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Abstract

In the standard approach, particle methods for the Boltzmann
equation are obtained using an explicit time discretization of the spa-
tially homogeneous Boltzmann equation. This kind of discretization
leads to a restriction on the discretization parameter as well as on the
differential cross section in the case of the general Boltzmann equation.
Recently, it was shown, how to construct an implicit particle scheme
for the Boltzmann equation with Maxwellian molecules.

The present paper combines both approaches using a linear com-
bination of explicit and implicit discretizations. It is shown, that the
new method leads to a second order particle method, when using an
equiweighting of explicit and implicit discretization.



1 Introduction

Particle methods are the most efficient numerical tools to describe rarefied
gas flows (see [Bird, 1994] and chapter 10 in [Cercignani et al., 1994]) and
they may be mainly divided into two quite different branches.

The first branch [B, 1994] considers rarefied gas flows from the point
of real applications: real-gas effects, like internal energies and chemically
reacting flows, play the more important role than numerical aspects. The
particle method (DSMC) is based on a stochastic simulation of N-particle
systems.

Particle methods concerning the second branch [Babovsky, 1989], [Neun-
zert et al., 1991], [Neunzert & Struckmeier, 1994] (Low-Discrepancy Meth-
ods or Finite Pointset Methods) are derived from the Boltzmann equation
by classical discretization techniques. The main feature is that one is able
to approximate (or simulate) the collision integral of the Boltzmann equa-
tion (see also [Bobylev & Struckmeier, 1994]). The discretization used is
an explicit one and this restricts the magnitude of the time step. To over-
come this difficulty, which is typical for kinetic equation, attempts to use an
semi-implicit discretization were given in [Russo & Caflisch, 1994].

Recently it was shown [B & S, 1994] how to work with a fully implicit
discretization for the Boltzmann equation with Maxwellian molecules. For
this approach the time steps may be arbitrary large. In [Struckmeier, 1995]
the author developed a particle method for the fully implicit discretization.

Using implicit particle schemes the timestep may be enlarged by an order
of magnitude and this is most relevant for computations at low Knudsen
numbers. Nevertheless, the implicit scheme is still only of first order in
time.

Besides the fact, that for most applications in rarefied gas dynamics, one
is mainly interested in the stationary state, it is important to improve the
accuracy of particle schemes from first to second order in time.

In the following we present a mixed explicit-implicit discretization tech-
nique for the Boltzmann equation with Maxwellian molecules, which leads
to a second order scheme.

In section 2 we shortly recall the explicit and implicit discretization tech-
niques for the spatially homogeneous Boltzmann equation. The next section
presents a second order scheme obtained by combining the explicit and im-
plicit discretization. Moreover, we show, how to realize the new scheme by
a particle method. Some numerical results are presented in section 4.



2 Time Discretization Techniques

The starting point for our considerations is the (spatial uniform) initial value
problem

fe=1f, f(0,0) = o(v), [lelli=1 (1)
where || - ||; denotes the £;—norm on IR?,
17 = [ JUIW) = Fe)f(w)yde(n)du
R? S_QI_
and
51 = {nelk’: g =1, (v—wn) >0}
Vo= (v -w,n)
v = wtn(v—wn)

Equation (1) describes a space uniform rarefied gas flow consisting of (pseu-
do) Maxwellian molecules. In this special model, the collision probability is
independent of the relative velocity and the collision mechanism depends on
some probability measure w(n) on $%.

Because of
/ [fdv =0
BS

we have total mass conservation, i.e.

If& )l =lelli =1 Vie Ry

and equation (1) may be written as

Je=T = [, J(0,0) = ¢(v)

with

1r= [ [ re)rwhasme

3 g2
BS_I_

The classical approach to derive particle schemes for the Boltzmann
equation is to use an explicit time discretization (here for the first discrete
timestep)

Ja—o
A =1Te-v




which leads — applying the weak formulation — to

/q)fAdv:/// /(<I>oT)(v,w,n,s)@(v)@(w)dsdw(n)dwdv (2)
R
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where

v s <A
To,w,m, ) = v o os>A

and (2) should hold for all functions ® € C4(IR?), the set of all real-valued,
bounded and continuous functions on IR®. Concerning more details on this
approach we refer the reader to [C et al., 1994] and [N et al., 1994].

This explicit approach is restricted by

A <1,
otherwise the positivity of fa is not guaranteed.

Remark 1
When considering the full Boltzmann equation with an arbitrary scattering
kernel k(n, |v — w|), i.e. the collision integral is defined as

1f= / / k(n, v — w){f) f(w') = f(v)f(w)}dw(n)dw,
R® s>

it is moreover necessary to bound the scattering kernel: for a hard sphere
gas the scattering kernel is

k(n,|v—w|) = [{v — w,n)|
and this kernel has to be truncated such that

[ o = whide(n) < &

=

for some K > 0. As a consequence, the restriction on A is more severe
then in the case of Maxwellian molecules, especially for flows near to the
equilibrium.



Under some assumptions on the solution f(¢,-) of the initial value prob-
lem, one may prove that the explicit discretization is a first order scheme.

The main advantage is, that it is quite simple to derive a particle scheme,
which converges weak™ to the discretized version (1):
The functions ¢ and fa are positive with [|¢|s = ||falls = 1. Hence,
they may be interpreted as densities of probability measures, which may be
approximated by discrete measures (respectively point sets).

Suppose that we approximate the initial condition ¢ by N particles with

velocities v1,...,vy. Then one has to choose % collision pairs, the same
number of impact parameters 71, ..., 7/ and uniformly distributed random
numbers s, ...,5y/2 on [0,1]. The new velocities at time ¢ = A are then

given by the transformation T': if s; is less then A we perform a collision
otherwise not. One can show the weak* convergence of the algorithm to the
solution of the discretized equation (see for example [C et al.,1994] and the
references given in [N & S, 1994].

The fully implicit discretization

fa=AIYfa—fa)+e (3)

may be applied without any restrictions on A. Using the iteration

nt1) _ A ) I
fA = 1—|—AI fA + 1—|—A"O
= e

it can be shown [B & S, 1994], that the sequence {f(An)}new converges at
least for the moments of the distribution function to the unique fixpoint of
(3).

In analogy to the classical discretization techniques for ordinary differ-
ential equations one may expect to improve the accuracy to second order
by taking a linear combination of explicit and implicit discretization. In the
following we will investigate such an approach and show how to construct a
second order particle scheme.

3 Second Order Particle Schemes

Suppose a € [0, 1], then we consider the mixed discretization for the initial
value problem (1) (again for the first discrete timestep)

Ja—¢
A

— (1-a)l¢+alfa (4)



If @ = 1 the discretization is fully implicit, if @ = 0 fully explixit.

Under the following assumption on the solution f(t,-) of the initial value

problem, one can prove that the mixed discretization, taking a = %, is a

second order scheme in time:

(B) The solution f(¢,-) is two times differentiable with respect to ¢ on IR
and for ¢ € IR, A > 0 their exist two £1—bounded functions

-AA,L‘ . IRS — IR
and

Ba,: IR® — IR
with || Aaqll1 < My < oo and ||Baglli < My < oo, such that for all
v € IR3

2
J+Av) = f(t,v)+Af(Lv)+ %ftt(t, v) + A%An () (5)

filt+A0) = filt,v)+ Afu(t,v)+ A28A7t(v) (6)

Theorem 1
Assume that the solution f(i,-) of the initial value problem (1) fulfills (B).
Consider the mized discrelization

fai(v) = [t o) + (1 = ) f)(L,0) + a(l fa)(v)

then, if a = %,
[fae() = J(E+ A, )] = O(A%)

i.e. the mized discretization with a = % is second order in time.

Proof
Suppose a = % If we are able to show that there exists ¢1, cg > 0 such that

1fap() = JE+ A < aA[fap() = FE+ A+ ea’  (7)
we have (assuming || fa+(-) — f({ + A, )]s > 0)

AS
[fas() = FU+ A

1§C1A+CQ

from which we conclude that

| fa () = Ft+ ALl = 0(A?),



which completes the proof.
Denote

ear = [[fas() = f(L+ A )|

By assumption f(¢,-) is a solution of (1) and we estimate using (5)
A
ear < SN a0 = U = Afult, )l + A% Aae()h (®)

Now using (6) we have

I(fa,0)() = U)(E, ) = Afu(t, o)llr <
(T Fa)() = T+ A, )1+ A%Bas()lh

and (8) yields

ean € SN0 - (ENE+A+8° (JAaaOll + 51B30)l1) 9)

It remains to estimate the first term on the left hand side of (9) using the
special structure of the collision integral I:

I fa)() = LN+ Al <
1fa2() =+ A+ 1T fan)() = ITAE+ AR

and by straightforward computations

I fa)() = TN+ Al < 201 fan() = FE+ A )], (10)

so we have
1
an < 38eat (MacC)lh+ 51BacC)lh) 4%
which fits into the required estimate (7). |

It remains to show how the mixed formulation (4) may be solved and we di-
rectly follow the iteration technique for the full implicit scheme as described
at the end of section 2. Using I f = I* f — [ yields

aA
= It
1+ aA fA—I_l—I—aA

Ia R (11)

with
Re=(1-a)AITp+ (1~ (1-a)A)p



To solve (11) we take the iteration

SO = 2O 4 R (12)
and
1 =Re

Now, the function R¢ is nothing else then an explicit time discretization
with starting point ¢ and discrete timestep (1 — a)A. Hence, to ensure
positivity of R¢ we have the restriction

1
l-a

A<

(13)

Concerning the convergence of the iteration we have
Lemma 1

n—l—l ” 2aA
b=7 + aA

178 178 = 18

Proof
We estimate using (10)

1 = L 11 £ — 1 =)

1 —|—aA
2| /) — fr=D)

IN

1—|—aA

Hence by Banach’s Fixpoint Theorem we obtain

Theorem 2
IfA < 1 the sequence {f(An)}new converges in L1(IR?) to the unique fizpoint
of (12).

Remark 2

Especially, for a = %, we have a convergence if A < 2, which fits to the

restriction A < 2 given by (13).

By Lemma 1 we may also estimate the speed of convergence:

n+1
(1) _ )y l( 2aA )
15 =10 < S (Taa (14)

Corollary 1




Proof
Using || Re||1 = 1 we estimate

(1) _ plo)y o 24
I8~ 100 < oo
and (14) from Lemma 1 by induction. ]

The second order discretization scheme may be used for quite differ-
ent numerical methods, like finite difference, finite element scheme or finite
pointset schemes.

In the following we describe, how to use the implicit formulation (11)
with a = % for the construction of a second order particle scheme.

The second order discretization scheme is given by (11) with o = 3, i.e.

A
fa=s—T"fa+

T9FA 2+AR¢

To solve this implicit equation we use the iteration defined in (12) with
starting point R

2

o 10—

(nt1) _ A p ()
A _2—|—AI JAT+

As already mentioned, R is an explicit discretization with time step % and
initial condition ¢. Hence we may apply the algorithm which was shortly
discussed in section 2. For the iteration (15) we may apply the method as

defined in [S, 1995].

The complete algorithm may be summarized as follows:

1) Suppose the N particles with velocities vy, ..., vy approximate the ini-
tial condition ¢ at time ¢ = 0. Choose a timestep A < 2.

2) Perform an explicit timestep with parameter % to generate an approx-
imation of Re:

Choose % collision pairs out of the set {vy,...,vn} of given velocities.
Generate % random numbers on [0, 1] and the same number of unit

vectors 7;, distributed due to the measure w(n) on the halfsphere 3.

For every pair with s; < % perform a collision with unit vector 7;.
Denote the new set of velocities by {v7], ..., vy}



3) Generate the the pointset {v§0), cees v](\(f))} by
v’ =v, i=1,..,N

and perform the following iteration process from (n) — (n+ 1):

Define
I 2N
2+ A
and assume L € IN.
Choose randomly L velocities {w7,...,w}} out of the set {v],...,v%}
and set
oMY — = 1,....L.

k3 (2

Choose randomly ¥ collision pairs out of the set {’UYL), ey 1)](\7)} and
perform a collision with a unit vector distributed due to the measure
w(n) on the halfsphere S3. The resulting velocities complete the set

{vyﬂ_l), ...,v](\?-l_l)} at the (n + 1)*® iteration.
Remark 3

1) The algorithm given above obviously ensures total mass conservation.
On the other hand, momentum and energy are conserved in average.
We refer the reader to [S, 1995].

2) The convergence of the algorithm may be investigated using the tech-
niques described in [S, 1995]: applying the central limit theorem and
the Borel-Cantelli lemma it is proved that the algorithm converges,
almost surely with respect to the required random variates, weak™ to
the solution of the discretized equation if N — oo.

4 Numerical Example

We consider the initial value problem

fi=T"f—7F (16)

with isotropic scattering, which means that w(n) is the uniform measure on
Si. As initial condition we take the non-isotropic distribution

p(0) = 6(02) - 8(vsvs + vyv,| ~ 1),
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i.e. at time ¢{ = 0 the velocities are uniformly distributed on a circle with
radius 1 in the zy—plane.
The stationary solution of (16) is the Maxwellian f(v) = f({ — oo, v) with

1 |v]?

Joo(v) = We_ 2

In the following numerical results we use 10.000 particles to approximate
the solution of (16) and 50 independent samples to improve the accuracy.
For the first order explicit scheme we vary the time discretization between
A = 0.05 up to A = 1.0, for the second order scheme between A = 0.2 and
A = 2.0, where the second order scheme is obtained using 5 local iterations
per timestep.

Figure 1 illustrates the approximate solution on the time intervall [0 : 10]
for the second moment in z—direction — the integrated quantity

2 = [ 1o, o)de.
R

|Uz |27Moment

0.35
0.3
0.25 -
0.2
0.15 -
01F < first order, A = 0.1 o —
N first order, A = 1.0 +
0.05 o second order, A = 1.0 o i
. <
<&
0 ! ! ! !
0 2 4 6 8 10
Time t

Fig. 1. Instationary solution with first and second order schemes

The agreement between the first order solution with A = 0.1 and the second
order solution with A = 1.0 is excellent. On the other hand, the first
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order solution with A = 1.0 shows a strong derivation in the instationary
behaviour.

A more detailed investigation is shown in table 1. Here we compare the
numerical value of M2 at time ¢ = 2 for the two different schemes and
various discretization parameter A.

Tab. 1. |v,|*Moment at time ¢ = 2

Scheme | A=0.05 A=01 A=02 A=05 A=10 A=20

1. Order 212 215 217 228 .249

2. Order 211 211 213 222
Remark 4

In Corollary 1 it was shown that the iteration converges if A < 2. Never-
theless, the numerical experiments show, that we have a fast convergence if
A = 2 (see also table 3).

To clarify, the second order particle scheme is more time-consuming then
the corresponding first order explicit — because of the local iterations per
timestep (see table 2).

Tab. 2. CPU-times in min:sec

Scheme | A=0.05 A=01 A=02 A=05 A=10 A=20
1. Order 17:13 9:04 5:00 2:33 1:42
2. Order 14:16 6:53 4:12 2:39

On the other hand, the computational effort of the second order scheme
may be reduced by decreasing the number of local iterations per timesteps.
Especially, if the parameter A is small the convergence of the local iteration
is very fast (compare Corollary 1) and the number of iterations as well as
the computational effort may be reduced.
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Tab. 3. |v,|>Moment at time ¢ = 2

Nr. ofIter. | A=0.2 A=05 A=10 A=20
0 134 .139 147 167
1 .208 .205 203 207
2 211 211 212 218
3 211 211 213 221
4 211 211 213 222
) 211 211 213 222
6 211 211 213 222

The dependence of M iz on the local iteration is shown in table 3. Obviously,
nearly the same results are obtained using 3 instead of 5 local iterations: the
convergence is fast enough over the whole range of discretization parameters
between 0.2 and 2.0.

Remark 5
The value obtained using zero local iterations is exactly the value using an
explicit discretization with time step %

The reduction in CPU~time by decreasing the number of local iterations
is shown in table 4.

Tab. 4. CPU-times in min:sec

Nr. of Iter. | A=0.2 A=05 A=10 A=20
5 14:16 6:53 4:12 2:39
3 11:15 5:21 3:13 2:02

5 Conclusion

The new results on fully implicit discretizations of the homogeneous Boltz-
mann equation with Maxwellian molecules leads by simple modifications to
a second order accurate scheme in time. For a simple testcase one is able to
improve the efficiency of particle schemes based on an explicit discretization
with respect to accuracy and computational effort.

One may expect similar results for spatially inhomogeneous problems; it
remains to perform numerical experiments in this direction.

The generalization of the fully implicit as well as the second order scheme
to the general case —the Boltzmann equation with arbitrary differential cross
section — is under investigation.
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