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Abstract

Most modern multiprocessors offer weak memory behavior to improve their
performance in terms of throughput. They allow the order of memory op-
erations to be observed differently by each processor. This is opposite to
the concept of sequential consistency (SC) which enforces a unique sequen-
tial view on all operations for all processors. Because most software has been
and still is developed with SC in mind, we face a gap between the expected
behavior and the actual behavior on modern architectures. The issues de-
scribed only affect multithreaded software and therefore most programmers
might never face them. However, multi-threaded bare metal software like op-
erating systems, embedded software, and real-time software have to consider
memory consistency and ensure that the order of memory operations does not
yield unexpected results. This software is more critical as general consumer
software in terms of consequences, and therefore new methods are needed to
ensure their correct behavior.

In general, a memory system is considered weak if it allows behavior that
is not possible in a sequential system. For example, in the SPARC processor
with total store ordering (TSO) consistency, all writes might be delayed by
store buffers before they eventually are processed by the main memory. This
allows the issuing process to work with its own written values before other
processes observed them (i.e., reading its own value before it leaves the store
buffer). Because this behavior is not possible with sequential consistency,
TSO is considered to be weaker than SC. Programming in the context of
weak memory architectures requires a proper comprehension of how the model
deviates from expected sequential behavior. For verification of these programs
formal representations are required that cover the weak behavior in order to
utilize formal verification tools.

This thesis explores different verification approaches and respectively fitting
representations of a multitude of memory models. In a joint effort, we started
with the concept of testing memory operation traces in regard of their consis-
tency with different memory consistency models. A memory operation trace
is directly derived from a program trace and consists of a sequence of read
and write operations for each process. Analyzing the testing problem, we are
able to prove that the problem is NP-complete for most memory models. In
that process, a satisfiability (SAT) encoding for given problem instances was
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developed, that can be used in reachability and robustness analysis.
In order to cover all program executions instead of just a single program

trace, additional representations are introduced and explored throughout this
thesis. One of the representations introduced is a novel approach to specify
a weak memory system using temporal logics. A set of linear temporal logic
(LTL) formulas is developed that describes all properties required to restrict
possible traces to those consistent to the given memory model. The result-
ing LTL specifications can directly be used in model checking, e.g., to check
safety conditions. Unfortunately, the derived LTL specifications suffer from
the state explosion problem: Even small examples, like the Peterson mutual
exclusion algorithm, tend to generate huge formulas and require vast amounts
of memory for verification. For this reason, it is concluded that using the
proposed verification approach these specifications are not well suited for ver-
ification of real world software. Nonetheless, they provide comprehensive and
formally correct descriptions that might be used elsewhere, e.g., programming
or teaching.

Another approach to represent these models are operational semantics. In
this thesis, operational semantics of weak memory models are provided in
the form of reference machines that are both correct and complete regarding
the memory model specification. Operational semantics allow to simulate
systems with weak memory models step by step. This provides an elegant
way to study the effects that lead to weak consistent behavior, while still
providing a basis for formal verification. The operational models are then
incorporated in verification tools for multithreaded software. These state space
exploration tools proved suitable for verification of multithreaded software in a
weak consistent memory environment. However, because not only the memory
system but also the processor are expressed as operational semantics, some
verification approach will not be feasible due to the large size of the state
space.

Finally, to tackle the beforementioned issue, a state transition system for
parallel programs is proposed. The transition system is defined by a set of
structural operational semantics (SOS) rules and a suitable memory structure
that can cover multiple memory models. This allows to influence the state
space by use of smart representations and approximation approaches in future
work.

iv



Danksagung

Mit Abgabe dieser Arbeit kann ich auf eine lehrreiche und interessante Zeit an
der Technischen Universität Kaiserslautern zurückblicken. Es ist erstaunlich
wie viele Fragen in der Informatik noch offen sind und wie schnell sich der
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Chapter 1
Introduction

Historically, computer architectures were considered to consist of a single pro-
cessor that is connected with a single memory via a bus (von Neumann archi-
tecture; 1945). The sequentialization of the read and write operations via the
single bus ensured that each read operation returns the value most recently
written to the corresponding memory location and that we can at all define
the most recently written value. Even if a processor of this kind of computer
architecture would be used to execute multiple processes by interleaving their
executions, the memory operations would still take place one after the other
and will therefore form a sequence where all memory operations are totally
ordered.

Nowadays, essentially all computer architectures consist of multicore pro-
cessors or even multiple processors, which share a common main memory.
Early multiprocessor systems still connected multiple processors via a single
bus with the shared memory. This way, processors had to compete for bus
access that still enforced an ordering of the memory operations in a linear se-
quence. Hence, for multiprocessors, communication over shared memory is a
performance bottleneck. Modern multiprocessor systems, however, are based
on much more complex memory architectures that do not only make use of
caches with cache coherence protocols, but also add further local memories
to improve their performance. In particular, the use of local store buffers be-
tween the processor cores and the caches allows a significantly faster execution.
Using store buffers, processors simply ‘execute’ write operations by putting a
pair consisting of an address and the value to be stored at that address in a
FIFO buffer. The processor can then continue with the execution of its next
instruction and may consult its own store buffer in case a later read operation
is executed. The store buffer will execute its write operations as soon as it
is given access to the main memory. This avoids idle times due to waiting
for the bus access for each write operation and allows a faster execution in
general. However, since processors cannot access the store buffers of other
processors, they will temporarily have different views on the shared memory.
Note that after the store buffers were finally emptied, a coherent view on
the shared memory is established. However, before that point of time, the
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Chapter 1: Introduction

Procedure p

1 x = 1;
2 while y=1 do
3 x = 0;
4 Sleep(time);
5 x = 1;

6 end
7 Critical Section;
8 x = 0;

Procedure q

1 y = 1;
2 while x=1 do
3 y = 0;
4 Sleep(time);
5 y = 1;

6 end
7 Critical Section;
8 y = 0;

Figure 1.1.: Simplified Dekker’s mutual exclusion algorithm. [Dijk68b]

different views that exist due to the contents of the local store buffers allow
executions that are otherwise impossible. For this reason, one speaks about
weakly consistent memory models that do not impose as strong constraints
as the traditional sequential memory model that just interleaved the memory
operations of different processes. A weak memory model can be seen as an
interface to the programmer, that abstracts from architectural details while
providing the essential information to create correct programs.

In essence, weak memory models define additional executions of memory
operations that are not possible in a sequential consistency (SC) memory
[Lamp79]. Therefore, algorithms that have been developed with SC in mind
can have undesirable effects when run on a system with weak memory. In
particular, mutual exclusion algorithms and other programs with data races
behave incorrectly if the program order is only slightly relaxed.

To illustrate the problems caused by weak consistency, Figure 1.1 shows a
simplified version of Dekker’s mutual exclusion algorithm (without a token)
[Dijk68b]. Both processes claim a resource by setting their variable to 1. If
the resource is claimed by the partner, a process releases the resource and
waits for some time before it claims the resource again. If the resource is not
claimed by the partner, the process enters its critical section and releases the
resource afterwards.

Intuitively, the protocol guarantees mutual exclusion. However, if the algo-
rithm is executed on an architecture where the processes buffer their writes,
like total store ordering (TSO), it may behave incorrectly (Figure 1.2). Both
p and q issue their write operations and put them into their buffers. No write
operation was passed to the main memory yet. Since each process can only
access its own write buffer, both will still see the initial value of the main
memory for each other’s variable. This means both processes will read 0 and
enter the critical section.

Store buffers are one – but not the only – reason that lead to the introduc-
tion of weak memory consistency models [AdGh96; HePa03; Lawr98; StNu04].
For example, in distributed computer systems, the single memory is replaced
by multiple distributed memories which can be specific to single processors
[LiSa88] or can be shared with some of the other processors (e.g. different
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Chapter 1: Introduction

p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1 Buf2
Mem

x: 0
y: 0

⇒
p

write(x,1)
read(y)

q

write(y,1)
read(x)

Buf1

write(x,1)

Buf2

write(y,1)

Mem

x: 0
y: 0

Figure 1.2.: Weakly consistent behavior of Dekker’s algorithm under TSO. Both
processes issue their first write which is buffered by their own buffer.
Afterwards, both issue a read operation and retrieve the initial value
from memory as both buffered values have not yet been written to
memory.

connected sites with multiple processors). Depending on the implemented
memory architecture, different weak memory models were developed through
the past decades, and some of them may lead to behavior that is quite unex-
pected for the programmer. It is therefore very important that the designers of
modern computer systems are able to describe the potential memory behaviors
of their systems in a precise but yet comprehensive way in order for program-
mers to be able to determine when memory synchronization is required in their
programs.

Memory consistency models have been defined in different ways: First de-
scriptions of weak memory models were just given in natural language and
were therefore often ambiguous. In fact, such ambiguous descriptions lead to
non-equivalent versions of the processor consistency (PC) model [Good91a;
ABJK93].

Another way to define a memory consistency model is the so-called view-
based approach. In the view-based approach the views, that processes may
have during the execution of a multithreaded program, are formally specified.
From the viewpoint of a particular process, this usually means that it has to
be determined which of the memory operations of other processes have to be
interleaved with the memory operations of the own process to define its local
view. For example, for pipelined RAM consistency (PRAM) [LiSa88], one
would have to consider every write operation of other processes, but not their
read operations, while for other memory models other subsets of operations
may be considered. The view-based approach can also be defined from the
viewpoint of the memory, providing rules for the ordering of all operations as
observed by the main memory. View-based definitions are quite popular, and
[StNu04] showed how most of the existing weak memory models can be defined
in a view-based manner. In [StNu04], Steinke and Nutt even managed to
organize many weak memory models in a hierarchy regarding their weakness,
and they were able to describe most of the weak memory models systematically
as combinations of four basic constraints.

However, the view-based approach remains quite abstract and formal, and
while being precise for a formal analysis [FMSS15], it is not comprehensive
enough to serve as a general description for programmers. A slightly different
approach has been followed by the SPARC memory models TSO and partial

3



Chapter 1: Introduction

store ordering (PSO) that are described in an axiomatic way [WeGe94]. Also
being view-based in principle, these weak memory models were specified by
just a few axioms that can be directly used for formal reasoning about the
potential executions of a multithreaded program. While also lacking of com-
prehensiveness, these descriptions are much more compact, and allow one to
directly make use of formal verification. The same does not hold if the views
are defined by a couple of total or partial orders.

More recent efforts made use of theorem provers to specify weak memory
models, using e.g., higher order logic [OwSS09; MMSM12] or temporal logic
[SeSc16; SeSc18a] as it will be explained in this thesis. The motivation for this
choice is to ensure the well-definedness of the given non-trivial formalization,
and to directly reason about properties of the specified memory models with
verification tools. However, also these approaches tend to be too difficult to
be used as a reference for programmers.

From programming languages, it is well-known that besides the axiomatic
and denotational semantics, the operational semantics are often preferred for
defining simulators or virtual machines [BrMo17]. Usually, programmers also
prefer operational semantics, obviously since that kind of semantics directly
determines how the programs are executed. Operational semantics [SeSc18]
are well suited to define programming models and as shown in this thesis most
memory models can be defined that way.

In the following, the scientific contributions of this thesis are outlined. Then,
related work is discussed briefly. The introduction is closed by an outline of
the thesis.

1.1. Contributions

In this thesis representations for weakly consistency memory systems are de-
veloped and their suitability for verification purposes is explored. Of course,
each instance of a given program and a given model could be hand-crafted
in different representations. While they might be well optimized, they also
require a lot of (probably) repetitive work. In contrast, this thesis proposes
representations that are able to cover a multitude of different models. As a
consequence, these representations allow to easily compare the influence of dif-
ferent memory models on the same program, e.g. if a program is still working
correctly with weakened memory constraints.

A first approach is based on the testing problem. The testing problem asks
if a specific execution is possible in a memory model. A joint work [FMSS14;
FMSS15] that initially focused on the complexity analysis also resulted in a
satisfiability (SAT) encoding for the execution and the memory model. The
SAT encoding is composed of different building blocks that can be assembled
together based on the memory model in question. While this representation
is well suited for use with SAT solvers, it only covers single executions. A
program may however take many different paths and result in many different
executions. This resulted in further research for representations that are able
to model a full program.

4



1.2. Related Work

Coming from the previous approach using propositional logic, other repre-
sentations were investigated that are based on predicate logic and its exten-
sions. In that process, a representation using temporal logic, or more precisely
linear temporal logic (LTL), is presented. For a given memory model, the LTL
specification defines the values that may be returned in response to a processes’
read event based on the history of write events. Additional events reflect that
a process has observed a write event. In order for a verification tool to reason
about a safety property, the program, the specification, and additional state
variables have to be encoded in a proper way. To ease that process, a tool
was developed that takes a simple multithreaded program written in Quartz,
a memory specification and a safety property and returns a SMV file. The
resulting SMV file can be used with NuSMV [CCGR99] or NuXMV [CCDG14]
for verification either using a BDD-based or SAT-based bounded model check-
ing (BMC) approach. Due to the many state variables the approach struggles
with the state space explosion problem.

In an attempt to tackle the mentioned state space problem, an approach is
introduced that uses operational semantics to model memory behavior. Using
modern system-level languages allows for precise and executable models. This
approach has proven to be the best representation for use in teaching so far,
as it is the first one that is related to an implementation. While each mem-
ory model has to be defined individually, the approach uses as few different
core components as possible and reuses them in different models (e.g. FIFO
buffers). To cover all possible memory behavior the models have to provide
non-deterministic choices and unbounded buffers. Therefore, the models are
neither optimized in size nor in execution time, but are complete with re-
spect to the memory model. Further research is aimed at more realistic and
optimized implementations which in return are not complete anymore.

The implementation and simulation of the operational semantics are limited
by the used language and its tools. In conclusion, a state space simulation is
proposed for a minimalistic C-like language. The state space transition sys-
tem is given as a set of structural operational semantics (SOS) rules. More
importantly, the memory state is modelled as a set of queues, one for each
memory location. The queues are supplemented by pointers for each process
that reflect their observation state. This structure allows to express several
different memory models that are similar to cache consistency (CC). The pro-
posed transition system could be used as starting point for future verification
tools.

1.2. Related Work

Good introductions to weak memory consistency are given by [McKe10] and
[AdGh96]. An early overview of existing memory models was provided by
[Mosb93].

The beginning of this research was largely influenced by Steinke and Nutt
[StNu04]. They introduced a view-based framework that covered many com-
mon memory consistency models and allowed to formally argue about relations

5
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among them. The formalism and some definitions in Chapter 3 are based on
their work. Based on this framework, [Mire14; MMSG16] separate the memory
models in a distinct classes of convergent and relaxed models in their search on
eventual consistency. In contrast to a relaxed model, a convergent model will
eventually ensure that all processes see the same memory values if meanwhile
no more write operations are issued. Both [AdHi93] and [Algl12] also provide
unified memory model formalizations. More work on view-based definitions
has been presented in [ABJK93] and [BaBe97a]. The Steinke and Nutt for-
malism is used instead of the more recent framework of Alglave [Algl10] as it
covers more models from the start.

The joint work [FMSS15] of Furbach, Senftleben, Meyer, and Schneider that
will be briefly explained in Chapter 3 focused on the complexity analysis of
the testing problem. A continuation of the joint work that aims to identify
porting bugs when switching memory models can be found in [LFHM17]. The
testing problem was first studied in [GiKo97] for SC and linearizability. These
results were later extended by [CaLS05a] for TSO, PSO, PC and more.

The inherent incompleteness of sample programs (Litmus tests) as well as
the ambiguity given by informal definitions are inadequate for any kind of
formal reasoning about multithreaded programs, justifying better formal def-
initions for memory models. [NSSS11] discusses the problems that arise from
ambiguously defined memory models in modern architectures and high-level
languages, and [Pugh00] revealed that the Java memory model was flawed for
many years.

Similar to Chapter 5, [HiKV98] provides definitions and comparisons of
several consistency models and defined machines for the models. It provides a
good glimpse at how those machines work and formally justifies the correctness
of these models. But, their proposed formalism is not well suited for use in
verification, whereas the operational semantics as defined in this thesis are
more adequate. Lipton and Sandberg [LiSa88] introduced their PRAM model
as operational semantics by defining its structure and communication rules.
More recently, the ARMv8 architecture has been described in an operational
manner by [FGPS16]. The approach in this thesis is more general, and claims
to have the potential to be used to describe most known weak memory models
in an operational, and thus comprehensive way.

In [Cali16] a state space exploration tool for TSO is introduced. By using
under-approximation and over-approximation to reduce the state space Calin
allows for the verification of larger programs. Once more, the approach intro-
duced in Chapter 6 of this thesis is more general as it aims to cover multiple
models at once.

In [Lust15] tables are proposed for memory ordering specification that claim
to capture all details of a memory model. These MOST tables encode the
allowed and prohibited reordering between store and load operations and en-
hance this information with more details, for example the locality, or single-
or multi-copy atomicity. Furthermore, it proposes a verification framework to
verify a microarchitectural implementation against its specification. However,
the specification needs to be given as axioms in an introduced language. The
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1.3. Outline

specification is therefore only as good as the axioms reflect the microarchitec-
ture.

Recently, Alglave et al. [AlCM16] presented the cat language that is used to
define memory models by constraining the set of program executions to candi-
date executions. While a different formalism is used, the approach introduced
in Chapter 4 is quite similar in that it looks at all traces and then only looks
and those that match the given specification.

1.3. Outline

In Chapter 2 the fundamentals for this thesis are presented. Starting with the
concept of memory models, it is shown how they can be related to each other
and examples of their behavior are explained.

Chapter 3 allows for a quick detour to the complexity analysis of the testing
problem and explains the construction of a SAT problem corresponding to the
given problem instance.

Still using propositional logic but covering a program rather than a single
execution the use of temporal logic to describe a weak consistent model is
proposed in Chapter 4.

For a more practical and comprehensible representation Chapter 5 intro-
duces operational semantics to represent memory systems with a system de-
scription language.

The previous approaches relied on existing tools for verification. To better
understand the verification process and optimize it in the future the next
Chapter 6 defines a state transition system for a minimal C-like language and
a memory representation that can cover different memory models.

Finally, in Chapter 7 the thesis is summarized and ideas for future work are
sketched and discussed.
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2.1. Weak Memory

Using shared memory for multiprocessor communication is a bottleneck for
performance of modern systems. Nowadays, processors utilize a variety of
techniques to reduce the idle time of processors in case of memory operations.
One example of these techniques are write buffers that allow processors to
issue a write and immediately continue instead of waiting for the memory to
be ready. Another example are distributed shared memories that allow data
to be closer to the processor while propagating updates to other processors.

In the past, a multiprocessor system was expected to behave as if processors
can only execute in turns. This behavior is based on even older systems
where multiple threads were executed on a single processor and therefore only
alternating execution was possible resulting in a total order of operations. A
memory system that adheres to these principles is called SC consistent.
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Chapter 2: Background

The introduction of the before-mentioned optimization techniques results
in memory systems that are not sequentially consistent anymore. Memory
systems that allow more executions than a sequential consistent memory are
called weak memories [AdGh96; HePa03; Lawr98; StNu04].

When working with weak memory, it is important to distinguish and clas-
sify the considered weak memory models as done in [Algl12; Mosb93; StNu04].
A memory model Mw is called weaker than another memory model Ms, de-
noted by Ms ⪯ Mw and indicated by a path in Figure 2.1, if every execution
allowed under Ms is also valid under Mw. The hierarchy shows that SC is
the strongest and local consistency (LOCAL) is the weakest model. Steinke
and Nutt [StNu04] have shown that most weak memory models can be ob-
tained as a combination of four basic models called global anti order (GAO),
global write order (GWO), global data order (GDO), and global process order
(GPO). To be precise, this applies to SC, PRAM [LiSa88], causal consis-
tency (CAUSAL) [HuAh90], cache consistency (CC) [Good91a], two variants
of processor consistency (PC-G, PC-D) [Good91a; ABJK93], slow consistency
(SLOW) [HuAh90], and LOCAL [HeSi92]. As a consequence of this charac-
terization via basic models, the memory models form the hierarchy depicted
in Figure 2.1.

LOCAL

SLOW

CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO CAUSAL

PC-G PC-D

SC

Figure 2.1.: Hierarchy of weak memory models based on [StNu04]. An arrow in-
dicates that the originating model is stronger than the other.

There are already several ways to provide definitions of memory consistency
models and this thesis will propose some new ones. The first models were
described informally, possibly resulting in misinterpretations. The implemen-
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2.2. View-Based Formalism

tation itself would be the most unquestionable definition, but in most cases
these are of proprietary nature and not available to the public. Nonetheless,
in some cases operational semantics are available for publicly available proces-
sors or can be reverse engineered from available formal definitions [BoPe09].
Unfortunately, most manufacturers only offer partial details about their mem-
ory system either formally or by outlining them using litmus tests. Litmus
tests are short pieces of software that narrow down behavior that should be
expected and restrict behavior that is not possible at all. Some consistency
models like the SPARC processors [WeGe94] are given as axiomatic definitions.
Axiomatic semantics make use of quantifiers and higher order logic [OwSS09;
LCCM06] to reason about the order of memory events in a global manner.
In contrast to axiomatic semantics, view-based definitions describe the order-
ing of operations seen from the individual processors or the memory system.
The next section will introduce a formalism to describe memory models in a
uniform way. Following that, a couple of view-based definitions for memory
models used throughout this thesis are introduced.

2.2. View-Based Formalism

In this section, we will introduce a modified terminology originally used by
Steinke and Nutt in [StNu04] to provide formal definitions of weak memory
consistency models in a unified way. Note that this formalism describes the
multithreaded system in an abstract and formal way. Similar to the concept
of litmus tests, it determines the set of possible executions in terms of possible
traces of memory operations, but considers the memory system as a black box.

This thesis considers memory systems to only use read and write operations,
i.e. no additional synchronization operations are available. This decision al-
lows to describe more memory models and is justified by the assumption that
most software is not (yet) optimized for weak consistent memory and there-
fore lacks synchronization operations anyway. As the formalism describes the
possible executions, both read and write operations already have a determined
address and value.

Definition 2.1 < Memory Operation >

A memory operation is an element in O ∶= C × V ×D ×P ×N.
A operation describes either a read or a write command from C ∶= {r,w}

that reads or writes a data value from D to a variable from V. Each
operation is assigned its process identifier from P and an issue index. The
issue index is a natural number in N that indicates the order of a process’s
operations.

Given an operation o = (c, v, d, p, i), the following functions are defined:
cmd(o) = c, var(o) = v, data(o) = d, proc(o) = p, index(o) = i to access the command,
the variable, the data value, the process identifier, and the issue index.

11



Chapter 2: Background

Given a set of operations T ⊂ O, a subset with shared properties is denoted
using a wildcard symbol ∗. For example, the set of operations writing to
variable v, {o ∈ T ∣ cmd(o) = w ∧ var(o) = v}, is denoted by (∗,w, v,∗,∗)T .

A trace is a sequence of read and write operations for each process. This se-
quence characterizes the observed memory events when running multithreaded
software. Formally, a trace is a set of operations that contains at most one
operation per combination of process and issue index, and contains an initial
write of initialization process wmInitProcess for each used variable.

Definition 2.2 < Trace >

A trace is a subset of operations T ⊂ O with:

� ∀pinP,i∈N ∣{o ∈ T ∣ proc(o) = p ∧ index(o) = i}∣ ≤ 1

� ∀v∈V ∣(∗, v,∗,∗,∗)T ∣ ≥ 1 ⇒ ∣(w, v,0, ε,∗)T ∣ = 1

� ∀o∈(∗,∗,∗,ε,∗)T ⇒ cmd(o) = w ∧ data(o) = 0

The failing of Dekker’s algorithm as shown in Figure 1.1 and Figure 1.2 can
be expressed as a trace TDekker. The trace assumes a violation of the mutual
exclusion property. Both processes p and q write the value 1 to their variable
but then read the initial value 0 from the other’s process variable. Reading 0
both p and q assume to have exclusive access and enter the critical section.

{(w,x,1, p,0),(r, y,0, p,1),(w,y,1, q,0),(r, x,0, q,1),(w,x,0, ε,0),(r, y,0, ε,1)}

For better readability traces are presented separated by processes and each
process as sequences of operations. For a fixed variable ordering, the initial
writes can be implied by the used variables. Therefore, they can be dropped
from the representation for simplification. This results in the following nota-
tion for the previous example.

(w,x,1).(r, y,0) ∣∣ (w,y,1).(r, x,0)

All operations of the initialization process ε are considered to occur before
any other operation. For a process p, the local order extends the order in which
p’s operations are issued by ordering all its operations after the initialization
operations.

Definition 2.3 < Local Order >

The local order of a process p ∈ P ∖ {ε} is a relation ≺p∶ O ×O so that

∀o1,o2∈O ∶ (o1 ≺p o2)⇐⇒[(proc(o1) = ε ∧ proc(o2) = p)
∨ (proc(o1)=proc(o2)=p ∧ index(o1)< index(o2)) ]

12



2.2. View-Based Formalism

Definition 2.4 < Program Order >

The program order <p is the conjunction of all local orders:

<P= ⋃
p∈P

≺p

A trace is considered to reflect the observed memory behavior. To determine
the source of these observations we introduce the notion of an execution that
defines a writes-to relation ↦ for a given set of operations. The writes-to rela-
tion assigns exactly one write operation w to each read operation r which has
the same variable and value. Therefore, an execution does not only summarize
the observed behavior but also indicates the origin of read values.

Definition 2.5 < Execution >

An execution of a trace T is given as the writes-to relation ↦∶
(w,∗,∗,∗,∗)T × (r,∗,∗,∗,∗)T so that:

� ∀r∈(r,∗,∗,∗,∗)T ∃w∈(w,∗,∗,∗,∗)T [w ↦ r]

� [w ↦ r] ⇒ [var(w) = var(r) ∧ data(w) = data(r)]

� [w1 ↦ r] ∧ [w2 ↦ r]→ (w1 = w2)

For small litmus test like traces there often exist few or only a single possible
execution.

The before-mentioned trace TDekker has only one viable execution as depicted
by the dashed arrows in Figure 2.2.

write(y,0)

write(x,0)

write(x,1) write(y,1)

read(y,0) read(x,0)

p q

ε

<P

↦

Figure 2.2.: Example: Execution of the Dekker mutual exclusion example trace
TDekker. The initial writes are ordered before all other operations. As
there is only a single write for the values read only a single execution
exists for the trace.

In this execution both reads receive their values from the corresponding
write of the initialization process ε.
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Chapter 2: Background

Memory consistency models define if an execution is considered to be valid
with respect to the given model. To reason about the validity of executions
the framework used in this thesis utilizes the concept of serial views as shown
in [StNu04]. A serial view of an execution resembles the total order in which
memory operations are visible to a process. The serial view has to order each
read operation r after the write operation w that it reads from according to
the given writes-to order w ↦ r and it has to ensure that no other write
operation to the same variable may be ordered in-between r and w. A process
may, however not observe all the other operations. Therefore, the serial view
is defined on a different subset of the trace for each model. However, all write
operations of read operations that are contained in the subset also have to be
in the subset. Such a subset is called source-closed and is formally defined
as follows: ∀r∈O′(w ↦ r) → w ∈ O′. Furthermore, a serial view may have to
satisfy additional constraints depending on the memory model.

Recall that total orders are asymmetric and transitive.

Definition 2.6 < Serial View >

Given an execution ↦ on a trace T , a strict partial order <⊂ O ×O and
a source-closed subset O′ ⊆ T . A strict total order <sv⊂ O′ × O′ is a
serial view of O′ for execution ↦ that respects < if is satisfies the following
properties:

� < ⊆ <sv

� ∀w,r∈O′(w ↦ r)→ [(w <sv r)∧
¬∃w′∈O′(var(w) = var(w′) ∧w <sv w′ <sv r)]

Abbreviated as <sv is SerialV iew(↦,O′,<)
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2.3. Model Definitions

2.3. Model Definitions

To demonstrate the usage of the introduced formalism to define memory mod-
els, definitions of several memory models are introduced, starting with se-
quential consistency (SC) [Lamp79]. Additionally, exemplary executions are
presented to familiarize with the differences and similarities of the models.

2.3.1. Sequential consistency (SC)

While technically not a weak model, we include sequential consistency as de-
fined by Lamport [Lamp79] as a base reference. SC has been the preferred
memory model for programmers since it just considers the interleaving of the
single thread executions. SC ensures that all processes observe all operations
in the same order and in the order in which they were issued. Using Defi-
nition 2.6 an execution is valid under SC if there exists a serial view of all
operations that respects the program order. The definition of sequential con-
sistency [Lamp79] as expressed by [StNu04] is given in Definition 2.7.

Definition 2.7 < Sequential consistency (SC) >

An execution ↦ of trace T is called sequentially consistent if

∃<sv ∶ <sv= SerialV iew (<P ∣(∗,∗,∗,∗,∗)T )

write(x,1) read(x,1)

read(y,1) write(y,1)

p1 p2

Figure 2.3.: Example: SC consistent execution.

Example The execution shown in Figure 2.2 that shows a violation of the
mutual exclusion property is not sequentially consistent. The program order
puts the initial writes before all other operations and totally orders the op-
erations of one process. Each strict total order for TDekker that respects the
program order will put one of the writes with value 1 directly after the ini-
tial operations. Hence, this write is then between one of the read operations
and the corresponding initial write that it has to receive its value from. This
violates the second serial view property and demonstrates that no such serial
view exists and therefore that the execution is not sequentially consistent. The
example in Figure 2.3 however is sequentially consistent as the following serial
view exists: write(x,1).read(x,1).write(y,1).read(y,1).
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2.3.2. Processor consistency (PC)

In 1989, Goodman defined an intermediate level of consistency that is weaker
than SC but stronger than most other consistency models [Good91a].

As there exists another consistency model that slightly differs from Good-
man’s definition but is also called processor consistency the notation PC-G is
used for Goodman’s definition. The other model is based on the the Stanford
DASH multiprocessor system [LLGW92] and implements a variation of proces-
sor consistency which will be referred to as processor consistency (DASH) (PC-
D) in this thesis. PC-D was shown to be incomparable to PC-G in [ABJK93;
GLLG90].

To prevent misunderstandings, only PC-G will be used within this thesis.

Goodman’s definition of processor consistency can be expressed using the
introduced formalism as follows [StNu04]:

Definition 2.8 < Processor consistency (Goodman) (PC-G) >

An execution ↦ of trace T is called PC-G consistent if

∀v∈V∃<v ∶ <v= SerialV iew (<P ∣ (∗, v,∗,∗,∗))
∧∀p∈P∃<sv ∶ <sv= SerialV iew ((∪v∈V <v)∪ <P ∣(∗,∗,∗, p,∗) ∪ (w,∗,∗,∗,∗))

write(x,1) read(x,1) read(x,2) read(y,1)

write(x,1) write(y,1) read(x,1)2

p1 p2 p3 p4

Figure 2.4.: Example: PC-G consistent execution that is neither GWO nor PSO
consistent.

Example The example in Figure 2.4 is PC-G as the following serial views
exist:

[x] ∶ write(x,1).read(x,1).read(x,1).write(x,2).read(x,2)
[y] ∶ write(y,1).read(y,1)
[p1] ∶ write(x,1).write(x,2).write(y,1)
[p2] ∶ write(x,1).read(x,1).write(x,2).write(y,1)
[p3] ∶ write(x,1).write(x,2).read(x,2).write(y,1)
[p4] ∶ write(x,1).write(y,1).read(y,1).read(x,1)2.write(x,2)
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2.3.3. Causal consistency (CAUSAL)

Causal memory is based on potential causality defined by Lamport [Lamp78]
which defines a partial order on all memory operations. This partial order
orders operations that are causally related. Writes are considered causally
related if a write is issued after another write was read by the same process
(Write-Read-Write order), or if they are ordered by the program order.

The write-read-write order orders two writes if a read exists which reads
from the first write and is issued before the second write by the same processor.

Definition 2.9 < Write-Read-Write Order >

Two writes are ordered by write-read-write order, w1 <wrw w2, iff there
exists a read r, such that w1 ↦ r <P w2.

Causal memory enforces that if a process issues a write operation w after it
has read from some write w′, then all processes reading w must have observed
w′ before as well.

Definition 2.10 < Causal consistency (CAUSAL) >

An execution ↦ of trace T is called causal consistent if

∀p∈P∃<sv ∶ <sv= SerialV iew (<P ⋃ <wrw ∣(∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T )

The concept of CAUSAL honors the fact that the preceding write might
either influence the newer write or be overwritten by the newer write.

write(x,1) write(x,2)

read(x,1) read(x,2)

read(x,2) read(x,1)

p1

p2 p3

p4

Figure 2.5.: Example: CAUSAL consistent execution.

Example The example in Figure 2.5 is CAUSAL consistent as the following
serial views exist:

[p1] ∶ write(x,1).read(x,1).write(x,2).read(x,2)
[p2] ∶ write(x,1).write(x,2)
[p3] ∶ write(x,2).write(x,1)
[p4] ∶ write(x,2).read(x,2).write(x,1).read(x,1)
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2.3.4. Pipelined RAM consistency (PRAM)

One of the first well known weak memory models described was PRAM which
was presented 1988 by Lipton and Sandberg [LiSa88]. They showed that
their shared memory system PRAM scales better than sequentially consis-
tent systems as it is immune to high network latency. Additionally, synchro-
nization costs remain low while performance increases significantly. Due to
its informal textual definition, there exists an interpretation of Ahamad et
al. [ABJK93], and another slightly different one by Mosberger [Mosb93a] as
shown in [Senf13]. PRAM consistency based on Ahamad et al. [ABJK93] can
be expressed as shown in Definition 2.11.

Definition 2.11 < Pipelined RAM consistency (PRAM) >

An execution ↦ of trace T is called PRAM consistent if

∀p∈P∃<sv ∶ <sv= SerialV iew (<P ∣(∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T )

In a PRAM consistent execution, every process observes all the writes of
all other processes in the order they were issued. However, different pro-
cesses may see the writes of the other processes in a different order. A system
implementing PRAM consistency therefore only has to ensure that the com-
munication from one process to another does not reorder or lose writes, while
the transmission delay between processors is arbitrary.

Example The execution of TDekker in Figure 2.2 is PRAM consistent. For
each of the two processes a serial view exists that respects the program order
and covers all own operations and all other write operations.

[p] ∶ write(y,0).write(x,0).write(x,1).read(y,0).write(y,1)
[q] ∶ write(y,0).write(x,0).write(y,1).read(x,0).write(x,1)

Figure 2.6 shows an execution that is not PRAM consistent. The initial
writes have been omitted as they are not required to show that the execu-
tion is not valid for PRAM. A serial view for p is of no importance as there
are no read operations and therefore any arbitrary interleaving would satisfy
the requirements. For process q however there can be no serial view as fol-
lows. The first read operation of process q reads from process p’s last write.
Moreover, the operations have to be kept in program order, therefore a po-
tential serial view <sv would have to satisfy: (w,x,1, p,0) <sv (w,x,2, p,1) <sv
(w,y,1, p,2) <sv (r, y,1, q,0) <sv (r, x,1, q,1). In that order however, the sec-
ond write overwrites the value of the first one before it has been read by the
last read operation. And therefore the order violates the serial view property.
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2.3.5. Cache consistency (CC)

In 1989, Goodman [Good91a] provided a definition for cache consistency,
which he called weak consistency since he assumed that it is the weakest form
of memory consistency. Furthermore, he expected that no synchronization
guarantees could be given in cache consistency. Meanwhile, both assumptions
have been proven wrong by the existence of weaker models and algorithms
that can ensure mutual exclusion in weaker models like slow consistency. Def-
inition 2.12 gives a definition of cache consistency [Good91a].

Definition 2.12 < Cache consistency (CC) >

An execution ↦ of trace T is called cache consistent if

∀v∈V∃<sv ∶ <sv= SerialV iew (<P ∣ (∗, v,∗,∗,∗)T )

The definition states that each process observes the same ordering on mem-
ory operations regarding the same memory location, but processes may see
operations regarding different memory locations in different orders.

Example The execution of TDekker in Figure 2.2 is cache consistent. For each
of the two variables a serial view exists that respects the program order.

[x] ∶ write(x,0).read(x,0).write(x,1)
[y] ∶ write(y,0).read(y,0).write(y,1)

write(x,1) read(y,1)

write(x,2) read(x,1)

write(y,1)

p1 p2

Figure 2.6.: Example: CC consistent execution that is not PRAM consistent.

While not PRAM consistent the execution in Figure 2.6 is CC consistent.
For each of the two variables a serial view exists that respects the program
order.

[x] ∶ write(x,0).read(x,1).write(x,2)
[y] ∶ write(y,1).read(y,1)

19



Chapter 2: Background

2.3.6. Slow consistency (SLOW)

Hutto and Ahamad [HuAh90] developed the SLOW model to solve the ex-
clusion and dictionary problems with minimal consistency maintenance. A
SLOW consistent memory requires that all write operations to the same vari-
able are observed in the same order by all processes. SLOW consistency can
be formally defined as shown in Definition 2.13.

Definition 2.13 < Slow consistency (SLOW) >

An execution ↦ of trace T is called slow consistent if

∀p∈P∀v∈V∃<sv ∶ <sv= SerialV iew (<P ∣ (∗, v,∗, p,∗)T ∪ (w, v,∗,∗,∗)T )

Example As SLOW has fewer restrictions than both PRAM and CC, both
executions in Figure 2.2 and Figure 2.6 are slow consistent. In fact, it can be
shown that every PRAM or CC consistent execution is SLOW consistent as
well [StNu04; Senf13].

write(x,1) read(y,1)

write(y,1) write(x,2)

read(x,2) read(x,1)

p1 p2

Figure 2.7.: Example: SLOW consistent execution that is neither CC or PRAM
consistent.

The execution illustrated in Figure 2.7 however is SLOW consistent as well
but neither PRAM nor CC consistent.

[p, x] ∶ write(x,1).write(x,2).read(x,2)
[p, y] ∶ write(y,1)
[q, x] ∶ write(x,2).write(x,1).read(x,1)
[q, x] ∶ write(y,1).read(y,1)

Therefore, SLOW has to be weaker than PRAM and CC, i.e., while every
PRAM or CC consistent execution is SLOW consistent there exist executions
that are SLOW consistent but neither PRAM nor CC consistent.
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2.3.7. Local consistency (LOCAL)

LOCAL was first defined by Heddaya and Sinha [HeSi92] as the weakest con-
straint that could be required of a shared memory system. In a LOCAL con-
sistent system, each process observes its own operations in local order while
all other operations may be observed in an arbitrary order. Different pro-
cesses’ orders are not related at all in this memory model. LOCAL [HeSi92;
BaBe97a] can be expressed in the introduced formalism [StNu04] as shown in
Definition 2.14.

Definition 2.14 < Local consistency (LOCAL) >

An execution ↦ of trace T is called local consistent if

∀p∈P∃<sv ∶ <sv= SerialV iew (≺p∣ (∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T )

Example LOCAL can be proven to be weaker than SLOW [StNu04; Senf13].
Therefore, all aforementioned executions are valid executions for LOCAL as
well. The execution in Figure 2.8 however is only LOCAL consistent:

[p] ∶ write(x,1).write(x,2)
[q] ∶ write(x,2).read(x,2).write(x,1).read(x,1)

For the sake of completeness the execution TNotLocal shown in Figure 2.9 is
not LOCAL consistent. Following (w,x,1, p,0) ≺p (w,x,2, p,1) ≺p (r, x,1, p,2),
the execution violates the only property required for LOCAL: A process has
to observe its own operations in the order they are issued. While this behav-
ior seems improbable for processor architectures there exist memory models
for information system that do not provide this guarantee, namely eventual
consistency.

write(x,1) read(x,2)

write(x,2) read(x,1)

p1 p2

Figure 2.8.: Example: LOCAL consistent execution that is not SLOW consistent.

write(x,1)

write(x,2)

read(x,1)

p

Figure 2.9.: Example: Execution of TNotLocal that is not local consistent.
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Other models

Plenty of other models exist that are not covered in this introduction. Ul-
timately, every implementation or optimization of a processor architecture
might define another model not described before. For some of them it is dif-
ficult to provide a view-based definition. During the research for this thesis,
the observation emerged, that whenever a write may not be observed at all
by some processes because it is shadowed, i.e., not visible, due to another
operation, then a view-based definition gets cumbersome because the shad-
owed operations have to be explicitly excluded from the serial view. Some of
the most prominent examples for such models are SPARC’s memory models
partial store ordering and total store ordering. In the process of this thesis sev-
eral attempts have been made to specify them using the introduced formalism.
While no proof of the correctness of the resulting definitions can be provided
so far, they hold well against attempts to disprove them so far. Therefore, for
some models of interest, namely PSO and TSO, their original definition will be
provided using the notation of this thesis as well as the proposed view-based
definition of TSO for further research.

2.3.8. Total store ordering (TSO)

Total store ordering is the default memory model of SPARC architectures.
The SPARC architecture manual [Spar92; WeGe94] states that every imple-
mentation has to offer TSO. TSO allows the reordering of stores after loads.

In the following, a simplified axiomatic definition for TSO is given based
on the SPARC Architecture manual [Spar92; WeGe94; SiFC92; LCCM06].
‘Simplified’ means that the original definition uses 6 axioms, but two of them
(Atomicity, Termination) are irrelevant for this consideration. Atomicity only
concerns Swap operations which are not covered by the introduced formalism
which only considers write and read operations. Further, Termination gives a
guarantee that a store will eventually be written to the memory and removed
from the store buffer.

Definition 2.15 < Total store ordering (TSO) >

An execution ↦ of trace T is called TSO consistent if a memory order
≤ exists which respects:

� Order: ∀w1,w2∈(w,∗,∗,∗,∗)T ∶ w1 ≤ w2 ⊕w2 ≤ w1

� Value: ∀r∈(r,v,∗,∗,∗)T ∶

data(r) = data(max≤ {w ∈ (w, v,∗,∗,∗)T ∣w <P r ∨w ≤ r})

� LoadOp: ∀r∈(r,∗,∗,∗,∗)T ,o∈T ∶ (r <P o)→ (r ≤ o)

� StoreStore: ∀w1,w2∈(w,∗,∗,∗,∗)T ∶ (w1 <P w2)→ (w1 ≤ w2)
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TSO consistency is best explained by describing a possible architecture:
Each process has a store buffer which buffers writes before writing them to
memory in order. If a process reads a location for which a write exists in its
store buffer, then it reads the latest value from the store buffer, otherwise it
reads the value from memory.

An execution is TSO if a process observes its own operations in program
order and there exists a total order on all write operations which respects
program order and is observed by all processes regarding others’ writes. Also
a process may not observe all writes of other processes as they may be hidden
by own writes in its store buffer.

A view-based definition of TSO consistency based on the axiomatic defini-
tion is proposed as follows:

Definition 2.16 < tso order >

Two writes are ordered by tso order, w1 <tso w2, iff one of the following
properties holds:

� w1 <P w2

� w1 <wrw w2

� var(w1) = var(w2) ∧ ∃r1,r2 ∶ w1 ↦ r1 ∧ w2 ↦ r2 ∧ r1 <P r2

� ∃o′ ∶ o1 <tso o′ <tso o2

Definition 2.17 < TSO (view-based) >

An execution ↦ of trace T is called TSO consistent iff:

∃< ∶ <= SerialV iew (<tso∣ (w,∗,∗,∗,∗)T )
∀p∈P∃<sv <sv= SerialV iew (< ∣ (w,∗,∗,∗,∗)T ∖W p

shadowed)

with W p
shadowed ⊂ (w,∗,∗,∗,∗)T ∖ (w,∗,∗, p,∗) so that

w ∈W p
shadowed →⋀¬∃r,proc(r)=p ∶ w ↦ r

∃w′, var(w′
) = var(w), proc(w′

) = p ∶ w < w′

∧ ¬∃w′′,r ∶ w < w′′ → r <P w′

Informally, a write is shadowed by a write of process p if there exists a write
of p to the same location that will be written back at a later time (tso order
<) and it is not provable that p ever observes that write.
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The difficulty to describe TSO in a view-based manner emerges from TSO
allowing local writes to temporarily hide others writes. In the axiomatic defi-
nition this is noticeable in that two terms combine to define the most recent
write (memory order and local order) while in a view-based definition the se-
rial view defines most recent write on the serial order. Therefore, a view-based
model has to restrict the set of considered operations as they would conflict
with the serial view property.

Example Figure 2.10 shows an example of an execution which is TSO con-
sistent. This can be easily seen, if write(x,0) is buffered by p. On the other
hand, the example is not PRAM consistent. Enhancing [Senf13], it can be
summarized that TSO is incomparable to GWO, GAO, and PRAM (GPO)
but strictly stronger than CC (GDO).

write(x,0) write(y,1)

read(y,1) write(y,2)

read(y,2) write(x,1)

read(y,3) write(y,3)

read(x,0)

p q

Figure 2.10.: Example: TSO consistent execution that is not PRAM consistent.

Figure 2.11 shows another example of an execution which is PSO consistent.
While this time it is PRAM consistent as well, it is not GAO consistent.

write(x,0) write(y,0)

write(x,1) write(y,1)

read(y,0) write(x,0)

read(y,1)

p q

Figure 2.11.: Example: TSO consistent execution that is not GAO consistent.
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2.3.9. Partial store ordering (PSO)

Partial store ordering is one memory model used in SPARC architectures. It
provides a better performance than the default total store ordering mode, but
is defined as optional in the architecture manual, so not all SPARC architec-
tures may provide PSO. It allows to reorder writes after writes of different
locations and writes after reads.

In the following, a simplified axiomatic definition for PSO is given based
on the SPARC Architecture manual [Spar92; WeGe94; SiFC92]. ‘Simplified’
means that the original definition uses 7 axioms, but three of them (Atomicity,
Termination, StoreStore) are irrelevant for this consideration. Atomicity only
concerns Swap operations that are not covered by the introduced formalism,
which only considers write and read operations. Termination gives a guarantee
that a store will eventually be written to the memory and removed from the
store buffer. And StoreStore considers STBAR instructions which are also not
covered by the used formalism.

Definition 2.18 < Partial store ordering (PSO) >

An execution ↦ of trace T is called PSO consistent if a memory order
≤ exists which respects:

� Order: ∀w1,w2∈(w,∗,∗,∗,∗)T ∶ w1 ≤ w2 ∨ w2 ≤ w1

� Value: ∀r∈(r,v,∗,∗,∗)T ∶

data(r) = data(max≤ {w ∈ (w, v,∗,∗,∗)T ∣w <P r ∨w ≤ r})

� LoadOp: ∀r∈(r,∗,∗,∗,∗)T ,o∈T ∶ (r <P o)→ (r ≤ o)

� StoreStoreEq: ∀w1,w2∈(w,v,∗,∗,∗)T ∶ (w1 <P w2)→ (w1 ≤ w2)

PSO consistency is best explained by describing a possible computer ar-
chitecture: Each process has a store buffer for each memory location which
buffers writes before writing them to memory. If a process reads a location for
which a write exists in the corresponding store buffer then it reads the latest
write’s value from that store buffer, otherwise it reads the value from memory.

An execution is PSO consistent if a process observes its own operations in
program order and there exists a total order on all write operations which is
observed by all processes regarding others’ writes. Also a process may not
observe all writes of other processes as these may be hidden by own writes in
its store buffer.

At this point of time no view-based definition for PSO was found that looks
promising enough to be presented.

Example The execution in Figure 2.12 is PSO consistent as write(x,1) can
be buffered by p. For TSO, following writes would be buffered too and there-
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fore it can clearly not be TSO consistent. Furthermore, it is also not GWO
consistent as for all writes are ordered by write-read-write order.

write(x,0) read(y,1)

read(x,0) read(x,0)

write(x,1)

read(x,1)

write(y,1)

p q

Figure 2.12.: Example: PSO consistent executions that is neither TSO nor GWO
consistent.
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In a joint work [FMSS14; FMSS15] the program analysis approach testing
is studied in context of view-based definitions. The testing problem checks
whether sequences of operations of a concurrent program can be interleaved
to a program execution that is consistent with a given weak memory model.
This chapter covers the most important results of the cooperation in terms of
our complexity analysis and presents the resulting SAT encoding as a repre-
sentation of a memory-model aware testing problem.

3.1. Testing Problem

As first studied by Gibbons and Korach [GiKo97] in 1997 the testing problem
is a core problem for verification. It asks if a given execution is an allowed
execution as defined for sequential consistency. The problem can be extended
to the testing problem under weak memory that checks the execution against an
arbitrary memory model. The testing problem under weak memory is defined
as follows: Given a concurrent execution, check whether this execution is a
valid execution with respect to a given weak memory model.

As introduced in Definition 2.5, an execution is a sequence of read and
write operations for each concurrent process and it is a valid execution if there
exists an interleaving of the operations that satisfies the constraints of the
weak memory model at hand. Other works might refer to executions as traces
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as they talk about observed memory interactions when running a concurrent
program (see also Definition 2.2 and Definition 2.5). The joint work with
Furbach, Meyer and Schneider in [FMSS14; FMSS15] focused on the study of
algorithms that solve the testing problem, so-called testing algorithms.

Testing algorithms have various applications in program analysis. In verifi-
cation, over-approximation might result in counterexamples that can be proven
to be infeasible with respect to the chosen memory model by a testing algo-
rithm. Infeasible counterexamples might then be used for the refinement of
the analysis.

Another application can be found in the best and worst case estimation
of program execution times. Testing algorithms can identify paths that are
not allowed with respect to the given memory model and thereby improve the
analysis.

Only few publications exist on the design and complexity of algorithms for
the testing problem. Gibbons and Korach [GiKo97] showed that the general
problem is NP-complete for sequential consistency and linearizability. In 2005,
Cantin, Lipasti, and Smith [CaLS05a] extended these results to several more
models. In particular, they prove the testing problem to be NP-complete for
TSO, PSO, relaxed memory ordering (RMO) [WeGe94], processor consistency
(PC), release consistency [GLLG90], and the PowerPC memory model.

All of these approaches are tailored towards few specific memory models.
In contrast, an approach is introduced that tackles the testing problem under
different memory models in a uniform way.

The memory-model-aware testing problem Test(M) is considered for every
memory model M shown in Figure 2.1. The definition is as follows.

Definition 3.1 < Memory-model-aware Testing Problem >

Given a trace T ⊆ O.
Is there an execution ↦ ⊆ T × T that is valid under M?

A test succeeds under M if there is a valid execution, otherwise it fails
under M. In the Dekker mutual exclusion example, TDekker fails under SC but
succeeds under SLOW.

We also consider restricted variants of the testing problem that admit more
efficient algorithms: TestP (M) assumes a fixed number of processes in input
tests, TestL(M) fixes the length of processes (number of operations), and
TestV (M) studies the problem for a fixed number of variables.
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3.2. Testing is NP-Hard for many models

Using a new reduction technique Furbach, Meyer, Schneider, and Senftleben
[FMSS14; FMSS15] provide a reduction of the SAT decision problem to the
testing problem for a wide range of memory models at the same time.

Given a weaker MW and a stronger MS memory consistency model, the
set of allowed executions of MW is a superset of the allowed executions of
MS . Also given a NP-hard decision problem Prob. Then, a MS ⪯MW -range
reduction of Prob to the testing problem is a reduction of Prob to the testing
problem that satisfies the following conditions. First, for each mapped testing
problem that is valid for the weaker model MW the corresponding instance of
Prob succeeds as well. And second, for each problem instance of Prob that
succeeds the mapped testing problem is valid for the stronger model MS . This
concept is illustrated in Figure 3.1.

MS

M

MW

M′Prob M′′

Figure 3.1.: Illustration of the Range Reduction concept

By construction of polynomial time computable MS ⪯MW -range reductions
of a NP-hard problem it is shown that the testing problem for all models
MS ⪯ M ⪯ MW is NP-hard. The publication of Furbach, Meyer, Schneider,
and Senftleben [FMSS14; FMSS15] presents four of these range reductions
that can cover most of the memory models in Figure 2.1 and partitions them
regarding their complexity results as seen in Figure 3.2. It also considers the
influence of limiting some of the properties of the memory model like variable
count, count of processes and process length.

LOCAL

SLOW

CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO CAUSAL

PC-G PC-D

SC

NP

P

Figure 3.2.: Complexity partitioning of memory models in terms of NP complete-
ness of the corresponding testing problem. [FMSS14; FMSS15]
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More interesting in terms of this thesis is the other way around, a reduction
of the testing problem to a well-known decision problem, the SAT problem.

3.3. Testing is in NP

This section shows that the memory-model-aware testing problem is in NP for
all memory models in Figure 2.1. Using the formalism and results of Steinke
and Nutt [StNu04] allows for a quite straightforward reduction. On the one
hand their definition using partial orders is well suited to be expressed in a
SAT encoding. And on the other hand their uniform definitions allow to only
use one reduction for all considered memory models. The reduction yields
a SAT formula consisting of two parameterized formulas that depend on the
memory model.

3.3.1. Encoding: Components

The uniform encoding has to encode two different aspects: The existence of
an execution for the given trace and the existence of a serial view for the
given trace taking the execution of the first part into account. Both parts are
expressed as propositional formulas in conjunctive normal form (CNF).

For a given trace T , the existence of an execution is encoded in formula
EXE(T ). The encoding uses variables exw,r for each pair of write and read
operations w, r ∈ T that access the same variable and have the same value,
var(w) = var(r) and data(w) = data(r).

Formula EXE(T ) requires that every read has a write providing its value
(3.1) and no read has two sources (3.2):

⋀
r∈T

⋁
w∈T

var(w)=var(r)
data(w)=data(r)

exw,r (3.1)

∧
⋀

r,w1,w2∈T ,w1≠w2
var(w1)=var(w2)=var(r)

data(w1)=data(w2)=data(r)

(¬exw1,r ∨ ¬exw2,r) (3.2)

Lemma 3.1 EXE(T ) is in CNF and cubic in the size of T . Moreover,
EXE(T ) is satisfiable if and only if there is an execution ↦ ⊆ T × T .

The existence of a serial view of operations O′ for an execution of T is
encoded by formula SV(T ,O′,<). The formula takes as input a trace T ,
a subset of operations O′ ⊆ T , and a strict partial order < ⊆ O′ ×O′. Serial
views are defined relative to an execution. To access the execution determined
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by EXE(T ), formula SV(T ,O′,<) makes use of the variables exw,r defined
above.

Formally, a serial view is a strict total order <sv ⊆ O′ ×O′. It is encoded
with variables svo1,o2 , one for each pair of operations o1,o2 ∈ O′. Intuitively,
variable svo1,o2 is set to true iff o1 <sv o2 holds. The following exclusive-or
ensures the serial view is total and asymmetric. The implication is transitivity.
The exclusive-or is used as a macro for a conjunction and the implication as a
macro for a disjunction so that the resulting formula is in conjunctive normal
form:

⋀
o1,o2,o3∈O′

o1≠o3
o1≠o2≠o3

[(svo1,o2 ⊕ svo2,o1) ∧ (svo1,o2 ∧ svo2,o3 → svo1,o3)] (3.3)

Definition 2.6 requires that <sv refines < to a total order:

⋀
o1,o2∈O′
o1<o2

svo1,o2 (3.4)

The next formula requires that for every pair w ↦ r we have w <sv r and
that no write to the variable is placed in between:

⋀
w,r∈O′

var(w)=var(r)
data(w)=data(r)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(¬exw,r ∨ svw,r) ∧ ⋀
w′∈O′

var(w′
)=var(r)

(¬exw,r ∨ ¬svw,w′ ∨ ¬svw′,r)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

Formula SV(T ,O′,<) is the conjunction of the Formulas (3.3) to (3.5).
To state the relationship between SerialView (↦,O′,<) in Definition 2.6 and
SV(T ,O′,<), the satisfying assignments are restricted to the propositional
variables. An assignment respects ↦ ⊆ T × T if o1 ↦ o2 holds if and only if
ex o1,o2 is set to true.

Lemma 3.2 SV(T ,O′,<) is in CNF and cubic in its input. There is
a strict total order <sv with <sv= SerialView (↦,O′,<) if and only if
SV(T ,O′,<) has a satisfying assignment that respects ↦.

3.3.2. Encoding: Uniform Reduction of Testing to SAT

Now, the above formulas are instantiated to solve the testing problem for the
memory models defined using our formalism.

The procedure is illustrated by using the testing problem under SLOW
consistency as an example and by its reduction to SAT.
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Computing an execution is equivalent to determining a satisfying assignment
for EXE(T ). To make sure that the required serial views exist, the formula
SV(T , ●, ●) is instantiated with appropriate parameters:

EXE(T ) ∧ ⋀
p∈P
x∈V

SV(T , (∗, x,∗, p,∗)T ∪ (w,x,∗,∗,∗)T ,<P ) (3.6)

Test T succeeds under SLOW iff this formula is satisfiable. Note that
EXE(T ) ensures that the assignment to the execution variables matches an
execution. And following Lemma 3.2, a satisfying assignment resembles an
execution and all required serial views.

Therefore, Test(SLOW ) can be reduced to SAT in polynomial time and
hence is in NP. Furthermore, as the procedure can be used for all models M
defined via serial views, it can be concluded that for all these models Test(M)
is in NP.

3.4. Experiments

The introduced propositional formulas can be encoded for SAT solvers to
tackle the testing problem. Consider the following trace Tα:

(w,x,1).(r, x,2) ∣∣ (w,x,2).(r, x,1)

The sequential consistency testing problem Test(SC) for instance Tα can
be reduced to the following encoding:

EXE(Tα) ∧ SV (Tα,<P )

The propositional formula can be encoded in the SMT-LIBv2 [BaFT17] lan-
guage as shown in Appendix A.1. Using the Z3 SMT solver [MoBj08a] proves
the propositional formula to be unsatisfiable as expected.

Similarly, the PRAM testing problem Test(PRAM) for instance Tα can
be reduced to the following encoding:

EXE(Tα) ∧ SVp((∗,∗,∗, p,∗)Tα ∪ (w,∗,∗,∗,∗)Tα ,<P )
∧ SVq((∗,∗,∗, q,∗)Tα ∪ (w,∗,∗,∗,∗)Tα ,<P )

The respective encoding in the SMT-LIBv2 language is given in Appendix A.2.

While these examples were solvable in a fraction of a second, no big example
problems have been encoded because at that time no tool for encoding was
ready to be used. Because of that and since the focus of our work on elaborat-
ing modelling techniques rather than tools, this thesis will not provide detailed
benchmark results with bigger examples.
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3.5. Results and Future Work

The joint work [FMSS14; FMSS15] revealed important complexity results for
the testing problem under weak memory. Besides the before-mentioned NP-
hardness for many models and the NP-affiliation for all models, the work also
proved that the testing problem is in P for some models.

More important, a representation of the testing problem for weak memory
as a propositional formula was introduced. This representation allows to solve
the testing problem by means of the SAT problem. While the reduction might
not be the most compact representation, it still allows to solve the problem
using well-known and established tools.

Further research into the testing problem and its use to identify porting
bugs is shown in [LFHM17].

Although there are use cases for modelling traces and thereby for the testing
problem, the more interesting questions target programs and all their possible
traces. This resulted in further research on different approaches to express
weak memory consistency for programs rather than traces.
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While temporal logics have been proven to be well suited to describe con-
current behavior, they have not been employed to describe weak consistent
memory behavior until today. In the following we introduce a formalism to
describe several of these models with linear temporal logic (LTL). This sec-
tion provides a short introduction to LTL and explains the general idea of
the specification. Furthermore, the memory system requirements and mini-
mal properties for the specifications are explained. Finally, the properties are
composed to a full specification for several memory models.
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4.1. Linear temporal logic (LTL)

LTL is a variant of temporal logic whose models are single execution paths of
a system. As LTL is based on a discrete notion of time, each point of time
can be denoted as an integer value. The semantics are defined for a labelled
transition system (a Kripke structure) K = (S, I,R,L) that consists of a set
of states S, initial states I ⊆ S, a transition relation R ⊆ S × S, and the label
function L that maps each state to the variables that hold there. Each path
consists of a sequence of states determined by the transition relation R. An
LTL formula is satisfied for a given structure K if it is satisfied for all infinite
paths starting in any of the initial states I.

The temporal operators used in this thesis are:

� Gϕ (Globally): ϕ holds in the current state and all future states.

� Fϕ (Finally): ϕ eventually holds at least once (now or in future).

� Xϕ (Next): ϕ holds in the next state of the path.

� [ψ U ϕ] (Until): ϕ holds until the first time when ψ holds, and ψ has to
hold eventually.

� [ψ U ϕ] (Weak Until): ϕ holds until the first time when ψ holds, and ψ
may never hold (in which case ϕ holds ad infinitum).

For more information about temporal logics, see e.g., [Emer90; MaPn92;
BaKa08; ClGP99; Schn03].

4.2. State Variables: Read/Write/Observed Events

In general, a multiprocessor system can be modeled by a set of processes com-
municating with a central memory system using a well-defined interface. This
section will introduce the memory interface used for the LTL specifications
that are presented in this chapter. The processes and the memory system
interact via certain events, namely write events, and read events.

Each write operation w = (w, v, d, p, i) as defined in Definition 2.1, issued
by process p with issue index i and writing d to variable v, results in a write
event ⟨w⟩ in the current state. Similar to Definition 2.1, a process p issuing a
read of variable v with issue index i and the memory system answering that
read request with value d results in the read event ⟨r⟩ with r = (r, v, d, p.i). A
process is expected to only issue a single operation at a given time, i.e., at most
one event per process can occur at a given time. Furthermore, the issue index
for operations of a single process are expected to be strictly increasing. Note
that only data(r) with r ∈ (r,∗,∗,∗,∗)O is an output of the memory system
and everything else is considered as an input.

In addition to the mentioned write and read events and not part of the
interface, the specifications use an observation event ⟨q,w⟩ which reflects that
process q has observed write event w ∈ (w,∗,∗,∗,∗)O. A process is assumed
to observe at most one write at a time.
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4.3. Feasible Event Restrictions

To provide a well-defined context for the specifications, the environment has
to fulfill certain assumptions.

Process First, quite obviously a process is assumed to only issue one opera-
tion at a time (4.1). Next, the same process event should not occur more than
once (4.2), i.e., if an event of process p with issue index i occurred then no
such event may occur in the future. Furthermore, for each process the issue
index should start at 1 (4.3) and increase by 1 for each further operations
issued (4.4).

G((⟨o1⟩ ∧ ⟨o2⟩)→ (proc(o1) ≠ proc(o2) ∨ o1 = o2)) (4.1)

G(⟨o1⟩→ XG(⟨o2⟩→ (proc(o1) ≠ proc(o2) ∨ index(o1) ≠ index(o2)))) (4.2)

G(⟨o⟩→ index(o) ≥ 1) (4.3)

∀i>1 ∶ (¬⟨(w, v, d, p, i)⟩) U ⋁
o′∈C,v′∈V,d′∈D

⟨(o′, v′, d′, p, i − 1)⟩ (4.4)

Together, the equations from Equation 4.1 through 4.4 constrain the behav-
ior of the processes to expected behavior.

Memory On the memory side, a system has to satisfy at least some basic
properties to be considered a reasonable memory system. First, observation
events should be causally related to write events, i.e., an observation event
⟨q,w⟩ may only occur if there was a corresponding write event ⟨w⟩ before
(4.5). Second, a process should observe each write event only once (4.6).

G [(¬⟨q, (w, v, d, p, i)⟩) U ⟨(w, v, d, p, i)⟩] (4.5)

G(⟨q,w⟩→ XG¬⟨q,w⟩) (4.6)

The combination of both equations limits observation events to at most one
per process and corresponding write.

The most interesting property so far is the semantics of a read operation.
Read operations should either return the default value 0 as long as there was
no observed write to that location (4.7) or the value of the latest observed
write event (4.8).

∀r∈(r,v,∗,p,∗)O ∶ (⟨r⟩→ data(r) = 0) U ⋁
w∈(w,v,∗,q,∗)O

⟨q,w⟩ (4.7)

∀w∈(w,v,d,∗,∗)O,r∈(r,v,∗,q,∗)O ∶

G(⟨q,w⟩→ [(⟨r⟩→ data(r) = d) U ⋁
w∈(w,v,∗,∗,∗)O

w≠w′

⟨q,w′⟩]) (4.8)

37



Chapter 4: Paradigm: Temporal Logic

4.4. Weak Consistency Properties

In the following, the additional properties that are needed to specify the dif-
ferent memory models will be presented. This section will progress from the
weakest model which requires the least restrictions to the stronger models.

4.4.1. Local consistency (LOCAL)

Local consistency as introduced in Definition 2.14 requires each process to
observe its own writes in the order they were issued, but allows other processes’
writes to be observed in any order. In other words, a write event requires the
issuing process to immediately observe its own write.

This property can be expressed in LTL as follows:

G(⟨(w, v, d, p, i)⟩→ ⟨p, (w, v, d, p, i)⟩) (4.9)

4.4.2. Slow consistency (SLOW)

SLOW as introduced in Definition 2.13 extends local consistency by requiring
processes to observe the writes of another process to the same location in the
order they were issued. This means that if a write is observed then no earlier
write of that process to the same location may be observed in the future any
more.

The corresponding LTL representation of that property is as follows:

G( ⟨q, (w, l, d, p, i)⟩→ XG ⋀
j≤i
d′∈D

¬[⟨q, (w, l, d′, p, j)⟩] ) (4.10)

4.4.3. Pipelined RAM consistency (PRAM)

PRAM as introduced in Definition 2.11 requires each process to respect the
order of the writes of other processes, but not their read operations. This
means that two writes of the same process will always be observed in the same
order by all other processes. That is, if a process observes a write operation,
then it has to observe all earlier writes of the originating process beforehand.
Therefore, the PRAM specification extends slow consistency by an additional
property:

∀j<i ∶ ([F(⟨(w, v, d, p, i)⟩)] ∧ [F(⟨(w, v′, d′, p, j)⟩)]

→ [¬⟨q, (w, v, d, p, i)⟩ U ⟨q, (w, v′, d′, p, j)⟩] ) (4.11)

4.4.4. Cache consistency (CC)

CC consistency as introduced in Definition 2.12 is stronger than slow consis-
tency and requires that if a process observes two writes to the same location,
then if another process observes them as well they have to be in the same
order. This can be expressed with the following property:

[var(w1) = var(w2) ∧ F(⟨q,w1⟩ ∧ F(⟨q,w2⟩))]→ G(⟨p,w2⟩→ G¬⟨p,w1⟩) (4.12)
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4.4.5. Total store ordering (TSO)

TSO as defined in Definition 2.15 allows reordering of writes after reads. While
writes are buffered, reads are served immediately either from the buffer or by
reading from main memory.

While we have not been able to express TSO solely with the events R,W,O,
yet, the use of an additional event to express the store buffers behavior allows
us to describe TSO as well. The additional event w models that the write w
corresponding to ⟨w⟩ left the store buffer. This allows us to express that a
value should be available to other processes. In general w can not be expressed
using ⟨q,w⟩ straightforward as it may go unnoticed if the other processes have
writes to that location in their buffer as well.

The following extends the specification of CC to express TSO.

[¬w U ⟨w⟩] ∧G[w ∧w′ → w = w′]

∧G[w → XG(w′ ∧ proc(w) = proc(w′
)→ index(w′

) > index(w))] (4.13)

G[⟨q,w⟩ ∧ (proc(w) ≠ q)→ w] (4.14)

G (⟨(w,x, v, p, i)⟩→ [¬⟨p, (w,x, v′, p′, i′)⟩ U (w,x, v, p, i)]) (4.15)

In detail, writes may only hit the memory once and only in the order they
were issued before, furthermore only one write may leave the buffers at a time
(4.13). A write may only be observed by another process at the time it hits
the memory (4.14). Last, a write will eventually leave the store buffer and
until then the process may not observe other processes’ writes to that location
(4.15).

Further work might investigate if a specification for TSO actually requires
the additional set of events. If that is the case then it may be of interest why
defining TSO requires more effort than other models.

4.4.6. Sequential consistency (SC)

Sequential consistency (SC) as introduced in Definition 2.7 defines a behavior
that may occur if programs are executed on a single processor. It requires all
processes to agree upon a single sequential total ordering of all write opera-
tions. The first required property (Totality) can be expressed as:

G[⟨w⟩→ (F⟨q,w⟩)] (4.16)

That means, whenever a write event occurs, then each process has to observe
that write operation some time in the future. The other property to ensure a
unique sequential representation is as follows:

[F(⟨p,w1⟩ ∧ F⟨p,w2⟩)]→ [F(⟨q,w1⟩ ∧ F⟨q,w2⟩)] (4.17)

This implies that if one process observes two writes in a specific order, then
all other processes have to observe these two writes in the same order.
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4.5. Property Verification

Given a multithreaded environment, a safety property is an assertion that
should hold in all reachable states. For example, multithreaded programs
often come along with code parts that require mutually exclusive access to
some variables to achieve the correct behavior, i.e., they contain a critical
section. Mutual exclusion can be expressed as a safety property for example
by having each process increase and decrease the same variable by 1 in their
critical section. If that variable is ever 2 or bigger then the mutual exclusion
was violated. An example with the given constraints is Peterson’s mutual
exclusion protocol [Pete81] shown in Figure 4.1.

The reachable states depend on the input program as well as the mem-
ory system. The properties defined in the previous section allow to abstract
from the actual memory system implementation and directly use the memory
specification for verification.

Given a representation of a multithreaded program that uses a distinct set
of variables to indicate a memory event corresponding to a memory operation
as defined in Definition 2.1. Then the verification works as follows. The
program yields a set of traces covering every possible interleaving of processes
and memory reads retrieving every possible combination of values. Now, the
LTL specification limits the verification of the safety property to traces which
have a valid execution for the considered memory model. Last, the safety
property is checked for all states of this subset of traces.

This can be written as follows:

(Process modules) ⊧ (Memory Specification)→ (Safety Property)

Multithreaded programs can be implemented as parallel modules in SMV
[CCGR99] and the properties can be expressed in LTL. This allows to uti-
lize different LTL model checking tools that use the SMV input language for
verification.

4.6. Experiments

Following the before mentioned approach, safety properties can be verified
with tools like NuSMV [CCGR99] or NuXMV [CCDG14]. These tools use
either an BDD approach for verification or search for counterexamples using
a SAT-based BMC approach. To this end, the environment and specifica-
tions described in the previous section have been implemented in the SMV
[CCGR99] input language (Example in Appendix B). For the process abstrac-
tion, the environment follows an assembler representation of the processes or
uses specific designed test cases. Because SMV does not allow for any form
of quantification a preprocessor that supports file inclusion and quantification
has been developed. Some of the experiments are included in the appendix
but only in their simplified form as their unrolled form is too lengthy to be
included in here.
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In the following, several algorithms are described and analyzed for their
minimal required memory models. The considered algorithms are the well-
known mutual exclusion algorithm due to Peterson, followed by a chained
computation scenario, and closing with a simple consumer-producer algorithm.

4.6.1. Peterson’s Mutual Exclusion Algorithm

First, Peterson’s mutual exclusion algorithm (see Figure 4.1) will be shown to
work as expected with SC, but fail with weaker consistency models.

Procedure p

1 x = 1;
2 t = 0;
3 while y=1 & t=0 do ;
// Begin Critical Section

4 d = d + 1;
5 d = d - 1;
// End Critical Section

6 x = 0;

Procedure q

1 y = 1;
2 t = 1;
3 while x=1 & t=1 do ;
// Begin Critical Section

4 d = d + 1;
5 d = d - 1;
// End Critical Section

6 y = 0;

Figure 4.1.: Peterson mutual exclusion protocol [Pete81] in pseudo code. Both
processes p and q set their flag to express their intention to enter the
critical section. In case of a tie, the turn variable t is used to determine
which process is allowed to go first.

Peterson’s mutual exclusion algorithm works as follows: Whenever a process
wants to enter the critical section, it sets its own flag, either x or y. Then, it
sets the turn variable t to either 0 or 1 respectively. Afterwards, the algorithm
checks whether the other process indicated a critical section request with its
flag, too. If so, depending on the state of the turn variable, it will either idle
as long as the others process flag holds, or it proceeds to the critical section.
After a process finished its critical operations, it resets its flag to signal the
other process that it is safe to progress. In the example provided, the critical
section contains operations to increment and then decrement a data variable
d. Following the mutual exclusive execution of the critical sections the value
of the data variable d should always be either 0 or 1.

To examine the memory behavior of that algorithm, it has to be translated in
a representation which reveals the individual load-store instructions as shown
in Figure 4.2. The representation uses memory locations already present in
the high-level implementation (see Figure 4.1): x, y, t, and d. Consider the
non-atomic instructions d = d + 1 and d = d − 1. Assuming the initial value of
d is 0, then d should only alternate between 0 and 1 and after both processes
are finished we expect it to be 0. But if the reading and writing part of the
instructions are interleaved, d may have more intermediate values −1,0,1,2
and either −1, 0, or −1 in the end. Therefore, the instructions can be used
to model a critical section, as they add unexpected observable behavior if the
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mutual exclusion is not ensured. In this case, we would like to verify that the
location d is 0 or 1 at all times.

1 write(x, 1)

2 write(t, 0)

3 reg = read(y)

4 if (reg=0) then goto 7

5 reg = read(t)

6 if (reg=0) then goto 3

7 reg = read(d)

8 write(d, reg + 1)

9 reg = read(d)

10 write(d, reg - 1)

11 write(x, 0)

12 goto 12

1 write(y, 1)

2 write(t, 1)

3 reg = read(x)

4 if (reg=0) then goto 7

5 reg = read(t)

6 if (reg=1) then goto 3

7 reg = read(d)

8 write(d, reg + 1)

9 reg = read(d)

10 write(d, reg - 1)

11 write(y, 0)

12 goto 12

Figure 4.2.: Peterson’s mutual exclusion algorithm in assembler for two processes.
The register reg is used for storing the loaded value locally.

To verify the safety property, the instructions depicted in Figure 4.2 are
modelled on two processor modules in the SMV input language (Appendix B.2).
Then, an LTL specification which reads (MemorySpecification) → (G (d =
0∨ d = 1))) is added. Whenever a path of the state transition system satisfies
the specification of the memory model, then the safety property has to be
checked, i.e., in those cases it is asserted that it will never be the case that d
is a value different from 0 or 1. Using NuSMV, the safety property has been
shown to be valid for SC, and to be invalid for the other models described in
this section: LOCAL, SLOW, CC, PRAM, and TSO consistency by providing
counterexamples.

4.6.2. Chained Computation

Another scenario analyzed covers the concept of a chained computation: One
process computes a value, another uses that value, and a third collects both
the intermediate and the final values. This is depicted in Figure 4.3: Process
P writes some intermediate value to dataP , signals its availability by setting
flag to 1. Afterwards, process Q can read that value, calculate some final
value, write the result to dataQ and signal its completion by setting flag to
2. Last, process R may read both values and do some postprocessing.

SC in mind, process R is expected to receive the correct final value and
the corresponding intermediate value. Relaxing the memory consistency may
result in process R reading wrong values for the intermediate or final result or
both, even though flag = 2 was read. Analogously to the first algorithm, us-
ing a suitable low-level representation and defining a correctness property like
(MemorySpecification) → (G ((done = 1) → (v1 = vP ∧ v2 = vQ))), the algo-
rithm was shown to work as expected for SC using NuSMV. While counterex-
amples could be found for PRAM, and CC, the results showed that CAUSAL is
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int flag, dataP, dataQ, done = 0;

Procedure p

1 int local;
// Calc:

local

2 dataP = local;
3 flag = 1;

Procedure q

1 int local;
2 while f !=1 do

;
3 local = dataP;
// Calc:

local

4 dataQ = local;
5 flag = 2;

Procedure r

1 int v1,v2;
2 int local;
3 while f !=2 do ;
4 v1 = dataP;
5 v2 = dataQ;
// Postprocessing

6 done = 1;

Figure 4.3.: A chained computation scenario in assembler code. Process p produces
a value that is read by process q. Then, process q will store an updated
value to another location. Finally, process r reads both locations.

sufficient to ensure the specified correctness property. This shows that a more
efficient, but weakly consistent memory system can be used for this algorithm
without compromising the expected behavior.

4.6.3. Producer Consumer

The last algorithm analyzed is a simple producer-consumer algorithm as seen
in Figure 4.4. Producer p writes one data value and then waits until it has
been read by consumer c. p signals the availability of data by setting variable
ready to 1 and c signals that it has read the value by setting ready to 0 again.

int data, ready, done = 0;

Procedure p

1 for i=0..N-1 do
2 data = i;
3 ready = 1;
4 while ready do ;

5 end

Procedure c

1 int[] result[N];
2 for i=0..N-1 do
3 while !ready do ;
4 local[i] = data;
5 ready = 0;

6 end
7 done = 1;

Figure 4.4.: Producer-Consumer Algorithm in pseudo code. The producer p sets
ready to signal data availability, and consumer q resets the value to
indicate that it retrieved the value.

Clearly, the depicted producer-consumer algorithm works as expected for
SC: Whenever c observes ready to be 1, the corresponding write to data is
visible to c, too. Therefore, there is only a single possible outcome for the
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values of the result registers in a sequentially consistent environment.

Just like the scenario mentioned before, it was proven that the correctness
property (MemorySpecification) → (G ((done = 1) → ⋀N−1

i=0 (result[i] = i)))
does not hold for LOCAL, SLOW and CC, but in fact holds for SC as expected
but more interesting for PRAM as well. Following that, costly synchronization
may be saved for producer-consumer algorithms in distributed scenarios (as
PRAM is a distributed concept).

Closing remark

Note that in these examples, it is quite easy to determine a suitable depth
as both processes terminate after a predetermined number of steps. This
approach can be used for repetitive programs as well, but suitable bounds
have to be determined based on the number of steps required to cover all
relevant behavior.

Verifying against multiple models is as easy as replacing the LTL specifica-
tion. Neither the processor representation nor the property description have
to be changed.

Using the described technique, more small litmus-test-alike examples have
been verified to hold for different memory models and fail for weaker mod-
els. Concluding, the mentioned technique allows to determine the minimal
required consistency guarantees - and consistency models - to ensure that a
given property holds for the analyzed examples.

4.7. Results and Future Work

This chapter introduced a novel approach to specify weak memory systems
using temporal logic. Using temporal logic allowed to describe the behavior of
different memory consistency models, i.e., restricting the allowed read results
in correspondence to the history of issued memory write operations. This itself
is already a useful result, as it offers a new perspective and makes the topic
more accessible for programmers already familiar with property specifications
in LTL. Model checking can directly use the resulting LTL specifications, so
that established tools can be used to verify multithreaded programs. Moreover,
the approach allows to easily determine the weakest consistency requirements
a program needs to satisfy a given property.

However, the approach suffers from the state explosion problem as weak con-
sistency considers all possible write events and therefore has to quantify over
time, processes, variables, and all possible values. Verification with NuSMV’s
BDD model checking of non-trivial examples like Peterson’s mutual exclusion
introduced in Figure 4.1 already require several Gigabyte of memory to fin-
ish. Using NuSMV’s BMC with reasonable bounds allows to inspect more
examples, but inevitable the tool will run out of memory for more complex
examples as well.

Some effort was spend to express the specifications using computational tree
logic (CTL) in order to utilize different tools and techniques that might be less
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expensive in space, but to no avail. For some of the properties, the unsuccessful
attempts were concluded with a reasonably confident conclusion that they are
not expressible in CTL at all. While there are more expressive logics used in
specification like CTL∗ or µ-Calculus, they get harder to grasp and therefore
the initial benefit of using LTL as a comprehensible representation is lost.

In the future, more models could be described using temporal logics. Fur-
thermore, finding better representations would be of interest, especially for
a possibility to get rid of the write index. In this context, it may be possi-
ble to reuse already computed information like the reachable states for model
checking when only the memory model is changed. Moreover, the relation-
ship between different models could be verified using our representations (e.g.,
that SC implies PRAM). Finally, as the proposed verification approach has
to build the full state space before it restricts it to valid executions using the
LTL specification, there might exist another approach that directly uses the
specification to build the state space and thereby requires less memory.
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This section contains an operational ‘architectural’ characterizations of most
introduced weak memory models. To this end, reference machines for each
one of these memory models are provided. A reference machine is an abstract
memory architecture with a well-defined load/store interface that is build in a
modern system-level language. In addition to the architectural composition,
the correctness and completeness of these machines are discussed. This means
that the reference machines can only execute computations that belong to
the considered memory model (correctness), and that the reference machine
can execute all computations that belong to the considered memory model
(completeness).

In order to discuss these reference machines, some common basic compo-
nents are introduced in the next section. Then, the reference machines are
presented and their correctness and completeness are briefly discussed. Fi-
nally, further details on the actual implementation in the synchronous lan-
guage Quartz [Schn09] are given.
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5.1. Basic Components

This section introduces some basic components that are used by most of the
reference machines that will be shown later. Of course, there exist plenty of
different components that might be more suitable for the implementation of
specific memory models. To ease comparability, the reference machines use as
few different structural elements as possible.

FIFO

The FIFO component is a first-in-first-out buffer which buffers memory op-
erations as tuples. It holds the operation type (read or write), the issuing
process’ id, the memory address, and in case of a write operation the value to
be written. The component’s interface is defined as follows:

module FIFO (
event ?pop,
event ?push,
event !isempty,
event isfull ,
// input : writeCommand & target & value
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) ?inp,
// output : writeCommand & target & value
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) !outp

)

The outputs isempty and isfull signal the current state of the buffer. Both
data channels inp and outp consist of a valid flag, the id of the originating
processor, the memory location to write to and the actual value to write.
Adding an entry to the buffer is handled by input signal push while providing
the data to inp. Similarly, removing the first entry of the buffer is handled by
input signal pop and reading data from outp.

A Quartz implementation is shown in Listing C.1.1. There exists a slightly
different version that extends entries by one additional clock value and another
version that extends entries by N clocks, one for each process. A clock value is
a natural number that expresses observation progress. The additional versions
can be found in Listings C.1.2 and C.1.3.

BAG

The BAG component shares the same interface as the FIFO component but
slightly differs in its semantics: While the FIFO component will always return
and remove the oldest entry when signal pop is set, the BAG component may
non-deterministically return and remove any stored entry.

MEM

The memory unit MEM stores the latest write to a location and in case of a
read operations returns the most recently written value of a location. It may
contain values for several or just a single location and distributes read values
to the corresponding components.
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Distributor

A distributor DIST is responsible for distributing memory operations to a
selection of the connected components. Depending on the model it may just
route the operation or duplicate it to several destinations.

Receiver

Similarly, a receiver REC receives read results from multiple components and
delivers them to the corresponding process. Both DIST and REC are actually
more routing structures than active components.

Arbiter

The arbiter is one of the characterizing components of a memory model. It de-
termines the order in which memory operations are passed from the connected
components based on the model.

Each step, the arbiter either selects a component to deliver an operation if
it is not empty, or chooses to idle. While this behaviour is not desirable from
a performance point of view, it is required to achieve completeness results.
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Figure 5.1.: Reference Machine for Sequential consistency.
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5.2. Reference Machines

In this sections, the reference machines for most introduced consistency mod-
els are presented. To that end, the architecture of the reference machine is
described using the above mentioned basic components. After this, the correct-
ness and completeness of the given reference machine is discussed briefly, where
correctness means that all computations of our reference machine belong to
the considered weak memory consistency model, and conversely, completeness
means that our reference machine can simulate all possible executions of the
considered weak memory consistency model. Hence, the reference machines
exactly characterize the weak memory consistency model in an operational/ar-
chitectural manner.

5.2.1. Sequential consistency (SC)

Architecture: Figure 5.1 shows an implementation of a reference machine
for SC. It consists of a FIFO buffer for each connected process, which is
directly connected to their process interface, an arbiter which selects non-
deterministically from all FIFOs and passes the operations to the memory
unit or otherwise idles. The memory unit passes processed reads to the pro-
cess that issued the read operation.

Correctness: Using FIFO buffers ensures by construction that the read and
write operations of each process are kept in order (maintaining <P ). The
arbiter generates a serialization of all memory operations while maintaining
the program order and therefore satisfies sequential consistency.

Completeness: If an arbitrary execution is sequentially consistent, then a
serial view exists for all memory operations which respects <P . If the arbiter
uses this view to make its non-deterministic choices, then the resulting behav-
ior is equivalent to the considered execution. Consequently, all sequentially
consistent executions are covered by the given reference machine.
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Figure 5.2.: Reference Machine for Processor consistency.
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5.2.2. Processor consistency (Goodman) (PC-G)

Architecture: The structure of the PC-G reference machine is shown in Fig-
ure 5.2 for a given set P of n processes. For each process Pi ∈ P, the memory
system has M FIFO buffers FIFOi,x, one for each memory cell x, an arbiter
Arbiteri and a memory unit Memi. The system has an additional arbiter
which non-deterministically takes memory commands from the processes and
inserts them into the corresponding FIFOs. Reads from process i to memory
cell x are inserted into the process’ FIFOi,x only, writes to memory cell x
are inserted into all FIFOi,x, i ∈ P . The main arbiter keeps a clock vector
ti ∈ Nn, i ∈ P and tags each write from process i with a tuple (i, ti) and in-
creases ti after distributing the write. The processes’ arbiters Arbiteri keep
each a clock vector ti,j ∈ Nn, i, j ∈ P , too. They select non-deterministically
one of the FIFOs to read from but only pop an element from the selected
FIFO if its tag’s clock is the next element to be processed for that process:
clock((k, t)) = ti,k + 1

Correctness: The order in which the main arbiter passes commands to its
corresponding FIFOs cells corresponds to a total order <v on all memory com-
mands regarding this memory address. All of a process’ write operations are
tagged with a steadily increasing counter. As this counter reflects their or-
der in <P and the operations are only passed to the memory units in that
particular order, the <P is maintained. Therefore, the processes’ arbiters con-
struct each a serial view on all read operations of their corresponding process
and all processes’ write operations which respects <P and ⋃v∈V <v and as a
consequence the executions of the reference machine are PC-G.

Completeness: Consider a PC-G consistent execution (by Definition 2.8):

∀v∈V∃<v ∶ <v= SerialV iew (<P ∣ (∗, v,∗,∗,∗)T )
∧ ∀p∈P∃<sv ∶ <sv= SerialV iew ((∪v∈V <v)⋃ <P ∣ (∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗))

If the main arbiter uses the orders <v as selection criteria (it only selects
an operation if its predecessor in <v has already been passed to the FIFOs
before) then the FIFOs maintain <v. As the processes’ arbiters use an op-
erations’ tag as selection criteria they maintain <P by the way the tags are
generated. Hence, the execution is covered by the machine. The assumption
must be incorrect.
Therefore, every PC-G consistent execution is covered by the reference ma-
chine.
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Figure 5.3.: Reference Machine for Causal consistency.

5.2.3. Causal consistency (CAUSAL)

CAUSAL requires the reference machine to keep track of causal dependencies
created by writes following reads. This tracking is achieved by introducing
clocks which represents the progress a process already observed from other
processes.

Architecture: The structure of the CAUSAL reference machine is shown
in Figure 5.3 for a given set P of n processes. It is based on the ‘Simple
Algorithm’ described by Ahamad et. al [ABHN91]. For each process Pi ∈ P,
the memory system has an arbiter Arbiti, a memory unit Memi and n − 1
FIFO buffers FIFOi,j , j ∈ {1 . . .m}, i /= j. The arbiters hold a clock vector
ti ∈ Nn which is used to determine the execution order of received writes and
is appended to the writes sent to other processes. Before ‘sending’ writes to
the other processes, the arbiter increases the clock vector’s value of the entry
corresponding to its process ti[i]. Upon ‘retrieving’ a write from another
process, the arbiter updates the clock vector’s value of the entry corresponding
to the sending process ti[j]. A write is only retrieved from FIFOi,j if its clock
is lower or equal than the arbiters clock with the writes clock entry replaced:
tw[k] ≤ ti[k], k /= j
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Correctness: The order in which the operations are passed to a process mem-
ory unit provides a serial view on all writes and the process’ own reads.

Assume that an execution produced by the machine is not causal correct.
Then, the given serial view must violate either <P or <wrw. As the arbiter
forwards a process’ own operations in-order to its memory location, the serial
view clearly respects <i. The others processes’ writes are inserted in-order into
FIFOs and passed to the memory unit in-order from the FIFOs. Therefore,
the serial view respects <P as well. If the serial view violates <wrw, then there
exists a write w1 which writes to a read r local ordered before another write
w2 with the serial view ordering w2 before w1. If process Pi’s w1 was read
by the process Pj before it issues w2 then Pj increased its clock value tj[i]
and w2 was sent with a clock vector which contained the new value. Another
process Pk can only read w2 if its clock vector value is greater or equal to the
value w2 was tagged with: tk[i] ≥ tj[i]. On the one hand, only writes received
from Pi can increase tk[i] and writes are tagged with increasing clock values
regarding local order. And on the other hand, writes appear in local order in
the serial view as shown before. Then, <wrw could not have been violated. ☇
Therefore, the assumption must be incorrect and all executions are CAUSAL.

Completeness: Assuming there exists a CAUSAL execution
(P,V,O,<P ,↦) which cannot be covered by the machine. As the execution is
CAUSAL the following holds (by Definition 2.10):
∀p∈P∃<sv ∶ <sv= SerialV iew (≺p ∪ <P ∪ <wrw∣(∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T )
If each arbiter uses the serial view of its memory location (which exists accord-
ing to the definition) as selection order, then the resulting writes-to order ↦ is
the same as the one of the assumed execution. It remains to show that the se-
lection order is a valid one. Since the arbiter may choose non-deterministically,
the only restriction is its clock vector. If it is not a valid selection order for
process i then the operation to select next would need to be a write from
another process as all own operations may be selected without checking the
clock vector. Without loss of generality, we may say that this operation is a
write from process j called w1. The write w1 would need to have a non native
clock value which is greater than process i’s corresponding clock vector value:
tw1[k] > ti[k], k /= j. As clock vector values are only increased if a write is
performed, that would imply that process j observed a write w2 from process
k before issuing w1 and that process i did not observe w2 before w1. But that
would contradict <wrw and therefore the assumption must be incorrect. ☇
Therefore, every CAUSAL execution is covered by the reference machine.

Alternative implementation The presented machine could be modified to
write new clock values to a temporary clock vector instead of updating clock
values directly and to update corresponding clock values with their temporary
counterpart when a location is read. However, this modification might allow
the retrieval of some writes that would not have been retrieved in the former
machine.
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Figure 5.4.: Reference Machine for Pipelined RAM consistency.
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5.2.4. Pipelined RAM consistency (PRAM)

As can be seen in Figure 5.4, the reference machine for PRAM provides a
single memory for every process. Intuitively, this structure reflects a memory
model that is more likely found in distributed computing.

Architecture: The implementation of the reference machine for PRAM con-
sistency is shown in Figure 5.4 for a given set P of n processes. For each pro-
cess Pi ∈ P, the memory system has a distributor Disti, an arbiter Arbiteri,
a memory unit Memi, and n different buffers FIFOi,j for j ∈ {1, . . . , n}. A
distributor Disti broadcasts received writes to all corresponding FIFOi,j for
j ∈ {1, . . . , n}, and sends all received reads to its FIFOi,i. The arbiters choose
non-deterministically from the connected FIFOs.

Correctness: Using FIFO buffers ensures by construction that the read and
write operations of each process are kept in order (maintaining <P ). The
arbiter takes elements from the top of a FIFO buffer and issues the operation
to the memory unit. Therefore, the arbiter constructs a serial view on write
operations of all processes and the read operations of its corresponding process.

Completeness: Consider an arbitrary PRAM execution. If each arbiter se-
lects its actions according to the execution’s serial view corresponding to its
process, then the resulting writes-to order ↦ is the same as the one of the
assumed execution. Hence, as no writes are lost and an arbiter can always
wait until the required value is available, every PRAM consistent execution is
covered by the reference machine.
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Figure 5.5.: Reference Machine for Cache consistency.
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5.2.5. Cache consistency (CC)

Architecture: The implementation of the reference machine for CC is shown
in Figure 5.5 for a given set P of n processes. For each process Pi ∈ P ,
the memory system has a distributor Disti, a receiver Reci, and m different
FIFO buffers FIFOi,j for j ∈ {1, . . . ,m}. For each memory cell Mj , the
memory system provides a memory unit Memj and an arbiter Arbiterj . A
distributor Disti passes the received memory command for memory cell Mj to
the corresponding FIFOi,j . The arbiters choose non-deterministically from
the connected FIFOs to read from. The memory unit returns the result of a
read operation to the receiver Reci of process Pi. The receiver Reci receives
reads for its process and returns them to the process’ data interface.

Correctness: The use of FIFO buffers ensures by construction that the read
and write operations regarding a specific memory location of each process are
kept in order (maintains <P per variable). Therefore, each arbiter Arbiterj
constructs a serial view on all read and write operations regarding its memory
location j.

Completeness: Consider now an arbitrary CC execution. If each arbiter
selects its action according to the executions’ serial view corresponding to its
memory location, then the resulting writes-to order ↦ is the same as the one
of the assumed execution. As no memory operations are lost, and the serial
views adhere to the local order, it cannot be the case that the next required
value is stuck behind another value in one of the FIFOs. Therefore, each
arbiter can idle until eventually the next required operation will be available
at the head of one of the connected FIFOs.
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Figure 5.6.: Reference Machine for Slow consistency.
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5.2.6. Slow consistency (SLOW)

Architecture: The structure of the SLOW reference machine is shown in
Figure 5.6 for a given set P of n processes and m memory locations. For each
process Pi ∈ P, the memory system has a distributor Disti and n different
distributors Disti,j , j ∈ {1 . . . n}, an arbiter Arbiteri, a memory unit Memi

and n × m different FIFO buffers FIFOi,j,k, j ∈ {1 . . . n}, k ∈ {1 . . .m}. A
distributor Disti broadcasts received writes to all corresponding distributors
Distj,i, j ∈ {1 . . . n}, and sends all received reads to the distributor Disti,i.
A sub-distributor Disti,j broadcasts received memory commands for memory
cell k to the corresponding FIFO buffer FIFOi,j,k. The arbiters choose non-
deterministically to read from one of the connected FIFOs.

Correctness The distributor fills the FIFOs in the order of the incoming
memory operations. Usage of FIFO buffers ensures by construction that the
read and write operations of each process are kept in order for each mem-
ory location (maintains <P ∣(∗, v,∗, p,∗)T ∪ (w, v,∗,∗,∗)T ). The arbiter takes
elements from the top of a FIFO buffer and issues the operation to the mem-
ory unit. Therefore, the memory unit has a serial view on all processes’
write operations and the read operations of its corresponding process, and
because this property holds for each memory unit, the execution, consisting
of (P,V,O,<P ,↦), is SLOW according to Definition 2.13.

Completeness Given a SLOW execution (by Definition 2.13):
∀p∈P∀v∈V∃<sv ∶ <sv= SerialV iew (<P ∣ (∗, v,∗, p,∗)T ∪ (w, v,∗,∗,∗)T )
By definition serial views exists for each process. Each arbiter can use the se-
rial view of its process as selection order (as it chooses non-deterministically).
Then, the resulting writes-to order ↦ is the same as the one of the assumed
execution. Therefore, every slowly consistent execution is covered by the ref-
erence machine.
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Figure 5.7.: Reference Machine for Local consistency.
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5.2.7. Local consistency (LOCAL)

Architecture: The implementation of the reference machine for LOCAL is
shown in Figure 5.7 for a given set P of n processes and m memory locations.
For each process Pi ∈ P, the memory system has a distributor Disti, an arbiter
Arbiteri, a memory unit Memi, a FIFO buffer FIFOi, and n−1 different BAG
structures BAGi,j with j ∈ {1, . . . , n}, j ≠ i. A distributor Disti broadcasts
received writes to its FIFOi, and all corresponding BAGj,i, j ∈ {1, . . . , n}, j ≠
i, and sends all received reads to its FIFOi. The arbiters non-deterministically
decide to idle or to non-deterministically read an operation from the connected
FIFO and BAG structures. Any operation that is read from the selected FIFO
or BAG is forwarded to the memory unit.

Correctness: By construction, a process’ own memory operations are kept in
order in the FIFO maintaining local order <p. The arbiters generate a serial
view covering all own ordered operations and all others’ write operations.

Completeness: Given an arbitrary LOCAL execution. According to its def-
inition, a serial view exists for each process. Now, the arbiter can choose to
read from the BAG/FIFO structures as the order of the serial view suggests,
or to idle as long as the next required value is not yet available. The given
architecture allows to wait until the required values are available and therefore
covers the required behavior.
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Figure 5.8.: Reference Machine for Total store ordering.
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5.2.8. Total store ordering (TSO)

Architecture: The structure shown in Figure 5.8 illustrates the reference
machine for TSO. The reference machine consists of a store buffer SBi for each
connected process, an arbiter and a memory unit. The store buffers receive
operations from the processes and return read results back to them. The
arbiter selects non-deterministically between the store buffers and writes the
next buffered value back to the main memory unit. If the store buffer wants to
issue a read, the read may (chosen non-deterministically) be processed before
the next store buffer entry.

Correctness: The reference machine is constructed analogously to the ‘TSO
Model of Memory’ structure as shown in [Spar92, Appendix H]. Therefore,
correctness by construction follows.

Completeness: A TSO consistent execution is characterized by a sequence
of different events: Either a write is put into the buffer, a write is moved from
the head of the buffer to the memory, or a read operation is processed (see
Section 2.3.8). As the arbiter can choose non-deterministically to either write
back the head of one of the buffers or process a pending read, all execution
sequences can be modelled.
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Figure 5.9.: Reference Machine for Partial store ordering.
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5.2.9. Partial store ordering (PSO)

Architecture: Figure 5.9 illustrates the reference machine for PSO consis-
tency. The reference machine consists of M store buffers SBi,j , one for each
memory location, and one distributor for each connected process, an arbiter,
and a memory unit. The distributors pass the memory operations to the cor-
responding store buffer. The arbiter selects non-deterministically between the
store buffers and writes the next buffered value back to the main memory unit.
If the store buffer wants to issue a read, the read may non-deterministically
be processed before the next store buffer entry.

Correctness: The reference machine is constructed analogously to the ‘PSO
Model of Memory’ structure as shown in [Spar92, Appendix H]. Therefore,
correctness by construction follows.

Completeness: A PSO consistent execution is characterized by a sequence
of different events: Either a write is put into the buffer, a write is moved from
the head of the buffer to the memory, or a read operation is processed (see
Section 2.3.9). As the arbiter can choose non-deterministically to either write
back the head of one of the buffers or process a pending read, all execution
sequences can be modelled.
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5.3. Implementation

All discussed reference machines have been implemented in the synchronous
programming language Quartz [Schn09]. The full implementations can be
found in the Appendix C and were first published in [Senf13].

The implementations of the reference machines have been tested for cor-
rectness with programs like Dekker’s mutual exclusion protocol and programs
based on memory model litmus test suites.

While the introduced reference machines require unbounded buffers and true
non-determinism to guarantee the completeness of the memory model, their
implementations in a system description language like Quartz have to specify
bounds for such structures. Clearly, since the required buffer sizes can be
determined for each finite execution, it is still possible to ensure completeness.
For simulation purposes, one can resort to randomizing the non-deterministic
choices, and for verification or coverage checking, those have to be handled by
oracle inputs which are controlled by the underlying tools.

5.4. Results and Future Work

This chapter presented reference machines to characterize weak memory con-
sistency models in an operational manner. The reference machines have been
implemented in the synchronous language Quartz in order to precisely deter-
mine their behaviors by the formal semantics of Quartz. All reference machines
were implemented by means of some basic components that clearly reflect the
intention of the considered memory model. The resulting reference machines
are useful for simulation and verification, and can serve as a comprehensive
specification that can be used as a programming model.

The correctness and completeness of our reference machines have been
shown, i.e., that the reference machines can only perform computations that
belong to the weak memory model (correctness), and that all possible compu-
tations of the memory model can also be performed by the reference machines
(completeness). Hence, the reference machines characterize the memory mod-
els in an operational manner.

As stated before, the provided implementations aimed to be both correct
and complete following the corresponding definitions. As a result, their struc-
ture is more complex than a real implementation would be, including both
unboundedness and non-determinism which are impossible in real implemen-
tations. Real processor implementation will lack non-determinism but rather
have an internal obscure selection procedure.

In future work “reference” machines that are closer to real implementations
should be investigated. In fact, a supervised thesis of one of our students
started to develop such machines, that are still correct but not necessarily
complete anymore.
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This thesis observes the behavior of programs developed for sequential ma-
chines on weak memory models. Therefore, the memory models are all an-
alyzed and defined without synchronization operations. But, most multicore
processors offer synchronization operations for enforcing a desired behavior if
needed. Hence, it might be of interest to also include synchronization opera-
tions like fences in the proposed architectures.
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Another approach for verification is exhaustive simulation or where not
applicable bounded model checking. A simulation approach requires a well
defined state transition system which covers the semantics of a programming
language as well as the properties of the memory model. To this end, the
semantics of a small programming language MiniC and the weak memory
transition rules for memory are provided as structural operational semantics
(SOS). In order to cover several memory models at once, the state and espe-
cially the memory state are designed in a way that allows to express different
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restrictions. The state transition system for distinct weak memory models
will then only differ in the rules of the SOS that relate to memory operations.
Next, the minimalistic programming language MiniC is introduced.

6.1. MiniC Programming Language

MiniC is a minimalistic programming language developed in our research
group and used in education and research [BhSS15]. It is close to C-like
languages, but sticks to a small number of instructions and data types. MiniC
as used in this thesis features a reasonable complete instruction set, that ex-
cludes all sorts of redundant instructions. Undeniably, the familiarity with
the language was one of the reasons to chose it over most other known min-
imalistic languages. But another reason is the required detailed knowledge
of languages semantics and compiler decisions regarding memory operations.
For example, while a language could ask a value to only be loaded once for an
expression, the processor architecture might not have enough registers to hold
all required values and therefore has to deviate in its behavior. Furthermore,
the evaluation order of an expression is important as well, e.g., if a Boolean
conjunction & expression first evaluates both operands or only one operand
before handling the operator.

6.1.1. Syntax

PROGRAM ∶= [DECL+] THREAD+

THREAD ∶= thread ID { DECL∗ STMT }
STMT ∶= STMT STMT ∣ nothing; ∣ ID = EXPR;

∣ if(EXPR) {STMT} ∣ if(EXPR) {STMT} else {STMT}
∣ while(EXPR) {STMT}

EXPR ∶= ID ∣ VAL ∣ !EXPR ∣ abs(EXPR)
∣ EXPR{==,!=,<,>,>=,<=}EXPR
∣ EXPR{&,|,^,->,<->}EXPR
∣ EXPR{+,-,*,/,%}EXPR

DECL ∶= TYPE ID
TYPE ∶= bool ∣ int

ID ∶= {A, . . . ,Z,a, . . . ,z, }+

VAL ∶= true ∣ false ∣ [-]{0, . . . ,9}+

Figure 6.1.: Syntax of the MiniC language. The nonterminals are given on the
left-hand side. On the right-hand side, the square brackets stand for
optionality, the raised plus sign for one or more times, the braces for
choosing one element of many, and the bar for alternatives.
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As can be seen in Figure 6.1, a MiniC program consists of a set of global
variables and several threads. A thread can consist of assignments, conditional
and loop statements. MiniC is considered to only provide two data types:
Boolean and Integer.

6.1.2. Expressions

A MiniC expression is composed of variables, values, and both arithmetic and
Boolean expressions (Figure 6.1).

An expression can only be evaluated after all variables have been read from
memory. This is technically not required for all operators, e.g., in case of a
Boolean conjunction & the evaluation could be finished as soon as one of the
operands can be evaluated to false. However, the MiniC semantics expect all
variables to be evaluated first to get a deterministic number of load operations
for a given expression. Moreover, MiniC semantics require variable instances
to be loaded one by one. This design decision is justified by the insights
that expressions yield several machine code instructions and depending on
the processor architecture and the size of the expression a variable may be
loaded several times. Both insights result in additional possible interleavings
of parallel processes that should be covered by the semantics.

The ‘next’ variable which has to be read in order to evaluate an expression
is expressed by NextVar(Expr). The function will return � if all variables in
that expression have been evaluated, otherwise it returns the leftmost variable
in the expression tree.

Function NextVar(Expr e)

1 switch e do
2 case VAL x do �;
3 case ID i do i;
4 case !e do NextVar(e);
5 case abs(e) do NextVar(e);
6 case e1 ⊙ e2 do
7 if NextV ar(e1) ≠ � then NextVar(e1) else NextVar(e2);

8 end

To express that a variable’s value has been read from memory, we define
a substitution on expressions e∣x

v
that replaces the first occurrence of a given

variable x with the value v. The first occurrence is defined analogously to the
NextVar function as the recursively left-most first instance of that variable.

After all variable instances have been replaced by values, i.e., NextVar(e)=�,
the expression can recursively be evaluated to a value. For this purpose, all
values in Boolean operators are treated as true if they are not equal to zero,
or false otherwise.

When evaluating an expression that has no further variables that need to
be read, function Eval(Expr) is used to determine the resulting value the
expression evaluates to.
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Function Eval(Expr e)

1 switch e do
2 case true do 1;
3 case false do 0;
4 case VAL x do x;
5 case !e do
6 if Eval(e) = 0 then 1 else 0;
7 case abs(e) do
8 if Eval(e) < 0 then -Eval(e) else Eval(e);
9 case e1 ⊙ e2 ∣ ⊙ ∈ {+,−,∗, /,%} do

10 Eval(e1) ⊙ Eval(e2);
11 case e1 ⊙ e2 ∣ ⊙ ∈ {==, ! =,<,>,>=,<=} do
12 if Eval(e1)⊙Eval(e2) then 1 else 0;
13 case e1 ⊙ e2 ∣ ⊙ ∈ {&, ∣,, − >,< − >} do
14 if (Eval(e1) ≠ 0)⊙ (Eval(e2) ≠ 0) then 1 else 0;

15 end

6.2. System State

The state transition system has to describe the semantics of the programming
language as well as the behavior of the memory system depending on the
memory consistency model in terms of state transitions. The proposed system
defines a state as the combination of a statement and the internal variable
state per process as well as a global memory state.

Without loss of generality, it can be assumed that each variable has a unique
name, e.g., by prepending variables with a process specific prefix. The variable
state of all variables can be expressed as one environment function E ∶ ID→ Z
that covers local and global variables. In the initial state, the environment
E returns 0 for all variables, i.e., ∀v∈V E(v) → 0. Following that, a state is
composed of the environment and a statement for each process.

Σ = ⟨E ∣S1, . . . ,Si, . . . ,Sn⟩

In the initial state, the processes’ statements correspond to the full input
program, i.e., the statement part of the particular threads.

In the following, the data structure for the environment is introduced.

6.2.1. Environment: Memory State

The environment E that maps each declared variable to an integer value is
divided in an environment El for local variables and another environment Eg
for global variables. A local variable is exclusive to a single process and as
stated before if multiple processes share the same variable names for local
variables the names can always be made exclusive by prepending them with
a process specific prefix. Therefore, the set of variables V can be split in the
two distinct subsets Vl for local variables and Vg for global variables.
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The local environment El ∶ Vl → Z only stores the last written value and can
be implemented as a simple array (Figure 6.2) as it does not depend on the
memory model.

x y z

3 0 2

Figure 6.2.: Structure: State representation of the local environment as an ar-
ray. Each process will always read its latest write for a local variable.
Therefore, there is no need to store any additional information.

Global variables on the other hand may hold different values for different
processes at a given time. The environment Eg ∶ x, p → Z, that returns a
variable x ∈ Vg current value for a given process p ∈ P, is expected to return
values which are consistent to a given memory model.

Most of the time, a memory system should at least be CC to feasible be
used for multithreaded software. This assumption is based on the fact that
all model that are shown to be convergent, i.e., eventually offer the same view
after idling long enough, are shown to be at least CC consistent [MMSG16].
Therefore, we propose a state representation for global locations that is suit-
able to express different memory models that are at least CC. Figure 6.3 shows
a state representation that maps each location to a queue of written values. An
initial state would return the value zero for each location. Furthermore, the
state representation has pointers for each process that indicate their progress
in the queue. If a process issues a read operation it will return the value at
the position indicated by its pointer.

x: 3 4 8 7

p q,r

y: 0

p,q,r

z: 0 2

p,r q

Figure 6.3.: Structure: State representation of the global environment using queues
and pointers. Processes may not yet observe the same values. There-
fore, a history of values and some additional information may have to
be stored.

In the given example state in Figure 6.3, the current value of x for process p
would be 4 (Eg(x, p) = 4 ), while q and r would read 7 (Eg(x, q) = 7 = Eg(x, r)).
If no more writes to x occur, then the value 3 will not be readable anymore,
while process p may progress to read 8 or 7 in subsequent states.
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6.3. Structural Operational Semantics

In the following, the control flow of MiniC will be outlined. To this end, a set
of SOS rules will be given that define the MiniC semantics.

6.3.1. Parallelism

As explained in the following, it is sufficient to allow only alternating execution
of processes and to not consider true parallel execution.

If processes do not access global variables they can not influence one another,
then it is of no difference if one of them is executed before the other or both
at the same time. In the first case we would get an intermediate state Σa or
Σb followed by the concluding Σab, in the later case only Σab (Figure 6.4).

Σ Σa,b

Σa

Σb

a∣∣b
a

b

b

a

Figure 6.4.: Small step parallel execution without global variables

For global variables, depending on the implementation, a parallel access on
the same location could result in undefined results. MiniC expects the memory
system to order memory operations even if they are executed in parallel. This
means if two values are written to the same location the resulting state should
be the same as if one of the values was written after the other (Figure 6.5).

Σ a∣∣b

Σa

Σb

Σab

Σba

a

b

b

a

Figure 6.5.: Small step parallel execution with global variables

Following that, the resulting states are the same if the memory actions were
executed one after the other. Therefore, only allowing interleaved executions
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does not remove any states from the reachable state space. This allows for
shorter SOS rules, as they can be limited to the effect of one statement at a
time.

6.3.2. Atomic statements

� Nothing: A preceding nothing statement in a sequence statement can
be dropped.

∅
⟨E ∣S1, . . . , nothing; Sa , . . . ,Sn⟩↦ ⟨E ∣S1, . . . , Sa , . . . ,Sn⟩

6.3.3. Control-flow statements

� Sequence: The evaluation of the left part of a sequence is independent
of its right part.

⟨E ∣S1, . . . , Sa , . . . ,Sn⟩↦ ⟨E ′ ∣S1, . . . , Sa’ , . . . ,Sn⟩
⟨E ∣S1, . . . , Sa; Sb , . . . ,Sn⟩↦ ⟨E ′ ∣S1, . . . , Sa’ ; Sb , . . . ,Sn⟩

� If-Then: An If-Then statement can be expressed with an Else part that
contains a Nothing statement.

∅
⟨E ∣S1, . . . , if(c) { S} , . . . ,Sn⟩
↦
⟨E ∣S1, . . . , if(c) { S} else{ nothing; } , . . . ,Sn⟩

� If-Then-Else: An If-Then-Else statement with an evaluated condition
can be reduced to either its Then or Else statement.

c ∈ Z ∧ c ≠ 0

⟨E ∣S1, . . . , if(c) { Sa} else { Sb} , . . . ,Sn⟩
↦
⟨E ∣S1, . . . , Sa , . . . ,Sn⟩

∅
⟨E ∣S1, . . . , if(0) { Sa} else { Sb} , . . . ,Sn⟩
↦
⟨E ∣S1, . . . , Sb , . . . ,Sn⟩

� While: A While statement can be recursively evaluated using If-Then
statements.

∅
⟨E ∣S1, . . . , while(c){ S} , . . . ,Sn⟩
↦
⟨E ∣S1, . . . , if(c){ S; while(c){ S}} , . . . ,Sn⟩
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6.3.4. Expression Evaluation

� If-Then-Else: If the condition of a If-Then-Else statement does not
contain any variables, then it can be evaluated to an Integer value using
the Eval function.

NextVar(e) = �
⟨E ∣S1, . . . , if(e){ Sa} else { Sb} , . . . ,Sn⟩
↦
⟨E ∣S1, . . . , if(Eval(e)){ Sa} else { Sb} , . . . ,Sn⟩

� Assignment: Analogously, if the righthand side of an Assignment
statement does not contain any more variables, then it can be evaluated
to an Integer value using the Eval function.

NextVar(e) = �
⟨E ∣S1, . . . , v=e; , . . . ,Sn⟩↦ ⟨E ∣S1, . . . , v=Eval(e); , . . . ,Sn⟩

6.3.5. Memory Reads

Memory reads only consider the current state as the process pointers always
determine the current view of a processor for each memory location. Also,
they only change a processes state and do not influence the current memory
state. Hence, read operations are independent of the memory model.

With the rules introduced so far, only two situations remain that require to
evaluate an expression and therefore may require a read: Either the evaluation
of the condition of a conditional statement or the right side of an assignment.

If there exists a variable in the expression e of an If-Then-Else or assign-
ment statement, i.e., NextVar(e) ≠ �, then there exists a state transition that
replaces the variable in the expression by the current value of the environment
for the given process E(y, i) = v.

� Reading If-Then-Else condition: The first occurring variable in the
condition of an If-Then-Else statement can be substituted by the envi-
ronment’s current value of that variable for the selected process.

NextVar(e) = v ≠ � ∧ E(v, p) = d ∧ e′ = e∣v
d

⟨E ∣S1, . . . ,Sp ∶ if(e){Sa } else {Sb} , . . . ,Sn⟩
↦
⟨E ∣S1, . . . ,S ′p ∶ if(e’){Sa} else {Sb} , . . . ,Sn⟩

� Reading Assignment expression: Analogously, the first occurring
variable of the righthand side of an Assignment statement can be substi-
tuted by the environment’s current value of that variable for the selected
process.

NextVar(e) = v ≠ � ∧ E(v, p) = d ∧ e′ = e∣v
d

⟨E ∣S1, . . . ,Sp ∶ x = e , . . . ,Sn⟩↦ ⟨E ∣S1, . . . ,S ′p ∶ x = e’ , . . . ,Sn⟩
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6.3.6. Local Memory Update

While the local memory updates are independent of the memory model, the
global memory updates may be different for each memory model.

Let Upd(E , v, d) be the environment E after the value of the local variable
v was replaced by data value d. Then, a write to a local variable can be
expressed with the following rule:

d ∈ Z ∧ v ∈ Vl ∧ E ′ = Upd(E , v, d)
⟨E ∣S1, . . . , v=d; , . . . ,Sn⟩↦ ⟨E ′ ∣S1, . . . , nothing; , . . . ,Sn⟩

6.3.7. Global Memory Update

The global environment however can change due to insertion of a new value in
a queue or by incrementing one of the pointers. To express these transitions
as SOS rules some additional functions are defined as follows.

� Ins(E , v, d, i) depicts the environment E after inserting a new value d at
position i of queue v.

� Len(E , v) is the length of the queue for v.

� Pos(E , p, v) is the current numerical position of process p’s pointer in
the queue of v where the first position has index 0.

� Mov(E , p, v, i) is the environment E after the pointer of p in queue v was
moved to position i.

� MovAll(E , v, i) is the environment E after all pointers of queue v which
are at a position before i were moved to position i.

Each memory model defines restrictions how a write may be inserted in the
corresponding queue. The weakest rules would allow to insert a write at every
possible position and pointers to be moved arbitrarily.

d ∈ Z ∧ v ∈ Vg ∧ 0 < i < Len(E , v) ∧ E ′ = Ins(E , v, d, i)
⟨E ∣S1, . . . , v=d; , . . . ,Sn⟩↦ ⟨E ′ ∣S1, . . . , nothing; , . . . ,Sn⟩

v ∈ Vg ∧ p ∈ P ∧ 0 < c < Len(E , v) ∧ E ′ =Mov(E , p, d, c)
⟨E , (S1, . . . ,Sn)⟩↦ ⟨E ′, (S1, . . . ,Sn)⟩

The only guarantee these rules could provide would be that the only values
that can be read are values that have been written at some time before. Ob-
viously, these rules do not offer any reasonable restrictions and only serve a
exemplary purpose.

Depending on the memory model both the insertion of writes as well as the
movement of the memory pointers may be restricted in several ways.

6.4. Memory Models

In this section, the SOS rules for the global memory update of different memory
models are introduced.
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6.4.1. Sequential consistency (SC)

For SC a write adds a value at the end of the queue and moves all pointers
to the new value. As all processes have the same pointer locations they have
the same view on memory at all time. As the pointers are always at the end
of the queue no environment update rule is required for SC.

d ∈ Z ∧ v ∈ Vg ∧ Len(E , v) = i
∧ E ′ = Ins(MovAll(E , v, i + 1), v, d, i + 1)

⟨E ∣S1, . . . , v=d; , . . . ,Sn⟩↦ ⟨E ′ ∣S1, . . . , nothing; , . . . ,Sn⟩

6.4.2. Cache consistency (CC)

For CC a write adds a value to the queue after its process’ current position
and moves the process’ pointer to the new entry.

d ∈ Z ∧ v ∈ Vg ∧ Pos(E , p, v) + 1 = i
∧ E ′ = Ins(Mov(E , p, v, i), v, d, i)

⟨E ∣S1, . . . , Sp ∶ v=d; , . . . ,Sn⟩↦ ⟨E ′ ∣S1, . . . , Sp ∶ nothing; , . . . ,Sn⟩

A process may observe newer reads to a specific location but never older
ones, i.e., pointers may only be moved forward.

v ∈ Vg ∧ p ∈ P ∧ Pos(E , p, v) + 1 = i < Len(E , v)
∧ E ′ =Mov(E , p, v, i)

⟨E , (S1, . . . ,Sn)⟩↦ ⟨E ′, (S1, . . . ,Sn)⟩

6.4.3. Partial store ordering (PSO)

The environment for PSO consistency allows to insert a write at any following
position in the corresponding queue. The pointer of the writing process will
be set to the new entry.

d ∈ Z ∧ v ∈ Vg ∧ Pos(E , p, v) < i ≤ Len(E , x) + 1
∧ E ′ = Ins(Mov(E , p, v, i), v, d, i)

⟨E ∣S1, . . . , Sp ∶ v=d; , . . . ,Sn⟩↦ ⟨E ′ ∣S1, . . . , Sp ∶ nothing; , . . . ,Sn⟩

Flush: Select a position, move all pointers that are lower than that to that
position.

0 < i < Len(E , v) ∧ E ′ =MovAll(E , v, i)
⟨E , (S1, . . . ,Sn)⟩↦ ⟨E ′, (S1, . . . ,Sn)⟩

The described environment actually models PSO as outlined in the follow-
ing. A PSO execution can be described by two different types of events: a
write event write(p, x, v) that stores the written value in a buffer which is
specific to the given variable and process, and a flush event flush(p, x, v) that

80



6.5. Results and Future Work

takes the oldest value out of one of the buffers and writes the value to memory.
A PSO consistent execution consists of a sequence of such correlating events:
a write will eventually be followed by the corresponding flush.

6.4.4. Other models

Some memory models like PRAM or TSO require to track the order among
memory operations of a single process that affect multiple variables. As the
proposed structure separates all operations by location, it can not be used to
express these memory models as it is.

By enhancing the queue entries with the originating process and either an
increasing write id or a pointer to the previous write these models could be
expressed as well. However, these modifications would be specific to single
models and there already exist representations that are optimized for specific
memory models, e.g., [Cali16] for TSO.

6.5. Results and Future Work

This section introduced a state transition system for programs written in
MiniC that complies with a given weak memory model. The reachable state
space models the set of traces that are valid with respect to a given memory
consistency model.

Consequently, the state transition system can be implemented as a tool
for verification of MiniC programs under weak memory. Depending on the
verification goal, the state space exploration might use state approximation to
reduce the state space.

The state size could be reduced dynamically. In the given representation
the queues will keep old values even though they might never be referenced
any more. In order to save space, an implementation could adapt the repre-
sentation and rules to drop an element if all pointers have moved past it.

The chosen representation was a compromise of structural simplicity and
coverage of memory models. Meaning, there exist representations that require
less memory space, but therefore can only cover specific memory models. For
example, SC can be modelled with a global environment that just stores the
latest value. On the other hand, storing more meta data, e.g., the source of a
write and its issue index, would allow the coverage of more models but increase
both the size of each state as well potentially increasing the state space as well.
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The multitude of weak memory models calls for techniques to uniformly ad-
dress different models for verification of multithreaded programs.

To this end, this thesis introduced a multitude of different paradigms to
express various aspects of weak memory consistency. Each of the introduced
paradigms allows to inspect several memory models. Hence, making it possible
to reflect properties between different models, for example safety properties in
programs that do not hold in weaker models. Each of the proposed approaches
has its own benefits and drawbacks as summarized in Figure 7.1.

coverage simulation state state space

SAT trace no - -
LTL program no min full
OpS program yes full optimized
STS program yes small optimized

Figure 7.1.: Comparison of the introduced modeling approaches.

First, the testing problem, that asks whether a given trace is valid with
respect to a memory model, is analyzed. Besides important complexity results,
an uniform encoding as SAT problem is developed. The encoding directly
reflects the constraints defined by the view-based definition of the memory
models. Due to the similar definitions of the memory models, the encoding is
able to reuse the same encoding principle parameterized for different models.
The resulting SAT encodings have been encoded for and solved with the Z3
SMT solver for some examples. The biggest drawback is the restricted set
of applications. While there exist relevant applications that need to analyze
traces, most applications require an examination of all possible traces that can
not be provided this way.

The second introduced approach uses linear temporal logic to describe the
constraints of a memory consistency model. The constraints are described
in context of memory read and write events as well as auxiliary observation
events. Based on the history of events the LTL specification determines the
result values of read events. The LTL specification is composed of a set of
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LTL formulas where in general stronger models have to incorporate more con-
straints than weaker models. For verification purposes of safety properties,
the program is encoded as several parallel modules that communicate using
a memory interface. Using NuSMV or NuXMV the set of traces is checked
for valid traces for the given memory model that do not satisfy the safety
property. However, the approach does not limit read results to reasonable
values from the start but only checks if they are valid afterwards. Likewise,
every possible write and auxiliary event has to be covered only to be dismissed
by the specification. Therefore, the approach suffers from the state explosion
problem, requiring a huge amount of memory. Only very small examples were
considered in the experiments as larger examples quickly stressed out the test-
ing environment. While the pursued verification approach proved unsuitable,
the encoding of weak memory consistency properties in LTL is a novel concept
that might be suitable for other tools and verification approaches.

While working on the teaching processor architectures of our chair, the idea
emerged to develop operational semantics for weak memories as well. Like
the preceding approach, the processors communicate with the memory sys-
tem using a well defined interface for read and write actions. The memory
systems are composed of common basic components allowing to compare and
compose different memory models. To actually coincide with the definition
of the weak memory models, the corresponding memory systems have to be
both correct and complete. While correctness is simply achieved by restricting
the internals to reflect only valid traces, the completeness requires to capture
every possible trace. On that account, all of its decisions are based on non-
deterministic oracles and all dynamic structures like buffers are considered
unbounded. However, in practice implementations will not offer complete-
ness, but bounds can be chosen adequately for given examples. The resulting
reference machines can be used for simulation and verification purposes either
using randomized values or oracles for the non-deterministic choices.

The only drawback with the operational semantics was that they were im-
plemented on a bit-level close to hardware similar to the related processor
architecture. While this approach is well suited for teaching, most processor
details and bit-level specifics could be abstracted for verification purposes.
Following that, an approach is proposed that is tailored for verification based
on state exploration. The approach consists of a state transition system that
covers the semantics of a minimal C-like language in presence of different weak
memory consistency models. To this end, the semantics of the programming
language is given as a set of SOS rules and a state structure is proposed that
allows to represent different memory models: SC, PSO, and CC. The actual
memory semantics for the different memory models are given as additional
SOS rules that use the state structure to model the observations of the dif-
ferent processes. By now, the proposed state transition system has not been
implemented yet.

84



7.1. Future Works

7.1. Future Works

With newer processor architectures there will be more memory consistency
models making it even more important to understand the subtle differences
on how they influence the expected behavior of multithreaded programs.

There remains work to be done as listed in the following:

� More models should be expressed using the introduced representations.
For example the SPARC and PowerPC memory models as well as the
x86 TSO implementation deserve more work due to their prevalence.

� For verification using the proposed temporal logics representation, there
might be a better approach to check the correctness of a safety property.
The proposed approach constructs the full state space and restricts it
using the specification afterwards. It remains to search if there exists an
approach that could derive legitimate states directly from specification.

� The operational semantics are quite complex due to their aim for com-
pleteness. Some work in the direction of more realistic and therefore
not complete memory system implementations was already started. The
resulting reference machines look promising but comparisons of the dif-
ferent implementations are not yet available.

� The state transition system proposed in the last chapter should be imple-
mented in a suitable programming language. Later, with a first imple-
mentation up and running, approximations based on the memory state
could be considered to decrease the required memory for the state ex-
ploration.
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A.1. Encoding of Tα for Sequential consistency

( dec la re − fun ex ( Int Int ) Bool ) ; Vara ib le ex i , j
( dec la re − fun sv ( Int Int ) Bool ) ; Var iab le s v i , j
; ### Execution ########################################
; Ex i s t s wr i t e f o r read
( a s s e r t ( ex 0 3) ) ; wx1 −> rx1
( a s s e r t ( ex 2 1) ) ; wx2 −> rx2
; Only one wr i t e f o r read ( same v a r i a b l e & data )
; > none , as only one wr i t e matches read
; ### Ser ia lV i ews ######################################
; ## SV: f o r a l l (* ,* ,* ,* ,* ) , r e s p e c t i n g < PO
; Total Order & AntiSymmetry
( a s s e r t ( xor ( not ( sv 0 1) ) ( not ( sv 1 0 ) ) ) )
( a s s e r t ( xor ( not ( sv 0 2) ) ( not ( sv 2 0 ) ) ) )
( a s s e r t ( xor ( not ( sv 0 3) ) ( not ( sv 3 0 ) ) ) )
( a s s e r t ( xor ( not ( sv 1 2) ) ( not ( sv 2 1 ) ) ) )
( a s s e r t ( xor ( not ( sv 1 3) ) ( not ( sv 3 1 ) ) ) )
( a s s e r t ( xor ( not ( sv 2 3) ) ( not ( sv 3 2 ) ) ) )
; T r a n s i t i v i t y
( a s s e r t (=> ( and ( sv 0 1) ( sv 1 2) ) ( sv 0 2) ) )
( a s s e r t (=> ( and ( sv 0 1) ( sv 1 3) ) ( sv 0 3) ) )
( a s s e r t (=> ( and ( sv 0 2) ( sv 2 1) ) ( sv 0 1) ) )
( a s s e r t (=> ( and ( sv 0 2) ( sv 2 3) ) ( sv 0 3) ) )
( a s s e r t (=> ( and ( sv 0 3) ( sv 3 1) ) ( sv 0 1) ) )
( a s s e r t (=> ( and ( sv 0 3) ( sv 3 2) ) ( sv 0 2) ) )
( a s s e r t (=> ( and ( sv 1 0) ( sv 0 2) ) ( sv 1 2) ) )
( a s s e r t (=> ( and ( sv 1 0) ( sv 0 3) ) ( sv 1 3) ) )
( a s s e r t (=> ( and ( sv 1 2) ( sv 2 0) ) ( sv 1 0) ) )
( a s s e r t (=> ( and ( sv 1 2) ( sv 2 3) ) ( sv 1 3) ) )
( a s s e r t (=> ( and ( sv 1 3) ( sv 3 0) ) ( sv 1 0) ) )
( a s s e r t (=> ( and ( sv 1 3) ( sv 3 2) ) ( sv 1 2) ) )
( a s s e r t (=> ( and ( sv 2 0) ( sv 0 1) ) ( sv 2 1) ) )
( a s s e r t (=> ( and ( sv 2 0) ( sv 0 3) ) ( sv 2 3) ) )
( a s s e r t (=> ( and ( sv 2 1) ( sv 1 0) ) ( sv 2 0) ) )
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( a s s e r t (=> ( and ( sv 2 1) ( sv 1 3) ) ( sv 2 3) ) )
( a s s e r t (=> ( and ( sv 2 3) ( sv 3 0) ) ( sv 2 0) ) )
( a s s e r t (=> ( and ( sv 2 3) ( sv 3 1) ) ( sv 2 1) ) )
( a s s e r t (=> ( and ( sv 3 0) ( sv 0 1) ) ( sv 3 1) ) )
( a s s e r t (=> ( and ( sv 3 0) ( sv 0 2) ) ( sv 3 2) ) )
( a s s e r t (=> ( and ( sv 3 1) ( sv 1 0) ) ( sv 3 0) ) )
( a s s e r t (=> ( and ( sv 3 1) ( sv 1 2) ) ( sv 3 2) ) )
( a s s e r t (=> ( and ( sv 3 2) ( sv 2 0) ) ( sv 3 0) ) )
( a s s e r t (=> ( and ( sv 3 2) ( sv 2 1) ) ( sv 3 1) ) )
; SV r e f i n e s < PO
( a s s e r t ( sv 0 1) ) ; wx1 < PO rx2
( a s s e r t ( sv 2 3) ) ; wx2 < PO rx1
; Writes−To i m p l i e s SV & no inte rmed ia t e wr i t e
; wx1 −> rx1
( a s s e r t ( or ( not ( ex 0 3) ) ( sv 0 3 ) ) )
( a s s e r t ( or ( not ( ex 0 3) ) ( not ( sv 0 0) ) ( not ( sv 0 3 ) ) ) )
( a s s e r t ( or ( not ( ex 0 3) ) ( not ( sv 0 2) ) ( not ( sv 2 3 ) ) ) )
; wx2 −> rx2
( a s s e r t ( or ( not ( ex 2 1) ) ( sv 2 1 ) ) )
( a s s e r t ( or ( not ( ex 2 1) ) ( not ( sv 2 0) ) ( not ( sv 0 1 ) ) ) )
( a s s e r t ( or ( not ( ex 2 1) ) ( not ( sv 2 2) ) ( not ( sv 2 1 ) ) ) )
( check− sa t )
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A.2. Encoding of Tα for Pipelined RAM consistency

( dec la re − fun ex ( Int Int ) Bool ) ; Var iab le ex i , j
( dec la re − fun svP ( Int Int ) Bool ) ; Var iab le s v i , j f o r p roce s s p
( dec la re − fun svQ ( Int Int ) Bool ) ; Var iab le s v i , j f o r p roce s s q
; ### Execution ########################################
; Exi s tence o f Write f o r read
( a s s e r t ( ex 0 3) ) ; wx1 −> rx1
( a s s e r t ( ex 2 1) ) ; : wx2 −> rx2
; Only one wr i t e f o r read ( same v a r i a b l e & data )
; > none , as only one wr i t e matches read
; ### Ser ia lV i ews ######################################
; ## SV P : f o r a l l (* ,* ,* , p , * ) u(w,* ,* ,* ,* ) , r e s p e c t i n g < PO
; Total Order & AntiSymmetry
( a s s e r t ( xor ( not ( svP 0 1) ) ( not ( svP 1 0 ) ) ) )
( a s s e r t ( xor ( not ( svP 0 2) ) ( not ( svP 2 0 ) ) ) )
( a s s e r t ( xor ( not ( svP 1 2) ) ( not ( svP 2 1 ) ) ) )
; T r a n s i t i v i t y
( a s s e r t (=> ( and ( svP 0 1) ( svP 1 2) ) ( svP 0 2) ) )
( a s s e r t (=> ( and ( svP 0 2) ( svP 2 1) ) ( svP 0 1) ) )
( a s s e r t (=> ( and ( svP 1 0) ( svP 0 2) ) ( svP 1 2) ) )
( a s s e r t (=> ( and ( svP 1 2) ( svP 2 0) ) ( svP 1 0) ) )
( a s s e r t (=> ( and ( svP 2 0) ( svP 0 1) ) ( svP 2 1) ) )
( a s s e r t (=> ( and ( svP 2 1) ( svP 1 0) ) ( svP 2 0) ) )
; SV p r e f i n e s < PO
( a s s e r t ( svP 0 1) ) ; wx1 < PO rx2
; Writes−To i m p l i e s SV p & no inte rmed ia t e wr i t e
; wx2 −> rx2
( a s s e r t ( or ( not ( ex 2 1) ) ( svP 2 1 ) ) )
( a s s e r t ( or ( not ( ex 2 1) ) ( not ( svP 2 0) ) ( not ( svP 0 1 ) ) ) )
( a s s e r t ( or ( not ( ex 2 1) ) ( not ( svP 2 2) ) ( not ( svP 2 1 ) ) ) )
; ## SV Q : f o r a l l (* ,* ,* , q , * ) u(w,* ,* ,* ,* ) , r e s p e c t i n g < PO
; Total Order & AntiSymmetry
( a s s e r t ( xor ( not ( svQ 0 2) ) ( not ( svQ 2 0 ) ) ) )
( a s s e r t ( xor ( not ( svQ 0 3) ) ( not ( svQ 3 0 ) ) ) )
( a s s e r t ( xor ( not ( svQ 2 3) ) ( not ( svQ 3 2 ) ) ) )
; T r a n s i t i v i t y
( a s s e r t (=> ( and ( svQ 0 2) ( svQ 2 3) ) ( svQ 0 3) ) )
( a s s e r t (=> ( and ( svQ 0 3) ( svQ 3 2) ) ( svQ 0 2) ) )
( a s s e r t (=> ( and ( svQ 2 0) ( svQ 0 3) ) ( svQ 2 3) ) )
( a s s e r t (=> ( and ( svQ 2 3) ( svQ 3 0) ) ( svQ 2 0) ) )
( a s s e r t (=> ( and ( svQ 3 0) ( svQ 0 2) ) ( svQ 3 2) ) )
( a s s e r t (=> ( and ( svQ 3 2) ( svQ 2 0) ) ( svQ 3 0) ) )
; SV q r e f i n e s < PO
( a s s e r t ( svQ 2 3) ) ; wx2 < PO rx1
; Writes−To i m p l i e s SV q & no inte rmed ia t e wr i t e
; wx1 −> rx1
( a s s e r t ( or ( not ( ex 0 3) ) ( svQ 0 3 ) ) )
( a s s e r t ( or ( not ( ex 0 3) ) ( not ( svQ 0 0) ) ( not ( svQ 0 3 ) ) ) )
( a s s e r t ( or ( not ( ex 0 3) ) ( not ( svQ 0 2) ) ( not ( svQ 2 3 ) ) ) )
( check− sa t )
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The encoding uses a SMV preprocessor that allows to use define constants
(#define), to include other files (#include), and to repeat expressions based
on constants to allow for quantification ([[repeatline]], [[forall]]).

First, the encoded invariants and LTL specification are given as seperate
files, then the encoding of some examples are given in the SMV preprocessor
format.

B.1. Invariants and Specifications

B.1.1. Invariants

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− INVARIANTS −−

−− read and wr i t e only occur i f p r o c e s s o r i s a c t i v e
[ [ r e p e a t l i n e %p=MIN P . . MAX P ] ]

INVAR ( ! s tep [%p ] ) −> ( ! read [%p ] & ! wr i t e [%p ] ) ;
[ [ / r e p e a t l i n e ] ]

−− read and wr i t e never occur at the same time
[ [ r e p e a t l i n e %p=MIN P . . MAX P ] ]

INVAR ! ( wr i t e [%p ] & read [%p ] ) ;
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[ [ / r e p e a t l i n e ] ]

−− readValue i s undef ined whi l e no read occurs
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ]

INVAR ( ! read [% i ] ) −> ( readValue [% i ]=UNDEFINED) ;
[ [ / r e p e a t l i n e ] ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Fa i rne s s : s tep [ p ] has to hold i n f i n i t e l y o f t en ( f o r a l l p r o c e s s o r s p)
[ [ r e p e a t l i n e %p=MIN P . . MAX P ] ]

JUSTICE step [%p ] ;
[ [ / r e p e a t l i n e ] ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.1.2. LTL Specification: Base

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Proce s s ing Causa l i ty
(
[ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]
[ [ f o r a l l %i=MIN ID . . MAX ID ] ] [ [ f o r a l l %l=MIN LOC . .MAX LOC] ]

( ( ! ( proc [%p ] & ( procProcess [%p ] = %q )
& ( procId [%p ] = %i ) & ( procLocat ion [%p ] = %l ) ) )
U ( wr i t e [%q ] & ( wr i t e Id [%q ] = %i ) & ( wr i t eLocat ion [%q ] = %l ) ) )
| G( ! ( proc [%p ] & ( procProcess [%p ] = %q )
& ( procId [%p ] = %i ) & ( procLocat ion [%p ] = %l ) ) )

[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Proce s s ing Uniqueness
& (G

[ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]
[ [ f o r a l l %i=MIN ID . . MAX ID ] ]

( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p ] = %i ) )
−> X G ! ( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p ] = %i ) )

[ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ] )

−− Read I n i t i a l
& ( [ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %l=MIN LOC . .MAX LOC] ]

( ( read [%p ] & ( readLocat ion [%p]=%l ) −> ( readValue [%p]=UNDEFINED) )
U ( proc [%p ] & procLocat ion [%p]=% l ) )

| G( read [%p ] & ( readLocat ion [%p]=% l ) −> ( readValue [%p]=UNDEFINED) )
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ] )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Read Causa l i ty
& (G

[ [ f o r a l l %q=MIN P . . MAX P ] ] [ [ f o r a l l %i=MIN ID . . MAX ID ] ]
[ [ f o r a l l %l=MIN LOC . .MAX LOC ] ] [ [ f o r a l l %v=MIN VAL . .MAX VAL] ]

( wr i t e [%q ] & ( wr i t e Id [%q]=% i )
& ( wr i t eLocat ion [%q]=% l ) & ( writeValue [%q]=%v ) )

−> G [ [ f o r a l l %p=MIN P . . MAX P ] ]
( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p]=% i ) )
−> ( ( ( ( read [%p ] & ( readLocat ion [%p]=% l ) )

−> readValue [%p]=%v )
U ( proc [%p ] & ( procLocat ion [%p]=% l )

& ( ( procProcess [%p ] != %q ) | ( procId [%p ] != %i ) ) ) )
| ( G ( ( read [%p ] &

( readLocat ion [%p]=% l ) ) −> readValue [%p]=%v ) ) )
[ [ / f o r a l l ] ]

[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ] )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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B.1.3. LTL Specification: Local

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Inc lude Base Spec
(
#inc lude ( spec −base . l t l )
)
−− Local Causa l i ty
& ( [ [ f o r a l l %p=MIN P . . MAX P ] ]

G ( ( wr i t e [%p ] ) −>
( proc [%p ] & ( procProcess [%p]=%p) & ( procId [%p]= wr i t e Id [%p ] ) ) )

[ [ / f o r a l l ] ] )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.1.4. LTL Specification: Slow

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Inc lude Local Spec
(
#inc lude ( spec − l o c a l . l t l )
)
−− Slow
& (G [ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]

[ [ f o r a l l %i=MIN ID . . MAX ID ] ] [ [ f o r a l l %l=MIN LOC . .MAX LOC] ]
( proc [%p ] & ( procProcess [%p ] = %q )
& ( procId [%p ] = %i ) & ( procLocat ion [%p ] = %l ) )

−> (X G
[ [ f o r a l l %j=MIN ID . . MAX ID ] ]

!((% j <= %i ) & proc [%p ] & ( procProcess [%p ] = %q )
& ( procId [%p ] = %j ) & ( procLocat ion [%p ] = %l ) )

[ [ / f o r a l l ] ] )
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ] )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.1.5. LTL Specification: CC

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Inc lude Slow Spec
(
#inc lude ( spec −slow . l t l )
)
−− CC −−

& [ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]
[ [ f o r a l l %r=MIN P . . MAX P ] ] [ [ f o r a l l %i=MIN ID . . MAX ID ] ]
[ [ f o r a l l %j=MIN ID . . MAX ID ] ] [ [ f o r a l l %l=MIN LOC . .MAX LOC] ]

(F ( ( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p ] = %i )
& ( procLocat ion [%p ] = %l ) )

& (X F ( proc [%p ] & ( procProcess [%p ] = %r ) & ( procId [%p ] = %j )
& ( procLocat ion [%p ] = %l ) ) ) ) )
−> G [ [ f o r a l l %pp=MIN P . . MAX P ] ]

( proc [%pp ] & ( procProcess [%pp ] = %r ) & ( procId [%pp ] = %j ) )
−> G ! ( proc [%pp ] & ( procProcess [%pp ] = %q )

& ( procId [%pp ] = %i ) )
[ [ / f o r a l l ] ]

[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.1.6. LTL Specification: PRAM

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Inc lude Slow Spec
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(
#inc lude ( spec −slow . l t l )
)
−− PRAM −−

& [ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]
[ [ f o r a l l %i=MIN ID . . MAX ID ] ]

(F ( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p ] = %i ) ) )
−> [ [ f o r a l l %j=MIN ID . . MAX ID ] ]
(% j < %i ) −>
( (F ( proc [%p]& ( procProcess [%p ] = %q ) & ( procId [%p ] = %j ) ) )
& G ( ( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p ] = %i ) )
−> G ! ( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p ] = %j ) ) ) )

[ [ / f o r a l l ] ]
[ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B.1.7. LTL Specification: SC

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Inc lude Local Spec
(
#inc lude ( spec − l o c a l . l t l )
)
−−SC: Global Total Order
−− TOTAL
& G [ [ f o r a l l %q=MIN P . . MAX P ] ] [ [ f o r a l l %i=MIN ID . . MAX ID ] ]
( wr i t e [%q ] & ( wr i t e Id [%q]=% i ) ) −>

[ [ f o r a l l %p=MIN P . . MAX P ] ]
F ( proc [%p ] & ( procProcess [%p]=%q ) & ( procId [%p]=% i ) )

[ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
−− GLOBAL ORDER
& G
[ [ f o r a l l %p=MIN P . . MAX P ] ] [ [ f o r a l l %q=MIN P . . MAX P ] ]
[ [ f o r a l l %r=MIN P . . MAX P ] ] [ [ f o r a l l %i=MIN ID . . MAX ID ] ]
[ [ f o r a l l %j=MIN ID . . MAX ID ] ]

(F ( ( proc [%p ] & ( procProcess [%p ] = %q ) & ( procId [%p ] = %i ) )
& (F ( proc [%p ] & ( procProcess [%p ] = %r ) & ( procId [%p ] = %j ) ) ) ) )

−>
[ [ f o r a l l %pp=MIN P . . MAX P ] ]

(F ( ( proc [%pp ] & ( procProcess [%pp ] = %q ) & ( procId [%pp ] = %i ) )
& (F ( proc [%pp ] & ( procProcess [%pp ] = %r ) & ( procId [%pp ] = %j ) ) ) ) )
[ [ / f o r a l l ] ]

[ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
[ [ / f o r a l l ] ] [ [ / f o r a l l ] ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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B.2. Petersons Mutual Exclusion Algorithm

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Petersons Mutual Exc lus ion Algorithm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− LOCATIONS: f l ag0 , f l ag1 , turn , data

−− 00 : wr i t e (0 , 1 ) f l a g [ s e l f ] <− T
−− 01 : wr i t e (2 , 1 ) turn <− other
−− 02 : reg = read (1 ) i f ( ! f l a g [ other ] ) goto 6
−− 03 : i f ( reg =0) goto 6 ”
−− 04 : reg = read (2 ) i f ( turn=other ) goto 2
−− 05 : i f ( reg =1) goto 2 ”
−− 06 : reg = read (3 ) data++;
−− 07 : wr i t e (3 , reg +1) ”
−− 08 : wr i t e (0 , 0 ) f l a g [ s e l f ] <− F
−− 09 : goto 9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#d e f i n e MIN P 0
#d e f i n e MAX P 1
#d e f i n e MIN LOC 0
#d e f i n e MAX LOC 3
#d e f i n e MIN VAL 0
#d e f i n e MAX VAL 2
#d e f i n e UNDEFINED 0
#d e f i n e MIN ID 0
#d e f i n e MAX ID 10

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Proces sor −−

MODULE Proces sor ( id , step , write , wr i teLocat ion , writeValue , read ,
readLocat ion , readValue )

VAR
reg : MIN VAL . .MAX VAL;
pc : 0 . . 9 ;
other : MIN P . . MAX P;

ASSIGN
other := ( ( id =0)?1 :0 ) ;
i n i t ( pc ) := 0 ;
next ( pc ) :=

case
! s tep : pc ;
( pc = 3) & ( reg = 0) : 6 ;
( pc = 5) & ( reg != id ) : 2 ;
pc >= 9 : 9 ;
TRUE : ( pc +1);

e sac ;
i n i t ( reg ) := UNDEFINED;
next ( reg ) :=

case
! s tep : reg ;
pc = 2 : readValue ;
pc = 4 : readValue ;
pc = 6 : readValue ;
TRUE : reg ;

e sac ;
wr i t e :=

case
! s tep : FALSE;
TRUE: ( pc = 0 | pc = 1 | pc = 7 | pc = 8 ) ;

e sac ;
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wr i teLocat ion :=
case

! s tep : 0 ;
pc = 0 : id ;
pc = 1 : 2 ;
pc = 7 : 3 ;
pc = 8 : id ;
TRUE : 0 ;

e sac ;
wr iteValue :=

case
! s tep : 0 ;
pc = 0 : 1 ;
pc = 1 : other ;
pc = 7 : ( reg>=MAX VAL)? reg : ( reg +1);
pc = 8 : 0 ;
TRUE : 0 ;

e sac ;
read :=

case
! s tep : FALSE;
TRUE: ( pc = 2 | pc = 4 | pc = 6 ) ;

e sac ;
readLocat ion :=

case
! s tep : 0 ;
pc = 2 : other ;
pc = 4 : 2 ;
pc = 6 : 3 ;
TRUE : 0 ;

e sac ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MODULE main
VAR

step : array MIN P . . MAX P of boolean ;
wr i t e : array MIN P . . MAX P of boolean ;
wr i t e Id : array MIN P . . MAX P of MIN ID . . MAX ID;
wr i t eLocat ion : array MIN P . . MAX P of MIN LOC . .MAX LOC;
writeValue : array MIN P . . MAX P of MIN VAL . .MAX VAL;
read : array MIN P . . MAX P of boolean ;
readValue : array MIN P . . MAX P of MIN VAL . .MAX VAL;
readLocat ion : array MIN P . . MAX P of MIN LOC . .MAX LOC;
proc : array MIN P . . MAX P of boolean ;
procProcess : array MIN P . . MAX P of MIN P . . MAX P;
procId : array MIN P . . MAX P of MIN ID . . MAX ID;
procLocat ion : array MIN P . . MAX P of MIN LOC . .MAX LOC;

VAR
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ]

p%i : Proces sor(%i , s tep [% i ] , wr i t e [% i ] , wr i t eLocat ion [% i ] ,
wr i teValue [% i ] , read [% i ] , readLocat ion [% i ] , readValue [% i ] ) ;

[ [ / r e p e a t l i n e ] ]
ASSIGN
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ] i n i t ( wr i t e Id [% i ] ) := 0 ; [ [ / r e p e a t l i n e ] ]
[ [ r e p e a t l i n e %i=MIN P . . MAX P ] ]

next ( wr i t e Id [% i ] ) :=
( wr i t e [% i ] & ( wr i t e Id [% i ]<MAX ID) ) ? ( wr i t e Id [% i ]+1) : wr i t e Id [% i ] ;

[ [ / r e p e a t l i n e ] ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#inc lude ( i n v a r i a n t s )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− F i r s t Test : CC
LTLSPEC
(
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#inc lude ( spec −cc . l t l )
)
−− Property to check
−>
( G ! ( ( p0 . pc=6) & ( p1 . pc=6)) )
;
−−EXPECTED: FALSE ( counterexample <=> p o s s i b l e behavior )
−−PROVEN (BMC CounterExample )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Second Test : PRAM
LTLSPEC
(
#inc lude ( spec −pram . l t l )
)
−− Property to check
−>
( G ! ( ( p0 . pc=6) & ( p1 . pc=6)) )
;
−−EXPECTED: FALSE ( counterexample <=> p o s s i b l e behavior )
−−PROVEN (BMC CounterExample )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− Third Test : SC
LTLSPEC
(
#inc lude ( spec − sc . l t l )
)
−− Property to check
−>
( G ! ( ( p0 . pc=6) & ( p1 . pc=6)) )
;
−−EXPECTED: TRUE ( no counterexample )
−−PROVEN (BMC Depth 27)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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The mechanism for explicit non-determinism in Quartz (‘choose’) was re-
placed by oracle variables which are added to the modules interface. This
has been done for verification purposes and to enable the reproducibility of
simulation results.
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C.1. Shared Modules

C.1.1. FIFO

This is a FIFO buffer with elements in the following form:

(writeF lag, originProcess,memoryTarget, value)

The tuple field writeF lag determines if the entry is a write or read opera-
tion, originProcess contains the ID of the process which issued the operation,
memoryTarget is the memory address the operation operates on and value
contains the value to be written to memory in case of a write operation.

package Architecture.ConsistencyModels.Structure;

macro ProcessCount = 3;
macro DataWidth = 8;
macro MemSize = 8;

macro BufferSize = 6;

module FIFO(
event ?pop,
event ?push,
event !isempty,
event isfull ,
// input : writeCommand & target & value
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) ?inp,
// output : writeCommand & target & value
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) !outp
) {

[BufferSize ] (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) fifo;
nat{BufferSize} head;
nat{BufferSize} nxxt;
bool empty;

empty = true;

always {
if(empty) {

emit(isempty);
}
if((head==nxxt) & !empty) {

emit( isfull ) ;
}

if(!empty) {
outp = fifo [head];

}

if(pop & !empty) {
if(head==BufferSize−1) { next(head) = 0; } else { next(head) = head+1; }

if(((head==BufferSize−1 & nxxt==0) | (head+1==nxxt))) {
if(!(push & ! isfull )) {

next(empty) = true;
}

}
}

if(push & ! isfull ) {
next(empty) = false;
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next(fifo[nxxt]) = inp;

if(nxxt!=BufferSize−1) {
next(nxxt) = nxxt+1;

} else {
next(nxxt) = 0;

}
}

}
}

C.1.2. FIFOwClock

This is a FIFO buffer with elements in the following form:

(writeF lag, originProcess,memoryTarget, value, clock)

The interface of FIFO was extended by adding field clock which holds a clock
value (natural number). The other fields behave like the counterpart in module
FIFO.

package Architecture.ConsistencyModels.Structure;

macro ProcessCount = 3;
macro DataWidth = 8;
macro MemSize = 8;

macro MaxClock = 127;

macro BufferSize = 6;

module FIFOwClock(
event ?pop,
event ?push,
event !isempty,
event isfull ,
// input : writeCommand & target & value & clock
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth} * nat{MaxClock}) →

?inp,
// output : writeCommand & target & value & clock
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth} * nat{MaxClock}) →

!outp
) {

[BufferSize ] (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth} * →

nat{MaxClock}) fifo;
nat{BufferSize} head;
nat{BufferSize} nxxt;
bool empty;

empty = true;

always {
if(empty) {

emit(isempty);
}
if((head==nxxt) & !empty) {

emit( isfull ) ;
}

if(!empty) {
outp = fifo [head];

}
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if(pop & !empty) {
if(head==BufferSize−1) { next(head) = 0; } else { next(head) = head+1; }

if(((head==BufferSize−1 & nxxt==0) | (head+1==nxxt))) {
if(!(push & ! isfull )) {

next(empty) = true;
}

}
}

if(push & ! isfull ) {
next(empty) = false;
next(fifo[nxxt]) = inp;

if(nxxt!=BufferSize−1) {
next(nxxt) = nxxt+1;

} else {
next(nxxt) = 0;

}
}

}
}

C.1.3. FIFOwClocks

This is a FIFO buffer with elements in the following form:

(writeF lag, originProcess,memoryTarget, value, clocks)

The interface of FIFO was extended by adding field clocks which holds a
tuple of clock values (natural numbers), one for each process. The other fields
behave like the counterpart in module FIFO.

package Architecture.ConsistencyModels.Structure;

macro ProcessCount = 3;
macro DataWidth = 8;
macro MemSize = 8;

macro MaxClock = 127;

macro BufferSize = 6;

module FIFOwClocks(
event ?pop,
event ?push,
event !isempty,
event isfull ,
// input : writeCommand & origin & target & value
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth} * →

[ProcessCount]nat{MaxClock}) ?inp,
// output : writeCommand & origin & target & value
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth} * →

[ProcessCount]nat{MaxClock}) !outp
) {

[BufferSize ] (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth} * →

[ProcessCount]nat{MaxClock}) fifo;
nat{BufferSize} head;
nat{BufferSize} nxxt;
bool empty;
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empty = true;

always {
if(empty) {

emit(isempty);
}
if((head==nxxt) & !empty) {

emit( isfull ) ;
}

if(!empty) {
outp = fifo [head];

}

if(pop & !empty) {
if(head==BufferSize−1) { next(head) = 0; } else { next(head) = head+1; }

if(((head==BufferSize−1 & nxxt==0) | (head+1==nxxt))) {
if(!(push & ! isfull )) {

next(empty) = true;
}

}
}

if(push & ! isfull ) {
next(empty) = false;
next(fifo[nxxt]) = inp;

if(nxxt!=BufferSize−1) {
next(nxxt) = nxxt+1;

} else {
next(nxxt) = 0;

}
}

}
}

C.1.4. FIFOwReadForwarding

This is a FIFO buffer with elements in the following form:

(writeF lag, originProcess,memoryTarget, value)

The fields behave like the counterpart in module FIFO.
This buffer additionally offers an interface and mechanisms to retrieve the

most recent write’s value if available for a given memory address.

package Architecture.ConsistencyModels.Structure;

macro ProcessCount = 3;
macro DataWidth = 8;
macro MemSize = 8;

macro BufferSize = 6;

module FIFOwReadForwarding(
event ?pop,
event ?push,
event !isempty,
event isfull ,
// input : writeCommand & target & value
event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) ?inp,
// output : writeCommand & target & value
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event (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) !outp,

// Read Forward Mechanisms
// readIn : valid & address
event (bool * nat{MemSize}) ?readIn,
// readOut : success & value
event (bool * bv{DataWidth}) !readOut
) {

// FIFO variables
[BufferSize ] (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth}) fifo;
nat{BufferSize} head;
nat{BufferSize} nxxt;
bool empty;

// Read Forward Mechanism variables
nat{BufferSize} tail ;
event [BufferSize] nat{BufferSize} readpos;
event nat{BufferSize} headreadpos;
event [BufferSize] bool readdone;

// Initialze FIFO empty
empty = true;

always {
if(empty) {

emit(isempty);
}
if((head==nxxt) & !empty) {

emit( isfull ) ;
}

if(!empty) {
outp = fifo [head];

}

if(pop & !empty) {
if(head==BufferSize−1) { next(head) = 0; } else { next(head) = head+1; }

if(((head==BufferSize−1 & nxxt==0) | (head+1==nxxt))) {
if(!(push & ! isfull )) {

next(empty) = true;
}

}
}

if(push & ! isfull ) {
next(empty) = false;
next(fifo[nxxt]) = inp;

if(nxxt!=BufferSize−1) {
next(nxxt) = nxxt+1;

} else {
next(nxxt) = 0;

}
}

// Read Forward Mechanism //

//tail = (nxxt==0?BufferSize−1:nxxt−1);
if(nxxt<=0) {

tail = BufferSize−1;
} else {

tail = nxxt−1;
}
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for(i = 0 .. BufferSize−1) do || {
//readpos[i ] = (tail>=i?tail−i: tail +BufferSize−i);
if(tail>=i) {

readpos[i ] = tail−i ;
} else {

readpos[i ] = tail+BufferSize−i;
}

}
if(readIn.0 & !empty) { // If read request and FIFO not empty

for(i = 0 .. BufferSize−1) do || {
let(pos = readpos[i])
{

if(i == head) { headreadpos = pos; }

if(pos <= headreadpos) { // exclude invalid entries
if(pos == 0) { // start from nxt−1 % size

if(readIn.1 == fifo[ i ].2) {
emit(readdone[0]);
readOut = (true, fifo[i ].3) ;

}
} else {

if((!readdone[pos−1]) & readIn.1 == fifo[i ].2) {
emit(readdone[pos]);
readOut = (true, fifo[i ].3) ;

} else {
readdone[pos] = readdone[pos−1];

}
}

}
}

}
}

}
}

C.1.5. MemUnit

This is a memory unit which processes memory operations and returns read
results. The values are stored in a bit-vector array.

package Architecture.ConsistencyModels.Structure;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module MemUnit(
// input : issue & (writeCommand & origin & target & value)
event (bool * (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth})) →

?arbiterOut,

// output (doneRead & origin & value)
event (bool * nat{ProcessCount} * bv{DataWidth}) !readResult

) {

[MemSize]bv{DataWidth} Mem;

always {
immediate await(arbiterOut.0);

if((arbiterOut.1).0) { // write
Mem[(arbiterOut.1).2] = (arbiterOut.1).3;
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} else {
readResult = (true, (arbiterOut.1).1, Mem[(arbiterOut.1).2]);

}
}

}

C.1.6. MemUnitSingleCell

A single cell memory unit which processes memory operations and returns
read results of a single memory location. The value is stored in a bit-vector.

package Architecture.ConsistencyModels.Structure;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module MemUnitSingleCell(
// input : issue & (writeCommand & origin & target & value)
event (bool * (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth})) →

?arbiterOut,

// output (doneRead & origin & value)
event (bool * nat{ProcessCount} * bv{DataWidth}) !readResult

) {

bv{DataWidth} Mem;

always {
immediate await(arbiterOut.0);

if((arbiterOut.1).0) { // write
Mem = (arbiterOut.1).3;

} else {
readResult = (true, (arbiterOut.1).1, Mem);

}
}

}

C.2. Reference Machines

C.2.1. Sequential consistency Reference Machine

package Architecture.ConsistencyModels.RefSequential;

import Architecture.ConsistencyModels.Structure.FIFO;
import Architecture.ConsistencyModels.Structure.MemUnit;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module RefSequential(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
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event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,

// processor terminated
[ProcessCount] bool ?terminated,

// oracle (choose replacement)
event nat{ProcessCount} ?oracle

) {

// FIFO
event [ProcessCount] bool FIFOpop;
event [ProcessCount] bool FIFOpush;
event [ProcessCount] bool FIFOisempty;
event [ProcessCount] bool FIFOisfull;
// input : writeCommand & target & value
event [ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOinp;
// output : writeCommand & target & value
event [ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOoutp;

// Mem
// memIn : valid/issue & (writeCommand & origin & target & value)
event (bool * (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth})) memIn;
// readResult : valid & origin & value
event (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
fifo : FIFO(FIFOpop[i], FIFOpush[i], FIFOisempty[i],

FIFOisfull[ i ], FIFOinp[i], FIFOoutp[i]);
||
always {

if(reqMem[i] & !FIFOisfull[i]) {
emit(ackMem[i]);

FIFOinp[i] = (writeMem[i], i, adrBus[i ], dataBus[i]) ;
emit(FIFOpush[i]);

if(writeMem[i]) {
emit(doneMem[i]);

}
}

}
}
||
always {

let(o1 = oracle) { // Arbiter (Simply choose from N components)
//choose(o1 = 0 .. ProcessCount−1) {

if(!FIFOisempty[o1]) {
memIn = (true, FIFOoutp[o1]);
emit(FIFOpop[o1]);

}
//}
}

}
||
memunit: MemUnit(memIn, readResult);
||
always { // Distributor (distributes read results to corresponding process)

if(readResult.0) {
emit(doneMem[readResult.1]);
dataBus[readResult.1] = readResult.2;
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}
}

}

C.2.2. Slow consistency Reference Machine

package Architecture.ConsistencyModels.RefSlow;

import Architecture.ConsistencyModels.Structure.FIFO;
import Architecture.ConsistencyModels.Structure.MemUnit;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module RefSlow(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,

// processor terminated
[ProcessCount] bool ?terminated,

// oracle (choose replacement)
event [ProcessCount] nat{ProcessCount} ?oracle,
event [ProcessCount] nat{MemSize} ?oracle2

) {
// FIFO

event [ProcessCount][ProcessCount][MemSize] bool FIFOpop;
event [ProcessCount][ProcessCount][MemSize] bool FIFOpush;
event [ProcessCount][ProcessCount][MemSize] bool FIFOisempty;
event [ProcessCount][ProcessCount][MemSize] bool FIFOisfull;
// input : writeCommand & origin target & value
event [ProcessCount][ProcessCount][MemSize] (bool * nat{ProcessCount} * →

nat{MemSize} * bv{DataWidth}) FIFOinp;
// output : writeCommand & origin target & value
event [ProcessCount][ProcessCount][MemSize] (bool * nat{ProcessCount} * →

nat{MemSize} * bv{DataWidth}) FIFOoutp;

event [ProcessCount] bool someFIFOfull;

// Memory Units
// memIn : valid/issue & (writeCommand & origin & target & value)
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) memIn;
// readResult : valid & origin & value
event [ProcessCount] (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
always {

// Distributor: broadcasts writes to all connected FIFOs
// and sends reads to own FIFO

// SubDistributor ( splits memory cells)
if(reqMem[i] & !someFIFOfull[i]) {

emit(ackMem[i]);
if(writeMem[i]) {

emit(doneMem[i]);

114



C.2. Reference Machines

}
for(j = 0 .. ProcessCount−1) {

if((j==i) | writeMem[i]) {
// REMARK: notify mixed indices.
FIFOpush[j][i ][ adrBus[i] ] = true;
FIFOinp[j][ i ][ adrBus[i] ] =

(writeMem[i], i , adrBus[i ], dataBus[i]) ;
}

}
}

}
||
for(j = 0 .. ProcessCount−1) do || { // FIFO

for(k = 0 .. MemSize−1) do || {
always {

if(FIFOisfull[i ][ j ][ k]) {
emit(someFIFOfull[j]);

}
}
||
fifo : FIFO(FIFOpop[i][j][k], FIFOpush[i][j ][ k ], FIFOisempty[i][j ][ k ],

FIFOisfull[ i ][ j ][ k ], FIFOinp[i][ j ][ k ], FIFOoutp[i][j ][ k]) ;
}

}
||
always { // Arbiter (Simply choose from NxM components)

let(o1 = oracle[i ])
let(o2 = oracle2[i ])
{
//choose(o1 = 0 .. ProcessCount−1) choose(o2 = 0 .. MemSize−1) {

if(!FIFOisempty[i][o1][o2]) {
memIn[i] = (true, FIFOoutp[i][o1][o2]);
emit(FIFOpop[i][o1][o2]);

}
//}
}

}
||
memunit: MemUnit(memIn[i], readResult[i]);
||
always {

if(readResult[i ].0) {
emit(doneMem[i]);
dataBus[i] = readResult[i ].2;

}
}

}
}

C.2.3. Local consistency Reference Machine

package Architecture.ConsistencyModels.RefLocal;

import Architecture.ConsistencyModels.Structure.FIFO;
import Architecture.ConsistencyModels.Structure.MemUnit;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module RefLocal(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
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event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,

// processor terminated
[ProcessCount] bool ?terminated,

// oracle (choose replacement)
event [ProcessCount] nat{ProcessCount+1} ?oracle,
event [ProcessCount] nat{2} ?oracle2

) {
// FIFO

event [ProcessCount][ProcessCount] bool FIFOpop;
event [ProcessCount][ProcessCount] bool FIFOpush;
event [ProcessCount][ProcessCount] bool FIFOisempty;
event [ProcessCount][ProcessCount] bool FIFOisfull;
// input : writeCommand & origin & target & value
event [ProcessCount][ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOinp;
// output : writeCommand & origin & target & value
event [ProcessCount][ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOoutp;

event [ProcessCount] bool someFIFOfull;

// FIFOloop
event [ProcessCount] bool FIFOloopPop;
event [ProcessCount] bool FIFOloopPush;
event [ProcessCount] bool FIFOloopIsempty;
event [ProcessCount] bool FIFOloopIsfull;
// input : writeCommand & origin & target & value
event [ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOloopInp;
// output : writeCommand & origin & target & value
event [ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOloopOutp;

// Arbiter
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) arbiterTemp;

// Mem
// memIn : valid/issue & (writeCommand & origin & target & value)
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) memIn;
// readResult : valid & origin & value
event [ProcessCount] (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
always { // Distributor (broadcasts write to all connected FIFOs and sends reads to →

own FIFO)
if(reqMem[i] & !someFIFOfull[i]) {

emit(ackMem[i]);
if(writeMem[i]) {

emit(doneMem[i]);
}

for(j = 0 .. ProcessCount−1) {
if((j==i) | writeMem[i]) {

// REMARK: notify mixed indices.
FIFOpush[j][i] = true;
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FIFOinp[j][ i ] = (writeMem[i], i , adrBus[i ], dataBus[i]) ;
}

}
}

}
||
for(j = 0 .. ProcessCount−1) do || {

always {
if(FIFOisfull[j ][ i ]) {

emit(someFIFOfull[i]);
}

}
||
fifo : FIFO(FIFOpop[i][j], FIFOpush[i][j], FIFOisempty[i][j ], FIFOisfull[ i ][ j ], →

FIFOinp[i][ j ], FIFOoutp[i][j ]) ;
}
||
fifoloop : FIFO(FIFOloopPop[i], FIFOloopPush[i], FIFOloopIsempty[i], →

FIFOloopIsfull[i], FIFOloopInp[i], FIFOloopOutp[i]);
||
always { // Arbiter (”Shuffle” others, pass own)

let(o1 = oracle[i ])
let(o2 = oracle2[i ])
{

//choose(o1 = 0 .. ProcessCount) {
if(o1 < ProcessCount) { // read from FIFOs

if(!FIFOisempty[i][o1]) {
arbiterTemp[i] = (true, FIFOoutp[i][o1]);
emit(FIFOpop[i][o1]);

}
} else { // read from feedback

if(!FIFOloopIsempty[i]) {
arbiterTemp[i] = (true, FIFOloopOutp[i]);
emit(FIFOloopPop[i]);

}
}

//}
if(arbiterTemp[i].0) {

//choose(o2 = 0 .. 1) {
if(o1 == i | o2 == 0) { // pass to Mem

memIn[i] = arbiterTemp[i];
} else { // feedback

if(!FIFOloopIsfull[ i ]) {
FIFOloopInp[i] = arbiterTemp[i].1;
emit(FIFOloopPush[i]);

}
}

//}
}

}
}
||
memunit: MemUnit(memIn[i], readResult[i]);
||
always {

if(readResult[i ].0) {
emit(doneMem[i]);
dataBus[i] = readResult[i ].2;

}
}

}
}
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C.2.4. Pipelined RAM consistency Reference Machine

package Architecture.ConsistencyModels.RefPRAM;

import Architecture.ConsistencyModels.Structure.FIFO;
import Architecture.ConsistencyModels.Structure.MemUnit;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module RefPRAM(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,

// processor terminated
[ProcessCount] bool ?terminated,

// oracle (choose replacement)
event [ProcessCount] nat{ProcessCount} ?oracle

) {
// FIFO

event [ProcessCount][ProcessCount] bool FIFOpop;
event [ProcessCount][ProcessCount] bool FIFOpush;
event [ProcessCount][ProcessCount] bool FIFOisempty;
event [ProcessCount][ProcessCount] bool FIFOisfull;
// input : writeCommand & origin & target & value
event [ProcessCount][ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOinp;
// output : writeCommand & origin & target & value
event [ProcessCount][ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOoutp;

event [ProcessCount] bool someFIFOfull;

// Arbiter
// output : issue & (writeCommand & target & value)
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) arbiterOut;

// Memory Units
// memIn : valid/issue & (writeCommand & origin & target & value)
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) memIn;
// readResult : valid & origin & value
event [ProcessCount] (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
always {

// Distributor: broadcasts writes to all connected FIFOs
// and sends reads to own FIFO

if(reqMem[i] & !someFIFOfull[i]) {
emit(ackMem[i]);
if(writeMem[i]) {

emit(doneMem[i]);
}
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for(j = 0 .. ProcessCount−1) {
if((j==i) | writeMem[i]) {

// REMARK: notify mixed indices.
FIFOpush[j][i] = true;
FIFOinp[j][ i ] = (writeMem[i], i , adrBus[i ], dataBus[i]) ;

}
}

}

}
||
for(j = 0 .. ProcessCount−1) do || { // FIFO

always {
if(FIFOisfull[j ][ i ]) {

emit(someFIFOfull[i]);
}

}
||
fifo : FIFO(FIFOpop[i][j], FIFOpush[i][j], FIFOisempty[i][j ],

FIFOisfull[ i ][ j ], FIFOinp[i][j ], FIFOoutp[i][j ]) ;
}
||
always { // Arbiter (Simply choose from N components)

let(o1 = oracle[i ]) {
//choose(o1 = 0 .. ProcessCount−1) {

if(!FIFOisempty[i][o1]) {
memIn[i] = (true, FIFOoutp[i][o1]);
emit(FIFOpop[i][o1]);

}
//}
}

}
||
memunit: MemUnit(memIn[i], readResult[i]);
||
always { // returns memory unit read result to connected process

if(readResult[i ].0) {
emit(doneMem[i]);
dataBus[i] = readResult[i ].2;

}
}

}
}

C.2.5. Cache consistency Reference Machine

package Architecture.ConsistencyModels.RefCache;

import Architecture.ConsistencyModels.Structure.FIFO;
import Architecture.ConsistencyModels.Structure.MemUnitSingleCell;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module RefCache(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
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event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,

// processor terminated flags
[ProcessCount] bool ?terminated,

// oracle (replacement for choose)
event [MemSize] nat{ProcessCount} ?oracle

) {
// FIFO

event [MemSize][ProcessCount] bool FIFOpop;
event [ProcessCount][MemSize] bool FIFOpush;
event [MemSize][ProcessCount] bool FIFOisempty;
event [ProcessCount][MemSize] bool FIFOisfull;
// input : writeCommand & origin & target & value
event [ProcessCount][MemSize] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOinp;
// output : writeCommand & origin & target & value
event [MemSize][ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOoutp;

event [ProcessCount] bool someFIFOfull;

// Memory Units
// memIn : valid/issue & (writeCommand & origin & target & value)
event [MemSize] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) memIn;
// readResult : valid & origin & value
event [MemSize] (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
always { // Distributor (Split memory cells)

if(reqMem[i] & !someFIFOfull[i]) {
emit(ackMem[i]);
if(writeMem[i]) {

emit(doneMem[i]);
}

FIFOpush[i][adrBus[i]] = true;
FIFOinp[i][adrBus[i ]] = (writeMem[i], i , adrBus[i ], dataBus[i]) ;

}
}
||
for(j = 0 .. MemSize−1) do || {

always {
if(FIFOisfull[i ][ j ]) {

emit(someFIFOfull[i]);
}

}
||
// REMARK: notify mixed indices.
fifo : FIFO(FIFOpop[j][i], FIFOpush[i][j], FIFOisempty[j][i ],

FIFOisfull[ i ][ j ], FIFOinp[i][j ], FIFOoutp[j][i ]) ;
}

}
||
for(i = 0 .. MemSize−1) do || {

always { // Arbiter (Simply choose from M components)
let(o1 = oracle[i ]) {
//choose(o1 = 0 .. ProcessCount−1) {

if(!FIFOisempty[i][o1]) {
memIn[i] = (true, FIFOoutp[i][o1]);
emit(FIFOpop[i][o1]);

}
//}
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}
}
||
memunit: MemUnitSingleCell(memIn[i], readResult[i]);
||
always {

if(readResult[i ].0) {
emit(doneMem[readResult[i].1]);
dataBus[readResult[i ].1] = readResult[i ].2;

}
}

}
}

C.2.6. Causal consistency Reference Machine

package Architecture.ConsistencyModels.RefCausal;

import Architecture.ConsistencyModels.Structure.FIFOwClocks;
import Architecture.ConsistencyModels.Structure.MemUnit;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

macro MaxClock = 127;

module RefCausal(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,

// processor terminated
event [ProcessCount] bool ?terminated,

// oracle (choose replacement)
event [ProcessCount] nat{ProcessCount} ?oracle

) {
// Clocks

[ProcessCount][ProcessCount] nat{MaxClock} clocks;
event [ProcessCount][ProcessCount] nat{MaxClock} tempclocks;
event [ProcessCount] bool clockgreater;

// Dist
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth} * [ProcessCount]nat{MaxClock})) distIn;
event [ProcessCount][ProcessCount−1] (bool * (bool * nat{ProcessCount} * →

nat{MemSize} * bv{DataWidth} * [ProcessCount]nat{MaxClock})) distOut;

// FIFO
event [ProcessCount][ProcessCount−1] bool FIFOpop;
event [ProcessCount][ProcessCount−1] bool FIFOpush;
event [ProcessCount][ProcessCount−1] bool FIFOisempty;
event [ProcessCount][ProcessCount−1] bool FIFOisfull;
// input : writeCommand & target & value
event [ProcessCount][ProcessCount−1] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth} * [ProcessCount]nat{MaxClock}) FIFOinp;
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// output : writeCommand & target & value
event [ProcessCount][ProcessCount−1] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth} * [ProcessCount]nat{MaxClock}) FIFOoutp;

event [ProcessCount] bool someFIFOfull;

// Mem
// input: issue & (writeCommand & target & value)
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) memIn;
event [ProcessCount] (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
always { // Arbiter

//choose(o1 = 0 .. ProcessCount−1) {
let(o1 = oracle[i ]) {

if(o1 == i) { // check for r/w
if(reqMem[i] & !someFIFOfull[i]) {

emit(ackMem[i]);

// pass memory command to memory
memIn[i] = (true, (writeMem[i], i, adrBus[i ], dataBus[i])) ;

if(writeMem[i]) {
emit(doneMem[i]);

for(k = 0 .. ProcessCount−1) {
if(k==i) {

tempclocks[i ][ k] = clocks[ i ][ k]+1;
} else {

tempclocks[i ][ k] = clocks[ i ][ k ];
}

}

// Send write to FIFOs
distIn [ i ] = (true,

(writeMem[i], i , adrBus[i ], dataBus[i ],
tempclocks[i ]) ) ;

next(clocks[i ]) = tempclocks[i];
} else {

// read : await memory response
immediate await(readResult[i].0);

}
}

} else if(o1 != i) { // check FIFO
let(o1m = (o1>=i & o1!=0?o1−1:o1)) {

if(!FIFOisempty[i][o1m]) {
let(clock = FIFOoutp[i][o1m].4) {

// check if operations clock is leq than own clock
for(k = 0 .. ProcessCount−1) {

if(k!=o1) {
if(clock[k] > clocks[ i ][ k]) {

emit(clockgreater[i ]) ;
}

}
}
if(!clockgreater [ i ]) {

emit(FIFOpop[i][o1m]);

// pass memory command to memory
memIn[i] = (true,

(FIFOoutp[i][o1m].0, FIFOoutp[i][o1m].1,
FIFOoutp[i][o1m].2, FIFOoutp[i][o1m].3));

// copy clock origin component to own clock
next(clocks[i ][ o1]) = clock[o1 ];
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}
}

}
}

}
}

}
||
always { // DistBroadcastClockedW

if(distIn[ i ].0) {
for(j = 0 .. ProcessCount−1) {

if(i!=j) {
let(k = (j<=i & i!=0?i−1:i)) {

FIFOinp[j][k] = distIn[ i ].1;
emit(FIFOpush[j][k]);

}
}

}
}

}
||
for(j = 0 .. ProcessCount−2) do || {

fifo : FIFOwClocks(FIFOpop[i][j], FIFOpush[i][j], FIFOisempty[i][j],
FIFOisfull[ i ][ j ], FIFOinp[i][j ], FIFOoutp[i][j ]) ;

if(FIFOisfull[i ][ j ]) {
emit(someFIFOfull[(i>j?j:j+1)]);

}
}
||
memunit: MemUnit(memIn[i], readResult[i]);
||
always { // return read results

if(readResult[i ].0) {
emit(doneMem[i]);
dataBus[i] = readResult[i ].2;

}
}

}
}

C.2.7. Processor consistency Reference Machine

package Architecture.ConsistencyModels.RefProcessor;

import Architecture.ConsistencyModels.Structure.FIFOwClock;
import Architecture.ConsistencyModels.Structure.MemUnit;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

macro MaxClock = 127;

module RefProcessor(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
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event [ProcessCount] bool !doneMem,

// processor terminated
[ProcessCount] bool ?terminated,

// oracle (choose replacement)
event nat{ProcessCount} ?oracle,
event [ProcessCount] nat{MemSize} ?oracles2

) {

// FIFO
event [ProcessCount][MemSize] bool FIFOpop;
event [ProcessCount][MemSize] bool FIFOpush;
event [ProcessCount][MemSize] bool FIFOisempty;
event [ProcessCount][MemSize] bool FIFOisfull;
// input : writeCommand & origin & target & value & clock
event [ProcessCount][MemSize] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth} * nat{MaxClock}) FIFOinp;
// output : writeCommand & origin & target & value & clock
event [ProcessCount][MemSize] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth} * nat{MaxClock}) FIFOoutp;

event [MemSize] bool someFIFOfull;

// Arbiter
[ProcessCount] nat{MaxClock} mainArbiterClocks;
[ProcessCount][ProcessCount] nat{MaxClock} subArbiterClocks;
event [ProcessCount] (bool * (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth})) subArbiterOut;

// Mem
event [ProcessCount] (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

always { // MainArbiter
//choose(oracle = 0 .. ProcessCount−1) {

if(reqMem[oracle]) {
emit(ackMem[oracle]);

let(adr = adrBus[oracle])
let(data = dataBus[oracle])
let(write = writeMem[oracle])
let(read = readMem[oracle])
{

if(write) {
immediate await(!someFIFOfull[adr]);
for(i = 0 .. ProcessCount−1) do || {

FIFOinp[i][adr] =
(true, oracle, adr, data, mainArbiterClocks[oracle]);

emit(FIFOpush[i][adr]);
}
emit(doneMem[oracle]);
next(mainArbiterClocks[oracle]) = mainArbiterClocks[oracle]+1;

} else if(read) {
immediate await(!FIFOisfull[oracle][adr]);
FIFOinp[oracle][adr] =

(false, oracle, adr, data, mainArbiterClocks[oracle]);
emit(FIFOpush[oracle][adr]);

}
}

}
//}

}
||
for(i = 0 .. ProcessCount−1) do || {

for(j = 0 .. MemSize−1) do || {
fifo : FIFOwClock(FIFOpop[i][j], FIFOpush[i][j], FIFOisempty[i][j],
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FIFOisfull[ i ][ j ], FIFOinp[i][j ], FIFOoutp[i][j ]) ;
||
always {

if(FIFOisfull[i ][ j ]) {
emit(someFIFOfull[j]);

}
}

}
||
always { // SubArbiter

//choose(oracle2 = 0 .. ProcessCount−1) {
let(oracle2 = oracles2[ i ])
let(entry = FIFOoutp[i][oracle2])
if(!FIFOisempty[i][oracle2]) {

if(entry.0) { // write
if(subArbiterClocks[i][entry .1] == entry.4) {

subArbiterOut[i] = (true, (entry.0,entry .1, entry .2, entry.3)) ;
emit(FIFOpop[i][oracle2]);
next(subArbiterClocks[i][entry .1]) =

subArbiterClocks[i ][ entry.1]+1;
}

} else { // read
subArbiterOut[i] = (true, (entry.0,entry .1, entry .2, entry.3)) ;
emit(FIFOpop[i][oracle2]);

}
}

//}
}
||
memunit: MemUnit(subArbiterOut[i], readResult[i]);
||
always {

if(readResult[i ].0) {
emit(doneMem[i]);
dataBus[i] = readResult[i ].2;

}
}

}
}

C.2.8. Partial store ordering Reference Machine

package Architecture.ConsistencyModels.RefPSO;

import Architecture.ConsistencyModels.Structure.MemUnit;
import Architecture.ConsistencyModels.Structure.FIFOwReadForwarding;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module RefPSO(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,
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// processor terminated
[ProcessCount] bool ?terminated,

// oracle (choose replacement)
event nat{ProcessCount+1} ?oracle,
event nat{MemSize+1} ?oracle2

) {
// FIFOwReadForwarding interface variables

event [ProcessCount][MemSize] bool FIFOpop;
event [ProcessCount][MemSize] bool FIFOpush;
event [ProcessCount][MemSize] bool FIFOisempty;
event [ProcessCount][MemSize] bool FIFOisfull;
// input : writeCommand & target & value
event [ProcessCount][MemSize] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOinp;
// output : writeCommand & target & value
event [ProcessCount][MemSize] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOoutp;

// readIn : valid & address
event [ProcessCount][MemSize] (bool * nat{MemSize}) FIFOreadIn;
// readOut : success & value
event [ProcessCount][MemSize] (bool * bv{DataWidth}) FIFOreadOut;

// Arbiter variables
// arbiterSelection : process which may proceed | arbiterSelection == ProcessCount →

means idle
nat{ProcessCount+1} arbiterSelection;
// arbiterBufferSelection : process ’ buffer which may write back | →

arbiterBufferSelection == MemSize means Read
nat{MemSize+1} arbiterBufferSelection;

// Mem interface variables
// memIn : valid/issue & (writeCommand & target & value)
event (bool * (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth})) memIn;
// readResult : valid & issuer & value)
event (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
always { // StoreBuffer

if(reqMem[i]) {
emit(ackMem[i]);

if(writeMem[i]) { // write operation
immediate await(!FIFOisfull[i][adrBus[i]]);
FIFOinp[i][adrBus[i ]] = (true, i, adrBus[i ], dataBus[i]) ;
emit(FIFOpush[i][adrBus[i]]);
emit(doneMem[i]);

}

if(readMem[i]) { // read operation
FIFOreadIn[i][adrBus[i ]] = (true, adrBus[i]);
if(FIFOreadOut[i][adrBus[i]].0) {

dataBus[i] = FIFOreadOut[i][adrBus[i]].1;
emit(doneMem[i]);

} else {
immediate await(arbiterSelection == i

& arbiterBufferSelection == MemSize);
memIn = (true, (false, i, adrBus[i], dataBus[i]));

}
}

}
}
||
always { // StoreBuffer write back / flush

if(arbiterSelection == i & arbiterBufferSelection<MemSize) {

126



C.2. Reference Machines

if(!FIFOisempty[i][arbiterBufferSelection ]) {
memIn = (true, (true, i, arbiterBufferSelection,

FIFOoutp[i][ arbiterBufferSelection ].3) ) ;
}

}
}
||
for(j = 0 .. MemSize−1) do || {

fifo : FIFOwReadForwarding(FIFOpop[i][j], FIFOpush[i][j], FIFOisempty[i][j],
FIFOisfull[ i ][ j ], FIFOinp[i][j ], FIFOoutp[i][j ],
FIFOreadIn[i][j ], FIFOreadOut[i][j]);

}
}
||
always { // Arbiter

//choose(oracle = 0 .. ProcessCount) {
arbiterSelection = oracle;

//}
//choose(oracle = 0 .. ProcessCount) {

arbiterBufferSelection = oracle2;
//}

}
||
memunit: MemUnit(memIn, readResult);
||
always { // Distribute Completed Read Operations to the corresponding process

if(readResult.0) {
dataBus[readResult.1] = readResult.2;
emit(doneMem[readResult.1]);

}
}

}

C.2.9. Total store ordering Reference Machine

package Architecture.ConsistencyModels.RefTSO;

import Architecture.ConsistencyModels.Structure.MemUnit;
import Architecture.ConsistencyModels.Structure.FIFOwReadForwarding;

macro DataWidth = 8;
macro MemSize = 8;

macro ProcessCount = 3;

module RefTSO(
// address for memory access
event [ProcessCount] nat{MemSize} ?adrBus,
// data for memory access
event [ProcessCount] bv{DataWidth} dataBus,
// whether data is read or written to memory
event [ProcessCount] bool ?readMem,
event [ProcessCount] bool ?writeMem,
// signals for memory transaction
event [ProcessCount] bool ?reqMem,
event [ProcessCount] bool ackMem,
event [ProcessCount] bool !doneMem,

// processor terminated
[ProcessCount] bool ?terminated,

// oracle (choose replacement)
event nat{ProcessCount+1} ?oracle,
event bool ?oracle2

) {
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// FIFOwReadForwarding interface variables
event [ProcessCount] bool FIFOpop;
event [ProcessCount] bool FIFOpush;
event [ProcessCount] bool FIFOisempty;
event [ProcessCount] bool FIFOisfull;
// input : writeCommand & target & value
event [ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOinp;
// output : writeCommand & target & value
event [ProcessCount] (bool * nat{ProcessCount} * nat{MemSize} * →

bv{DataWidth}) FIFOoutp;

// readIn : valid & address
event [ProcessCount] (bool * nat{MemSize}) FIFOreadIn;
// readOut : success & value
event [ProcessCount] (bool * bv{DataWidth}) FIFOreadOut;

// Arbiter variables
// arbiterSelection : process which may proceed

// | arbiterSelection == ProcessCount means idle
nat{ProcessCount+1} arbiterSelection;
// arbiterReadInsteadOfWb: should process read or do a WB
bool arbiterReadInsteadOfWb;

// Mem interface variables
// memIn : valid/issue & (writeCommand & target & value)
event (bool * (bool * nat{ProcessCount} * nat{MemSize} * bv{DataWidth})) memIn;
// readResult : valid & issuer & value)
event (bool * nat{ProcessCount} * bv{DataWidth}) readResult;

for(i = 0 .. ProcessCount−1) do || {
always { // StoreBuffer insert or read

if(reqMem[i]) {
emit(ackMem[i]);

if(writeMem[i]) { // write operation
immediate await(!FIFOisfull[i]);
FIFOinp[i] = (true, i, adrBus[i ], dataBus[i]) ;
emit(FIFOpush[i]);
emit(doneMem[i]);

}

if(readMem[i]) { // read operation
FIFOreadIn[i] = (true, adrBus[i]);
if(FIFOreadOut[i].0) {

dataBus[i] = FIFOreadOut[i].1;
emit(doneMem[i]);

} else {
immediate await((arbiterSelection == i) & arbiterReadInsteadOfWb);
memIn = (true, (false, i, adrBus[i], dataBus[i]));

}
}

}
}
||
always { // StoreBuffer write back / flush

immediate await(arbiterSelection == i & !arbiterReadInsteadOfWb
& !FIFOisempty[i]);

memIn = (true, (true, i, FIFOoutp[i].2, FIFOoutp[i].3));
}
||
fifo : FIFOwReadForwarding(FIFOpop[i], FIFOpush[i], FIFOisempty[i],

FIFOisfull[ i ], FIFOinp[i], FIFOoutp[i], FIFOreadIn[i], →
FIFOreadOut[i]);

}
||
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always { // Arbiter
//choose(oracle = 0 .. ProcessCount) {

arbiterSelection = oracle;
//}

//choose {
// arbiterReadInsteadOfWb = true;
//} else {
// arbiterReadInsteadOfWb = false;
//}
arbiterReadInsteadOfWb = oracle2;

}
||
memunit: MemUnit(memIn, readResult);
||
always { // Distribute Completed Read Operations to the corresponding process

if(readResult.0) {
dataBus[readResult.1] = readResult.2;
emit(doneMem[readResult.1]);

}
}

}
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