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ABSTRACT. We derive minimax rates for estimation in anisotropic smoothness clas-
ses. This rate is attained by a coordinatewise thresholded wavelet estimator based
on a tensor product basis with separate scale parameter for every dimension. It is
shown that this basis is superior to its one-scale multiresolution analog, if different
degrees of smoothness in different directions are present.

As an important application we introduce a new adaptive wavelet estimator of the
time-dependent spectrum of a locally stationary time series. Using this model which
was recently developed by Dahlhaus, we show that the resulting estimator attains
nearly the rate, which is optimal in Gaussian white noise, simultaneously over a
wide range of smoothness classes. Moreover, by our new approach we overcome the
difficulty of how to choose the right amount of smoothing, i.e. how to adapt to the
appropriate resolution, for reconstructing the local structure of the evolutionary
spectrum in the time-frequency plane.
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1. INTRODUCTION

There is a wide range of fields in which an observed time series shows a nonstati-
onary behavior (by transients, amplitude or frequency modulation, quasi-oscillating
behavior, etc.). These can be found, e.g. in many physical phenomena (occurring in
geophysics, in transmission problems like radio propagation or in speech and sound
analysis), and from economical data analysis, also. A recent approach for modelling
certain kinds of these instationarities is by the introduction of the class of locally
stationary processes (Dahlhaus, 1993) which both controls the departure from stati-
onarity and gives a frame for asymptotic theory. As in the Cramér representation for
stationary processes the spectrum, which now becomes time dependent, controls the
evolution of the variance-covariance distribution of the process over frequency and
over time.

In the present paper we develop nonlinear wavelet estimators for this kind of time-
varying spectral density: With this we address the problem of finding the right amo-
unt of smoothing of an estimator which should adaptively reconstruct the underlying
structure of the spectrum in the time-frequency plane. Motivated by this problem, we
study first a question of more general importance. Inference about the spectrum of a
nonstationary time series is a two-dimensional estimation problem with two particular
directions, time and frequency, on the plane. If, in this situation and, more generally
for any multidimensional curve estimation, the underlying curve shows different de-
grees of smoothness in the different directions, then the construction of the estimator
should properly take this into account. Hence, to establish a benchmark for our esti-
mator we derive first minimax rates for estimation in anisotropic smoothness classes.
Because this question is of general interest, we do not assume any specific observa-
tion model, but we investigate this problem in Gaussian white noise. For simplicity
we consider the two-dimensional case and restrict ourselves to anisotropic Sobolev
classes. Straightforward generalizations can be thought of for higher dimensions and
other smoothness classes like Holder and Besov, also. We show that appropriately
tuned wavelet estimators are able to attain the optimal rate of convergence in these
classes. These estimators use coordinatewise nonlinear thresholding of empirical wa-
velet coefficients. The rate for the risk can be easily found by analyzing a certain
complexity functional, which describes the amount of data compression of a basis
in a given smoothness class. We show that we obtain a suitable higher-dimensional
basis by taking respective tensor products of the one-dimensional wavelet basis. In
contrast, the frequently used higher-dimensional multiresolution basis does not opti-
mally compress the signal in anisotropic smoothness classes. This implies that any
coordinatewise thresholded estimator based on such a basis is not able to attain the
optimal rate of convergence.

The second part of this paper is devoted to the particular problem of spectral esti-
mation. Throughout the paper we adopt the model of locally stationary time series
developed in Dahlhaus (1993). In order to allow least restrictive assumptions on the
smoothness of the spectrum we further relax the assumptions of Dahlhaus (1994) to
give a definition of the evolutionary spectrum as a function in the Ljy-space over the
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time-frequency plane. Again, our main goal is to define an estimator that adapts
to different degrees of smoothness in time and frequency direction, respectively. In
contrast to Dahlhaus (1993) and von Sachs and Schneider (1994), who used a local pe-
riodogram on segments of length N = N(T') (with N — oo as T' — oo and N/T — 0),
here we define a periodogram-like pointwise statistic which can be considered as an
empirical version of the local time-dependent spectrum. By this approach we avoid
a kind of presmoothing in time direction and get rid of the additional smoothing
parameter N, for which a theoretical approach to its optimal choice is still lacking.
This overcomes the shortcoming of fixing with N a lower bound for the ratio of the
resolution in time and in frequency direction. Instead, to decide which degree of smo-
othing is appropriate, we project this time-frequency statistic on a suitable wavelet
basis and use thresholding of the resulting coeflicients. In view of the results in Sec-
tion 2, in this construction, we use a tensor product basis. The appropriate tuning of
the thresholds requires knowledge about the distribution of the empirical coefficients.
Using cumulant techniques we prove asymptotic normality in terms of probabilities
of large deviations. This implies the asymptotic risk equivalence of monotonic esti-
mators to the case of normally distributed empirical coefficients and suggests the use
of thresholding techniques prescribed by existing theory under Gaussian noise.
Finally, to obtain a fully defined threshold rule, it is natural to use some initial
estimator of the standard deviation of the empirical coefficients. We show that rather
weak assumptions on an initial estimator of the spectral density guarantee near-
optimality of the final estimator.

The paper is organized as follows. In Section 2 we derive minimax rates in anisotropic
smoothness classes and examine the two mentioned different kinds of multidimensi-
onal wavelet bases w.r.t. their appropriateness in such function spaces. In Section 3,
after introducing the model of local stationarity and an Ljy-generalization of the defi-
nition of the evolutionary spectrum, we develop our new estimator and state theorems
on rates for its risk. The proofs are contained in Section 4.

2. OPTIMAL ESTIMATION IN ANISOTROPIC SMOOTHNESS CLASSES

Before we develop a definite estimation method for the spectral density in the next
section, we first consider a question of more general importance: we search for a basis
that is appropriate for multidimensional estimation problems in situations, where we
have possibly different degrees of smoothness in different directions. To do this we
consider balls in anisotropic Sobolev spaces and derive minimax rates in a Gaussian
white noise model. For simplicity we only consider the two-dimensional case and
restrict ourselves to anisotropic Sobolev spaces, although it is obvious that analogous
results can be obtained in higher dimensions and for other function classes, like
e.g. anisotropic Besov spaces. We show that thresholded wavelet estimators based
on a tensor product wavelet basis in Ly([0,1] x [0,1]) attain the optimal rate of
convergence, whereas the one-scale multiresolution basis, which is often used in image
analysis problems, does not share this property.

Following Nikol’skii (1975), an anisotropic Sobolev space W, .2 is defined as
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In the following we assume that our object of interest f lies in the set

2
> (Il + 11 el < €} 20
=1

for any positive constant C.

Throughout the paper we restrict our considerations to m; > 1, p; > 1 and m; > 1/p;,
which in particular implies continuity of f.

Since the problem investigated in this section seems to be of general interest in many
statistical estimation problems, we do not want to specify any specific observation
model. Instead, we assume that function-valued observations Y (zi,z2) from the
Gaussian white noise model

Y(z1,z2) / / (21,22)dz1dzs + € W(z1,z2) (2.2)

are available. Here W is a Brownian sheet (cf., e.g., Walsh (1986)) and € > 0 is the

noise level.

1,Mm2

f;?,p2 = f(ml,m27p1,p270) = {

Pl—l_”
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Remark 2.1. In the one-dimensional case it is well-known that the difficulty in esti-
mating f in Gaussian white noise

v(e) = | " f(s)ds + W, (2.3)

where W, is a standard Wiener process, is closely related to the difficulty in estimating
f in non-Gaussian or non-i.i.d. situations, which is actually the interesting problem.
Recently, this connection between nonparametric regression and model (2.3) has been
established in a decision theoretic manner by Brown and Low (1992). The equivalence
between density estimation and some slightly modified version of (2.3) was shown by
Nussbaum (1994).

For wavelet estimators this close connection often materializes also at the practical
level. So it was shown in Neumann and Spokoiny (1995) for non-Gaussian regression
and in Neumann (1994) for spectral density estimation that the empirical coeflicients
coming from these models are asymptotically normally distributed in a sufficiently
strong sense. Then, for certain nonlinear wavelet estimators, it was possible to derive
the risk equivalence between model (2.3) and the abovementioned models. We think
that the two-dimensional continuous Gaussian model (2.2) will be again an appro-
priate counterpart for many practically relevant estimation problems.

Assume we have an orthonormal basis of compactly supported wavelets of L,[0,1],
where the functions ¢ and ¥ satisfy, for m > max{m;, m,},
(A1) (i) ¢ and 9 are in C™,
(ii) [ () dt =1,
(iii) f¢(t)tkdt =0 for 0<k<m-—1.
Such bases are given by Meyer (1991) and Cohen, Daubechies and Vial (1993).
Let V; be the subspace of Ly[0, 1], which is generated by {¢;x}k. It is known that

Li(l0,1 x 0,1)) = UV & 15,

i=l
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which shows the possibility to build a basis of Ly([0, 1] x [0,1]) from tensor products
of functions from a one-dimensional basis {¢u}r U {¢k}j>ik. Let W; = span{tjx}r.

We can write V]_(*z) =V ® Vi as

Vi = (iewie - eW.)eVieWwi e - oW._)

-1 -1 -1
= Vi®veo (EB(WJ'@)VI)) ® (EB(VI ®Wj)) ® ( D w;, ®Wj2)) (2.4)
7=l =l J1,da=l
as well as in the form
2 7
v = vievie (e W, e W, eV;)e(W;eW,)].  (25)
7=l

According to (2.4) we obtain a basis B of Ly([0,1] x [0,1]) as

B = {¢lk1($1)¢lk2(m2)}k1,k2 U (U {¢j1k1 (m1)¢lk2(m2)}k1,k2)

n2>l

U (U {¢lk1(m1)¢j2k2($2)}k1,k2) U ( U {¢j1k1(m1)¢j2k2($2)}k1,k2) . (26)

J2 2l J1,32 21

Another construction, which corresponds to decomposition (2.5), is given by

B = {¢lk1($1)¢lkz($2)}kl,k2
U U{ ks (21) %5k, (22), Wity (21) iy (2), Wiy (1) iy (22) ks - (2.7)

3>l

Note that we can also use different one-dimensional bases to build a two-dimensional
basis, which is done in Section 3 in view of the special problem considered there.

It appears that, because of its more appealing structure, basis B is more often used
for two-dimensional estimation problems, see, e.g., Delyon and Juditsky (1993), Tri-
bouley (1993) and von Sachs and Schneider (1994). Its use seems to be appropriate
in most frequently considered smoothness classes, like e.g. isotropic Sobolev or Besov
classes. However, in certain practical problems, for the curve we are interested in
we could expect different smoothness properties in different directions. We will show
that under such anisotropic smoothness priors basis B is no longer appropriate.

For sake of simplicity we slightly abuse the notation and define 4;_; x := ¢ . Further,
by wr we denote the basis functions in B using the multiindex I = (71, ja, k1, k2).

Let ® = {(6) |E[ Orpr € Frm2 . By Parseval’s equality we see that the Lj-loss

P1,P2
| S Opr — f||2 of any estimator f = 291;1,1 in the function space is equal to the
[5-loss 21(01 — 07)? in the sequence space, where

0r = //Ml(ﬂh, iﬂz)f(iﬂh 312) dz, dz,
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are the wavelet coefficients of f. We obtain empirical coefficients from the observation
model (2.2) as

6; = //pj(ml,mg)dY(ml,mg) = 0; + €, (2.8)

where &7 ~ N(0,1) are i.i.d.
First we derive a lower bound for the minimax risk in model (2.2) under the assum-

ption that f € 72, Since we are only interested in the optimal rate, we can use a

simple approach developed in Bretagnolle and Huber (1979). First, we establish the
following lemma, which provides a lower bound for the complexity of the set ©.

Lemma 2.1. Assume (A1). The set © contains a hypercube of sidelength 2e
O = {(61)| 01 € [—€,€] for I€Z. and 0;=0 for 1 ¢ 1.}
with

dim(0©,) = #T, x e 2mitma)/(2mimatmitms)

If we now take independent, uniformly distributed priors on [—¢, €] for I € Z, due to

the independence of the 8;’s we obtain a Bayes risk of order e2~2(m1+m2)/(2mima+my+mz)
This implies the following theorem.

Theorem 2.1. Denote by f any estimator of a member f € F™™2 . Then

D1,p2

inf sup {EH]?— f||2} > 0'6219("11,7112)7

FofeFpey”

where

2m1m2

J = )
(ma, ma) 2mimy +my + my

To show that this rate is actually attainable, we consider a certain complexity func-
tional €2, to be defined further below, which is similar to the modulus of continuity

96(87‘7::11,11;:12) = sup {Zmin{ez,ﬂﬁ}} (2.9)
f€Fpmn U1

considered in Donoho and Johnstone (1994a). There it was shown that . gives an
almost complete information about uniform rates for diagonal estimators in model

(2.2).
Two commonly used rules to treat the coefficients are
1) hard thresholding
§M(8r,)) = 611 (16:] > ))

and



2) soft thresholding
5(5)(51, A) = (|§I| - )\)+ Sgn(gl)'

In the following () is used to (somewhat sloppily) denote either §(*) or §(*).
Following the developments in Donoho and Johnstone (1994a) we can derive an esti-
mator that attains the rate prescribed by the modulus of continuity Q.(B, Frum2)

P1,P2
up to a factor of log(1/€). To prove that the rate €2%(™1m2) is exactly attainable, we
have to modify Q. slightly. First, by Lemma 1 of Donoho and Johnstone (1994a) we
can prove that the relation

~ A A
E (69(8;,2) — 9,)2 <C (8 (- + 1) o(Z) + min{A2,9§}> (2.10)
€ €
holds uniformly in A > 0 and §; € R, where ¢ denotes the standard normal density.
This motivates us to define the complexity functional

Q(B, Fp ) = inf  sup {Z <62 (ﬁ + 1) cp(ﬁ) + min{)@,@%})}.
1) gerpim U € € (2.11)
The essential reason why the modulus of continuity {). does not immediately provide
an attainable rate for estimators is that it does not take the possible sparsity of
the signal into account. In cases, where we have a too large number of potentially
important coefficients, we lose an additional log-term as we do not know which are the
really important ones. In contrast, the functional ). penalizes such cases of extreme
sparsity by the additional terms (A7/e+1)p(Ar/€) , which arise from upper estimates
of tail probabilities of Gaussian random variables.

The next lemma shows a particular choice of the vector (A7), which provides the rate

e?9(mum2) for the right-hand side of (2.11).
Lemma 2.2. Assume (A1). Let A1 be such that

0, if 51 <37 and j»<j;
EKml,m2 \/max{(jl - ]{)/m% (.72 - ];)/m1}7 otherwise ’

)‘I,e =

where
2];‘ — 6—2/(27111-}—1-}—7111/7112), 2]; — E—2/(2m2+1+m2/m1)

and Ky m, > \/Z(ml + my)log(2) is fized. Then

sup {Z <e2 (A“ + 1) q%) + min{A§,€,0§}>} = 0 (¥lmma)).

ferpty? U €

Let the A7 ¢’s be chosen as in Lemma 2.2 and let

Fo = >"6U(01, A1) pr. (2.12)
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Using this Lemma 2.2 in conjunction with (2.10) we can immediately derive the

following theorem, which, together with Theorem 2.1, tells us that ﬁ is minimax in
the class Fum2,

D1,p2

Theorem 2.2. If (A1) is satisfied, then
sup  {E|f. — f*} = O (mma)).

my,my
fE]:PI P2

Although this theorem provides an interesting theoretical result, it turns out to be of
limited practical use. The proposed estimator ﬁ requires an appropriate tuning of the
thresholds A7 ., which strongly depend on the unknown m; and m,. Even if it would
be possible to adapt these parameters in our idealized Gaussian white noise model,
it is often not obvious how to transfer such a procedure to other noise structures (i.e.
with dependencies, non-Gaussianity) which occur in practically relevant estimation
problems. One could try to find specific procedures for each particular case, however,
it seems to be difficult to find a universal recipe.

An alternative approach that is much less dependent on prior knowledge of m; and
my 1s proposed in a series of papers by Donoho and Johnstone, also contained in
Donoho et al. (1995). First, we analyze the analog of the tail-n-widths (see Donoho
et al. (1995)) in our two-dimensional function classes.

Lemma 2.3. Assume (A1). Let Vy = D, 15,=7(Vi, ® V},). Then

sup {Hf - ij%f||2} =0 (2‘1"("117’"2@1,?2))7

m1,my
fE]:PI P2

_ 2mymg+my +my—2my [pa—2my /D1 ~ A .
where y(mq, M2, p1,p2) = g tms , P = min{p;, 2}.

If we now choose J, sufficiently large, we are able to obtain
> 6= o(tmm), (2.13)
It j1+52>Je

i.e., the truncation of the wavelet series does not affect the desired rate of the esti-
mator. Define K¢ = {I = (1,72, k1, k2) | j1 + 72 < J}. We consider the estimator

fo= X 8908\, (2.14)

IeK.

Ae = €y/2log(#Ke).

Using Lemma 2.2, Lemma 2.3 and (2.10) we obtain the following theorem.
Theorem 2.3. Assume (A1) and 27« = O(e™") for any n < co. Then
sup {EIT. - fI7} = O ((¢10g(1/e))7mm)

my,my
fe}-Pl P2

where

over all (mq,ma,p1,p2) satisfying 9= Jev(mima,p1p2) < 20(myma)
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Hence, the estimator fe is minimax up to a factor of log(1/€) over a wide range of
function classes.

In the rest of this section we will briefly examine the basis B w.r.t. their capability of
data compression in anisotropic Sobolev spaces. The following lemma states a result
on the decay of the modulus of continuity 2. for this basis.

Lemma 2.4. It holds that

QE(B,.F"LI’MZ) = 625(1111,1112),

D1,p2

where

= . my ma
FH(mi, my) = mln{m1 )

1.

It can be easily shown that ¥(m;,m,) = ¥(my,m,) if m; = my and F(my,m,) <
¥(my,my) if my # my. The rate ¥(my, m,) is the usual one for a two-dimensional
estimation problem in isotropic smoothness classes with degree of smoothness m =
min{m;,my}.

We have already seen that basis B provides an optimal data compression in the sense
that QE(B, Frume) decays at the same rate as the minimax risk in F7*2™2. To make a

P1,P2 P1,P2
comparison between the two bases in statistical terms we restrict our consideration to

thresholded diagonal estimators in both cases. Let B = {&z;} and let ; and §; denote
the corresponding true and empirical coeflicients, respectively. By simple calculations
we can show that

irif{IE (5<->(5,,A) - ?,)2} > C'min{e,8;}. (2.15)

Hence, we will get a lower bound for the risk of thresholded diagonal estimators
simply by observing the rate of decay of ). The following theorem is an immediate
consequence of Lemma 2.4 and (2.15).

Theorem 2.4. Assume (A1). Then

sup int [B 0 60, Ay, — £} > oe¥mm)

reFpme (A1)

Hence, we get that diagonal estimators based on basis B are never better than those
based on B, and they are worse if m; # m,. At this point we want to remark
that there exists an attempt to construct higher-dimensional multiresolution bases
for anisotropic smoothness classes. Berkolajko and Novikov (1992) obtained such a
basis by properly connecting levels 7; and 7, in dependence on the relation between
my and m,. However, as this approach depends strongly on the latter relation, it
does not provide a universal basis which is optimal for a greater range of smoothness
classes. The adaptive choice of an appropriate basis, which in principle seems to be
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possible in view of results by Donoho and Johnstone (1994b), would call for another
step in the estimation process.

3. ADAPTIVE ESTIMATION OF EVOLUTIONARY SPECTRA

To address the problem of adaptively estimating the time-dependent spectrum of a
non-stationary time series, we start with citing the definition of a locally stationary
process, as given in Dahlhaus (1993). Note that this generalizes the Cramér repre-
sentation of a stationary stochastic process (see Priestley, 1981, e.g.).

Definition 3.1. A sequence of stochastic processes X;r(t = 1,...,T) is called lo-
cally stationary if there exists a representation

X = p() + [ Al ) expliot) dé(w) (3.1)

where
(i) é(w) is a stochastic process on [—m, 7] with {(w) = ¢{(—w), Eé(w) = 0 and
orthonormal increments, i.e. cov(dé(w), dé(w')) = é§(w — w')dw,
cum{dé(w1), ..., dé(wi)} = 77(2?:1 wj) he(wi, .c.ywi—1) dws ... dwg,
where cum{...} denotes the cumulant of oder k, |hx(wi,...,wr—1)| < consty
for all k& (with Ay =0, hy(w) = 1) and p(w) = 32 _ 6(w + 277) is the period

=00
27 extension of the Dirac delta function.

(ii) A(u,w)is afunction on [0, 1] x[—7, 7] which is 27-periodic in w, with A(u, —w) =

Alu,w).

Remark 3.1. In Dahlhaus (1993) a slightly more general definition of a locally stati-
onary process was given. There, the representation in (3.1) is based on a sequence
of functions A7r(w) instead of the function A(u,w), the difference of which has to
fulfill: sup, , |A7(w) — A(t/T,w)| < KT, for some positive constant K.

Note that with this, the class of autoregressive processes with time-varying coeffici-
ents now is included in the class of locally stationary processes.

In our work, for reasons of notational convenience, we do not want to adopt this more
general definition, noting that all results will continue to hold for the broader class.

Note that, as in Dahlhaus (1993) and von Sachs and Schneider (1994), for simplicity
we assume that p(u) = 0, i.e. we do not treat the problem of estimating the mean of
the time series. In comparison to Dahlhaus (1993) and (1994), here, our smoothness
assumptions on A(u,w) are slightly relaxed: Basically we like to impose minimal smo-
othness as being of bounded variation on U X II :=[0,1] X [—7, 7] (which is made
precise in Assumption (A2)). For technical reasons, in order to facilitate proofs, we
impose an additional smoothness condition on the decay of the Fourier coefficients of
A(u,w) as a function of w, which implies continuity of A4 in w.

Before proceeding with the introduction of both evolutionary spectrum of {X;r}
and a suitable fully adaptive spectral estimate, we gather the assumptions that are
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necessary to end up with a more general definition of the spectrum and for deriving
our asymptotic results:

Definition 3.2. (Total variation on U x II := [0, 1] x [—m,7]):
TVosn(f) = sup 3 Y |f(wi,w;) — f(us,wima) — fluioy,wj) + fluior,wim)]
i

where the supremum is to be taken over all partitions of U x II.

Now we impose the following assumptions:

(A2) a) A(u,w) has bounded total variation on U x II, i.e. TVyxn(A4) < oo.
b) sup, TVi_z«(A(u,.)) < 0o and sup,, TVjo1(A(.,w)) < oo.
c) sup,, |A (u w)| < oo.
d) inf, . |A(u,w)| > k for some k > 0.
(A3) Let A(u,s) =1/(27) [ A(u,w) exp(iws)dw ,s € Z,u € [0, 1].
Then: sup, >, |A(u,s)| < oo.
(A4) a) ¢(u), ¥(u), <}§( ) and %(w) have bounded total variation on [0,1] and

[—m, 7], respectively.
b) Further, ¥, |¢( )] < oo and Y, |1/J( )| < 0.
(AB) supscyer {8 oot loum(Xp 7, ., Xpp1)|} < CHRN)*Y for all b =2,3, ...
where v > 0.

Note that these are somewhat minimal conditions part of which might be fulfilled
simply by restricting A to be member of the specific smoothness class under conside-
ration (anisotropic Sobolev, Holder,...). In our case of Sobolev restrictions (A2) (b)
and (c) and (A3) are implications of the considered Sobolev smoothness, so are (A4)
(a) and (b) a consequence of (A1), with m > max{mi, my} > 1.

We like to mention that this minimal smoothness of A is sufficient to ensure the lo-
cally stationary behavior of the process, in the sense that we end up with a spectrum
which is uniquely defined in some L2- rather than in an almost everywhere sense.
However, for reasons of completeness, we like to also give this stronger definition of
the evolutionary spectrum which, under the appropriate stronger smoothness of A,

was considered by Dahlhaus (1993):

Definition 3.3. As evolutionary spectrum of {X;r} given in (3.1) we define for u €
(0,1)
. 1 & :
flu,w) = lim — Z cov{ Xpur—s/2,1; X[ur+s/2,7} €Xp(—1ws),

where the X;r’s are given by (3.1) with A(¢/T,w) = A(0,w) for ¢t < 1 and
A(t/)T,w) = A(l,w) for t>T .

By Dahlhaus (1993), Theorem 2.2, if A(u,w) is differentiable in » and w (with uni-
formly bounded derivatives), then

flu,w) = |A(u,w)?, u € (0,1) a.e. in w. (3.2)
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Whenever this condition on A is fulfilled we shall understand the given limit in (3.2)
as pointwise in u and w.
More generally, however, we like to show that, if we turn to the L,-limit, equation

(3.2) still holds, in the Lj(du, dw)-sense on U x II:

Theorem 3.1. Under assumptions (A2) and (A3),

] 1 pr 1 0 .
lim j /; { o Z [cov{X[uT_s/z],T;X[uTﬂ/z],T}exp(—zws)] — |A(u,w)|2}2 dw du = 0.

T —oc0
s=—o00

An intermediate result, finally, which is in the L?(dw)-sense, but pointwise in u €
(0,1), is given by Dahlhaus (1994), Theorem 2.2, where uniform Lipschitz-continuity
of A(u,w) in both components with Lipschitz exponent o > 1/2 is needed.

For the particular context of our work, we now restrict to the anisotropic Sobo-
lev class as introduced in Section 2, i.e. we assume that f is a member of this class
by assuming that A(u,w) is:

A e Fprum(C) with m; > 1,p; > 1 and m; > 1/p;.
We note that with this f is in any L,(U X II) - space (due to the continuity in each
argument), i.e. in particular in L,.

Now we turn to the problem of estimating the evolutionary spectrum f.

The first step in our inference about f is to transfer the information {X; r,... , Xr 1}
given in the time domain to the time-frequency domain. One possibility, as chosen
by Dahlhaus (1993) and also in von Sachs and Schneider (1994), is to consider a
localized periodogram, localized by introducing segments of length N = N(T'), where
N — oo as T — oo but N/T — 0. One problem with this approach is that the
segment length N is an additional parameter, whose optimal choice depends on the
relation between the smoothness in time and frequency direction. Here we intend
to develop a fully adaptive approach: By wavelet thresholding the procedure should
be able to automatically adapt to the right degree of resolution in both time and
frequency direction. Note that these are, of course, not independent, but stand in a
reciprocal relationship due to the uncertainty principle: the more accurate we try to
estimate f(u,w) in time direction, the less accurate can we estimate it in frequency
direction and vice versa, cf. Priestley (1981, p. 835).

To this end, by a straightforward analogy to the definition of the spectral density
we introduce a periodogram-like statistic Iy 7,1 < ¢t < T, which is different to the
localized periodogram of von Sachs and Schneider (1994):

1 .
La(w) = o > Xit—s/2,7 X[t+5/2],7 €xp(—iws). (3.3)
T |s|<min{t—1,T—t}
Note that I;r can be considered as a preliminary “estimate” which is even more
fluctuating than the classical periodogram is.
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In von Sachs and Schneider (1994) part of the localization was delivered by summa-
tion over certain time points in segments of chosen length N before the actual local
smoothing was performed by wavelet thresholding. Thus, inherently a lower bound
was fixed for the resolution in time which obviously had consequences also for the
performance in frequency direction: The larger N the worse is the time resolution,
but the better can low-frequency components be detected, and vice versa. Here, in
our new approach, we avoid a two-fold smoothing: projection of these “rough peri-
odograms” It on an appropriate wavelet basis will do the whole task of adaptive
local smoothing!

To give the link to the previous section on anisotropic smoothness classes, with this
particular task, we are confronted with a two-dimensional estimation problem, where
the axes have a special meaning, time and frequency, respectively. It seems reasonable
to design the estimation method in such a way that it takes different degrees of
smoothness into these two directions into account.

As we have seen in the preceding section, we obtain an appropriate wavelet basis
according to the definition of basis B = {us(u,w)} . We get such a basis as tensor
product of two bases, where in time direction we choose a wavelet basis on the in-
terval {¢u e U{¥jx};>1k (e.g. boundary-corrected Meyer wavelets, see Meyer (1991),
or those of Cohen, Daubechies, Vial (1993)). In frequency direction a periodic basis
{we}x U {¢jk}j>ik is used (as proposed in Daubechies (1992, Chapter 9.3)). As an
example, we like to mention the orthogonal periodized Battle-Lemarié spline wave-
lets (as in von Sachs and Schneider (1994)), though these have “numerical compact
support”, only, but our proofs will only slightly change with these. For notational
convenience we write again 1;_; ; and 1/}1 1,k for ¢y and ¢lk, respectively. Whenever
it is not misleading, we use the multiindex I = (71,72, k1, k2).

In addition to the “true” wavelet coefficients 8y of f(u,w)

br = /an fu,w) pr(u,w) du dw = /an F(u, @) sk, (w) Yok, (w) du duw (3.4)

we define empirical wavelet coefficients as follows:

9,_2/

bisk (W)t [ Pt (@) () dov (3.5)
t—1)/T -7

In the special case of a stationary time series, the advantage of the tensor pro-
duct basis over the multiresolution basis becomes apparent. Then all coefficients
6 with 71 # [ —1 are equal to zero, whereas 0_1k, j, k) < 27429, 4. , where

Ok, = [ f(W)j,k,(w) dw are the wavelet coefficients of the (one-dimensional) spec-
tral density f(w) = f(u,w) . In view of the results from Section 2 it is obvious
that in estimating f(u,w), which is constant in u, we can obtain the same rate as in
Neumann (1994) in the stationary case.

In the following we intend to derive asymptotic normality of the empirical coeffici-
ents by the method of cumulants. It turns out that a simple central limit theorem
would not be sufficient for proving risk equivalence between our thresholded wavelet
estimator and the case of Gaussian noise. In view of quite a large number of coeffi-
cients which cannot be a priori neglected in cases of “inhomogeneous smoothness”,
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we have to choose the threshold somewhat higher than the noise level, i.e. of larger
order than the standard deviation of the empirical coefficients. Accordingly, we need
some formulation of asymptotic normality, which puts special emphasis on moderate
and large deviations.

Let o2 denote the variance of 6;. In contrast to a central limit theorem, where it would

be sufficient to show that cum,(6;/0or) = o(1) holds for each particular n > 3,
here we need a stronger estimate for the higher order cumulants. For the reader’s
convenience we quote a lemma from Neumann (1994), which provides appropriate
estimates for general quadratic forms.

Lemma 3.1. Let
nr = _IMXJ

where

X =X, Xnr), M= ((Ma))ymr,..7) Ma = M.
Further, let
ér = Y'MY,
where Y = (Y1,...,Yr) ~ N(0,Cov(X)).
Then, under (A5),
cump(nr) = cumy(ér) + Rn
holds for n > 2, where

(i) |cumn(ér)] < var(ér)2™?(n —1)! [)\m:ix (M Cov(&))]n_z
(1) Rn < 2"_202"((2@!)1“Hgf}X{|Mst|}M 1M]152,

W = Sompel Mal}, M = {3 Ml
8 t

In the following we are able to show asymptotic normality for all coefficients 6; with
201172 = o(T) and ;' = o(1) .
Fix some § > 0. We define

Ir = {I]|2#*# <7} (3.6)
Making use of Lemma 3.1 we obtain the following result for the empirical coefficients.
Lemma 3.2. Assume (A1) through (A5). Then
(’L) E 5] = 01 + O(T_l/z),
(“) ’U(L’r‘(é}) =2 T /(an{f(uaw)¢j1k1(u)}2 du QZJEIQ(W) [QZJIZICZ(W) +
—I_QZJEIQ(_W)] dw + O(T_l) + O(Z_jZT_1)7
(i6) |eumn(81)] < (n!)*H27CmT (T2 +2) 2 1og(T))2  for n >3
and appropriate C > 0 uniformly in I € Ir.

Using Lemma 1 in Rudzkis, Saulis and Statulevicius (1978) we now obtain the desired
version of asymptotic normality.
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Proposition 3.1. Assume (A1) through (A5). Let Ar = (logT)* for any fized
0 <A< oo. Then

P (£(6; — 0r)/or > z) = (1 — &(2))(1 + o1))

holds uniformly in —oo < z
arbitrarily small, where ®(z)
distribution function.

<Ar and I €¢ZIrnN{l| 22 >Tr} for p>0

JZ. e(t)dt denotes the standard normal cumulative

Let
Iy = {I €Ir| (jr,72) £ (1 - 1,1 -1)}.
We consider the estimator

f(u:w) = Z 5(')(51,)\1,71);1,1(’11,,(.0),

IeTy,

where the thresholds A;r are specified below. As usually done, we do not shrink
the coefficients from the coarsest level (j1,72) = (I — 1,1 — 1) . This seems to be
reasonable in view of our assumption (A2), d), which implies that the spectrum is
bounded away from zero.

In order to establish the equivalence to the case of Gaussian noise, we consider the
following approximating model for our empirical coefficients:

&r = 07 + orer, I €Iy,

where e; ~ N(0,1).
Essentially by integration by parts, due to Proposition 3.1 we obtain the following
assertion.

Proposition 3.2. Assume (A1) through (A5). Then, for arbitrary nonrandom thres-

holds Ajr = O(T~2,/log(T)),

> E(898 ) — 61)" = (1 + o(1)) 32 E(60(, Arx) — 61) + O(T7mma).

IEIT IEIT

This asymptotic risk equivalence enables us to derive the following theorem. Re-
call that ¥(my, my) was defined in Theorem 2.1 and y(mq,ma, p1,p2) in Lemma 2.3,
respectively.

Theorem 3.2. Assume (A1) through (A5) and (1—8) y(m1,ma, p1,p2) > ¥(m1, m2)
with § as in (3.6).

Further, assume that, for some yr — 1,

yrory/21og(#I9) < Arr < CT Y% /log(T)

holds for I € I}, Ih C IS, where #(I%\ I%) = O(T*~%(m1m2)), Then

ENf = flEaoaintnmy = O ((log(T)/T) "™ m)).
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There are many possibilities for mi, ma, p1 and py to fulfill y(mq, ma, p1,p2) >
¥(m1, my), for example, if m; > 2/p;. Then we can find some sufficiently small
6 > 0, such that the assumption of Theorem 3.2 is satisfied. Hence, our estimator is
simultaneously nearly optimal over a wide range of smoothness classes.

Although Theorem 3.2 is of certain theoretical interest, it is not very helpful for

practical purposes, because the definition of the estimator f depends on the unknown
quantities o7. It is a natural idea to use some initial estimates of them to construct

a fully adaptive procedure. Let A; be any random thresholds and ?be the same

estimator as f with these random thresholds. The next theorem characterizes the
performance of such an estimator under a weak assumption on the random thresholds.

Theorem 3.3. Assume (A1) through (A5). Let (1—6) v(m1, ma, p1,p2) > H(m1, my).
Assume that, for some ypr — 1,

> E(67 + 1)1 (31 ¢ [yrory/2log(#19), CT—l/%/log(T)]) _ (T~ tmima)y)

TS, (3.7)
Then

E|f - f||f:2([o,1]x[_,,,7,]) =0 ((log(T)/T)—ﬁ(WﬂnZ))_

Remark 3.2.
(i) By Cauchy-Schwarz, (3.7) is obviously satisfied, if

P (3 ¢ brory/2108(#78), 0T\ fiog(T)]) = O(T™*)

holds for I € T , where #(Z%\ I3) = O(T*~%(mim2)y
(ii) If the assumptions of the Theorems 3.2 and 3.3 are to hold uniformly, then all
assertions will hold uniformly in the class F]7:72.

To end up with a fully automatic estimator, we still have to find a practicable rule
for the thresholds A;. All we need are asymptotic majorants of o74/2log(#Z2) ,
which are also of order T~%/2,/log(T) . This can be achieved by plugging in some

consistent preliminary estimate f into the asymptotic formula for the variance of the
empirical coeflicients, which is given in Lemma 3.2. Then we can use the thresholds

A = ory/2log(#I3%) , with &7 as in Lemma 3.2(ii). It turns out that (3.7) will be

satisfied under weak assumptions on the time series and the estimator f.
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4. PROOFS
Proof of Lemma 2.1. Let j7 and j; be chosen such that

7 —2ms /(2mims+mi +m 7F+1
2l < Cpeima/Cmimatmitma) o i+,

273

IA A

COE—2m1/(2m1mg+ml+m2) < 2.7;'1'1
hold for some Cy chosen at the end of this proof. Define
Iﬁ = {I = (j17j27k17k2)| (j17j2) = (]I;];)} .

It is obvious that Z, satisfies

#_’Z’e % 2J'f+j; = 6—2(m1+m2)/(2m1m2+m1+m2).

It remains to show that, for an appropriate choice of Cy, the relation ©, C © holds.
Let f =3 0;ur be arbitrary with (6;) € ©.. Then we obtain

o < ||f||°o < C 20t +33)/2 < CCOE2m1m2/(2m1m2+m1+m2) (41)
and
o™ o migUit +35)/2
Iz flle: < II(9 m1f||oo < Ce2fimigliiti)2 < ¢, (4.2)
z,
For Cp small enough we obtain f € F'»™2, which implies ©. C 0. O

Proof of Lemma 2.2. Let Z. be chosen as in the proof of Lemma 2.1 and let

0;:{6, if I €7,

0 otherwise
We have seen in the proof of Lemma 2.1 that (6}) € © holds, which implies

(B Fru mg) > Ez#Ie > 06219(m1,m2)‘

Pp1,p2

Since Q¢ (B, Fmum2) < Q (B, Fu™), we have a lower bound for Q. (B, Fmum?).

P1,Pb2 P1,P2 p1,p2

Let now f € F'2™ be arbitrary.
Let j; > I and z(j, x,) € supp(¥jx, ). Then, by Taylor’s formula,

= /¢j1k1($1) [/:1 (21— 2™ 8617;’;1 f(z7q;2)dz] dzq

(31.k1) (ml - 1)'

. o™
= 0(2m ) [y, da: [ 7 d
( ) [Banenlde [ |5 (e, 02)| ds
. o™
= QO (277(m-1/2) / —f(z,z5)| dz,
( ) ey |5 1 (2222)
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which implies, since every basis function p; overlaps only with a finite number of
basis functions from the same scale (j1, j2), that

p

Z ‘9(j1j2k1k2)

k1 ,ky

= 2
k1,k2

p

/¢j2k2($2)/¢j1k1($1)f($1,$2)d$1 dz,

. . aml P
< C> 991 (m1—1/2)p9izp/2 [// ~mr f(z1,22)| dzs d:nz]
ki ko suPP(K(jy jp ki k2)) 6‘,1;1
. o gm P
< C Z 2—J1m1P2(J1+J2)P/2// —mlf(m17m2) dzy dzg *
ki ko suPP(K(jy gk kp)) 6:1;1
p—1
« (mes(supp(is, joiska))))
o™ |?
< 02—j1m1P2(j1+j2)(1—P/2) f
: ],
— O(2—j1mw2(j1+j2)(1—p/2)) (4.3)
for p < p;. By analogous calculations we can show that
Z ‘e(jljgklkz) ’ =0 (2—j2m2p2(j1+j2)(1—p/2)) (4'4)

k1 ,ky

holds for 7, > 1, p < ps.

Let 37 and 75 be such that 21 = ¢ 2/(@mitlimi/ma) and 9% = ¢ 2/(Zmatlima/mi)
We decompose the set J = {(j1,72) | 71 > [, 72 > [} into the following three sets:

J = {(1,72) € T |51 <j7and 55 < 55 },
T2 = {(51,72) € T | j1m1 < jamg and 72 > 75 },
Js = {(1,72) € T | j1m1 > jamg and j1 > 7 }.

Then,

)‘I,e

€

S5 e (1) o) 4 ming 00

(51,J2)ET k1 ,k2

= 0 (&271H9) = O (¥mma)) (4.5)
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Further,

I R R P

(51,72 )€ To k1 ks € €

2

i1+ 7 . . Kmlmgj_j*
B ol e )

Ja >33 Jiijimy <jamz
— (297 (mitma)/my Z 0 (exp{(log(Q)(?’m +my) — Kfnl,mZ/Z) (72 — ];‘)/ml} \/J2 — ]2*)
J2>35

= O (Sitmtml/m) = O (2mm)) (4.6)

Here the last but one equality follows due to the convergence of the geometric series.
Let (71,72) € J2 be fixed. We choose p=1ifpy=1lorl<p<2, p<pyifpp > 1.
By (4.4) we obtain

4 {(kl,kz)\ 100 inkaka)| > )\,,e} -0 (Aigz—jzmgpz(jl+j2)(1—p/z)) 7
which implies that

> min {)‘ie? 0%}

ki k2
= @#{(k1, ka) | 0G50k k0)| > Arc} + > M
(1 k2):1005, g kg ky) <AL,

— O(Ai—epz—jmpz(jl+jz)(1—p/2))
- 0 (62—p(j2 _ jz*)l—p/22—j2mzp2(j1-I—j2)(1—p/2)) ‘
By my > 1/p we obtain that [mimay + (mq + ms)(p/2 — 1)] > 0, which yields
> > min{), 61}
(J1.32)E T2 ko1 k2
—  ¢2P9—i3m2p Z Z 0 ((J2 _ jz*)l—p/22(j§—j2)m2P2(J'1+j2)(1—P/2))

Jo>35 J1:jimy <jamaz

mq +m

(2P (ma— "5 " )p Z 0 ((Jz _ jz*)1—P/22(J'§—jZ)[m1m2+(m1+m2)(P/2—1)]/m1)

J2>75
- 0 (62‘9("11,"12)) ) (4.7)

The sum over J3 can be treated analogously to (4.6) and (4.7), which finishes the
proof. [

Proof of Lemma 2.3. 1t is easy to see that

lf-pProjp f'= ¥ T ¥ Y&+ ¥ Y4

Jit+32>J -2 ky ko (51,32)ETa k1 k2 (51,92)ETs k1 k2



where
Js = {(51,72)| L1j1 > Laj2 and 71 > (J —2)Ly/(L1 + La)},
Js = {(J1,72)| Lujr < L3z and  jo > (J —2)L1 /(L1 + L2)}
with
Ly =my—1/p1+1/pa, Ly = my—1/ps+1/p1.
For the sake of a clear presentation we introduce the following notation

0(¢,j1,k1),(¢,j2,k2) = / ¢j1k1(m1)¢j2k2($2)f($1, :112) dml dm?'

Now we get by Parseval’s equality, Jensen’s inequality and (4.3) that

>, X

J2: J2<g1L1/La k1 ,k2

. 2
‘PTOJ (W51 ®Vji Ly /5 41]) fH

2
- Z 0(¢,j1,kl),(¢,[j1L1/L2+1],k2)
k1 k>

_\ 2/;
pP1
< (Z ‘0(¢,j1,kl),(¢,[j1L1/L2+1],k2) )
k1 ko

o O(2—2j1m12(j1+j1L1/L2)(2/51—1))

= 0 (2—j1 [2m1m2+m1+m2—2m1/52—2m2/51]/L2) )

Since [2mimgy + my + my — 2my /Py — 2my /1] > 0, we have
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(4.8)

Z Z 0% =0 (2—1[2m1m2+m1+m2—2m1/52—2m2/51]/(L1+L2)) =0 (2—J‘Y(m1,m2,p1,p2)) ]

(51,72)E Ty k1 k2

The sum over J5 can be treated analogously, which proves the assertion.

Proof of Theorem 2.3. Using (2.10), Lemma 2.2 and Lemma 2.3 we obtain, with §? =

€?log(1/e€) , that

Ef — fI?
= Z E(5()(§1,)\6) — 0[)2 + Z 0?
Iek. I¢K.

= 0 (#/ceé (\/2log(#ice)+1) p(y/2log(#K.)) + > min{6, 67}

IeK.

_|_ O (2— Je‘Y(ml ,M2,P1 ,p2))

— O (e y2IogGhe) + (B, ) + )

= 0 ((& log(1/e))"mma))

|
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Proof of Lemma 2.4. Let, w.l.o.g.,m; < m,. Let 7* be such that 27" < Cpe~M/mitl) «
29" +1, To get a lower bound for Q.(B, F™™2) consider the function

P1,P2
fe,l(mlam2) = 5227.*/2’[)0]'*,]61(1111).
ky
We have
[ feillo: < [[ferllo < Ce2F" < CCoem/(matt))
o™ o™ i*(mi+1)
||er,1 i S ||er,1||oo S Ce2 S CCO
1 1
and
o™
0z e ler =0
which implies that f.; € F'."2 for an appropriate choice of Cp. With the exception

of a negligible number of boundary wavelets we have, using notation (4.8),

O(p,5% k) (.57 k2) = C6,

which implies that

: ’1_9711.1,7112
> mln{ez,0(2¢,j*,kl),(¢,j*,k2)} > e ), (4.9)

k1 ko

Let now f € F™2 he arbitrary. Then we have

P1,p2

>y min{e2,9(2¢,j*,kl),(¢,j*,k2)} =0 (6222j*) =0 (62’_9(’"1”"2)) . (4.10)

1-1<5<3* ki,k2

By (4.3) we get

# {(kl, k2) \ |0(¢,j,k1),(¢,j,kz)| > 6} =0 (6—512—j[(m1+1)51—2]) 7

which, by (my + 1)p1 > 2, implies that

> min{fza9(2¢,j,k1),(¢,j,kz)}

I>5* ki ko
= Y & {(kl;kz)‘ 10.5k1),(b5ik2) | > 6} + > ) 0.3k ok2)
7>3* I>3% (k1 ,k2):10(y 5 k1 ) (8,5,k) | <€
_ Z 0 ( 2-p19—il(m1+1)p1— 2])
i>5*
= O (&P 7lmtn-2) - g (omma) (4.11)

The terms corresponding to the basis functions @i, (1) k, (z2) as well as to ¥k, (21)Yk, (22)
can be treated analogously. [
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Proof of Theorem 3.1. Let g(u,w) := |A(u,w)|?>. Neglecting the factor 1/(27) we
show that

Rr —/ / {szchus) exp(—iws) — g(u,w)Pdudw —0 as T — oo,

where

cr(u, s) = cov{Xpur—s/2,7; Xjur+s/2,7} = /W A([uT—s/2]/T, X) A([uT + s/2]/T, A) exp(eAs) dA.

Using the relation >, exp(z(A — w)s) = §(A — w) we obtain

RT_/ / (y / T —s/2]/T, ) AT + s/2]/T, N—g(u, 3)] exp(s(A—w)s) dA}? du duw.

§—=—00

Proceeding quite similarly as in the proof of Lemma 3.2(i) (on the rate of the bias),
we have to estimate two terms of similar form. Hence, we only treat the first one
which is

As(u,s) = fAs(u, A) exp(irs) dX,

with
A, 3) = {A(WT — /2/T, %) — A(u, )} () :
2
Zﬁs(u,s) exp(—iws)| dwdu
= /duZZA U, s) A , V) /exp(—iw(s—v)) dw
= ¥ [(dulBi o) = B B,
—~Jo
with
(nsT)/\l
R = Y z / A.(u,s)[?
|s|<2T n=1 1)5’-"
and

R(z) Z/du|Aus|,

|s|>2T
where st :=|s]/(2T), 0 < |s| < 2T.
Similarly to the proof of Lemma 3.2(i) we can show that

sl sup |A(u,s)|

u€[(n—1)sy,ns7]

< G [oup (A1) + up TV (A, )| 2P TV (A1)

+ Oz sup{[A(w, A)| } TViera) {TVetan) (A5 D)}
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where C; and €, denote some positive constants and where, on the right-hand side,
the sup, is taken over w € I,(s7):=[(n — 1)sr — 1/T,(n + 1)sy| and the sup,
over A € [—m, 7] .

Note that

[sp']+1

sup |A,(u,s)| = O(ls| ™),

n=1 uEln(sr)

due to (AZ) (a‘)a(b)7(c) (as Xn TVIn(’T) (A('7 )‘)) < TV[OJ] (A('7 )‘))) :

Hence,

[sp'1+1
RP] < 3 Jsz| Y sup |Au(u,s))?
|s|<2T n=1 u€lx(s7)

-~

71 +1 2
< @)Y s { Y. sup As(u,S)} = O(T " log(T)).

|s|<2T n=1 u€Eln(sT)

Further,
|R§?)|=0(Zs )—0 ),
|s|>2T

as, by Definition (3.3) for |s| > 2T, A,(u, ) = {A(0,)) A(1,A) — |A(u, A)|*} inde-
pendent of s, hence, supgc,<i |As(u, s)|=0(]s|™).
]

Proof of Lemma 3.2. ~
(i) We show that Ry := |Ef; — 6, = 0(2(3'1"'3'2)/2T_1 log(T)) . By (3.1) and with
Ay(X) := A(t/T, )), neglecting the factor 1/27,

ElLir(w) = Z cov(Xie—s/2),1; X[t+s/2,T) €xXp(—1ws)
|s/2|<min{t—1,T—t}

- | A a () Aoy () exp(i(A — w)s) dA.

|a/2|<m1n{t 1,T-t}
Let t7:=min{t — 1,7 —t} . According to the decomposition
App-o/2(A) Ajerora)(A) — A(A)A:(2)
= [Ap-s/2(A) = AA)] Ae(A) + Appa/2)(A) [Aers/21(2) — A(A)]
we have Ry = R(l) + R(z) with
B = S [ duin) 3 [ do B [T (AR - F N exslith

§——00

—w)s) dX

- /(t_l)/Tdulﬁjlkl(u) > / dw Pk, (W) exp(—iws) / | A;(A)]? exp(ids) dA

[s/2|>tr

Ry + R,
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and

Rgg) Z/t 1y/T au Pj,k, (u /dw Yigky (W) exp(—iws) *

s/2|<tT
* /m [App—s/21(A) — Ae(A)] exp(ids) dA

where with ngz) we only treat the first part of two similar differences, w.l.o.g.

Now, by (A2)(b), (A3) and (A4) b),

B < [ ol |Z/ 1y 40 [ ()] TVignyaym(£,0)
< 2” J2/2931/2p-1 supTV[oJ](f(',w))

— 0(2—j2/22j1 /2T—1) ,

and
BED) < sl BTTY Y [an(s)] sup |f¢/7, )
u t |s/2]>tp t
_ 271/2T Z Z 0212/2 —2
t |s/2|>tp

= QU +R2T 1 0g(T)) .
Further, with s being even, w.l.o.g.,

s/2—1

(2) Z¢J2k2 Z/t 1)/T du ¢J1k1 /At Z {At n At_n_l()\)}exp(i)\s) d)\

such that, by (A2)(a), (b), (c), for some positive constant C,
B < O3 ks (3)] sup [ (w)] T Jsl/2 Js[™! [su;{m(u, NI} sup TVou (A(2)) +

+ SufﬂA(U; MY TVuxn(A4) + sup TVi—xx (A(u,-)) sup TVioy (A(+2))
— O(2j1/22j2/2T—1)_

The proof of the last estimate (for ngz)) is delivered by some lengthy, but straightfor-
ward algebra using elementary generalizations of total variation estimates and partial
summation. Roughly speaking, we proceed as follows: The integral w.r.t. A delivers
s/2 terms which are all of order O(s™'), as for each of the differences labeled by n
we use estimates like (cf. Edwards (1979), p. 34f.)

/A exp(zAs) dA ~ ZA (Ae){9s(Ak)—9s(Ap—1)} ~ — Z{At()\k—l—l)_At()‘k)}ga()‘k)
with  Ay(A) := m (A(A) — Aim1(D)), gs(A) := exp(sAs)/(ss) and with a
sufficiently fine partition (Ag)g of [—, 7). Note that g,(A) = O(s™1).
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The sum over ¢ can be bounded from above by the bounded total variation of As(})
as a function of u. Putting both (simultaneously) together, in order to strictly bound
all occurring terms, we need Assumptions (A2)(a), (b) and (c), as A¢(A) is a product
of two functions of time and frequency.

(ii) To apply cumulant techniques we write f; as a quadratic form with a symmetric
matrix Np:

6r = X'NiX,
where, Ny = (M;+ M;)/2 and, with wj (¢/T) = T f(tt/_il)/Tiﬁjlkl(u)du and

Tina(5) = Bina(s) = 27) 7 Biges () exp(—itws) dw ,

(Mp) = T~ wye, (52 )Wk, (t — v) if t+v even
Dt = T_l wjlkl(%)fa}jZkZ(t — ’U) if t—I—’U odd

In the following, for reasons of notational convenience, we use wj , ($5£) to denote

wjlkl([ ’—H;:l /2]). Note that, by the approximations used in the course of the proof,

this does not lead to any problems.
Since ¢ and 1 are of bounded variation, we get by integration by parts

Bk, (= v) = O (2722 A (2212]t —v[™1)),
which implies that
(Np)w = O (T7122/2 [275272 A (222t — | 1)) .
Hence, we obtain the estimates

Htlax{|(N1)tu|} =0 (T‘12j1/22—j2/2) 7

||NI|| < ||NI||oo -0 (T—12j1/22j2/210g(T))

and

Ny = Y max{|(Np)ul} = O (272/227%/7) .
Let ¥ ~ N(0,Cov(X)). Since
rrtlgx{|(Nz)w|}JV} = 0(17'277),
we obtain by Lemma 3.1 that
var(8;) = var(Y'N;Y) + O(27%2TY). (4.12)
Now, with

’UCLT‘(ZINIZ) =2 tT‘(NIETNIET) (413)
= 1/2 [ t’r‘(MIETMIET) + tT‘(MIETMIET) + 2 tT(MIETMIET) ] ;
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we have to show that

tT‘(MIETMIET)
= 2n T /an{f(U’;w) ¢j1k1 (u)}2 du QZJEIQ (w) QZjZkZ (w) dw + O(T_l)

and

t’r‘(MIETMIET) = tT‘(MIETMIET)
= 2r T Axn{f(u7w) ¢j1k1 (u)}2 du QZJé’Q(w) QZJ'ZICZ(_W) dw + O(T_l) :

As this runs quite analogously for all terms under consideration, we restrict to treat
the first one, only:

tr(M(ErM;XT)
= Z (MI)UW(ET)wS(MI)at(ET)tu

s,v,w,t

L Z w—l-v s+w
= T ZZZwm wJ2k2(w_'U)cT(F:3_w)

s=1v=1

=1
s—l—t t+v
thkl wJ2k2(s - t)cT( oT U — U) )

where we use the convention given in the beginning of our proof which allows to
proceed regardless to the parity of the arguments of wj g, ,

and where X7 = Cov(X) = (cr(+,-)) with

CT(—7

T n) = cov {Xp_n/2),1; Xit4n/2, T} = /_ Ap_ny2)(X) Apgns2(A) exp(zdn) dX.

Note that with this, er(52,t — v) = cov {Xy1; X7}

Further, let 3° = (c(-,-)) with ¢(&,n) := (27)~' [T, f(%,A) exp(¢An) dA. For smooth
A, cr(%,n) = c(&,n) + d(5,n) O(n/T) with both SUPy/T Yo le(%,n)| < oo, and
Supy/r X |¢'(7,m)| < o0.

If A is not smooth, but fulfills assumptions (A2) and (A3), then we proceed as in the
proof of part (i) of this lemma, with the same quality of approximation (i.e. same
resulting rates).

In the following, for sake of notational simplicity, we give the proof of (ii) only for
functions A(u, A) and ; &, (v), which are smooth in u.

To motivate the idea how to derive the leading term of the asymptotic variance, we
briefly sketch the stationary situation (for details, cf. Gao (1993, page 19), but note
the missing symmetrization of the Hermitian matrix M in that reference, which leads
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to a slight mistake in the resulting asymptotic expression for the whole variance):

T2 Z Wik(w —v) Wik(s — 1) c(s —w) c(t —v)

s,t,w,v

= TS TAD ) S efe) el 41— m) T )

5

= 21T~ / w) dw 4 o(T~ )

@mmmwoziqdw()()I%M)f()@“=EMﬂ$;@M@)=0@“U)

To treat all of the occurring remainders, we use estimates like

Yon [ Biky (1) = O(272/2) (due to (A4) b)) and ¥, |c(u,n)| < oo uniformly in
u € [0,1] (due to (A3)).

Note in particular that Y, |n| [li(n)| |l2(n)| < oo, where l;(n) is any of W(n),c(:,n)
or even of 3, W(w —v) ¢(s —w) = (s — v) , say, with again Y, |l(n)| < oo.

Our proof proceeds by three different approximations: The first is replacing cT(%, n)
by c(%,n) with an error of order O(n/T') (see above). The second one is to replace
C(SZ’«”; ) by e(37,°) + O(w/T) and wjk, (%) by wjk, (57) + O(2/2 w/T). With
this,

t'r’(MIEMIE)
T_zzzz [wjlkl(%) + 0(2j1/2 %)] wj2k2(w
S

j12t "
S (W) + 0@ 1)) s~ ) [t —v) + O(%) ]

t

=
o
N
S
\.Cn
&
_|_
S
S8

The leading term of ¢tr(M ;X M;Y) turns out to be

T3S win () wisk () [ [ X Fe ) Fgs ) B () Bt (3) exp(i(s—2)(1- ),

The occurring remainders of both first (i.e. replacing cr(-,-) by ¢(-,-)) and second
approximation are of the following kind (or even of higher order):

T2 Es,v,w,t wjlkl(%) Wiy ky (%) ijkZ (w—v) wj2k2(3_t) c(ﬁ: S— w) (2T7t U) O(%) :
In each of these remainders use estimates_like
S0 S B @k, (s — t)] (5.t — )| = 0(272/2), and respectively,
T2 Y w)ik (o) Wik (o) U(s — ) I . (s —t) (st —5) |
L £ Jrk1 oT k1 oT T k1 o7’
= O(2UTRIT™2) = o(T™).
Finally, the third approximation, which is

K

= — v

3 = £ (5 0) 0

v v S . . 23 — v
ﬁ ) and wjlkl(ﬁ) = wjlkl(ﬁ)—l_w;lkl(f) O(2J/ T):
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delivers a leading term, with n := s — v,

T_2 Z | |2: wjzlkl(%)[//d)‘ dj‘ Q:Zj2k2()‘) QZJEIQ(S‘) f(%; )‘) f(%; 5‘) eXP(in()\—j\)) +
+ B (n) ]
with

S B @) = ¥ iECn = o@ery,

n

where ﬁ(,n) = f’leZkZ()\) f(-,A) exp(in)) dA is again absolutely summable as a fun-

ction of n, uniformly in its first argument, and with 7723, w?, (5%) = o212 T1).

We finish the proof by a technique similar to the proof of part (i), i.e., replacing

Ynj<T -+ bBY ot -+ , noting that 3,57 |.7:"(,n)|2 = O(_T_l) .
Hence we end up with the following overall leading term of ¢tr(M X M;¥) ,

2w T2 Y why, (55) [ dAGL,00) F5mN)

1 L ~ . .
= 27 T_1/0 du ¢;2'1k1 (u) /_7r d q/JikZ()\) f2(u7 A) + O(T—22(J1+J2))7

due to the bounded total variation of all occurring functions.
The proof of (ii) ends by applying the same techniques to the remaining two terms
of the sum in (4.13).

(iii) This can be shown simply by using Lemma 3.1 with, by (A5),
Amax (M1 Cov(X)) < |[M;]] || Cov(X)]

= 0 (T_12(j1+j2)/2 log(T)) sup {Z cov(Xs,Xt)}
1<e<T |5
= 0 (771 20:+2)/2 10g(T))
and the estimates for max, {|(M1)uw|} and || M|l derived in the proof of (ii). O

Proof of Proposition 3.1. By (ii) of Lemma 3.2 we get, in conjunction with (A2)c)
and d), that o7 < T~/? for T? < 2% . Hence, we obtain by (iii) of Lemma 3.2, fo
appropriate g >0,

—

n—2

|cumn(§1/01)| < (nh)*+? (CT_1/22(j1+j2)/2 log(T)) < (nl)2 (CT”)—(n—z)

(4.14)

for all n > 3, which implies by Lemma 1 in Rudzkis, Saulis and Statulevicius (1978)
that

P (£(6; — Bf;)/or > z) = (1 — ®(z))(1 +o(1)) (4.15)

holds uniformly in 0 < z < T for some ¥ > 0.
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With A;:= (E; —6;)/o1 = o(1) we get
P(£(8;— 6p)/or > z) = (1 — 8(z))(1 +0(1)) + O(18(z) — B(z + Ap)]).
Fix any ¢ > 1. For z < ¢, obviously
&(z) — ®(z + A7) = o(l — (). (4.16)

Let w.l.o.g. A; > 0. Using the formula (1 —1/z?)p(z)/z < (1 — ®(z)) we obtain
for z > c that

[®(z) — ®(z + As)| = Arp(z) = ol — &(z)), (4.17)
which, in conjunction with (4.15) and (4.16), completes the proof. [

Proof of Proposition 3.2. First,let I € ZrN{I | 22 > T*} . Since §() is monotonic
in its first argument, there exists some ; such that

§0r, A1) > 61, if 61— 6r > 1,
5()(51, )\I,T) < 0[, if 51—01 < 7.

W.l.o.g. we assume that 5(')(51, Arr) > 0r,if 0 —6; = ~r -
Let nr = CT~*/2,/log(T) for some appropriate C. Then

E (6981, Arx) — 61)°
— EI (y; <8 —6; < nz) (6981, Arz) — 61)°
+BI (—nr < 8 — 6; < 1) (6981, Arz) — 6)°
+EI (187 — 611 > n2) (8981, Arz) — 61)

= Sl + Sz + Sg.
Applying integration by parts w.r.t. z, we obtain by Proposition 3.1 that
2 ~
i = — [ |[1tn < ore <) (89061 + 012, 22) = 81)°| d{ PG~ 81)/01 > 2)}

= [{P(@~6n)for>2)} d [1 (vt < 013 < nz) (8961 + 012, M) — 9,)2]
+ P((Br — 6)/or > 1) (861 + 1, Anr) — 61)°
< or{[{1 - @)} d|T(w < o1 <nr) (8961 + 712, 0a) — 61)|
+ P((ér = 6n)for = 1) (8961 + 1, e2) — 61) "}

~ 2
= CrEI (y; < & — 0 < nr) (6901, \r7) — 61) (4.18)

holds uniformly in I € Zr N{I| 272 > T*} for some Cr — 1. The term S, can be
estimated analogously.
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Using Lemma 3.2 we obtain, for arbitrary even n, that
E(gz - Hz)n =0 (Z II |cumij(§1)|) = o(T™™/?),

T=1 1,0 intdy oo in =0, >1

which implies, by Cauchy-Schwarz, that

Sy < \/P (16 — 6] ZnT)\/IE (6B, Arr) — 0,)4 = O(T™?), (4.19)

if C' is chosen large enough.

As |5(')(§1,)\1,T) -0 <A+ |§1 — 07| , the terms with 272 < T® contribute to
the risk a term of order O(T?'log(T)) , which is O(T~*(m1™2)) if p is chosen
sufficiently small. [

Proof of Theorem 3.2. Using Parseval’s identity we infer from Proposition 3.2 and by
|5()(01, )\) — 01| S A + |91 - 0[| that

BIf - £ = 3 E(600n20) - 61) + X 63

Ielr I¢Tr
= (14 0(1)) 3 E(89(E, M) — 61) + O (T7mm))
IeT
+ > (2X3, + 2E(8; — 6,)?) (4.20)
IeIT\T,

+0 (T—(1—5)7(m1,m2,P1,P2)) .

From (2.10) we see that the first term on the right-hand side of (4.20) can be estimated
by

AT
C Z ( ( 1) o(ZLL LT ) + mln{)\IT70§}) + 0 (T_Ig(mlm))
I€T;, o1
< C Z min{a? log(T),Hﬁ} +0 (T—ﬁ(ml,mZ))
IeT},

1,M3 —9(mq,my
N O< max{”’\/logT}( p1 b2 )+ T ( ))
= 0 ((tog(T)/T)"m ).

The remaining terms on the right-hand side of (4.20) are also of order O(T~%(mm2)10g(T)) ,
which finishes the proof. []

Proof of Theorem 3.3. Since () is monotonic in the second argument, we have for
any random threshold A; satisfying A;1 < A; < Az, that |5(')(01, Ar) — 04 <

max{|6§()(67, Ar1)—01l, |68, A1 2)—01|} . For CT=1/2,/log(T) > vrory/2log(#13)
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both the nonrandom thresholds A;r = 7rory/2log(#Z2%) as well as A7 =
CT~/2,/log(T) provide the desired rate for the risk. Hence we obtain

Z E(&”(ﬁl,j\) — 0[)2

IeTh,
~ 2
< 3 E(89(0vror/2los(#17) — 61)
IeTy,
~ 2
s E(s(-)(e,, CT/2\/10g(T)) — 0,)
IeTy,
+ Y EI (X ¢ [fYTa“/zlog(#Ig),CT—l/z,nog(T)]) (282 + 262)
IeTy,

= O ((log(T)/T)77tmm)) .

From the proof of Theorem 3.2 we know that the risk arising from the estimation of

r, I ¢ I is also of order O ((log(T)/T)_ﬁ(ml”"Z)) , which finishes the proof. [
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