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Introduction

The k-th cohomology group of any smooth projective variety X admits a so-called Hodge
decomposition
HMX,Z)®,C=H"X,C)= @ HIX,0K).
p+q=k

Hodge theory axiomatizes this via Hodge structures of weight k. More precisely, such a Hodge
structure is given by a free abelian group Hy, a certainly decreasingly filtered complex vector
space (H, F'*) and an isomorphism Hy, ®7 C = H. Setting HPY := FPH N F'1H, we obtain
a Hodge decomposition H = @p +q—k 7" as above. The advantage of endowing H with
a filtration instead of a graduation is that the filtration is compatible with families of smooth
projective varieties, which led to the introduction of variations of Hodge structure: Replacing
Hy by alocal system Hyz on the complex manifold X and H by a holomorphic vector bundle
‘H on X with integrable connection satisfying in particular H = Hy ®7 Ox, gives the notion
of a variation of Hodge structure on X [Gri68] [Gri69]. Deligne extended Hodge structures
to mixed Hodge structures to remedy the issue that cohomology groups of singular and non-
projective varieties do in general not permit a Hodge decomposition [Del71] [Del74]. A mixed
Hodge structure consists essentially of the same data as a Hodge structure and an additional
so-called weight filtration W, on Hy, ®z Q such that, roughly speaking, the k-th graded part
with respect to W, admits a Hodge structure of weight k.

Considering the filtration Fy by the order of differential operators on a sheaf of differential
operators D, Saito generalized variations of Hodge structure to mixed Hodge modules by
combining Hodge theory with well-filtered holonomic F, D-modules to deal with families
of general varieties [Sai88] [Sai90]: Notice that a D-module already implicitly appears in
a variation of Hodge structure as an integrable connection on a holomorphic vector bundle
imposes a D-module structure on that bundle. Pure Hodge modules (of weight k) on the
complex manifold X play the role of Hodge structures, where a regular holonomic D x-module
M with a good Fy D x -filtration Fo M, called Hodge filtration, replaces H, instead of Hy, we
consider a Q-perverse sheaf K and the corresponding isomorphism is replaced by a quasi-
isomorphism DR(M) = K ®g C. The precise definition of these Hodge modules is very
involved and by induction on the dimension of the support of the Hodge module. The most
basic example of a pure Hodge module is Ox with a one-step filtration together with the
perverse sheaf Q y [dim X|. Considering additionally to (M, F,, K) a weight filtration W, on
M subject to the requirement that the k-th graded part with respect to W, is, roughly speaking,
a pure Hodge module of weight k£ and using again some recursive definition, gives the notion
of a mixed Hodge module. The category MHM (X) of mixed Hodge modules on an algebraic
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variety X is abelian and therefore permits a derived category. A key feature of mixed Hodge
modules is that they obey the same six-functor formalism as perverse sheaves:

Theorem. [Sai90, Theorem 0.1] Let X be an algebraic variety. We have natural functors
T S U, ®,1,D,X,® and Hom between D MHM(X) the derived categories of
mixed Hodge modules, such that these functors are compatible with the corresponding functors
on the underlying Q-complexes via

real

rat : D MHM(X) — D’ Perv(Qy) —= D%(Qy),
where f is a morphism of algebraic varieties and g € T'(X, Ox).

These functors also commute with the forgetful functor assigning a (complex of) mixed
Hodge module(s) the underlying (complex of) D-module(s), called Hodge D-module.* Hence
we think in this thesis of mixed Hodge modules as a special class of filtered F, D-modules
having good properties. The construction of many of these functors in the filtered setting
strongly relies on a third natural filtration on Hodge D-modules, the so-called V -filtration,
which behaves by definition of Hodge D-modules "well" with respect to the Hodge filtration.

The main result of this thesis is an algorithm for the V -filtration in the filtered setting.

While some of the above functors, such as the exterior direct product X, are defined in anal-
ogy with the corresponding definition for (filtered) D-modules and their D-module theoretic
computation (see [OT01]) is adaptable to filtered Hodge D-modules, the construction of other
functors differs completely from the D-module theoretic construction; thus also requiring dif-
ferent algorithmic methods. For example, Saito uses a Beilinson-type resolution to reduce the
definition of the direct images f; and f; to quasi-projective morphisms and shows that it suf-
fices to define the cohomological ones ' f, and H'f;. Then he factorizes f = f o j with f
projective and j an open embedding whose complement is a locally principal divisor and sets
Hify = (H'f})jy and H' fi :== (H'f1)ji. Considering such an embedding j : U < X with
complement X, we have for instance j; Oy = Ox (xXy). If the divisor X is smooth, then
the Hodge filtration Fo, Ox (xX() simply agrees with a pole order filtration [Sai93]. Yet in
general, we have only an inclusion and the construction of the Hodge filtration involves taking
into account the V -filtration.

We present algorithms for direct images under open embeddings of the above type.

Such algorithms for the computation of j and j serve not only as a first step to algorithmi-
cally treat the direct image functors, but enable us also to compute inverse images. We describe
this for the inverse image f, the procedure for f' is in analogy. Factorize f = p o ¢ by a pro-
jectionp : Y — Z and a closed embedding ¢ : X — Y and set H* f+ M := HFLtHIpt M

*We assume in this thesis that all (Hodge) D-modules are defined on smooth varieties. In particular, when
talking about direct or inverse images, we assume that the corresponding morphism is a morphism of smooth
varieties.



for a Hodge D z-module M, where [ is the relative dimension of p. The inverse image under
the projection is then realized using the exterior tensor product. For the closed embedding,
cover the complement by affine opens and use the Cech complex and Kashiwara’s equivalence
for mixed Hodge modules to calculate t*. More precisely, if the image +(X) is cut out by the
regular functions g1, . . ., g, then H*1™ N for a Hodge Dy -module A\ is the k-th cohomology
of the complex @|I|:.(j1)+j;1j\f, where j; : (V;e; D(gs) <= Y for I C {1,...,r}. Local-
izations of the form (js)+ jI_I N are computable by similar methods as direct images under
JI-

We give an algorithm for localizations along codimension one subvarieties.

Noting that the above complex has cohomology supported on ¢(X), it may be considered as
an element of MHM (X ) under Kashiwara’s equivalence. Representing a quasi-inverse of this
equivalence computationally reduces to computing certain (graded) parts of the V -filtration.

We outline a method to make Kashiwara’s equivalence explicit.

We believe that the cohomological inverse image functors 7* f* and H* f' are computable
by adapting work in [OT01] to represent the exterior tensor product and in [Wal00] to compute
the cohomology of the above complex to the filtered setting and combining them with our
methods. Being able to compute inverse images under closed embeddings and exterior tensor
products allows then the calculation of tensor products. On the other hand, algorithms for
graded parts of the V-filtration are used to make the nearby and unipotent vanishing cycles
functors W, and @, ;1 explicit.

We develop algorithms for the computation of vanishing and nearby cycles.

We describe now the V-filtration and outline the translation of Hodge theoretic construc-
tions, that are based on this filtration, into algorithms by taking the example of direct images
under open embeddings of the above type. Given a codimension one inclusion Xg C X of
smooth equidimensional varieties with defining ideal Z, the V -filtration along X on Dy is
defined by

Vo Dx = {p € Dx | p(Z?) CZ7* forall j € Z},

where 70 = O for j < 0. The definition of the V-filtration on a D x-module M is of local
nature. Loosely speaking, the V-filtration V, M is a good filtration with respect to Vo Dx
such that locally (—0;t — e) acts nilpotently on Gr) M, where ¢ is a local generator of Z with
corresponding derivation J;. Let us now explain how to use the V -filtration for the computation
of direct images under the open embedding j : U := X \ Xy — X, where we also allow
singular Xy. Given a Hodge D-module M on U, we regard j4 M = j M as a Dx-module
via the natural isomorphism Dx (xX() = j Dy. The Hodge filtration on j M is for smooth
Xy given by
FjM=> F Dx-jFeiVyM.
i€EN
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The case of singular X is then reduced to the above situation by considering a certain graph
embedding and using Kashiwara’s equivalence. So the main task is calculating the Hodge
filtration on Vj M, where part of the difficulty comes from the fact that while j Fq M is well-
filtered as Fy Dx (xXo)-module, it is not well-filtered as Fy Dx-module. The basic idea of
our method for that is to compute the layers FjVy M for increasing k stepwise and to use a
stopping criterion, which checks based on the computed layers if a set of generators of the
filtration has already been determined. The actual computations are performed over certain
algebras.

We describe Hodge theoretic constructions in terms of elementary computationally ac-
cessible operations over bifiltered algebras.

We give some details of this process in the following: We reduce the above constructions
to constructions over non-commutative bifiltered algebras via taking sections of our objects.
In classical algorithmic D-module theory this is mainly achieved by considering only affine
n-spaces, because the global sections of

Den = (D Oce 005

aeN?

coincide with the n-th Weyl algebra D,,, which has a well-developed Grobner basis setup based
on the fact that its set of standard monomials forms a C-basis. As Dx has locally a similar
representation and the V-filtration is of local nature, we take certain local sections instead
of restricting ourselves to affine spaces. More precisely, there is a computable irreducible
affine open cover U/ of X with the property that for U € U there exist commuting derivations
01,...,0, € Ox(U) such that

Dy= @ ovoy--oor.

aeN™

Identifying U with a closed subvariety of some C", these derivations are induced by not nec-
essarily commuting derivations on C" generating a C[z1, ..., x,]-subalgebra of D,,. As the
corresponding “standard monomials” in these lifted derivations do in general not generate that
subalgebra as C|x1, ..., z,]-module, it seems not to be possible to represent the so-called co-
ordinate system ring D x (U) as a factor algebra of a PBW-algebra. However, it can be realized
as a factor algebra of a free associative C-algebra such that the standard monomials form a set
of C-generators subject to some relations.

We introduce the class of so-called PBW-reduction-algebras, which is tailored to capture
computations involving coordinate system rings.

These algebras can be thought of as factor algebras of algebras that are “almost” PBW-
algebras, but whose set of standard monomials might not be linearly independent.

We develop a comprehensive Grobner basis framework for this extension of the class of
PBW-algebras.



Based on that, we study the interplay of certain filtrations given by weight vectors on these
PBW-reduction-algebras. We apply these considerations then to our problems from Hodge
theory using that the realization of coordinate system rings as PBW-reduction-algebras can be
made such that the V-filtration and the F} -filtration are induced by weight vectors.

Outline

This thesis is organized as follows:

o Chapter 1 reviews the required background on filtrations and D-modules. This chapter
is mainly expository except for Proposition 1.1.15, which is essential for testing whether
the already mentioned stopping criterion is satisfied. Moreover, although well-known,
a complete account on local coordinates seems to be missing in literature. As these are
key players in this thesis, we give a comprehensive and constructive treatment of local
coordinate systems.

e Chapter 2 is motivated by the need of a Grobner basis setup for coordinate system rings.
As explained earlier we extend for that the class of PBW-algebras to the new class
of PBW-reduction-algebras and develop a Grobner basis framework for this new class,
which mirrors in some aspects that of PBW-algebras, but requires different definitions of
the standard terminology. By doing so, we also rectify some errors concerning coordi-
nate system rings and their representation made in [Oak96] (see Remark 2.1.31). Based
on that framework, we study weight vector filtrations and their interplay in more gener-
ality than has been done for PBW-algebras. This culminates in Algorithm 2.4.15, which
is modeled for the computation of the Hodge filtration in the context of localizations.

e We review in Chapter 3 the required theory on V -filtrations, their interaction with F -
filtrations and localizations following mainly [Sai88] and [SS17]. Building on Kashi-
wara’s, Saito’s and Sabbah’s work we then translate the material into (mainly local)
statements preparing the algorithmic computation of V -filtrations and different types of
localizations in both the non-filtered and filtered setting on a sheaf-theoretic level. In this
context, we highlight the previously mentioned stopping criterion (see Corollary 3.2.18)
and Proposition 3.2.34, which proves that a graph embedding may be used in our setup
to deal with direct images under embeddings of complements of non-smooth codimen-
sion one subvarieties.

o Finally, Chapter 4 intertwines the sheaf theoretic results from the previous chapter with
the computational methods for PBW-reduction-algebras from Chapter 2. For that we
first justify passing to global sections in the affine case, consider then a local situation
and translate the results from the previous chapter into algorithms strongly relying on
our algorithmic framework for PBW-reduction-algebras. A gluing process for filtered
free presentations finally patches the local results.
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Notation and Convention

By an (algebraic) variety X we mean a reduced separated scheme of finite type over the com-
plex numbers. We denote its sheaf of regular functions by Ox. In this context, we draw also
attention to Subsection 1.1.1, which explains how we deal conceptually with sheaves on X.

If X is affine and I C Ox(X), we write V(I) for the subvariety of X defined by the
vanishing of I and D(I) := X \ V(I) for its complement. Similarly, for f € Ox(X) we set
V(f) == V{f}) and D(f) := D({[}).

Given a morphism of sheaves ¢ : F — F' on X and U C X open, we write F; for the
restriction of F to U and similarly ¢y : Fy — Fp; for the restriction of ¢ to U. Analogously,
we write F, for the stalk of F atp € X and ¢, : ), — F ;, for the induced morphism on the
stalks. The kernel and image sheaf of ¢ are denoted by ker(¢) and im(¢), respectively.

For a regular function f : X — C, we define the sheaf of rings Ox [f_l] by U —
(fN~1Ox(U) for U C X affine open. For an Ox-module M we write M[f~!] for the
sheaf M ®¢p, Ox|[f~!]. We denote the global sections of these sheaves by O x (X)[f~!] and
M.

Considering a morphism of algebraic varieties ¢ : X — Y, we denote the direct and inverse
images in the category of sheaves and of O-modules by ¢, ¢! and ¢, ¢*.

Notation 0.0.1. Let X be an algebraic variety, A, A, ..., A, be sheaf of ringson X, U C X
an open subset, M a (left, right or two-sided) A-module, F, E1, ..., E; finite sets and r €
Nso.

(a) The direct sum . M(e), where (e) is the free generator corresponding to e € FE,
can be naturally identified with the function space M¥ if X is a one-point space and
hence we use the abbreviation

MP = P M(e)

ecE

forgetting the definition of M¥ as function space. Note that we denote for e € F the
corresponding free generator by (e) and not e, because £ might contain sections of an
A-module itself and we need to distinguish whether we consider e as a free generator or
as a section of that A-module.

We write {7 | e € E'} for the dual basis to E, that is, for ¢/ € E the A-linear map 7/
is defined by
mo s ME = M, (€) = deer-
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(b)

(c)

(d)

(e

)

(2

Setting m, := m.(m) form € M¥ and e € E, we write
m = Z me(e).

Similarly, for E/ C E, we denote by

T MY 5 ME s Z me (€')

e'cE’!

the projection to M”". We denote M" := Mt€t-~€r} n this case, we also use for m €
M the notation m = 3, ;. mi(e;) by setting m; := me,. Moreover if G C M(U),
we define G¥ := {m € M(U)? | m. € Gforalle € E} C M(U)¥ = MF(U).

We identify A' with A as A-module via the canonical map a — a;. All notations and
definitions defined for 4" are hence implicitly also assumed to be defined for A via this

identification if not said otherwise. Similarly, all notations extend to AP ... @ AP
by identifying this free .A-module with AHi<i<s B,

By abuse of notation, forl € Nygand 1 <41 < ...4; < sthe map
AP .o AP S AT g e AT ( ) = (a; i)
TE By © AL s i o o lan, .. ag @iy s ooy O

denotes the corresponding projection.

If M is a left, right or two-sided .A-module and G € M (X), we denote by 4(G), (G) 4
and 4(G) 4 the left, right and two-sided .4-submodule of M generated by G, respec-
tively. If G = {g1,...,gs} we also write 4(g1,...,gs) for 4,(G) (and analogously for
right and two-sided modules). In the left module case we often write > e A -g for

4(G). Considering A as an A-module over itself defines the corresponding notations
for A-ideals.

If N € M are A-modules and m € M(X), we write V%) € M(X)/ N (X) = for
the residue class of m. If it is clear from the context that N (X) € M(X)/ N (X), we

simply write 7. Similarly, for M" C M (X) we define V) = (TN | 'm e M’}
and abbreviate WN(X) by M if this does not cause any ambiguity.

Let ¢ : M1 — My be a map between A-modules. Then ¢ denotes the map

¢F : MY = MF, D me(e) = Y p(me)(e).

eckE eceE

Forai...,a; € Awedefine [[,_, ,a;:=ai---a.



(h) We write [a,d’] :== aa’ — d’a for the commutator of a and o’ € A.

Taking a one-point space for X in the above notation introduces the corresponding notation
for rings.

Notation 0.0.2. Let o, 5 € Z™ and v € Z" be vectors with integer entries.

(a) We denote all vectors as row vectors and we write a;; € 7Z for the ith component of «
for 1 < i < n. Soin particular, o = (a1, ..., o) = (@;)1<i<n-

(b) We define («, ) := Zlgign a;f; and || := Z1§z‘§n o
(c) Weset (a,7) := (a1,...,0n,V1,...,7) € Z"T".

(d) By abuse of notation, we denote the ith unit vector in Z™ by e; for 1 < i < n.






1 Introduction to filtrations and
D-module theory

As already pointed out in the introduction, we treat mixed Hodge modules as a special class
of filtered D-modules that has “good properties”. Hence we provide in this chapter an intro-
duction to filtered algebras as well as the required D-module theoretic background with focus
on filtrations by the order of differential operators, local coordinate systems and direct images.
The main references for this chapter are [HTTO08], [BGK™87] and [PS08].

The contents of this chapter are as follows: We start in Section 1.1 by investigating O-quasi-
coherent locally left Noetherian sheaves of rings and by establishing in certain situations an
equivalence of categories between coherent modules over such a sheaf of rings and finitely
generated modules over the global sections of that sheaf. This will later in Chapter 4 justify
our passage to global sections. Then we consider filtrations on sheaves of algebras and prove
in Proposition 1.1.15 a result that will serve as a stopping criterion during the computation
of certain induced filtrations in Subsection 2.4.4. Section 1.2 reviews the sheaf of differential
operators, its filtration by the order of differential operators and local coordinate systems. As
local coordinate systems are a key player in this thesis and as we are not aware of a detailed
treatment of them in literature, we give a comprehensive account of local coordinate systems
including proofs and algorithmic computations. Section 1.3 is concerned with D-modules, that
is, modules over the rings of differential operators. Finally, in Section 1.4 we discuss direct
images of (filtered) D-modules with focus on open and closed embeddings.

1.1 Coherent modules and filtrations

We will see that the sheaf of differential operators on the smooth algebraic variety X is a Cx-
algebra that is locally free over O x and hence in particular O x-quasi-coherent. Since we need
some of the definitions and results in this section not only for the sheaf of differential operators
on X, but also for certain tensor products involving it as well as some O x-submodules of it,
we consider in this section a more general setting.

1.1.1 Working with sheaves

Before we start with developing the theory on coherent modules and filtrations, let us explain
how we usually deal conceptually with sheaves on the algebraic variety X in this thesis (see
[Vak17, Section 13.3]). For this we need the concept of the distinguished affine base of X:

11



1 Introduction to filtrations and D-module theory

Definition 1.1.1. The distinguished affine base of X is the data of the affine open sets of X
and the distinguished inclusions (i.e., inclusions of the form D(f) C U for affine open U C X
and f € Ox(U)).

We define a “sheaf” (of sets, abelian groups or rings) on the distinguished affine base in
analogy to sheaves on topological spaces. Given a sheaf F on X, we denote the “restriction”
of this sheaf to the distinguished affine base by F°. Then it holds:

Proposition 1.1.2. [Vakl7, Theorem 13.3.2]

(a) A sheaf F on the distinguished affine base (of X) determines a unique (up to unique
isomorphism) sheaf (on X ) which when restricted to the distinguished affine base is F.

(b) A morphism of sheaves on the distinguished affine base uniquely determines a morphism
of sheaves.

(c) An Ox-module on the distinguished affine base yields an O x-module.

In analogy to the proof of the above proposition one shows that other module structures
(over sheaves of rings) are defined by the corresponding structures on the distinguished affine
base as well.

Using the concept of sheaves on the distinguished affine base, one characterizes O x-quasi-
coherence as follows:

Proposition 1.1.3. [Vaki7, 13.3.3.D] Consider an O x-module M. Then M is Ox- quasi-
coherent if and only if for each affine open set U and f € Ox(U) the natural morphism

MU)@0x(U) [f_l] — M(UNDC(f)) obtained from the restriction map M(U) — M(UN
D(f)) by the universal property of localization is an isomorphism.

Remark 1.1.4. Assume that all sheaves under consideration are O x-quasi-coherent. Then
(sheaf theoretic) constructions such as quotient sheaves, images of morphisms, finite sums of
subsheaves of a given sheaf, certain product constructions (e.g. given sheaves of rings S C R,
the R-module M and the O x-subsheaf M’ C M, consider the S-module S - M’ C M) and
certain tensor products commute on the distinguished affine base with taking sections. So we
may e.g. represent sections of the quotient sheaf (M / M’)? as residue classes of sections of

M.

Hence we usually work when dealing with O-quasi-coherent sheaves implicitly on the re-
striction of the sheaves to the distinguished affine base and assume that all local sections are
local sections on the distinguished affine base. For example, the considerations in Chapter 3
strongly rely on this approach.

Moreover, we often only define sheaves on the distinguished affine base. We demonstrate
this in Subsection 1.2.1 and do later so without explicitly saying so.

12



1.1 Coherent modules and filtrations

1.1.2 (Quasi-)coherent modules

Consider an algebraic variety X and morphisms of sheaves of ring Ox — Px — Ax turn-
ing Px into a quasi-coherent O x-module and Ax into a locally P x-free module. Note in
particular that these conditions imply that Ax is also O x-quasi-coherent.

Definition 1.1.5. Let M be a left (right) A x-module. We say that M is a left (right) coherent
Ax-module if it is locally finitely generated and if for any open subset U C X any locally
finitely generated submodule of My, is locally finitely presented. We say that Ay is left (right)
coherent if it is left (right) coherent as A x-module and call Ax coherent if it is left and right
coherent.

Given a left Ax-module that is left coherent, we often say simply that this modules is
coherent if that does not cause any ambiguity.

Notation 1.1.6. By Mod(Ax) and Mod(A%’) we denote the categories of left and right
Ax-modules, respectively. We write Modp , - qeoh (Ax) and Modo - qcon(Ax ) for the cat-
egories of left Px- and Ox-quasi-coherent Ax-modules, respectively, and Mod¢on(Ax)
stands for the category of coherent Ax-modules (and analogously for right modules). We
write D (Mod,(Ax)) for the corresponding derived categories if they exist, where # &
{0,b,+, —} and * € {0, coh, Ox- qcoh, P x-qcoh}.

We point of that Modp .- qeon(Ax) is a subcategory of Modp . qecoh (Ax ), because ev-
ery local presentation of an Ax-module by free P x-modules gives a local presentation by
O x-quasi-coherent modules. As the category of (J-quasi-coherent modules on an algebraic
variety is abelian and being quasi-coherent is a local property, this shows the claim. Moreover,
Modon(Ax) is a subcategory of the former categories if Ax is locally left Noetherian:

We say that Ax is locally left (right) Noetherian if it has an affine open cover U with the
property that Ax (U) is left (right) Noetherian for all U € U. By O x-quasi-coherence and as
Ox acts by restriction of scalars on A x this implies that Ax (V') is also left (right) Noetherian
for all affine open V' C X contained distinguishedly in some U € U. We call Ax locally
Noetherian if it is locally left and right Noetherian.

Proposition 1.1.7. Let Ax be a locally left Noetherian sheaf of rings. Then we have:

(a) The Ax-module M is Ax-coherent if and only if it is locally finitely generated as
Ax-module and P x -quasi-coherent, or equivalently, if and only if it is locally finitely
generated as Ax-module and O x -quasi-coherent.

(b) The sheaf of rings Ax is left coherent.
An analogous statement holds for right modules.

Proof. The proof works analogously as the proof of [HTTOS8, Proposition 1.4.9]:

13



1 Introduction to filtrations and D-module theory

(a) If M is Ax-coherent, then it is by definition locally finitely presented as .A x-module.
Furthermore, as Ax is P x-locally free, M has a local presentation by free P x-modules
and is thus P x-quasi-coherent.

Let now M be locally A x-finitely generated and quasi-coherent over Ox. For z € X
exists by assumption an affine open neighborhood U C X of z such that there is a
surjective morphism Of, — My and such that Ax (U) is left Noetherian. It suffices to
prove that the kernel of the Ay-morphism ¢ : A7, — My is finitely generated over Ay
for any p € Z. As Ay(U) is a left Noetherian ring, the kernel of Ay (U)? — M(U) is
finitely generated, yielding an exact sequence Ay (U)? — Ay (U)P — M(U) for some
q € N. Since U is affine and Ay is Op-quasi-coherent, and the global section functor
on quasi-coherent Oy-modules induces an equivalence of categories with the category
of Oy (U)-modules, we obtain the an exact sequence A}, — A7, = My.

This finishes the proof as every P x-quasi-coherent module is also O x-quasi-coherent.
(b) Follows immediately from Part (a).
O

Eventually for computations involving coherent A y-modules, we wish to pass to the global
sections in certain situations. This requires an equivalence of categories

F(X, 0) : Modcoh(.Ax) — MOdfg(F(X; -AX))

between the category Modcon(Ax ) and the category Modg, (I'(X, Ax)) of finitely generated
I'(X, Ax)-modules.

Definition 1.1.8. We say that an algebraic variety X is A x-affine if the global section functor
I'(X,e) : Modo y-qeon(Ax) = Mod(I'(X, Ax))
is exact, and I'(X, M) = 0 implies M = 0 for M € Modo y -qcon(Ax).
By Serre, X is O x-affine if and only if it is affine.
Proposition 1.1.9. Let X be Ax-affine.
(a) Any M € Modp . qeon(Ax) is generated over Ax by its global sections.

(b) The functor
['(X,e): MOdOX-qcoh(-AX) — Mod(T'(X, Ax))

is an equivalence of categories.

In particular, the above statements hold for affine X.

14



1.1 Coherent modules and filtrations

Proof. The proof of [HTTO08, Proposition 1.4.4] carries over word by word. 0

If X is Ax-affine and Ax is locally left Noetherian, we obtain by Proposition 1.1.7(a) and
the above proposition the desired equivalence of categories (for a detailed proof adapt the proof
of [HTTOS, Proposition 1.4.13] to our situation):

Corollary 1.1.10. Let Ax be locally left Noetherian and X be Ax-affine. Then
I'(X,e) : Modeon(Ax) = Modg (T'(X, Ax))
is an equivalence of categories. In particular, the above equivalence holds for affine X.

The above equivalence will be crucial in Section 4.1 for the reduction of certain problems
involving sheaves of rings to corresponding problems over the global sections of these sheaf
of rings.

1.1.3 Filtrations

Filtered D-modules play a key role in this thesis. More generally, we study in this subsection
filtrations on the K y-algebra Ax for a given algebraic variety X, where Kx denotes the
constant sheaf associated to the field K. Note in particular that our filtrations are by definition
exhaustive:

Definition 1.1.11. Let Ax be a K x-algebra and M be an A x-module.

(a) Afamily Fq Ax = {F; Ax};cz of Kx-vector subspaces of Ax satisfying for j, k € Z
() Fjo1Ax € F; Ax,
(i) Fj Ax - Fr Ax C Fj Ax,
(iii) 1 € FoAx \F_1 Ay and
(iv) Ax = UjeZ Fj Ax
is called a filtration of Ax. We write (Ax, F,) for the pair (Ax, Fo Ax) and use these

notations as well as Fo Ax interchangeably. We say that (Ax, F) is a sheaf of filtered
Kx-algebras or simply a filtered K x-algebra.

(b) Let (Ax,F,) be a filtered K x-algebra. A family Go M = {G, M} ,cq of Kx-vector
subspaces of M is called a filtration of M (with respect to the filtration of Ax) if
(i) GaM C GgMforalla, 3 € Qwitha < f3,

(i) Go M is discretely indexed, i.e., Gequ M = U7<a Gy M C G, M for only
finitely many « € [k, k + 1] for every k € Z,

(i) FrAx -GaM C GpyrqMforallk € Z and o € Q and
(IV) M == UOCEQ ga M

15



1 Introduction to filtrations and D-module theory

We also write (M, G,) for the pair (M, G, M) and use these notations as well as Go M
interchangeably. We say that (M, G,) is a filtered (Ax , Fo)-module.

(c) Let (M, G,) be afiltered (Ax, Fo)-module and m € M. We define the G-degree of m
to be

degg(m) :=inf{a € Q| m € Gy M} € {—o0} UQ
and say that m has G-degree degg(m).
(d) Let (M, G,) be a filtered (Ax, Fo)-module. We refer to (M, G,) as a well-filtered
(Ax, Feo)-module if
(1) Go M is Fy Ax-coherent for all & € Q and
(ii) there exists some o > 0 such that for all k¥ € Nand 3 € Q>,,

Fr Ax 'gﬁ/\/l = 95+k/\/l and F_, Ax -g_gM = Q,(5+k)/\/l.

In this case, we call G, M also a good filtration.

(e) Let (M,G,) and (M’,G,) be filtered (Ax,F)-modules. The .Ax-linear morphism
¢ : M — M’ is called filtered if $(Go, M) C G, M for all « € Q. We say that ¢ is
strict if (M) NG, M = $(Go M) for each a € Q.

(f) We call Ax graded if there are K x-vector spaces A;, j € Z, such that

(i) 1€ Ao,
(i) Ax = D;cz Aj and
(iii) A; Ay, C Aj+k for all j, k € Z.
We say that 0 # a € A is homogeneous (of degree j) if a € Aj;.

(g) Let Ax =P ez A; be graded. The Ax-module M is graded if there exist K x-vector

spaces M, a € Q, such that
(i) M =D, co Mas
(ii) M, # 0 for only finitely many « € [k, k + 1] for every k € Z and
(i) A; My C Mg forall j € Zand o € Q.
We say that 0 £ m € M is homogeneous (of degree o) it m € M,,.
(h) Consider the graded modules M = @ o Mo and M’ = P, M, over the graded

Kx-algebra Ax = <z A;. The Ax-linear morphism ¢ : M — M’ is called graded
if p(My) C M/ forall a € Q.
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1.1 Coherent modules and filtrations

The corresponding notations of Definition 1.1.11 for right modules are defined in the canon-
ical way. Moreover, considering the case of X being a one point space, one defines the
analogous notations for K-algebras. Given a filtered Kx-algebra (Ax, F,), we denote by
Mod(F, Ax) and Mod(F, A%) the categories of filtered left and right Ay -modules with
filtered morphisms, respectively. The corresponding subcategories consisting of well-filtered
objects are denoted by Modcon(Fe Ax) and Modeon (Fe A ). For filtered K-algebras (i.e. if
X is a one point space), we also use the notation Modg, (Fe Ax) and Modg (Fe AY) for the
latter two objects.

The remark below explains how to obtain from given filtered algebras or modules new fil-
tered modules:

Remark 1.1.12. Let (Ax, F,) be a filtered K x-algebra and F a finite set.

(a) Lets € ZF be a so-called shift vector. Then (A%, F[s].) with

Flslj AY =D Fjs, Ax (e)

eeE

for j € Z is a filtered F, Ax-module indexed by the integers. If s = 0 is the zero
vector, we write Fe A§( = Flsle A])E(.

(b) If (M, G,) is a filtered (Ax, Fo)-module and n € Z an integer, we can shift the filtra-
tion by n and define

(M, Ge)(n) := (M, Ge—p).

(c) Let (M,G,) be a filtered (Ax, Fo)-module and N' C M an Ax-submodule. Then
Ge N and Go(M / N') defined by

GaN =G MNN and Go(M /N) := (Ga M+ N)/ N
for o € Q are filtered (Ax, Fo)-modules.
We study now the relationship between filtered and graded modules:
Remark 1.1.13. Gradings and filtrations are related as follows:

(a) Note that gradings induce natural filtrations: Assume that Ax = @ieZ A; is a graded
K x-algebra and M = P, Mo is a graded Ax-module. By setting

F; Ax = @AZ- and Gg M := @MQ

1<j a<p

for j € Z and 8 € Q, we obtain filtrations F, Ax (as Kx-algebra) and G, M (as
filtered Fo A x-module).

17



1 Introduction to filtrations and D-module theory

(b) On the other hand, consider the K x-algebra A x and the A x-module M with filtrations
Fo Ax and G M, respectively. We define the associated graded K x-algebra with
respect to Fo Ax and the associated graded Ax -module with respect to G4 M by

Grt Ay = @GrifAX and Gr9 M := @GrgM

€L acQ

with GrrfE Ax = Fi Ax / Fi-1 Ax and Grg/\/l = Ga M/ Gcq M, respectively.
Clearly, Gr” Ax and Gr9 M are a graded K x-algebra and a graded Gr” A-module,
respectively. However, in general we have Ay 2% Gr” Ax and M 2 Gr9 M. In
particular, not every filtered algebra or module has a natural grading. We remark that
if N C M is an Ax-submodule of M with induced filtration G¢ N\, then Gr% A can
be canonically identified with a Gr” A x-submodule of Gr% M via the isomorphism

ga-/\/’/g<o¢-/\[ = (gaN+g<aM)/g<aM
The associated graded objects of (Ax, Fo) and (M, G,) come with surjective symbol
maps

or Ay = Gl Ax
and

09 M= Gr9M.
Here, the map o sends a € Ay of finite F-degree to its image under the natural maps
Faegr(a) A = Faegr(a) A/ Fdegr(a)-1 A = Gr” Ax and to 0 if its F-degree is not
finite. The map 0¥ is defined in complete analogy.

Given a filtered K y-algebra (Ax, F), a filtered (A, Fo)-module (M, G,) and two Ax-
submodules A' C N C M, then there are two canonical ways to induce a filtration G, on
N/ N, namely by taking either (N /N) N Go(M /N) or (Ge N' +N)/ N. While these
filtrations agree, we investigate now similar constructions in a more general situation that do in
general not coincide. So assume moreover that By is a subalgebra of (Ax, F,) with induced
filtration Fy Bx and that £ C M is a Bx-submodule. The filtration (M, G,) induces via the
following diagram naturally two filtrations as (Bx, Fe)-module on P := (L +N)/ N

Ge M
subm quot
filt filt
quotJ{ﬁlt submJ{ﬁlt
GIE)P = (Gu L+ N}/ N© GP = Go(M/N) NP

One easily sees that indeed gi’(ﬁ) P C G5 P and that gi’(ﬁ) P depends on L, while G5 P does
not. This motivates the following notation similar to the one in Remark 1.1.12:
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1.1 Coherent modules and filtrations

Notation 1.1.14. Let (Ax, F,) be a filtered Kx-algebra and Bx a Kx-subalgebra of Ax
with induced filtration F, Bx. Given an finite set E, an 4 x-submodule N C .A)E( and an
Bx-submodule P of AL / N, we define for a shift vector s € Z¥

F[sle P = PNE[s]e(AL /N)
and drop s if it is the zero vector.

The question whether the other inclusion G P C gf(‘:) ‘P also holds, is related to certain
associated graded modules:

Proposition 1.1.15. We have Git p = G: P if and only if
Cr9(LNN)=GCr9 LNG9N .

Proof. Note that the inclusion of the left hand side in the right hand side is always satisfied
for each of the two equalities in the statement. As these inclusions are equalities if and only if
they are equalities on the stalks and taking quotient and submodule filtrations as well as taking
graded objects commutes with passing to stalks, we may assume that X is a one point space
and work with modules over K-algebras.

Assume that GI5) P = GiPandlet 0 # m € Gr9 LNGrI N for o € Q. Then there
exist | € £ and n € N such that m = 09(1) = 09(n). This implies | — n € Goo M
and thus I € PNGo(M/N) = G5, P = 'i(a’c) P, where the last equality follows by
assumption. Hence there is some I’ € G, L and n € N such that ! =" + n/. We conclude
that n’ € N'N L and 09 (n’) = 09 (1) = m showing the first implication.

Conversely, assume Gr¥9(£LNN) = Gr9 £LNGr9 A and consider p € M with 0 # 7 €
G5 P for a € Q. By construction of G5 P, there exists [ € L£,n € N such that p = 1
and [ +n € Go M. If I € G, M, we are done. Otherwise n ¢ G, M and there is some
B > a such that 09(1) = —¢9(n) € Grg LN Grg/\/' = Grg(ﬁ NAN). Hence there exist
me LNAN,I' e GegLandn' € GegN suchthat ! = m + ' and n = —m + n’. This
gives us a representation p = I +n/ — n = I’ with I’ + n’ € G, M and G-degree of I’ smaller
than f3. Iteration of the above argument and using that G, M is discretely indexed finish the
proof. 0

While it is more natural to consider the filtration G P, the filtration G 2(‘3) ‘P can be neverthe-
less very helpful in certain situations: Namely, in Subsection 2.4.4 we will deal with a setting
where P and £ are finitely generated Bx-modules, but A/ is not. As the above proposition
implies that G* P = G4£+N) P, we approximate G5 P by computing gﬁ(‘i) ‘P for increasing
finitely generated 13 x-modules £; C N + £ and use that proposition to check equality.

The statement below follows from the analogous statement for rings:

Proposition 1.1.16. Let (Ax, F,) be an O x-quasi-coherent filtered K x-algebra such that
Fy, Ax is Ox-quasi-coherent for all k. If F_1 Ax = 0 and Gr” Ax is a locally left (right)
Noetherian sheaf of rings then so is Ax.
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1 Introduction to filtrations and D-module theory

We finish this subsection by giving a description for well-filtered modules in a certain situ-
ation, which can be proven analogously to [HTTO08, Proposition 2.1.1]

Proposition 1.1.17. Let Ax be O x-quasi-coherent and (Ax,Fd) be a filtered K x-algebra
such that F 1 Ax = 0, Fo Ax = Ox and F; Ax is Ox-coherent for j € Z. Assume
moreover that Gr” Ax is locally left Noetherian. An O x-quasi-coherent (Ax, Fo)-module
(M, G.), with the property that F; M is O x -quasi-coherent for all k € 7 and Fy, M = 0 for
k < 0, is well-filtered if and only if it satisfies one of the following equivalent conditions:

(i) There exists locally a finite set E, a surjective Ax-linear morphism ¢ : A)E( — M and
a vector s € QF such that

) (@fmsej Ax '(6)> =GgM

ecE
forall B € Q.
(ii) Gr¥% M is a coherent Gr” Ax-module.

In particular, M is a coherent Ax-module if and only if it can be equipped with a good
filtration.

1.2 Sheaf of differential operators

We introduce in this section the sheaf of differential operators on smooth affine varieties, study
it locally on certain affine open neighborhoods via local coordinates and equip it with the
filtration by the order of differential operators.

We assume from now on for the remainder of this chapter that X is a smooth algebraic
variety of pure dimension m if not stated otherwise. Similarly, all algebraic varieties are
assumed to be smooth and equidimensional unless otherwise specified.

1.2.1 Tangent sheaf and sheaf of differential operators

We construct the sheaf of differential operators Dx on X by defining it on the distinguished
affine base. For U C X affine open we set Dx (U) to be the C-subalgebra of End¢(Ox (U))
generated by Ox (U) (where we identify g € Ox (U) with multiplication by g on Ox (U))
and by the set of derivations © x (U) := Der(Ox (U)) on Ox (U) defined by

Der(Ox(U)) := {0 € Endc(Ox (1)) | 0(gh) = 0(g)h + g8(h) for all g, h € Ox (U)}.

The restriction map for the inclusion D(f) C U of Dx (with U C X affine open and
f € Ox(U)) is induced by the ones of Ox and ©x. The restriction map of the latter ob-
ject is defined by sending derivations on Ox (U) to their unique extension in Quot(Ox (U))
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1.2 Sheaf of differential operators

(restricted to O x (D(f))). Such an extension exists since for § € © x (U) its natural extension
defined by

0(9) = 0g) _ 96(h) for ¥ € Quot(0x (1))

h h h?
is indeed a derivation on Quot(Ox(U)). As 0 = (1) = 6(2) = 6(h) - + + ho(}) and
hence 0(%) = —%, an application of the product rule to 0(9%) shows the uniqueness of

the extension. Moreover, we point out that these restriction maps are injective. Clearly, the
O©x(U) and the Dx (U) for U C X affine together with their restriction maps define sheaves
of Ox-modules on the distinguished affine base of X. By [Vak17, Theorem 13.3.2] these
sheaves extend uniquely to sheaves on X, which we also denote © x and Dx.

Definition 1.2.1. We call Dx the sheaf of differential operators on X and ©x the tangent
sheaf on X.

We will see in Subsection 1.2.3 that Dx can also be introduced using commutators. While
the definition of the sheaves Dx and © x above is extendable to singular algebraic varieties,
the sheaf of differential operators on a singular variety is defined using commutators and does
in general not agree with the above construction. In such a case, the sheaf of differential
operators might not behave nicely, and hence we restrict ourselves to the smooth case.

If X is the m-affine space, the sheaf of differential operators Dx is the sheafified version
the m-th Weyl algebra:

Example 1.2.2. In the case X = C™ the global sections of D x are isomorphic to the Weyl al-
gebra Dy, that is, the free associative C-algebra generated by x1, ..., 2y, 01, - .., Oy modulo
the commutation relations [x;, ;] = [0;,0;] = 0 and [0;, x;] = d;; for 1 <4, j < m, by iden-
tifying 0; with the partial derivative 8%1-‘ We write from now on also 9; for 8%1,. Abbreviating
Clz] := C|x1, ..., zm], we have in particular

D = @ Clz]oy--- oo

aeN™

We will see later that Dy is O x-quasi-coherent (see Corollary 1.2.14) and hence we obtain

Dx = P Oxoft--- o (1.2.1)

aeN™

with commuting 01, ...,y and [0;, f/g] = %(f/g) for1 <i < mand f,g € Clz] with
g #0.

Remark 1.2.3. If 1 : Y — X is a closed embedding of (smooth) varieties with defining ideal
7, then we may identify
1+0y = Derz(Ox)/ I Ox.
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Here Derz(Oyx) is defined on U C X affine open by Derz(Ox)(U) := {0 € ©x(U) |
O(Z(U)) € Z(U)}. Arguing as above, one shows that this defines indeed a sheaf on the
distinguished affine base of X extending uniquely to a sheaf on X.

For the above identification note that by Remark 1.2.5(c) and (e) below we have on U as
above Oy (Y NU) = Derz(Ox)(U)/Z(U)Ox (U). As both sheaves are uniquely defined by
their values on the distinguished affine base, this shows the claim.

If we drop the assumption of X being an (affine open subset of an) affine space, a similar
representation of Dy as in Equation (1.2.1) exists locally. So in particular Dx is a locally free
O x-module and hence O x-quasi-coherent. We will make this explicit in the next subsection.
For that purpose we need a dual notation to the tangent sheaf, the so-called cotangent sheaf:

Definition 1.2.4. Let 7 : X — Y be a morphism of not necessarily smooth algebraic varieties.
The relative cotangent sheaf Q% /y is defined by 6*(Z /T?), where § : X — X xy X is the

diagonal embedding and Z the ideal sheaf of 6(X) in X xy X. We call sections of Qﬁ( Iy

relative differential forms. If Y is a point, we say that Qﬁ( ne is the cotangent sheaf on X and
write also Q.

The cotangent sheaf comes with a natural morphism of abelian groups d : Ox — Qx/y
(see e.g. [Har77, Remark 8.9.2] for a construction of this map via gluing natural derivations
of Kidhler differentials). We review those properties of the (relative) cotangent sheaf needed in
this thesis (see e.g. [Har77, Section I1.8] or [Vak17, Chapter 21]):

Remark 1.2.5. Let ¢ : X — Y and ¥ : Y — Z be morphisms of not necessarily smooth
algebraic varieties.

(a) If X and Y are affine with coordinate rings A and B, respectively, the global sections
Q%4 (X) can be identified with the Kihler differentials Q4.

X/Y
(b) The algebraic variety X is smooth if and only if Q}( is locally free.
(c) The morphism d induces an isomorphism of O x-modules

Homox(ﬂk,()x) — Ox, a—~ aod.
(d) We have for a point p of X that

mxp/m, = Uy p @0y, Oxp /mxp, [ df @1,
where m x ,, is the maximal ideal of the local ring O x ,,.

(e) If X = V() C C"with I = (f1,...,fs) radical, we identify by Part (a) the global
sections Q4 (X)) with

(D (Clar,.ml/ D)/ (s dfs)

1<i<n
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(f) There is a natural exact sequence
¢*Q§,/Z - Qﬁf/z — Qﬁ(/y —0
called the relative cotangent sequence.

(g) If ¢ is a closed embedding with ideal sheaf Z, then there is the so-called conormal exact
sequence

I/T? = ¢*Qyjy = Qxz = 0.

If X is smooth over Z, this sequence is also left exact.

1.2.2 Local coordinate systems

Recall that X stands of a smooth variety of pure dimension m. By Remark 1.2.5(b) and (c) the
tangent sheaf © x is locally free. This implies an even stronger statement, namely that Dx is
locally free. To proof this we consider so-called local coordinate systems and show that they
exist locally:

Definition 1.2.6. Let p € X be a point and U an affine open neighborhood of p. We call
(fi, 9i)1§z’§m with fz S O)((U) and 0; € @X<U) satisfying

Oy = @ Oy b;

1<i<m

and
[Qi,gj] =0 and [Gz,fj] = 513’ for1<i,7<m

a local coordinate system of X at p or a local coordinate system on the neighborhood U of X.
In this case, we also say that fi, ..., fn, are local coordinates (with differentials 61, ..., 0y)
and call Dx (U) a coordinate system ring. If U = X, we call (f;, 0;)1<i<m a global coordinate
system of X.

In the situation of the above definition, we abbreviate % := 07" - - - 05 € Dy for « € N™.
Similarly, we write f* := f{' - .- fom.

m
We have for U as above a direct sum representation of Dy in analogy with Equation (1.2.1):

Lemma 1.2.7. Let p € X be a point and U an affine open neighborhood of p such that
(fi,0i)1<i<m with f; € Ox(U) and 0; € Ox(U) is a local coordinate system of X. Then we
have

Dy = @ Oy 6°.

aeN™
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1 Introduction to filtrations and D-module theory

Proof. By [Vakl17, Theorem 13.3.2] it suffices to show

Dy(U') = €P Ou(U")e*.

aeN™

for all U’ C U affine open. By definition of Dy and since [0, g] = 6(g) € Oy (U’) for 6 €
Oy (U’) and g € Oy (U), it suffices to proof that the set {0 | « € N™} C Dy (U’) is linearly
independent over O (U”). So assume that there is a finite set A € N™ and b € Oy (U')4 with
no zero entries such that 3~ 4 8% = 0 € Dy (U’). Choosing o/ € A minimal with respect
to the natural partial ordering on N™, we obtain since 0;(f;) = [6;, f;] = ; j for1 <4,5 <m
by the product rule the contradiction

0= bab(f*) b 07 (/) = b [ (o).

acA:a#a! —VO 1<i<m

O]

Remark 1.2.8. Let p € X be a point and U an affine open neighborhood of p such that
(fi,0i)1<i<m With f; € Ox(U) and §; € ©x(U) is a local coordinate system of X. Then it
holds:

(a) The f; define an étale morphism

f:U—=C" u— (fi(u),..., fm(w)):
The exact cotangent sequence (see Remark 1.2.5(f))

F*Qm = = Qpyyem = 0

implies that Q%,/ T 0 (for all w € U) as dfy,...,dfy is a basis of Q}]u by as-
sumption and Remark 1.2.5(b) and (c¢). Hence the morphism is G-unramified. The
required flatness follows from [Stal8, Tag 07DY] as the regular system of parameters
z1 — fi(u),...,Tm — fm(u) € Og¢m 5,y is mapped under f to the regular sequence
fi— fitw),..., fm — fm(u) € Oy, forevery u € U (see Remark 1.2.5(d)).

(b) Note that the f; — f;(u) (for u € U) are indeed local coordinates in an analytic neigh-
borhood of u. So we can consider our notion of local coordinates as a counterpart of the
notion in the analytic setting and the #; are unique lifts of the usual 9; in D,,. However,
the f; do not separate the points in the Zariski topology.

The following proposition shows the existence of local coordinate systems:
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1.2 Sheaf of differential operators

Proposition 1.2.9. For each point p € X exists an affine open neighborhood U C X of p,
regular functions f1,. .., fm € Ox(U) and differential operators 01, ... ,0, € Ox(U) such
that (f;,0;)1<i<m is a local coordinate system of X at p. These regular functions can be
chosen to generate the maximal ideal of O x .

Moreover, if Y C X is a smooth subvariety of pure dimension k containing p, we can choose
U and the local coordinate system such that additionally U N'Y C U has defining ideal sheaf
generated by fi i1, ..., fm and (fi,0;)1<i<x is a local coordinate system on U NY .

Note that in the situation above the E and 60; for 1 < ¢ < k can indeed by considered as
regular functions and derivations on U N'Y: The coordinate ring Oy (U NY) of U NY is
expressed as Ox(U)/ (fx+1,---,fm) if UNY C U has defining ideal sheaf generated by
fk+1s--s fm. Since 01, ..., 60 € ©x(U) map the defining ideal of U NY in U to zero, we
may interpret them as differentials on U N'Y by Remark 1.2.3.

Proof. As we want to describe D x and Dy locally in the neighborhood of a point and as every
smooth algebraic variety has an open cover by smooth irreducible affines, we may assume
that Y C X C C" are smooth irreducible affine varieties defined by the vanishing of the
prime ideals Iy := (g1,...,9sy) and Ix = (g1,...,9s,) (With sx < sy and gi,...,
gsy € Clz] :==Clxy,...,xq]).

We construct for a given point p = (p1,...,pn) € Y C X an affine open neighborhood
U in C" such that Oy x and Oy are a free Opynx- and (’)Umy-modules of ranks m and k,
respectively: Taking Z € {X,Y}, and writing a, = (z1 — p1, .. pn) C Clz] and, by
abuse of notation, @, for its image in C[z]/Iz , we look at the regular local ring

(Ozp,mzp) = (Clal/1z2)ay: Ozp -ap).

We first determine a basis of the Oy ,-module lem using that Qlva ®0,, Ozp/mzp is
isomorphic to mz / mZZ » (see Remark 1.2.5(b) and (d)) as follows: Considering the canonical
Oz p /mzp-vector space isomorphisms

mzp/m,p = Clzla,ap/ Clala, (ap + I2)
2 (Clala,ap/ Clzla,ap) / (Clala, (ap + I2)/ Clzla,ap) |

we compute Oz, /mz-bases of Clz]q,a,/Clz]e,a2 and Clz]a, (a2 + I2)/ Clz]s,a’ by
means of the C-linear homomorphism

N+ Clela, > (Ozp Jmzg) L s ((‘91 (DYoo (l) <p>> .

We point out that the above morphism is independent of Z as Ox, /mx,, is canonically
isomorphic to Oy, /myp. This morphism induces an Oz, /mz ,-vector space isomorphism

A:Clz z]q,ap/ Clz]a, % (Ozp/mzp)",
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1 Introduction to filtrations and D-module theory

that maps the elements 1 — py, ..., 2y — py to the canonical basis of (Oz,, /mz,)". The di-
mension of the Oz, /my ,-vector subspace Clz]a, (a3 + I7)/ Clz]a, a; equals the dimension

of A\(Iz) and is hence the rank of the Jacobian matrix (8j (9:)(p )) namely rz =

1<i<sz’
<j<n

n—dim Z. This implies the existence of sets T¢ := {i1,...,ir,} € {1,...,57} and
7 = {j1,--,jry} C {1,...,n} of cardinality rz with 75* C T} and 75X C T3 such
that dz := det ((8j, (9s,))1<1,<r, ) does not vanish at p. Thus

{gilieTfY Uiz —pi |i ¢ T7} C Clzlo,ap/ Clala,a;

forms a basis of Clz],,a,/ (C[g]apaf,. Hence a basis of my,/ mzz’p is given by the residue
classes of
{zi—pi|i ¢ TS} Cmyg,

under the above chain of isomorphisms. Regarding the above basis of Clz]q,ap/ Clz]e,a? in

the case Z = Y, we see that another basis of my ,/ m3 X p 1s also given by the residue classes
of

{zi—pili¢ Ty YU{gilie TV \T{"} C Clzla,ap/ Clzla,aj.
Assuming for simplicity 77 = {1,...,7z}and T¥ = {n—rz + 1,...,n} and setting f; :=
—piforl <i <kand fy4; = gry+i for 1 <i < m—k, we obtain by Nakayama’s lemma

mzp = <ﬁ7 B 7fdimZ>-

Since mzm/mQZJI7 is isomorphic to le’p ®0oy, Ozp/mzpas Oxp /mz,-vector spaces via
the map f — df ® 1 by Remark 1.2.5(d), the differential forms df1, . .., df4im z are a basis of
the free Oz ;,-module QIZ,p (see Remark 1.2.5(b)). As this holds for all p’ € Uz := Z N U for
U = D(d) with d := dxdy, the Oy ,-module QIUZ is free with basis d f1, . .., dfdim 7. Taking
the dual basis 01, ..., 04im z € Oy, (see Remark 1.2.5(c)), we get

(03, f3] = 0:(f;) = 0:(df;) = bi;
for1 <i,57 < dim Z and
Ov, = @ 0u,b:
1<i<dim Z
To see that the §; commute note that [#;, 0;] is a derivation on Oy, for 1 < i < j < dimZ

and that we have hence a representation [0;,6;] = Zdlmz gﬁjﬁl (with gw € Oy,). By

[0:,0;]1(f)) = 0for1 <[ < dim Z, we deduce that [0;, 6;] = 0. This proves that f1, ..., faim z
is indeed a local coordinate system at p.

For the second part of the claim we show that O is locally a complete intersection defined
by the vanishing of g1, ..., gr,. We have

1

0z(Uz) = (Clz)/I2)[d "] = Clz, zn41]/ Iz,
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1.2 Sheaf of differential operators

where I, = (90, ---,9s,) With go :== 1 — z, 11d. We may drop the gdim z+1, - - -, gs, after
replacing d by a suitable multiple of it as described below: Since the morphism

fiUz—CUMZ g = (uy, .. up) — (fi(w), ..., faimz(w))

defined by the local coordinates f1, ..., fqim z is étale by Remark 1.2.8(a), the conormal se-
quence (see Remark 1.2.5(g)) for the closed embedding ¢t : Uz — (Cn+1, u > (u, ﬁ) and
the morphism (Cn+1 — CdimZ7 (ul, - ,un+1) — (fl(ul, c.. ,un), - ,fdimz(ul, ... ,un))
reads

0— fz/f% — L*ZQCn+1/(CdimZ — 0.

This yields an isomorphism g fitting into the diagram

B2, 02(Uz)ei — 1713 — B 741 02(Uz)da.

. 1
e ————0i, 9'—>Z?thmz+18( )dx;

Here, the map 7 o 1) is given by Dy := (Oj (gz)) 0<i<ry with determinant
dim Z+1<j<n+1

detDZ = =+d - det ((8]9,) 1<i<ry > :ﬂ:d-dz,
dim Z+1<j<n

that is invertible in O z(Uz). Thus gy, . . . , Gr,, form a basis of the free Oz (Uz)-module I /1%
implying that

Iz =490, gr,) + I%. (12.2)
According to Nakayama s Lemma (see [Stal8, Tag 07RC]) there exists hy € 1+ I 7 such that
Cla, zny1][h '] - Iz = Clesen 1lihg ]<gg, ..+, 9r,). Therefore we obtain

—1

0z(Uz) = (Clz, a1/ I2)[hz ]
= (C[ )xn—i—l][hgl]/C@’xn+l][h21]<gla <y 89s5, 1-— ‘/L‘n-‘rld>
= Clz, Ta41][hy 1]/@%““”@1](91, ey Gy L —zn41d)
—1
~ ( 2, %0 1)/ ey ) (91 G0 1 —a;n+1d>> iz .

Multiplying hz with a suitable power a of d to replace it by a representative of d*hz in C[z],
we finally get

0z(Uz) = (C[Q][(th)_l]/c[g}[(dhz)fl]@la s Org)
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1 Introduction to filtrations and D-module theory

Definition 1.2.10. If U has been chosen as in the moreover-part of the above proposition, we
call U a coordinate neighborhood (of Y in X). If U agrees with X, we say that U is a global
coordinate neighborhood.

Remark 1.2.11. We keep the notation of the proof of Proposition 1.2.9.

(a)

(b)

We point out that this proof is constructive if Y C X C C" are closed subvarieties
of C". Indeed, all steps except for the determination of hy are obviously constructive
and hz is determined as follows: Starting from Equation (1.2.2) we find an expression
gi = Zerrlgj,lgsZ cﬁgjgl + g7 forry +1 < i < sz, where ¢Z € {(go,...,gr,) and
cf ; € Clz, 2y +1] using Grobner basis theory. From this we obtain a representation g; =
Zrz+1§j§82 zggj + g; with 25 € fz. Setting hy := det((dij — zz%)?“z-l-lﬁi,jﬁsz) S
1 + Iz, the proof of Nakayama’s lemma in [Stal8, Tag 07RC] implies that hz Iz C
<907 ce 7grz>'

For Y and X as in the proof of Proposition 1.2.9 we extend fi, ..., fm to a coordinate
system on U as follows: One easily checks that setting fr+1 := g1,..., fa = gry
gives the coordinate system fi,..., f, on U C C". An explicit representation of the
corresponding derivations 61, . .., 6, in terms of the derivations 01, ..., d, is found as
follows (see also [0ak96, Section 1]): Setting 6; = >, ., aq0; with ay € C[z][d™1],
the a;; have to satisfy -

(ail)lgign' (al(fj)> 1<i<n — (5%'1‘) 1<i<n® (1.2.3)

1<i<n 1<j<n 1<j<n

After performing column switches, the matrix in the middle agrees with

(i) 1<k (9i(95)) 1<i<x

1)<k 1<5ry
(0)x41<i<n (O1(95))k +1<i<n
1<j<k 1<j<ry

As (0,(g;))k +1<i<n is a divisor of d, the above matrix is invertible over C[z][d~!] and
1<j<r
hence the a;; are Eniquely determined by Equation (1.2.3) and can be explicitly com-

puted using Cramer’s rule. Also note that the 61, ..., 04;n z induce derivations on Uy
which correspond to the coordinates f1, ..., faimz € Oz(Uyz).

Remark 1.2.12. Consider the (smooth) irreducible affine variety X C C" defined by the
vanishing of the prime ideal I C Clz] := C|xy, ..., xy] and its pure codimension one subva-
riety Y. Moreover, let X be a global coordinate neighborhood of Y with global coordinates

(fi,0:)1<i<m With f; € C[z] such that Y = V(fi,). By Remark 1.2.3 the 6; are induced by

6! € Der(C[z]). Note that we may assume that f,, agrees with some variable z;: Namely, the

map

28

X = X xCy, z+— (2, fu(2))



1.2 Sheaf of differential operators

induces isomorphisms X = V(JU{t— fn}) CC"x Crand Y = V(I U{t— fm,t}). Further-
more, (f1,..-, fm—1,6,01,...,0m _1,0m+0;) is global coordinate system on V ({1, — fu}).
We also point out that 8, + 0, is a lift of 6, + J; and that we have (6!, + 0;)(t) = 1 and
0l(t) =0for1 <i<m-1.

Remark 1.2.13. We keep the notation of (the proof of) Proposition 1.2.9 and still assume that
X is affine.

(a) We compute a finite cover {U } ¢y with U C X affine open having a global coordinate
system by taking the nonvanishing loci of all possible nonzero rx X 7x-minors of the

Jacobian matrix (8j (gz)> 1<i<sy as the elements of ¢/ and proceeding as in that proof
1<j<n

to determine actual local coordinates. Similarly, this cover can be refined to a cover U’

such that U’ € U’ with the property U’ N'Y # () has a computable coordinate system as

in the second part of the statement of Proposition 1.2.9.

(b) We can refine the cover U’ from Part (a) to a cover " such that for U € U"”, with U" N
Y # 0 and local coordinates f1, ..., faim x, the f1,..., fx for K > dimY are global
coordinates on U NV (fx41,-- -, faimy) With defining ideal sheaf of this subvariety of
U generated by fit1,-.., fdimy-

Corollary 1.2.14. The sheaves O x and Dx are O x-locally free and hence in particular O x -
quasi-coherent.

Remark 1.2.15. Let ¢ : Y — X be a closed embedding of smooth algebraic varieties with
defining ideal Z. Then we have for U C X affine openand f € Ox (U) by the quasi-coherence
of © x and 7 that

Derz(Ox)(U N D(f)) = {0 € ©x(O)[f ] [ 0(ZW)[f~']) S Z(U)[f ']}

As Z(U) is Ox(U)-finitely generated there exists for § € Ox(U) with O(Z(U)[f~!]) C
Z(U)[f~'] a natural number k € N such that f*0(Z(U)) C Z(U) showing

Derz(Ox)(U N D(f)) = Derz(Ox)(U)[f ']
By [Vak17, 13.3.3] this implies that Derz(Ox) is O x-quasi-coherent.

1.2.3 Order filtration

As already indicated in Subsection 1.2.1, the sheaf of differential operators on X can also be
defined using commutators. Namely, set Dl)“( := 0 for k < 0, inductively define for £ > 0 the
sheaves of O x-modules D]}( on the distinguished affine base by

D% (U) := {P € Endc(Ox(U)) | [P, f] € D 1(U) forall f € Ox(U)}
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1 Introduction to filtrations and D-module theory

and put

D (U) == | Pk(U)
kEN

for U C X affine open. Arguing as in Subsection 1.2.1, Dy extends uniquely to a sheaf on
X. One can show that D coincides with Dx and that D% - DY € D;?H for k, 1 € Z. Hence,
setting F5 Dx := D% for k € Z turns (Dx, F3) into a filtered ring.

Definition 1.2.16. We call (Dx, FS ) the order filtration (by the order of differential opera-
tors) on Dx.

In local coordinates the order filtration is obviously described as follows:

Lemma 1.2.17. Let (f;, 0;)1<i<m be a local coordinate system on an affine open neighborhood
of U of X. Then the order filtration on Dx is locally represented by

(FeDx)u=FeDuv= B Ovo”

aeN™:|a|<e

and
GI'; DU - OU[Cla .. '7Cn’l]7

where ; :== 0; mod Fy Dy for1 <i<m.

Note that we used for the representation of the associated graded sheaf Gr”° Dy the fact
that [p, ] € F},,_ Dy forp € F}, Dy and q € F} Dy.

As Gr7° Dy is locally isomorphic to a polynomial ring over the commutative ring Ox, it
is locally Noetherian and Proposition 1.1.16 implies:

Proposition 1.2.18. The sheaf of differential operators Dx is locally Noetherian.

1.3 D-modules

A D-module is a sheaf of modules over a sheaf of rings of differential operators. It can be
considered as an algebraisation of a system of linear partial differential equations.

1.3.1 Introduction to D-modules

Recall our convention that if not stated otherwise, we mean by a D x-module, also called a D-
module on X, a left Dx-module. Proposition 1.2.18 and Proposition 1.1.7 give the following
characterization of coherent D x-modules:

Proposition 1.3.1.

(a) Dx is a coherent ring.
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1.3 D-modules

(b) A Dx-module is coherent if and only if it is quasi-coherent over O x and locally finitely
generated over Dx.

There is in fact an equivalence of categories between the categories of left and right Dx-
modules. Before explaining this equivalence, we give examples of some important left and
right D-modules, which will be the building blocks of this equivalence as well as of the direct
image functor for D-modules.

Example 1.3.2. The sheaf of regular functions O x is made a left D y-module as follows: A
differential operator p € Dx is by definition a morphism p : Ox — Ox and hence acts on
f € Ox by applying p to f. We denote this action by p(f). This turns Ox into a left D x-
module. We point out that it is important to distinguish the action of p on f and the product
of p with f inside Dx: For example, in the case X = C? with corrdinates =1 and xo, we
have Dx = @ ez Ox 0% and 01(x2) = 0 € Ox, but 122 = 2201 # 0 € Dx. Using
the commutation rules, one easily proves that Ox is isomorphic to Dx / Dx Ox as a left
D x-module.

Example 1.3.3. Our basic example for a right D x-module is wx = A™ Qx, which is ob-
viously an O x-module. The natural right action of § € Ox on w € wx is defined by the
Lie-derivative Lie 6, namely

wh := —(Lie )w,

where, interpreting wx as the dual of /\dimX Ox, the Lie-derivative is given by

m

((Lie 0)w) (01, . .., 0m) :== O(w (b1, ...,0m)) — Zw(el,...,[e,ei],...,em)

=1

for 01, ...,0m € O©x. By [HTTO8], this defines indeed a right D x-module structure on wy.
Locally, this operation is given by

(gdfi A+ Adfn)8™ = (=1)116(g))dfy A -+ A dfm,
where (f;, 0;)1<i<m is a local coordinate system of U C X and g € Oy.

The module wy induces so-called side-changing operations on the categories Mod (D)
and Mod(DY):

Proposition 1.3.4 ( [HTTO08], 1.2.12). The correspondence
wx ®Oy (o) : MOd(Dx) — MOd(Dg(P)
is an equivalence of categories with quasi-inverse is given by

Homo (wx,e) : Mod(DY) — Mod(Dx).
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1 Introduction to filtrations and D-module theory

Here, for M € Mod(Dx), we equip wx ®p, M with a right D x-structure via
(w®@m)f =wd @m —w® Om,

where m € M, w € wx and § € ©x. Similarly, the left action of © x on Homo, (wx,N)
(with N € Mod(D%)) is defined by

(0p)(w) = —p(w)8 + p(wh),

where 0 € Ox, ¢ € Homo, (wx,N) andw € wy.

1.3.2 Order filtered D-modules

When talking about (left or right) filtered (Dx, F, )-modules, we always assume that the filtra-
tion on the modules is indexed by the integers. We point out that a D x-module M is coherent
if and only if a globally defined good (Dx, Fy)-filtration G4 M exists (see [HTTOS, Theorem
2.1.3]). We equip our two standard examples from Example 1.3.2 and Example 1.3.3 with
filtrations as follows:

Example 1.3.5. The one-step filtration

FiOyx =
Iex {0, ifj <0

turns (Ox, F,) into a well-filtered (Dx, F,)-module.
Informally speaking, by assigning a differential form degree —1, the right D y-module wx
is endowed with a good (Dx, F,)-module structure via

wx, ifj>—dimX
Fjwx = N
0, if j < dim X.

In order to extend the equivalence of categories between left and right D x-modules in
Proposition 1.3.4 to the filtered situation, we first need to define a filtration on the O x-tensor
product of a right and a left D x-module.

Definition 1.3.6. Let (M, F,) and (N, F,) be filtered left and right (D, Fg)-modules, re-
spectively. We define a filtration G, on the O x-tensor product by

Ge(N ®0 M) = Zf;N@OX FooiM,

€7

where we mean by the right hand side the image of 3, ., F; N @0y Fe—i M in N ®o, M.
We write F, N ®0,, Fo M for (N @0, M, Ga).
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Using the above one-step filtration on wx, we induce the following filtration on the associ-
ated right object of a left D x-module:

Definition 1.3.7. Let (M, F,) be filtered (Dx, F,)-module. We define a filtration F, on
wx ®o, M by setting

Folwx ®oy M) :=Fewx @0y FeM =wx @0y Fetdimx M.

In particular, (M, F,) is well (Dx, F,)-filtered, if and only if (wx ®¢o, M, F) is. Propo-
sition 1.3.4 induces an equivalence of the associated categories of filtered objects

Fewx oy () : Mod(F, Dx) — Mod(Fq DY) (1.3.1)
with quasi-inverse
FoHomo (wx,®) : Mod(F, DY) — Mod(Fg Dx), (1.3.2)

where FyHomo, (wx,N) := {¢ € Homo (wx,N) | ¢(wx) C Fe_gim x N} for the right
F? Dx-module Fy, .

1.4 Direct images of D-modules

Consider the morphism ¢ : X — Y of smooth equidimensional algebraic varieties of di-
mensions m and n. Our aim is to associate to ¢ a direct image functor ¢ from the category
of (bounded complexes of) Dx-modules to the category of (bounded complexes of ) Dy-
modules. Note that ¢ induces only a morphism of ringed spaces ¢, : (X,0x) — (Y, Oy)
and not one of the ringed spaces (X,Dx) and (Y, Dy). In other words, there is in general
no map Dy — ¢ Dx and hence the sheaf-theoretic direct images under ¢ of D x-modules
do not have the structure of a Dy-module. However, ¢! is left adjoint to ¢, so there is the
natural unit map Dy — ¢¢ ' Dy allowing us to define a direct image functor as outlined
below: To equip a D x-module with a left ¢~! Dy-structure, we tensor it in the category of
D x-modules with a certain (gb_l Dy, Dx)-bimodule called transfer module. The natural unit
map then endows the sheaf theoretic direct image of this tensor product with a natural Dy -
structure. This amounts to composing a right exact functor, namely tensoring with the transfer
module, with the left exact sheaf theoretic direct image functor. Thus this construction does
not commute with composition of morphisms. To remedy this, we work in the corresponding
derived categories.

1.4.1 Transfer modules

Given a morphism ¢ : X — Y, we introduce the transfer modules Dx_,y and Dy, x
which turn the right and left Dx-module A" and M into right and left ¢p—! Dy-modules
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1 Introduction to filtrations and D-module theory

N ®&p, Dx_y and Dy x ®p, M, respectively: We associate to ¢ the so-called first trans-
fer module given by
Dx_y = (jfk Dy = Ox Xp-10y (f)fl'Dy.

This module carries a (Dx, ¢~ ' Dy )-bimodule structure: While its right ¢~ Dy -structure
is simply given by right multiplication on the second factor, the left structure is defined as
described below: By the relative cotangent sequence (see Remark 1.2.5(f)) we obtain an O x-
linear map ¢*Q}, — QY with O x-dual

a:Ox = Homo, (6", Ox) = Homy-10, (¢ ', Ox ®4-10, 6" Oy).

Since ¢~ 104, is alocally free ¢~ Oy - module, we have for U C Y open such that Q; is O x -
free, that the O 4-17-module Homy-1 0, (071, Op-1y ®y-1 0,6~ Op) is isomorphic to

Homy-10,( P ¢! Ov, Og1p ® 410,67 Ov)

1<i<n

= @ Homd)q Ou (¢_1 Oy, OdflU ®¢71 OU(Z)_l OU)

1<i<n

= @ (Op-1 ®p-10,¢ " Ov)

1<i<n
> 041y @yt 0y Homg1 0, (60, ¢~ Op)
> Q417 Q10,0 O,
where we also write ¢ for the map ¢~ 'U — U,z — ¢(z). Composing Qp1y : Op1yy —
Homo,_,,, (¢*Qf;, Oy-1y7) with these local isomorphisms, we obtain a map
A1yt Og1y = Oy1y ®g-10,, o 'ey,
which induces a left D, -1y;-structure on (Dx .y ),-1y Via

0(a®p)=0(a)@p+ Y _ag; ®0;p,
j

where 0 € ©4-177,a € Oy-177,p € ¢~ Dy and oz;S,lU(H) = >_;9; ® 0. For a proof that
the above formula is well-defined on the tensor product a ® p see [CJ93, Subsection 2.1.1]. In
local coordinates {y;, 0y, }1<i<n on U, we express this action as

0a@p)=0(a)@p+ Y ab(y;o¢)®byp,

1<j<n

where we may interpret 6, as an element of ¢~ 1Oy since this module is isomorphic to
Di<j<n ¢~ Oy 8,,. Note that the above action is indeed independent of the choice of lo-
cal coordinates (see [BGK'87, V1.4.1]) hence giving a well-defined left D4-1p, -structure on

34



1.4 Direct images of D-modules

Dx_,y. One easily checks that the left Dx and the right qS_l Dy -structure are compatible,
thus showing that the first transfer module has the claimed bimodule-structure.
Now we use side-changing operations on both sides to define the second transfer module

Dy<_X = H0m¢—1 Oy ((b_le,wX ®OX ,DX—>Y)7

which is a (¢! Dy, Dx)-bimodule. Indeed, the module structure is induced via the left-right
transformation by the module structure of Dx_,y: The left ¢~ Dy -structure is given by

(Oy ) (w) = =(w)fy + ¢ (wly),

where ¢>_1 Dy acts on wx ®p, Dx—_y viaright multiplication on the second factor, and the
right D x -action is described by

(Yox)(w) = Z(wiHX ® s; —w; ® Oxs;)

(where 6y € ¢71®y, 0x € Ox, Y EDy _x,wE ¢71wy and w(w) = Zz Wi & 8;).

Example 1.4.1. If . : U — X is an open embedding, then :~! Dx = Dy and hence Dy_, x =
Dy and similarly Dx .y = Dy with the canonical bimodule structures given by left and right
multiplication.

Example 1.4.2. We describe the transfer modules under the closed embedding of varieties
¢ : X — Y with ideal sheaf Z. We have a representation Ox =t~ Ox = 1= (Oy /) and
hence the first transfer module is globally expressed as

Dx_y = ' (Dy /I Dy)

with canonical right 1~} Dy -action and left D x -action induced by composition of the isomor-
phism Ox =2 1 ~! (Oy /) and the natural map O x — Ox ®,-1 OYL_ley ~ =10y /I6y)
with left multiplication.

Consider now an affine open neighborhood U C Y with local coordinates (y;, 0;)1<i<n as
in Proposition 1.2.9 such that ¢(X) is locally defined by ym+1 = -+ = yn = O0and y1, ..., Ym
induce local coordinates on ¢~ 'U. Using that wx and wy are locally Ox- and Oy -free,
respectively, we obtain

(Dyex) -1y =Hom,—1 0, ( 'wy,w,-1y @0 _,, ¢~ (Du /ZuDy))
=Hom,-10, (. twy, YDy /Ty D))

P
=~,~YDy /Ty Dy)
~, YDy /DuIy)
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1 Introduction to filtrations and D-module theory

with map 1 given by ¢ — o(dy1 A -+ - A dyy). Under these isomorphisms, the left t = Dys-
operation on = Y(Dy /DyZy) is given by left multiplication and the right D,—1;;-action is
induced in analogy to the left D x-action on the first transfer module. This shows Dy, x =
1Y (Dx / Dx I) also globally.

On the other hand, we may represent Dx_,y as a locally free D xy-module as described
below: Setting x; = y; ot for ¢ = 1,...,m gives local coordinates z1,...,xy on U
with differentials 0, ,...,60,,  which are sent to 1 ® 61,...,1 ® 6, under the natural map
O,-1y = O-1py ®;1 OUi_IG)U. As we have Dy = @, cyn Ov 0, the first transfer module
(Dx_y),-1y is written as

P (O v @-10,0700)0" = P 017 6% = D,y @¢ Clhn 41, .- -, O]

aeN" aeN"

The left D,-1;7-action on the right hand side module is given by left multiplication on the
first factor, hence showing that the first transfer module is D x-locally free. Note that the right
v~ Dy-structure on the above module is described as follows: The differential ; (1 < i < m)
acts via the composition of the map 6; — 6,, with right multiplication of D,-1;; on the first
factor, whereas 6; for m+1 < ¢ < n operates by increasing the exponent of 6; by one. The
rightactionof f € i1 Oy onp®q € D,-1py @c Clbm 11, - - - , 0] is expressed as >, pf;®g; if
qf =, firqiwithg; € ClO, 41, ...,0n] and f; € v~ Oy inthe ring ¢~ Dy7, where the right
action of f; on p is given by composition of the canonical maps t:~* Oy — =1 (Op / Ty) =
O,-1y and right multiplication of O,—1;; on D,-1;.
Using similar arguments as in the global situation, we get an expression

(Dyx),-1y =Cl0m+1,-.-,0n]) ®c D,-177 .

Here, the right D,-1;;-action given by right D,—1;,-multiplication on the free D,—1;;-module
and the left i~ Dyr-action defined in the same manner as above: The differential 6; (1 <
¢ < m) acts via the composition of the map 6; — 0,, with left multiplication of D,-1;
on the second factor, whereas 6; for m+1 < ¢ < n operates by increasing the exponent
of §; by one. The left action of f € i 'Oy onq®p € Cllmi1,...,0] @c D,-1y is
expressed as Y. ¢; ® fipif fq =, ¢ fi with ¢; € C[0my 41,...,0,] and f; € .71 Oy in the
ring :~! Dy, where the left action of f; on p is given by composition of the canonical maps
POy — YOy / Ty) =2 O,-1y; and left multiplication of O,-1;; on D,-1;.

Example 1.4.3. A particular case of a closed embedding is a coordinate change \ : X — X,
that is, an automorphism. In this case, Dx_,x = A 1Dy = Dx with left Dx-action on
Dx given by (left) ring multiplication on Dx. The right A~! D x-action induced on Dy is
described as follows locally: By working on local coordinate neighborhoods, we reduce to
the situation that X is an affine irreducible subvariety of C" with global coordinate system
and N = (M),...,\])) : C* — C" a morphism inducing the isomorphism A : X = N(X)
with inverse induced by ¢ = (¢1,...,%,) : C* — C". If(fi,0:i)1<i<m is such a global
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1.4 Direct images of D-modules

coordinate system on X, then g1 := f1 0%, -, g := fm 0% are global coordinates of \(X)
with corresponding derivations 6y, , ..., 0,. Now h € A1 Oyx) and 6, act on Dx via
right multiplication with & o A and 6;, respectively. The actions on the second transfer module
Dx. x = Dx are described in a similar manner.

The transfer modules are equipped with filtrations as left (Dx, Fy)-module and as right
[~ (Dy, F2)-module as follows: We set

FeDxoy = FeOx ®p-10, f (Dy, FY)

(interpreted in analogy to Definition 1.3.6) and F, Dy x is defined via the side-changing
operations for filtered modules. We make that filtration explicit for our above examples:

Example 1.4.4. (Continuation of Example 1.4.1) The filtrations are F, Dy, x = F, Dy and
FoDx.y = F Dy.

Example 1.4.5. (Continuation of Example 1.4.2) The filtration on the first transfer module is
globally given by F, Dx_,y = i }(F2(Dy /I Dy)) and can be locally expressed as

FoDxoyv= @ FiyDxOgi, 00

aeNP—™

Similarly, Fy Dy x =i }(F?°

e—(n—m

)(Dy / Dy T)) and locally

FeDy. . x = @ Fe jal—(m—m) Px Oglyy - 05—

aeN?— ™

We point out that the shift n —m = dimY — dim X in the above filtration compared to the
filtration of the first transfer module comes from the side changing operations.

1.4.2 D-module theoretic direct image functor

Consider the morphism ¢ : X — Y of algebraic varieties of dimensions n and m, respectively.
We use the second transfer module and the canonical unit morphism ¢ 1Dy — Dy to
construct the direct image of D x-modules under ¢ as the composition of the right derived and
left derived functors

D'(Dx) 3 M® = Dy, x @, M* € D’(¢" ' Dy) and
D*(¢~ ' Dy) 3 N* — R$(N*®) € D*(Dy),
where ®{3X denotes the left derived functor of the tensor product Dy, x ®p, and R¢ denotes
the right derived sheaf theoretic direct image functor. Note that these functors map indeed

bounded complexes to bounded complexes by [HTTOS8, Propositions 1.5.6 and 1.5.4]. More
precisely, we define:
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1 Introduction to filtrations and D-module theory

Definition 1.4.6. The (D-module theoretic) direct image functor ¢, : D*(Dx) — D%(Dy)
is defined by
¢4 M® = R$(Dy . x @5, M®).

We define ¢4 M for the D x-module M by identifying M with the complex whose only
non-trivial entry is M in degree 0.
The direct image functor commutes with composition of morphisms:

Proposition 1.4.7. [HTTO0S, Proposition 1.5.21] Let ¢ : X — Y and ¢y :' Y — Z be
morphisms between algebraic varieties. Then we have

(Yod)r =vioy.

We remark that ¢ : X — Y can be written as the composition of the closed embedding
tp + X - X xY,z — (x,¢(x)) and the projection my : X x Y — Y. Hence it suffices
from a D-module theoretic point of view to study the direct image functors in these situations.
We will however focus on closed and open embeddings, because these kind of images show
up in the construction of the Hodge theoretic direct image functor for open embeddings of
complements of subvarieties of pure codimension one.

Direct images under closed embeddings

Consider the situation of Example 1.4.2, that is, let ¢ : X — Y be a closed embedding defined
by the ideal sheaf 7 with dim X = m and dimY = n. Recalling that the second transfer
module Dy, x = 1~ (Dy / Dy I) is Dx-locally free (see Example 1.4.2) and that the sheaf
theoretic direct image functor for closed embeddings is exact, we have for the D x-module M

1y M =17 (Dy /Dy I) @py M) =1 (Dy /Dy I) ®,py t M, (1.4.1)

where we interpret the right hand side module as the complex with only non-zero entry this
module in degree 0. Choosing an affine open neighborhood U of Y with coordinate system

(fi,0i)1<i<n such that Z is locally generated by fm 41, .., fo and (fi, #;)1<i<m induce coor-
dinates on U N ¢(X), we obtain
(t+ M)u = ClOm 41, .., 0] ®c (¢t M)y (1.4.2)

Note that x; := f;orfor 1 < ¢ < mis hence a local coordinate system on X with correspond-
ing differentials denoted by 6. The action of Dy on the module C[0p, 41, ..., 0] ®c (¢ M)y

is described as follows: The differentials 6y, 11, ..., 8, act by multiplication on the first factor
of the tensor product, whereas 61, ..., 0y, operate by left multiplication with 6, ..., 60, on
the second factor, respectively. The element f € Oy acts on ¢ ® m € Clly 41, ..,0n] ®c

(tM)yas ), ¢ ® fim, where fqg =), q;fi in Dy with ¢; € C[b 41,...,60s] and f; € Op
and f; operates on m via the composition of the canonical maps Oy — (™! Oy)y —
(w1 (Oy /T))u = (1 Ox)y and left multiplication of (¢ Ox )y on (¢t M)y.

The above considerations imply:
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1.4 Direct images of D-modules

Proposition 1.4.8. Let . : X — Y be a closed embedding of algebraic varieties. Then:
(a) We have for the Dx-module M that H*(1, M) = 0 for k # 0. In particular,
1% : Mod(Dx) — Mod(Dy), M — H (14 M)
is an exact functor.
(b) The functor L(J)r maps Modo - qeon(Px) to Modo, - qeon(DPy ).

In particular, we may identify for a D x-module M the functor LS)F with ¢4. So when writing
L+ M, we mean from now on (3 M.

Example 1.4.9. (Continuation of Example 1.4.3) Under the reduction in Example 1.4.3 it
holds:

(a) Themap A : Ay Dx — Dy (x) given by
;> %and 0; — Qgi

is an isomorphism of left D) (x)-modules by Example 1.4.3 and hence also of Oy(x)-
modules. An analogous statement holds for the map A¥ for any finite set E.

(b) Equipping A Dx with an O, x-structure via the natural isomorphism O (x) — A Ox,
we see that Ay Dx and A Dx agree as O)(x)-modules. Thus we may interpret for an
O x-submodule P of DJ)E( (for a finite set F), AP as an O A(x)-submodule of At D)E(
and may consider its image under A¥. We identify from now on for an O x -submodule
or Dx-submodule P’ of D the direct image A P’ or A P’ with A”(P’), respectively.

(c) GivenasetP' C Dx (X )E , we have under the above identifications

A (Ox <7)/>> = oA(X><AE(7’/)> C DYx)

and
A (py (P) =y, (AF(P)) € DEx,

These identifications induce for M = DE / p, (P') the identification
>\+ M = /Df(X) /D)\(X) <AE (73/)>

(Q) € M with Q C D we obtain

A (ox <@>) =

and for Ox

<AE(Q)> C DXx) / Dy, (AZ(P):

Ox(x)
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1 Introduction to filtrations and D-module theory

In view of later applications, we are particularly interested in a certain kind of graph em-
bedding:

Example 1.4.10. Given a regular function f : X — C and a Dx-module M, we study the
direct image (if)4+ M under the graph embedding i¢ : X — X x C; : ¢ — (z, f(x)). Notice
that every system of local coordinates ( f;, 8;)1<i<m on the affine open neighborhood U of X
can be completed to a system of local coordinates on U x C; by adding the coordinate ¢ of C;
and its corresponding differential 0;(= %). To represent (is)4 M on this neighborhood, we
factorize iy via the closed embedding 7o and a coordinate change

if

X¢ X x C (1.4.3)
io:xm %’—}((E,t‘ﬁf)
X x Ct .

By the above considerations, we have (ig)+ M = C[0¢|®cio M globally. Locally, Oy xc-acts
by

0; - (OF @m) = 0F @ 6;m
O - (OF @m) = om

for1 <i<m,m € (igpM)uxc and k € N, and Oy« operates as explained after Equa-
tion (1.4.2). So in particular

t-(OF @m) = —koF 1 @m.

If M is Dx-coherent, then M is of the form DE / py (P) with P € Dy (U) implying

((i0)+ M)vxc = Diixc / py o (Pr 1)

Noting that the coordinate change A maps the local coordinates fi,..., fm,¢,01,...,0m
and 9; on U x C to the local coordinates fi, ..., fm,t — f,61 + 601(f)04, ..., 0m + O (f)O;
and 9; on A(U x C) = U x C, we obtain

(if)+ M = Cl0) @ if M
globally with Dy c-module structure given by

(0; + 6;(f)) - (OF @ m) = dF @ O;m
O - (OF @m) = om

for1 <i <m,m € (if M)yxc and k € N. As Oy operates as explained after Equa-
tion (1.4.2), we have in particular

t-(OF@m)=0F @ fm —kdF ' @m.
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1.4 Direct images of D-modules

Applying the coordinate change A we obtain for coherent M as above (under the identifica-
tions in Example 1.4.9)

((if)JrM)UX(C = Dgx(c /'DUX(C<AE(P)at - f>

The direct image functor for the closed embedding ¢ : X — Y even induces an equivalence
of categories, called Kashiwara’s equivalence, between the categories Mod.(Dx) and cate-
gory Modi(X) (Dy ), the subcategory of Mod, (Dy') consisting of modules supported on ¢(X),
for x € {Ox-qcoh, coh}. Before we state this equivalence, we introduce the extraordinary
inverse image functor which will serve as a quasi-inverse.

Definition 1.4.11. Let ¢ : X — Y be a morphism of algebraic varieties. The extraordinary
inverse image functor is

¢ : D"(Dy) — D*(Dx), N* = (Dx oy ®5 1 p, ¢  NV)[dim X — dim Y],
By applying certain duality functors to the extraordinary inverse image functor and to the
direct image functor, one defines the inverse image functor and the extraordinary direct image
functor. The reason why ¢' is called the extraordinary inverse image is that the (extraordi-

nary) inverse image will be left adjoint to the (extraordinary) direct image. Also, this way the
functors are compatible with the so-called Riemann-Hilbert correspondence.

Proposition 1.4.12. [Kas78] Let 1 : X — Y be a closed embedding with defining ideal sheaf
7.

(a) The functor 4 induces equivalences of categories

MOdOX-qcoh (DX) — MOdé’gf.)qcoh (DY)

Modeon(Dx ) — Mod' X (Dy)

. .. |
with quasi-inverse HO.'.

«X)

(b) We have for N € Mody ” con

(Dy) that H*/' N = 0 for all k # 0.
(c) We have for N € Modo - qeon(Dy ) that HOu HO%' N =T x)(N), where T x)(N) :=
{n € N | there exists i € N: I'n = 0}.

For a proof we refer the reader e.g. to [HTTO8, Theorem 1.6.1 and Proposition 1.7.1].
We naively define the filtered direct image under closed embeddings in a way preserving
good filtrations:

Definition 1.4.13. Assume that (M, F,) is a filtered (D, Fy)-module. Using the filtration
F, Dy x (see Example 1.4.5), we equip ¢ M with the (Dy, Fy)-filtration
Fuy M=) Fi Dy x ®.0xtFe ;M (1.4.4)
keZ

(where the right hand side is to be understood in analogy to Definition 1.3.6).
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1 Introduction to filtrations and D-module theory

Note that we have

Fay M =Y u (F{(Dy /Dy I)) ®,0y tFe—p—dimy+dimx M, (14.5)
kEZ

which is in the situation of Equation (1.4.2) expressed as

(Fay M)y = > 0%+ 00 ™ ® (tFu_jafn+m MU (1.4.6)

aeNP—™

Remark 1.4.14. We point out that Fei M a filtered (Dy, Fy)-module that is well-filtered if
and only if Fy M is well-filtered as (Dx, Fy)-module.

Remark 1.4.15. In the situation of Example 1.4.9(c) it holds for a shift vector s € Z* that

A(DF [  (P') Fols]a) = (Dfix) [, (AP (P). Folsla).

Direct images under open embeddings

Let U C X be an open subset of the variety X with embedding denoted by j and complement
V := X \ U. By Example 1.4.1 the second transfer module Dx . i agrees with Dy;. Thus
the D-module theoretic direct image functor coincides with the sheaf-theoretic direct image
functor, i.e.,

j+ M. - Rj M.

for M® € D°(Dy) in this situation. The functor j, is in general not exact, but it is exact if U
is affine as R*j M = 0 for M € Mod(Dy) and k # 0 in this case. Hence we identify in this
case j4 with H’j, = j as we did for closed embeddings.

We remark that j, M?® is not only an complex of D x-modules, but also of j D-modules.
Working locally we see that

iDu =Dx ®0,jOv =Dx ®o,jj ' Ox,

where O x on the right hand side module acts by left multiplication on Dx and the ring struc-
ture on this module is given by

12f)-(peg) =p®fg
1) -(prg)=0pxg+p=0(g)

for f,g € 1Oy, p € Dx and § € Ox. In view of the applications to Hodge theory, we are

particularly interested in the case of V' being a pure codimension one subvariety of X. In this
case, jj 1 Ox agrees with O x (¥V'), which motivates the following definition:
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1.4 Direct images of D-modules

Definition 1.4.16. Let V' C X be a closed embedding of pure codimension one for not neces-
sarily smooth V' and M a D x-module. The localization of M along V is defined by

MV) := M@0, Ox(xV).
It comes with a canonical localization map i,y : M — M(xV') sending m to m ® 1.

In the above situation, M (xV") is a Dx (*V')-module with D x (xV")-action defined in anal-
ogy to the ring structure of Dx (xV'). In particular, we have jX\Vj;(iV M = M(%V), where
Jx\v : X \ V — X is the corresponding open embedding.

Remark 1.4.17. Let V C X be a closed embedding of pure codimension one for not nec-
essarily smooth V' with defining ideal sheaf Z. Then the sheaf of rings Dx (V') is locally
Noetherian: We define the order filtration Fy Dx (V') by

FeDx(xV) = jX\Vj)_({VFoO Dx .

On an affine open subset U C X with local coordinates ( f;, 6;)1<i<m such that Z;; = Oy (9),
the associated graded sheaf of rings is represented as

OX(U)Kl?agm]? lfUﬂVZV),

Gl Dx (xV)(U) =
Ox(U)[g7Y[¢1, ..., &m], else.

Hence Proposition 1.1.16 implies the claim and Proposition 1.1.7 shows that Dx (xV) is a

coherent sheaf of rings.

Remark 1.4.18. While it was relatively easy to equip the direct image of a well-filtered mod-
ule under a closed embedding with a good filtration, it is not so clear how to do this for open
embeddings. The first problem is that j; is in general not exact, which indicates that we
need the notion of a derived category of Modcon(Fy D) to equip the direct image with a filtra-
tion. To circumvent the problem that this category is not abelian, one considers it as an exact
category allowing the definition of a corresponding derived category nevertheless (for details
see [Lau83]). Yet, the above considerations show that Dgoh(D) is not preserved under direct
images by taking for instance the direct image of the sheaf of differential operators under the
natural inclusion j' : C\{0} < C. This implies that it is not possible to define a filtered
‘D-module theoretic direct image functor preserving Dlgoh (FY D) and commuting with the for-
getful functor D%, (F9 D) — D%, (D). As the direct image functor preserves complexes
with holonomic cohomology one could hope that it is possible to define a direct image functor
for the subcategory of Df;oh(F,o D) consisting of complexes with holonomic cohomology. But
the naive approach by setting for instance for an affine open embedding j : U — X

./—".(j+ ./\/l) = j(F. Dx ®@UF. ./\/l) Ij./—"../\/l
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1 Introduction to filtrations and D-module theory

(with Fy Dx ¢ ®0,, Fe M being defined in analogy to Definition 1.3.6) does not work, be-
cause then the direct image of (Oc¢\ {0}, F) would have the filtration

Oclz™1], ifi>0

0, else,

Fi s Oc\(o) :{

(where x € Ox is the defining equation of {0}), which is not O¢-coherent for : > 0. We will
see later how to define a good filtration on that module in a way compatible with mixed Hodge
module theory.

Considering the case that V' C X has defining ideal generated by the regular function
f : X — C, we investigate the direct image under the corresponding graph embedding of
localizations along V':

Lemma 1.4.19. Let V C X be a not necessarily smooth subvariety with defining ideal sheaf
T generated by the regular function f : X — C. Then we have for the direct image of the
D x-module M under the graph embedding iy : X — X x C,xz — (z, f(x))

(i5)+ (M(xV)) = ((i5)+ M)(+X x {0}).

Proof. WesetU := X \ V and consider its canonical embedding ji : U — X. As M(xV) =
(ju)+(j;" M), we obtain by the commutativity of D-module theoretic direct images, by the
commutative diagram

Xc—if> X xC
jU]\ ]\ijC*
U——— 3 X xC*

and by the isomorphism (i) jr; "M = j;(lx(c*(i #)+ M the claim. Thereby note that the
latter isomorphism can be established using local coordinates. O

Remark 1.4.20. For algorithms later on, we need to make the isomorphism in the above
lemma for O x-quasi-coherent M explicit. We reduce to the embedding iy as follows: We
keep the setting of the above lemma and decompose 7y = A o1ig as in Example 1.4.10. We first
construct the isomorphism

(i0)+ (M (V) = ((io)+ M)(=V (t + f)) :
The left hand side of the above isomorphism is
(i0)+ (M(*V)) Zig(M @0, Ox[f']) ®c C[dy] (1.4.7)

=(ip M @c C[dh]) @iy 05 i0(Ox[f 1)
(Z.OM ®c (C[at]) ®Oxxc OXX(C[f_l]7

[
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1.4 Direct images of D-modules

while the right hand side can be rewritten as
((i0)+ M)(=V (t + £)) == (io M ®c C[Oh]) @0 e Oxxcl(t + )] (1.4.8)

An easy calculation shows now that for a,b € N and m € ig M

c/2
(meof)e f=|(> (-1F <;> ket bmear | @@+ )
k=0

(with ¢ € 2Nsuch that ¢/2 > a+1,b) in (ig(M) @c C[d4]) @0, « Oxxc[(f(t+ f)) 1] mak-
ing the above isomorphism explicit. Applying the coordinate change A to Equations (1.4.7)
and (1.4.8), we obtain

i)+ (M(xV)) = Xy (i0) 4 (M(xV)) = (ig(M) @ ClAY]) ®ox e Oxxclf ]

and

A+ (((i0)+ M)(+V (t+£))) = (iy M @c ClO]) R0y e Oxxelt '] = ((if)+ M)(xX x{0}).
and the above considerations give the isomorphism

(it M@c Cloy]) ®0yx e Oxxclf ] = (if M@c Clo]) @0y, e Oxxclt™ ] (1.4.9)
c/2

me freof >y (1) <Z> RS m @ op ™ @ (17°)
k=0

(with c as above) representing (if)4 (M (xV)) = ((if)+ M)(xX x {0}) . Its inverse can be
presented in a similar manner.

Remark 1.4.21. In the situation of Lemma 1.4.19 let (M, F,) be a well-filtered (Dx, Fy)-
module. Then the isomorphism in Lemma 1.4.19 is by Remark 1.4.20 an isomorphism of
filtered modules, that is, we have

(i) + (M, Fo) @ox Fo Ox (xV)) = ((if)+(M, Fo)) @0y e Fo Oxxc(xX x {0}),

where we equip O x (xV) and O x «c(*X x {0}) with one-step filtrations in analogy with O x:
Indeed, the map in Equation (1.4.9) is obviously filtered. If on the other hand m® f ~*®09§* with
m € iy(F} M) is sent under this map to an element in the F},,_1-part of the corresponding
filtration, then this implies that f'm € i ¢(F},_1 M) for some ! € Nand hence m® f @05 =
fl'm @ f~"=! ® ¢ is also in the F},,_1-part of the filtration on the left hand side module of
that map.
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1 Introduction to filtrations and D-module theory

Remark 1.4.22. We keep the notation of Lemma 1.4.19 and consider the (Dx (xV), Fy)-
module (N, F,). As this module is also a (Dx, Fy)-module, we define ((if)+ N, F,) via
Definition 1.4.13. The latter module is in fact a well-filtered (D x xc(*X x {0}), Fy)-module
if (N, F,) is well-filtered as (Dx (xV), Fy)-module: We factorize the map s via the closed
embedding 7o and the coordinate change A as in Diagram (1.4.3), and may hence replace
(if)+ (N, Fo) and (Dxxc(+X x {0}), FQ) by (io)+ (N, Fe) and (Dxc(+V (t + f)), F?),
respectively. Then the action of (t + f)~! on (ig)+ N = ig N ®c C[d}] is given by
! .
t+n)mea) =Y Mﬁn@@é.

0<i<a

If (N, F,)is (Dx(*V), F2)-good, we may assume that X is affine that there is a finite set
N CN(X)ands € ZV with FFLN = 3\ Fo_g Dx(xV) - n. But then Fy(0)1 N =
Sonen Foos, Dxxc(*V(t+ f)) - (n® 1) because f*n® 1= (t+ f)~% - (n® 1) for any
k > 0 showing the claim.
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2 PBW-reduction-algebras

Motivated by Saito’s theory of mixed Hodge modules, the goal of this chapter is to study
the interplay of the filtration by the order of differential operators and a certain V-filtration
on modules over the Weyl algebra and more generally on modules over coordinate system
rings, and to develop related algorithms. More precisely, on the Weyl algebra D,, over C
in variables x1,...,x, and corresponding derivations 01, ...,0,, a so-called weight vec-
tor u € Z* with u; + u,y; > 0 for 1 < i < n induces a filtration F*D,, given by

FD, = C<{x‘f‘1 . -wgnﬁfl O | o, B e N {(a, B),u) < k:}> for k € Z. In the case

u = ((0)1<i<n, (1)1<i<n) the corresponding filtration FQ* D), is the filtration by the order of
differential operators, whereas the weight vector assigning weight 1 to 0,,, weight —1 to z,
and weight 0 else defines the V-filtration along {x,, = 0} on D,,. These filtrations induce not
only filtrations on sub- and quotient modules of free modules, but it is also natural to consider
E3'Dy,-submodules of such sub- and quotient modules, and investigate the interplay of these
structures.

While Weyl algebras can computationally be regarded as a particular case of PBW-algebras
with their well-studied Grobner basis theory, coordinate system rings do not seem to fit into the
setting of (quotient algebras of) PBW-algebras or in any other already existing well-developed
algorithmic setup that we are aware of. Hence we introduce in this chapter a Grobner basis
theory for a broader class of algebras, called PBW-reduction-algebras. These algebras are
certain quotients of free associative K-algebras of type K(z1,...,z,) by two-sided ideals
containing commutation relations with the property that a subset of the set {z{" .-z~ |
a € N"} forms a K-basis of that quotient. We will see that the concept of weight vectors
naturally generalizes to PBW-reduction-algebras. We introduce a variant of the Buchberger
algorithm for Grobner bases computations over this new class of algebras and show that many
elementary applications thereof, referred to as “Grobner basics” by Sturmfels, can be adapted
from commutative polynomial rings to our setting. With Hodge theoretic constructions in
mind, we then study the interplay of structures as above on modules over PBW-reduction-
algebras in as much generality as reasonable.

The outline of this chapter is as follows: We introduce PBW-reduction-algebras in Sec-
tion 2.1 and develop a Grobner basis theory for well-orderings on such algebras. Section 2.2
addresses the main subject of study in this chapter, namely the already mentioned weight fil-
trations on PBW-reduction-algebras. Given a weight vector u on a PBW-reduction-algebra A,
we first investigate the subalgebra F{]' A and prove that this algebra is left and right Noetherian
and generated by a finite set of monomials of A. Using homogenized PBW-reduction-algebras
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2 PBWe-reduction-algebras

with respect to a suitable weight vector, we formulate an algorithm for Grobner bases compu-
tations with respect to non-well-orderings on PBW-reduction-algebras. This allows us to give
a computer algebraic proof showing that the filtration F}* A induces good filtrations on sub-
modules of free A-modules by considering a u-weighted degree ordering. Given two weight
vectors v, w on A which satisfy among other conditions F}* A C Fy A, we explain in Sec-
tion 2.3 how to determine the intersection of F{y’ A- and F{}" A-submodules of a free A-module
as well as how to find generators of the filtration induced by ¥ A on such an F{y’ A-submodule.
The key to tackle these problems is a translation process to problems over the PBW-reduction-
algebra F) A. Lastly, in Section 2.4 we consider the same problems as in the previous section,
but this time for quotient modules of free A-modules. In many instances these problems can
be reduced to the analogous problems for submodules of free A-modules.
In this chapter K stands for a field.

2.1 Grobner basis framework for PBW-reduction-algebras

PBW-reduction-algebras are certain quotients of free associative K-algebras of type K(x1, . ..,
xy) such that a subset of the set of standard monomials {z" --- 20" | @« € N"} forms a K-
basis of this quotient and the multiplication on this basis is defined by certain commutation
relations. These algebras can be considered as a generalization of so-called PBW-algebras
which are K-algebras of the above type with the set of all standard monomials as K-basis.
We adapt in this section the Grobner basis theory for PBW-algebras to the setting of PBW-
reduction-algebras using Bergman’s Diamond Lemma [Ber78]. Grobner bases in the context
of PBW-algebras were first studied for the subclass of universal enveloping algebras of finite
dimensional Lie algebras in [AL88] and the methods applied there have later been extended to
develop a Grobner basis theory for general PBW-algebras in [KRW90]. The idea behind the
corresponding algorithms is that PBW-algebras are still close enough to commutative polyno-
mial rings in order to adopt certain methods from commutative Grobner basis theory such as
the Buchberger algorithm for well-orderings to this setting.

2.1.1 PBW-reduction-algebras

Consider the free associative K-algebra 7}, := K (x1,...,z,) generated by z,...,x, for
n € N. If I C T, we also write (I) for the two-sided ideal 7, (I) 1, generated by I and
similarly for two-sided ideals of factor rings of 7;,.
Definition 2.1.1. Let E be a finite set.

(a) We denote by

Mon(TF) := {x;, - 2i,(e) | k €N, 1 <iy,...,ig <mye€c B} CTF
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2.1 Grobner basis framework for PBW-reduction-algebras

(b)

(©)

(d)

the set of monomials of T and
SMon(TF) := {«§" - 2% (e) |« € N",e € E} C TF

is called the set of standard monomials of TX. We write for the element t € TF
also t = 3 c\jon(rE) tmm With £, € K. Abbreviating 2%(e) := 7" - - 27" (e) for
e € F and a € N", we often use for p € K(SMon(Tf )) the multi-index notation
P = 0o Peaz(e) with pe o € K (by implicitly assuming that e runs through E and
! throug’h N™).

We point out that we have SMon(7;,) = {z* | « € N"} and Mon(7},) = {z;, - - - @, |
ke N,1<4y,...,ix < n} under the convention in Notation 0.0.1(b).

A total order < on Mon(T'F) is called a monomial well-ordering if it holds for all
m,m’,p,q € Mon(T,) ande,e¢’ € F

(i) (e) = m(e) and

(i) m(e) < m’'(e’) implies pmgq(e) < pm/q(e’).
A total order < on Mon(T)F) is called a monomial ordering if it satisfies Condition (bii)
and a monomial ordering that violates Condition (bi) is called a monomial non-well-

ordering. We also say that the corresponding monomial ((non)-well) ordering is a
((non)-well) ordering on Tf .

We say that the total order < on SMon(T.F) is a monomial well-ordering if it holds for
all a,/,v € N" and e, ¢’ € F that

(i) (e) = z%*(e) and

(ii) z%(e) < z®'(¢’) implies 227 (e) < ' T7(€’).
A total order < on SMon(T.¥) is called a monomial ordering if it satisfies Condi-
tion (cii) and a monomial ordering that violates Condition (ci) is called a monomial
non-well-ordering. We also say that the corresponding monomial ((non)-well) ordering
is a ((non)-well) ordering on K(SMon(Tf ))-
Let < be a monomial ordering on Mon(T/F). If 0 # ¢ = > e B,meMon(Ty) temm(€) €
TE with t,,, € Kand m/(¢/) := max~{m(e) | te,mn # 0}, then we define

lm< (t) := m/(€') (leading monomial of t),

lt<(t) := ter pym/(€') (leading term of t),

le<(t) := te m (leading coefficient of t),

lcomp_ (t) := €’ (leading component of t),
tail L (t) ==t — Lt () (tail of t),

com R n ; [
(1) == cjep iy €NV =y, -y,
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2 PBWe-reduction-algebras

(e)

o ele®™(t) := (Z1§j§k ei;,€)ifm' =ay - ay,

If le<(t) = 1, we say that ¢ is <-monic. By abuse of notation, we assume that the
expressions Im(0) < Im(¢) and Im<(0) < Im<(#') forall 0 # ¢ € TF and ¢’ € TF
are true.

If m' = z* € SMon(T},), we denote moreover

e le_(t) := « (leading exponent of t).

o cle~(t) := (a, €') (extended leading exponent of t).
We sometimes omit the index < if it is clear from the context.
The corresponding notations from Part (d) are defined analogously for a monomial or-
dering <" on SMon(7/F) and 0 # p € (SMon(T;,)). We denote the ordering induced
by <" on N x E via the bijection z%(e) — («, e) also <" and adapt an analogous con-

vention for le_/(0), 1e%™(0), ele~/(0) and ele®™(0) as we did for Im_/(0). Moreover,
we introduce for G C K<SM0n(T 2)) the set

L(G) = felews(g) + N" | g € G\ {0}} € N" xE,

where we define (o, e) + 3 := (a4, ¢e) fora, B € N" and e € E and write sometimes
also L(G) for L~/(Q) is the corresponding ordering is understood from the context.

Convention 2.1.2. In the situation of Definition 2.1.1(d) and (e), we define for simplicity
(when dealing with Grobner bases) by abuse of notation « + ele~/(0) := ele~/(0), o +
le</(0) :=1le=/(0), o +1e2™(0) :=le<(0) and v + ele?™(0) := ele<(0) for any o € N"™.

Remark 2.1.3.

(a)

(b)

By the natural identification of 7;, and Tﬁ as T,,-modules and the convention of Nota-
tion 0.0.1(b) everything defined in Definition 2.1.1 carries over to T}, but the notations
of leading components, extended leading exponents and the definition of L_/(G). In
this case, we define L_/(G) by replacing ele() by le().

By canonically identifying the commutative polynomial ring K[z, ..., x,] with the
K-module  (SMon(7},)) as K-modules, we may consider K[z1,...,z,] as a K-sub-
module of T}, for any m > n. Note that the definition of monomial orderings on the set
of monomials of K[z, ..., z,] is compatible with the definition of such orderings on
SMon(T5;,) under this identification.

Remark 2.1.4. Let E be a finite set.

(a)
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2.1 Grobner basis framework for PBW-reduction-algebras

(b)

(©

is a monomial well-ordering on Mon(7},). So in particular, monomial well-orderings
on Mon(T},) exist.

We can refine monomial orderings on SMon(7,¥) to monomial orderings on Mon(7.7).
More precisely, if < and <’ are monomial orderings on SMon(7.¥) and Mon(T},), re-
spectively, then (<, <’) defined by
Tiy -, (e)(<, <")xj, - x5, (") if and only if @210k Cip () < g21<p<t %p (¢
or 121§p§k Cip (6) = £21§P§l €ip (6/)
and ;, -, < T, 1y
is a monomial ordering on Mon(7.¥). If < and <’ are well-orderings, (<, <) is also
a monomial well-ordering. If <’ is the ordering introduced in Part (a), we sometimes

denote the ordering (<, <) also by < if it is understood from the context the we consider
it as an ordering on Mon(T}7).

Let < be a monomial ordering on (S)Mon(7X). Then <, defined by
Tj, - Ty, <e Tj, -y, if and only if @, -+ -z, (e) < 4, -z, ()

for e € E is a monomial ordering on (S)Mon(7},). This ordering is a well-ordering if
< is one.

Eventually, we will restrict ourselves to monomial orderings on SMon(7,¥) and refine them
to Mon(7TF) as outlined in Remark 2.1.4(b) above if necessary. The following remark lists
some of the orderings on SMon(7.%) which we will use frequently throughout this thesis:

Remark 2.1.5. Let E, ..., E; and E be finite sets.

(a)

Given an ordering < on SMon(7;,) and a total order < on E, the pair (<, <) induces
the following orderings on SMon(7.7):

(i) Term over position ordering (TOP-ordering):

z%(e) <£,p7< 2% (') if and only if 2% < 2

where a, 3 € N" and e, e’ € E.

(ii) Position over term ordering (POT-ordering):

z%(e) —<fot7< zP(€') if and only if e < ¢’

ore =¢ and z% < z°,

where o, 5 € N" and e, ¢’ € E.
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2 PBWe-reduction-algebras

These orderings are well-orderings if and only if < is a well-ordering.

(b) Many of our computations rely on so-called (module) block-orderings: Let <{51, ey
<E: be orderings on SMon (T, ,221), ..., SMon(TE), respectively. By abuse of notation,
we define the ordering <f = (%fl, .oy =Es) on SMon (T F1H~UEs) by

1yeee
ceesS

z%(e) <{31’_"S"Es zP(€') if and only if i > j

[ARR)

ori = jand z%(e) <5 2P(¢),

Eq,....Es

where e € E;, ¢’ € Ej and o, f € N". Notice that <;""* is a well-ordering if and

only if all 4? are well-orderings.

Convention 2.1.6. Let F, ..., E, and E be finite sets. If we write from now on <, we
implicitly assume that <* is some ordering on SMon(T}?). Similarly, (<, ..., <) always
denotes a block ordering on SMon (T Z1-HEs),

Under the identification TPt @ ... @ TFs = TEU-UEs we define the set of (standard)
monomials of the former module as well as monomial orderings on them.

Definition 2.1.7. Let E be a finite set and < a monomial ordering on 7.7

(a) Wecall S C TF\ {0} withlc(s) = 1 forall s € S a reduction system (with respect to
<). For s € S and m,m’ € Mon(7,,) we define the K-linear map
Prms,m! - Tf —>Tf,

!/

(@) m(—tail4(s))m/, ifxz;, - - 2,(e) = mlm(s)m
Zi -z (e
" K xiy - x4, (e), else

and say that p,,, s .,/ is a reduction (map) (with respect to S).

(b) Let S C TF be a reduction system, t € T.¥ and p a finite composition of reductions.
Then we call p(t) a reduction of t (under S) and say that ¢ reduces to p(t) (under S).
(¢) If we have for < and a reduction system .S with respect to <

() zizj(e) < xjai(e) foralll1 <i<j<nandee€ FE,

(ii) there exist elements xjz;(e) — c;jx;xj(e) — dij € S with ¢;; € K" and d;; €
K<SMon(Tf)> such that Im(d;;) < z;zj(e) foralll <i < j<nande € E,
and

(iii) every element in T'¥ can be reduced to an element in K<SMon(TnE )>,

then we call S a standard reduction system (with respect to <). In this case, the
reductions P ., (e)—cijwiz; () —diym' With z;zi(e) — cijziz;(e) — dij as above and
m,m’ € Mon(T),) are called commutation reductions.
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2.1 Grobner basis framework for PBW-reduction-algebras

(d) Let I C T, and A := T,/ (I). We say that the reduction system S C T'F is a reduction
system for AZ if 1, (I®) 1, = 1,,(S) 1,.

(e) LetS C Tf be a reduction system. We say thatt € Tf is irreducible (with respect to S)
if all reductions p act trivially on t, that is, p(t) = t. We denote the K-submodule of all
irreducible elements of T.X by (T'F )gr  and write sometimes also (T}2)Z" for the latter
module if the ordering is understood. A sequence of reductions p, ..., px is called final
ontifpgo---opi(t) € (Tf)gr

(f) Let S C TF be a reduction system. We call t € T.F reduction-finite if for any infinite
sequence of reductions p1, po, . . ., the reduction p; acts trivially on p;_1 0--- 0 py(t) for
¢ big enough. We say that ¢ is reduction-unique if it is reduction-finite and its images
under all final sequences on ¢ are the same. This common value is denoted by pg < ()
or pg(t) if the ordering is clear from the context.

Remark 2.1.8. Let S C T'F be a reduction system with respect to the monomial ordering <.

(a) If < is a well-ordering, then all elements of T f are reduction-finite. Moreover, if S
is additionally finite, a final sequence of reductions for a given element is effectively
computable.

(b) If S is a standard reduction system with respect to <, then (T.X)I* C K<SMon(T7;E ))-
Also note that Definition 2.1.7(ciii) follows immediately from Definition 2.1.7(ci) and
(cii) if < is a well-ordering.

Reduction uniqueness can be tested with the help of so-called ambiguities:

Definition 2.1.9. Let S C TF be a reduction system with respect to the monomial ordering
<.

(a) Atuple (s1,s2,m1, ma, m3) with s1, so € S suchthat e := lcomp_(s1) = lcomp_(s2)
and my, mo,mg € Mon(T},) \ {1} satisfying Im~(s1) = mima(e) and lIm~(s2) =
mamg(e) is called an overlap ambiguity of S. We say that this ambiguity is resolvable
if there exist compositions of reductions p, p’ such that p o p; s, ms(Mm1mams(e)) =

P’ 0 Py sy, (M1mamsz(e)).

(b) A tuple (s1, s2,m1, Mg, m3) with s1,s2 € S such that s; # s, e := lcomp_(s1) =
lcomp_ (s2) and my, mg, m3 € Mon(T},) satisfying Im~(s1) = ma(e) and Im~(s2) =
mimaoms(e) is called an inclusion ambiguity of S. We say that this ambiguity is resolv-
able if there are compositions of reductions p, p’ such that po p,,, s, .ms (Mimams(e)) =

p' 0 p1,sy,1(mimams(e)).

Remark 2.1.10. Let S C T.F be a reduction system with respect to the monomial ordering <.
If all elements of the T},-module 7, {S) 7, C T/ are reducible to zero, then all ambiguities of
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S are resolvable: Indeed, consider for instance an overlap ambiguity as in Definition 2.1.9(a).
Then d(s, s, my mams) = Plsims(M1mams(€)) = pmy,so,1(Mmamams(e)) € 1,(5) 1, re-
duces to zero, say by the composition of reductions . Choosing p and p’ in Definition 2.1.9(a)
as o, we see that the overlap ambiguity is resolvable since the reduction maps are additive. In
particular, if S is the set of all <-monic elements of a two-sided ideal of 7T, f , then S is ambi-
guity resolvable.

The so-called Diamond Lemma relates reduction-uniqueness and resolvability of ambigui-
ties:

Proposition 2.1.11. [Ber78, Theorem 1.2] Let S C T,, be a reduction system with respect to
the monomial well-ordering <. The following are equivalent:

(a) All ambiguities of S are resolvable.
(b) All elements of T}, are reduction-unique under S.

(c) A set of representatives in T,, of the algebra A = T,,/ (S) is given by the K-submodule
(T,,)3* spanned by the irreducible (with respect to S) elements of Mon(T,).

When these conditions hold, A may be identified with the K-module (T, n)gr , made a K-algebra
by the multiplication t - t' := pg(tt') for t,t’ € (T,,)%".

The Diamond Lemma and Remark 2.1.10 imply:

Corollary 2.1.12. Let S C T, be a reduction system with respect to the monomial well-
ordering <. Then the following are equivalent:

(a) All ambiguities of S are resolvable.
(b) Everyt € 1, (S) 1, can be reduced to zero under S.
(c) Foreveryt € 1, (S) 1, exists a finite set P C T,, x S x T, such that

t= Z psq with lm<(psq) = lm<(¢).
(p,s,9)€P

Proof. If all ambiguities of S are resolvable, then then the equivalence of (a) and (¢) in the
Diamond Lemma implies Condition (b). The converse direction follows from Remark 2.1.10.
Obviously, if Condition (b) holds, then Condition (c) is also satisfied. Conversely assume
that the latter condition holds and consider 0 # t € 7, (S) 7,,. Then there exists a finite
set P C T, x S x T, such that t = E(p7s7q)eppsq and Im<(psq) =< lm<(¢). Choose
(p,s,q) € P such that Im(t) = Im_(psq). Then p, s 4(t) € 1,,(S) 7, has leading monomial
strictly smaller than Im(¢) and Condition (b) follows by induction on <. O

We are particularly interested in the following class of K-algebras:
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2.1 Grobner basis framework for PBW-reduction-algebras

Definition 2.1.13. Let S := {z;x; — cjjz;x; —dij | 1 < i < j < n} C T, be astandard re-
duction system with respect to the monomial well-ordering <= (<, <) (see Remark 2.1.4(a)
and (b)).

(a) Then the K-algebra
A:=T,/(R),

where S C (R) C T, is called a PBW-reduction-algebra and we say that < is a well-
ordering on A. If I C (SMon(7},)) is a finite set satisfying

@ 7,({US)r, =1,(R) T, and
(i) z¢ € T, for « € N" is irreducible with respect to the <-monic elements of

1, (R) 7, and < if and only if
«Q ¢ L'<(I)7

then we call the tuple (7}, S, I, <) PBW-reduction datum of A and write A = (A, <) =
(T, S, I,<). We refer to (the elements of) S as commutation relations.

(b) Given that A is a PBW-reduction-algebra, we moreover define: If S is a standard re-
duction system with respect to the monomial ordering <"= (<", <), we say that <"
is an ordering on the PBW-reduction-algebra A. Given I’ C (SMon(T;,)) satisfying
Conditions (ai) and (aii) after replacing I and < by I’ and <", respectively, we call
(T, S, I', <") also PBW-reduction datum of A.

Remark 2.1.14. Note that given a PBW-reduction-algebra A with PBW-reduction datum (7,,
S, I', <) the notation A = (T,,, S, I’, <") is reserved for the case that <" is a well-ordering.

Remark 2.1.15.

(a) One easily checks that Definition 2.1.13(aii) is equivalent to
L.(I)={le(r)|0#7r €, (R)r,, lm(r) € SMon(T,)}. (2.1.1)

Also note that by construction L (/) is always included in the right hand side of Equa-
tion (2.1.1) because if r € I C ¢ (R) 7, with le(r) = a, then we can apply com-
mutation reductions to z7r to find an element ' € 7, (R) 7, N x(SMon(7},)) with
le(r") = ac+ y for any v € N™. For convenience we also observe that the right hand set
in Equation (2.1.1) agrees with

{le(r) | 0 # r € 1,(R) 7, N g (SMon(T5))},
since given an element 0 # r € 7, (R) 7, with Im(r) € SMon(7},), we can apply

commutation reductions to tail(r) to reduce r to an element in 7, (R) 7, N (SMon(T5,))
preserving its leading monomial.
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(b) If Definition 2.1.13(aii) holds, then the condition in Definition 2.1.13(ai) may be re-
placed by I C 1, (R) 1,. Indeed, assuming Definition 2.1.13(aii) and I C 1, (R) 1,,,
we use commutation relations to write r € 7, (R) 1, asr = ' + s with s € 1, (S) 7,,,
r" € 1, (R) 1, N g (SMon(T},)) and Im(r’") < lm(r). Equation (2.1.1) implies now that
there is p € I and @ € N" such that le(r’) = le(p) + . Applying commutation reduc-
tions to xp to reduce it to an element p’ € 7, (S U I) 1, with lm(p’) = lm(r’), we find
an expression

,r/ :T/,+Cp,+8/

with ¢ € K*, s’ € 1,(S) 1, and " € 1, (R) 1,, satisfying Im(r”) < Im(r’). Induction
with respect to the well-ordering < completes the proof.

(c) Part (a) holds also in the situation of Definition 2.1.13(b) after replacing I and < by I’
and <", respectively. However, the proof Part (b) does not generalize to this setting,
because we made use of the fact that < is a well-ordering.

Remark 2.1.16. Consider the PBW-reduction-algebra A = (T,,, S, I, <).
(a) According to Remark 2.1.15(a) we can write every p € 7, (SUI) 7, N (SMon(T},))

as
p= Zagg—i— Z tst’

gel (t,s,t")eU
for some a € i (SMon(T,,))! and U C T,, x S x T, finite satisfying
le(ay) + le(g) < le(p) and 1e°°™(t) + 1™ (s) + 1™ (') < le(p).
Moreover, there is g € G with equality le(ay) + le(g) = le(p).

(b) Furthermore, we can determine for an element p € T}, a finite set U C T;, x S x T}, and
P’ € x(SMon(T},)) such that

p=p + Z tst" and lm_n (p'), lmn (tst’) <" Im_n(p)
(t,s,t")eU

for any ordering <" on A.

Lemma 2.1.17. A PBW-reduction-algebra (A, <) admits a PBW-reduction datum (T, S,
1, <) and the residue classes of

Bi={z"|a ¢ L(I)}

form a K-basis of A. Moreover, the set of irreducible elements of T,, with respect to the am-
biguity resolvable reduction system consisting of the <-monic elements of 1, (S, I) ., agrees
with the K-span of B and does not depend on the choice of I and S.

56
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Proof. Let S and R be as in Definition 2.1.13. We first observe that the set M of <-monic
elements of 7, (R) 7,, is an ambiguity resolvable reduction system for A by Remark 2.1.10 and
hence A can be identified with (7},)¥ C ,(SMon(T},)) as K-algebra by Proposition 2.1.11
and Remark 2.1.8(b).

Consider now the set

L= {lex(r) | 0# 7 € 1, (R) 1, N x(SMon(T},))} C N".

By Dickson’s Lemma there is a finite subset L' C L such that for every o € L exists an
o € L' with o € o + N". Choose for every o' € L' anry € 1,(R) 1, N g (SMon(T},))
having leading exponent /. Setting

I'={ry |d €L’}

we claim that (7,,,S, I, <) is a PBW-reduction datum for A: Indeed, by Remark 2.1.15(a)
Condition (aii) in Definition 2.1.13 is satisfied. As by construction I C 7, (R) 7;,, we are done
by Remark 2.1.15(b). O

Convention 2.1.18. As orderings in the context of PBW-reduction-algebras are as in Re-
mark 2.1.4(a), we from now assume implicitly that all orderings are of this type.

Notation 2.1.19. Let A = (7,,, S, 1, <) be a PBW-reduction-algebra and let M denote the
<-monic element of 7, (S, I) 1,,. Then (7,)* depends only on A = T,/ (S, I) and <. We

hence also denote it by (Tn)trfl ) and, similarly, we write p(4, <) and for pas.

The following algorithm evaluates the map p(4, <):

Algorithm 2.1.20 Given a PBW-reduction-algebra (A, <) and t € T, this algorithm computes
the irreducible representation p4 <y (t).

Input: A PBW-reduction-algebra A = (7,, 5,1, <) and t € T,,.
Output: An element u € T}, such that u = p4 <) (?).

1: Initialize u = 0.

2: Replace ¢ by a reduction of ¢ in i (SMon(7},)) under S.

3: while ¢t # 0 do

4:  ifle(t) € L(I) then

5: Choose p € I such that v := le(p) — le(t) € N™.

6: Apply reductions under S to reduce z7p to an element p’ € (SMon(7},,)) with
le(p’) = le(t).

7: Sett :=t—lc(t)/le(p)p'.

8: else

9: Set u := u + 1t(¢) and ¢ := tail(¢).

10: return u.
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Lemma 2.1.21. Algorithm 2.1.20 is correct and terminates.

Proof. Termination is clear, because we replace in each iteration of the while-loop ¢ by an
element with smaller leading monomial with respect to the well-ordering <.

Notice that we have u — t € 7, (I, S) 1, and that u € (Tn)‘(fj; ~)- Hence the correctness
follows by Proposition 2.1.11(c). O

A particularly well-behaved case of PBW-reduction-algebras are PBW-algebras:

Definition 2.1.22. A PBW-reduction-algebra A = (7},, S, {0}, <) is called a PBW-algebra.
If the elements in S are of type z;x; — ¢;;x;x;, we say that A is a quasi-commutative PBW-
algebra.

Corollary 2.1.23. [Lev05, Theorem 1.2.3] Let S := {xjx; — cjjxiw; —dij | 1 < i < j <
n} C T, be a standard reduction system with respect to a monomial well-ordering < that
induces a monomial ordering on SMon(T,,) by restriction. Then the overlap ambiguities of
the K-algebra

A:=T,/(S),

read
CikCikdijTr — Tpdij + Cjpxjdin — Cijdip®; + djp®i — CijCipTid;

forl1 < i < j <k <nandA isa PBW-algebra if and only if these ambiguities can be
reduced to zero under S.

The first part of the following corollary is obvious and a proof of the second assertion can
be found for example in [Lev05, Theorem 1.4.7].

Corollary 2.1.24. The set of standard monomials forms a K-basis of a PBW-algebra . More-
over, PBW-algebras are left and right Noetherian rings.

The following two examples of PBW-algebras are frequently used throughout this thesis:
Example 2.1.25. The polynomial ring K[z1, ..., x,] in n variables is a PBW-algebra.

Example 2.1.26. The Weyl algebra in the variables x1,...,x, and derivations 01,..., 0,
defined by

Dy :=K{z1,...,2p,01,...,00)/ ({0, ] — bij, [xi, 5], [0, 0;] | for1 <i,j <n})
is a PBW-algebra (see also Example 1.2.2).
From Corollary 2.1.24 we deduce:

Lemma 2.1.27. PBW-reduction-algebras are left and right Noetherian rings.
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Proof. Let A = (T, S, 1, <) be a PBW-reduction-algebra with S := {z;x; — ¢;jxiz; — d;j |
1 <i < j < n}. We introduce the multi-filtration F,* on A indexed by N" (see [GTL00])
given by

«

F=A:= Z Kazf C A
2B <z

for € N™. Note that this filtration is indeed exhaustive since A is generated by the standard
monomials of T}, as K-algebra. Consider now the associated multi-graded ring

G A= P FFA/FZ,A,
aeN?

where F3, A :=J BeNmgh<ge F ; A. The K-algebra Gr’ “Ais isomorphic to a factor algebra
of a quasi-commutative PBW-algebra via the map

0: Gt A 5B = T,/ ({zjzi — cjmimy | 1 < i < j <n}))/ <{1m<(p) Ipe 1}> .
GrffA ST =T + <{Im<(p) |pe I}>

The K-algebra B is as a quotient of a PBW-algebra left and right Noetherian (see Corol-
lary 2.1.24). Now [GTLOO, Lemma 1.2] implies the claim. O

Lemma 2.1.28. Consider the K-algebra K(z,y) := K(z1,...,2n,y1,...,ym) and its factor
algebra P := K(z,y)/ (S) , where

S ={[zj,z] |1 <i<j<n}U{lypuyr]l —dm |1 <k<l<m}
U{lyr, ] — fir | 1 <i<n,1 <k <m}
with dy, fir € x(SMon(K(z))). Canonically identifying the ideal J C K|x] with a subset of
K<SMOH(K@, y))), define the K-algebra
A= P/p(T)p.
Then we have:

(a) There exists a well-ordering such that S'is a reduction system with respect to that order-
ing.
(b) If the surjective K-linear homomorphism
b P Klzl/ Ty’ — A, 27y s z0yP
BeEN™

is injective, then A is isomorphic to a PBW-reduction-algebra. Given any ordering <
on A, a corresponding PBW-reduction datum is given by (K(z,y), S, J', <), where J'
is a Grobner basis of J C K[z] with respect to the ordering induced by <.
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2 PBWe-reduction-algebras

Proof.

(a)

(b)

The set S is a reduction system with respect to the (well)-ordering < on SMon(7T},) if
and only if it satisfies Im~ (dg;) < yry; for 1 < k < 1 < m and lm~(f;x) < @y for
1<i<nand1l <k < m. So S is a reduction system with respect to any refinement
of the partial ordering < given by

2%yP < 2’y if and only if | 8] < |8/,
(with o, @’ € N" and 3, 8’ € N") by a well-ordering.
We first observe that we may identify
A=K(z,y)/(SUT)

showing that A is indeed isomorphic to a PBW-reduction-algebra by Part (a). Then
Definition 2.1.13(ai) is clearly satisfied with R = SU.J’. According to Remark 2.1.15(a)
it suffices to show for Definition 2.1.13(aii) that

L(J/) ) {le(p) ‘ 0 7é yAAS K(Lg><s U Jl> K(g,g) N K<SMOD(K<£7 g>)>}

holds. Consider p = }_, 5) Pla,p)z®y”’ € K(zy) (S U J) Kizy) N K<SMOH(K<L v)))
with p(,,5) € Knot all zero. Note that p is mapped to zero under the composition of the
projection 7 : K(z,y) — A with ™1, that is, we have

Consequently, it holds for every 3 € N™ that 3 | .yn P(a,g)2* € J and hence

(o, 8) = le<(p) =le<( D Plapnz®y”) = (le<( D paga®). f) € L(J),
aeN™ aeN™
because .J is a Grobner basis of J C K]z] with respect to <.

O

Definition 2.1.29. Keeping the setup and notation of Lemma 2.1.28 and assuming that v is
injective, we call the PBW-reduction-algebra A = (K(z,y), S, J', <) elementary.

We

have seen in Example 2.1.26 that the global sections of the sheaf of differential operators

on the affine space C" can be represented as a PBW-reduction-algebra. The next example
shows that locally a similar statement holds for smooth varieties. More precisely, we represent
coordinate system rings as elementary PBW-reduction-algebras:
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Example 2.1.30. Let X be a smooth irreducible affine variety defined by the vanishing of the
prime ideal I C Clz] := C[zy,...,z,]. Assume that X has a global coordinate system, that
is, there exists a coordinate system (E, 0;)1<i<m (with f; € C[z]) on the open neighborhood
X C X. Recall that according to Remark 1.2.3 we may assume that 01, . .., 8, are induced
by 011, 0L € Ocn(Ch).

(a) We prove that the coordinate system ring D x (X)) is isomorphic to an elementary PBW-
reduction-algebra: By the properties of coordinate systems, we have a C-linear isomor-
phism

¢ @ (Clal/1)0° —Dx(X) = Clai,..., 7,01, .., Om) € Ende(Clal/1),
pBeEN™

2998 T - T, 0P

and the generators of the C-algebra Dy (X) satisfy [z;,7;] = 0, [0;,0;] = 0 and
Ok, zi] = 92(172) forl1 <i<j<nandl < k <[ < m. Consequently, v fac-
tors through the quotient algebra

Tx :=Clz,y)/ (SUT) = (Clz,y)/(5))/ (1)

of C{z,y) := C(z,y1,. . ,Ym), Where

Se={lzj,zi] [1 <i<j<ntU{lyul | 1<k <lI<m}
O{ [y, i) — O (z:) | 1 <i<n, 1 <k <m}

via the surjective C-linear maps

29608 | zoyB T - TP

The injectivity of ¢); follows from the injectivity of ¢) and the injectivity of )5 from the
surjectivity of 11 and the injectivity of ¥. As 1o is a C-algebra homomorphism, the
coordinate system ring D x (X) is isomorphic to T'x as C-algebra.

Now consider a well-ordering < on T’y (for existence see Lemma 2.1.28(a)) and let I’ be
a Grobner basis of I C C[z] with respect to the ordering induced by < on C[z]. Then we
see by Lemma 2.1.28 that T'x is isomorphic to the elementary PBW-reduction-algebra
(C(z,y),S,I',<). In particular, a PBW-reduction datum is effectively computable in
this case.
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(b)

(©

62

Note that we may assume by Remark 1.2.12 that f,,, agrees with some x;, say x,, and
that 0%(x,,) = 6; . In this case, the C-subalgebra V of Dx (X) generated by 77, . . . , T,
01,...,0m_1 and f,,0,, can again be represented as an elementary PBW-reduction-
algebra as follows: Arguing as for ¥, we have an isomorphism

D (Clal/ D 6277 (Fb) ™ 2V

aeN™

and may hence apply Lemma 2.1.28 to identify V' with the elementary PBW-reduction-
algebra

T)‘(/: = (C<£a Y1, Ym—1, Z>7 SValla <V)

with <" any well-ordering inducing the same ordering as < on C[z] (see Part (a)) and

Sv = {[xj, i, i i, 12, Ul [, 2] — 0%(22), [2, 23] — 2060%, () |
1<i<j<nl<k<i<m—1}\{o}.

Notice that we may consider T)‘(/ as a subalgebra of T'x by identifying z with x,y,.

We remark that in the situation of Part (b), we have

VeV =V/v(za) v = @ (Cla]/ (L) - 001 (Tabin )™

aEN™
~ P (Claty oy 2n1)/Gon (1) - 027 (@),
aeN™

where ¢, stands for the C-algebra endomorphism of C(z,y) that maps z,, to 0 and
acts on all other variables as identity. By the same arguments as in Part (a), the above
algebra can be realized as the elementary PBW-reduction-algebra

V/ixnV
TX/x = (C(z1, - T, Y15 Um—152), SV Vo Lv /v JV/anVy,

with <¥/#V" a suitable well-ordering such that

Svswnv = {25, @il [ Uk, (2 vk), [2, ), Wi 23] — Ga (07,(20)) |
1<i<j<n-11<k<Il<m-—1}\{0},

is a reduction system and Iy, v € Clz1,...,%y,—1] a Grobner basis of ¢, (I) with

respect to the ordering induced by <¥/#»V. Note that the map T)‘(/ — T)‘(// Y induced
by the canonical projection V' — V/x,V sends T, to 0 and the residue classes of the

other variables to the corresponding residue classes in T)‘(// oV
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(d) We keep the assumption of Part (b) and consider the subvariety Xy := V (z,)NX C X.
Then (ﬁ, 0i)1<i<m—1 is a global coordinate system on X (where we interpret the 6; as
derivations on O x,(Xo) by Remark 1.2.3). According to Part (a) the coordinate system
ring Dy, (Xo) is isomorphic to the elementary PBW-reduction-algebra

Clz,y1,y -y ym—1)/ (J U {zn} U Sx,)

where Sy, is obtained from .S by deleting all equations involving y,,. This algebra is
obviously isomorphic to

C<‘T17 sy Tp—1,Y1, - - - 7ym—1>/ <¢$n(‘] U SXO))

and a PBW-reduction datum of the latter algebra can be obtained as outlined in Part (a).
Note that we have
V/x,V = Dx,(Xo)[z].

Remark 2.1.31. Note that there were some attempts by Oaku to deal algorithmically with
coordinate system rings [Oak96]. He suggested two methods: Taking X as in the above

example, he considers the C-subalgebra of the Weyl-algebra generated by x1,...,z, and
01, ...,0%,. He then claims that this subalgebra equals @ cyn gepm C2®(67)% - - (61,)°m.
But this is in general not true: We may assume without loss of generality f; = x; and

0f = 0 + >, <k<n @4 (2)0y for suitably chosen aj(z) € C[z]. Hence the commutator
[05-, 0l] for i # j is of the form " 1<k<n sz ()0 and only an element of the above direct
sum if it equals zero, meaning that the lifted derivations also commute, which is in general not
true:

Considering for instance X = V(x3) C C3, we see that 21 and x5 are global coordinates
on X and that we may choose as lifts of their derivations 01 + xox303 and 05. Now we
have [02, 01 + waw303] = x305. Obviously, we can resolve the issue in this basic example
by choosing different lifts, but in the following example it is not clear how to resolve that
problem: Consider the global coordinate neighborhood X C C° defined by the prime ideal
I = <x%x3 — 1w + 23+ L adws + 2 + vo + 23 + 1, dw — 1> C Clz1,x9, 3, 24, w] for
d = —6:5%:@,304 + 4x1x3704 — 22974. Proceeding as in Remark 1.2.11(b), we see that the
commuting derivations

01 = Oy + d™2((—1223 2327 — 4afasas — 4o xoxs + Sx11325 — da0x?)0)
+ (181‘?1‘%%4 — 12x§1x§x4 + 6:U§’a:2x3m4 + 121‘?3}%1‘4 — 61‘%1‘21‘33}4
— 81‘%33%%4 + 8{E1$2$3$4 - 2.%%564)84
+ (—18x5x3w + 12x%x§w — 6airorszw — 1223 23w + 12203 w325w
+ 622 zox3Ww + Sx%xgw + 24x1:):3:ciw — 8x1x2x3W — 4x2xiw — 8:):33@21@0

+ Qm%w)aw)
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and

Oy = 03 + d 2 ((—1225x325 + 200 w30s — dadwon] — Saxiasas + 4xirers — 12030323
+ 8x1x3xi — 4$2xi)81
+ (—61‘?1’%1’4 — 6$5{m2x3x4 + 4$?x§x4 + 21‘%1’23)’31‘4 — 21:?:@3:4
+ 12x‘;’x§$4 — 6$%x2x3x48x%x§x4 + 8x1x913T4 — 21:%:04)84

+ (6223w + 623 x0w3w — 42323W — 12:6%3033:211} — 237%.%‘2.%311)

+ 16x§x3xiw + 2x§’x%w — 121'?;13?2)10 — 1233%302@2110 — Sx%xgxiw

+ 613%56233311) + Sx%xgw + 8x1x2ziw + 24x1x3xiw — 8x1x0T3W

— 837w + 223w)0,)

on Clzy, xe, x3, x4, w|q induce commuting derivations on X that O x (X )-generate © x (X).
Yet, if we replace d—2 by w? to obtain derivations on Clxy, 2, x3, x4, w], the so obtained
derivations fail to commute.

As Oaku’s method completely relies on the above direct sum representation, this shows that
his method does in general not work.

His second method uses the Leibnitz rule to define a non-associative “multiplication”. He
bases the proof of correctness of this method on his flawed first method, hence not giving a
comprehensive proof of correctness. The underlying method is still correct, because one easily
shows that we could replace our multiplication for coordinate system rings by the Leibnitz rule
and then one notices that our Algorithm 2.1.45 and his algorithm do basically the same thing.

Also note that our more general setup has the advantage that it deals simultaneously with
(factor algebras of) PBW-algebras and coordinate system rings as well as some variants of
them (as considered in Example 2.1.30). Moreover, we allow (and need) more general order-
ings. Using the commutation relations it is easy to see which orderings are actually permitted.

Eventually, we will be interested in implementations of our algorithms. For this we need to
be able to present a given PBW-reduction datum by a finite set of data:

Definition 2.1.32. Let A = (T}, S, I, <) be a PBW-reduction-algebra and K’ C K a subfield.

(a) We say that K’ is a computable subfield of K if all elements of K’ can be represented by
a finite set of data: their sum, product and quotient can be calculated in a finite number
of steps, and there is a finite procedure that determines whether a given expression of
elements of K’ is zero or not.

(b) We say that K is (A, S, I, <)-computable (or (A, <)-computable for short) if it is com-
putable and S, I C K'(x1,...,z,). We write

Agr = (T, S, I, <)gr := (K'{z1,...,2,), 5,1, =<).
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2.1.2 Grobner bases for PBW-reduction-algebras

Let A = (T, S, I, <) be a PBW-reduction-algebra and E a finite set. Given a € T/F, we con-
sider @ as an element of A¥ via the canonical isomorphism A¥ = T'¥ / (S¥ U I¥). Orderings
on A¥ are now introduced as follows:

Definition 2.1.33. Let A = (7,,, S, I, <) be a PBW-reduction-algebra and F a finite set.

(a) We say that the monomial ordering <” on SMon(T.¥) is a ordering on A¥ if it induces
an ordering on each factor of A¥. Then we write A = (AF <F).

(b) If <¥ is a well-ordering, we call <¥ a well-ordering on A®. If (T}, S,, I., <%) is
moreover a corresponding PBW-reduction datum of A for e € E, we also write A =
(AF <F) = (T, Se, I, <F)ccp and say that (T},, Se, Io, <F)ccp is a PBW-reduction
datum for (A¥ <) In this case, we introduce the map

par <) = D<) T = (L) e <) = D) < (0)-
eckE ecE

We also define the map

T(AE <E) ! AF — (TnE)i(if}E,<E) - TnE

as the inverse of the composed map (T.F )‘(]fl B TE — AF. We sometimes also

use the notation p_r and 7_ £ for the above mhps if that does not cause any ambiguity.
For 0 # a € A, we define the data introduced in Definition 2.1.1(d) and (e) by the
corresponding data of 74z =) (a) and adapt the convention for the leading exponents
and monomials of 0 accordingly.

If <F is a well-ordering on A¥, a PBW-reduction datum (7},, Se, I, <¢)eer for (AT, <F)
exists by Lemma 2.1.17. Given such a PBW-reduction datum, the maps p 4= 5y and 745 _r)
are computable.

Remark 2.1.34. Let A = (7,,S5, I, <) be a PBW-reduction-algebra and F and Ey, ..., E;
finite sets. Then we have:

(a) Given a total order < on E and a (well-)ordering <’ on A, (<')f, - and (<')[, _ are

(well-)orderings on A”. If (T},, S, I’, <') is a PBW-reduction datum for (A, <') then
corresponding PBW-reduction data for (A”, (<')f, -) and (A", (<)[, ) are given
by (Tm S, I, _</)€€E'

(b) We introduce (well-)orderings on A®1 @ .. @ AP via its identification with AF1HUEs
In particular, if <fj ¢ is a (well-)ordering on AEi for 1 < i < s, then <11E15E5 is a
(well-) ordering on AP1H-UEs o2 ABv g AEs 1f (T,,, Se,, Le,, (=F)e, )esc i, is PBW-

reduction datum for (A%, -<fl) for 1 < i < s, then (T}, Se, I, (‘<¢€(e))e)eeE1u---uEs
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is PBW-reduction datum for (AF15UEs (Pt Bey "where ¢(e) = i fore € By C
Fiu---uUE;.

Definition 2.1.35. Let A be a PBW-reduction-algebra, F a finite set, < a well-ordering on
AP = (T, Se, 1o, <E)ecp and M C AP an A-submodule.

(a) We call the finite set G C M a Grobner basis of M (with respect to <Eyif every
m € M has a so-called standard representation, i.e., there exists a € A% such that

m = Z agg and le
geG

(ag) +ele_r(g) <F ele., (m) forall g € G.

E
_<lcomp(g)

(b) If G is a Grobner basis of M, we say that G is reduced if 0 ¢ G, lc_=(g) = 1 for all
g € G, and if we have forall g € GG, e € F and o € N"

(T(aE,<5)(9))e,a 7 0 implies (a, e) # ele(g’) + vy forall g # ¢’ € G,y € N*.

We point out that we did not define a standard representation on Definition 2.1.35(a) by
requiring only the weakened condition ele_r(azg) <¥ ele_r(g), because such a definition
would not allow us to use Grobner bases to determine syzygy modules.

Remark 2.1.36. Let A be a PBW-reduction-algebra, F a finite set, <¥ an ordering on A”
and M C AP an A-submodule. To circumvent the problem that we do in general not have
a well-defined notion of leading exponents of elements of A” with respect to <%, we define
Grobner bases in this situation as follows: We say that a finite set G C M is a Grobner basis
of M with respect to <¥ if there exists h € K<SM0n(T “)) with hy = g for g € G such that
for every t € . (SMon(T}F)) with 7 € M exists a € ,(SMon(T')) such that

I= E gg and le_p " )(ag) +ele_r(hy) =P eles(t) forall g € G.
comp(hg
geG

We say in that case that {h, | g € G} induces a Grobner basis of M (with respect to <%).

Note that since there exists by definition of PBW-reduction-algebras a well-ordering <’
on A, every m € M has a representative ¢ € . (SMon(7;”)). Moreover, this definition is
compatible with Definition 2.1.35(a).

Our aim is now to adapt the Buchberger algorithm for well-orderings from the commutative
setting to our situation. In order to formulate a suitably modified Buchberger criterion, we first
introduce normal forms and s-polynomials:

Definition 2.1.37. Let A be a PBW-reduction-algebra, F a finite set, < a well-ordering on
AF = (T, Se, Ie, <F)ecp and let a, a’ € AF be nonzero.

(a) Given a finite set G C A, we call r € AF satisfying
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(i) there exists some h € A® with

a:Zhgg+r

geG

such that le (hy) + ele_r(g) =F ele_r(a) forall g € G and

<leomp (o)
(i) ele_r(r) ¢ Lorz(G)ifr #0

a (left) normal form of a with respect to G. We say that r is reduced if (o, e) ¢ L_r(G)
given that (7 45 45)(7))e,o # 0. We define the normal form of 0 € AF with respect to
G to be 0.

(b) The s-polynomial of a and o’ with e := lcomp(a) = lcomp(a’) is defined by

gcalyaa/’ if gba’a/ (6) c (TnE')irr

1 c
L e (" <P)

spoly(a,a’) := {1C(x°“v“ a) le(ze e q)
0, else,

where by o/, Coor € N" are given by (bg o) = max{le(a);,le(a’);} and (co )i =
(ba,a)i —le(a); for 1 < i < n. If lcomp(a) # lcomp(a’), we set spoly(a, a’) := 0.

(c) The s-polynomial of a and p € I is defined by

zrq, if e =lcomp(a)

spoly(a, p) := {

0, else,

where by p,cqp € N are given by (byp)i = max{le(a);,le(p);} and (cop)i =
(bap)i —le(a); for 1 < i < n.

Note that we consider for the definition of the s-polynomial in Definition 2.1.37(c) p as an
element of K<SMon(Tf)> (and not as its class in A®).

Remark 2.1.38. We keep the notation of Definition 2.1.37. Let A be a PBW-reduction-
algebra, E a finite set, < a well-ordering on A® = (T,,, S, I, <F)ccp. Consider a,a’ € AF
satisfying e := lcomp(a) = lcomp(a’) and zbaa (e) € (TnE)l(if‘E &) Then

ele(spoly(a,a’)) < (bg.ar,e) = ele(zaa’ a) = ele(zaa’).
Similarly, we have for p € I,

ele(spoly(a, p)) <F (ba,p,€) = Cap + €le(a).

The following algorithm clearly computes a normal form and terminates, hence showing the
existence of normal forms:
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2 PBWe-reduction-algebras

Algorithm 2.1.39 Given a PBW-reduction-algebra A, a finite set G C AE a well-ordering
<% and a € AP, this algorithm computes a normal form of a with respect to G and <*.

Input: A PBW-reduction-algebra A, a finite set £, a well-ordering < on the free module
AP = (T, Se, I, <P)ecp, G C AP finite and a € AP,
Output: A normal form b € AF of a with respect to G.
1: while a # 0and G := {g € G | ele_r(a) € L_x({g})} # 0 do
2:  Choose g € G.
3: Seta:=lc_r(a)-spoly(a,g).
4: return a.

Remark 2.1.40. Note that the above algorithm can be modified to return a reduced normal
form using the same method as in the commutative setting (see e.g. [GP08, Algorithm 1.6.11]).

Remark 2.1.41. Let A be a PBW-reduction-algebra, F a finite set, < a well-ordering on
AP = (T, Se, Ie, <F) e and M C A¥ an A-submodule. If G is a Grobner basis of M, then
clearly m € A¥ is an element of M if and only if some normal form of m with respect to G
is 0. Moreover, assuming m € M and using induction on lm_x(m), one easily proves that
every normal form of m with respect to G is 0.

Our algorithm for computing Grébner bases is based on a noncommutative variant of the
Buchberger criterion for polynomial rings that takes into account the additional relations:

Proposition 2.1.42. [Buchberger criterion for PBW-reduction-algebras] Let A be a PBW-re-
duction-algebra, E a finite set, <* a well-ordering on A¥ = (T, S, I, <eE)e€E and G C AP
a finite set. Then G is a (left) Grobner basis (with respect to <% ) of the A-module A(G) ifand
only if

(a) any (or some) normal form of spoly(g, ') with respect to G is 0 for all g,¢' € G and

(b) forall g € G and p € Licomp(q) any (or some) normal form of spoly(a, g) with respect
to G is 0.

For the proof we adapt a standard proof of the commutative Buchberger criterion to our
setting. It relies on the following lemma, whose proof from the commutative setting carries
over word by word:

Lemma 2.1.43. Let A be a PBW-reduction-algebra, E a finite set, <¥ a well-ordering on
AF = (T, Se, I, <E) e . Let G C AP \ {0} be finite with the property that all its
elements possess the same leading monomial. Assume that we have for m = deG agg
with a € K that Im(m) <¥ 1m(g) for g € G. Then there exists d € K> such that
m =3 secxc dgg)SPOly (g, 9.

The following remark lists some comparisons of (leading) monomials with respect to <
that are frequently used throughout our proof of Proposition 2.1.42:
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2.1 Grobner basis framework for PBW-reduction-algebras

Remark 2.1.44. Let A be a PBW-reduction-algebra, E a finite set, <” a well-ordering on
AF = (T, Se, I, <F)ccp and <% any ordering on A% such that S, is a reduction system
with respect to (-<f)e for all e € E. Define for [ € N, 1 < 41,...,4 < n the vector
=3 <€, €EN'andlete € E.

(a) We have z“(e) jf Ty oy ().

(b) Independently of the choice of <%, we can find 4, ;, € x(SMon(T},)) and f;, . €
K* with ele<g(ri1,m7il(e)) <E (a, e) such that

ziy - xq(e) = fiy,qzt(e) =iy, i (e) € 1,(5) T,

and hence

Ty« Ty, (e) = fi17.,,7il£a(6) + Tih---»iz(e)

holds in A¥, because non-trivial reductions with the commutation relations contained
in S applied to a monomial decrease its leading monomial for any ordering with respect
to which S is a reduction system. In particular, for a permutation o € S exists ¢ €
K<{gﬁ(e) € SMon(T},) | (B,e) <F (a,e)}> with

1 1

7= oo (e
fiva ()

fi iy iy (€)-
Lo (1) ta (1)

For <E=<% we have moreover: If z%(e) € (Tf)‘&E B then f;, 4 and r;, _; can
be additionally chosen such that

e < (i -+ 24(€)) = Fa 2 (€) i),
Otherwise ele_r (p(ar <5y (T, -+ 24 (€))) <E (a,e).

(c) Leta € Aand g € AP, Then ele_r(ag) =<F le_k (a) + eleLr(g) with equality if

Slcomp(g)

and only if the monomial with extended leading exponent le_ B )(a) + ele_r(g) is
comp(g

irreducible.

Proof of Proposition 2.1.42. By Remark 2.1.41 it the clear that if G is a Grobner basis, then
every normal form stated in the criterion is 0. Conversely, consider 0 # m € ,(G) and choose
h € A% such that

m=3 hyg (2.1.2)

geG

satisfying additionally that

(hg) +elese(g) | g € G}

(a,€) := max<E{le<l€0mp(g)
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2 PBWe-reduction-algebras

is minimal with respect to <. If (a,e) =¥ ele_r(m) then Equation (2.1.2) is a standard
representation and we are finished. Otherwise, setting

G :={ge€G|le_r (hg) + ele<,(g9) = (a,e)}

lcomp(g)
and writing
m= > lt_p(hy)g + Y tailos(hy)g + > hyg, (2.1.3)
g/EGI gleG/ geG\Gl

we have for ¢ € G’ by Remark 2.1.44(c)

ele_ s (tail iz (hy)g') <F le_r (tailsp (hy)) + ele e (g') (2.1.4)
<F le—<EE (h9'> +ele_s (g/) = (a,€),

and by Remark 2.1.44(c) and by choice of G’ it holds for g € G \ G’

ele_r(hgg) <¥ le_r ( )(hg) +ele_r(g) <¥ (ase). (2.1.5)
comp(g
Hence the leading monomial of [ := 3 /1t 5 (hg)g is strictly smaller than 2(e). Now

we need to distinguish two cases: If z%(e) € (T.F )1& B 5 then all summands in the sum
expression of [ have leading monomial z“(e) according to Remark 2.1.44(c). So we may

invoke Lemma 2.1.43 to find an element d € K& *& such that

l= Z d(g,gy sPOly(Im_ 5 (hy)g, Im_ £ (hy)g') - (2.1.6)
(9,9")EG' X G’ 5 V/)_:
9,9")"

Expanding the s-polynomial, we have for g,¢’ € G’

1 1
Im E h g —
e (s () =99 ™ e iy (g

S(g.9") = 7 lm<£(hg/)g’.

By definition of ¢, and ¢y 4 (see Definition 2.1.37(b)) there exists 34,/ € N" such that
Coq' + Bgg) = le<p(hy) and ¢y g + By oy = lesp(hy). Applying Remark 2.1.44(b), we
obtain

S(g.g) =(dgz @) 280" 1709 g — (dgaPlos) 2o 41799 g

:Qﬁ(gyg’) (dgzcgyg’g - dg/gcg’,gg/) + T(Q:g/)g + S(g’g/)g/
for suitably chosen dg, dy € K* and r(9:9"), r99) ¢ A with

Im_ s (r99) <F Im_p(hy) and Im_p (r"97)) <Z Im_ s (hy). 2.1.7)

e

70



2.1 Grobner basis framework for PBW-reduction-algebras

As x%(e) is irreducible and (o, e) = ¢y o + B(g,4) + Im_£(g), the monomial with extended
leading coefficient ¢y v + Im_£(g) = c¢g ¢ + Im_&(g’) is also irreducible, where the lat-
ter equality follows from Remark 2.1.38. That remark implies also that Im_xz(s(4 ) <
2%(e) and so we deduce that 1t & (dga‘es'g) = lt e (dyz ' sg"). Now by the definition
of spoly(g, g') there exists f(, , € K* such that

S(ag) = Jg.gn 2 @0 spoly(g, g') + (79 g 4 /@)y (2.1.8)
and
6(979’) + ele<E(SpOIY(gv g,)) <E (Oé, 6). (219)
By hypothesis we find an element k(99) ¢ AG satisfying
spoly(g.g') = Y K59y (2.1.10)
g"eqG
and le_& (ké‘?,’gl)) + ele_r(g") =¥ ele_r(spoly(g,g’)). This yields together with Re-

lcomp(g")

mark 2.1.44(c) and Equation (2.1.9) the estimate

le_<1€omp(g//) (gﬁ(gﬂl)ké‘,},’g )) + e1e<E <g//) jE B(gﬂl) + 1e'<1b:~omp(g") <k;€;g )) * ele<E (g//)
(2.1.11)
<F Big.g") + €le_ e (spoly(g, g'))
<¥ (aye).

Combining Equations (2.1.6), (2.1.8) and (2.1.10) we obtain

| = Z d(979') f(g7g/) Z @5(9’9’)16;?,’9/)9” + ’I"(g’g/)g n r/(g’g/)g’
(gvg/)EG/XG/ Fa=e.

and plugging this equation into Equation (2.1.3) contradicts by Equations (2.1.4), (2.1.5),
(2.1.7) and (2.1.11) the minimality of («, e).

In the other case, 2%(e) is reducible, say o = 3 + lm_r(p) for some p € I, and 8 € N".
Then there exists by definition of spoly(g,p) forg € G’ a vector 7¢ € N" such that

le_p(hg) +elep(g) = (a,€) = 75 + ¢gp +ele<(g)

(see Definition 2.1.37(c) for the definition ¢, ;). Therefore there is ¢, € K*
Im_e(hg)g = (qex™ - 7 + tg)g = qex?® - spoly(g, p) + tqg
with t; € A such thatle_r (tg) <E le_r(hy) by Remark 2.1.44(b). Using that

Yo + ele_e (spoly(p, 9)) <F 7y + cyp + cle<(9) = ()

by Remark 2.1.38 and that spoly(g, p) has a normal form that is 0 with respect to G, we may
argue as in the first case. This finishes our proof. O
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2 PBWe-reduction-algebras

The above lemma yields the following algorithm for computing Grobner bases:

Algorithm 2.1.45 Given a PBW-reduction-algebra A, a well-ordering <% and a finite set
G C AP this algorithm computes a Grobner basis of the module 4(G) with respect to <E.

Input: A PBW-reduction-algebra A, a finite set E, a well-ordering < on the module A =
(Th, Sey Iey =<F)ecr and G C AF finite.
Output: A finite set H C A such that H is a Grobner basis of ,(G) with respect to <.
1: Initialize H := G \ {0} :=={g1,...,9s}.
2: SetT :={(gi,9;) | 1 <i<j<s}U{(g,s(lcomp(g))) | g € H, 5 € Licomp(g)}-
3. while T # () do
4: Choose (t1,t2) € T.
5:  Delete {(t1,t2)} from T
6:  Compute a normal form r of spoly(ty, o) with respect to H and < by applying Algo-

rithm 2.1.39.
7. if r # 0 then
8 Set T := T U{(r,h) | h € H} U{(r,s5(lcomp(r))) | s € lieomp(r)} and H :=
HuU{r}.

9: return H.

Lemma 2.1.46. The above algorithm is correct and terminates.

Proof. The correctness follows immediately from Proposition 2.1.42. We keep the notation of
Algorithm 2.1.45 and denote by H; the set H at the beginning of the ¢-th iteration of the while-
loop and by r; the normal form r computed during the ¢-th run of that loop. For the termination
consider now the sets L(H;) and note that if the normal form r; is nonzero (and hence added)
then ele_ = (r;) ¢ L(H;). Hence the sets L(H;) form an increasing sequence in N x E with a
proper inclusion L(H;) € L(H;+1) if and only if the inclusion H; C H;y; is proper. Notice
that there is an inclusion preserving one-to-one correspondence between subsets of N x ' of
type U, e (v +N") (with ¢ C N" x E)) and monomial K|z]-submodules of K[z]F via

U O +NY = g z?(e) | (v,e) € OF).

~veC

As the image in K[z]” of the sequence of the L(H;) under that one-to-one correspondence
gets stationary because K|[z] is a Noetherian ring, so does the sequence of the L(H;) and
hence also the sequence of the H; showing termination. O

Remark 2.1.47. The above algorithm can be modified to compute a reduced Grobner basis
applying the same methods as in the commutative setting (see e.g. [GP08, Remark 1.7.2]).

An algorithm for computing left generators of a two-sided submodule of a free A-module
carries over immediately from the setting of PBW-algebras (see e.g. [BGTV03, Algorithm 6]
or [Lev05, Algorithm 2.3.1]):
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2.1 Grobner basis framework for PBW-reduction-algebras

Algorithm 2.1.48 Given a PBW-reduction-algebra A, a well-ordering <% and a finite set
G C AP this algorithm computes a (left) Grébner basis of the two-sided module A(G) 4 with
respect to <%,

Input: A PBW-reduction-algebra A, a finite set £, a well-ordering < on the module A” =
(T, Se, I, <F)ecp and G C AF finite.
Output: A finite set I C A such that H is a Grobner basis of 4(G) 4 with respect to <.
1: Initialize an empty set G’.
2: while G # G’ do
3 SetG':=G.
Replace G by a Grobner basis of the left ideal ,(G) using Algorithm 2.1.45.
Set R:={gz; | g€ G,1<i<n}.
for r € Rdo
Compute a left normal form r’ of r with respect to G using Algorithm 2.1.39.
if v’ # 0 then > risnotin ,(G) by Remark 2.1.41.
9: Set G := GU {r'}.
10: return G.

® R0k

Lemma 2.1.49. The above algorithm is correct and terminates.

Proof. The correctness is clear. The algorithm terminates as A is by Lemma 2.1.27 a left
Noetherian ring and hence every ascending chain of A-submodules of A” gets stationary. [

Lemma 2.1.46, Remark 2.1.47 and Lemma 2.1.49 imply:

Proposition 2.1.50. Let A be a PBW-reduction-algebra, E a finite set, <¥ a well-ordering on
AE = (T, Sey Iy <e)ecr and G C AE q finite subset. Then (reduced) Grobner bases of the
left A-modules ,(G) and 4(G) a with respect to <F exist.

These Grobner bases are computable if a PBW-reduction datum (T}, Se, I, <E)cck for
(A, <F) is computable and if there exists an (A¥ | <¥)-computable subfield K' C K such that
G C AL,

Definition 2.1.51. Let A be a PBW-reduction-algebra, E a finite set and <% a well-ordering
on A¥. We call <¥ computable if a PBW-reduction datum for (A”, <¥) is computable.

Convention 2.1.52. From now on, when we talk about computability or formulate algo-
rithms in the context of a PBW-reduction-algebra A, we always assume that there exists an
A-computable subfield K’ C K such that it is (A, <¥)-computable for all appearing free
A-modules A of finite rank and well-orderings < and that all considered submodules of
AF are generated by subsets which are defined over Aﬁ,. Similarly, we assume that all other
input data is also defined over Ay or AH]Z.

Our variant of the Buchberger algorithm (Algorithm 2.1.45) requires that the free A-module
AF is given in terms of a PBW-reduction datum. However, we have in general no method
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2 PBWe-reduction-algebras

to compute a PBW-reduction datum of A with respect to a given well-ordering. Yet, in
certain situations such a datum is computable: The next corollary explains how to derive from
a PBW-reduction datum for a given PBW-reduction-algebra a PBW-reduction datum for a
factor algebra of that PBW-reduction-algebra using Grobner bases:

Corollary 2.1.53. Let A = (T},, S, I, <) be a PBW-reduction-algebra and M C A. Then

A/ a(M) 4

is canonically isomorphic to the PBW-reduction-algebra
B:=T,/ <S ulu T(A7_<)(G)> ,

where G stands for a left Grobner basis of o(M) s with respect to <. Moreover, a PBW-
reduction datum of B is given by (Ty,, S, IUT(4 ) (G), <). In particular, PBW-reduction data
for factor algebras of PBW-algebras are computable.

Proof. Clearly the map
VT, = A t—t

induces the claimed isomorphism. For the second claim it is by Remark 2.1.15(a) enough to
show that

LI U4 4(G) 2 {le(t) | 0# t € Tn<S UTUTa,<(G)) 1,

N g (SMon(T))}-

So consider 0 # ¢ € 7, (SUIUT4 < (G)) 1, N g(SMon(T},)). If le(t) € L(I), we are
)i
P(A

finished. Otherwise we have according to Deﬁnltlon 2.1.13(aii) that Im(¢) is irreducible with
respect to the <-monic elements of 7, (S U I) 1, and hence Im(t) = Im(p(4,<(t)) = Im(f4a),
where t 4 and tp denote the residue classes of ¢ in A and B, respectively. We have by choice
of t thattg = 0 € B and hence t4 € A(M) 4. As G is a Grobner basis of that ideal there
exists a € A satisfying

tg = Z agg and le(ay) +1e(g) <X le(ta) =le(t) forallg € F
geG

with equality for some ¢’ € G. Asle(g’) = le(7(4,<(g')) this concludes the proof. O

Corollary 2.1.54. Let A be a PBW-algebra or a factor algebra thereof. Then PBW-reduction
data with respect to well-orderings are computable.

The following remark outlines how to perform certain Grébner basics in our setting using
the corresponding ideas of the commutative setting:

Remark 2.1.55. Given a PBW-reduction-algebra A = (7,,, S, I, <), a finite set E/ and two A-
submodules M = ,(M’), N = ,(N’) C AE with M’ and N’ finite, the following problems
are algorithmically solvable:
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2.1 Grobner basis framework for PBW-reduction-algebras

(a) We can decide whether N C M. For this we fix a well-ordering <E on AF (e.g. an
ordering of type <£)t7 <on AF = (T, 8,1, <)ccp). Then we determine a Grobner basis
G of M by Algorithm 2.1.45 and after that we compute normal forms of n’ with respect
to G for all ' € N'. By Remark 2.1.41 the module N is an A-submodule of M if and
only if all of these normal forms are zero.

(b) Generators of the intersection M N AE for some subset E/ C E are determined by
computing a Grobner basis G of M with respect to an ordering of type 450757 <> where <
is a total order satisfying ¢’ < e forall ¢’ € E' and e € E \ E’. Indeed, the intersection
is then generated by {g € G | lcomp(g) € E'}.

Another application of Grobner bases is the computation of so-called syzygies:

Definition 2.1.56. Let A be a ring, F a finite set and Hy, ..., H; C A finite subsets. The
A-module

syza(Hy, ..., Hs) :=={(a1,...,as) € A g ... AT | Z Z (ai)nhi = 0}
1<i<s h;e H;

is called the syzygy-module of Hy, ..., Hy (in A @ ... @ AHs). Similarly, for hy, ..., h; €
AF the syzygy-module syz 4(h1, ..., hs) C Al is defined by

syza(hi, ... he) i =syzs({h1},...,{h})
under the identification AV} g ... @ A} = At (a1(hy), ..., ai(hy)) — di<i<t @ileq).

The following lemma shows that syzygies over PBW-reduction-algebras are computable in
the same manner as in the commutative setting (given that we can determine a corresponding
PBW-reduction datum).

Lemma 2.1.57. Let A = (T, S, 1, <) be a PBW-reduction-algebra, E a finite set and H C
AE finite. Let G be a Grobner basis of ,({h+ (h) | h € H}) C AEYH with respect to the
ordering <f££, where < is a total ordering on E'U H with h < e fore € E and h € H.
Then

syza(H) = (7 (G AT)).

Proof. Letg € GNAH Theng =Y,y gn(h+ () =3 ey gnh + Yopep gn(h) € AH
shows that >, -y gnh = 0 and hence 7y (g) € syz,(H).

Conversely, consider s € syz4(H). Then ), sph = 0 implies 5" := >,y (sph +
sn(h)) € 4({h+ (h) | h € H})NAH. As G is a Grobner basis, there exists a € AY satisfying

s = Z agg and le_, (ag) + ele<(g) <" ele/(s'),

lcomp(g)
geG
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where <’ stands for -<50';'£. As lcomp(s’) € H and by the choice of the ordering —<§££, we

must have a, = 0 for all g ¢ A¥ and hence

s=mu(s) =mu( DY ag)= D agmulg).

geGNAH geGNAH
[

In the situation of Definition 2.1.56, if A = (7),,S,1,<) is a PBW-reduction-algebra
and there exists an AE—computable subfield K' C K such that Hy,...,H, C A]{’g,, then
A-generators of syz 4 (Hj, ..., H,) are effectively computable over Ay, via Grobner bases .
Remark 2.1.58. Given a PBW-reduction-algebra A = (7, S, I, <), a finite set £ and two
A-submodules M = ,(M'),N = ,(N') C A¥ with M’ and N’ finite, we can determine
generators of the intersection M N N as in the commutative case (see e.g. [GP08, Section
2.8.3]).

Remark 2.1.59. We point out that given a PBW-reduction-algebra A, the main computational
problem is determining a corresponding PBW-reduction datum. If the PBW-reduction datum
A = (T, S, 1, =) is given, then a PBW-reduction datum for (A% <., ) and (AZ, <01 <)
for any finite set £ and any total order on E is known by Remark 2.1.34(a). In summary, we
have then algorithms for the following Grobner basics:

(a) We can solve the module membership problems for submodules of A” by using by
Remark 2.1.55(a).

(b) Projections of submodules of AP 10 AF' for a subset of F’ C FE are computable (see
Remark 2.1.55(b)). More generally, we find A-generators of intersections of submodules
of A¥ by Remark 2.1.58.

(c) We can determine syzygies of finite subsets of A” by Lemma 2.1.21.

In the next section, we will explain how to compute Grobner bases with respect to non-well-
orderings.

2.2 Weight filtrations

The subject of study in this section are filtrations of type F* A induced by a so-called weight
vector u on the PBW-reduction-algebra A. These filtrations have been studied theoretically
and algorithmically for nonnegative weight vectors on PBW-algebras in [BGTVO03]. Our first
object of investigation is the subalgebra Fjj*A. Combining the methods of [BGTV03] and
[OTO01], we then develop an algorithm for computing Grébner bases on A with respect to non-
well orderings based on the homogenization of A with respect to a positive weight vector.
Using a u-weighted degree ordering this algorithm enables us finally to determine generators
of the filtration induced by F* A on submodules of free A-modules, hence showing that these
filtered modules are always well-filtered.
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2.2.1 Weight filtrations on PBW-reduction-algebras

We assume in this subsection that A = (T5,, S, I, <) with S := {zjz; — ¢ijziz; — dij | 1 <
i < j < n} is a PBW-reduction-algebra if not stated otherwise. We are particularly interested
in filtrations on A induced by so called weight vectors:

Definition 2.2.1. Let u € Z", F a finite set and s € ZF.
(a) The vector u induces a grading
Ty = DTN
leZ

on T'F by assigning weight u; to z;, i.e.,
E . .
(TE) = K<{:cil ez (e) e € Bk €N in.ipSn Y o ug = l}>

for | € Z. So every nonzero r € T'F can be uniquely written as r = > sy <i<s, Ti With

r; € (TE)® and rg,, 75, # 0. We call sy the u-degree of r and write deg, (1) = sa.
If s; = s9, we say that r is u-homogeneous. We define the u-leading terms of r by

ltu(r) := rs,. The elements r,,...,7s, are called the homogeneous parts of . We
set deg,, (0) := —oo. We denote the associated filtered ring of T;, = @, (%)} by

(b) Considering A as a quotient module of T, the filtration F}* A stands for its quotient
filtration (see Remark 1.1.12(c)). We define fora € A

degy(a) := degpu(a).

Similarly, for a’ € A, we set

degyg (@) = degpugg(a’)
and suppress s if it is the zero vector.

(c) We say that u is a weight vector on A if deg,, (d;;) < deg, (z;z;) forall1 <i < j < n.
We call the weight vector u good if for every finite set F, every shift vector s € Z% and
every submodule M C AF the filtration F'%[s], M is a good filtration.

Convention 2.2.2. Our definition of a weight vector depends on the PBW-reduction datum
of A, or more precisely on S. We could avoid this by only requiring in the definition that
there exists some PBW-reduction datum such that Definition 2.2.1(c) holds (with respect to
that reduction datum). As we do in practice not consider different sets of commutation re-
lations for a fixed PBW-reduction-algebra and some of our arguments rely on a common set
of commutation relations, we from now on assume that the commutation relations of a given
PBW-reduction-algebra are fixed (and hence do not depend on the considered ordering).
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Note that u being a weight vector on A ensures the compatibility of F* A with the commu-
tation relations .S of A. Hence we have:

Lemma 2.2.3. Letu € Z", E a finite set, s € ZF and L C AP an A-submodule. If u is a
weight vector on A then we have for all a,a’ € A

degy(a - a’) < degy(a) + deg,(d’)
and FP A is a filtered K-algebra satisfying
FJA =g({z¥ | (u,a) < e}).
In this case F[s]¢AF, FU[s]o L and FV[s|s(AF /L) are filtered F* A-modules.

If u is a weight vector, we call FJ*A the weight filtration associated to u on A or the u-
weight filtration on A. If A is moreover naturally isomorphic to its associated graded algebra
with respect to F;* A then we say that A is u-graded and we call the homogeneous elements of
A with respect to that grading also u-homogeneous. More generally, if A is graded, F a finite
set and the shift vector s € Z assigns degree s, to (e), then we call a homogeneous element
of A¥ also u[s]-homogeneous (and similarly for elements of 7'%). Note that A is u-graded if
and only if (S U I) is u-homogeneous, that is, generated by u-homogeneous elements.

Lemma 2.2.3 implies that ' A is a K-subalgebra of A if u is a weight vector on A. We
collect some properties of Fj* A in this case:

Lemma 2.2.4. Let u € Z" be a weight vector on A.

(a) The K-subalgebra F' A of A is finitely generated and has a finite monomial generating
set, that is, a finite generating set consisting of residue classes of standard monomials
of T,,. Moreover, such a monomial generating set is computable.

(b) The K-subalgebra F'A is isomorphic to a PBW-reduction-algebra.

(c) The Fy' A-modules F* A (j € Z) are F* A-finitely generated and monomial F' A-gener-
ating sets can be computed.

Proof. First note that we have a one-to-one correspondence
¢ : SMon(Ty,)»{a e N"} = U : 2% < «
mapping standard monomials to their exponents. We set for ¢ € Z
Up={aeN"|(wa)=i}, U" = JUiand U™ := | JUi.

i>0 i<0
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(a) Considering e; € Z", we have under the above one-to-one correspondence that
©(SMon(T,,) N Fy'T,,) =U~ ={a e R" | (u,a) <0} NN"
is an intersection of a rational cone and the lattice Z", since

N'"= () {a €R"| (e;,a) >0} NZ".

1<i<n

Hence U™ is by Gordan’s lemma (see e.g. [BG09, Lemma 2.9]) a positive affine monoid,
and has a computable minimal finite generating set [Koc03, Proposition 3.4.6] [BI10],
say aq, ..., as € Z". This means that

U™ ={liog + -+ lsas | | € N},

andif a; = 1 + Po with 51,82 € U™ then 81 = o or B9 = o; for 1 <4 < s.

We claim that Fj'A is generated by the residue classes of !,..., z% as K-algebra:
Clearly, z7,...,2% € Fy'A = F§'T,. As F'A is generated by residue classes of
certain standard monomials by Lemma 2.2.3, it suffices to show that F{}*T;, N SMon(7;,)
is a subset of the K-algebra generated by 221, ..., 2% For this we use the well-ordering
~< on A to impose a well-order on the set £{'T,, N SMon(7},) and do induction on this
set by this well-order: The induction start is clear as 1 = min_{F}'T;, N SMon(7},)}.
Now assume that z* € FJ'I,, N SMon(7},) and that the claim has been shown for all
P e F3T,, N SMon(T;,) with 2P < x®. Since o € U, there is | € N° such that
a = Y ;<4 lic;. By Remark 2.1.44(b) there exists ¢ € K* and a € (SMon(7T5,))

with Im(a) < 2 such that

Z0 = por<izs b0 — c(gon)li - (zos)l 4@
As F'Ais aring, we have @ € Fj' A and the claim follows now by induction.
(b) We retain the notation of Part (a). Consider the surjective K-algebra map
7 K(y) == Ky, ...,ys) = FG'A, y; — 2%

Since A is a PBW-reduction-algebra, there exists by Remark 2.1.44(b)for1 <i < j <'s
fi; € K" and g;; € (SMon(T},)) with le<(g;;) < a; + «; such that

%% — fix®iz® — gi; € 1,(S) 1, € 1,(S,I) T,

As the weight vector u is compatible with the commutation relations in S, we may
additionally assume by that remark that deg,,(g;;) < deg,(z*z®) < 0. By (the proof
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(©

of) Part (a), we find g;;(v1,...,Ys) € K<SMon(K<g>)> such that g;;(z1,...,z%) =
gi; € A and hence

So = A{yjyi — fisyiyj — gi; | 1 <@ <j < s} C ker(m).

Define the well-ordering < on SMon(K(y)) by

gﬁ <o y" if and only if Z Biay; < Z s

1<k<s 1<k<s
/
or Z Bic; = Z vioy andgﬁ <"y,
1<k<s 1<k<s

where 3,7 € N° and <’ is some well-ordering on SMon(K(y)). By construction, Sy
is a standard reduction system with respect to <o. We conclude that K(y)/ker 7 is a
PBW-reduction-algebra isomorphic to Fj' A.

We keep the notation of Part (a) and consider first the case j < 0. One easily checks that

UUi=U+A:={a+d|acU,5€A}

i<j
where A = {a; | (u,05) < 5} U ({Dsealsd | 1 € NA I < 530 Ui<; Us) with
A :={a; | j < (u,a;) < 0}. We claim that {z | § € A} is an F}' A-generating set
of F;‘A = K<SM011(T n) N Fj“Tn>. As in Part (a), we consider the well-ordering < on
A and proceed by induction with respect to the induced order on SMon(7},) N FT,.

This set has a minimal element, say 2. Using the map ¢, there exist 6 € A and [ € N*
suchthat 5 =6+ ) <i<s l;cv;. From the minimality of 2° and Definition 2.1.1(c), we
deduce thatl = (0)1<;<s. Thus 2? = 2° and the inductive step works similar to Part (a).

The case 7 = 0 being clear, we assume now j > 0. Arguing as in the proof of Part (a),
we can compute a minimal finite set of generators G of U™. As above, we obtain

U Ui=U" + T U{(0)i<i<n}),
1<j

where T := {3 cpv 1y | 1€ NV JI] < 5} N Ui, Us with IV = G N Uy Ui
The proof that {1} U {27 | v € I'} is an F§j' A-generating set of F}'A is analogous to the
proof for the case j < 0.

O]

We explain now how to represent elements of F{}'A in terms of a monomial generating set
of Fj'A:

80



2.2 Weight filtrations

Definition and Remark 2.2.5. Let u € Z" be a weight vector on A.

(a)

(b)

(c)

(d)

The monomial K-algebra generating set of Fj' A from (the proof of) Lemma 2.2.4(a) is
denoted by GY := {z%1, ..., 2% }.

We effectively represent an element @ € F{J' A given by a € F{'T;, N (SMon(T5,)) as a
K-sum of products of elements in G} by constructing a representation by induction on
lm (a) with respect to the well-order <: As the case a = 1 is clear, we may assume
that 1 < 2f := lm<(a) € F}'T,. Hence there is i1 € {1,...,s} such that 5/ :=
f — a;, € N"and (u,’) < 0. Continuing this way, we write 3 = Elgjgt a;; with
1 <i; < s. Using commutation relations (see Remark 2.1.44(b)) we find f € K* and
r € (SMon(T,7)) with Im(r) < Im(a) such that@ = f[],_, ,z*t +T. As the
commutation relations are compatible with the weight vector u, we may additionally
assume r € F'T},. Induction shows the claim.

We fix now for every j € Z a finite set of generators PJA’u of the Fjj' A-module FJ-“A.
Note that we may assume by Lemma 2.2.4(c) that this set consists of residue classes of

) -
standard monomials in F}T;,, say PjA’u = {2P, ... %),

A,u
A representation @ = ZPEPA,u gpp With g € (F(}‘A)Pj fora € F}'T;, Ny (SMon(T5,))
J

is also computable by similar methods as in Part (b).

The next remark investigates the interplay for different weight filtrations on A in certain
situations:

Remark 2.2.6.

(a)

Let A = (K(z,y), 5,1, <) (with K(z, y) := K(x1,...,Zn, Y1, .- ,Ym)) be an elemen-
tary PBW-reduction-algebra and v € Z"™ be any weight vector on A. Then we have
for the weight vector w = ((0)1<;<n, (1)1<i<m) on A

FYANFYA = FY Kz,y) N FY K(z,y) N (SMon(K(z, )))

for all k,1 € Z: Clearly, it suffices to show that the left hand side is contained in the
right hand side. If a € FYA N F}" A, then there exist representatives a% € FVT,,
and a¥ = 3, genntm Ay, B)gagﬁ € FYT, of a. As reductions with commutation
relations do not increase the v- or w-degree of elements of 7}, we may assume that
the representatives live in , (SMon(K(z, y))). As a¥ — a% = 0 and as there is a direct
sum representation of the form A = Pz ym (Clz]/J )y°, we deduce for 3 € N™
with [B] > ['that 3 ey af), 5z® = 0 € A. Hence 3., g)enntm |5 az’aﬁ)f‘gﬁ €
FY Kz, y) N Y K(z,y) N K<SM0n(K@, y))) is also a representative of a.
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(b) Let vand w € Z" be weight vectors on A = (T, S, I, <) such that

FYANFYA=F'T, N E¥T, N g (SMon(T,,)) 2.2.1)

for k,l € Z and denote by PkA’V = {ﬁ, e ,gﬁﬁk} the F{y A-generating set of F}Y A
constructed in the proof of Lemma 2.2.4(c) (with the representatives also chosen as in
that proof). Then that proof and Equation (2.2.1) imply

FYFYA= Y (FY 5mF0A) -2

1<i<sg

Given a weight vector u on A, we have no general method to determine a PBW-reduction
datum (or even a representation as a quotient algebra of a free K-algebra) of Fj'A. Yet, in
certain situations such a PBW-reduction datum is computable:

Lemma 2.2.7. If A is a quasi-commutative PBW-algebra, then F'A is isomorphic to a quo-
tient of a PBW-algebra and a corresponding PBW-reduction datum is computable.

Proof. According to Lemma 2.2.4(a) a monomial generating set GY = {z',... , 2%} exists
and is computable. By the commutation relations of A and by hypothesis, there are f;; € K*
such that % 2% = f;;x*x® € Afor1l <i < j <s. Then

B:=K{y1,...,ys)/ {y9i — figyiy; | 1 <i<j<s)})
is obviously a quasi-commutative PBW-algebra. The K-algebra homomorphism
:B— A, Yz

induces now an isomorphism of K-algebras B/ ker(t)) = FJ'A.

We reduce the computation of the kernel of the map ) to the computation of toric ideals:
Consider the commutative K-algebras A€ := K][z1,...,2,] and B¢ := K]vy, ..., vs], which
are isomorphic to A and B as K-vector spaces, respectively. We denote by 74 and 77 the
corresponding K-vector spaces isomorphisms given by z” — 2% and 3% — v, respectively.
By [Stu96, Lemma 4.1 and Algorithm 4.5] there exists for a given well-ordering < on B a
finite computable set I' C Z* such that {v”" — v7" | € I'} is a Grobner basis of the kernel
of the K-algebra homomorphism

¢ B¢ — A°, v; — 2%,

where the vectors v, v~ € N are defined by

(vF)i = i B and (7" ); = v B forl <i<s.
0, else 0, else
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Changing the sign of v if necessary, we may assume that v7 < v7". We define for § € N
an element c5 € K* by the property (z21)%1 - .. (z%)% = csw21i<s %% ¢ A and obviously
obtain
p= Z pgg(s € ker(v) if and only if p© := Z cspsv° € ker ()
0EN® 0eN?

(where ps € K.) This implies in particular
ker(z) 2 A<C¢g7+ —cry) | e F>.

Denote by < also the well-ordering induced by < on B under Tgl and set G := {c; y7+ —
Cigfyi}. We claim that (K<y1, - ,ys>, {yjyi - fijyiyj ‘ 1 <1 <5 <L S>},G, <) is a
PBW-reduction datum for B/ ker(v)). By Remark 2.1.15(a) and (b) it is enough to show that
lex(p) € L<(G) for any p € ker(¢) N x (SMon(K(y1,...,ys))). As seen above, we have
p¢ € ker(°) for such p implying that there is v € I" and 6 € N® such that Im (p©) = PDaARES
We deduce lm<(p) = QVJ”“‘S finishing the proof. O

Example 2.2.8. Let u € Z" be a weight vector on A.
(a) Ifu € Z2, then Fj'A = Aand G} = {T1,...,@Tn}.

(b) Similarly, we have for u € N" that GY} = {7; | 1 < ¢ < n,deg,(z;) = 0} and
hence there are 1 < i1 < --- < 4y < n such that GY = {73y, ..., @i, }. Then Ay :=
K(zi,...,2i)/((SUI) N K(z;,...,x;)) is a PBW-reduction-algebra since S, :=
{wi, @i, — cijipwijzi, — diji, | 1 < j < k <1} is areduction system with respect to
the ordering induced by < on Mon(K(x;,, . .., x;,)), which we also denote by <. (Note
that indeed d;;, € K(z;,, ..., ;) since u is a weight vector.) Moreover,

bu: Au = A, T, Ty,

is an injective K-algebra homomorphism inducing an isomorphism A, = Fj'A. If <
is an elimination ordering for {z; | 1 < k < n, k ¢ {i1,...,7}} then we claim
that (K(z;,, ..., 2;), Su, Tu, <) With Iy := I N (SMon(K(x;,, ..., x;))) is a PBW-
reduction datum for A,: Clearly, Definition 2.1.13(aii) is an immediate consequence of
that property for A showing that (K(z;,,...,x;,), Su, Iu, <) is a PBW-reduction datum
for the PBW-reduction-algebra Aj, := K(z;,,...,2;,)/ (SuUI4). To prove that A,
coincides with A/, it suffices by Proposition 2.1.11 to prove that the inclusion

K(g)i(rg’<) NK(xiyy .-y = Kz, ... ,xil)i(f‘u’<) C Kz, .. 7$iz>i(r/1;(“<)

is in fact an equality. But Definition 2.1.13(aii) for A and A/, shows by the elimination
property of < that the module on the right hand side agrees with that on the left hand
side, hence proving equality.
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(c)

(d)

84

Let n,r € N with > 1 and consider the weight vector v := (v1, —vg, v1, v2) defined
by v1 = (0)1<i<n € Z" and vy := (1)1<i<, € Z" on the Weyl algebra D,, ,. We have

Doir ={z; |1 <i<n+r}U{z;0;|n+1<ij<n+r}
Proceeding as in the proof of Lemma 2.2.4(b) and setting

(Drngr)v = K(y1, .., Yntrs {2ij fnt1<ij<rtn)/ (So)

for

So = {Yj¥i — YiYj, 2kYi — YiZkl — Ok Zpg?kl — ZkiZpq T OlpZkq — OkqZpl
1<i<j<n+4rn+1<klpqg<r+nwith (k) < (p,9)}

we see by that proof that
Oy (Dnr)v = F§ Dy, yi v @4, 20— 210,

is a K-algebra homomorphism and Sy a standard reduction system with respect to the
ordering defined in that proof. One checks using Corollary 2.1.23 that (D, )y is even
a PBW-algebra. Arguing as in Lemma 2.2.7, we get that ker(¢y,) is (Dy, 4+ )v-generated
by

{yizi — yrzit, zigzm — 2z + Sijzi — Sjpza | n+1 <4, 5, kL <n+r},

allowing us to compute PBW-reduction datum for F{y’ Dy, by Corollary 2.1.53. More-
over, we have

Bn+1Bnir .
pDuirv _ J A& B | Yicigy Bnvi = —k}, ik <0
k - Bn /B'"/ s
{8714;51 T an—i-: | 219'9 Brni <k}, else.

In the situation of Example 2.1.30(b), we have Ty = FyTx, where v is the weight
vector assigning weights —1 and 1 to z,, and y,,, respectively, and weight O else. Note
that the weight vector w = ((0)1<i<n, (1)1<i<m) on T’x induces the weight vector
Wy = ((O)ISiSna (1)1§i§m> on T;(/ by Remark 2.2.6.

Moreover, we have

prv _ | {ah) ifk<0
' (W [0<I<k}, else.



2.2 Weight filtrations

2.2.2 Weight filtrations on submodules of free modules

In this subsection, we consider the PBW-reduction-algebra A = (7, 5,1, <) with S :=
{zjz; — cijoix; —dij | 1 < i < j < n}and assume that u € Z" is a weight vector on A.
Our aim is to prove that u is good weight vector on A by giving a computer algebraic proof
that explains how to compute for a given set E, an A-submodule M C A and a shift vector
s € Z¥ a finite set of generators M’ of the filtration F* [s]M. Here, we say that a finite set
M’ C M generates F2[s]M (as F* A-module) if for every m € M there exists an a € AM '
such that

m = Z Ay’ and deg,, (ap) + degyjg) (m') < degys)(m) for all m' e M'.
m'eM’
We refine the total preorder <, (5] defined by the u|s]-degree on SMon(7?) via
2(e) <upe 2 (¢') if and only if degyg(2*(€)) < degy(z (¢')) (2.2.2)
for o,a’ € N" and e, ¢’ € E to an ordering on A as follows:

Definition 2.2.9. Let u € Z" be a weight vector on A, F a finite set, < an ordering on A¥
and s € Z¥ a shift vector. We define the ordering %E[S] on SMon(T¥) by

:Ea(e) <E[s] &a,(e/) if and OIlly if degu[s] (ga(e)) < degu[s} (&a/(e/))

or degy(g)(z(e)) = degygg (@™ (') and 2% () <" 2%'(¢/)

for a, o/ € N" and e, ¢’ € E. If s is the zero vector, we also write <Z. We sometimes use the

notation <E[S} without explicitly defining an ordering <% on A% .

In the situation of Definition 2.2.9 note that —<E[S defines indeed an ordering on A” since
it is compatible with the commutation relations of A. Grobner bases with respect to orderings
of the above type on submodules of free A-modules and generating sets of the filtration F}'[s]
on these modules are related as follows:

Lemma 2.2.10. Let u € Z" be a weight vector on A, E a finite set, s € 7 a shift vector,
< an ordering and M C AF an A-submodule. If G is a Grobner basis of M with respect to
<E[S], then it generates F'Y'[s|e M as F@* A-module.

Proof. Let m € F"[s];M for some k € Z. Choose a representative m’ €  (SMon(7},)) N
FY[s]T;, of m using Lemma 2.2.3. By assumption there is a € & (SMon(T},))¢ and h €
K<SlVIon(T,’?)>G with hy = g satisfying

m = ZCTQg and le(ay) + ele(hy) jf[s} ele(m’)
geG

implying deg, (@g) + degy(s)(9) < degy(ag) + degyg)(hg) < degy(m’) < k. Hence m €
ZQEG Fl;l*degu[s] (Q)A "9 -
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Note that if <¥ is a well-ordering, then -<E < is a well-ordering if and only if u € N"™. Since
Grobner bases with respect to well-orderings exist by Proposition 2.1.50, we obtain:

Lemma 2.2.11. The weight vector u € N" on A is a good weight vector.

If u is not a positive weight vector, we can still compute Grébner bases with respect to
-<E < by combining the homogenization methods of [OTO01] for the Weyl algebra and those of
[BGTVO03] for well-orderings on PBW-algebras. For this, we first define the w-homogenized
PBW-reduction-algebra of A for a given weight vector w, which is isomorphic to the Rees
ring of F ¥ A (see also [BGTVO03]):

Definition 2.2.12. Let w € N" be a weight vector on A, E a finite set and s € Z” a shift
vector.

(a) We define the w(s]-homogenization of p =}, crjon(7.7) Pmm € TE (with p,, € K) as
hw[s] (p) = Z pmhdegw[s] (P)*degw[s] (m)m c (T:)E = K <h, z1,... ,xn>E .
meMon(TF)

For G C TF, we set hy) (G) := {hwp(9) | g € G}. As usual, we suppress s if it
stands for the zero vector.

(b) The w-homogenized PBW-reduction-algebra A*(W) is defined as

TT}LL/ <hw(Tn<SUI>Tn) U {h:c, —x;h | 1< < n}> .
(c) We define the ordering <(] ) on SMon((T}})") for the ordering <" on A" by

B)

hozP (e) -<ﬁ7w) h' 27 (¢') if and only if o + (w, 8) < & + (w,
=a + (w, ') and gﬁ(e) <F gﬁl(e’)

or a + (w, )
fora,o’ €N, 3,8 € N*ande, e € E.
(d) We call the K-algebra homomorphism given by
dp :Th > T, hes 1,2 — 2y

dehomogenization map. Tt induces a map dj, : A"™W) — A. By abuse of notation, we
denote the maps d,‘? also by dj,.

Note that the above dehomogenization map of A*™W) is well-defined and that we can in-
deed identify A"™) with the Rees algebra Brey FVA - 2% C Alz, 271 by sending hezf
to 28 22+{W.8) _ Furthermore, homogenized PBW-reduction-algebras are PBW-reduction-alge-
bras:
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Lemma 2.2.13. Let w € N" be a weight vector on A. Then
SPMW) = b (S) U {hay — a:h | 1 < i< n}

is a standard reduction system with respect to <1,y and the K-algebra AR s a (1, w)-
graded PBW-reduction-algebra. In particular; there is a finite set I' C K<SM0H(TZ$)> con-
sisting of (1, w)- homogeneous elements such that (T, S"™) T, =(1,w)) represents a PBW-
reduction datumfor AMW)_If Ais a PBW-algebra, then so is Ah(w)

Moreover; if <" is any ordering on A, then <(1,W) is an ordering on A" If w is strictly

positive, then there exists a finite set I consisting of (1, w)-homogeneous elements such that
(T, Sh(W) T, —<’(1,W)) is a PBW-reduction datum.

Proof. We have for 1 < i < j < n that hy(zjz; — cijrix; — dij) = xjz; — ¢ijrix; —
h®i hy(d;;) for some c;; € N since w is a weight vector on A. By definition of the ordering
=(1,w) We see that Sh(W) is indeed a standard reduction system. According to Lemma 2.1.17,

there exists some I” such that (75, h(w) , Shw) 1 =(1,w)) is a PBW-reduction datum for AMW),
Setting I’ to be the set of the (1, w) homogeneous parts of the elements of I”, the particular
claim follows as A™M™) is obviously (1, w)-graded. Moreover, the claim in the PBW-algebra
case is due to Corollary 2.1.23.

Arguing as for <1 ), we see that SMW) is a standard reduction system for </ 1w I w
is strictly positive, then the latter ordering is a well-ordering and Lemma 2.1.17 1mp11es the
existence of a corresponding PBW-reduction datum. O

The idea is now to homogenize the PBW-reduction-algebra A with respect to a strictly
positive weight-vector w € NZ, and then reduce Grobner basis computations in AF with
respect to the non-well-ordering <Z to Grobner basis computations in (A"™))¥ with respect
to the well-ordering 45’ w)" We first need to ensure that such a strictly positive weight vector
exists:

Lemma 2.2.14. A weight vector w € N% on A exists and is effectively computable.

Proof. Consider the set
M :={zz; |1 <i<j<n}u{z®]| thereis 1 <i < j < nwith (d;;)q # 0}

of standard monomials appearing with nonzero coefficient in one of the commutation relations
in S. According to [GP08, Lemma 1.2.11] there is a strictly positive weight vector w € N"
such that

z® < 2 if and only if (o, w) < (B, W)

for all z*,2” € M, because < is a well-ordering. As < is an ordering on A, w is a weight
vector on A. The claim on the computability follows from [GPO8, Exercise 1.2.7 and Exercise
1.2.9]. O
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If A is an elementary PBW-reduction-algebra, we compute a PBW-reduction datum for the
homogenized PBW-reduction-algebra A"(W) with respect to the weight vector w & N%, as
follows:

Lemma 2.2.15. Consider the K-algebra K(z,y) := K(z1,...,2n,Y1,...,Ym) and the ele-
mentary PBW-reduction-algebra

B =K(z,y)/ (R) = B Kz]/])y’.

6€N'm

If w e N;"gm is a weight vector on B, then B"Y) is also an elementary PBW-reduction-
algebra.

In particular, if < is an ordering on B, J' C Kz]| a Grobner basis of J with respect to
the ordering induced by < and (K(z,y), S, J', <w) a corresponding PBW-reduction datum,
then (K(h,z,y), Shw) J =(1,w)) represents a PBW-reduction datum for BMW) \phere J"
is a Grobner basis of (hw(J")) C K[h, x] with respect to the ordering induced by < (j ). So
a PBW-reduction datum of B W) ypith respect to the ordering <1 v is computable.

Proof. We denote the canonical isomorphism P 5. ym (K[z]/J )y® — B by 1p. We first show
that the K-linear epimorphism

Yl @ (K[h, 2]/ (hw (J)))y® — B"W)| hegayP vy hegoyB
BEN™

is an isomorphism: We considerp = P dc,aﬁhcgagﬁ € ker(¢") (with deq,p € K) and

may assume that d. o 3 = 0 for ¢ + ((«a, 3), w) # k for some fixed k& € Z because Bh(w)
is (1, w)-graded. Defining d’h : @%Nm(K[h,g]/(hw(J)})gﬁ — @BeNm(K[g]/J)gﬁ by
sending Wgﬁ to Egﬁ, we see that dj, o wh =)o d%- So we obtain for 5 € N™ that
> cadeapsz® € J. We observe that there exists z € N with

D deashz® = hy(Y degpz®) € (hw(J))

c,x

since }_, , de,,3hz®y” and hence also > c.a dea,ph@® is (1, w)-homogeneous. This im-

plies p = 0 showing injectivity. Thus B"(W) satisfies the assumptions of Lemma 2.1.28(b).
According to [GP08, Exercise 1.7.5] we have (hy(J)) = (hw(J")) C K]h,z] since J' is a
Grobner basis of J with respect to <y,. So the claim is an immediate from Lemma 2.1.28. [

We deduce from PBW-reduction data of A"(W) and A a corresponding datum of the (1, w)-
homogenization of factor algebras of A as explained below:

Lemma 2.2.16. Let w € NZ% be a weight vector on A, M C A be a finite subset, <" an

ordering on A and (T, S"™) I, -<’(1 w)) a PBW-reduction datum for A"™). Then w is
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2.2 Weight filtrations

a weight vector on the PBW-reduction-algebra B, realized as a quotient of 'T,,, canonically
isomorphic to A/ A(M) 4. We have the representation

Bhw) _ (Ty?, Sh(w)’T(Ah(w)7<£l%w>)(G/) Uy, <El7w))7

where G is a Grobner basis of the left A™W)-ideal generated by the residue classes of
hw (T(4,<w)(G)) with respect to —<’(17w) for a left Grobner basis G of A(M) a with respect
to <w. In particular, PBW-reduction data for strictly positively homogenized factor algebras
of PBW-algebras are computable.

Proof. Let A = (T,,,S,Ia,<w) and B = (T,,, S, Ip, <) be PBW-reduction data. We first
show that the K-linear morphism
U T (g, (S U L) 1) U {ha — arh | 1< 6 < m} U (<) (@) = B*),
p—=Dp

is an isomorphism. Clearly, 1/ is well-defined and surjective. So consider for the injectivity
p € T" with ¢)(p) = 0. This entails by definition of homogenized PBW-reduction-algebras
that p € pn(hw(1,(SUIB)1,) U{he; —z:h |1 <i<n})pn. As ¢ is (1, w)-graded, we
may assume that p is (1, w)-homogeneous. Writing p = p' + ¢ with p" € >, h*T,, and
q € pp({hai —z;h | 1 < i <n})qn, we reduce to the case p € >4 h*T,,. We have now

dn(p) € 1,(S U Ip) 7, allowing us to consider dj,(p) € 4(M) 4 C A. Hence we find a € A“
such that

dn(p) =) agg and le<, (ag) +le<,, (9) Zw le<,, (dn(p)) Zw le<,, (dn(p)).
geG

Thus there is 7 € 7, (S U I4) 1, satisfying

dn(p) = D 74,2 (@g)T(a <) (9) + 7 and le, (1) S le,, (da(p)).
geG

Therefore

p = hh(dn(p)) = Y W (14 <) (@) (T4, <) (9)) + B () (223)
geCG

for suitable d, d, € N and d’ € N proving injectivity.
So B™W) is canonically isomorphic to

A /4 (B (712 (@) ) 4

and thus an application of Corollary 2.1.53 finishes the proof. O
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2 PBWe-reduction-algebras

We investigate now the relationship between < and —<5 w)'

Remark 2.2.17. Let w € N’ be a weight vector on A, F a finite set and <Z an ordering
on AE. Then there exists for e € E a set I consisting of (1, w)-homogeneous elements such
that 4(1 w) is @ well-ordering on (ARNE — (Th™) gh(w) 1 <

L <E) ek (see Lemma 2.2.13).
Furthermore it holds:

(a) The map p(pnw), <E ) preserves (1, w)-homogeneity as well as the (1, w)-degree

since I’ for e € E and S"™) are (1, w)-homogeneous.

(b) We have the following relationship between the ordering <* on SMon(T.¥) and the
ordering <( on SMon((TfZ(W))E): If deg(; ) (2P (e)) = deg(y ) (h'z” (¢/))

then

1,w)
2P (e) <F 27 (¢') if and only if h%z”(e) <F w) )

for o,/ € N, 8,8 € N" and e,e¢’ € E. It holds for a (1, w)-homogeneous a €
K<SMon(( Z;(‘”))E)>that

dp(Im_ g )(P(A (w) <

=4, a, ))(a)>) <* dh(lm<(El,w) (a)) = Im_z(dn(a)),

where the inequality is due to Part (a). In particular, a’ € K<SM0H(T£ )> satisfies

o (I (@))) 22 dy(ime  (hw(a))) = Tm_s(a).

dh (lm_<E (p(Ah( & w)

(1,w (1

(c) We point out that %ﬁ’ w) is indeed a well-ordering on the PBW-reduction-algebra Al(w)
and hence Grobner bases with respect to that ordering are computable (see Proposi-
tion 2.1.50) given that an underlying PBW-reduction datum is computable. Since the
commutation relations as well as the I for e € E are (1, w)-homogeneous, Algo-
rithm 2.1.45 preserves homogeneity: That is, if we apply this algorithm to (1, w)-
homogeneous elements in (A"™))F, then the so obtained Grébner basis consists of
(1, w)-homogeneous elements. An analogous statement holds for Algorithm 2.1.48.

We explain now the computation of Grobner bases with respect to non-well-orderings. The
existence of these Grobner bases for orderings of type <% ufs] then shows that every weight
vector u on A is good.

Proposition 2.2.18. Lerw € N2 be a weight vector on A, E a finite set, <% an ordering on
AP and M = M7 C AF for M' C <SM0n(TE)>ﬁnite. If the set G C (AMW)E jg

a Grobner basis of <hw (M’ )> with respect to —<( consisting of (1, w)-homogeneous

Ah(w) Lw)
elements, then d,(t_e (G)) induces a Grobner basis of M with respect to <F. An analo-
1,w

gous statement holds fér two-sided modules.
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2.2 Weight filtrations

Proof. We first show that dj,(G) C M: As G C ) <hw(M/)>, there exists for g € G an
a€ (Ah(w))M' such that g = >/ @ hw (m). Hence

Zdham dh ( Zdham)TTLEM
m/eM’ m/eM’

The second step is proving that d;(G) is a Grobner basis of M: For ¢ € K<SM0]{1(T,’1E )
with # € M exists a € (T,)™ such that = >, 1p @mm'. This implies that there is
r €5, (SPUTP) 7, suchthatt =3 ,c\p amm’ + 7 and hence we find g € NM'HHU{T
such that

WPy (t)= > hfm Nhw (M) 4 WP o (1)
m/eM’
showing that

As G is a (1, w)-homogeneous Grobner basis and h8m h (t) is (1, w)-homogeneous accord-
ing to Remark 2.2.17(a), we obtain a (1, w)[(deg (1 w)(9))gec]-homogeneous b € (APWHG

such that
BBl (t) = " byg
geG
and
E TBih () <E
leHaw))lcomp(Q)(b )+ ele<é91 - (9) 21w ele<ﬁﬂw)(h5thw(t)) =.w) ele<ﬁ7w)(hﬁthw(t)).
(2.2.4)
Dehomogenizing we get
=y dh(T(ﬂw))lcomp(g) (by)) - dh(T_<{Jl - (9)). (2.2.5)
geG
By Equation (2.2.4) and Remark 2.2.17(b), we have
1e('<E)lcomp(g) (dh(T('<ﬁﬂw))lcomp(g) (bg))) + ele{E (dh(7'<{51 w) (g))) (226)
< ele_r (dn(h" hy(t))) = ele_r(t)
concluding the proof. O

Lemma 2.2.14, Proposition 2.2.18 and Remark 2.2.17(c) imply

Corollary 2.2.19. Let E be a finite set. Grobner bases with respect to any ordering <% on
AE exist. They are computable if we can compute a weight vector w € NY, on A such that a
PBW-reduction datum of A"™) for the ordering <( w) is computable. In particular, Grobner

bases with respect to orderings of type <y[s], where u € Z" is a weight vector and s € ZF is
shift vector, exist.
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2 PBWe-reduction-algebras

We point out that it is possible by Lemma 2.2.14 to compute some weight vector w € N2,
on A, but that we have in general no method to determine a suitable weight vector w’ € N2,
on A such that a PBW-reduction datum for (Ah(wl) , <5 W,)) is computable even if some PBW-
reduction datum for A is known. However, for PBW—éllgebras and quotients thereof as well
as elementary PBW-reduction-algebras we can determine such a PBW-reduction datum (see
Lemma 2.2.16 and Lemma 2.2.15).

Definition 2.2.20. Let A be a PBW-reduction-algebra, E a finite set and < a non-well-
ordering on A¥. We call <¥ computable if a weight vector w € NZ, is computable such that
the ordering -<ﬁ w) On (AMW))E is computable.

The following algorithm summarizes the computation of such Grébner bases. For that no-
tice that when writing algorithms we use > as comment symbol.

Algorithm 2.2.21 Given an A-submodule M of a free A-module and an ordering on that free
module, this algorithm computes a Grobner basis of M with respect to that ordering.

Input: A finite set F/, an A-module M = A<W> C A with M’ C Tf finite and a com-
putable ordering < on A¥.
Output: A finite set G C T.F inducing a Grobner basis of M with respect to <.
if <¥ is a well-ordering then
Compute a Grébner basis G of M with respect to < using Algorithm 2.1.45.
return 745 5y (G).
Determine a suitable weight vector w € N, on A and a PBW-reduction datum for
((ARODYE, 2B ),
Set M := hyw (M').
6: Compute a (1, w)-homogeneous Grébner basis G of ,jw) (M) over the ring A*") with
respect to '<ﬁ,w) using Algorithm 2.1.45. > Requires corresponding PBW-reduction

datum of AMW).
7: Set G := dh(T((Ah(w))E E (G))

’-<(1,w))

b

el

8: return G.

Remark 2.2.22. Note that reduced Grobner bases with respect to non-well-orderings do in
general not exist.

Remark 2.2.23. Our application of the above method is the computation of Grobner bases
with respect to orderings of type <E[s] on AP, where F is some finite set and s € Z” a
shift vector. We remark that the positive weight vector w chosen for the homogenization is
independent of the weight vector u and the shift vector s. In some instances, namely when the
elements of S are u-homogeneous, we can homogenize in a way depending on u([s], which

might enhance the computation of Grobner bases with respect to the ordering <E[S}. More

precisely, we work over AM" and modify Proposition 2.2.18 in this situation as follows:
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2.2 Weight filtrations

Noting that —u is also a weight vector on A, we replace the homogenization hy by h_y_g]
and the ordering (%5[51)(1’“,) by the ordering (—<E[s})h defined by

hagﬁ(e)(%E[S])hho‘lgﬁ/(e') if and only if o < o/

or v = o' and z” () -<§[s] 27 (¢)

fora,o/ € N, 3,8 € N" and e, e’ € E. If we replace (1, w)-homogeneous Grobner basis
by a (1, —u)[—s]-homogeneous Grobner basis, then one can show that Proposition 2.2.18 still
holds.

We use Grobner bases with respect to -<f[s] to explicitly find generators of the filtration

induced by F™[s], A on submodules of A” under the assumption that we can determine the
required PBW-reduction datum:

Proposition 2.2.24. Let u € Z" be a weight vector on A, E and E' finite sets, s € Z.F a shift
vector, < an ordering on A and <'E" an ordering on AE IfGCTFao Tf’ induces a
Grobner basis of the A-submodule M C AF & A®' with respect to (%E[S], <'E"Y then

Mn(FslA” @A) = " FoaguwAdA-9+ >, A3 Q20
g€G:TR(g)#0 geG:mg(g9)=0
In particular, M (\(F*[s], A” @ AP') = <{a§ |9 € G mplg) #0,a € P }>+
FrA k—degys)(9)

A7 g€ G,mr(g) =0}) fork € Z

Proof. We first observe that the right hand side module of Equation (2.2.7) is obviously con-
tained in the left hand side module of that equation.
Letm € M N (FY[s], A" @ AF") for fixed k € Z. By definition of F*[s]A¥ there exists a

representative m' € o TEYN on ")) of m. Since G induces a Grobner
ive m’ € (FPTE @ TE B SMon(TE-#") ) of m. Since G ind Grob
basis of M, there is a € K<SMon(Tf)>G such that

m= Z agg and le(ay) + ele(g) 55[75' ele(m),
geG
E/
(

where we abbreviate -<f[’s} =

. <'E") . If ng(g) # 0, this implies that

ufs
degu[s] (agﬂ-E(g)) = degu(ag) + degu[s] (ﬂ-E(g)) < degu[s] (WE(m/)) <k,

hence showing that a, € Fk,degu[s] (9)A- As that F' A-module is generated by P,?fclleg ()
O

the particular claim follows readily.

Corollary 2.2.19 and Proposition 2.2.24 imply:
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2 PBWe-reduction-algebras

Corollary 2.2.25. Every weight vector on A is a good weight vector.

Proposition 2.2.24 yields the following algorithms:

Algorithm 2.2.26 Given a weight vector u and an A-module M C AF @ AE/, this algorithm
computes M N (F¥[s], AP @ AF").

Input: Two finite sets £, £, a module M = ,(M') C AF & AP with M’ finite, a weight
vector u € Z" on A, a shift vector s € Z” and computable orderings -<E[S] and <% on

AP and AP’ respectively.
Output/: Two finite sets Gy, Gy C T.F @ TF with mx(G) = {0} such that M N (F"[s], A" @

AP )= ZgleGl Fcu—degu[s](gﬂA gt A<G2>‘

1: Compute a set G C T.F @ T'F" inducing a Grébner basis of M with respect (%E[s], <’E/)
by Algorithm 2.2.21.

2: SetGy:={g|g€G,mr(g) #0}.

3: Set Go :={g € G | mg(g) = 0}.

4: return G1,Go.

Algorithm 2.2.27 Given a weight vector u and an A-module M C AF @ AE' this algorithm
computes M N (FY[s], A" @ AF") for fixed k € Z.

Input: Two finite sets £, E’, a module M = ,(M’) C AE @ AE" with M’ finite, a weight
vector u € Z", a shift vector s € Z, computable orderings <E[S] and <'Z" on AF and

AE' respectively, and k € Z.
Output: Two finite sets G1, Gy € AP @ AP with 7 (Go) = {0} such that M N (F[s],AF @

AF) = pua(G1) + 4(G2).

1: Compute aset G C TF @ Tf' inducing a Grobner basis of M with respect (45[51, </ E/)
by Algorithm 2.2.21.

_ A,

2: Set Gy :={ag | g € G,me(g) #0,a € Pk—gegu[s](g)}'

3: SetGy:={g| g€ G,mr(g9) =0}

4: return G1,Go.

Consider now a weight vector u € Z" on A, a finite set £ and a shift vector s € ZF.
Abbreviating Gr’"® by Gr'®! (and similarly for the corresponding symbol maps) and calling
the associated graded objects also associated u(s]-graded objects, we finish this subsection by
studying the ring Gr™ A and explaining how to express Gr*/ M for an A-submodule M C AF
as a Gr A-module. (Note that as always we drop the shift vector in the above notation, if it
stands for the zero vector.)

Proposition 2.2.28. Let u € Z" and w € N2 be weight vectors on A, <’ an ordering on A,
and AMW) = (Th ShW) T (=W (1,w)) @ PBW-reduction datum with (1, w)-homogeneous
L.
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(a) We may identify
Gr'A = Tn/ <1tu(5) U ltu(dh(Iw))>

and a PBW-reduction datum of that PBW-reduction-algebra is given by (T),,1ty(S),
by (dn(Iw)), <").

(b) Ifue N"and A = (T,,, S, Iy, <u), then a PBW-reduction datum for Gr" A is given by
(T, 1tu(S), Itu(Ln), <).

(c) Consider the finite set E, the ordering <¥ on AP, the shift vector s € ZF and the
A-module M C AE. We have under the identification in Part (a)

Grulsl gF o~ TE/ <ltu(5)E U ltu(dh(Iw))E> ’

where we put (€) € T, / (1tu(S)® U ltu(dp(Iw))¥) in degree sc, and we may consider
GrSIM as a Gr* A-submodule thereof.

Furthermore, if G C TF induces a Grobner basis of M with respect to 45[51, then

lty)(G) € T, ' induces a Grobner basis of the Gr™ A-module GrSIM with respect to
< under the above isomorphism.

(d) We have for M C A
Gr(A/A(M) 4) =2 Gr" A/ Gr" 4 (M) 4.

If <" is a well-ordering, then a PBW-reduction datum of the above algebra is given by
(T 1tu(S), lu(dn(Iw)) U piarw a, <y (tu(G)), <), where G C TE induces a Grobner
basis of A(M) a with respect to <.,.

Proof.

(a) The K-linear surjective map

YT, — GrA, m;, - x5, — Ty, - T, + Fy

u
degu(xil“'xik)_lA = Grdegu(

Tiy i)
with kernel (It (7, (S U I) 7, )) induces an isomorphism of K-algebras
T/ u(r, (SUI)1,)) = Gr*A.
Asp (SUI) 7, =1,(SUdy(Iw)) 1,, we have clearly
(Itw(S) Ultu(dn(Iw))) C (Itu(r,(SUI)1,)).

For the converse inclusion consider a u-homogeneous p € 1, (Itu(7, (SUI)71,)) 1,-
We may assume that p € (SMon(7},)) and that there exists p’ € , (SMon(7},)) with
degy(p) < degu(p) and p+p’ € 1,(SUT) 1, as 1tu(S) C (I6u(S) Ultu(dn(Iw)))
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2 PBWe-reduction-algebras

and S are standard reduction systems with respect to <.,. Now we find [,{’,!” € N such
that B gy (p+p') = Wby (p) + B hy (p') € 70 (S"™) U Iy ) 7. By Remark 2.1.16(a)
we write

Wohe(p+p)=> agg+ > t (2.2.8)

9€lw (t,s,t')eU
for some (1, w)[(deg( w)(9))ger, |-homogeneous a € K<SMon(T,?)>IW and some fi-
nite set U C T\ {0} x S™W) x T\ {0} satisfying

le(ag) +1e(g) (=) (1.w) le(h! hw(p + 1))

and
1™ (£) + 1™ () + 1™ (t) (=) (1,w) le(A b (p + P'))

with equality for some g € Iy. Here, we may assume for (¢,s,¢') € U that ¢ and
t’ are (1, w)-homogeneous and that all terms appearing in Equation (2.2.8) are (1, w)-
homogeneous of the same degree. Dehomogenizing we obtain (see Remark 2.2.17(b))

p+p Z dh CLg dh Z dh Clh dh( )
with
le(dn(ag)) +le(dn(g)) =y le(p +p') = le(p) (2.2.9)
and

1% (dp (1)) + 1™ (dp(5)) + 1% (dn (1) =<y le(p +p') = le(p)

with equality for some g € Iy,. Hence in particular the corresponding inequalities hold
also for the u-degree of the considered elements and we obtain by u-homogeneity of p

p= 3 Muldn(a) luldn(e) + 3 tu(da(t) u(dn(s)) lu(da(t)

gell, (t,s,t')eU’

for some I, C Iy, and U’ C U. This shows not only p € 7, (1t (S) U ltu(dn(Iw))) 7,
but also that Definition 2.1.13(aii) is fulfilled by Remark 2.1.15(a): For this first note that
lesr (1) = le<s (Itu(r)) = le</(Itu(r)) holds for r €  (SMon(T},)) and thus le_/(p) =
le: (p) by u-homogeneity of p. Choosing g € Iy, with equality in Equation (2.2.9),
we obtain le(p) = le< (Itu(d(ay))) + le< (tu(dn(9)) € L (lta(dn(I)). As
7, Itu(7, (SUI) 1,)) 1, is @ u-homogeneous ideal, it was enough to consider homoge-
neous p and we are finished.

(b) Follows by similar arguments as Part (a).
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(c) We have canonical graded K-algebra isomorphisms

G AP = (G A)P (T, / (1tu(S) Ultu(dn(Iw))))” (2.2.10)
=T/ (1tu(S)F U ltu(dn(Tw))F),

where we put (e) € T.F/ (1tu(S)” Ultu(dn(Iw))¥) in degree s.. Since by the first
isomorphism theorem

Grz[s]M = (F[s]pM + F[s]—1A")/F"[s]_1 A" C GTE[S] AP, (2.2.1D)

we may identify Gr*8/ A/ with a submodule of T;F / (Itw(S)F Ulbu(dn(Iw))®).

Under the above identification consider ¢ €  (SMon(T}¥)) with 0 # & € GrUslAr.
As that module is u[s]-graded and the ordering <¥ is transitive, we reduce to the case
that ¢ is u[s]-homogeneous. Hence there exists ' € , (SMon(T;Y)) with deg,g (') <
deg, () such that ¢ + ¢ € M. So it holds

¥ =) a;-geM
geG
and
E
le(_<§[5])lcomp(g) (ag) + 1645[5] (9) ju[s] 16_<E[s] (t+ t/) = le_<E (t)

ufs]

for some a € K<SM0n(TnG )> by assumption. It follows under the above identification

t=) ltu(ay) - Ity (g) € Gl M
geqG’

and

le_e  (ltu(ag)) +lese(lty)(g)) =7 lese(ltyg(t + 1) = les (ltyg(t))

lcomp(g)
forg € G':={g € G | degy[g)(9) + degy(ay) = degy5(t)}.
(d) The exact sequence
0= FRA(M) 4 — F*A — FX(A/a(M) 4) = 0

induces the claimed isomorphism. The other claim follows by Part (c¢) and Corol-
lary 2.1.53.

O]

Corollary 2.2.29. If A is a PBW-algebra and u € Z" a weight vector on A, then Gr' A is
also a PBW-algebra.
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Proof. By Lemma 2.2.14 the exists a weight vector w € N2, on A and Lemma 2.2.13 implies
that AMW) is a PBW-algebra. Now the claim is immediate from Proposition 2.2.28(a). ]

Corollary 2.2.30. Consider the K-algebra K(z,y) = K(x1,...,2n,y1,...,Ym) and the
elementary PBW-reduction-algebra

B =K(z,y)/(R) =  Klz]/J)y’

BEN™

with commutation relations Sg. If u € Z""™ is a weight vector on B, then Gr* B is also an
elementary PBW-reduction-algebra. More precisely,

Gr' B 2= K(z,y)/ (Itu(Sp) Ultu(J")) = @ (Klz])/ (tu(J")) y°
BEN™

for a Grobner basis J' of J C K[z] with respect to the ordering induced by an ordering of
type <. In particular, every ordering on Gr™ B is computable.

Proof. Lemma 2.2.15 implies that

BM) = K, 2,/ (S 0 I") = @D (Klh,zl/ (J"))y’
BeEN™

for some (1, w)-homogeneous J” C K[h, 2] such that J" is a Grobner basis of i, 1 (hw(J))
with respect to the ordering induced by (<y)(1,w) on K[h,z]. So a corresponding PBW-

reduction datum of B"") is given by (K (h, z, Y), S]’;(w), J", (=) (1,w))- According to Propo-
sition 2.2.28(a) it follows that (K(z,y),1tu(SB), ltu(dn(J")), <},) is a PBW-reduction datum
of Gr" B. By construction of J” and as J' is a Grobner basis of .J with respect to the ordering

induced by </, we have

K[£]<ltu(dh(<]”))> = K[z] <ltu(J)> = K@]<ltu(<],)>

showing
Gr" B =2 K(z,y)/ (1tu(S) Ultu(J")).

Using the isomorphism B = P gy (K(z]/J )y”, one easily proves the second isomorphism
for Gr™ B. The particular claim is now an immediate consequence of Lemma 2.1.28(b). [

Example 2.2.31. Consider the PBW-reduction-algebra T'x introduced in Example 2.1.30 and
its weight vector w = ((O)lgign, (1)1§i§m)- Then GV T'x = (K<§, y), 1tw(5), I, %) with
tw(S) = {[zj, 2], [y vr), [k 2] | 1 < i <5 <n1 <k <1<m}\{0}, where I,
is a Grobner basis of I with respect to the ordering induced by < on K[z], since ltw () = I
(see Corollary 2.2.30 and Lemma 2.1.28). In particular, Gr™ T’x is a quotient algebra of the
polynomial ring K[z, y] and every ordering on it is computable.
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2.3 Interplay of weight filtrations and submodule structures of a free module

Remark 2.2.32. Note that an A-computable field K is also Gr" A-computable.

Algorithm 2.2.33 Given a weight vector u on A and an A-submodule M of a free A-module,
this algorithm computes Gr*s/ M/

Input: A weight vector u € Z" on A, a finite set £, an A-module M = ,(M’) C AF with
M’ C TF finite, a shift vector s € ZF and a computable ordering =<
Output: A PBW-reduction datum (7}, 1ty(S), Iy, <") of Gr A and a finite set G C T.F of
u[s]-homogeneous elements whose residue classes form Gr™ A-generators of GrUSI A7 C
TE/ (1tu(S)F U IF).
1: Compute a finite set G C T.F inducing a Grébner basis of M with respect to an ordering
of type (_</pEot,<)u[S] by Algorithm 2.2.21.
2: Set G := ltu[s](G).
3. if </, is a non-well-ordering then
Find a weight vector w € NZ such that PBW-reduction datum AMW) = (T, 8", I,
(<u)@,w)) is computable.
Replace I’ by the set of the (1, w)-homogeneous parts of its elements.
Set I' := dp(I').
else
Compute a PBW-reduction datum (7,,, S, I’, <.,) of A.
return (T, 1ty (S), Ity (1), <') and G.

&

D A

2.3 Interplay of weight filtrations and submodule structures
of a free module over the PBW-reduction-algebra A

In this section, given two weight vectors v and w on a PBW-reduction-algebra A satisfying
certain assumptions, we study the interplay of the induced weight filtrations on free A-modules
with Fy’ A- and F}’ A-submodule structures. While this problem is interesting in this own right,
it also serves as an intermediate step to treat the corresponding problem for quotients of free
A-modules. The assumptions on our weight vectors as well as the concrete choice of problems
in this section are motivated by the applications to Hodge theory we have in mind.

Consider now the following situation: Let A = (T5,, S, I, <) with S = {z;2; = ¢;jx;x; +
dij | 1 <i < j < n}beaPBW-reduction-algebra and v, w € Z" two weight vectors on A
such that v is a w-weight on A, that is, F)" A C FY A. Given a finite set £ and V', W' C TF
finite subsets, the subjects of our investigation are the submodules V' := Ry A<W> C AF and
W = R A<W> C AP, To simplify notation, we assume that v = v/ € AF for v,v' € V'
implies v = v’ (and similarly for ).

In view of implementations, we need for our algorithms and for computability the following
additional assumptions:
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2 PBWe-reduction-algebras

Assumption 2.3.1.
(a) We can determine a computable ordering of type <., on A.

(b) We can compute a PBW-reduction-datum for Fiy A. More precisely, we can determine
the kernel K, of the surjective K-algebra map

ov: Ay =K{yg g € GL}) = FA, yg = g
and a PBW-reduction datum for Ay /K is computable.

(c) Under the assumption made in Part (b), assume additionally that the filtration F}" in-
duced by F¥Fy A on A, /K, is given by a weight vector wy, on A, /Ky and that we
can determine a computable ordering of type <, on Ay /K,.

(d) For any integer d € Z we can determine a finite set of Fy A-generators Pf Vof FYA

andtdEZPdAN such that FVFYA = 3" F o0, oA p.

pePY Fe—(ty)

(e) Wehave Fy FVA = FYT,, N F&¥T, N g (SMon(T,)).
(f) We can determine a computable ordering of type <, for some well-ordering <’ on A.

Note that Remark 2.2.6(b) states a sufficient condition for Assumption 2.3.1(d). Moreover,
we recall that we agreed on Convention 2.1.52.

Remark 2.3.2. We point out that the given PBW-reduction datum of A allows us to com-
pute Grobner bases with respect to < of A-submodules of free A-modules, to solve module
membership problems for such submodules, to compute intersections of such submodules and
projections to free submodules and to determine syzygies over A (see Remark 2.1.59). More-
over, Assumption 2.3.1 ensures that we can tackle the following problems:

(a) Assumption 2.3.1(a) enables us to compute generators of the filtration £ M for an A-
submodule M of a free A-module. So in particular, we can determine Fy’ A-generators
of FY M for k € Z.

(b) Assumption 2.3.1(b) ensures that we can perform the Grobner basics listed above for A
also over the ring Fy A.

(c) A setof F\VFy A-generators of the filtration induced by FJ¥ A on Fy A-submodules of
free Fy A-modules is computable by Assumption 2.3.1(c). Similarly, we will see that
Assumption 2.3.1(e) allows us to solve the corresponding problem for Fy A-submodules
of free A-modules.

(d) A computable ordering of type <, on A (see Assumption 2.3.1(f)) enables us to realize
the algebra Gr™ A as PBW-reduction-algebra by Algorithm 2.2.33.
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The objective of this section is to treat the following problems:
Problem 2.3.3.

(a) Module membership problem: Decide for a € AF if a € V under Assumption 2.3.1(a)
and (b).

(b) Find generators of the F{}" A-module V' N W under Assumption 2.3.1(a)-(c).

(c) Given that a set as in Assumption 2.3.1(d) exits, show that V N F'V [s].AE is a well-
filtered FJVF|y A-module and compute a corresponding generating set under Assump-
tion 2.3.1(a)-(d).

(d) Under Assumption 2.3.1 show that v is a weight on the PBW-reduction-algebra Gr™ A
and represent Gr™Isl V as FY Gr™ A-module.

Remark 2.3.4. As F(O1<isn A = A, the zero vector (0)1<;<,, is obviously a u-weight for any
weight vector u on A. So solving Problem 2.3.3(b) enables us in particular to compute the
intersection of an A-submodule M of AF with a finitely generated F* A-submodule of AF.

Example 2.3.5. With regard to our applications to Hodge theory, we are particularly interested
in the situation of Example 2.1.30 in the case

v = ((—=0n,i)1<i<n: (Om,i)1<i<m) € Z"™ and w = ((0)1<i<n, (1) 1<i<m) € Z"

under the condition that x,, is a local coordinate (see Example 2.1.30(b)). In this case, FyTx
is the so-called V -filtration on Dx (X) with respect to the divisor {z;,, = 0} and F}¥ A is the
filtration with respect to the order of differential operators on D x (X).

Note that we can indeed determine a PBW-reduction datum for T'x by Example 2.1.30(a).
Moreover Assumption 2.3.1 is satisfied: Part (a) follows by Lemma 2.2.15 and we have already
seen in Example 2.1.30(b) that F{yT’x is isomorphic to the PBW-reduction-algebra T)‘(/ and
how to obtain a corresponding PBW-reduction datum. By Example 2.2.8(d) we know that w
induces the weight vector wy = ((0)1<i<n, (1)1<i<m) on T)‘é. Choosing PdTX’V as in that
example, that is,

plxv _ {@}7 ifd <0
4 {yt, 10 <1<d}, else,
we have by Remark 2.2.6(a) and (b) that
) do<i<a F& Fo T - yh,,  else

implying that Assumption 2.3.1(d) is satisfied. Remark 2.2.6(a) shows also that Assump-
tion 2.3.1(e) holds in this situation. Finally Assumption 2.3.1(f) is an immediate consequence
of Lemma 2.1.28.
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2 PBWe-reduction-algebras

We remark that part of the difficulty of the above problems stems from the fact that we
have to work with a chain of subrings Fj*A C FyA C A and that finitely generated A-
modules are in general not finitely generated as F{y A-modules. Thus we first explain the
transformation of these problems into problems involving only the PBW-reduction-algebra
Fy A and its subalgebra Fj" A.

2.3.1 A one-to-one correspondence for ' A-submodules of bounded
v-degree of a free A-module

We will see that for the reduction of Problem 2.3.3 into problems not involving the ring A it
is sufficient if we can perform the following task: Given a fixed integer d € Z and a finite
set F/, find a free Fy A-module of finite rank such that all F{y A- and F{}¥ A-submodules of
AF with v-degree bounded by d can be represented via a one-to-one correspondence as Fy A-
and FV A-submodules of that free Fi;’ A-module, respectively, and make that one-to-one cor-
respondence algorithmic. Hence we construct in this subsection a surjective F{y A-linear (and
hence also F" A-linear) map from such a free F{y A-module to F)y A. Then we have by the ho-
momorphism theorem a one-to one correspondence between the Fy A- and F{}¥ A-submodules
of F)Y A and the Fy A- and Fj¥ A-submodule of the free module containing the kernel of our
surjective map.

Note that we do not need for this one-to-one correspondence any assumptions made in
Assumption 2.3.1. However, the algorithmic applications of the technique developed here
require Assumption 2.3.1(a).

Remark 2.3.6. The inclusion F{* A C FY A implies that for any finite set N’ C AF and for
N = F(;"A<N )
deg, (N) = deg, (N') < .
Sometimes, we consider the above problem for £y’ A-modules only, and we do this by for-
mally setting w := v.

The construction of an F{y A-linear surjective map from a free F{y A-module to F}} A for

d € Z works as follows: Choose a finite set of Fy A-generators Pf "V of FY A (see Definition
and Remark 2.2.5(c)) and define an F{ A-linear map by

woa: FY AT S FYA ¢ Y . 2.3.1)

A, v
pEPd

By choice of Pf "V this map is clearly surjective, and Fy A-generators K., 4 of its kernel can
be found as described below: We observe that a € F{y AP is in the kernel of wy 4 if and
only if ZpePdA*" app = 0, that is, if and only if a € syzA(PdAvv) N FQVAP;“’V, Hence K, ,
can be determined by Algorithm 2.2.27 under Assumption 2.3.1(a).
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2.3 Interplay of weight filtrations and submodule structures of a free module

Next, we define a right inverse map of wy 4
L FYA— Fy AR
’Uv7d Ly — FO

by fixing for every a € F] A a representation

a= Y ¢pwithq® € FyARi” 2.32)
pePf"’
and setting
Av
Uyg: FYA — FYATS | a s g% (2.3.3)

Remark 2.3.7. Note that we can compute representations as in Equation (2.3.2) by Definition
and Remark 2.2.5(d) given that we have a representative of a in F)YT,.

We are finally in the position to formulate the one-to-one correspondence:

Lemma 2.3.8. Let d € 7Z. There is an inclusion-, intersection- and sum-preserving one-to-one
correspondence

{F3V A-modules K C (F(}’APdATV)E | ker(w{id) C K} < {EY A-modules J C Fy A¥}
Uéd(J) + ker(w{id) —J de.
This correspondence is compatible with Fy A-module structure, that is, K is an Fy A-sub-
module of(FO"APdA’V)E if and only ifwgd(K) is one of Fy A¥. Moreover, if K' C FY A¥ and

u € {v,w}, then
YVE,d(F;A<K/>) = F&‘A<U\]id(K/)> + ker(w‘}id).

Proof. As FY A is naturally an Fy" A-algebra, FY AP and ker(w” ;) have compatible Fy A-
and F)¥ A-module structures. Hence there is by the one-to-one correspondence for submod-
ules of a quotient module an inclusion-, intersection- and sum-preserving bijection of Fj" A-
modules

{K C (Fy AT )P | ker(wlly) © K} o {J € (Fy AT)P ker(wl)}
K— K/ ker(wgd)
with K being an F} A-submodule if and only if K/ ker(wZ ) is an Fy A-submodule. The
claim follows now by the isomorphism Fy A Y / ker(wy q) = FY A. O

The following algorithms compute images of F{y’ A- and F{}’ A-submodules under the one-
to-one correspondence of the above lemma.
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2 PBWe-reduction-algebras

Algorithm 2.3.9 Given a w-weight v on A and an F}¥ A-submodule M C AF  this algorithm
computes Uf: 4(M) for some d > deg,, (M).

Input: Two weight vectors v,w € Z" on A such that v is a w-weight, a finite set F, a
computable ordering of type <. on A, a finite set M C T and an optional natural
number d’. B

. : PIYAE E 7)Y —
Output: Two finite subsets M’, K C (Fy AYa" ), such that YV,d(F5‘A<M>) = pua(M') +

FOVA<K> foru € {v,w} and ker(wid) = FOVA<K), where d := max{deg, (M)[,d']}.

Set d := max{deg, (M)[,d’]} and determine Pf’v.

M = .

for m € M do N
Find ¢™ € (Fy AFa ™) such that m = Y oecE ZPGPA,V gerp(e) as explained in Defi-
nition and Remark 2.2.5(d). ’
M’ = MU {q™}.

6: Compute Fy A-generators K of syzA(PdA’V) N FO"AP;LV by Algorithm 2.2.27 using the

A, v

. P A
ordering (<4, );q, ~ for some order < on P;"".

7: return M', K¥.

El A

et

In the above algorithm, we mean by max{deg, (M)[, d’|} the value max{deg, (M),d'} if
d' is defined and deg,, (M) otherwise.

Algorithm 2.3.10 Given a weight vector v on A and a subset M C (Fy AL i ’V)E , this algo-
rithm computes wa J(M).

Input: A weight vector v € Z™ on A, an integer d € Z, a finite set £/ and a finite subset
M C (FyAPi™)E.
Output: A set M’ C A" such that wl” ,(M) = M.
1: Set M’ := .
2: form € M do
3 M =MU{Y.cp Zpepf,v me,p(e)}.
4: return M’

2.3.2 Module membership for ) A-submodules of a free A-module

In this subsectio& it suffices to assume that Assumption 2.3.1(a) and (b) is satisfied. Recall
that V. = ., (V') C AP with V! C TF finite and consider a € T.F. We explain how to
0

check whether
aeV, (2.3.4)

which is equivalent to
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2.3 Interplay of weight filtrations and submodule structures of a free module

Since the v-degree of the above ideals is bounded by d := max{deg,,(V’), deg, (a)} and the
one-to-one correspondence in Lemma 2.3.8 is inclusion-preserving, our problem reduces to
deciding whether

FoVA<U‘€’d(a)> * F6’A<K5"=d> < F(YA<U€"1(W)> * FgA<K£V»d>’

which is in turn equivalent to

via@e (v (V)UKE ).

FYA
The above module membership problem can be solved over the PBW-reduction-algebra Fy A
by a normal form computation (see also Remark 2.1.55(a) and Assumption 2.3.1(b)).

Remark 2.3.11. In the particular case v € N", we can solve the module membership problem
also over the PBW-reduction-algebra A: Note that @ € V if and only if there is b € Fy AV’
such that a = »° .y by?'. We can test this by computing a reduced Grobner basis G of
syz 4 ({a}, V') with respect to a well-ordering of type (<%}, (</)"") (see Proposition 2.1.50)
under Assumption 2.3.1(a). Namely, we have @ € V if and only if there is b € Fy AV such
that ((a),b) € G.

The following algorithm checks more generally whether Fy A(P) CViorP C AP finite.

Algorithm 2.3.12 Given a weight vector v on A and two Fy’ A-submodules V, P of a free
A-module, this algorithm checks if P C V.

Input: A weight vector v € Z™ on A, such that Assumption 2.3.1(a) and (b) is satisfied, a
finite set £ and submodules V := Ry AV, P = Ry WP < AP with V!, P' C TF
finite.

Output: trueif P C V and false else.

1: Setd := max{deg, (V'),deg, (P’)}.
2: Compute P := vﬁd(ﬁ), V"= vf’d(W) and K := K using Algorithm 2.3.9.
3 Set J 1=, (V' UK). ’
4: for p” € P" do
5. if p” ¢ J then > Decide using Grobner basis theory over the PBW-reduction-algebra
Fy A (see Remark 2.1.55(a)).
return false.
return true.

A

Remark 2.3.13. With a little extra bookkeeping the above algorithm can be extended to rep-
resent p’ for p’ € P’ as an F|y A-linear combination of V' if p’ € V.
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2 PBWe-reduction-algebras

2.3.3 Intersection of Fy A- and [}’ A-submodules of a free A-module

Under Assumption 2.3.1(a)-(c) we develop in this subsection a method based on the one-to-one
correspondence introduced Subsection 2.3.1 to compute generators the F} A-submodule

VNnw cC AF,
where V = F6’A<W> and W = FOWA<W>. Setting d := max{deg, (V'),deg,(W")} € Z,
we get by the one-to-one correspondence in Lemma 2.3.8

VAW =wl (w0 Jy),

where
— E (Yx77 E
I = g gy alovad W)+ A<va,d> (2.3.5)

and
Jv = F0VA<U€,(1(W)> + Fa’A<K£"’d>' (2.3.6)

Now consider the modules
R:= SYZEy A <U€:d(W)v Uf,d(v), Kfvﬂd) )
and
R := my(R) N Fy~ Fy AV,

where we implicitly identify Fy A" and Fy AV with Fy A".«"") and Fy A".a("") tespec-
tively. A set of F{y A-generators of R can be obtained using Grobner basis theory over the
PBW-reduction-algebra Fiy A (see Lemma 2.1.57). Now we determine by Algorithm 2.2.27 a
finite set G such that R’ = pwy v 4 (G). We claim:

Lemma 2.3.14. We have

_ , E (7 E
Jw O Jy = <{ 3 gy W) | g€ G}> + FOVA<va’d>. 2.3.7)
FYVEYA

w' ew’

Proof. For ¢ € Jyw N Jy exista € FYYEYAV', b € FYAY and ¢,¢ € FyAX (with
K := K% ) such that

q= Z aw/vfid(W) + Z ek = Z bvagd(ﬁ) + Z k.
w' eWw’ keK v'eV’ keK

This implies that (a, —b,c — ¢’) € R. By the choice of G, there is f € F* FY A% such that

a= ZSJEG fgg and hence Zw’EW’ aw’“gd(w/) = deG fg Zw’EW’ gw/’UEd(W), which is
in the right hand side of Equation (2.3.7). As the other inclusion is obvious, that concludes the
proof. O
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2.3 Interplay of weight filtrations and submodule structures of a free module

Wy d

Since FVA<KE > = ker(wf’d), we have by Lemma 2.3.8:
0

Corollary 2.3.15. VW = .o, ({>ew gww’ | g € G}).
0

Algorithm 2.3.16 Given a w-weight v on A, an F{}’ A-submodule V' and an F}" A-submodule
W of a free A-module, this algorithm computes the intersection V' N W.

Input: Two weight vectors v,w € Z" on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(c) is satisfied, a finite set F, submodules V := (VYW =
FOWA<W> C AP with V/, W' C TF finite.

Output: A finite set G C A¥ such that alG) =V NW.

1: Setd := max{deg, (V'), {deg, (W")}.

2: Compute V" := vﬁd(V’), W .= vﬁd(W’) and K := KZ by Algorithm 2.3.9.

3: Find R := syzpy,(W", V", K) C Fy AW'LV'UK (under the above identification) over
the PBW-reduction-algebra Fy’ A using Grobner basis theory.

4: Determine G’ such that g v 4 (G') = w7 (R) N EYYFy AW via Algorithm 2.2.27 by
working over F{y A.

5: Set G = {> en gy’ | g € G'}.

6: return G.

FyA

Remark 2.3.17. We remark that similar methods as above can be employed to intersect two
finitely generated F{}¥ A-submodules of a free A-module. However, if an ordering of type <
and a PBW-reduction datum for F}" A are computable, it might be preferable to work over the
ring F{V A.

By setting w := v, Algorithm 2.3.16 enables us to determine the intersection of finitely
generated F{y A-modules. In this case, we do not need to apply Algorithm 2.2.27.

In the case V = FV[s]x A for k € Z, we simplify our method as follows. In view of later
applications, we treat a slightly more general case: Namely, assume that W = ., A< W’> +
0

v A<ﬁ> C AP (with U’ C T/ finite) is a sum of a finitely generated " A-submodule and
0

a finitely generated Fy A-submodule of AZ. Replacing d by max{deg, (U’), deg, (W'), k —
min{s, | e € E'}}, assume now that Pf Y has been chosen such that P,i"s’e C PdA Vfore € E.
If we keep our other notations, we have to replace Equations (2.3.5) and (2.3.6) by

_ E (Yx7r E (777 E
JW - F(‘)"’VFS’A<UV,d(W,)> + F8’A<Uv,d(U/)> + F(}’A<va’d>
and

_ Py E
J=@rAT | (KE ),
ecE 0
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: . v A PV . v v APYYANE
where we naturally identify @, F' A" *-=e with a free F{y A-submodule of (Fyy A" )",
We denote by

,V A, v A,v
(AR o @ Ry ATV

E
™ A, v A, v
Fa \Pk758 eck

the projection to the complement of this submodule. Abbreviating C, := P;‘ VA P,f_"s:, we
consider

T:= SYZFOvA( || & i)}, [ {Wge(vﬁd(u’))hWge(Kfv,d)> :
w'eW’ u' e’

and
Tl — WW’,U’(T) M (FOVVVF(;,AW, D FOVAU/)’

where we identify A" and AY" with AUwrewAmE, (7@} gng AU eordme, (0raD} pe.
spectively. Finally, we determine F}} A-generators of 7" as well as G and G’ such that

T/ - F(;VVFOVA<G> “I’ FOVA<G/> aIld ﬂ'WI(G/) - 0

by working over the PBW-reduction-algebra Fy A and using Algorithm 2.2.27 to compute G
and G’ and claim:

Lemma 2.3.18. Identifying A"V with AW & AY', we have
VnWw = <{Z G W' + Zgu/u’|g€G}>+ <{Z g;/u’|g’€G’}>.
FyA w'eW’ u'el’ FYA u'el’
Proof. We observe that
A,v
Jw 0 Jy = | Jw 0 @D Fy AT (KL,)
wJy (W @0 >+FOVA W
eck
So consider ¢ = > ey G + D bwt! + Y e crk € Jw with K = KZ
a € FYYFYAW b € FYAY ¢ € FYAX. We have ¢ € @

A, v
v Fy APi=sc if and only if
ﬂge(q) = 0, that is,

(a,b,¢) € syzpya ( L| {76 wiaw))}, | {7E. (b (@)}, | {Wge(k)}> :

w' eW’ u' e’ keK
This in turn is equivalent to (a,b) € my pr(T) N (FYEY AV @ Fy AV") as claimed. O

This leads to the algorithm below:
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Algorithm 2.3.19 Given a w-weight v on A, a sum W C AF of an Y A-submodule and an
F}" A-submodule of a free A-module with shift vector s, this algorithm computes F'V[s], .

Input: Two weight vectors v, w € Z" such that v is a w-weight on A and such that Assump-
tion 2.3.1(a)-(c) is satisfied, a finite set F, a submodule W := ., ,(W')+ U’y C AF
0
with U, W' C T)F finite, s € ZF a shift vector and k € Z.
Output: Two finite sets H, H' C AP such that W N FV[s], AF = FyalH) + FOVA<H’> and
H' < F(}’A<U,>‘
I: Set d := max{deg, (U’),deg,(W'),k — min{s. | e € E}}. © deg,(FV[s|pAF) =
k — min{s. | e € E}.
2: Choose Pf’v such that P,?js’e C Pf’v fore € E.
3: Apply Algorithm 2.3.9 with the above choice of Pf’v to obtain W” := vE (W"), U" :=
oF U) and K == K[ .
4: Find T := SyZFa'A(Llw“EW“{ﬂ-ge (w//>}, Llu//GU"{Wge (’U,//>}, Wge (K)) (and ldel'ltlfy it
’ ! E
with a subset of F{y AWBUITE, (K)y via Grobner basis theory over the PBW-reduction-
algebra Fy A.

. 1 / R wWv v AW/ v AU’ -  w 1
5: Determine G, G’ such that 7wy ¢ (T)N(F)"™Y Fy A" @ Fy AY) B VFa'A<G>+F5'A<G )
using Algorithm 2.2.27 by working over Fy A. > my(G') = 0. B
6: Define H := {3 e G’ + X ey 9wt | g € G} and H' = {3 o gy’ |

/ !
g eG'.
7: return H, H'.

Fa'A<

2.3.4 Induced w-weight filtration on F A-submodules of a free
A-module

This subsection is dedicated to computing F" F{y A-generators of the module
F¥[slsV =V N FY[s],AF

under Assumption 2.3.1(a)-(d), where V = BV A<W> with V' C Tf finite and s € Z* stands
0
for a shift vector. Setting d := deg,,(V'), we obtain

F¥[s]sV =V N FY[s],Fy AF.

Since the v-degree of F'VV [S}kFJ’AE for all k£ € Z is bounded by d, we proceed similarly as

in Subsection 2.3.3. If we choose P;‘ Vand t; € ZF 0 as postulated in Assumption 2.3.1(d),
that is, with the property FoVFY A = Fﬁ(td)pFa’ A - p, then we get under the one-
to-one correspondence in Lemma 2.3.8

A, v
pePd

FY[sleV = wﬁd(zfv N JFW[S].),
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2 PBWe-reduction-algebras

where
_ E (7 E
Jv = Fa'A<Uv,d(V/)> - F6,A<va,d>

and N
Wy v \P"V\E E
Treie = F I (BY AT 4 (KD ).

Wy, d

with t., = s, + (tq), fore € E, p € Pf’v. Consequently, we obtain

Jv O Jpwig, = (Jv N Fw [t].(FgAPf’”)E) n FVA<KE >
0

Wy d

Applying Algorithm 2.2.26 over the PBW-reduction-algebra Fy A = A, /K, we determine a

. P
finite set G C (Ay? ¥ such that

Jy O FYV [t (EY APSYE = §7 pwy FYA.g
v 0 e—degy,,t)(9)" 0 g
geG
This implies that
_ E =\ _ E (=
PR = 30 Pt P A 80) = 2 P 0459
ge ge

since deg.yg (wf} 4(9)) < degy, (9) and since the right hand side module of the above
equation is obviously contained in the left hand side module of that equation. We summarize
the computation:

Algorithm 2.3.20 Given a w-weight v on A and an F{y’ A-submodule V' of a free A-module
with shift vector s, this algorithm computes F'V[s]|sV .

Input: Two weight vectors v,w € Z" on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(d) is satisfied, a finite set £, a submodule V' := BV A<V’ > C AF with
0
V' C T finite and a shift vector s € Z.
Output: A finite set G C A” and t € Z¢ such that F¥[s],V = dgec Ly FYA g =
2 geG F'W—degw[s] (Q)FalA "9
1: Setd := deg, (V).
A, v
2: Choose P;"¥ and ty € de such that F*FYA = Y pav FY ) FYA-p.
3: Compute V" := Uf,d(V’) and K := Kfv,d using Algorithm 2.3.9.
A, v
4: Define the shift vector t € (ZF¢ )P by te, = Se + (tq)p fore € Eand p € Pf’v.

. PA’V E v —
5: Find G C (Av* )” such that }° /cq deeng[t](g,)Fa’A g = F3’A<V” UK) N
Av : . :
F¥v[t]e(Fy ATa " )E using Algorithm 2.2.26 by working over Fy A.

6: Define t' € Z% by ty = deg,, )(g) forg € G'.
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2.3 Interplay of weight filtrations and submodule structures of a free module

7: Compute G := wf,d(@) byjpplying Algorithm 2.3.10 and define t” € Z¢ by ty =
min{ty, | ¢’ € G’ with wf’d(g/) =g}
8: return G, t.

Remark 2.3.21. Note that we can compute for g € G in the output of the above algorithm a
representative ¢’ € T.F with degy,(s)(9') < tg. The same holds also for Algorithm 2.3.22.

Alternatively to Algorithm 2.3.16, we hence compute V N F'%[s], A as follows:

Algorithm 2.3.22 Given a w-weight v on A and an F{y’ A-submodule V' of a free A-module
with shift vector s, this algorithm computes F'™V[s]; V.

Input: Two weight vectors v,w € Z" on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(d) is satisfied, a finite set £, a submodule V' := BV A<V’ > C AF with
0
V' C TF finite, a shift vector s € ZF and k € Z.
Output: A finite set G C A¥ such that V N FW¥[s], AF = Ry A(G).
1: Setd := deg, (V).
A A, v
2: Choose PV and t4 ezpd such that FJVFY A = ZpeP;“" FX(td)pFa’A “P.
3: Compute V" := Ufid(V’) and K := ng,d using Algorithm 2.3.9.
A, v
4: Define the shift vector t € (Za " )E by t, =s. + (tq), fore € Eandp € Pf’v.
s: Find F"¥ F}y A-generators G’ of F(;’A<VH UK) N F“ [t]k(Fa’APdA’V)E over the PBW-
reduction-algebra Fy A using Algorithm 2.2.27.
6: Compute G := wg 4(G") by applying Algorithm 2.3.10.
7: return G.

While the advantage of the above algorithm over Algorithm 2.3.16 is that we omit the

syzygy computation involved in the latter algorithm, the latter algorithm does not require As-
s . . Av
sumption 2.3.1(d) or any particular choice of P;"".

2.3.5 Associated graded modules to w-weight filtered Fy A-submodules
of a free A-module

We explain how to express Gr™IsI V for V = By 4(V') as a finitely generated F} Gr™ A-
module under Assumption 2.3.1.

Proposition 2.3.23. Let s € ZF be a shift vector and GV A = (T}, 1t (S), J, <') under the
identification made in Proposition 2.2.28(a).

(a) The vector v is a weight vector on the PBW-reduction-algebra (T, 1tw(S), J, <') sat-
isfying Gt Fy A = Fy (T,/ (Itw(S) U J)).
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(b) We may consider Gr™ V as an Fy Gr™ A-submodule of T.F | (ltw(S)E U JE), where
7N . E . . . _ —
we put (e) indegree se. If G C T" is finite with F¥[s|aV = 3 F'Videgw[s] (g)Fa’A-g,
then Ity (G) C TF/ (tw(S)¥ U JF) is a set of FY Gr™ A-generators of Crvbly
under the above identification.
Proof.
(a) First note that for k € Z
Gry FYA=F)FyA/FY [FYA= (FYFYA+ FY LAY (A=F) Gry A

and that v is a weight vector on the PBW-reduction-algebra (7,, Ity (.5), J, <’), because
it is one on A. Recall the identification of 17,/ (Itw (S) U J) with Gr™ A is induced by
the map

. w e T T w
YTy — GrV A,z x> Ty, Ty, + Fdegw(ﬁl?il"'xik)_

1A

(see the proof of Proposition 2.2.28(a)).Thus the map 1) induces by virtue of Fiy FJV A =
FyT, N F¥T, (see Assumption 2.3.1(e)) the isomorphism

FY(T,/ (1tw(S) U J)) = EY Gr¥ A.

(b) Part (a) allows us to consider

GrBl YV 2 @) (FY[s);V + F¥[s]; 1 A7) /F™[s]; 1 A"
JEZ

as an Iy Gr™ A-submodule of T2 / (ltw (S)¥ U J¥), where (e) has degree s..

The equality F¥[sleV' = 3 ge I deg (0 F0 A+ T = Ligei I deg @704 9

implies that the oV8!(g) for g € G are Gr% FyA-generators of GrVBl V. The claim
follows now by the above isomorphism, Part (a) and the identification made in Proposi-
tion 2.2.28(a).

O]

Note that Assumption 2.3.1(a)-(d) enables us to find G as in the above proposition yielding
the following algorithm:

Algorithm 2.3.24 Given a w-weight v on A and an F{y’ A-submodule V' of a free A-module
with shift vector s, this algorithm computes Gr™!s! V.

Input: Two weight vectors v, w € Z" on A such that v is a w-weight and such that Assump-
tion 2.3.1 is satisfied, a finite set £, an Fy A-module V = ., (V') C A¥ with V' C T.F
0

finite and a shift vector s € Z~.
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Output: A PBW-reduction datum (75, ltw (S), Iw, <") of Gr™ A and a finite w[s|-homogen-
eous set G C TF inducing Fy Gr% A-generators of Gr™sl vV € TF (Itw(S)FUIE).
1: Compute a PBW-reduction datum (7,, ltw (S), Iw, <’) of Gr™ A via Algorithm 2.2.33.
2: Determine a finite set G C T)F satisfying FW[s]sV = > geG FXdegw[s] () F0A - g by
Algorithm 2.3.20 and Remark 2.3.21.
3: SetG := ltw[s](G).
4: return (T),,1tw(9), Iw, <') and G.

Example 2.3.25. In the situation of Example 2.2.31 consider the weight v = ((—din)1<i<n,
(Oim)1<i<m) on Gr¥ Tx = (K(z,y),ltw(S), Iw,<). Arguing as in Example 2.1.30(b),
we see that Fy Gr% T’y is isomorphfc to (K{(z,y1,...,Ym—-1,2), Sv, Iw, <0), where S, =
{lg il e yel, [y @il [z @il [2oym] |1 <0< j <ny1 <k <1 <m-—1})\ {0} and
< is any well-ordering such that its restriction to SMon(K(z)) agrees with the restriction of
< to SMon(K(z)). Here the isomorphism is defined by sending go‘y’fl e yfﬁ’ll (TnYm)? to

&O‘ylﬂl Ce y’rﬁnm—_llzfy

2.4 Interplay of weight filtrations and submodule structures
of a module over the PBW-reduction-algebra A

Given two weight vectors v and w on a PBW-reduction-algebra A that satisfy certain assump-
tions, the purpose of this section is to extend the methods from the previous section to quotients
of free A-modules. Considering such a quotient A” /L, the main problem here is that L has in
general unbounded v-degree and is hence not compatible with the one-to-one correspondence
from Lemma 2.3.8. However, in many cases it suffices to consider /) L for a suitable integer
d allowing us to reduce our problems to the setting of the previous section.

We study in this section the following situation: Let A = (7}, S, I, <) be a PBW-reduction-
algebra with S := {x;z; = ¢jjxiz;+dij | 1 < i < j <n}and v, w € Z" two weight vectors
on A such that v is a w-weight. Given a finite set £ and L', V', W' C AP finite subsets,
L:= ,(L'yand M = A¥ /L, we consider the FY A- and F}" A-submodules

V.= W>§MandW::FBNA<W>§M,

F6’A<

respectively. Note that every finite set N C A” can be considered as a residue class of a finite
set in T}F and similarly every element a € AF is the residue class of an element in 7. We
denote such a set and element by N7 and ar, respectively.

In addition to Assumption 2.3.1, we need the following supplementary assumption for one
of the problems that we consider in this section:

Assumption 2.4.1. Assumption 2.3.1(a) and (b) holds if we replace A by Gr" A.

We will develop in this section algorithms that solve the following problems:

113



2 PBWe-reduction-algebras

Problem 2.4.2.
(a) Represent V' as a quotient of a free Fy A-module under Assumption 2.3.1(a).

(b) Module-membership problem: Check for m € A” whether 7n € V' given that Assump-
tion 2.3.1(a) and (b) holds.

(¢) Compute the intersection V' N W if Assumption 2.3.1(a)-(c) is satisfied.

(d) Given that the F¥ F}y A-filtration V N FV[s|4 M is good and that Assumption 2.3.1 and
Assumption 2.4.1 are fulfilled, determine generators of that filtration.

Example 2.4.3. We have already seen in Example 2.3.5 that Assumption 2.3.1 is in the setting
of Example 2.1.30, under the condition that x,, is a local coordinate, satisfied. Moreover,
Assumption 2.4.1 holds in this situation by Example 2.2.31 and Example 2.3.25.

2.4.1 Fy A-presentations of F{y A-submodules of an A-module

In this subsection, we only require that v is a weight vector on A and that Assumption 2.3.1(a)
holds. To represent V' as a quotient of a free F;’ A-module, where V' = BV A<V/ > C M=
0

AL/ (L"), we proceed as follows: Note that the surjective Fy A-linear morphism ¢ given by
p: F(}'AV/ =V, (W)=

induces an isomorphism of Fy A-modules V 22 Fy AV /ker(p). We have that a € Fy AV’
is in the kernel of ¢ if and only if }_ , i ayv" € L, that is, there exists b € AL such that
Y weyr @V =Y e, byl This implies that

ker(ip) = s (syz4 (V/, L)) N Fy AV,

where the above intersection is computable by Algorithm 2.2.27. Hence we obtain:

Algorithm 2.4.4 Given a weight vector v on A and an Fy’ A-submodule V' of a finitely pre-
sented A-module, this algorithm represents V' as a quotient of a free £y’ A-module.

Input: A weight vector v € Z™ on A such that Assumption 2.3.1(a) holds, a finite set £, an
A-module M := A¥/ ,(L') and a submodule V := ., (V') C M with L/, V' C A¥
finite. ’

Output: A finite set Q C Fy A such that Fy AV'/ yal@) =V viaa = 32 ey avt.

1: Compute an A-generating set S of syz 4 (V' L) using Grobner basis theory.
2: Set 8" := i (S).

3: Compute an F|y A-generating set @ of ,(S’) N Fy AV by Algorithm 2.2.27.
4: return Q.
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2.4.2 Module membership for ;) A-submodules of an A-module

Assume in this subsecﬁon that Assumption 2.3.1(a) and (b) is satisfied. Recall that M =
A¥/Land V = v (V") C M. We explain how to check for a € AF whether @ € V, which
0

is equivalent to
!
a € Ry A<V > + L.

Setting d := max{deg, (V}),deg, (ar)}, we have deg,(a),deg, (V) < d and hence the
above condition is in turn equivalent to

a€ F()VA<V’> + (LN EYAE). (2.4.1)

An FY A-generating set L” of the above intersection can be determined by Algorithm 2.2.27,
reducing the problem to deciding whether

a € F5’A<V/ U L”>.

This problem is solvable by Algorithm 2.3.12.

Algorithm 2.4.5 Given a weight vector v on A and two F(;’ A-submodules V" and P of a finitely
presented A-module, this algorithm checks if P C V.

Input: A weight vector v € Z"™ on A such that Assumption 2.3.1(a) and (b) holds, a finite
set E, amodule M = A/ ,(L') and submodules V := F6'A<VI>’ P = F3'A<P/> cCM
with L', V', P' C AP finite.

Output: trueif P C V and false else.

1: Setd := max{deg, (V]}),deg, (Pr)}.

2: Compute a set L” of Fy A-generators of ,(L’) N FY AF using Algorithm 2.2.27.
3 if PP C gy (V' U L") then > Decide by Algorithm 2.3.12

4:  return true.

5: return false.

Remark 2.4.6. By Remark 2.3.13 the above algorithm can be extended to represent p/ € P’
as an FY A-linear combination of V' if p € V..

2.4.3 Intersection of Fy A- and F* A-submodules of an A-module

Considering the A-module M = A¥ /L (where L = ,(L')) and its submodules V = ., (V")
0

and W = W>, we explain in this subsection how to compute the F{}¥ A-submodule

FgVA<

wnvCcMm
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under Assumption 2.3.1(a)-(c). Since

wnv = F(‘)"’A<W/> N (F(;'A<V/> + L) C M, (2.4.2)

the problem of determining W N V reduces to the computation of the intersection of the left
Fg* A-module jw o (W) with the sum of the A-module L and the £y A-module pv 4 (V), that
is, we have to compute

1= F(}”A<W/> n <F8’A<V,> + L) :

To tackle this task, we transform the above problem into an intersection of a finitely generated
Fy¥ A-module with a finitely generated Fy A-module this way reducing to the situation in
Subsection 2.3.3. Since F{V A C Fy AP, we have degv(ngA<W’>) < deg, (Wr) < oo by
Remark 2.3.6. Setting d := max{deg, (V}.), deg, (W7.)}, we obtain that

E
I'= F(}”A<W/> n <F8’A<V,> +(LNFJA )) ;
where we find a finite set of F{y A-generators L” of L N FY A by Algorithm 2.2.27. Thus

I'= FgVA<W/> n F5’A<V/ U L")

reduces the problem to Subsection 2.3.3 and we obtain the following algorithm:

Algorithm 2.4.7 Given a w-weight v on A, an F{y A-submodule V' and an F}" A-submodule
W of a finitely presented A-module, this algorithm computes V' N W.

Input: Two weight vectors v, w € Z" on A such that v is a w-weight and such that Assump-
tion 2.3.1(a)-(c) is satisfied, a finite set £, an A-module M := A¥/ ,(L'), submodules
Vi e (V) W= (W) © M owith I, V!, W C A finite.

Output: A finite set G C AP such that VN W = Fy G,

1: Set d := max{deg, (V}),deg, (W)}

2: Determine Fyy A-generators L” of ,(L') N FY AF using Algorithm 2.2.27.

3: Compute a set of F)¥ A-generators G of FB,VA<W’> N F3’A<V, U L") by Algorithm 2.3.16.
4: return G.
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In the case W = FW[s|,M = FV[s], AP (with s € ZF and k € 7Z), we can also replace
Algorithm 2.3.16 by Algorithm 2.3.22 if Assumption 2.3.1(d) additionally holds:

Algorithm 2.4.8 Given a w-weight v on A and an Fj’ A-submodule V' of a finitely presented
A-module with shift vector s, this algorithm computes F'V[s]; V.

Input: Two weight vectors v,w € Z" on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(d) holds, a finite set E, an A-module M := AF/ ,(L’), a submodule
V=, A<W> C M with L', V' C AP finite, a shift vector s € Z” and k € Z.

0 —

Output: A finite set G C A" with degys) (G) < k such that V N FY[s], M = Fg"A<G>‘

Set d' := max{deg, (P{"Y )1) | e € E}. > deg, (F™[s]sAF) < d.

Set d := max{d’, deg, (V})}.

Determine a set of Fy A-generators L” of ,(L') N Fy AP using Algorithm 2.2.27.

Find a set of [}V A-generators G of FV[s],A¥ N Fa,A(V’ U L") by Algorithm 2.3.22.

return G.

AR

Remark 2.4.9. While we were able to reduce the computation of FW[s],M NV to Subsec-
tion 2.3.4, we cannot use a similar approach to determine F," F{y’ A-generators of F'V[s] M NV
(in fact, we do not even know whether a finite set of generators exists): Our reduction step
made use of the fact that the v-degree of V/ and FV[s]y A¥ is bounded in order to consider
only the elements of L up to a fixed v-degree. But the v-degree of 'V [s], A¥ is only bounded
if v.e ZZ;. (In the latter case, we have Fy A = A and hence we could solve our problem
using Algorithm 2.2.26.)

However, if we replace in the above algorithm Algorithm 2.3.22 by Algorithm 2.3.20, we
compute for fixed k € Z a finite set G C A and t € ZC such that

Fw[s]k’M nv = Z Fl:y—tgFa,A 9= Z Fy—degw[s](g)FgA g
geG geG

for k' < k. We also remark that the output G of Algorithm 2.3.20 satisfies

F¥[s]e gy 4(G) = Z FL FyA-g= Z Fldegyg@fo A9
geG geG

Moreover, it is possible to determine a representative gy of g € G with degy, (g (9) < ty.

If a finite set of Fy¥ Iy A-generators of F'V[s]s M NV exists, it will be eventually contained
in FV[s|yM NV for k large enough. While we cannot detect if such a set does not exist, we
can decide whether it is contained in FW[s];M NV as we will explain in Subsection 2.4.4.
For this, we need to modify Algorithm 2.4.8 as explained above:
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Algorithm 2.4.10 Given a w-weight v on A and an F{y A-submodule V" of a finitely presented
A-module with shift vector s, this algorithm computes FV[s]; V.

Input: Two weight vectors v,w € Z" on A such that v is a w-weight and such that As-
sumption 2i 1(a)-(d) holds, a finite set E, an A-module M := AF / A(L’ ), a submodule
V= oo (V') € M with L', V' C AP finite, a shift vector s € Z" and k € Z.

0
Output: A finite set G C AP and t € Z¢ with FV[s]pV = >geG B ¢ J0A-9 =
— /

2 gec Fl::y—degw[s](g)Ff;’A -gfor k" <k and F™[s, F(}’A<G> = D gea P4 FoA g =

2 gec FXdegw[s] (Q)F(YA "9

Setd' := max{degv((P,?_";)T) | e € E}. >deg, (FV[s|pA¥) < d.

Set d := max{d’, deg, (V])}.

Determine a set of Fy A-generators L” of 4(L’) N }C«}}’ AF using Algorithm 2.2.27.

Compute a finite set G C A” and a vector t € Z° satisfying FV[s], F3’A<V/ UL") =

>gec Fole Fi'A - g by Algorithm 2.3.20.

5: return G,t.

Bl e

Remark 2.4.11. Note that we have for the output of the above algorithm also

F¥[s]pV = Z Fly—degw[s] (?)FS’A 9
geG

for k" < k. Given that F'"[s],V/ is separated, we compute deg,(s(g), which is bounded from
above by tg, for g € G under Assumption 2.3.1(a) and (b) for w (instead of v) as follows:
We observe that we can solve the module membership problem g € F™[s|/V for k' < tg4
by Algorithm 2.4.5 (if we replace v by w in that algorithm). Thus we test this stepwise for
k' = t; — 1,5 — 2,... until the test fails, hence implying deg,,5j(§) = &' + 1. Having
assumed that the filtration is separated, this process stops eventually. If the filtration were not
separated, this process might not terminate and we have no method to detect this.

Now consider the case V' = F}Y[s] M. Rewriting Equation (2.4.2) as

WAV = (FSVA<W’> + F6,A<L”)) N FV[s|y AP C M,

our problem reduces to Algorithm 2.3.19.

Algorithm 2.4.12 Given a w-weight v on A and an F{}" A-submodule IV of a finitely presented
A-module with shift vector s, this algorithm computes ™V [s]; V.

Input: Two weight vectors v,w € Z" on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(c) holds, a finite set £, an A-module M := AF/ 4(L'), a submodule
W= L (W) C M with L', W’ C AF finite, a shift vector s € Z" and k € Z.
0 —
Output: A finite set G C A¥ such that FV[s|,M N W = wa(G).
0
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Setd’ :=k —min{s, | e € E}. > deg, (FV[s]xAF) < d'.

Set d := max{d', deg, (W7)}.

Determine Fy A-generators L” of 4(L') N FY AF by Algorithm 2.2.27.

Compute a set of Fy” A-generators G of (pw AW+ Ry A(L")) N FY[s]x AF using Algo-
rithm 2.3.19.

5: return G.

Eal A

2.4.4 Induced w-weight filtration on F A-submodules of an A-module
Recall that V' = ., (V") is an Fy A-submodule of M = A¥/L (with L = ,(L')) and

s € Z¥ a shift vector. As already mentioned in Remark 2.4.9, we cannot decide whether
F%W[s]leM NV has a finite set of FyY Fy A-generators. However, given that such a finite set
exists and that Assumption 2.3.1 and Assumption 2.4.1 hold, which we assume from now on,
such a set is computable.

Our method is based on the idea to approximate

FYIslaV = FY[ss (g u (V') + D)/L)

using quotients filtrations F'V[s ]Q(V’“)V (for £ > N for some fixed N € Z) for a certain
increasing sequence of finitely generated F{}’ A-modules V}, C FyA (V') + L with the property

that we have equality F'V[s]oV = FWV [s].( DV for k big enough (see Proposition 1.1.15 and
the discussion thereafter). The choice of the V), is based on the fact that if a finite set of
FY Fy A-generators of F'W[s],V exists, then these generators have w|s]-degrees smaller or
equal than k for k € Z large enough and are thus contained in £V [s]; V. Recall that we can
already compute for fixed k € Z aset V] C AF such that

[ k/V Z Fk’ deg ( )F(YA (243)
veV)
for ¥’ < k and
F¥[sle FYA Vk> = Z Fy deg.y| (U)Fo A-v 2.4.4)
veV)

(see Remark 2.4.9). If FW[s],V is a set of Fy’ A-generators of V, we choose Vi, = v 4(V})
0
and

V
W= ST P AT
veV)

is well-defined. While we could check if F'™[s]; V' (or equivalently V}/) is a such a set of F|y A-
generators via Algorithm 2.4.5, we can also ensure this property by choosing k > degy, [y (V).
Assuming this is the case, we derive from Proposition 1.1.15 the following criterion for the

equality FV[s]sV = F'V [S]g(Vk)V:
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2 PBWe-reduction-algebras

Proposition 2.4.13. Assume that FVA<V,€’> = V. Then we have

0

oV = F¥ e i A (2.4.5)
veV)/
if and only if
GrVE (V) N GrYBEl(L) = GrVBl(v, N L). (2.4.6)

Once we have determined finite Fy Gr™ A-generating sets of the intersection on the left
hand side of Equation (2.4.6) and of the right hand side module of that equation, we can decide
whether these module are equal using Algorithm 2.3.12, because a PBW-reduction datum of
Gr% A is computable by Algorithm 2.2.33 and Assumption 2.3.1(f) and Assumption 2.4.1 is
satisfied. We compute Fy Gr¥ A- and Gr™ A-generators of Gr¥Isl( Fy (Vi) C (GrVA)P

and er[s}(L) C (Gr™A)¥ by Algorithm 2.3.24 and Algorithm 2.2.33, respectively. We
note that we may skip the second step of Algorithm 2.3.24 for the former generators since
Vy is already of the desired form. Then we intersect these two modules by Algorithm 2.3.16
using Remark 2.3.4. On the other hand, we obtain Gr™!s)( Fy 4(Vi) N L) by first applying
Algorithm 2.3.16 and Remark 2.3.4 to get Fy A-generators of Fy (V&) N L and then using
Algorithm 2.3.24.

This leads to the following algorithm:

Algorithm 2.4.14 Given a w-weight v on A, an A-submodule L and an F{y A-submodule V/
of a free A-module with shift vector s, this algorithm checks whether the quotient and the
submodule filtration induced by F'V[s]e on (V + L)/ L agree.

Input: Two weight vectors v,w & Z" such that v is a w-weight and such that Assump-
tion 2.3.1 and Assumption 2.4.1 are satisfied, a finite set £, submodules L = ,(L’) and
V= FVA(V’> C AP with I/, V! C AP finite and a shift vector s € Z%.

Output: true if F¥[s|3(V + L/L) = F¥[s]%")(V + L/L) and false else.
1: Find Gr™ A-generators L” of Gr¥!(L) by Algorithm 2.2.33.
2: Compute Fy Gr™ A-generators V" of Gr™ (V) via Algorithm 2.3.24.
Find Fy GrWA-generators J of the intersection pv ¢yw AV") N w4 (L") using Algo-
rithm 2.3.16 and Remark 2.3.4. > Gr% A is PBW-reduction-algebra.
4: Compute Fy A-generators K of L NV by Algorithm 2.3.16 and Remark 2.3.4.
5: Determine F) Gr™ A-generators K’ of Grisl( Fy 4(K)) via Algorithm 2.3.24.
6: if J C py v 4(K') then > Check by Algorithm 2.3.12.
7:  return true. > K’ C Fy arw 4(J) is always satisfied.
8: return false.

W

Thus given that FW[s],V is a well-filtered "V [s]s [y A-module, the following algorithm
determines generators of this filtration:
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2.4 Interplay of weight filtrations and submodule structures of a module

Algorithm 2.4.15 Given a w-weight v on A and an F{y A-submodule V" of a finitely presented
A-module with shift vector s, this algorithm computes FW[s],V if this filtration is a good
filtration.

Input: Two weight vectors v, w € Z" on A such that v is a w-weight and such that Assump-
tion 2.3.1 and Assumption 2.4.1 are satisﬁgl, a finite set F, an A-module M := AF /L
with L = ,(L’), a submodule V' = v A<V’ > C M with L', V' C AP finite and a shift

0
vector s € ZF.

Output: A finite set G C A” and t € Z such that FV[s],M NV = dgec e FYA G =
2 _geG F.W_degw[s] () F0 A - g if such a finite set exists.

1: Choose k € Z such that FW[s];V is a set of Fy A-generators of V. > E.g. take k =

degy s (V7)-

2: Initialize an empty set G C A and a dynamic vector t € ZC,

3: while FV[s[V #3° Yy Fy A~ gdo > Test by Algorithm 2.4.14.

4:  Compute a finite set G/ C AF and t’ € Z¢ with FV[s],V = ppe F")’_t,gFa’A-y =
P Fvy—degw[s] (g)Fa’A - g for k' < k using Algorithm 2.4.10 and replace G by G’
and t by t.

5:  Increase k.

6: return G, t.

Remark 2.4.16. We have a few remarks on the above algorithm:
(a) If F¥[s]eM NV were not well-filtered, the algorithm would not terminate.

(b) If we apply Algorithm 2.4.14 multiple times during the execution of Algorithm 2.4.15,
we only need to perform the first step of Algorithm 2.4.14 once.

(c) The output of Algorithm 2.4.15 also satisfies

geG

If F™[s]sV/ is separated, we can compute deg,[s (9) as explained in Remark 2.4.11.
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3 (Strictly) specializable D-modules

The (rational) V -filtration on D x-modules along a smooth pure codimension one subvariety
Xo C X is an essential ingredient of the theory of mixed Hodge modules and plays a key
role in the computation of Hodge theoretic direct images. We call D x-modules that possess
such a filtration Xy-specializable. Hodge D x-modules do not only admit a V' -filtration, but
their Hodge filtration also behaves “well” with respect to this V-filtration making them an
example of so-called strictly Xy-specialize D x-modules. V -filtrations are used to define (fil-
tered) localizations and dual localizations of (strictly) Xg-specializable D x-modules along
Xp. Similar concepts for D x (xX()-modules are applied to construct Hodge theoretic direct
images under the open embedding defined by the complement of Xy. While these functors
agree with the corresponding D-module theoretic functors, the construction of the filtration on
the (dual) localizations and the direct images is subtle.

This chapter lays the theoretical foundation for the algorithms that we present in the next
chapter. We review many concepts and results involving V -filtrations, localizations and dual
localizations mainly due to Saito or Sabbah (see in particular [Sai88] and [SS17]), and apply
them to prepare the algorithmic treatment of the these constructions on a sheaf-theoretic level.
In the next chapter we then develop actual algorithms for these problems using the computa-
tional theory of weight-filtered PBW-reduction-algebras presented in Chapter 2.

More precisely, given a smooth equidimensional variety X and a pure codimension one
subvariety Xy, this chapter is dedicated to the following: In Section 3.1 we treat the unfiltered
situation, that is, D-modules without an order filtration, by first introducing the V -filtration
on coherent Dy and D(xX()-modules along smooth X and reviewing its main properties.
After that, in preparation of the algorithmic computation of the V -filtration, we give a local
realization of this filtration relying on so-called local b-functions. Next we describe the local-
ization and dual localizations of X-specializable D x- and Dx (xX()-modules using certain
parts of the V-filtration. Then we extend the concept of X(-specializability to singular X
by locally considering certain graph embeddings. Such graph embeddings enable us also to
reduce the constructions of localizations and dual localizations to the smooth case. Section 3.2
is dedicated to the analogous constructions in a filtered setting. We first establish for smooth
X a notation of strict X-specializability in the case of (Dx, Fy)-modules: Loosely speak-
ing, strict X-specializability of a well-filtered (D x, Fy)-module (M, F,) means in particular
that the filtration F, on all part of the V -filtration is already determined by this filtration on
certain parts of a the V-filtration. Unlike for X(-specializability the notation of strict Xp-
specializability for (Dx (xXy), FS)-modules differs because well-filtered (Dx (xXo), FY)-
modules are in general not well-filtered as (Dx, FY)-modules. After having defined strict
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3 (Strictly) specializable D-modules

Xo-specializability also for (Dx (xXp), Fy)-modules, we turn the localization and dual local-
ization of strictly Xy-specializable (Dy, Fy)- or (Dx(xXp), Fy)-modules into strictly Xo-
specializable (Dx, Fy)-modules by using their description in terms of the V-filtration. We
also prepare the actual computation of these constructions on a sheaf theoretic level in local
coordinates. Finally we extend these constructions to singular Xj.

Recall that we work implicitly on the distinguished affine base (see Subsection 1.1.1), as we
are dealing with O-quasi-coherent sheaves.

In this chapter X always denotes a smooth equidimensional variety (over C) and Xy C X
stands for an equidimensional codimension one subvariety with corresponding embedding . :
Xo — X and defining ideal sheaf . We write X* := X \ X with inclusion jx- : X* — X.
Under the assumption that X is smooth, we agree upon the following convention:

Convention 3.0.1. Assume that X is smooth. Recall that we can find by Proposition 1.2.9
for every point p € Xy a coordinate neighborhood U of Xy C X containing p and local
coordinates (z,t) := (x1,...,Zn,t) with differentials (6,0;) := (61,...,6n,0;) on U such
that 7y = o, (t). We sometimes call such a U also coordinate neighborhood of p.

In this chapter when writing ¢, 9 or U, we always assume that we work on a coordinate
neighborhood U such that ¢ is part of a local coordinate system with corresponding differential
OrandZy = ¢, (t). If not stated otherwise, all statements involving ¢, d; or U are independent
of the choice of U (and p) and the local coordinate system.

3.1 The V-filtration and application to localization and dual
localization

The subject of study of this section is the (rational) V' -filtration. In the analytic setting, the
V -filtration along a coordinate showed up first in the work of Malgrange [Mal83] in the spe-
cial case of D-module theoretic direct images of © under graph embeddings and Kashiwara
extended that concept along submanifolds to regular holonomic D-modules [Kas83]. We re-
view Kashiwara’s definition of the (rational) V -filtration for D x-modules in the codimension
one case and extend this concept to coherent D x (¥ X()-modules following [SS17]. Then we
collect important results about this filtration mainly due to Saito (see [Sai88]) and use them to
describe certain localizations and dual localizations (see [Sai88], [Sai93] and [SS17]). Based
on this, we prepare the algorithmic treatment of these concepts for the next chapter.

3.1.1 Specializability, localization and dual localization along smooth
codimension one subvarieties

We assume in this subsection that X is smooth. The V -filtration along Xy on Dx (indexed
by Z) is defined by

VX Dy :={peDx | p(T?) CTV~* forall j € Z}, (3.1.1)
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3.1 The V -filtration and application to localization and dual localization

where Z7 = Oy for j < 0. If it is clear from the context that we consider the V -filtration
along X, we drop the upper index X (we use this convention also for the other V -filtrations
that we will define). In local coordinates (x,t) on U, we have

(Va Dx)v = Vo' WDy = 3 Pa g 071707 Withpa s, € Op.  (3.1.2)
a,BeENyeN":f—a<e

On the complement X*, the V-filtration is given by VkX0 Dx+ := (Vy Dx)x+ = Dx~ forall
kelZ.

Following [SS17], we also introduce the V -filtration along X, on Dx (xXy): Considering
the Z-adic filtration defined by ZF := Ox(—kXy) for k € Z, we define the V-filtration on
Dx(xXo) by

VXODx (xX0) == {p € Dx(xXo) | p(T?) C 7~ forall j € Z}. (3.1.3)

So (Vk DX(*XO))U = Vk DX(*X())U = t_k‘/b DU and Vk DX(*XO)X* = 'Dx(*X())X* =
Dx~« for k € Z . These V-filtrations define a subring V) Dx = Vp Dx(xXy) of Dx and
Dx (xXp), which is O x-quasi-coherent. Moreover, we have:

Lemma 3.1.1. The sheaf of ring Vo Dx = Vo Dx (xXy) is locally Noetherian, so in particular
coherent.

Proof. We induce the filtration Fg Vo Dx on Vy Dy via the order filtration on Dx. On a
coordinate neighborhood U C X with local coordinates (z, t) the associated graded ring is

(G Vo Dx)(U) =2 Ox(U)[é,. . ., n, tE4).

Since on affine open neighborhoods U’ C X* with local coordinates ', . ..,z

(Gr° Vo Dx)(U') = Ox (U')[EL, . .., 41,

the claim follows by Proposition 1.1.16. Proposition 1.1.7(b) implies now the particular claim.
O

Notation 3.1.2. We denote by D'y either Dx or Dx (xXj).

Recall that all our filtrations are by definition increasing, exhaustive and indexed discretely
by the rational numbers. The V-filtration on coherent left Dy -modules is now defined as
follows (see below for uniqueness and compatibility of the notions for Dx- and Dx (xXy)-
modules):

Definition 3.1.3. The (rational) V-filtration along X, on a coherent left D'y -module M is a
Ve D' iltration VX0 M = V, M on M satisfying

(a) VX0 M is a coherent VOXO D'y -module for any o € Q,

125



3 (Strictly) specializable D-modules

(b) Vo Dy VoM C V2 Mforalla € Q, k € Z,
() I-VXo M =V:X Mforall a <0,

(d) forevery point p € X exists a coordinate neighborhood U C X of p such that —0;t — «
acts nilpotently on (GIZXO M)y forany a € Q.

We say that a D'y-module M is Q-specializable along X, (or Q-X-specializable) if the
rational V' -filtration along Xy on M exists.

Note that Condition (b) is only listed for reference purposes and is already implicitly con-
tained in the requirement that Vo, M is a V, D’X—ﬁltration.

We point out that Definition 3.1.3(d) does not depend on the choice of the coordinate neigh-
borhood or of the local coordinates: Indeed, let U’ be another coordinate neighborhood of
p with local coordinates (z’,t') and differentials (§',0,/). Then there is a regular function
u: UNU' — C* such that ¢ = ut and there are aq,...,an,b € Oynyr such that Oy =
>y <jcn @i + bO;. Applying that equation to ¢ = u~ 't/ gives u™ + /0y (u™1) = 9y (t) = b.
This implies

Ot =0t + (D aibiu+ ¢ 0u(u )0+ w0y (w) ) ¢

1<i<n

eVo Dynyr

showing that 9t acts as 0yt on Gro, Myny for any o € Q. So in particular, if M is Q-
specializable along X, then Condition 3.1.3(d) holds on every coordinate neighborhood and
system of local coordinates as in Convention 3.0.1.

Since we only consider QQ-specializability, we often drop the Q and write ” X-specializable*
or ’specializable along Xo*.

Convention 3.1.4. Our notation of the V-filtration on D’y -modules conflicts for quotients of
free modules with the filtration induced by V, D'y.. As we are rarely and only for computational
purposes interested in the latter filtration, we agree upon the following: If M = (D )¥/ L
(with E finite and £ C (D’X)E a submodule) is an Xy-specializable D x-module, we mean by
Ve M always its V -filtration in the sense of Definition 3.1.3 and denote the induced filtration
by

Vid M= yXomd A= (V,DY)E + L)/ L.

On the other hand, we set V,D’ E = (Ve D’X)E . Note that this last convention does not cause
any ambiguity because D’;{ is not Xy-specializable.

The V-filtration on the complement of X is trivial:

Remark 3.1.5. Let M be an Xj-specializable D x-module. Then (Vi Dx)x+ = Dx~ for all
k € Z implies V, M x+ := (Vo M) x+ = Mx~ forall a € Q.
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3.1 The V -filtration and application to localization and dual localization

The V -filtration is in general not separated:

Remark 3.1.6. Following [Bjd93, Section 2.10.22], consider the case Xy = {0} C X = C
and the D x-module M := Dx /Dx <t28t + 1>. Since t20? = QP (—120,)b+k € V_h}cd M for
alla,b € Nand k£ € N, we have M = Vkind M for all k € Z showing that the V-filtration is
constant in this case and hence not separated.

Remark 3.1.7. There are also more general types of V-filtrations.

(a) We can consider V-filtrations indexed discretely by the complex numbers: For this, fix
total order < on C that agrees with the standard order on R and such that ¢ < b implies
a+c<b+cforalla,b € Cand any ¢ € R. Replacing Q by C, the complexly indexed
V -filtration is now defined as in Definition 3.1.3.

(b) Another natural generalization of Definition 3.1.3 are V -filtrations along smooth subva-
rieties of codimension greater than one: If we assume for a moment that X is smooth of
pure codimension m with defining ideal sheaf Z, we define VX0 Dy by Equation (3.1.1)
and in Definition 3.1.3 we replace Condition (d) by

(d’) for every point p € X exists a coordinate neighborhood U C X of p with coor-
dinates (z,t1,...,ty) satisfying Xo N U = V (¢1,...,tn) such that the operator
— > 1<i<m O ti — o acts nilpotently on (GIZXO M)y forany a € Q.
respectively.

If not stated otherwise, we mean by V -filtration always the rational V -filtration along a smooth
codimension one subvariety as in Definition 3.1.3.

V-filtration on D x-modules

We focus now first on the V-filtration on D x-modules. Later we show the compatibility of the
notions of V-filtrations on D x - and D x (*X()-modules and use this to develop corresponding
results for V-filtrations on Dx (xX()-modules. The next remark explains the structure of the
graded parts of the V -filtration on D x-modules:

Remark 3.1.8.

(a) Let M be an Xy-specializable D x-module. By definition of the V -filtration, the sheaves
GrY M and V, M /V,_1 M are Cr}| Dx-modules with support on X. Recalling that
(77, 0;)1<i<n is a local coordinate system on U N X, we define the map

([’DX())U — Gr(‘)/ DU

by sending 6; to §; and f € (1 Ox, )y to the residue class in Gr§ Dy of a representative
of f in Oy under the isomorphism (: Ox,)v = Oy /Zy. One easily checks that the
local maps glue to a global map

LDXO — GI‘(‘)/D)(.
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3 (Strictly) specializable D-modules

(b)

This map allows us to regard Grg M and Vo, M /V,_1 M as : Dx,-modules. Under
the identification Dx, = 11+ Dx,, we consider . ~! Gr¥ M and .~ (V, M Vi1 M)
as D x,-modules. From now on, we drop the ¢ ~! and write by abuse of notation Grg M
and V, M /V,_1 M for these D x,-modules.

By Definition 3.1.3(a) and (d) there exist a finite set B C QN(a—1,a]andc € N B such
that the polynomial [],.p(—0it — B)° annihilates the module Vo, My /Vo—1 My.
Writing 1 = > 5. pda[L,ep s (s —7) with d € Q[s]? using Bézout’s identity,
we see that V, My /V,—1 My decomposes as a direct sum of generalized eigenspaces
Dsep ker((—ot — B)N) with N >> 0 and deduce that

Vo My [Vas My = @ Grlf My, i (ds T (~0t = 9)2m)

feB ©eB\(8) pep

is a Gr[‘)/ Dy- and (¢ Dx,)y-linear isomorphism. We conclude that V, M /V,,_1 M is
globally isomorphic to Be(a—1,0] Grg M as Gr§ Dx- and ¢ Dy,-module by similar
arguments as for the independence of Definition 3.1.3(d) on the choice of the coordinate
neighborhood and the local coordinates.

We review now some of Saito’s results concerning the V-filtration along smooth codimen-
sion one subvarieties. All these results are only stated for D y-modules with one exception:
We show that Lemma 3.1.10 and its corollaries hold naturally also for Dx (xX()-modules
and use these results in Lemma 3.1.25 to prove that the two notions of specializability for
D x (*X)-modules are compatible.

Lemma 3.1.9. [Kas83, Theorem 1] The V -filtration on a coherent D x-modules is unique if
it exists.

The following lemma is a direct consequence of Definition 3.1.3(d):

Lemma 3.1.10. [Sai88, (3.1.1.4)] Let M be an Xy-specializable D’X-module. Then the maps

t-: Grl My — GrY_| My and d;- - Gr_; My — Grl My

are bijective for a # 0.

Proof. For o # 0 and ¢ € N set

Al = ker((—0st — a)’- : GrY My — Gr¥ My).

By Definition 3.1.3(d), we have Gr! My = Usen Ab-

We first show inductively that A%, C 0 - Gr}l/,l My which implies that 9;- : Grg,l My —
GrY My is surjective. Multiplying a?, € A% with (—9;t — «), we see that there is some
ait € ALY such that
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3.1 The V -filtration and application to localization and dual localization

and hence a’, € 9; - GrY_, My by induction. Writing (=9t — (o — 1)) = (—td; — a) and
arguing as above gives that t- : Gr}, My — GrY_; My is surjective.

For the injectivity of J;- : GrZ_l My — Grg My assume there is an_1 € Grg_l My
such that 0;an_1 = 0. As t- : er My — Grg,l My is surjective there is a, € Grg My
satisfying ta, = aq—1. This implies (—0st)a, = 0 and hence a, = 0 = ay—1 since o # 0.
An analogous argument shows the injectivity of the other map. O

Corollary 3.1.11. Let M be an Xy-specializable D'y-module. We have for o € [—1,0] and
k € Z locally that

Vo My, ifk<0,a#0
Yoo OVa My, ifk>0,a# -1
and hence globally
IikVaM:Vk,DiX'VaMy lf‘kgova#o
Va+kM = , i
VkDX .Va,/\/l = VkDX .VO[M, lfk? > 0,& 7& 1.
In particular,

VoM =V M+Vi Dy Voo 1 M fora >0
and the V-filtration along Xy on M is a good Vs D'y -filtration (see Definition 1.1.11(d)).

Corollary 3.1.12. If the D'y-module M is Q-specializable along X, then we have for m €
My that 0y - m € Vo My implies m € V_1 My.

For « < 0, left multiplication with ¢ acts injectively on V, My:
Lemma 3.1.13. [Sai88, Lemme 3.1.4] Let M be an Xy-specializable D x-module. The map
t Vo My = Vo1 My
is bijective for o < 0.
We review Saito’s proof for the convenience of the reader:

Proof. Note that the D x-modules M’ := ['(x,](M) (see Proposition 1.4.12(c)) and M =
M [/ M" are coherent and ¢ acts injectively on M;. The V-filtration on M induces filtrations

VIM =V MM and V) M" := (Ve M+ M")) M

on M’ and M”, respectively. One easily checks that V] M” satisfies all conditions of Def-
inition 3.1.3 and is hence the V-filtration of M” along X by Lemma 3.1.9. Similarly, it is
immediate that V, M induces all properties of Definition 3.1.3 but Condition (c) on V] M’,

129



3 (Strictly) specializable D-modules

because the coherence of Vy Dx (see Lemma 3.1.1) implies Condition (a). The missing con-
dition follows locally for o < 0 from the commutative diagram

0— =V My — Vo My ——— Vo M, ——0

ti ti t.l:
0 2 Vo My ——Var My —— Voot M —— 0

and the Snake Lemma, where the surjectivity of the vertical maps in the middle and on the
right is due to Corollary 3.1.11. Hence we have by Lemma 3.1.9 that V, M’ = V/ M’. Since
M/’ has support on X, Lemma 3.1.16 below implies V,, M’ = 0 for a < 0 and another
application of the Snake Lemma to the above diagram shows that the vertical arrow in the
middle is in fact bijective. O

Similarly, one shows the “only if ”-part of the next statement, whereas the converse direction
can be proven using so-called local b-functions (see Remark 3.1.19(b)):

Corollary 3.1.14. [Sai88, Corollaire 3.1.5] Let 0 — M’ — M — M"” — 0 be an exact
sequence of coherent D x-modules. Then M is Q-specializable along X if and only if M’
and M" are so. In this case

0= VoM VoM = VeM" =0
is an exact sequence.
From Lemma 3.1.9 and the above corollary follows:

Proposition 3.1.15. [Sai88, Proposition 3.1.6] If ¢ : M — M’ is a morphism between
Xo-specializable D x -modules, then o is strict with respect to the corresponding rational V -
filtrations. In particular, the category of Xg-specializable D x-modules is abelian and its
morphisms are always strict.

The following lemma is a consequence of Kashiwara’s equivalence (see Proposition 1.4.12):

Lemma 3.1.16. [Sai88, Lemme 3.1.3] Let M be a coherent D x-module such that its support
is contained in Xo. Then M is Q-specializable along Xy, and we have on a coordinate
neighborhood U

My = Mo@cClO)] = (txonv)+ Mo and Vo My = @ Mo @0},
0<i<|al
where My = ker(t- : My — My) and vx,~v : Xo N U — U is the restriction of . In
particular, Voo M = 0 and
Vo My =ker(t: My = My) = @ ker((—=dit — k)- : My — My)
a>keN

fora > 0.
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3.1 The V -filtration and application to localization and dual localization

Hence the quasi-inverse in Kashiwara’s equivalence in the codimension one case is ex-
pressed as follows:

Corollary 3.1.17. Let . : Xg < X be an embedding of smooth equidimensional varieties of

codimension one. Then a quasi-inverse for 14 : Modoy - qcon (Dx,) — Modéi((_))q con(DPx) is
given by

Gy = Gy Mod 5™ (Dx) — Modoy, - qeon (D), M = Gl M = Vo M

by considering Grg M = Vo M as an D x,-module via the isomorphism Xy = +(Xo).

The Vp-part of an Xp-specializable D x-module depends only on the restriction of that
module to X™:

Lemma 3.1.18. [Sai88, Lemme 3.1.7] Let ¢ : M — M’ be a morphism of X-specializable
Dx-modules. If px~ : Mx» — M’X* is an isomorphism then

VoM 2V M fora < 0.
We review Saito’s proof:
Proof. By Corollary 3.1.14 and Proposition 3.1.15 we have for o € QQ an exact sequence
0 — Vaker(p) = Vo M BV, M = V(M /img) — 0.

Since ker(y) and M’ /im ¢ have support on X by assumption, the modules on the left and
on the right of the above sequence are zero for « < 0 by Lemma 3.1.16. This shows the
claimed isomorphism. O

We collect statements concerning the existence of the V -filtration on D x-modules:
Remark 3.1.19. Let M be a coherent D x-module.

(a) Kashiwara proved that the rational V -filtration along Xy on M exists if M is regu-
lar holonomic and with quasi-unipotent local monodromy (see e.g. [Meb89, Théoreme
[11.4.10.1]). In particular, Hodge D y-modules are X(-specializable. More generally,
a holonomic D y-module admits a unique V -filtration indexed by the complex num-
bers (with respect to any ordering as in Remark 3.1.7(a)) (see e.g. [Meb89, Théoréme
111.4.4.2]).

(b) The existence of (not necessarily rationally indexed) V -filtrations is equivalent to exis-
tence of certain b-functions: The b-function of a local section m € My is the minimal
monic polynomial b,,,(s) € CJ[s] \ {0} such that b,,(—0:t)m € V_1 Dy -m if such a
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3 (Strictly) specializable D-modules

polynomial exists. The b-function exists for every local section of M if and only if the
(complexly indexed) V -filtration exists [Sab87] [Sab01]. In this case we have

Va My ={m € My | byp(z) =0 for z € C implies z < a} (3.1.4)

and hence the roots of the local b-functions are rational if and only if the V -filtration is
rational.

Eventually, we are interested in an algorithm for the computation of the V-filtration. Our
algorithm is based on the observation that the filtered part V,, M of an X-specializable D x -
module can be represented using the filtration described below (see [Kas83]):

Definition 3.1.20. Let M be a coherent D x-module. For fixed o € QQ, we define the filtration
VIM = Vo 0% M indexed by the integers by the following properties:

(a) V.* M is a coherent V{, Dx-module for any i € Z,
(b) Vi Dx VA M C V&, Mforall i,k € Z,

© Z-VAM=V2 Mand 0,V My +V My =V, | My on any coordinate neigh-
borhood U for 7 < 0,

(d) There exists a finite set A C Q satisfying the following condition: Every point p € X
has a coordinate neighborhood U C X such that for A; := (A+Z)N(a— 1+, + 1]
the operator [[,c 4.(—0:t — a) acts nilpotently on Gr/" My == VO My VS, My
for every i € Z.

We point out that Definition 3.1.20(d) is independent of the choice of the coordinate neigh-
borhood and of the choice of the local coordinate system. The lemma below shows that the
above filtration exists if and only if M is X(-specializable, whereas uniqueness can be proven
in the same way as the uniqueness of the V -filtration.

Lemma 3.1.21. Let M be a coherent D x-module and o € Q fixed. Then V& M exists if and
only if M is Q-specializable along Xy and we have for k € 7. in this case

Va+kM - VkaM.

Proof. Clearly (V¥ M)x+ = Mx~ and hence both filtrations are uniquely defined by this
property and by their restrictions to coordinate neighborhoods. Thus we may assume that X
itself is a coordinate neighborhood and that X has defining ideal sheaf generated by ¢.

Let M be X-specializable. Setting V,*’ M := V4 M for k € Z, we see by Defi-
nition 3.1.3 and Corollary 3.1.11 immediately that V>’ M satisfies all properties of Defini-
tion 3.1.20.

Conversely, assume that V. M exists. We write v € Qasy = a+ 8+ k with § € (—1, 0]
and k € Z and set

VIM =V M,
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where Vka’ﬁ is the maximal Vj D x -submodule of V}* M containing V¢ ; M with the property
that by (—=0st) := [],ea,n(—00,(—t — @) acts nilpotently on V& M JV& | M. Then all
conditions of Definition 3.1.3 immediately follow for V] M except for Condition (c). We first
show that tVﬁ; M= Vﬂy’,1 M forvy <« 0: Givenm € VV’,1 M C V& | M, Definition 3.1.20(c)
implies the existence of some m' € VM such that tm’ = m. By definition of V./_; M,
there is a natural number [ € N such that b,_y(=0it)'m € V., M = tV. M,
where the equality follows from Definition 3.1.20(c). Thus we have tb,_1(—0;t — 1)'m’ €
tV, . _1 M. Since we can prove the injectivity of t- : V;.* M — V% M for i < 0 along
the lines of the proof of Lemma 3.1.13, it follows that b (—0st)!m’ € V/, 4,1 /M and hence
m' € Vvl M. Note that Lemma 3.1.10 also holds in our situation since Definition 3.1.20(c)
was not needed in the proof of that lemma. Thus, if 6 < 0 and if Vé s M = tVé s M, the
Snake Lemma and the commutative diagram

0—— VM — s VIM——Gry M——0

ti { ti

0—— Vi M—V] M—Gr{y M——0

imply that the vertical map in the middle is also surjective. This proves Definition 3.1.3(c),
because V] M is indexed discretely.

The second claim follows now directly from the above construction and by the uniqueness
of the V -filtration. O

Locally, we reduce the computation of the V-filtration to that of local b-functions:

Remark 3.1.22. Let M be a coherent D x-module. According to Kashiwara, we can decide
if M is Q-specializable along X and approach V2% M for fixed & € Q and for suitably
chosen k € Z in this case using an induced V -filtration: If we represent M locally on a
coordinate neighborhood U as DE / N with E finite and N° C DE, then V, Dy induces the
filtration

VI My = (Vo Du)? + N)/ N

on My, which satisfies all properties of Definition 3.1.20 except for Condition (d).

The V (t)-specializability of My is equivalent to the existence of the b-function of My
with respect to the induced V-filtration, i.e., the monic nonzero polynomial b0 (s) € Q[s] of
minimal degree having only rational roots and satisfying

b (=8t — @) Vi My C VI My -

Indeed, if My is V/(t)-specializable then there exist local b-function b@(s) € Qs] with

rational roots for e € E by Remark 3.1.19(b). The product []_ b@(s) satisfies the above
equation and hence there also exists a minimal polynomial, which has rational roots, fulfilling
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3 (Strictly) specializable D-modules

this equation. The converse direction follows from the construction of a filtration satisfying all
conditions of Definition 3.1.20 as described below.

So assume that b(?) (s) as above exists. To determine the rational V-filtration along V'(t),
we shift now the roots of this b-function: Choose k € Z such that the minimal root of b(®)(s)

livesin [ := (o + k — 1, + k]. Setting w0 My = Vird My, we may assume that we
have a filtration W.(i) My satisfying Definition 3.1.20(a)-(c) and a polynomial b(")(s) € Qls]
with minimal root in I in such that b()(—,t — ) annihilates Grfv(i) My Write b (s) =
bgi) (s)bgi) (s), where bg) (s) has roots in interval I, while the roots of bgi) (s) are strictly greater
than « + k and set

b (5) := b (s + 1)b5) (s).

This decreases the value of the roots not living in /. Considering
Wat) My == WO My 48 (0t — o)W My

the filtration W.(i) My induces Properties (a)-(c) of Definition 3.1.20 on W.(Hl) My. Since

B (=0t — @)W My =b) (— 0t — @) b (04t — 0 + YW, My

cwi™h My

+ D (=0t — o+ 1) b (=04t — o)W My,

cw? My

QW.(ijll) My

we have b1 (=9, — o) Grl/v(iﬂ) My = 0. Iterating this process until all roots are in the
interval I, we obtain V2T M.

Remark 3.1.23. Note that () (s) in the last remark agrees with the minimal monic nonzero
polynomial b'(s) € Q[s] such that

Y (—0yt)(e) € VI3 My

forall e € F and b(0)(s) exists if and only if '(s) exists: Namely, consider v := gf*t*dP(e) €
Vi_a DE) with g € Op. Then

(—aut — (b — ) = g8°1°0f (~9y)(e) — D9t 10 )

eVy_o Du EVb7a71775

shows that b'(—0;t)(e) € V4 My for all e € E implies b/ (—0:t)v € Vi*d | My.
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3.1 The V -filtration and application to localization and dual localization

Remark 3.1.24. Keeping the notation of Remark 3.1.22 and assuming that M is Xy-special-
izable, we deduce from b(®)(s) a suitable power p such that (—d;t — a)? annihilates Gr}, M.
Namely, take p = my,) 4 (a) := Zzea—l—Z:b(O)(z):O multbw)(s)(z), where multyo) (z) de-
notes the multiplicity of the root z. If we choose i € N such that all roots of b(*)(s) live in
the interval I, then b)) (—8;t + k) acts as zero on Gr My by construction and the root a
has multiplicity p. According to Definition 3.1.3(a) and (d) there is some [ € N such that
(—0st — )! annihilates also that module. By Bézout’s identity this implies that our choice of
p is valid.

Vfiltration on Dx (xX()-modules

We study now properties of the V -filtration on Dx (xX()-modules. In particular, we will see
that the notions of V-filtrations on D x- and on D x (xX)-modules are compatible:

Lemma 3.1.25. Let N be a coherent D x (xX)-module.
(a) If N is Xo-specializable as Dx (xX)-module, then it is D x -coherent.

(b) The module N is Xy-specializable as Dx (xX()-module if and only if it is Xo-special-
izable as D x-module. In this case, the corresponding V -filtrations agree.

Proof.

(a) We deduce from Corollary 3.1.11 and Definition 3.1.3(a) that N is as D x-module on
the coordinate neighborhood U generated by the coherent V D x-module Vo N and is
hence locally D x-finitely generated.

As Ox (xXg) is on U of the form Oy [t~!] and agrees with O on a neighborhood
U’ C X*, itis in particular O x-quasi-coherent. Because Dx (xX() is O x (xX)-locally
free, Proposition 1.1.7(a) shows that A is O x-quasi-coherent. Another application of
this proposition gives now the D x-coherence of \V.

(b) If N is Xy-specializable as Dy (xX()-module with V-filtration V4 N, then it is also
Xo-specializable as D x-module with V -filtration V4 N by Part (a) and definition of the
corresponding V -filtrations.

Conversely, we only have to show that if V4, A is the V-filtration on N considered
as Dx-module then t "'V, Ny € V, .1 Ny. By Remark 3.1.19(b), there is for n €
Vo Ny some v € V_1 Dy such that b, (—0;t)n = vn. This implies b, (—0;t—1)t " 'n =
t= b, (—Ot)n = t~ton = v't7In with o/ € V_; Dy. Therefore b, 1,(s) divides
b, (s —1) and hence t~'n € V1 Ny by this Remark 3.1.19 showing that V, N is also
the V-filtration on N considered as Dx (*X()-module.

O
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3 (Strictly) specializable D-modules

Lemma 3.1.13 holds for X-specializable D x (x*X()-modules for all « € Q:

Lemma 3.1.26. Let N be an Xy-specializable D x (xX)-module.

(a) The maps

t:VaNy = Va1t Ny andt-: Gr¥ Ny — Grl_ Ny

are bijective for all o € Q. In particular, we have for all o € Q

Var N =T -VoN =V_Dx Vo N.

(b) We have N = Dx ®v,p, Vo N.

Proof.

(a)

(b)

We have V, Ny =t - t7 'V, Ny with t 'V, Ny € V,_1 Ny by Definition 3.1.3(b)
showing that Condition (c) in that definition holds for all o € Q. Thus the claim follows
from the injectivity of the action of ¢ on Ny.

According to Corollary 3.1.11 and Lemma 3.1.25(b) the morphism
¢ :Dx Qyypy VoN - N, p@n+— pn

is surjective. We check the injectivity on the stalks. So consider ¢ € U and the element
Y ocics 0r @n; € ker(p,) withn € Vo/\/'éo""’s}. We may assume thatn; ¢ V_1 N, =
tVo 7\/71 for ¢ > 0 if n; is nonzero, where the last equality holds by Part (a): Namely, if
n; € Vo1 Ny, we write n; = tn} with n, € Vo N,. We choose now k; < i maximal
such that there is a representation n; = t*in! with n! € Vy N,. Hence we obtain the
representation

Y dlon; =1®ne+ Y ditfien! =1eng+ Y (9je ) aytkin).

0<i<s 1<i<s 0<i<s 1<j<s:;j—k;=i

Applying the same procedure to the right hand side representation if necessary, we
obtain after at most s steps the desired representation. Lemma 3.1.10 implies now
On; € ViNg\Viei Ny fori > 0if n; # 0and ng € Vo Ny. As the injectivity
on the stalk at ¢ € X* is clear, the map ¢ is an isomorphism.

O

To represent an Xy-specializable D x (+xX()-module locally as a quotient of a free Dx-
module and to compute its V-filtration, we use that it is a localization of a coherent Dx-
module, which is even Xj-specializable as we will see. Hence we study now the V -filtration
on localizations of D x-modules.
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Localizations

Recall that we defined the localization of the Dx-module M along X as the Dy (xXo)-
module

M(*Xo) =M Rox OX(*XO)

and that this localization comes with the canonical D x -linear localization map i ,x,) : M —
M (xXy). The following notation will be useful when considering filtered localizations:

Notation 3.1.27. Let M be an Xy-specializable D x-module. We write Locx, (M) for the
Dx-module M (*Xy). Similarly, we write Locx,(N) for an X-specializable Dx (xXj)-
module N\ considered as D x-module, since N' =2 N (xX).

We study now localizations of Xg-specializable D x-modules (see also [SS17, Lemma 9.3.1
and Proposition 9.3.4(4)] for the “only if”’-part of Part (a) as well as Part (b) of the following
lemma):

Lemma 3.1.28. Let M be a coherent D x-module.

(a) The Dx-module M is Xo-specializable if and only if the D x (xXo)-module M (xXy)
is Xo-specializable.

(b) If M is Xo-specializable, the natural morphism i(,x,y : M — M(xXo),m — m ® 1
induces a representation

Vo(M(xXo)y) =t~ - (igexo) v (Vor Mu). (3.1.5)
So in particular, M(*Xo)y is generated by t " - (i(.x,))u (V-1 My) as Dy-module.
Proof.

(a) Let M(xXy) be Q-specializable along X as Dx (xX)-module and hence also as Dx-
module by Lemma 3.1.25(b). By the exact sequence

the natural map M /T'(x (M) — M(xXo) of Dx-modules is injective and thus the
module M /I'(x,) M is Xo-specializable by Corollary 3.1.14 being isomorphic to a
submodule of the Xy-specializable D x-module M(xXy). As I'(x, (M) has support on
X, it is Xg-specializable by Lemma 3.1.16, which implies the Q-specializability of M
by Corollary 3.1.14.

The other implication is [SS17, Lemma 9.3.1].
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3 (Strictly) specializable D-modules

(b) Since M (xXp) is an Xy-specializable D x-module by Part (a) and Lemma 3.1.25(b),

the natural morphism M — M (xX() induces by Lemma 3.1.18 isomorphisms
Vo M 2V (M(xXy)) for a < 0,

and hence
Vo M(xXo)u =t - (iuxo))v (Vo1 Mu)

by Lemma 3.1.26(a).

The localization of an X-specializable D x-module can be represented as follows:

Lemma 3.1.29. Let M be an Xq-specializable D x-module. On a coordinate neighborhood
U, there exists a finite set E and a finite subset P C DE(U) such that

(a) Vg My = (Vo Dy)¥/ " DU<P> and

(b)

Proof.

(a)

(b)

Locx,(M)y = DE/DU<t*1Pt>.

Since V_1 My is a finitely generated V Dy-module by Definition 3.1.3(a) and Corol-
lary 1.1.10, there exist a finite V Dy-generating set E C V_y My (U) of V_1 My and
a Vp Dy-linear surjective map

p: (VoDy)? — Vi My, (e) = e, (3.1.6)

inducing an isomorphism V_1 My = (Vo Dy)¥ / ker(p), where ker(p) is finitely gen-
erated as Vy Dy-module, say by P C 1 DE(U), by Lemma 3.1.1 and Corollary 1.1.10.

Since M (xX) is X-specializable by Lemma 3.1.28(a), we obtain by Lemma 3.1.28(b)
a surjective Vg Dy-linear map

Pl : (Vo DU)E —» V()M(*X())U, (6) — t e,

Its kernel is |, (¢~'Pt) by Part (a) as V.1 M = V_1 M(xXo) by Lemma 3.1.18,
as the map ¢t~ 1 : Vi M(xXo)y — Vo M(xXo)y is bijective by Lemma 3.1.26(a)
and as t~! - Vo Dy = Vy Dy -t~ L. The claim follows now from Lemma 3.1.26(b) and
Lemma 3.1.30 below.

O

The next lemma explains how to obtain from a finite V{y Dy;-presentation of Vo M (xX¢)y a
finite Dyy-presentation of M (xXg)y:
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3.1 The V -filtration and application to localization and dual localization

Lemma 3.1.30. Consider a finite set E and a Vo D x-submodule J C Vj D)E(. The canonical
isomorphism
Dx ®v,px Vo DY = DX

induces an isomorphism of D x -modules
Dx ®vypx (Vo DX /T) = DX /Dx T, p @7~ Pa.

Proof. By the right-exactness of the tensor product, we have a commutative diagram

Dx vy pyxJ — Dx vy Dy Vo DY — Dx @vypy Vo DY /T) — 0
|
|

e T

0——DxJ DY DY /) Dx T ——0,

where the dashed arrow is obtained by the universal property of cokernels and agrees with the
map given in the lemma. The assertion follows now by the Snake Lemma. O
Dual localizations

The dual localization along X for D y-modules is derived from the localization functor along
X as its adjoint by the D-module theoretic duality functor. Yet, we follow [SS17, Section 9.4]
and give an alternative definition of dual localization functor along X, for Xg-specializable
D x-modules using the V-filtration.

Definition 3.1.31. Let M be an Xj-specializable D x-module. Then
DLocx, (M) := M(1Xy) := Dx ®v, Dy Vo M
is called the dual localization of M along Xj.
The next proposition collects important results concerning the dual localization:

Proposition 3.1.32. [SS17, Proposition 9.4.2] Let M be an X-specializable D x-module.
Then it holds:

(a) M(1Xy) is an Xo-specializable D x-module.
(b) The natural map i(x,) : M(!Xo) — M, p @ m — pm induces isomorphisms
Va M(1Xo) 2V, M

for a < 0. So in particular, M(1Xo)x+ = Mx~. Moreover the kernel and the cokernel

of the map
Gry iax,) : Gry M(1Xo) = Gy M

are isomorphic to the kernel and cokernel of O;- : V_1 M — Vo M, respectively.
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(c¢) The map
9y : Gr¥y M(1Xg) — Grl M(!Xo)

is bijective.

Remark 3.1.33. As every Xg-specializable Dx (xX()-module is also an X-specializable
Dx-module, we use Definition 3.1.31 to define the dual localization of Xj-specializable
Dx (xX()-modules.

3.1.2 Specializability, localization and dual localization along general
codimension one subvarieties

Let Xg € X now be an arbitrary equidimensional codimension one subvariety. We first
investigate the case that the ideal sheaf 7 is globally generated by the regular function f : X —
C and extend the concept of Xj-specializability to this case using Kashiwara’s equivalence
for the graph embedding along f. More precisely, considering the D x-module M and the
embedding

if: X = X xCy, z— (2, f(x)),

we study the V-filtration along X x {0} on the D-module theoretic direct image (if) M.

Specializability for D x-modules

Definition 3.1.34. We say that a coherent D y-module M is Q-specializable along f (or f-
specializable) if (i )4 M is Q-specializable along X x {0}.

We show that for f being smooth Q-specializability along f and along X are equivalent:

Lemma 3.1.35. [Sai88, Lemme 3.2.4] Let v : Y — X be a closed embedding of smooth
equidimensional varieties and t : X — C a smooth regular function such thatto.:Y — C
is smooth and nonzero. Setting Xy = t_l(O) and Yo = 11Xy, a coherent Dy -module M is
Yo-specializable if and only if 1, M is Xo-specializable. In this case, we have on a coordinate
neighborhood U with coordinates (x1, ..., xy,t) and differentials (01, ...,0y,0;) such that
Y NU=V(xy,...,Ty)

(ty M)y = (e M)y @c Clly, ..., 0]

and
(V&ou M)y = (V" M)y @c Cl6, .. ., 6n).

We review Saito’s proof:

Proof. As the statement is local, we may assume that Y is a codimension one subvariety of
X and that z, ¢ is a coordinate system on all of X. Hence we have 1.1 M = t M ®¢ C[6,]
(see Equation (1.4.2) and the paragraph below for the explicit D x-structure). Clearly, if M
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is Y-specializable, then (VY0 M @¢ C[6,] satisfies Definition 3.1.3 showing that ¢, M is
Xo-specializable.

Conversely, assume that (. M is Xg-specializable. Consider m = ) ;. ,m; ® i €
VX0, M withm; € t M and o € Q. Because we have xy,, 0, € VbX“ Dx, left multiplication
with [To<;—s(—Onzn — ) shows that m, ® 65 € VX0, M. Thus we obtain by multiplying

ms ® 0 with powers of xy, or 0, that mg ® 6 VX0, M forall j € N. Induction implies
VX0 M = 1V, M &c C[fy] for some V) M C M. One easily checks that V; M satisfies
Definition 3.1.3, which finishes the proof. O

Corollary 3.1.36. If X is smooth, then a coherent D x-module is Q-specializable along X
if and only if it is f-specializable.

Remark 3.1.37. If M is regular holonomic D y-module, then its direct images (i) M is
also regular holonomic by [HTTOS, Theorem 6.1.5]. Hence Remark 3.1.19(a) implies that M
is f-specializable.

Specializability for D x («X()-modules

Consider now a coherent Dy (*Xg)-module N. Since N' = N (xXj), the direct image
(if)+ N is by Lemma 1.4.19 a Dy c(*X x {0})-module, which is coherent as such. This
motivates the following definition:

Definition 3.1.38. Let A/ be a coherent D x (xX()-module. We say that N is Q-specializable
along f (or f-specializable) if (i) N is Q-specializable along X x {0} as Dx xc (X x{0})-
module.

Remark 3.1.39. Let N be a coherent D x (xX()-module.

(a) If V'is f-specializable, then (4 f)+ N is D x «c-coherent according to Lemma 3.1.25(a).
Now Kashiwara’s equivalence implies that N is Dx-coherent and Lemma 3.1.25(b)
applied to (if)+ N for X x{0} C X xC shows that the two notions of f-specializability
given in Definition 3.1.34 and Definition 3.1.38 are compatible.

(b) If X is smooth, then AV is X-specializable if and only if it is f-specializable by Part (a)
and Corollary 3.1.36.
Localization and dual localization

We describe now the localization along X of the f-specializable D x-module M in terms of
the localization of (i7) M along X x {0}:

Lemma 3.1.40. Let M be an f-specializable D x-module. Then

M(X0) = Gy (i) MYX x {01) = VD (i) 4 M)(X x {0)).

So in particular, M(xXy) is a coherent D x-module.
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Proof. We have by Lemma 1.4.19

(i) + (M(xXo)) = ((i7)+ M) (X x {0})
and hence Corollary 3.1.17 and Proposition 1.4.12(a) imply the claim. O

Following [SS17, Section 9.4.b], we construct the dual localization of M along f given that
M is f-specializable:

Definition 3.1.41. Let M be an f-specializable D y-module. The D x-module M (!f) satis-
fying
(if)+ M(f) = ((iy)+ M)(LX > {0})

is called the dual localization of M along f.

The unique existence of M(!f) (up to isomorphism) in the above definition relies on Kashi-
wara’s equivalence: We have for p € X x C that

((1p)+ MY(LX < {0})p = Pxp O(vy D), (i) + M)p-

As (if)+ M has support on V (¢’ — f), the above formula shows that the same holds for
((if)+ M)('X x {0}),. Now the unique existence of M(! f) follows from Kashiwara’s equiv-
alence.

Remark 3.1.42. [SS17, Corollary 9.4.9] Let M be an f-specializable D x-module. Then we
have:

(a) By Kashiwara’s equivalence there exists a natural morphism i( sy : M(!f) — M in-
duced by i(!XX{O}) : ((Zf)+ M)(‘X X {0}) — (Zf)+/\/l .

(b) The Dx-module M(!f) is coherent and f-specializable by Proposition 3.1.32(a).

In order to define the dual localization along X, we need to show that the above construc-
tion is independent of the choice of f. Similar considerations are also necessary to extend this
construction as well as the concept of specializability to the case where Z cannot be generated
by a single regular function.

Generalization of the above constructions

The following lemma is essential to generalize our notion of (Q-specializability to singular
codimension one subvarieties:

Lemma 3.1.43. [SS17, Section 9.3.c] Let u : X — C* be a regular function and M a
coherent D x-module.

(a) The Dx-module M is Q-specializable along f if and only if it is Q-specializable along
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(b) We have M(!f) = M(luf).
Now assume that Xy is any equidimensional codimension one subvariety of X. As X is
smooth, 7 is locally generated by a single regular function.

Definition 3.1.44. Let M be a coherent Dx - or Dx (*X()-module.

(a) Let U’ C X be an open neighborhood and f : U’ — C a nonzero regular function such
that Zy = o, (f). We say that M is Q-specializable along f (or f-specializable) if
My is f-specializable.

(b) We say that M is Q-specializable along X (or Xg-specializable) if and only if M is
f-specializable along any regular function f as in Part (a).

Remark 3.1.45.

(a) By Lemma 3.1.43, a coherent Dx- or Dx (xXp)-module M is Q-specializable along
X if and only if every p € X has an affine open neighborhood U’ such that Zy is
generated by a regular function f : U’ — C and My is Q-specializable along f.

(b) Assume that X is smooth. Then Definition 3.1.44 is compatible with Definition 3.1.3
by Corollary 3.1.36 and Lemma 3.1.43.

Lemma 3.1.43(b) enables us to define the dual localization of Xg-specializable M because
local existence implies by uniqueness global existence. In particular this definition will be for
smooth Xy compatible with Definition 3.1.31.

Definition 3.1.46. Let M be an X-specializable D x-module. The dual localization M(!X)
of M along X is defined by
M(1Xo) x» = Mx~

and

M(1Xo)yr = My (f),
for open neighborhoods U’ such that Zy;» is generated by the nonzero regular function f :
U’ — C. It comes with the canonical dual localization map i(1x,y : M(!Xq) — M defined
by (i(xo))vr = iqy)-
Remark 3.1.47.

(a) If M is an Xj-specializable D x-module, then so are M (*X() and M(!Xy) [SS17,
Sections 9.3.c and 9.4.b].

(b) As in Remark 3.1.33, Definition 3.1.46 defines also the dual localization along X of
X-specializable D x (x X()-modules.

We use a similar notation as in Notation 3.1.27:

Notation 3.1.48. Given that the Dx-module M and the Dy (xX()-module N are X(-spe-
cializable, we set Locx, (M) := M(*Xp), DLocx, (M) := M(!Xp), Locx,(N) := N and
DLocx,(N) := N(!Xy) and consider all these modules as (coherent) D x-modules.
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3 (Strictly) specializable D-modules

3.2 Compatibility of the V/filtration with the order filtration
and application to filtered localization and dual
localization

We have studied in Subsection 1.3.2 well-filtered D-modules with respect to the order filtration
and have seen in Remark 1.4.18 that endowing the localization of the well-filtered (Dx, FY)-
module (M, F,) with the naive filtration Fo M (xXy) := Foe M ®0, Ox(xXp) can lead to
a non well-filtered (Dx, Fy)-module even if M is regular holonomic. However, if Fy M or
Fy M(xX) satisfy compatibility properties with respect to the V -filtration of the underlying
module, we can replace the naive filtration in an intrinsic way by a good F} D x -filtration.
Motivated by this, we study in this section such properties referred to as strict specializability.
For this we first review the corresponding material presented in [Sai88] for the D x-module
case and in [SS17] for the D x (+X()-module case and follow then [Sai93] and [SS17] to define
filtered localizations and dual localizations. Based on these considerations, we prepare the
algorithmic treatment of these localizations on a sheaf theoretic level using local coordinates.

3.2.1 Strict specializability, filtered localization and dual localization
along smooth codimension one subvarieties

In this subsection, we assume that Xg C X is smooth (with defining ideal sheaf 7). Recall
that U C X stands for a coordinate neighborhood with local coordinates (x,t) such that
Iu = o, (t). Our aim is now to study certain compatibility conditions for rational V -filtrations
and filtrations with respect to the order of differential operators.

Compatibility for D x-modules

As pointed out in Corollary 3.1.11, the V' -filtration along X on a Q-specializable D x-module
M is completely determined by the V,, M for a € [0, 1]. Another feature of the V -filtration
is that V,, M for @ < 0 depends only on M (xX() = jX*j)_{i M (see Lemma 3.1.18). Thus we
are now in particular interested in X-specializable well-filtered (D x, Fe)-modules (M, F,)
such that F,V, M is already determined by the F,V, M with & € [—1,0] and such that
FVo M =V MNjx= j)_(lF. M for a < 0. This motivates the following definition:

Definition 3.2.1. A well-filtered (Dx, Fy)-module (M, F,) is called quasi-unipotent along
Xp if

(a) M is Q-specializable along X,
(b) t-: Vo My — F,Vo—1 My is surjective for p € Z and @ < 0,

(c) O : F Grg My = Fpp Grgﬂ My is surjective for p € Z and o > —1.
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We say that (M, F,) is strictly Q-specializable along X (or strictly X(-specializable) if it is
quasi-unipotent along X and Gr’" V,, M is a coherent Gr’” 1, D x-module for all & € Q.

We point out that Gr”" V,, M being Gr’™* V;y Dx-coherent is by Proposition 1.1.17 equiva-
lent to F,V, M being a well-filtered F, V D x-module.

Example 3.2.2. A Hodge Dx-module (M, F,) with Hodge filtration F M is by definition
strictly Xg-specializable.

Remark 3.2.3.

(a) Note that if M is Q-specializable along X, Definition 3.2.1(c) is equivalent to
FoMy =Y 0jFeiVy My . (3.2.1)
ieN
Indeed, if we denote the filtration on the right hand side by F. M/, then we have
FlVaMy= Y 0iFeiVo My +8,"Fu_[oyVa_a) My fora > 0.
0<i<|a]

Therefore,
GI"X F./ My = 8t[a-| (erf[od Fo—[oﬂ MU) fora >0

and

FEVo My = FVo My .
Since we have by definition of F, My that F, My C F, My we have equality if
and only if Gr}l Fo My = 0]"1(Gr¥_[ | Fu_{a) My) for all & > 0 or equivalently
Gr! Fy My = 0;(CGrY_; Fy_y My) for all o > 0.

(b) Definition 3.2.1(b) is equivalent to FgV,, M = V,, M ﬂjX*j)_(i FoM :={meVyaM|
m € F, Mx~} for o < 0.

Remark 3.2.4. Lemma 3.1.10 and Lemma 3.1.13 imply that the maps in Definition 3.2.1(b)
and (c) are in fact bijective.

Recall that er M can be considered as a D x,-module by Remark 3.1.8 and that the fil-
tered module (V,, M, F,) naturally induces a filtration Fy Gr} M on the former module. We
sometimes also write Gr), (M, F) for this filtered module.

Definition 3.2.5. We call a well-filtered X(-specializable D x-module (M, F,) regular along
X if Grf' Grg M is a coherent Grf* D x,-module for each a € Q.

We will see that regularity in the sense of the above definition implies that the induced fil-
tration on the so-called vanishing and nearby cycles is a good filtration (see Subsection 3.2.3).
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3 (Strictly) specializable D-modules

Lemma 3.2.6. [Sai88, Lemme 3.4.6] An Xo-quasi-unipotent (Dx, Fy)-module (M, F,) is
regular along Xy if and only if it is strictly Xq-specializable.

Proof. Assume that (M, F,) is strictly Xy-specializable. Obviously the Gr!™ Vh Dx-co-
herence of Grf" V, M implies the Gr’’ ° Vo Dx- and hence the Grf” Grg D x-coherence of
Gr!” GrY M by Proposition 1.1.7(a) for a € Q. Since —d;t — a acts nilpotently on Gr¥ My,

Grl” Gr Dy = Grl” (txonv Dxorv[0it]) 2 @D thxonv Grf (Dxonu) (9t),
i+j=e

(where ¢| x,nr : Xo MU — U stands for the restriction of ¢) implies that GrF Grg M is even
G D X, -coherent.
The other direction is [Sai88, Lemme 3.4.6]. ]

The category of strictly Xy-specializable (Dx, Fy)-modules supported on X can be char-
acterized using a a filtered version of Kashiwara’s equivalence (see Proposition 1.4.12) due to
Sabbah:

Proposition 3.2.7. [SS17, Proposition 7.6.2](Filtered Kashiwara’s equivalence) Consider a
closed embedding 1 : Xo — X of smooth equidimensional algebraic varieties of codimension
one. The functor

Xo,88x

Lt : Modeon(Fs Dx, ) — Mod (FeDx)

coh
induces an equivalence of categories between the category Modcon (Fe Dx,) and the full sub-

category Modii%’ssxo (Fe Dx) of Modcon(Fe Dx) whose objects are supported on Xy and

strictly Q-specializable along Xq. Its quasi-inverse is given by

(N, Fy) = Gr " (N, F)(—1).

Compatibility for Dx (xX)-modules

Contrary to Xg-specializability, the notions of strict Xy-specializability differ for Dx- and
D x (*X)-modules. We define strict Q-specializability of D x (*X()-modules as follows:

Definition 3.2.8. We say that a well-filtered (Dx (xXy), Fy)-module (N, Fy) is strictly Q-
specializable along X (or strictly X-specializable) if

(a) N is Q-specializable along X,
(b) Grl” vV, NV is a coherent Grf™ Vj, Dx (xXp)-module for all « € Q.

Example 3.2.9. Consider a Hodge D x+-module (N, F,) with Hodge filtration Fy A/. Then
the (Dx (xXo), F¢)-module (jx~ N, F,) with filtration defined by Fejx+ N := jx-Fo N is
strictly Xg-specializable.
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The next remark explains why we do not need conditions as in Definition 3.2.1(b) and (c):

Remark 3.2.10. If (\V, F,) is an X-specializable well-filtered (D x (xXy), Fy)-module, then
F, N is an Ox (*X()-module and hence we have by Remark 3.1.26(a) that

t-: FpVy Ny — FVaa Ny (3.2.2)

is an isomorphism for all & € Q, that is, Definition 3.2.1(b) holds for filtered Dx (xXg)-
modules for all « € Q. So in particular, Fy N is already determined by the F,V, N for
a € (—1,0]. Note however, that Definition 3.2.1(c) is in general not satisfied.

We point out that a strictly X(-specializable (Dx (xXy), Fy)-module is in general not even
well-filtered as (Dy, Fy)-module. However, following [SS17, Proposition 9.3.4], we turn
such modules into strictly Xg-specializable (Dx, Fy)-modules by equipping them with the
following filtration:

Definition 3.2.11. Let (N, F,) be a strictly Xy-specializable (Dx (xXy), Fy)-module. We
define the F? Dx-filtration F-°¢ on Locy, (N) by

FI*“Locx,(N) =Y F;Dx -Fo_iVyN'x
€N
and write Locx, (N, Fy) := (Locx, (N), FL°°) = (N, FLoc).

Clearly, the above filtration is exhaustive as Fy N is exhaustive and Vo N is a set of Dx-
generators of A/ by Corollary 3.1.11. In particular, we have on a coordinate neighborhood U
that

FLo¢Locx, (N)y = Z Ol - Fo Vo Ny
i€N

and on the complement of X
FXo Locx, (N)x+ = Fo N x .

Before we prove that Locx, (N, F,) is indeed a strictly X-specializable (Dx, Fy)-module,
so in particular well-filtered as such, we state some important properties of this module:

Remark 3.2.12. Let (\V, F,) be a strictly X(-specializable (Dx (xXp), Fy )-module.

(a) We have FIV, N C F, Vo N for all a € Q with equality FF°°V, N = F,V, N for
a<0.

(b) It holds by Part (a) and Remark 3.2.10 that Fy N/ =2 (FL°° V) @0, Ox(*Xp). So we
have locally on a coordinate neighborhood U

FoNy ={n e Ny | t*n € F°° Ny for some a € N}.

147



3 (Strictly) specializable D-modules

Lemma 3.2.13. Let (N, Fy) be a strictly Xo-specializable (Dx (xXy), FY)-module. Then the
(Dx, F?)-module Locx, (N, F,) is strictly Xo-specializable.

Proof. We first show that Locy, (N, F,) is Fy Dx-good: The O x-coherence of F, N im-
plies that of F;,Vy N, so say the latter module is locally Or-generated by the finite set G, C
F,VoN(U). Then F;JOC Ny is Opy-generated by

-
U {at_] prj},
jeN
which is finite since F; N = 0 for j < 0. By strict X(-specializability of (N, F,) there exists
p € Z such that Vo N = F;_ Vo Dx -F,Vo N for ¢ > p. Now we have for ¢ > p

Fy ,Dy-FYNy=( Y  FVoDy)- () 0iF,-VoNu)
Jj=0,j+k=q—p 120
= Z aZJerIS%DU 'priVON’U
1,720,j+k=q—p
= Z agFQ*J'VbNU’
3>0

which shows that Locx, (N, F,) is indeed a well-filtered (Dx, Fy)-module.

We show that Locx, (N, F,) is strictly Xo-specializable: We know by Lemma 3.1.25(b)
that Condition 3.2.1(a) is satisfied. Condition 3.2.1(b) follows from Remark 3.2.10 and Re-
mark 3.2.12(a), while Condition 3.2.1(c) is immediate from the definition of F°° A and from
Remark 3.2.3(a). Remark 3.2.12(a) and the strict X(-specializability of (N, Fy) imply also
the Grf7 ° Vo D x -coherence of Grf o Vo N for o < 0 and hence Condition 3.2.1(c) entails it
for o > O since 0; - G}~ Vo Dy = G}~ Vo Dy -0 € Gl Vo Dy forp € Z. m

Example 3.2.14. Consider the Hodge D x--module (N, F,) with Hodge filtration Fy N. Its
Hodge theoretic direct image (jx+)+ (N, F,) agrees with Locx, (jx+ N, F,).
As Locx, (N, F,) is (Dx, FY)-good, we have for p big enough
FIA = B, Dy FY N
for all ¢ > p. Setting

50z A Fa N ifg<p
T | Fy,Dx -EFCN, else,

p is big enough if and only if FP N = FLo¢ . We develop now a criterion that allows us
to check if a given p is big enough. For this note that if A/ is an O y-submodule of N, we
may identify N’ (xXy) := N' ®0, Ox(*Xo) C N(xX(y) = N with an O x-submodule of
N Part (a) of the following criterion to test the above equality of filtrations is based on results
by Saito [Sai88, Proposition 3.2.2 and Remarque 3.2.3]:
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Proposition 3.2.15. Let (N, F,) be a strictly Xo-specializable (Dx (xXy), Fy)-module.

(a)

(b)

Proof.

(a)

(b)

We have
Vo Ny = (B Ny)(+Xo N U) N Vo Ny (3.2.3)
if and only if
t-:VoNuy = Vi Ny 3.24)

is an F'P)_strict isomorphism.

If Fy N generates (N, Fy) as (Dx (xXo), Fy)-module, i.e., FyN' = F;_, Dx (xXg) -
F, N for q >0, then

(F) N)(xX0) = (FF° N) (+Xo) = Fa N . (3.2.5)

If Equation (3.2.3) holds, Map (3.2.4) is clearly F'(?)-strict as this map is bijective by
Lemma 3.1.26(a).

Conversely, assume that Map (3.2.4) is F (P)_strict and consider n € Vo N v such that
there is a € N with t“n € Fq(p) Ny. Thus t*n € Fq(p)V_aNU and hence n €
Fq(p o Nu by assumption and Lemma 3.1.26(a).

As F.(p Y C Fl°¢ N, the corresponding inclusion is trivial. For the reverse inclusion
we work on a coordinate neighborhood U and choose n & (FqLOC Nu)(xXoNU). By
Definition 3.1.3(b) there exists some a € N such that

t'n € (F;° Nu)(xXo NU) N Vo Ny = FVo N,

where the equality follows from Remark 3.2.12(b). We are done if ¢ < p since then
FVON = FLVy N = FyPVy N by Remark 3.2.12(a) and definition of FiP .
Otherwise we have

tan € Fqu./\/’U = (F;_p Dx(*XU)U~FpNU)ﬂ‘/()NU g F;_p Dx(*XQ)U-FpVbNU,
where the equality holds by assumption. For the inclusion notice that we can write
n' € VoNyasn' =3, bl with L C F, Ny finite and b € (Fq",pDX(*XQ)U)L
by hypothesis. Choosing ¢ € N’ such that tl € Vo Ny by Definition 3.1.3(b),

Remark 3.2.10 implies that ¢t/ € F,Vop Ny and we obtain a representation n’ =
D rep(bit™) - (t) € Fy_(Dx (xXo)v) FpVo Nu.

Express t“n as an element of F,_ (D x (+Xo)v)- FVo Ny and multiply this expression
with a suitable power of ¢ to cancel out denominators. Then we get by Remark 3.2.12(a)
and by definition of F.(p ) N

t"*n € F2_ Dy -F,Vo Ny = F,_, Dy -F*Vo Ny = Fo_, Dy -FPVo N,
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3 (Strictly) specializable D-modules

thatis, n € (F\”) Np)(+U 1 Xo).
The second equality follows from Remark 3.2.12(a).

The following lemma gives a necessary condition for F°¢ N = F.(p I N

Lemma 3.2.16. Consider a strictly X-specializable (Dx (xXy), Fy)-module (N, F,). If
we have FI°° Ny = F.(p) Ny, then Fép)VoNU generates (‘/()NU,F.(p)) as (Vo Dy, F?)-
module.

Proof. We have to show
PVoNy = F;_,Vo Dy -EP Vo Ny

for all ¢ > p. As this obviously holds for ¢ = p, we proceed inductively and may assume that
the above equation is satisfied for all p < ¢ < ¢’. Note that

F(p NU — DU FLOCNU _ DU ZazFLoc‘/O NU
1€N

Y D EON N
ieN

(p)

by Remark 3.2.12(a). Hence we may choose for n € F Vo Ny a minimal integer » > 0 and

for 0 < j < r afinite set G C F(p)VONU and elements c7 € F, —deg ) (9) - jVODU for
g € G such that there is a representation

= Y0 o)
0<j<r g€,y
Ifr >0,
ADICEDIET) BT pr s
1<j<r g€eGj g€Go
implies by Corollary 3.1.12 that 21<J<T(83 deG
gg € Fq(,pzrV,l Nvy. According to Remark 3.2.12(a) and assumption

gg) € V_1 Ny. lterating the above

argument shows >

this implies the existence of an element n’ € F(p ) Vo N such that geG cpg = tn'. By

induction assumptlon there exist, given that ¢/ — r > p, a set G’ C F VON vand ¢ €
(Fy Vo Dy) satisfying n/ = = > e Cpd'- Setting G’ := {n'} and ¢, = 1 otherwise,

we obtain ' '
n= > (&> de+a ") atc,d

0<j<r—1 geG; geG’

contradicting the minimality of 7. O
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Lemma 3.2.17. Let (N, F,) be a strictly Xo-specializable (Dx (xXo), F¢)-module. If F, Ny
generates (N, Fy) as (Dx (xXo)u, FS)-module and FISP)VONU generates (Vo Ny, F.(p)) as
(Vo Dy, F2)-module, then F2°° Ny = FP) Ny ifandonlyift-: VoNy — Vo Ny is F®)-

strict.

Proof. As (N, F,) is strictly X(-specializable, we have by Remark 3.2.12(a) and (b)
FVoNy = B Vo Ny = (FF° N) (xXo)u N Vo Ny
This implies by assumption and Proposition 3.2.15(b) that
FFVy Ny = (FP N (+Xo)u N Vo N . (3.2.6)

Note that FLo¢Vy A generates F1°¢ N as F° D x-module by definition. On the other hand
FPvN generates FP) N as F? Dx-module: Indeed, since (N, F1°) is strictly Xo-spe-
cializable as (Dx, F,)-module and F°° N = Fq(p )\ for ¢ < p, we have

FP N = F}OCN:ZieNEODX'Fq(g)i%N’ Q=P
! FpDx 'FIEJOCN =F; ,Dx > enFy Dx 'Fzgli)i%/v” else.

Therefore the condition FP Ny = F Loc Afyr is equivalent to

FPOVNy = Flocvy Ny = (F.(p) N)(xXo)v N VoNu, (3.2.7)

where the last equality is due to Equation (3.2.6). By Proposition 3.2.15(a), Equation (3.2.7)
is again equivalent to ¢t- : Vo Ny — V_1 Ny being an F (P)_strict isomorphism. This finishes
the proof. O

This leads to the following criterion for testing F°¢ N = FP) N, which depends only on
F../\/andF.(p)N:

Corollary 3.2.18. Let (N, F,) be a strictly Xg-specializable (Dx (xXo), FS)-module. We
have F.(p Y v = FLo¢ Ny if only if the following conditions are satisfied:

(a) F, Ny generates (N, F,) as (Dx(xXo)u, Fy)-module.
(b) F]§p)vo Ny generates Vo Ny as Vo Dy -module.
(c) Fép)VoNU generates (Vo Ny, F.(p)) as (Vo Dy, F2)-module.

(d) Fiﬁp)v_l Ny generates (V_1 Ny, F.(p)) as (Vo Dy, F2)-module.

The corresponding global statement also holds.
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3 (Strictly) specializable D-modules

Proof. Assume that FP N v = FX°¢ Ny holds. Then Lemma 3.2.16 implies Condition (c)

and hence also Condition (b), because F°¢ = F.(p ) is exhaustive. Moreover, we deduce that
FpLOC‘/Q Ny generates FL°Vy Ny as (Vo Dy, FS)-module implying that F,Vy Ny generates
FVo Ny as (Vo Dy, FY)-module by Remark 3.2.12(a). Now Condition (a) follows from Re-
mark 3.2.10. As t- : VoNy — Vo1 Ny is F®strict and bijective by Lemma 3.2.17 and
Lemma 3.1.26(a), Condition (d) follows from Condition (c) and ¢t - F)Vy Dy = FJ Vo Dy -t.
Conversely, Conditions (c) and (d) imply that t- : Vo Ny — V1 Ny is F (P)_strict: As
Fq(p IN=F ;OC N for g < p, we have according to Remark 3.2.12(a) and Remark 3.2.10 that

t- Fq(p)VoNU = Fq(p)V_l N7 in the case ¢ < p. On the other hand for ¢ > p it holds by
Condition (c), the previous case, and Condition (d) that

t-FPVoNy =t-Fy Vo Dy -FPVoNy = Fy Vo Dy t- EP Vo Ny
=F_ VoDy -FPPV Ny =FPV_ Ny .

So the claim follows by Lemma 3.2.17 since Condition (a) holds. ]

Localization and dual localization

Consider a strictly Xy-specializable (Dx, Fy)-module (M, F,). We introduce the filtration
F, on the Dx (xX()-module M (xXy) by

F.(M(*XO)) = (F. M)(*Xo) =F, M ®(9X Ox(*X()), (3.2.8)
where the right hand side means the image of Fo M ®0, Ox (*¥Xp) in M(xX)).

Remark 3.2.19. We have by Definition 3.2.1(b), Lemma 3.1.18 and the definition of the fil-
tration Fy M (*X) that the natural map i, x,) : M — M (*Xp) induces isomorphisms

FVu M = FV (M(xX))
for o < 0.

Lemma 3.2.20. Let (M, F,) be a strictly Xo-specializable D x-module. Then (M (xXy), F,)
is strictly X-specializable as (D x (xXy), Fy)-module.

Proof. Clearly, (M, F,)is (Dx(xXy), Fy)-well-filtered. Its X(-specializability follows from
Lemma 3.1.28(a). By Remark 3.2.10 for N' = M (xXp) and since ¢ - Gr'" Vy Dx (xX,) =
Grf” Vo Dx(xXp) - t it suffices to show that Definition 3.2.8(b) holds for &« < 0. Be-
cause Grl' V, M is Grl” Vi Dx-coherent by assumption and F2Vy Dy = F2V, Dx (xXo),
Remark 3.2.19 implies that Grf V, M(xXy) is coherent as Grfo Vo Dx (¥ X()-module for
a <0. O
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The above lemma enables us to endow M (x X)) with the filtration F-°¢ M (xX) via Def-
inition 3.2.11 turning
Locx, (M, Fy) := (M(xXy), FX°°) (3.2.9)
into a strictly Xg-specializable D x-module. As in Lemma 3.1.28(b) we use the V -filtration
on M to describe Locx, (M, F,):

Remark 3.2.21. Let (M, F,) be a strictly X(-specializable (Dx, F,)-module. According to
Remark 3.2.10 and Remark 3.2.19, the canonical map i, x,) : M — M(xXo),m = m® 1
induces a representation

F. W, M(*Xo)U =¢1. i(*Xo) (F.V_1 MU).

Thus, we rewrite F°° M (*Xg)y in terms of F,V_1 My as

FrM(+Xo)y = Y 0t~ (FoiVoy My ®0y, Ov), (3.2.10)

1€N
where Fo_;V_1 My ®0,, Oy stands for its image in My @ Ox (xXo)vy.
Example 3.2.22. Consider a Hodge D x-module (M, F,) with Hodge filtration Fy M. Then
the Hodge theoretic localization (jx+)+jx: (M, Fe) agrees with Locx, (M, F).
Defining the filtration FPM¢ M(1X,) by
FPM M(1X0) := Y | Fo V2P M®0o, FY Dx (3.2.11)
1€EN

(interpreted in the same manner as above) we set DLocx, (M, Fy) = (M(1X), FPLoc).
Then a filtered version of Proposition 3.1.32 holds:

Lemma 3.2.23. [SS17, Proposition 9.4.2] Let (M, Fy) be a strictly Xo-specializable Dx -
module.

(a) Then DLocx, (M, F,) is strictly Xo-specializable as (Dx, Fy)-module.

(b) The isomorphisms in Proposition 3.1.32(b) and (c) are filtered.

Remark 3.2.24. Given a strictly Xy-specializable (Dx (xXy), Fy)-module (N, F,), we en-
dow N (! X) with the filtration Fy N'(!X() defined as in Equation (3.2.11) and set

DLocx, (N, Fa) := (N (1Xo), FP°).

Since this filtered module agrees with the dual localization of the strictly Xg-specializable
(Dx, F?)-module Locx, (N, F,) and as FoVo N = Fr°V, N for a < 0, Lemma 3.2.23
holds also in this situation.

Example 3.2.25. Given a Hodge D x-module (M, F,), the Hodge theoretic dual localiza-
tion (jx+)1jx+ (M, Fy) is realized by DLocy, (M, F,). Similarly, for a Hodge D +-module
(N, F,), the Hodge theoretic extraordinary direct image (jx=)1(N, F,) is represented by
DLocx, (jx+ N, F).
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3 (Strictly) specializable D-modules

3.2.2 Strict specializability, filtered localization and dual localization
along general codimension one subvarieties

As for Xy-specializability, we extend strict X-specializability to singular codimension one
subvarieties by locally considering filtered direct images under certain graph embeddings as
in Subsection 3.1.2. So let Xy € X now be an arbitrary pure codimension one subvariety.
First we assume that its defining ideal sheaf 7 is globally generated by the regular function
f : X — C and consider the corresponding graph embedding iy : X — X x Cy.

Strict specializability for D x-modules
Mirroring Definition 3.1.34, we define:

Definition 3.2.26. We say that a well-filtered (D, Fy)-module (M, F,) is quasi-unipotent,
regular and strictly Q-specializable along f if (iy)+ (M, F,) is quasi-unipotent, regular and
strictly Q-specializable along X x {0}, respectively.

As usual we abbreviate strictly Q-specializable along f by f-specializable.

Example 3.2.27. A Hodge Dx-module (M, F,) with Hodge filtration Fy M is by definition
strictly f-specializable.

Analogously to Lemma 3.1.35, our two notations of strict Xy-specializability are compatible
for smooth X:

Lemma 3.2.28. [Sai88, Lemme 3.2.4] Let v : Y — X be a closed embedding of smooth
equidimensional varieties and t : X — C a smooth regular function such thattor:Y — Cis
smooth and nonzero. Setting Xo = t=1(0) and Yy = 1~ Xy, a well-filtered (Dy , F?)-module
(M, Fy) is quasi-unipotent and strictly Q-specializable along Yy if and only if 14 (M, Fy) is
quasi-unipotent and strictly Q-specializable along X, respectively.

Proof. As in the proof of Lemma 3.1.35, we may assume that Y is of codimension one in X.
Keeping the notion of that proof (so in particular assuming that X is a coordinate neighbor-
hood), the claim on the quasi-unipotence follows from that lemma and from the representation

Fory M= @ Y| ®9ﬁ

keN

(see Equation (1.4.6)).

Assuming now that (M, F,) and hence ¢ (M, F,) are quasi-unipotent along X, we show
that Gr" VYo M is Grf™ VOY0 Dy -coherent if and only if Grf" V.Xo,, M is Grf” VOX0 Dx-
coherent, which then implies the claim on the strict specializability. We proof this by applying
the equivalence in Proposition 1.1.17: Note that by Lemma 3.1.35

FV0u M= tFe 1V M0 (3.2.12)
keN
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3.2 Compatibility of the V -filtration with the order filtration and applications

Using Fj VOXO Dx = Ox and Fjj VOYO Dy = Oy one checks that the Fy VOYO Dy -coherence of
F,VYo M for all ¢ < p and the F§ VOX0 D x-coherence of F,V;X°1, M are equivalent. Now
assume that the Fy beo Dy -module F, VY0 M is generated by F,,V.Y> M. Then F, VX0, M
is generated by Fj, 41V, X014 M as FY VOXO D x-module: Namely, we have for g > p + 1

FpVXor, M = @ 05 (uFy 1V M @1)

keN

= D E VM)
keN:q—k—1<p

+ @ O (LF, 11 V3 Dy 1F, VYo M®1)
keN:g—k—1>p

c @ AVDx(FV M)
keN:g—k—1<p

+ P OV MV M),
keN:g—k—1>p

F,

Y,
a-p+1)V ? Dy

Similarly, if F,VX0., M is generated by FpVCf(O Ly Mas Fy VOXO Dx-module, F, V.o M is
generated by Fj,_1 V.0 M as F? VOYO Dy -module. O

Corollary 3.2.29. If f is smooth, then M is quasi-unipotent and strictly Q-specializable along
Xo if and only if it is quasi-unipotent and strictly Q-specializable along f, respectively.

Recall that ¢ stands to the embedding X < X with defined ideal sheaf Z = , (f).

Corollary 3.2.30. [Sai88, Corollaire 3.2.5] Let X be smooth and (M, F,) be strictly Xo-
specializable (Dx, Fy)-module. Then we have for o € Q

L (GO M R = G ) (M, F)
as (Dx, FY)-modules.

Xo,88x,

The subcategory Mod__;; (Fe Dx) of the category of well-filtered and strictly X-spe-
cializable F, D x-modules supported on X plays an important role in filtered Kashiwara’s
equivalence (see Proposition 3.2.7) if X is smooth. It can be characterized as follows:

Lemma 3.2.31. ( [Sai88, Lemma 3.2.6]) Let (M, F,) be a well-filtered (Dx, F)-module
such that M is supported on f~1(0). Then the following are equivalent:

(a) (M, F,) is quasi-unipotent and regular along f,
(b) f-FeMCFe 1 M,
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3 (Strictly) specializable D-modules

(c) there exists a canonical isomorphism (iy)+ (M, Fy) = (ig)+ (M, Fo) of (Dxxc, Fy)-
modules.

If X is smooth, then the above conditions are equivalent to
(d) (M, F,) is strictly Q-specializable along X.

Proof. The first part of the lemma is [Sai88, Lemma 3.2.6]. The additional condition for X
smooth follows from Lemma 3.2.6 and Corollary 3.2.29. O

Strict specializability of D x (xX,)-modules

By Remark 1.4.22, we may define strict Xy-specializability for (Dx (xXy), Fy)-modules as
follows (see also Lemma 1.4.19):

Definition 3.2.32. A well-filtered (Dx (xXy), FY)-module (N, Fy) is called strictly Q-spe-
cializable along f if (if)+ (N, F,) is strictly Q-specializable along X x {0} considered as
(Dxxc, (*X x {0}), Fy)-module.

Remark 3.2.33. Analogous to Corollary 3.2.29 we have for smooth X that the well-filtered
(Dx (xXy), FY)-module (N, F,) is strictly Q-specializable along X if and only if it is strictly
Q-specializable along f.

As for smooth X we want to endow the strictly X(-specializable (Dx (xXy), Fy)-module
(N, F,) with a good filtration that makes it strictly f-specializable as (Dx, Fy)-module. We
use for this our standard trick of considering the direct image under the graph embedding i .
As the (Dxxc(xX x {0}), Fy)-module (if) (N, F,) is strictly X x {0}-specializable, the
(Dxxc, FY)-module Locy 03 (i) + (N, Fy)) is well-defined and strictly X x {0}-special-
izable. If the latter module is strictly ¢ — f-specializable, we may apply filtered Kashiwara’s
equivalence (Proposition 3.2.7), that is, induce a filtration F1°¢ on A via

(W, FE9) 22 (@Y (Loc oy (i) + (W, Fa))) (1) (3.2.13)

to get a good filtration on A as AV is isomorphic to Grgv(tuf) (Locx x {0y ((if)+ N)) by Kashi-
wara’s equivalence. We write Locx, (N, Fy) := (N, FL°¢) and we will see in Lemma 3.2.39
that the definition of the filtration does not depend on the choice of f. While such an approach
is not possible in Sabbah’s more general situation (see [SS17, Section 9.3.c]), we show that
our setting allows the application of filtered Kashiwara’s equivalence:

Proposition 3.2.34. Let (N, F,) be a strictly f-specializable (Dx (xXy), Fy)-module. Then
the (Dx xc, Fo)-module Locx 0y ((iy) + (N, Fs)) is strictly Q-specializable along t' — f.
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3.2 Compatibility of the V -filtration with the order filtration and applications

Proof. By Lemma 3.2.31 it is equivalent to show that (¢ — f) - FX°(is)+ N C FE%(if)+ N
holds locally on an affine open cover of X x Cy. Choosing an affine open cover I/ of X, the
U’ x C for U’ € U form an affine open cover of X x C and we have

((if)+ NMvrxe = (iflvr)+ Nors

where i | : U — U’ x C denotes the corresponding restriction of 7 y. Hence we may assume
that X is affine.

Since (N, F,) is by assumption a well-filtered (D x (xXy), Fy)-module, there exists a finite
set H C N(X)andd € Z” suchthat FoL N =3, Fy 4, Dx(xXp) - h. Consider now the
D x-submodule N := ", _,; Dx -h of N with filtration

G.Nl = Z(F.O_dh Dx) . h,
heH

Then (N7, G,) is a well-filtered (Dx, F)-module such that we may canonically identify
(N, Fy) = (V' (xX0), Ge), (3.2.14)

where Go N’ (% X)) is defined as in Equation (3.2.8). This leads by Remark 1.4.21 to a natural
identification

(if)+ (N, Fa) = (i) (N, Ga) (X x {0}). (3.2.15)

According to filtered Kashiwara’s equivalence (Proposition 3.2.7), (i7)+(N”, G,) is strictly
(¢ — f)-specializable and Lemma 3.2.31 implies (t' — f) - Go(if)+ N' C Ge—1(if)+ N'. It
follows from Equation (3.2.15) that

(' = ) Falip)+(N) € Faa(ip)s NV

As (if)+ (N, Fy) is strictly X x {0}-specializable by assumption, the preceding inclusion
induces for a € Q an inclusion

(t=f) PV i) N C Foa (i) N WO i)y N = Fu VO i) NV
By Remark 3.2.12(a) this shows
(' = f) - eV O ip) e NV € PRV O i) Y,

for a < 0, where ((if)1 N, FF°¢) = Locyyoy((if)+(N, Fo)). Since FLF(if)4(N) =

S sen O FEV O G ) Nand ( — f) - 8], = 95 (¢ — f) — i0i", we obtain

(¢~ f)-FE(ig) e N C Y (@85 (¢ — [)FRsVE O i) N =il LRV O i) 4 )

et -
i€ crtoe VX0
and hence
(' = f) Fe(ig)e N C F5(ip)+ N
as desired. The claim follows now by Lemma 3.2.31. O
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3 (Strictly) specializable D-modules

The module Locx, (N, F,) is indeed strictly f-specializable:

Proposition 3.2.35. ( [SS17, Corollary 9.3.6 and Remark 9.3.8]) Let (N, Fy) be strictly f-
specializable as (Dx (xXy), Fy)-module. Then Locx, (N, Fs) is strictly f-specializable as
(Dx, FY)-module.

Localization and dual localization

Consider a strictly f-specializable (Dx, Fy)-module (M, F,). The definition of a good fil-
tration F°° on M (*X) which makes M (¥ Xy) strictly f-specializable reduces to the above
case as (M (xXy), F,) is a strictly f-specializable (D (*Xy), Fo)-module according to Re-
mark 1.4.21 and Lemma 3.2.20. Namely, we define

Locx, (M, Fy) = Locx, (M(xXo), Fa) = (Grf ™ (Locx s oy (i) +(M, Fo)))(~1),

(3.2.16)
where the isomorphism follows from Remark 1.4.21 and Equation (3.2.9). We denote the
filtration on Locy, (M, F,) also by FLl°c,

On the other hand, we introduce a good (D, F?)-filtration FP°¢ on M (!f) by applying
the same method as for defining the filtration F*°° on strictly f-specializable (Dx (¥ Xo), F?)-
modules: Using that (if)1(M(!f)) = ((if) + M)(!X x {0}) (see Definition 3.1.41), we
consider the filtration

FPLc(((i7) 4 M)(LX x {0}))

defined by Equation (3.2.11). If the above filtered (D x xc, Fy)-module is strictly specializable
along t' — f, we induce a good filtration F°™¢ on M(!f) via

(M(f), FPY0) = Gy 7 (DLoc x o gy (i) + (M, Fa)) (1), (3.2.17)
The next proposition justifies our approach:

Proposition 3.2.36. Let (M, F,) be a strictly f-specializable (Dx, Fy)-module. Then the
(Dxxc, FY)-module DLocx 101 ((if)+ (M, F)) is strictly Q-specializable along t' — f.

Proof. Arguing as in the proof of Proposition 3.2.34 and using Lemma 3.2.23(b), we have
ocC X 0 . oC X 0 .
(' = DEPVI (i) MOX x {0) € FRPVE W (i) M)(X x {0)).

Considering m € FijgX{O} (if)+ M, we obtain for 8}, @ m € FI])DJFLiOC((if)Jr M)(1X x {0})
that
(t' = N0y @m) =0 & (t' = fim =0, " ®im € FJL5 ((ip) 4 M)(1X x {0})

and the claim follows now as in the proof of Proposition 3.2.34. O
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3.2 Compatibility of the V -filtration with the order filtration and applications

Corollary 3.2.37. [SS17, Corollary 9.4.9] If (M, F,) is a strictly f-specializable (Dx, FY)-
module, then so is (M(!f), FPToc).

Remark 3.2.38. Remark 3.2.24 allows us to extend the above construction of dual localiza-
tions along f to strictly Xo-specializable (Dx (xXy), Fy )-modules.

Generalization of the above constructions

The following lemma is needed to generalize the notion of strict Xg-specializability to arbi-
trary codimension one subvarieties:

Lemma 3.2.39. [SS17, Section 9.4.b]Let u : X — C* be a regular function. Then a
well-filtered (Dx, F)-module is strictly Q-specializable along f if and only if it is strictly
Q-specializable along uf. An analogous statement holds for well-filtered (Dx (xXy), FY)-
modules. Moreover all constructions in this subsection yield the same results if we replace f

by uf.

Now assume that X is any pure codimension one subvariety of X. Note that locally Z is
generated by a single regular function. This motivates the following definition (recall that D'y
stands either for Dy or Dx (¥ Xy)):

Definition 3.2.40. Let (M, F,) be a well-filtered (D', F)-module.

(a) Let U" C X be an open subset and f : U’ — C a nonzero regular function such that
Ty = OU’< f). We say that (M, F,) is strictly Q-specializable along f (or strictly
f-specializable) if (M, F,) is a strictly f-specializable (D}, Fy)-module.

(b) We call (M, F,) strictly Q-specializable along X (or strictly X(-specializable) if the
(Dy, F¢)-module (M, Fy) is strictly f-specializable along any regular function f as in
Part (a).

Remark 3.2.41. We have in the situation of Definition 3.2.40:

(a) Assume that X is smooth. Then Definition 3.2.40 is compatible with Definition 3.2.1
by Lemma 3.2.39.

(b) In Definition 3.2.40(b) it is enough to require that every point p € Xy has an open
neighborhood U’ C X with a regular function f : U’ — C as in Part (a) such that
(M, F,) is strictly f-specializable.

As in Subsection 3.1.2, Lemma 3.2.39 allows us to introduce a filtration on the dual local-
ization of Xg-specializable M because local existence implies by uniqueness global existence.
In particular this definition will be for smooth X compatible with Definition 3.1.46 and Equa-
tion (3.2.11).

159



3 (Strictly) specializable D-modules

Definition 3.2.42. Let (M, F,) be a strictly Xo-specializable (Dx, Fy)- or (Dx (xXo), Fy)-
module. The dual localization DLocx, (M, Fs) of (M, F,) along X is defined by

DLocx, (M, Fo) x+ = (Mx~, F,),

and
DLocy, (M, F)y = (My(1f), FPMec),

where U’ is an open neighborhood such that Z; is generated by the nonzero function f :
U’ — C. We denote the filtration on DLocx, (M, F,) also by FPMoc.

The filtration F-°° on Locx, (M) is defined analogously and we write Locx, (M, F,) :=
(Locx, (M), FLoo).

Remark 3.2.43. Let (M, F,) be a strictly X(-specializable (Dx, FY)- or (Dx (xXo), Fy)-
module. The Locx, (M, F,) and DLocx, (M, F,) is strictly Xo-specializable [SS17, Sections
9.3.c and 9.4.b].

Example 3.2.44. Examples 3.2.14, 3.2.22 and 3.2.25 generalize to the filtered setting.

3.2.3 Vanishing and nearby cycles

We finish this section by introducing the so-called vanishing and nearby cycle functors. Let
U' C X be an open subset, f : U’ — C aregular function with Zyy = , (f) and (M, F,) a
good (Dx, FY)-module. We set

(M, FL) = (ig)4 (M, Fa),

where iy : U' < U’ x C; stands for the graph embedding. Recall that if M is f-specializable
then GrZU 1 M for o € @Q is naturally endowed with a filtration F, defined by

(F.VQU/X{O}/TA X VE;X{O}/\NA> /V<U(;><{O}j\v/l ~ F.VaU/X{O}ﬂ/F.Vg;X{O}M_

Definition 3.2.45. Let (M, F,) be an f-specializable well-filtered (Dx, Fy)-module. We
define for & € [—1,0) and A = exp(27mia)

U'x{0} —~
ViA(M,FY) i= (s M, Fy) := (GrY M, F,)
and call (¢ M, F,) = @71ga<o(Gr}x/U M, F,) the nearby cycles and (¢ M, F,)
the unipotent nearby cycles.
Similarly, we define for o € (—1,0] and A\ = exp(2mic)

GrA(M,F)) = (psa M, Fa) = (G=¥" " M, Fuyy)

and say that (7 M, Fy) := @71<ago(GrgU 1Y M, F.,1) are the vanishing cycles and that
(¢§1 M, F,) are the unipotent vanishing cycles.

160
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By Lemma 3.2.31 and filtered Kashiwara’s equivalence we have for f : X — C such that
(M, F,) is strictly f-specializable and supported on V'(f) that

N Xx{0} . -
¢r1(M F) = Gry ™ (i) + (M, Fo)(—1) =2 (M, F)
motivating the shift in the definition of the filtration on ¢ \ M.

Remark 3.2.46. Forgetting the filtrations in Definition 3.2.45, we define the corresponding
notations in a non-filtered situation. Notice that while ¢y M = VOU/X{O}/\N/l/ VF{X{O}/\N/I as
Dyr-module by Remark 3.1.8, this isomorphism is not compatible with the Fy Dy -structures
of these modules.

Remark 3.2.47. We point out that by Remark 3.1.8 the (unipotent) vanishing and nearby
cycles can be considered as (D, Fy)-modules supported on V() and the ¢ ¢ (M, F,) and
(M, F,) are equipped with (Dy, Fy)-linear filtered nilpotent endomorphisms

N = —&gt — ’(ﬁf,)\(M,Fo) — wf,A(MVF')(_l)
N = —8tt — ¢f7A(M,Fo) — ¢f,/\(M7F°)(_1)

for A = exp(2mia). The unipotent vanishing and nearby cycles come with (Dy, FY)-linear
filtered morphisms

can=—0;-

/_\

Yr1(M, F) dr1(M, Fy)

(—W

var=t-

such that can o var = N on ¢¢ 1 (M, F,) and var ocan = N on 5 1 (M, F,), where the (—1)
on the lower arrow indicates the corresponding shift in filtration on 17 1 (M, F,).

Remark 3.2.48. The above considerations can be generalized to arbitrary non-zero functions
f:U —C.
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4 Algorithms for (strictly) specializable
D-modules

The purpose of this chapter is to develop algorithms for the computation of the constructions
from the previous chapter by combining the theory established in that chapter and the com-
putational methods for (bi)-weight-filtered PBW-reduction-algebras from Chapter 2. More
precisely, given a smooth equidimensional variety X with a pure codimension one subvari-
ety Xo and assuming that X is smooth, we develop algorithms for the (filtered) V -filtration
along X on Dx-and Dx (xX)-modules as well as the corresponding graded parts. Based
on this we establish methods for the computation of vanishing and nearby cycles and their
attached morphisms var, can and N. Moreover, we give new algorithms for the localizations
and dual localizations along (not necessarily smooth) X of (strictly) Xg-specializable D x-
and Dx (xXo)-modules relying on the V-filtration and extend them to the filtered situation.

The outline of this chapter is as follows: In Section 4.1 we justify our passage to global
sections for affine X and investigate the ring Dx and, if X is smooth, also the V -filtration
on Dy along Xy. As a first step to solve the problems outlined above, we then consider in
Section 4.2 the case that X is a global coordinate neighborhood of X and use that the global
sections Dy (X) have a realization as PBW-reduction-algebra with V;X0- and F¢-filtrations
induced by weight vectors permitting us to apply the algorithms from Chapter 2. Building on
this we develop techniques to compute (filtered) V -filtrations and their graded parts as well as
localizations and dual localizations along X. Next, we consider in Section 4.3 computations
in local coordinates for not necessarily smooth X by reducing them to the previous section
via a graph embedding and a coordinate change. Finally, we extend in Section 4.4 the results
of the previous two sections to general affine varieties via an algorithm that glues filtered
presentations given on an affine open cover of X. Moreover, we indicate how to generalize
these methods to non-affine X.

We keep the notation of the previous chapter. So in particular X stands for a smooth
equidimensional variety and Xy C X is a pure codimension one subvariety with embedding
t: Xo = X and defining ideal sheaf T. We write X* = X \ X for the complement and jx~
for the corresponding inclusion into X.

Algorithmically the following questions arise in the context of this chapter: Given coher-
ent Dx- and Dy (*X()-modules M and N with optional good Fy Dx- and F{ Dy (xXg)-
filtrations Fy M and F, \V, respectively, find algorithms that perform the following tasks:

e Decide if M and N are (strictly) X(-specializable.
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o If (M, (F,)) and (N, (F,)) are (strictly) X-specializable and X is smooth, compute
(Vo M, (F,)) and (Va NV, (F,)), respectively for all a € Q.

e If M and N are (strictly) X,-specializable, compute presentations of the (dual) local-
izations Locx, (M, (Fs)), Locx, (N, (Fe)), DLocx, (M, (F,)) and DLocx, (N, (Fs))
as (Dx, (FY))-modules.

e Given that U’ C X is open and f : U" — C is a regular function such that M is
(strictly) f-specializable, find representations of the vanishing and nearby cycle func-
tors ¢ (M, (F,)) and v¢(M, (F,)), of their unipotent equivalents ¢ ¢ 1 (M, (F,)) and
Y1 (M, (F,)) and of the maps can and var.

Here, we mean for instance by (M, (F,)) the pair (M, F,) if M is equipped with the optional
good filtration F, M and the module M otherwise. We solve in this chapter all problems
expect for checking if a given modules is strictly Xg-specializable. In addition to that, we
indicate how to make the quasi-inverse in Kashiwara’s equivalence for mixed Hodge modules
computationally accessible.

4.1 Reducing the problem to a global section situation

As every smooth equidimensional variety has a finite cover by smooth irreducible affine va-
rieties of the same dimension and a sheaf is uniquely determined by its restrictions to such a
cover and the gluing data, it suffices to explain how to do the computations on elements of such
a cover and how to patch the so obtained objects together. Hence we assume in this chapter if
not stated otherwise that X is a (smooth) irreducible affine variety and identify it with a closed
set of C™ for a suitable natural number n € N.
For our computations, we wish to pass to the global sections, requiring equivalences of
categories
I'(X,e) : Modeon(Ax) — Modg, (I'( X, Ax)) 4.1.1)

and

['(X,e) : Modeon(Fy Ax) — MOdfg(F(X, F, Ax)), 4.1.2)
where Ax stands for Dy, Dx (xXp) or (if Xy is smooth) VOXO Dx = VOXO Dx(xXp). The
sheaf of rings Ax being O x-quasi-coherent and locally Noetherian (see Proposition 1.2.18,
Remark 1.4.17 and Lemma 3.1.1), the equivalence of categories in the unfiltered situation is
immediate by Corollary 1.1.10. Since the ring Gr” A is locally left Noetherian and O x- or
Ox (xXy)-locally free by Lemma 1.2.17, Remark 1.4.17 and the proof of Lemma 3.1.1, we
have according to Corollary 1.1.10 that

(X, o) : Modeon(Gr'™ Ax) — Modg(T'(X, Gr™” Ax))

is an equivalence of categories. By Proposition 1.1.17 and [HTTOS, Proposition D.1.1] the
functor in Equation (4.1.2) is hence essentially surjective with an essentially surjective inverse.
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4.1 Reducing the problem to a global section situation

One easily checks that filtered morphisms are indeed preserved under this functor and that this
functor is fully faithful. This allows us to replace all sheaves involved by their global sections.
All notations and results carry over to the global section case by applying the above equiva-
lences of categories. Replacing X by X (if X is smooth), we see that similar considerations
hold also in this case.

Let now Oy, Dx, Dx(xXo), VoDx = VoDx(xXp) (for smooth Xy), Dx, (for smooth
Xo), M, M(xXy), N and I denote the global sections of Ox, Dx, Dx(xXy), VoDx =
Vo Dx (xXo), Dx,, M, M(xXp), N and Z, respectively. As M and N are finitely gener-
ated Dx- and Dy (*X()-modules with optional good FyDx- and FgDx (xXy)-filtrations,
respectively, we may assume

(M, F,) = (DY /K, F°[s]s) and (N, F,) = (Dx (*X0)¥ /L, F°[s]s)

with F some finite set, s € Z¥ a shift vector and K C D)E( and L C D X(*XO)E submodules,
respectively.

Before we start with developing actual algorithms, we need to understand the structure and
computational properties of Dx and, if X is smooth, also of VOXO Dx: While we can represent
Dx as a C-algebra in terms of generators and relations and consider it is a PBW-reduction-
algebra (see [Bav10, Theorem 1.2]), we do not know how to determine a corresponding PBW-
reduction datum and hence how to solve Grobner basics over such a type of ring. However, we
have seen in Chapter 2 that a PBW-reduction datum of Dx is computable for certain X: For
instance the global sections of D¢n coincide with the Weyl algebra D), allowing us to apply
our considerations of Chapter 2 (see Example 1.2.2 and Example 2.1.26). More generally, if
X has a global coordinate system then Dx is by Example 2.1.30 a PBW-reduction-algebra
with computable PBW-reduction datum and similarly good properties. So our approach will
be to do the computations locally using local coordinate systems and then glue the so obtained
objects. Before we begin with the local computations, we assume now for a moment that X
is smooth and describe the V -filtration on Dx along Xj:

Lemma 4.1.1. The C-subalgebra VOXODX of Dx is generated by Ox and Der;(Ox) :=
Derz(Ox)(X). Moreover, it holds

I~kyXop ifk <0
VkXODX = Xo 0 * Xo lf B
Vk—lDX + @X(X) . Vk—1DX’ else

and
VX Dx(xXo) = I *V;" Dy fork € Z.

Proof. Denoting our claimed V-filtration by V] Dx, we obviously have V]Dx C V,Dx. For
the converse inclusion it suffices to show that for some affine open cover {D(g)}4ec of X
with G C Ox finite

VeDp(g) € (VJDx) ®0 Ox|[g Y forallg € G,

165



4 Algorithms for (strictly) specializable D-modules

under the identification D,y = Dx ®oy Ox[g~*]. This is clearly the case for D(h) C X*
as h € I implies h - Ox(X) C I-Ox(X) C Der;(Ox). Thus Der;(Ox) ®o, Ox[h7}] =
Ox(X) Rox Ox[h_l] and hence VéDX Rox Ox[h_l] =Dx ®oy Ox[h_l} = ViDx ®oy
Ox[h™1] for all k € Z. This reduces the problem to the case that D(g) is a coordinate
neighborhood of X with coordinates x1, .. ., Zqim x_1,t and derivations 61, . . ., Ogim x 1, Ot
such that Zp(,) is generated by ¢. By the definition of local coordinate systems, we have
0;,t0; € DeroD(g)I((’)D(g)) = Der;(Ox) ®o, Ox[g], where the equality is due to Re-
mark 1.2.15. The claim follows now by the representations of Ve Dp () in Equation (3.1.2)
and by a similar representation of V, D x (x X)) D(g)- O

Hence it remains to describe Der;(Ox).

Lemma4.1.2. Let Xo = | |;c ; V(I;) be the decomposition of X into irreducible components
with I; C Clxy, ..., xy] prime and generated by I ;) = {ff, e gj }. Then we have:

(a) The Ox-module Dery,(Ox) is generated by the operators induced from I;Oc»(C")

and ,
<(5lm(fii))1§z’§r, )
det 1<m<r+1

(O, )1<m<rt1
for1 <ki <---<k.<sjand1 <y <--- <lp41 <1, wherer = n— dim Xo.

(b) The Ox-module Der;(Ox) is Ox-generated by UjeJ (Hjlej\{j} I(j/)> Dery;(Ox).
Proof.

(a) Follows immediately from [Bav10, Theorem 1.1].

(b) Write Der;(Ox)’ for the O x-module generated by (U, ; (Hj,EJ\{j,} I(j)) Dery,(Ox).

It clearly holds that this module is contained in Der;(Ox). It is now enough to show
Der(Ox) ®oy Ox[g™"] € Der1(Ox)' ®ox Ox[g™"]

for a finite affine open cover {D(g)}4eq of X with G C Ox. Arguing as in the proof
of Lemma 4.1.1, we may restrict ourselves to those g such that Xo N D(g) # 0.
So in particular it suffices to consider g = [];c ;1 f,ﬂj with 1 < k; < s; and
j € J. But now we have Der;(Ox) ®0, Ox|[g7!] = Dery, (Ox) ®oy Oxlg™ Y =
Der;(Ox) ®o, Ox[g™!] finishing the proof.

O]

As for Dx we do in general not know how to realize VD x in terms of a PBW-reduction
datum. However, on a coordinate neighborhood of X in X, Example 2.1.30 explains how
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

to obtain such a presentation. Hence we first consider the case that X is smooth and X is
a global coordinate neighborhood of X and develop algorithms for the problems outlined at
the beginning of this chapter using the methods from Chapter 2. Then we generalize this in
two directions. Via gluing we consider the case of smooth X and general X and via graph
embeddings and gluing we treat the case that X is singular. Before we start, we agree upon
the following convention:

Convention 4.1.3. In this chapter when formulating algorithms, we assume that there exists a
computable subfield K C C containing QQ such that we can decide whether all (complex) zeros
of a given polynomial p(s) € K[s| are rational and such that Xy C X C C" are defined by
the vanishing of polynomials in K[z, ..., z,]. We also assume that all appearing input data
(such as generators of modules) is defined over K.

For readability of our algorithms, when writing (D% /K, F°[s]. ), we implicitly assume that
F is a finite set, K C D)E< a submodule given by a finite set of generators and s € Z% (and
likewise for finitely presented (Dx (xXy), Fy)-modules).

4.2 Computations using global coordinate systems for
smooth codimension one subvarieties

Consider the affine n +1-space C" ! with coordinates z1, ..., z,,t and the smooth, irre-
ducible subvariety X = V(J) C C"T! of dimension m+1, defined by the prime ideal
J C Clz, t] :== Clxy, ..., xn, t], with the property that it is a global coordinate neighborhood
of its smooth pure codimension one subvariety Xy. By Remark 1.2.12, we may assume that a
set of global coordinates is given by the residue classes of fi,..., fm,t € C|z,t], that Xy =
V(J Ut) and that corresponding derivations are induced by derivations 6}, ... 0% 6! 11 €
Der(C[z, t]) of the form 6§ = > 1<j<n aé(g)@i + Gi(m +1)0¢ (for aé- € C[z]). So it holds
in particular 0l(t) = di(m+1)- According to Example 2.1.30 Dx is realized as the PBW-
reduction-algebra

Tx = (C<£7t391a s aemaat>7s’ J,’<)

with

S = {[1/']715'%], [t,ﬂ?i], [0p7 ak]a [€k7ﬂ, [9k7$2] - aé(xl)v [8157 ek]a [atvxi] - 0£n+1(xi)7 [8t7t] - ]-|
for1 <i<j<n,1<k<p<m})\{0},

< any well-order such that S is a standard reduction system with respect to < (for instance
a well-ordering satisfying z*t°0790 < z®'t%'07' 0% if |y| + 6 < |7/| + ¢ using usual multi-
index notation) and J’ C C|[z, ¢] a Grobner basis of .J with respect to the ordering induced
by <. Obviously, the isomorphism between Dx and T’y is given by sending z,¢,61,...,60n
and 6,41 to z,t,01,...,60, and Oy, respectively. Denoting by v &€ ZP T2 the weight
vector on T'x that assigns weight 1 to J;, weight —1 to ¢ and weight 0 else, that isomorphism
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4 Algorithms for (strictly) specializable D-modules

induces isomorphisms Ve Dx FYTx. Similarly, writing w € Z"T™*2 for the weight

vector that gives 0; and 0; (1 < 4 < m) weight 1 and the other variables weight 0, we
obtain FJDy = F}¥Tx. Note that by Example 2.3.5 and Example 2.4.3 all assumptions
of Section 2.3 and Section 2.4 are satisfied and we may hence apply the methods developed in
Chapter 2. We point out that PBW-reduction data of the subalgebra F) D x and the subquotient
algebras Gry Dx = Dx,[t0:] and Dx, of Dx are computable by Example 2.1.30.

From now on we identify Dx with T'x and use also the notation F2 D x for a weight vector
u on Tx. We usually write Dx, but we represent its elements as elements of Tx, which
are in turn given as residue classes of elements of C(z,t,0,0;) := C(z,t,01,...,0m,0).
We usually omit the residue class notation when its clear from the context that we interpret
elements of the latter C-algebra as elements of T'x by taking residue classes. We use analogous
conventions also for other PBW-reduction-algebras considered in this section.

Remark 4.2.1. In view of Convention 4.1.3 we may assume that some generating set of J is
defined over K[z1, ..., xy,]. Hence our system of global coordinates can be realized as residue
classes of polynomials in K[z, ..., x,] implying that we may assume that K is a T'x- and
T'x,-computable field.

Equipped with the tools from Chapter 2, we start by developing an algorithm for the V-
filtration:

4.2.1 The V-filtration on Dy-modules

We want to check whether M = D)E( /K is Q-specializable along X and compute the V-
filtration in this case. As X is a global coordinate system, we may apply Lemma 3.1.21
and Remark 3.1.22 globally. This reduces the computation of VM to the computation the
b-function with respect to the induced V -filtration along X on D)b; /K. Recall that by Re-
mark 3.1.23 the polynomial b(s) € K[s] is the induced b-function on that module if and only
if b(s) is the minimal nonzero monic polynomial satisfying

b(—ost)(e) € F¥,(DE/K) (4.2.1)

for all e € E. Hence it suffices to give an algorithm for the computation of a minimal poly-
nomial as in Equation (4.2.1) on finitely presented D x-modules. We call this polynomial also
the induced b-function with respect to v. For this purpose we adapt the methods of Oaku and
Takayama (see [OTO1]) to our situation:

We identify by Proposition 2.2.28 GrY K with a submodule of (Gr¥ Dx)¥ and Gr¥ Dx =
GrY T'x with an elementary PBW-reduction-algebra of type

((C<£a tha at), ltv(S)a J\I/) —<)7

where v-homogeneous J;, C C|[z, ] is determined using Corollary 2.2.30.
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Remark 4.2.2. We point out that we may consider C[0,t] as a C-subalgebra of Gr¥ Dx: Note
that C[0st] C C(t,0;)/ ([0, t] — 1) has C-basis {t*0F | k € N}. As Gr¥ Dy is an elementary
PBW-reduction-algebra we have >, aktkaf = 0 (with a € C) in Gr¥ Dx if and only
if apt® = 0 for all k € N. If there is k € N with a;, # 0, then it follows that there exists
f € Clz,t] with t* 4+ t*T1 f ¢ J implyingt € Jor 1 +tf € J as J is prime. In both cases
that is a contraction to Xy = V/(J, t) being a codimension one subvariety of X = V' (J).

Lemma 4.2.3. The b-function with respect to v on Df( /K corresponds under the substitution
of s by — 04t to the monic generator of the C[—0yt|-ideal

ﬂ (C[_att] N K€)7

eclk
where K, := {me(k) | k € Gr¥ K, 7 (k) = 0foralle’ € E\ {e}} for e € E. In particular,
the b-function with respect to v exists if and only if that ideal is nonzero.

Proof. If b(s) is the b-function with respect to v then b(—d;t)(e) € (K + F¥,D¥)n Fy DY
implies b(—0;t)(e) € Gr¥ K. Hence b(—0yt) is an element of () . ;(C[—0st] N K.).

Conversely, let b'(—0;t) be the monic generator of the ideal (.5 (C[—0st] N K.). We see
that V' (—04t)(e) € K + F¥, D¥ for e € E and hence

V' (—0it)(e) € F¥ (DY /K).
Consequently, b’(s) must agree with the b-function b(s). O

Recall that a v-homogeneous Gr¥ D x-generating set G of Gr¥ K can be determined by
Algorithm 2.2.33. From G we obtain Gr" D x-generators G. of K, by computing a Grobner
basis G, of G with respect to an ordering of type <pot, <, where < is an order on E such that e
is the minimal element, and setting G := 7m.(GLNDx (e)). To compute C[—0;t]N K, we first
eliminate z, § from K, by computing G” C C(z, t,0, 9;) inducing a Grobner basis of K, with
respect to an elimination ordering for these variables. Note that for instance the well-ordering

220799 <™ 2ot 97' 59" if and only if 2207 < z' 0
or %97 = ga/QVI and tﬁﬁf =< tﬁ/(‘)f/
for a,a’ € N*,3,5',6,8 € Nand v,y € N™ is indeed an ordering on Gr¥ Dy of desired
type. We observe that the elements of G/ are v-homogeneous because Grobner basis com-

putations over the PBW-reduction-algebra Gr¥ D x preserve v-homogeneity since 1t (.S) and
J., are v-homogeneous. Then

{metden 0y grd=ientilly | g e G N Cit,0,)}

is a set of C[—0;t]-generators of C[—d;t] N K. Substituting —d;t by s and performing a great-
est common divisor computation in C[s| of that set of generators, gives a principal generator
of the latter ideal. A principal generator of (), .5 (C[—0;t] N K.) is now given by the least
common multiple of these principal generators of the C[—0;t] N K.
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4 Algorithms for (strictly) specializable D-modules

Algorithm 4.2.4 Given global coordinate neighborhood X of Xy and a D x-module M, this
algorithm computes the induced b-function along X on M.

Input: A Dx-module M := DY /K.
Output: A polynomial b(s) € K[s] such that b(s) is the induced b-function along X on M
if b(s) is nonzero. Otherwise that b-function does not exist.
1: Compute aset G C K(z,t,0, 8t>E inducing Gr¥ D x-generators G’ of Gr¥ K C GrY D)E<
by Algorithm 2.2.33. > Gr¥ Dx is a PBW-reduction-algebra.
2: fore € E do
3:  Compute a Grobner basis G/, of G’ with respect to an ordering of type <o, <, where <
is an order on E such that e is minimal.
. SetGe :=m(G., N Dx(e)).
5. Compute aset G, C K(z,t,0,0;) inducing a Grébner basis of ¢, v D, (G.) with respect
to an elimination ordering for x, 6.
6:  Consider H, := {tmax{degv(g)’o}aflax{fdeg"(g)’o}g | g € G!NK(t,0)} as a subset of
K, 0r) / ([0, 1] = 1).
if H, = () then
8: return 0.
: Substitute —0,t by s in H,.
10:  Compute the monic greatest common divisor b.(s) € K[s] of the elements in H..
11: Set b(s) to be the monic least common multiple of the b.(s) fore € E.
12: return b(s).

We derive now from Lemma 3.1.21 and Remark 3.1.22 the following algorithm for the
computation of the V -filtration.

Algorithm 4.2.5 Given a global coordinate neighborhood X of X and a D x-module M, this
algorithm tests whether M is X,-specializable and computes V,;X° M in this case.

Input: A Dx-module M := DY /K and o € Q.
Output: If M is X-specializable, a finite set V' C D)E( such that VOf(OM = FvDy <V> C
0

DY /K. Otherwise a notification that M is not X-specializable.
Compute the induced b-function b(s) € K[s] along X of M using Algorithm 4.2.4.
if b(s) = 0 then
return Module is not specializable along Xjp.
Compute the roots Z := {z € C | b(z) = 0}.
if Z ¢ Q then
return Module is not Q-specializable along Xj.
if Z = () then
return 1.
Set k := [minZ — «] and | := [max Z — (o + k)]. > Minimal root of b(s) lives in the
interval (a«w + k — 1, @ + k| and maximal root is in the interval (a« + k+1—1,a + k +1].

0 X RN R R
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

10: fori =0,...,l do

11:
12:

Zi={ze€Z|la+k+i—-1<z<a+k+i}.
Vo= {tmax{o’”k}Efmax{o’_l_k}(e) | e € E'}. > Residue classes are generators of
Vind M

—i— k-

13: for: =1,...,1do

14:
15:

for j=0,...,l—ido
Vejor = Vojokt Ullicrag Toez, (0t — 2 4+ + ki = 1)™MM0@ @) v

> Residue classes form generators of WE?_ M (see Remark 3.1.22).

16: return V_;.

The V -filtration is computable if it exists:

Remark 4.2.6. Assume that M = D¥ /K is X-specializable. Consider the set R := {—1 <
z <0 |thereisk € Z : b(z + k) = 0}, where b(s) stands for the induced b-function with
respect to v on M, and assume moreover that the residue classes of V,, C D)E( form a finite set
of VyDx-generators of V,M for o € R.

(a)

(b)

Ve M is already determined by the V, M with a € R by Corollary 3.1.11: For § = a+k
with & € R and k € Z we have

o <t—kva>, ifk<0,a#0
X
0 <a§’“va>, ifk>0a# 1.

VM =
FyDx
As Vo M is discretely indexed by R + Z, it is completely computable.

Assume we have computed finite sets V_; and Vy C D)E( such that their residue classes
Fy Dx-generate V_1 M and VoM, respectively. According to Definition 3.1.3(b), there
are b € (F@’D;/{l)vo and ¢ € (FyDY)V=1 such that t7g = > v rev, (bug)v_,v—1 and
OV=T = D _oevy (o1 w00 for vy € Vo and v—; € V_1. Such representations are de-
termined by Algorithm 4.2.5 on the fly without additional Grobner basis computations:
Recall that Lemma 3.1.21 and Remark 3.1.22 enable us to find Fy’ D x-generators of
VoM and V_1 M by computing such generators of kaM and V_kk_lM , respectively,
for a suitably fixed k. For the computation of VFM, we first pick sets Gg - D)E( for
J € Z such that their residue classes VD x-generate VjindM , namely we set

GY = {0t (e) | e € B, 4.22)

We easily read off of g € Gg an Fy' D x-linear combination of tg and J;g in terms of

G?q and G? 1, respectively. Using the notation of Remark 3.1.22, we then compute

iteratively generators G of W.(i)M by setting

Gt =i UbY (~out — &G
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4 Algorithms for (strictly) specializable D-modules

Now we express tg and d.g for g € G;H as Iy D x-linear combinations of G;tll and

Géill, respectively, by using the corresponding combinations for the elements of Géel’
G and G |, and the commutation relation [0, ] = 1.

Hence the V-filtration along X is determined by the following algorithm:

Algorithm 4.2.7 Given a global coordinate neighborhood X of X and a finitely generated
Dx-module M, this algorithm tests whether M is Xo-specializable and computes V;X° M in
this case.

Input: A Dx-module M := DY /K.

Output: If M is X(-specializable, a finite set V' C DX and a vector d € [—1,0]" such that
Ve M is discretely indexed by {d, | v € V} +Zand VoM =} FY_4,/Dx -vand
Va,M = Zv,e‘,:dv/:dv FyDx -v for v € V. Otherwise a notification that M is not
Xp-specializable.

1: Compute the induced b-function b(s) € K[s] of M along X using Algorithm 4.2.4.
2: if b(s) = 0 then

3:  return Module is not specializable along Xj.

4: Compute the roots Z := {z € C | b(z) = 0}.

5. if Z ¢ Q then

6: return Module is not Q-specializable along Xj.

7: Initialize an empty set V and a (dynamic) vector d € ZV.

8: SetR:=(Z+7Z)N[-1,0].

9: if R = () then

10: SetV ={1}andd; = —1.

11: for o € Rdo

122 Compute a finite set V/ C D% such that V, M = FYDx (V') using Algorithm 4.2.5.
13:  SetV :=V UV’ and define d,, := o forv' € V',

14: return V,d.

Remark 4.2.8. The above algorithm can be modified to compute the not necessarily rationally
indexed V -filtration and the V-filtration along smooth equidimensional subvarieties of higher
codimension if this subvarity is defined by the vanishing of a subset of global coordinates: The
above algorithm relies only Lemma 3.1.21 and Remark 3.1.22 as well as the computability of
the induced b-function, which can be generalized to such a situation. We remark that the com-
putation of the b-function in the higher codimension case is a bit more complicated, because
in Lemma 4.2.3 we do not have to intersect with C[—0d;t], but with a C-algebra of the form
C[—>_, O ti]. This can be done by adapting the methods of Oaku and Takayama [OTO1] to
our situation.
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4.2.2 The V-filtration on strictly X,-specializable (Dy, Fy)-modules

If (M, F,) = (DY /K, F°[s].) is strictly X-specializable, then we can also compute Fy VM
for fixed @ € Q. Since the filtrations F, Dx and V4 Dx are induced by the weight vectors
w and v on T, respectively, the problem reduces by Example 2.3.5 and Example 2.4.3 to
Algorithm 2.4.15. More generally, we have:

Algorithm 4.2.9 Given a global coordinate neighborhood X of X, and an Xj-specializable
(Dx, F2)-module (M, F,) such that (VX0 M, F,)is (V3 ° Dx, F2)-good, this algorithm com-
putes the latter filtered module.
Input: An X,-specializable (Dx, Fy)-module (M, F,) = (DY /K, F°[s]s) and o € Q such
that (V, M, F,) is a good (VODX, - )-module.
Output: A finite set G C D andd € ZG such that FoVo,M = deGF "4, FyDx -g =
deGF o—degpwg (g )Fo Dx -g. B
1: Determine a finite set V. C D% ¥ satisfying Vo M = ., Dy <V> by Algorithm 4.2.5.
07
2: Find G C D¥ and d € Z€ such that F™[s], Fa’Dx<V> = yec I " 4,50 Dx - g using
Algorithm 2.4.15.
3: return G,d.

Remark 4.2.10.

(a) With regard to the output G of the above algorithm, we note that for g € GG a representa-
tive g’ € K(z,t,0,0;) with FQVoM =3 o F)Y (@ ¥ Dx - g is computable.

—degpw

(b) The above algorithm does not detect if the (Vo Dx, Fy)-module (V, M, F,) is not well-
filtered. In such a case it does not terminate because neither does Algorithm 2.4.15
(see Remark 2.4.16(a)). We also remark that we have no method to check whether a
well-filtered X-specializable (Dx, Fy)-module is X-regular.

() If (M, F,) = (DE/K, F°[s],) is strictly X,-specializable, then a filtered analogue of
Remark 4.2.6(a) holds: Consider the set R := {—1 < z < 0 | thereisk € Z :
b(z + k) = 0}, where b(s) stands for the induced b-function with respect to v on M
and let V,, C D¥ be such that F,V, M = > el “ideng e )FS’DX -vfora € R.
Then F,V,M is already determined by the F,V,M for a € R by a filtered version of
Corollary 3.1.11: We have for 8 = o+ kwitha € Rand k € Z

tkFF VM, ifk<0,a#0
FVsM =9 S 9ip, VoM, ifk>0,a# 1.
0<:i<k

As Vo M is discretely indexed by R + Z, (Ve M, F,) is completely computable.
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4 Algorithms for (strictly) specializable D-modules

4.2.3 The V-filtration on Dy (xX,)-modules
Notice that for N = Dy [f_l]E /L exists some D x-submodule L' C D)E( such that
N = (DR/L)E)
According to Lemma 3.1.28(a) the module N is Xy-specializable if and only if D)E( /L is

Xp-specializable and hence we reduce the computation of the V -filtration on IV to that of the
V -filtration on D)E( /L’ as follows: By Lemma 3.1.18 and Lemma 3.1.28(a) we have

VoN =2V, DY /I
for oo < 0 given that N is Xy-specializable. As
Vo kN =T "VoN

for any k£ € Z by Lemma 3.1.26(a), this completely determines the V -filtration leading to the
following algorithm:

Algorithm 4.2.11 Given a global coordinate neighborhood X of X and a finitely generated

Dx ﬁ_l]—module N, this algorithm tests whether V is QQ-specializable along X and computes
VX0 N in this case.

Input: A Dx[t']-module N := Dx[t']¥/Lwith L = |, 1Ly and I € DE.
Output: If N is Xy-specializable, a finite set V' C D)E( and a vector d € Q" such that
Va,+kN = > eva,—d, TkFa’DX v/ forv € V and k € Z, and such that Vo N is
discretely indexed by {d:, | v € V} 4+ Z. Otherwise a notification that N is not Xy-
specializable
1. if D/ Dy (L) is not Q-specializable along X, then > Test by Algorithm 4.2.7

:  return Module is not Q-specializable along Xj.
3: Determine V C D% and d € Q" as in Algorithm 4.2.7 for D¥/ Dy (L) > Compute

Ve(D%/ p L))
4 SetV':={veV|d,#0}anddefined € Q" byd/, :==d, forv' € V.
5: return V' d'.

Remark 4.2.12. While it was relatively easy to reduce the computation of the V -filtration
of finitely presented Xg-specializable Dx ﬁfl}—modules to that of Dy-modules, the filtered
case is more subtle. The problem stems for the fact that if (N, Fy) = (Dx [t '|¥/L, F°[s].)
is a strictly Xo-specializable (Dx[f '], F)-module with N = (DE/L/ )[Z~"]. then in gen-
eral F[s|3VaN # F°[s]eVoDE /L' for @ < 0. We will explain in Subsection 4.2.6 (see in
particular Remark 4.2.31) how to solve this problem.

Alternatively, we compute the V-filtration along X on IV by representing N as a quotient of
a free D x-module and then applying Algorithm 4.2.7 to this representation. Such a represen-
tation is determined as explained below:
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

4.2.4 Localizations of X,-specializable Dx- and Dy (xX,)-modules

We want to finitely present Locy, (M) = M ®o, Ox ﬁ_l} and Locx,(N) = N as Dx-
modules given that M and N are Xj-specializable. As every finitely presented D x-module
N’ with N = Locx,(N') is Xo-specializable if and only if N is so (see Lemma 3.1.28(a)),
we may restrict ourselves to computing Locx, (M ). Now Lemma 3.1.29 yields the following
algorithm:

Algorithm 4.2.13 Given a coordinate neighborhood X of X, and an Xy-specializable D x-
module M, this algorithm represents the localization Locx, (M) as a quotient of a free D x-
module.
Input: An X-specializable D x-module M = Dg /K.
Output: A finite set £’ and a finite set L C Fy D%’ that satisfy Locx, (M) = DY/ Dy (L)
Vi(DX / p (L)) = FY (DX / p, (L)) (forall k € Z)and F , (L) = gy (L).
1: Compute £/ C D)E( finite such that F’ is a set of Fy D x-generators of V_1 M by Algo-
rithm 4.2.5.
2: Represent V_1 M as a quotient Fyy D)E(// FyDx (L) with L E Fy T)]?/ finite using Algo-
rithm 244, > vy (L) = ker(Fy DY — Vo1 M, (¢) = &),
3: Set L:=t"'-L-tC D¥.
4: return E’ L.

Remark 4.2.14. Assume M = Df( /K is Xy-specializable and that we have computed a
representation Locx, (M) = D¥ /L' by the above algorithm.

(a) Keeping the notation of that algorithm, we want to make the natural D x-linear local-
ization map i x,) : M — D)E(/ /L' explicit. As VoM generates M as Dx-module,
it suffices to compute the images of a finite set of Fy’ D x-generators of VoM repre-
sented by V C D§ under this map. If we choose Vj as in Remark 4.2.6(b) and write
tvo = ey (Quy)er€’ for vg € Vo with g € (Fy D)% using that remark, then

n®1= %@gil = <Z (%}0)6’6,> ®E71 = Z til(Qvo)e’t (g@)fil)

e'eE’ e'cE’!

implies that i(, x,)(T0) = Y pcp t(qu,)ert(€'). Hence we extend Algorithm 4.2.13
as described in Algorithm 4.2.15 below.

(b) To patch our local computations together, we also need to be able to compute the image
of m ® T ¥ with k € N under the isomorphism M R D¥'/L'. This amounts
to finding p € DY such that t°p = i(+xo)(m). For that assume that i, x,)(m) is
the residue class of » € DY and deg,(r) < I. Then i(xxg) (M) € V(DY /L) =
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4 Algorithms for (strictly) specializable D-modules

"V (DY /L) = t*FY, (DY /L') by Algorithm 4.2.13 and Lemma 3.1.26(a). As
the latter module is F{y D x-generated by the residue classes of

V.= {tk+max{0,—k—l}atﬁmax{(),k+l}(6,) | e E/},

we compute a € Fa’D}/( suchthat7 =}, a,v by Algorithm 2.4.5 and Remark 2.4.6.
Now we set p := Y o1, t "a,v € D¥ and obtain t*p = i(, x,)(m) and hence m @ t*
is mapped to p under the above isomorphism.

We point out that the converse task of finding the image of m € D)E(, /L' form € D)E(/
under the isomorphism D¥ /L' = M [Tl] is easy. Namely, that image is given by
Derep me (€ @)

Algorithm 4.2.15 Given a coordinate neighborhood X of X and an Xy-specializable D x-
module M, this algorithm represents the localization Locx, (M) as a quotient of a free Dx-
module and computes the natural map i(, x,) : M — Locx, (M).

Input: An Xjy-specializable D y-module M = D§ /K.
Output: A finite set £/, a finite subset L C Fyy DY and ¢ € (DY) such that Locx, (M) =
DY/ p (L) as Dx-modules, Vi(D¥'/ , (L)) = FY(D¥/p (L)) for all k € Z,
FY p (L) = Fa’Dx<L> and the natural map M — DEI/DX@) is given by (e) — G
fore e E.
1: Compute by Algorithm 4.2.5 finite sets E', V C D)E( such that £’ and V; are Fyy Dx-
generators of V_1; M and Vy M, respectively.
2: Represent V_1 M as a quotient £y DY’/ FyDx (L) with L finite via Algorithm 2.4.4. >
Fypy (L) = ker(Fy DY = Vo1 M, (/) = ¢).
3 SetL:=t"1-L-t.
4: Find ¢ € (DY?)F such that () = 3, .y, (ce)u¥ € DE/K for e € E using Grobner basis
theory. > Use that V) is a set of Dx-generators of Df; /K.
5: Apply Remark 4.2.14(a) to determine d € (Fy DY) such that t5 = 3", cpr(dy)ere for
v € W.

6: Define g € (Dg’)E by (ge)er = Zyevo(ce)vt_l(dv)e’t-
7: return E' L, q.

Remark 4.2.16. If X = C", the localization Locx, (M) can in many cases also be computed
via various algorithms developed by Oaku, Takayama and Walther (see [Oak97, Section 7]
for M being f-saturated, [OTO1, Algorithm 6.4] for M holonomic, [OTWO00, Algorithm 3]
for Locx, (M) holonomic). Note that unlike our algorithm these algorithms do not require
that f is part of a global coordinate system. As Algorithm 4.2.13, these algorithms rely on
some kind of b-function (or Bernstein-Sato polynomial) computation. However, our method
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

is advantageous if we are also interested in the V-filtration along Xy on Locy,(M): Our
approach allows the determination of V, Locx, (M) without an additional b-function compu-
tation, whereas the other approaches need an extra b-function computation, namely that of the
induced b-function of Locx, (M), to compute V, Locx, (M).

4.2.5 Localizations of strictly X,-specializable (Dy, Fy)-modules

Unlike in the previous subsection we consider here only the case of strictly Xy-specializable
(Dx, FY)-modules and treat the case of strictly X-specializable (Dx (xXp), Fy)-modules
separately later. The reason for this is that while is was trivial to represent an Xg-specializable
Dx (xXp)-module as a localization of an Xy-specializable D x-module, this is not that easy
for strictly X-specializable modules and involves additional algorithms and theory because
we also have to take the Fj,-filtration into account.

So assume that (M, Fy) = (DE /L, F°[s]s) is a strictly Xo-specializable (Dx, Fy)-mod-
ule. We base our computation of Locx, (M, F,) on Equation (3.2.10), which states that

FloeME ) =Y {0it {(m® 1) | m € Foy(V.1 M)}
€N

So we may proceed as in Algorithm 4.2.13 if we additionally assume that the set £/ C D)E<
inducing a set of Fy’ D x-generators of V_1 M satisfies

RV = S
e'eFE’

»Dx - .
Such a set is determined by Algorithm 4.2.9 and we can even find for ¢’ € E a representative
e € K(z,t,0,0;) such that the above equality holds if we replace deg,(¢’) by deg,(e.).
To represent the localization map, we need to modify Algorithm 4.2.15, because we are not
in the position to apply Remark 4.2.6(b) as we did in Remark 4.2.14(a). But we can replace
that method by Algorithm 2.4.5 and Remark 2.4.6 (or by suitably tracing our computations in
Algorithm 4.2.9), yielding the following algorithm:

Algorithm 4.2.17 Given a coordinate neighborhood X of X and a strictly X-specializable
(Dx, Fy)-module (M, F,), this algorithm represents Locx, (M, F,) as (Dx, Fy)-module and
computes the natural map 7y, : M — Locx, (M).

Input: A strictly Xo-specializable (D, FY)-module (M, Fy) = (D% /K, F°[s].).

Output: A finite set £, a finite subset L C F Df(,, dezlandq € (D)E(/)E that satisfy
Locx, (M, Fu) = (D¥/ p (L), F¥[d]s) as (Dx, F¢)-modules, Vi(D¥'/ , (L)) =
FY(D¥ py (L)) forallk € Z, Fy p (L) = FyDx (L) and represent the natural local-
ization map M — D¥'/ Dy (L) by (e) — gc fore € E.

1: Find a finite set £’ C D¥ andd € Z¥' that satisfy F2V_1 M = Svem F g FyDx €
by applying Algorithm 4.2.9. ‘
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4 Algorithms for (strictly) specializable D-modules

2: Use Algorithm 4.2.5 to compute a finite set 1y C D§ such that Vj is a set of FyDx-
generators of VoM.

3: Represent V_1 M as a quotient Fyy D'/ FyDx (L) with L finite via Algorithm 2.4.4.
Fy Dy (L) = ker(Fy DY — Vo M, (¢) = ).

4 SetL:=t"1-L-t

5: Determine ¢ € (D)‘?)E such that (e) = > vy (Ce)w? for e € E using Grobner basis
theory. > Use that Vj is a set of D x-generators of Df( /K.

6: Compute d € (Fy D¥)"0 such that 7 = > e (dv)ere for v € Vg by Algorithm 2.4.5
and Remark 2.4.6.

7: Define ¢ € (Dg)E by (¢e)er = zvevo(ce)vt_l(dv)e/t.
8: return E' L. d,q.

4.2.6 Localizations of strictly X,-specializable (D (xX,), F?)-modules

Now consider the strictly Xg-specializable (Dx (xXp), Fy)-module
(N, ) = (Dx[F /L, F¥[sla).

The basic framework for our algorithm to determine the (Dy, Fy)-module Locx, (IV, Fe) =
(N, Fro¢) with filtration F1°¢ given by

FI°°N =Y " 0iFs_iVuN
i€N
is as follows: We first represent N as a quotient Nx of a free D x-module such that Vo Nx =
Fy Nx and compute the image Fy Ny of Fy N under this representation. Then we find p € Z
such that F;,, N = 0 which implies F;OCN x = 0, where FJ°° Ny is induced by the corre-
sponding filtration on N. While £,V Nx does not generate FLoc Ny (see below), we increase
p by 1 and compute Fg;OCVON x = F,VoNx. Finally, we use our interim results from the

computation of the various F,,VyNx to explicitly give generators of the filtration FLoeNy.
Hence there are three main algorithmic tasks:

e Represent IV as a quotient Nx of a free D x-module and transfer Fe N to this setting.

e Forafixed p € Z, use the above D x-representation to compute F}OCVON x = FgVoNx
and F-°°N forall ¢ < p.

e Check for fixed p € Zif F[{JOCVONX generates F.°° Ny, that is, if FqLOCNX =F, ,Dx-
FI%OCVONX for ¢ > p.

Before we explain how to tackle these tasks, we fix some notation:
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Notation 4.2.18. Let A’ < A be C[t]-modules. We define for b € N the quotient A’ : 4 t* and
the saturation of A’ by ¢ in A by

A gt ={acA|ttac A} <Aand A’ 14t := UA’:AtbgA,
beN

respectively. If ¢ acts bijectively on A, we identify the localization A'[t™1] := A’ ®¢y
ClH[t™'] < A[t™'] = A with the saturation A’ :4 t>°. In this case, we write A'[t7!] =
A’ 14 t*° and consider this module as a submodule of A.

Representing NV as a quotient of a free D xymodule
Using Algorithm 4.2.15 we compute a D x-linear isomorphism

p: N — Ny :=D¥ /L

and determine the images of (e) for e € E under this isomorphism. Recall that we may also
assume that VoNx = Fy (D)L;/ /L') and that L' and F|y L’ are Dx- and Fy D x-generated by

the finite set L” C Fyy DY, respectively. So in particular VoNx = Fy D¥ P DB (L"). We
0~-X

need to describe the image of F, N under p, which we denote by Fy Nx:

Lemma 4.2.19. We have

FuNy = (Z(Ff_seDm - p((cw) 7 < D¥ /L.

eckE

Proof. We writem € FyN asm = > ,cpt ““me(e) with a € N¥ and m, € Fy s Dx.
Setting @’ := max{a, | € € E'}, we obtain by D x-linearity

t%p(m) = p(t*m) = > " " mep((e)) € Y _(Fo_g,Dx) - p((€)).

ecE eclE

Conversely, if m' € (3 ,cp(Fs_s.Dx) - p((e)))[t™"] then there exist m” € N such that
m’ = p(m”) and b € N such that

p(tm") = thp(m") € S (F2_y. Dx) - p((€)) € p(FpN).
eclk

As p is an isomorphism this implies t*m” € F,N and hence m” € F,N because (N, F,) is a
filtered (Dx (xXy), F,)-module. This shows m’ € p(F,N). O
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4 Algorithms for (strictly) specializable D-modules

Computation of F°°V;, Ny for fixed p

The computation of F[{JOCVON x for fixed p € Z is based on the following lemma.

Lemma 4.2.20. Let D'y € {Dx, FYDx}. Then for any a € N¥ we have

F.Nx = ( Fls D - taep((6))> [t
eck

and

FLVy Ny = (VONX NS FY, Dy t%p«e))) oy 1
eclk

Proof. Since t“ch'FI}’VF."DX C FY(Fy Dx)te C Fy'Dxt C I} Dy forany p € Z and

a. € N, the first claim follows by Lemma 4.2.19. This finishes the proof as the filtration F°°

on Vy Nx agrees with the filtration induced by F, Nx according to Remark 3.2.12(a). O

Retaining the notation of the previous lemma, we calculate F]{“OCVON x by first intersecting

P:=FyNxn» FEY, Dy-t“p((e)) (4.2.3)
ecE

and then using a saturation technique to obtain FpLOCVoN x = P 1y ny t°°. While P can be
determined by Algorithm 2.4.7, we can even avoid having to compute such an intersection by
setting D'y = Fy’ Dx and choosing a. big enough such that °_ F}¥ o Fy Dx - 1% p((e)) C
Fy Nx: More precisely, if g. € C(z,t,0, 8t>E/ is a representative of p((e)), a suitable choice
is a. := max{0, deg, (¢c)} by Definition 3.1.3(b) since VyNx = Fy Nx. The drawback of

taking D’y = Iy Dx and picking a. > 0 is that the inclusion

FyNx Ny _ FY, FyDx -t"p((e)) C FyNx N> Fy . Dx - p((e)),
eck eckE

is in general proper. So we might not start with the largest possible choice of P, which could
lead to a more expensive saturation process.

Next, we reduce the computation of P : t*° := P iy, n, t>° tothatof P : t% := P 1y n, t*
for increasing a € N:

Lemma 4.2.21. The equality P : t* = P : t**! for a € N implies that P : t° = P : t*.

Proof. Assume that P : t*° # P : t®. Then there exists b > a + 1 such that P : t* = P :
t=1 C P :t’ Choose m € P : "\ P : t*~1. Since tm € VyNx and t>~'(tm) € P it
follows that tm € P : t*~! = P : t>=2. This implies that t*~2(tm) = t>~!'m € P and hence
m € P : t>~! contradicting our assumption. O
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

We explain now an inductive method that computes P : t® for a given nonnegative integer
a. We may assume that we have computed a finite set G; C Fy C(z, t, 0, 8t>E' inducing a set
of Clz, t]-generators of P : t/ for all j < a, since P : #/ is a finitely generated C|[z, t]-module
being a C|z, t]-submodule of the finitely generated C|z, ¢]-module FIEJOCFa’ Nx.

Lemma 4.2.22. If we set P, := ker((cm<Ga_1> — Gry Nx = FyNx/tFyNx), we have
that -
P:t*=P:t" 1 4 Cla,t]- {t 'n|ne P}

Proof. First note that t~!n for n € P, is uniquely defined since ¢ acts bijectively on N = Ny.
So in particular t~In € FyNx = VyNx and hence t~n € P : t* The claim follows now
since n € P : t® implies that tn € P : t¢~ 1, O

For the computation of P,, we represent Fy Nx /tFy Nx as a quotient of a free Gry Dx-
module and realize Gry Dx as PBW-reduction-algebra

(Cla, 8, 2), SO0, Jt0, <t:0)
as explained in Example 2.1.30(c). The corresponding isomorphism
Gry Dx = C(z,0,2)/ (S"" U J"?) (4.2.4)
is induced by the C-linear map
v:FYDx — C(z,0,2)/ (S*0 U J0Y) : 221°07 (t8;)° v 20707 2° (4.2.5)

(where we define 0° = 1). To simplify notation we identify the above algebras and we often
write t0; instead of z.

Lemma 4.2.23. Consider the Fyy Dx-module Q = FyD%Y/ FYDx (R). Then Q/tQ can be
realized under the above isomorphism as

Gry D%/ Gr¥ Dx <1/E(R)>

Recalling that VoNx = Fy DY/ vy, (L"), we now obtain

Fy Nx /tFy Nx = Gry DY/ _ <VE’ (L”)>.

1'6’ DX
We represent p € F(}’D)b;/ asp = py + tp € Fa’D)’E{' with p' € FY C(z,t,0,0;)" and
po € (C<{§C“Qﬂ(t(9t)"Y |laeN", e N" ~ € N}>El and get for its image ¥ (p) = po. Going
back to the problem of determining P,, we have for ¢ € C[z]%a—1

Z cqg € Py if and only if Z Cggo €
gEGafl geGafl

<yE’ (L”)>.

Gry Dx

181



4 Algorithms for (strictly) specializable D-modules

Thus our problem reduces to a syzygy computation of G0 | := | | yeG, 1190} and Ly =

i {lo} in Gry Dx with respect to the block ordering <:= ((<t’0)§2’1, (<0)L0), where
u denotes the weight vector assigning weight 1 to z and 6y, . . ., 6, and O else. Notice that <
is indeed an ordering on the elementary PBW-reduction-algebra Gry Dx, which implies by
Lemma 2.1.28 that a corresponding PBW-reduction datum and thus also a Grobner basis R of
the above syzygy module are computable. Consequently,

R={Y 7(r)gg|r€Rmg (r(r)€Clz]%}
9€Ga-1

Clz]-generates P,, where we abbreviate 7 GO uLy by 7 (see Definition 2.1.33(b)). It
(Gry D~ ,=<b)

remains to find representatives the elements of t "' R in Fy D)E(', which is achieved as follows:

Suitably tracing our Grobner basis computations (or by using a normal form computation), we

write for » € R in the C-algebra C(z, 6,t0;)

> T(ggo == T+ > aid

9€Ga_1 leL” (¢.5,4)€Q

with Q C C(z, 0,t9;) x (S40 U J+O)E" % C(x, 6,td,) finite. By construction of the sets S*°
and J*° we then determine for j € (S*° U J“0)F" an element j' € C(z, t, 6, ;)" such that
j+tj' =0 € FyD¥ and therefore

Z T(r)go90 = — Z T(r)1plo — Z qti'q € Fa’D)E(I.

gEGa—l leL” (QJ:‘I/)GQ

We conclude that in Fy D)E(/

(Y 70)d +t7 O 7t = > qti'd) [ € Rimgo (7(r)) € Clz]% 1}

QEGa_l leL"” (q7]7q/)€Q
induces a set of C[z]-generators of {t~'n | n € P,}.
Remark 4.2.24. We outline some alternative approaches for the computation of P : ¢t°.

(a) Writing P : t* = P : o1 4 ¢71. (C[Lt]<Ga,1> N FY,Nx), we could also apply
Algorithm 2.4.12 instead of the above method. However this approach seems to be
computationally more involved as it requires multiple Grobner basis computations.

(b) We can use for the computation of P, that VoNx /tVoNx = VyNx/V_1Nx is even
a finitely represented D x,-module (see Remark 4.2.37 in Subsection 4.2.8) and reduce
the problem to a syzygy computation over Dx,. However, the computation of such a
Dx,-representation is quite involved. So it should be advantageous to use the method
we suggested above.
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Algorithm 4.2.25 Auxiliary procedure for Algorithm 4.2.26

Input: A Dx-module N = D)E(/DX (L) with L C Fy C(z,t,0, ;)" finite and FyDx (L) =
(L) N Fy D such that ¢- acts bijectively OILN and a ﬁniﬁte set G C FY Clz,t,0,0,)F.
Output: A finite set R C FY D¥ such that Cle t]<R> = Cle t]<G> FyN t S FYN.
1: Writtg € Gandl € Lin Dy as g = go + tg' and | = Iy + ¢’ with ¢', " € C(z,t,0,t0;)
and go,lo € ({z*0°(t0,) | @ € N", 3 € N™,y € N}).

2: Set Ly := UZGL{ZO} and Gy := I—lgeG{QO}'
3: Compute a Grobner basis R of SYZGry Dy (Go, Lg) with respect to an ordering of type

(=G0, <L), where u is a weight vector on Gry Dx assigning weight 1to 6y, ..., 6, and
t0; and 0 else. > Identify Gry Dx with a PBW-reduction-algebra as above.
4: for r € R with g, (7(r)) € C[z]“° do
5. Determine k, € (S%° U J"Y) and k], € C(z,t,0,t0;) with k, + tk]. = 0 € FY Dx and
deG T(T)gogo - - ZleL T(T)lolo + kr € C<£7 0, tat>'
6: Set R := {3 c;7(r)god’ + D e t=r(r) tl — K. | r € R,mq((r)) € C[z]%}.
7: return GU R/,

Note that the output of the above algorithm can be effectively represented by elements in
Fy Clz,t,0,0,)".

We remark that eventually P : t~! = P : t% because Ny is strictly X(-specializable
and hence F,VyNx is a finitely generated Clz, t]-module. We check this equality by Algo-
rithm 2.4.5. Thus the algorithm below correctly computes F,Vo Ny and terminates if we take
Nxand C:=3 cpF)Ys Dy - t%p((e)) as input:

Algorithm 4.2.26 Given a Dx ﬁ_l]—module N and a C[z,t]-submodule C, this algorithm
computes the saturation (Fyy N N C) :pyn t*°.

Input: A Dx-module N = D/ p, (L) with L C Fyy C(z,t,0,0,)" finite and v, (L) =
Dy (L) N FY D such that ¢- acts bijectively on N, and a finite set C C D¥.
Output: A set G C Fy D¥ inducing a set of C[z, t]-generators of (Fyy N N Clz)(C)) Py Nx
t°° if this C[z, t]-module is finitely generated.
Set P :=t/C, where j > max{0,deg,(c) | c € C}.
Find a finite set G C Fy Dg inducing C[z, t]-generators of P : ¢ by Algorithm 4.2.25.
while P # P :t¢do > Check with Algorithm 2.4.5
P:=P:t.
Compute a finite set G C Fy DY inducing C[z, t]-generators of P : t using Algo-
rithm 4.2.25.
6: return G.

A
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Combining the above algorithm with the methods from the previous subsection, we formu-
late the following algorithm for the computation of FIEJOCVON X

Algorithm 4.2.27 Given a coordinate neighborhood X of X and a strictly X-specializable
(Dx (xXp), Fy)-module (N, F,), this algorithm represents N as a quotient of a D x-module
and computes FI}OCVON .

Input: A strictly Xo-specializable (Dx [t '], F2)-module (N, Fy) = (Dx [t 17 /L, F°[s].)
with L’ C D¥ finite such that L = Dyl <L’ > and arll integer p € Z. ,

Output: A finite set £’ and finite subsets L”,G C D¥ such that N = DY/, (L") as
Dx-module and F*“VyN = Clad] (G) C DY/ (L"),

1: Use Algorithm 4.2.15 to determine a representation Nx := DY/ Dy (L) of N =
D)EE/DX <Fl®ox Ox[i~'] as Dx-module and b C (DE)E such that (¢) @ 1 is rep-
resented by b, € Nx (fore € F).

Set j := min{s. | e € E}. > F(}OCNX =0forq < j.
if p < j then

return FE', L” {0}.

Compute G C Dgl inducing generators of F;OCF[}’ Nx by Algorithm 4.2.26 with input
Nx and {Qa@fb6 lee E,a e N*,f €N, |a|+ S+ s. < p}. >See Lemma 4.2.20.
6: return E', L" G.

Computation of F-°°N for fixed p

Recall that
Fy°N =Y 0jF, iVyN =) 0jF}* Fy Nx.
1€EN €N
Since FqLOCVONX = 0for ¢ < j := min{s. | e € E} by definition, {FqLOCNX}qu is

determined by C|z, t]-generators G, C D}E(/ of FqLOCFa’ Nx (which can be found by Algo-
rithm 4.2.27) for ¢ = j, ..., p. Namely, we have

Fp°Nx = Y > (F;Dx) g (4.2.6)

J<i<p g€eG;

for all ¢ < p. The above equation shows that it is even sufficient to determine generators of
F(}OCF(}'NX/FIWF(}’DX . FJ“_"%F(}’NX forq = j+1,...,p. Hence we reduce the number of
generators by dropping members of G, that have residue class 0 in that module. So we modify
Algorithm 4.2.27 as follows:
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Algorithm 4.2.28 Given a coordinate neighborhood X of X and a strictly Xy-specializable
(Dx (xXp), FY)-module (N, F,), this algorithm represents N as a quotient of a D x-module
and computes F;“OCN .

Input: A strictly Xo-specializable (Dx[f '], F2)-module (N, Fy) = (Dx [ 'Z/L, F°[s]a)
with L' C D¥ finite such that L = Dy (L') and an integer p € Z.
Output: A finite set £/, finite sets P, G C D¥ and d € Z¢ such that N = D¥'/ Dy (P) as
Dx-module and Fy°°N =37 o FY 4 Dx -g C DY/ (P) forq <p.
1: Use Algorithm 4.2.15 to determine a representation Ny := DY/ py(P) of N =
D&/ Dy <ﬁl®ox Ox ﬁ_l] as Dx-module and b € (D¥)F such that (¢) ® 1 is rep-
resented by b, € Nx (for e € F).

2: Set j :=min{s, | e € E}. > Fy°°Nx = 0forq < j.

3: Initialize an empty set G C D)E;/ and a (dynamic) vector d € Z©.

4: forg=34,7+1,...,pdo

5. Compute a finite set G’ C D)E(' inducing C[z, t]-generators of FqLOCFa’ Nx by using
Algorithm 4.2.26 with input Ny and {Qaﬁfbe lee E,a e N* B eN, |a|+ 8+ s <
q}. > See Lemma 4.2.20.

6: for g € G’ do > Check if generator is needed and add to G if necessary.

7: if g ¢ ZQGG(F;"_dQFS’Dx) - g then > Check by Algorithm 2.4.5.

8: Set G :=GU{J'}.

9: Setdy = q.

10: return E', P,G,d.

By the above algorithm we compute for a fixed integer p € Z aset G C Fy ng and a vecor
d € 7% such that

F°VoNx = Y F)" a,F0Dx -7 4.2.7)
geG
and
FI*°Ny = Z FY4,Dx-g (4.2.8)
geG

for ¢ < p. The next step is now to check whether the latter Equation holds for all ¢ € Z.

Finding generators of F°°Nx

Recall that the filtration F.(p ) on Ny is defined by

L .
F(p)NX _ qucNX7 lqup
7 Fo ,Dx - FX°Nx, ifq>p
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4 Algorithms for (strictly) specializable D-modules

and hence agrees with
> 4, Dx 3

for G as above.

We apply Corollary 3.2.18 to test whether FI°Ny = .(p N x. Criterion 3.2.18(a) is
satisfied if we choose p > max{s. | e € E}, because we have Fy N = F°[s]eDx ﬁ_l]E/L.
We check Part (b) of that criterion by testing Fy Nx = > gec Fo' Dx - g via Algorithm 2.4.5
since Vo Nx = Fy Nx by construction. Assuming that the former conditions are fulfilled, our
verification of the remaining two conditions is based on Algorithm 2.4.14, which tests whether
certain submodule and quotient filtrations agree. For that, and in preparation of expressing the
filtration F.°°° N on a suitable isomorphic module by a shift vector, we compute the kernel of
the surjective D x-linear map

k: DY — Nx, (9) —7

using Grobner basis theory to obtain an isomorphism (D§ / ker(x), F¥[d]e) = (Nx, FP )).
Note in particular that Vi, (D /ker(k)) = FY(D$/ker(x)) for k € Z. This implies that
Conditions 3.2.18(c) and (d) are equivalent to

FY[dloFy (DS ker(r)) = Y (K q, 55 Dx) - (9)
geG

and

FY[d]oFY, (DS ker(r)) = Y (F 4,3 Dx) - 1(g),
geG

that is, the submodule and the quotient filtrations induced by £V [d]e on

(ryoxt(9) | 9 € G) +Ker(x)) /ker(x)
and
(rypx (t9) | 9 € G) + Kex(x) ) / ker(r)

agree, respectively. The latter equivalent conditions can be decided by Algorithm 2.4.14. This
leads to the following algorithm:

Algorithm 4.2.29 Given a coordinate neighborhood X of X and a strictly Xy-specializable
(Dx (xXp), Fy)-module (N, F,), this algorithm computes a representation of the localization
Locx, (N, F,) as (Dx, Fy)-module.

Input: A strictly Xo-specializable (Dx[f '], F)-module (N, F,) = (Dx [ '|Z/L, F°[s].)

with I/ C Dg finite such that L = <F>

Dx[F ]
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Output: A finite set G, a finite set K C D)G(, and d € Z% such that we have Loc X, (N, Fy) =
(D) py (), F[d]s).

1: Compute a representation Nx = DE /P of N = D%/DX (L"y ®0 Ox [ '] as Dx-
module and b € (D)E(/)E such that @ ® 1 is represented by b, € Nx (for e € E) using
Algorithm 4.2.15.

2: Set j :=min{s, | e € E}. > F[°“Nx = 0forq < j.

3: Set k := max{s. | e € E}. > FN generates F, N as Iy D x-module.

4: Initialize an empty set G C D)E(/ and a (dynamic) vector d € Z%. > Save generators of
the filtration in G and corresponding degrees in d.

5: forg=75,7+1,... do

:  Compute a finite set G’ C D)E(’ inducing C|z, t]-generators of F, qLOCF o Nx by applying
Algorithm 4.2.26 with input Nx and {Qaé)fbe lec E,ae N", B e N, |a]+F+s. <
q}. > See Lemma 4.2.20.
for ¢’ € G’ do > Check if generator is needed and add to G if necessary.
: if g’ ¢ dea(F;ngF[}’DX) - g then > Check by Algorithm 2.4.5.
9: Set G :=GU{J'}.
10: Setdy :=gq.
11:  if ¢ > k then > Condition 3.2.18(a) is satisfied.

12: if FyNx = deG FyDx - g then > Check using Algorithm 2.4.5.

13: Find D x-generators K of the kernel of the D x-linear map & : Dg — Nx,(g) —
g using Grobner basis theory.

14: if FV[d]oFY (DS / ker(k)) = F¥ . FYDx)-(g) then > Check by Algo-
. [21112( %/ ker(k)) dec( 4,70 )-(9) y Alg

15: if FY[d]oFY,(D$/ ker(k)) = > gec(Fq,Fy Dx) - t(g) then > Check by

Algorithm 2.4.14.
16: return G, K,d.

Remark 4.2.30. We remark that the isomorphism in the above algorithm is traceable in anal-
ogy with Remark 4.2.14(b).

Remark 4.2.31. Recall that given a strictly Xo-specializable (Dx ﬁ_l], F?)-module (N, Fy)
the problem of computing F,V, N for a € Q is still open. As we have FF°°V,N = F,V,N
for « < 0 (see Remark 3.2.12(a)), the above algorithm enables us to describe Fo,V, /N for
a < 0. By Remark 3.2.10 this completely determines Fy Vo N.

4.2.7 Dual localization of (strictly) X,-specializable D - and
Dx(*Xy)-modules

Given an Xg-specializable D x-module M = D)E( /K and an optional filtration FeM =
F¥[s]e(D%/K) making this module strictly Xo-specializable, we explain how to compute
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4 Algorithms for (strictly) specializable D-modules

DLocx, (M, (F.)). As we have by definition
DLocx,(M) = M(!Xo) = Dx ®v,py Vo M

and the 1y D x-module on the right hand side can be represented as a quotient of a free VD x -
module by Algorithms 4.2.5 and 2.4.4, Lemma 3.1.30 allows us to represent DLocx, (M)
as a quotient of a free Dx-module. In the filtered case, replacing Algorithm 4.2.5 by Al-
gorithm 4.2.9, the filtration F, on VoM will be given by a shift vector on the computed
quotient of a VD x-module. Hence, by definition, the filtration on DLocx, (M) is also given
by the same shift vector on its representation as a quotient of a free D x-module obtained by
Lemma 3.1.30. This leads to the following algorithm, which in addition represents the natural
map i(1x,) : DLocx, (M) — M:

Algorithm 4.2.32 Given a coordinate neighborhood X of X and a strictly X-specializable
(Dx, F)-module (M, F,), this algorithm represents DLocx, (M, F,) as (Dx, Fy)-module
and computes the natural map i(x,) : DLocx, (M) — M.

Input: A strictly Xo-specializable (D, FY)-module (M, Fy) = (DY /K, F°[s].).

Output: A finite set F’, a finite subset L C D)E(/, d e Z"and q € (D%)El that satisfy
DLocx, (M, F,) = (D¥'/ , (L), F°[d],) as (Dx, F¢)-modules, Voo(D¥ / , (L)) =
FO"(DQ//D)((L)) and induce the natural map i, x) : D)E('/DX<L) — M via (¢/) — G
fore’ € E'.

1: Compute the induced b-function b(s) € Q[s] along X on M by Algorithm 4.2.4 and set
a:=max{r+z|reQbr)=0,z€Z,r+2<0}. VoM =VM.

2: Find a finite set £’ C K(z,t,0, 0;)” that satisfies F2V, M = Y oercE FXdeng [S](e’)DX .
¢’ by Algorithm 4.2.9 and Remark 4.2.10(a).

3: Defined € Z by d = degpwg(e') fore’ € E'.

4: Represent V,,M as a quotient FY DY/ FyDx (L) with L finite via Algorithm 2.4.4. >
Fyy (L) = ker(Fy DY — VoM, (¢/) = /).

5: Define q € (DE)E/ by g = €' fore’ € E'.

6: return E' L, q.

Remark 4.2.33. The dual localization of a strictly X(-specializable (Dx (xXy), Fy)-module
(N, F,) is computed by using

DLocx, (N, Fe) = DLocx, (Locx, (N, Fs))

(see Remark 3.2.24), where the localization and dual localization on the right hand side are
determined by Algorithm 4.2.29 and Algorithm 4.2.32, respectively.
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4.2.8 Graded parts of V-filtrations

In view of the computations of the vanishing and nearby cycle functors (see Subsection 4.3.3),
we explain how to represent the graded parts of the V-filtration along Xy on D x-modules
as Dx,-modules. Recall that (M, F,) = (DY /K, F°[s],) and denote by K’ a finite set of
Dx-generators of K. Assuming that (M, F,) is strictly X(-specializable, or more generally
that M is Xo-specializable and F,V,, M is a good (VyDx, FY)-filtration, we give a method
to represent (Gr! M, F,) as a well-filtered (Dx,, F¢)-module for fixed . For that we first
write (Gr M, F,) as a quotient of a free (Vo Dx, F2)-module, then we derive from this a free
(Gry Dy, F2)-presentation of (GrY M, F,) and finally we use the nilpotence of (—d;t — «)
on (GrY M, F,) to obtain the desired (Dx,, F?)-representation.

Note that since (V,, M, F,) is a well-filtered (Vo Dx, F2)-module, (GrY M, F,) is a well-
filtered (Vo Dy, Fy)-module generated by the residue classes of a set of (VyDx, Fy)-genera-
tors of (V,, M, F,). It is represented as a quotient of a free (Vo Dx, FY)-module as follows:
First compute a finite set G C Df’( and a shift vector d € Z% such that

FoVoM = ZFngFgDX 9= ZFXdegFW[s](g)Fa’DX "9
geG geqG

Then there is a surjective strict Fy' D x-linear map
p: (F(;’D)G(ﬂFWV[d]') - (Grg M, F,), (9) = g+ Vea M,

where w, denotes the weight vector induced by w on the PBW-reduction-algebra Fiy D x (see
Example 2.2.8(d)). To determine its kernel, we first find a set of Fy D x-generators of Vo M:
Setting

B=max{r+z|reQb(r)=0,z€Z,r+z<a},

where b(s) denotes the induced b-function along X on M, we get that Voo M = VM. If
G C D)E( is finite such that G’ is a set of F{y’ D x-generators of Vg, then a € Fa’D)G( is in
the kernel of p if and only if geG 099 € VM, thatis, if and only if

> 99 € pupy (G) + K. (4.2.9)
geG

Hence
ker(p) = mqg (syzDX (G, G, K'Y n (Fy DS Y @ D?))

and generators of the above intersection are obtained as outlined in Algorithm 2.2.27. Conse-
quently, we have

F Gl M = F™[dl.(Fy DS)/ kex(p)).
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4 Algorithms for (strictly) specializable D-modules

Algorithm 4.2.34 Given a coordinate neighborhood X of X and an Xj-specializable good
(Dx, Fy)-module (M, F,) such that (V,M, F,) is (VoDx, Fy)-good, this algorithm com-
putes a representation of (GrY M, F,) as (Vo Dy, F¢)-module.

Input: An X,-specializable good (Dx, FY)-module (M, Fy) = (D /K, F°[s],) with K =
Dy () for K C D¥ finite and o € Q such that (V, M, F,) is (Vo Dx, F¢)-good.
Output: A finite set G, a finite set J C FyD§ and d € Z¢ such that (Gt} M, F,) =
((FS’D%)/FS,DXU% Fe[dls) as (VoDx, F¢)-module.
1: Compute the induced b-function b(s) along Xo on M, aset G C D¥ and d € Z¥ such
that FGVo M =3 ¢ FJY 4, F0 Dx - g using Algorithm 4.2.9.
2: Set f:=max{r+z|reQ,b(r)=0,z€Z,r+z<a}l >VgM=V,M.
3: Determine a finite set G/ C D)E( such that G’ is a set of Fy D x-generators of VgM by
Algorithm 4.2.5.
4: Compute a finite set S of D x-generators of 7 g/ (syzp, (G, G', K')) using Grobner basis
theory.
5: Find Fyy Dx-generators .J of , (S) N FyT¢““ by Algorithm 2.2.27.
6: Replace J by mg(J).
7: return G, J, d.

Asin Remark 3.1.8, if (GrY M, F,) is (Vo Dx, F2)-well-filtered, then it is also well-filtered
as (Gr) Dx, F2)-module and (Dyx,, F?)-module, because t acts by zero on Gr) M and the
action of —3d;t — « on that module is nilpotent. Hence given that

(Gry M, Fy) = ((Fy DS)/J, F*[d].)

with J = pep (J') for J' finite and d € Z, we have tFy D§ = FY;D§ C J and

(=8t — )™ (@) . (g) € J (for g € G) according to Remark 3.1.24. By Lemma 4.2.23
we hence write
(Gre, M, Fy) == ((Gry D) /v (), F*[dla),

where w?, stands for the weight vector induced by wy, on the realization of Gry Dx in Equa-
tion (4.2.4), that is, the weight vector assigning weight 1 to 6; (1 < i < m) and t0; and weight
0 else. Noting that Gr§’ Dx = Dx, [t0;] according to Example 2.1.30(d), the residue classes
of

G" = {(td)(9) | g € G,0 < j < myq) (@)} C Gry D§

Dx,-generate (Gry D) /v%(J). So we get a surjective D x,-linear morphism
e DS, — (Gry DS/ (), (9") = 9"
inducing an isomorphism of (Dx,, Fy)-modules

(Gry M, F) = (DS / kex(n), F™[d']a),
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

where dj, := degpwyq)(9”) < dg+jforg” = (t0:)(g) € G". Note that d;, is computable

by checking if ¢” € F,:VC((GrB’ D) /vE(J)) for k = dy+j — 1,dg + j — 2,... using
Algorithm 2.4.5 until this test fails, because the filtration under consideration is separated.
To compute generators of ker(u) note that a € Dg}(g is in the kernel of p is and only if

> gecr agrg” € v(J). Since Gry Dx = Dx,[tdy], a set of F§* Gr§ Dx-generators of
e (sy2(G", V9 (J))) N F Gry DY,

where u stands for the weight vector on Gry Dx assigning weight 1 to t0; and weight 0 else,
Dx,-generates also ker(p).

Remark 4.2.35. The isomorphism GrY M = D)G(;/ / ker(p) is traceable: Namely, write m €
VoM as an F{y’ D x-linear combination of G by Algorithm 2.4.5 and Remark 2.4.6. Since ¢ acts
as zero on GrY M, we may even assume that the coefficients of the linear combination live in
Dy, [t0;]. Noting that (—d;t—a)™#(=)(®) annihilates Gr), M, and writing (£,)"(®) — (9,t+
o)™ () = ZOSKmb(s)(a) a;(t8y)?, we replace recursively any (8;)"™(=)(®) appearing in the
coefficients by Zogi <y (a) Bi (t0;)". From this we derive a Dx,-linear combination of m €

GrY M in terms of G” from which we can read off the representation of 77 in Dg’gg / ker(u).
Tracing the isomorphism in the converse direction is trivial.

We summarize our method:

Algorithm 4.2.36 Given a coordinate neighborhood X of Xy and an X(-specializable good
(Dx, F)-module (M, F,) such that (V, M, F,) is (VoDx, Fy)-good, this algorithm com-
putes a representation of (GrY M, F,) as (Dyx,, F<)-module.

Input: An Xy-specializable good (D, FY)-module (M, F,) = (DE /K, F°[s],) and o« € Q
such that (V, M, F,) is a good (Vo Dx, Fy)-module.
Output: A finite set G, a finite set J C D)G(O and d € ZC such that we have isomorphisms
(GrY M, F,) = (Dg}(O/DXO (J),F°[d]s) as (Dx,, Fy)-modules.
1: Find by Algorithm 4.2.34 a representation (Fy D% / Fy Dy (J'), F¥[cls) of (GrY M, F,)
(with J’ finite).
2: Set J':= vF'(J) C Gr¥, D¥.
Determine m, := mys) (), where b(s) is the induced b-function along X on M. > See
Remark 3.1.24.
Set G := {(9;t)(e/) | 0 < i < mg,e € B'} CGrY Dx
for ¢’ € E' do
fori =0,...,myq—1do
Setj:=dy +i— 1.
whsile (top)i(e') € F;’i{’l(Grg DY/ Y Dx (J")) do 1> Check by Algorithm 2.4.5.
etj:=7.

W

D AN
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10: Set d(t(?t)j(e’) = 7.

11: Find a set J of F{* Gr§ Dx-generators of m(syz(G,v%(J))) N F{ Gry D§ by Algo-
rithm 2.2.27, where u stands for the weight vector on Gry Dx assigning weight 1 to t0;
and weight 0 else.

12: Write h € H as h = 20§j<ma,e’€E/ h(tat)j(e/) (t@t)J (6/) with (t8,)7 (e!) S DXO-

13: Return G, J, d.

Remark 4.2.37.

(a) Algorithms 4.2.34 and 4.2.36 can be modified to represent (VoM /V,_1 M, F,) by re-
placing 3 by a — 1 in Algorithm 4.2.34 and m;,,) () by deg b(s) in Algorithm 4.2.36.

(b) Given an Xy-specializable (unfiltered) D x-module M, we adapt Algorithms 4.2.34
and 4.2.36 to this situation by computing in Algorithm 4.2.34 just any set of £y’ Dx-
generators of V, M and forgetting all the shift vectors involved.

The following remark is needed to realize the morphisms can and var later on:

Remark 4.2.38. Recall that (Gr), M, F,) is endowed with a nilpotent Dx,-linear endomor-
phism N = -0t — a« = —t0d; — (o + 1). We make this morphism under the isomorphism
(GrY M, F,) = (Dg’;g/ ker(p), F™0[d']s) explicit : Using the notation of Remark 4.2.35, we
obtain

0+ (DS Ker(), F*[d]a) = (DS / Ker (), F™[dJos1);

((t0r)7(g)), if j < my(s)(@) — 1
Zogi<mb(s)(a) ai((tat)i(g))v ifj = Mp(s) (a) -1

We also represent the (Dx,, Fy)-linear morphisms

(t(0:)7(9)) = {

O (Grl M, Fy) — (Gry g M, Feiq) and t- : (Gl M, Fy) — (Gl M, F,):

Since these maps involve not only the module Gr‘a/ M but also er 1 M, we adapt our no-
tation by additionally using the lower indexes « and o — 1 (e.g. we write GG, instead of
G for the set whose residue class VyDx-generates Vo, M and so on). We find by Algo-
rithm 2.4.5 and Remark 2.4.6 elements b € (Fy Dg"“)ca and ¢ € (Fy D?{*)GC“r1 such
that 0,9 = ZQ’EGQ+1(b9)9/? and tg' = > gec.(cg)gg forg € Gy and ¢ € Goy1. Hence
these morphisms are given by

O : DA ker(pa) — D/ ker(pasa), (10)7(g) = (0 +1Y 3 (b)y - (@)

g €Gat1
and
t: D%“/ker(paﬂ) — D%/ker(pa), ((t00)7(g)) = (10 — 1Y > (eg)g - ((9))-
9€Ga
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To evaluate the above actions on the right hand sides, note that the action of Fy Dx on the
above modules is given by letting ¢ act as zero on them and that t0; operates as described
above.

4.3 Computations using global coordinate systems for
general codimension one subvarieties

Let X = V(J) C C" with J C C|z] := C[xy,...,xy,| prime be a smooth irreducible affine
variety of dimension m with global coordinate system and Xy a codimension one subvari-
ety with defining ideal sheaf generated by f for f € C[z]. The main aim of this section
is to represent the localizations Locx, (M, (F,)), Locx, (N, (F.)), DLocx, (M, (F,)) and
DLocx, (N, (F,)) as well as the vanishing cycle functors along f € Ox. We point out that if
X is smooth then the localizations along X is locally computable by the methods of the last
section (i.e., shrink X such that f is part of a global coordinate system) and that it is possible
to glue them together using the method outlined in Section 4.4. However, the advantage of the
method in this section, which relies on the graph embedding along the graph of f, is that we
do not need to work locally and to glue our local results.

By assumption there exist local coordinates given by the residue classes of fi,..., fm €
Clz] and corresponding commuting derivations 61, . .., 0, € ©x(X) induced by derivations
', ...,0. € Der(Clz]).

Remark 4.3.1. In view of Convention 4.1.3 we may assume that f and some generating set
of J are defined over K[z1, ..., zy]. Hence the derivation ¢!, ..., 6. can be realized over the
field K implying that we may assume that K is a T’y -computable field.

Remark 4.3.2. According to Example 2.1.30(a) Dy is realized as the PBW-reduction-algebra
Tx = (C(z,01,...,0m),S,J, <)
with
8 i= {lwj, 2al, [0p, O0], [On, i) — Ok (i) [for1 <i < j <n, 1<k <p<m}\{0},

~< any well-order such that S is a standard reduction system with respect to < (for instance
a well-ordering satisfying 2208 < 2995 if |8] < |B’| using usual multi-index notation) and
J' C Clz] a Grobner basis of J with respect to the ordering induced by <. From now on,
we identify D and T'x. Denoting by w € Z" ™ the weight vector assigning weight 1 to 6y,
(1 < k < m) and weight 0 else on T’x, we have under the above identification

F°Dy = F¥Tx.

However, we will not perform our computations over this PBW-reduction-algebra but rather
over a certain tensor product of this algebra.
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4 Algorithms for (strictly) specializable D-modules

All our algorithms rely on taking direct images under the graph embedding
ir: X =Y =X xC, v (2, f(x))

and translating the corresponding computations to computations on Y fitting in the situation
of Section 4.2. Note that Y has a global coordinate system consisting of ¢ and of the global
coordinates of X with corresponding differentials induced by 0; and (911, ..., 0. . Therefore,
Dy is isomorphic to the PBW-reduction-algebra

TY — ((C<£7t7ga 8t>7 SY7 JY) _<Y)a

where Sy = S U {[t, xi], [0, xi], [05,1], (05,04, [0, t] =1 |1 <i<n,1<j<m}, <y any
well-order such that Sy is a reduction system with respect to <y and Jy a Grobner basis of
(JU{t}) C Clz, t]. In particular, Ty satisfies all properties needed to apply the algorithms of
Section 4.2 for the embedding Yy := X x {0} C Y. We denote by v € Z" ™ ¥2 the weight
vector assigning weight 1 to 0;, weight —1 to ¢ and weight 0 else. By abuse of notation, the
weight vector w € Z" 7™ 2 stands also for the weight vector on Ty assigning weight 1 to 6},
and 0; and weight 0 else. As in Section 4.2 we identify Dy with Ty, represent its elements in
the same manner and use the notation F* Dy for a weight vector u on Ty .

To represent direct images of finitely presented D x-modules under the graph embedding
i, we factor iy via

¢ i X x C, 4.3.1)
iole—k‘ Ma(x,t—‘—f(w))
X x (Ct,

and then Example 1.4.10 implies that we have an identification
(if)+(DX/ py (Q)) = DY/ (AP(Q),t — f), (4.3.2)

where we regard () as a subset of Dy = Dx ®c¢ Dc in order to apply AP, When writing
(if)4P for a finitely presented D x-module, we always assume that (i;) P is presented as
above. To simplify notation, we often write A for A¥ and similarly for the inverse X’ of \.

4.3.1 Specializable Dx- and Dx(xX,)-modules

Our aim is to decide if M = D¥ /K and N = Dy [f_l]E /L are Xy-specializable. By defini-
tion M is Xo-specializable if and only if (i )4 M is Yj-specializable, which can be checked by

Algorithm 4.2.5. Similarly, writing N = N'[f "] with N a finitely presented D x-module, we
have (i¢)+ N = ((if)+N') [f_l] (see Lemma 1.4.19). Hence N is X(-specializable if and only
if ((if)4+N") [ '] is Yo-specializable which is equivalent to (i #)+ N’ being Yp-specializable
according to Lemma 3.1.28(a). As above we test the latter condition by Algorithm 4.2.5.
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4.3 Computations using global coordinate systems for general codimension one subvarieties

Remark 4.3.3. If X is smooth, it is also possible to compute the filtration along X on M:
We briefly outline two methods for this. One of them uses the methods from Subsection 4.2.1,
while the other relies on a graph embedding as above. The first method determines locally
on coordinate neighborhoods of X the V-filtration by Algorithm 4.2.7. The gluing process
presented in Subsection 4.4.4 patches then the local results together.

The other method uses the graph embedding i and computes the V-filtration on (i) M
along Yj by Algorithm 4.2.7. Applying Lemma 3.1.35, that locally links ‘/;Yo(if)_l,_M and
VX0 M, allows us also to describe VX M on coordinate neighborhoods reducing the prob-
lem again to a gluing process as above. The advantage of this method is that it requires only
one b-function computation to determine the V' -filtration along X on all coordinate neighbor-
hoods that we have to consider, whereas the first method needs one b-function computation
per coordinate neighborhood.

Remark 4.3.4. We point out that we have no method to check in the filtered situation if
(M, F,) and (N, F,) are strictly X-specializable. However, if they are strictly X-specializ-
able, we can compute for smooth X the filtrations FV, M and F,V, N for a € Q by adapting
the methods in the above remark.

4.3.2 Localizations and dual localizations of (strictly) X,-specializable
Dx-and Dx(xX,)-modules

Considering strictly Xo-specializable (Dx, Fy) and (Dx [ffl],F.o)—modules (M, F,) and
(N, F,), respectively, the objective of this subsection is to finitely present the (Dx, Fy)-
modules Locx, (M, F,), Locx, (N, F,), DLocx, (M, F,) and DLocx, (N, F,). All compu-
tations are based on the same method of taking direct images under the graph embedding i,
then doing the corresponding computations for Yy C Y and finally using strict Kashiwara’s
equivalence to derive the results. More precisely, we obtain by Equation (3.2.16) and Equa-
tion (3.2.17)

(D)Locy, (M, F) = Grf " (D) Locy, (i)« M, F[sle-1))(~1)
= Vo “I(D)Locy, (i) M, F°[sle-1))(~1).

Recall that a representation of (D)Locy, (M, (F*°[s|e—1) in terms of a quotient of a free
Dy -module with a corresponding shift vector inducing the filtration is computable by Al-
gorithm 4.2.17 in the localization case and by Algorithm 4.2.32 in the dual case.

Choosing a finitely presented Dx-module N’ = DE /L’ satisfying N = N’[f '] and
setting Fo N’ = F°[s]¢ N/, we have (N, F,) = (N'(xXy), F,) and hence Equation (3.2.13)
and Remark 1.4.21 imply

Locx, (N. o) = Grt™ ™ (Locyy (i) N') (+¥0). F[sla-1)) (~1)
= Vo' Loey, ((i7)+ N') (+¥5), F°[sla-1)) (~1).
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4 Algorithms for (strictly) specializable D-modules

Similarly, by Remark 3.2.38 and Equation (3.2.17)

DLocx, (N, F.) = Gry """ (DLocy, (Locy, (i) + N') (+Yo), F°[sle—1)))(—1)
= Vo "I (DLocy, (Loey, (((if)+ N') (+Ya), F°[s]e-1)))(~1).

The (Dy, Fy)-module Locy, (((2£)+ N')(xYp), F°[s]e—1) as well as its dual localization along
Y0 can be written as quotients of free Dy -modules with filtration induced by shift vectors using
Algorithm 4.2.29 and Algorithm 4.2.32. and Remark 4.2.33.

It remains now the following task: Given a strictly V (¢ — f)-specializable (Dy-, F¢)-module
(DE' /K", F°[s']s) supported on V (t — f), determine a finite presentation of the (Dy, F?)-
module Gré/(t_f) (DE' /K", F°[s'],). Factorizing i s as in Equation (4.3.1) via ip and \ and ap-
plying the inverse \’ of the coordinate change \ yields by Proposition 3.2.7, Proposition 1.4.7
and Example 1.4.9(c) that the latter module is isomorphic to

Gry " (DY /M) = vy O (DY /N (K")

as (Dx, F?)-module reducing the problem to Algorithm 4.2.36.

The remark below explains how to represent the corresponding (dual) localization maps and
how to trace our isomorphisms. The latter task is crucial for patching local results together as
will be done Section 4.4.

Remark 4.3.5.

(a) We compute the canonical map M — Locx,(M) as follows in the above situation:
Assume that Locy, (i) M) is represented by D /K" and that ¢ € (D¥')” defines
the natural localization morphism (i) M — D¥ /K" via (e) + . (Note that g is
computable by Algorithm 4.2.17.) Then A’(q) defines in the same manner the natural
morphism (ig); M — D¥ /A'(K"). Since both Dy-modules appearing in the latter
morphism are Yj-specializable by Lemma 3.1.16 and (e) € VOYO (i0)+M = ker(t- :
(i) M — (ig)s M), Proposition 3.1.15 implies that A’(q). € Vy°(DE /A (K™)).
Representing the latter module as D)G(” /J via Algorithm 4.2.36, Remark 4.2.35 allows
us to determine the image ¢/, € D¥ /J of A'(g).. Now the localization map M —
D§"/J is given by (e) > ¢..

(b) We keep the notation of Part (a). As in Remark 4.2.14(b) we also need to be able to
compute the image of @ f © € M ®0y Ox [?71] for m € DE and k € N under
the isomorphism Locx, (M) = Dg// J. Regarding m ® ?% ® 1 as an element of

. . 1
(if)+(M®oy Ox[f ]) =if(M®@ox Ox|f '])®cC[0] = (M ®o, Ox[f ])®c
C[0¢], Remark 1.4.20, Equation (4.3.2) and Remark 4.2.14(b) enable us to compute its

image under the isomorphisms (i) (M ®o, Ox|[f 1]) >~ (if)+ M ®o, Ox[t™1] =
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Dg /K". By construction this element is in the Vg_f -part of the latter module and we
continue as in Part (a).

On the other hand consider the element m € Dg;(,, /J form € D)G(". By construction of
D)G(" /J in Algorithm 4.2.36 (see Remark 4.2.35), m corresponds to an computationally

accessible element m/ € D /A'(K"). Rewriting the latter element as an element of

(i0)+ (M ®0, OX[T_I]) = (M ®0y OX[?_I]) ®c C[0] using the above remarks,

we have by construction that this element can be considered as an element of M ®o

ox[f ]

(c) Using a similar argument as in Part (a), we can also make to dual map DLocy, (M) —
M explicit. Similar remarks apply for the localization and dual localization of strictly

Xo-specializable (Dx[f 1], Fy)-modules.

(d) We point out that all steps involved in the computation of the (dual) localization of M are
traceable by the previous parts of this remark. In particular, we can trace for x € {x,!}
the isomorphism Vov(tff ) (((3f)+M)(xYy)) = M (%Xo) (in both directions). Moreover,
we can decide if m € ((iy)4M)(xYp) is in the va(t*f ) -part of this module (by applying
the coordinate change \') and or if it is in a certain layer of the F,-filtration.

The following algorithm summarizes the computation of Locx, (M, F,).

Algorithm 4.3.6 Given a variety X with a global coordinate system and a strictly V'(f)-
specializable (Dx, FY)-module (M, F, ), this algorithm computes the localization of this mod-

ule along V' (f).
Input: A strictly V(f)-specializable (D, F¢)-module (M, F,) = (D)E(/DX (K), F°[s]s)
with K C D¥ finite.
Output: A finite set E’, a finite set L C Dgl and a shift vector d € Z¥ such that there is an
isomorphism Locy, 7, (M, Fa) = (DX'/ p, (L), F°[d]a).
1: Set K" :=AK)U{(t— f)(e) |[e€ E} C Dy. > (if)+ M = Dg/Dy<K’>.
2: Apply Algorithm 4.2.17 to determine a finite set E’, a finite subset L C Dg/ and a shift
vector d € Z”' such that Locy () ((if)+ M, F°[s]e—1) = (DE'/ Dy (L), FV[d]e).
3 Set L = N(L). > (ig)+ (Locy 7 (M)) = DI/ (L)
4: Determine finite sets £ C D{;/, L" C D)E(“ and d’ € Z¥" such that there is an iso-
. V(t) ’ ~ 7
morphism Gy ((Df' / p, (L"), F¥[d]))(~1) = (DF"/ p, (L"), F¥[d'].) by Algo-
rithm 4.2.36.
5: return E” L" d'.

Remark 4.3.7. As in Remark 4.2.16, if X = C" the localization can in many cases also
be computed by the methods of Oaku, Takayama and Walther. If one is only interested in
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4 Algorithms for (strictly) specializable D-modules

the localized module, it seems advantageous to use their method because in contrast to their
algorithms we have to compute two b-functions.

For completeness, we state the algorithms for the dual localization DLoc(M, F,) as well as
the localization and dual localization of (N, F,):

Algorithm 4.3.8 Given a variety X with a global coordinate system and a strictly V (f)-
specializable (Dy, Fy)-module (M, F,), this algorithm computes the dual localization of this

module along V'(f).
Input: A strictly V (f)-specializable (Dx, Fy)-module (M, F,) = (D¥/, (K),F°[sl,)
with K C D)E< finite.
Output: A finite set F’, a finite set L C D%’ and a shift vector d € Z¥ such that we have
DLocy 7 (M. Fo) 2= (DY / p, (L), F°[d]s).
1: Set K" := AK)U{(t— f)(e) |[e€ E} C Dy. > (if)+ M = Dg/Dy<K’>.
2: Apply Algorithm 4.2.32 to determine a finite set £, a finite subset L C D{?’ and a shift
vector d € Z' such that DLocy ) ((if) 4+ M, F°[sle—1) = (DE'/ , (L), F™[d].).
3: Set L' := N'(L). v (ig)4(Locx,(M)) = D¥'/ ,, (L').
4: Determine by Algorithm 4.2.36 finite sets £ C D¥ and L € DE" and d’ € ZE" such
that Gr§ " (DE'/ , (L"), F¥[d]a))(~1) = (DE'/ (L"), F¥[da).
5: return E” L" d'.

Algorithm 4.3.9 Given a variety X with a global coordinate system and a strictly V'(f)-

specializable (Dx (xV (f)), Fy)-module (N, F,), this algorithm computes the localization of

this module along V'(f).

Input: A (Dy[f '], F)-module (N,F,) = (Dx[f '
D¥ finite that is strictly V ( f)-specializable.
Output: A finite set £’, a finite set P C D)E(/ and a shift vector d € Z' such that we have
LOCV(?)(N’ F') = (D)E{// Dx <P>v Fo[d]O)'
1: Set L' := A(LYU{(t— f)(e) | e € E} C Dy.
2: Apply Algorithm 4.2.29 to determine a finite set £, a finite subset P C Dgl andd € 2"
such that Locy ) (DE/ p, (L)) (+V (1)), F°[sle—1) = (DE'/ p_(P), F™[d]s).
3. Set P':= A/(P).
4: Determine by Algorithm 4.2.36 finite sets £ C D{; and P" C D)E(" and d’ € ZE" such
that Gr§ " (DE'/ (P, F¥[dla)) (1) = (DE"/ p,, (P"), F¥[d']).
5: return £, P" d'.

]E/DX[?A](L%FO[S].) with L C
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Algorithm 4.3.10 Given a variety X with a global coordinate system and a strictly V' (f)-

specializable (Dx (xV (f)), Fy)-module (N, F,), this algorithm computes the dual localiza-

tion of this module along V' ( f).

Input: A (Dx[f '], Fo)-module (N, F.) = (Dx[f "

DZ finite that is strictly V ( f)-specializable.
Output: A finite set F’, a finite set P C D?}l and a shift vector d € Z*' such that we have

DLocy (N, Fa) = (D / 1, (P}, F°[d].).

I: Set L' := A(L')U{(t— f)(e) | e € E} C Dy.

2: Apply Algorithm 4.2.29 to determine a finite set E’, a finite subset P C D%l andd € Z"
such that Locy) (DE/ b, (L'))(+V(£)), F°lsla-1) = (DE / 1, (P), F¥[d].).

3: Use Algorithm 4.2.32 to determine a finite set £, a finite subset P’ C D{;w and a shift
vector d’ € Z# with DLocy ;) (D' / ,_(P), F¥[d]s) = (DE"/ , (P"), F™[d'],).

4 Set P := N'(P").

5: Determine by Algorithm 4.2.36 finite sets B/ C DE" and P” € D¥" and d” € zE"
such that Gr " (DY / p, (P"), F¥[d]a))(=1) = (DF"/ p (P"). F¥[d"]a).

6: return E” P d".

]E/DX[?A}(L%FO[S].) with L C

Remark 4.3.11. Forgetting the filtrations involved in the above algorithms, the algorithms
compute localizations and dual localizations of Xj-specializable D x-and D x (xX()-modules.

4.3.3 Vanishing and nearby cycles

The representation of the vanishing and nearby cycles of (M, F,) as well as of the morphisms
var and can follows immediately from Algorithm 4.2.36 and Remark 4.2.38.

4.4 Computations on (affine) varieties via gluing

Assume now that X is a smooth irreducible affine variety and Xy C X is a pure codimension
one subvariety defined by the ideal sheaf Z. The purpose of this section is to develop algo-
rithms for the computation of localizations, dual localizations and nearby and vanishing cycles
and the corresponding maps in this more general situation. Our method for this is based on
covering X with open neighborhoods that fit into the setting of the last two sections, doing
the computations locally on the elements of this cover and then gluing the local results. As all
local results are finitely presented D-modules with a filtration, the main task in this section is
to devolop an algorithm that glues (filtered) free presentations.

Moreover, the above method can also be employed to make a quasi-inverse for Kashiwara’s
equivalence for Hodge D-modules explicit.

Before we start, we fix some notation: Let X = V(J) C C" be defined by the vanishing
of the prime ideal J C Clz] := Cl[z1,...,2,) and Xo = V(I’) defined by the radical ideal
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4 Algorithms for (strictly) specializable D-modules

I' C Clz]. Choose {fy | b € B} C Clz] for a finite index set B such that the residue classes
of the f, generate the ideal I = I'/J. This in particular implies Z = , ({fy | b€ B}). We
set Uy := D(g) N X for g € Clz].

4.4.1 Constructing a gluing cover

First we explain how to construct a cover of X by affine principal open neighborhoods suited
for our local computations. Since we may omit considering certain graph embeddings if we
choose for smooth X these neighborhoods carefully, we treat this case separately:

Gluing cover in the smooth subvariety case

So assume that X is smooth. We cover X by two different types of affine open subsets,
namely coordinate neighborhoods of X and affine open subsets that cover X* = X \ Xj.
Recall that we have by Remark 1.2.13(a) a method to determine a partial cover of X by co-
ordinate neighborhoods that covers all of Xy. More precisely, we can compute a finite set
€% C Clz] and a® € B such that U, for ¢ € C? is a coordinate neighborhood of X, with
Iy, = O, <fag> and such that Xo C (J, ¢ Ue.

On the other hand, X* forms an affine open cover of itself. However this cover is for
computational purposes often too coarse. Therefore we refine it in two steps: The Uy :=
D(fy) N X are an affine open cover of X* such that on U} the empty set U; N X is defined
by the vanishing of f;. To perform actual computations we refine this cover by covering the
U} themselves by an affine principal open cover such that element of this cover have a global
coordinate system. Such a cover is given by open sets U, corresponding to ¢ € C* for a
suitable finite set C* C Cl[z], which can be found as outlined in Remark 1.2.13(a). Hence
there exists in particular a* € B suchthat U.N Xy = U. N V( fa;) for ¢ € C*. Moreover,
we may assume that C* was chosen such that for ¢ € C* there is a ¢ € C[z] such that
c= C/faz

To unify our notation, we set C' := C° U C* and define a € B by a. = a? for ¢ € C° and
by a. = a} forc € C*.

Gluing cover in the general subvariety case

We drop now the assumption that X is smooth. As for smooth Xg, we cover X again by two
different types of subsets. The cover of X* is constructed as in the smooth case and we keep
the corresponding notation. We complete this cover by open patches of the form U,. for ¢ € C°
for some finite set C' C C[z] with the property that Z;, generated by single regular function.
Note that such a cover exists indeed because the defining ideal sheaf of a pure codimension
one subvariety of a smooth equidimensional variety is locally generated by one equation. So
for x € X exists by Nakayama’s Lemma b € B such that 7, = Ox. (fp). This holds then
also on an open neighborhood U, of = in X, thatis, Zy;, is Oy, -generated by f;,. Therefore it
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is enough to find for given b € B the maximal open set of X such that the restriction of Z to
that set is generated by f; and cover this set by affine opens. Algorithmically this is achieved
by computing for all v’ € B\ {b} a C[z]-generating set Sy of syzc(y)(fp, for, J) via Grobner
basis theory and setting S;, := {sy,, € Sy | sy # 0 € Clz]/J}. Then

{UHb’EB\{b} Syt | Sy € SIIJ’}

is a cover of that maximal open set. By covering the UHb/eB/ s by affine principal opens having
a global coordinate system, we may assume that we have constructed a finite set C° C C|[z]
and an element a® € B such that U, has a global coordinate system and Zy;, is generated by
fao forc € CV. The set C and the element a are now defined as in the smooth case.

Representing the ring of differential operators on elements of the cover

Consider g € C|z] such that U, has a global coordinate system with corresponding derivations
01,...,0n induced by 6, ...,6' € Der;(C[z])[g~!] and obtained by Remark 1.2.11(b). In
this situation we have an isomorphism

Mg : Uy 2V, =V (J,on19 —1) CC* (21, ... 20) = (21,00, Tny ——)

with isomorphism of the corresponding rings of differential operators defined via sending the
derivation 6 € Oy, (U,) = ©x(X)[g '] represented by 0l ®@ g~ for 6 € Der(C[z]) (see
Remark 1.2.3) to ¥ (0! — 22 _10'(g)0n+1) € Oy, (V,). The inverse maps 6 € Oy, (V,)
represented by 0! = > i<i<n 11 @i(Z, Tn11)0;i € Der(Clz, oy 41]) to Y2 iy ailz, g71)0;
interpreted in the canonical way as an element of Dy [g~!].

We point out that the 7.(X() NV, C V, for ¢ € C? fit in the situation of Section 4.3. If X is
moreover smooth, we may by Remark 1.2.12 further assume that the 1.(Xo) N V. C V, fulfill
the assumptions of Section 4.2. On the other hand, for ¢ € C*, we represent Dy, as a PBW-
reduction-algebra following Example 2.1.30(a) such that the filtration Fy Dy, is induced by a
weight vector. From now on, we implicitly identify Dy;, with the corresponding representation
of Dy, as PBW-reduction-algebra for ¢ € C.

4.4.2 General principle of the gluing process

Recall that we are interested in (filtered) localizations and dual localizations of Dx- and
Dx (xX() together with the natural (dual) localization maps as well as in the (unipotent) van-
ishing and nearby cycle functors together with the morphisms can and var. Our aim is to
represent these objects as quotients of free D y-modules with filtrations given by shift vectors.
Before we explain in detail how to glue the various constructions from certain local data, we
outline a gluing process for locally given filtered free presentations on which the patching of
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these constructions is based. Our method relies from a categorical point of view on the con-
struction of a certain inverse limit and does not depend on the underlying ring. Hence we
explain the gluing in the following more general setting:

Let {Uy}aca be a cover of X for a finite subset A C Clz] of cardinality greater than
one. Consider a Noetherian filtered ring (.5, F,) with the property that S is an Ox-module
inducing an O x -structure on its filtered parts Fj.S (k € Z). Then the filtration F,S defines a
filtration on S[a~!] for a € A via F,(S[a~!]) := (F.S)[a"!] (and similarly for S[a—!] [E_l]
for a,a’ € A). We equip the set

D:=AU(Ax A\{(a,a)|ac A})

with a partial order < defined by a > a, a > (a,d’), a > (d’,a) and (a,d’) > (a,d’) for all
a,a’ € A with a # a'. Given for every a € A a well-filtered (S[a~!], F,)-module (P, F,)

and S[aa’ _1]—linear filtered isomorphisms 7o o/ : FePq 01y = (F.Pa)[a’_l] = FoPy o for
all a’ € A\ {a}, the (Py)4ep define inverse systems in the categories of S-modules and of
Ox-modules if we take as bonding maps P, — P4 q/) the usual localization maps, denoted
by p7,, and as bonding maps P, — Py o) the map pg, composed with 7, 4. Then there
exists an S-module P representing the inverse limit of this inverse system (in the category of
S-modules). Noting that the inverse limit in the category of S-modules is compatible with
the inverse limit in the category of O x-modules and that the inverse limit functor for abelian
categories is left exact, we also obtain O x-submodules F P of P by considering the inverse
system (of O x-modules) with the bonding maps Fj, P, — P44y and F. Py — Py o) defined
by restriction of the bonding maps of (P;)4cp for k € Z. By construction this endows P with
the (.9, F,)-filtration F, P and we obviously have:

Lemma 4.4.1. The projection maps n, : P — P, of the inverse limit induce canonical iso-
morphisms
(F,P)[a'| = F,P,

forall a € A.

Our aim is to compute a free (.5, F, )-representation of (P, F,) under the assumption that we
can perform the following tasks and are given our inverse system in the following form:

Assumption 4.4.2. For (a,d’) € D we assume:

(a) We are given P,, a finite set G, C P, and s® € Z% with the property that F, P, =
deaa Fo—sgs[ail] “Ya-
(b) The module membership problem p € Fj, P, is solvable for p € P, and k € Z.

(c) We are given the isomorphism 7, / and are able to compute images under this map.

(d) We candecideif p € P, ) is 0.
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(e) We can compute the S[a—!]-syzygy module of elements of P,.

Example 4.4.3. In our applications, the (P,, F,) for a € A are given in form of filtered
presentations. More precisely:

(a) We have for every a € A a presentation of P, as a quotient S [E_I]Ea /K, with K, =
sia-11(K) for a finite set E, and a finite subset K C Sla—1]Fe.

(b) For every a € A we are given a finite set G, C S[a~ '] and a shift vector s* € Z%
such that Fo Py = > . FoosaS [@~1] - g2 and we have moreover a method to test for

s € Sla P ifs € FyP,[a"!] fork € Z.

(c) We are given the isomorphism 7, o : (S[aYP /K)[a '] = (S[@ 1B | Kp)[a ]
for all (a,a’) € D.

(d) We can compute the S[B_l]—syzygy module of elements of an S[b 1]—free module for
allb e AU {ad | (a,d’) € D}.

Note that hence Assumption 4.4.2 is fulfilled, because Assumption 4.4.2(d) can be reduced to
a module membership problem for S ] (K ), which is solvable by a syzygy computation.

Similarly, the task in Assumption 4.4.2(e) can be performed by a syzygy computation over
S[a—1.

Under Assumption 4.4.2, we compute a filtered free presentation of the inverse limit Fg P
based on the above lemma and the observation that this limit can be realized as the kernel of
the map

A H F P, — H P(a,a’)a (pa)aGA = (PZ/ (pa) - Ta’,a(pzl(pa’)))(a,a’)eD
acA (a,a’)eD

as outlined below: First we construct a finite set G, a shift vector s € Z% and strict surjective
maps oy : (S[E_I]G,F[s].) — (Py, F,) and Qg (S[E_l][g_l]G,F[s].) — (P(a,a),F.)
inducing an morphism of inverse systems by regarding the S[a—!]“ and S [6*1][?71]G for
(a,a’) € D as an inverse system indexed by D with bonding maps induced by the natural
localization maps (and analogously for the filtered parts). As the Mittag-Leffler condition is
satisfied we then obtain a surjective strict map

a: (SY Flsls) = (P, F,).

Let us now explain how to find the above data: To determine maps «, we observe that for
p € Fi P, (with a € A) exists by Lemma 4.4.1 a natural number [ € N such that (py/)arca €
ker(A) with p, = @'p and py € FyPy for a # o' € A suitably chosen. The number [
and the elements p), for ' € A are constructed as follows from Assumption 4.4.2: We first
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find | € N such that @7, (0% (p)) = pw @ 1 € p& (Py) with pyy € Py for all ' €
A\ {a} and set p, := @p. Using the method from Assumption 4.4.2(b) we increase ! until
par € FpP, for all ' € A and adapt (py)wrca accordingly. This process terminates as
Par @1 € T (FyPo)[@ ")) = (FiPy)[@a"']. By design we have for all (d/,a”) € D that
@ (a1 (p% (Par)) —p% (par)) = O for k big enough, which is tested by Assumption 4.4.2(d).
Replacing [ by [ + k for suitably chosen k and changing p, for a’ € A accordingly, we obtain
that (pa’)ae4 is in the kernel of A. We summarize the computation of (py/)area:

Algorithm 4.4.4 Auxiliary procedure for Algorithm 4.4.7

Imput: A cover {U,}qca of X with A C Clz] finite, a Noetherian filtered ring (.5, F,) such
that S'is an O x-module inducing an O x -structure on F},S (for k € Z). Moreover, assume
we are given the data and methods of Assumption 4.4.2 and an element p € Fj P, (with
k € Z and a € A also given).

Output: An element (py/)area € ker(A) N [[, 4 FrPo with A defined as above such that

pe = d'p for some [ € N.

Choose | € N and py € Py with @7, 0/ (p% (p)) = pr @ 1 forall @’ € A\ {a}.

Set p, = a'p.

Initialize 7 := 0.

while @'p, ® 1 ¢ Fy, P, foralla’ € Ado 1> Test by the method in Assumption 4.4.2(b).

Seti:=1+ 1.
while @ (7,1 o (p% (Par)) — p% (par)) # O for all (a/,a”) € D do > Test by Assump-
tion 4.4.2(d)
Seti:=1+ 1.
. Replace p,/ := a@'py forall a’ € A.
9: return (pa’)a’eA-

A A ol >

* A

Remark 4.4.5. In the unfiltered situation, we do not need Assumption 4.4.2(b). Hence we
simply drop Lines 4 and 5 in the above algorithm.

Remark 4.4.6. The above procedure requires many tests to make sure that the constructed
element (pyrca)aca is in ker(A). In certain situations, we do not need to perform all these
tests, and we can also avoid establishing the isomorphisms in Assumption 4.4.2(c) or perform-
ing the task in Assumption 4.4.2(d). Namely, we can sometimes consider the inverse limit
P as a subquotient of an already explicitly given object. More precisely, assume addition-
ally that we are (explicitly) given an S-module R such that P, is isomorphic to R, /R, with
R! C R! C R, := R[a '] satisfying the following properties: Using the same notation as for
P, the canonical isomorphism R, .y = R4 4) induces isomorphisms R’( = R/(a’,a) and
R o
and R/) for d € D with bonding maps induced by the localization maps and the isomorphisms
Rigay & R q) for (a,a’) € D form an inverse system. Then we may replace Assump-
tion 4.4.2(c) and (d) by the assumption below:

a,a’)
= R’(’a /.4y compatible with the isomorphism 7, o for (a,a’) € D. Moreover the R,
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4.4 Computations on (affine) varieties via gluing

(cd’) For every a € A, we are given the submodule R/, C R, and methods to decide for
r € R, if r € R/, and to compute images and an element in the preimage of a given
element under the surjective map p, : R, — P, lifting the isomorphism R/,/R) = P,.

In this situation, keeping the notation as above, we construct the element (p,/)q/c 4 as outlined
below: We first compute a preimage p’ € R., C R, of p under the map R/, — P,. Canceling
negative powers of @, we find | € N and p” € R such that a'p’ = p” ® @’ € R[a~']. By the
above criterion and by the method from Assumption 4.4.2(b) we can decide if p” ® o’ € R,

and if o (p"®a’") € F Py foralla’ € A. If not, we increase [ and adjust p” accordingly until
this is eventually the case. Arguing similarly as above, we see that this process terminates.

Setting G := UaeA (G, and defining s € z¢ by sy, = sga for g, € G, we obtain the strict
surjective maps

aq : (S[a %, Flsle) = (Pa, Fs), (9) — ga

for a € A inducing maps aq 4y by localization. By construction this defines a morphism of
inverse systems giving rise to the strict surjective map

a: (59, Flsle) = (ker(A), F), (9) = (9a)aca-

We extend this map to a free presentation by iterating the above process as follows: Note
that (ker(ag))qep with induced bonding maps is also an inverse system. Moreover, we have
by Lemma 4.4.1 and exactness of localization that ker(c,) = ker(a)[@~!] and ker(a(a’a/)) =
ker(a)[ﬁfl][ail] inducing isomorphisms ker(a(q,41y) = ker(a(y o)) for (a,a’) € D. By left
exactness of the inverse limit functor, the inverse limit of the inverse system (ker(cy))aep
agrees with ker(a). So we repeat the above process (forgetting any filtrations) with the inverse
system (Py)qep replaced by (ker(ag))qep to obtain a map

B:ST— 8¢

surjecting on ker(«/). Notice that ker(«,) is computable by Assumption 4.4.2(e) for (Py)qep
showing that (ker(ag))qep satisfies Assumption 4.4.2(a). Assumption 4.4.2(b) is not needed
because we do not have to consider filtrations. Condition (cd’) is fulfilled with R = S¢
and R’ = ker(a), because we can check for r € R, if r € Ry by testing if - ;7990 =
0 € P, via Assumption 4.4.2(e) for (Py)4cp. Note that Assumption 4.4.2(e) is not required,
because this condition was only assumed to compute ker(a,). So the above process is indeed
applicable and we obtain:
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Algorithm 4.4.7 Blueprint for the gluing process of filtered finitely presented modules from
local data.
Imput: A cover {Ug,}qca of X with A C Clz] finite, a Noetherian filtered ring (.9, F,) such
that S is an O x-module inducing an O x -structure on F}.S (for k& € Z). Moreover, assume
we are given the data and methods of Assumption 4.4.2.
Output: A finite set G, a finite set 7 C S¢ and s € ZC such that (S¢/ ¢(T), F[s]) repre-
sents the inverse limit of (Fs Py)4ep defined in Assumption 4.4.2.
1: fora € Ado
for g € G, do
Apply Algorithm 4.4.4 to g € Fss P, to obtain the output (ga/)areca-
: Set G :=| ],c 4 Gq and define s € 76 by s, 1= sj for g € Gi.
. Initialize an empty set T' C SC.
: fora € Ado
Determine a set 77 C S[a—!]“ of S[a—!]-generators of the S[a~!]-syzygy module of
|_|g€G{ga} C P,. > Use Assumption 4.4.2(¢).
8. forte T do

o: Find [ € N such that @'t € S¢.

10: fora’ € A\ {a} do

11: while > a'tyge # 0 € Py do > Checks if @'t € ker(ay) by Assump-
tion 4.4.2(e).

12: l:=1+1

13: Set T := T U {a't}.

14: return G, T s.

Remark 4.4.8. A problem appearing naturally in this context is the following: Consider an-
other inverse system (P})qcp satisfying the same properties as (Py)qcp with inverse limit
P’ = S /L’ and projection maps P’ — P’ (¢') — g/, (for ¢ € G'). Given S[a—']-linear
maps

Vg : Pé — P,

for a € A inducing a morphism of inverse system by taking as maps v(g o) : P(’a,a,)

— P(a,a’)
the localization of v, at a/, determine the limit mapv : P/ — P.

To solve this problem, we use the standard gluing method for this sort of situation (see
e.g. [Har77, Proof of Proposition I1.5.6]): As 7, (v((¢'))) = va(g,) forg € G' and a € A
and v,(g,) can be expressed as an S[a~!]-linear combination of the (g,)gec, We derive a

representation v((¢')) = ¢ ®a*s € P[a!] with ¢ € SO and kI € N. So there exists for
(a,a’) € D anatural number [ € N such that

L=k g _pd g
aa’ (a'" ' q) — aka qg/) =0c SG/S(T>,
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!
Lo . — —kI, g g
which is equivalent to aa” 7, (a” @' g — @ ¢,) = 0 for all @’ € A and can hence be tested

by Assumption 4.4.2(e). Choosing one [ that works for all possible choices of a and a’, we
’ ’ ’ ’ 9 — =
replace now ¢j by a'q] and kJ by kJ + [ for all a € A implying o’ Far ¢ —ake ¢ =0¢€
S¢) (T) = Pforalla,a’ € A. As {Us,}qca is a cover of X, we compute via Grobner basis
theory a representation 1 = > _, haa® + j with h € Clz]* and j € J. It follows that

— — . — i -
1((9) = Saen hatd since @ Yoy hagd = Yaea ha@ @ a8 = Yes ha@® ¢f) = )
foralla’ € A.

4.4.3 Localizations of strictly specializable Dx- and Dx(xX,)-modules

We apply the gluing principle presented in the previous subsection to represent the localization
of the strictly Xo-specializable (Dx, Fy)-module (M, Fy) = (D% /K, F°[s].) along X as
quotient of a free (Dx, Fy)-module. Considering Locx, (M) = M ®o, Ox(xXp) as a
subquotient of itself, it suffices to show that Example 4.4.3(a), (b) and (d) as well as (cd’)
are satisfied in this situation. Hence, before we actually glue, we investigate the O x-module
Ox (%X() and its localizations:

Remark 4.4.9.
(a) By definition of Ox (xXj), we can write 4 fk € Ox(xXp) (where g € C[z] and k € N)

of the form ;z € Ox(xXy) for b,/ € B. We construct ¢’ and 7 as follows: As J is a
prime ideal, we check for increasing ? whether fb,q €c Cla] < fb ,J > using Grobner basis

theory until this test is positive. From the corresponding representation fg,q =q ff + 3
with j € J, we read off ¢’ € C[z].

(b) Let g € C[z] such that on U, that Ty, is Oy, -generated by f, for some b € B. Then
there is an isomorphism

PR — 1, 94 _ P
Vg:OX(*XO) ®OX OXLg I]ZOX[fb ]®OX OX[g 1]5 jz@q 7®jku
fo 9 fu 9
where representations of elements of the module on the left hand side as above are deter-
mined by Part (a). Moreover there exists some [ € N such that ?—l € Ox (*X() making

the inverse map explicit. The exponent [ is determined by testing g' € Cla] (J, fo) = f5°
for all ¥’ € B for increasing [, where the saturation as well as the ideal membership
problem are computable via Grobner bases.

We cover X as in Subsection 4.4.1 and describe first the localization of (M, F,) on the open
subsets covering X *. We have

LOCXO(Ma F.)Uc = (MUchO) = (Dgc/KUcaFO[S]O)
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for ¢ € C*, since Ox (*Xo)y, = Oy, shows M (xXo)y, = My, and Remark 3.2.19 and
Remark 3.1.5 imply the claim on the filtration. Notice that the isomorphism M (xX() ®o

C4p with 4 — 4 ¢
¢ i fbk fa.z
Ox (xXp), where i € N and ¢’ € Ox are computed as outlined in Remark 4.4.9(a).

Next, we explain how to obtain a presentation as above on U, for ¢ € C°. By Algo-

rithm 4.2.15 (if X is smooth) or Algorithm 4.3.6 we get

Ox[c™] — Df /Ky, is given by sending (T ® TL’“) ®Ltome
b

Locx, (M, Fo)u, = Locy, gy (Mo, Fo) = (D /Ko, F°[sa).

fac)

Note images and preimages under the isomorphism My, ®o,, Ou. [fT;l] = D[% /K. can be
determined by Remark 4.2.14(b) or Remark 4.3.5(b) (depending on whether X is smooth).
On the other hand, the first isomorphism is induced by v, (see Remark 4.4.9(b)) and is made
explicit by the considerations in that remark.

Moreover, for ¢ € C, we are able to solve the module membership and the syzygy prob-
lem over the PBW-reduction-algebra Dy7,. As Algorithm 2.4.5 can be taken as the method
in Example 4.4.3(b) and Condition (cd’) is satisfied as seen above, all assumption for Algo-
rithm 4.4.7 are fulfilled and we may apply this algorithm to represent Locy, (M, F,) as a
quotient of a free D x-module with filtration induced by a weight vector.

Remark 4.4.10.
(a) The localization map is constructed as explained in Remark 4.4.8.

(b) We adapt the above gluing process to localizations of well-filtered (Dx (xXy), F¢)-
modules by replacing Algorithm 4.2.15 and Algorithm 4.3.6 by Algorithm 4.2.29 and
Algorithm 4.3.9, respectively,

4.4.4 Dual localizations of strictly specializable D - and
Dx(xX,)-modules along a smooth subvariety

We consider at the moment only the dual localization along smooth X, because - unlike for
singular X - we may use in this situation the simpler Condition (cd’). Recall that for smooth
X (the underlying module of) the dual localization of (M, F,) = (DE /K, F°[s],) is given
by Dx ®v,pyx V<oM with VoM being a subobject of M. By definition of the filtration on
DLocx, (M) and Lemma 3.1.30 it is now sufficient to present (V-oM, F,) as a quotient of the
form (VoD¥ /L, F°[s']) since this implies DLocx, (M, Fy) = (D¥ /Dx L, F°[s']).

Therefore, we explain more generally how to glue (V,, M, F,) for o € Q from local data.
By Remark 3.1.5, we have

(VaM, Fo)u, = (My,, Fo) = (Df;, / Ku., F°[sls)
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for ¢ € C*. Hence we use Algorithm 2.4.5 for the method in Example 4.4.3(b) on U,. On
the other hand, on the open subsets of type U, with ¢ € C” we compute by Algorithm 4.2.9 a
representation

(VaM, Fo)u, = (VoDfe)/ Ke, F°[ss),

where the above isomorphism is already explicit by construction. Moreover, we test for
m € My, whether m € V, My, by Algorithm 2.4.5 and explicitly represent it in terms of
given generators of V, M7, by Remark 2.4.6 if the test is positive. Thus Condition (cd’) is sat-
isfied on our cover. While the data in Example 4.4.3(a) and the filtration in Example 4.4.3(b)
are given by the above representation, we take Algorithm 2.4.5 for the method in Exam-
ple 4.4.3(b). As we can solve syzygy problems over Dy, we may use Algorithm 4.4.7 to
construct the desired representation of DLocx, (M, F,).

Remark 4.4.11.
(a) The dual localization map can be constructed as explained in Remark 4.4.8.

(b) To glue dual localizations of D x (*X()-modules we use Remark 4.2.33 and the material
presented in this subsection as well as the previous subsection.

4.4.5 Vanishing and nearby cycles

We want to compute the vanishing and nearby cycles of the (Dx, Fo)-module (M, F,) =
(DE /K, F°[s].) along the regular function f : X — C given that this modules is strictly f-
specializable. Setting Y := X x C; and Yj := V(¢) C Y our problem reduces to computing
the graded parts GrZYO ((if)+ (M, F,)).

We only briefly sketch the gluing process and leave the details to the reader: Representing
G/ ((if)+ (M, F°)) as a quotient of a V;"® Dy-module with filtration induced by a weight

«

vector works in analogy to Subsection 4.4.4 by considering eryo M as a subquotient of
(if)+M. Regarding now GerYO (if)+M as the trivial subquotient of this representation, using
Algorithm 4.4.7 with Condition (cd’) for the gluing and Algorithm 4.2.36 for the required local
representations, we express GrgYO(

induced by a shift vector.

i)+ M as a quotient of a free D x-module with filtration

The representation of the morphisms can and var relies now again on gluing the correspond-
ing local maps using the principle outlined in Remark 4.4.8.

Remark 4.4.12. To compute the nearby and vanishing cycles of (M, F,) along the regular
function f : W — C with W being a proper open subset of X, we shrink X such that we
may assume X = W. If W is affine, we continue now as above. Otherwise we refer to
Subsection 4.4.8.
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4.4.6 Dual localizations of strictly specializable D - and
Dx(xX,)-modules along singular subvarieties

Assume now that X is singular. We are interested in computing the dual localization along
X of the strictly Xo-specializable (Dx, F¢)-module (M, Fy) = (D% /K, F°[s]s). Covering
X as explained in Subsection 4.4.1, we first describe the dual localization of (M, F,) on the
open subsets of the cover of X*. We have by definition

DLOCXO(Mﬂ F.)Uc = (MUwFO) = (Dgc/KUmFO[S]')

for ¢ € C*. Note that on U, the empty set U. N Xy is defined by the vanishing of fu:. In

particular, we make the isomorphism (Df /Ky, , F°[s]s) = Vov(tﬂf“z ) (i, )+ My, ({Uex{0})
explicit by proceeding as in Algorithm 4.3.8 and Remark 4.3.5(d), where we write by abuse of
notation iz, . for the map Ue — U, x C, u (u, fax(u)).

On the other hand, on open sets of type U, with ¢ € C° Algorithm 4.3.8 computes a repre-

sentation

V(t—T,0) .. - o e
DLocy, (M, Fo)y, =V, e (if,0)+(My,, Fo)(Ue x {0}) = (Dfe /K., F°[s%]s)

with computable images and preimages under the second isomorphism (see Remark 4.3.5(d))
(here ¢ £a0 is to be understood in the same sense as above). This shows that Example 4.4.3(a)
and (b) are satisfied on our cover (for the method in the latter part use Algorithm 2.4.5).

Considering ¢, € C there exists on U.» = U. N Uy an invertible regular function Ueel -
Uee — Csuchthat fo , = uc fo, inducing a coordinate change A¢ o : Uee XCp — Uper X Cy
(z,t) = (2, uce(x)t ) According to Lemma 3.2.39

VYT (g, ) My V) 2 V) T (g, )MoV ()

with morphism induced by
V(t), . V(t),.
Dy, xc ®yvep, e Vo (g, )+ My, = Dy, xc PV 0Dy e Vi )(lfac,)+MUcc,,
pRIM— Ac,c’ (p) ® Ac,c’(m)

with A, o : Dy_,xc = Du_, xc defined as in Example 1.4.9. This establishes together with
the above isomorphisms in Example 4.4.3(b).

Remark 4.4.13.
(a) The computation of the dual localization map is again based on Remark 4.4.8.

(b) Using similar methods as in Remark 4.4.11(b) allows us to glue dual localizations of
strictly X-specializable (Dx (xXg), Fy)-modules.
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4.4.7 A quasi-inverse for Kashiwara’s equivalence

Given a closed embedding ./ : X C Y of affine smooth pure dimensional varieties of dimen-
sions m and n, there is by Proposition 1.4.12 an equivalence of categories

!y : Modeon(Dx ) — Modzy,, (Dy). (4.4.1)

coh

Moreover, we have a functor

/y s Modeon(Fy Dx) — Moda ) (FS Dy),

coh

where the right hand side category denotes the category of well-filtered (Dy, Fy)-modules
supported on X . Direct images as above are easily computable by Equation (1.4.1) and Defi-
nition 1.4.13. However, the computation of a quasi-inverse of the functor in Equation (4.4.1)
is more involved.

We directly consider a similar question in the setting of well-filtered modules: A module
(M, F,) € Modcon(Fy Dx) is (up to isomorphism) uniquely determined by ¢/, (M, F,) and
is recovered from a representation (P, Fy) := (D¥'/Q, F°[t]s) of ! (M, F,) as follows:
Compute a partial affine open cover U of Y covering X with the following property: The
set U € U is a coordinate neighborhood of X with local coordinates fi, ..., f, such that
fi,..., fx are global coordinates on Uy, := U NV (fx41,..., fn) and such that Uy, C U has
defining ideal sheaf generated by fiy1,..., fn form < k < n (see Remark 1.2.13(b)). By
filtered Kashiwara’s equivalence (Proposition 3.2.7) we see that (i7;, )+ (Muy,,, Fe) is strictly
[fr-specializable if & > m, where 1y, stands for the inclusion Uy, C Uy. As (¢, (M, F,))uy =
(t17,)+(Mu,,, Fs), we can stepwise compute a filtered (Dy, , Fy')-presentation of

(t7,)+ (Mo o) = Grl™ (Gt )4 (Mo, F) ) = V3 (G, )+ (Mo, F)

using Algorithm 4.2.36 (after applying Remark 1.2.12) for ¥ = n—1,--- ,m. This way we
determine a presentation (D;E(%U /Lu, F°[wyle) of (M, Fo)unx. As D)E(%U /Ly is iden-
tified with a subset of P (and this identification can be made explicit by the methods in
Subsection 4.2.8), it is possible to establish the necessary gluing isomorphism (see Assump-
tion 4.4.2(c)). Since the other assumptions for Algorithm 4.4.7 are obviously satisfied because
we work over coordinate rings, we may apply this algorithm to compute a representation of
(M, FY).

Remark 4.4.14. Note that we cannot check whether a well-filtered (Dy, Fy)-module (P, F,)
supported on X is the direct image of some (Dy, Fy)-module. Yet, for Hodge Dy -modules
this is always the case due to Kashiwara’s equivalence for mixed Hodge modules.

4.4.8 Computations on arbitrary varieties

Let X be an (arbitrary) smooth equidimensional algebraic variety, X a pure codimension one
subvariety and {U }y¢y/ a finite affine open cover of X. A well-filtered (Dx, Fy)-module
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4 Algorithms for (strictly) specializable D-modules

(P, F?) is uniquely defined by (P(U), Fy) and (P(U NU’), FY) as well as the restriction
morphisms P(U) — P(UNU’) forall U, U’ € U.

If (M, F,) and (N, F,) are given by the data as above, we compute their localizations and
dual localizations along X and the vanishing and nearby cycles on the cover {U }y <y as well
as on intersections of this cover by the methods presented in the previous subsections. More-
over it is possible to extend these methods to represent also the restriction maps by keeping
track of the corresponding restrictions of M and N throughout all algorithms of this chapter.
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