Spatial Regression Models: A Systematic Comparison of Different
Model Specifications using Monte Carlo Experiments

Tobias Riittenauer

University of Kaiserslautern
Department of Social Sciences
Erwin-Schrodinger-Str. 57
67663 Kaiserslautern, Germany
ruettenauer@sowi.uni-kl.de

Authors’ preprint version. Please cite the final article:

Riittenauer, T. (2019). Spatial Regression Models: A Systematic Comparison of Different
Model Specifications using Monte Carlo Experiments. Sociological Methods and Research,
Forthcoming.

LAST EDITED
June 9, 2019

ABSTRACT

Spatial regression models provide the opportunity to analyse spatial data and spatial
processes. Yet, several model specifications can be used, all assuming different types
of spatial dependence. This study summarises the most commonly used spatial re-
gression models and offers a comparison of their performance by using Monte Carlo
experiments. In contrast to previous simulations, this study evaluates the bias of
the impacts rather than the regression coefficients and additionally provides results
for situations with a non-spatial omitted variable bias. Results reveal that the most
commonly used spatial autoregressive (SAR) and spatial error (SEM) specifications
yield severe drawbacks. In contrast, spatial Durbin specifications (SDM and SDEM)
as well as the simple SLX provide accurate estimates of direct impacts even in the
case of misspecification. Regarding the indirect ‘spillover’ effects, several — quite re-
alistic — situations exist in which the SLX outperforms the more complex SDM and
SDEM specifications.
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1. Introduction

The increasing availability of spatially aggregated and georeferenced data has led to
an increasing interest in spatial analyses amongst social scientists (Logan, 2012). For
instance, social scientists have investigated the influence of contextual conditions (e.g.
Crowder, Hall, & Tolnay, 2011; Friedrichs, Galster, & Musterd, 2003; Kling, Liebman,
& Katz, 2007; Sampson, Morenoff, & Earls, 1999; Sampson, Morenoff, & Gannon-
Rowley, 2002), or have dealt with explicitly spatial research questions like segregation,
neighbourhood boundaries, or the exposure to environmental conditions (e.g. Dokshin,
2016; Downey, 2006; Legewie & Schaeffer, 2016; Lichter, Parisi, & Taquino, 2015;
Reardon et al., 2008; Riittenauer, 2018).

Still, researchers need to be aware of the fact that analysing spatial data bears new
challenges regarding the applied methods. In many cases, the spatial processes are of
specific interest, and thus require the use of spatial regression models. However, spa-
tial methods may be necessary for consistent estimators albeit the spatial processes
not being of explicit interest. As Tobler’s first law of geography puts it: ‘everything
is related to everything else, but near things are more related than distant things’
(Tobler, 1970, p. 236). For instance, it seems plausible to assume that the house prices
in one district are correlated to or even influenced by the house prices in neighbour-
ing districts. In consequence, the observations cannot be considered independent and
identically distributed (i.i.d.), which violates a standard assumption of linear regres-
sion models: E(e;je;) = E(eg;)E(e;) = 0, where ¢ is the random error term for each
observation i and j (i # j). Intuitively, this violation results in erroneous inferential
statistics when using the conventional OLS estimator of the equation y = X3 + €.
However, spatial autocorrelation can also lead to biased point estimates, depending on
the spatial process underlying the spatial correlation in the data (e.g. Pace & LeSage,
2010).

Several spatial model specifications exist to deal with this issue by explicitly mod-
elling the spatial dependence. Using the spatial weights matrix W, the most common
spatial model specification is the spatial autoregressive model (SAR), which adds an
endogenous spatially lagged dependent variable Wy to the conventional regression
formula. Alternatively, the spatial error model (SEM) models the spatial dependence
among the error terms u = Wu + €, and the spatial lag of X model (SLX) comprises
the spatial lags of the exogenous covariates W X . Further specifications use a combi-
nation of these most basic specifications. The spatial autoregressive combined model
(SAC) includes autocorrelation in the dependent variable and the error term (Wy
and Wu), the spatial Durbin model (SDM) combines an autoregressive dependent
variable and spatially lagged covariates (Wy and W X)), and the spatial Durbin error
model (SDEM) comprises a spatial error term combined with spatially lagged covari-
ates (Wwu and W X). The specification containing all three spatial terms (Wy, Wu
and W X)) is called general nesting spatial model (GNS).



On the one hand, those models provide a way to obtain unbiased point estimates of
the true parameters. On the other hand, spatial models offer the opportunity to esti-
mate spatial spillover coefficients, thereby informing the researcher about processes of
spatial correlation or influence. Still, researchers have to consider several options, as the
different specifications rely on different assumptions regarding the spatial dependence.
Unfortunately, empirical specification tests of spatial regression models yield severe
drawbacks and there is no general rule for selecting the correct model specification in
applied research. Therefore, it is of substantial interest to evaluate the performance of
spatial model specifications under different scenarios of misspecification.

This study conducts a systematic comparison of different spatial model specifica-
tions in different scenarios of spatial dependence by using Monte Carlo experiments.
It demonstrates under which conditions conventional linear models yield biased esti-
mates and how spatial model specifications perform throughout different scenarios of
spatial dependence. The study extends previous simulations in several ways. First, it
evaluates the bias of the model specifications by relying on the impact estimates rather
than the point estimates, as the model impacts are the measures of interest in applied
research (LeSage & Pace, 2017). Second, it systematically evaluates the performance
of the spatial model specifications in the absence and presence of a non-spatial omit-
ted variable bias. Third, it incorporates multiple explanatory variables with distinct
spatial effects, as this resembles the case in applied research.

The results of the Monte Carlo experiments reveal that the most commonly used
spatial models — spatial autoregressive model (SAR) and spatial error model (SEM) —
have severe drawbacks for applied research. In line with previous findings, those models
are outperformed by more flexible Durbin specifications incorporating spatially lagged
covariates. However, the results also reveal that, under highly realistic conditions,
SLX offers a better performance than the Durbin specifications, especially regarding
the indirect spillover effects.

2. Theoretical background

As a first step in spatial econometrics, the researcher is required to specify the spatial
relationship between the units of observation, or more precisely, to define which units
j are neighbours of unit 7 for all units ¢ = {1,2,...,N}. This is done by setting up
an N x N dimensional neighbours weights matrix W, where all elements w;; > 0
for all neighbouring units 7 and j (i # j), and 0 otherwise. This study relies on a
row-normalised contiguity weights matrix, defining all units as neighbours that share
at least one common border. Several specifications for W' exist, such as for example
k nearest neighbour or distance based approaches (see e.g. Dubin, 2009), and choos-
ing the correct or incorrect specification may be vital for the results. However, these
aspects have been discussed elsewhere (Corrado & Fingleton, 2012; Elhorst & Halleck
Vega, 2017; LeSage & Pace, 2014; Neumayer & Pliimper, 2016), and the focus of this



study remains on the model specifications, thereby assuming a correctly specified W.

2.1. Model specifications

As mentioned above, spatial dependence can be modelled in various ways (for a com-
prehensive introduction see e.g. Elhorst, 2014; LeSage & Pace, 2009). The most popular
spatial model specification is the spatial autoregressive model (SAR), which incorpo-
rates the spatially weighted dependent variable y as an endogenous regressor at the
right-hand side of the equation. The SAR model is defined as:

y=pWy+XpB+e¢, (1)

where y is an N x 1 vector of the dependent variable, W as defined above, X an
N x K matrix of k = {1,2,...K} covariates, and € an N x 1 vector of normally dis-
tributed disturbances. 3 is a K x 1 vector of parameter estimates and p represents the
autoregressive scalar parameter.! This SAR specification assumes that the dependent
variable of unit ¢ is directly influenced by the spatially weighted dependent variable
of neighbouring units j. For illustration purposes, let’s consider an example analysing
the effect of air quality and available green spaces on the house prices of a spatial dis-
trict (e.g. Anselin & Lozano-Gracia, 2008). The house price is the dependent variable
y, while air quality and the availability of green spaces constitute the covariates X.
According to the specification in the SAR model, we would assume that the house
prices in one district directly influence the house prices in neighbouring districts. An
intuitive interpretation for this process might be that sellers or estate agents determine
the prices based on the prices they observe in neighbouring districts.

Another specification of spatial models is the spatial error model (SEM). In contrast
to the SAR specification, the SEM explicitly models spatial autocorrelation between
the disturbances u, represented by the scalar parameter A. The SEM is defined as:

y=X0+u, @)
u=A\Wu+e.
In this specification we assume that the spatial correlation between our units is caused
by unobserved characteristics, which are either spatially clustered or follow a spatial
pattern, and which are independent of the included covariates. Using the example
above, we could for instance assume that spatially clustered or diffusing crime rates
influence the house prices in the affected areas (but are independent of air quality and
available green space).
A third approach does not incorporate the spatial dependence as an autoregressive
term of the dependent variable or the error term, but directly models so called spatial
‘spillover’ effects by including the spatially lagged covariates into the equation. This



spatial lag of X (SLX) specification is defined as:
y=XB+WX0 +e¢, (3)

where 0 is an K x 1 vector of spatial spillover parameters. This model incorporates
the direct effects 3 of the covariates as well as the indirect spillover effects 6 from the
covariates of neighbouring units. An important property of the SLX model is that 0
constitutes a K x 1 vector, thus including a distinct spatial effect for each covariate.
Here we would assume that house prices in the focal unit are not only influenced by the
characteristics in the focal unit but also by the air quality and green space availability
in neighbouring districts. Moreover, we can hypothesise that the neighbouring districts
matter only regarding the green spaces but not regarding the air quality, as we receive
a distinct spatial parameter for each covariate.

The three specifications shown above represent the most basic specifications of spa-
tial models. Yet, there are further specifications which combine the models mentioned
above. The spatial autoregressive combined model (SAC) comprises an autocorrelated

dependent variable and an autocorrelated disturbance, resulting in:

y=pWy+ XB+ u,

(4)
u=A\Wu-+e.

The spatial Durbin model (SDM), in contrast, combines the spatial spillover specifi-
cation of the covariates (SLX) with the spatial autoregressive term of the dependent

variable, resulting in:
y=pWy+ X8+ WX0 +e¢. (5)

A third combined model is the spatial Durbin error model (SDEM), combining the
specifications of SEM and SLX:

y=XB+WX80 + u,

(6)
u=\Wu+e,

thereby comprising the spatial spillover effects of the covariates as well as an autocor-
related disturbance term.

Combining all three basic model specifications mentioned above leads to the general
nesting spatial model (GNS):

y=pWy+ X8+ WX0 + u,
u=A\Wu+e.



Though the GNS specification combines all the spatial processes of the previous spec-
ifications, this model only plays a minor role in applied research, as this specifica-
tion — analogous to Manski’s neighbourhood effects model (Manski, 1993) — is not or
only weakly identifiable (Cook, Hays, & Franzese, 2015; Gibbons & Overman, 2012).2
Though Burridge, Elhorst, and Zigova (2016) show that the GNS model can be iden-
tified in case of a grouped (block-diagonal) weights matrix, they find that even in
this situation the model might be overparameterised, thereby providing no additional
information over SDM or SDEM.

Note that most of the spatial model specifications cannot be estimated by Least
Squares (LS), as using (constrained) LS estimators for models containing a spatially
lagged dependent variable or disturbance leads to inconsistent results (e.g. Anselin
& Bera, 1998; Franzese & Hays, 2007). However, an extensive amount of econometric
literature discusses different estimation methods based on (quasi-) maximum likelihood
(e.g. Anselin, 1988; Lee, 2004; Ord, 1975) or instrumental variable approaches using
generalized methods of moments (e.g. Drukker, Egger, & Prucha, 2013; Kelejian &
Prucha, 1998, 2010), in which the endogenous lagged variables can be instrumented by
q higher order lags of the exogenous regressors (X, WX, W2X,..., WiX) (Kelejian
& Prucha, 1998).

2.2. Local and global spatial impacts

At first glance, the specifications presented above seem relatively similar in the way
of modelling spatial effects. Yet, they differ in very important aspects. First, models
with an endogenous spatial term (SAR, SAC, and SDM) assume a very different
spatial dependence structure than models with only exogenous spatial terms as SLX
and SDEM specifications. While the first three assume global spatial dependence, the
second two assume local spatial dependence (Anselin, 2003; Halleck Vega & Elhorst,
2015; LeSage & Pace, 2009). Second, the interpretation of the coefficients differs greatly
between models with and without endogenous effects. This becomes apparent when
considering the reduced form of the equations above. Exemplary using the SAR model

of (1), the reduced form is given by:

y—pWy=Xp+e¢,
y=In—-pW) {(XB+e). (8)

When subsequently taking the first derivative of the explanatory variable xj, from the

reduced form in (8) to interpret the partial effect of a unit change in variable x; on



Y, We receive

Oy

B, = AN = PW) " B (9)

for each covariate k = {1,2, ..., K'}. As can be seen from (9), the partial derivative with
respect to xp produces an N x N matrix, thereby representing the partial effect of
each unit 7 onto the focal unit i itself and all other units j = {1,2,...,i—1,i+1,...,N}.
The diagonal elements of (9) indicate how each unit ¢ influences itself (change of z;
on change of y;), and each off-diagonal elements in column i represents the effect of
i on each other unit j (change of x; on change of y;). Since reporting the individual
partial effects is usually not of interest, LeSage and Pace (2009) proposed to average
over these effect matrices. While the average diagonal elements of the effects matrix
resulting from (9) represent the so called direct® impacts of variable xy, the average
column-sums of the off-diagonal elements represent the so called indirect impacts (or
spatial spillover effects). The direct impacts refer to an average effect of a unit change
in z; on y;, and the indirect (spillover) impacts exhibit how a change in z;, on average,

influences all neighbouring units y;.

Table 1. Direct and indirect impacts, adopted from Halleck Vega and Elhorst (2015)

Direct Impacts Spatial Spillovers Type

OLS/SEM B 0 none
Diagonal elements of Off-diagonal elements of

SAR/SAC _ _ lobal

/ (I— pW)~18y (I = W)~ 5y e

SLX/SDEM B 05 local
Diagonal elements of Off-diagonal elements of

SDM/GNS lobal

/ I—pW) ' [Be+ W] (I —pW)~ [Bi + WO, goma

Table 1 summarises the direct and indirect impacts for all model specifications out-
lined above (adopted from Halleck Vega & Elhorst, 2015, p. 345). For OLS, SEM,
SLX, and SDEM, the point estimates obtained in the regression models can be inter-
preted as partial (direct and indirect) impacts. However, in case of SAR, SAC, and
SDM, point estimates differ from the partial derivatives (or impacts). Two important
consequences follow from the impact estimates presented in Table 1.

First, for SAR, SAC, and SDM even the direct impacts differ from the point esti-
mates. This results from the fact that an endogenous term of the dependent variable
Wy contains feedback loops through the system of neighbours (Betz, Cook, & Hol-
lenbach, 2019; Franzese & Hays, 2007; Halleck Vega & Elhorst, 2015). A change of z;
in the focal unit 4 influences the focal unit ¢ itself, but also the neighbouring unit j,
which in turn influences the focal unit ¢ in a feedback loop. This feedback loop is part
of the direct impact.

Second, the kind of indirect spillover effects in SAR, SAC, and SDM models differs
from the kind of indirect spillover effects in SLX and SDEM models: while the first

three specifications represent global spillover effects, the latter three represent local



spillover effects (Anselin, 2003; LeSage, 2014; LeSage & Pace, 2009). In case of SLX and
SDEM the spatial spillover effects can be interpreted as the effect of a one unit change
of x; in the spatially weighted neighbouring observations on the dependent variable
of the focal unit; when using a row-normalised contiguity weights matrix, W, is the
average value of xj, in the neighbouring units. Thus, only direct neighbours — as defined
in W — contribute to those local spillover effects. In contrast, spillover effects in SAR,
SAC, and SDM models do not only include direct neighbours but also neighbours of
neighbours (second order neighbours) and further higher-order neighbours. This can

be seen by rewriting the inverse in (9) as power series:*

(In = pW) '8p = (In + pW + "W + p*W? + )8 = (In + Y _ p"W")Bi, (10)
h=1

where the identity matrix represents the direct effects and the sum represents the first
and higher order indirect effects and the above mentioned feedback loops. This im-
plies that a change in one unit ¢ does not only affect the direct neighbours but passes
through the whole system towards higher-order neighbours, where the impact declines
with distance within the neighbouring system. Global indirect impacts thus are ‘mul-
tiplied’ by influencing direct neighbours as specified in W and indirect neighbours not
connected according to W, with additional feedback loops between those neighbours.

Note furthermore, that all diagonal elements diag(W) = w;; = 0, whereas the
diagonal elements diag(W?) = diag(W W) # 0. Intuitively, pW only represents the
effects between direct neighbours (and the focal unit is not a neighbour of the focal unit
itself), whereas p?W? contains the effects of second order neighbours, where the focal
unit is a second order neighbour of the focal unit itself. Thus, equation (10) includes
feedback effects from p?W?2 on, which are part of the direct impacts according to the
measures in Table 1.

In consequence, local and global spillover effects represent two distinct kinds of
spatial spillover effects (LeSage, 2014). The interpretation of local spillover effects is
straightforward: it represents the effect of all neighbours as defined by W (the av-
erage over all neighbours in case of a row-normalised weights matrix). For instance,
the environmental quality in the focal unit itself but also in neighbouring units could
influence the attractiveness of a district and its house prices. In this example it seems
reasonable to assume that we have local spillover effects: only the environmental qual-
ity in directly contiguous units (e.g. in walking distance) is relevant for estimating the
house prices. In contrast, interpreting global spillover effects can be a bit more difficult.
Intuitively, the global spillover effects can be seen as a kind of diffusion process. For
example, an exogenous event might increase the house prices in one district of a city,
thus leading to an adaptation of house prices in neighbouring districts, which then
leads to further adaptations in other units (the neighbours of the neighbours), thereby
globally diffusing the effect of the exogenous event due to the endogenous term. Yet,



those processes happen over time. In a cross-sectional framework, the global spillover
effects are hard to interpret. Anselin (2003) proposes an interpretation as an equilib-
rium outcome, where the partial impact represents an estimate of how this long-run

equilibrium would change due to a change in xj (see also LeSage, 2014).

2.3. Bias in non-spatial OLS

2.3.1. With exogenous covariates

So far, this study has summarised different spatial model specifications and discussed
the types of spatial effects defined by those specifications. However, even if spatial
effects are not of specific interest, spatial dependence can influence the estimation
results. Non-spatial OLS models may not only exhibit erroneous inference but also
biased estimates in some cases of spatial correlation. Still, it is important to distinguish
between two kinds of biases, resulting from the discussion of direct and indirect impacts
above. First, one could say that the unbiased estimate is the non-spatial parameter (.
Second, one could also say that the unbiased estimate is the direct impact of xj, which
does not only include the non-spatial effect but also the feedback loops. As discussed
elsewhere (Gibbons & Overman, 2012; Gibbons, Overman, & Patacchini, 2015), if a
researcher is interested in the treatment effect (e.g. of a political intervention), the
total direct impact including feedback loops might be of more interest than the non-
spatial effect. The non-spatial parameter [; does not include feedback effects, and
thus actually underestimates the impact of a chance in z;; on y;. Note that the non-
spatial parameter reflects the first derivative of the non-reduced spatial regression
formula as in (1), while the direct impacts (with feedback effects) are given by the
diagonal elements of the first derivative of the reduced form as in (8). Thus, the choice
of which effect is the correct ‘treatment’ effect does also affect the discussion under
which conditions a non-spatial OLS model produces biased estimates of a spatial data
generating process (DGP).

Suppose the DGP follows a GNS as defined in (7), but we erroneously assume the
DGP was y = 23 + v, and use the OLS estimator 3 = (xTx) 'xTy for estimation of
the parameter 5. For simplicity, we will consider the case with only a single explanatory
variable in the following section. As shown by Franzese and Hays (2007), using the
non-reduced form of (7) as DGP leads to the following estimate for j:

B=(xTx) 'aT(pWy + x + Wzh + \Wu +¢)
Cov(xz, Wy) Cov(z, W) Cov(z,Wu) Cov(zx,e)
Var(z) Var(x) Var(x) Var(z) ’

plim 3 =5+ p (11)
where Wy, Wax, Wu, and € are omitted variables, producing a bias similar to the
conventional (non-spatial) omitted variable bias resulting from Cov(zx,v) # 0. If we

assume that we do not suffer from a non-spatial omitted variable bias and & is indepen-



dent and randomly distributed, E(e|x) = 0, therefore also E(Wwu|z) = 0, we get an
expectation of 0 for the last two terms in (11). As in the standard case of an omitted
variable, the bias resulting from estimating a non-spatial OLS if spatial dependence is
present depends on Cov(x, z) and Cov(y, z), where z is the omitted variable Wy or
We.

Still, if one argues that the unbiased causal effect of a change in « is given by the

direct impacts as described in Table 1, we need to rewrite the DGP in reduced form:
y=Iyn — pW) Yxp + Wzl + L(\)e), (12)

where x and ¢ are independent and randomly distributed A(0,02) and NV(0, ¢2) with
a mean of zero, and for simplicity we define L(\) = (Iy — AW )~!. Consequently, we

derive at a different expectation for the estimate in non-spatial OLS models:
xTx) taT(Iy — pW) 1 (xB + Wah + L(\)e)
xTx) laT(Iy — pW) lap

Y laT(Iy — pW) " 'Wab (13)
Y laT(Iy — pW) 'L\ e.

+

xTx (
+ (T (
For independent random vectors & and symmetric real matrices A, Girard (1989); Pace
and LeSage (2010) show that E((zTz) 'xTAz) = N~ 'tr(A). Furthermore, we know
that E((zTz) '2TL(A\)e) = 0, as = and € are independent, and therefore E(e|z) = 0.

Thus, (13) can be simplified to
a1 _
plim § = < tr((Iy — pW) ™' (8 + W), (14)

which equals the average diagonal elements of (Iy — pW)~1(3+ W6). Note that this
equals exactly the summary measure for the direct impacts in the GNS model as de-
fined by LeSage and Pace (2009) and described in Table 1. Thus, the non-spatial OLS
provides an unbiased estimate of the direct impacts, though it does not provide an
unbiased estimate of the parameter 5. Betz et al. (2019) show in detail why the param-
eter estimates of a non-spatial model are even biased if the covariates are randomly
distributed but interdependence in the dependent variable (p > 0) is present.

The discussion above shows that non-spatial OLS provides unbiased estimates of the
direct impacts if  is exogenous even in case that the true DGP follows a process with
spatial autocorrelation and spatial spillover effects. Thus, if we are not particularly
interested in spatial effects, a spatially autocorrelated dependent variable does not
necessarily require the use of spatial regression models. However, this is only valid if
a change in x is exogenously determined and values of the covariates do not follow a
spatial pattern. The following section shows in detail under which circumstances the



non-spatial estimator is unbiased and which circumstances lead to biased estimates in
the non-spatial OLS model.

2.3.2.  With spatially dependent covariates

Though the case of a spatially autocorrelated dependent variable and randomly dis-
tributed covariates might be possible, it often seems more plausible that both variables
of interest exhibit at least some kind of spatial dependence when using spatial data.
For instance in the example above, it seems reasonable to assume that house prices as
well as environmental quality are spatially correlated.

To see what happens to the estimator, we will now consider the case in which not
only the dependent but also the covariate x is spatially autocorrelated. Therefore, we
define * = Wz + v, or in reduced form & = (Iy — W) lv, where v ~ N(0,02),
and ¢ denotes the autocorrelation in @. Consequently, we can rewrite (13) as:

s UT(IN—0W) DTy — pW) 1IN — 6W)_1vﬂ

B v (Iy — W)~ D)T(Iy — 6W)-1

v ((In — W) DTy — pW) Iy — W) 1Wo
vT((Iy — W) )T(Ixy — W) 1w

VT (Iy — W) )T(Iy — pW) ' (Iny — W) 'L(\)e
vT(In — W) )T (Iy — 6W)~1 '

0 (15)

Multiplying both numerator and denominator by (vTv)~! (Pace & LeSage, 2010) and
using E(e|z) = 0 leads to

tr[(In — W) H((In — W) ) T(Iy — pW) ] 5
tr[(Iy — W) )T(Iy — W)~
tr[(Iy — W) NIy — W) HT(Iny — pW) W |
tr [((IN — W) O)T(Iy — (5W)_1]

plimB =
(16)
0.

To see that terms in (16) exceed the direct impacts in (14) for positive values of p

and d, we can rewrite the traces in (16) as the sum of the elements of the Hadamard

product
.o 2 (M(6)M(5)T o M(p))i
plim § == ooy " -
N > i (M(0)M(0)T o M (p )W)ua

tr(M(6) M (9)T)

where o denotes the Hadamard product, M(6) = (Iy — dW)™1, and M(p) = (In —
pW)~1. Now recall that M (§) = Iy +6W + 62W? + ..., thus all diagonal elements of
M (§) > 1 and all off-diagonal elements of M (d) > 0 for § > 0, therefore M (0)M (5)T

is a non-negative matrix with all diagonal elements > 1. Similarly, M (p) is non-

10



negative with diagonal elements > 1. It follows that

> (M()M(5)T o M(p))yj > tr(M(5)M(5)T o M(p)), (18)

tj

and using E(a o b) = E(a)E(b) + Cov(a, b) shows that when taking only the traces of

(17) instead of the total sum (and leaving aside the positive off-diagonal elements):

o (MOMOMGPCMOD) 1y
tr(M(0)M(5)T) N
. Cov(diag(M (6) M (0)T), diag(M (p))
N-Ttr(M (8)M (5)T)

(19)

As both M () and M(p) are constructed from the same weights matrix W,
Cov(diag(M (6)M (0)T),diag(M (p)) > 0 for positive p,d. Thus, it follows from (18)
and (19) that the first term of (17) exceeds the first term of the direct impacts
N~Y%r(M(p)B) for positive values of § and p. Similarly, the second term of (17) ex-
ceeds the second term of the direst impacts N~ ltr(M (p)W#) for positive values of
6 and p, which adds an additional bias when 6 > 0. Thus, BOLS exceeds the direct
impacts of N~'tr(M (p)[3 + W)]), and is upwardly biased for positive values of p
and 6. Furthermore, this bias in the impacts is a non-linear function of the parameter
estimates, thereby giving a strong motivation to compare the biases in impacts rather
than coefficients. Note that the first part of (17) goes to N ~ltr(M (p)3) only if either
p=0oré=0 (leading to M(p) = In, or M(0) = Iy respectively), and the second
term goes to N~ 1tr(M (p)W6) only if § = 0. Obviously, the latter part of the bias
also disappears if 6 = 0.

Note that the bias in the impacts as described above is not related to autocorrelation
in the disturbances A. Respectively, erroneously omitting spatial autocorrelation in the
disturbances if A > 0 would only lead to a loss of efficiency. However, this is only true
if the disturbances are independent of our covariates. LeSage and Pace (2009); Pace
and LeSage (2010) show that in the presence of an omitted variable and E(e|x) # 0,
spatial correlation in the disturbances leads to an amplification of the non-spatial
omitted variable bias. Replacing the random disturbance in (15) by € = yx + n,
where v defines the covariance between the error term (or an omitted variable) and
the covariate @, adds an additional bias of the form

+ vy (20)

to equation (17). Following the same argument as above, (20) is positive and > ~ for
positive parameters p, §, A > 0, but also in the case of p, § = 0 and A > 0. The term
(20) goes to v only if both p, A = 0.

In sum, the discussion above provides some important conclusions regarding the
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bias in non-spatial OLS models. First, if we agree that the unbiased effect estimate of
a change in @;; on y; is given by the average direct impacts, OLS provides unbiased
estimates of the true effect even if the dependent variable is spatially autocorrelated
and the covariates are exogenous and randomly distributed. Second, several quite
realistic constellations of spatial correlation exist, in which non-spatial OLS produces
biased estimates of the direct impacts. In particular, the non-spatial OLS estimator

~

Bors is biased in the presence of either:

(1) Spatial autocorrelation in the dependent variable (p # 0) and spatial autocorre-
lation in the covariate (§ # 0). This bias increases with p, d, and S.

(2) Local spatial spillover effects (6 # 0) and spatial autocorrelation in the covariate
(6 # 0). This is analogous to the omitted variable bias resulting from the omission
of W. It increases with ¢ and §, but additionally with p if 8 # 0 and § # 0.

(3) An omitted variable and E(e|x) # 0. This non-spatial omitted variable bias v is
amplified by spatial dependence in the disturbances (\) and spatial autocorre-
lation in the dependent variable (p), but also increases with positive values of §

if either p £ 0 or A # 0. Obviously, it also increases with ~.

3. Model selection

By showing that the non-spatial OLS estimates are biased in some constellations of
spatial dependence, the previous chapter gives a strong motivation for the use of
spatial regression models. However, as described in Chapter 2.1, a variety of spatial
model specifications exist that can be used to account for the spatial structure of the
data. Thus, selecting the correct model specification remains a crucial task in applied

research.

3.1. Specification tests

One way of selecting the model specification is the application of empirical specification
tests. In general, there are two different strategies: a specific-to-general or a general-
to-specific approach (Florax, Folmer, & Rey, 2003; Mur & Angulo, 2009).

The specific-to-general approach is more common in spatial econometrics. This ap-
proach starts with the most basic non-spatial model and tests for possible misspeci-
fications due to omitted autocorrelation in the error term or the dependent variable.
Therefore, Anselin, Bera, Florax, and Yoon (1996) proposed to use Lagrange mul-
tiplier (LM) tests for the hypotheses Hyp: A = 0 and Hp: p = 0, which are robust
against the alternative source of spatial dependence. The specific-to-general approach
based on the robust LM test offers a good performance in distinguishing between
SAR, SEM, and non-spatial OLS (Florax et al., 2003). Still, in their original paper,
Anselin et al. (1996) already note the declining power of the robust LM, test for
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spatial error dependence with increasing autocorrelation in the dependent variable
(indicating some uncertainty under a SAC-like DGP). Furthermore, Mur and Angulo
(2009) demonstrate strong drawbacks of the specific-to-general approach under non-
optimal conditions like heteroscedasticity or endogeneity. Another shortcoming of this
approach is its disregard of spatial dependence from local spillover effects, as resulting
from an SLX-like process. Cook et al. (2015), for instance, show theoretically that an
SLX-like dependence structure leads to the rejection of both hypotheses Hy: A = 0
and Hyp: p = 0, though no autocorrelation is present (see also Elhorst & Halleck Vega,
2017). This is also validated by simulation results: the LM test is not helpful in distin-
guishing between SDM- and SDEM-like processes, and produces heavily biased results
in case of a GNS-like structure (see Table C1 of the Appendix).

The general-to-specific approach depicts the opposite method of specification search.
This approach starts with the most general model and stepwise imposes restrictions
on the parameters of this general model. In theory, one would start with a GNS
specification and subsequently restrict the model to simplified specifications based on
the significance of parameters in the GNS. The problem with this strategy is that
the GNS is only weakly identified and, thus, is of little help in selecting the correct
restrictions (Burridge et al., 2016). The most intuitive alternative would be to start
with one of the two-source models SDM, SDEM, or SAC. This, however, bears the risk
of imposing the wrong restriction in the first place (Cook et al., 2015). Furthermore,
Cook et al. (2015) show that more complicated restrictions are necessary to derive all
single-source models from SDEM or SAC specifications.

Thus, both ways of specification testing suffer from different sources of uncertainty,
thereby making it hard to develop a general guideline for empirically finding the correct
model specification. Consequently, scholars have developed other strategies to select

the spatial model specification.

3.2. Alternative strategies

Some argue that the best way of choosing the appropriate model specification is to
exclude one or more sources of spatial dependence — autocorrelation in the dependent
variable, autocorrelation in the disturbances, or spatial spillover effects of the covari-
ates — by design (Gibbons & Overman, 2012; Gibbons et al., 2015). Natural experi-
ments are probably the best way of making one or more sources of spatial dependence
unlikely, thereby restricting the model alternatives to a subset of all available models.
However, the opportunities to use natural experiments are restricted in social sciences,
making it a favourable but often impractical way of model selection. Therefore, Cook
et al. (2015) argue that theoretical considerations should guide the model selection.
First, it might be possible to rule out some sources of spatial dependence by the-
ory, and thus restricting the specification alternatives to a subset. Second, theoretical

mechanisms might guide the choice of either global or local spillover effects.
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Still, others (Elhorst, 2014; LeSage, 2014; LeSage & Pace, 2009) argue that there
are strong analytical reasons to restrict the model specifications to a subset, as the
SDM subsumes the SLX and SAR model, and the SDEM subsumes SLX and SEM.
It is easily observed that SDM reduces to SLX if p = 0 and to SAR if 8 = 0, while
the SDEM reduces to SLX if A = 0 and to SEM if 8 = 0. Less intuitively, Anselin
(1988) has also shown that the SDM subsumes the SEM. Therefore, we can express
the reduced form of (2) and rearrange terms:

y=XB+ Iy - \W) e
Iy —\W)y= Iy - \W)XB+e¢
(In—A\W)y=XB-\WXB+e

y=In - \W) HXB+WX0 +¢).

(21)

Thus, the SEM constitutes a special case of an SDM with the relative simple restriction
0 = —)[(3, meaning direct and indirect effects are constrained to a common factor
(Anselin, 1988, 2003). The fact that SDM subsumes SAR, SLX, and SEM leads to
the conclusion that applied research should only consider SDM and SDEM as model
specifications (LeSage, 2014). Especially in the case of a likely omitted variable bias,
LeSage and Pace (2009, p. 68) argue in favour of using the SDM.

Nonetheless, others propose to use the SLX specification as point of departure (Gib-
bons & Overman, 2012; Halleck Vega & Elhorst, 2015). First, scholars have argued that
SAC and SDM models are only weakly identified in practice (Gibbons & Overman,
2012; Pinkse & Slade, 2010). Second, the global spillover specification in SAR, SAC,
and SDM often seems to be theoretically implausible. Recall, for instance, the example
of ‘diffusing’ house prices, where the house price in one district influences house prices
in neighbouring districts. Specifying a SAR-like process means that house prices di-
rectly influence each other. Yet, it might be more plausible that house prices are driven
by the demand within the focal, but also by the demand in neighbouring units, which
reflects an SLX-like structure. Third, the SLX is computationally efficient, as it can
be estimated by using Least Squares. Fourth, it turns attention back to the question
of whether X and W X are exogenous, which should be the main focus when investi-
gating the dependence between X and y. Furthermore, SLX, SDM, and SDEM share
the advantage that all three models estimate flexible indirect spillover effects, which
are not bound to a common ratio between direct and indirect effects for all covariates
(as in SAR and SAC).

4. Monte Carlo experiment

As outlined in the previous section, diverging recommendations exist for selecting the

model in applied research. To further improve the discussion on the selection of spatial
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model specifications, this study compares the performance of different spatial model
specifications by using a Monte Carlo experiment. Following the discussion above, a
Monte Carlo experiment should consider several aspects to provide implications for
applied research. First, as proposed by LeSage and Pace (2017), it is important to
evaluate the bias of the impacts rather than the point estimates. The impacts are the
measures of interest in applied research and the bias in impacts follows a non-linear
function of the bias in parameter estimates. Second, it is important to incorporate
more than one covariate, as bias in one parameter [; could be counterbalanced by
a bias in p, O, or A, thus producing unbiased impacts for covariate k. However, a
counterbalancing bias in p or A could, in turn, affect the impacts of other covariates,
as the autoregressive parameters affect all covariates. Third, we should evaluate the
performance in two different worlds, one without omitted variable (omv) bias and one
with omv bias, as this is likely to occur in applied research.

The DGP of the Monte Carlo simulation follows a GNS and is shown in (22) to (24),
where v}, and € are independent and randomly distributed N'(0, 02) and A (0, 02) with
a mean of zero, and xy, is the kth column-vector of X for k = 1, ..., K covariates (K is
fixed at 2 in the simulations). The parameter p represents the autocorrelation in the
dependent variable, A the autocorrelation in the disturbances, and ¢, the autocorre-

lation in covariate k.

y=pWy+ X8+ WX0 + u, (22)
u=\Wu+ Xv+e¢, (23)
xp = . Wxy, + v, (24)

The parameter-vector -« in (23) specifies the correlation between x and the disturbance
vector u, thereby defining the strength of an omitted variable bias. In reduced form,
this DGP can be written as

y=(In — pW) ' [(In — W) opfy
+ W(IN - 5kW)71'Uk9k (25)
+(In = AW) H((In = W) opy + €)].

T
The parameter vector 3 was fixed at B3 = (0.2 0.5) , and the noise parameters

were fixed at 02, 02 = 1 for all trials. All other parameters vary between the following

two options for each parameter (vector):

p e {0,0.5),
A € {0,051,
se {(o 0>T : (0.4 0.7)T},

6c{(00)"(0108)"},
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e ve{(00)" (030)"},

leading to a total of 32 distinct combinations. Note that this selection of parameters
intentionally violates the common ratio assumption between direct and indirect effects,
as this should be a more common case in practical research. All combinations were
simulated in 1000 trials, with the same starting seed for each combination. All spatial
models were estimated using R’s package spdep (Bivand & Piras, 2015).

The simulations build on a square grid of 900 observations and use a row-normalised
(‘queen’) contiguity weights matrix W, where all units sharing a common border are
defined as neighbours, thus w;; > 0 for contiguous units and w;; = 0 otherwise. This
setting leads to an average of 7.6 neighbours. Note that many alternative specifications
may be chosen and that the choice should be made based on the assumed theoretical
mechanisms (Neumayer & Pliimper, 2016). However, contiguity is the most commonly
used weights specification (e.g. Elhorst & Halleck Vega, 2017), and has been shown
to be the best choice when no theoretical or empirical reasons justify a specific form
of connectivity (Stakhovych & Bijmolt, 2009). Furthermore, the contiguity weights
matrix exhibits a high level of similarity with a wide range of k£ nearest neighbours
matrices (LeSage & Pace, 2014), as contiguous neighbours are (most likely) also the
nearest neighbours. In accordance, additional simulations using different specifications
of W lead to identical conclusions as presented in the following chapter.’

4.1. Results without omv

Figure 1 shows the bias of the direct and indirect impacts for the simulations without
a non-spatial omitted variable bias. Respective numbers and the root mean squared
error (RMSE) are shown in Appendix A. Several findings can be observed in the plot.

First and less surprising, all models perform reasonably well when correctly specify-
ing the DGP. For instance, when the DGP follows a SAR-like process (e.g. line 2 and
4), the SAR model yields very precise estimates of direct and indirect impact. Simi-
larly, SDEM yields the lowest bias if the DGP contains positive error-correlation A > 0
and positive local spillover effects @ > 0, but no correlation in the dependent variable
p = 0 (see line 13 and 15). These findings hold throughout all model specifications
(though SAC could be seen as an exception).
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Second, OLS yields an unbiased estimate of the direct impacts in many situations.
The results confirm the theoretical predictions of Chapter 2.3: OLS estimates of the
direct impacts are only biased in case of either positive autocorrelation in the depen-
dent variable p > 0 and autocorrelation in the covariate d; > 0 or local spillover effects
0, > 0 and autocorrelation in the covariate §; > 0. Furthermore, this bias is rather
moderate for low values of §, 6, and § as can been seen in the first column of Figure
1. Note, however, that the bias is a conservative estimate, because the simulations use
a relatively symmetric neighbours weights matrix. For instance, when increasing the
variance in the number of neighbours per unit (thereby increasing the covariance be-
tween the diagonals of the inverted matrices M () and M (p)), the bias in non-spatial
OLS becomes more severe (see Equation 19 for the theoretical explanation).

Third, SLX, SDM, and SDEM all provide quite accurate estimates of the direct
impacts (most visible in column 2). SAR, SEM, and SAC, in contrast, yield some
drawbacks: especially in the presence of local spillover effects, these three specifications
are biased (see lower part of Figure 1). Furthermore, SAR and SEM suffer from bias if
autocorrelation in the disturbance and autocorrelation in the dependent variable are
present simultaneously (see line 6 and 8). Though SLX is downwardly biased in case
of autocorrelation in the dependent variable and the covariates (e.g. line 12 and 16),
and SDM as well as SDEM yield some bias in case of a GNS-like process (line 14 and
16), those biases are rather moderate. This indicates that SLX, SDM, and SDEM are
most robust against misspecification regarding the direct impacts.

Fourth, several differences exist regarding the indirect impacts. Most obviously, the
often used SAR specification suffers from considerable bias: it overestimates indirect
impacts in case of autocorrelation in the disturbances, and offers biased estimates if
local spillover effects exist (which are not restricted to a common ratio). The latter also
applies to SAC: though SAC offers relatively accurate estimates for @, it overestimates
indirect impacts for x;. Regarding the remaining three specifications — SLX, SDM,
and SDEM — conclusions are less obvious. SDM and SDEM suffer from large bias for
high values of @ (see x3) if the DGP follows a GNS-like process (line 14 and 16): SDM
overestimates the indirect impacts, while SDEM underestimates the indirect impacts.
In addition, SDM performs badly if the true DGP is SDEM (line 13), and SDEM
performs badly if the true DGP is SDM (line 10), whereas the bias increases with
higher values of 6 in both cases. Similar to SDEM, SLX underestimates the indirect
impacts in presence of global spillovers / autocorrelation in the dependent variable.

For a better comparison, Figure 2 shows the bias of the indirect impacts in case
of a GNS-like processes for different strengths of p and A (for simplicity, we restrict
the autocorrelation in covariates to zero and keep the local spillover effects fixed at
6 = (0.1,0.8)T). Respective numbers are shown in Appendix B. Three findings are
particularly interesting. First, in a GNS-like situation, the bias in SDM grows with
increasing autocorrelation in y (p) and increasing autocorrelation in the disturbances
(A). Second, the bias in SLX and SDEM increases with higher values of p, but is
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Figure 2. Bias of indirect impacts and 95% confidence interval of empirical standard deviation for different
strengths of autocorrelation: 8 = (0.2,0.5)T, v = (0,0)7, § = (0,0)T, & = (0.1,0.8)T. p = autocorrelation in
the dependent variable (W1y); § = autocorrelation in the covariates (z, = f(Wxg)); A = autocorrelation in
the disturbances (Ww); 0 = spatial spillover effects of covariates (W X); v = strength of omv.

unaffected from the strength of A. Third, though SLX and SDEM suffer from the
same problem, the bias from omitting global autocorrelation is less severe in SLX
than in SDEM. Thus, the SLX outperforms SDEM. Furthermore, SLX outperforms
SDM in most situations; only if the autocorrelation in the dependent variable is much
stronger than the autocorrelation in the disturbances (p = 0.9, A = 0.3), SDM yields
lower bias than SLX.5

In sum, the results of the Monte Carlo experiments show that the three flexible
model specifications of SLX, SDM, and SDEM offer an accurate estimate of the direct
impacts, and all three specifications are relatively robust against misspecification re-
garding the direct impacts. However, results regarding the indirect impacts cast some
doubt on the advice to consider only SDM or SDEM if no prior knowledge about the
cause of spatial correlation is available. Especially in a ‘mixed world’ (where the true
DGP is GNS), the results reveal that SLX offers a good alternative, which is more

robust against misspecification in many situations.

4.2. Results with omv

So far, we have only considered the situation where X is perfectly exogenous in a
non-spatial sense. However, in applied research one might often face situations in
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which the covariates might be correlated with the disturbances. Thus, simulations in
Figure 3 replicate previous simulations with an omitted variable correlated with a1
(v= (().3 0>T) in a non-spatial way.

Comparing column 1 of Figures 1 and 3 reveals that OLS suffers from a larger
bias due to spatial autocorrelation if @ is correlated with the disturbance, confirming
results by Pace and LeSage (2010). Regarding the direct impacts of variable x;, which
is affected by the omv bias, SEM exhibits the best estimation results. Yet, the good
performance of SEM regarding one variable (x1) is somewhat offset by a relatively
large bias in the second variable (x3), as the SEM tends to underestimate the impact
of the second variable not affected by the omitted variable in case of positive spatial
autocorrelation in y. As in previous results, the bias in SLX, SDM, and SDEM is
comparable and lower than in the remaining specifications.

Turning to the indirect impacts, SDEM reduces the bias in the variable affected
by the omv compared to other model specifications. Still, it suffers (as is the case
without omv) from a bad performance in the second variable if the DGP contains an
autoregressive parameter of the dependent variable (p > 0). Furthermore, it becomes
apparent that the underestimation of the indirect impacts in case of an GNS-like
process without an omv bias (Figure 1) is somewhat counterbalanced by the positive
omv bias leading to an overestimation of the impacts. For instance, in additional
Monte Carlo experiments defining a downward bias (y,1 = —0.1), SDEM amplifies the
downward bias. Thus, it seems to depend on the constellation between the impacts and
the omv bias whether SDEM reduces or increases the bias. However, a bias towards
zero seems to be less severe than an upwardly biased parameter estimate. Another
interesting finding is that the estimates of indirect impacts in SDM are affected most
strongly by the omitted variable bias. Comparing column 3 in Figures 1 and 3 reveals
that estimates in SDM show stronger changes than estimates of SLX and SDEM due
to the non-spatial omitted variable (e.g. line 8 and 14). In sum, the second set of Monte
Carlo simulations demonstrate that indirect impact estimates of SDEM and SLX are
less affected by a non-spatial omv bias than SDM. Furthermore, in specific situations,
SDEM may even help to reduce the non-spatial bias.

Additional simulations (available on request) reveal that the conclusions made above
are robust to different variations of the parameters chosen in the DGP.” Obviously, as
can be seen in Figure 2, the performance of SDM increases with increasing values of p
relative to SDEM and SLX, and decreases with increasing values of A (and vice versa).
Still, SDM, SDEM, and SLX yield nearly equal biases regarding the direct impacts,
while SLX and SDEM outperform the SDM in terms of the indirect impacts.
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5. Conclusion

The increasing availability of spatial or georeferenced data provides the possibility to
investigate spatial research questions. However, analysing spatial data also requires
careful consideration regarding the model specification. As has been shown theoret-
ically and empirically, different constellations of the data exist which lead to biased
estimates in non-spatial OLS models. Furthermore, non-spatial models disregard the
spatial processes inherent in the data, thereby loosing interesting information. To over-
come these problems, several spatial model specifications accounting for the spatial
dependence can be employed.

Nevertheless, the variety of specifications also comes with the problem of selecting
the correct specification in applied research, and specification tests are of little help in
many situations. Therefore, this study employs a Monte Carlo experiment to system-
atically compare the bias of the most common spatial regression models in different
situations of misspecification. In addition, this study extends previous simulations by
relying on the impacts rather than the regression coefficients, as the impacts are the
parameters of interest in applied research.

In line with previous studies (Elhorst, 2014; LeSage, 2014; LeSage & Pace, 2009), the
Monte Carlo experiment reveals that the most commonly used SAR, SEM, and SAC
specifications are outperformed by the more flexible specifications of SDM, SDEM,
and SLX. Still, the results contradict the recommendation to consider only SDM and
SDEM in applied research. While all three SDM, SDEM, and SLX show only marginal
differences in the direct impacts, there are notable differences in the indirect spillover
effects. Especially in a ‘mixed world’, in which the DGP follows a GNS-like structure,
SLX produces less biased estimates of indirect impacts than SDM and SDEM. Note
that this ‘mixed world’ resembles a very realistic scenario. In our example, one could
argue in favour of all spatial processes: house prices in one district may directly influ-
ence house prices in neighbouring districts, house prices may depend on environmental
quality in the focal and in contiguous districts, and clustered unobservables are likely
to influence the house prices. Although SDEM can help to reduce an upward bias
due to omitted variables in the presence of non-spatial endogeneity, this finding needs
further investigation, as conclusions seem to depend on the constellation of impacts
and omv bias.

In sum, the results of this paper support the claim recently made by Elhorst and
Halleck Vega (2017); Halleck Vega and Elhorst (2015): if no theoretical reasons justify
a specific model, it might be a better option to rely on the simple SLX specification
rather than adopting the more complex SDM in applied research. Especially if it is
not possible to eliminate one of the three sources of spatial dependence, SLX seems
to be a good choice. Furthermore, the SLX is computational simple and intuitively
interpretable. In contrast to global spillover effects in SDM, the local spillover effects
can be interpreted as the effects of the spatially weighted neighbours (as defined by
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W). Beyond that, the spatial spillover effects in SLX can also be ‘globalised’ to some
extent by including separate terms for second or even higher order neighbours, which,
in addition, would be a more flexible function than higher order terms of one autore-
gressive parameter p. Moreover, Elhorst and Halleck Vega (2017) show that the SLX —
in contrast to other specifications — allows to empirically parameterise the weights ma-
trix W, which can lead to improved estimates of the spillover effects. Taken together,
SLX certainly provides a worthwhile alternative to SDM and SDEM.

Still, it is important to keep in mind that spatial models only give parameter esti-
mates for (conditional) correlations. Simply estimating a model using cross-sectional
observational data hardly tells anything about the causal mechanisms underlying these
correlations. The causal process underlying the spatial correlation can be the result of
either 1) spatial interdependence in the dependent variable, 2) spillover effects in the
covariates, or 3) common unobserved shocks. To identify the (spatial) causal effects
between two variables of interest, it is necessary to use designs or methods following
the counterfactual approach like natural experiments (Angrist & Pischke, 2009, 2015;
Morgan & Winship, 2015). However, this applies to all empirical research, including
non-spatial observational studies. Thus, as is the case with all observational studies,
spatial models can provide interesting insights into the correlational structure of the
data, but can only be a first step in evaluating the causal mechanisms.
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Notes

IThe model intercept is omitted in all models for simplicity.

2Gibbons and Overman (2012) even argue that the SDM is only weakly identified in practice.

3Though previous literature (e.g. Halleck Vega & Elhorst, 2015; LeSage & Pace, 2009) has established the
notation of direct and indirect impacts, it is important to note that also the direct impacts comprise a spatial
‘multiplier’ component if we specify an endogenous lagged depended variable, as a change in «; influences y;,
which influences y;, which in turn influences y; (see also equation 10).

4A power series of > o WF converges to (I —W)~! if the maximum absolute eigenvalue of W < 1, which
is ensured by standardising W.

5See Figure D1 for results using inverse distance weighted 10-nearest neighbours and Figure D2 for results
with maximum eigenvalue-normalised inverse distances weights (cut-off at 100 neighbours for computational
efficiency) and a distance decay factor set to 1. Though, in line with previous research (Stakhovych & Bijmolt,
2009), the dispersion of the indirect impacts strongly increases with higher levels of connectivity (see Figure D2),
the conclusions regarding the relative performance of the different specifications remain unchanged. Additional
simulations using the Oklahoma census tract shape file (N=1,046) instead of a symmetric grid produced
identical results (not shown).

SNote that the SAC yields relatively low biases for the indirect impacts in GNS-like processes, but at the
same time produces relative large biases in the direct impacts (see Table B1).

"Variations were specified as follows: p € {0.3,0.7}, A € {0.3,0.7}, 8 = (0.1 0.4>T, and v €

{(-0.10)", (-0.30)", (03 02)"}.
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Appendix C. Lagrange multiplier tests

Table C1. Rejection rates of Hy (Lagrange multiplier test). 8 = (0.2,0.5)T, ~

(0,0)T.
p 8 PR LM, LM,  LM;  LM; LM,
0.0 0,0 0.0 0,0 0.0410 0.0440 0.0520 0.0500 0.0580
04 0,0 00 0,0 1.0000  1.0000  0.0920  0.7750  1.0000
08 0,0 00 0,0 1.0000  1.0000  0.3880  0.9990  1.0000
00 04,07 00 0,0 0.0440  0.0520  0.0550  0.0590  0.0550
04 04,07 00 0,0 1.0000  1.0000  0.1340  0.9900  1.0000
08 04,07 00 0,0 1.0000  1.0000  0.9950  1.0000  1.0000
00 0,0 04 0,0 1.0000  1.0000  0.7190  0.1140  1.0000
04 0,0 04 0,0 1.0000  1.0000  0.8560  0.6830  1.0000
08 0,0 04 0,0 1.0000  1.0000  0.8380  0.9780  1.0000
00 04,07 04 0,0 1.0000  1.0000 09430  0.1100  1.0000
04 04,07 04 0,0 1.0000  1.0000  0.9970  0.9560  1.0000
08 04,07 04 0,0 1.0000  1.0000  1.0000  1.0000  1.0000
00 0,0 08 0,0 1.0000  1.0000  0.9990  0.2860  1.0000
04 0,0 08 0,0 1.0000  1.0000  0.9960  0.5190  1.0000
08 0,0 08 0,0 1.0000  1.0000  0.7450  0.7410  1.0000
00 04,07 08 0,0 1.0000  1.0000  1.0000  0.3000  1.0000
04 04,07 08 0,0 1.0000  1.0000  1.0000  0.7280  1.0000
08 04,07 08 0,0 1.0000  1.0000  1.0000  0.9410  1.0000
00 0,0 0.0 01,08 04240 09910  1.0000  1.0000  1.0000
04 0,0 0.0 01,08 1.0000 1.0000  1.0000  1.0000  1.0000
08 0,0 0.0 01,08 1.0000 1.0000  1.0000  1.0000  1.0000
00 04,07 00 01,08 08320 1.0000 1.0000 1.0000  1.0000
04 04,07 00 01,08 1.0000 1.0000 0.9960  1.0000  1.0000
08 04,07 00 01,08 1.0000 1.0000 04970  1.0000  1.0000
00 0,0 04 01,08 1.0000 1.0000 0.9900  1.0000  1.0000
04 0,0 04 01,08 1.0000 1.0000 0.9530  1.0000  1.0000
08 0,0 04 01,08 1.0000 1.0000 0.8520  1.0000  1.0000
00 04,07 04 01,08 1.0000 1.0000 09560  1.0000  1.0000
04 04,07 04 01,08 1.0000 1.0000 0.0930  1.0000  1.0000
08 04,07 04 01,08 1.0000 1.0000 09600  1.0000  1.0000
00 0,0 0.8 01,08 1.0000 1.0000 0.2590  0.9930  1.0000
04 0,0 08 01,08 1.0000 1.0000 02370  0.9940  1.0000
08 0,0 0.8 01,08 1.0000 1.0000 0.1530  0.9940  1.0000
00 04,07 08 01,08 1.0000 1.0000 09880  1.0000  1.0000
04 04,07 08 01,08 1.0000 1.0000  1.0000  1.0000  1.0000
0.8 04,07 08 0.1,0.8 1.0000 1.0000 1.0000 1.0000 1.0000

Number of observations=900, repetitions=1000. LM= Lagrange multiplier test,
LM*= Robust Lagrange multiplier test, each for Hp: A =0, Ho: p =0, Hp: X\, p = 0.
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