figure 4.4.: The optimal trading strategies π∗t with and without crash possibility

The form of the optimal trading strategies are illustrated in Figure 4.4 for the choices
of θ = 0.01,, u = 1.4918, d = 0.67, p = 0.5375, k = 0.05, T = 10, r = 0 and r = 0.05.
The curves for r = 0 look very similar to the optimal portfolio processes in Figure 4.2.
However, note that, we plot here the amount of money invested in the stock. If we
would plot the optimal portfolio processes, the curve would be irregular and inversely
proportional to the actual wealth processes. The curves for r = 0.05 look totally different.
The optimal trading strategy π∗t in the crash setting is no longer decreasing with the
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time as the optimal trading strategy π̃∗t in the crash-free setting is increasing with the
time. The optimal worst-case trading strategy π∗t increases first and then decreases until
maturity.
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Chapter 5.

Finite-difference approximations

In this chapter we focus on developing the discrete-time HJB equation to solve the port-
folio optimization problem and try to exhibit a natural correspondence to the continuous
time HJB. The discrete-time HJB can unify the continuous time and discrete time mod-
els by regarding the discrete time setting as the finite difference scheme of the continuous
time setting.

Before we derive the discrete-time HJB equation, we first review the discrete Itô formula
for the simple random walk due to Fujita [17]. Random walks are used as simplified
models of Brownian motion, of which the Itô formula is famous for the stochastic calcu-
lus and is very useful for the problems in the mathematical finance and stochastic control.

Let Wt be one-dimensional random walk, satisfying W0 = 0 and

Wt = Y1 + Y2 + · · ·+ Yt,

where {Yi}∞i=1 is an independent Bernoulli sequence such that P (Yt = ±1) = 1
2 .

Theorem 5.1: (see Fujita [17])
For any f : Z→ R, we have

f(Wt+1)− f(Wt) =
f(Wt + 1)− f(Wt − 1)

2
Yt+1 +

f(Wt + 1)− 2f(Wt) + f(Wt − 1)

2
.

(5.1)
For any g : Z× N→ R, we have

g(Wt+1, t+ 1)− g(Wt, t) =
g(Wt + 1, t+ 1)− g(Wt − 1, t+ 1)

2
Yt+1

+
g(Wt + 1, t+ 1)− 2g(Wt, t+ 1) + g(Wt − 1, t+ 1)

2
+ g(Wt, t+ 1)− g(Wt, t).

With the help of Theorem 5.1, we immediately obtain
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Proposition 5.2: For any f : R→ R and any k ∈ R, let Bt = kWt, then we have

f(Bt+1)− f(Bt) =
f(Bt + k)− f(Bt − k)

2
Yt+1 +

f(Bt + k)− 2f(Bt) + f(Bt − k)

2
.

For any f : R→ R and any k, µ ∈ R, let Bt = µt+ kWt, then we have

f(Bt+1)− f(Bt) =
f(Bt + µ+ k)− f(Bt + µ− k)

2
Yt+1

+
f(Bt + µ+ k)− 2f(Bt + µ) + f(Bt + µ− k)

2
+ f(Bt + µ)− f(Bt).

Proof: We shall prove both equations by directly using Equation 5.1. For the first
equation, one has

f(Bt+1)− f(Bt)−
f(Bt + k)− 2f(Bt) + f(Bt − k)

2

= f(Bt + k(Wt+1 −Wt))−
f(Bt + k) + f(Bt − k)

2

=

{
f(Bt+k)−f(Bt−k)

2 , Yt+1 = Wt+1 −Wt = 1
f(Bt−k)−f(Bt+k)

2 , Yt+1 = −1

=
f(Bt + k)− f(Bt − k)

2
Yt+1,

so the proof of the first equation is done.
For the second equation, one has

f(Bt+1)− f(Bt)−
f(Bt + µ+ k)− 2f(Bt + µ) + f(Bt + µ− k)

2
− f(Bt + µ) + f(Bt)

= f(Bt + µ+ k(Wt+1 −Wt))−
f(Bt + µ+ k) + f(Bt + µ− k)

2

=

{
f(Bt+µ+k)−f(Bt+µ−k)

2 , Yt+1 = 1
f(Bt+µ−k)−f(Bt+µ+k)

2 , Yt+1 = −1

=
f(Bt + µ+ k)− f(Bt + µ− k)

2
Yt+1

5.1. The finite-difference method for the crash-free model

In this section we will show how to apply the discrete Itô Formula for the simple random
walk (Theorem 5.1) to solve the problem of portfolio optimization.
The approximation to Brownian motion by random walks is already proved by Frank
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Knight[22]. A sequence of simple, symmetric random walks uniformly converges to
Brownian motion on bounded intevals with probability 1.
Here, we assume that the stock price process is governed by the following discrete-time
stochastic processes.

St+1 − St = St(µ+ σ(Wt+1 −Wt)) (5.2)

with constant market coefficients µ and σ. Wt with W0 = 0 is the one dimension random
walk.
By the self-financing property we obtain the wealth equation

Xt+1 −Xt = Xt(r + πt(µ− r) + σπt(Wt+1 −Wt))

= Xt(µt + σt(Wt+1 −Wt))

where πt are the portfolio processes and µt = r + πt(µ− r), σt = σπt.

We know that the continuous Itô formula satisfies

df(Xt) = (f ′(Xt)µt +
1

2
f ′′(Xt)(σt)

2)dt+ f ′(Xt)σtdWt (5.3)

where Xt satisfies the Itô process dXt = Xt(µtdt+ σtdWt).

We therefore show in Lemma 5.3 that there is a discrete-time analogue.

Lemma 5.3: • For any f : R→ R, we have

f(Xt+1)− f(Xt)

=
f(Xt +Xtµt +Xtσt)− f(Xt +Xtµt −Xtσt)

2
Yt+1 + f(Xt +Xtµt)− f(Xt)

+
f(Xt +Xtµt +Xtσt)− 2f(Xt +Xtµt) + f(Xt +Xtµt −Xtσt)

2
(5.4)

• For any f : R×N → R, we have

f(Xt+1, t+ 1)− f(Xt, t)

=
f(Xt +Xtµt +Xtσt, t+ 1)− f(Xt +Xtµt −Xtσt, t+ 1)

2
Yt+1

+ f(Xt +Xtµt, t+ 1)− f(Xt, t+ 1)

+
f(Xt +Xtµt +Xtσt, t+ 1)− 2f(Xt +Xtµt, t+ 1) + f(Xt +Xtµt −Xtσt, t+ 1)

2
+ f(Xt, t+ 1)− f(Xt, t)
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Proof: From the lemma above, we can immediately obtain

f(Xt+1)− f(Xt)

= f(Xt+1)− f(Xt +Xtµt) + f(Xt +Xtµt)− f(Xt)

= f(Xt +Xt(µt + σt(Wt+1 −Wt)))− f(Xt +Xtµt) + f(Xt +Xtµt)− f(Xt)

=
f(Xt +Xtµt +Xtσt)− f(Xt +Xtµt −Xtσt)

2
Yt+1

+
f(Xt +Xtµt +Xtσt)− 2f(Xt +Xtµt) + f(Xt +Xtµt −Xtσt)

2
+ f(Xt +Xtµt)− f(Xt)

We then obtain the second equation in the assertion from

f(Xt+1, t+ 1)− f(Xt, t) = f(Xt+1, t+ 1)− f(Xt, t+ 1) + f(Xt, t+ 1)− f(Xt, t) (5.5)

From the lemma above we have the discrete Itô formula which satisfies

f(Xt+1, t+ 1)− f(Xt, t)

=
f(Xt +Xtµt +Xtσt, t+ 1)− f(Xt +Xtµt −Xtσt, t+ 1)

2
Yt+1

+ f(Xt +Xtµt, t+ 1)− f(Xt, t+ 1)

+
f(Xt +Xtµt +Xtσt, t+ 1)− 2f(Xt +Xtµt, t+ 1) + f(Xt +Xtσt −Xtσt, t+ 1)

2
+ f(Xt, t+ 1)− f(Xt, t)

The value function of the portfolio optimization 3.8 in the discrete time setting can be
computed recursively by the Bellman equation,

V (t, x) = sup
πt
E(V (t+ 1, Xπ

t+1)) (5.6)

Using the discrete Itô formula above in this Bellman equation we can get

V (t, x) = sup
πt
E(V (t+ 1, Xπ

t+1))

= sup
πt
E(V (t, x) +

V (x+ xµt + xσt, t+ 1)− V (x+ xµt − xσt, t+ 1)

2
Yt+1

+ V (x+ xµt, t+ 1)− V (x, t+ 1)

+
V (x+ xµt + xσt, t+ 1)− 2V (x+ xµt, t+ 1) + V (x+ xµt − xσt, t+ 1)

2
+ V (x, t+ 1)− V (x, t))
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where Xt = x.

Because of E(Yt+1) = 0 we have that

0 = sup
πt

(V (x+ xµt, t+ 1)− V (x, t+ 1)

+
V (x+ xµt + xσt, t+ 1)− 2V (x+ xµt, t+ 1) + V (x+ xµt − xσt, t+ 1)

2
+ V (x, t+ 1)− V (x, t))

We define a difference operator ` of V (x, t) in discrete time as following:

`πV (t, x)

= V (x+ xµt, t+ 1)− V (x, t+ 1)

+
V (x+ xµt + xσt, t+ 1)− 2V (x+ xµt, t+ 1) + V (x+ xµt − xσt, t+ 1)

2
+ V (x, t+ 1)− V (x, t)

Then, the corresponding discrete HJB-equation with respect to πt has the form

sup
πt
`πV (t, x)

= sup
πt

(V (x(1 + r + πt(µ− r)), t+ 1)− V (x, t+ 1)

+
1

2
(V (x(1 + r + πt(µ− r) + σπt), t+ 1)− 2V (x(1 + r + πt(µ− r)), t+ 1)

+ V (x(1 + r + πt(µ− r)− σπt), t+ 1)) + V (x, t+ 1)− V (x, t))

= 0

V (T, x) = u(x)

Note how the terms in this equation correspond to the terms in the continuous-time
HJB-equation. Thus, we now want to prove the relation between the value function
V (x, t) and the discrete HJB-equation, a so-called verification theory.

Theorem 5.4: (Verification theorem for the solution of the discrete HJB equation) Let
V (t, x) solve the above discrete HJB equation, and

J(t, x, {πs}T−1
t ) = Et,x(u(Xπ

T )) (5.7)

then we have
V (t, x) ≥ J(t, x, {πs}T−1

t ) (5.8)

for all x and all available strategy πt. Furthermore, if for all (t, x) there exists a π∗ with

π∗s ∈ arg sup
π

(`πV (s,X∗s )) (5.9)
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for all t ≤ s ≤ T , where X∗s is the controlled process corresponding to π∗s , then we obtain

V (t, x) = J(t, x, {π∗s}T−1
t ) (5.10)

Proof: Since V is a solution of the discrete HJB equation we have

`πV (t, x) ≤ 0 (5.11)

Using the discrete Itô formula we have

V (T,XT )− V (t, x)

=
T∑
s=t

`πV (s,Xs)

+
T∑
s=t

V (Xs +Xsµs + Vsσs, s+ 1)− V (Xs +Xsµs −Xsσs, s+ 1)

2
Ys+1

After taking the expectation we have

Et,x(V (T,XT )− V (t, x)) =

T∑
s=t

`πV (s,Xs) ≤ 0 (5.12)

which leads to V (t, x) ≥ Et,x(V (T,XT )) ≥ J(t, x, {πs}T−1
t ).

If there exists a π∗ with
π∗s ∈ arg sup

π
(`πV (s,X∗s )) (5.13)

then we obtain equality in

Et,x(V (T,XT )− V (t, x)) =

T∑
s=t

`πV (s,Xs) = 0 (5.14)

and thus the claimed optimality of π∗.

In order to illustrate our theory above we present some examples of this discrete HJB-
equation.

The power utility
We consider the case of power utility

U(x) =
1

γ
xγ , γ < 1, γ 6= 0
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In analogy to the continuous-time solution, we try a solution of the form

V (t, x) =
1

γ
f(t)xγ

Then the discrete-time HJB equation of power utility satisfies

sup
πt
`πV (t, x)

= sup
πt

(
1

γ
f(t+ 1)(x(1 + r + πt(µ− r)))γ −

1

γ
f(t+ 1)xγ

+
1

2
(
1

γ
f(t+ 1)(x(1 + r + πt(µ− r) + σπt))

γ − 2
1

γ
f(t+ 1)(x(1 + r + πt(µ− r)))γ

+
1

γ
f(t+ 1)(x(1 + r + πt(µ− r)− σπt))γ) +

1

γ
f(t+ 1)xγ − 1

γ
f(t)xγ)

= 0

V (T, x) =
1

γ
xγ

The first order condition with respect to πt satisfies

f(t+ 1)(x(1 + r + πt(µ− r)))γ−1x(µ− r)

+
1

2
(f(t+ 1)(x(1 + r + πt(µ− r) + σπt))

γ−1x(µ− r + σ)

− 2f(t+ 1)(x(1 + r + πt(µ− r)))γ−1x(µ− r)
+ f(t+ 1)(x(1 + r + πt(µ− r)− σπt))γ−1x(µ− r − σ))

= 0

The maximization in the discrete-time HJB equation leads to the candidate

πt =
(1 + r)((σ−µ+r

µ−r+σ )
1

γ−1 − 1)

µ− r + σ − (σ−µ+r
µ−r+σ )

1
γ−1 (µ− r − σ)

(5.15)

Inserting πt of the form 5.15 into the discrete-time HJB equation results in the following
equation for f(t)

1

2
f(t+ 1)(

2(1 + r)σ

µ− r + σ − (σ−µ+r
µ−r+σ )

1
γ−1 (µ− r − σ)

)γ((
σ − µ+ r

µ− r + σ
)

γ
γ−1 + 1) = f(t) (5.16)

with final condition f(T ) = 1.
Explicit solution via recursive manner yields

f(t) = [
2γ−1(1 + r)γσγ

(µ− r + σ − (σ−µ+r
µ−r+σ )

1
γ−1 (µ− r − σ))γ

((
σ − µ+ r

µ− r + σ
)

γ
γ−1 + 1)]T−t
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From the above form we can infer that f(t) is strictly positive which implies that V (t, x)
is strictly concave. Thus we have indeed computed the optimal strategy

π∗t =
(1 + r)((σ−µ+r

µ−r+σ )
1

γ−1 − 1)

µ− r + σ − (σ−µ+r
µ−r+σ )

1
γ−1 (µ− r − σ)

The Log utility
In the case of log utility

U(x) = log x

we guess the following form of the value function

V (t, x) = log x+ f(t)

Then the discrete HJB equation of log utility satisfies

sup
πt
`πV (t, x)

= sup
πt

(log(x(1 + r + πt(µ− r))) + f(t+ 1)− (log x+ f(t+ 1))

+
1

2
(log(x(1 + r + πt(µ− r) + σπt)) + f(t+ 1)− 2(log(x(1 + r + πt(µ− r)))

+ f(t+ 1)) + log(x(1 + r + πt(µ− r) + σπt)) + f(t+ 1))

+ log(x) + f(t+ 1)− (log(x) + f(t))

= 0

V (T, x) = log(x)

The first order condition with respect to πt satisfies

1

x(1 + r + πt(µ− r))
x(µ− r)

+
1

2
(

1

x(1 + r + πt(µ− r) + σπt))
x(µ− r + σ)− 2

1

x(1 + r + πt(µ− r))
x(µ− r)

+
1

x(1 + r + πt(µ− r)− σπt))
x(µ− r − σ))

= 0

The maximization yields the following candidate for the optimal control π∗t if (µ− r)2 <
σ2,

π∗t =
(µ− r)(1 + r)

σ2 − (µ− r)2
(5.17)
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Inserting πt of the form 5.15 into the discrete-time HJB equation we obtain the following
equation for f(t)

f(t+ 1) + log(1 + r) +
1

2
log(

σ2

σ2 − (µ− r)2
) = f(t)

with final condition f(T ) = 0.
The explicit solution of f(t) satisfies

f(t) = [log(1 + r) +
1

2
log(

σ2

σ2 − (µ− r)2
)](T − t)

From the above form we can infer that f(t) is strictly positive, which implies that V (t, x)
is strictly concave. Thus we have indeed computed the optimal strategy

π∗t =
(µ− r)(1 + r)

σ2 − (µ− r)2
(5.18)

5.2. The finite-difference method for worst-case portfolio
optimization

Now we focus on how to use this discrete HJB equation to solve the worst-case portfolio
optimization in discrete-time setting.

We consider the stock price dynamics which are modeled by{
St+1 − St = St(µ+ σ(Wt+1 −Wt)), t 6= τ
Sτ+1 = (1− k)Sτ

where (τ, k) is crash scenario and Wt with W0 = 0 is the one dimension random walk.

Then the wealth process X(t) follows the dynamics{
Xt+1 −Xt = Xt(r + πt(µ− r) + πtσ(Wt+1 −Wt)), t 6= τ
Xτ+1 = (1 + r − πτ (r + k))Xτ

We assume that the investor chooses a portfolio process to maximize worst-case expec-
tutility of terminal wealth on the sense of the optimization problem

sup
π∈A(x)

inf
τ∈[t,T ],k∈[0,k∗]

E(u(Xπ
T ))

Then the value function V 1(t, x) satisfies

V 1(t, x) = sup
π∈A(x)

inf
τ∈[t,T ],k∈[0,k∗]

E(u(Xπ
T ))
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Now we derive the dynamic programming principle for the worst-case portfolio optimiza-
tion in discrete time.

Proposition 5.5: If u(x) is strictly increasing, then the optimal portfolio process π∗ for
the single-period worst-case portfolio optimization equals 0.

The assertion of the Proposition above is trivial by the Proposition 4.14.

Theorem 5.6: (The dynamic programming principle)
If U(x) is strictly increasing in x, then we have

V 1(t, x) = sup
π∈A(x)

inf
τ∈[t,T−1]

Et,x[V 0(τ + 1, (1 + r − πτ (r + k∗))Xτ )] (5.19)

Proof: For the case when at most one crash happens, it is optimal to follow the optimal
portfolio process of the crash-free setting after a crash. Then the value function V1(t, x)
equals the optimal expected utility of V 0(τ + 1, (1 + r − πτ (r + k∗))Xτ ). As V0(t, x) is
increasing in x, then the woest-case scenario is given by a crash of maximal height k∗

when the investor follows a non-negative portfolio process at time τ . Moreover, by the
proposition above we have

E[V 0(T, (1 + r − πT−1(r + k∗))Xπ
T−1)]

= E[V 0(T, (1 + r)Xπ
T−1)

= E[V 0(T, (1 + r + πT−1(µ− r + σ(Wt −Wt−1)))Xπ
T−1)

= E[V 0(T,Xπ
T )

= E(u(Xπ
T ))

Thus, the case when no crash happens at all is also included in the right hand side of
the equation 5.19. Therefore , the equation

V 1(t, x) = sup
π∈A(x)

inf
τ∈[t,T−1]

E[V 0(τ + 1, (1 + r − πτ (r + k∗))Xτ )]

is indeed the value function of the worst-case portfolio optimization problem.

For each (t, x) ∈ [0, T )× (0,∞) we define

M ′(t, x) = {π : π ∈ A, `πV 1(t, x) ≥ 0}
M ′′(t, x) = {π : π ∈ A, V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x) ≥ 0}
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By the dynamic programming principle and discrete HJB equation we can establish a
Bellmann system in the spirit of Korn and Steffensen[28] which satisfies{

min{ sup
π∈M ′

[V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x)], sup
π∈M ′′

`πV 1(t, x)} = 0

V 1(T, x) = V 0(T, x) = u(x)
(5.20)

Therefore, for the case when at most one crash happens , our aim is to show that
the solution of the so-called discrete Bellmann system above is indeed optimal in the
worst-case portfolio optimization problem in discrete time setting.

Theorem 5.7: (Verification theorem for the solution of the discrete HJB equation in the
worst-case setting) Let V 1(t, x) solve the above discrete Bellmann system (5.20), then
we have

V 1(t, x) = sup
π

inf
τ
E(u(Xπ

T ))

for all x, all available strategy πt and all crash time τ . Furthermore, suppose that for
each (t, x) there exists a π∗ such that

π∗(t, x) = arg sup
π∈M ′′(t,x)

`πV 1(t, x)

and a crash time τ∗ such that

τ∗(t, x) = arg inf
s:s≥t
{V 0(s, x(1 + r − πs−1(r + k)))− V 1(s− 1, x) ≤ 0}

where

M ′(t, x) = {π : π ∈ A, `πV 1(t, x) ≥ 0}
M ′′(t, x) = {π : π ∈ A, V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x) ≥ 0}

then the strategy π∗ is worst-case optimal and the corresponding optimal crash time is
τ∗.

Proof: Let V 1(t, x) be the solution of the HJB equation (5.20), then we have
sup
π∈M ′

[V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x)] ≥ 0

sup
π∈M ′′

`πV 1(t, x) ≥ 0

for all t.
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Application of the discrete Itô formula gives the equality

V 1(s+ 1, Xπ,τ (s+ 1))− V 1(s,Xπ,τ (s))

= `πV 1(s,Xπ,τ (s)) +
V (Xs +Xsµs + Vsσs, s+ 1)− V (Xs +Xsµs −Xsσs, s+ 1)

2
Ys+1

for all t ≤ s < τ . Then we obtain

V 1(τ,Xτ )− V 1(t, x)

=
τ∑
s=t

`πV 1(s,Xs)

+

τ∑
s=t

V (Xs +Xsµs + Vsσs, s+ 1)− V (Xs +Xsµs −Xsσs, s+ 1)

2
Ys+1 (5.21)

Consider the strategy π∗ together with an arbitrary τ . π∗ ∈M ′′(t, x) implies that

V 1(τ, x)− V 0(τ + 1, x(1 + r − π∗τ (r + k))) ≤ 0

for the arbitrary τ .
Inserting this inequality to the equation (5.21) yields the inequality

V 0(τ + 1, Xπ∗,τ (τ)(1 + r − π∗τ (r + k)))

≥ V 1(τ,Xτ )

= V 1(t, x) +
τ∑
s=t

`π
∗
V 1(s,Xs)

+

τ∑
s=t

V (Xs +Xsµs + Vsσs, s+ 1)− V (Xs +Xsµs −Xsσs, s+ 1)

2
Ys+1

Since the strategy π∗ is a pointwise maximizer of

sup
π∗∈M ′′(t,x)

`π
∗
V 1(t, x) ≥ 0

we can obtain that

V 0(τ + 1, Xπ∗,τ (τ)(1 + r − π∗τ (r + k)))

≥ V 1(τ,Xτ )

+

τ∑
s=t

V (Xs +Xsµs + Vsσs, s+ 1)− V (Xs +Xsµs −Xsσs, s+ 1)

2
Ys+1

By taking expectation the second term of the right side of the inequality vanishes, leaving
us with the inequality

V 1(t, x) ≤ Et,x{V 0(τ + 1, Xπ∗,τ (τ)(1 + r − π∗τ (r + k)))}
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τ is arbitrary, then we have

V 1(t, x) ≤ inf
τ
Et,x{V 0(τ + 1, Xπ∗,τ (τ)(1 + r − π∗τ (r + k)))}

and
V 1(t, x) ≤ sup

π
inf
τ
Et,x{V 0(τ + 1, Xπ,τ (τ)(1 + r − πτ (r + k)))}

Now fix the crash time θ = τ∗, then we have that

V 0(s+ 1, x(1 + r − πs(r + k)))− V 1(s, x) > 0, t ≤ s ≤ τ∗ (5.22)

V 0(τ∗ + 1, x(1 + r − π∗τ (r + k)))− V 1(τ∗, x) ≤ 0

Consider again the equation (5.21) we obtain the following inequality

V 0(τ∗ + 1, Xπ,τ (τ∗)(1 + r − π∗τ (r + k)))

≤ V 1(t, x) +

τ∗∑
s=t

`πV 1(s,Xs) (5.23)

+

τ∗∑
s=t

V (Xs +Xsµs + Vsσs, s+ 1)− V (Xs +Xsµs −Xsσs, s+ 1)

2
Ys+1

That V 1(t, x) is the solution of the HJB equation (5.20) implies that

min{ sup
π∈M ′

[V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x)], sup
π∈M ′′

`πV 1(t, x)} = 0

If `πV 1(s,Xs) ≥ 0, then π ∈M ′ and from (5.22) gives us

sup
π∈M ′

[V 0(s+ 1, x(1 + r − πt(r + k)))− V 1(s, x)] > 0,

for all t ≤ s ≤ τ∗. Then we have that

sup
π∈M ′′

`πV 1(s, x) = 0.

This implies
`πV 1(s, x) ≤ 0.

Therefore , in any case, `πV 1(s, x) ≤ 0 for all t ≤ s ≤ τ∗.
Taking expectation on both sides of (5.23) to obtain that

V 1(t, x) ≥ Et,x{V 0(τ∗ + 1, Xπ,τ∗(τ∗)(1 + r − πτ∗(r + k)))}

and
V 1(t, x) ≥ inf

τ
Et,x{V 0(τ + 1, Xπ,τ (τ)(1 + r − πτ (r + k)))}
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since π was chosen arbitrarily, this implies

V 1(t, x) ≥ sup
π

inf
τ
Et,x{V 0(τ + 1, Xπ,τ (τ)(1 + r − πτ (r + k)))}

Then we can conclude that

V 1(t, x) = sup
π

inf
τ
Et,x{V 0(τ + 1, Xπ,τ (τ)(1 + r − πτ (r + k)))}

Characterization of the solution
Let us now apply the verification theorem (5.7)to construct the value function and the
optimal strategies.
By applying the verification theorem we have to solve

min{ sup
π∈M ′

[V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x)], sup
π∈M ′′

`πV 1(t, x)} = 0 (5.24)

Let us first consider the inequality

sup
π∈M ′

[V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x)] ≥ 0 (5.25)

where
M ′(t, x) = {π : π ∈M, `πV 1(t, x) ≥ 0}

Since the utility function U is an increasing function and (r + k) > 0 we have that
V 0(t + 1, x(1 + r − πt(r + k))) is a decreasing function of πt, then the supremium of
(5.25) is attained for the smallest value of π which satisfies the constraint in M ′, i.e.

`πV 1(t, x)

= V (x(1 + r + πt(µ− r)), t+ 1)− V (x, t+ 1)

+
1

2
(V (x+ x(r + πt(µ− r)) + xπtσ, t+ 1)− 2V (x+ x(r + πt(µ− r)), t+ 1)

+ V (x+ x(r + πt(µ− r))− xσπt, t+ 1)) + V (x, t+ 1)− V (x, t)

≥ 0 (5.26)

Note that the value function V 1(t, x) is concave and increasing, then the equation
`πV 1(t, x) is also concave and increasing for π. Then the smallest value of π is at-
tained when (5.26) holds as an equality. Thus we have the supremium in (5.25) when
the constraint (5.26) keeps equality. If the left hand side of the inequality (5.25) is
equal to zero we have that πt are determined by the set of equations{

V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x) = 0
`πV 1(t, x) = 0
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When the left hand side of the inequality (5.25) is strictly positive, by the complemen-
tarity of the equation (5.24) in Bellmann system we have that

sup
π∈M ′′

`πV 1(t, x) = 0 (5.27)

Ignoring the constraint π ∈ M ′′ we can compute the candidate for an optimal portfolio
process from this equation as π̃.
If π̃ satisfies the condition V 0(t + 1, x(1 + r − π̃(r + k))) − V 1(t, x) > 0, then π̃ can be
indeed considered the maximizer of (5.27). Otherwise we have

V 0(t+ 1, x(1 + r − π̃(r + k)))− V 1(t, x) < 0

We know that the value function V 0(t+ 1, x(1 + r − π(r + k))) is a decreasing function
for π, then π̃ > π̂ from V 0(t + 1, x(1 + r − π̂(r + k))) = V 1(t, x). That the function
`πV 1(t, x) is an increasing function of π implies that if π̃ /∈ M ′′ then the supremium of
the sup

π∈M ′′
`πV 1(t, x) = 0 is obtained for the π̂ < π̃ which satisfies

V 0(t+ 1, x(1 + r − π̂(r + k)))− V 1(t, x) = 0

and consequently π and V are determined by the set of equations{
V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x) = 0
`πV 1(t, x) = 0

Then the (t, x) space can be decomposed into the set K on which π∗ are determined by{
V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x) = 0
`πV 1(t, x) = 0

and the set N on which π∗ are determined by{
V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x) > 0
sup
π∈M

`πV 1(t, x) = 0

In our examples below, we will show how to solve the set of equations and whether the
set N is empty.

5.3. Numerical examples

We present some numerical examples of the discrete bellmann system in the worst case
portfolio optimization to illustrate our verification theory.
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Power utility

We consider at first the case of power utility

U(x) =
1

γ
xγ , γ < 1, γ 6= 0

We try a solution of the form

V (t, x) =
1

γ
f(t)xγ

Note that we must have f(T ) = 1. The discrete Bellmann system satisfies{
min{ sup

π∈M ′
[V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x)], sup

π∈M ′′
`πV 1(t, x)} = 0

V 1(T, x) = V 0(T, x) = 1
γx

γ
(5.28)

We consider at first the set N . With the equation sup
π∈M

`πV 1(t, x) = 0 we obtain the

optimal portfolio strategy

π̃ =
(1 + r)((σ−µ+r

µ−r+σ )
1

γ−1 − 1)

µ− r + σ − (σ−µ+r
µ−r+σ )

1
γ−1 (µ− r − σ)

(5.29)

then we can get that π̃ = π0∗ . If we choose the portfolio strategy as π̃, then the worst
case for the investor is an immediate crash happens under the assumption of k > 0.
Therefore we have V 0(t+ 1, x(1 + r − π̃(r + k))) ≤ V 1(t, x) . Thus in the case of k > 0
we can conclude that the set N is empty.

Now we can only focus on the set K. From the first equation V 1(t, x) = V 0(t+ 1, x(1 +
r − πt(r + k))) we can get that

π∗t =
1

r + k
(1 + r − (

f1(t)

f0(t+ 1)
)
1
γ ) (5.30)

The discrete Itô formula `πV 1(t, x) = 0 leads to

f1(t)

f1(t+ 1)
=

(1 + r + π∗t (µ− r + σ))γ + (1 + r + π∗t (µ− r − σ))γ

2
(5.31)

with the final condition f(T ) = 1.
Using this equation (5.31) we can obtain the rekursive difference equation from the
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(5.30)

π∗t+1 − π∗t (5.32)

=
1

r + k
(1 + r − f1(t+ 1)

f0(t+ 2)

1
γ

)− 1

r + k
(1 + r − f1(t)

f0(t+ 1)

1
γ

)

=
1

r + k

f1(t)

f0(t+ 1)

1
γ

(1− (
f1(t+ 1)

f1(t)

f0(t+ 1)

f0(t+ 2)
)
1
γ )

=
1

r + k
(1 + r − (r + k)π∗t )(1− {

(1 + r + π0
t (µ− r + σ))γ + (1 + r + π0

t (µ− r − σ))γ

(1 + r + π∗t (µ− r + σ))γ + (1 + r + π∗t (µ− r − σ))γ
}

1
γ )

Then we have that

π∗t+1 =
1 + r

r + k
− (

1 + r

r + k
− π∗t )(

(1 + r + π0∗(µ− r + σ))γ + (1 + r + π0∗(µ− r − σ))γ

(1 + r + π∗t (µ− r + σ))γ + (1 + r + π∗t (µ− r − σ))γ
)
1
γ

We can show that there exists a solution π∗t which is bounded by 0 from below and by
π0∗ from above as shown in the example 3.17.
From the equation 5.31 we obtain the following solution for f1(t)

f1(t) = [
(1 + r + π∗t (µ− r + σ))γ + (1 + r + π∗t (µ− r − σ))γ

2
]T−t

f1(t) is always positive for 0 ≤ π∗ ≤ π0∗ which implies that V 1(t.x) of the above form is
concave functionin x, as desired. Thus, we have indeed computed the optimal portfolio
process which satisfy

π∗t+1 =
1 + r

r + k
− (

1 + r

r + k
− π∗t )(

(1 + r + π0∗(µ− r + σ))γ + (1 + r + π0∗(µ− r − σ))γ

(1 + r + π∗t (µ− r + σ))γ + (1 + r + π∗t (µ− r − σ))γ
)
1
γ

We know that π∗T−1 = 0 and the optimal portfolio strategy in crash-free model

π0∗ =
(1 + r)((σ−µ+r

µ−r+σ )
1

γ−1 − 1)

µ− r + σ − (σ−µ+r
µ−r+σ )

1
γ−1 (µ− r − σ)

(5.33)

Using the difference equation and the final condition π∗T−1 = 0 we can compute the op-
timal strategies π∗t for t = T − 1, T − 2, ..., 1. Now we consider the following parameters
throughout this section:
µ = 0.11, r = 0.05, σ = 0.4, k = 0.05, γ = 0.5 The form of the optimal trading strategies
with and without crash possibility are illustrated in Figure 5.1. Note that the worst-case
optimal portfolio process π∗ is a nonconstant process which decreases with decreasing
time to maturity T − t. That means the investor reduces the number of shares of stock
as he approaches the investment horizon in order to protect against losses due to a crash.
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Figure 5.1.: The optimal trading strategies π∗t for power utility function

Only in last single period T − 1 he reduces his fraction of risky investments to zero.

Log utility
Now let us take a look at the the case of logarithmic utility function

U(x) = log x

we guesss the following form of the value function

V (t, x) = log x+ f(t)

Note that we must have f(T ) = 0.
The discrete Bellmann system satisfies{

min{ sup
π∈M ′

[V 0(t+ 1, x(1 + r − πt(r + k)))− V 1(t, x)], sup
π∈M ′′

`πV 1(t, x)} = 0

V 1(T, x) = V 0(T, x) = log x
(5.34)

Under the assumption of k > 0 the set of N is empty as in the case of power utility we
have already argued. Now we consider the set K. From the first equation V 1(t, x) =
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V 0(t+ 1, x(1 + r − πt(r + k))) we can get that

π∗t =
1

r + k
(1 + r − (exp(f1(t)− f0(t+ 1)))) (5.35)

The discrete Itô formula `πV 1(t, x) = 0 leads to

f1(t+ 1)− f1(t) = −1

2
(log(1 + r+ π∗t (µ− r+ σ))) + log(1 + r+ π∗t (µ− r− σ))) (5.36)

Inserting the equation (5.36) into the equation (5.35) leads to the equation:

π∗t+1 − π∗t (5.37)

=
1

r + k
(exp(f1(t)− f0(t+ 1))− exp(f1(t+ 1)− f0(t+ 2)))

=
1

r + k
(1 + r − (r + k)π∗t )(1− (

(1 + r + π0∗(µ− r + σ))(1 + r + π0∗(µ− r − σ))

(1 + r + π∗t (µ− r + σ))(1 + r + π∗t (µ− r − σ))
)
1
2 )

Then we have that

π∗t+1 =
1 + r

r + k
− (

1 + r

r + k
− π∗t )(

(1 + r + π0∗(µ− r + σ))(1 + r + π0∗(µ− r − σ))

(1 + r + π∗t (µ− r + σ))(1 + r + π∗t (µ− r − σ))
)
1
2

As shown in example 4.9 it has a solution π∗t which satisfies 0 ≤ π∗t ≤ π0∗.
The equation 5.36 leads to a solution for f1(t)

f1(t) =
1

2
(log(1 + r + π∗t (µ− r + σ)) + log(1 + r + π∗t (µ− r − σ)))(T − t)

We infer that f1(t) is always positive which implies that the value function is a concave
function. Thus the optimal portfolio process π∗t indeed satisfies the following equation

π∗t+1 =
1 + r

r + k
− (

1 + r

r + k
− π∗t )(

(1 + r + π0∗(µ− r + σ))(1 + r + π0∗(µ− r − σ))

(1 + r + π∗t (µ− r + σ))(1 + r + π∗t (µ− r − σ))
)
1
2

We already get the optimal portfolio strategy in crash-free model

π0∗ =
(µ− r)(1 + r)

σ2 − (µ− r)2
(5.38)

Using the difference equation and the final condition π∗T = 0 we can compute the optimal
strategies π∗t for t = T − 1, T − 2, ..., 1. Now we consider the same parameters in our
case: µ = 0.11, r = 0.05, σ = 0.4, k = 0.05, The form of the optimal trading strategies
with and without crash possibility are illustrated in Figure 5.2.
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Figure 5.2.: The optimal trading strategies π∗t for log utility function

5.4. Convergence theory

Here we wish to show that the value function obtained from the worst-case HJB equation
in discrete time (the finite-difference scheme) above converges to the value function from
the continuous time HJB equation in the worst-case setting when the time step h→ 0.
Let h > 0 be the time step, for all s ∈ [t, T ], we have s = t + jh, j = 0, 1, · · · , n. Then
the prices of a riskless bond and one risky security satisfy{

Bt+h −Bt = rhBt, B0 = 1

St+h − St = St(µh+ σ
√
h(Wt+h −Wt)), S0 = s0

where Wt with W0 = 0 is the one dimension random walk.
And in a crash scenario (τ, k) we have

Sτ+h = (1− kh)Sτ .

The dynamics of the wealth process is given by

Xt+h −Xt = Xt(µth+ σt
√
h(Wt+h −Wt)) for t ∈ [0, T ] and t 6= τ

Xτ+h −Xτ = (rh− πτ (rh+ kh))Xτ
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where X0 = x > 0 denotes the initial wealth and µt = r + πt(µ− r), σt = σπt.

We denote the value function under the crash model in the discrete time as V 1
h (t, x),

and the value function under the crash-free model in the discrete time as V 0
h (t, x) which

satisfies
V 0
h (t, x) = sup

πt
E{V 0

h (t+ h,Xπ(t+ h))}.

Then the discrete differential operator ` of the value function V 0
h (t, x) is

`πV 0
h (t, x)

= V 0
h (x+ xµth, t+ h)− V 0

h (x, t+ h) (5.39)

+
V 0
h (x+ xµth+ xσt

√
h, t+ h)− 2V 0

h (x+ xµth, t+ h) + V 0
h (x+ xµth− xσt

√
h, t+ h)

2
+ V 0

h (x, t+ h)− V 0
h (x, t)

where Xt satisfies

Xt+h −Xt = Xt(µth+ σt
√
h(Wt+h −Wt)) (5.40)

Under the time step h we have

f(Xt+h)− f(Xt)

=
f(Xt +Xtµth+Xtσt

√
h)− f(Xt +Xtµth−Xtσt

√
h)

2
Yt+h (5.41)

+ f(Xt +Xtµth)− f(Xt)

+
f(Xt +Xtµth+Xtσt

√
h)− 2f(Xt +Xtµth) + f(Xt +Xtµth−Xtσt

√
h)

2

Now we introduce the following notations. For any function g(t, x), let

∆xg =
g(t, x+ h)− g(t, x)

h
(5.42)

∆2
xg =

g(t, x+ h)− 2g(t, x) + g(t, x− h)

h2
(5.43)

∆tg =
g(t+ h, x)− g(t, x)

h

These are respectively the forward first order difference quotient in x, the second order
difference quotient in x and the first order difference quotient in time t.
We have the well known Itô formula in continuous time

df(Xt) = (f ′(Xt)µt +
1

2
f ′′(Xt)(σt)

2)dt+ f ′(Xt)σtdWt (5.44)
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where Wt denotes a standard Brownian Motion.
Then the equation (5.41) can be considered as a finite-difference scheme of the Equation
(5.44).
Fujita and Kawanishi[18] have already proved the Itô formula for Brownian motion

f(wt)− f(w0) =

∫ t

0
f ′(ws)dws +

1

2

∫ t

0
f ′′(ws)ds

using the discrete Itô formula

f(Zt+1)− f(Zt) =
f(Zt + 1)− f(Zt − 1)

2
(Zt+1 − Zt) +

f(Zt + 1)− 2f(Zt) + f(Zt − 1)

2

by taking an approximation to Brownian motion by random walks. Then we can prove
similarly that the discrete Itô formula (5.41) converges to the Itô formula in continuous
time (5.44), when we take a suitable approximation to Brownian motion by random
walks. Now we want to prove that as h→ 0,

`πV (t, x)

h
→ LπV (t, x) (5.45)

where

LπV (t, x) = Vt(t, x) + Vx(t, x)(r + π(µ− r))x+
1

2
Vxx(t, x)π2σ2x2

Proof:

`πV (t, x)

h
− LπV (t, x)

=
V (x, t+ h)− V (x, t)

h
+
V (x+ µth, t+ h)− V (x, t+ h)

h

+
V (x+ µth+ σt

√
h, t+ h)− 2V (x+ µth, t+ h) + V (x+ µth− xσt

√
h, t+ h)

2h

− (Vt(t, x) + Vx(t, x)µt +
1

2
Vxx(t, x)(σt)

2)

= (
V (x, t+ h)− V (x, t)

h
− Vt(t, x)) + (

V (x+ µth, t+ h)− V (x, t+ h)

h
− Vx(t, x)µt)

+ (
V (x+ µth+ σt

√
h, t+ h)− 2V (x+ µth, t+ h) + V (x+ µth− xσt

√
h, t+ h)

2h

− 1

2
Vxx(t, x)(σt)

2))

where µt = (r + π(µ− r))x and σt = πσx
Because V (x, t) is defferentiable at t, we get by the definition of the derivative that

lim
h→0

(
V (x, t+ h)− V (x, t)

h
) = Vt(t, x)
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and we assumed that |µt| ≤ K for some constant K > 0, then µth → 0 as h → 0, then
we obtain

lim
h→0

(
V (x+ µth, t+ h)− V (x, t+ h)

µth
) = Vx(t, x)

thus

lim
h→0

(
V (x+ µth, t+ h)− V (x, t+ h)

h
) = Vx(t, x)µt

Now we use the taylor expansions up to second order to achieve that

V (x+ µth+ σt
√
h, t+ h)

= V (x+ µth, t+ h) + σt
√
hVx(x+ µth, t+ h) + (σt

√
h)2 1

2
Vxx(ε, t+ h)

V (x+ µth− σt
√
h, t+ h)

= V (x+ µth, t+ h)− σt
√
hVx(x+ µth, t+ h) + (σt

√
h)2 1

2
Vxx(ε′, t+ h)

with x+ µth ≤ ε ≤ x+ µth+ σt
√
h and x+ µth ≤ ε′ ≤ x+ µth+ σt

√
h.

The addition of the two equations above gives us

V (x+ µth+ σt
√
h, t+ h)− 2V (x+ µth, t+ h) + V (x+ µth− xσt

√
h, t+ h)

2h

=
1

4
Vxx(ε, t+ h)(σt)

2 +
1

4
Vxx(ε′, t+ h)(σt)

2

When h→ 0 , ε→ x and ε′ → x. As V (x, t) is twice defferentiable, we obtain that

lim
h→0

(
V (x+ µth+ σt

√
h, t+ h)− 2V (x+ µth, t+ h) + V (x+ µth− xσt

√
h, t+ h)

2h
)

=
1

2
Vxx(x, t)(σt)

2

thus we get the result

lim
h→0

(
`πV (t, x)

h
) = LπV (t, x)

Here we will show at first that the value function V 0
h (t, x) obtained from the discrete

HJB equation {
sup
πt
`πV 0

h (t, x) = 0

V 0
h (T, x) = u(x)

(5.46)
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converges to the value function V 0(t, x) from the continuous time HJB equation{
sup
πt
LπV 0(t, x) = 0

V 0(T, x) = u(x)
(5.47)

when the time step h→ 0.

Before we prove the convergence theory, we need the following definition of viscosity
sub- and super solutions.[14]

Definition 5.8: Let O ∈ R be an open set, Q = [t0, t1) × O, w ∈ C(Q̄) , and let
F : [0, T )×O ×R×R×R×R→ R be a continuous function which satisfying

X 6 X ′ ⇒ F (t, x, r, q, p,X) > F (t, x, r, q, p,X ′)

and

q 6 q′ ⇒ F (t, x, r, q, p,X) > F (t, x, r, q′, p,X)

Let w : [0, T ]×O → R be continuous. We can consider the equation

F (t, x, w,Dtw,Dxw,D
2
xw) = 0 (5.48)

1. w is called a viscosity subsolution of the equation (5.48), if for each (t, x) ∈ [0, T )×
O and all ϕ ∈ C1,2([0, T ]× Ō) with ϕ ≥ w satisfying ϕ(t, x) = w(t, x), we have

F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ) ≤ 0

2. w is called a viscosity supersolution of the Equation (5.48), if for each (t, x) ∈
[0, T )×O and all ϕ ∈ C1,2([0, T ]× Ō) with ϕ ≤ w satisfying ϕ(t, x) = w(t, x), we
have

F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ) ≥ 0

3. w is called a viscosity solution of the Equation (5.48), if it is both a viscosity
subsolution and a viscosity supersolution.

Here in our case we can set that

F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ) = − sup

πt
Lπϕ(t, x)
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Then we have that when D2
xϕ ≥ D2

xϕ
′,

F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ)

= − sup
πt
Lπϕ(t, x)

= − sup
πt

(Dtϕ(t, x) +Dxϕ(t, x)(r + π(µ− r))x+
1

2
D2
xϕ(t, x)π2σ2x2)

≤ − sup
πt

(Dtϕ(t, x) +Dxϕ(t, x)(r + π(µ− r))x+
1

2
D2
xϕ
′(t, x)π2σ2x2)

= F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ
′)

and when Dtϕ ≥ Dtϕ
′,

F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ)

= − sup
πt
Lπϕ(t, x)

= − sup
πt

(Dtϕ(t, x) +Dxϕ(t, x)(r + π(µ− r))x+
1

2
D2
xϕ(t, x)π2σ2x2)

≤ − sup
πt

(Dtϕ
′(t, x) +Dxϕ(t, x)(r + π(µ− r))x+

1

2
D2
xϕ(t, x)π2σ2x2)

= F (t, x, ϕ,Dtϕ
′, Dxϕ,D

2
xϕ
′)

Now we define
(V 0)∗(t, x) = lim sup

(s,y)→(t,x),h↓0
V 0
h (s, y) (5.49)

(V 0)∗(t, x) = lim inf
(s,y)→(t,x),h↓0

V 0
h (s, y) (5.50)

The basic proof of the viscosity subsolution and viscosity supersolution is shown in
Fleming and Soner[14]. In our financial market we can show it for our discrete-time
HJB equation as follows.

Lemma 5.9: (V 0)∗ is a viscosity subsolution of the continuous-time HJB equation, and
(V 0)∗ is a viscosity supersolution.

Proof: Let (t0, x0) ∈ [0, T )×O, O is a open set with O ∈ Rand w ∈ C1,2([0, T ]×Ō)(note
that Ō = O ∪ ∂O) with w ≥ (V 0)∗ be a function satisfying w(t0, x0) = (V 0)∗(t0, x0). To
show that (V 0)∗ is a viscosity subsolution of the continuous-time HJB system (5.47), we
want to show that

− sup
πt
Lπw(t0, x0) ≤ 0

From w(t0, x0) = (V 0)∗(t0, x0) and w ≥ (V 0)∗, we can get that (t0, x0) is a maximizer
of (V 0)∗ − w.
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Now we choose a sequence h with h→ 0, then for every h, (V 0)h−w has a maximun at
(th, xh). We want to show that (th, xh)→ (t0, x0) when h→ 0.
Since (th, xh) ∈ [0, T )×O which is compact, the sequence (th, xh) has limit points (t̃, x̃)
. Then, we want to show that (t̃, x̃) = (t0, x0).
Indeed pick h→ 0 and (sh, yh)→ (t0, x0) satisfying

(V 0)∗(t0, x0)− w(t0, x0) = lim
h→0

[V 0
h (sh, yh)− w(sh, yh)]

By the definition and the maximum properties, we have that

(V 0)∗(t0, x0)− w(t0, x0) = lim
h→0

[V 0
h (sh, yh)− w(sh, yh)]

≤ lim
h→0

[V 0
h (th, xh)− w(th, xh)]

= (V 0)∗(t̃, x̃)− w(t̃, x̃)

If we assume that the maximum is strict, then we have that (t̃, x̃) = (t0, x0). Therefore
V 0
h − w has a maximum at (th, xh) which tends to (t0, x0) when h → 0. This directly

implies

V 0
h (th, xh)− w(th, xh) ≥ V 0

h (th + h,Xth+h)− w(th + h,Xth+h)

w(th + h,Xth+h)− w(th, xh) ≥ V 0
h (th + h,Xth+h)− V 0

h (th, xh) (5.51)

then we can take the supremum and the expectation on the both sides of the Equa-
tion (5.51) and obtain that

sup
π
Eth,xh [w(th + h,Xth+h)− w(th, xh)] ≥ sup

π
Eth,xh [V 0

h (th + h,Xth+h)]− V 0
h (th, xh)

By using the dynamic programming principle in discrete time model 3.14, we have that

sup
π
Eth,xh [V 0

h (th + h,Xth+h)] = V 0
h (th, xh)

then
sup
π
Eth,xh [w(th + h,Xth+h)− w(th, xh)] ≥ 0

and the application of the discrete Itô formula gives the equality

w(th + h,Xth+h))− w(th, xh))

= `πw(th, xh))

+
w(Xh +Xhµh + whσh, th + h)− w(Xh +Xhµh −Xhσh, th + h)

2
(W (th + h)−W (th))

Since E(W (th + h)−W (th)) = 0, we have that

sup
π
Eth,xh [w(th + h,Xth+h)− w(th, xh)] = sup

π
`πw(th, xh)) ≥ 0
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We devide by h and let h ↓ 0, by (5.45)

− sup
π
Lπw(t0, x0)) ≤ 0

Thus, (V 0)∗ is a viscosity subsolution of the continuous-time HJB equation.
Similarly, (V 0)∗ is a viscosity supersolution of the continuous-time HJB equation.

Using the lemma above we can prove the following theorem:

Theorem 5.10: The value function V 0
h (t, x) obtained from this discrete HJB system (5.46)

converges to the value function V 0(t, x) from the continuous time HJB equation (5.47)
when the time step h→ 0, that is

lim
(s,y)→(t,x),h↓0

V 0
h (s, y) = V 0(t, x)

Proof: The lemma above implies that (V 0)∗ is a viscosity subsolution and (V 0)∗ is a
viscosity supersolution respectively, hence we have that

(V 0)∗ ≤ V 0

similarly, (V 0)∗ ≥ V 0. By a comparison we have

(V 0)∗ ≤ V 0 ≤ (V 0)∗

Since by construction we have

(V 0)∗(t, x) = lim sup
(s,y)→(t,x),h↓0

V 0
h (s, y)

≥ lim inf
(s,y)→(t,x),h↓0

V 0
h (s, y)

= (V 0)∗(t, x)

therefore we get
(V 0)∗ = V 0 = (V 0)∗

hence we can conclude that

lim
(s,y)→(t,x),h↓0

V 0
h (s, y) = V 0(t, x)

Remark 5.11. If the value function V 0(t, x) ∈ C1,2 is the solution of the continuous-
time HJB equation (5.47), the function V 0(t, x) ∈ C1,2 is then the unique viscosity
solution of the HJB equation (5.47). Therefore, if V 0

h (t, x) converges to the viscosity
solution of the HJB equation (5.47), we can obtain that V 0

h (t, x) converges to the value
function V 0(t, x).
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It is well-known that in two following examples of log-utility and power-utility the
continuous-time value functions are sufficiently smooth to apply Theorem 5.10. Thus,
the discrete-time value functions converge. We will show that in these two examples
even the sequence of optimal strategies will converge, too.

The Log utility. From the above section of numerical examples the optimal strategy
in the case of log utility satisfies

π∗h =
(µ− r)(1 + rh)

σ2 − (µ− r)2h2
(5.52)

If h→ 0, we can easy get that

lim
h↓0

π∗h =
(µ− r)
σ2

= π∗ (5.53)

the optimal strategy in discrete time converges to the optimal strategy in continuous
time.

The Power utility. We have the optimal strategy in the case of power utility in the
following

π∗h =
(1 + rh)((σ

√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 − 1)

µh− rh+ σ
√
h− (σ

√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 (µh− rh− σ
√
h)

(5.54)

For h→ 0, we have that

lim
h↓0

π∗h

= lim
h↓0

(1 + rh)((σ
√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 − 1)

µh− rh+ σ
√
h− (σ

√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 (µh− rh+ σ
√
h)

From

lim
h↓0

σ
√
h− µh+ rh

µh− rh+ σ
√
h

= lim
h↓0

σ − µ
√
h+ r

√
h

µ
√
h− r

√
h+ σ

= 1

we have that

lim
h↓0

π∗h

= lim
h↓0

[(1 + rh)((σ
√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 − 1)]′

[µh− rh+ σ
√
h− (σ

√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 (µh− rh+ σ
√
h)]′
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Let A = σ
√
h−µh+rh

µh−rh+σ
√
h

, then

(A
1

γ−1 )′ =
1

γ − 1
(A)

2−γ
γ−1

−(µ− r)σ 1√
h

((µ− r)
√
h+ σ)2

and

lim
h↓0

[(1 + rh)((σ
√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 − 1)]′

[µh− rh+ σ
√
h− (σ

√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 (µh− rh+ σ
√
h)]′

= lim
h↓0

(A
1

γ−1 − 1) + (1 + rh)( 1
γ−1(A)

2−γ
γ−1

−(µ−r)σ 1√
h

((µ−r)
√
h+σ)2

)

µ− r + σ
2
√
h
− ( 1

γ−1(A)
2−γ
γ−1

−(µ−r)σ 1√
h

((µ−r)
√
h+σ)2

)(µh− rh+ σ
√
h)−A

1
γ−1 (µ− r + σ

2
√
h

)

= lim
h↓0

√
h(A

1
γ−1 − 1) + (1 + rh)( 1

γ−1(A)
2−γ
γ−1

−(µ−r)σ
((µ−r)

√
h+σ)2

)

(µ− r)
√
h+ σ

2 − ( 1
γ−1(A)

2−γ
γ−1

−(µ−r)σ
((µ−r)

√
h+σ)2

)(µh− rh+ σ
√
h)−A

1
γ−1 ((µ− r)

√
h+ σ

2 )

=

1
γ−1

−(µ−r)
σ

σ

=
(µ− r)

(1− γ)σ2

Therefore we obtain

lim
h↓0

π∗h =
(µ− r)

(1− γ)σ2
= π∗

the optimal strategy of power utility in discrete time converges also to the optimal strat-
egy in continuous time.

Now we focus on showing that the value function obtained from the worst-case HJB
equation in discrete time above converges to the value function from the continuous
time HJB equation when the time step h→ 0.
We consider the discrete worst-case HJB system under the time step h as following{

min{ sup
π∈M ′

[V 0
h (t+ 1, x(1 + r − πt(r + k)))− V 1

h (t, x)], sup
π∈M ′′

`πV 1
h (t, x)} = 0

V 1
h (T, x) = V 0

h (T, x) = u(x)
(5.55)

and the continuous worst-case HJB system satisfying{
min{ sup

π∈M ′
[V 0(t, x(1− kπ(t)))− V 1(t, x)], sup

π∈M ′′
LπV 1(t, x)} = 0

V 1(T, x) = V 0(T, x) = u(x)
(5.56)
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Before we show that the value function V 1
h (t, x) obtained from this worst-case discrete

HJB system converges to the value function V 1(t, x) from the continuous time HJB
equation when the time step h→ 0, we define

(V 1)∗(t, x) = lim sup
(s,y)→(t,x),h↓0

V 1
h (s, y) (5.57)

(V 1)∗(t, x) = lim inf
(s,y)→(t,x),h↓0

V 1
h (s, y) (5.58)

Here we can also set that

F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ) = −min{ sup

π∈M ′
[V 0(t, x(1−kπ(t)))−V 1(t, x)], sup

π∈M ′′
LπV 1(t, x)}

then we have that

F (t, x, ϕ,Dtϕ,Dxϕ,D
2
xϕ) = max{− sup

π∈M ′
[V 0(t, x(1−kπ(t)))−V 1(t, x)],− sup

π∈M ′′
LπV 1(t, x)}

Lemma 5.12: (V 1)∗ is a viscosity subsolution of the continuous-time HJB system (5.56).

Proof: Let (t0, x0) ∈ [0, T ) × O and let w ∈ C1,2([0, T ] × Ō) with w ≥ (V 1)∗ and
w(t0, x0) = (V 1)∗(t0, x0). To show that (V 1)∗ is a viscosity subsolution of the continuous-
time HJB system (5.56), we want to show that

max{− sup
π∈M ′

[V 0(t0, x0(1− kπ(t)))− w(t0, x0)],− sup
π∈M ′′

Lπw(t0, x0)} ≤ 0

We have

w(t0, x0) = (V 1)∗(t0, x0)

= lim sup
(s,y)→(t0,x0),h↓0

V 1
h (s, y)

≤ lim sup
(s,y)→(t0,x0),h↓0

sup
π
E(V 0

h (s+ h, y(1 + rh− π(rh+ k))))

= lim sup
(s,y)→(t0,x0),h↓0

sup
π
V 0
h (s+ h, y(1 + rh− π(rh+ k)))

= sup
π
V 0(t0, x0(1− kπ)) (5.59)

the inequality is obtained from the Dynamic Programming Principle (5.19).
Then we obtain − sup

π
[V 0(t0, x0(1 − kπ)) − w(t0, x0)] ≤ 0. We only have to show that

− supLπw(t0, x0) ≤ 0.
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We can get that (t0, x0) is a maximizer of (V 1)∗ − w with w(t0, x0) = (V 1)∗(t0, x0) and
w ≥ (V 1)∗. And from the proof of the Lemma (5.9) we can have that there exist (th, xh)
so that V 0

h −w has a maximum at (th, xh) which tends to (t0, x0) when h→ 0 , then we
have

V 1
h (th, xh)− w(th, xh) ≥ V 1

h (th + h,Xth+h)− w(th + h,Xth+h)

w(th + h,Xth+h)− w(th, xh) ≥ V 1
h (th + h,Xth+h)− V 1

h (th, xh) (5.60)

Now we assume that sup `πw(th, xh) < 0.
By taking the supremum and expectation on the both sides of the Equation (5.60), we
get

sup
πth

Eth,xh [w(th + h,Xth+h)− w(th, xh)] ≥ sup
πth

Eth,xh [V 1
h (th + h,Xth+h)]− V 1

h (th, xh)

Using the assumption and the discrete Itô formula shows that

sup
πth

Eth,xh [w(th + h,Xth+h)− w(th, xh)] = sup `πw(th, xh) < 0

Then we have
V 1
h (th, xh) > sup

πth

Eth,xh [V 1
h (th + h,Xth+h)] (5.61)

From the dynamic programming principle for the worst-case portfolio optimization 4.39
we have that

V 1
h (th, xh) = sup

πth

min{E(V 1
h (th + h,Xth+h) | Fth), E(V 0

h (th + h, xh(1 + rh− πth(rh+ k∗))) | Fth)}

≤ sup
πth

{E(V 1
h (th + h,Xth+h))}

which contradicts the inequation (5.61).

Therefore we have that
sup `πw(th, xh) ≥ 0

We devide by h and let h ↓ 0,

− sup
π
Lπw(t0, x0)) ≤ 0

Thus, (V 1)∗ is a viscosity subsolution.

Lemma 5.13: (V 1)∗ is a viscosity supersolution of the continuous-time HJB system (5.56).
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Proof: Let (t0, x0) ∈ [0, T ) × O and let w ∈ C1,2([0, T ] × Ō) with w ≤ (V 1)∗ and
w(t0, x0) = (V 1)∗(t0, x0). To show that (V 1)∗ is a voscosity subsolution of the continuous-
time HJB system (5.56), we want to show that

max{− sup
π∈M ′

[V 0(t0, x0(1− kπ(t)))− w(t0, x0)],− sup
π∈M ′′

Lπw(t0, x0)} ≥ 0

By (5.59) we have

w(t0, x0) = (V 1)∗(t0, x0) ≤ sup
π
V 0(t0, x0(1− kπt)) (5.62)

If the equality holds we have

max{0,− sup
π
Lπw(t0, x0)} ≥ 0

then we are done. Therefore, it is left to show that

− sup
π
Lπw(t0, x0) ≥ 0

under the assumption of

w(t0, x0) = (V 1)∗(t0, x0) < sup
π
V 0(t0, x0(1− kπ)) (5.63)

From the difinition of w we have that (t0, x0) is a minimizer of (V 1)∗ − w and from the
proof of the Lemma (5.9) we can obtain that there exist (th, xh) so that V 0

h − w has a
minimum at (th, xh) which tends to (t0, x0) when h→ 0. Then we get

V 1
h (th, xh)− w(th, xh) ≤ V 1

h (th + h,Xth+h)− w(th + h,Xth+h)

w(th + h,Xth+h)− w(th, xh) ≤ V 1
h (th + h,Xth+h)− V 1

h (th, xh) (5.64)

By taking expectation on the both sides of the Equation (5.64), we get

Eth,xh [w(th + h,Xth+h)− w(th, xh)] ≤ Eth,xh [V 1
h (th + h,Xth+h)]− V 1

h (th, xh)

Let us now assume that we have

sup
πth

`πw(th, xh) > 0

under the assumption of

(V 1
h )(th, xh) < sup

πth

V 0
h (th + h, xh(1 + rh− πth(rh+ k∗))) (5.65)
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Using the assumption and the discrete Ito formula shows that

sup
πth

Eth,xh [w(th + h,Xth+h)− w(th, xh)] = sup
πth

`πw(th, xh) > 0

Then we have
V 1
h (th, xh) < sup

πth

Eth,xh [V 1
h (th + h,Xth+h)] (5.66)

The dynamic programming principle for the worst-case portfolio optimization 4.39 im-
plies that

V 1
h (th, xh) = sup

πth

min{E(V 1
h (th+h,Xth+h) | Fth), E(V 0

h (th+h, xh(1+rh−πth(rh+k∗))) | Fth)}

The assumption

(V 1
h )(th, xh) < sup

πth

V 0
h (th + h, xh(1 + rh− πth(rh+ k∗)))

leads to
V 1
h (th, xh) = sup

πth

Eth,xh [V 1
h (th + h,Xth+h)]

which contradicts (5.66).
Therefore, we must have

`πw(th, xh) ≤ 0

under the assumption of

(V 1
h )(th, xh) < V 0

h (th + h, xh(1 + rh− πth(rh+ k∗))) (5.67)

Deviding the Equation 5.67 by h and let h ↓ 0, we get

− sup
π
Lπw(t0, x0)) ≥ 0.

Thus, (V 1)∗ is a viscosity supersolution.

Using the lemma above we can prove the following theorem:

Theorem 5.14: The value function V 1
h (t, x) obtained from this worst-case discrete HJB

system (5.55) converges to the value function V 1(t, x) from the continuous time HJB
equation (5.56) when the time step h→ 0, that is

lim
(s,y)→(t,x),h↓0

V 1
h (s, y) = V 1(t, x)
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Proof: The lemma above implies that (V 1)∗ is a viscosity subsolution and (V 1)∗ is a
viscosity supersolution respectively, hence we have that

(V 1)∗ ≤ V 1

similarly, (V 1)∗ ≥ V 1. By a comparison we have

(V 1)∗ ≤ V 1 ≤ (V 1)∗

Since by construction we have

(V 1)∗(t, x) = lim sup
(s,y)→(t,x),h↓0

V 1
h (s, y)

≥ lim inf
(s,y)→(t,x),h↓0

V 1
h (s, y)

= (V 1)∗(t, x)

therefore we get
(V 1)∗ = V 1 = (V 1)∗

hence we can conclude that

lim
(s,y)→(t,x),h↓0

V 1
h (s, y) = V 1(t, x)

Remark 5.15. From the Remark 5.11 we can also obtain that if V 1
h (t, x) converges to

the viscosity solution of the HJB equations (5.56), then V 1
h (t, x) converges also to the

value function V 1(t, x).

Now we want to study this convergence theory numerically to determine the optimal
strategy in discrete time when the time step h → 0 and compare them to the optimal
strategies in continuous time.

The Power utility
The discrete Bellmann system of the power utility satisfies{

min{ sup
π∈M ′

[V 0
h (t+ h, x(1 + rh− πt(rh+ k)))− V h(t, x)], sup

π∈M ′′
`πV h(t, x)} = 0

V 1(T, x) = V 0(T, x) = 1
γx

γ

(5.68)
Then form of the optimal strategy follows{

π∗t+h = 1+rh
rh+k − ( 1+rh

rh+k − π
∗
t )(

(1+rh+π0∗((µ−r)h+σ
√
h))γ+(1+rh+π0∗((µ−r)h−σ

√
h))γ

(1+rh+π∗t ((µ−r)h+σ
√
h))γ+(1+rh+π∗t ((µ−r)h−σ

√
h))γ

)
1
γ

π∗T−h = 0
(5.69)
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with the optimal portfolio strategy in crash-free model

π0∗ =
(1 + rh)((σ

√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 − 1)

µh− rh+ σ
√
h− (σ

√
h−µh+rh

µh−rh+σ
√
h

)
1

γ−1 (µh− rh− σ
√
h)

(5.70)

When h→ 0, applying the taylor series we have that

lim
h↓0

π∗t+h − π∗h
h

= − σ2

2k∗
(1− γ)(1− π∗t k∗)(π∗t −

µ− r
σ2(1− γ)

)2 (5.71)

the optimal strategy of power utility in discrete time converges also to the optimal strat-
egy in continuous time.
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Figure 5.3.: The convergence of the optimal trading strategies π∗t for power utility func-
tion

The convergence of the optimal trading strategies for power utility is illustrated in Fig-
ure 5.3. From the figure it is showed that the lines of optimal worst-case portfolio pro-
cesses in discrete-time are below the blue line of optimal worst-case portfolio processes in
continuous-time. In the presence of crashes the investor who trades in discrete-time plays
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safer and reallocates more wealth from risky assets to riskless bonds. The worst-case
optimal portfolio process in discrete-time goes nearly to the optimal one in continuous-
time as the number of trading times goes to infinity.

The Log utility
From the above section the discrete Bellmann system in the case of log utility satisfies{

min{ sup
π∈M ′

[V 0
h (t+ h, x(1 + r − πt(r + k)))− V 1(t, x)], sup

π∈M ′′
`πV 1

h (t, x)} = 0

V 1(T, x) = V 0(T, x) = log x
(5.72)

Then the optimal strategy follows{
π∗t+h = 1+rh

rh+k − ( 1+rh
rh+k − π

∗
t )(

(1+rh+π0∗((µ−r)h+σ
√
h))(1+rh+π0∗((µ−r)h−σ

√
h))

(1+rh+π∗t ((µ−r)h+σ
√
h))(1+rh+π∗t ((µ−r)h−σ

√
h))

)
1
2

π∗T−h = 0
(5.73)

with the optimal portfolio strategy in crash-free model

π0∗ =
(µ− r)(1 + rh)

σ2 − (µ− r)2h2
(5.74)

When h→ 0, using the taylor series we have that

lim
h↓0

π∗t+h − π∗h
h

= − σ2

2k∗
(1− π∗t k∗)(π∗t −

µ− r
σ2

)2 (5.75)

the optimal strategy in discrete time converges to the optimal strategy in continuous
time.
The convergence of the optimal trading strategies for the log utility function are showed
in Figure 5.4.
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Chapter 6.

Conclusion

In this chapter we summarize the main contributions of this thesis as well as discuss the
possible problems which might be subject of future research.

First, we turn to the introduction of the discrete-time model for stochastic control taking
into account system crashes in Chapter 4. Our task is to make the decision in respect of
the worst-case scenario which can be an immediate crash of maximum size or no crash
at all. In Section 2 we derive an optimal portfolio strategy π∗ which makes the investor
indifferent between an immediate crash and no crash at all in the case of the logarithmic
utility function.

V 0(t+ 1, x(1 + r − π̂(t)(r + k∗))) = E(t,x)(ln(X̃ π̂
T ))(x)

In order to extend these results to general utility functions, we use the classical discrete-
time method, dynamic programming method, which simplifies a multiperiod decision
problem by breaking it down into a sequence of single-period problems. The optimal
portfolio process is derived by computing the optimal value function in a backward
recursive way:

E(Ut+1(x(1 + r + πt(R− 1− r))) | Ft) = E(Ũt+1(x(1 + r − πt(r + k∗))) | Ft).

We demonstrate the usefulness of dynamic programming by solving the examples of
power-utility, log-utility and exponential-utility functions explicitly. The optimal worst-
case portfolio process π∗ in the case of logarithmic utility by this recursive equation is
identical with the one by indifference approach. Furthermore, the optimal worst-case
portfolio process π∗ for the explicit power-utility function is showed to convergent to
the expression in the continuous-time model, if we approximate the stock price process
of the Black-Scholes model by the stock price process in a binomial model by choosing
appropriate parameters in the discrete-time model.

In order to further study the limit behavior of the optimal value function in the discrete-
time crash models, we establish a new approach, the finite difference approach, in Chap-
ter 5. Applying the discrete-Itô formula for the simple random walk we derive the
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discrete HJB-equation for the discrete-time portfolio optimization problem by consider-
ing the stock price as a stochastic process which follows the random walk. The discrete
HJB equation can be seen as a finite-difference approximation scheme of the continuous
HJB equation. By the discrete HJB equation, we verify the optimal value function V
for worst-case portfolio optimization problem in discrete time, which satisfies a system
of dynamic programming inequalities. In order to investigate the connection between
the discrete-time and continuous-time crash models, a viscosity solution method is used
to prove the convergence of the worst-case value function in discrete-time to that in
continuous-time. We prove that the limit of the upper semi-continuous envelope V ∗

and the limit of the lower semi-continuous envelope V∗ are a viscosity subsolution and
a viscosity supersolution of the continuous-time HJB system respectively. Furthermore,
the convergence of the optimal portfolio processes is also proved and illustrated in the
explicit examples of log utility and power utility.

There are still many possible problems with the worst-case portfolio optimization in the
discrete-time setting which are worth to research. Our problem can be extended to the
problem including the possibility for consumption. With the existence of the transaction
costs some most successful continuous-time portfolio choices are no longer implemented,
which makes it promising to derive worst-case portfolio theory in discrete-time setting
under the transaction costs.
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Appendix A.

Basic definitions of probability theory for
financial mathematics

The aim of this appendix is to recall some main concepts of Probability Theory as they
are needed for financial mathematics. We follow [46] and [25] in our exposition.

We consider a probability space (Ω,A, P ).

Definition A.1: An increasing family F = {Ft}t∈T of σ-algebras Ft, i.e. Fs ⊆ Ft,
s, t ∈ T for all s < t, is called a filtration. (Ω,A,F , P ) is a filtered probability space.

The σ-field Ft usual models the information available at time t. Thus, we can determine
the value of a given random variable Xt at time t, if and only if Xt is Ft-measurable.

Definition A.2: A family of Rn-value random variables {Xt}t∈T is called stochasic
process. If X(t) is Ft-measurable for all t ∈ T , then X is adapted to a filtration F .

The usual choices for T are T = [0,∞), or T = [0, T ] with 0 < T <∞.

Definition A.3: Support that X is R̄-valued random variable with X ≥ 0 or E | X |<
∞ and that F ⊂ A is a σ-algebra. A F-measurable random variable Y : Ω → R̄ is an
F-conditional expectation of X, if

E(1FY ) = E(1FX)

for every F ∈ F .

Noptation: Y = E(X | F), Y = E(X | Y1, · · · , Yt) if F = σ(Y1, · · · , Yt) = FYc .

Proposition A.4: Let J ⊆ R be an open interval, X : Ω → J in L1 and ϕ : J → R
convex, then E(X | F) is J-valued and if ϕ(X) ≥ 0 or in L1, then

ϕ(E[X | F ]) ≤ E[ϕ(X) | F ]

Let a set of times T ∈ [0,∞] and a filtered probability space (Ω,A,F , P ) be given.
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Definition A.5: A random variable τ : Ω→ T
⋃
∞ is called stopping time w.r.t. F

if
τ ≤ t ∈ Ft

for all t ∈ T . τ is bounde if P (τ ≤ c) = 1 for a constant c and finite if P (τ <∞) = 1.

The above definition means that by using only the available information we can decide
wether we stop or not, i.e., the event that we have stopped before or at t is an event of
the σ-algebra Ft.

For our purposes the most important example of a stochastic process is the Brownian
motion.

Definition A.6: A (standard) Brownian motion W = (Wt)t∈[0,T ] is a stochastic
process satisfying

• W0 = 0 P-a.s,

• (independence of Increments)
Wt −Ws is independent of Wsn −Wsn−1 , · · · ,Ws1 −Ws0 for 0 ≤ s0 ≤ sn ≤ s ≤ t,

• (stationarity of Increments)
Wt−Ws ∼ N(0, t−s), i.e., is normally distributed with mean 0 and variance t−s,
t > s ≥ 0,

• (Continuity of Paths) W is continuous, i.e.e, t→Wt(ω) is continuous for all ω ∈ Ω.
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Derivation of CRR model parameters

Goal: Establish weak convergence of discrete-time CRR model against the continuous-
time Black-Scholes model, when we take the limit as n tends toward infinity.

Black-Scholes Model:
For interest rate r ∈ R, trend parameter µ ∈ R, volatility σ > 0, the stock price of the
Black-Scholes model is given by

St = S0 exp((µ− σ2

2
)t+ σWt)

where W = (Wt)t∈[0,T ] is a standard Brownian motion.
CRR model:
The stock price of a CRR model with N time periods satisfies

SNn = SNn−1Y
N
n = S0

n∏
k=1

Y N
k ,

where Y N
1 , · · · , Y N

N are iid with P (Y N
n = u) = 1− P (Y N

n = d) = p ∈ (0, 1).

Consider

log(
SNn
SNn−1

) = log(Y N
n ),

then we have

aN := E(log(
SNn
SNn−1

)) = E(log(Y N
n )) = p log u+ (1− p) log d,

and

b2N := V ar(log(
SNn
SNn−1

)) = V ar(log(Y N
n )) = p(log u)2 + (1− p)(log d)2 − E2(log(Y N

n )),

Note that with

ηNn :=

∑n
k=1 log(Y N

k )− naN
bN

√
1
∆
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where ∆ = T/N . we can rewrite

SNn = S0 exp(
bN√

∆
ηNn + n∆

aN
∆

)

Then a Donsker type theorem can be used to show that in distribution

ηNn ≈Wn∆

for N large enough.
Therefore, if we choose p, u, d such that

σ =
bN√

∆
, µ− 1/2σ2 =

aN
∆

(B.1)

we can get in discribution
SNn ≈ Sn∆

where Sn∆ is the Black-Scholes stock price at t = n∆.
In Equation B.1 there are three unknown variables u, d and p, but only two equations.

Cox, Ross and Rubinstein(CRR,1979) suggested u ∗ d = 1. It means ”the jump sizes
compensate each other”. The parameters are

u = exp(σ
√

∆), d = exp(−σ
√

∆)

p =
1

2
+

1

2

µ− 1
2σ

2

σ

√
∆.

Jarrow and Rudd(JR, 1983) suggested q = 1/2. It means ”equal probability for up and
down jumps”. The parameters are

u = exp((µ− 1

2
σ2)∆ + σ

√
∆),

d = exp((µ− 1

2
σ2)∆− σ

√
∆)

p =
1

2
.
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Viscosity solutions

This appendix is to introduce the notion of viscosity solutions and to state some funda-
mental results. We refer to Pham[39] and Fleming and Soner[14] in our exposition.

We consider the following function. Let O ⊂ Rn be open and let

F : O ×R×Rn × Sn → R

be continuous. The function F is assumed to satisfy the following ellipticity condition:
For all x ∈ O, r ∈ R, q ∈ Rn and M,M ′ ∈ Sn,

M ≤M ′ ⇒ F (x, r, q,M) ≥ F (x, r, q,M ′)

For time-dependent problems, a point in Rn must be understood as a time variable t
and a space variable x. Furthermore, the function F (t, x, r, p, q,M) must satisfy the
following parabolicity condition:for all t ∈ [0, T ), x ∈ O, r ∈ R, p, p′ ∈ R, q ∈ Rn and
M ∈ Sn,

p ≤ p′ ⇒ F (t, x, r, p, q,M) ≥ F (t, x, r, p′, q,M)

Let us now consider a function w ∈ C1,2([0, T )) × O and assume that w satisfies the
following second-order differential equation

F (t, x, w(t, x), Dtw(t, x), Dxw(t, x), D2
tw(t, x)) = 0 (C.1)

for each (t, x) ∈ [0, T )×O.
And let ϕ ∈ C1,2([0, T ))×O be another smooth function and (t̄, x̄) ∈ C1,2([0, T ))×O be
a maximum point of w−ϕ. In this case, the first- and second-order optimality conditions
imply:

Dtw(t̄, x̄) ≤ Dtϕ(t̄, x̄),

Dxw(t̄, x̄) = Dxϕ(t̄, x̄),

D2
xw(t̄, x̄) ≤ D2

xϕ(t̄, x̄).
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where the first equality holds if t̄ > 0.
By the ellipticity condition and parabolicity condition we have

F (t̄, x̄, w(t̄, x̄), Dtϕ(t̄, x̄), Dxϕ(t̄, x̄), D2
tϕ(t̄, x̄))

≤ F (t̄, x̄, w(t̄, x̄), Dtw(t̄, x̄), Dxw(t̄, x̄), D2
tw(t̄, x̄))

= 0

In order to make sence of the inequality

F (t̄, x̄, w(t̄, x̄), Dtϕ(t̄, x̄), Dxϕ(t̄, x̄), D2
tϕ(t̄, x̄)) ≤ 0

we only need w to be upper semi-continuous. Similarly, we only need w to be lower
semi-continuous if w − ϕ attains a local minimum at (t̄, x̄).

The above arguments lead to the notion of viscosity solutions. We assume that w is
locally bounded and define its upper semi-continuous envelope w∗ and its lower semi-
continuous envelope w∗ by

w∗ := lim sup
(t,x)→(t̄,x̄)

w(t, x)

w∗ := lim inf
(t,x)→(t̄,x̄)

w(t, x)

respectively.

Definition C.1: Let w : [0, T )×O be locally boounded.

• w is a viscosity subsolution of equation C.1 if

F (t̄, x̄, w∗(t̄, x̄), Dtϕ(t̄, x̄), Dxϕ(t̄, x̄), D2
tϕ(t̄, x̄)) ≤ 0

for all (t̄, x̄) ∈ [0, T )×O and for all ϕ ∈ C1,2([0, T ))×O such that (t̄, x̄) is a local
maximum point of w∗ − ϕ.

• w is a viscosity supersolution of equation C.1 if

F (t̄, x̄, w∗(t̄, x̄), Dtϕ(t̄, x̄), Dxϕ(t̄, x̄), D2
tϕ(t̄, x̄)) ≥ 0

for all (t̄, x̄) ∈ [0, T )×O and for all ϕ ∈ C1,2([0, T ))×O such that (t̄, x̄) is a local
minimum point of w∗ − ϕ.

• we say that w is a viscosity solution of equation C.1 if it is a viscosity subsolution
as well as a viscosity supersolution.

Remark C.2. Without loss of generality we can asume that w∗(t̄, x̄) = ϕ(t̄, x̄) and
w∗(t̄, x̄) = ϕ(t̄, x̄) respectively.Then (t̄, x̄) is a local maximum(resp. minimum) of w∗ −
ϕ(resp. w∗ − ϕ).
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Now we want to state the stability property of viscosity solutions. This property shows
that if the viscosity solution wh of approximate equations depending on h are uniformly
convegent as h → 0, then the limiting function w is a viscosity solutions of the limit
equation. We use the formulationin in Fleming and Soner[14].

Lemma C.3: (Stability)
Let wh be a viscosity subsolution (or a supersolution) of

F h(t, x, wh(t, x), Dtw
h(t, x), Dxw

h(t, x), D2
tw

h(t, x)) = 0

in ([0, T ))×O with some continuous function F h satisfying the ellipticity condition and
parabolicity condition. Suppose that F h uniformly converges to F , and wh uniformly
converges to w. Then w is a viscosity subsolution (or a supersolution) of the limiting
equation.

In order to prove uniqueness of viscosity solutions we define the second-order superjet
J2,+w∗(t̄, x̄) of the upper semicontinuous envelope w∗ of w at (t̄, x̄) to be the set of all
(p, q,M) ∈ R×Rn × Sn such that

lim sup
(t,x)→(t̄,x̄)

1
|t̄−t|+|x̄−x| [w

∗(t̄, x̄)− w(t, x)− p(t̄− t)

−〈q, x̄− x〉 − 1
2〈M(x̄− x), x̄− x〉] ≤ 0

and the second-order superjet J2,−w∗(t̄, x̄) of the lower semicontinuous envelope w∗ of
w by

J2,−w∗(t̄, x̄) := −J2,+(−w∗)(t̄, x̄)

We define the closure J̄2,+w∗(t̄, x̄) of the superjet J2,+w∗(t̄, x̄) as the set of all (p, q,M) ∈
R × Rn × Sn for which we can find a sequence (tj , xj , pj , qj ,Mj)j∈N such that tj ∈
[0, T ), xj ∈ O and (pj , qj ,Mj) ∈ J2,+w∗(t̄, x̄) for all j ∈ N and

lim
j→∞

(tj , xj , w
∗(tj , xj), pj , qj ,Mj) = (t̄, x̄, w∗(t̄, x̄), p, q,M).

The closure J̄2,−w∗(t̄, x̄) of J2,−w∗(t̄, x̄) is defined analogously.

Then we state the following theorem which is the main tool in proving uniqueness of
viscosity solutions.

Theorem C.4: (Ishii’s Lemma) Let u be an upper semi-continuous function on [0, T ))×
O, let v be a lower semi-continuous function on [0, T ))×O and let φ ∈ C1,1,2,2([0, T )2×
Rn×Rn). Suppose that (t0, s0, x0, y0) is alocal maximum of u(t, x)−v(s, y)−φ(t, s, x, y).
Then for each ε > 0 there exist M,N ∈ Sn such that

(Dtφ(t0, s0, x0, y0), Dxφ(t0, s0, x0, y0),M) ∈ J̄2,+u(t0, x0),

(−Dsφ(t0, s0, x0, y0),−Dyφ(t0, s0, x0, y0), N) ∈ J̄2,−v(t0, x0),
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and (
M 0
0 −N

)
≤ D2

x,yφ(t0, s0, x0, y0) + ε(D2
x,yφ(t0, s0, x0, y0))2.
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