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Abstract

The paper presents a numerical simulation technique — based on
the well-known particle methods — for the stationary, one—dimensional
Boltzmann equation for Maxwellian molecules.

In contrast to the standard splitting methods, where one works
with the instationary equation, the current approach simulates the
direct solution of the stationary problem.

The model problem investigated is the heat transfer between two
parallel plates in the rarefied gas regime. An iteration process is in-
troduced which leads to the stationary solution of the exact — space
discretized — Boltzmann equation, in the sense of weak convergence.
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1 Introduction

Although most applications in rarefied gas dynamics are described by sta-
tionary problems, the standard simulation schemes for the computation of
rarefied gas flows are derived from the instationary Boltzmann equation us-
ing the well-known splitting method [5], [6] to separate the free movement
of the gas particles from the collisions between them.

It is clear that the solution of the stationary problem should not be
sensitive against the time step A, being in this case an auxiliary iteration
parameter. However the standard splitting scheme always introduces an
error O(At) in the final result. Moreover, there is a correlation between
the space discretization Az and the time discretization At: to obtain an
accurate solution, i.e. to decrease Ax, the ratio of Az and At has to remain
bounded which leads to small timesteps in the splitting method. Hence a
large number of timesteps is necessary to reach the stationary state.

A more appropriate way will be to work directly with the stationary
Boltzmann equation and to derive a direct simulation procedure for the
stationary problem.

In the following we will construct a scheme for the stationary, one—
dimensional Boltzmann equation with Maxwellian molecules. Qur model
problem is the heat transfer between two parallel plates at different tem-
peratures together with diffusive boundary conditions. We will derive an
iteration process which is similar to the standard splitting schemes, but
leads to an exact solution of the space—discretized stationary equation.

The paper is organized as follows: in Section 2 we state our model prob-
lem and discuss the two limiting cases, namely the continuum and the free
molecular limit. The integral equations which are used to derive our sim-
ulation scheme are presented in the next section. Furthermore, we present
our iterative method and discuss the connection as well as the differences to
the splitting method for the instationary problem.

In Section 4 we define a particle method for the iterative process given
in the previous section that is based on the space discretized stationary
equation and discuss the convergence properties. Some numerical results
for our model problem of Section 2 are discussed in the final section.



2 Statement of the Model Problem

The following model problem is a “classical” testcase for numerical methods
in rarefied gas dynamics, see for example [2], [4] and [7].

2.1 Heat Transfer between Two Parallel Plates

We consider the heat transfer between two parallel plates with diffusive
boundary condition (see Fig. 1), i.e.
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Fig. 1: Heat Transfer between Two Parallel Plates
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where — due to mass conservation at the boundary — Ag and A, depend on
the outgoing mass flux at = 0 respectively z = L and

/ vy f(z,v)dv = 0. (2.2)
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Moreover, we have one more parameter

M:/L/f(x,v)dvdx, (2.3)
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that defines the total mass M from the gas.



Let us consider the stationary Boltzmann equation for (pseudo-) Max-

wellian molecules written as

where

and
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with some constant a = p,7 such that the total cross section is defined by
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For our considerations it is convenient to pass to a dimensionless form —

we put




and obtain from (2.4)
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m%a—x +f=F(f), (2.6)
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where 0 <z < 1,¢ = and we omit the sign “’”. All notations (2.5)
are valid for this equation. The boundary conditions (2.1) now read
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with 6 = %:—L Condition (2.3) reads
0
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Finally we simplify equation (2.6) by introducing a “mass coordinate”
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and obtain (changing v, to vy)

Z—]; +1=F(f) (2.10)

where

F(f) = ——IL.(f), 0<y<1,

p(y)
o) = [ Jwv)de,
R

v2
f—l—(O?v) = Aoe_|2| ) (2 11)
v2 .
f~(1l,v) = Ale_|2|9,
6 = L
Ty’
o a TO
M



and
[ vt ray=o
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Once the problem (2.10)—(2.11) is solved one may return to the initial
variable z by equation (2.9) or

Yy
dy’
¢ = 2 0<y<l1. 2.12

0/ p(y') (2.12)

Therefore we have also the normalization condition

1 ay
O/@ —1 (2.13)

that completes the statement of problem (2.10).

Remark 1
To understand all properties of the solution we do not need to do the trivial
change of variable (2.12), so that we will consider problem (2.10) in the
sections given below in the variables 0 < y < 1 and v € IR,
2.2 Two Limiting Cases
It is convenient to consider first of all the two well-known limiting cases:
a) ¢ = 00, the so—called Knudsen gas limit and
b) ¢ = 0, the limit for continuous media.
For case a) we obtain the solution in the form

2
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where

/vyf(y,v) dv =0, /1— =1, (2.15)
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which read
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that define completely the solution (2.14) in the limit ¢ = oo.

For case b) the solution reads

F(,9) = p(y)2rT ()] F

(2.16)
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where p and T satisfy the Navier—Stokes equations in the initial variable z

(2.12), L.e.
p(z)T'(z)=const, T(0)=1, T(1)=4,
d dT
ET(w)E =0
which yields
d 1 4T
T dr =

Hence, p(y) and T'(y) are defined by the equations
p(y)T(y) = const, T(0)=1, T(1)=¥

and
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Finally we obtain
Ty)=1+(0-1y, 0<y<I

and ) 110
W)= T

that define completely the solution (2.17) in the limit ¢ = 0.

(2.18)
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The solutions (2.14) and (2.16) respectively (2.17),(2.20) and (2.21) may

serve as test functions for any approximate solution.



3 Integral Equations and Iterative Methods

We again consider the boundary value problem (2.10) in the form
aof
oL+ r= () (31)
together with the boundary conditions described in Section 2.

It is not very difficult to invert explicitely the operator on the left hand
side of the Boltzmann equation (3.1) and to consider the equation in integral
form. However it is more convenient for our goals to use a slightly different
way of inverting the operator. Following [3], we write down the problem
(2.10) in the form

_ 0
f.0)= (14D F(). D= [n,5) (3.2)

where the notation [Uyaa—y] notes the operator vyaa—y together with the bound-
ary conditions (2.11).

To construct the inverse operator we use the well-known operator iden-
tity
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which reduces the inversion of (14¢D) to construct the operator exponential
exp(—tD).

The following two facts are the crucial points for the rest of the consid-
erations:

1) The operator exponential exp(—¢D) fy is simply the solution of the free
motion equation

of of
f|t:0 = fO

with boundary conditions (2.11).
2) The identity (3.3) may be written as the time-averaging
(14eD)™t = (e7tP), (3.5)
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over the Poisson distribution with mean value (¢) = e.

Hence, we may formulate problem (2.11) in form of an integral equation

J,0) = (P E) = [t PR L (36)
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This equation is obviously equivalent to the standard integral form of
the stationary Boltzmann equation, but the advantage is that the form of
the equation directly suggests a way to solve it:

The natural iteration scheme for the Boltzmann equation defined in
(2.10) is
9 flnt1)

dy
with Ag; as defined by (2.11).
Together with equation (3.6) this scheme may be written as

4 fot) = PO (3.7)

vy

JOR) = (e PFF0)). (3.8)

and there exists an easy way to realize the iteration by a particle method —
we will return to this point in the next section.

Our final remark in this section is that the iterative scheme is very close
to the usual splitting algorithm for the Boltzmann equation [5]. Let us write
equation (2.10) for the instationary case

af af 1
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and put
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Then we split the Boltzmann equation into two simplified equations for any
time interval t(") < ¢t < ¢(n+1),

fo =
ft + nyy =



Moreover, let us use the explicit discretization scheme for the collision
stage

f(+ )= SFO1+ (- D))

with time step 0 < A < ¢. If we choose the maximal time step A = ¢, then
we obtain

ft+e) = F[f1)]

Therefore with time step A = ¢ the splitting algorithm is equivalent to the
recurrence formula

J0+D = exp(—eD)FI/™)] (3.9)

that corresponds to equation (3.8) of our iterative process.

Hence, we may understand that there is a systematic error included in
this type of splitting algorithm. In fact, if the algorithm is convergent as
n — o0, it gives a solution of

Fly,v) = /5@5 — e P R(f) dt, (3.10)

and not the true stationary Boltzmannn equation (3.6). The systematic
error is formally caused by using in (3.10) the “deterministic” probability
density 6(¢ — ) and not the Poisson distribution density ¢! exp(—t/e).

4 A Particle Method for the Stationary Equation
In the following we derive a realization for the iterative process
f(n+1) — <e_tDF[f(n)]>5 (41)

by a particle method.
The measure theoretic formulation of equation (4.1) yields

) = (k@ M) o771 (4.2)
where x denotes the Poisson measure, T~1 the free stream operator, i.e.
T-4(t, (2, 0)) = [z + to,0)
and v(™ represents the gain term due to collisions of u(™, i.e.
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In (4.3) v denotes the corresponding measure of the differential cross section
and

1
P v, w,w) = 5(1} + w4+ |v— ww)

Equation (4.2) is very similar to the standard measure theoretic formu-
lation of particle schemes for the splitting method — see for example [5] and
[8] — and it is obvious how to derive a weak—* convergent particle scheme

for (4.3).

Remark 2

It is not the aim of the current paper to describe completely the techniques
to construct a particle method for the Boltzmann equation.

Hence, we only give briefly the main aspects and refer the reader to the
references [5] and [8].

The main aspects in the considerations given below is to clarify the
differences to standard splitting methods.

First of all, the basic idea of particle methods is to approximate the mea-
sure u = plz,v] associated to the distribution function f(z,v) by discrete
measures ( “particles”) in the form

1 N
BN =5 > e
=1
In the limit N — oo the discrete approximations (un)nven should converge
in the weak—* sense to p.

The second remark is that one has to introduce a cell structure on the
spatial domain in order to perform the collision stage described by (4.3)
when using discrete measures.

Remark 3
In the case of our model problem we divide the spatial domain — the unit
interval [0, 1] — into cells of length 1/M where M denotes the number of
cells, i.e.
¢ E—1 k
0.)= U )

k=1,...M M M
Then, only particles which are located in the same cell may collide. This cor-
responds to a space—discretized Boltzmann equation where the distribution
function f(z,v) is approximated by cellwise constant functions fi(v),k =
1,... M.
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Now we are able to give the first two steps of our particle method:

- choose a cell structure on the spatial domain and construct an approx-
imation of the initial value f(°) of the iteration process (4.2). We refer
the reader to reference [8].

- suppose that we are in the n—th iteration. Construct an approximation
of the function F(f(™) by performing the collision stage (4.3) where
all particles undergo a collision (see again [5] and [8]).

Finally we have to realize the free movement of particles described by
the operator exponential exp(—¢D) averaged with respect to a Poisson dis-
tribution.

Remark 4
Up to now we are close to the standard splitting methods. The next step
contains the main difference of the stationary particle scheme.

Let us assume that we are in the n—th iteration and that the resulting

(n)

discrete measure vy’ of the collision stage (4.3) is given in the form

) _ 1+
YN :ﬁzé(%vi)

=1

and further we have

if N — .

Then, according to equation (4.2), we have to construct a discrete ap-
proximation of the measure (k ® v{™) o T~1 which converges weak—* if
N — oo.

To do this we take the discrete measure V](\?) and associate to each particle
(zi,v;),t = 1,...; N an individual time step ¢; such that the set {¢1,...,tn}
is a set of independent Poisson distributed random numbers on IR, .

Now we apply the free stream operator 77!, i.e. we construct the discrete

1
measure ,ug\?—l_ ) as

(nt1) _ 1
WY = =3 St
l'[/ I\ Z:1 l+t1 1Y

Using the standard techniques as described in [1],[5] or [9], one can show

that ,ug\?;-l_l) converges to p("*1) almost surely with respect to the sets of

(n)

random numbers ({t1,...,In})Nen —if N — oo and vy’ — v(n),
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Remark 5
This part together with the two steps given above completes our particle
method for the iteration (4.2).

Obviously, if the exact iteration process (4.2) is convergent (which we
assume without any restrictions), then the particle method described above
will lead to a weak—* convergent solution of the space—discretized stationary
Boltzmann equation.

Our final remark is the following: the particle method for the stationary
Boltzmann equation is very similar to the standard splitting schemes for the
instationary equation. The differences are as follows:

1) in the collision stage all particles undergo a collision. We refer the
reader to the remarks given at the end of Section 3,

2) in the free motion of particles, in the case of the stationary eqution this
is given by the operator exponential exp(—¢D), each particle moves
with an individual time step ¢ which is Poisson distributed with mean
value e,

3) the space discretization Az is completely independent of the time step
in 2). Especially, if one wants to improve the space accuracy by de-
creasing Az it is not necessary to reduce the time step as when using
splitting methods. The convergence of the particle scheme leads — in
any case — to the exact space—discretized stationary equation.

5 Numerical Results

In the following we compare three different simulation schemes to calculate
the solution of the stationary heat transfer problem at various Knudsen
numbers e:

1) the iterative particle scheme as described in the previous section where
each particle has an individual Poisson distributed time step for the
free motion and furthermore all particles undergo a collision in each
iteration,

2) the classical splitting scheme for the instationary equation as discussed

in [5] and [8],

3) the splitting scheme as given by formula (3.9) with time step A = ¢
and especially independent of the space discretization Az.
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The Knudsen number ¢ is varied in a range from 0.02 up to 2.0 and
we compare the different schemes 1)-3) with respect to the quality of the
stationary — i.e. convergent — numerical solution as well as concerning the
speed of convergence of the different schemes.

For the calculations we use M = 128 spatial cells and start with an initial
condition f©(z,v) = f(0,z,v) as a Maxwellian distribution with density 1
and temperature 1. The initial condition is approximated by 200 particles
per cell, i.e. we use in total 25.600 particles to approximate the solution on
the whole domain [0, 1]. Moreover, we use the two wall temperatures

The calculations are performed on a nCUBE 28§ parallel computer using
32 nodes such that each processor computes the solution in 4 spatial cells.
For the generation of uniformly distributed random numbers on the unit
interval [0, 1] we use the standard drand48()-subroutine implemented on the
nCUBE 2S and initialize the generator according to the current processor.
In Fig. 1-7 we use the following notations

A: denotes the scheme for the stationary equation as defined in 1).

B: denotes the standard scheme for the instationary equation as defined
in 2). The time step is equal to 1/M — M denotes the number of
spatial cells.

C: denotes the scheme for the instationary equation with a fixed time
step equal to ¢, as defined in 3).

The first observation is that the two schemes A and B give nearly iden-
tical results: the stationary density profile for ¢ = 2,e = 0.5, = 0.1 and
e = 0.02 are shown in figure 2, the corresponding stationary termperature
profile in figure 3.
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Fig. 2: Stationary Density Profile

18

16

Temperature

14

12

l Il Il Il
0 0.2 0.4 0.6 0.8 1
Y-Coordinate

Fig. 3: Stationary Temperature Profile

In figure 2 the results for large Knudsen numbers are given by the curves
which are closer to a horizontal line.
The situation changes if we use scheme C which is

a) identical to scheme A except that the time step is for every iteration
equal to ¢ and not Poisson distributed with mean value ¢ and
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b) identical to scheme B except that for the scheme B the time step is
equal to 1/M.

If the Knudsen number is of the order 1 the stationary density and
temperature profiles are quite different from the “true” solution — given by
scheme A respectively scheme B (see figure 4 and 5). The difference vanishes
in the two limits ¢ = oo and ¢ = 0.
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Fig. 4: Stationary Density Profile at ¢ = 1.0
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Fig. 5: Stationary Temperature Profile at ¢ = 1.0
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Differences between scheme A and B, which produce — as shown above —
nearly identical stationary solutions, are found in the speed of convergence.
This is indicated in the figure 6 and 7: the first one shows the convergence
history for the temperature in the left boundary cell at Knudsen numbers
2.0,0.5,0.1 and 0.02, the second one the convergence at the right boundary
cell. The quantity illustrated in both figures is the averaged temperature
over the number of iterations for scheme A respectively the number of time
steps for scheme B.

Temperature

0 5000 10000 15000 20000
Iterations/ Timesteps

Fig. 6: Convergence History for the Left Boundary Cell
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Fig. 7: Convergence History for the Right Boundary Cell

The results show that — especially for Knudsen numbers of order 1 —
scheme A converges much faster then scheme B.

On the other hand scheme A is more time—consuming then scheme B,
because of the collision stage where all particles undergo a collision and the
large number of gas—surface-interactions which have to be computed if ¢ if
of order 1. The corresponding CPU times for 20.000 iterations respectively
time steps is given in table 1.

Tab. 1: CPU times in min:sec

Scheme | e =20 =05 =01 £=0.02
A 87:40 64:15 61:52 57:13
B 25:25 26:43 29:54 36:19

Nevertheless, if one compares the computational effort with the speed
of convergence, scheme A is more efficient than scheme B, especially at
Knudsen numbers of order 1, since the speedup of the convergence overcomes
the increasing numerical effort.

6 Conclusion

Nearly all simulation techniques to calculate rarefied gas flows which are
applied up to now are based on instationary flows together with a splitting
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method to separate the free motion from the collisions between the gas
particles.

Nevertheless, in most applications one is interested in the steady state
solution of the Boltzmann equation.

To obtain a space accurate solution it is necessary to perform an iteration
scheme with small timesteps and this increases the number of iterations
necessary to reach the stationary state.

Furthermore, the solution obtained using this approach is a first order
in time approximation and therefore dependent on the time discretization.

In the present paper we derived a particle method directly for the —
space—discretized — stationary Boltzmann equation with Maxwellian mole-
cules. Hence, in case of convergence, the particle scheme leads to the exact
solution of the stationary problem.

The numerical techniques are quite similar to the standard splitting ap-
proach except that in each iteration all particles undergo a collision — which
increases the computational effort — and that each particle is equipped with
an individual, Poisson distributed “artificial” time step with mean value
equal to the related Knudsen number. Especially, the time steps remain
unchanged if one increases the spatial accuracy.

The computational effort is reduced by the fact that the iterative process
converges much faster than the time iterations of the instationary splitting
approach, especially if the Knudsen number is of order 1.

Obviously, it is necessary to generalize the stationary particle method
to the full Boltzmann equation, i.e. for non-Maxwellian molecules in more
than one space dimensions. This will be the topic of subsequent papers.
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