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Abstract

With this article we first like to a give a brief review on wavelet thresholding

methods in non-Gaussian and non-i.i.d. situations, respectively. Many of these ap-
plications are based on Gaussian approzimations of the empirical coefficients. For
regression and density estimation with independent observations, we establish joint
asymptotic normality of the empirical coeflicients by means of strong approxima-
tions. Then we describe how one can prove asymptotic normality under mixing
conditions on the observations by cumulant techniques.
In the second part, we apply these non-linear adaptive shrinking schemes to spectral
estimation problems for both a stationary and a non-stationary time series setup.
For the latter one, in a model of Dahlhaus ([Da93]) on the evolutionary spectrum of
a locally stationary time series, we present two different approaches. Moreover, we
show that in classes of anisotropic function spaces an appropriately chosen wavelet
basis automatically adapts to possibly different degrees of regularity for the different
directions. The resulting fully-adaptive spectral estimator attains the rate that is
optimal in the idealized Gaussian white noise model up to a logarithmic factor.

1 Introduction

Nonlinear wavelet methods have become very popular since the seminal papers by Donoho
and Johnstone (see [DJ92], [DJ94], e.g.). They rediscovered a phenomenon, originally de-
tected by Nemirovskii, Polyak and Tsybakov in [NTP85] and [N85] for Sobolev smoothness
classes, that linear estimators are unable to attain the optimal uniform convergence rate
in balls of Besov spaces B)", with p < 2. Moreover, they showed that appropriately thresh-
olded wavelet estimators attain the minimax bound up to a small constant. Whereas the
nonlinear estimators proposed in [NTP85] and [N85] did not lead to new developments
beyond the Gaussian white noise model, the work by Donoho and Johnstone has led to a
real breakthrough in statistical estimation theory.

This new method can be described as follows. Assume we have function-valued obser-
vations in the Gaussian white noise model

dY (t) = f(t)dt + edW(t), te€]0,1], (1)
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where W(t) is a standard Wiener process, and where the noise level € is assumed to be
small. There are two basic requirements, which are essential for the advantages of these
new methods over traditional linear estimators. First, we have an orthonormal system
{¢lk}kelf U {tjr}j>1rer; of basis functions, which are essentially generated by dilations
and translations of a scaling function ¢ and a so-called wavelet 1. Here the index sets I}
and I; are of cardinality O(2') and 27, respectively. These basis functions, which are both
localized in spatial position and frequency, are capable of optimally compressing functions
both under more traditional “homogeneous” smoothness assumptions like Holder or L,-
Sobolev as well as in the case of “inhomogeneous” smoothness like L,-Sobolev or Besov
B, with p < 2. Having in mind the Fourier series expansion [ = 3> ax¢u + 3 ajptji ,
one calculates first empirical versions &y = [ ¢u(t)dY(t) and & = [¥(t)dY ()
of the wavelet coefficients. These empirical coefficients are again independently normally
distributed with homogeneous variances €.

In the case of “homogeneous” smoothness classes F, the coefficients within an arbi-
trary scale are roughly of the same order of magnitude. Strictly speaking, the functional
SUP per {Ek min{e?, oz?k}} is not essentially smaller than sup;.r {min{2j62, Sk a?k}} :
Hence, we do not lose very much by a levelwise inclusion/exclusion strategy, i.e. by ei-
ther taking all empirical coefficients from a certain resolution level j or by neglecting the
whole level. This leads to linear estimation rules, which are known to be able to provide
the optimal rate of convergence.

In contrast, in “inhomogeneous” smoothness classes, the coefficients within a given
scale are allowed to be much less homogeneous. For certain j depending on €, the quantity
SUP fer {Ek min{e?, a?k}} will be essentially smaller than sup - {min{2j62, P a?k}} :
This calls for a coordinatewise decision rule whether or not an empirical coefficient should
be included in the estimator of f. Donoho and Johnstone proposed in [DJ92] two nonlinear
rules to treat the empirical coefficients:

1) hard thresholding
8W(@j, N) = @il (|a] = N)

and

2) soft thresholding
8N (@, A) = (|Gl — A), sgn(@e).

In the following 6*) is used to (somewhat sloppily) denote either 6™ or §),

[DJ92] and [DJKP95] contain two main results, which characterize the performance
of thresholded wavelet estimators in model (1). If the thresholds A = X;(F,¢€) are chosen
in a level-dependent optimal way, then the estimator

f= S @k b + 3.3 6@, \)) Y
P

>l ok

is minimax up to a multiplicative constant, if F is a ball in a certain Besov space. How-
ever, the optimal choice of the thresholds A; depends on the set F and the noise level €. In
simple estimation problems there exist some proposals to choose these A; automatically.
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Assuming Gaussian errors, in [DJ93] Donoho and Johnstone proposed to use Stein’s Unbi-
ased Risk Estimate (SURE) in conjunction with sample splitting at the higher resolution
levels, which was further investigated by Nason in [Na94]. In view of approximation results
connecting non-Gaussian regression with model (1), as described e.g. in the present paper,
we conjecture that SURE can also be applied in non-Gaussian regression. The application
of the classical leave-one-out cross-validation was investigated by Neumann and Spokoiny
in [NS95].

A much simpler approach is to set a uniform threshold. Assume that n coefficients

are to be thresholded. It is shown in [DJKP95] that by the choice

A = ey/2log(n)

we obtain an estimator, which is simultaneously minimaz in a wide range of smoothness
classes up to a logarithmic factor. Note that by using such a uniform threshold there is
no intention for an optimal trade-off of bias and variance of the resulting estimator. This
choice is rather motivated by significantly testing what is the information content of the
noisy wavelet coefficients.

These results are undoubtly of considerable theoretical interest, however it is of great
importance to know how these methods can be transferred to practically more relevant
estimation problems. Perhaps the first practical application of the shrinkage scheme
developed in [DJ92] was to density estimation by Johnstone, Kerkyacharian and Pi-

card in [JKP92]. There, the authors proposed nonrandom thresholds A; = K\/j% ,
which were motivated by considerations on the tail behaviour of the empirical coefficients
ajp = n Y (X)) , where X; ~ f are independent. They also indicated that soft
thresholds originally developed for the case of Gaussian noise can be applied as well.

Patil in [P94] for hazard rate estimation and Gao in [(G93] for spectral density esti-
mation of a stationary Gaussian time series also developed specific threshold rules on the
basis of upper estimates of the tail probabilities of appropriate empirical coefficients.

In [DeJ93] Delyon and Juditskii extended these results to general estimation problems,
which allow to consider empirical coefficients with a certain tail behavior. They proposed
specific threshold choices in dependence on the decay of probabilities of large deviations
of the empirical coefficients. These results can be applied to a large number of curve
estimation problems, and imply that in many cases the same rates for the risk as in
model (1) are attainable.

The abovementioned papers provide certainly reasonable rules for the choice of the
thresholds in particular estimation problems. However, a careful analysis of all these prob-
lems (density estimation, non-Gaussian regression, spectral density estimation, density
estimation and regression with dependent observations) shows that, under weak regular-
ity conditions, all these problems are essentially of the same nature. It turns out that the
empirical coefficients at the scales j with 2/ < n are asymptotically Gaussian. Obvi-
ously, a simple central limit theorem would not be sufficient for proving risk equivalence
of thresholded estimators in non-Gaussian models to the case of Gaussian noise. However,
in many situations one can state asymptotic normality by showing that

P(£(ajr —ajr) /o > ) = (1 — &(z)) (1 + o(1)) (2)
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holds uniformly in (j,k) € J., —oc < z < A,, where oF, := var(@;z) = O(n™") ,
A, < n* for some g >0 and J, such that

> o = 0. (3)

(Usually the restriction J, = {(j,k) | 2/ < Cn'~*} for some § > 0 will be appropriate.)
Now we can define an accompanying Gaussian model as

fjk = Qjk + €k, (J7 k) € jm (4)

where ¢, ~ N(0, Jfk) . Essentially by integration by parts, we then can show that

> E (5 (ks Ajr) — 0%)2 =(L+o(l) > E (5(')(§jka)\jk) - 0%)2 + O(n™).

(3.k)ETn (J.F)ETn
(5)

For the sake of greater generality, here we allow the thresholds to depend on n, 7 and
k, although in practice one often uses thresholds only depending on the sample size n
and/or the resolution scale j. Location dependent thresholds being proportional to o
are reasonable in the case of heteroscedastic error models.

Once we have shown (3) and (5), the application of thresholding methods developed
for the case of Gaussian noise is justified. In particular, if we assume that the unknown
curve is a member of some smoothness class F with degree of smoothness m, we are able
to attain the “classical” rate n=2"/(?7+1) for the L,-risk by exactly the same treatment of
the empirical coefficients as in the Gaussian case. Assume we have any one-dimensional
curve estimation problem, which allows to define empirical coefficients satisfying (2). We
consider the estimator

f= Zak¢lk—|— > 6 (ks AUk

(j,k)ETn

Then we immediately obtain the following theorem from known results in Gaussian re-
gression.

Theorem 1.1 Let F be a ball in a Besov space B, m,p,q > 1. Assume that (2) and

p,q’

(3) are satisfied uniformly in (3,k) € J, and f € F . Then,

(i) for an optimal choice of the thresholds X\; = A(n,j,F) ,

sup {[If = flli, } = O (n=/Cm41),

ii) for thresholds X\ satisfying o, /2log(#T,) < Aix < C n~Y% /log(n) for any
J J g J g

positive constant C,

sap {1 = 1.} = O ((og(on) ) 212743)
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This approach has been used by Neumann and Spokoiny, [NS95], in non-Gaussian
regression, by Neumann, [Ne94], in spectral density estimation for stationary time series,
by Neumann and von Sachs, [NvS94], in spectral density estimation in the locally sta-
tionary case and by Dahlhaus, Neumann and von Sachs, [DNvS95], for the estimation of
the (time varying) autoregression coefficients in a nonstationary model.

In the following section we indicate how to derive the basis approximation (2) in
regression and density estimation with dependent observations. We also describe an alter-
native approach: By means of strong approximations, a large set of empirical coefficients
is stmultaneously approximated by those in a certain Gaussian observation model. The
third section deals with the application of the prescribed methods and techniques to the
spectral density estimation problem. First we emphasize that this problem is (asymptoti-
cally) analogous to the regression problem but without knowledge of the exact underlying
error distribution and dependence structure of the errors. Then, we present the main
techniques how to derive the necessary approximations for the stationary time series set
up: we distinguish between the case of a Gaussian series, which has been treated in [G93],
and a general (i.e. non-Gaussian) series with techniques as derived by [Ne94].

These techniques give us the basis to also investigate the instationary time series set-
up: In a model of a locally stationary process with time-varying (evolutionary) spectrum,
as derived by [Da93], we address a particular 2-d problem with the same features as for
the 1-d stationary situation but with an additional (time) dimension - with additional
(unknown) dependence structure.

Moreover, far more generally, we like to treat our problem by embedding it into n-d
(anisotropic) function estimation problems: in [NvS94] a minimax result has been derived
for a typical (2-d) function class, an anisotropic Sobolev class, with different degree of
smoothness in different directions. We show that this minimax rate is attained if we base
our threshold estimator on an appropriate wavelet basis, the so-called tensor product
basis. With this, we end up to show that a certain wavelet estimator of the evolutionary
spectrum, under minimal regularity assumptions, nearly attains this rate in a ball within
this Sobolev class. This estimator, derived in [NvS94] arises as a modification of a first
approach of [vSS594], which turns out to be able to adapt to the different degrees of
smoothness of the time-dependent spectrum in the time-frequency plane.

Finally some simulation examples on a time-dependent spectrum, which shows some
typical local features, confirm what has been derived by our asymptotic results.

2 Asymptotic normality in regression and density estimation

In this section we consider nonparametric regression and density estimation and establish
connections to the idealized Gaussian model (1). In the first part we assume indepen-
dent observations and also indicate an alternative way to show the equivalence to the
(Gaussian case via strong approximations. In the second part we drop the sometimes un-
realistic assumption of independence and focus on the derivation of (2) in cases of weak
dependence.

2.1 Regression and density estimation with independent observations

We start with the regression case, where we assume to observe Y; from the model
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Yi=m(x;) + e, i1=1,...,n (6)

with Fe; = 0. For simplicity we assume that the z;’s are taken from a triangular array
of regularly spaced points z; = z;(n) , i.e.

(A1) [FPg(t)dt = i/n  for some positive, continuous density g.

The errors ¢; are independently, not necessarily identically distributed with
(A2) C) < o?;= var(e;) < Ch.

Again for simplicity, we assume that all moments are uniformly bounded, i.e.
(A3) EleJ™ < Cpy for all M € IN and for some fixed constants Cpr < oo .
Further, we assume

(A4) ¢ and @ are of bounded total variation on [0, 1].

As a potential asymptotic approximation to (6) we consider the model
Zi = m(.rz) —I-&, izl,...,n, (7)

where the ¢;’s are independent with ¢ ~ N(0,0?) . For simplicity of notation we define
Yi_ik = ¢ and a_1p = o .
We consider the empirical coefficients

Qi = > _(wi — aii1)wir(i)Y;

and

O = Y (wi — xima)win(i) Z;

where .
wid) = [ gy dt/ (e = 2ia).
Ti_1
To obtain a connection between ¢&;; and gjk, we consider the partial sum processes
Sj = Z@Z(xz — ;1)
i<i

and

Tj = Zfz("’?z - CEi—l)-

i<
Under (A1) through (A3), we infer by Corollary 4 in [S91] that there exists a joint prob-
ability space on which

P (max (15, — T} > m—l) — O(n) (8)

1<i<n

holds for arbitrarily small ¥ > 0 and arbitrarily large A < co. By (A4) we get that
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i|wjk(i) — wi(i+ 1)] + wir(n) = 0(27?),

which yields by summation by parts that

|5ljk - 5jk| = |w]k(6)(€z — fl)(rz — 1;2._1)|
- ;('w]’k(i) — wi(i+ )8 = T) + wir(n)(S, — T))

_ 0 (2]'/2 max {18 - Ti|}>.
This implies the following lemma.
Lemma 2.1 Assume (A1) through (A4). Then, on an appropriate probability space,
P (1a — O] >0 ™72 forany (k) € Jn) = O(n™) (9)
forany v >0, X <oo, where J,={(j k)| 22 <n'"} for some §>0.
If v is chosen such that v < 6/2, then the maximal difference between &, and (%k is of

~1/2_ This result can be used in particular to prove (2).
But there are also other interesting applications of (9). Due to the possible reduction to

smaller order than the noise level n

the Gaussian case, we can immediately derive the asymptotics of thresholded estimators
in the L.,-norm from known results in the Gaussian case. Further, we can also use (9) to
derive tests against the hypothesis Hy : m = const , which in particular would mean
that «ajz =0 for all (5,k), j > [. This has been done in a recent work by Fan in [F94].
Moreover, we can apply (9) to derive asymptotic confidence sets.

If we replace assumptions (Al) and (A2) by

(AL) z; = i/n,
(A2') var(e;) = o? € (0, 00),
and additionally assume
(AB) TVu(m) < C,

then we can also establish the asymptotic equivalence to the (homogeneous) Gaussian
white noise model (1). This is in accordance to equivalence results in a decision theoretic
framework by Brown and Low in [BL92]. Let

Oj = /%‘k(ﬂ dY (1)
be defined by the observations from model (1).

Lemma 2.2 Assume (A1°), (A2°) and (A3) through (A5). Then there exists a joint
probability space such that
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P <|5z]-k — gjk| > pV 8212 for any (5, k) € jn) = O(n_A) (10)
forany v>0, A <oo.

Proof. Instead of {S;} we consider the linearly interpolated partial sum process on [0,1]:

S(t) = Z g; + (nt - [nt])e[m]H.

j<nt

Again by Corollary 4 in [S91], we obtain that, on an appropriate probability space,

P (sup {|S(t) — Unl/ZW(t)|} > n”) = O(n™) (11)

0<t<1

holds for arbitrary v > 0, A < oo. Further, we conclude by (A5) that

1A = ‘Eajk — Efj,

= Z/j_l ()| |[m(z;) — m(t)|dt = O(27/*n7Y)  (12)

holds uniformly in (3, k) € J,.
By integration by parts we obtain

G — O = Ay + n_l/’é/)jk(t)dS(t) - an_l/Q/';/)jk(t) dW (t)
= A4 [(S(0) = on W) di(t) + n7(S() — o W) )

= 0 (2j/2n_1 + 20271 sup {|S(t) — anl/QW(tﬂ}) ,

0<t<1

which proves the lemma in conjunction with (11) and (12).

The approximation by the continuous model (1) has certain advantages over an ap-

proximation by the discrete model (7). The coefficients gjk are exactly unbiased and
independently distributed with homogeneous variances, which makes their analysis eas-
ier.

Now we turn to the problem of density estimation. We assume that we have indepen-
dent observations Xji,..., X, , identically distributed with density f supported on [0, 1]
and cumulative distribution function F.

With X, = F(X;) ~ uniform[0, 1] we define the empirical process

n

Un(t) = 723 (I(X; < 1) — 1) (13)

=1

By Theorem 2 in Section 12.1 of [SW86] we infer that, on an appropriate probability
space,

P (HUn — Bulloo > n_l/Q(cl log(n) + .?7)) < ¢y exp(—csax) (14)

holds for appropriate ¢1, ¢; and ¢3, where {B,,} is a sequence of Brownian bridges. Since
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Un(F(s)) = n'2(Fu(s) — F(s)),

where F,, is the empirical c.d.f. of the sample Xi,..., X, , we obtain

P (os<gl<)1 {|(Fn(3) - F(s) — n_l/QBn(F(S)ﬂ} > n"!(e; log(n) + x)) < cyexp(—ecsx).
o (15)

Now we are in the position to establish the connection to the Gaussian case for the
empirical coefficients. Let

&jk = n_lz¢]k(Xz)
Then

G — e =[Gt d(Fu(t) = F(1))

= [ (B = F (1)) = w7 BL(F@))] di() (16)

By (15) we see that the second term on the right-hand side of (16) is O(n"~'2//2) for any
fixed v > 0 with overwhelming probability. With B, (t) = W (t) — tW (1) (neglecting
the index n), the first term on the right-hand side writes as

n_l/Q/@/)jk(t) dB.(F(t)) = n_l/Q/l/)jk(t) dW (F(t)) — n_l/QW(l)/l/)jk(t)dF(t)
~ T [P AW ) - n W e (17)

Because of Y ;,a% = [|f(t)]?dt < oo , the second term on the right-hand side of
(17) will be negligible for most of the (j, k)’s. Moreover, under appropriate smoothness
assumptions,

Ea?k < C(j) — 0 asj— oo,

k

which implies that &;; — o, can be well approximated by n =2 [t (t) fY/2(t) dW (t)
for (7, k) € {(], k)| n® <2/ < nl_‘s} and any ¢ > 0 . This reflects the well-known fact
that, in a shrinking neighborhood of some density fy, density estimation is asymptotically
equivalent to the statistical experiment given by observations

dY (1) = f(t)dt + n~ 372 (1) dW (1),
cf. [Nu94].

2.2 Regression and density estimation for dependent observations

Again we begin with regression, i.e. we assume (6) and only drop the assumption of
independence of the ¢;’s. In [Bri94] Brillinger assumes a stationary error process {e;}
and shows asymptotic normality of the empirical coefficients under the assumption that

Y Cpz™/m! < x (18)
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holds for |z| small enough, where

C,, = Z lem (U, vy Upet)]

and

Con(Uy ooy Upm1) = CUM(Eiguys - - v s Eitupy_ys Ei)-

He remarks that (18) is satisfied in particular if the error process {¢;} is Gaussian with
02 < 00 .

However, to cover both usual mixing conditions and non-Gaussian processes, we need
a weaker substitute of (18). Assume that

(A6) Ele;|P < CP(ph)s Vp>2

holds for appropriate C' < oo and & > 0. Note that many of the distributions that can
be found in textbooks satisfy (A6) for an appropriate choice of . In [JK70] we can find
closed forms of higher order cumulants of the exponential, gamma, inverse Gaussian and
F-distribution, which show that this condition is satisfied for k = 1.

Further, we assume that

(A7) {&;} is a-mixing with a(s) < Cexp(—bls|) .

Then we can show by 2) of Theorem 3 in [SJ88] that

sup { Z |Cum(€i1,...,52~p)|} < C~'p(p!)3'"H (19)

1<i1 <00 | 4y,.0p=1
holds for all p=2,3,... and appropriate C, cf. Remark 3.1 in [Ne94]. Let
ajp = D wik(1)Y;
with @;(7) = [5* | ¥;(t)dt . Then we obtain that

cum,(aji) = Cump(zwjk(i)ei)
= > > @(in) - Wnlip) cum(esy, g,
i1 i2,mip

= O (" (7121272 C7(pl)*+)

holds uniformly in p > 2.
If ojx =var(ajz) > Cn~* for some C >0, we have

jeum, (&) /oje)| = O (CP(p)** (2n~h)= /%) (20)
uniformly in p > 2. This implies by Lemma 1 in [RSS78] that

P(£(ajr — Eaj)/ojp > ) = (1 — @(2))(1 + o(1)) (21)
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holds uniformly in those (j,k) € J, with o > Cn™! | and uniformly on some interval
—x<zr<A,, A, xn* for some u>0.
In cases where o, is less than n='/2 we first consider the theoretical quantities

ajr = ik + Vjk,

where ¥ ~ N(0,n~! — a?k) is independent of &;;. The new random variable gzjk has a
variance equal to n™!, and its higher order cumulants coincide with those of @;;. Hence,
we can establish (21) for gzjk instead of & ;. On the other hand, we can easily show for
thresholded estimators that

E (6()(&]147)\) — Ozjk)Q < 2K (6()(3]14,)\) — Ozjk)Q

holds, which gives us again the connection to a certain Gaussian model.
The case of density estimation is quite similar. We assume that

(A8) {X,} is ¢-mixing with ¢(s) < Cexp(—b|s]) .
By 1b) of Theorem 5 in [SJ88], with 3 =6 =1, we obtain that
| cum, (@;)| = p!8°H (Cn 12722 AP72(6,4(p — 2)) m An(8,4) Elyin(X3) [,

where

An(,u) = maX{l,lrgSasg{z_: ¢! (t — 5)}}.

ontty=2) = 0 (L1 20 = 02,

we get, using m™ < mlexp(m), that
[ ewmy (@)| = O ((p)* 0" (Cn~12/2)7) (22)

holds uniformly in (j, k) and p > 2.
Hence, we can derive asymptotic normality analogously to the regression case.

3 Spectral density estimation

3.1 Spectrum estimation for stationary processes

In this context the aim is to estimate the spectral density

1 > )
flw) = 5 Z cov{Xs; Xiqsexp(—iws), w € [—7, 7],

S§=—00

of a stationary process {X;}. A basis for a wavelet estimator will be the periodogram of
the observed (tapered) data X;,1 <t <T"

S

In(w) = (25 Ho) ™ | Y i

s=1

) X, exp(—iws)|?, (23)
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where h : [0,1] — [0,1] is a sufficiently smooth taper-function (“window”) and
Hyr =1 h*(s/T) the appropriate norming factor with Hyz ~ T (see, e.g., [Da93]).

Using data-tapers, e.g. a Hanning-window which is of cosine form

(1 — (cos 27u)) if u € (0,2

y — 2 ? 72 ¢
Aw) { h(1 - u), ifue[l1] (24)
is a well-known remedy in spectral estimation to reduce leakage effects, which occur in
particular for spectra with a high dynamic range.

In general, the spectral estimation problem can be considered as sort of a multiplica-
tive regression problem with fixed design (cf. model (6)):

IT(wk) = f(wk) * €k, WE = Zﬂk/T, 1 S k S T. (25)

(By taking logarithm, (25) writes in the familiar form of an additive regression model.)
In contrast to pure regression, the additional difficulty in the “approximate model” (25)
is that we neither know the exact underlying error distribution nor its dependence struc-
ture. Well-known properties of the periodogram are only of asymptotic nature, e.g. its
asymptotic exponential distribution and the asymptotic uncorrelation at two distinct
Fourier frequencies wy and w;,7 # k. Also, we have to cope with heteroscedasticity: in
the multiplicative model the (asymptotic) variance depends on the unknown spectral
densities f(wg). Nevertheless, it is possible to transfer all the interesting properties of
coordinatewise wavelet thresholding which hold for the simple Gaussian model (1): Here
the (empirical) wavelet coeflicients are built by projection of the spectrum (periodogram)
onto the elements of a 2x-periodic wavelet basis of Ly([—=, 7]) (see [Dau92], Ch. 9.3, e.g.).
Note that, by the abovementioned problem of heteroscedasticity, the asymptotic variance
of the empirical coefficients depends on the unknown spectral density, cf. Lemma 3.1 (b)
below.

In deriving asymptotic theory for the resulting wavelet estimator again techniques
to prove asymptotic normality as in (2) are applicable, i.e. for a general time series we
rely on the results of [Ne94] on the risk equivalence to the case of Gaussian noise. If,
however, Gaussianity of the underlying time series is assumed, more specific threshold
rules can be developed (as in [G93]) by a different technique: Due to the Gaussianity
one can represent the empirical coefficients as quadratic forms of some independent and
normally distributed random variables and use the chi-square (exponential) distribution
to estimate their tail probabilities. This leads to thresholds of order T~'/2log(T") which
cause a loss in efficiency of order (log(7"))? instead of the usual log(7') as in the Gaussian
error case. However, this approach allows to include all resolution levels.

In both situations we end up with similar results for bias and variance. In contrast
to the situation of a Gaussian time series, in general we explicitly need an upper bound
for the cumulants of higher order, as described in the introduction. This bound can be
derived by a very general lemma on quadratic forms (see [Ne94] and [NvS94], Lemma 3.1,
respectively). - The following rates for bias, variance and higher cumulants are given to
hold uniformly in (7, k) € J,, which has been defined along with eq. (2).



Wavelets: Beyond Gaussian iid 13

Lemma 3.1 Under appropriate assumptions as in [Ne94], uniformly in (j,k) € T ,
(a) E & = aj + o(T~'?)
() % = var(@e) = 20 T [ {F@)F hie(w) [in(w) + ()] do
+o(T™ + 027'T™)
(¢) leumy(@ji/oz)| < (P (CTH)™0D for p >3,
v as in Assumption (B5) below and appropriate C,pu > 0.

As in Section 2.2 this helps us to derive a strong form of asymptotic normality which
puts special emphasis on moderate and large deviations, i.e. in the form of equation (2).

Finally, in relation to Theorem 1.1, the resulting theorems for the nearly-optimal rates
of the coordinatewise thresholded wavelet spectral estimator are the following:

Theorem 3.2 Let F = B]',(C) be some ball in the Besov space B]', with either p > 1
and m > 1/p, or m,p > 1 for f € F being of bounded variation.

A) For Gaussian time series (see [G93], Theorem 1): Let f be the wavelet estimator
based on thresholds Ar = 2 log(T) T=/* (for all levels j). Then

sup {E |1 = flliyormp} = O (T (log(T))%) (26)

B) For general (i.e. non-Gaussian) time series (see [Ne94], Theorem 5.2): Let f be the

wavelet estimator based on universal thresholds Ay = max(; pez, {0k }y/2log(#Tx)
(for levels j with 22 < T'=% ). Then

sup {E ] = Flltyrmy} = O ((log(T)/T) 7/ 1), (27)

Note that, as always, in the estimator f thresholding is not applied to the coarsest
levels (with j < jo, say, with some appropriately chosen jo.)

3.2 Spectrum estimation for locally stationary processes

In this final section, we turn to our main example for a highly “non-standard” situation
in which wavelet thresholding works: With thresholding of empirical coefficients built
by projection of suitably time-localized periodograms of a locally stationary time series
(see Dahlhaus, [Da93]) we address the problem of non-Gaussian and highly dependent
2-dimensional (spectral) curve estimation: we shall see below that despite the fairly com-
plicated dependence structure of our observations (i.e. the local periodograms) we are
able to derive rigorous asymptotic results which are based on either one of the presented
techniques for the stationary SDE-problem of section 3.1. That is, surprisingly enough,
wavelet thresholding even works for situations where we have little knowledge on the
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actual underlying distribution and correlation structure of the empirical coefficients - as
long as arguments of asymptotic equivalence or tail estimation apply.

Before we introduce the model of a locally stationary process we like to mention that in
this section not only we distinguish according to the distribution of the underlying time
series - as we did while discussing the stationary situation. Moreover we consider wavelet
thresholding w.r.t. two different wavelet bases used for our two-dimensional estimation
problem: In the following subsection we show that in order to generally treat problems in
anisotropic smoothness classes with different degrees of regularity in different directions,
one should use a particular tensor product basis, i.e. one with separate scale parameter
for every dimension. This basis is superior to its one-scale multiresolution analog, if we
compare the resulting minimax rates for estimation in the specific anisotropic smoothness
class. Moreover we shall show that this rate is attained by our coordinatewise thresholded
estimator. And finally, in the context of our particular application, we give a fully adaptive
estimator of the evolutionary spectrum which is able to automatically adapt to different
structure of the unknown object in time and in frequency direction.

3.2.1 Anisotropic smoothness classes In [NvS94] a general multidimensional estima-
tion problem was studied introducing so-called anisotropic function spaces (see Nikol’skii,
[Ni75]) with possibly different degrees of regularity in different directions. It was shown,

SECI

for any positive constant C, with m; > 1,p; > 1 and m; > 1/p; ,o = 1,2, that thresholded
wavelet estimators based on the following “tensor product” basis in Ly([0, 1] x [0, 1]) attain
the optimal rate of convergence within this class (see [NvS94], Theorem 2.2):

for a typical example of a 2-d anisotropic Sobolev class

(i

=1

o

—
dz™

Frme — f(mlym%php??O) = {f f

P1,P2

st

Theorem 3.3 Let ﬁ be the thresholded estimator based on a wavelet expansion w.r.t. basis
B defined straight below and based on optimal thresholds which depend on the my, my and
on the noise level € as defined in a 2-d Gaussian white noise model, analogous to model (1).

If Assumption (B1) below is fulfilled, then

L, {ENf. = 1P} < inf sup {E|f = I} = O (7)), (29)
€ P171;22 P1171;22

where
2m1m2

(30)

Y = )
(ma,m2) 2mimg + mq + my

The basis B of Ly([0, 1] x [0,1]) is obtained as

B = {¢lk1($1)¢lk2($2)}k1,k2 U (U {¢jlk1($1)¢lk2($2)}k1,k2)

Fipd)

U (U {¢)lk1 (Il)qvbhkz(x?)}khb) U ( U {‘Il}jﬂﬁ (Il)qvbhkz(x?)}khb) . (31)

g2l J1,9221



Wavelets: Beyond Gaussian iid 15

Here {¢ }r U {tjk};>1x are chosen to build a orthonormal basis of Ly[0, 1], where the
functions ¢ and ¥ satisfy, for m > max{my, my},

(B1) (i) ¢ and % are in C™,

(i) oty di = 1,
(iii) [o(t)tFdt =0 for 0<k<m-— 1.

Such bases are given by Meyer (1991) and Cohen, Daubechies and Vial (1993).

Another construction, which corresponds to what is also known as the “non-standard
decomposition” (see, e.g. [BCR93]), and which is a frequently used alternative to the
so-called “standard decomposition” of L,([0,1] x [0,1]), is given by

B = { i (21) bk, (22) by s
U ULk (1), (22), iy (21) Bk, (22), iy (21) ik (22) Yoy - (32)

il

For details on B and B we refer to [NvS94]. Note that we can also use different one-
dimensional bases to build a two-dimensional basis, which is done in Subsection 3.2.3 in
view of the special problem considered there.

By Theorem 2.4 of [NvS94], we can compare these two bases w.r.t. their minimax risk
as long as coordinatewise shrinkage is considered: It turns out that basis B is superior
to basis g, if my # my. This can be observed by a slower rate for the lower bound for
the respective minimax risk based on B. For this one has to replace Y(mq,mz) by some

Y(mq,mz) = min{-, 2

A which is smaller than ¥ (my, my) if my # ma.

Finally it has been shown that in comparison to the rate of Theorem 3.3 we again only
lose some logarithmic term if the theoretical optimal but unknown threshold is replaced
by some appropriately chosen universal threshold.

3.2.2 The model of local stationarity In [Da93] Dahlhaus introduced the following
model which generalizes the Cramér representation of a stationary stochastic process (see

[Pr81], e.g.).

Definition 3.4 A sequence of stochastic processes X;p(t = 1,...,T) is called locally
stationary if there exists a representation
t ™

Xor = ul2) + [ A=

T Al A) exp(iwt) dé(w), (33)

where

(i) £€(w) is a stochastic process on [—x, 7] with é(w) = {(—w), Eé(w) = 0 and or-
thonormal increments, i.e. cov(dé(w), dé(w')) = 6(w — w')dw,

cum{d{(wr), ..., dé(wi)} = T](Ef:l w;) h(wiy .. wp—1) dwr ... dwy,

where cum{. ..} denotes the cumulant of oder k, |hy(w,. .. ,wk_1)| < consty for all
k (with hy = 0, hy(w) = 1) and n(w) = 352, 6(w+27j) is the period 27 extension
of the Dirac delta function.
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(i) A(u,w) is a function on [0,1] X [—=, 7] which is 27 -periodic in w, with A(u, —w) =
Al

(u,w).

Remark 3.1

(i)

In (33) ¢ denotes a time point in the set {1,2,..., 7} while u denotes a time point
in the rescaled interval [0, 1], i.e. w = t/T. Note that (33) does not define a finer and
finer discretized continuous time process as T' tends to infinity. It rather means that
more and more data of the same local structure, given by A(t/7, ), are observed
with increasing 7T'. As illustration we cite an example given in [Da93], which is

A N) = D () 60 = M) + T ai(:) 60— ) (34)

With increasing 7' more and more periods of the two harmonics exp(iAit) and
exp(tAqt) are observed.

In Dahlhaus, [Da93], a slightly more general definition of a locally stationary pro-
cess was given. There, the representation in (33) is based on a sequence of func-
tions A¢p(w) instead of the function A(u,w), the difference of which has to fulfill
supy, |A7p(w) — A(t/T,w)| < KT, for some positive constant K.

Note that with this, the class of autoregressive processes with time-varying coeffi-
cients now is included in the class of locally stationary processes.

In our work, for reasons of notational convenience, we do not want to adopt this
more general definition, noting that all results will continue to hold for the broader
class.

Note that, as in [Da93], for simplicity we assume that p(u) = 0, i.e. we do not treat
the problem of estimating the mean of the time series.

In comparison to [Da93] and [Da94], here, our smoothness assumptions on A(u,w) are
slightly relaxed: Basically we like to impose minimal smoothness as being of bounded
variation on U x [l := [0,1] x [—7, 7] (which is made precise in Assumption (B2)). For
technical reasons, in order to facilitate proofs, we impose an additional smoothness con-
dition on the decay of the Fourier coefficients of A(u,w) as a function of w, which implies
continuity of A in w.

Before proceeding with the introduction of the evolutionary spectrum of {Xr} we
gather the assumptions that are necessary for deriving our asymptotic results:

Definition 3.5 (Total variation on U x Il :=[0,1] X [—=,7]):
TV (f) = sup 323 1f (wisw;) = flui,wjma) = fuiza,wj) + fluica, wim)l
i

where the supremum is to be taken over all partitions of U x II.

Now we impose the following assumptions:
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(B2) a) A(u,w) has bounded total variation on U x II, i.e. TVyxn(A) < oo.
b) sup, TVi_r - (A(u,.)) < oo and sup,, T'Vjo1j(A(.,w)) < oo,
)

¢) sup,, |A(u,w)| < oo,

d) inf,. |A(u,w)| > & for some £ > 0.

The rather common assumption (B2) (d) (implying boundedness of the spectral
density from below) is introduced to simplify the proofs of the following theorems.
It implies that the variances of the empirical coefficients are bigger than C T7!
for some ' > 0 . This provides a relation between variance and upper estimates
of the higher order cumulants that allows to conclude asymptotic normality of the
empirical coefficients. Note however that we can drop assumption (B2) (d) if we
apply a slightly more involved technique as in [Ne94].

(B3) Let /Al(u,s) = 1/(27) [ A(u,w) exp(iws)dw,s € Z,u € [0,1].
Then: sup, >, |A(u, s)| < oo.

(B4) Both ¢(u) and %(w) as well as ¢ (u) and ;Z(w) have bounded total variation on [0, 1]
and [—7, 7| respectively. Further, Y, |IZ(S)| < oo, and the same holds for 5(3)

(B5) SUP1§t1§T {Eg ..... tp=1 |Cum(Xt17 s 7th)|} < Céc(k[)l-l—'y for all k = 27 37 SR
where v > 0.

Note that these are somewhat minimal conditions part of which might be fulfilled
simply by restricting A(u,w) to be member of the specific smoothness class under consid-
eration (anisotropic Sobolev, Hélder,...). For Sobolev restrictions, e.g., (B2) (b) and (c)
and (B3) are implications of the considered Sobolev smoothness. Note also the similarity
between (B5) and eq. (19) in Section 2.2.

We like to mention that this minimal smoothness of A is sufficient to ensure the locally
stationary behavior of the process, in the sense that we end up with a spectrum which
is uniquely defined in some L?- rather than in an almost everywhere sense. However, for
reasons of completeness, we like to also give this stronger definition of the evolutionary
spectrum which, under the appropriate stronger smoothness of A, was considered by

Dahlhaus, [Da93]:

Definition 3.6 As evolutionary spectrum of X, given in (33) we define for u € (0,1)

: 1 :
flu,w) = lim — > cov{Xpur-3.15 Xpur+ 517} exp(—iws), (35)

T—oo 27 s——oo

where X;r is defined by A(t/T,w) = A(0,w) fort <1 and A(t/T,w) = A(l,w) fort >T.

By Dahlhaus, [Da93], Theorem 2.2, if A(u,w) is differentiable in u and w (with uni-
formly bounded derivatives), then

flu,w) = |A(u,w)|?, u e (0,1) a.e. in w. (36)

If ever this condition on A is fulfilled we shall understand the given limit in (36) as
pointwise in v and w.
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More generally, however, it is shown by Theorem 3.1 of [NvS94] that, if we turn to
the Ly-limit, equation (36) still holds, in the Ly(du, dw)-sense on U x II:

Theorem 3.7 Under assumptions (B2) and (B3),

o0

. 1 s 1 )
lim i { oy Z [COV{X[UT_%LT;X[UT+§]7T} exp(—iws)] — |A(u,w)|* }* dw du = 0.

T—co
s=—00

An intermediate result, finally, which is in the L?(dw)-sense, but pointwise in u €
(0,1), is given by [Da94], Theorem 2.2, where uniform Lipschitz-continuity of A(u,w) in
both components with Lipschitz exponent o > 1/2 is needed.

3.2.3 Wavelet estimating the evolutionary spectrum Wavelet estimation of the
evolutionary spectrum, a function f(u,w) of two dimensions, frequency and time, can
be done by two alternative choices of wavelet basis, namely either basis B or basis B,
as introduced in Section 3.2.1. A first approach, using the 2-d multiresolution basis B,
was developed by von Sachs and Schneider in [vSS94] where Gaussianity of the locally
stationary time series was assumed. With that using techniques similar to the techniques
of Gao, [G93], for the stationary situation - see Section 3.1 - appropriate thresholds can
be derived by estimating the tail probabilities of the empirical wavelet coefficients. The
second approach of Neumann and von Sachs, [NvS94], based on the tensor product basis
B, allows for non-Gaussian processes using techniques similar to [Ne94]. In addition, it
benefits from some modification which results in a fully adaptive estimator.

Regardless to whether we assume Gaussianity of the time series (which only slightly
changes the thresholding rule; cf. Section 3.1) we now describe the different approaches
in detail:

The approach of [vSS94] starts from a local version of the classical periodogram over
segments of length N of the tapered data X; 7,1 <t <1

N-1 S

In(u,w) = (27 Hyn) ™' [ Y h(ﬁ)X[uT—%-l-s-l—l],T exp(—iws)[*, (37)
s=0

where for the taper function h we refer back to (24) in Section 3.1.
As it is our goal to end up with a wavelet estimate of f(u,w) by projecting In(u,w) onto
the 2-d wavelet basis B we like to introduce some more necessary notation:

As in eq. (32) this basis B of Ly(U x ) is given by

B = {¢zk1(u)5lk2(w2}k1,k2 ) )
U (ULt (@) sk, (9), i () Dty (), Wy (0 (@) Yty - (38)

il

For sake of notational convenience, for the second union for fixed j we introduce the fol-
lowing abbreviation, which uses the label px = h,v,d in order to distinguish between
“horizontal, vertical and diagonal” components in the time-frequency plane:
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(Wh(u,w) - k= (ky, o), i = hyv,d)
With that the wavelet coefficients of f(u,w) write as

d?k = /01 /_7; flu,w) !ka(u,w) du dw . (39)

To build the empirical wavelet coefficients J?k, In(u,w) is calculated on possibly
overlapping segments of X, 1 of length N: The shift from segment to segment is denoted
by S, with 1 <5 < N, hence, for the number of segments M, say, we have the following
relation

T =SM-1)+ N.

Thus, we calculate In(u,w) at the midpoints of the segments, i.e. the M timepoints
u; =t;/T, where t;=5-1+N/2, 0<:< M —1.
In order to derive our asymptotic results, as T' — oo, N and S are assumed to fulfill
(N logT)?/T — 0, N*/T — 00 and S = Nor S/N — 0.

In practice, as usual, the data have to be sampled on an equally spaced grid
(i, wn),0 <i,n < N—1, with N =27, i.e. with the finest level chosen to be J = log,(N).
Hence, for calculating the finite sample 2-d wavelet procedure, we set M = N to end up
with a quadratic multiresolution analysis (with same finest level J for each of the two
dimensions).

The resulting empirical wavelet coefficients are

. 1 N-1 T
d;,‘k =¥ Z /_ In(u;yw) Lp;‘k(ui,w) dw. (40)
=0 &

Note that in practice these coefficients are not calculated according to (40) but by
using a so-called “collocation projection” described in [vSS94]. This is due to the fact,
that one has to care on how to project the theoretical object f(u,w) into the space VJ(Z),
i.e. the space generated by the 2-d scaling functions of the finest scale J. Note that in this
approach one really makes use of all of the wavelet coefficients, starting from the finest

scale J with N = 27,

Remark 3.2 Obviously, the adaption properties of this estimate depend on the choice
of the segment length N and the shift S, respectively. Once S (or N) is chosen, the
best possible resolution w.r.t. time is fixed which obviously has also consequences for the
performance in frequency direction: The larger N the worse is the time resolution, but
the better can low-frequency components be detected, and vice versa. This gives rise to a
modification which will be presented in Section 3.2.5 below.

A second possibility, as indicated in Section 3.2.1, is to rely on the two-dimensional
tensor product basis B of U x II, using two possibly different one-dimensional bases
{é(u), ¥(u)}, u € [0,1], and {P(w), ¥(w)}, w € [—7, ], which both fulfill Assumption
(B1).
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The resulting true and empirical wavelet coefficients would then look like follows:

kit = [ F(0,0) By (1) D, () du o (41)

and
1 N-1

&j1k1j2k’2 = N Z /_7T ]N(ui’w) 'Il)jllﬁ (ui)'lvbjzkz (w) dw? (42)
where for (42) the same applies as it was mentioned for the empirical coefficients defined
by (40). For both wavelet expansions, in order to apply the appropriate non-linear thresh-
olding, we have to investigate the asymptotic properties of the empirical coefficients. This
is regardless to the basis used, but rather differs according to the underlying distribution
of the considered time series (Gaussian or not): Quite similarly to the distinction made
in Section 3.1 for the stationary case we are able to derive asymptotic results. This is
done by the very same techniques though in our investigations we have to rigorously take
care of the local-stationarity which helps to manage the two-dimensional dependent error
situation. We summarize the results and note that details of the proofs can be found in
[vSS94] for the Gaussian, and in [NvS94] for the non-Gaussian situation.

3.2.4 Asymptotics for empirical coefficients As described in Section 3.1 we have to
study the asymptotic behavior of all cumulants of the empirical wavelet coefficients. For
both cases, i.e. given a locally stationary process, Gaussian or not, the quality of the order
of convergence of all cumulants is the same. We end up with precisely the same rates as
in the stationary case, given in Lemma 3.1. However it is not straightforward at all to
derive these rates under the low regularity assumptions (B2) and (B3) on the spectrum,
in particular for bias and variance (see [NvS94], proof of Lemma 3.2). Of course, the
leading term of the asymptotic variance has to be slightly adapted to the two-dimensional
situation, i.e. replacing the one-dimensional spectral density and wavelet function by their
2-d analogs.

For the second step, we have to distinguish between the Gaussian and non-Gaussian
situation, again quite similarly to the stationary case: For the Gaussian case, by Propo-
sition 5.9 in [vSS94], an analogous result to Lemma 6 in [G93] on the tail probability is
delivered. Note that this makes use of Lemma 3.1(b) on the asymptotic variance. Again,
as in Section 3.1, we end up with a threshold that is proportional to T=1/?1log T'. A typical
formulation of a result in the near-optimal sense of Theorem 3.2 (A) can be given by the
following:

Theorem 3.8 Let F be an appropriate smoothness class for functions on Lo(U x II) with
(isotropic) degree of smoothness m. Let A\y = K log T T~/ with some positive constant
K, and let f(u,w) be the wavelet estimator based on this universal threshold Ay. Then

sup {E |f = fllt,xm} = O (277" (log 7)) . (13)

Note that 7-27/(2m+4) i5 the classical rate of mean-squared convergence in d-dimensional
function estimation problems (here with d = 2). Note moreover, that the rate in this the-
orem does not depend on N, but on 7" merely. - Appropriate function classes can be
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2-dimensional Holder or Sobolev classes, or even Besov classes with m > 2/p, as shortly

described in [DJKP95], Section 6.1.3.

In the non-Gaussian situation, again by the general lemma of quadratic forms, we

make use of the asymptotic equivalence to the case of Gaussian noise. Note that this
general lemma holds regardless to the assumption of stationarity of the time series, as
long as Assumption (B5) is fulfilled.
At this place we skip the presentation of the resulting theorem, which is completely
analogous to the one for the stationary situation (see Theorem 3.2 (B)) with a thresh-
old proportional to T*/%(log T')/? and the appropriate restrictions on the levels of the
coefficients which are to be thresholded.

The performance of these two coordinatewise thresholded estimator based on the
two different bases is presented in a simulated example which will be found in the last
subsection.

3.2.5 Modification towards full adaptivity of the estimator Finally, we present
a modification of the above estimator which allows to overcome the difficulty of choosing
the parameter N of preliminary smoothing: This is independent of the basis used, and we
decide to concentrate merely to the situation of [NvS94], i.e. for the tensor product basis
B and the non-Gaussian situation. As particular result the estimator, which is considered
for functions in an anisotropic Sobolev class (as typical example), will nearly attain the
classical minimax rate for this class - cf. Section 3.2.1.

A straightforward analogy to the definition of the spectral density is the introduction
of the following periodogram-like statistic I; 7,1 < ¢ < T, which is different to the localized
periodogram defined in (37) :

1 .
Lir(w) = . > Xiem sy, 0 X727 €xp(iws), (44)

where the sum over s only exceeds over the region where |s| < min{t — 1,7 — t}. This
is completely in accordance with model (33) and equation (35), as in this model it is not
meaningful at all to consider the spectrum at the boundaries u = 0 and u = 1, respectively.

Note that I; 7 can be considered as a preliminary “estimate” which is even more
fluctuating than the classical periodogram is. However, in contrast to the first approach
with pre-smoothing in time direction, now projection of these “rough periodograms” I; r
on elements of the wavelet basis B will do the whole task of adaptive local smoothing!

The modified empirical wavelet coefficients (as counterparts to the “true” ones in eq.

(41)) are defined as follows:

_ T t/T T
g kyjoks = E/(—l)/T ¢j1k1 (u) du [/_7T '¢j2k2(w)It7T(w) dwl| . (45)

t=1

Also for those modified &, j,k, Lemma 3.1 holds with the original rates, now of course
in its appropriately modified two-dimensional form.
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By exactly the same procedure as in the previous subsection we are able to show
asymptotic risk equivalence to the Gaussian white noise situation and can derive a the-
orem which is in the spirit of Theorem 3.3 - however, with near-optimal nonrandom
thresholds which still depend on the unknown constants in the asymptotic variance of
the empirical wavelet coefficients. Thus the resulting Lo(U x II) - convergence rate of the
thresholded estimator f(u,w) is of order O ((log(T)/T)_ﬁ(ml’mQ)). For details see Theo-
rem 3.2 of [NvS94].

If, finally, we appropriately choose random thresholds (based on some consistent prelimi-
nary estimate for the asymptotic Varijmce), then, under some technical conditions, we can

derive the following theorem, where ]? be the same estimator as f but with these random

thresholds:

Theorem 3.9 Under the conditions of Theorem 3.3 of [NvS9/],

sup {BIF = f ooy} = O (log(T)/T)m) - (a6)

],
fej:PJ P2

where ¥(mq, mz) is defined by (30).

3.2.6 An illustrating simulation example Now we like to present a simulation exam-
ple of a time-varying spectral density which shows the performance of the coordinatewise
thresholded estimator. For simplicity our wavelet basis used is the same for both dimen-
sions, namely orthogonal (periodized) spline wavelets of the Battle-Lemarié-family with
order m = 6 (for details see [vSS94]), i.e. the functions are elements of C*(U x IT).
This simplification is justified due to our chosen example of a spectrum f(u,w) which
can be considered as periodic in u, too, and which is also symmetric to u = 1/2:
2
W — wp (w _ Ry,
(47)
where w.l.o.g. we assume w > 0 due to symmetry, and where w,, = wn,(u) = oo (2 +
cos 2rvgu) with o9 = 0.03, vg = 4, we = 0.3, P, = 0.2, w; = 0.45, 0y = 0.001 and a
constant Ry = 0.001 (resulting as the spectral component of a background white noise
component in the underlying process).

f(uaw) = [1_(_)2]% ][me] (w)—l_[l_( )2]% ][wo—wmwo-l-wm](w)—l_Pl eXp{— (‘;1)

W, W, 207

Whereas the narrow Gaussian bump at w; might represent some narrowband inter-
ference term, the form of this example in the neighborhood of both the origin and of wy
can be motivated by a typical situation in the practice of mobile radio propagation. The
time-dependent components of the resulting power spectrum can be derived as follows
(for details, see [JaT4], and again [vSS94], Section 6):

A microwave radio signal transmitted between a fixed base station and a moving vehicle
in some urban environment, exhibits extreme variations in both amplitude and apparent
frequency:

From the viewpoint of an observer on the mobile unit, the received signal, a plane wave
of the form

C - cos(2r w(a)t + ¢)
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may be represented as a carrier with randomly varying phase ¢, amplitude C' and fre-
quency w(a) (with randomly varying «). Due to the Doppler shift, caused by the move-
ment of the mobile unit with velocity V' into direction a w.r.t. the sender station, the
frequency

w(a) = w. + wy, cos a,

is to be found in a narrow band around the carrier frequency w.. This band is (for & = 0)
of maximum width 2w,, = 2V/v, with v being the wavelength of the transmitted carrier
frequency.

A suitable model for the three field components of the signal (electric field E,, magnetic
field H, and H,) is a Gaussian random process, stationary as long as V (and v) do not
depend on time ¢. Instead of determining the statistical properties of this Gaussian random
process from its moments, they are most easily obtained from the power spectrum (as the
Fourier transform of the autocorrelation of the signal components).

As simplest model, the probability distribution p(«) of the power over the angle « is
assumed to be constant. Hence, for studying the H,-field component of the signal as
typical example only, we end up with a spectrum of the following form, according to

[JaTd], 1
fr. (@) ~ [1 - (w;m%Y] 57

—sina||da| = (w2 — (w—w.)?)2|da| (for details, see [JaT4],

where we used that |dw| = w,,
Sec. 1.2.1).

As long as V' is constant in time, fg, (w) is also. But, in practice, of course, the mobile unit

changes its velocity: hence, a more realistic model would be to allow for a time dependent
power spectrum
23
W — W
()]
where w,,,(t) = V(t)/v.

Consequently, the model for the underlying Gaussian random process becomes insta-

ft,w) = fu.(w(t) =

tionary. An additional modification arises if we allow for a changing environment of the
transmitting channel, i.e. an explicit variation of f(t,w) in w, too.

Note that in addition to a time-dependent w,, = w,,(u), in our chosen example (47),
f(u,w) has isolated singularities (in its derivative) in w and a high dynamic range (in w)
of smoother and sharper component .

For the simulation of the underlying locally stationary process X;r we generate T' =
2048 data, using the following discretization (in w) of the integral in (33):

al T.—1 ‘ .
2 g t 27k 27k
Xir=— A=, — t 1 1<t<T
th TS% kz:% (T7 Ts ) eXp(L Ts ) fk 9 — = 9

where Ty, = 8192 and where &, 0 < k < T, — 1, is a simulated Gaussian white noise
(~ N(0,1)) - generated by a standard pseudo random-number generator.
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Further, we calculate the periodogram over segments of length N = 128, with shift
S =15 , using a data-taper as given by (24). Note that we use the log-periodogram to
benefit from the variance-stabilizing effect of taking logarithms.

First we demonstrate the performance of the estimator based on the 2-d multireso-
lution (MRA) basis B: Figure 1 shows the true log-spectrum log f(u,w), the pure and
two versions of the smoothed log-periodogram - globally and locally smoothed (with hard
thresholding) - as grey scaled isolines in the time-frequency plane. The local smoothing
was performed by hard-thresholding with threshold Ay = 1 - 1072, a value which is in
accordance with the asymptotically motivated form of Ay ~ T=1/2.log T, with T' = 2048.
For comparison we add a “globally smoothed” example which simply is the wavelet series
cut-off above level Jy — 1 with a choice of Jy = 5.

It can be clearly observed that the noise in the periodogram-estimator is suppressed
by non-linear thresholding without losing local structure of f(u,w) (e.g. the bump at wy),
whereas with global smoothing this is not possible simultaneously.

Cuts in w- and in u-direction (Figure 2) confirm this behaviour.

A second time-dependent spectrum arises by simply replacing the cosine function

Wi (u) in f(u,w) by some periodically piecewise linear one:

wm(u) = o9 (2 + 10/3 - (frac(vou) — 0.7) Ipaq)(frac(rou)) — ][070.4](frac(1/0u))) ,

where frac(z):= x — [z].

With this, an example is introduced which is less regular in time, and which might
describe a somewhat more realistic dependence of the velocity V' of the mobile unit on
time. We want to use this example to compare the performance of the same thresholded
estimator as above (i.e. w.r.t. the MRA basis g) with the one in the tensor product basis
B. In Figure 3, we observe the following: apparently, both soft thresholded estimators
give a denoised version of the pure log-periodogram. But, as can be seen by the number
of active wavelet coefficients in 2-d tableau (a representation being often used in image
compression), the tensor product basis delivers a reconstruction which is at least as good
as for the MRA basis but with considerably less coefficients: Using basis B the original
27 .27 = 16384 coefficients have been reduced to 437 compared to 660 for the MRA
basis B. Note that it is not easy to do this empirical comparison by a totally objective
criterion: here we simply tried to adjust the amount of smoothing (denoising) visually to
the same range, which resulted into slightly different values for the thresholds. Although
these somewhat preliminary simulations are to be improved by a more detailed analysis,
they seem to confirm the theory of subsection 3.2.1 on anisotropic smoothness, here in the
particular case of time-dependent spectra. Note that from a theoretical point of view, a
comparison of the compression ability of both bases in noisy situations has been delivered
by [NvS94] where an appropriate approximation-theoretic functional was considered.
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Captions:

Figure 1: Grey scaled isolines of first example in the time-frequency plane:

log f(u,w) ,

log In(u,w), N =128,5 = 15,

globally smoothed log-periodogram (Jy = 5),

locally smoothed log-periodogram (hard thresholding, Ay =1 - 1072).

Figure 2: cuts of Fig. 1 in frequency direction at u = 0.54

and in time direction at A = 0.24.

Figure 3: Grey scaled isolines of the second example:

true log-spectrum,

log-periodogram (same parameters as above),

soft-thresholded log-periodogram (MRA basis B) with Ay = 5 - 1072,
soft-thresholded log-periodogram (tensor product basis B) with

Ap =1-1072,

active wavelet coefficients of these two estimators:

660 for MRA basis B vs. 437 for tensor product basis B.



