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Direct Coupling of Fluid and 
Equations: I* 

1 Introduction 

In the past few years a growing interest has been brought on coupling approaches 
in rarefied ga.s dynamics [3, 3, 7, 12, 1‘1, 18, 201. An important, pararncter -the 
mean free path- rules numerical co~nI)tlt,ations. Mesh refinements are I)l.oport,iotra.l 
to it and when it is t,oo small, cost of simulations becomes prohibitJive if not 
impossible. A @pica1 example is the recnt,ry of space shuttle in atmosphere. At 
high altitude stochastic methods for solving t,hc 13oltzmann equation (BE) give 
satisfaying results (SW e.g [5, 131) b{Thile they fail for lower altitudes provided 
the mean free pat 11 decreases. It turns out that ra,reficd gas phenomena occur 

principally in certain regions of t,he fiow and t.hat, aerodynamics equatJions (Euler 
or Navier-Stokes) may be enough to describe t,hc reminding regions. Attempts 
to define properly these rcgiorls are essentially based on the (‘ha,pma.t~-~r~rskog 
expansion which gives the link bctwcen kinetic a,nd continutmr descript3ion. For 
tjhis quest ion WC refer to 12, 61 for thoorct ical investigations and to [4, 7, 121 for 
numerics. 

In this paper we do not address this problem and the cornptrtat‘iorlal domain 
is decomposed a priori int,o two regions: kinetic and aerodynamic:, A particular 
attention is payed on the following questions: how to link codes solving differ- 
ent equa,tions and what to do at, the interface between kinetic and aerodynamic 
descriptions? 

Our starting point is the method developped by A, l,ukschi&all [IT]. In Chis 
paper, the authors proposed a domain decomposition method based 011 i-t Sctiwarz 
algorithm. This rntt,hocl c‘an be described in -1 steps: 
l- SOlvC: EllleT equation urlt il statioriary solution, 

--..---.---- 
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2- calculate bottndary couditions for 13011 ztilantt tqion, 
3- compute t,he st at,iorlar>’ solut,iort it1 Bolt.znnat~n dotz~aitt, 
4 calculate t>lie incotnittg flus in I<:ulcr domain by using Boltzmann values. Go 
back to step 1. 
‘I’his method has shown good results and it is of intcrest: t;o improve some points. 
In particular, steps 1 and 3 involve inner loops and one may ask the quest,ion 
whether it is possible to ax*oid these loops in o&r to reduce CT’U time. It was 
shown in [8] that it. is in principle possible to solve one cqttat,ion after another 
only during a fixed time At (and not until stat,ionary solution), Nevertheless 
numerical issues of this direct approach are uncertain since solutions of WE have 
high frequency fluctuations and it is not, obvious how the Euler domain would 
react to fluctuating bounda.ry conditions, 

Our paper is constructed as follows: first,ly wc recall the link bchween T3oltz- 
tnann and Euler equations and numerical ~nethocis for solving them (sections 2 
and 3). Then the problem of boundary conditions at, t,hc int,erface is addressed 
(section 4). Simple conditions are proposed under assumpt,ion of local cquilib- 
rium, We cont,inue by studying the influcttcx~ of fluctuating boundary conditions 
and show that fluctuations a.re not pcnalizittg when the TCulcr sc!vcr is “robust” 
enough (section 5). Soltit ions arc proposed t,o st.a.bilizc t:hesc flrtct,uatiorts at sta- 
tionary states. Finally numerical results arc st~owr~ for a. flow arouttd an cllipsc 
at Mach 1% and various Krtudsctl nutnbcrs. 

2 Generalities 

T,et us recall the cquat,ions t3hat are solved in each domain and t.hc connection 
between them, ‘IVe first consider the Boltztnann equation: 

where f - f(t. X. V) is the distmri\)ution fttttct,ion, liu t,he krtuclsen number and 
Q(f, f) tt ‘t : 11 1~ co ision integral (for more det.ails xx: [S]). If wc mult,iply (1) by 1, 
v and 1/2v” a.nd integrate over velocity space, wc obtain t,tre following system of 
equations: 
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Non-diagonal terms of the pressure tensor p vanish when t,h~ distribution func- 
tion is symmetric around the mean velocity u. In pa,rticular, at loca,l equilibrium 
j is of the form: 

and the following closure relation holds: 

This last cc@ ion toget her wit 11 (2) is t hc Fuler syst,ern of equations for monoatomic 
gases. 

Inversely if ~(t,x).u(t. x), 7’jt:x) is a solutiorl of (2,4)! one can construct an 
approximate solutJion of the 1301t8zmann tquatioIr by using f-t4 [2]. More precisely, 
there exists a function ~3 orthogonal to the mass, momentum and energy for the 
measure < #, 7j >= J‘ ~A~~@+& such that, S = fji,j (1 + TC,L++) is a solution of BE at 
the first order: 

?f z + V.O,f = JW’Q(j, j) -t- O(K,,), 

and therefore the Euler solution is enough to describe gas bchavior when Kn + 0, 

3 Methods for solving Boltzrnann and uler 
equations 

3.1 The Finite Poinset Method (FPM) 

The FPM is a particle method for solving the Roltzmann equation derived from 
a mathemat,ical interpret,ation of Nanbu‘s simlllat ion scheme [ 11. Numerical im- 
provements were brought lat,er ou in [13]. 

One stark with a part,icle discretization of the distribution function f at time 
t = 0: 

f( 0, X! v) z j” = y-Jqx - xy)cqv - vl’) I 



during a time stq At, 111 our case far field boundary conditions are coupling 
conditions bvhile specular reflexiou is used at body surface 61’: 

f(~.x.v)=f(i,x,v-‘,,n<v,n>) VvEIt”, VxEiSI (8) 

The exact solution of (7) with init.ial va.lue data, (5) and boundary condition 
(8) is given by th e method of charact.eristics. 

The second step amount25 to solve the space llo~nogcr~cous 1312: 

2. SelectX randomly $ parameters s; E 13j0, 1 /J) T- associated to each collision, 
‘These parameters can he considered as ilnpact, parameters though they have 
got a more general meaning (dummy collisions are possible). 

3. Calculate post-collision velocities: 



3.2 The Van Leer flux splitting scheme 

This well-known scheme [l’i] is chosen for it,s robustness. A cotnpletc descript,ion 

of this schxne is given in [I I]. Here, we restrict ourselves to a rough description 
in the 2D case. A finite volurnt: formulation of the Euler system (2) onto a mesh 
with tetrahedrical cells of control volume IiIj is: 

where 

the cell interfaces are calculated as follows: 



In a same spirit: 

Time-step 
In view of a coupling with the Boltzmann equa.tion, it is easier to usf: an explicit 
Euler scheme for approaching thtt solution of (11). At has apin to satisfy to a 
stability condition: 

When this condition is stronger than (IO), it is preferable to repeat the l3uler 
phase until one reaches the same time step since computations arc more expensive 
for WE than for EE. 

4 Coupling conditions 

Let us first look for boundary conditions for the Fbltzmann equation. The 
Et&r solution gives only macroscopic parameters and we say for want of anything 
better that particles coming from the Euler domain MY distributed according to 
a Maxwcllian distribution f.if( p. u, 7‘) (3). If we think in t,he same way as for 
determination of far field boundary conditions for the Euler equation, we should 
distinguish between subsonic or h~personic~ ingoing or oulJgoing Bows [lo]. In 
this vein, the number of parameters (p, 11, 7’) gi\-cri by the Euler solution should 



be directly proportional to the number of characteristics ent,cring the f-3oltzrnann 
domain, 

We now look for conditions at the Euler boundary. A natural one is the 
continuity of fluxes. For v.n(x) > 0 (x E rip;). f is given by RE and is not 
necessarily a 5~Iaxwellian, On t~he Euler side this function should be a Maxwellian 
since it is at, equilibrium (set section 2). Therefore continuity of fluxes writes: 

J 
1 

r: v.n > 
v.n>o 

mwv = J < v.11 > 
V.Xl>Cl t 1 $2 

fM(P? u, qdwq 

This relation is called Marshak condition and parameters p, u, 7’ are the boundary 
conditions for the Euler equation (for theoretical iuvestigations set: [9]). One 
should again count the number of charact~eristics entering the domain to determine 
the right number of conditions. Besides, system (13) is very difficult to solve when 
u # 0 aud it, is of interest to try to simplify these boundary conditions. 

The interface between t,hc two domains is supposed to be in a region where 
Euler solution is the same (or nearly the same) as Boltzmann solution. Therefore 
f should bc at local equilibrium. In this case, continuity of fluxes is equivalent 
to continuity of rnonirrlts: 

Moreover. additional condit,ion(s) should bc t~ranspa~rent, when the number 
of ingoing characteristics is lower than the number of prescribed parameters at 
boundary. Therefore it is enough to impose at Boltzrnanr~ boundary: 

f(Lx.v) = f&vl:T)(t,x,v) vx E I-HI;* v.n(x) < 0, (1s) 
where the pararncters p. u, 7’ are solutions of t,hr> Euler systcnl. It corresponds 
numerically to creat,c a set, of particles approaching the Ma~xwcl1ia.n distribntion 
f,~(p, u, 7‘) in cells nearby the boundary (with possible WC of distant cells de- 
pending on the mum velocity): 



Likewise, couditious at Euler l~oundar~ are: 
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where f is solution of BE for v.n > 0 and Maxwellian for v.n < 0. Practicdly it 
is easier to compute them by t,aking f in a Boltzrnann cell nearby the boundary 
(i.e for all v E R3): 

5 Fluctuations at the Euler boundary and sta- 
bilization 

Macroscopic values ~1, ~1, El in Holtzmantr cells nearby the inkrfacc Uuctuate with 
high frequency due to the stochastic treatment of collision phase (see section 3.1). 
A way t,o smoothen these fluduat,ions is to s~a.ge the solution iu time. This has 
lead many aut~hors !;I. 12. 14! to use the folloiving algorithm (Schwarz algorithm): 



Schwan Alternating Method 
Bol-damain Balm- 

FZuler l2otmby Euler domain 

Here, the fact, that> one computes the solution until stationary state during each 
phase allows to average the Boltz~nan~~ solution at interface. It should be theo- 
retically possible to solve each equation just during a fixed time 2’ (see [S]) and 
then go to t,htr other. Hut this idea is based on the assumption that solutions 
behave well at the l)oundary, i.e arc in a certain fence monotonic which is not the 
case for the Boltzrnann numerical solution. 

We now want to analyse more precisely what happens at the boundary. ‘l’tlere 
exist actually three different cases: 

r---’ ..l_.---ll”_^ .” _---. .” . -.-.. ..-. -- -- ..- .l.----.. 
!EUh 

2 

-__.. _ .-._.-_. ? 

1 

I3 
, 
.i 

1. ‘(_Jpstrearn: boundary conditions for the Euler domain are transparent (in 
t,he sense of the previous section) since all charact,erist,ics go out of the 
Euler donlain. From l,lie numerical point, of view ftuctuatious are cancelled 
by upwind schemes. 
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Let us discuss formally about, cam 2 and 3. A model problem would bc to 
analyse the case of a stationary and constant solution with small perturbatior~ 
at the boundary. Linearization around t.hc equilibrium reduces Euler equations 
to the wave equation: &,d - ~d,,b = 0 (3 > 0) and fluctuations propagate with 
constant velocity and amplitude. 

Large perturbations do not allow to do this simplification and one has to study 
the propagation of fluctuations in nonlinear hyperbolic system. We may say as a 
first approach that fluctuations propaga+,e along characteristics (see for example 
the book of (2.13. Whitham [lU]). 

So let us now suppose that fIuct,uations arc in some way not a “fatal cause of 
disorder”, t,he question is: how to recover the right solution in the Euler domain 
when the stationary solution is reached in the Boltzrnann domain‘? For the sake 
of simplicity we consider a half space problml for the Burger equation: 

(18) 

with perturbation at, the boundary: 

u(t,O) = 110 + c(i) > 0 

The solution without fluctuation is constant, n(t, X) = ~0 (Vs’t, ~1: > 0). Let US 

discret,ize (18) over time and spacct by a sinlple first order upwind scheme (i.e the 
Van Leer scheme in this simple case): 

where At and A:r are discretization steps in time and space and ZL: is the approx- 
imate solution at, time nAt in the cell [(1 - 1/2)hz, (i -I l/Z)Ax]. 

For t,his scheme, a maximurn principle holds under the stability (CFL) condi- 
tion $(uo + 121) < 1: 

with tkz = u. + c(rbAt) = 11~ + cna 
We assume that fluctuations (c’“) are bounded along time (IPI < M Vn) and 

distributed around 0: 

(21) 

This assumption means that me can obtain the right solution at; the boundary 
by averaging in tinle; this is the casr for soh~tions of BE once the stationary state 



is reached, Can we obtain the solution of Burger equation by doing so’? That is 
to say, does 

The answer s negative but one can nevertheless prove that: 

Indeed, by surnrnation of (19) over tinle and space one has: 

which gives (22) by using the maximum principle (20) and property (21). This 
shows two things: on one hand (u?) is in average not too far from 2~0 and on the 
other hand one cannot obtain the right. solution by averaging in time. In facA, 
this is essentially due to the non-linearity of the equation. 

A way to recover the right solution is to replace t” by the series: 

(23) 

0” tends to 0 as 1% -+ cc and one can prove that U? -+ ‘ug uniformly on a finite 
set of points for such boundary conditions. 

Remarks 1 

1, There are two difierent ways to obtain 
domain by averaging over time and in Euler dornuirt by using a condition 
like (23). 

2. The numerica gutless of this direct coupling approcrch seems to lean prin- 
cipally on the robustness of the Eulrr solrvr, Hcrc ZL’C hnvc formally proved 
that an9 vtonotonic or 7’1‘1) ~chemc should be adaptrd to such calculation. 



6 Numerical results 

We present numerical results for hypersonic flows around an ellipse. Different 
angles of attack and Mach numbers lead to t,he same conclusions as concerns the 
influence of both decomposition of the domain and Knudsen number. Therefore 
results are shown only in t,he case where these parameters are fixed: the angle of 
attack 0 = 30" and the Mach number is 12. 

On every graphics, the small rectangle irz the domain is the interface between 
kinetic region (inside) and aerodynamic region (outside), When there is no rect- 
angle, the computation is done completely with BE. Knudsen number is defined 
as: 

where I; is the length of the ellipse projected on a straight-line perpendicular t,o 
the incoming flux: 

I,= HJ co9 0 + 4 sin2 6, (great axis = 2 x small axis =f 211). 

The meshing is global. This Inems t,hat meshes for kinetic aud aerodynamic 
regions fit together and that there is no need to use an overlapping domain (as in 
[la]). Moreover for simplicity we choose to use a regular rectangular mesh so that 
locating particles is au easy task. Such a mesh is of cou~‘se not, adapted to real 
calculation but, it is more convenient to study the influence of the decomposition. 
Cell sizes are defined so as to capture phenomena occurirtg on a mean free path 
length (see table 1). 

6.1 Good agreement 

We firstly present a comparison between a full Roltzmann calculation and the di- 
rect coupling method for a relatively small Knudsen uurnber: Kn = 0.023. 1-n this 
case theoret,ical expectation is that, the two solutions should be roughly the same. 

Regardless of numerical noises, the comparison between the two approaches is ex- 

cellent (figures 1, .,, X ‘7 ‘3). .A comparison on drag and lift, coefficients draws the same 
conclusion: Cd(O) = 1.14, Cd(B/E) = 1.15, CI(B) = 0.555, Cl(B/E) = 0.550. 

This means on oue hand that Euler equation is valid far enough from the body for 
such Knudsen numbers. On the other baud this result, corroborates theoretical 
investigations concerning fluctuations at the boundary of Euler domain. 

An artificial shock spreading is observed in the Euler domain (figure I). It is 
due to the diffusi\rit,y of the Van Leer schcrne a.t the first order. This artificial 
dissipat,ion is somehow of help for llighcr Knuch~ numbers since the shock thick- 
ness increases ivit h rneau free pat,h but it would be preferable to use an higher 
order scheme arid a physical dissipat,ive term (Navier-Stokes equation). 
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6.2 What should not be done 

Let us now increase the Knudsen ~~umher, Figures 4 and 5 show a typical cfkt of 
rarefied gas dynamics: as t,he Knudsen number increases the shock widens in the 
Boltzmann region while it keeps the same shape in the Euler region. The conti- 
nuity at interface is still ensured by condition (IS) but the result has no physical 
meaning. Nevertheless the shape of the solution within the Woltzmann domain 
is the right one and a comparison between lift and drag coeficicnts gives good 
agreement: Cd(B) = 1.18, Cd(B/LS’) = 1.18. C,(R) - 0.567, CI(B/E) = 0.564 
for Kn = 0.076 and Cd(N) = 1.29, C’,r(B/E) = 1.29, C,(B) =l 0.582, C;(B/Ls) = 
0.577 for I<n = 0.227, 

Another non physical solution is shown in figure 6. The interface is too close 
to the body so that it creates an artificial shock. The relative velocity between 
kinetic and aerodynamic domains is indeed t,oo la,rge. ‘l‘his is a case where neither 
continuity conditions (15) nor aerodynamic approach are va,lid. 

The last and most diflicult situation is encountered in the wake of the ellipse. 
In this low density region, a standard particle code is rmablc to describe properly 
the distribution function provided the number of particles is proportional to the 
density. It happens that2 t~here is one or evetr no pa.rticle in some cells at the 
interface. Since charact,eristics are going out, of Boltzma~ntr domain in this region, 
one faces the following difficulties: 

1. with 0 or 1 part.icle, one cannot define a temperature or a Mach number. 

2. fluctuations are extremely large since the density varies with the number of 
particles (from 0 to 1 or 2). 

One rnay argue that this is a false problem since there is no evidence of the validity 
of Euler equation in this region and Boltzrnann domain should be prolonged. The 
other possible answer is to use a method giving a uniform representation of the 
solution in the Boltzrnann doma.in (for example weighted particle method [16] or 
discrete velocity models [15]). In the present case fluctuations at the boundary 
are smoothed by averaging in time: 

Average is done over T time steps and coefficients (CL;) conserve the positivity of 
the density, energy and pressure (C /I~ = 1 and /Li 2 0). 

6.3 Performance 

The following array gives CPV times on a IRM6000 for t,he previous tests. In ea,ch 
case the number of iterations is 200 and the runs start, \vit,h 30 particles per cell 
in Holtzmann domain. The second column gives t,he size of the mesh. The third 

-.- 



and fourth ones are CPU t.imes respectively for fllll 1323 and coupling approach. 
In the fourth column the number which appears in bracket is the number of cells 
in Roltzxnann domain. 

Table 1: CornputaLional time on an IHM6000 

The second test) case gives an idea of performances: 20 minutes are necessary 
to compute t,he solution with BE while 5 mir1ut.m are sufficient for the aerody- 
namic solution. 

7 Conclusion 

We have shown that direct coupling of a stocha,stic method for a kinetic equa- 
tion and a “deterministic” method for aerodynamic description is possible in the 
context of rarefied gas dynamics. ITnder suitable physical parameters, the agree- 
ment between full kinetic solution and coupled solution is excellent. Moreovet 
the coupled approach allows to save signifcant~ (.‘l’l~ t.ime. 

In order to he valid, the method has to be applied wit,h a correct, decomposition 
of the cornputat,ional domain. It is therefore important to continue this resew& 
with a determination of a switching crit,eria between kinetic and aerodynamic 
regions [4]. 

Other improvements can be brought to the present algorithm: higher order 
schemes for the aerodynamic region and possible use of Navier-Stokes equation. 

The following paper will address these issues. 
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