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ABSTRACT
Spatial regression models provide the opportunity to analyse spatial data and spatial
processes. Yet, several model specifications can be used, all assuming different types
of spatial dependence. This study summarises the most commonly used spatial re-
gression models and offers a comparison of their performance by using Monte Carlo
experiments. In contrast to previous simulations, this study evaluates the bias of
the impacts rather than the regression coefficients and additionally provides results
for situations with a non-spatial omitted variable bias. Results reveal that the most
commonly used spatial autoregressive (SAR) and spatial error (SEM) specifications
yield severe drawbacks. In contrast, spatial Durbin specifications (SDM and SDEM)
as well as the simple SLX provide accurate estimates of direct impacts even in the
case of misspecification. Regarding the indirect ‘spillover’ effects, several – quite re-
alistic – situations exist in which the SLX outperforms the more complex SDM and
SDEM specifications.
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1. Introduction

The increasing availability of spatially aggregated and georeferenced data has led to

an increasing interest in spatial analyses amongst social scientists (Logan, 2012). For

instance, social scientists have investigated the influence of contextual conditions (e.g.

Crowder, Hall, & Tolnay, 2011; Friedrichs, Galster, & Musterd, 2003; Kling, Liebman,

& Katz, 2007; Sampson, Morenoff, & Earls, 1999; Sampson, Morenoff, & Gannon-

Rowley, 2002), or have dealt with explicitly spatial research questions like segregation,

neighbourhood boundaries, or the exposure to environmental conditions (e.g. Dokshin,

2016; Downey, 2006; Legewie & Schaeffer, 2016; Lichter, Parisi, & Taquino, 2015;

Reardon et al., 2008; Rüttenauer, 2018).

Still, researchers need to be aware of the fact that analysing spatial data bears new

challenges regarding the applied methods. In many cases, the spatial processes are of

specific interest, and thus require the use of spatial regression models. However, spa-

tial methods may be necessary for consistent estimators albeit the spatial processes

not being of explicit interest. As Tobler’s first law of geography puts it: ‘everything

is related to everything else, but near things are more related than distant things’

(Tobler, 1970, p. 236). For instance, it seems plausible to assume that the house prices

in one district are correlated to or even influenced by the house prices in neighbour-

ing districts. In consequence, the observations cannot be considered independent and

identically distributed (i.i.d.), which violates a standard assumption of linear regres-

sion models: E(εiεj) = E(εi)E(εj) = 0, where ε is the random error term for each

observation i and j (i 6= j). Intuitively, this violation results in erroneous inferential

statistics when using the conventional OLS estimator of the equation y = Xβ + ε.

However, spatial autocorrelation can also lead to biased point estimates, depending on

the spatial process underlying the spatial correlation in the data (e.g. Pace & LeSage,

2010).

Several spatial model specifications exist to deal with this issue by explicitly mod-

elling the spatial dependence. Using the spatial weights matrix W , the most common

spatial model specification is the spatial autoregressive model (SAR), which adds an

endogenous spatially lagged dependent variable Wy to the conventional regression

formula. Alternatively, the spatial error model (SEM) models the spatial dependence

among the error terms u = Wu+ ε, and the spatial lag of X model (SLX) comprises

the spatial lags of the exogenous covariates WX. Further specifications use a combi-

nation of these most basic specifications. The spatial autoregressive combined model

(SAC) includes autocorrelation in the dependent variable and the error term (Wy

and Wu), the spatial Durbin model (SDM) combines an autoregressive dependent

variable and spatially lagged covariates (Wy and WX), and the spatial Durbin error

model (SDEM) comprises a spatial error term combined with spatially lagged covari-

ates (Wu and WX). The specification containing all three spatial terms (Wy, Wu

and WX) is called general nesting spatial model (GNS).
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On the one hand, those models provide a way to obtain unbiased point estimates of

the true parameters. On the other hand, spatial models offer the opportunity to esti-

mate spatial spillover coefficients, thereby informing the researcher about processes of

spatial correlation or influence. Still, researchers have to consider several options, as the

different specifications rely on different assumptions regarding the spatial dependence.

Unfortunately, empirical specification tests of spatial regression models yield severe

drawbacks and there is no general rule for selecting the correct model specification in

applied research. Therefore, it is of substantial interest to evaluate the performance of

spatial model specifications under different scenarios of misspecification.

This study conducts a systematic comparison of different spatial model specifica-

tions in different scenarios of spatial dependence by using Monte Carlo experiments.

It demonstrates under which conditions conventional linear models yield biased esti-

mates and how spatial model specifications perform throughout different scenarios of

spatial dependence. The study extends previous simulations in several ways. First, it

evaluates the bias of the model specifications by relying on the impact estimates rather

than the point estimates, as the model impacts are the measures of interest in applied

research (LeSage & Pace, 2017). Second, it systematically evaluates the performance

of the spatial model specifications in the absence and presence of a non-spatial omit-

ted variable bias. Third, it incorporates multiple explanatory variables with distinct

spatial effects, as this resembles the case in applied research.

The results of the Monte Carlo experiments reveal that the most commonly used

spatial models – spatial autoregressive model (SAR) and spatial error model (SEM) –

have severe drawbacks for applied research. In line with previous findings, those models

are outperformed by more flexible Durbin specifications incorporating spatially lagged

covariates. However, the results also reveal that, under highly realistic conditions,

SLX offers a better performance than the Durbin specifications, especially regarding

the indirect spillover effects.

2. Theoretical background

As a first step in spatial econometrics, the researcher is required to specify the spatial

relationship between the units of observation, or more precisely, to define which units

j are neighbours of unit i for all units i = {1, 2, ..., N}. This is done by setting up

an N × N dimensional neighbours weights matrix W , where all elements wij > 0

for all neighbouring units i and j (i 6= j), and 0 otherwise. This study relies on a

row-normalised contiguity weights matrix, defining all units as neighbours that share

at least one common border. Several specifications for W exist, such as for example

k nearest neighbour or distance based approaches (see e.g. Dubin, 2009), and choos-

ing the correct or incorrect specification may be vital for the results. However, these

aspects have been discussed elsewhere (Corrado & Fingleton, 2012; Elhorst & Halleck

Vega, 2017; LeSage & Pace, 2014; Neumayer & Plümper, 2016), and the focus of this
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study remains on the model specifications, thereby assuming a correctly specified W .

2.1. Model specifications

As mentioned above, spatial dependence can be modelled in various ways (for a com-

prehensive introduction see e.g. Elhorst, 2014; LeSage & Pace, 2009). The most popular

spatial model specification is the spatial autoregressive model (SAR), which incorpo-

rates the spatially weighted dependent variable y as an endogenous regressor at the

right-hand side of the equation. The SAR model is defined as:

y = ρWy +Xβ + ε, (1)

where y is an N × 1 vector of the dependent variable, W as defined above, X an

N ×K matrix of k = {1, 2, ...K} covariates, and ε an N × 1 vector of normally dis-

tributed disturbances. β is a K×1 vector of parameter estimates and ρ represents the

autoregressive scalar parameter.1 This SAR specification assumes that the dependent

variable of unit i is directly influenced by the spatially weighted dependent variable

of neighbouring units j. For illustration purposes, let’s consider an example analysing

the effect of air quality and available green spaces on the house prices of a spatial dis-

trict (e.g. Anselin & Lozano-Gracia, 2008). The house price is the dependent variable

y, while air quality and the availability of green spaces constitute the covariates X.

According to the specification in the SAR model, we would assume that the house

prices in one district directly influence the house prices in neighbouring districts. An

intuitive interpretation for this process might be that sellers or estate agents determine

the prices based on the prices they observe in neighbouring districts.

Another specification of spatial models is the spatial error model (SEM). In contrast

to the SAR specification, the SEM explicitly models spatial autocorrelation between

the disturbances u, represented by the scalar parameter λ. The SEM is defined as:

y = Xβ + u,

u = λWu+ ε.
(2)

In this specification we assume that the spatial correlation between our units is caused

by unobserved characteristics, which are either spatially clustered or follow a spatial

pattern, and which are independent of the included covariates. Using the example

above, we could for instance assume that spatially clustered or diffusing crime rates

influence the house prices in the affected areas (but are independent of air quality and

available green space).

A third approach does not incorporate the spatial dependence as an autoregressive

term of the dependent variable or the error term, but directly models so called spatial

‘spillover’ effects by including the spatially lagged covariates into the equation. This
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spatial lag of X (SLX) specification is defined as:

y = Xβ +WXθ + ε, (3)

where θ is an K × 1 vector of spatial spillover parameters. This model incorporates

the direct effects β of the covariates as well as the indirect spillover effects θ from the

covariates of neighbouring units. An important property of the SLX model is that θ

constitutes a K × 1 vector, thus including a distinct spatial effect for each covariate.

Here we would assume that house prices in the focal unit are not only influenced by the

characteristics in the focal unit but also by the air quality and green space availability

in neighbouring districts. Moreover, we can hypothesise that the neighbouring districts

matter only regarding the green spaces but not regarding the air quality, as we receive

a distinct spatial parameter for each covariate.

The three specifications shown above represent the most basic specifications of spa-

tial models. Yet, there are further specifications which combine the models mentioned

above. The spatial autoregressive combined model (SAC) comprises an autocorrelated

dependent variable and an autocorrelated disturbance, resulting in:

y = ρWy +Xβ + u,

u = λWu+ ε.
(4)

The spatial Durbin model (SDM), in contrast, combines the spatial spillover specifi-

cation of the covariates (SLX) with the spatial autoregressive term of the dependent

variable, resulting in:

y = ρWy +Xβ +WXθ + ε. (5)

A third combined model is the spatial Durbin error model (SDEM), combining the

specifications of SEM and SLX:

y = Xβ +WXθ + u,

u = λWu+ ε,
(6)

thereby comprising the spatial spillover effects of the covariates as well as an autocor-

related disturbance term.

Combining all three basic model specifications mentioned above leads to the general

nesting spatial model (GNS):

y = ρWy +Xβ +WXθ + u,

u = λWu+ ε.
(7)
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Though the GNS specification combines all the spatial processes of the previous spec-

ifications, this model only plays a minor role in applied research, as this specifica-

tion – analogous to Manski’s neighbourhood effects model (Manski, 1993) – is not or

only weakly identifiable (Cook, Hays, & Franzese, 2015; Gibbons & Overman, 2012).2

Though Burridge, Elhorst, and Zigova (2016) show that the GNS model can be iden-

tified in case of a grouped (block-diagonal) weights matrix, they find that even in

this situation the model might be overparameterised, thereby providing no additional

information over SDM or SDEM.

Note that most of the spatial model specifications cannot be estimated by Least

Squares (LS), as using (constrained) LS estimators for models containing a spatially

lagged dependent variable or disturbance leads to inconsistent results (e.g. Anselin

& Bera, 1998; Franzese & Hays, 2007). However, an extensive amount of econometric

literature discusses different estimation methods based on (quasi-) maximum likelihood

(e.g. Anselin, 1988; Lee, 2004; Ord, 1975) or instrumental variable approaches using

generalized methods of moments (e.g. Drukker, Egger, & Prucha, 2013; Kelejian &

Prucha, 1998, 2010), in which the endogenous lagged variables can be instrumented by

q higher order lags of the exogenous regressors (X,WX,W 2X, ...,W qX) (Kelejian

& Prucha, 1998).

2.2. Local and global spatial impacts

At first glance, the specifications presented above seem relatively similar in the way

of modelling spatial effects. Yet, they differ in very important aspects. First, models

with an endogenous spatial term (SAR, SAC, and SDM) assume a very different

spatial dependence structure than models with only exogenous spatial terms as SLX

and SDEM specifications. While the first three assume global spatial dependence, the

second two assume local spatial dependence (Anselin, 2003; Halleck Vega & Elhorst,

2015; LeSage & Pace, 2009). Second, the interpretation of the coefficients differs greatly

between models with and without endogenous effects. This becomes apparent when

considering the reduced form of the equations above. Exemplary using the SAR model

of (1), the reduced form is given by:

y − ρWy = Xβ + ε,

(IN − ρW )y = Xβ + ε,

y = (IN − ρW )−1(Xβ + ε). (8)

When subsequently taking the first derivative of the explanatory variable xk from the

reduced form in (8) to interpret the partial effect of a unit change in variable xk on
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y, we receive

∂y

∂xk
= (IN − ρW )−1βk, (9)

for each covariate k = {1, 2, ...,K}. As can be seen from (9), the partial derivative with

respect to xk produces an N × N matrix, thereby representing the partial effect of

each unit i onto the focal unit i itself and all other units j = {1, 2, ..., i−1, i+1, ..., N}.
The diagonal elements of (9) indicate how each unit i influences itself (change of xi

on change of yi), and each off-diagonal elements in column i represents the effect of

i on each other unit j (change of xi on change of yj). Since reporting the individual

partial effects is usually not of interest, LeSage and Pace (2009) proposed to average

over these effect matrices. While the average diagonal elements of the effects matrix

resulting from (9) represent the so called direct3 impacts of variable xk, the average

column-sums of the off-diagonal elements represent the so called indirect impacts (or

spatial spillover effects). The direct impacts refer to an average effect of a unit change

in xi on yi, and the indirect (spillover) impacts exhibit how a change in xi, on average,

influences all neighbouring units yj .

Table 1. Direct and indirect impacts, adopted from Halleck Vega and Elhorst (2015)

Direct Impacts Spatial Spillovers Type

OLS/SEM βk 0 none

SAR/SAC
Diagonal elements of

(I − ρW )−1βk

Off-diagonal elements of

(I − ρW )−1βk
global

SLX/SDEM βk θk local

SDM/GNS
Diagonal elements of

(I − ρW )−1 [βk +W θk]

Off-diagonal elements of

(I − ρW )−1 [βk +W θk]
global

Table 1 summarises the direct and indirect impacts for all model specifications out-

lined above (adopted from Halleck Vega & Elhorst, 2015, p. 345). For OLS, SEM,

SLX, and SDEM, the point estimates obtained in the regression models can be inter-

preted as partial (direct and indirect) impacts. However, in case of SAR, SAC, and

SDM, point estimates differ from the partial derivatives (or impacts). Two important

consequences follow from the impact estimates presented in Table 1.

First, for SAR, SAC, and SDM even the direct impacts differ from the point esti-

mates. This results from the fact that an endogenous term of the dependent variable

Wy contains feedback loops through the system of neighbours (Betz, Cook, & Hol-

lenbach, 2019; Franzese & Hays, 2007; Halleck Vega & Elhorst, 2015). A change of xi

in the focal unit i influences the focal unit i itself, but also the neighbouring unit j,

which in turn influences the focal unit i in a feedback loop. This feedback loop is part

of the direct impact.

Second, the kind of indirect spillover effects in SAR, SAC, and SDM models differs

from the kind of indirect spillover effects in SLX and SDEM models: while the first

three specifications represent global spillover effects, the latter three represent local
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spillover effects (Anselin, 2003; LeSage, 2014; LeSage & Pace, 2009). In case of SLX and

SDEM the spatial spillover effects can be interpreted as the effect of a one unit change

of xk in the spatially weighted neighbouring observations on the dependent variable

of the focal unit; when using a row-normalised contiguity weights matrix, Wxk is the

average value of xk in the neighbouring units. Thus, only direct neighbours – as defined

in W – contribute to those local spillover effects. In contrast, spillover effects in SAR,

SAC, and SDM models do not only include direct neighbours but also neighbours of

neighbours (second order neighbours) and further higher-order neighbours. This can

be seen by rewriting the inverse in (9) as power series:4

(IN − ρW )−1βk = (IN + ρW + ρ2W 2 + ρ3W 3 + ...)βk = (IN +

∞∑
h=1

ρhW h)βk, (10)

where the identity matrix represents the direct effects and the sum represents the first

and higher order indirect effects and the above mentioned feedback loops. This im-

plies that a change in one unit i does not only affect the direct neighbours but passes

through the whole system towards higher-order neighbours, where the impact declines

with distance within the neighbouring system. Global indirect impacts thus are ‘mul-

tiplied’ by influencing direct neighbours as specified in W and indirect neighbours not

connected according to W , with additional feedback loops between those neighbours.

Note furthermore, that all diagonal elements diag(W ) = wii = 0, whereas the

diagonal elements diag(W 2) = diag(WW ) 6= 0. Intuitively, ρW only represents the

effects between direct neighbours (and the focal unit is not a neighbour of the focal unit

itself), whereas ρ2W 2 contains the effects of second order neighbours, where the focal

unit is a second order neighbour of the focal unit itself. Thus, equation (10) includes

feedback effects from ρ2W 2 on, which are part of the direct impacts according to the

measures in Table 1.

In consequence, local and global spillover effects represent two distinct kinds of

spatial spillover effects (LeSage, 2014). The interpretation of local spillover effects is

straightforward: it represents the effect of all neighbours as defined by W (the av-

erage over all neighbours in case of a row-normalised weights matrix). For instance,

the environmental quality in the focal unit itself but also in neighbouring units could

influence the attractiveness of a district and its house prices. In this example it seems

reasonable to assume that we have local spillover effects: only the environmental qual-

ity in directly contiguous units (e.g. in walking distance) is relevant for estimating the

house prices. In contrast, interpreting global spillover effects can be a bit more difficult.

Intuitively, the global spillover effects can be seen as a kind of diffusion process. For

example, an exogenous event might increase the house prices in one district of a city,

thus leading to an adaptation of house prices in neighbouring districts, which then

leads to further adaptations in other units (the neighbours of the neighbours), thereby

globally diffusing the effect of the exogenous event due to the endogenous term. Yet,
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those processes happen over time. In a cross-sectional framework, the global spillover

effects are hard to interpret. Anselin (2003) proposes an interpretation as an equilib-

rium outcome, where the partial impact represents an estimate of how this long-run

equilibrium would change due to a change in xk (see also LeSage, 2014).

2.3. Bias in non-spatial OLS

2.3.1. With exogenous covariates

So far, this study has summarised different spatial model specifications and discussed

the types of spatial effects defined by those specifications. However, even if spatial

effects are not of specific interest, spatial dependence can influence the estimation

results. Non-spatial OLS models may not only exhibit erroneous inference but also

biased estimates in some cases of spatial correlation. Still, it is important to distinguish

between two kinds of biases, resulting from the discussion of direct and indirect impacts

above. First, one could say that the unbiased estimate is the non-spatial parameter βk.

Second, one could also say that the unbiased estimate is the direct impact of xk, which

does not only include the non-spatial effect but also the feedback loops. As discussed

elsewhere (Gibbons & Overman, 2012; Gibbons, Overman, & Patacchini, 2015), if a

researcher is interested in the treatment effect (e.g. of a political intervention), the

total direct impact including feedback loops might be of more interest than the non-

spatial effect. The non-spatial parameter βk does not include feedback effects, and

thus actually underestimates the impact of a chance in xik on yi. Note that the non-

spatial parameter reflects the first derivative of the non-reduced spatial regression

formula as in (1), while the direct impacts (with feedback effects) are given by the

diagonal elements of the first derivative of the reduced form as in (8). Thus, the choice

of which effect is the correct ‘treatment’ effect does also affect the discussion under

which conditions a non-spatial OLS model produces biased estimates of a spatial data

generating process (DGP).

Suppose the DGP follows a GNS as defined in (7), but we erroneously assume the

DGP was y = xβ + υ, and use the OLS estimator β̂ = (xᵀx)−1xᵀy for estimation of

the parameter β. For simplicity, we will consider the case with only a single explanatory

variable in the following section. As shown by Franzese and Hays (2007), using the

non-reduced form of (7) as DGP leads to the following estimate for β:

β̂ =(xᵀx)−1xᵀ(ρWy + xβ +Wxθ + λWu+ ε)

plim β̂ =β + ρ
Cov(x,Wy)

Var(x)
+ θ

Cov(x,Wx)

Var(x)
+ λ

Cov(x,Wu)

Var(x)
+

Cov(x, ε)

Var(x)
, (11)

where Wy, Wx, Wu, and ε are omitted variables, producing a bias similar to the

conventional (non-spatial) omitted variable bias resulting from Cov(x,υ) 6= 0. If we

assume that we do not suffer from a non-spatial omitted variable bias and ε is indepen-
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dent and randomly distributed, E(ε|x) = 0, therefore also E(Wu|x) = 0, we get an

expectation of 0 for the last two terms in (11). As in the standard case of an omitted

variable, the bias resulting from estimating a non-spatial OLS if spatial dependence is

present depends on Cov(x, z) and Cov(y, z), where z is the omitted variable Wy or

Wx.

Still, if one argues that the unbiased causal effect of a change in x is given by the

direct impacts as described in Table 1, we need to rewrite the DGP in reduced form:

y =(IN − ρW )−1(xβ +Wxθ +L(λ)ε), (12)

where x and ε are independent and randomly distributed N (0, σ2
x) and N (0, σ2

ε) with

a mean of zero, and for simplicity we define L(λ) = (IN − λW )−1. Consequently, we

derive at a different expectation for the estimate in non-spatial OLS models:

β̂ =(xᵀx)−1xᵀ(IN − ρW )−1(xβ +Wxθ +L(λ)ε)

=(xᵀx)−1xᵀ(IN − ρW )−1xβ

+ (xᵀx)−1xᵀ(IN − ρW )−1Wxθ (13)

+ (xᵀx)−1xᵀ(IN − ρW )−1L(λ)ε.

For independent random vectors x and symmetric real matricesA, Girard (1989); Pace

and LeSage (2010) show that E((xᵀx)−1xᵀAx) = N−1tr(A). Furthermore, we know

that E((xᵀx)−1xᵀL(λ)ε) = 0, as x and ε are independent, and therefore E(ε|x) = 0.

Thus, (13) can be simplified to

plim β̂ =
1

N
tr((IN − ρW )−1(β +W θ)), (14)

which equals the average diagonal elements of (IN − ρW )−1(β+W θ). Note that this

equals exactly the summary measure for the direct impacts in the GNS model as de-

fined by LeSage and Pace (2009) and described in Table 1. Thus, the non-spatial OLS

provides an unbiased estimate of the direct impacts, though it does not provide an

unbiased estimate of the parameter β. Betz et al. (2019) show in detail why the param-

eter estimates of a non-spatial model are even biased if the covariates are randomly

distributed but interdependence in the dependent variable (ρ > 0) is present.

The discussion above shows that non-spatial OLS provides unbiased estimates of the

direct impacts if x is exogenous even in case that the true DGP follows a process with

spatial autocorrelation and spatial spillover effects. Thus, if we are not particularly

interested in spatial effects, a spatially autocorrelated dependent variable does not

necessarily require the use of spatial regression models. However, this is only valid if

a change in x is exogenously determined and values of the covariates do not follow a

spatial pattern. The following section shows in detail under which circumstances the
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non-spatial estimator is unbiased and which circumstances lead to biased estimates in

the non-spatial OLS model.

2.3.2. With spatially dependent covariates

Though the case of a spatially autocorrelated dependent variable and randomly dis-

tributed covariates might be possible, it often seems more plausible that both variables

of interest exhibit at least some kind of spatial dependence when using spatial data.

For instance in the example above, it seems reasonable to assume that house prices as

well as environmental quality are spatially correlated.

To see what happens to the estimator, we will now consider the case in which not

only the dependent but also the covariate x is spatially autocorrelated. Therefore, we

define x = δWx + υ, or in reduced form x = (IN − δW )−1υ, where υ ∼ N (0, σ2
υ),

and δ denotes the autocorrelation in x. Consequently, we can rewrite (13) as:

β̂ =
υᵀ((IN − δW )−1)ᵀ(IN − ρW )−1(IN − δW )−1υ

υᵀ((IN − δW )−1)ᵀ(IN − δW )−1υ
β

+
υᵀ((IN − δW )−1)ᵀ(IN − ρW )−1(IN − δW )−1Wυ

υᵀ((IN − δW )−1)ᵀ(IN − δW )−1υ
θ (15)

+
υᵀ((IN − δW )−1)ᵀ(IN − ρW )−1(IN − δW )−1L(λ)ε

υᵀ((IN − δW )−1)ᵀ(IN − δW )−1υ
.

Multiplying both numerator and denominator by (υᵀυ)−1 (Pace & LeSage, 2010) and

using E(ε|x) = 0 leads to

plim β̂ =
tr
[
(IN − δW )−1((IN − δW )−1)ᵀ(IN − ρW )−1

]
tr
[
((IN − δW )−1)ᵀ(IN − δW )−1

] β

+
tr
[
(IN − δW )−1((IN − δW )−1)ᵀ(IN − ρW )−1W

]
tr
[
((IN − δW )−1)ᵀ(IN − δW )−1

] θ.

(16)

To see that terms in (16) exceed the direct impacts in (14) for positive values of ρ

and δ, we can rewrite the traces in (16) as the sum of the elements of the Hadamard

product

plim β̂ =

∑
ij(M(δ)M(δ)ᵀ ◦M(ρ))ij

tr(M(δ)M(δ)ᵀ)
β

+

∑
ij(M(δ)M(δ)ᵀ ◦M(ρ)W )ij

tr(M(δ)M(δ)ᵀ)
θ,

(17)

where ◦ denotes the Hadamard product, M(δ) = (IN − δW )−1, and M(ρ) = (IN −
ρW )−1. Now recall that M(δ) = IN + δW + δ2W 2 + ..., thus all diagonal elements of

M(δ) > 1 and all off-diagonal elements of M(δ) ≥ 0 for δ > 0, therefore M(δ)M(δ)ᵀ

is a non-negative matrix with all diagonal elements > 1. Similarly, M(ρ) is non-
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negative with diagonal elements > 1. It follows that∑
ij

(M(δ)M(δ)ᵀ ◦M(ρ))ij > tr(M(δ)M(δ)ᵀ ◦M(ρ)), (18)

and using E(a ◦ b) = E(a)E(b) + Cov(a, b) shows that when taking only the traces of

(17) instead of the total sum (and leaving aside the positive off-diagonal elements):

E

(
tr(M(δ)M(δ)ᵀ ◦M(ρ))

tr(M(δ)M(δ)ᵀ)

)
=

1

N
tr(M(ρ))

+
Cov(diag(M(δ)M(δ)ᵀ), diag(M(ρ))

N−1tr(M(δ)M(δ)ᵀ)
.

(19)

As both M(δ) and M(ρ) are constructed from the same weights matrix W ,

Cov(diag(M(δ)M(δ)ᵀ),diag(M(ρ)) > 0 for positive ρ, δ. Thus, it follows from (18)

and (19) that the first term of (17) exceeds the first term of the direct impacts

N−1tr(M(ρ)β) for positive values of δ and ρ. Similarly, the second term of (17) ex-

ceeds the second term of the direst impacts N−1tr(M(ρ)W θ) for positive values of

δ and ρ, which adds an additional bias when θ > 0. Thus, β̂OLS exceeds the direct

impacts of N−1tr(M(ρ)[β + W θ]), and is upwardly biased for positive values of ρ

and δ. Furthermore, this bias in the impacts is a non-linear function of the parameter

estimates, thereby giving a strong motivation to compare the biases in impacts rather

than coefficients. Note that the first part of (17) goes to N−1tr(M(ρ)β) only if either

ρ = 0 or δ = 0 (leading to M(ρ) = IN , or M(δ) = IN respectively), and the second

term goes to N−1tr(M(ρ)W θ) only if δ = 0. Obviously, the latter part of the bias

also disappears if θ = 0.

Note that the bias in the impacts as described above is not related to autocorrelation

in the disturbances λ. Respectively, erroneously omitting spatial autocorrelation in the

disturbances if λ > 0 would only lead to a loss of efficiency. However, this is only true

if the disturbances are independent of our covariates. LeSage and Pace (2009); Pace

and LeSage (2010) show that in the presence of an omitted variable and E(ε|x) 6= 0,

spatial correlation in the disturbances leads to an amplification of the non-spatial

omitted variable bias. Replacing the random disturbance in (15) by ε = γx + η,

where γ defines the covariance between the error term (or an omitted variable) and

the covariate x, adds an additional bias of the form

+
tr(M(δ)M(δ)ᵀM(ρ)L(λ))

tr(M(δ)ᵀM(δ))
γ (20)

to equation (17). Following the same argument as above, (20) is positive and > γ for

positive parameters ρ, δ, λ > 0, but also in the case of ρ, δ = 0 and λ > 0. The term

(20) goes to γ only if both ρ, λ = 0.

In sum, the discussion above provides some important conclusions regarding the
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bias in non-spatial OLS models. First, if we agree that the unbiased effect estimate of

a change in xik on yik is given by the average direct impacts, OLS provides unbiased

estimates of the true effect even if the dependent variable is spatially autocorrelated

and the covariates are exogenous and randomly distributed. Second, several quite

realistic constellations of spatial correlation exist, in which non-spatial OLS produces

biased estimates of the direct impacts. In particular, the non-spatial OLS estimator

β̂OLS is biased in the presence of either:

(1) Spatial autocorrelation in the dependent variable (ρ 6= 0) and spatial autocorre-

lation in the covariate (δ 6= 0). This bias increases with ρ, δ, and β.

(2) Local spatial spillover effects (θ 6= 0) and spatial autocorrelation in the covariate

(δ 6= 0). This is analogous to the omitted variable bias resulting from the omission

of Wx. It increases with θ and δ, but additionally with ρ if θ 6= 0 and δ 6= 0.

(3) An omitted variable and E(ε|x) 6= 0. This non-spatial omitted variable bias γ is

amplified by spatial dependence in the disturbances (λ) and spatial autocorre-

lation in the dependent variable (ρ), but also increases with positive values of δ

if either ρ 6= 0 or λ 6= 0. Obviously, it also increases with γ.

3. Model selection

By showing that the non-spatial OLS estimates are biased in some constellations of

spatial dependence, the previous chapter gives a strong motivation for the use of

spatial regression models. However, as described in Chapter 2.1, a variety of spatial

model specifications exist that can be used to account for the spatial structure of the

data. Thus, selecting the correct model specification remains a crucial task in applied

research.

3.1. Specification tests

One way of selecting the model specification is the application of empirical specification

tests. In general, there are two different strategies: a specific-to-general or a general-

to-specific approach (Florax, Folmer, & Rey, 2003; Mur & Angulo, 2009).

The specific-to-general approach is more common in spatial econometrics. This ap-

proach starts with the most basic non-spatial model and tests for possible misspeci-

fications due to omitted autocorrelation in the error term or the dependent variable.

Therefore, Anselin, Bera, Florax, and Yoon (1996) proposed to use Lagrange mul-

tiplier (LM) tests for the hypotheses H0: λ = 0 and H0: ρ = 0, which are robust

against the alternative source of spatial dependence. The specific-to-general approach

based on the robust LM test offers a good performance in distinguishing between

SAR, SEM, and non-spatial OLS (Florax et al., 2003). Still, in their original paper,

Anselin et al. (1996) already note the declining power of the robust LMλ test for
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spatial error dependence with increasing autocorrelation in the dependent variable

(indicating some uncertainty under a SAC-like DGP). Furthermore, Mur and Angulo

(2009) demonstrate strong drawbacks of the specific-to-general approach under non-

optimal conditions like heteroscedasticity or endogeneity. Another shortcoming of this

approach is its disregard of spatial dependence from local spillover effects, as resulting

from an SLX-like process. Cook et al. (2015), for instance, show theoretically that an

SLX-like dependence structure leads to the rejection of both hypotheses H0: λ = 0

and H0: ρ = 0, though no autocorrelation is present (see also Elhorst & Halleck Vega,

2017). This is also validated by simulation results: the LM test is not helpful in distin-

guishing between SDM- and SDEM-like processes, and produces heavily biased results

in case of a GNS-like structure (see Table C1 of the Appendix).

The general-to-specific approach depicts the opposite method of specification search.

This approach starts with the most general model and stepwise imposes restrictions

on the parameters of this general model. In theory, one would start with a GNS

specification and subsequently restrict the model to simplified specifications based on

the significance of parameters in the GNS. The problem with this strategy is that

the GNS is only weakly identified and, thus, is of little help in selecting the correct

restrictions (Burridge et al., 2016). The most intuitive alternative would be to start

with one of the two-source models SDM, SDEM, or SAC. This, however, bears the risk

of imposing the wrong restriction in the first place (Cook et al., 2015). Furthermore,

Cook et al. (2015) show that more complicated restrictions are necessary to derive all

single-source models from SDEM or SAC specifications.

Thus, both ways of specification testing suffer from different sources of uncertainty,

thereby making it hard to develop a general guideline for empirically finding the correct

model specification. Consequently, scholars have developed other strategies to select

the spatial model specification.

3.2. Alternative strategies

Some argue that the best way of choosing the appropriate model specification is to

exclude one or more sources of spatial dependence – autocorrelation in the dependent

variable, autocorrelation in the disturbances, or spatial spillover effects of the covari-

ates – by design (Gibbons & Overman, 2012; Gibbons et al., 2015). Natural experi-

ments are probably the best way of making one or more sources of spatial dependence

unlikely, thereby restricting the model alternatives to a subset of all available models.

However, the opportunities to use natural experiments are restricted in social sciences,

making it a favourable but often impractical way of model selection. Therefore, Cook

et al. (2015) argue that theoretical considerations should guide the model selection.

First, it might be possible to rule out some sources of spatial dependence by the-

ory, and thus restricting the specification alternatives to a subset. Second, theoretical

mechanisms might guide the choice of either global or local spillover effects.
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Still, others (Elhorst, 2014; LeSage, 2014; LeSage & Pace, 2009) argue that there

are strong analytical reasons to restrict the model specifications to a subset, as the

SDM subsumes the SLX and SAR model, and the SDEM subsumes SLX and SEM.

It is easily observed that SDM reduces to SLX if ρ = 0 and to SAR if θ = 0, while

the SDEM reduces to SLX if λ = 0 and to SEM if θ = 0. Less intuitively, Anselin

(1988) has also shown that the SDM subsumes the SEM. Therefore, we can express

the reduced form of (2) and rearrange terms:

y = Xβ + (IN − λW )−1ε

(IN − λW )y = (IN − λW )Xβ + ε

(IN − λW )y = Xβ − λWXβ + ε

y = (IN − λW )−1(Xβ +WXθ + ε).

(21)

Thus, the SEM constitutes a special case of an SDM with the relative simple restriction

θ = −λβ, meaning direct and indirect effects are constrained to a common factor

(Anselin, 1988, 2003). The fact that SDM subsumes SAR, SLX, and SEM leads to

the conclusion that applied research should only consider SDM and SDEM as model

specifications (LeSage, 2014). Especially in the case of a likely omitted variable bias,

LeSage and Pace (2009, p. 68) argue in favour of using the SDM.

Nonetheless, others propose to use the SLX specification as point of departure (Gib-

bons & Overman, 2012; Halleck Vega & Elhorst, 2015). First, scholars have argued that

SAC and SDM models are only weakly identified in practice (Gibbons & Overman,

2012; Pinkse & Slade, 2010). Second, the global spillover specification in SAR, SAC,

and SDM often seems to be theoretically implausible. Recall, for instance, the example

of ‘diffusing’ house prices, where the house price in one district influences house prices

in neighbouring districts. Specifying a SAR-like process means that house prices di-

rectly influence each other. Yet, it might be more plausible that house prices are driven

by the demand within the focal, but also by the demand in neighbouring units, which

reflects an SLX-like structure. Third, the SLX is computationally efficient, as it can

be estimated by using Least Squares. Fourth, it turns attention back to the question

of whether X and WX are exogenous, which should be the main focus when investi-

gating the dependence between X and y. Furthermore, SLX, SDM, and SDEM share

the advantage that all three models estimate flexible indirect spillover effects, which

are not bound to a common ratio between direct and indirect effects for all covariates

(as in SAR and SAC).

4. Monte Carlo experiment

As outlined in the previous section, diverging recommendations exist for selecting the

model in applied research. To further improve the discussion on the selection of spatial
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model specifications, this study compares the performance of different spatial model

specifications by using a Monte Carlo experiment. Following the discussion above, a

Monte Carlo experiment should consider several aspects to provide implications for

applied research. First, as proposed by LeSage and Pace (2017), it is important to

evaluate the bias of the impacts rather than the point estimates. The impacts are the

measures of interest in applied research and the bias in impacts follows a non-linear

function of the bias in parameter estimates. Second, it is important to incorporate

more than one covariate, as bias in one parameter βk could be counterbalanced by

a bias in ρ, θk or λ, thus producing unbiased impacts for covariate k. However, a

counterbalancing bias in ρ or λ could, in turn, affect the impacts of other covariates,

as the autoregressive parameters affect all covariates. Third, we should evaluate the

performance in two different worlds, one without omitted variable (omv) bias and one

with omv bias, as this is likely to occur in applied research.

The DGP of the Monte Carlo simulation follows a GNS and is shown in (22) to (24),

where υk and ε are independent and randomly distributed N (0, σ2
υ) and N (0, σ2

ε) with

a mean of zero, and xk is the kth column-vector of X for k = 1, ...,K covariates (K is

fixed at 2 in the simulations). The parameter ρ represents the autocorrelation in the

dependent variable, λ the autocorrelation in the disturbances, and δk the autocorre-

lation in covariate k.

y = ρWy +Xβ +WXθ + u, (22)

u = λWu+Xγ + ε, (23)

xk = δkWxk + υk. (24)

The parameter-vector γ in (23) specifies the correlation between x and the disturbance

vector u, thereby defining the strength of an omitted variable bias. In reduced form,

this DGP can be written as

y =(IN − ρW )−1
[
(IN − δkW )−1υkβk

+W (IN − δkW )−1υkθk

+ (IN − λW )−1((IN − δkW )−1υkγk + ε)
]
.

(25)

The parameter vector β was fixed at β =
(

0.2 0.5
)ᵀ

, and the noise parameters

were fixed at σ2
υ, σ2

ε = 1 for all trials. All other parameters vary between the following

two options for each parameter (vector):

• ρ ∈ {0, 0.5},
• λ ∈ {0, 0.5},
• δ ∈

{(
0 0
)ᵀ
,
(

0.4 0.7
)ᵀ}

,

• θ ∈
{(

0 0
)ᵀ
,
(

0.1 0.8
)ᵀ}

,
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• γ ∈
{(

0 0
)ᵀ
,
(

0.3 0
)ᵀ}

,

leading to a total of 32 distinct combinations. Note that this selection of parameters

intentionally violates the common ratio assumption between direct and indirect effects,

as this should be a more common case in practical research. All combinations were

simulated in 1000 trials, with the same starting seed for each combination. All spatial

models were estimated using R’s package spdep (Bivand & Piras, 2015).

The simulations build on a square grid of 900 observations and use a row-normalised

(‘queen’) contiguity weights matrix W , where all units sharing a common border are

defined as neighbours, thus wij > 0 for contiguous units and wij = 0 otherwise. This

setting leads to an average of 7.6 neighbours. Note that many alternative specifications

may be chosen and that the choice should be made based on the assumed theoretical

mechanisms (Neumayer & Plümper, 2016). However, contiguity is the most commonly

used weights specification (e.g. Elhorst & Halleck Vega, 2017), and has been shown

to be the best choice when no theoretical or empirical reasons justify a specific form

of connectivity (Stakhovych & Bijmolt, 2009). Furthermore, the contiguity weights

matrix exhibits a high level of similarity with a wide range of k nearest neighbours

matrices (LeSage & Pace, 2014), as contiguous neighbours are (most likely) also the

nearest neighbours. In accordance, additional simulations using different specifications

of W lead to identical conclusions as presented in the following chapter.5

4.1. Results without omv

Figure 1 shows the bias of the direct and indirect impacts for the simulations without

a non-spatial omitted variable bias. Respective numbers and the root mean squared

error (RMSE) are shown in Appendix A. Several findings can be observed in the plot.

First and less surprising, all models perform reasonably well when correctly specify-

ing the DGP. For instance, when the DGP follows a SAR-like process (e.g. line 2 and

4), the SAR model yields very precise estimates of direct and indirect impact. Simi-

larly, SDEM yields the lowest bias if the DGP contains positive error-correlation λ > 0

and positive local spillover effects θ > 0, but no correlation in the dependent variable

ρ = 0 (see line 13 and 15). These findings hold throughout all model specifications

(though SAC could be seen as an exception).
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Second, OLS yields an unbiased estimate of the direct impacts in many situations.

The results confirm the theoretical predictions of Chapter 2.3: OLS estimates of the

direct impacts are only biased in case of either positive autocorrelation in the depen-

dent variable ρ > 0 and autocorrelation in the covariate δk > 0 or local spillover effects

θk > 0 and autocorrelation in the covariate δk > 0. Furthermore, this bias is rather

moderate for low values of δ, θ, and β as can been seen in the first column of Figure

1. Note, however, that the bias is a conservative estimate, because the simulations use

a relatively symmetric neighbours weights matrix. For instance, when increasing the

variance in the number of neighbours per unit (thereby increasing the covariance be-

tween the diagonals of the inverted matrices M(δ) and M(ρ)), the bias in non-spatial

OLS becomes more severe (see Equation 19 for the theoretical explanation).

Third, SLX, SDM, and SDEM all provide quite accurate estimates of the direct

impacts (most visible in column 2). SAR, SEM, and SAC, in contrast, yield some

drawbacks: especially in the presence of local spillover effects, these three specifications

are biased (see lower part of Figure 1). Furthermore, SAR and SEM suffer from bias if

autocorrelation in the disturbance and autocorrelation in the dependent variable are

present simultaneously (see line 6 and 8). Though SLX is downwardly biased in case

of autocorrelation in the dependent variable and the covariates (e.g. line 12 and 16),

and SDM as well as SDEM yield some bias in case of a GNS-like process (line 14 and

16), those biases are rather moderate. This indicates that SLX, SDM, and SDEM are

most robust against misspecification regarding the direct impacts.

Fourth, several differences exist regarding the indirect impacts. Most obviously, the

often used SAR specification suffers from considerable bias: it overestimates indirect

impacts in case of autocorrelation in the disturbances, and offers biased estimates if

local spillover effects exist (which are not restricted to a common ratio). The latter also

applies to SAC: though SAC offers relatively accurate estimates for x2, it overestimates

indirect impacts for x1. Regarding the remaining three specifications – SLX, SDM,

and SDEM – conclusions are less obvious. SDM and SDEM suffer from large bias for

high values of θ (see x2) if the DGP follows a GNS-like process (line 14 and 16): SDM

overestimates the indirect impacts, while SDEM underestimates the indirect impacts.

In addition, SDM performs badly if the true DGP is SDEM (line 13), and SDEM

performs badly if the true DGP is SDM (line 10), whereas the bias increases with

higher values of θk in both cases. Similar to SDEM, SLX underestimates the indirect

impacts in presence of global spillovers / autocorrelation in the dependent variable.

For a better comparison, Figure 2 shows the bias of the indirect impacts in case

of a GNS-like processes for different strengths of ρ and λ (for simplicity, we restrict

the autocorrelation in covariates to zero and keep the local spillover effects fixed at

θ = (0.1, 0.8)ᵀ). Respective numbers are shown in Appendix B. Three findings are

particularly interesting. First, in a GNS-like situation, the bias in SDM grows with

increasing autocorrelation in y (ρ) and increasing autocorrelation in the disturbances

(λ). Second, the bias in SLX and SDEM increases with higher values of ρ, but is
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Indirect x1 Indirect x2

-10 0 10 -10 0 10

16)    0.9    0.9

15)    0.7    0.9

14)    0.5    0.9

13)    0.3    0.9

12)    0.9    0.7

11)    0.7    0.7

10)    0.5    0.7

9)    0.3    0.7

8)    0.9    0.5

7)    0.7    0.5

6)    0.5    0.5

5)    0.3    0.5

4)    0.9    0.3

3)    0.7    0.3

2)    0.5    0.3

1)    0.3    0.3

Bias

SLX SAR SAC SDM SDEM

r      l

Figure 2. Bias of indirect impacts and 95% confidence interval of empirical standard deviation for different

strengths of autocorrelation: β = (0.2, 0.5)ᵀ, γ = (0, 0)ᵀ, δ = (0, 0)ᵀ, θ = (0.1, 0.8)ᵀ. ρ = autocorrelation in

the dependent variable (Wy); δ = autocorrelation in the covariates (xk = f(Wxk)); λ = autocorrelation in
the disturbances (Wu); θ = spatial spillover effects of covariates (WX); γ = strength of omv.

unaffected from the strength of λ. Third, though SLX and SDEM suffer from the

same problem, the bias from omitting global autocorrelation is less severe in SLX

than in SDEM. Thus, the SLX outperforms SDEM. Furthermore, SLX outperforms

SDM in most situations; only if the autocorrelation in the dependent variable is much

stronger than the autocorrelation in the disturbances (ρ = 0.9, λ = 0.3), SDM yields

lower bias than SLX.6

In sum, the results of the Monte Carlo experiments show that the three flexible

model specifications of SLX, SDM, and SDEM offer an accurate estimate of the direct

impacts, and all three specifications are relatively robust against misspecification re-

garding the direct impacts. However, results regarding the indirect impacts cast some

doubt on the advice to consider only SDM or SDEM if no prior knowledge about the

cause of spatial correlation is available. Especially in a ‘mixed world’ (where the true

DGP is GNS), the results reveal that SLX offers a good alternative, which is more

robust against misspecification in many situations.

4.2. Results with omv

So far, we have only considered the situation where X is perfectly exogenous in a

non-spatial sense. However, in applied research one might often face situations in
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which the covariates might be correlated with the disturbances. Thus, simulations in

Figure 3 replicate previous simulations with an omitted variable correlated with x1

(γ =
(

0.3 0
)ᵀ

) in a non-spatial way.

Comparing column 1 of Figures 1 and 3 reveals that OLS suffers from a larger

bias due to spatial autocorrelation if x is correlated with the disturbance, confirming

results by Pace and LeSage (2010). Regarding the direct impacts of variable x1, which

is affected by the omv bias, SEM exhibits the best estimation results. Yet, the good

performance of SEM regarding one variable (x1) is somewhat offset by a relatively

large bias in the second variable (x2), as the SEM tends to underestimate the impact

of the second variable not affected by the omitted variable in case of positive spatial

autocorrelation in y. As in previous results, the bias in SLX, SDM, and SDEM is

comparable and lower than in the remaining specifications.

Turning to the indirect impacts, SDEM reduces the bias in the variable affected

by the omv compared to other model specifications. Still, it suffers (as is the case

without omv) from a bad performance in the second variable if the DGP contains an

autoregressive parameter of the dependent variable (ρ > 0). Furthermore, it becomes

apparent that the underestimation of the indirect impacts in case of an GNS-like

process without an omv bias (Figure 1) is somewhat counterbalanced by the positive

omv bias leading to an overestimation of the impacts. For instance, in additional

Monte Carlo experiments defining a downward bias (γx1 = −0.1), SDEM amplifies the

downward bias. Thus, it seems to depend on the constellation between the impacts and

the omv bias whether SDEM reduces or increases the bias. However, a bias towards

zero seems to be less severe than an upwardly biased parameter estimate. Another

interesting finding is that the estimates of indirect impacts in SDM are affected most

strongly by the omitted variable bias. Comparing column 3 in Figures 1 and 3 reveals

that estimates in SDM show stronger changes than estimates of SLX and SDEM due

to the non-spatial omitted variable (e.g. line 8 and 14). In sum, the second set of Monte

Carlo simulations demonstrate that indirect impact estimates of SDEM and SLX are

less affected by a non-spatial omv bias than SDM. Furthermore, in specific situations,

SDEM may even help to reduce the non-spatial bias.

Additional simulations (available on request) reveal that the conclusions made above

are robust to different variations of the parameters chosen in the DGP.7 Obviously, as

can be seen in Figure 2, the performance of SDM increases with increasing values of ρ

relative to SDEM and SLX, and decreases with increasing values of λ (and vice versa).

Still, SDM, SDEM, and SLX yield nearly equal biases regarding the direct impacts,

while SLX and SDEM outperform the SDM in terms of the indirect impacts.
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5. Conclusion

The increasing availability of spatial or georeferenced data provides the possibility to

investigate spatial research questions. However, analysing spatial data also requires

careful consideration regarding the model specification. As has been shown theoret-

ically and empirically, different constellations of the data exist which lead to biased

estimates in non-spatial OLS models. Furthermore, non-spatial models disregard the

spatial processes inherent in the data, thereby loosing interesting information. To over-

come these problems, several spatial model specifications accounting for the spatial

dependence can be employed.

Nevertheless, the variety of specifications also comes with the problem of selecting

the correct specification in applied research, and specification tests are of little help in

many situations. Therefore, this study employs a Monte Carlo experiment to system-

atically compare the bias of the most common spatial regression models in different

situations of misspecification. In addition, this study extends previous simulations by

relying on the impacts rather than the regression coefficients, as the impacts are the

parameters of interest in applied research.

In line with previous studies (Elhorst, 2014; LeSage, 2014; LeSage & Pace, 2009), the

Monte Carlo experiment reveals that the most commonly used SAR, SEM, and SAC

specifications are outperformed by the more flexible specifications of SDM, SDEM,

and SLX. Still, the results contradict the recommendation to consider only SDM and

SDEM in applied research. While all three SDM, SDEM, and SLX show only marginal

differences in the direct impacts, there are notable differences in the indirect spillover

effects. Especially in a ‘mixed world’, in which the DGP follows a GNS-like structure,

SLX produces less biased estimates of indirect impacts than SDM and SDEM. Note

that this ‘mixed world’ resembles a very realistic scenario. In our example, one could

argue in favour of all spatial processes: house prices in one district may directly influ-

ence house prices in neighbouring districts, house prices may depend on environmental

quality in the focal and in contiguous districts, and clustered unobservables are likely

to influence the house prices. Although SDEM can help to reduce an upward bias

due to omitted variables in the presence of non-spatial endogeneity, this finding needs

further investigation, as conclusions seem to depend on the constellation of impacts

and omv bias.

In sum, the results of this paper support the claim recently made by Elhorst and

Halleck Vega (2017); Halleck Vega and Elhorst (2015): if no theoretical reasons justify

a specific model, it might be a better option to rely on the simple SLX specification

rather than adopting the more complex SDM in applied research. Especially if it is

not possible to eliminate one of the three sources of spatial dependence, SLX seems

to be a good choice. Furthermore, the SLX is computational simple and intuitively

interpretable. In contrast to global spillover effects in SDM, the local spillover effects

can be interpreted as the effects of the spatially weighted neighbours (as defined by
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W ). Beyond that, the spatial spillover effects in SLX can also be ‘globalised’ to some

extent by including separate terms for second or even higher order neighbours, which,

in addition, would be a more flexible function than higher order terms of one autore-

gressive parameter ρ. Moreover, Elhorst and Halleck Vega (2017) show that the SLX –

in contrast to other specifications – allows to empirically parameterise the weights ma-

trix W , which can lead to improved estimates of the spillover effects. Taken together,

SLX certainly provides a worthwhile alternative to SDM and SDEM.

Still, it is important to keep in mind that spatial models only give parameter esti-

mates for (conditional) correlations. Simply estimating a model using cross-sectional

observational data hardly tells anything about the causal mechanisms underlying these

correlations. The causal process underlying the spatial correlation can be the result of

either 1) spatial interdependence in the dependent variable, 2) spillover effects in the

covariates, or 3) common unobserved shocks. To identify the (spatial) causal effects

between two variables of interest, it is necessary to use designs or methods following

the counterfactual approach like natural experiments (Angrist & Pischke, 2009, 2015;

Morgan & Winship, 2015). However, this applies to all empirical research, including

non-spatial observational studies. Thus, as is the case with all observational studies,

spatial models can provide interesting insights into the correlational structure of the

data, but can only be a first step in evaluating the causal mechanisms.
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Notes

1The model intercept is omitted in all models for simplicity.
2Gibbons and Overman (2012) even argue that the SDM is only weakly identified in practice.
3Though previous literature (e.g. Halleck Vega & Elhorst, 2015; LeSage & Pace, 2009) has established the

notation of direct and indirect impacts, it is important to note that also the direct impacts comprise a spatial

‘multiplier’ component if we specify an endogenous lagged depended variable, as a change in xi influences yi,

which influences yj , which in turn influences yi (see also equation 10).
4A power series of

∑∞
k=0W

k converges to (I−W )−1 if the maximum absolute eigenvalue of W < 1, which

is ensured by standardising W .
5See Figure D1 for results using inverse distance weighted 10-nearest neighbours and Figure D2 for results

with maximum eigenvalue-normalised inverse distances weights (cut-off at 100 neighbours for computational

efficiency) and a distance decay factor set to 1. Though, in line with previous research (Stakhovych & Bijmolt,

2009), the dispersion of the indirect impacts strongly increases with higher levels of connectivity (see Figure D2),

the conclusions regarding the relative performance of the different specifications remain unchanged. Additional

simulations using the Oklahoma census tract shape file (N=1,046) instead of a symmetric grid produced

identical results (not shown).
6Note that the SAC yields relatively low biases for the indirect impacts in GNS-like processes, but at the

same time produces relative large biases in the direct impacts (see Table B1).
7Variations were specified as follows: ρ ∈ {0.3, 0.7}, λ ∈ {0.3, 0.7}, θ =

(
0.1 0.4

)ᵀ
, and γ ∈

{
(
−0.1 0

)ᵀ
,
(
−0.3 0

)ᵀ
,
(

0.3 0.2
)ᵀ
}.
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25

http://www.sas.rochester.edu/psc/polmeth/papers/Cook_Hays_Franzese.pdf


Florax, R., Folmer, H., & Rey, S. J. (2003). Specification Searches in Spatial Econometrics:

The Relevance of Hendry’s Methodology. Regional Science and Urban Economics, 33 (5),

557–579.

Franzese, R. J., & Hays, J. C. (2007). Spatial Econometric Models of Cross-Sectional Interde-

pendence in Political Science Panel and Time-Series-Cross-Section Data. Political Analysis,

15 (2), 140–164.

Friedrichs, J., Galster, G., & Musterd, S. (2003). Neighbourhood Effects on Social Opportu-

nities: The European and American Research and Policy Context. Housing Studies, 18 (6),

797–806.

Gibbons, S., & Overman, H. G. (2012). Mostly Pointless Spatial Econometrics? Journal of

Regional Science, 52 (2), 172–191.

Gibbons, S., Overman, H. G., & Patacchini, E. (2015). Spatial Methods. In G. Duranton,

J. V. Henderson, & W. C. Strange (Eds.), Handbook of Regional and Urban Economics

(Vol. 5, pp. 115–168). Amsterdam: Elsevier.

Girard, D. A. (1989). A Fast ‘Monte-Carlo Cross-Validation’ Procedure for Large Least

Squares Problems with Noisy Data. Numerische Mathematik , 56 (1), 1–23.

Halleck Vega, S., & Elhorst, J. P. (2015). The SLX Model. Journal of Regional Science, 55 (3),

339–363.

Kelejian, H. H., & Prucha, I. R. (1998). A Generalized Spatial Two-Stage Least Squares

Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances.

The Journal of Real Estate Finance and Economics, 17 (1), 99–121.

Kelejian, H. H., & Prucha, I. R. (2010). Specification and Estimation of Spatial Autoregressive

Models with Autoregressive and Heteroskedastic Disturbances. Journal of Econometrics,

157 (1), 53–67.

Kling, J. R., Liebman, J. B., & Katz, L. F. (2007). Experimental Analysis of Neighborhood

Effects. Econometrica, 75 (1), 83–119.

Lee, L.-f. (2004). Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for

Spatial Autoregressive Models. Econometrica, 72 (6), 1899–1925.

Legewie, J., & Schaeffer, M. (2016). Contested Boundaries: Explaining where Ethnoracial

Diversity Provokes Neighborhood Conflict. American Journal of Sociology , 122 (1), 125–

161.

LeSage, J. P. (2014). What Regional Scientists Need to Know about Spatial Econometrics.

The Review of Regional Studies, 44 (1), 13–32.

LeSage, J. P., & Pace, R. K. (2009). Introduction to Spatial Econometrics. Boca Raton: CRC

Press.

LeSage, J. P., & Pace, R. K. (2014). The Biggest Myth in Spatial Econometrics. Econometrics,

2 (4), 217–249.

LeSage, J. P., & Pace, R. K. (2017). Spatial Econometric Monte Carlo Studies: Raising the

Bar. Empirical Economics, in press.

Lichter, D. T., Parisi, D., & Taquino, M. C. (2015). Toward a New Macro-Segregation?

Decomposing Segregation within and between Metropolitan Cities and Suburbs. American

Sociological Review , 80 (4), 843–873.

Logan, J. R. (2012). Making a Place for Space: Spatial Thinking in Social Science. Annual

Review of Sociology , 38 , 507–524.

26



Manski, C. F. (1993). Identification of Endogenous Social Effects: The Reflection Problem.

The Review of Economic Studies, 60 (3), 531–542.

Morgan, S. L., & Winship, C. (2015). Counterfactuals and Causal Inference: Methods and

Principles for Social Research. New York: Cambridge Univ. Press.

Mur, J., & Angulo, A. (2009). Model Selection Strategies in a Spatial Setting: Some Additional

Results. Regional Science and Urban Economics, 39 (2), 200–213.
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Appendix C. Lagrange multiplier tests

Table C1. Rejection rates of H0 (Lagrange multiplier test). β = (0.2, 0.5)ᵀ, γ =

(0, 0)ᵀ.

ρ δ λ θ LMλ LMρ LM∗λ LM∗ρ LMλρ

0.0 0, 0 0.0 0, 0 0.0410 0.0440 0.0520 0.0500 0.0580

0.4 0, 0 0.0 0, 0 1.0000 1.0000 0.0920 0.7750 1.0000

0.8 0, 0 0.0 0, 0 1.0000 1.0000 0.3880 0.9990 1.0000
0.0 0.4, 0.7 0.0 0, 0 0.0440 0.0520 0.0550 0.0590 0.0550

0.4 0.4, 0.7 0.0 0, 0 1.0000 1.0000 0.1340 0.9900 1.0000

0.8 0.4, 0.7 0.0 0, 0 1.0000 1.0000 0.9950 1.0000 1.0000
0.0 0, 0 0.4 0, 0 1.0000 1.0000 0.7190 0.1140 1.0000

0.4 0, 0 0.4 0, 0 1.0000 1.0000 0.8560 0.6830 1.0000

0.8 0, 0 0.4 0, 0 1.0000 1.0000 0.8380 0.9780 1.0000
0.0 0.4, 0.7 0.4 0, 0 1.0000 1.0000 0.9430 0.1100 1.0000

0.4 0.4, 0.7 0.4 0, 0 1.0000 1.0000 0.9970 0.9560 1.0000
0.8 0.4, 0.7 0.4 0, 0 1.0000 1.0000 1.0000 1.0000 1.0000

0.0 0, 0 0.8 0, 0 1.0000 1.0000 0.9990 0.2860 1.0000

0.4 0, 0 0.8 0, 0 1.0000 1.0000 0.9960 0.5190 1.0000
0.8 0, 0 0.8 0, 0 1.0000 1.0000 0.7450 0.7410 1.0000

0.0 0.4, 0.7 0.8 0, 0 1.0000 1.0000 1.0000 0.3000 1.0000

0.4 0.4, 0.7 0.8 0, 0 1.0000 1.0000 1.0000 0.7280 1.0000
0.8 0.4, 0.7 0.8 0, 0 1.0000 1.0000 1.0000 0.9410 1.0000

0.0 0, 0 0.0 0.1, 0.8 0.4240 0.9910 1.0000 1.0000 1.0000

0.4 0, 0 0.0 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000
0.8 0, 0 0.0 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000

0.0 0.4, 0.7 0.0 0.1, 0.8 0.8320 1.0000 1.0000 1.0000 1.0000

0.4 0.4, 0.7 0.0 0.1, 0.8 1.0000 1.0000 0.9960 1.0000 1.0000
0.8 0.4, 0.7 0.0 0.1, 0.8 1.0000 1.0000 0.4970 1.0000 1.0000

0.0 0, 0 0.4 0.1, 0.8 1.0000 1.0000 0.9900 1.0000 1.0000
0.4 0, 0 0.4 0.1, 0.8 1.0000 1.0000 0.9530 1.0000 1.0000

0.8 0, 0 0.4 0.1, 0.8 1.0000 1.0000 0.8520 1.0000 1.0000

0.0 0.4, 0.7 0.4 0.1, 0.8 1.0000 1.0000 0.9560 1.0000 1.0000
0.4 0.4, 0.7 0.4 0.1, 0.8 1.0000 1.0000 0.0930 1.0000 1.0000

0.8 0.4, 0.7 0.4 0.1, 0.8 1.0000 1.0000 0.9600 1.0000 1.0000

0.0 0, 0 0.8 0.1, 0.8 1.0000 1.0000 0.2590 0.9930 1.0000
0.4 0, 0 0.8 0.1, 0.8 1.0000 1.0000 0.2370 0.9940 1.0000

0.8 0, 0 0.8 0.1, 0.8 1.0000 1.0000 0.1530 0.9940 1.0000

0.0 0.4, 0.7 0.8 0.1, 0.8 1.0000 1.0000 0.9880 1.0000 1.0000
0.4 0.4, 0.7 0.8 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000

0.8 0.4, 0.7 0.8 0.1, 0.8 1.0000 1.0000 1.0000 1.0000 1.0000

Number of observations=900, repetitions=1000. LM= Lagrange multiplier test,
LM∗= Robust Lagrange multiplier test, each for H0: λ = 0, H0: ρ = 0, H0: λ, ρ = 0.
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