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IDENTIFICATION

The road-vehicle system may be considered as an "abstract system", i.e.

a mapping from an inputspace into an output space.

i carbody

Y4 |
yARE
L damping system
(59 T
f o ‘I axle, where we measure the "load" function y(t)
tube
road
The loadfunction y(t) depends on
the road - input
//the driver
L — system
_ the car
Then y(t) — output

We are now assuming that the "driver is fixed", the road can be considered
as time-depending input u(t).

If we have good informations about the physical system, we could use them
for constructing a mathematical model of that system. If we have only few
informations (tube!), we have to be very general.

Identification is defined by Zadehs [1] as follows:

"Identification is the determination, on the basis of input and output, of

a system within a specified class of systems, to which the system under test

is equivalent".



What means "system", "equivalent", "specified class"?
Generally, a system is a mapping from an inputspace into an outputspace.
“Identification" means then the following task:
Given (uj’yj)je.J’ a set of pairs of input-output, determine a mapping T
out of a certain class T of mappings, such that
yj = T(uj), Jed.

If inputspace = outputspace = R, T the set of linear mappings from R to R
and (3,4) is given, then y = T(x) = ax is given: o = %~ If (3,4), (1,2) is
given, the problem has no solution. But we can look for a mapping T, such
that for example

(4-32) + (2-1a)% minimall
(this is the least square fit of a straight line to the given data).

But in reality, things are very much more complicated, inputs and outputs

are functions or even stochastic processes.

Typical problems of identification of a system occur in

- ecology and meteorology (input: data from the climate;output: flow in the
rivers)

- Natural gas storages (input: injection/projection history; output: pressure,
(see [2]) oee)
- Stockmarket (input: white noise; output: stockhistories)
(see [31])

The last example shows that sometimes the input is not very obvious.

This first lecture on identification is used to clear up the different
concepts of identification. In literature many different things are
denoted by the same name. Therefore in order to use the literature you

have to distinguish between the different concepts.



A general (abstract) introduction to systemtheory is given in the book of

Kalman, Arbib, Falb [4] and in some articles by J. Willems [5].

We make it shorter and less rigorous: Input-and outputspaces (U and 0) are
spaces of vectorvalued functions or generalized functions on R or Z with
an algebraic and topological structure. Since we are from now on only
considering linear problems, we assume that U, 0 are linear spaces and

that T is a subset of the set of all linear mappings from U to 0.

A system TET is called time-invariant, if

(Tuto)(t) = (Tu)to(t), t,t0€ R or Z

where vto(t) = v(t—to)

TET is called causal, if u(t) = 0 for t< t0 implies
(Tu)(t) = 0 for ts< to.

T is called stable, if it is bounded.

If you know almost nothing, then you take a model which is very general,
has a lot of degrees of freedom. Therefore the identification, i.e. the
adaption of the model to the data will be rather good, but its use for

prediction is Tless!

(A) The Impulse-Response-Model (IRM) (also called the general linear model)

m

U=1L1_ and (Tu)(t) := U?S(t,T)U(T)dT.

Since u(t)e R" (m-dim. input) and if we assume that y(t)e€ R" (n-dim.
output), then

S(t,t) = (Sij(t,T)/1§ i<n, I<j<m)
is a (nxm)-matrix.



It is called Impulse-response-model, for you may interprete
S(t,T) as T[sT](t),

using the "s§-function ST as input. But this is quite formal.

If UEiQZ(Z) (i.e. U consists of bounded sequences (uk)kel)
and 0 = Q:(Z) » then the IRM is defined by
+0o0
YT TS,
Y == 3

The IRM is

time-invariant, if S(t,t) = g(t- ) or Sk . Ek—v

causal, if S(t,t) = 0 for t<t or S = 0 for k<v

k,v

stable, if S(t,-)eL’ ors, €1,

A time-invariant causal IRM has therefore the shape

too ko
v(t) = [ S(t-t)u(t)dr or Y = I Sk_\)u\)
—c0 v==—

and we are considering only that kind of IRM in the future.

Identificationproblem: Given u, y, determine S .

The problem is easy, if u,y€ L1 (21): Take the Fouriertransform

+
Flul(w ‘=-§; f -1wtdt (transform each component)

and use the convolution theorem, which tells you that
Flyl(w)=2nFIS1(w)  Flul(w)

from which you may calculate Ff§] and finally S.

But this doesn't work, if u, y are not in L1 - which will be the case

for stationary stochastic processes.



(B) The Dynamical System Model (DSM)

The input-output mapping is given by the dynamical system

1t

X = F(t)x + G(t)u

()
y = H(t)x
where x(t)e€ R is called a "state of the system", F(t)€ R P*P the

nxp the

"system matrix", G(t)€ R PXM the "inputmatrix" and H(t)€e R
"outputmatrix".

(x) together with an initial value x(%) defines the system (if F, G, H
are const.).

We will assume that x(-«) = 0 for all systems. Then (F,G, H) defines
the system uniquely.

Each DSM is an IRM:
t

x(t) = X(t,to)x (t) + [X(t,t)G(r)u(r)dr

%

[ H(t)X(t,t)G(t)u(t)dT .

-0

4
<

o

0

The system is causal with S(t,t) = H(t)X(t,7)G(t), where X(t,t) is the
transition matrix of X = F(t)x.
Since X(t,t) = X(t,0) - X(0,7), we have
S(tyt) = H(t)X(t,0)+X(0,7)G(t) = P(t)Q(7),
i.e. S(t,t) is separated with respect to the variables t, t.
This is also sufficient for an IRM to be an DSM:
An IRM is a DSM, if and only if S(t,t) = P(t)Q(<), [6].
Time-invariance means here: F, G, H are independent of t. Then

(t-t1)F _ <

X(t,t) = e = X(t-1)

and an IRM is DSM if
S(t-1) = H(t)e™ - e Fa(r) = P(t)Q(r)

which can only be true, if and only if



gij(t) is a Tinear combination of terms of the form

At
tre S

We are talking now ontime-invariant DSM.

Identification means here: Determine a suitable dimension p of the state
space and then the matrices F, G, H. The dimension p of the state space
is important - in a Finite Element model of a tube it may go up to
several thousands. Moreover, one may have a lot of redundant parameters,
which do not influence the input-output behaviour.

There arise two questions:

1) If p is given, which (F, G, H) define the same input-output behaviour?
2) Can one eventually decrease p without influencing the input-output

behaviour?

Answer to question 1: p given, let (F,G,H)ex = RP*Px gP*M, g "*P-

If x(t) = AX(t), A nonsingular pxp-matrix, then
X = ALRa%+ A7
y = HAX
It follows that (A—lFA,A_lG,HA) gives the same input-output behaviour;
we call therefore (A—lFA,A-la,HA) equivalent to (F,G,H) and call
I, := I/z the set of equivalence classes.

The topological structure of ZO is not trivial - consider for thése

questions [71].

Answer to question 2:

Here we needtwo notations from the theory of control: (F,G,H) is called
completely controllable ((F,G,H)EIZCO),if one of the following three

equivalent conditions hold:



(a) Given to< tl,xo,x1 arbitrarily, there exists a function u(t),

t,=t=ty, such that the solution of X = Fx+Gu with x(to) = X,

fulfills x(tl) = Xq-

(B) i = Fx+Gu is gg}_equiva]ent to a system
£ = Fppfy* Frplp + Gy

:

,2=F

2252
where x = (gl,gz), 1<dim £y = p-1 (i.e. the state space cannot be
separated into two parts, where the second one is neither influenced

by the first nor by the input).
(y) rank (GlFGl...|Fp_lG) =p

(F,G,H) is called completely observable ((F,G,H)€ %), if one of the

following equivalent conditions hold:
(a') x(t) is known in [to’tl] if u(t), y(t)are known in [to’tl]'

(B') X = Fx+Gu, y = Hx is not equivalent to a system
£1 = Fpp8y *Gu
S0 = Fp18y HFppty ¥ 6pu
y = W5
(i.e. the output is influenced only by £y which itself is not

influenced by gz).
(v') rank (H|FTHT[...[(FD)P~IHTy = p.

There is now a canonical structure theorem, proved by Kalman, which says:
Every DSM is equiv aent to another DSM (F,G,H) of same state space
dimension p, where

x=( X X X

controll. controll. not controll. not controll.
not obsery. observ. not observ. observ.



(Dimensions Pyt Pg +Pc +Pp =P

(pA,...,pD) "characteristic numbers"), such that

]** * % *

F=10 Feg 0 *|, ¢-1%|, n=(o Hy O %)
0 0 =% = 0
00 0 * 0

(* denotes a non-empty matrix, as well as FBB’ GB’ HB).

There exists an algorithm to produce this canonical representation.

Now the main result for question 2 is, that p can be reduced to Py’
The input-output behaviour of (F,G,H) is the same as that of

(FBB,GB,HB). This is shown by the fact that the corresponding IRM is

given by

~ Fopt
S(t) = HeFtG = HBe BB B

The same IRM cannot be represented by a DSM with P<pgs the controllable

G

and observable part is "irreducible".

The real object to look for is therefore

co,ob
o}

>

the equivalence class of completely observ., completely controll. systems!
We just mention that everything can be done in the discrete case as well.
Then
Xpe1 = ka + Guk
Yy = Huk s keZ (u__ =0)

co,ob

Again here we may define Z, Zo’ ZO

But there is a third kind of models around, at Teast in the discrete case:



(C) Autoregressive moving Average Models (ARMA)

We consider only the discrete case. For a one-dimensional series ue L
we define the forward and backward shift by (Zu)k = Upype (Bu)k = U _qs
then for example (Znu)k = Ui
Let P, Q now be (uxn) and (uxm) matrices respectively, whose coefficients
are polynomials in z and consider the "ARMA" model given by

P(z)y = Q(z)u.
If for example m=n=1, P(z) = z+a, Q(t) = 1, we have the model

Vel T A T Yo

so that, if Yo is given, we have

If degree (det(P{(z))) =: pz1, but Q(z) is constant, we call the model
an "autoregressive" model: AR(p). If P is constant and only degree
(det Q(z)) =: gz 1, then we called it a "moving average" model: MA(q).
Generally, we have ARMA (p,q).

Here obviously, the input-output behaviour is equal for systems (P,Q)
and (P',Q"), if P' = MP, Q' = MQ with a nonsingular, constant matrix -
this defines again an equivalence. If we denote the pairs (P,Q) for
fixed p, q by S, we again have an equivalence class SO = §/%.

Guidorzi [2] has shown that Zgb is isomorphic to So’ i.e. to each initial

ob

value for a dynamical system of %

you find initial values and an

ARMA-model with the same input-output and vice versa.

In each equivalence class of ZO, SO one may find a simple representative,
a so-called canonical element. The structure and the parameters of these
canonical elements have to be identified; there is a nice algorithm by

Guidorzi [2], which is efficient and can be used on small computers.
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The example treated in the paper is the gas storage prediction

mentioned above.

Summary: There are many identification algorithms in the Titerature - Took
carefully which model they identify. Put into your model as much physical
information as you have. The state space dimension p can also be estimated

by the "information" content of the input-output (see [8]).
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STOCHASTIC PROCESSES

(This chapter is mainly a selection from the two volumes of Priestley [9 ].)

We assume the participant to be familiar with the elementary definitions of
probability theory, for example random variable, expectation —value etc.

We may therefore begin by defining the notion of a stochastic process:

A family of realvalued random variables (Xt)tET’ indexed by a real parameter

teT (T will usually be again R or Z ), is called a stochastic process.

If T is R or an intervall in R, we call (Xt) a continuous parameter process ,

if T=127Z or Netc., we call it a discrete parameter process.

For our purposes it is sufficient to assume that the stochastic process is

given by the joint probability distribution of (Xt ""’Xt )s where
1 m

{tl,...,gn} is an arbitrary finite set in T:

F (XqseeesX ) = Prob((X, <x.)n...n (X, < x))
(tl,...,tm) 1 m t 1 tm m
F(t t ) may be defined through a density
1oty
f .
(tl,...,tm) X e dX  (tyseaist )

Expectation value and autocovariance of the process are then defined by

+o 4o
e = E(Xy) = !; x dF (x) = j; x fi(x)dx
400 4o
Cov(XysXg) = EL(Xymug) (X1 )] = !; !;(X—pt)(y-ps)dF(t’s)(X,y)
oo 4o
= T T O g gy (xay)dxdy =2 R(tss)
Especially R(t,t ) = Cov(Xt,Xt) = Var(Xt) = oi is called the variance of (Xt)'

A stochastic process is called stationary, if for all finite sets

{tl,...,tm}c:T and all teT
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F(t1+t,...,tm+t)(xl”"’xm) ) F(tl,. ,tm)(xl" >Xpp)
It follows that
E(Xt) =y is independent of t
and R(t,s) = Cov(X,.,X_) = Cov(X X ) =R(t-s) is a function of t-s only

t*"s
(if the Cov. exists at all, i.e. if we have a L2-process).

t-s’%o

Especially 0y =0 is independent of t!

A process is called wide sense stationary , if E(Xt) is independent of t

and R(t,s) depends only on t-s. Since this kind of stationarity is enough
for our purposes, we shall omit the "wide sense" in the future. So, (Xt)

will be a stationary process with mean value p and autocovariance function

R(t) = Cov(X,,X

t+T)'
R(< R(t
p(t) := RgO =——(—2-2—

(o}

t’

is called autocorrelation function.

Properties of R and p respectively

(a) R(0) = 0%, p(0) = 1

(b) |R(7)| <R(0), |p(T)|=1 for all ¢

(c) R(t)s p(1) are even functions (since (X,) is realvectorvalued)

t)
(d) R(t), p(7) are positive semidefinite functions, i.e.

n on
¥ T R(t -t )xx_z 0 for arbitrary finite sets
r s’°r’s
r=1 s=1
{tl,...,tn} and {Xq5eesX T

Remark:  Stationarity does not mean that a single trajectory does not really
depend on time; only the stochastic properties are time independent. Stationary
processes occur in electric circuits, vibration, turbulence, economic time
series, description of the road etc. Nonstationary processes describe time
evolutions and occur in growth and decay of population, queuing systems,

chain reactions, seismic observations etc..
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Some special stationary discrete parameter processes:

Let T = Z.

(A) White noise process (or “purely random process")

is defined by

0 for k=*0 0, k#0
R(K) =1 (ot - )
(0 fOY‘ k=0 1’ k=0

If additicnally u=0, we denote such a process by €y Please remark
that we assume nothing about the single distribution fk(x) (besides the
fact that E(Xk)= 0), but we demand that Xk’ X2 are uncorrelated (not

independent!) for k# ¢.

Remark: The definition of a white noise continuous parameter process is

much more complicated and technical.

Autoregressive process (AR)

(Xt) is called a first order autoregressive process (AR(1)) if it satisfies
the difference equation

K = akey = ey

(Xt) is called an autoregressive process of order k (AR(k)) if it satisfies
the difference equation

X, + a,X + .+ a X = ¢

t 17t-1 T k™ t-k t -

Let us first consider an AR(1) - process.
k-1

_ - - J k
K=l =g = X = T ate gtaX .
j=0
We assume here that XO is a gdven nandomvariable. We get
_ .k
E(Xk) = a E(Xo)

(since E(ek) = 0) and in order (Xk) to be stationary, E(Xo) =0 is
necessary.

To calculate the autocovariance, one calculates
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k-1 . k+r-1

k+r
Cov(Xy X, y) = E(X Xy, ) = [(Jzoa - J-+akXo) x a%e,, +a*"X )]
2k
a2k+rVar(X ) +o a!rl 1-a for |al#+1
€
_ 1-a
Var(x0)4-|r|o§ for |a| =1

(og is the variance of e t)

One recognizes that the stationarity of (Xk) depends on the distribution

of XO:
(a) If X, 1s deterministic, E(XO) = Var(X,)) = 0, we get
JO
R(k,k+r) = % 4l 7112 (for la]+1),
€ 1-a

which depends on k; the process is not stationary.
For lal <1, we have atleast

vl
Tim R(k,k+r) = o2 2

koo € 1-a

for large k, the process can be considered as stationary and is therefore
called "asymptotically stationany" (for large k the process forgets the
"violence" due to the deterministic choice of XO).

2

g

(8) If we choose E(XO) = 0, Var(XO) = £ > then the k-depending part in
1-a

R(k,k+r) cancels out and we get
2 _Ir]
a

R(r) = - ,o(r) = al"l.
1-a

(y) We choose as initial value X_n 0 deterministic and let n tend to

1

infinity. We get

Xk = ¥ a €5 (the convergence is taken in the mean square

k .
sense, i.e. E(ka- r a ejlz) -0 with N-> «,)
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Naturally the variance is then

_ o L _ 2 2
Var(Xk) = Var(zzoa ek_g) =0 Y a

which converges, if Jal<1.

Next, one may use AR(2)

X +—a1X X

k k-2 = €k or
2 _
(%) (1+a;B+a,B%)x = ¢,

k-1+2

Denoting by 21257 the zeros of the polynomial z;2+a1;+a2 then

(1+a.B+a 82

18+2,87) = (1-z,B)(1-z,B), such that

1 1 Cl oy

X, = - 2
k (1-CIB)(1_C28) Ek Ql_CZ (I'ClB 1'C28)8k

In this way we get a special solution of the inhomogeneous equation (**) as
Jj+l g+l
‘1 "%

j=0  t17%2

[ee)

X, =

k €k-3

the general solution of the homogeneous equation is A1c§+-A2g§, so that the

general solution of (**) is

j+l j+1
X, = ; (El———:jié—~)e +A gk4-A ck (z,%2,)
k 3=0 1~ T k-3 1-1 2°2 17 ~2

This solution is asymptotically stationary, if ];1}, !;2[< 1. It may even
be stationary for appropriate initial distributions Xo’ Xl‘
Assuming that (Xk) is stationary, one can easily calculate p(1):

From X, +a, k-1t 2% o = g follows

ECG K p) + B OG X p) + R (X oKy ) = E(ey X))

2 2
For r = 0 we get cx+-a1R(1)+-a2R(2) =0,
for r = 1 R(l)-+alR(O)+-a2R(1) = 0,
fer v = 2 R(2)+-a1R(1)+-a2R(O) = 0.
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Solving these three equations gives p(0)s p(1), o(2) and analog the others

2, r+l 2 1
(1‘§2)C1 - (1'C1)C£+

) )

One may now distinguish between the cases, where Lys Ty are real or complex etc.

Similar calculations can be done for AR(k).

(C) Moving average process (MA)

(Xy) is called a moving average process of order j (MA(J)) if it satisfies
the equation

K¢ = boey # biey 1+ . . 4 bjgt-j
J
One has o = 6% ¥ b2, E(X,) = 0 and
X € r t
r=0
b + .. b.b.
ro Jj-irl 2 for 0< Ir] < j
OT €
o(r) = X
0 else
J
Ibb,
3 if O0<irl<j
5 bf
= Q/:O
0 if Ir]>

p(r) has a finite cut at rt j!

The process is always stationary.

(D) Autoregressive/moving average process (ARMA)

(Xt) is called an autoregressive/moving average process of order (3 ,2)
(ARMA(J ,£)) if it satisfies an equation of the form

+ +a;X, s =b e, +Db

t-1 7 e P AL = byey .

15t-1 .+ bﬁet-ﬁ
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ARMA(j,2) may be written as

a(B)Xk = B(B)ek

J

]
—
Y
~

1]

1+aﬁ+...+a¢

_ 2
50 B(z) = b0+-b1;+ ...+b2c .
stakionary

. j 1
With f(z) J (;—ui) we get again an asymptotica]]}“so1ution,

"
Y
Q
—~
|
S
I
[ S}

if iu1! <1, i=1,...,3.

(E) The general linear process

(Xy) is said to be a general linear process if it can expressed in the form

= 3
t u=0

X 9uEt-u

with . 92 -
u=0 u

( Xt can be observed as the reaction of a linear time-invariant causal
system - defined by the impulse response (gu) - when the input is
white noise.)

Computation of R(t) and p(t) :

(=]

z

= if we define g =0, u<0
u
0 u=-

_ QuEt-u

t t+r U= o uu-t

and

R
o(t) = *é%l

X
_ R

© 2

£oq,

u=0
For ¥ gS <e T, (X)) s always stationary.
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(F) Harmonic processes are defined by

S
X, = T A. cos(uy. .
t = A 0 (th-+¢J)
J
where Aj’ wj are fixed numbers, but the phases ¢j are independent random

variables with uniform distribution on(-m,m), i.e.

A
A

f¢ (p) = é%- for -mso@s<.

The trajectories are all sin-curves with arbitrary shifted argument.
Due to the independence of (¢j)j€ f1,...,s) one gets easily

S
A?)COS Wit Oi = E

o~
N =

Therefore, the process is stationary.
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Fourier Analysis of stochastic processes

For a stationary process (Xt)te}2 (or better: a trajectory of such a process),
the Fourier transform will not exist in general. This trajectory will neither
be L1 nor periodic in general. One has therefore to change the method a

Tittle bit.

N . 2 .
Let (Xt) te p De @ stationary process with E([Xt—XtOI )0 for t t,

and E(Xt) = 0. We cut the trajectory X(t) in multiplying with a "window"

1 for |t|<T
X(-r.71() = { 0 erea1E nd get Xp(t) = X(t)x 7 19(t). X has

compact support and may be written as a Fouriertransform

4+ .
Xp(t) = {0 6r(w)e “tdu
1 it
with Gr(w) = 5 j X;(t)e at

(o]

(These formulas are correct, since XTE L1 and "stochastically" continuous.)
w

IGT(w)IZ may be considered as the spectral energy density: | IGT(w)lzdw
W
1
is the energy contained in the frequencies between wq and wy. But we cannot
open the window widely, i.e. the 1imit T« does not exist for [GT(m)IZ.

(The total energy in the whole trajeéctory is not finite.)

But if we consider instead of the energy the power, the T1imit of

2
|Gy (w) | , .
— 7 T+« may exist. Don't forget that this expression depends on the
trajectory. We define therefore
2
|Gr(w)]

h(w) := Tim E(——pp—)
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if it exists and call h the spectral power density.

The most important result in this domain consists in the fact that this
h(w) is nothing else but the Fouriertransform of the autocovariance

R(<).

Theorem:

If Re L, then

The idea of the proof consists in using the convolution theorem:

If f, g are Fouriertransforms of f, g, then

-~

fl

[{a Rl

-~ too
=k  with k(t) = [ f(u)g(u-t)du .

Therefore |G (w) | Rk (w)

1 Y et Y
W
= 5 J; e (J; Xp(u)X;(u-t)du)dt and

e (m)lZ oo
Lo = $(0) with SH(t) = 57 Xl (u-t)du
N
= h(u)) = lim E(ST)(w).
T
Now T
é%— { X(u)X(u-|t]) du  for |t]<2T
Sp(t) = -(T-1t])
0 for |t|>2T
and therefore - T .
| R(t)du = R(t)(1- f t| <27
£(5;(1)) - i“ e O < RO o
0 for |t]>2T
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We end up with

h(w) = Tim
Tow 27 27

= R(w), if ReLl.
This was a sketch of the proof.

Now, if Re€ L1 and continuous, we have also

+co
R(t) = [ e1wth(w)dw or, since R is an even function
R(t) = [ cos wt h(w)dw
2
We realize that R(0) = o, = / h(w)dw < @ and from the definition of h

- 00

follows that h(w) 2 0 for all w. f(w) = bi%l is called the normalized

g
X

spectral power density:

+oo
[ flw)dw = 1.

It is clear that if o€ L1 and p continuous, then
+co . +oo

o(t) = [ e"™(u)dw and f(u) - [ e U (1)dt.
If o is not in Ll, f may not exist. But there is the theorem of Wienesr-
Khintchine: Let o be continuous. Then p 1S an autocorrelation function of
a stationary stochastic process, if and only if there exists a distribution

function F(w) such that

) ) . S
The proof relies on the fact that p is positive‘definit and on the theorem

of Bochner.

For discrete parameter processes similar relations are true: A function
o(r), r€Z is an autocorrelation of a stationary, discrete parameter process

(Xk)ke 7 if and only if there exists a distribution function F(w) for
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-T£ws m, such that

+m i
o(r) = [ e"dF(w), rez.

=T
(Realize that F is now only defined in [-m,m]; this is due to the fact
that for r€Z the number e'®" and el (@*2M)" L0 1ot distinguishable.)

Moreover: If o€ 21, then F is differentiable a.e., F' = f and

+1r .
o(r) = [ e"“"f(u)dw.

=

To invert this relation, we need a Fourier series instead of an integral

flw) = Ziw pN p(r)e-lwl"
Y‘:—oo
Finally h(s) = o%f(u) = = 5 R(r)e” "
r‘:—oo

Altogether constitutes a theorem 04 Wold.

What happens, if p is not in L1 or in Rl respectively? If for example p

has periodic ingredients? There is the Lebesgue decomposition theorem,

telling us that the corresponding distribution F can be decomposed as
3
 taF,tasFy  with 8,20, i=1,2,3, 1§=:1a" =1,

F=a,F

4
where all Fi are distribution functions (growing from 0 to 1) and
dF

(a) F, is absolutely continuous, i.e. — = f. exists a.e.
1 dw 1

(8) F2 is a stepfunction with steps at W, of height Pps reN, = Py = 1.
r

(v) F3 is a socalled singular function, which can be ignored for our reasons.

(See for example the very nice book by Natanson: Theory of functions of o.

real variable )
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Therefore we get

4o
o(r) = [ e ™d(a)F (u) + a,F,(w))
e iTw i'ru)r
al _fw e fl(w)dw+32 rnge 'Pr=: Ol(T)+92(T)

Remark that the second part Po is not necessarily periodic, since (wr)rE N

might be incommensurable. If w. =k w with k €Z, then o, is periodic.

r
1 -hu,
IT fl is continuous, then fl = f (t)dt; pg may be rediscovered
from Py by
_ 1 T -itw
p, = lim {7 / po(T)e dt}
T -

We now consider examples:

+o .
(A) White noise: f(u) == X o(r)e " 2 wE [-,1]
r=-«

(since p(0) = 1, p(r) = 0 else). Therefore we have only an absolutely
continuous part: ay = 1, a a, = = 0. (For continuous parameter process 5
there arise some problems, since 0§= ©. One gets f(w)=0 h(w)==§¥ s

where 06 is the variance of the underlying Wiener process.)

(B) AR(1) gives o(r)=a'"! (lal<1). Therefore

1 e 1 i \r

fw) =7- I 2 "lcos wr = 7y real part of [1+2 = (ae v ) ]

r=- r=1
1- 2
= a » W€ (-mym). Therefore again a, = 1.
2r(1-2a cos w+a")
Similarly, for all ARMA-models we get a; = 1, a2==0.

(C) The exception is a harmonic process.

Let for example be X(t) = A cos(w¢+¢ )> where ¢ is uniformly distributed
e1mt+e iwt
on [-m,nl.Then o(t) = cos wt==1 1

This gives for f a distribution F=2(s +5_ ), i.e.
U)l (.01
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for -«<gp< -wq

F (U)) = for -w1<u)< wq

=N - O

for w> wq

Here wg have a1= 0, a2: 1.

For a general harmonic process we get jumps in F at tws with a height
JY:
;

N =
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Linear systems

We will now analyze what happens if we consider a stationary process as an
input of a linear system. We will consider linear systems which are described

by socalled convolution integrals

oo ©o

y(t) = I x(t-u)g(u)du = [ x(u)g(t-u)du ,

—C0 —00

with x(t) the input function, g(u) the socalled impulse response, which

characterizes the system and y(t) the outnut function. The above integral

describes a linear, time-invariant system.

Let (Xt)tEI be a stationary process, then (Y with

t)ter

oo

Yt = Xug(t—u)du

—oo

is a stationary process ,too.
The relation between the autocorrelation functions of the two processes is

given by

oo oo

o (1) = I g(U)g(V)pX(T+U—V)dUdV. k,z;";em,,

el -0 —00 au’ern

If we assume that the spectral density function fx(o) of the input process

exists and taking Fouriertransform on each side we get with

o]

a(t) T (Transfer function)

—3
—
e
~
i1
—

,fX(m) or

In the discrete parameter case we get similar relations. The linear, time-

invariant system is given by

e = o In*tn te¥
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2
0]

fY(m) = ;% zF(m)l fx(w) for mE[-n,n]
Y

or
_ 2
hY(m) = (o) | hX(m) for wel-msm]

with

o) = & ¢ e ton

R

If we write

Y, = & g X,

t e ! t-n

in the form

- ® n _
Yt =(x gnB YX, = G(B)X

n=-w
with the backward shift operator B and

G(z) = < gz

Then

(o) = i gne

We get the general result: Are the two stationary processes (Xt)tEI and

<Yt)tEI related by an equation
Yt = @(B)Xt
then Gz
X -ioy, 2
fyle) = =7 1e(e7)] 7 fy (o)
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Examples:
1 1
(A) For AR(1) we get (1-aB)X = & = X = gz, ¢(B) = 55 =
2 2
o 1 % 1
hy(w) = ?%' w2 " 7
1-ae | 1-2a cos w+a
(B) AR(K) (+a B+ ... +a8 )0 = ¢ =
Og 1
h (w) = — 7
X m [1+ae Ty tae 1kw!2
~
B [}
(C) MA(%) X - (by+byB+...+bB")c =
(o} .
> =i “1lwy 2
h (0) = ?%ﬁ(b +hye Y4 b, “y
k
(D) ARMA(K,%)  (1+aB+...+aB )X = (b +...+b B")e
2 .
o -iwy (2 k .
ho(w) = BE I ith ) = rad (=1
X 2n lOL( —'Iu)), j=0 J o]

and g(z) correspondingly. h is therefore a rational function of e 'Y,
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Linear relationships with added noise

Let us consider a single input/output system in which the output is corrupted

by a 'noise' disturbance Nt'

t linear

system

In place of the former equation

Yo = T gl
Nn=-co
we have now to consider
Yoo 2 GUenth

It is obvious that the simple relationship between the power spectral

densities of the input and output is no longer valid since hy(w) now depends

on Yt ggg_Nt. Consequently we cannot determine the transfer function from a
knowledge of hy(m) and hu(w) only.

Ti11 now we have considered specific quantities such as autocorré]ation,
autocovariance etc. which described an univariate process. We will now consider
quantities which describe certain interrelationships between two or more
processes.

In practice it often occurs that instead of observing just a single process

Xt we observe (simultaneously) several processes Xl,t""’xp,t'
For example in engineering context we may wish to study the simultaneous
variations over time of ewrvaent and voltage, or pressure, temperature and
volume, or seismic records taken at a number of different geographical

Tocations. In economics f.e. we may be interested in studying inflation

rates and meney supply, unemployment and interest rates.
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Therefore we will consider now correlation and spectral properties of multi-
variate stationary processes.
Suppose we are given two stochastic processes {Xt}, {Yt}. We say {Xt;Yt}

is a stationary bivariate process (or {Xt}, {Yt} are jointly stationary), if
(a) {Xt}, {Yt} are each stationary processes, and

(b) cov(Xt;YS) = E[(Xt- x)(Ys—uy)] is a function of (s-t) only.

We will denote the autocorrelation or covariance functions of Xt
respectively Yt with

(t).

RXX(T), Ryy(T) and pXX(T), pyy

The above functions describe the correlation structure within each process.
We will now introduce a new function which describes the correlation structure

between the processes.

The cross-covariance function is defined by

Ryx(r) = COV{Xt’Yt+T}
and the cross-correlation function is then given by
Ry (1)

Py (T) =

yX
VR TOIR,~T0]

The complete covariance properties are then summarized by the covariance matrix

Some properties:

(1) The cross-covariance and cross-correlation functions are not even function.
Instead we have

Ry(1) = R o)

this means that Ryx and ny contain the same informations.
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(2) Analog we get
P X(T) =p_ (-1) and
CIMCTES!

pyx(r) attains in general its maximum value not at t = O.

Suppose hxx(w) and hyy(w) are the (non-normalized) spectral densities of the

two processes {Xt} and {Yt}. We define the cross-spectral density function or

sinm1y the cross-spectrum by the Fourier transform of the cross-covariance .

1 2

hyx(w) =5 I Ryx(T)e

T==

-iTw

provided Ryx is absolutely summable leyx(T)|<<». The spectral matrix is then

given by

h (w)

h
vy yy?

Analog we defined the normalized cross-spectrum

a > -itw
fyxlo) = 77 . Pyx(Tle

as the Fourier transform of the cross-correlation function.

Examples

1. The simplest example of a bivariate stationary process occurs when Xt
and Yt are uncorrelated processes, i.e. when cov{Xt,Ys} =0 for all s, t.
= ny(T) =0 for all 1
and consequently

hxy(w) =0 for all w.

2. Suppose Xt and Yt satisfy a linear relationship of the form

Xt = aYt+et

and without loss of generality we assume E[Y;] =0= E(X£)= 0)

(et white noise , uncorrelated with Yt
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T Rl Z B Xy ) = @ B(YeeYy, )+ Eley, oY)
=a R
a Ryylo)
= hxy(T) = a hyy(r)
Also we get
Rxx(r) = COV(Xt’Xt+t) = cov(aYti-et,aYt+T+-et+T)
.2
= a Ryy(r)%—RE(T)
_ .2
= hxx(w) = a hyy(w)+-h€(w)

A generalization of this exampTe leads us back to our starting point:

The linear system with added noise:
Yt =z gnUt-n * Nt

n:—CD
Let us assume that Ut and Nt are uncorrelated and without loss of generality

have zero mean.

Then we compute

R (t)=cov(U,-Y

U = EQUL Y. ]

t+T) t t4r

b3 9, E[Ut-U

N==x

.

I

]

t+t-n

o«

X gn[Ruu(r-n)]

N=-ow

therefore Ut and Yt are jointly stationary.

Taking Fourier transforms of both sides we obtain

(o]

2 -iwt
ule) = 2 e E g Ry ()
<5} o n [ s —
= 5 gne Tw (_z e 1w(T n)Ruu(T'“))
N=-c T=-o
=T
() h ()
()
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i.e. the transfer function I'(w) is the ratio of the cross-spectral
density function between the input and output to the spectral density

function of the input.

The relationship between input and output spectral densities we got by the
folTowing way:

We multiply both sides of

Yo = X 9l N
N=-c
with Yi_,we get
Yt.Yt‘T ) (njiw gnUt—n+Nt)(nf_o° gnUt+r-n4'Nt+r)
= RXY( ) = EDVgYy )= nfim mfiw InIRux (T=1#m) + Ry (1)

Taking Fourier transforms of both sides of this equation we find

hyy(0) = m(w) P () (o).
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IDENTIFICATION OF STOCHASTIC PROCESSES

Estimation in the Time Domain

For practical problems the identification of stochastic processes is an
important task. In the most cases we do not know really the model of the
process. On the basis of observations we have to win some informations about
the process. The most important characteristica of stochastic processes in
the time domain are the expected value and the autocovariance or autocorrela-
tion function. We have to determine these characteristica approximately out
of the existing data.

For this task we need some notions from the statistics.

We know that random variables or stochastic processes can be completely
described by the distribution function F or by systems of distribution functions.
We will assume now that we know in some sense the mathematical form of the

distribution function but we have a dependence on an unknown parameter 6 €0,

which we have to estimate.
Definition
An estimatable parameter is a function y: e-» R, i.e. a certain number y(o),

dependent on 6.

An estimatorn of v is a function

N
TN' R R.
Are Xx_ ,...,x, observations of the process, then the value T, (X, »...,X, )
tl tN N t1 tN
is called estimate or statistic of y(e).
The term T, (X, ,...,X, ) with the corresponding random variables X, ,...,X
N tl tN t1 tN

is called estimaton for vy(e).

The estimator TN(Xt ""’Xt ) is called unbiased for vy, if

1 N
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for all 6€o0.

Ty (X

N( t ""’Xt ) is called consistent for vy if for all ¢>0 and all 6€ o:

1 N
Tim Pe([TN(th,...,XtN)—y(e)[ >¢) = 0.

N>oo

An estimator TN which is not unbiased is called biased and the difference
£y (T)-v(6)

is called bias.

Examples
Let X be a random variable with finite variance and Xl""’XN independent

random variables with the same distribution as X. Then

To: RV SR with T

N (X

N 1,...

is a consistent, unbiased estimator for E(X).

Let (Xt)teI be a stationary process with E(Xt) = m. Then
_ 1 N
X, = T X
N N—kzl tk

is an unbiased estimator of m.

The estimator is consistent, iff the spectral distribution function of (Xt)tEI

is continuous in 0.

From now on we will consider only discrete stationary processes (Xk)kez .

Estimation of the autocovariance function R(r), re€ Z

As before, let

1
Av=wN X

M=

k=1

be an estimator for E(Xk).
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Then
1 N-r - _
R = e 2 i) XD
and
8 1 N-r - -
N = 2 k) e Xy)

are two estimators for R(r).

Both estimators are not unbiased. We have

E(RE(r)) = R(r) +Var(X,) + O(Elz)

g 1
BRy(r) = (1-IEhyR(r) + ¢ -l‘g,—'—>Var<xN>+0<F).
If the spectral density exists for the process (Xk)kEZ , 1.e.
flu) = x o(r)e ",
r=-co
then
Var(%y) ~ R(0) T{0
Nosoo

and both estimators are asymptotically unbiased, 1i.e.

1im E(Rﬁ(r))- R(r) =0 and Tlim E(ﬁN(r))- R(r) =0
N->oo Noeo

for all re Z .

Estimation of the autocorrelation function p(r), r€ Z

An estimator oi the autocorrelation function o(r) is

R
on(r) = ) re {-(N-1),...,N-1}.
Ry(0)
It is
[y(r)] =1 re {-(N-1),...,N-1}.

If (Xk)kEIQisaGaussian process with a purely continuous spectrum, we get

EB(r) ~ - 15he(r)

and
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Identification of ARMA-models

The process of fitting an ARMA-model to given data involves two separate
stages, namely

(1) the estimation of the parameters of the model,

(2) the determination of the onder of the model.
For both problems we find a Tot of methods and procedures in literature.

In some examples we will introduce the basic ideas of the methods.

Example (1)
Estimation of the parameters of an AR(1)-model.

Let xl""’XN be the realizations of the random variables Xl""’XN with

Ker1 = K F ey

Our task is to estimate a€ (-1,1).

It is

o(ry =al™ | rez
and especially

p(1l) = a.
We get an estimator

A A ﬁN(l)

a = p(]_) = A

R (0)

Example (2)

Estimation of the parameters of an AR(p)-model.

The above estimation-procedure can be easily generalized. We use the socalled
Yule-Walker-Equations for the autocorrelation function p(r) of an AR(p)-

process given by

Xn+1 = a1Xn+ .+aan_p+1 €+l
then P- QL= p with
(i,: (algans aap): p = (O(l),o(z), ap(p))



- 37 -

1 p(1)  o(2) ... o(p-1)
p(1) 1 p(1) ... o(p-2)

p(p-1) o(p-2) o(p-3) ... 1

Replacing p(1),...,p(p) by 6(1),...,6(p) and solving the linear equation

. . A A
system yields estimates Agsens o 1,...,ap.

Let us consider again the example of an AR(1)-model given by

n = &y ten s

with |a] <1 and (en)nez a sequence of pairwise independent N(O,oz) distributed

nez,

random variables. Then (Xn)neh

0 ,...,Xn ) @ k-dimensional normal distribution which parameters are
1 k
determined by a and 02. Conversely, if the parameters of the distribution are

is a Gaussian process, i.e. for all Nyseeasny

is (X

known then a can be determined. The estimation of a is therefore equivalent
to the estimation of the parameters of a multivariate normal distribution.

The joint density of Xl""’XN is given by

2
f ( ) = exa( -3 :
Xi1seeesXy) = —==5—exp(-» Z .
Xl""’XN 1 N (Vo )N ?-i=1 B
The probability of an observation Xie Axi’ with
- 1 1 2
AX s = (x1. 7 s X1'+ZA1’)’ O<A1~<<o R
is approximatively given by
1 N0 )
P(Xle Axl,...,XNE AxN) ~ N exp(-z--g — b .. Ayd -
(V2no™) i=1 o

Maximizing P(Xlé AXI""’XNE AxN) with respect to p and 02 means to Took for

the "most suitable" u and 02.
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If we put
2
1 1 N (xmw)
L(Xl, .,XN) = log N exp(-?-.g ——)
(V2mo™) i=1 o 2
N (x.-u)
_ N 2 1 L
= =N ]Og \/2?--2— ]Og o "r—Z' 151 —-—02—-‘ s

then we have to maximize L, i.e.

N X:=u
—S—L: > 12 =O
Hoods1 o
N (x,-)?
3 L N 1 i H
2T oty T g =0
d0 20 i=1 5}
We get
A( 1 g
U xl,...,xN) = Nhi:l X,
and
A2(x Xy ) -1 2 e
o (XpseeaaXy) = g = (x1 u).

This procedure is called maximum Likefihood estimation.

In a general case we define the £Likelihood function of a realization

(Xl""’xN) of a random variable X:

N
m fe(xi) X continuously distributed with density
L(esx Xy) = e fgs 0€0O
b 15 bl N) - N
m Pe(X= xi) X discrete with distribution Pe’
i=1 6€E O

Sometimes L(e;xl,...,xN) is replaced by log L(e;xl,...,xN), the socalled

Log-Likelihood gunction.

A parameter f - @(xl,...,x ) with

N

N) 2 L(8ixps..xy)  for all s€o

is called maximum Likelihood estimaton for 6€ 0.

A
L(e;xl,...,x
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The advantage of the maximum likelihood estimation will be clear from the

following results:

(A) If there is a fully efficient estimation T for the parameter 6 €0 (i.e.
T is an unbiased estimator with uniformly minimal variance) then this

estimation procedure is identical with the maximum likelihood estimation.

(B) If there is no fully efficient estimation for the parameter then the

maximum 1ikelihood estimation is after all asymptotically fully efficient.

Example (3)
Let (Xt)tEZi be an ARMA(k,0) process with E(Xt) =p*0 i.e.
(Xt-u)-ral(Xt_l-u)+ ...+ak(Xt_k—u) =€y -

The joint distribution of Xk+l""’XN’ given the observation

X1 = Xl""’xk = xk is then

f . (Xl""’xN)

Xk+1:..-,XNlX1 =X1,...,Xk K

N
1Nk 1 ) 2
aoz) el s B gl e O ew))).

If this function is used as maximum likelihood function for the estimation

= (

of aps--+»3;, we get the same result as in example (2) with the Yale-Walker-
Equations.

Determination of the order of the model.

As for the estimation of the parameters of an ARMA-model there are many
methods for the determination of the order. A frequently applied method is
the socalled Akaike's information critenion (AIC). We consider an ARMA(k,1)-
model given by

Xt+-alxt_1+-...+-akxk = et+-blet_1+ — blet—l’

-

teZ and £t approximately N(O,oz)-distributed.



- 40 -

Even if we know the parameters al""’ak’bl""’bl exactly, the variance 02
is a measure for the "uncertainty" still being in the observation. If we
consider oz(v) as a function of the order v of the model, the following
assumptions are useful:

(1) oz(v) is a monotonic decreasing function left of the true order.

(2) Gz(v) is nearly constant right of the true order.

f

On this considerations bases the AIC-index which is defined for an ARMA(k,T)-
model by

AIC(K,1) = N-Tog 8% +2(k+1)
with N the number of observations and

A1 A A
o ~NQ(a1,...,ak,31,...,6])

and
( > 2
Q(ays..vsap ,bysnu,by) = T 5,
1 k"1 1 vkt ¥

where the e, are determined recursively from the difference equation

(e-(1-k-1) e e pTegTep T =g = 0)
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€ra] = Xk+1+alxk+...+akx1

€2 T Kgap tA K1t e v Xy = bie

€k+'l = Xk+'| +a1Xk+]_1+ P +akX-] - bl€k+'l_1 = ee s — b]_1€k+1
Skil+l T Kerer P K ot Xy bye s by g

etc.
By minimizing the function AIC(k,1) with respect to k and 1 we get an

estimation for the order of an ARMA-model.

Estimation in the frequency domain

The most important characteristica of stationary processes in the frequency
domain are the spectral density resp. the spectral distribution function.

For the estimation of these functions we have to distinguish the three cases:
(Xt)t€I has a

a) purely discrete spectrum,
b) purely continuous spectrum,

c) mixed spectrum.
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a) The general model of a stationary process with a purely discrete spectrum

is the harmonic process
K

Xt = .g Ai cos(m1t+-¢i)
i=1
.i

where K, Ai’ W = 1,...,K are constants and the ¢; are independent

-i’
random variables with uniform distribution on (-mw,m).

The spectral distribution function of such a process is given by

A2

N
Lo (8luwg) +e(utu)

with

i.e. the spectral distribution function is a step function with jumps at

W= W, i=1,...,K and the magnitude of the jumps are given by %-A?/A. There-
fore the estimation of the spectral distribution function consists in
estimating the location and magnitude of the jumps.

Let us rewrite the process in the form

K
Xt = X Ai Cos(w1t+'¢1)
i=1
K .
= E (A? cos w.t+B¥ sin wit)

i=1

1 * = = - i
with Ai Ai cos ¢1’ B; A1 sin ¢1
such that

A = \/A?2+B’%‘2 > 0y = tan'l(B?/Af,f)-

i

The basic idea of the famous method called periodogram analysis may be
explained as follows: Suppose we have an estimate 31 of w) s then we can

compute the estimates

N
A 1 A
A¥ = = ¥ X. cos w,t
1 N =1 J 1
é\f -1 sy, sin Qlt,
j=1"

where Xl""’XN are the given observations.
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If the guessed value Ql is close to wy then ﬁf, ﬁf will be close to

AI, BI and the squared amplitude (AI2+-BY2) will be non-zero. On the other
hand, if Ql is substantially removed from wy (or any of the other frequencies
present in the model) then we are estimating the coefficients of a term
I2+~BI2) will be close

to zero. If we now choose a sufficiently fine set of trial frequencies

which does not exist in the model and therefore (A
81,32,$3,... and plot the squared amplitudes (ﬁzzi-ﬁgz) against Gp, the
ordinates will be non-zero if Qp 1s close to one of the {wi} but will be
close to zero otherwise. We have therefore now a method to locate the values
of the {wi}' We will select those whose values are appreciable greater than
zero. This is the basic idea of periodogram analysis. In our procedure we
will plot the normalized amplitudes N(A;24~B;2) to magnify the differences
between large and small ordinates.

Let us now give a formal description of periodogram analysis:

Given N observations Xl""’XN the function

I (o) = Aw)+ B, we [-m,m],
with
;N
Alw) = N jilxj coS wj
N

1 . .
B(w) = W jzlxj Sin wy

is called periodogram.

It is
1
I, y(w) =% |
X,N N i

X.e-imjlz
19 '

™M=

An important property of the periodogram is given in the following theorem.

Remark that the result is valid for all stationary processes:

Theorem (discrete Wiener-Khintchine)

Let X1”"’XN be observations of a stationary process (Xt)tez . We assume
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N

- 1 ) -
XN = N-kilxk = 0. (Otherwise replace Xi by Xi—XN')
Then

o) = e A

w) = rjcos rw
with
N-r
A 1
W=y = K

(the estimator for the covariance function, see 4.1)

This means that I is nothing else - apart from the factor 2 - than

x,N(“’)
the finite Fourier transform of the autocovariance function.

Let us consider the more realistic model of a harmonic process which

includes the errors of observation:

K
Xt = 1§1A1 cos(m1t+-¢i)+-et

where additively (e is white noise, E(c,) = 0, Var(e,) = o> with an

t)tEZ t) t)
unknown parameter oz and (et) independent of the (¢1). In this case we get

for the expected value of IX N

.21 in? (L
K wtw, w-w
(1, (o)) - 02+7¥le 5 p2 /S1n2(>§N( *uy)) . sngN( N
5 € i=1 " \sin (5(wtw,)) $in™(5(w-wy)) /

2.1
E(Ty y(0)) ~oC+7 N AT

Is w close to one of the wi‘s, i=1,...,n then
2
4 i

Under certain conditions for the process (Xt)tEZZ we get for the variance

of IX,N:
4 1
Var(IX’N(w)) = const oei-O(N).

In the case of a purely discrete spectrum we have found a satisfying estimator

for the spectral distribution function.
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b) More complicated is the case of processes with purely continuous spectrum.
A general model for these processes is the general linear process (Xk)kGZ

with

Xk = X

2
9%k o (9hez €

(We have generalized the model by extending the summation from - to += .)

We further assume that the autocovariance function R(r) is absolutely

[o0]

summable i.e. ¥ |R(r)| <=, then the spectral density function on hlw)

Y==wx

is continuous for all w.

Let us consider E(IX N(w)) for this case:

(N-1)
E(Iy () = r=-(§-1)E(ﬁN(r))COS re
N-1
= ( b3 ) (1'-lﬁl)R(r)cos rw
r=-(N-1)

and therefore

E(IX,N(w)) — 271 h(w)

N>
i.e. IX N(w) is an asymptotically unbiased estimate of h(w), but for the
variance we get

Var(IX N(w))-» const hz(w)

i.e. IX,N is a non consistent estimator and therefore useless for practical
purposes.

Although the periodogram is itself an inconsistent estimate, we shall see
that the following procedures of constructing consistent estimates of the
spectral density function are essentially based on the periodogram by
using some sort of smoothing procedure.

Instead of the estimator

h (w) . (N;:l) R (r)
w) = rj)cos ruw
X,N 2T r=-(N-1) X,N

for the spectral density function we now use
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hX,N(w) =5 .F RX,N(r)cos re ,
r=-M
with M<N-1, ME N, M>w if N>« and %+ 0,

we may expect
Var(Ry y(w)) ~ g Var(Ry () = of)

The estimate FX N can be regarded as a special case of the more general

form of the estimate

h (w) 2'—1 (Ngl) (MR, (1)
w) = Yl r)cos ruw
X’YN’N T Y"—"(N"l) N X,N

with a function ik Z - R the socalled window function. The finite

L
Fourier transform of N
1 N-1
WN(e) = 5 r=-?N-1)YN(r)COS ro
is called the spectral window.
Usually we assume that Yy resp. wN have the following properties:

(a) yN(r) = YN(—r) for all reZ , Ne N

(6) =0 for all 6€ [-n,n], NE N

(c) [ MWy(e)ds =1 for all Ne N
=T

™
(d) | We(e)de<w  for all NE N
=T

(e) For all e>0 is 1im sup WN(e) =0

N |8 |>€
N-1 N-1
oz ey = At — o
r=-(N-1) r=-(N-1) N> o

Then under general assumptions for the process (Xk)kEN cne can show that

A ™
E(h (0)) ~ [ hy(8)W (w-8)de — hy(w)
Xovy NV 4 XUy Now X
A CYN

Var(h (@) ~ o ho(w)  for w0, weem,

X,YN,N
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with
(N-1) 2
C = z YN(r) ]
N r=-(N-1)
A
this means that with a suitable window function N hX N is an

YN
asymptotically unbiased and consistent estimator for the spectral density
function of processes with purely continuous spectrum.

The bias b(w) is given by

b) = E(hy (@) - hy (w)

X)YN’N

Examples:
(In the following M€ N is chosen as above, i.e. M<N-1, M> o if N+ o

and K'»o if Now.)

RECTANGULAR WINDOW

1 jr] =M
) = { 0 r| >M

var(hy, () ~ S hE(w)

XaYNa

BARTLETT WINDOW

1--1%L Ir] €M
YN(r) =
0 irf > M
A 2M 2
Var(hX,YN’N ) ~:§N--hx(w)
1 1 2
b(w) ~TWtee = ]riRX(r)cos ro
==
DANIELL WINDOW
_ sin(mr/M)
wir) = =
M., 2
Var(hx’m,N w))~§ hX(w)
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HANNING WINDOW

%(1+cos %}) irl <M
YN(P) =
0 Irl > M
M 2
VaY‘(hX’YN,N(w ~IN hX(w)
ﬂ2
b(w) ~'——?-h§(w)

Resolvability and bandwidth

The asymptotic behaviour of the variance and bias of ﬁ(w) depends on the
chosen window. We get
M
var(hi(u)) = o()
and

bias(R(w)) = b(w) = 0(=)

with the socalled characteristic exponent a, which is the largest integer

(>0) such that

Tim (22X(X))
x>0 |x|

exists, is finite and non-zero, with k(&) = YN(r).
Therefore the effect of increasing M is to increase the variance and
decrease the bias, while decreasing M decreases the variance and increases

the bias.

To value the "quality" of a window we have to consider different criteria.
One characteristic of a window is the nesolvabilfity, this means, if the
true spectral density function h(w) has two distinct peaks at wq and W,
then the estimate ﬁ(w) should also have two distinct peaks at wy and W, -
In order to separate or "resolve" the values of h(w) at wy and wy We

must choose M sufficiently large so that the "width" of WN(e) is not

greater than the distance between Wy and w5« There is a Tot of definitions
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for the "width" of a window, the socalled spectral bandwidth. We will
follow engineering context and define:
If WN(e) is an even function of 6 with the maximum at 6 =0, then the
bandwidth B is given by

B = 261

: _1
with 8, such that WN(iel) = ?.w 0).

N

W, (8) 4

2\
NI A

There is now the important result that the product of the variance and
the bandwidth is constant.

Var(ﬁ(w))- B = constant.
This means, if we make M large to get a small bandwidth and therefore a

good resolvability we must accept a large variance and vice versa.
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TIME SERIES ANALYSIS

A time series is a collection of observations made sequently in time.
Examples occur in a variety of fields, ranging from economics to engineering.

I will start with some examples.

Economic time series are f.e.
- share prices on successive days,
- export totals in successive months,
- average incomes in successive months,

- company profits in successive years.

Physical time series f.e.
in meteorology, marine science, geophysics,
- rainfall on successive days,

- air temperature in successive hours, days or months.

Marketing time series are f.e.

- sales figures in successive weeks or months.
Demographic time series.

There are several possible objectives in analysing a time series. These

objectives may be classified as

- description
(The first step in the analysis is usually to plot the data and to obtain
simple descriptive measures of the main properties of the series, f.e.
investigation of the trend, of seasonal fluctuations, of the autocorrela-

tion.)
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- explanation

(f.e. when observations are taken on two or more variables, may be possible
to use the variation in one time series to explain the variation in another
series. This may lead to a deeper understanding of the mechanism which

generated a given time series.)

prediction (or forecasting)

Given an observed time series, one may want to predict the future values

of the series.

control

When a time series is generated which measures the quality of a process
(f.e. a manufacturing process), the aim of analysis may be to control the

process.

Sources of variation of a time series are f.e.

seasonal effects

(Many time series, such as sales figures and temperature readings, exhibit

a variation which is annual in period.)

other cyclic changes

(Apart from seasonal effects, some time series exhibit variation at a fixed
period due to some other physical cause. An example is the daily variation

in temperature.)

trend

(This may be loosely defined as long term change in the mean.)

other irregular fluctuations

(After trend and cyclic variations have been removed from a set of data,

we are left with a series of residuals, which may or may not be random.
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In practice the following model of a time series is often used:

Xt = ut4-St+-Yt t=1,...,N
Xt observation at time t
My trend (time dependent mean of Xt)
St seasonal (or other cyclic) fluctuation

Yt residual, i.e. a zero mean stationary process

The analysis of a time series depends on whether one wants to measure the
trend or remove it, to measure the seasonal components or remove them.

We will consider some analysing techniques.

A. Estimation of the trend

Let us suppose that we can express My as a linear combination of known

functions ¢1(t),...,¢ (t)

q
My = ®1¢1(t)-+...-+®q¢q(t)
with unknown parameters @1,...,®q

(This method is known as 'regression' analysis.)

The task is then to estimate the parameters 015---50 This can be done by

n
the 'least squares method' i.a. to minimize the function

N
0) = 3 (X )l

F(O;5... -u,)
1 q t=1 ¢t

or by the 'maximum likelihood' approach. (More about the Tast one in a later
section.)

A case of considerable interest is the case that the trend My is a polynomial
of dearee g-1, ij.e.

- ¢ q-1
= @)t Ot SERAM

For g=2 we speak of linear regression.
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B. Removing the trend

We can sometimes remove trends by passing the observations {Xt} through a
suitable Tinear filter.
If i is a (g-1)th degree polynomial in t
_ q-1
ut-»@1+62t+...+@qt s

then it is well known that the g-th differences of My will be zero. Let us

consider for a while that

Xt = “t*'Yt (i.e. there are non cyclic components in the series).

We consider Vth (where V= (1-B) is the standard difference operator

i.e. VXt = (l—B)Xt = Xt—Xt_l.

We get
X! o= vdx, = v

The spectral density functions of qut and Yt are related by

2(9)), ().

h (o) = !1—exp(—1w)12qhy(w) - 2%9(sin ,

X
Hence, we may estimate hy(w) by first estimate ﬁx.(w) and then compute

R u) - 27 29(sin($)) %A (w) 0t 0.

If there are cyclic components in the time series, we need methods to

remove them.

C. Removing cyclic components

Let us assume we have still removed the trend and consider
Xt = St+-Yt.
The cyclic component St may be removed by operating on Xt with one of the

following filters:

- Moving average filter:
Let St be periodic with period P.
If P is odd, say P=2r+l, we may remove St by operating on Xt with the

filter



- 54 -

v 1 -
Xt = ??:T(Xt_r+-...+-xt+ st Xiln) = ¢>(B)Xt

i.e. X% is formed by taking a moving average of Xt over (2r+l) =P points.

Since St is periodic with period P the filter ¢(B) will clearly reduce St
to constant value, we may write

Xt = const.-+¢(B)Yt.

The spectral density function of Yt can now be estimated as described above.

If P is even, we cannot construct a 'symmetric' filter of the above form

and the procedure is modified slightly. P=2r, we define

1 1

Xt—r+'xt—r+1+‘"'+'xt+r—1'k?‘x

v 1
Xt =27 (3 tar) -

Note that in applying these filters we lose r points at the beginning and

atthe end. If we start with N values of X, we can compute only (N-2r)

t
values of X%.

p-step difference filter
Another way of removing St is to use the filter (l—Bp),

Co_oerPyy -y
Xy o= (1-BP)Xg = X=X

It will remove any component in Xt which is periodic with period p

v~ (1.rPyw - v
Xp = (1-BP)Y, = ¥, -¥

t t-s’
A good and short introduction in time series analysis you will find in

[117.
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IDENTIFICATION OF LINEAR SYSTEMS - SOME METHODS

We will introduce some methods for the identification of linear timeinvariant

systems. We consider the following single input/single output system
P p
Yt Z Yy T R DUt B
i=1 i=1

We assume that we have N observations:

Uy input
Y output t=1,...,N
£t residuals

The problem is to identify the parameters CPERRRFL ;bl,...,b

p P

One method to solve this identification problem is the 'least squares' approach.

We will introduce first the basic ideas of this method. The method of least
squares 1is, perhaps, one of the oldest estimation procedures and was first
developed independently by Gauss and Legendre in the early 19th century.
The main idea of the least squares approach can be motivated as follows:

We assume that (Yt)t€I’ I={1,...,N} is a stochastic process for which the

mean value is a linear function of a parameter vector o, i.e.

T
t

with a known vector Xis t=1,...,N. We want to get a good estimate in the

E[Yt] = x,0,

least squares sense of o from a realization of the stochastic process (Yt).

This means we seek a value of & which minimizes
N

S= 3

t=1

T .2
(yt xte) .

This equation can be written in the form

S = (Y-X0) (Y-¥0)

with
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T
Y1 1
Y = X =
. .T
lyNJ XNJ
Differentiating with respect to o shows that the value 8 minimizes S if
(xXx)8 = Xy .

If XT-X is invertible, then there is a unique solution which can be expressed

as

Ty\-1,T

6 ) XYL

0= (X
This equation is often called the 'least squares estimator'. For the case

XTX is sinqular the above equation does not have a unique solution and there

is a family of Teast squares estimates which may be determined in any particular

case by the usual methods for solving linear eauations.

We will now use this approach to identify our system above:

p P
tTaye T E b

i-1 o T

v
‘1

The equation can be expressed in the form
T

yt = xt®—+gt t=1,...,N
with
T _ )
0 = (al""’ap’bl""’bp)
-

Xt = (—yt_l,...,—yt_p;ut_l,...,ut_p)
or it can be expressed in matrix form

—<
1]

Xo+ X

with
Y = [yl,...,yN]
X = [Xl""’XN]

™M
!

- [Ela---,EN]
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By the Teast squares approach we get an estimation for 0:
8 = (xo IxTy

(Remark that the estimate is not Tinear in the yt's.)

If (gt) are uncorrelated random variables it can be shown the 8 is a
consistent estimator, this means that ® is an asymptotically unbiased
estimator and that the variance of the estimator converges to the variance
of © in the mean squares sense.

(Under suitable conditions 8 is even a strongly consistent estimator, [10]

p. 103 f.)

If the (gt) are correlated and we know the autocorrelation function, the so-
called generalized Least squares approach can be used. Under these conditions

for (gt) it is possible to model £y S follows

n
T g
k=0

This result is a special case of a more general situation, the socalled

gt = kEt_k = G(Z)Et-

specthal 4actorization. One can show that under quite general assumptions any

stationary process (X,) with a purely continuous spectral density can be

t)
represented as a linear combination of the terms of an uncorrelated process
(gt)

o]

Xy = X ge,. .
t u=0 u t-u

The coefficients g, can be directly determinated by the spectral density.

See f.e. [9], p. 730 ff, [10], p. 72.

Our system can now be expressed in the following form:
A(z)yt = B(z)ut+G(z)st
or

Alz)y?

1
[ov]
—
N
~
[y
*
+
™



- 58 -

with
* G_l(z)
Y © V¢
-1
* _
Uy = G (z)ut.

We are now in the situation to apply the above least squares procedure and

cet estimates of the parameters al,...,ap,bl,...,bp.

[f © does not depend on the data, this means if we consider the system

p
AT
gt uncorrelated, then 8 is a £inear estimator and it can be shown that it is

a socalled BLUE-estimator, that means the best linear unbiased estimator.

By far the most general and most powerful method of estimation is the

maximum Likelihood approach. This method can be used to any type of estimation
problem provided only that we can write down the joint probability density
function of the observations.

Let us assume we have a sample X Xn of n independent random variables

12
from a distribution with density function p(x|e) with an unknown parameter ©.
The joint probability density function of (Xl,...,Xn) may be written as
p(xjo) = P(Xlie)p(xz|®)~-- p(Xn)Q).
If
1 2
p(x~|e)>p(x"|e)

where xl, x2 are two realizations of (X .,Xn), then we may say that x1

1o
s more Likefy than xz.

If we consider p(x|6) as a function of © (with x fixed), then we call it the
Likelihood function of o.
If

p(x}o;) > p(x]o,)

then we may say that 09 is a mone plausible value of 0 than 0, The idea in
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the maximum Tikelihood approach is now to estimate © by its most plausible
value, this means to minimize the Tikelihood function p(x|e) with respect to
0. In many cases it is more convenient to work with the function

L(x]e) = Tog(p(x|e),
the socalled Log-Likelihood-4unction. We may equally well determine & by
maximizing L(x|©) rather than by maximizing p(x|e).
The Teast squares approach considered above works in the case of models which
are linear in the parameters. The maximum Tikelihood approach works in a far
more general class of problems.
For simplicity we will show how maximum likelihood works at the above problem.

We want to identify as before the parameters of the system given by

p
y,t+ &
b

b

II‘M'U

a.y_.z .u _~+<€5
17 t-1 i=1 17t-1 t

We assume that £y are independent random variables with a Gaussdistribution
with zero mean and variance 02. Let us first assume 02 is known. We have to
estimate O==(a1,...,a ’bl""’b ).

P p
The likelihood-function is given by

N
p(yl,...,yN|u1,...,uN;®) = tﬂlp(ytiyl,...,yt_l;ul,...,ut;o) (Bayes' nule) .
] (0) p p
et w (0)=y. + Z a.y, .- Z b.u,_..
t t i=1 | t-1 i21 | t-1

(This means wt(e) is an observation of £t for a particular value of 0.)

Rule for transformation of density functions gives us

agt

p(ytlyl,...,yt_l;ul,...,ut;e) = pgt(wt(®)|@)~ det(gyz)l = pgt(wt(ele),
ag
i — = 1.
since T
The Tikelihood function is then given by
N
p(yl,...,yN|u1,...,uN;e) = tﬂlpgt(wt(®)|e) (x).
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Since we have assumed that (gt) has a Gaws-daistribution (0,02), we get

2
1 Wt(@)
Pgt(Wt(@)|@) ey EXP("T;;?‘)
and therefore
; NN wi(@)
P(Ys- - syylups- - auy30) = (Gpps) éleXp(— 25° a

For the log-likelihood-function we get

L(e) = log p(yl,...,leul,...,uN;@)
N wi(e)

= -N ]Oq O-%—]Og Zﬂ_tzl_z—z—— .
= o

If we do not know 02, we have to estimate 02 too and consider the above
log-Tikelihood-function as a function of © and 02.

Differentiating L(0,0) with respect to o yields:

N
3L(050) _ . 1.1 2
Tag o Nrgttg 2 (e)
N
oL 2 1 2
—-..80 = = g = N— tilwt(e) (**)

We see that for any fixed 0 equation (%) maximizes the log-Tikelihood-
function with respect to o, therefore we have first to maximize L(©,0) with

respect to © and then compute 02 from (**)

oL(0,0) _ (aL L LI
00 BalN Sbl o Bbp o o) o)
aw_ (0 sw,_(0) aw.(e sw, (0
L e e
o t=1 1 P 1 p
27 E MO Y el gl )
N

21 T T
- ;?'tfl(yt Xt(@)( Xt)
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Using some notations for X, Y as in the least squares case we get

Lo = 0=xv-(xx)h
= CIE (XTX)-l(XTY) (unique if X'X nonsingular)
N
2oL 528y < (Av-xd)T(v-xo)
N M N

Remark: In the case the {at} are Gauss-variables we get the same result for 0
as for the least squares procedure.
If the (gt) have another distribution than a Gauss distribution we can compute

the likelihood function with equation (*).
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DATA REDUCTION AS A SPECIAL PRINCIPLE IN FATIGUE ANLYSIS

It is essential that critical safety components on a passenger
car, for example suspension components, do not fail during the
service life of the vehicle. On the other hand suspension compo-
nents are designed for a finite life, i.e. they may be subjected
to infrequent peak stresses which they will not withstand if

repeated indefinitely.

Before the individual components can be fatigue tested
in the laboratory for example with servo-hydraulic actuators,
it is first necessary to define the loading for which they are
to be designed. This loading is called the "reference loading"
which must be available as a time function over a long distance
(for instance 300.000 km), in order to feed the servo-hydraulic
actuators with the corresponding signals. Natuaraly these "re-
ference loading" cannot be measured as a path of a stochastic

process over 300.000 km, so annother approach is necessary.

The method used in practise is to take short component
loading measurements with strain gauges on public roads over
short distances about 100 km supplemented with measurements
of extreme maneuvers (such as sharp acceleration and braking)
and driving on extremely rough roads on factory proving grounds.
These stochastic load time functions are subjected to certain
data reduction principles such as Markov counting and Rainflow
counting methods. By extrapolation and superposition of the
given individual measurements one obtains the reference data.
The required load time function can then be determined by using

an on-line reconstruction principle.

Here we discribe two of the mostly used data reduction
principles which are the Markov counting and the Rainflow
counting mefhod. Afterwards we give some insides in the ideas
used for the on-line reconstruction principles. For both data

reduction principles it is necessary to divide the measurement
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range into a finite number of classes (Fig. 1). For simplicity
we assume that these classes are given by the numbers 1,2,...,n.
Such a discrete process is reduced to a time function which has
only peaks and troughs. This means that all values which are

not local maximaor minima are crossed out (Fig. 1).

1 : Reduction of the load time function to a peak/trought

Fig.
sequence.
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Markov counting method

The Markov counting method counts all load variations from
level "i" to level "j". This counting result is stored in the

so-called Markov counting matrix (Fig. 2).

A =
1 2 0 0]
1 1 0] OJ
a.. : number of load variations from level "i" to level "j"

1]

Fig. 2 : Markov counting

There is some structure on the Markov matrices which is easy

to prove
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For i,je {1,2,...,n§ define

n

Ryy = Z a3

(all transitions from level "i")

. - a, .
oi ° ij

.
i
BN

a,.
1]

Vs

,
e -

(all transitions into level "j")

A/

(@]

]
. {\ 5
;/‘w«

. a. .
. oj ij
L=
ch
4
ROL < - ‘\4:,
Y )
C

If the level "i" is neither a starting point nor an end point then

we have that

So it is easy to see that not every nxn - Matrix A from quxn

is a Markov matrix. But there are some good principles which
transform any given matrix A € N:“‘into an admissible Markov
matrix. Therefore we may assume that we always have an admissible

Markov matrix. To explain the reconstruction principle for Markov
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matrices let us consider the following example (Fig. 3)

A -
q 2 0] 0
1 1 0 OJ
103 L v A — sTo®

13 ¥oo2 3 2% 4 L e

Fig. 3 : Reconstruction from the Markov matrix

We see that it is not easy to find one reconstruction from the
given Markov matrix. Our aim is to construct an on-line recon-
struction algorithm which chooses among all load time functions
which belong to the given Markov matrix one time function with
equal probability. To solve this problem it is better to use
the language of graph theory. Every Markov matrix is equivalent
to a certain graph. This relation is very simple. The knots
are given by the discrete stress levels distinguished whether
one is reaching or leaving a given class with an upward or
downward transition. The edges are given by the transitions of
the Markov matrix. In this language our problem of reconstruc-
tion is the same as to find an Eulerian cycle for the given

graph. This can be done by constructing a spanning tree. This
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is the subgraph of the given graph with the property that from

every knot there is a unique way into a fixed endpoint.

Graph which is equivalent to the above matrix A:

2.+ 3+ \+ﬁ
[ J [ 4 [ J
/‘o/ﬁ:,//l
® ®
A T >
A spanning tree at this graph:
1+ 3 4 ‘++
° ) °
J
® @ ®
A” 2 3
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If we know a spanning tree it is very easy to find an Eulerian
cycle. We subtract the spanning tree from the given graph and
then we may choose any way from the starting point to one of
the next possible knots. Whenever there is no further edge we
choose the unique edge given by the spanning tree. This is

demonstrated in the following example (Fig. 3).

+ 3+ |++
a © o
(oooo\
v = 000 15
0100
1000)
J
[ ] 0. ®
17 2 3°
0011 oo11\
A-|0021 A_V:oozog
1200 110 0]
1100 0100)
reconstruction:

Fig. 3: How to use a spanning tree.
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Rainflow counting method

The Rainflow counting method counts all closed hysterisis loops
in the stress/strain diagram (Fig. 4). These can be seen as
intermediate pulse in the load time function. The residuum left
when all the intermediate pulses are eliminated can be seen

in Fig. 4 as the main points 1, 2 and 3.

Fig. 4: Hysterisis loop

—* strain

——s Strain
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The counting result is stored in the so-called Rainflow matrix
A and the Residuum R. The elements aij of A are the number of
closed hysterisis loops from level "i" to level "j". These

loops are also called Rainflow cycles and may be defined as

follows:

Rainflow cycle from "i" to "j":

£

o
=
v
H

\
)
IA
}—-I

The result of the Rainflow counting method is shown in the
following example (Fig. 5).
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Fig. 5: Rainflow counting
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The on-line reconstruction from the Rainflow matrix is much

more complicated as the reconstruction from the Markov matrix.

It would be to exhaustive to explain it here. But all these

methods are described in the references [12], [13].
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