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1 Introduction

In the past few years a growing interest has been brought on coupling approaches
in rarefied gas dynamics [3, 4, 7, 12, 14, 18, 20]. An important parameter -the
mean free path- rules numerical computations. Mesh refinements are proportional
to it and when it is too small, cost of simulations becomes prohibitive if not
impossible. A typical example is the reentry of space shuttle in atmosphere. At
high altitude stochastic methods for solving the Boltzmann equation (BE) give
satisfaying results (see e.g [5, 13]) while they fail for lower altitudes provided
the mean free path decreases. It turns out that rarefied gas phenomena occur
principally in certain regions of the flow and that acrodynamics equations (Euler
or Navier-Stokes) may be enough to describe the reminding regions. Attempts
to define properly these regions are essentially based on the Chapman-Enskog
expansion which gives the link between kinetic and continuum description. For
this question we refer to [2, 6] for theoretical investigations and to [4, 7, 12] for
nurnerics.

In this paper we do not address this problem and the computational domain
is decomposed a priori into two regions: kinetic and aerodynamic. A particular
attention is payed on the following questions: how to link codes solving differ-
ent equations and what to do at the interface between kinetic and aerodynamic
descriptions?

Our starting point is the method developped by A. Lukschin&all [12]. In this
paper, the authors proposed a domain decomposition method based on a Schwarz
algorithm. This method can be described 1n 4 steps:

1- solve Fuler equation until stationary solution,
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2- calculate boundary conditions for Boltzmann region,

3- compute the stationary solution in Boltzmann domain,

4- calculate the incoming flux in Euler domain by using Boltzmann values. Go
back to step 1.

This method has shown good results and it is of interest to improve some points.
In particular, steps 1 and 3 involve inner loops and one may ask the question
whether 1t is possible to avoid these loops in order to reduce CPU time. It was
shown in [8] that it is in principle possible to solve one equation after another
only during a fixed time At (and not until stationary solution). Nevertheless
numerical issues of this direct approach are uncertain since solutions of BE have
high frequency fluctuations and it is not obvious how the Euler domain would
react to fluctuating boundary conditions.

Our paper is constructed as follows: firstly we recall the link between Boltz-
mann and Euler equations and numerical methods for solving them (sections 2
and 3). Then the problem of boundary conditions at the interface is addressed
(section 4). Simple conditions are proposed under assumption of local equilib-
rium. We continue by studying the influence of fluctuating boundary conditions
and show that fluctuations are not penalizing when the Euler sclver is "robust”
enough (section 5). Solutions are proposed to stabilize these fluctuations at sta-
tionary states. Finally numerical results are shown for a flow around an ellipse
at Mach 12 and various Knudsen numbers.

2 Generalities

Let us recall the equations that are solved in each domain and the connection
between them. We first consider the Boltzmann equation:

df L

i v.V = '"T‘“C y 1

ot * Kn A0 (1)
where f = f({,x,v) is the distribution function, Kn the knudsen number and
Q(f, f) the collision integral (for more details see [6]). If we multiply (1) by 1,
v and 1/2v? and integrate over velocity space, we obtain the following system of
equations:

Oip+ Vxpu = 0
Opu+ Vy(pu@u+p) =0 (2)
Opl + Vyu(phk +p) =0

where

p = /fdv, pu = /fvd\n ok = 5 /fv'za"v\




Non-diagonal terms of the pressure tensor p vanish when the distribution fune-
tion is symmetric around the mean velocity u. In particular, at local equilibrium
f is of the form:

o . ) - (v—u)? )
he N ,,[ = q” X T [3
fulpu, Ty “‘““'M“(gﬂ{p);‘” “SET ) (3)
and the following closure relation holds:
1 2 g -
D p=3trp=3p(E —1/2u%) = pRT. (4)

This last equation together with (2) is the Euler system of equations for monoatomic
gases.

Inversely if p(t,x),u(t,x),T(t,x) is a solution of (2,4), one can construct an
approximate solution of the Boltzmann equation by using far [2]. More precisely,
there exists a function ¢ orthogonal to the mass, momentum and energy for the
measure < ¢, >= [ fayyowdv such that f = fyr(1+ K,¢) is a solution of BE at
the first order:

of _ ,
pn +v.Vxf = Kn"QUf, f)+ O(K,),

and therefore the Euler solution is enough to describe gas behavior when K'n — 0.

Remark 1 The coefficient 2/3(= v — 1) appearing in closure relation (4) corre-
sponds to the case where particles have 3 degrees of freedom i.e v = 5/3.

3 Methods for solving Boltzmann and Euler
equations

3.1 The Finite Poinset Method (FPM)

The FPM is a particle method for solving the Boltzmann equation derived from
a mathematical interpretation of Nanbu’s simulation scheme [1]. Numerical im-
provements were brought later on in [13].

One starts with a particle discretization of the distribution function f at time
1 =0

F0,%,v) = 0 =3 d(x = x{)6(v —v]), (5)
and with a spacial discretization of computational domain: Q = U, £);,. The

solution is supposed to be piecewise constant and macroscopic parameters in a
cell €, are defined as:

pr= 3 1 pw= 3" v oplr = S0 v (6)

x, € x; €8y X, €




The numerical method is based on a splitting of (1). A first step consists in
solving the transport equation:

af

N +v.Vxf =0 (7)

during a time step At. In our case far field boundary conditions are coupling
conditions while specular reflexion is used at body surface oI™:
flt.x,v)= f(t,x,v—2n<v,n>) ¥we R’ Vxedl (8)

(n is the outward normal at x).

The exact solution of (7) with initial value data (5) and boundary condition
(8) is given by the method of characteristics.

The second step amounts to solve the space homogeneous BE:

ot~ K n

in each cell 1 of ) with initial condition:

ZOVmV, Vi= {vi/ x; € Q}.

V‘EV[
The collision procedure is as follows:
1. Divide randomly V; into two disjoint sets (vi'),.; ~ and (v{*),.; _x and
ey peeey
choose a permutation IT onto {1, ..., l, . Then collision pairs are:
N
2

(Vilyvlf’gl(i)) L1 o= 1, cevy T

2. Select randomly & paramet(‘rs z; € B(0,1/\/7) associated to each collision.
These pdra‘meters can be considered as impact parameters though they have
got a more general meaning (dummy collisions are possible).

3. Calculate post-collision velocities:
[
k8! vil v _
(vi''ovite) = v(vit vy @)

where the operator ¥ depends on time step At and on collision kernel (see

[13]).
Then,

fivy= 3 (v —v)) with V/ = {vi/ x; € u},

VeV




is the solution of (9) in Q; after time At and one can repeat the transport phase
(7).

Spacial discretization and time step: Mesh steps are chosen so as "to cap-
ture” phenomena occuring on a characteristic length of the ordes of the mean free
path. The mean free path is a local parameter but it is generally enough to use
its value at infinity. Then a global time step At is given by

Azr

- U]

At (10)
where u,, is the velocity of the incoming flow. This means that particle do not
cross in average more than one cell during the transport phase.

Remark 2 The computation of solution of homogeneous BE is based on an ex-
plicit discretization in time of (9). The corresponding stability condition may be
stronger than (10) and one has to repeat the collision procedure (1-3) until one
gets the correct time.

3.2 The Van Leer flux splitting scheme

This well-known scheme [17] is chosen for its robustness. A complete description
of this scheme is given in [I1]. Here, we restrict ourselves to a rough description
in the 2D case. A finite volume formulation of the Euler system (2) onto a mesh
with tetrahedrical cells of control volume V;; 1s:

. (".)Wi‘j )
Vig- o “Ry+ R =R+ R (1
where
1 o
Wi, = /i1 /\“ ; (py pries Py, /)E)7 dx,

and R,«i%’j and R, ;1 are the fluxes through the cell interfaces (i + %,]) and

(1,7 & %) Let S, = [$2,8,]T be the surface vector normal to the cell face
L

i + 3,7, ¢ the sound velocity and H = E + p/p the enthalpy. Then fluxes R at

the cell interfaces are calculated as follows:

-

pe pc
1 cu peu
R, =Sl | sMy || P :
t+1§,] ‘ H—%.Jz 9 !+1;~.7 pCUy + PCUy
pcH |, pcH |,
pc pe 0
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where L and R hold for left and right and M, ; is a combination of both left
and right Mach numbers: ’

oy BOM 4 D24 M) if M| <1,
1Y ':,::"*‘ ] ,Zt: 4( —
Miyy, = M[ + Mg, M { E(M 4 |M|)/M otherwise,

In a same spirit:

- +L M £1)* i M| <1
. et . - 4 -
Pirly = PL T PR P { LM + |M|) otherwise.

Finally, the dissipative term ¢, 1 ; is defined as:
5

Moy if

M| <1,

PR . . N - .
¢i+%.j = *Jwi+%,j{ -+ %(AUR — H‘ .lf 0 < 1‘-’[2’4_%‘]' < 1, |
Time-step

In view of a coupling with the Boltzmann equation, it is easier to use an explicit
Euler scheme for approaching the solution of (11). At has again to satisfy to a
stability condition:

Vil g 13

where 6z and 8y are the mesh steps in the x— and y—directions and A\, (2,7), Ay(4,7)
are the largest eigenvalues of flux matrix in each direction 1.e:

Ae(8,7) = e +cligy, Ay(2,0) = uy + i)

When this condition is stronger than (10), it is preferable to repeat the Euler
phase until one reaches the same time step since computations are more expensive
for BE than for EE.

4 Coupling conditions

Let I'gr be the boundary between the Boltzmann and Euler domains and n(x)
be the outward normal of Boltzmann domain at a point x of this boundary.

Let us first look for boundary conditions for the Boltzmann equation. The
Euler solution gives only macroscopic parameters and we say for want of anything
better that particles coming from the Euler domain are distributed according to
a Maxwellian distribution far(p,u,T) (3). If we think in the same way as for
determination of far field boundary conditions for the Euler equation, we should
distinguish between subsonic or hypersonic ingoing or outgoing flows [10]. In
this vein, the number of parameters (p,u,T") given by the Euler solution should




be directly proportional to the number of characteristics entering the Boltzmann
domain.

We now look for conditions at the Euler boundary. A natural one is the
continuity of fluxes. For v.n(x) > 0 (x € I'gg), f is given by BE and is not
necessarily a Maxwellian. On the Euler side this function should be a Maxwellian
since it is at equilibrium (see section 2). Therefore continuity of fluxes writes:

! |
[ <vas| v | fvay = [ evns | v e Dlvdv(id)
v.n>0 l}VP v.n>0 %|V|2
1 |

This relation is called Marshak condition and parameters p,u, 7" are the boundary
conditions for the Euler equation (for theoretical investigations see [9]). One
should again count the number of characteristics entering the domain to determine
the right number of conditions. Besides, system (14) is very difficult to solve when
u # 0 and it is of interest to try to simplify these boundary conditions.

The interface between the two domains is supposed to be in a region where
Euler solution is the same (or nearly the same) as Boltzmann solution. Therefore
f should be at local equilibrium. In this case, continuity of fluxes is equivalent
to continuity of moments:

1 p
/ R v f(v)dv =] pu (15)
veR o) oE
2

Moreover, additional condition(s) should be transparent when the number
of ingoing characteristics is lower than the number of prescribed parameters at
boundary. Therefore it is enough to impose at Boltzmann boundary:

fltyx,v) = far(pou, T)(t,x,v) VX € I'gp, v.n(x) <0, (16)

where the parameters p,u,T" are solutions of the Euler system. It corresponds
numerically to create a set of particles approaching the Maxwellian distribution
fa(p,u,T) in cells nearby the boundary (with possible use of distant cells de-
pending on the mean velocity):

BOLTZMANN  w¢— EULER

.
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Likewise, conditions at Euler boundary are:

P 1
pu | = K,el{i’ 1|V|2 flt,x,v)dv, Vx € Upg (17)
pE BN

where f is solution of BE for v.n > 0 and Maxwellian for v.n < 0. Practically it

is easier to compute them by taking f in a Boltzmann cell nearby the boundary
(i.e for all v € R%):

BOLTZMANN  —-oesm EULER

i : :
. ; :
T - e
PP
A ; :
& - f\‘ : o : a
AR
o o o i B

Remark 3 When the assumption that Euler solution behaves as Boltzmann so-
lution is not fulfilled, conditions (16,17) are not valid and they amount to force
the continuity at interface. It is proved that those conditions produce false results
in certain cases (see [9]). Numerical ezamples of such cases are given in section

6.

5 Fluctuations at the Euler boundary and sta-
bilization

Macroscopic values py, u;, £y in Boltzmann cells nearby the interface fluctuate with
high frequency due to the stochastic treatment of collision phase (see section 3.1).
A way to smoothen these fluctuations is to average the solution in time. This has
lead many authors [3, 12, 14] to use the following algorithm (Schwarz algorithm):




Schwarz Alternating Method
Boltzmann domain Boltzmann boundary
. calculate a particle approximation
solve the Baltzmann equation of the Maxwellian distribution
until equi.librium {macroscopic values obtained by
inner Ioop interpolation if overlapping)
{ solve the Buler equation

calculate macroscopic values until stationary states:
by av ot smocthing 1 inmer

Fuler boundary Euler domain

9

Here, the fact that one computes the solution until stationary state during each
phase allows to average the Boltzmann solution at interface. It should be theo-
retically possible to solve each equation just during a fixed time T (see [8]) and
then go to the other. But this idea is based on the assumption that solutions
behave well at the boundary, i.e are in a certain sense monotonic which is not the
case for the Boltzmann numerical solution.

We now want to analyse more precisely what happens at the boundary. There

exist actually three different cases:

1. Upstream: boundary conditions for the Euler domain are transparent (in
the sense of the previous section) since all characteristics go out of the
Euler domain. From the numerical point of view fluctuations are cancelled

by upwind schemes.

2. Perpendicular to the shock: when the normal velocity through boundary
is lower than sound speed ¢, characteristics are going in and out of Euler

domain.
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3. Downstream: all characteristics enter the Euler domain and it seems to be
the worse case.

Let us discuss formally about cases 2 and 3. A model problem would be to
analyse the case of a stationary and constant solution with small perturbation
at the boundary. Linearization around the equilibrium reduces Euler equations
to the wave equation: 0yd — ¥0,;.6 = 0 (¥ > 0) and fluctuations propagate with
constant velocity and amplitude.

Large perturbations do not allow to do this simplification and one has to study
the propagation of fluctuations in nonlinear hyperbolic system. We may say as a
first approach that fluctuations propagate along characteristics (see for example
the book of G.B. Whitham [19]).

So let us now suppose that fluctuations are in some way not a "fatal cause of
disorder”, the question is: how to recover the right solution in the Euler domain
when the stationary solution is reached in the Boltzmann domain? For the sake
of simplicity we consider a half space problem for the Burger equation:

+ ——— =10, u(0,2)=1uoVr >0, (18)
with perturbation at the boundary:

u(t,0) = up+¢€(t) >0

The solution without fluctuation is constant u(t,z) = uo (Vt,z > 0). Let us
discretize (18) over time and space by a simple first order upwind scheme (i.e the
Van Leer scheme in this simple case):

At ‘
wt = — S~ () (19)
where At and Az are discretization steps in time and space and u is the approx-
imate solution at time nAt in the cell [(z — 1/2)Az, (1 + 1/2)Ax].

For this scheme, a maximum principle holds under the stability (CFL) condi-

tion 'AA—E_*(U(‘) + M) <1

luf — uol <M = |ul —upl <M Vin (20)

with uf = ug + e(nAt) = ug + ¢
We assume that fluctuations (¢*) are bounded along time (]e*| < M Vn) and
distributed around 0:

1N
= }: " =0 as N — oo, (21)

i
n=1

This assumption means that one can obtain the right solution at the boundary
by averaging in time; this is the case for solutions of BE once the stationary state
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is reached. Can we obtain the solution of Burger equation by doing so? That is
to say, does

1 al T 9

5 Z Uy = Ug !

N n=l

The answer is negative but one can nevertheless prove that:
1 N ) 5 1 Y; Y N j
7 2.5 = 5 2 (w) +0(5)
S on=1 n=1
, &L
= uy’+ < ST 4+ 0o(N) Vji>0 (22)

n=1

Indeed, by summation of (19) over time and space one has:

i, N+1 1 At K¢ 2 fam \2
Z(“i '“““i) = “YZZK“;’) “"“(“i»‘l;)]
=1 DL 5=
At & )
= == > (W) = (up)]
Ar i ] 0

which gives (22) by using the maximum principle (20) and property (21). This
shows two things: on one hand (u}) is in average not too far from ue and on the
other hand one cannot obtain the right solution by averaging in time. In fact,
this is essentially due to the non-linearity of the equation.

A way to recover the right solution is to replace € by the series:

oV = “i“; " = .ﬁ[(f\: ~ DNt 4 €Y. (23)

o™ tends to 0 as n — oo and one can prove that ul — up uniformly on a finite
set of points for such boundary conditions.

Remarks 1

1. There are two different ways to obtain the stationary solution: in Boltzmann
domain by averaging over time and in Euler domain by using a condition

like (23).

2. The numerical success of this direct coupling approach seems to lean prin-
cipally on the robustness of the Euler solver. Here we have formally proved
that any monotonic or TVD scheme should be adapted to such calculation.
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6 Numerical results

We present numerical results for hypersonic flows around an ellipse. Different
angles of attack and Mach numbers lead to the same conclusions as concerns the
influence of both decomposition of the domain and Knudsen number. Therefore
results are shown only in the case where these parameters are fixed: the angle of
attack 8 = 30° and the Mach number i1s 12.

On every graphics, the small rectangle in the domain is the interface between
kinetic region (inside) and aerodynamic region (outside). When there is no rect-
angle, the computation is done completely with BE. Knudsen number is defined
as:

mean free path

Kn= ,
AT 7 \

where L is the length of the ellipse projected on a straight-line perpendicular to
the incoming flux:

L= R\/cos2 0+ 4sin? 0 (great axis = 2 x small axis = 2R).

The meshing is global. This means that meshes for kinetic and aerodynamic
regions fit together and that there is no need to use an overlapping domain (as in
(12]). Moreover for simplicity we choose to use a regular rectangular mesh so that
locating particles is an easy task. Such a mesh is of course not adapted to real
calculation but it is more convenient to study the influence of the decomposition.
Cell sizes are defined so as to capture phenomena occuring on a mean free path
length (see table 1).

6.1 Good agreement

We firstly present a comparison between a full Boltzmann calculation and the di-
rect coupling method for a relatively small Knudsen number: Kn = 0.023. In this
case theoretical expectation is that the two solutions should be roughly the same.
Regardless of numerical noises, the comparison between the two approaches is ex-
cellent (figures 1, 2, 3). A comparison on drag and lift coeflicients draws the same
conclusion: Cy(B) = 1.14, Cy(B/E) = 1.15, C)(B) = 0.555, Ci(B/E) = 0.550.
This means on one hand that Euler equation is valid far enough from the body for
such Knudsen numbers. On the other hand this result corroborates theoretical
investigations concerning fluctuations at the boundary of Euler domain.

An artificial shock spreading is observed in the Euler domain (figure 1). It is
due to the diffusivity of the Van Leer scheme at the first order. This artificial
dissipation is somehow of help for higher Knudsen numbers since the shock thick-
ness increases with mean free path but it would be preferable to use an higher

order scheme and a physical dissipative term (Navier-Stokes equation).



6.2 What should not be done

Let us now increase the Knudsen number. Figures 4 and 5 show a typical effect of
rarefied gas dynamics: as the Knudsen number increases the shock widens in the
Boltzmann region while it keeps the same shape in the Euler region. The conti-
nuity at interface is still ensured by condition (15) but the result has no physical
meaning. Nevertheless the shape of the solution within the Boltzmann domain
is the right one and a comparison between lift and drag coeflicients gives good
agreement: Cy4(B) = 1.18, C4(B/E) = 1.18, Ci(B) = 0.567, C{(B/FE) = 0.564
for Kn = 0.076 and Cy(B) = 1.29, Cy(B/F) =129, Ci{(B) = 0.582, (4(B/E) =
0.577 for Kn = 0.227.

Another non physical solution is shown in figure 6. The interface is too close
to the body so that it creates an artificial shock. The relative velocity between
kinetic and aerodynamic domains is indeed too large. This is a case where neither
continuity conditions (15) nor aerodynamic approach are valid.

The last and most difficult situation is encountered in the wake of the ellipse.
In this low density region, a standard particle code is unable to describe properly
the distribution function provided the number of particles is proportional to the
density. It happens that there is one or even no particle in some cells at the
interface. Since characteristics are going out of Boltzmann domain in this region,
one faces the following difficulties:

1. with 0 or 1 particle, one cannot define a temperature or a Mach number.

2. fluctuations are extremely large since the density varies with the number of
particles (from 0 to 1 or 2).

One may argue that this is a false problem since there is no evidence of the validity
of Euler equation in this region and Boltzmann domain should be prolonged. The
other possible answer is to use a method giving a uniform representation of the
solution in the Boltzmann domain (for example weighted particle method [16] or
discrete velocity models [15]). In the present case fluctuations at the boundary
are smoothed by averaging in time:

.o ‘

W:uer = 7; , Z :uiwgmund
© f=n—-T+1

Average is done over T time steps and coeflicients (p;) conserve the positivity of
the density, energy and pressure (3. u; = 1 and p; > 0).
6.3 Performance

The following array gives CPU times on a IBM6000 for the previous tests. In each
case the number of iterations is 200 and the runs start with 30 particles per cell
in Boltzmann domain. The second column gives the size of the mesh. The third
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and fourth ones are CPU times respectively for full BE and coupling approach.
In the fourth column the number which appears in bracket is the number of cells
in Boltzmann domain.

Table 1: Computational time on an IBM6000

Kn Cells | Boltzmann | Boltzmann-Fuler
0.076 | 2501 14 mn 7 mn (1056)
0.076 | 3710 20 mn 5 mn (390)
0.0223 | 4455 25 mn 12 mn (1711)

The second test case gives an idea of performances: 20 minutes are necessary
to compute the solution with BE while 5 minutes are sufficient for the aerody-
namic solution.

7 Conclusion

We have shown that direct coupling of a stochastic method for a kinetic equa-
tion and a "deterministic” method for aerodynamic description is possible in the
context of rarefied gas dynamics. Under suitable physical parameters, the agree-
ment between full kinetic solution and coupled solution is excellent. Moreover
the coupled approach allows to save significant CPU time.

In order to be valid, the method has to be applied with a correct decomposition
of the computational domain. It is therefore important to continue this research
with a determination of a switching criteria between kinetic and aerodynamic
regions [4].

Other improvements can be brought to the present algorithm: higher order
schemes for the aerodynamic region and possible use of Navier-Stokes equation.

The following paper will address these issues.
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Iso-Density: Mach 12. Kn 0.023

Figure 1: Isolines of density (BE and B/E) at low Knudsen number (Kn =
0.0223).

lso-Temperature: Mach 12, Kn 0,023 Iso-Temperature: Mach 12, Kn 0.023

Figure 2: Isolines of temperature (BE and B/E), A'n = 0.0223
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Iso-Mech: Mach 12, Kn 0.023 lso-Mach: Mach 12. Kn 0.023

Figure 3: Isolines of Mach number (BE and B/E), K'n = 0.0223

Iso-Temperature: Mach 12. Kn 0.078

Iso-Temperature: Mach 12. Kn 0.076

Figure

4: Temperature for increasing Knudsen number: K'n = 0.076.




Iso-Temperuture: Mach 12, Kn 0.227

Iso-Temperature: Mach 12, Kn 0.227

Figure 6:

Deformation of the shock profile (temperature): Kn = 0.076.




