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Abstract

This paper is devoted to the mathematical description of the solu-
tion of the so—called rainflow reconstruction problem, i.e. the problem
of constructing a time series with an a priori given rainflow matrix.

The algorithm we present is mathematically exact in the sense that
no approximations or heuristics are involved. Furthermore it gener-
ates an uniform distribution of all possible reconstructions and thus an
optimal randomization of the reconstructed series. The algorithm is
a genuine on—line scheme. It is easy adjustable to all variants of rain-
flow such as symmetric and asymmetric versions and different residue
techniques.

1 Introduction

The estimation of the lifetime of a developed part in industry has to include
both physical tests and the application of numerical tools. On one hand the
results of calculations just based on the theory and algorithms which are
known today are not reliable enough if they are used as the only test. On
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the other hand physical tests for any part in any stage of development are
much too expensive.

What is the typical reason for the failure of a part in a car? The parts
are usually not destroyed by one large load, but by the accumulation of the
energy dissipated by many (typically several millions) hysteresis loops. It
is assumed that the damage of a loop is rate-independent. This means the
frequency of the oscillations is not taken into account. The damage induced
by the individual loops is accumulated using Miner’s rule. (see [13])

It is well known, both from practical experience and from theoretical rea-
soning, that rate-independent, range—oriented “counting methods” are the
right approach to fatigue oriented analysis of time series. Such methods cap-
ture the relevant aspects of elasto—plastic loading much better than e.g. the
common schemes of classical mathematical spectral analysis.

It should be mentioned that the motivation for data reduction schemes in
fatigue analysis is not just the reduction of data (in the sense of storage
saving) as suggested by the direct meaning of the word. The main point,
however, is the concentration on the relevant information by an intelligent
filtering, i.e. by omitting the immense mass of data, having no effect on
damage accumulation. This allows both, an effective modular use of modern
numerical damage evaluation techniques and the reorganization of test drive
data for test stand experiments. For the latter it is most desirable that
manipulations like superposition and extrapolation can be performed directly
on the reduced data-sets, and it is absolutely essential that a stochastic on—
line reconstruction of a time series with given reduced data—sets is possible.

The enormous practical impact of such methods, especially in the automotive
industry, is discussed in [9] and [8].

From the point of view of damage analysis it is well accepted that the
rainflow method is the optimal rate-independent data-reduction scheme for
one—dimensional load histories (compare e.g. [14]). This is mainly due to
the fact that the rainflow method counts the nested hysteresis loops in the
stress—strain diagram. More generally, rainflow captures all the complicated
material memory mechanisms of hysteretic material laws (like Masing plus
memory hypotheses).

Furthermore there are strong arguments in favor of rainflow from a prac-
tical point of view: All important one—parameter counting methods, like
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range—pair, level crossing and the various peak countings are sub—schemes
of rainflow. Thus all the practical experience connected with those schemes
can be used in rainflow—based analysis.

In spite of all these arguments, in signal generation and simulation there
is still much preference for Markov simulation or spectral schemes. A very
popular mixture between both is the Kowalewski (so—called Gauss—) process,
a special Markov simulation controlled by a one-dimensional irregularity pa-
rameter representing special spectral information (compare [11]). We are
convinced that this is just due to the fact, that rainflow based reconstruction
or simulation algorithms are not well enough understood; indeed, they are
conceptionally harder and look a little bit more complicated than Markov or
Gauss simulations.

The rainflow reconstruction algorithm presented here is very easy to use and
yet has no disadvantage against Markov simulation, e.g., in performance and
reliability. It is mathematically exact in the sense that there are no approx-
imative or heuristic arguments used. Furthermore it is statistically correct
in the sense that no artificial systematics are involved in the reconstructed
series. Therefore, the reconstructed signals are perfectly randomized and are
hardly distinguishable by appearance from original test drive data.

The fact that a method with the described benefits is available since 1985
(see [12]) seems to be not well known in the international community. The
algorithm here presented can be seen as both a refinement and a conceptional
and didactical reorganization of the classical KSBP-algorithm. By this we
hope to make this valuable tool more transparent.

2 Rate—-independence and turning points

As mentioned in the introduction a well established assumption to the process
of fatigue is that it is rate-independent.

Mathematically spoken, the damage is a functional on the set of loading
functions. We assume that a loading function

s:[0,T] — R

is piecewise monotone. This means there exists a subdivision 0 = #; <
t; < -+ < t, = T such that the restriction of s on any interval [¢;,¢;11]
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is monotone. In this case we call (Zg,t1,...,{x) a monotonicity division of

[0, 7).

Definition 2.1 (i) Let us denote by M,,,(]0,T]) the class of all piecewise
monotone functions on [0,7

(i) Let s € My,([0,T]) and (to,t1,...,tn) be a minimal monotonicity
division of [0,T]. Then we call (s(to),s(t1),...,s(tn)) the string of

turning points of s

(tii) A transformation ¢ : [0,T] — [0,T] is called monotonicity preserving
:= ¢ is monotone increasing, ¢(0) =0 and ¢(T) =T

(tv) A functional D on M,,,([0,T]) is called rate—independent :=
For any s € M,,,([0,T]) and any monotonicity preserving ¢, it holds
D(s) = D(s 0 6)
It is an immediate consequence, that:

Lemma 2.1 Let s € M,,,.([0,T]) and (to,t1,...,tn) be a matching mono-
tonicity division of [0,T]. Let D be rate—independent, then

D(s) = D(3)
for any 5 € M, ([0,T)), with 5(t;,) = s(t;), for all i = 0,...,N and
(to,t1,...,1N) a monotonicity division of §

This implies we can define any rate-independent functional as a functional
on the set of turning points.

This concept gives us the first part of data reduction. We just need the string
of turning points.

3 Rainflow counting — a brief survey

The first definition by Endo 1968 [10] used heuristic rain—flow models and
thus gave the name to the method. Independently, in 1969 de Jonge [5] de-
veloped the equivalent range—pair-range method. Since then a lot of further
variants and points of view on Rainflow have been presented.
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Clormann and Seeger [4] suggest an on-line counting, which carefully includes
the Masing plus memory hysteresis material behavior. Rychlik’s off-line
definition [15] is motivated by the stochastic process aspect, and is well suited
to handle transition probabilities on the basis of rainflow. The hysteresis loop
counting [1],[7], [2], based on the two—parameter distribution of the rainflow
density, is especially useful for multi-axial generalizations.

From an algorithmic point of view, a very effective on—line counting is the so—
called “4-point”-counting , as presented in [12] and briefly sketched below:

1 2 3 456
1 1

P N W b~ 00O

Figure 1:The J—point counting algorithm: The loops are found
in the ordering of the numbers. In the case of loops 4 and 5 the
loops are nested. First the small loop 4 is found, then the large
one 5. The loops are classified and counted in the rainflow matric

RFEM (e.g. loop 7 is counted in (4,3)).

backward residue

forward residue

Figure 2: The resulting residue: The first part represents the
forward residue (future determining). The remainder is the back-
ward residue (representing the history).

Let (so,...,sm) be a string of turning points of a loading signal. M must be
larger than 3, such that hysteresis loops can occur. The values s; are usually

classified such that s; € {1,..., N}
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The algorithm works with the last four points of an actual residue (res(¢), res({—
1),res({—2),res({—3)). We know that the inner points res(¢{—2),res({—1)
build up a hysteresis loop if they are contained in the interval spanned by

the left and right value res(¢ — 3) and res(().

We give the algorithm in pseudo code, the notation [a, b] means the convex
hull of @ and b, i.e the interval [a, ] if @ < b and the interval [b, | if b < a.

Initialization
repeat ongoing loop
repeat backtracking loop

if [res(¢ — 2),res({ — 1)] C [res(¢ — 3),res({)] then
Add loop to rainflow matriz

Delete loop from actual residue
until no loop found or less than four points in the actual

residue
if no loop found then
take next turning point if there is any and add it to the

actual residue
if less than four points in the actual residue then

fill actual residue with turning points if possible

until there are no more turning points

At the end of the process we have got both, the rainflow matrix and the
residue. This residue consists of a strictly increasing part — the forward
residue — and of a decreasing part — the backward residue (see Fig. 2). This
splitting of the residue will be of importance for the on-line reconstruction
algorithm.

The last approach to be mentioned here is the so—called memory definition
[2], which is a dimension-free description from a mathematical/mechanical
point of view.

We find the hysteresis loops if we follow the trajectory in the plane of our
measured loading and a depending value. For example if we measured the
local strain, the depending value may be the stress. From the mechanical
point of view we consider the dependency to follow the Masing plus memory
laws.
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This process can also be considered as an special operator on the set M,,,,([0,7'])
called Preisach hysteresis operator (see [3] for a rigorous definition). Here we
have a clear concept of memory:

Let W : M,,.([0,7]) — M, (][0, T]) be a hysteresis operator of Preisach
type and let & = W(e). Then usually the value of o at any time ¢ € (0,7)
does not only depend on €(¢) but also on the history €|4. Memory at the
time ¢ is all one has to know about elj4 to uniquely determine & | ) from
elge.17-

In other words: The memory is all one has to know about the past to uniquely
determine the future output by the future input. It turns out that the back-
ward rainflow residue of €| is a coding for the memory. We see from the
algorithm that whenever a hysteresis loop occurs, it is deleted from the ac-
tual residue. In that sense we can say, that rainflow counting is equivalent
to the rule: “Look at the memory (i.e. the backward residue) of €ljq. Ast
increases, count whatever the memory forgets.”

All the counting methods mentioned here are basically equivalent up to some
slight variations regarding the treatment of the residual part. All methods
allow both symmetric and asymmetric versions, i.e. the choice of whether to
distinguish between hanging and standing hysteresis loops of the same range
and amplitude.

4 Rainflow reconstruction — general scope
and results

The basic problem is the following: Given a rainflow matrix and its residue,
find a time signal, whose rainflow counting gives exactly the prescribed rain-
flow data. We saw in the section on rate-independence, that it is equivalent
to find a string of turning points leading to this rainflow data. Finding any
such time signal is what we call a mathematically exact reconstruction.

The importance of a mathematically sound treatment of this question is
emphasized by the examples displayed in Fig. 3. If one develops a recon-
struction algorithm without understanding of the combinatorial distribution
of the possible strings of turning points (compare the following section) one is
very likely to produce signals with undesired systematics like the ones shown
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here.

Original
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Figure 3: FExamples of possible rainflow reconstructions with
undesired systematics

The reconstruction algorithm presented in this paper involves a randomiza-
tion procedure, which uses a complete mathematical analysis of the combina-
torial distribution of all possible reconstructions. Among many more useful
things, this analysis allows to calculate the number of all possible correct
reconstructions out of a given rainflow matrix a priori by an explicit factorial
formula. Even for matrices with very few (i.e. short signals) this number
becomes astronomically large.

The practical consequence of the combinatorial analysis and of the resulting
randomization procedure is, that the reconstruction produces perfectly non—
systematic sequences as shown in Fig. 4:
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Figure 4: Randomized rainflow reconstructions

5 Mathematical description of the reconstruc-
tion algorithm

For didactic reasons, we split up our description of the general reconstruc-
tion algorithm in three steps: First we explain the principles of the rainflow
reconstruction in the form of an off-line algorithm. Then we show how the
resulting non—systematic combinatorial cycle distribution can be generated
in an on—line algorithm for symmetric rainflow. Some specific problems re-
garding the asymmetric version are discussed in the final section.

5.1 Rainflow reconstruction — off-line

Suppose an N—class rainflow matrix RFM (symmetric or asymmetric) with a
consistent residue RES are given. We want to construct a string of turning
points s.
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In the discussion of the rain flow method we have seen, that in the case of
nested loops first the small loops are found then the larger ones. In the case
of reconstruction we have to proceed the other way round. It is clear that
large loops can not be nested in small ones but small loops can be nested in
appropriate large ones.

A closer look on the structure of the rainflow matrix shows that we can
distinguish between larger and smaller loops by their place in the RFM. The
modulus of the difference between column and row index gives the amplitude
of the loop. Hence we find loops of the same amplitude at the same sub-
diagonal of RFM and small loops are found near to the main diagonal while
the large one are far away from it.

We set s initially to RES and start with the original RFM
repeat
Insert all loops in RFM with mazimal amplitude into s. Find-
ing the loops with maximal amplitude means look for the first

sub—diagonal with nonzero entries.
0/0|0

(1o

0

0
0|0
0|00

Figure 5: The loop belongs to the loops with the
largest amplitude in this example RFM.
In general there are various possible resulting strings, such
as:

or \ /

Figure 6: Here there are two possibilities to insert
the loop.

Select one of them at random and set s to this one

Delete the loops from RFM
until RFM is empty
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Why does it work at all? This simple algorithm produces a correct rain-
flow reconstruction, i.e. a turning point sequence, whose rainflow counting is
exactly the initial (RFM, RES). This result is independent of the probability
distribution underlying the random choice.

We have seen in the previous section that the rainflow algorithm counts out
closed hysteresis loops. These loops may develop directly from the residue-
curve, but may also be nested in other loops. Since we reinsert full loops in
our algorithm their rainflow count is the same set of loops. The problem that
could occur is that there are loops which can not be inserted anymore. This
is the reason for first inserting the loops with the larger amplitudes before
the loops of smaller amplitude.

Observation: Inserting a rainflow loop into a turning point sequence does
not affect the possibility to insert any loop of equal or smaller amplitude
afterwards. Hence if there was a possibility to insert it (and there must have
been one, since the loop was counted from the original signal) then there is
still this possibility after the insertion of the large loops. In contrast, a too
early insert of a “small” loop, like

Figure 7: A small loop inserted

destroys possibilities to build in larger ones later on:

\/ + —_— impossible

Figure 8: Now we can’t insert this larger loop which could have
been inserted before.
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We summarize the result of this observation in

Lemma 5.1 Strictly proceeding from large to smaller amplitudes in the above
off-line algorithm guarantees a correct reconstruction.

How to choose the sequences? If one is content with the result so far,
one has a reconstruction, but one can not avoid to have undesired systematics
in the resulting sequences. With just heuristic randomization, one is very
likely to produce series like those in Fig. 3. The following lemmata show how
the random choice has to be done in order to produce an uniform distribution
in the set of possible reconstructions. This guarantees perfectly randomized
results as shown in Fig. 4.

Lemma 5.2 Let REM,RES be a symmetric rainflow count with classes 1,..., N
and i < j two classes. and let s be any string of turning points that represents
the residue enlarged by all loops with amplitude larger than |7 — 1|

(i) The number of possibilities P(z,7) to insert an loop (1, j) into the string
s, s a function of the original RFM and RES and thus a priori known:

i-1 N
Pij) = 23 Y RFM(k,0)
k=1/{=35+1
N i—1
+ > RFM(i,¢) + > RFM(j,0)
l=7+1 =1

+ #{kl[i.j] C [RES(k), RES(k + 1)]}

where [a, b] denotes the interval [a,b] if a < b resp. the interval [b, a] if
b < a and #M the cardinality of the set M.

(i1) The number K(i,7) of different resulting sequences after inserting all
oscillations (i,7) ts a combinatorial function of P(i,j) and RFM(z, j)
and thus also known a priori:

o P(:,7) + RFM(z,7) — 1
K(Z7j):< ( J)RFM(Z"E')J) )
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Proof:

Consider a loop (¢, 7) with ¢ < j . In the symmetric case inserting
a loop (k, () with k < £ from RFM increases the possible positions
for (¢,7) by two, if k <t < j <l and by one, if k =i < j </
or k <t < j=/{ If weadd the possible positions in the residual
we achieve the formula for P(¢,7). The formula for K(z,j) is
achieved by standard combinatorics. a

Remark: In the asymmetric case the same type of argument holds. How-
ever, the consideration of the orientation of the loops leads to slight modifi-
cations of the formula for P(7,j). We have to distinguish between hanging
loops (these are loops that start on an increasing branch) and standing loops.
Since hanging loops are decreasing in the beginning and we classify using the
opening part of the loop here 7 is larger than j.

We get for z > j:

i—-1 N N g
P(i,j) = Y Y REM(k.0)+ 3 > RFM(k,()
k=11{=j k=i+1 ¢=1

+ #{ve{l,...,M—1}|RES, < j,RES,;; >}

and for ¢ < j:
i-1 N N i
P() = Y REM(LO 4 3 STREM(E ()
k=1 {=j k=j7+1 £=1

+ #{ve{l,...,M —1}RES, > j,RES,+; < i}

The other formulae hold in the asymmetric as in the symmetric case.

Now we know how many possible positions for one loop (7,j) we have. We
have to fix one of these positions for each of the RFM(¢,7) loops by our
randomization process. To choose it we need the probability distribution for
the process.
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Lemma 5.3 Let us consider the same situation as in Lemma (5.2) and let
ke {0,1,...,RFM(7,5)}. Let the probability to insert k loops (,7) into one
of the P (i,j) positions be

P(i,j) + RFM(z,5) — k — 2 )
RFM(3,j) — k

( P(i,j) + RFM(i,5) — 1 )
RFM(3, 5)

Wij(k) = (

Then each possible constellation resulting after inserting all RFM(z, j) ele-
ments with size |j — t| will be created with equal probability.

Proof:

Let S > 2 loops of type (7, ) be given. Furthermore let us con-
sider any turning point sequence, whose rainflow counting con-
tains no elements with amplitude smaller than |7 —i|. Let P > 2
be the number of possible positions for inserting a loop (¢, 7) into
that sequence.

Now the decision to put £ € {0,1,...,5 — 1} loops into one
particular position leaves

((P—l);(_Sk—k)—l)

possibilities to distribute the other loops among the other posi-
tions. Thus the distribution

S—k
P+5—-1
S

yields each possibly resulting sequence with equal probability. O

_ (P—I—S—k—:z)
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Combining the results so far, we have :

Theorem 5.4 The number Z of all possible reconstructions factorizes into

Z =1]X(.j)

0]

The reconstruction algorithm with random choice according to Lemma (5.3)
yields each of them with equal probability.

5.2 Rainflow reconstruction — on—line symmetric

The basic idea of the on—line reconstruction is to invert the rainflow counting
according to the memory definition described at the end of section 3. We
start with the given forward residue.

Figure 9: Our example forward residue contains the classes 7 4

9 and 3.

This forward residue tells where to go, i.e. which levels have to be reached
and in which order, i.e. whether the first (next) visit of level i has to occur
before or after that of level j.

In particular the first grid step (in our example: 7 — 6) is uniquely deter-
mined. So we can save the actual first value (here: 7) as the first (next) value
of the signal in construction. Our new actual forward residue now starts with
the new grid value (here: 6)

After the first step (here 7 +— 6), there are various possible new forward
residues, which are consistent with the available information, here:
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or : or \

m 6 4 9 3 me (@) 4 9 3 M6 GN4 9 3

Figure 10: In this example are sketched some of the possible
new forward residues. Of course one possibility is that nothing
happens (leftmost picture), In the middle and right picture we
inserted the loops (6,7) and (5,7). There are other possibilities

with loops going to level 8.

The second and third version in the example are only possible, if RFM(6,7)
and RFM(5,7) are not zero.

How to select a new forward residue? We have to remember the prob-

abilities from Lemma (5.3). If we are in the situation that the first step in

our forward residue is from level ¢ to level j.

Figure 11: We sketched all possible insertions. The variable X
gtves the amplitude of the next inserted loop and A = |5 — | the

mazimal possible amplitude to be inserted.
We can calculate the possibility that there is a loop with amplitude k& as:

RFM(i,i+k)
wi= > Wii(l)=1—W;i(0)
=1
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If we want to calculate the probability that the next step has amplitude £k,
we have to exclude that there are smaller loops before. Hence the probability
the the next step is given by a loop with amplitude & must be calculated as

PX=Fk) = we(l —wp_q)---(1 —wy) forallke{2,...,A-1}

PX=1) = w and
PX=0) = (1 —-wsq) (1 —wy)

=

=

Here A denote the maximal possible amplitude, i.e. |; —i|. The value for
X = 0 gives the possibility that no loop is inserted in between.

We can summarize in the following theorem

Theorem 5.5 Let RES(1) =i, RES(2) = j. If we choose the “new future”
after the step i — 1+1 among the A = |j—1| possibilities with the probabilities
P(X), then all possible reconstructions are produced with equal probability.

This leads to the algorithm:

Start with the given forward residue RES
repeat

do the first step which is induced by the residue: RES(1) +
sgn(RES(2) — RES(1))
Choose one of the new possible forward residues using the
probability distribution P(X).
Delete the inserted loop from the REM

until RFM empty

5.3 Rainflow reconstruction — on—line asymmetric

In the off-line situation there is no principle difference between symmetric
and asymmetric rainflow reconstruction. In fact, the only technical difference
are the formulae in lemma (5.2) and the remark that follows this lemma.

In the on-line situation, however, one has to deal with the following funda-
mental problem: In contrast to symmetric rainflow, the asymmetric counting
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depends on the orientation of time. Since the reconstruction procedure de-
scribed in section 5.2 involves the orientation of time in form of the local
forward residues, one runs into the following problem.

The orientation of a loop as it appears in the “forward residue inserting
mechanism” of Theorem (5.5)

I

A=

\
\

—

Figure 12: The loop is inserted as a hanging loop.

may differ from the resulting (counting) orientation,

Figure 13: but is counted as a standing loop.

depending on the previous time history. Hence in the asymmetric situation
we have to consider part of the actual backward residue, too. The situation
depends also on the orientation of the inserted loop. In the example in the
figures above, we insert a hanging loop (¢,7), which is counted with ¢ > j.
In the example we visited a level larger than : after the last visit of a level
smaller than j. If we denote by S := sgn(: — j) the orientation of the loop
and by first/last(k) the the time of the first/last visit of the level k, we can
characterize this situation (also in the situation that ¢ < j) by

last(z + .5) > last(j — )
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In the case that a level smaller than j was visited after the last visit of a
level larger than j this situation is impossible. The only case we have still
to take into account is if none of the enclosing levels has been visited in the
actual past. We can characterize this situation by

last(z + 5) = last(j — S) =0

Here we have to consider the levels ¢+ and j themselves. In fact the first
situation describes the nesting of hysteresis loops now the loop is inserted
directly into the forward residue and hence we have to consider the first visits
of the levels:

Figure 15: But here it must be counted as a standing loop.

We can characterize the latter (wrong) situation in terms of first:

0 < first(¢) < first(y)

This leads to the result
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Theorem 5.6 If we omit the situations

last(1 + 5) > last(y — S5) and
last(1 +5) = last(yj —S) =0 and 0 < first(z) < first(y),

then our asymmetric reconstruction using the formulae of the remark to
lemma (5.2) has the correct asymmetric rainflow count and yields any possi-
ble reconstruction with the same probability

This description allows to take care of the very special needs of the asym-
metric situation by a straightforward technical modification of the symmetric
on-line reconstruction algorithm.
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