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Introduction

The k-th cohomology group of any smooth projective variety X admits a so-called Hodge
decomposition

Hk(X,Z)⊗Z C = Hk(X,C) =
⊕
p+q=k

Hq(X,Ωp
X).

Hodge theory axiomatizes this via Hodge structures of weight k. More precisely, such a Hodge
structure is given by a free abelian group HZ, a certainly decreasingly filtered complex vector
space (H,F •) and an isomorphism HZ ⊗Z C ∼= H . Setting Hp,q := F pH ∩ F qH , we obtain
a Hodge decomposition H =

⊕
p+q=kH

p,q as above. The advantage of endowing H with
a filtration instead of a graduation is that the filtration is compatible with families of smooth
projective varieties, which led to the introduction of variations of Hodge structure: Replacing
HZ by a local systemHZ on the complex manifold X and H by a holomorphic vector bundle
H on X with integrable connection satisfying in particular H ∼= HZ ⊗Z OX , gives the notion
of a variation of Hodge structure on X [Gri68] [Gri69]. Deligne extended Hodge structures
to mixed Hodge structures to remedy the issue that cohomology groups of singular and non-
projective varieties do in general not permit a Hodge decomposition [Del71] [Del74]. A mixed
Hodge structure consists essentially of the same data as a Hodge structure and an additional
so-called weight filtration W• on HZ ⊗Z Q such that, roughly speaking, the k-th graded part
with respect to W• admits a Hodge structure of weight k.

Considering the filtration F ◦• by the order of differential operators on a sheaf of differential
operators D, Saito generalized variations of Hodge structure to mixed Hodge modules by
combining Hodge theory with well-filtered holonomic F ◦• D-modules to deal with families
of general varieties [Sai88] [Sai90]: Notice that a D-module already implicitly appears in
a variation of Hodge structure as an integrable connection on a holomorphic vector bundle
imposes a D-module structure on that bundle. Pure Hodge modules (of weight k) on the
complex manifoldX play the role of Hodge structures, where a regular holonomicDX -module
M with a good F ◦• DX -filtration F•M, called Hodge filtration, replaces H , instead of HZ we
consider a Q-perverse sheaf K and the corresponding isomorphism is replaced by a quasi-
isomorphism DR(M) ∼= K ⊗Q C. The precise definition of these Hodge modules is very
involved and by induction on the dimension of the support of the Hodge module. The most
basic example of a pure Hodge module is OX with a one-step filtration together with the
perverse sheafQX [dimX]. Considering additionally to (M, F•,K) a weight filtration W• on
M subject to the requirement that the k-th graded part with respect toW• is, roughly speaking,
a pure Hodge module of weight k and using again some recursive definition, gives the notion
of a mixed Hodge module. The category MHM(X) of mixed Hodge modules on an algebraic
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Introduction

variety X is abelian and therefore permits a derived category. A key feature of mixed Hodge
modules is that they obey the same six-functor formalism as perverse sheaves:

Theorem. [Sai90, Theorem 0.1] Let X be an algebraic variety. We have natural functors
f+, f!, f

+, f !,Ψg,Φg,1,D,�,⊗ and Hom between Db MHM(X) the derived categories of
mixed Hodge modules, such that these functors are compatible with the corresponding functors
on the underlying Q-complexes via

rat : Db MHM(X)→ Db Perv(QX)
real−−→ Db

c(QX),

where f is a morphism of algebraic varieties and g ∈ Γ(X,OX).

These functors also commute with the forgetful functor assigning a (complex of) mixed
Hodge module(s) the underlying (complex of) D-module(s), called Hodge D-module.∗ Hence
we think in this thesis of mixed Hodge modules as a special class of filtered F ◦• D-modules
having good properties. The construction of many of these functors in the filtered setting
strongly relies on a third natural filtration on Hodge D-modules, the so-called V -filtration,
which behaves by definition of Hodge D-modules "well" with respect to the Hodge filtration.

The main result of this thesis is an algorithm for the V -filtration in the filtered setting.

While some of the above functors, such as the exterior direct product �, are defined in anal-
ogy with the corresponding definition for (filtered) D-modules and their D-module theoretic
computation (see [OT01]) is adaptable to filtered Hodge D-modules, the construction of other
functors differs completely from the D-module theoretic construction; thus also requiring dif-
ferent algorithmic methods. For example, Saito uses a Beilinson-type resolution to reduce the
definition of the direct images f+ and f! to quasi-projective morphisms and shows that it suf-
fices to define the cohomological ones Hif+ and Hif!. Then he factorizes f = f̃ ◦ j with f̃
projective and j an open embedding whose complement is a locally principal divisor and sets
Hif+ := (Hif̃+)j+ and Hif! := (Hif̃!)j!. Considering such an embedding j : U ↪→ X with
complement X0, we have for instance j+OU = OX(∗X0). If the divisor X0 is smooth, then
the Hodge filtration F•OX(∗X0) simply agrees with a pole order filtration [Sai93]. Yet in
general, we have only an inclusion and the construction of the Hodge filtration involves taking
into account the V -filtration.

We present algorithms for direct images under open embeddings of the above type.

Such algorithms for the computation of j+ and j! serve not only as a first step to algorithmi-
cally treat the direct image functors, but enable us also to compute inverse images. We describe
this for the inverse image f+, the procedure for f ! is in analogy. Factorize f = p ◦ ι by a pro-
jection p : Y → Z and a closed embedding ι : X → Y and setHkf+M := Hk−lι+Hlp+M

∗We assume in this thesis that all (Hodge) D-modules are defined on smooth varieties. In particular, when
talking about direct or inverse images, we assume that the corresponding morphism is a morphism of smooth
varieties.
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for a Hodge DZ-moduleM, where l is the relative dimension of p. The inverse image under
the projection is then realized using the exterior tensor product. For the closed embedding,
cover the complement by affine opens and use the Čech complex and Kashiwara’s equivalence
for mixed Hodge modules to calculate ι+. More precisely, if the image ι(X) is cut out by the
regular functions g1, . . . , gr, thenHkι+N for a HodgeDY -moduleN is the k-th cohomology
of the complex

⊕
|I|=•(jI)+j

−1
I N , where jI :

⋂
i∈I D(gi) ↪→ Y for I ⊆ {1, . . . , r}. Local-

izations of the form (jI)+j
−1
I N are computable by similar methods as direct images under

jI .

We give an algorithm for localizations along codimension one subvarieties.

Noting that the above complex has cohomology supported on ι(X), it may be considered as
an element of MHM(X) under Kashiwara’s equivalence. Representing a quasi-inverse of this
equivalence computationally reduces to computing certain (graded) parts of the V -filtration.

We outline a method to make Kashiwara’s equivalence explicit.

We believe that the cohomological inverse image functorsHkf+ andHkf ! are computable
by adapting work in [OT01] to represent the exterior tensor product and in [Wal00] to compute
the cohomology of the above complex to the filtered setting and combining them with our
methods. Being able to compute inverse images under closed embeddings and exterior tensor
products allows then the calculation of tensor products. On the other hand, algorithms for
graded parts of the V -filtration are used to make the nearby and unipotent vanishing cycles
functors Ψg and Φg,1 explicit.

We develop algorithms for the computation of vanishing and nearby cycles.

We describe now the V -filtration and outline the translation of Hodge theoretic construc-
tions, that are based on this filtration, into algorithms by taking the example of direct images
under open embeddings of the above type. Given a codimension one inclusion X0 ⊆ X of
smooth equidimensional varieties with defining ideal I, the V -filtration along X0 on DX is
defined by

V•DX := {p ∈ DX | p(Ij) ⊆ Ij−• for all j ∈ Z},

where Ij = OX for j ≤ 0. The definition of the V -filtration on a DX -moduleM is of local
nature. Loosely speaking, the V -filtration V•M is a good filtration with respect to V•DX
such that locally (−∂tt−•) acts nilpotently on GrV• M, where t is a local generator of I with
corresponding derivation ∂t. Let us now explain how to use the V -filtration for the computation
of direct images under the open embedding j : U := X \ X0 → X , where we also allow
singular X0. Given a Hodge D-moduleM on U , we regard j+M = jM as a DX -module
via the natural isomorphism DX(∗X0) ∼= jDU . The Hodge filtration on jM is for smooth
X0 given by

F•jM =
∑
i∈N

F ◦i DX ·jF•−iV0M .

3
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The case of singular X0 is then reduced to the above situation by considering a certain graph
embedding and using Kashiwara’s equivalence. So the main task is calculating the Hodge
filtration on V0M, where part of the difficulty comes from the fact that while jF•M is well-
filtered as F ◦• DX(∗X0)-module, it is not well-filtered as F ◦• DX -module. The basic idea of
our method for that is to compute the layers FkV0M for increasing k stepwise and to use a
stopping criterion, which checks based on the computed layers if a set of generators of the
filtration has already been determined. The actual computations are performed over certain
algebras.

We describe Hodge theoretic constructions in terms of elementary computationally ac-
cessible operations over bifiltered algebras.

We give some details of this process in the following: We reduce the above constructions
to constructions over non-commutative bifiltered algebras via taking sections of our objects.
In classical algorithmic D-module theory this is mainly achieved by considering only affine
n-spaces, because the global sections of

DCn =
⊕
α∈Nn

OCn ∂α1
1 · · · ∂

αn
n

coincide with the n-th Weyl algebraDn, which has a well-developed Gröbner basis setup based
on the fact that its set of standard monomials forms a C-basis. As DX has locally a similar
representation and the V -filtration is of local nature, we take certain local sections instead
of restricting ourselves to affine spaces. More precisely, there is a computable irreducible
affine open cover U of X with the property that for U ∈ U there exist commuting derivations
θ1, . . . , θm ∈ ΘX(U) such that

DU =
⊕
α∈Nm

OU θα1
1 · · · θ

αm
m .

Identifying U with a closed subvariety of some Cn, these derivations are induced by not nec-
essarily commuting derivations on Cn generating a C[x1, . . . , xn]-subalgebra of Dn. As the
corresponding “standard monomials” in these lifted derivations do in general not generate that
subalgebra as C[x1, . . . , xn]-module, it seems not to be possible to represent the so-called co-
ordinate system ringDX(U) as a factor algebra of a PBW-algebra. However, it can be realized
as a factor algebra of a free associative C-algebra such that the standard monomials form a set
of C-generators subject to some relations.

We introduce the class of so-called PBW-reduction-algebras, which is tailored to capture
computations involving coordinate system rings.

These algebras can be thought of as factor algebras of algebras that are “almost” PBW-
algebras, but whose set of standard monomials might not be linearly independent.

We develop a comprehensive Gröbner basis framework for this extension of the class of
PBW-algebras.
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Based on that, we study the interplay of certain filtrations given by weight vectors on these
PBW-reduction-algebras. We apply these considerations then to our problems from Hodge
theory using that the realization of coordinate system rings as PBW-reduction-algebras can be
made such that the V -filtration and the F ◦• -filtration are induced by weight vectors.

Outline

This thesis is organized as follows:

• Chapter 1 reviews the required background on filtrations and D-modules. This chapter
is mainly expository except for Proposition 1.1.15, which is essential for testing whether
the already mentioned stopping criterion is satisfied. Moreover, although well-known,
a complete account on local coordinates seems to be missing in literature. As these are
key players in this thesis, we give a comprehensive and constructive treatment of local
coordinate systems.

• Chapter 2 is motivated by the need of a Gröbner basis setup for coordinate system rings.
As explained earlier we extend for that the class of PBW-algebras to the new class
of PBW-reduction-algebras and develop a Gröbner basis framework for this new class,
which mirrors in some aspects that of PBW-algebras, but requires different definitions of
the standard terminology. By doing so, we also rectify some errors concerning coordi-
nate system rings and their representation made in [Oak96] (see Remark 2.1.31). Based
on that framework, we study weight vector filtrations and their interplay in more gener-
ality than has been done for PBW-algebras. This culminates in Algorithm 2.4.15, which
is modeled for the computation of the Hodge filtration in the context of localizations.

• We review in Chapter 3 the required theory on V -filtrations, their interaction with F ◦• -
filtrations and localizations following mainly [Sai88] and [SS17]. Building on Kashi-
wara’s, Saito’s and Sabbah’s work we then translate the material into (mainly local)
statements preparing the algorithmic computation of V -filtrations and different types of
localizations in both the non-filtered and filtered setting on a sheaf-theoretic level. In this
context, we highlight the previously mentioned stopping criterion (see Corollary 3.2.18)
and Proposition 3.2.34, which proves that a graph embedding may be used in our setup
to deal with direct images under embeddings of complements of non-smooth codimen-
sion one subvarieties.

• Finally, Chapter 4 intertwines the sheaf theoretic results from the previous chapter with
the computational methods for PBW-reduction-algebras from Chapter 2. For that we
first justify passing to global sections in the affine case, consider then a local situation
and translate the results from the previous chapter into algorithms strongly relying on
our algorithmic framework for PBW-reduction-algebras. A gluing process for filtered
free presentations finally patches the local results.
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Notation and Convention

By an (algebraic) variety X we mean a reduced separated scheme of finite type over the com-
plex numbers. We denote its sheaf of regular functions by OX . In this context, we draw also
attention to Subsection 1.1.1, which explains how we deal conceptually with sheaves on X .

If X is affine and I ⊆ OX(X), we write V (I) for the subvariety of X defined by the
vanishing of I and D(I) := X \ V (I) for its complement. Similarly, for f ∈ OX(X) we set
V (f) := V ({f}) and D(f) := D({f}).

Given a morphism of sheaves φ : F → F ′ on X and U ⊆ X open, we write FU for the
restriction of F to U and similarly φU : FU → F ′U for the restriction of φ to U . Analogously,
we write Fp for the stalk of F at p ∈ X and φp : Fp → F ′p for the induced morphism on the
stalks. The kernel and image sheaf of φ are denoted by ker(φ) and im(φ), respectively.

For a regular function f : X → C, we define the sheaf of rings OX [f
−1

] by U 7→
(fN)−1OX(U) for U ⊆ X affine open. For an OX -module M we write M[f−1] for the
sheafM⊗OX OX [f−1]. We denote the global sections of these sheaves by OX(X)[f−1] and
M(X)[f−1].

Considering a morphism of algebraic varieties φ : X → Y , we denote the direct and inverse
images in the category of sheaves and of O-modules by φ, φ−1 and φ∗, φ∗.

Notation 0.0.1. Let X be an algebraic variety, A,A1, . . . ,As be sheaf of rings on X , U ⊆ X
an open subset, M a (left, right or two-sided) A-module, E,E1, . . . , Es finite sets and r ∈
N>0.

(a) The direct sum
⊕

e∈EM(e), where (e) is the free generator corresponding to e ∈ E,
can be naturally identified with the function space ME if X is a one-point space and
hence we use the abbreviation

ME :=
⊕
e∈E
M(e)

forgetting the definition ofME as function space. Note that we denote for e ∈ E the
corresponding free generator by (e) and not e, because E might contain sections of an
A-module itself and we need to distinguish whether we consider e as a free generator or
as a section of that A-module.

We write {πe | e ∈ E} for the dual basis to E, that is, for e′ ∈ E the A-linear map πe′
is defined by

πe′ :ME →M, (e) 7→ δe,e′ .

7



Notation and Convention

Setting me := πe(m) for m ∈ME and e ∈ E, we write

m =
∑
e∈E

me(e).

Similarly, for E′ ⊆ E, we denote by

πE′ :ME →ME′ , m 7→
∑
e′∈E′

me′(e
′)

the projection toME′ . We denoteMr :=M{e1,...,er}. In this case, we also use form ∈
Mr the notation m =

∑
1≤i≤nmi(ei) by setting mi := mei . Moreover if G ⊆M(U),

we define GE := {m ∈M(U)E | me ∈ G for all e ∈ E} ⊆ M(U)E =ME(U).

(b) We identify A1 with A as A-module via the canonical map a 7→ a1. All notations and
definitions defined for Ar are hence implicitly also assumed to be defined for A via this
identification if not said otherwise. Similarly, all notations extend to AE1 ⊕ · · · ⊕ AEs
by identifying this free A-module with A

⊔
1≤i≤s Ei .

(c) By abuse of notation, for l ∈ N>0 and 1 ≤ i1 < . . . il ≤ s the map

πEi1 ,...,Eil : AE1
1 ⊕ · · · ⊕ A

Es
s → A

Ei1
i1
⊕ · · · ⊕ AEilil

, (a1, . . . , as) 7→ (ai1 , . . . , ail)

denotes the corresponding projection.

(d) IfM is a left, right or two-sidedA-module andG ⊆M(X), we denote by A〈G〉, 〈G〉A
and A〈G〉A the left, right and two-sided A-submodule ofM generated by G, respec-
tively. If G = {g1, . . . , gs} we also write A〈g1, . . . , gs〉 for A〈G〉 (and analogously for
right and two-sided modules). In the left module case we often write

∑
g∈GA ·g for

A〈G〉. Considering A as an A-module over itself defines the corresponding notations
for A-ideals.

(e) If N ⊆ M are A-modules and m ∈ M(X), we write mN (X) ∈ M(X)/N (X) = for
the residue class of m. If it is clear from the context that mN (X) ∈ M(X)/N (X), we
simply writem. Similarly, forM ′ ⊆M(X) we defineM ′

N (X)
= {mN (X) | m ∈M ′}

and abbreviate M ′
N (X)

by M ′ if this does not cause any ambiguity.

(f) Let φ :M1 →M2 be a map between A-modules. Then φE denotes the map

φE :ME
1 →ME

2 ,
∑
e∈E

me(e) 7→
∑
e∈E

φ(me)(e).

(g) For a1 . . . , ak ∈ A we define
∏
i=1,...,k ai := a1 · · · ak.
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(h) We write [a, a′] := aa′ − a′a for the commutator of a and a′ ∈ A.

Taking a one-point space for X in the above notation introduces the corresponding notation
for rings.

Notation 0.0.2. Let α, β ∈ Zn and γ ∈ Zr be vectors with integer entries.

(a) We denote all vectors as row vectors and we write αi ∈ Z for the ith component of α
for 1 ≤ i ≤ n. So in particular, α = (α1, . . . , αn) = (αi)1≤i≤n.

(b) We define 〈α, β〉 :=
∑

1≤i≤n αiβi and |α| :=
∑

1≤i≤n αi.

(c) We set (α, γ) := (α1, . . . , αn, γ1, . . . , γr) ∈ Zn+r.

(d) By abuse of notation, we denote the ith unit vector in Zn by ei for 1 ≤ i ≤ n.
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1 Introduction to filtrations and
D-module theory

As already pointed out in the introduction, we treat mixed Hodge modules as a special class
of filtered D-modules that has “good properties”. Hence we provide in this chapter an intro-
duction to filtered algebras as well as the required D-module theoretic background with focus
on filtrations by the order of differential operators, local coordinate systems and direct images.
The main references for this chapter are [HTT08], [BGK+87] and [PS08].

The contents of this chapter are as follows: We start in Section 1.1 by investigatingO-quasi-
coherent locally left Noetherian sheaves of rings and by establishing in certain situations an
equivalence of categories between coherent modules over such a sheaf of rings and finitely
generated modules over the global sections of that sheaf. This will later in Chapter 4 justify
our passage to global sections. Then we consider filtrations on sheaves of algebras and prove
in Proposition 1.1.15 a result that will serve as a stopping criterion during the computation
of certain induced filtrations in Subsection 2.4.4. Section 1.2 reviews the sheaf of differential
operators, its filtration by the order of differential operators and local coordinate systems. As
local coordinate systems are a key player in this thesis and as we are not aware of a detailed
treatment of them in literature, we give a comprehensive account of local coordinate systems
including proofs and algorithmic computations. Section 1.3 is concerned withD-modules, that
is, modules over the rings of differential operators. Finally, in Section 1.4 we discuss direct
images of (filtered) D-modules with focus on open and closed embeddings.

1.1 Coherent modules and filtrations

We will see that the sheaf of differential operators on the smooth algebraic variety X is a CX -
algebra that is locally free overOX and hence in particularOX -quasi-coherent. Since we need
some of the definitions and results in this section not only for the sheaf of differential operators
on X , but also for certain tensor products involving it as well as some OX -submodules of it,
we consider in this section a more general setting.

1.1.1 Working with sheaves

Before we start with developing the theory on coherent modules and filtrations, let us explain
how we usually deal conceptually with sheaves on the algebraic variety X in this thesis (see
[Vak17, Section 13.3]). For this we need the concept of the distinguished affine base of X:

11



1 Introduction to filtrations and D-module theory

Definition 1.1.1. The distinguished affine base of X is the data of the affine open sets of X
and the distinguished inclusions (i.e., inclusions of the formD(f) ⊆ U for affine open U ⊆ X
and f ∈ OX(U)).

We define a “sheaf” (of sets, abelian groups or rings) on the distinguished affine base in
analogy to sheaves on topological spaces. Given a sheaf F on X , we denote the “restriction”
of this sheaf to the distinguished affine base by Fb. Then it holds:

Proposition 1.1.2. [Vak17, Theorem 13.3.2]

(a) A sheaf F on the distinguished affine base (of X) determines a unique (up to unique
isomorphism) sheaf (on X) which when restricted to the distinguished affine base is F .

(b) A morphism of sheaves on the distinguished affine base uniquely determines a morphism
of sheaves.

(c) An OX -module on the distinguished affine base yields an OX -module.

In analogy to the proof of the above proposition one shows that other module structures
(over sheaves of rings) are defined by the corresponding structures on the distinguished affine
base as well.

Using the concept of sheaves on the distinguished affine base, one characterizes OX -quasi-
coherence as follows:

Proposition 1.1.3. [Vak17, 13.3.3.D] Consider an OX -moduleM. ThenM is OX - quasi-
coherent if and only if for each affine open set U and f ∈ OX(U) the natural morphism
M(U)⊗OX(U)[f

−1
]→M(U∩D(f)) obtained from the restriction mapM(U)→M(U∩

D(f)) by the universal property of localization is an isomorphism.

Remark 1.1.4. Assume that all sheaves under consideration are OX -quasi-coherent. Then
(sheaf theoretic) constructions such as quotient sheaves, images of morphisms, finite sums of
subsheaves of a given sheaf, certain product constructions (e.g. given sheaves of rings S ⊆ R,
theR-moduleM and the OX -subsheafM′ ⊆M, consider the S-module S ·M′ ⊆M) and
certain tensor products commute on the distinguished affine base with taking sections. So we
may e.g. represent sections of the quotient sheaf (M /M′)b as residue classes of sections of
Mb.

Hence we usually work when dealing with O-quasi-coherent sheaves implicitly on the re-
striction of the sheaves to the distinguished affine base and assume that all local sections are
local sections on the distinguished affine base. For example, the considerations in Chapter 3
strongly rely on this approach.

Moreover, we often only define sheaves on the distinguished affine base. We demonstrate
this in Subsection 1.2.1 and do later so without explicitly saying so.

12



1.1 Coherent modules and filtrations

1.1.2 (Quasi-)coherent modules

Consider an algebraic variety X and morphisms of sheaves of ring OX → PX → AX turn-
ing PX into a quasi-coherent OX -module and AX into a locally PX -free module. Note in
particular that these conditions imply that AX is also OX -quasi-coherent.

Definition 1.1.5. LetM be a left (right)AX -module. We say thatM is a left (right) coherent
AX -module if it is locally finitely generated and if for any open subset U ⊆ X any locally
finitely generated submodule ofMU is locally finitely presented. We say thatAX is left (right)
coherent if it is left (right) coherent as AX -module and call AX coherent if it is left and right
coherent.

Given a left AX -module that is left coherent, we often say simply that this modules is
coherent if that does not cause any ambiguity.

Notation 1.1.6. By Mod(AX) and Mod(Aop
X ) we denote the categories of left and right

AX -modules, respectively. We write ModPX - qcoh(AX) and ModOX - qcoh(AX) for the cat-
egories of left PX - and OX -quasi-coherent AX -modules, respectively, and Modcoh(AX)
stands for the category of coherent AX -modules (and analogously for right modules). We
write D#(Mod∗(AX)) for the corresponding derived categories if they exist, where # ∈
{∅, b,+,−} and ∗ ∈ {∅, coh,OX - qcoh,PX - qcoh}.

We point of that ModPX - qcoh(AX) is a subcategory of ModOX - qcoh(AX), because ev-
ery local presentation of an AX -module by free PX -modules gives a local presentation by
OX -quasi-coherent modules. As the category of O-quasi-coherent modules on an algebraic
variety is abelian and being quasi-coherent is a local property, this shows the claim. Moreover,
Modcoh(AX) is a subcategory of the former categories if AX is locally left Noetherian:

We say that AX is locally left (right) Noetherian if it has an affine open cover U with the
property that AX(U) is left (right) Noetherian for all U ∈ U . By OX -quasi-coherence and as
OX acts by restriction of scalars onAX this implies thatAX(V ) is also left (right) Noetherian
for all affine open V ⊆ X contained distinguishedly in some U ∈ U . We call AX locally
Noetherian if it is locally left and right Noetherian.

Proposition 1.1.7. Let AX be a locally left Noetherian sheaf of rings. Then we have:

(a) The AX -module M is AX -coherent if and only if it is locally finitely generated as
AX -module and PX -quasi-coherent, or equivalently, if and only if it is locally finitely
generated as AX -module and OX -quasi-coherent.

(b) The sheaf of rings AX is left coherent.

An analogous statement holds for right modules.

Proof. The proof works analogously as the proof of [HTT08, Proposition 1.4.9]:

13



1 Introduction to filtrations and D-module theory

(a) IfM is AX -coherent, then it is by definition locally finitely presented as AX -module.
Furthermore, asAX isPX -locally free,M has a local presentation by freePX -modules
and is thus PX -quasi-coherent.

Let nowM be locally AX -finitely generated and quasi-coherent over OX . For x ∈ X
exists by assumption an affine open neighborhood U ⊆ X of x such that there is a
surjective morphism OqU →MU and such that AX(U) is left Noetherian. It suffices to
prove that the kernel of theAU -morphism φ : ApU →MU is finitely generated overAU
for any p ∈ Z. As AU (U) is a left Noetherian ring, the kernel of AU (U)p →M(U) is
finitely generated, yielding an exact sequence AU (U)q → AU (U)p →M(U) for some
q ∈ N. Since U is affine and AU is OU -quasi-coherent, and the global section functor
on quasi-coherent OU -modules induces an equivalence of categories with the category
of OU (U)-modules, we obtain the an exact sequence AqU → A

p
U →MU .

This finishes the proof as every PX -quasi-coherent module is also OX -quasi-coherent.

(b) Follows immediately from Part (a).

Eventually for computations involving coherentAX -modules, we wish to pass to the global
sections in certain situations. This requires an equivalence of categories

Γ(X, •) : Modcoh(AX)→ Modfg(Γ(X,AX))

between the category Modcoh(AX) and the category Modfg(Γ(X,AX)) of finitely generated
Γ(X,AX)-modules.

Definition 1.1.8. We say that an algebraic variety X isAX -affine if the global section functor

Γ(X, •) : ModOX -qcoh(AX)→ Mod(Γ(X,AX))

is exact, and Γ(X,M) = 0 impliesM = 0 forM∈ ModOX -qcoh(AX).

By Serre, X is OX -affine if and only if it is affine.

Proposition 1.1.9. Let X be AX -affine.

(a) AnyM∈ ModOX - qcoh(AX) is generated over AX by its global sections.

(b) The functor
Γ(X, •) : ModOX - qcoh(AX)→ Mod(Γ(X,AX))

is an equivalence of categories.

In particular, the above statements hold for affine X .
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1.1 Coherent modules and filtrations

Proof. The proof of [HTT08, Proposition 1.4.4] carries over word by word.

If X is AX -affine and AX is locally left Noetherian, we obtain by Proposition 1.1.7(a) and
the above proposition the desired equivalence of categories (for a detailed proof adapt the proof
of [HTT08, Proposition 1.4.13] to our situation):

Corollary 1.1.10. Let AX be locally left Noetherian and X be AX -affine. Then

Γ(X, •) : Modcoh(AX)→ Modfg(Γ(X,AX))

is an equivalence of categories. In particular, the above equivalence holds for affine X .

The above equivalence will be crucial in Section 4.1 for the reduction of certain problems
involving sheaves of rings to corresponding problems over the global sections of these sheaf
of rings.

1.1.3 Filtrations

Filtered D-modules play a key role in this thesis. More generally, we study in this subsection
filtrations on the KX -algebra AX for a given algebraic variety X , where KX denotes the
constant sheaf associated to the field K. Note in particular that our filtrations are by definition
exhaustive:

Definition 1.1.11. Let AX be a KX -algebra andM be an AX -module.

(a) A familyF•AX = {F j AX}j∈Z ofKX -vector subspaces ofAX satisfying for j, k ∈ Z
(i) F j−1AX ⊆ F j AX ,

(ii) F j AX · FkAX ⊆ F j+kAX ,

(iii) 1 ∈ F0AX \F−1AX and

(iv) AX =
⋃
j∈ZF j AX

is called a filtration ofAX . We write (AX ,F•) for the pair (AX ,F•AX) and use these
notations as well as F•AX interchangeably. We say that (AX ,F•) is a sheaf of filtered
KX -algebras or simply a filtered KX -algebra.

(b) Let (AX ,F•) be a filtered KX -algebra. A family G•M = {GαM}α∈Q of KX -vector
subspaces ofM is called a filtration ofM (with respect to the filtration of AX ) if

(i) GαM⊆ GβM for all α, β ∈ Q with α ≤ β,

(ii) G•M is discretely indexed, i.e., G<αM :=
⋃
γ<α GγM ( GαM for only

finitely many α ∈ [k, k + 1] for every k ∈ Z,

(iii) FkAX · GαM⊆ Gk+αM for all k ∈ Z and α ∈ Q and

(iv) M =
⋃
α∈Q GαM.
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1 Introduction to filtrations and D-module theory

We also write (M,G•) for the pair (M,G•M) and use these notations as well as G•M
interchangeably. We say that (M,G•) is a filtered (AX ,F•)-module.

(c) Let (M,G•) be a filtered (AX ,F•)-module and m ∈M. We define the G-degree of m
to be

degG(m) := inf{α ∈ Q | m ∈ GαM} ∈ {−∞} ∪Q

and say that m has G-degree degG(m).

(d) Let (M,G•) be a filtered (AX ,F•)-module. We refer to (M,G•) as a well-filtered
(AX ,F•)-module if

(i) GαM is F0AX -coherent for all α ∈ Q and

(ii) there exists some α� 0 such that for all k ∈ N and β ∈ Q≥α

FkAX · GβM = Gβ+kM and F−kAX · G−βM = G−(β+k)M .

In this case, we call G•M also a good filtration.

(e) Let (M,G•) and (M′,G′•) be filtered (AX ,F)-modules. The AX -linear morphism
φ : M →M′ is called filtered if φ(GαM) ⊆ G′αM′ for all α ∈ Q. We say that φ is
strict if φ(M) ∩ G′αM′ = φ(GαM) for each α ∈ Q.

(f) We call AX graded if there are KX -vector spaces Aj , j ∈ Z, such that

(i) 1 ∈ A0,

(ii) AX =
⊕

j∈ZAj and

(iii) Aj Ak ⊆ Aj+k for all j, k ∈ Z.

We say that 0 6= a ∈ A is homogeneous (of degree j) if a ∈ Aj .

(g) Let AX =
⊕

j∈ZAj be graded. The AX -moduleM is graded if there exist KX -vector
spacesMα, α ∈ Q, such that

(i) M =
⊕

α∈QMα,

(ii) Mα 6= 0 for only finitely many α ∈ [k, k + 1] for every k ∈ Z and

(iii) AjMα ⊆Mj+α for all j ∈ Z and α ∈ Q.

We say that 0 6= m ∈M is homogeneous (of degree α) if m ∈Mα.

(h) Consider the graded modulesM =
⊕

α∈QMα andM′ =
⊕

α∈QM
′
α over the graded

KX -algebraAX =
⊕

j∈ZAj . TheAX -linear morphism φ :M→M′ is called graded
if φ(Mα) ⊆M′α for all α ∈ Q.
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1.1 Coherent modules and filtrations

The corresponding notations of Definition 1.1.11 for right modules are defined in the canon-
ical way. Moreover, considering the case of X being a one point space, one defines the
analogous notations for K-algebras. Given a filtered KX -algebra (AX , F•), we denote by
Mod(F•AX) and Mod(F•Aop

X ) the categories of filtered left and right AX -modules with
filtered morphisms, respectively. The corresponding subcategories consisting of well-filtered
objects are denoted by Modcoh(F•AX) and Modcoh(F•Aop

X ). For filtered K-algebras (i.e. if
X is a one point space), we also use the notation Modfg(F•AX) and Modfg(F•Aop

X ) for the
latter two objects.

The remark below explains how to obtain from given filtered algebras or modules new fil-
tered modules:

Remark 1.1.12. Let (AX ,F•) be a filtered KX -algebra and E a finite set.

(a) Let s ∈ ZE be a so-called shift vector. Then (AEX ,F [s]•) with

F [s]j AEX :=
∑
e∈E
F j−se AX ·(e)

for j ∈ Z is a filtered F•AX -module indexed by the integers. If s = 0 is the zero
vector, we write F•AEX = F [s]•AEX .

(b) If (M,G•) is a filtered (AX ,F•)-module and n ∈ Z an integer, we can shift the filtra-
tion by n and define

(M, G•)(n) := (M, G•−n).

(c) Let (M,G•) be a filtered (AX ,F•)-module and N ⊆ M an AX -submodule. Then
G•N and G•(M /N ) defined by

GαN := GαM∩N and Gα(M /N ) := (GαM+N )/N

for α ∈ Q are filtered (AX ,F•)-modules.

We study now the relationship between filtered and graded modules:

Remark 1.1.13. Gradings and filtrations are related as follows:

(a) Note that gradings induce natural filtrations: Assume that AX =
⊕

i∈ZAi is a graded
KX -algebra andM =

⊕
α∈QMα is a graded AX -module. By setting

Fj AX :=
⊕
i≤j
Ai and GβM :=

⊕
α≤β
Mα

for j ∈ Z and β ∈ Q, we obtain filtrations F•AX (as KX -algebra) and G•M (as
filtered F•AX -module).
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1 Introduction to filtrations and D-module theory

(b) On the other hand, consider theKX -algebraAX and theAX -moduleM with filtrations
F•AX and G•M, respectively. We define the associated graded KX -algebra with
respect to F•AX and the associated graded AX -module with respect to G•M by

GrF AX :=
⊕
i∈Z

GrFi AX and GrGM :=
⊕
α∈Q

GrGαM

with GrFi AX := F iAX /F i−1AX and GrGαM := GαM /G<αM, respectively.
Clearly, GrF AX and GrGM are a graded KX -algebra and a graded GrF A-module,
respectively. However, in general we have AX � GrF AX and M � GrGM. In
particular, not every filtered algebra or module has a natural grading. We remark that
if N ⊆ M is an AX -submodule ofM with induced filtration G•N , then GrG N can
be canonically identified with a GrF AX -submodule of GrGM via the isomorphism
GαN /G<αN ∼= (GαN +G<αM)/G<αM.

The associated graded objects of (AX ,F•) and (M,G•) come with surjective symbol
maps

σF : AX → GrF AX
and

σG :M→ GrGM .

Here, the map σF sends a ∈ AX of finite F-degree to its image under the natural maps
FdegF (a)A � FdegF (a)A /FdegF (a)−1A ↪→ GrF AX and to 0 if its F-degree is not
finite. The map σG is defined in complete analogy.

Given a filtered KX -algebra (AX ,F•), a filtered (AX ,F•)-module (M,G•) and two AX -
submodules N ⊆ N ′ ⊆ M , then there are two canonical ways to induce a filtration G• on
N ′ /N , namely by taking either (N ′ /N ) ∩ G•(M /N ) or (G•N ′+N )/N . While these
filtrations agree, we investigate now similar constructions in a more general situation that do in
general not coincide. So assume moreover that BX is a subalgebra of (AX ,F•) with induced
filtration F• BX and that L ⊆ M is a BX -submodule. The filtration (M,G•) induces via the
following diagram naturally two filtrations as (BX ,F•)-module on P := (L+N )/N :

G•M
quot

filt ))

subm

filt
uu

G• L

quot filt
��

G•(M /N )

subm filt
��

Gq(L)
• P := (G• L+N )/N �

�
// Gs• P := G•(M /N ) ∩ P .

One easily sees that indeed Gq(L)
• P ⊆ Gs• P and that Gq(L)

• P depends on L, while Gs• P does
not. This motivates the following notation similar to the one in Remark 1.1.12:
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1.1 Coherent modules and filtrations

Notation 1.1.14. Let (AX ,F•) be a filtered KX -algebra and BX a KX -subalgebra of AX
with induced filtration F• BX . Given an finite set E, an AX -submodule N ⊆ AEX and an
BX -submodule P of AEX /N , we define for a shift vector s ∈ ZE

F [s]• P = P ∩F [s]•(AEX /N )

and drop s if it is the zero vector.

The question whether the other inclusion Gs• P ⊆ G
q(L)
• P also holds, is related to certain

associated graded modules:

Proposition 1.1.15. We have Gq(L)
• P = Gs• P if and only if

GrG(L∩N ) = GrG L∩GrG N .

Proof. Note that the inclusion of the left hand side in the right hand side is always satisfied
for each of the two equalities in the statement. As these inclusions are equalities if and only if
they are equalities on the stalks and taking quotient and submodule filtrations as well as taking
graded objects commutes with passing to stalks, we may assume that X is a one point space
and work with modules over K-algebras.

Assume that Gq(L)
• P = Gs• P and let 0 6= m ∈ GrGα L∩GrGαN for α ∈ Q. Then there

exist l ∈ L and n ∈ N such that m = σG(l) = σG(n). This implies l − n ∈ G<αM
and thus l ∈ P ∩G<α(M /N ) = Gs<α P = Gq(L)

<α P , where the last equality follows by
assumption. Hence there is some l′ ∈ G<α L and n′ ∈ N such that l = l′ + n′. We conclude
that n′ ∈ N ∩L and σG(n′) = σG(l) = m showing the first implication.

Conversely, assume GrG(L∩N ) = GrG L∩GrG N and consider p ∈ M with 0 6= p ∈
Gsα P for α ∈ Q. By construction of Gs• P , there exists l ∈ L, n ∈ N such that p = l
and l + n ∈ GαM. If l ∈ GαM, we are done. Otherwise n /∈ GαM and there is some
β > α such that σG(l) = −σG(n) ∈ GrGβ L∩GrGβ N = GrGβ(L∩N ). Hence there exist
m ∈ L∩N , l′ ∈ G<β L and n′ ∈ G<β N such that l = m + l′ and n = −m + n′. This
gives us a representation p = l′ + n′ − n = l′ with l′+n′ ∈ GαM and G-degree of l′ smaller
than β. Iteration of the above argument and using that G•M is discretely indexed finish the
proof.

While it is more natural to consider the filtration Gs• P , the filtration Gq(L)
• P can be neverthe-

less very helpful in certain situations: Namely, in Subsection 2.4.4 we will deal with a setting
where P and L are finitely generated BX -modules, but N is not. As the above proposition
implies that Gs P = Gq(L+N ) P , we approximate Gs• P by computing Gq(Li)• P for increasing
finitely generated BX -modules Li ⊆ N +L and use that proposition to check equality.

The statement below follows from the analogous statement for rings:

Proposition 1.1.16. Let (AX , F•) be an OX -quasi-coherent filtered KX -algebra such that
FkAX is OX -quasi-coherent for all k. If F−1AX = 0 and GrF AX is a locally left (right)
Noetherian sheaf of rings then so is AX .
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1 Introduction to filtrations and D-module theory

We finish this subsection by giving a description for well-filtered modules in a certain situ-
ation, which can be proven analogously to [HTT08, Proposition 2.1.1]

Proposition 1.1.17. Let AX be OX -quasi-coherent and (AX ,F•) be a filtered KX -algebra
such that F−1AX = 0, F0AX = OX and F j AX is OX -coherent for j ∈ Z. Assume
moreover that GrF AX is locally left Noetherian. An OX -quasi-coherent (AX ,F•)-module
(M,G•), with the property that FkM isOX -quasi-coherent for all k ∈ Z and FkM = 0 for
k � 0, is well-filtered if and only if it satisfies one of the following equivalent conditions:

(i) There exists locally a finite set E, a surjective AX -linear morphism φ : AEX →M and
a vector s ∈ QE such that

φ

(⊕
e∈E
Fbβ−secAX ·(e)

)
= GβM

for all β ∈ Q.

(ii) GrGM is a coherent GrF AX -module.

In particular, M is a coherent AX -module if and only if it can be equipped with a good
filtration.

1.2 Sheaf of differential operators

We introduce in this section the sheaf of differential operators on smooth affine varieties, study
it locally on certain affine open neighborhoods via local coordinates and equip it with the
filtration by the order of differential operators.

We assume from now on for the remainder of this chapter that X is a smooth algebraic
variety of pure dimension m if not stated otherwise. Similarly, all algebraic varieties are
assumed to be smooth and equidimensional unless otherwise specified.

1.2.1 Tangent sheaf and sheaf of differential operators

We construct the sheaf of differential operators DX on X by defining it on the distinguished
affine base. For U ⊆ X affine open we set DX(U) to be the C-subalgebra of EndC(OX(U))
generated by OX(U) (where we identify g ∈ OX(U) with multiplication by g on OX(U))
and by the set of derivations ΘX(U) := Der(OX(U)) on OX(U) defined by

Der(OX(U)) := {θ ∈ EndC(OX(U)) | θ(gh) = θ(g)h+ gθ(h) for all g, h ∈ OX(U)}.

The restriction map for the inclusion D(f) ⊆ U of DX (with U ⊆ X affine open and
f ∈ OX(U)) is induced by the ones of OX and ΘX . The restriction map of the latter ob-
ject is defined by sending derivations on OX(U) to their unique extension in Quot(OX(U))

20



1.2 Sheaf of differential operators

(restricted toOX(D(f))). Such an extension exists since for θ ∈ ΘX(U) its natural extension
defined by

θ
(g
h

)
:=

θ(g)

h
− gθ(h)

h2
for

g

h
∈ Quot(OX(U))

is indeed a derivation on Quot(OX(U)). As 0 = θ(1) = θ(hh) = θ(h) · 1
h + hθ( 1

h) and
hence θ( 1

h) = − θ(h)
h2

, an application of the product rule to θ(g 1
h) shows the uniqueness of

the extension. Moreover, we point out that these restriction maps are injective. Clearly, the
ΘX(U) and the DX(U) for U ⊆ X affine together with their restriction maps define sheaves
of OX -modules on the distinguished affine base of X . By [Vak17, Theorem 13.3.2] these
sheaves extend uniquely to sheaves on X , which we also denote ΘX and DX .

Definition 1.2.1. We call DX the sheaf of differential operators on X and ΘX the tangent
sheaf on X .

We will see in Subsection 1.2.3 that DX can also be introduced using commutators. While
the definition of the sheaves DX and ΘX above is extendable to singular algebraic varieties,
the sheaf of differential operators on a singular variety is defined using commutators and does
in general not agree with the above construction. In such a case, the sheaf of differential
operators might not behave nicely, and hence we restrict ourselves to the smooth case.

If X is the m-affine space, the sheaf of differential operators DX is the sheafified version
the m-th Weyl algebra:

Example 1.2.2. In the case X = Cm the global sections ofDX are isomorphic to the Weyl al-
gebra Dm, that is, the free associative C-algebra generated by x1, . . . , xm, ∂1, . . . , ∂m modulo
the commutation relations [xi, xj ] = [∂i, ∂j ] = 0 and [∂i, xj ] = δij for 1 ≤ i, j ≤ m, by iden-
tifying ∂i with the partial derivative ∂

∂xi
. We write from now on also ∂i for ∂

∂xi
. Abbreviating

C[x] := C[x1, . . . , xm], we have in particular

Dm =
⊕
α∈Nm

C[x]∂α1
1 · · · ∂

αm
m .

We will see later that DX is OX -quasi-coherent (see Corollary 1.2.14) and hence we obtain

DX =
⊕
α∈Nm

OX ∂α1
1 · · · ∂

αm
m (1.2.1)

with commuting ∂1, . . . , ∂m and [∂i, f/g] = ∂
∂xi

(f/g) for 1 ≤ i ≤ n and f, g ∈ C[x] with
g 6= 0.

Remark 1.2.3. If ι : Y ↪→ X is a closed embedding of (smooth) varieties with defining ideal
I, then we may identify

ι∗ΘY = DerI(OX)/ I ΘX .
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1 Introduction to filtrations and D-module theory

Here DerI(OX) is defined on U ⊆ X affine open by DerI(OX)(U) := {θ ∈ ΘX(U) |
θ(I(U)) ⊆ I(U)}. Arguing as above, one shows that this defines indeed a sheaf on the
distinguished affine base of X extending uniquely to a sheaf on X .

For the above identification note that by Remark 1.2.5(c) and (e) below we have on U as
above ΘY (Y ∩ U) = DerI(OX)(U)/ I(U)ΘX(U). As both sheaves are uniquely defined by
their values on the distinguished affine base, this shows the claim.

If we drop the assumption of X being an (affine open subset of an) affine space, a similar
representation of DX as in Equation (1.2.1) exists locally. So in particular DX is a locally free
OX -module and hence OX -quasi-coherent. We will make this explicit in the next subsection.
For that purpose we need a dual notation to the tangent sheaf, the so-called cotangent sheaf:

Definition 1.2.4. Let π : X → Y be a morphism of not necessarily smooth algebraic varieties.
The relative cotangent sheaf Ω1

X/Y is defined by δ∗(I/I2), where δ : X → X ×Y X is the
diagonal embedding and I the ideal sheaf of δ(X) in X ×Y X . We call sections of Ω1

X/Y

relative differential forms. If Y is a point, we say that Ω1
X/Y is the cotangent sheaf on X and

write also Ω1
X .

The cotangent sheaf comes with a natural morphism of abelian groups d : OX → ΩX/Y

(see e.g. [Har77, Remark 8.9.2] for a construction of this map via gluing natural derivations
of Kähler differentials). We review those properties of the (relative) cotangent sheaf needed in
this thesis (see e.g. [Har77, Section II.8] or [Vak17, Chapter 21]):

Remark 1.2.5. Let φ : X → Y and ψ : Y → Z be morphisms of not necessarily smooth
algebraic varieties.

(a) If X and Y are affine with coordinate rings A and B, respectively, the global sections
Ω1
X/Y (X) can be identified with the Kähler differentials ΩA/B .

(b) The algebraic variety X is smooth if and only if Ω1
X is locally free.

(c) The morphism d induces an isomorphism of OX -modules

HomOX (Ω1
X ,OX)→ ΘX , α 7→ α ◦ d.

(d) We have for a point p of X that

mX,p/m
2
X,p
∼= Ω1

X,p ⊗OX,p OX,p /mX,p, f 7→ df ⊗ 1,

where mX,p is the maximal ideal of the local ring OX,p.

(e) If X = V (I) ⊆ Cn with I = 〈f1, . . . , fs〉 radical, we identify by Part (a) the global
sections Ω1

X(X) with( ⊕
1≤i≤n

(C[x1, . . . , xn]/I)dxi

)
/ 〈df1, . . . , dfs〉 .
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1.2 Sheaf of differential operators

(f) There is a natural exact sequence

φ∗Ω1
Y/Z → Ω1

X/Z → Ω1
X/Y → 0

called the relative cotangent sequence.

(g) If φ is a closed embedding with ideal sheaf I, then there is the so-called conormal exact
sequence

I/I2 → φ∗Ω1
Y/Z → Ω1

X/Z → 0.

If X is smooth over Z, this sequence is also left exact.

1.2.2 Local coordinate systems

Recall thatX stands of a smooth variety of pure dimension m. By Remark 1.2.5(b) and (c) the
tangent sheaf ΘX is locally free. This implies an even stronger statement, namely that DX is
locally free. To proof this we consider so-called local coordinate systems and show that they
exist locally:

Definition 1.2.6. Let p ∈ X be a point and U an affine open neighborhood of p. We call
(fi, θi)1≤i≤m with fi ∈ OX(U) and θi ∈ ΘX(U) satisfying

ΘU =
⊕

1≤i≤m

OU θi

and
[θi, θj ] = 0 and [θi, fj ] = δij for 1 ≤ i, j ≤ m

a local coordinate system of X at p or a local coordinate system on the neighborhood U of X .
In this case, we also say that f1, . . . , fm are local coordinates (with differentials θ1, . . . , θm)
and callDX(U) a coordinate system ring. IfU = X , we call (fi, θi)1≤i≤m a global coordinate
system of X .

In the situation of the above definition, we abbreviate θα := θα1
1 · · · θαm

m ∈ DU for α ∈ Nm.
Similarly, we write fα := fα1

1 · · · fαm
m .

We have for U as above a direct sum representation ofDU in analogy with Equation (1.2.1):

Lemma 1.2.7. Let p ∈ X be a point and U an affine open neighborhood of p such that
(fi, θi)1≤i≤m with fi ∈ OX(U) and θi ∈ ΘX(U) is a local coordinate system of X . Then we
have

DU =
⊕
α∈Nm

OU θα.
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1 Introduction to filtrations and D-module theory

Proof. By [Vak17, Theorem 13.3.2] it suffices to show

DU (U ′) =
⊕
α∈Nm

OU (U ′)θα.

for all U ′ ⊆ U affine open. By definition of DU and since [θ, g] = θ(g) ∈ OU (U ′) for θ ∈
ΘU (U ′) and g ∈ OU (U), it suffices to proof that the set {θα | α ∈ Nm} ⊆ DU (U ′) is linearly
independent overOU (U ′). So assume that there is a finite setA ⊆ Nm and b ∈ OU (U ′)A with
no zero entries such that

∑
α∈A bαθ

α = 0 ∈ DU (U ′). Choosing α′ ∈ A minimal with respect
to the natural partial ordering on Nm, we obtain since θi(fj) = [θi, fj ] = δi,j for 1 ≤ i, j ≤ m
by the product rule the contradiction

0 =
∑

α∈A:α 6=α′
bα θ

α(fα
′
)︸ ︷︷ ︸

=0

+bα′ · θα
′
(fα

′
) = bα′

∏
1≤i≤m

(α′i!).

Remark 1.2.8. Let p ∈ X be a point and U an affine open neighborhood of p such that
(fi, θi)1≤i≤m with fi ∈ OX(U) and θi ∈ ΘX(U) is a local coordinate system of X . Then it
holds:

(a) The fi define an étale morphism

f : U → Cm, u 7→ (f1(u), . . . , fm(u)) :

The exact cotangent sequence (see Remark 1.2.5(f))

f∗Ω1
Cm →Ω1

U → Ω1
U/Cm → 0

dxi 7→dfi

implies that Ω1
U/Cm,u = 0 (for all u ∈ U ) as df1, . . . , dfm is a basis of Ω1

U,u by as-
sumption and Remark 1.2.5(b) and (c). Hence the morphism is G-unramified. The
required flatness follows from [Sta18, Tag 07DY] as the regular system of parameters
x1 − f1(u), . . . , xm − fm(u) ∈ OCm,f(u) is mapped under f to the regular sequence
f1 − f1(u), . . . , fm − fm(u) ∈ OU,u for every u ∈ U (see Remark 1.2.5(d)).

(b) Note that the fi − fi(u) (for u ∈ U ) are indeed local coordinates in an analytic neigh-
borhood of u. So we can consider our notion of local coordinates as a counterpart of the
notion in the analytic setting and the θi are unique lifts of the usual ∂i in Dm. However,
the fi do not separate the points in the Zariski topology.

The following proposition shows the existence of local coordinate systems:
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1.2 Sheaf of differential operators

Proposition 1.2.9. For each point p ∈ X exists an affine open neighborhood U ⊆ X of p,
regular functions f1, . . . , fm ∈ OX(U) and differential operators θ1, . . . , θm ∈ ΘX(U) such
that (fi, θi)1≤i≤m is a local coordinate system of X at p. These regular functions can be
chosen to generate the maximal ideal of OX,p.

Moreover, if Y ⊆ X is a smooth subvariety of pure dimension k containing p, we can choose
U and the local coordinate system such that additionally U ∩ Y ⊆ U has defining ideal sheaf
generated by fk +1, . . . , fm and (fi, θi)1≤i≤k is a local coordinate system on U ∩ Y .

Note that in the situation above the fi and θi for 1 ≤ i ≤ k can indeed by considered as
regular functions and derivations on U ∩ Y : The coordinate ring OY (U ∩ Y ) of U ∩ Y is
expressed as OX(U)/ 〈fk +1, . . . , fm〉 if U ∩ Y ⊆ U has defining ideal sheaf generated by
fk +1, . . . , fm. Since θ1, . . . , θk ∈ ΘX(U) map the defining ideal of U ∩ Y in U to zero, we
may interpret them as differentials on U ∩ Y by Remark 1.2.3.

Proof. As we want to describeDX andDY locally in the neighborhood of a point and as every
smooth algebraic variety has an open cover by smooth irreducible affines, we may assume
that Y ⊆ X ⊆ Cn are smooth irreducible affine varieties defined by the vanishing of the
prime ideals IY := 〈g1, . . . , gsY 〉 and IX := 〈g1, . . . , gsX 〉 (with sX ≤ sY and g1, . . . ,
gsY ∈ C[x] := C[x1, . . . , xn]).

We construct for a given point p = (p1, . . . , pn) ∈ Y ⊆ X an affine open neighborhood
U in Cn such that ΘU∩X and ΘU∩Y are a free OU∩X - and OU∩Y -modules of ranks m and k,
respectively: Taking Z ∈ {X,Y }, and writing ap = 〈x1 − p1, . . . , xn − pn〉 ⊆ C[x] and, by
abuse of notation, ap for its image in C[x]/IZ , we look at the regular local ring

(OZ,p,mZ,p) = ((C[x]/IZ)ap ,OZ,p ·ap).

We first determine a basis of the OZ,p-module Ω1
Z,p using that Ω1

Z,p ⊗OZ,p OZ,p /mZ,p is
isomorphic tomZ,p/m

2
Z,p (see Remark 1.2.5(b) and (d)) as follows: Considering the canonical

OZ,p /mZ,p-vector space isomorphisms

mZ,p/m
2
Z,p
∼=C[x]apap/C[x]ap(a

2
p + IZ)

∼=
(
C[x]apap/C[x]apa

2
p

)
/
(
C[x]ap(a

2
p + IZ)/C[x]apa

2
p

)
,

we compute OZ,p /mZ,p-bases of C[x]apap/C[x]apa
2
p and C[x]ap(a

2
p + IZ)/C[x]apa

2
p by

means of the C-linear homomorphism

λ : C[x]ap → (OZ,p /mZ,p)
n,

f

g
7→

(
∂1

(
f

g

)
(p), . . . , ∂n

(
f

g

)
(p)

)
.

We point out that the above morphism is independent of Z as OX,p /mX,p is canonically
isomorphic to OY,p /mY,p. This morphism induces an OZ,p /mZ,p-vector space isomorphism

λ : C[x]apap/C[x]apa
2
p
∼= (OZ,p /mZ,p)

n,
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1 Introduction to filtrations and D-module theory

that maps the elements x1 − p1, . . . , xn − pn to the canonical basis of (OZ,p /mZ,p)
n. The di-

mension of the OZ,p /mZ,p-vector subspace C[x]ap(a
2
p + IZ)/C[x]apa

2
p equals the dimension

of λ(IZ) and is hence the rank of the Jacobian matrix
(
∂j(gi)(p)

)
1≤i≤sZ
1≤j≤n

, namely rZ :=

n−dimZ. This implies the existence of sets TZ1 := {i1, . . . , irZ} ⊆ {1, . . . , sZ} and
TZ2 := {j1, . . . , jrZ} ⊆ {1, . . . ,n} of cardinality rZ with TX1 ⊆ T Y1 and TX2 ⊆ T Y2 such
that dZ := det

(
(∂jl′ (gil))1≤l,l′≤rZ

)
does not vanish at p. Thus

{gi | i ∈ TZ1 } ∪ {xi − pi | i /∈ TZ2 } ⊆ C[x]apap/C[x]apa
2
p

forms a basis of C[x]apap/C[x]apa
2
p. Hence a basis of mZ,p/m

2
Z,p is given by the residue

classes of
{xi − pi | i /∈ TZ2 } ⊆ mZ,p

under the above chain of isomorphisms. Regarding the above basis of C[x]apap/C[x]apa
2
p in

the case Z = Y , we see that another basis of mX,p/m
2
X,p is also given by the residue classes

of
{xi − pi | i /∈ T Y2 } ∪ {gi | i ∈ T Y1 \ TX1 } ⊆ C[x]apap/C[x]apa

2
p.

Assuming for simplicity TZ1 = {1, . . . , rZ} and TZ2 = {n−rZ + 1, . . . ,n} and setting fi :=
xi− pi for 1 ≤ i ≤ k and fk +i = grX+i for 1 ≤ i ≤ m− k, we obtain by Nakayama’s lemma

mZ,p = 〈f1, . . . , fdimZ〉.

Since mZ,p/m
2
Z,p is isomorphic to Ω1

Z,p ⊗OZ,p OZ,p /mZ,p as OX,p /mZ,p-vector spaces via
the map f 7→ df ⊗ 1 by Remark 1.2.5(d), the differential forms df1, . . . , dfdimZ are a basis of
the free OZ,p-module Ω1

Z,p (see Remark 1.2.5(b)). As this holds for all p′ ∈ UZ := Z ∩ U for
U = D(d) with d := dXdY , theOUZ -module Ω1

UZ
is free with basis df1, . . . , dfdimZ . Taking

the dual basis θ1, . . . , θdimZ ∈ ΘUZ (see Remark 1.2.5(c)), we get

[θi, fj ] = θi(fj) = θi(dfj) = δij

for 1 ≤ i, j ≤ dimZ and
ΘUZ =

⊕
1≤i≤dimZ

OUZ θi.

To see that the θi commute note that [θi, θj ] is a derivation on OUZ for 1 ≤ i < j ≤ dimZ

and that we have hence a representation [θi, θj ] =
∑dimZ

l=1 glijθl (with glij ∈ OUZ ). By
[θi, θj ](fl) = 0 for 1 ≤ l ≤ dimZ, we deduce that [θi, θj ] = 0. This proves that f1, . . . , fdimZ

is indeed a local coordinate system at p.
For the second part of the claim we show that OZ is locally a complete intersection defined

by the vanishing of g1, . . . , grZ . We have

OZ(UZ) = (C[x]/IZ)[d
−1

] ∼= C[x, xn+1]/ĨZ ,
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1.2 Sheaf of differential operators

where ĨZ = 〈g0, . . . , gsZ 〉 with g0 := 1 − xn +1d. We may drop the gdimZ+1, . . . , gsZ after
replacing d by a suitable multiple of it as described below: Since the morphism

f : UZ → CdimZ , u = (u1, . . . , un) 7→ (f1(u), . . . , fdimZ(u))

defined by the local coordinates f1, . . . , fdimZ is étale by Remark 1.2.8(a), the conormal se-
quence (see Remark 1.2.5(g)) for the closed embedding ιZ : UZ → Cn +1, u 7→ (u, 1

d(u)) and

the morphism Cn +1 → CdimZ , (u1, . . . , un +1) 7→ (f1(u1, . . . , un), . . . , fdimZ(u1, . . . , un))
reads

0→ ĨZ/Ĩ
2
Z → ι∗ZΩCn+1 /CdimZ → 0.

This yields an isomorphism µ fitting into the diagram

⊕rZ
i=0OZ(UZ)ei

ψ
// ĨZ/Ĩ

2
Z

µ

∼=
//
⊕n +1

i=dimZ+1OZ(UZ)dxi.

ei
� // gi, g

� //
∑n +1

i=dimZ+1 ∂i(g)dxi

Here, the map π ◦ ψ is given by DZ :=
(
∂j(gi)

)
0≤i≤rZ

dimZ+1≤j≤n +1

with determinant

detDZ = ±d · det

((
∂jgi

)
1≤i≤rZ

dimZ+1≤j≤n

)
= ±d · dZ ,

that is invertible inOZ(UZ). Thus g0, . . . , grZ form a basis of the freeOZ(UZ)-module ĨZ/Ĩ2
Z

implying that
ĨZ = 〈g0, . . . , grZ 〉+ Ĩ2

Z . (1.2.2)

According to Nakayama’s Lemma (see [Sta18, Tag 07RC]) there exists hZ ∈ 1 + ĨZ such that
C[x, xn+1][h−1

Z ] · ĨZ = C[x,xn+1][h−1
Z ]
〈g0, . . . , grZ 〉. Therefore we obtain

OZ(UZ) ∼= (C[x, xn+1]/ĨZ)[hZ
−1

]

∼= C[x, xn +1][h−1
Z ]/ C[x,xn+1][h−1

Z ]
〈g1, . . . , gsZ , 1− xn +1d〉

∼= C[x, xn +1][h−1
Z ]/ C[x,xn+1][h−1

Z ]
〈g1, . . . , grZ , 1− xn +1d〉

∼=
(
C[x, xn +1]/ C[x,xn+1]〈g1, . . . , grZ , 1− xn +1d〉

)
[hZ
−1

].

Multiplying hZ with a suitable power a of d to replace it by a representative of dahZ in C[x],
we finally get

OZ(UZ) ∼= C[x][(dhZ)−1]/ C[x][(dhZ)−1]〈g1, . . . , grZ 〉.
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1 Introduction to filtrations and D-module theory

Definition 1.2.10. If U has been chosen as in the moreover-part of the above proposition, we
call U a coordinate neighborhood (of Y in X). If U agrees with X , we say that U is a global
coordinate neighborhood.

Remark 1.2.11. We keep the notation of the proof of Proposition 1.2.9.

(a) We point out that this proof is constructive if Y ⊆ X ⊆ Cn are closed subvarieties
of Cn. Indeed, all steps except for the determination of hZ are obviously constructive
and hZ is determined as follows: Starting from Equation (1.2.2) we find an expression
gi =

∑
rZ+1≤j,l≤sZ c

Z
jlgjgl + qZi for rZ + 1 ≤ i ≤ sZ , where qZi ∈ 〈g0, . . . , grZ 〉 and

cZj,l ∈ C[x, xn +1] using Gröbner basis theory. From this we obtain a representation gi =∑
rZ+1≤j≤sZ z

Z
ijgj + qi with zZij ∈ ĨZ . Setting hZ := det((δij − zZij)rZ+1≤i,j≤sZ ) ∈

1 + ĨZ , the proof of Nakayama’s lemma in [Sta18, Tag 07RC] implies that hZ ĨZ ⊆
〈g0, . . . , grZ 〉.

(b) For Y and X as in the proof of Proposition 1.2.9 we extend f1, . . . , fm to a coordinate
system on U as follows: One easily checks that setting fm +1 := g1, . . . , fn := grX
gives the coordinate system f1, . . . , fn on U ⊆ Cn. An explicit representation of the
corresponding derivations θ1, . . . , θn in terms of the derivations ∂1, . . . , ∂n is found as
follows (see also [Oak96, Section 1]): Setting θi =

∑
1≤l≤n ail∂l with ail ∈ C[x][d−1],

the ail have to satisfy(
ail

)
1≤i≤n
1≤l≤n

·
(
∂l(fj)

)
1≤l≤n
1≤j≤n

=
(
δij

)
1≤i≤n
1≤j≤n

. (1.2.3)

After performing column switches, the matrix in the middle agrees with (δlj)1≤l≤k
1≤j≤k

(∂l(gj)) 1≤l≤k
1≤j≤rY

(0)k +1≤l≤n
1≤j≤k

(∂l(gj))k +1≤l≤n
1≤j≤rY

 .

As (∂l(gj))k +1≤l≤n
1≤j≤rY

is a divisor of d, the above matrix is invertible over C[x][d−1] and

hence the ail are uniquely determined by Equation (1.2.3) and can be explicitly com-
puted using Cramer’s rule. Also note that the θ1, . . . , θdimZ induce derivations on UZ
which correspond to the coordinates f1, . . . , fdimZ ∈ OZ(UZ).

Remark 1.2.12. Consider the (smooth) irreducible affine variety X ⊆ Cn defined by the
vanishing of the prime ideal I ⊆ C[x] := C[x1, . . . , xn] and its pure codimension one subva-
riety Y . Moreover, let X be a global coordinate neighborhood of Y with global coordinates
(fi, θi)1≤i≤m with fi ∈ C[x] such that Y = V (fm). By Remark 1.2.3 the θi are induced by
θli ∈ Der(C[x]). Note that we may assume that fm agrees with some variable xi: Namely, the
map

X ↪→ X × Ct, x 7→ (x, fm(x))
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1.2 Sheaf of differential operators

induces isomorphismsX ∼= V (I∪{t−fm}) ⊆ Cn×Ct and Y ∼= V (I∪{t−fm, t}). Further-
more, (f1, . . . , fm−1, t, θ1, . . . , θm−1, θm +∂t) is global coordinate system on V ({I, t−fm}).
We also point out that θlm + ∂t is a lift of θm + ∂t and that we have (θlm + ∂t)(t) = 1 and
θli(t) = 0 for 1 ≤ i ≤ m−1.

Remark 1.2.13. We keep the notation of (the proof of) Proposition 1.2.9 and still assume that
X is affine.

(a) We compute a finite cover {U}U∈U with U ⊆ X affine open having a global coordinate
system by taking the nonvanishing loci of all possible nonzero rX × rX -minors of the
Jacobian matrix

(
∂j(gi)

)
1≤i≤sX
1≤j≤n

as the elements of U and proceeding as in that proof

to determine actual local coordinates. Similarly, this cover can be refined to a cover U ′
such that U ′ ∈ U ′ with the property U ′ ∩ Y 6= ∅ has a computable coordinate system as
in the second part of the statement of Proposition 1.2.9.

(b) We can refine the cover U ′ from Part (a) to a cover U ′′ such that for U ′′ ∈ U ′′, with U ′′∩
Y 6= 0 and local coordinates f1, . . . , fdimX , the f1, . . . , fk for k ≥ dimY are global
coordinates on U ∩ V (fk+1, . . . , fdimY ) with defining ideal sheaf of this subvariety of
U generated by fk+1, . . . , fdimY .

Corollary 1.2.14. The sheaves ΘX andDX areOX -locally free and hence in particularOX -
quasi-coherent.

Remark 1.2.15. Let ι : Y ↪→ X be a closed embedding of smooth algebraic varieties with
defining ideal I. Then we have forU ⊆ X affine open and f ∈ OX(U) by the quasi-coherence
of ΘX and I that

DerI(OX)(U ∩D(f)) = {θ ∈ ΘX(U)[f−1] | θ(I(U)[f−1]) ⊆ I(U)[f−1]}.

As I(U) is OX(U)-finitely generated there exists for θ ∈ ΘX(U) with θ(I(U)[f−1]) ⊆
I(U)[f−1] a natural number k ∈ N such that fkθ(I(U)) ⊆ I(U) showing

DerI(OX)(U ∩D(f)) = DerI(OX)(U)[f−1].

By [Vak17, 13.3.3] this implies that DerI(OX) is OX -quasi-coherent.

1.2.3 Order filtration

As already indicated in Subsection 1.2.1, the sheaf of differential operators on X can also be
defined using commutators. Namely, set DkX := 0 for k < 0, inductively define for k ≥ 0 the
sheaves of OX -modules DkX on the distinguished affine base by

DkX(U) := {P ∈ EndC(OX(U)) | [P, f ] ∈ Dk−1
X (U) for all f ∈ OX(U)}
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1 Introduction to filtrations and D-module theory

and put
D′X(U) :=

⋃
k∈N
DkX(U)

for U ⊆ X affine open. Arguing as in Subsection 1.2.1, D′X extends uniquely to a sheaf on
X . One can show that D′X coincides with DX and that DkX · DlX ∈ D

k+l
X for k, l ∈ Z. Hence,

setting F◦k DX := DkX for k ∈ Z turns (DX ,F◦•) into a filtered ring.

Definition 1.2.16. We call (DX ,F◦X) the order filtration (by the order of differential opera-
tors) on DX .

In local coordinates the order filtration is obviously described as follows:

Lemma 1.2.17. Let (fi, θi)1≤i≤m be a local coordinate system on an affine open neighborhood
of U of X . Then the order filtration on DX is locally represented by

(F◦•DX)U = F◦•DU =
⊕

α∈Nm:|α|≤•

OU θα

and
GrF

◦
DU = OU [ζ1, . . . , ζm],

where ζi := θi mod F ◦0 DU for 1 ≤ i ≤ m.

Note that we used for the representation of the associated graded sheaf GrF
o DU the fact

that [p, q] ∈ F◦k+l−1DU for p ∈ F◦k DU and q ∈ F◦l DU .
As GrF

o DX is locally isomorphic to a polynomial ring over the commutative ring OX , it
is locally Noetherian and Proposition 1.1.16 implies:

Proposition 1.2.18. The sheaf of differential operators DX is locally Noetherian.

1.3 D-modules

A D-module is a sheaf of modules over a sheaf of rings of differential operators. It can be
considered as an algebraisation of a system of linear partial differential equations.

1.3.1 Introduction to D-modules

Recall our convention that if not stated otherwise, we mean by a DX -module, also called a D-
module on X , a left DX -module. Proposition 1.2.18 and Proposition 1.1.7 give the following
characterization of coherent DX -modules:

Proposition 1.3.1.

(a) DX is a coherent ring.
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1.3 D-modules

(b) A DX -module is coherent if and only if it is quasi-coherent over OX and locally finitely
generated over DX .

There is in fact an equivalence of categories between the categories of left and right DX -
modules. Before explaining this equivalence, we give examples of some important left and
right D-modules, which will be the building blocks of this equivalence as well as of the direct
image functor for D-modules.

Example 1.3.2. The sheaf of regular functions OX is made a left DX -module as follows: A
differential operator p ∈ DX is by definition a morphism p : OX → OX and hence acts on
f ∈ OX by applying p to f . We denote this action by p(f). This turns OX into a left DX -
module. We point out that it is important to distinguish the action of p on f and the product
of p with f inside DX : For example, in the case X = C2 with corrdinates x1 and x2, we
have DX ∼=

⊕
α∈N2 OX ∂α and ∂1(x2) = 0 ∈ OX , but ∂1x2 = x2∂1 6= 0 ∈ DX . Using

the commutation rules, one easily proves that OX is isomorphic to DX /DX ΘX as a left
DX -module.

Example 1.3.3. Our basic example for a right DX -module is ωX :=
∧m ΩX , which is ob-

viously an OX -module. The natural right action of θ ∈ ΘX on ω ∈ ωX is defined by the
Lie-derivative Lie θ, namely

ωθ := −(Lie θ)ω,

where, interpreting ωX as the dual of
∧dimX ΘX , the Lie-derivative is given by

((Lie θ)ω)(θ1, . . . , θm) := θ(ω(θ1, . . . , θm))−
m∑
i=1

ω(θ1, . . . , [θ, θi], . . . , θm)

for θ1, . . . , θm ∈ ΘX . By [HTT08], this defines indeed a right DX -module structure on ωX .
Locally, this operation is given by

(gdf1 ∧ · · · ∧ dfm)θα = ((−1)|α|θα(g))df1 ∧ · · · ∧ dfm,

where (fi, θi)1≤i≤m is a local coordinate system of U ⊆ X and g ∈ OU .

The module ωX induces so-called side-changing operations on the categories Mod(DX)
and Mod(Dop

X ):

Proposition 1.3.4 ( [HTT08], 1.2.12). The correspondence

ωX ⊗OX (•) : Mod(DX)→ Mod(Dop
X )

is an equivalence of categories with quasi-inverse is given by

HomOX (ωX , •) : Mod(Dop
X )→ Mod(DX).
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1 Introduction to filtrations and D-module theory

Here, forM∈ Mod(DX), we equip ωX ⊗OXM with a right DX -structure via

(ω ⊗m)θ = ωθ ⊗m− ω ⊗ θm,

where m ∈ M, ω ∈ ωX and θ ∈ ΘX . Similarly, the left action of ΘX on HomOX (ωX ,N )
(with N ∈ Mod(Dop

X )) is defined by

(θϕ)(ω) = −ϕ(ω)θ + ϕ(ωθ),

where θ ∈ ΘX , ϕ ∈ HomOX (ωX ,N ) and ω ∈ ωX .

1.3.2 Order filtered D-modules

When talking about (left or right) filtered (DX ,F◦•)-modules, we always assume that the filtra-
tion on the modules is indexed by the integers. We point out that a DX -moduleM is coherent
if and only if a globally defined good (DX ,F◦•)-filtration G•M exists (see [HTT08, Theorem
2.1.3]). We equip our two standard examples from Example 1.3.2 and Example 1.3.3 with
filtrations as follows:

Example 1.3.5. The one-step filtration

F j OX =

{
OX , if j ≥ 0

0, if j < 0

turns (OX ,F•) into a well-filtered (DX ,F◦•)-module.
Informally speaking, by assigning a differential form degree −1, the right DX -module ωX

is endowed with a good (DX ,F◦•)-module structure via

F j ωX =

{
ωX , if j ≥ −dimX

0, if j < dimX.

In order to extend the equivalence of categories between left and right DX -modules in
Proposition 1.3.4 to the filtered situation, we first need to define a filtration on the OX -tensor
product of a right and a left DX -module.

Definition 1.3.6. Let (M,F•) and (N ,F ′•) be filtered left and right (DX ,F◦•)-modules, re-
spectively. We define a filtration G• on the OX -tensor product by

G•(N ⊗OXM) =
∑
i∈Z
F ′iN ⊗OX F•−iM,

where we mean by the right hand side the image of
∑

i∈ZF
′
iN ⊗OX F•−iM inN ⊗OXM.

We write F ′•N ⊗OX F•M for (N ⊗OXM,G•).
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1.4 Direct images of D-modules

Using the above one-step filtration on ωX , we induce the following filtration on the associ-
ated right object of a left DX -module:

Definition 1.3.7. Let (M,F•) be filtered (DX ,F◦•)-module. We define a filtration F• on
ωX ⊗OXM by setting

F•(ωX ⊗OXM) := F• ωX ⊗OX F•M = ωX ⊗OX F•+dimXM .

In particular, (M,F•) is well (DX ,F◦•)-filtered, if and only if (ωX⊗OXM,F•) is. Propo-
sition 1.3.4 induces an equivalence of the associated categories of filtered objects

F• ωX ⊗OX (•) : Mod(F◦•DX)→ Mod(F◦•D
op
X ) (1.3.1)

with quasi-inverse

F•HomOX (ωX , •) : Mod(F◦•D
op
X )→ Mod(F◦•DX), (1.3.2)

where F•HomOX (ωX ,N ) := {ϕ ∈ HomOX (ωX ,N ) | ϕ(ωX) ⊆ F•−dimX N} for the right
F ◦• DX -module F•N .

1.4 Direct images of D-modules

Consider the morphism φ : X → Y of smooth equidimensional algebraic varieties of di-
mensions m and n. Our aim is to associate to φ a direct image functor φ+ from the category
of (bounded complexes of) DX -modules to the category of (bounded complexes of ) DY -
modules. Note that φ induces only a morphism of ringed spaces φ∗ : (X,OX) → (Y,OY )
and not one of the ringed spaces (X,DX) and (Y,DY ). In other words, there is in general
no map DY → φDX and hence the sheaf-theoretic direct images under φ of DX -modules
do not have the structure of a DY -module. However, φ−1 is left adjoint to φ, so there is the
natural unit map DY → φφ−1DY allowing us to define a direct image functor as outlined
below: To equip a DX -module with a left φ−1DY -structure, we tensor it in the category of
DX -modules with a certain (φ−1DY ,DX)-bimodule called transfer module. The natural unit
map then endows the sheaf theoretic direct image of this tensor product with a natural DY -
structure. This amounts to composing a right exact functor, namely tensoring with the transfer
module, with the left exact sheaf theoretic direct image functor. Thus this construction does
not commute with composition of morphisms. To remedy this, we work in the corresponding
derived categories.

1.4.1 Transfer modules

Given a morphism φ : X → Y , we introduce the transfer modules DX→Y and DY←X
which turn the right and left DX -module N and M into right and left φ−1DY -modules

33



1 Introduction to filtrations and D-module theory

N ⊗DX DX→Y and DY←X ⊗DXM, respectively: We associate to φ the so-called first trans-
fer module given by

DX→Y := φ∗DY = OX ⊗φ−1OY φ
−1DY .

This module carries a (DX , φ−1DY )-bimodule structure: While its right φ−1DY -structure
is simply given by right multiplication on the second factor, the left structure is defined as
described below: By the relative cotangent sequence (see Remark 1.2.5(f)) we obtain an OX -
linear map φ∗Ω1

Y → Ω1
X with OX -dual

α : ΘX → HomOX (φ∗Ω1
Y ,OX) ∼= Homφ−1OY (φ−1Ω1

Y ,OX ⊗φ−1OY φ
−1OY ).

Since φ−1Ω1
Y is a locally free φ−1OY - module, we have for U ⊆ Y open such that ΩU isOX -

free, that the Oφ−1U -moduleHomφ−1OU (φ−1Ω1
U ,Oφ−1U ⊗φ−1OUφ

−1OU ) is isomorphic to

Homφ−1OU (
⊕

1≤i≤n

φ−1OU ,Oφ−1U ⊗φ−1OUφ
−1OU )

∼=
⊕

1≤i≤n

Homφ−1OU (φ−1OU ,Oφ−1U ⊗φ−1OUφ
−1OU )

∼=
⊕

1≤i≤n

(Oφ−1U ⊗φ−1OUφ
−1OU )

∼=Oφ−1U ⊗φ−1OUHomφ−1OU (φ−1Ω1
U , φ

−1OU )

∼=Oφ−1U ⊗φ−1OUφ
−1ΘU ,

where we also write φ for the map φ−1U → U, x 7→ φ(x). Composing αφ−1U : Θφ−1U →
HomOφ−1U

(φ∗Ω1
U ,Oφ−1U ) with these local isomorphisms, we obtain a map

α′φ−1U : Θφ−1U → Oφ−1U ⊗φ−1OU φ
−1ΘU ,

which induces a left Dφ−1U -structure on (DX→Y )φ−1U via

θ(a⊗ p) = θ(a)⊗ p+
∑
j

agj ⊗ θjp,

where θ ∈ Θφ−1U , a ∈ Oφ−1U , p ∈ φ−1DU and α′φ−1U (θ) =
∑

j gj ⊗ θj . For a proof that
the above formula is well-defined on the tensor product a⊗ p see [CJ93, Subsection 2.1.1]. In
local coordinates {yi, θyi}1≤i≤n on U , we express this action as

θ(a⊗ p) = θ(a)⊗ p+
∑

1≤j≤n

aθ(yj ◦ φ)⊗ θyjp,

where we may interpret θyj as an element of φ−1ΘU since this module is isomorphic to⊕
1≤j≤n φ

−1OU ∂yj . Note that the above action is indeed independent of the choice of lo-
cal coordinates (see [BGK+87, VI.4.1]) hence giving a well-defined left Dφ−1DY -structure on
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1.4 Direct images of D-modules

DX→Y . One easily checks that the left DX and the right φ−1DY -structure are compatible,
thus showing that the first transfer module has the claimed bimodule-structure.

Now we use side-changing operations on both sides to define the second transfer module

DY←X := Homφ−1OY (φ−1ωY , ωX ⊗OX DX→Y ),

which is a (φ−1DY ,DX)-bimodule. Indeed, the module structure is induced via the left-right
transformation by the module structure of DX→Y : The left φ−1DY -structure is given by

(θY ψ)(w) = −ψ(w)θY + ψ(wθY ),

where φ−1DY acts on ωX ⊗OX DX→Y via right multiplication on the second factor, and the
right DX -action is described by

(ψθX)(w) =
∑
i

(wiθX ⊗ si − wi ⊗ θXsi)

(where θY ∈ φ−1ΘY , θX ∈ ΘX , ψ ∈ DY←X , w ∈ φ−1ωY and ψ(w) =
∑

iwi ⊗ si).

Example 1.4.1. If ι : U → X is an open embedding, then ι−1DX = DU and henceDU→X =
DU and similarlyDX←U = DU with the canonical bimodule structures given by left and right
multiplication.

Example 1.4.2. We describe the transfer modules under the closed embedding of varieties
ι : X → Y with ideal sheaf I. We have a representation OX = ι−1ιOX ∼= ι−1 (OY /I) and
hence the first transfer module is globally expressed as

DX→Y ∼= ι−1 (DY /I DY )

with canonical right ι−1DY -action and left DX -action induced by composition of the isomor-
phismOX ∼= ι−1 (OY /I) and the natural map ΘX → OX ⊗ι−1OY ι

−1ΘY
∼= ι−1(ΘY /IΘY )

with left multiplication.
Consider now an affine open neighborhood U ⊆ Y with local coordinates (yi, θi)1≤i≤n as

in Proposition 1.2.9 such that ι(X) is locally defined by ym +1 = · · · = yn = 0 and y1, . . . , ym

induce local coordinates on ι−1U . Using that ωX and ωY are locally OX - and OY -free,
respectively, we obtain

(DY←X)ι−1U =Homι−1OU (ι−1ωU , ωι−1U ⊗Oι−1U
ι−1(DU /IUDU ))

∼=Homι−1OU (ι−1ωU , ι
−1(DU /IUDU ))

ψ∼=ι−1(DU /IUDU )

∼=ι−1(DU /DUIU )
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1 Introduction to filtrations and D-module theory

with map ψ given by ϕ 7→ ϕ(dy1 ∧ · · · ∧ dyn). Under these isomorphisms, the left ι−1DU -
operation on ι−1(DU /DUIU ) is given by left multiplication and the right Dι−1U -action is
induced in analogy to the left DX -action on the first transfer module. This shows DY←X ∼=
ι−1(DX /DX I) also globally.

On the other hand, we may represent DX→Y as a locally free DX -module as described
below: Setting xi = yi ◦ ι for i = 1, . . . ,m gives local coordinates x1, . . . , xm on ι−1U
with differentials θx1 , . . . , θxm which are sent to 1 ⊗ θ1, . . . , 1 ⊗ θm under the natural map
Θι−1U → Oι−1U ⊗i−1OU i

−1ΘU . As we have DU =
⊕

α∈Nn OU θα, the first transfer module
(DX→Y )ι−1U is written as⊕

α∈Nn

(Oι−1U ⊗ι−1OU ι
−1OU )θα ∼=

⊕
α∈Nn

Oι−1U θ
α ∼= Dι−1U ⊗CC[θm +1, . . . , θn].

The left Dι−1U -action on the right hand side module is given by left multiplication on the
first factor, hence showing that the first transfer module is DX -locally free. Note that the right
ι−1DU -structure on the above module is described as follows: The differential θi (1 ≤ i ≤ m)
acts via the composition of the map θi 7→ θxi with right multiplication of Dι−1U on the first
factor, whereas θi for m +1 ≤ i ≤ n operates by increasing the exponent of θi by one. The
right action of f ∈ i−1OU on p⊗q ∈ Dι−1U ⊗CC[θm +1, . . . , θn] is expressed as

∑
i pfi⊗qi if

qf =
∑

i fi ·qi with qi ∈ C[θm +1, . . . , θn] and fi ∈ ι−1OU in the ring ι−1DU , where the right
action of fi on p is given by composition of the canonical maps ι−1OU → ι−1(OU / IU ) ∼=
Oι−1U and right multiplication of Oι−1U on Dι−1U .

Using similar arguments as in the global situation, we get an expression

(DY←X)ι−1U = C[θm +1, . . . , θn]⊗C Dι−1U .

Here, the right Dι−1U -action given by right Dι−1U -multiplication on the free Dι−1U -module
and the left i−1DU -action defined in the same manner as above: The differential θi (1 ≤
i ≤ m) acts via the composition of the map θi 7→ θxi with left multiplication of Dι−1U

on the second factor, whereas θi for m +1 ≤ i ≤ n operates by increasing the exponent
of θi by one. The left action of f ∈ i−1OU on q ⊗ p ∈ C[θm +1, . . . , θn] ⊗C Dι−1U is
expressed as

∑
i qi⊗ fip if fq =

∑
i qi · fi with qi ∈ C[θm +1, . . . , θn] and fi ∈ ι−1OU in the

ring ι−1DU , where the left action of fi on p is given by composition of the canonical maps
ι−1OU → ι−1(OU / IU ) ∼= Oι−1U and left multiplication of Oι−1U on Dι−1U .

Example 1.4.3. A particular case of a closed embedding is a coordinate change λ : X → X ,
that is, an automorphism. In this case, DX→X ∼= λ−1DX ∼= DX with left DX -action on
DX given by (left) ring multiplication on DX . The right λ−1DX -action induced on DX is
described as follows locally: By working on local coordinate neighborhoods, we reduce to
the situation that X is an affine irreducible subvariety of Cn with global coordinate system
and λ′ = (λ′1, . . . , λ

′
n) : Cn → Cn a morphism inducing the isomorphism λ : X ∼= λ′(X)

with inverse induced by ψ = (ψ1, . . . , ψn) : Cn → Cn. If(fi, θi)1≤i≤m is such a global

36



1.4 Direct images of D-modules

coordinate system on X , then g1 := f1 ◦ψ, · · · , gm := fm ◦ψ are global coordinates of λ(X)
with corresponding derivations θg1 , . . . , θgm . Now h ∈ λ−1Oλ(X) and θgi act on DX via
right multiplication with h ◦ λ and θi, respectively. The actions on the second transfer module
DX←X ∼= DX are described in a similar manner.

The transfer modules are equipped with filtrations as left (DX , F ◦• )-module and as right
f−1(DY , F ◦• )-module as follows: We set

F•DX→Y = F•OX ⊗f−1OY f
−1(DY , F ◦• )

(interpreted in analogy to Definition 1.3.6) and F•DY←X is defined via the side-changing
operations for filtered modules. We make that filtration explicit for our above examples:

Example 1.4.4. (Continuation of Example 1.4.1) The filtrations are F•DU→X = F ◦• DU and
F•DX←U = F ◦• DU .

Example 1.4.5. (Continuation of Example 1.4.2) The filtration on the first transfer module is
globally given by F•DX→Y = i−1(F ◦• (DY /I DY )) and can be locally expressed as

F•DX→Y =
⊕

α∈Nn−m

F◦•−|α|DX θ
α1
m +1 · · · θ

αn−m
n .

Similarly, F•DY←X = i−1(F ◦•−(n−m)(DY /DY I)) and locally

F•DY←X =
⊕

α∈Nn−m

F◦•−|α|−(n−m)DX θ
α1
m +1 · · · θ

αn−m
n .

We point out that the shift n−m = dimY − dimX in the above filtration compared to the
filtration of the first transfer module comes from the side changing operations.

1.4.2 D-module theoretic direct image functor

Consider the morphism φ : X → Y of algebraic varieties of dimensions n and m, respectively.
We use the second transfer module and the canonical unit morphism φφ−1DY → DY to
construct the direct image of DX -modules under φ as the composition of the right derived and
left derived functors

Db(DX) 3M• 7→ DY←X ⊗LDXM
• ∈ Db(φ−1DY ) and

Db(φ−1DY ) 3 N • 7→ Rφ(N •) ∈ Db(DY ),

where⊗LDX denotes the left derived functor of the tensor productDY←X ⊗DX andRφ denotes
the right derived sheaf theoretic direct image functor. Note that these functors map indeed
bounded complexes to bounded complexes by [HTT08, Propositions 1.5.6 and 1.5.4]. More
precisely, we define:
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Definition 1.4.6. The (D-module theoretic) direct image functor φ+ : Db(DX) → Db(DY )
is defined by

φ+M• = Rφ(DY←X ⊗LDXM
•).

We define φ+M for the DX -moduleM by identifyingM with the complex whose only
non-trivial entry isM in degree 0.

The direct image functor commutes with composition of morphisms:

Proposition 1.4.7. [HTT08, Proposition 1.5.21] Let φ : X → Y and ψ : Y → Z be
morphisms between algebraic varieties. Then we have

(ψ ◦ φ)+ = ψ+φ+.

We remark that φ : X → Y can be written as the composition of the closed embedding
ιφ : X → X × Y, x 7→ (x, φ(x)) and the projection πY : X × Y → Y . Hence it suffices
from a D-module theoretic point of view to study the direct image functors in these situations.
We will however focus on closed and open embeddings, because these kind of images show
up in the construction of the Hodge theoretic direct image functor for open embeddings of
complements of subvarieties of pure codimension one.

Direct images under closed embeddings

Consider the situation of Example 1.4.2, that is, let ι : X → Y be a closed embedding defined
by the ideal sheaf I with dimX = m and dimY = n. Recalling that the second transfer
module DY←X = ι−1(DY /DY I) is DX -locally free (see Example 1.4.2) and that the sheaf
theoretic direct image functor for closed embeddings is exact, we have for the DX -moduleM

ι+M = ι(ι−1(DY /DY I)⊗DXM) = ιι−1(DY /DY I)⊗ιDX ιM, (1.4.1)

where we interpret the right hand side module as the complex with only non-zero entry this
module in degree 0. Choosing an affine open neighborhood U of Y with coordinate system
(fi, θi)1≤i≤n such that I is locally generated by fm +1, . . . , fn and (fi, θi)1≤i≤m induce coor-
dinates on U ∩ ι(X), we obtain

(ι+M)U = C[θm +1, . . . , θn]⊗C (ιM)U . (1.4.2)

Note that xi := fi ◦ ι for 1 ≤ i ≤ m is hence a local coordinate system on X with correspond-
ing differentials denoted by θxi . The action ofDU on the module C[θm +1, . . . , θn]⊗C (ιM)U
is described as follows: The differentials θm +1, . . . , θn act by multiplication on the first factor
of the tensor product, whereas θ1, . . . , θm operate by left multiplication with θx1 . . . , θxm on
the second factor, respectively. The element f ∈ OU acts on q ⊗m ∈ C[θm +1, . . . , θn] ⊗C
(ιM)U as

∑
i qi ⊗ fim, where fq =

∑
i qifi in DU with qi ∈ C[θm +1, . . . , θn] and fi ∈ OU

and fi operates on m via the composition of the canonical maps OU → (ιι−1OY )U →
(ιι−1(OY / I))U ∼= (ιOX)U and left multiplication of (ιOX)U on (ιM)U .

The above considerations imply:
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Proposition 1.4.8. Let ι : X → Y be a closed embedding of algebraic varieties. Then:

(a) We have for the DX -moduleM that Hk(ι+M) = 0 for k 6= 0. In particular,

ι0+ : Mod(DX)→ Mod(DY ), M 7→ H0(ι+M)

is an exact functor.

(b) The functor ι0+ maps ModOX - qcoh(DX) to ModOY - qcoh(DY ).

In particular, we may identify for aDX -moduleM the functor ι0+ with ι+. So when writing
ι+M, we mean from now on ι0+M.

Example 1.4.9. (Continuation of Example 1.4.3) Under the reduction in Example 1.4.3 it
holds:

(a) The map Λ : λ+DX → Dλ(X) given by

xi 7→ ψi and θi 7→ θgi

is an isomorphism of left Dλ(X)-modules by Example 1.4.3 and hence also of Oλ(X)-
modules. An analogous statement holds for the map ΛE for any finite set E.

(b) Equipping λDX with an Oλ(X)-structure via the natural isomorphismOλ(X) → λOX ,
we see that λ+DX and λDX agree as Oλ(X)-modules. Thus we may interpret for an
OX -submodule P of DEX (for a finite set E), λP as an Oλ(X)-submodule of λ+DEX
and may consider its image under ΛE . We identify from now on for an OX -submodule
or DX -submodule P ′ of DEX the direct image λP ′ or λ+ P ′ with ΛE(P ′), respectively.

(c) Given a set P ′ ⊆ DX(X)E , we have under the above identifications

λ
(
OX

〈
P ′
〉)

= Oλ(X)

〈
ΛE(P ′)

〉
⊆ DEλ(X)

and
λ+

(
DX

〈
P ′
〉)

= Dλ(X)

〈
ΛE(P ′)

〉
⊆ DEλ(X) .

These identifications induce forM = DEX /DX 〈P
′〉 the identification

λ+M = DEλ(X) /Dλ(X)

〈
ΛE(P ′)

〉
and for OX

〈
Q
〉
⊆M with Q ⊆ DEX we obtain

λ
(
OX

〈
Q
〉)

=
Oλ(X)

〈
ΛE(Q)

〉
⊆ DEλ(X) /Dλ(X)

〈
ΛE(P ′)

〉
.
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1 Introduction to filtrations and D-module theory

In view of later applications, we are particularly interested in a certain kind of graph em-
bedding:

Example 1.4.10. Given a regular function f : X → C and a DX -moduleM, we study the
direct image (if )+M under the graph embedding if : X → X ×Ct : x 7→ (x, f(x)). Notice
that every system of local coordinates (fi, θi)1≤i≤m on the affine open neighborhood U of X
can be completed to a system of local coordinates on U ×Ct by adding the coordinate t of Ct
and its corresponding differential ∂t(= ∂

∂t). To represent (if )+M on this neighborhood, we
factorize if via the closed embedding i0 and a coordinate change

X �
� if

//� r

i0:x7→(x,0) $$

X × Ct

X × Ct .
λ:(x,t)7→(x,t+f)

88
(1.4.3)

By the above considerations, we have (i0)+M = C[∂t]⊗Ci0M globally. Locally, ΘU×C-acts
by

θi · (∂kt ⊗m) = ∂kt ⊗ θim
∂t · (∂kt ⊗m) = ∂k+1

t ⊗m

for 1 ≤ i ≤ m, m ∈ (i0M)U×C and k ∈ N, and OU×C operates as explained after Equa-
tion (1.4.2). So in particular

t · (∂kt ⊗m) = −k∂k−1
t ⊗m.

If M is DX -coherent, then MU is of the form DEU /DU 〈P 〉 with P ∈ DU (U) implying
((i0)+M)U×C = DEU×C /DU×C

〈P, t〉.
Noting that the coordinate change λ maps the local coordinates f1, . . . , fm, t, θ1, . . . , θm

and ∂t on U × C to the local coordinates f1, . . . , fm, t − f, θ1 + θ1(f)∂t, . . . , θm + θm(f)∂t
and ∂t on λ(U × C) = U × C , we obtain

(if )+M = C[∂t]⊗C ifM

globally with DU×C-module structure given by

(θi + θi(f)) · (∂kt ⊗m) = ∂kt ⊗ θim
∂t · (∂kt ⊗m) = ∂k+1

t ⊗m

for 1 ≤ i ≤ m, m ∈ (ifM)U×C and k ∈ N. As OU×C operates as explained after Equa-
tion (1.4.2), we have in particular

t · (∂kt ⊗m) = ∂kt ⊗ fm− k∂k−1
t ⊗m.

40



1.4 Direct images of D-modules

Applying the coordinate change λ we obtain for coherentM as above (under the identifica-
tions in Example 1.4.9)

((if )+M)U×C = DEU×C /DU×C

〈
ΛE(P ), t− f

〉
.

The direct image functor for the closed embedding ι : X → Y even induces an equivalence
of categories, called Kashiwara’s equivalence, between the categories Mod∗(DX) and cate-
gory Mod

ι(X)
∗ (DY ), the subcategory of Mod∗(DY ) consisting of modules supported on ι(X),

for ∗ ∈ {OX - qcoh, coh}. Before we state this equivalence, we introduce the extraordinary
inverse image functor which will serve as a quasi-inverse.

Definition 1.4.11. Let φ : X → Y be a morphism of algebraic varieties. The extraordinary
inverse image functor is

φ! : Db(DY )→ Db(DX), N • 7→ (DX→Y ⊗Lφ−1DY φ
−1N )[dimX − dimY ].

By applying certain duality functors to the extraordinary inverse image functor and to the
direct image functor, one defines the inverse image functor and the extraordinary direct image
functor. The reason why φ! is called the extraordinary inverse image is that the (extraordi-
nary) inverse image will be left adjoint to the (extraordinary) direct image. Also, this way the
functors are compatible with the so-called Riemann-Hilbert correspondence.

Proposition 1.4.12. [Kas78] Let ι : X → Y be a closed embedding with defining ideal sheaf
I.

(a) The functor ι+ induces equivalences of categories

ModOX - qcoh(DX)→ Mod
ι(X)
OY - qcoh(DY )

Modcoh(DX)→ Mod
ι(X)
coh (DY )

with quasi-inverse H0ι!.

(b) We have for N ∈ Mod
ι(X)
OX - qcoh(DY ) that Hkι!N = 0 for all k 6= 0.

(c) We have forN ∈ ModOX - qcoh(DY ) that H0ι+H
0ι!N = Γ[X](N ), where Γ[X](N ) :=

{n ∈ N | there exists i ∈ N : Iin = 0}.

For a proof we refer the reader e.g. to [HTT08, Theorem 1.6.1 and Proposition 1.7.1].
We naively define the filtered direct image under closed embeddings in a way preserving

good filtrations:

Definition 1.4.13. Assume that (M, F•) is a filtered (DX , F ◦• )-module. Using the filtration
F•DY←X (see Example 1.4.5), we equip ι+M with the (DY , F ◦• )-filtration

F•ι+M =
∑
k∈Z

ιFk DY→X ⊗ιOX ιF•−kM (1.4.4)

(where the right hand side is to be understood in analogy to Definition 1.3.6).
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1 Introduction to filtrations and D-module theory

Note that we have

F•ι+M =
∑
k∈Z

ιι−1(F ◦k (DY /DY I))⊗ιOX ιF•−k−dimY+dimXM, (1.4.5)

which is in the situation of Equation (1.4.2) expressed as

(F•ι+M)U =
∑

α∈Nn−m

∂α1
m +1 · · · ∂

αn−m
n ⊗ (ιF•−|α|−n + mM)U . (1.4.6)

Remark 1.4.14. We point out that F•ι+M a filtered (DY , F ◦• )-module that is well-filtered if
and only if F•M is well-filtered as (DX , F ◦• )-module.

Remark 1.4.15. In the situation of Example 1.4.9(c) it holds for a shift vector s ∈ ZE that

λ+(DEX /DX
〈
P ′
〉
, F ◦[s]•) = (DEλ(X) /Dλ(X)

〈
ΛE(P ′)

〉
, F ◦[s]•).

Direct images under open embeddings

Let U ⊆ X be an open subset of the variety X with embedding denoted by j and complement
V := X \ U . By Example 1.4.1 the second transfer module DX←U agrees with DU . Thus
the D-module theoretic direct image functor coincides with the sheaf-theoretic direct image
functor, i.e.,

j+M• = RjM•

forM• ∈ Db(DU ) in this situation. The functor j+ is in general not exact, but it is exact if U
is affine as RkjM = 0 forM ∈ Mod(DU ) and k 6= 0 in this case. Hence we identify in this
case j+ with H0j+ = j as we did for closed embeddings.

We remark that j+M• is not only an complex of DX -modules, but also of jDU -modules.
Working locally we see that

jDU = DX ⊗OX jOU = DX ⊗OX jj
−1OX ,

where OX on the right hand side module acts by left multiplication on DX and the ring struc-
ture on this module is given by

(1⊗ f) · (p⊗ g) = p⊗ fg
(θ ⊗ 1) · (p⊗ g) = θp⊗ g + p⊗ θ(g)

for f, g ∈ jOU , p ∈ DX and θ ∈ ΘX . In view of the applications to Hodge theory, we are
particularly interested in the case of V being a pure codimension one subvariety of X . In this
case, jj−1OX agrees with OX(∗V ), which motivates the following definition:
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1.4 Direct images of D-modules

Definition 1.4.16. Let V ⊆ X be a closed embedding of pure codimension one for not neces-
sarily smooth V andM a DX -module. The localization ofM along V is defined by

M(∗V ) :=M⊗OX OX(∗V ).

It comes with a canonical localization map i(∗V ) :M→M(∗V ) sending m to m⊗ 1.

In the above situation,M(∗V ) is a DX(∗V )-module with DX(∗V )-action defined in anal-
ogy to the ring structure of DX(∗V ). In particular, we have jX\V j

−1
X\V M =M(∗V ), where

jX\V : X \ V → X is the corresponding open embedding.

Remark 1.4.17. Let V ⊆ X be a closed embedding of pure codimension one for not nec-
essarily smooth V with defining ideal sheaf I. Then the sheaf of rings DX(∗V ) is locally
Noetherian: We define the order filtration F◦•DX(∗V ) by

F◦•DX(∗V ) = jX\V j
−1
X\V F

◦
• DX .

On an affine open subset U ⊆ X with local coordinates (fi, θi)1≤i≤m such that IU = OU 〈g〉,
the associated graded sheaf of rings is represented as

GrF
◦ DX(∗V )(U) ∼=

{
OX(U)[ξ1, . . . , ξm], if U ∩ V = ∅,
OX(U)[g−1][ξ1, . . . , ξm], else.

Hence Proposition 1.1.16 implies the claim and Proposition 1.1.7 shows that DX(∗V ) is a
coherent sheaf of rings.

Remark 1.4.18. While it was relatively easy to equip the direct image of a well-filtered mod-
ule under a closed embedding with a good filtration, it is not so clear how to do this for open
embeddings. The first problem is that j+ is in general not exact, which indicates that we
need the notion of a derived category of Modcoh(F ◦• D) to equip the direct image with a filtra-
tion. To circumvent the problem that this category is not abelian, one considers it as an exact
category allowing the definition of a corresponding derived category nevertheless (for details
see [Lau83]). Yet, the above considerations show that Db

coh(D) is not preserved under direct
images by taking for instance the direct image of the sheaf of differential operators under the
natural inclusion j′ : C \{0} ↪→ C. This implies that it is not possible to define a filtered
D-module theoretic direct image functor preserving Db

coh(F ◦• D) and commuting with the for-
getful functor Db

coh(F ◦• D) → Db
coh(D). As the direct image functor preserves complexes

with holonomic cohomology one could hope that it is possible to define a direct image functor
for the subcategory of Db

coh(F ◦• D) consisting of complexes with holonomic cohomology. But
the naive approach by setting for instance for an affine open embedding j : U ↪→ X

F•(j+M) := j(F•DX←U ⊗OUF•M) = j F•M
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1 Introduction to filtrations and D-module theory

(with F•DX←U ⊗OUF•M being defined in analogy to Definition 1.3.6) does not work, be-
cause then the direct image of (OC \{0}, F•) would have the filtration

F i j′+OC \{0} =

{
OC[x−1], if i ≥ 0

0, else,

(where x ∈ OX is the defining equation of {0}), which is not OC-coherent for i ≥ 0. We will
see later how to define a good filtration on that module in a way compatible with mixed Hodge
module theory.

Considering the case that V ⊆ X has defining ideal generated by the regular function
f : X → C, we investigate the direct image under the corresponding graph embedding of
localizations along V :

Lemma 1.4.19. Let V ⊆ X be a not necessarily smooth subvariety with defining ideal sheaf
I generated by the regular function f : X → C. Then we have for the direct image of the
DX -moduleM under the graph embedding if : X → X × C, x 7→ (x, f(x))

(if )+(M(∗V )) ∼= ((if )+M)(∗X × {0}).

Proof. We set U := X \V and consider its canonical embedding jU : U → X . AsM(∗V ) =
(jU )+(j−1

U M), we obtain by the commutativity of D-module theoretic direct images, by the
commutative diagram

X �
� if

// X × C

U
?�

jU

OO

� �
i′f :x7→(x,f(x))

// X × C∗
?�

jX×C∗

OO

and by the isomorphism (i′f )+j
−1
U M ∼= j−1

X×C∗(if )+M the claim. Thereby note that the
latter isomorphism can be established using local coordinates.

Remark 1.4.20. For algorithms later on, we need to make the isomorphism in the above
lemma for OX -quasi-coherent M explicit. We reduce to the embedding i0 as follows: We
keep the setting of the above lemma and decompose if = λ◦ i0 as in Example 1.4.10. We first
construct the isomorphism

(i0)+(M(∗V )) ∼= ((i0)+M)(∗V (t+ f)) :

The left hand side of the above isomorphism is

(i0)+(M(∗V )) ∼=i0(M⊗OX OX [f−1])⊗C C[∂t] (1.4.7)
∼=(i0M⊗CC[∂t])⊗i0OX i0(OX [f−1])

∼=(i0M⊗CC[∂t])⊗OX×C OX×C[f−1],
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1.4 Direct images of D-modules

while the right hand side can be rewritten as

((i0)+M)(∗V (t+ f)) ∼= (i0M⊗CC[∂t])⊗OX×C OX×C[(t+ f)−1]. (1.4.8)

An easy calculation shows now that for a, b ∈ N and m ∈ i0M

(m⊗ ∂at )⊗ f−b =

 c/2∑
k=0

(−1)k
(
c

k

)
k!f c−k−bm⊗ ∂a−kt

⊗ (t+ f)−c

(with c ∈ 2N such that c/2 ≥ a+1, b) in (i0(M)⊗CC[∂t])⊗OX×COX×C[(f(t+f))−1] mak-
ing the above isomorphism explicit. Applying the coordinate change λ to Equations (1.4.7)
and (1.4.8), we obtain

(if )+(M(∗V )) ∼= λ+(i0)+(M(∗V )) ∼= (if (M)⊗C C[∂t])⊗OX×C OX×C[f−1]

and

λ+(((i0)+M)(∗V (t+f))) ∼= (ifM⊗CC[∂t])⊗OX×COX×C[t−1] ∼= ((if )+M)(∗X×{0}).

and the above considerations give the isomorphism

(ifM⊗CC[∂t])⊗OX×C OX×C[f−1]→ (ifM⊗CC[∂t])⊗OX×C OX×C[t−1] (1.4.9)

m⊗ f−b ⊗ ∂at 7→
c/2∑
k=0

(−1)k
(
c

k

)
k!f c−k−bm⊗ ∂a−kt ⊗ (t−c)

(with c as above) representing (if )+(M(∗V )) ∼= ((if )+M)(∗X × {0}) . Its inverse can be
presented in a similar manner.

Remark 1.4.21. In the situation of Lemma 1.4.19 let (M, F•) be a well-filtered (DX , F ◦• )-
module. Then the isomorphism in Lemma 1.4.19 is by Remark 1.4.20 an isomorphism of
filtered modules, that is, we have

(if )+((M, F•)⊗OX F•OX(∗V )) ∼= ((if )+(M, F•))⊗OX×C F•OX×C(∗X × {0}),

where we equipOX(∗V ) andOX×C(∗X×{0}) with one-step filtrations in analogy withOX :
Indeed, the map in Equation (1.4.9) is obviously filtered. If on the other handm⊗f−b⊗∂at with
m ∈ if (FkM) is sent under this map to an element in the Fk+a−1-part of the corresponding
filtration, then this implies that f lm ∈ if (Fk−1M) for some l ∈ N and hencem⊗f−b⊗∂at =
f lm ⊗ f−b−l ⊗ ∂at is also in the Fk+a−1-part of the filtration on the left hand side module of
that map.
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1 Introduction to filtrations and D-module theory

Remark 1.4.22. We keep the notation of Lemma 1.4.19 and consider the (DX(∗V ), F ◦• )-
module (N , F•). As this module is also a (DX , F ◦• )-module, we define ((if )+N , F•) via
Definition 1.4.13. The latter module is in fact a well-filtered (DX×C(∗X × {0}), F ◦• )-module
if (N , F•) is well-filtered as (DX(∗V ), F ◦• )-module: We factorize the map if via the closed
embedding i0 and the coordinate change λ as in Diagram (1.4.3), and may hence replace
(if )+(N , F•) and (DX×C(∗X × {0}), F ◦• ) by (i0)+(N , F•) and (DX×C(∗V (t + f)), F ◦• ),
respectively. Then the action of (t+ f)−1 on (i0)+N = i0N ⊗CC[∂t] is given by

(t+ f)−1 · (n⊗ ∂at ) =
∑

0≤i≤a

a!

i!fa−i+1
n⊗ ∂it .

If (N , F•) is (DX(∗V ), F ◦• )-good, we may assume that X is affine that there is a finite set
N ⊆ N (X) and s ∈ ZN with F•N =

∑
n∈N F

◦
•−sn DX(∗V ) · n. But then F•(ι0)+N =∑

n∈N F
◦
•−sn DX×C(∗V (t + f)) · (n ⊗ 1) because f−kn ⊗ 1 = (t + f)−k · (n ⊗ 1) for any

k > 0 showing the claim.
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2 PBW-reduction-algebras

Motivated by Saito’s theory of mixed Hodge modules, the goal of this chapter is to study
the interplay of the filtration by the order of differential operators and a certain V -filtration
on modules over the Weyl algebra and more generally on modules over coordinate system
rings, and to develop related algorithms. More precisely, on the Weyl algebra Dn over C
in variables x1, . . . , xn and corresponding derivations ∂1, . . . , ∂n, a so-called weight vec-
tor u ∈ Z2n with ui + un+i ≥ 0 for 1 ≤ i ≤ n induces a filtration Fu

• Dn given by
Fu
k Dn =

C

〈
{xα1

1 · · ·xαnn ∂β11 · · · ∂
βn
n | α, β ∈ Nn, 〈(α, β),u〉 ≤ k}

〉
for k ∈ Z. In the case

u = ((0)1≤i≤n, (1)1≤i≤n) the corresponding filtration Fu
• Dn is the filtration by the order of

differential operators, whereas the weight vector assigning weight 1 to ∂n, weight −1 to xn
and weight 0 else defines the V -filtration along {xn = 0} on Dn. These filtrations induce not
only filtrations on sub- and quotient modules of free modules, but it is also natural to consider
Fu

0 Dn-submodules of such sub- and quotient modules, and investigate the interplay of these
structures.

While Weyl algebras can computationally be regarded as a particular case of PBW-algebras
with their well-studied Gröbner basis theory, coordinate system rings do not seem to fit into the
setting of (quotient algebras of) PBW-algebras or in any other already existing well-developed
algorithmic setup that we are aware of. Hence we introduce in this chapter a Gröbner basis
theory for a broader class of algebras, called PBW-reduction-algebras. These algebras are
certain quotients of free associative K-algebras of type K〈x1, . . . , xn〉 by two-sided ideals
containing commutation relations with the property that a subset of the set {xα1

1 · · ·xαnn |
α ∈ Nn} forms a K-basis of that quotient. We will see that the concept of weight vectors
naturally generalizes to PBW-reduction-algebras. We introduce a variant of the Buchberger
algorithm for Gröbner bases computations over this new class of algebras and show that many
elementary applications thereof, referred to as “Gröbner basics” by Sturmfels, can be adapted
from commutative polynomial rings to our setting. With Hodge theoretic constructions in
mind, we then study the interplay of structures as above on modules over PBW-reduction-
algebras in as much generality as reasonable.

The outline of this chapter is as follows: We introduce PBW-reduction-algebras in Sec-
tion 2.1 and develop a Gröbner basis theory for well-orderings on such algebras. Section 2.2
addresses the main subject of study in this chapter, namely the already mentioned weight fil-
trations on PBW-reduction-algebras. Given a weight vector u on a PBW-reduction-algebra A,
we first investigate the subalgebra Fu

0 A and prove that this algebra is left and right Noetherian
and generated by a finite set of monomials ofA. Using homogenized PBW-reduction-algebras
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2 PBW-reduction-algebras

with respect to a suitable weight vector, we formulate an algorithm for Gröbner bases compu-
tations with respect to non-well-orderings on PBW-reduction-algebras. This allows us to give
a computer algebraic proof showing that the filtration Fu

• A induces good filtrations on sub-
modules of free A-modules by considering a u-weighted degree ordering. Given two weight
vectors v,w on A which satisfy among other conditions Fw

0 A ⊆ Fv
0 A, we explain in Sec-

tion 2.3 how to determine the intersection of Fv
0 A- and Fw

0 A-submodules of a free A-module
as well as how to find generators of the filtration induced by Fw

• A on such an Fv
0 A-submodule.

The key to tackle these problems is a translation process to problems over the PBW-reduction-
algebra Fv

0 A. Lastly, in Section 2.4 we consider the same problems as in the previous section,
but this time for quotient modules of free A-modules. In many instances these problems can
be reduced to the analogous problems for submodules of free A-modules.

In this chapter K stands for a field.

2.1 Gröbner basis framework for PBW-reduction-algebras

PBW-reduction-algebras are certain quotients of free associativeK-algebras of typeK〈x1, . . . ,
xn〉 such that a subset of the set of standard monomials {xα1

1 · · ·xαnn | α ∈ N
n} forms a K-

basis of this quotient and the multiplication on this basis is defined by certain commutation
relations. These algebras can be considered as a generalization of so-called PBW-algebras
which are K-algebras of the above type with the set of all standard monomials as K-basis.
We adapt in this section the Gröbner basis theory for PBW-algebras to the setting of PBW-
reduction-algebras using Bergman’s Diamond Lemma [Ber78]. Gröbner bases in the context
of PBW-algebras were first studied for the subclass of universal enveloping algebras of finite
dimensional Lie algebras in [AL88] and the methods applied there have later been extended to
develop a Gröbner basis theory for general PBW-algebras in [KRW90]. The idea behind the
corresponding algorithms is that PBW-algebras are still close enough to commutative polyno-
mial rings in order to adopt certain methods from commutative Gröbner basis theory such as
the Buchberger algorithm for well-orderings to this setting.

2.1.1 PBW-reduction-algebras

Consider the free associative K-algebra Tn := K 〈x1, . . . , xn〉 generated by x1, . . . , xn for
n ∈ N. If I ⊆ Tn we also write 〈I〉 for the two-sided ideal Tn〈I〉 Tn generated by I and
similarly for two-sided ideals of factor rings of Tn.

Definition 2.1.1. Let E be a finite set.

(a) We denote by

Mon(TEn ) := {xi1 · · ·xik(e) | k ∈ N, 1 ≤ i1, . . . , ik ≤ n, e ∈ E} ⊆ TEn
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2.1 Gröbner basis framework for PBW-reduction-algebras

the set of monomials of TEn and

SMon(TEn ) := {xα1
1 · · ·x

αn
n (e) | α ∈ Nn, e ∈ E} ⊆ TEn

is called the set of standard monomials of TEn . We write for the element t ∈ TEn
also t =

∑
m∈Mon(TEn ) tmm with tm ∈ K. Abbreviating xα(e) := xα1

1 · · ·xαnn (e) for
e ∈ E and α ∈ Nn, we often use for p ∈ K

〈
SMon(TEn )

〉
the multi-index notation

p =
∑

e,α pe,αx
α(e) with pe,α ∈ K (by implicitly assuming that e runs through E and

α through Nn).

We point out that we have SMon(Tn) = {xα | α ∈ Nn} and Mon(Tn) = {xi1 · · ·xik |
k ∈ N, 1 ≤ i1, . . . , ik ≤ n} under the convention in Notation 0.0.1(b).

(b) A total order ≺ on Mon(TEn ) is called a monomial well-ordering if it holds for all
m,m′, p, q ∈ Mon(Tn) and e, e′ ∈ E

(i) (e) � m(e) and

(ii) m(e) ≺ m′(e′) implies pmq(e) ≺ pm′q(e′).

A total order≺ on Mon(TEn ) is called a monomial ordering if it satisfies Condition (bii)
and a monomial ordering that violates Condition (bi) is called a monomial non-well-
ordering. We also say that the corresponding monomial ((non)-well) ordering is a
((non)-well) ordering on TEn .

(c) We say that the total order ≺ on SMon(TEn ) is a monomial well-ordering if it holds for
all α, α′, γ ∈ Nn and e, e′ ∈ E that

(i) (e) � xα(e) and

(ii) xα(e) ≺ xα′(e′) implies xα+γ(e) ≺ xα′+γ(e′).

A total order ≺ on SMon(TEn ) is called a monomial ordering if it satisfies Condi-
tion (cii) and a monomial ordering that violates Condition (ci) is called a monomial
non-well-ordering. We also say that the corresponding monomial ((non)-well) ordering
is a ((non)-well) ordering on K

〈
SMon(TEn )

〉
.

(d) Let ≺ be a monomial ordering on Mon(TEn ). If 0 6= t =
∑

e∈E,m∈Mon(Tn) te,mm(e) ∈
TEn with te,m ∈ K and m′(e′) := max≺{m(e) | te,m 6= 0}, then we define

• lm≺(t) := m′(e′) (leading monomial of t),

• lt≺(t) := te′,m′m
′(e′) (leading term of t),

• lc≺(t) := te′,m′ (leading coefficient of t),

• lcomp≺(t) := e′ (leading component of t),

• tail≺(t) := t− lt≺(t) (tail of t),

• lecom
≺ (t) :=

∑
1≤j≤k eij ∈ N

n if m′ = xi1 · · ·xik ,
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• elecom
≺ (t) := (

∑
1≤j≤k eij , e

′) if m′ = xi1 · · ·xik .

If lc≺(t) = 1, we say that t is ≺-monic. By abuse of notation, we assume that the
expressions lm≺(0) ≺ lm≺(t) and lm≺(0) � lm≺(t′) for all 0 6= t ∈ TEn and t′ ∈ TEn
are true.

If m′ = xα ∈ SMon(Tn), we denote moreover

• le≺(t) := α (leading exponent of t).

• ele≺(t) := (α, e′) (extended leading exponent of t).

We sometimes omit the index ≺ if it is clear from the context.

(e) The corresponding notations from Part (d) are defined analogously for a monomial or-
dering ≺′ on SMon(TEn ) and 0 6= p ∈ K〈SMon(Tn)〉. We denote the ordering induced
by ≺′ on Nn×E via the bijection xα(e) 7→ (α, e) also ≺′ and adapt an analogous con-
vention for le≺′(0), lecom

≺′ (0), ele≺′(0) and elecom
≺′ (0) as we did for lm≺′(0). Moreover,

we introduce for G ⊆ K
〈
SMon(TEn )

〉
the set

L≺′(G) := {ele≺′(g) + Nn | g ∈ G \ {0}} ⊆ Nn×E,

where we define (α, e)+β := (α+β, e) for α, β ∈ Nn and e ∈ E and write sometimes
also L(G) for L≺′(G) is the corresponding ordering is understood from the context.

Convention 2.1.2. In the situation of Definition 2.1.1(d) and (e), we define for simplicity
(when dealing with Gröbner bases) by abuse of notation α + ele≺′(0) := ele≺′(0), α +
le≺′(0) := le≺′(0), α+ lecom

≺ (0) := le≺(0) and α+ elecom
≺ (0) := ele≺(0) for any α ∈ Nn.

Remark 2.1.3.

(a) By the natural identification of Tn and T 1
n as Tn-modules and the convention of Nota-

tion 0.0.1(b) everything defined in Definition 2.1.1 carries over to Tn, but the notations
of leading components, extended leading exponents and the definition of L≺′(G). In
this case, we define L≺′(G) by replacing ele() by le().

(b) By canonically identifying the commutative polynomial ring K[x1, . . . , xn] with the
K-module K〈SMon(Tn)〉 as K-modules, we may consider K[x1, . . . , xn] as a K-sub-
module of Tm for any m ≥ n. Note that the definition of monomial orderings on the set
of monomials of K[x1, . . . , xn] is compatible with the definition of such orderings on
SMon(Tm) under this identification.

Remark 2.1.4. Let E be a finite set.

(a) Clearly the ordering defined by

xi1 · · ·xik ≺
′ xj1 · · ·xjl if and only if k < l

or k = l and (i1, . . . , ik) <lex (j1, . . . , jk)
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2.1 Gröbner basis framework for PBW-reduction-algebras

is a monomial well-ordering on Mon(Tn). So in particular, monomial well-orderings
on Mon(Tn) exist.

(b) We can refine monomial orderings on SMon(TEn ) to monomial orderings on Mon(TEn ).
More precisely, if ≺ and ≺′ are monomial orderings on SMon(TEn ) and Mon(Tn), re-
spectively, then (≺,≺′) defined by

xi1 · · ·xik(e)(≺,≺′)xj1 · · ·xjl(e
′) if and only if x

∑
1≤p≤k eip (e) ≺ x

∑
1≤p≤l ejp (e′)

or x
∑

1≤p≤k eip (e) = x
∑

1≤p≤l ejp (e′)

and xi1 · · ·xik ≺
′ xj1 · · ·xjl

is a monomial ordering on Mon(TEn ). If ≺ and ≺′ are well-orderings, (≺,≺′) is also
a monomial well-ordering. If ≺′ is the ordering introduced in Part (a), we sometimes
denote the ordering (≺,≺′) also by≺ if it is understood from the context the we consider
it as an ordering on Mon(TEn ).

(c) Let ≺ be a monomial ordering on (S)Mon(TEn ). Then ≺e defined by

xi1 · · ·xik ≺e xj1 · · ·xjl if and only if xi1 · · ·xik(e) ≺ xj1 · · ·xjl(e)

for e ∈ E is a monomial ordering on (S)Mon(Tn). This ordering is a well-ordering if
≺ is one.

Eventually, we will restrict ourselves to monomial orderings on SMon(TEn ) and refine them
to Mon(TEn ) as outlined in Remark 2.1.4(b) above if necessary. The following remark lists
some of the orderings on SMon(TEn ) which we will use frequently throughout this thesis:

Remark 2.1.5. Let E1, . . . , Es and E be finite sets.

(a) Given an ordering ≺ on SMon(Tn) and a total order < on E, the pair (≺, <) induces
the following orderings on SMon(TEn ):

(i) Term over position ordering (TOP-ordering):

xα(e) ≺Etop,< xβ(e′) if and only if xα ≺ xβ

or xα = xβ and e < e′,

where α, β ∈ Nn and e, e′ ∈ E.

(ii) Position over term ordering (POT-ordering):

xα(e) ≺Epot,< xβ(e′) if and only if e < e′

or e = e′ and xα ≺ xβ,

where α, β ∈ Nn and e, e′ ∈ E.
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2 PBW-reduction-algebras

These orderings are well-orderings if and only if ≺ is a well-ordering.

(b) Many of our computations rely on so-called (module) block-orderings: Let ≺E1
1 , . . . ,

≺Ess be orderings on SMon(TE1
n ), . . . ,SMon(TEsn ), respectively. By abuse of notation,

we define the ordering ≺E1,...,Es
1,...,s = (≺E1

1 , . . . ,≺Ess ) on SMon(TE1t···tES
n ) by

xα(e) ≺E1,...,Es
1,...,s xβ(e′) if and only if i > j

or i = j and xα(e) ≺Eii xβ(e′),

where e ∈ Ei, e′ ∈ Ej and α, β ∈ Nn. Notice that ≺E1,...,Es
1,...,s is a well-ordering if and

only if all ≺Eii are well-orderings.

Convention 2.1.6. Let E1, . . . , Es and E be finite sets. If we write from now on ≺E , we
implicitly assume that≺E is some ordering on SMon(TEn ). Similarly, (≺E1

1 , . . . ,≺Ess ) always
denotes a block ordering on SMon(TE1t···tEs

n ).
Under the identification TE1

n ⊕ · · · ⊕ TEsn
∼= TE1t···tEs

n , we define the set of (standard)
monomials of the former module as well as monomial orderings on them.

Definition 2.1.7. Let E be a finite set and ≺ a monomial ordering on TEn .

(a) We call S ⊆ TEn \ {0} with lc≺(s) = 1 for all s ∈ S a reduction system (with respect to
≺). For s ∈ S and m,m′ ∈ Mon(Tn) we define the K-linear map

ρm,s,m′ : TEn →TEn ,

xi1 · · ·xil(e) 7→

{
m(− tail≺(s))m′, if xi1 · · ·xil(e) = m lm(s)m′

xi1 · · ·xil(e), else

and say that ρm,s,m′ is a reduction (map) (with respect to S).

(b) Let S ⊆ TEn be a reduction system, t ∈ TEn and ρ a finite composition of reductions.
Then we call ρ(t) a reduction of t (under S) and say that t reduces to ρ(t) (under S).

(c) If we have for ≺ and a reduction system S with respect to ≺
(i) xixj(e) ≺ xjxi(e) for all 1 ≤ i < j ≤ n and e ∈ E,

(ii) there exist elements xjxi(e) − cijxixj(e) − dij ∈ S with cij ∈ K∗ and dij ∈
K
〈
SMon(TEn )

〉
such that lm≺(dij) ≺ xixj(e) for all 1 ≤ i < j ≤ n and e ∈ E,

and

(iii) every element in TEn can be reduced to an element in K
〈
SMon(TEn )

〉
,

then we call S a standard reduction system (with respect to ≺). In this case, the
reductions ρm,xjxi(e)−cijxixj(e)−dij ,m′ with xjxi(e) − cijxixj(e) − dij as above and
m,m′ ∈ Mon(Tn) are called commutation reductions.

52



2.1 Gröbner basis framework for PBW-reduction-algebras

(d) Let I ⊆ Tn and A := Tn/ 〈I〉. We say that the reduction system S ⊆ TEn is a reduction
system for AE if Tn

〈
IE
〉
Tn = Tn〈S〉 Tn .

(e) Let S ⊆ TEn be a reduction system. We say that t ∈ TEn is irreducible (with respect to S)
if all reductions ρ act trivially on t, that is, ρ(t) = t. We denote the K-submodule of all
irreducible elements of TEn by (TEn )irr

S,≺ and write sometimes also (TEn )irr
S for the latter

module if the ordering is understood. A sequence of reductions ρ1, . . . , ρk is called final
on t if ρk ◦ · · · ◦ ρ1(t) ∈ (TEn )irr

S .

(f) Let S ⊆ TEn be a reduction system. We call t ∈ TEn reduction-finite if for any infinite
sequence of reductions ρ1, ρ2, . . . , the reduction ρi acts trivially on ρi−1 ◦ · · · ◦ρ1(t) for
i big enough. We say that t is reduction-unique if it is reduction-finite and its images
under all final sequences on t are the same. This common value is denoted by ρS,≺(t)
or ρS(t) if the ordering is clear from the context.

Remark 2.1.8. Let S ⊆ TEn be a reduction system with respect to the monomial ordering ≺.

(a) If ≺ is a well-ordering, then all elements of TEn are reduction-finite. Moreover, if S
is additionally finite, a final sequence of reductions for a given element is effectively
computable.

(b) If S is a standard reduction system with respect to ≺, then (TEn )irr
S ⊆ K

〈
SMon(TEn )

〉
.

Also note that Definition 2.1.7(ciii) follows immediately from Definition 2.1.7(ci) and
(cii) if ≺ is a well-ordering.

Reduction uniqueness can be tested with the help of so-called ambiguities:

Definition 2.1.9. Let S ⊆ TEn be a reduction system with respect to the monomial ordering
≺.

(a) A tuple (s1, s2,m1,m2,m3) with s1, s2 ∈ S such that e := lcomp≺(s1) = lcomp≺(s2)
and m1,m2,m3 ∈ Mon(Tn) \ {1} satisfying lm≺(s1) = m1m2(e) and lm≺(s2) =
m2m3(e) is called an overlap ambiguity of S. We say that this ambiguity is resolvable
if there exist compositions of reductions ρ, ρ′ such that ρ ◦ ρ1,s1,m3(m1m2m3(e)) =
ρ′ ◦ ρm1,s2,1(m1m2m3(e)).

(b) A tuple (s1, s2,m1,m2,m3) with s1, s2 ∈ S such that s1 6= s2, e := lcomp≺(s1) =
lcomp≺(s2) and m1,m2,m3 ∈ Mon(Tn) satisfying lm≺(s1) = m2(e) and lm≺(s2) =
m1m2m3(e) is called an inclusion ambiguity of S. We say that this ambiguity is resolv-
able if there are compositions of reductions ρ, ρ′ such that ρ◦ρm1,s1,m3(m1m2m3(e)) =
ρ′ ◦ ρ1,s2,1(m1m2m3(e)).

Remark 2.1.10. Let S ⊆ TEn be a reduction system with respect to the monomial ordering ≺.
If all elements of the Tn-module Tn〈S〉 Tn ⊆ TEn are reducible to zero, then all ambiguities of
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2 PBW-reduction-algebras

S are resolvable: Indeed, consider for instance an overlap ambiguity as in Definition 2.1.9(a).
Then d(s1,s2,m1,m2,m3) := ρ1,s1,m3(m1m2m3(e)) − ρm1,s2,1(m1m2m3(e)) ∈ Tn〈S〉 Tn re-
duces to zero, say by the composition of reductions σ. Choosing ρ and ρ′ in Definition 2.1.9(a)
as σ, we see that the overlap ambiguity is resolvable since the reduction maps are additive. In
particular, if S is the set of all ≺-monic elements of a two-sided ideal of TEn , then S is ambi-
guity resolvable.

The so-called Diamond Lemma relates reduction-uniqueness and resolvability of ambigui-
ties:

Proposition 2.1.11. [Ber78, Theorem 1.2] Let S ⊆ Tn be a reduction system with respect to
the monomial well-ordering ≺. The following are equivalent:

(a) All ambiguities of S are resolvable.

(b) All elements of Tn are reduction-unique under S.

(c) A set of representatives in Tn of the algebra A = Tn/ 〈S〉 is given by the K-submodule
(Tn)irr

S spanned by the irreducible (with respect to S) elements of Mon(Tn).

When these conditions hold,Amay be identified with theK-module (Tn)irr
S , made aK-algebra

by the multiplication t · t′ := ρS(tt′) for t, t′ ∈ (Tn)irr
S .

The Diamond Lemma and Remark 2.1.10 imply:

Corollary 2.1.12. Let S ⊆ Tn be a reduction system with respect to the monomial well-
ordering ≺. Then the following are equivalent:

(a) All ambiguities of S are resolvable.

(b) Every t ∈ Tn〈S〉 Tn can be reduced to zero under S.

(c) For every t ∈ Tn〈S〉 Tn exists a finite set P ⊆ Tn × S × Tn such that

t =
∑

(p,s,q)∈P

psq with lm≺(psq) � lm≺(t).

Proof. If all ambiguities of S are resolvable, then then the equivalence of (a) and (c) in the
Diamond Lemma implies Condition (b). The converse direction follows from Remark 2.1.10.
Obviously, if Condition (b) holds, then Condition (c) is also satisfied. Conversely assume
that the latter condition holds and consider 0 6= t ∈ Tn〈S〉 Tn . Then there exists a finite
set P ⊆ Tn × S × Tn such that t =

∑
(p,s,q)∈P psq and lm≺(psq) � lm≺(t). Choose

(p, s, q) ∈ P such that lm≺(t) = lm≺(psq). Then ρp,s,q(t) ∈ Tn〈S〉 Tn has leading monomial
strictly smaller than lm≺(t) and Condition (b) follows by induction on ≺.

We are particularly interested in the following class of K-algebras:
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2.1 Gröbner basis framework for PBW-reduction-algebras

Definition 2.1.13. Let S := {xjxi − cijxixj − dij | 1 ≤ i < j ≤ n} ⊆ Tn be a standard re-
duction system with respect to the monomial well-ordering ≺= (≺,≺′) (see Remark 2.1.4(a)
and (b)).

(a) Then the K-algebra
A := Tn/ 〈R〉 ,

where S ⊆ 〈R〉 ⊆ Tn, is called a PBW-reduction-algebra and we say that ≺ is a well-
ordering on A. If I ⊆ K〈SMon(Tn)〉 is a finite set satisfying

(i) Tn〈I ∪ S〉 Tn = Tn〈R〉 Tn and

(ii) xα ∈ Tn for α ∈ Nn is irreducible with respect to the ≺-monic elements of
Tn〈R〉 Tn and ≺ if and only if

α /∈ L≺(I),

then we call the tuple (Tn, S, I,≺) PBW-reduction datum ofA and writeA = (A,≺) =
(Tn, S, I,≺). We refer to (the elements of) S as commutation relations.

(b) Given that A is a PBW-reduction-algebra, we moreover define: If S is a standard re-
duction system with respect to the monomial ordering ≺′′= (≺′′,≺′), we say that ≺′′
is an ordering on the PBW-reduction-algebra A. Given I ′ ⊆ K〈SMon(Tn)〉 satisfying
Conditions (ai) and (aii) after replacing I and ≺ by I ′ and ≺′′, respectively, we call
(Tn, S, I

′,≺′′) also PBW-reduction datum of A.

Remark 2.1.14. Note that given a PBW-reduction-algebraA with PBW-reduction datum (Tn,
S, I ′,≺′) the notation A = (Tn, S, I

′,≺′′) is reserved for the case that ≺′′ is a well-ordering.

Remark 2.1.15.

(a) One easily checks that Definition 2.1.13(aii) is equivalent to

L≺(I) = {le(r) | 0 6= r ∈ Tn〈R〉 Tn , lm(r) ∈ SMon(Tn)}. (2.1.1)

Also note that by construction L≺(I) is always included in the right hand side of Equa-
tion (2.1.1) because if r ∈ I ⊆ Tn〈R〉 Tn with le(r) = α, then we can apply com-
mutation reductions to xγr to find an element r′ ∈ Tn〈R〉 Tn ∩ K〈SMon(Tn)〉 with
le(r′) = α+ γ for any γ ∈ Nn. For convenience we also observe that the right hand set
in Equation (2.1.1) agrees with

{le(r) | 0 6= r ∈ Tn〈R〉 Tn ∩ K〈SMon(Tn)〉},

since given an element 0 6= r ∈ Tn〈R〉 Tn with lm(r) ∈ SMon(Tn), we can apply
commutation reductions to tail(r) to reduce r to an element in Tn〈R〉 Tn∩K〈SMon(Tn)〉
preserving its leading monomial.
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(b) If Definition 2.1.13(aii) holds, then the condition in Definition 2.1.13(ai) may be re-
placed by I ⊆ Tn〈R〉 Tn . Indeed, assuming Definition 2.1.13(aii) and I ⊆ Tn〈R〉 Tn ,
we use commutation relations to write r ∈ Tn〈R〉 Tn as r = r′ + s with s ∈ Tn〈S〉 Tn ,
r′ ∈ Tn〈R〉 Tn ∩ K〈SMon(Tn)〉 and lm(r′) � lm(r). Equation (2.1.1) implies now that
there is p ∈ I and α ∈ Nn such that le(r′) = le(p) + α. Applying commutation reduc-
tions to xαp to reduce it to an element p′ ∈ Tn〈S ∪ I〉 Tn with lm(p′) = lm(r′), we find
an expression

r′ = r′′ + cp′ + s′

with c ∈ K∗, s′ ∈ Tn〈S〉 Tn and r′′ ∈ Tn〈R〉 Tn satisfying lm(r′′) ≺ lm(r′). Induction
with respect to the well-ordering ≺ completes the proof.

(c) Part (a) holds also in the situation of Definition 2.1.13(b) after replacing I and ≺ by I ′

and ≺′′, respectively. However, the proof Part (b) does not generalize to this setting,
because we made use of the fact that ≺ is a well-ordering.

Remark 2.1.16. Consider the PBW-reduction-algebra A = (Tn, S, I,≺).

(a) According to Remark 2.1.15(a) we can write every p ∈ Tn〈S ∪ I〉 Tn ∩ K〈SMon(Tn)〉
as

p =
∑
g∈I

agg +
∑

(t,s,t′)∈U

tst′

for some a ∈ K〈SMon(Tn)〉I and U ⊆ Tn × S × Tn finite satisfying

le(ag) + le(g) � le(p) and lecom(t) + lecom(s) + lecom(t′) � le(p).

Moreover, there is g ∈ G with equality le(ag) + le(g) = le(p).

(b) Furthermore, we can determine for an element p ∈ Tn a finite set U ⊆ Tn×S×Tn and
p′ ∈ K〈SMon(Tn)〉 such that

p = p′ +
∑

(t,s,t′)∈U

tst′ and lm≺′′(p
′), lm≺′′(tst

′) �′′ lm≺′′(p)

for any ordering ≺′′ on A.

Lemma 2.1.17. A PBW-reduction-algebra (A,≺) admits a PBW-reduction datum (Tn, S,
I,≺) and the residue classes of

B := {xα | α /∈ L(I)}

form a K-basis of A. Moreover, the set of irreducible elements of Tn with respect to the am-
biguity resolvable reduction system consisting of the ≺-monic elements of Tn〈S, I〉 Tn agrees
with the K-span of B and does not depend on the choice of I and S.
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Proof. Let S and R be as in Definition 2.1.13. We first observe that the set M of ≺-monic
elements of Tn〈R〉 Tn is an ambiguity resolvable reduction system forA by Remark 2.1.10 and
hence A can be identified with (Tn)irr

M ⊆ K〈SMon(Tn)〉 as K-algebra by Proposition 2.1.11
and Remark 2.1.8(b).

Consider now the set

L := {le≺(r) | 0 6= r ∈ Tn〈R〉 Tn ∩ K〈SMon(Tn)〉} ⊆ Nn .

By Dickson’s Lemma there is a finite subset L′ ⊆ L such that for every α ∈ L exists an
α′ ∈ L′ with α ∈ α′ + Nn. Choose for every α′ ∈ L′ an rα′ ∈ Tn〈R〉 Tn ∩ K〈SMon(Tn)〉
having leading exponent α′. Setting

I := {rα′ | α′ ∈ L′},

we claim that (Tn, S, I,≺) is a PBW-reduction datum for A: Indeed, by Remark 2.1.15(a)
Condition (aii) in Definition 2.1.13 is satisfied. As by construction I ⊆ Tn〈R〉 Tn , we are done
by Remark 2.1.15(b).

Convention 2.1.18. As orderings in the context of PBW-reduction-algebras are as in Re-
mark 2.1.4(a), we from now assume implicitly that all orderings are of this type.

Notation 2.1.19. Let A = (Tn, S, I,≺) be a PBW-reduction-algebra and let M denote the
≺-monic element of Tn〈S, I〉 Tn . Then (Tn)irr

M depends only on A = Tn/ 〈S, I〉 and ≺. We
hence also denote it by (Tn)irr

(A,≺) and, similarly, we write ρ(A,≺) and for ρM .

The following algorithm evaluates the map ρ(A,≺):

Algorithm 2.1.20 Given a PBW-reduction-algebra (A,≺) and t ∈ Tn this algorithm computes
the irreducible representation ρ(A,≺)(t).

Input: A PBW-reduction-algebra A = (Tn, S, I,≺) and t ∈ Tn.
Output: An element u ∈ Tn such that u = ρ(A,≺)(t).

1: Initialize u = 0.
2: Replace t by a reduction of t in K〈SMon(Tn)〉 under S.
3: while t 6= 0 do
4: if le(t) ∈ L(I) then
5: Choose p ∈ I such that γ := le(p)− le(t) ∈ Nn.
6: Apply reductions under S to reduce xγp to an element p′ ∈ K〈SMon(Tn)〉 with

le(p′) = le(t).
7: Set t := t− lc(t)/ lc(p′)p′.
8: else
9: Set u := u+ lt(t) and t := tail(t).

10: return u.
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Lemma 2.1.21. Algorithm 2.1.20 is correct and terminates.

Proof. Termination is clear, because we replace in each iteration of the while-loop t by an
element with smaller leading monomial with respect to the well-ordering ≺.

Notice that we have u − t ∈ Tn〈I, S〉 Tn and that u ∈ (Tn)irr
(A,≺). Hence the correctness

follows by Proposition 2.1.11(c).

A particularly well-behaved case of PBW-reduction-algebras are PBW-algebras:

Definition 2.1.22. A PBW-reduction-algebra A = (Tn, S, {0},≺) is called a PBW-algebra.
If the elements in S are of type xjxi − cijxixj , we say that A is a quasi-commutative PBW-
algebra.

Corollary 2.1.23. [Lev05, Theorem 1.2.3] Let S := {xjxi − cijxixj − dij | 1 ≤ i < j ≤
n} ⊆ Tn be a standard reduction system with respect to a monomial well-ordering ≺ that
induces a monomial ordering on SMon(Tn) by restriction. Then the overlap ambiguities of
the K-algebra

A := Tn/ 〈S〉 ,

read
cikcjkdijxk − xkdij + cjkxjdik − cijdikxj + djkxi − cijcikxidjk

for 1 ≤ i < j < k ≤ n and A is a PBW-algebra if and only if these ambiguities can be
reduced to zero under S.

The first part of the following corollary is obvious and a proof of the second assertion can
be found for example in [Lev05, Theorem 1.4.7].

Corollary 2.1.24. The set of standard monomials forms a K-basis of a PBW-algebra . More-
over, PBW-algebras are left and right Noetherian rings.

The following two examples of PBW-algebras are frequently used throughout this thesis:

Example 2.1.25. The polynomial ring K[x1, . . . , xn] in n variables is a PBW-algebra.

Example 2.1.26. The Weyl algebra in the variables x1, . . . , xn and derivations ∂1, . . . , ∂n
defined by

Dn := K〈x1, . . . , xn, ∂1, . . . , ∂n〉/ 〈{[∂j , xi]− δij , [xi, xj ], [∂i, ∂j ] | for 1 ≤ i, j ≤ n}〉

is a PBW-algebra (see also Example 1.2.2).

From Corollary 2.1.24 we deduce:

Lemma 2.1.27. PBW-reduction-algebras are left and right Noetherian rings.
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Proof. Let A = (Tn, S, I,≺) be a PBW-reduction-algebra with S := {xjxi − cijxixj − dij |
1 ≤ i < j ≤ n}. We introduce the multi-filtration F≺• on A indexed by Nn (see [GTL00])
given by

F≺α A :=
∑
xβ�xα

Kxβ ⊆ A

for α ∈ Nn. Note that this filtration is indeed exhaustive since A is generated by the standard
monomials of Tn as K-algebra. Consider now the associated multi-graded ring

GrF
≺
A :=

⊕
α∈Nn

F≺α A/F
≺
≺αA,

where F≺≺αA :=
⋃
β∈Nn:xβ≺xα F

≺
β A. TheK-algebra GrF

≺
A is isomorphic to a factor algebra

of a quasi-commutative PBW-algebra via the map

ϕ : GrF
≺
A→B := (Tn/ 〈{xjxi − cijxixj | 1 ≤ i < j ≤ n}〉)/

〈
{lm≺(p) | p ∈ I}

〉
.

GrF
≺

ei A 3 xi 7→xi +
〈
{lm≺(p) | p ∈ I}

〉
.

The K-algebra B is as a quotient of a PBW-algebra left and right Noetherian (see Corol-
lary 2.1.24). Now [GTL00, Lemma 1.2] implies the claim.

Lemma 2.1.28. Consider the K-algebra K〈x, y〉 := K〈x1, . . . , xn, y1, . . . , ym〉 and its factor
algebra P := K〈x, y〉/ 〈S〉 , where

S :={[xj , xi] | 1 ≤ i < j ≤ n} ∪ {[yl, yk]− dkl | 1 ≤ k < l ≤ m}
∪ {[yk, xi]− fik | 1 ≤ i ≤ n, 1 ≤ k ≤ m}

with dkl, fik ∈ K〈SMon(K〈x〉)〉. Canonically identifying the ideal J ⊆ K[x] with a subset of

K

〈
SMon(K〈x, y〉)

〉
, define the K-algebra

A := P/P
〈
J
〉
P .

Then we have:

(a) There exists a well-ordering such that S is a reduction system with respect to that order-
ing.

(b) If the surjective K-linear homomorphism

ψ :
⊕
β∈Nm

(K[x]/J)yβ → A, xαyβ 7→ xαyβ

is injective, then A is isomorphic to a PBW-reduction-algebra. Given any ordering ≺
on A, a corresponding PBW-reduction datum is given by (K〈x, y〉, S, J ′,≺), where J ′

is a Gröbner basis of J ⊆ K[x] with respect to the ordering induced by ≺.
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2 PBW-reduction-algebras

Proof.

(a) The set S is a reduction system with respect to the (well)-ordering ≺ on SMon(Tn) if
and only if it satisfies lm≺(dkl) ≺ ykyl for 1 ≤ k < l ≤ m and lm≺(fik) ≺ xiyk for
1 ≤ i ≤ n and 1 ≤ k ≤ m. So S is a reduction system with respect to any refinement
of the partial ordering < given by

xαyβ < xα
′
yβ
′

if and only if |β| < |β′|,

(with α, α′ ∈ Nn and β, β′ ∈ Nm) by a well-ordering.

(b) We first observe that we may identify

A = K〈x, y〉/
〈
S ∪ J ′

〉
showing that A is indeed isomorphic to a PBW-reduction-algebra by Part (a). Then
Definition 2.1.13(ai) is clearly satisfied withR = S∪J ′. According to Remark 2.1.15(a)
it suffices to show for Definition 2.1.13(aii) that

L(J ′) ⊇ {le(p) | 0 6= p ∈ K〈x,y〉
〈
S ∪ J ′

〉
K〈x,y〉 ∩ K

〈
SMon(K〈x, y〉)

〉
}

holds. Consider p =
∑

(α,β) p(α,β)x
αyβ ∈ K〈x,y〉〈S ∪ J ′〉K〈x,y〉 ∩ K

〈
SMon(K〈x, y〉)

〉
with p(α,β) ∈ K not all zero. Note that p is mapped to zero under the composition of the
projection π : K〈x, y〉� A with ψ−1, that is, we have

p ∈
⊕
β∈Nm

Jyβ.

Consequently, it holds for every β ∈ Nm that
∑

α∈Nn p(α,β)x
α ∈ J and hence

(α′, β′) := le≺(p) = le≺(
∑
α∈Nn

p(α,β′)x
αyβ

′
) = (le≺(

∑
α∈Nn

p(α,β′)x
α), β′) ∈ L(J ′),

because J ′ is a Gröbner basis of J ⊆ K[x] with respect to ≺.

Definition 2.1.29. Keeping the setup and notation of Lemma 2.1.28 and assuming that ψ is
injective, we call the PBW-reduction-algebra A = (K〈x, y〉, S, J ′,≺) elementary.

We have seen in Example 2.1.26 that the global sections of the sheaf of differential operators
on the affine space Cn can be represented as a PBW-reduction-algebra. The next example
shows that locally a similar statement holds for smooth varieties. More precisely, we represent
coordinate system rings as elementary PBW-reduction-algebras:
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Example 2.1.30. Let X be a smooth irreducible affine variety defined by the vanishing of the
prime ideal I ⊆ C[x] := C[x1, . . . , xn]. Assume that X has a global coordinate system, that
is, there exists a coordinate system (fi, θi)1≤i≤m (with fi ∈ C[x]) on the open neighborhood
X ⊆ X . Recall that according to Remark 1.2.3 we may assume that θ1, . . . , θm are induced
by θl1, . . . , θ

l
m ∈ ΘCn(Cn).

(a) We prove that the coordinate system ring DX(X) is isomorphic to an elementary PBW-
reduction-algebra: By the properties of coordinate systems, we have a C-linear isomor-
phism

ψ :
⊕
β∈Nm

(C[x]/I)θβ →DX(X) = C〈x1, . . . , xn, θ1, . . . , θm〉 ⊆ EndC(C[x]/I),

xαθβ 7→x1
α1 · · ·xnαnθβ

and the generators of the C-algebra DX(X) satisfy [xj , xi] = 0, [θl, θk] = 0 and
[θk, xi] = θlk(xi) for 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ l ≤ m. Consequently, ψ fac-
tors through the quotient algebra

TX := C〈x, y〉/ 〈S ∪ I〉 ∼= (C〈x, y〉/ 〈S〉)/ 〈I〉

of C〈x, y〉 := C〈x, y1, . . . , ym〉, where

S :={[xj , xi] | 1 ≤ i < j ≤ n} ∪ {[yl, yk] | 1 ≤ k < l ≤ m}
∪{[yk, xi]− θlk(xi) | 1 ≤ i ≤ n, 1 ≤ k ≤ m}

via the surjective C-linear maps

⊕
β∈Nm(C[x]/I)θβ

ψ1 // // TX
ψ2 // // DX(X).

xαθβ � // xαyβ � // x1
α1 · · ·xnαnθβ.

The injectivity of ψ1 follows from the injectivity of ψ and the injectivity of ψ2 from the
surjectivity of ψ1 and the injectivity of ψ. As ψ2 is a C-algebra homomorphism, the
coordinate system ring DX(X) is isomorphic to TX as C-algebra.

Now consider a well-ordering≺ on TX (for existence see Lemma 2.1.28(a)) and let I ′ be
a Gröbner basis of I ⊆ C[x] with respect to the ordering induced by≺ onC[x]. Then we
see by Lemma 2.1.28 that TX is isomorphic to the elementary PBW-reduction-algebra
(C〈x, y〉, S, I ′,≺). In particular, a PBW-reduction datum is effectively computable in
this case.
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2 PBW-reduction-algebras

(b) Note that we may assume by Remark 1.2.12 that fm agrees with some xi, say xn, and
that θli(xn) = δi,m. In this case, theC-subalgebra V ofDX(X) generated by x1, . . . , xn,
θ1, . . . , θm−1 and fmθm can again be represented as an elementary PBW-reduction-
algebra as follows: Arguing as for ψ, we have an isomorphism⊕

α∈Nm
(C[x]/I)θα1

1 · · · θ
αm−1

m−1 (xnθm)αm ∼= V

and may hence apply Lemma 2.1.28 to identify V with the elementary PBW-reduction-
algebra

T VX := (C〈x, y1, . . . , ym−1, z〉, SV , I ′,≺V )

with ≺V any well-ordering inducing the same ordering as ≺ on C[x] (see Part (a)) and

SV := {[xj , xi], [yl, yk], [z, yk], [yk, xi]− θlk(xi), [z, xi]− xnθlm(xi) |
1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ l ≤ m− 1} \ {0}.

Notice that we may consider T VX as a subalgebra of TX by identifying z with xnym.

(c) We remark that in the situation of Part (b), we have

V/xnV = V/V 〈xn〉 V ∼=
⊕
α∈Nm

(C[x]/ 〈I, xn〉)θα1
1 · · · θ

αm−1

m−1 (xnθm)αm

∼=
⊕
α∈Nm

(C[x1, . . . , xn−1]/φxn(I))θα1
1 · · · θ

αm−1

m−1 (xnθm)αm ,

where φxn stands for the C-algebra endomorphism of C〈x, y〉 that maps xn to 0 and
acts on all other variables as identity. By the same arguments as in Part (a), the above
algebra can be realized as the elementary PBW-reduction-algebra

T
V/xnV
X := (C〈x1, . . . , xn−1, y1, . . . , ym−1, z〉, SV/xnV , IV/xnV ,≺

V/xnV ),

with ≺V/xnV a suitable well-ordering such that

SV/xnV := {[xj , xi], [yl, yk], [z, yk], [z, xi], [yk, xi]− φxn(θlk(xi)) |
1 ≤ i ≤ j ≤ n− 1, 1 ≤ k ≤ l ≤ m− 1} \ {0},

is a reduction system and IV/xnV ⊆ C[x1, . . . , xm−1] a Gröbner basis of φxn(I) with

respect to the ordering induced by ≺V/xnV . Note that the map T VX → T
V/xnV
X induced

by the canonical projection V → V/xnV sends xn to 0 and the residue classes of the
other variables to the corresponding residue classes in T V/xnVX .
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(d) We keep the assumption of Part (b) and consider the subvarietyX0 := V (xn)∩X ⊆ X .
Then (fi, θi)1≤i≤m−1 is a global coordinate system on X0 (where we interpret the θi as
derivations on OX0(X0) by Remark 1.2.3). According to Part (a) the coordinate system
ring DX0(X0) is isomorphic to the elementary PBW-reduction-algebra

C〈x, y1, . . . , ym−1〉/ 〈J ∪ {xn} ∪ SX0〉

where SX0 is obtained from S by deleting all equations involving ym. This algebra is
obviously isomorphic to

C〈x1, . . . , xn−1, y1, . . . , ym−1〉/ 〈φxn(J ∪ SX0)〉

and a PBW-reduction datum of the latter algebra can be obtained as outlined in Part (a).
Note that we have

V/xnV ∼= DX0(X0)[z].

Remark 2.1.31. Note that there were some attempts by Oaku to deal algorithmically with
coordinate system rings [Oak96]. He suggested two methods: Taking X as in the above
example, he considers the C-subalgebra of the Weyl-algebra generated by x1, . . . , xn and
θl1, . . . , θ

l
m. He then claims that this subalgebra equals

⊕
α∈Nn,β∈Nm Cxα(θl1)β1 · · · (θlm)βm .

But this is in general not true: We may assume without loss of generality fi = xi and
θli = ∂i +

∑
m+1≤k≤n a

i
k(x)∂k for suitably chosen aik(x) ∈ C[x]. Hence the commutator

[θlj , θ
l
i] for i 6= j is of the form

∑
m+1≤k≤n b

ij
k (x)∂k and only an element of the above direct

sum if it equals zero, meaning that the lifted derivations also commute, which is in general not
true:

Considering for instance X = V (x3) ⊆ C3, we see that x1 and x2 are global coordinates
on X and that we may choose as lifts of their derivations ∂1 + x2x3∂3 and ∂2. Now we
have [∂2, ∂1 + x2x3∂3] = x3∂3. Obviously, we can resolve the issue in this basic example
by choosing different lifts, but in the following example it is not clear how to resolve that
problem: Consider the global coordinate neighborhood X ⊆ C5 defined by the prime ideal
I =

〈
x2

1x3 − x1x2 + x2
4 + 1, x3

1x3 + x2
4 + x2 + x3 + 1, dw − 1

〉
⊆ C[x1, x2, x3, x4, w] for

d = −6x2
1x3x4 + 4x1x3x4 − 2x2x4. Proceeding as in Remark 1.2.11(b), we see that the

commuting derivations

θ1 = ∂2 + d−2((−12x3
1x3x

2
4 − 4x2

1x3x
2
4 − 4x1x2x

2
4 + 8x1x3x

2
4 − 4x2x

2
4)∂1

+ (18x5
1x

2
3x4 − 12x4

1x
2
3x4 + 6x3

1x2x3x4 + 12x3
1x

2
3x4 − 6x2

1x2x3x4

− 8x2
1x

2
3x4 + 8x1x2x3x4 − 2x2

2x4)∂4

+ (−18x5
1x

2
3w + 12x4

1x
2
3w − 6x3

1x2x3w − 12x3
1x

2
3w + 12x2

1x3x
2
4w

+ 6x2
1x2x3w + 8x2

1x
2
3w + 24x1x3x

2
4w − 8x1x2x3w − 4x2x

2
4w − 8x3x

2
4w

+ 2x2
2w)∂w)
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and

θ2 = ∂3 + d−2((−12x5
1x3x

2
4 + 20x4

1x3x
2
4 − 4x3

1x2x
2
4 − 8x3

1x3x
2
4 + 4x2

1x2x
2
4 − 12x2

1x3x
2
4

+ 8x1x3x
2
4 − 4x2x

2
4)∂1

+ (−6x6
1x

2
3x4 − 6x5

1x2x3x4 + 4x5
1x

2
3x4 + 2x4

1x2x3x4 − 2x3
1x

2
2x4

+ 12x3
1x

2
3x4 − 6x2

1x2x3x48x2
1x

2
3x4 + 8x1x2x3x4 − 2x2

2x4)∂4

+ (6x6
1x

2
3w + 6x5

1x2x3w − 4x5
1x

2
3w − 12x4

1x3x
2
4w − 2x4

1x2x3w

+ 16x3
1x3x

2
4w + 2x3

1x
2
2w − 12x3

1x
2
3w − 12x2

1x2x
2
4w − 8x2

1x3x
2
4w

+ 6x2
1x2x3w + 8x2

1x
2
3w + 8x1x2x

2
4w + 24x1x3x

2
4w − 8x1x2x3w

− 8x3x
2
4w + 2x2

2w)∂w)

on C[x1, x2, x3, x4, w]d induce commuting derivations on X that OX(X)-generate ΘX(X).
Yet, if we replace d−2 by w2 to obtain derivations on C[x1, x2, x3, x4, w], the so obtained
derivations fail to commute.

As Oaku’s method completely relies on the above direct sum representation, this shows that
his method does in general not work.

His second method uses the Leibnitz rule to define a non-associative “multiplication”. He
bases the proof of correctness of this method on his flawed first method, hence not giving a
comprehensive proof of correctness. The underlying method is still correct, because one easily
shows that we could replace our multiplication for coordinate system rings by the Leibnitz rule
and then one notices that our Algorithm 2.1.45 and his algorithm do basically the same thing.

Also note that our more general setup has the advantage that it deals simultaneously with
(factor algebras of) PBW-algebras and coordinate system rings as well as some variants of
them (as considered in Example 2.1.30). Moreover, we allow (and need) more general order-
ings. Using the commutation relations it is easy to see which orderings are actually permitted.

Eventually, we will be interested in implementations of our algorithms. For this we need to
be able to present a given PBW-reduction datum by a finite set of data:

Definition 2.1.32. Let A = (Tn, S, I,≺) be a PBW-reduction-algebra and K′ ⊆ K a subfield.

(a) We say that K′ is a computable subfield of K if all elements of K′ can be represented by
a finite set of data: their sum, product and quotient can be calculated in a finite number
of steps, and there is a finite procedure that determines whether a given expression of
elements of K′ is zero or not.

(b) We say that K′ is (A,S, I,≺)-computable (or (A,≺)-computable for short) if it is com-
putable and S, I ⊆ K′〈x1, . . . , xn〉. We write

AK′ := (Tn, S, I,≺)K′ := (K′〈x1, . . . , xn〉, S, I,≺).
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2.1.2 Gröbner bases for PBW-reduction-algebras

Let A = (Tn, S, I,≺) be a PBW-reduction-algebra and E a finite set. Given a ∈ TEn , we con-
sider a as an element ofAE via the canonical isomorphismAE ∼= TEn /

〈
SE ∪ IE

〉
. Orderings

on AE are now introduced as follows:

Definition 2.1.33. Let A = (Tn, S, I,≺) be a PBW-reduction-algebra and E a finite set.

(a) We say that the monomial ordering ≺E on SMon(TEn ) is a ordering on AE if it induces
an ordering on each factor of AE . Then we write AE = (AE ,≺E).

(b) If ≺E is a well-ordering, we call ≺E a well-ordering on AE . If (Tn, Se, Ie,≺Ee ) is
moreover a corresponding PBW-reduction datum of A for e ∈ E, we also write AE =
(AE ,≺E) = (Tn, Se, Ie,≺Ee )e∈E and say that (Tn, Se, Ie,≺Ee )e∈E is a PBW-reduction
datum for (AE ,≺E). In this case, we introduce the map

ρ(AE ,≺E) :=
⊕
e∈E

ρ(A,≺Ee ) : TEn → (TEn )irr
(AE ,≺E) :=

⊕
e∈E

(Tn)irr
(A,≺Ee )(e).

We also define the map

τ(AE ,≺E) : AE → (TEn )irr
(AE ,≺E) ⊆ T

E
n

as the inverse of the composed map (TEn )irr
(AE ,≺E)

↪→ TEn � AE . We sometimes also
use the notation ρ≺E and τ≺E for the above maps if that does not cause any ambiguity.

For 0 6= a ∈ A, we define the data introduced in Definition 2.1.1(d) and (e) by the
corresponding data of τ(AE ,≺E)(a) and adapt the convention for the leading exponents
and monomials of 0 accordingly.

If ≺E is a well-ordering on AE , a PBW-reduction datum (Tn, Se, Ie,≺e)e∈E for (AE ,≺E)
exists by Lemma 2.1.17. Given such a PBW-reduction datum, the maps ρ(AE ,≺E) and τ(AE ,≺E)

are computable.

Remark 2.1.34. Let A = (Tn, S, I,≺) be a PBW-reduction-algebra and E and E1, . . . , Es
finite sets. Then we have:

(a) Given a total order < on E and a (well-)ordering ≺′ on A, (≺′)Etop,< and (≺′)Epot,< are
(well-)orderings on AE . If (Tn, S, I

′,≺′) is a PBW-reduction datum for (A,≺′) then
corresponding PBW-reduction data for (AE , (≺′)Etop,<) and (AE , (≺′)Epot,<) are given
by (Tn, S, I

′,≺′)e∈E .

(b) We introduce (well-)orderings onAE1⊕· · ·⊕AEs via its identification withAE1t···tEs .
In particular, if ≺Eii is a (well-)ordering on AEi for 1 ≤ i ≤ s, then ≺E1,...,Es

1,...,s is a
(well-) ordering on AE1t···tEs ∼= AE1⊕ . . . AEs . If (Tn, Sei , Iei , (≺Ei )ei)ei∈Ei is PBW-
reduction datum for (AEi ,≺Eii ) for 1 ≤ i ≤ s, then (Tn, Se, Ie, (≺Eφ(e))e)e∈E1t···tEs
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is PBW-reduction datum for (AE1t···tEs ,≺E1,...,Es
1,...,s ), where φ(e) = i for e ∈ Ei ⊆

E1 t · · · t Es.

Definition 2.1.35. Let A be a PBW-reduction-algebra, E a finite set, ≺E a well-ordering on
AE = (Tn, Se, Ie,≺Ee )e∈E and M ⊆ AE an A-submodule.

(a) We call the finite set G ⊆ M a Gröbner basis of M (with respect to ≺E) if every
m ∈M has a so-called standard representation, i.e., there exists a ∈ AG such that

m =
∑
g∈G

agg and le≺E
lcomp(g)

(ag) + ele≺E (g) �E ele≺E (m) for all g ∈ G.

(b) If G is a Gröbner basis of M , we say that G is reduced if 0 /∈ G, lc≺E (g) = 1 for all
g ∈ G, and if we have for all g ∈ G, e ∈ E and α ∈ Nn

(τ(AE ,≺E)(g))e,α 6= 0 implies (α, e) 6= ele(g′) + γ for all g 6= g′ ∈ G, γ ∈ Nn .

We point out that we did not define a standard representation on Definition 2.1.35(a) by
requiring only the weakened condition ele≺E (agg) �E ele≺E (g), because such a definition
would not allow us to use Gröbner bases to determine syzygy modules.

Remark 2.1.36. Let A be a PBW-reduction-algebra, E a finite set, ≺E an ordering on AE

and M ⊆ AE an A-submodule. To circumvent the problem that we do in general not have
a well-defined notion of leading exponents of elements of AE with respect to ≺E , we define
Gröbner bases in this situation as follows: We say that a finite set G ⊆ M is a Gröbner basis
of M with respect to ≺E if there exists h ∈ K

〈
SMon(TGn )

〉
with hg = g for g ∈ G such that

for every t ∈ K
〈
SMon(TEn )

〉
with t ∈M exists a ∈ K

〈
SMon(TGn )

〉
such that

t =
∑
g∈G

agg and le≺E
lcomp(hg)

(ag) + ele≺E (hg) �E ele≺E (t) for all g ∈ G.

We say in that case that {hg | g ∈ G} induces a Gröbner basis of M (with respect to ≺E).
Note that since there exists by definition of PBW-reduction-algebras a well-ordering ≺′

on A, every m ∈ M has a representative t ∈ K
〈
SMon(TEn )

〉
. Moreover, this definition is

compatible with Definition 2.1.35(a).

Our aim is now to adapt the Buchberger algorithm for well-orderings from the commutative
setting to our situation. In order to formulate a suitably modified Buchberger criterion, we first
introduce normal forms and s-polynomials:

Definition 2.1.37. Let A be a PBW-reduction-algebra, E a finite set, ≺E a well-ordering on
AE = (Tn, Se, Ie,≺Ee )e∈E and let a, a′ ∈ AE be nonzero.

(a) Given a finite set G ⊆ AE , we call r ∈ AE satisfying
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(i) there exists some h ∈ AG with

a =
∑
g∈G

hgg + r

such that le≺E
lcomp(g)

(hg) + ele≺E (g) �E ele≺E (a) for all g ∈ G and

(ii) ele≺E (r) /∈ L≺E (G) if r 6= 0

a (left) normal form of a with respect toG. We say that r is reduced if (α, e) /∈ L≺E (G)
given that (τ(AE ,≺E)(r))e,α 6= 0. We define the normal form of 0 ∈ AE with respect to
G to be 0.

(b) The s-polynomial of a and a′ with e := lcomp(a) = lcomp(a′) is defined by

spoly(a, a′) :=

{
1

lc(x
ca,a′ a)

xca,a′a− 1
lc(x

ca′,aa′)
xca′,aa′, if xba,a′ (e) ∈ (TEn )irr

(AE ,≺E)

0, else,

where ba,a′ , ca,a′ ∈ Nn are given by (ba,a′)i := max{le(a)i, le(a′)i} and (ca,a′)i :=
(ba,a′)i − le(a)i for 1 ≤ i ≤ n. If lcomp(a) 6= lcomp(a′), we set spoly(a, a′) := 0.

(c) The s-polynomial of a and p ∈ Ie is defined by

spoly(a, p) :=

{
xca,pa, if e = lcomp(a)

0, else,

where ba,p, ca,p ∈ Nn are given by (ba,p)i := max{le(a)i, le(p)i} and (ca,p)i :=
(ba,p)i − le(a)i for 1 ≤ i ≤ n.

Note that we consider for the definition of the s-polynomial in Definition 2.1.37(c) p as an
element of K

〈
SMon(TEn )

〉
(and not as its class in AE).

Remark 2.1.38. We keep the notation of Definition 2.1.37. Let A be a PBW-reduction-
algebra,E a finite set,≺E a well-ordering onAE = (Tn, Se, Ie,≺Ee )e∈E . Consider a, a′ ∈ AE
satisfying e := lcomp(a) = lcomp(a′) and xba,a′ (e) ∈ (TEn )irr

(AE ,≺E)
. Then

ele(spoly(a, a′)) ≺E (ba,a′ , e) = ele(xca,a′a) = ele(xca′,aa′).

Similarly, we have for p ∈ Ie

ele(spoly(a, p)) ≺E (ba,p, e) = ca,p + ele(a).

The following algorithm clearly computes a normal form and terminates, hence showing the
existence of normal forms:
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Algorithm 2.1.39 Given a PBW-reduction-algebra A, a finite set G ⊆ AE , a well-ordering
≺E and a ∈ AE , this algorithm computes a normal form of a with respect to G and ≺E .

Input: A PBW-reduction-algebra A, a finite set E, a well-ordering ≺E on the free module
AE = (Tn, Se, Ie,≺Ee )e∈E , G ⊆ AE finite and a ∈ AE .

Output: A normal form b ∈ AE of a with respect to G.
1: while a 6= 0 and G̃ := {g ∈ G | ele≺E (a) ∈ L≺E ({g})} 6= ∅ do
2: Choose g ∈ G̃.
3: Set a := lc≺E (a) · spoly(a, g).
4: return a.

Remark 2.1.40. Note that the above algorithm can be modified to return a reduced normal
form using the same method as in the commutative setting (see e.g. [GP08, Algorithm 1.6.11]).

Remark 2.1.41. Let A be a PBW-reduction-algebra, E a finite set, ≺E a well-ordering on
AE = (Tn, Se, Ie,≺Ee )e∈E andM ⊆ AE anA-submodule. IfG is a Gröbner basis ofM , then
clearly m ∈ AE is an element of M if and only if some normal form of m with respect to G
is 0. Moreover, assuming m ∈ M and using induction on lm≺E (m), one easily proves that
every normal form of m with respect to G is 0.

Our algorithm for computing Gröbner bases is based on a noncommutative variant of the
Buchberger criterion for polynomial rings that takes into account the additional relations:

Proposition 2.1.42. [Buchberger criterion for PBW-reduction-algebras] Let A be a PBW-re-
duction-algebra, E a finite set,≺E a well-ordering onAE = (Tn, Se, Ie,≺Ee )e∈E andG ⊆ AE
a finite set. Then G is a (left) Gröbner basis (with respect to≺E) of the A-module A〈G〉 if and
only if

(a) any (or some) normal form of spoly(g, g′) with respect to G is 0 for all g, g′ ∈ G and

(b) for all g ∈ G and p ∈ Ilcomp(g) any (or some) normal form of spoly(a, g) with respect
to G is 0.

For the proof we adapt a standard proof of the commutative Buchberger criterion to our
setting. It relies on the following lemma, whose proof from the commutative setting carries
over word by word:

Lemma 2.1.43. Let A be a PBW-reduction-algebra, E a finite set, ≺E a well-ordering on
AE = (Tn, Se, Ie,≺Ee )e∈E . Let G ⊆ AE \ {0} be finite with the property that all its
elements possess the same leading monomial. Assume that we have for m =

∑
g∈G agg

with a ∈ KG that lm(m) ≺E lm(g) for g ∈ G. Then there exists d ∈ KG×G such that
m =

∑
(g,g′)∈G×G d(g,g′) spoly(g, g′).

The following remark lists some comparisons of (leading) monomials with respect to ≺E
that are frequently used throughout our proof of Proposition 2.1.42:

68



2.1 Gröbner basis framework for PBW-reduction-algebras

Remark 2.1.44. Let A be a PBW-reduction-algebra, E a finite set, ≺E a well-ordering on
AE = (Tn, Se, Ie,≺Ee )e∈E and ≺Eo any ordering on AE such that Se is a reduction system
with respect to (≺Eo )e for all e ∈ E. Define for l ∈ N, 1 ≤ i1, . . . , il ≤ n the vector
α :=

∑
1≤j≤l eij ∈ N

n and let e ∈ E.

(a) We have xα(e) �Eo xi1 · · ·xil(e).

(b) Independently of the choice of ≺Eo , we can find ri1,...,il ∈ K〈SMon(Tn)〉 and fi1,...,il ∈
K∗ with ele≺Eo (ri1,...,il(e)) ≺Eo (α, e) such that

xi1 · · ·xil(e)− fi1,...,ilx
α(e)− ri1,...,il(e) ∈ Tn〈S〉 Tn

and hence
xi1 · · ·xil(e) = fi1,...,ilx

α(e) + ri1,...,il(e)

holds in AE , because non-trivial reductions with the commutation relations contained
in S applied to a monomial decrease its leading monomial for any ordering with respect
to which S is a reduction system. In particular, for a permutation σ ∈ Sl exists t ∈
K
〈
{xβ(e) ∈ SMon(Tn) | (β, e) ≺Eo (α, e)}

〉
with

t =
1

fi1,...,il
xi1 · · ·xil(e)−

1

fiσ(1),...,iσ(l)
xiσ(1) · · ·xiσ(l)(e).

For ≺Eo =≺E we have moreover: If xα(e) ∈ (TEn )irr
(AE ,≺E)

then fi1,...,il and ri1,...,il can
be additionally chosen such that

ρ(AE ,≺E)(xi1 · · ·xil(e)) = fi1,...,ilx
α(e) + ri1,...,il(e).

Otherwise ele≺E (ρ(AE ,≺E)(xi1 · · ·xil(e))) ≺E (α, e).

(c) Let a ∈ A and g ∈ AE . Then ele≺E (ag) �E le≺E
lcomp(g)

(a) + ele≺E (g) with equality if

and only if the monomial with extended leading exponent le≺E
lcomp(g)

(a) + ele≺E (g) is
irreducible.

Proof of Proposition 2.1.42. By Remark 2.1.41 it the clear that if G is a Gröbner basis, then
every normal form stated in the criterion is 0. Conversely, consider 0 6= m ∈ A〈G〉 and choose
h ∈ AG such that

m =
∑
g∈G

hgg (2.1.2)

satisfying additionally that

(α, e) := max≺E{le≺E
lcomp(g)

(hg) + ele≺E (g) | g ∈ G}
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is minimal with respect to ≺E . If (α, e) �E ele≺E (m) then Equation (2.1.2) is a standard
representation and we are finished. Otherwise, setting

G′ := {g ∈ G | le≺E
lcomp(g)

(hg) + ele≺E (g) = (α, e)}

and writing
m =

∑
g′∈G′

lt≺Ee (hg′)g
′ +

∑
g′∈G′

tail≺Ee (hg′)g
′ +

∑
g∈G\G′

hgg, (2.1.3)

we have for g′ ∈ G′ by Remark 2.1.44(c)

ele≺E (tail≺Ee (hg′)g
′) �E le≺Ee (tail≺Ee (hg′)) + ele≺E (g′) (2.1.4)

≺E le≺Ee (hg′) + ele≺E (g′) = (α, e),

and by Remark 2.1.44(c) and by choice of G′ it holds for g ∈ G \G′

ele≺E (hgg) �E le≺E
lcomp(g)

(hg) + ele≺E (g) ≺E (α, e). (2.1.5)

Hence the leading monomial of l :=
∑

g∈G′ lt≺Ee (hg)g is strictly smaller than xα(e). Now
we need to distinguish two cases: If xα(e) ∈ (TEn )irr

(AE ,≺E)
then all summands in the sum

expression of l have leading monomial xα(e) according to Remark 2.1.44(c). So we may
invoke Lemma 2.1.43 to find an element d ∈ KG′×G′ such that

l =
∑

(g,g′)∈G′×G′
d(g,g′) spoly(lm≺Ee (hg)g, lm≺Ee (hg′)g

′)︸ ︷︷ ︸
s(g,g′):=

. (2.1.6)

Expanding the s-polynomial, we have for g, g′ ∈ G′

s(g,g′) =
1

lc≺E (lm≺Ee (hg)g)
lm≺Ee (hg)g −

1

lc≺E (lm≺Ee (hg′)g′)
lm≺Ee (hg′)g

′.

By definition of cg,g′ and cg′,g (see Definition 2.1.37(b)) there exists β(g,g′) ∈ Nn such that
cg,g′ + β(g,g′) = le≺Ee (hg) and cg′,g + β(g,g′) = le≺Ee (hg′). Applying Remark 2.1.44(b), we
obtain

s(g,g′) =(dgx
β(g,g′)xcg,g′ + r(g,g′))g − (dg′x

β(g,g′)xcg′,g + r′
(g,g′)

)g′

=xβ(g,g′)
(
dgx

cg,g′g − dg′xcg′,gg′
)

+ r(g,g′)g + s(g,g′)g′

for suitably chosen dg, dg′ ∈ K∗ and r(g,g′), r′(g,g
′) ∈ A with

lm≺Ee (r(g,g′)) ≺Ee lm≺Ee (hg) and lm≺Ee (r′
(g,g′)

) ≺Ee lm≺Ee (hg′). (2.1.7)
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2.1 Gröbner basis framework for PBW-reduction-algebras

As xα(e) is irreducible and (α, e) = cg,g′ + β(g,g′) + lm≺E (g), the monomial with extended
leading coefficient cg,g′ + lm≺E (g) = cg′,g + lm≺E (g′) is also irreducible, where the lat-
ter equality follows from Remark 2.1.38. That remark implies also that lm≺E (s(g,g′)) ≺
xα(e) and so we deduce that lt≺E (dgx

cg,g′g) = lt≺E (dg′x
cg′,gg′). Now by the definition

of spoly(g, g′) there exists f(g,g′) ∈ K∗ such that

s(g,g′) = f(g,g′)x
β(g,g′) spoly(g, g′) + r(g,g′)g + r′

(g,g′)
g′ (2.1.8)

and
β(g,g′) + ele≺E (spoly(g, g′)) ≺E (α, e). (2.1.9)

By hypothesis we find an element k(g,g′) ∈ AG satisfying

spoly(g, g′) =
∑
g′′∈G

k
(g,g′)
g′′ g′′ (2.1.10)

and le≺E
lcomp(g′′)

(k
(g,g′)
g′′ ) + ele≺E (g′′) �E ele≺E (spoly(g, g′)). This yields together with Re-

mark 2.1.44(c) and Equation (2.1.9) the estimate

le≺E
lcomp(g′′)

(xβ(g,g′)k
(g,g′)
g′′ ) + ele≺E (g′′) �E β(g,g′) + le≺E

lcomp(g′′)
(k

(g,g′)
g′′ ) + ele≺E (g′′)

(2.1.11)

�E β(g,g′) + ele≺E (spoly(g, g′))

≺E (α, e).

Combining Equations (2.1.6), (2.1.8) and (2.1.10) we obtain

l =
∑

(g,g′)∈G′×G′
d(g,g′)

f(g,g′)

∑
g′′∈G

xβ(g,g′)k
(g,g′)
g′′ g′′ + r(g,g′)g + r′

(g,g′)
g′


and plugging this equation into Equation (2.1.3) contradicts by Equations (2.1.4), (2.1.5),
(2.1.7) and (2.1.11) the minimality of (α, e).

In the other case, xα(e) is reducible, say α = β + lm≺Ee (p) for some p ∈ Ie and β ∈ Nn.
Then there exists by definition of spoly(g, p) for g ∈ G′ a vector γg ∈ Nn such that

le≺Ee (hg) + ele≺E (g) = (α, e) = γg + cg,p + ele≺E (g)

(see Definition 2.1.37(c) for the definition cg,p). Therefore there is qg ∈ K∗

lm≺Ee (hg)g = (qcx
γg · xcg,p + tg)g = qcx

γg · spoly(g, p) + tgg

with tg ∈ A such that le≺Ee (tg) ≺Ee le≺Ee (hg) by Remark 2.1.44(b). Using that

γg + ele≺E (spoly(p, g)) ≺E γg + cg,p + ele≺E (g) = (α, e)

by Remark 2.1.38 and that spoly(g, p) has a normal form that is 0 with respect to G, we may
argue as in the first case. This finishes our proof.
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The above lemma yields the following algorithm for computing Gröbner bases:

Algorithm 2.1.45 Given a PBW-reduction-algebra A, a well-ordering ≺E and a finite set
G ⊆ AE , this algorithm computes a Gröbner basis of the module A〈G〉 with respect to ≺E .

Input: A PBW-reduction-algebra A, a finite set E, a well-ordering ≺E on the module AE =
(Tn, Se, Ie,≺Ee )e∈E and G ⊆ AE finite.

Output: A finite set H ⊆ AE such that H is a Gröbner basis of A〈G〉 with respect to ≺E .
1: Initialize H := G \ {0} := {g1, . . . , gs}.
2: Set T := {(gi, gj) | 1 ≤ i < j ≤ s} ∪ {(g, s(lcomp(g))) | g ∈ H, s ∈ Ilcomp(g)}.
3: while T 6= ∅ do
4: Choose (t1, t2) ∈ T .
5: Delete {(t1, t2)} from T .
6: Compute a normal form r of spoly(t1, t2) with respect to H and≺E by applying Algo-

rithm 2.1.39.
7: if r 6= 0 then
8: Set T := T ∪ {(r, h) | h ∈ H} ∪ {(r, s(lcomp(r))) | s ∈ Ilcomp(r)} and H :=

H ∪ {r}.
9: return H .

Lemma 2.1.46. The above algorithm is correct and terminates.

Proof. The correctness follows immediately from Proposition 2.1.42. We keep the notation of
Algorithm 2.1.45 and denote byHi the setH at the beginning of the i-th iteration of the while-
loop and by ri the normal form r computed during the i-th run of that loop. For the termination
consider now the sets L(Hi) and note that if the normal form ri is nonzero (and hence added)
then ele≺E (ri) /∈ L(Hi). Hence the sets L(Hi) form an increasing sequence in Nn×E with a
proper inclusion L(Hi) ( L(Hi+1) if and only if the inclusion Hi ⊆ Hi+1 is proper. Notice
that there is an inclusion preserving one-to-one correspondence between subsets of Nn×E of
type

⋃
γ∈C(γ + Nn) (with C ⊆ Nn×E) and monomial K[x]-submodules of K[x]E via⋃

γ∈C
(γ + Nn) 7→ K[x]〈{x

γ(e) | (γ, e) ∈ C}〉.

As the image in K[x]E of the sequence of the L(Hi) under that one-to-one correspondence
gets stationary because K[x] is a Noetherian ring, so does the sequence of the L(Hi) and
hence also the sequence of the Hi showing termination.

Remark 2.1.47. The above algorithm can be modified to compute a reduced Gröbner basis
applying the same methods as in the commutative setting (see e.g. [GP08, Remark 1.7.2]).

An algorithm for computing left generators of a two-sided submodule of a free A-module
carries over immediately from the setting of PBW-algebras (see e.g. [BGTV03, Algorithm 6]
or [Lev05, Algorithm 2.3.1]):
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Algorithm 2.1.48 Given a PBW-reduction-algebra A, a well-ordering ≺E and a finite set
G ⊆ AE , this algorithm computes a (left) Gröbner basis of the two-sided module A〈G〉A with
respect to ≺E .

Input: A PBW-reduction-algebra A, a finite set E, a well-ordering ≺E on the module AE =
(Tn, Se, Ie,≺Ee )e∈E and G ⊆ AE finite.

Output: A finite set H ⊆ AE such that H is a Gröbner basis of A〈G〉A with respect to ≺E .
1: Initialize an empty set G′.
2: while G 6= G′ do
3: Set G′ := G.
4: Replace G by a Gröbner basis of the left ideal A〈G〉 using Algorithm 2.1.45.
5: Set R := {gxi | g ∈ G, 1 ≤ i ≤ n}.
6: for r ∈ R do
7: Compute a left normal form r′ of r with respect to G using Algorithm 2.1.39.
8: if r′ 6= 0 then . r is not in A〈G〉 by Remark 2.1.41.
9: Set G := G ∪ {r′}.

10: return G.

Lemma 2.1.49. The above algorithm is correct and terminates.

Proof. The correctness is clear. The algorithm terminates as A is by Lemma 2.1.27 a left
Noetherian ring and hence every ascending chain of A-submodules of AE gets stationary.

Lemma 2.1.46, Remark 2.1.47 and Lemma 2.1.49 imply:

Proposition 2.1.50. Let A be a PBW-reduction-algebra, E a finite set, ≺E a well-ordering on
AE = (Tn, Se, Ie,≺e)e∈E and G ⊆ AE a finite subset. Then (reduced) Gröbner bases of the
left A-modules A〈G〉 and A〈G〉A with respect to ≺E exist.

These Gröbner bases are computable if a PBW-reduction datum (Tn, Se, Ie,≺Ee )e∈E for
(A,≺E) is computable and if there exists an (AE ,≺E)-computable subfieldK′ ⊆ K such that
G ⊆ AEK′ .

Definition 2.1.51. Let A be a PBW-reduction-algebra, E a finite set and ≺E a well-ordering
on AE . We call ≺E computable if a PBW-reduction datum for (AE ,≺E) is computable.

Convention 2.1.52. From now on, when we talk about computability or formulate algo-
rithms in the context of a PBW-reduction-algebra A, we always assume that there exists an
A-computable subfield K′ ⊆ K such that it is (AE ,≺E)-computable for all appearing free
A-modules AE of finite rank and well-orderings ≺E and that all considered submodules of
AE are generated by subsets which are defined over AEK′ . Similarly, we assume that all other
input data is also defined over AK′ or AEK′ .

Our variant of the Buchberger algorithm (Algorithm 2.1.45) requires that the freeA-module
AE is given in terms of a PBW-reduction datum. However, we have in general no method
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to compute a PBW-reduction datum of AE with respect to a given well-ordering. Yet, in
certain situations such a datum is computable: The next corollary explains how to derive from
a PBW-reduction datum for a given PBW-reduction-algebra a PBW-reduction datum for a
factor algebra of that PBW-reduction-algebra using Gröbner bases:

Corollary 2.1.53. Let A = (Tn, S, I,≺) be a PBW-reduction-algebra and M ⊆ A. Then

A/A〈M〉A

is canonically isomorphic to the PBW-reduction-algebra

B := Tn/
〈
S ∪ I ∪ τ(A,≺)(G)

〉
,

where G stands for a left Gröbner basis of A〈M〉A with respect to ≺. Moreover, a PBW-
reduction datum ofB is given by (Tn, S, I∪τ(A,≺)(G),≺). In particular, PBW-reduction data
for factor algebras of PBW-algebras are computable.

Proof. Clearly the map
ψ : Tn → A, t 7→ t

induces the claimed isomorphism. For the second claim it is by Remark 2.1.15(a) enough to
show that

L(I ∪ τ(A,≺)(G)) ⊇ {le(t) | 0 6= t ∈ Tn

〈
S ∪ I ∪ τ(A,≺)(G)

〉
Tn ∩ K〈SMon(Tn)〉}.

So consider 0 6= t ∈ Tn

〈
S ∪ I ∪ τ(A,≺)(G)

〉
Tn ∩ K〈SMon(Tn)〉. If le(t) ∈ L(I), we are

finished. Otherwise we have according to Definition 2.1.13(aii) that lm(t) is irreducible with
respect to the≺-monic elements of Tn〈S ∪ I〉 Tn and hence lm(t) = lm(ρ(A,≺)(t)) = lm(tA),
where tA and tB denote the residue classes of t in A and B, respectively. We have by choice
of t that tB = 0 ∈ B and hence tA ∈ A〈M〉A. As G is a Gröbner basis of that ideal there
exists a ∈ AG satisfying

tA =
∑
g∈G

agg and le(ag) + le(g) � le(tA) = le(t) for all g ∈ F

with equality for some g′ ∈ G. As le(g′) = le(τ(A,≺)(g
′)) this concludes the proof.

Corollary 2.1.54. Let A be a PBW-algebra or a factor algebra thereof. Then PBW-reduction
data with respect to well-orderings are computable.

The following remark outlines how to perform certain Gröbner basics in our setting using
the corresponding ideas of the commutative setting:

Remark 2.1.55. Given a PBW-reduction-algebra A = (Tn, S, I,≺), a finite set E and two A-
submodules M = A〈M ′〉, N = A〈N ′〉 ⊆ AE with M ′ and N ′ finite, the following problems
are algorithmically solvable:
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(a) We can decide whether N ⊆ M . For this we fix a well-ordering ≺E on AE (e.g. an
ordering of type≺Epot,< onAE = (Tn, S, I,≺)e∈E). Then we determine a Gröbner basis
G of M by Algorithm 2.1.45 and after that we compute normal forms of n′ with respect
to G for all n′ ∈ N ′. By Remark 2.1.41 the module N is an A-submodule of M if and
only if all of these normal forms are zero.

(b) Generators of the intersection M ∩ AE′ for some subset E′ ⊆ E are determined by
computing a Gröbner basis G of M with respect to an ordering of type ≺Epot,<, where <
is a total order satisfying e′ < e for all e′ ∈ E′ and e ∈ E \ E′. Indeed, the intersection
is then generated by {g ∈ G | lcomp(g) ∈ E′}.

Another application of Gröbner bases is the computation of so-called syzygies:

Definition 2.1.56. Let A be a ring, E a finite set and H1, . . . ,Hs ⊆ AE finite subsets. The
A-module

syzA(H1, . . . ,Hs) := {(a1, . . . , as) ∈ AH1 ⊕ · · · ⊕AHs |
∑

1≤i≤s

∑
hi∈Hi

(ai)hihi = 0}

is called the syzygy-module of H1, . . . ,Hs (in AH1 ⊕ · · · ⊕ AHs). Similarly, for h1, . . . , ht ∈
AE the syzygy-module syzA(h1, . . . , ht) ⊆ At is defined by

syzA(h1, . . . , ht) := syzA({h1}, . . . , {ht})

under the identification A{h1} ⊕ · · · ⊕A{ht} ∼= At, (a1(h1), . . . , at(ht)) 7→
∑

1≤i≤t ai(ei).

The following lemma shows that syzygies over PBW-reduction-algebras are computable in
the same manner as in the commutative setting (given that we can determine a corresponding
PBW-reduction datum).

Lemma 2.1.57. Let A = (Tn, S, I,≺) be a PBW-reduction-algebra, E a finite set and H ⊆
AE finite. Let G be a Gröbner basis of A〈{h+ (h) | h ∈ H}〉 ⊆ AEtH with respect to the
ordering ≺EtHpot,<, where < is a total ordering on E t H with h < e for e ∈ E and h ∈ H .
Then

syzA(H) =
A

〈
πH(G ∩AH)

〉
.

Proof. Let g ∈ G ∩ AH . Then g =
∑

h∈H gh(h+ (h)) =
∑

h∈H ghh+
∑

h∈H gh(h) ∈ AH
shows that

∑
h∈H ghh = 0 and hence πH(g) ∈ syzA(H).

Conversely, consider s ∈ syzA(H). Then
∑

h∈H shh = 0 implies s′ :=
∑

h∈H(shh +
sh(h)) ∈ A〈{h+ (h) | h ∈ H}〉∩AH . AsG is a Gröbner basis, there exists a ∈ AG satisfying

s′ =
∑
g∈G

agg and le≺′
lcomp(g)

(ag) + ele≺′(g) �′ ele≺′(s
′),
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where ≺′ stands for ≺EtHpot,<. As lcomp(s′) ∈ H and by the choice of the ordering ≺EtHpot,<, we
must have ag = 0 for all g /∈ AH and hence

s = πH(s′) = πH(
∑

g∈G∩AH
agg) =

∑
g∈G∩AH

agπH(g).

In the situation of Definition 2.1.56, if A = (Tn, S, I,≺) is a PBW-reduction-algebra
and there exists an AE-computable subfield K′ ⊆ K such that H1, . . . ,Hs ⊆ AEK′ , then
A-generators of syzA(H1, . . . ,Hs) are effectively computable over AK′ via Gröbner bases .

Remark 2.1.58. Given a PBW-reduction-algebra A = (Tn, S, I,≺), a finite set E and two
A-submodules M = A〈M ′〉, N = A〈N ′〉 ⊆ AE with M ′ and N ′ finite, we can determine
generators of the intersection M ∩ N as in the commutative case (see e.g. [GP08, Section
2.8.3]).

Remark 2.1.59. We point out that given a PBW-reduction-algebra A, the main computational
problem is determining a corresponding PBW-reduction datum. If the PBW-reduction datum
A = (Tn, S, I,≺) is given, then a PBW-reduction datum for (AE ,≺top,<) and (AE ,≺pot,<)
for any finite set E and any total order on E is known by Remark 2.1.34(a). In summary, we
have then algorithms for the following Gröbner basics:

(a) We can solve the module membership problems for submodules of AE by using by
Remark 2.1.55(a).

(b) Projections of submodules of AE to AE
′

for a subset of E′ ⊆ E are computable (see
Remark 2.1.55(b)). More generally, we findA-generators of intersections of submodules
of AE by Remark 2.1.58.

(c) We can determine syzygies of finite subsets of AE by Lemma 2.1.21.

In the next section, we will explain how to compute Gröbner bases with respect to non-well-
orderings.

2.2 Weight filtrations

The subject of study in this section are filtrations of type Fu
• A induced by a so-called weight

vector u on the PBW-reduction-algebra A. These filtrations have been studied theoretically
and algorithmically for nonnegative weight vectors on PBW-algebras in [BGTV03]. Our first
object of investigation is the subalgebra Fu

0 A. Combining the methods of [BGTV03] and
[OT01], we then develop an algorithm for computing Gröbner bases on A with respect to non-
well orderings based on the homogenization of A with respect to a positive weight vector.
Using a u-weighted degree ordering this algorithm enables us finally to determine generators
of the filtration induced by Fu

• A on submodules of free A-modules, hence showing that these
filtered modules are always well-filtered.
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2.2 Weight filtrations

2.2.1 Weight filtrations on PBW-reduction-algebras

We assume in this subsection that A = (Tn, S, I,≺) with S := {xjxi − cijxixj − dij | 1 ≤
i < j ≤ n} is a PBW-reduction-algebra if not stated otherwise. We are particularly interested
in filtrations on A induced by so called weight vectors:

Definition 2.2.1. Let u ∈ Zn, E a finite set and s ∈ ZE .

(a) The vector u induces a grading

TEn =
⊕
l∈Z

(TEn )ul ,

on TEn by assigning weight ui to xi, i.e.,

(TEn )ul :=
K

〈
{xi1 · · ·xik(e) | e ∈ E, k ∈ N, 1 ≤ i1, . . . , ik ≤ n,

∑
1≤j≤k

uij = l}
〉

for l ∈ Z. So every nonzero r ∈ TEn can be uniquely written as r =
∑

s1≤i≤s2 ri with
ri ∈ (TEn )ui and rs1 , rs2 6= 0. We call s2 the u-degree of r and write degu(r) = s2.
If s1 = s2, we say that r is u-homogeneous. We define the u-leading terms of r by
ltu(r) := rs2 . The elements rs1 , . . . , rs2 are called the homogeneous parts of r. We
set degu(0) := −∞. We denote the associated filtered ring of Tn =

⊕
l∈Z(Tn)ul by

(Tn, F
u
• ).

(b) Considering A as a quotient module of Tn, the filtration Fu
• A stands for its quotient

filtration (see Remark 1.1.12(c)). We define for a ∈ A

degu(a) := degFu(a).

Similarly, for a′ ∈ AE , we set

degu[s](a
′) := degFu[s](a

′)

and suppress s if it is the zero vector.

(c) We say that u is a weight vector on A if degu(dij) ≤ degu(xixj) for all 1 ≤ i < j ≤ n.
We call the weight vector u good if for every finite set E, every shift vector s ∈ ZE and
every submodule M ⊆ AE the filtration Fu[s]•M is a good filtration.

Convention 2.2.2. Our definition of a weight vector depends on the PBW-reduction datum
of A, or more precisely on S. We could avoid this by only requiring in the definition that
there exists some PBW-reduction datum such that Definition 2.2.1(c) holds (with respect to
that reduction datum). As we do in practice not consider different sets of commutation re-
lations for a fixed PBW-reduction-algebra and some of our arguments rely on a common set
of commutation relations, we from now on assume that the commutation relations of a given
PBW-reduction-algebra are fixed (and hence do not depend on the considered ordering).
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2 PBW-reduction-algebras

Note that u being a weight vector on A ensures the compatibility of Fu
• A with the commu-

tation relations S of A. Hence we have:

Lemma 2.2.3. Let u ∈ Zn, E a finite set, s ∈ ZE and L ⊆ AE an A-submodule. If u is a
weight vector on A then we have for all a, a′ ∈ A

degu(a · a′) ≤ degu(a) + degu(a′)

and Fu
• A is a filtered K-algebra satisfying

Fu
• A = K〈{xα | 〈u, α〉 ≤ •}〉.

In this case Fu[s]•A
E , Fu[s]•L and Fu[s]•(A

E/L) are filtered Fu
• A-modules.

If u is a weight vector, we call Fu
• A the weight filtration associated to u on A or the u-

weight filtration on A. If A is moreover naturally isomorphic to its associated graded algebra
with respect to Fu

• A then we say that A is u-graded and we call the homogeneous elements of
A with respect to that grading also u-homogeneous. More generally, if A is graded, E a finite
set and the shift vector s ∈ ZE assigns degree se to (e), then we call a homogeneous element
of AE also u[s]-homogeneous (and similarly for elements of TEn ). Note that A is u-graded if
and only if 〈S ∪ I〉 is u-homogeneous, that is, generated by u-homogeneous elements.

Lemma 2.2.3 implies that Fu
0 A is a K-subalgebra of A if u is a weight vector on A. We

collect some properties of Fu
0 A in this case:

Lemma 2.2.4. Let u ∈ Zn be a weight vector on A.

(a) The K-subalgebra Fu
0 A of A is finitely generated and has a finite monomial generating

set, that is, a finite generating set consisting of residue classes of standard monomials
of Tn. Moreover, such a monomial generating set is computable.

(b) The K-subalgebra Fu
0 A is isomorphic to a PBW-reduction-algebra.

(c) TheFu
0 A-modulesFu

j A (j ∈ Z) areFu
0 A-finitely generated and monomialFu

0 A-gener-
ating sets can be computed.

Proof. First note that we have a one-to-one correspondence

ϕ : SMon(Tn)↔{α ∈ Nn} =: U : xα ↔ α

mapping standard monomials to their exponents. We set for i ∈ Z

Ui := {α ∈ Nn | 〈u, α〉 = i}, U+ :=
⋃
i≥0

Ui and U− :=
⋃
i≤0

Ui.
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2.2 Weight filtrations

(a) Considering ei ∈ Zn, we have under the above one-to-one correspondence that

ϕ(SMon(Tn) ∩ Fu
0 Tn) = U− = {α ∈ Rn | 〈u, α〉 ≤ 0} ∩ Nn

is an intersection of a rational cone and the lattice Zn, since

Nn =
⋂

1≤i≤n
{α ∈ Rn | 〈ei, α〉 ≥ 0} ∩ Zn .

HenceU− is by Gordan’s lemma (see e.g. [BG09, Lemma 2.9]) a positive affine monoid,
and has a computable minimal finite generating set [Koc03, Proposition 3.4.6] [BI10],
say α1, . . . , αs ∈ Zn. This means that

U− = {l1α1 + · · ·+ lsαs | l ∈ Ns},

and if αi = β1 + β2 with β1, β2 ∈ U− then β1 = αi or β2 = αi for 1 ≤ i ≤ s.

We claim that Fu
0 A is generated by the residue classes of xα1 , . . . , xαs as K-algebra:

Clearly, xα1 , . . . , xαs ∈ Fu
0 A = Fu

0 Tn. As Fu
0 A is generated by residue classes of

certain standard monomials by Lemma 2.2.3, it suffices to show that Fu
0 Tn ∩ SMon(Tn)

is a subset of theK-algebra generated by xα1 , . . . , xαs . For this we use the well-ordering
≺ on A to impose a well-order on the set Fu

0 Tn ∩ SMon(Tn) and do induction on this
set by this well-order: The induction start is clear as 1 = min≺{Fu

0 Tn ∩ SMon(Tn)}.
Now assume that xα ∈ Fu

0 Tn ∩ SMon(Tn) and that the claim has been shown for all
xβ ∈ Fu

0 Tn ∩ SMon(Tn) with xβ ≺ xα. Since α ∈ U−, there is l ∈ Ns such that
α =

∑
1≤i≤s liαi. By Remark 2.1.44(b) there exists c ∈ K∗ and a ∈ K〈SMon(Tn)〉

with lm(a) ≺ xα such that

xα = x
∑

1≤i≤s liαi = c(xα1)l1 · · · (xαs)ls + a.

As Fu
0 A is a ring, we have a ∈ Fu

0 A and the claim follows now by induction.

(b) We retain the notation of Part (a). Consider the surjective K-algebra map

π : K〈y〉 := K〈y1, . . . , ys〉 → Fu
0 A, yi 7→ xαi .

SinceA is a PBW-reduction-algebra, there exists by Remark 2.1.44(b) for 1 ≤ i < j ≤ s
fij ∈ K∗ and gij ∈ K〈SMon(Tn)〉 with le≺(gij) ≺ αi + αj such that

xαjxαi − fijxαixαj − gij ∈ Tn〈S〉 Tn ⊆ Tn〈S, I〉 Tn .

As the weight vector u is compatible with the commutation relations in S, we may
additionally assume by that remark that degu(gij) ≤ degu(xαixαj ) ≤ 0. By (the proof
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2 PBW-reduction-algebras

of) Part (a), we find g′ij(y1, . . . , ys) ∈ K

〈
SMon(K〈y〉)

〉
such that g′ij(xα1 , . . . , xαs) =

gij ∈ A and hence

S0 := {yjyi − fijyiyj − g′ij | 1 ≤ i < j ≤ s} ⊆ ker(π).

Define the well-ordering ≺0 on SMon(K〈y〉) by

yβ ≺0 y
γ if and only if

∑
1≤k≤s

βiαi ≺
∑

1≤k≤s
γiαi

or
∑

1≤k≤s
βiαi =

∑
1≤k≤s

γiαi and yβ ≺′ yγ ,

where β, γ ∈ Ns and ≺′ is some well-ordering on SMon(K〈y〉). By construction, S0

is a standard reduction system with respect to ≺0. We conclude that K〈y〉/ kerπ is a
PBW-reduction-algebra isomorphic to Fu

0 A.

(c) We keep the notation of Part (a) and consider first the case j < 0. One easily checks that⋃
i≤j

Ui = U− + ∆ := {α+ δ | α ∈ U−, δ ∈ ∆},

where ∆ := {αi | 〈u, αi〉 ≤ j} ∪ ({
∑

δ∈∆′ lδδ | l ∈ N
∆′ , |l| ≤ j} ∩

⋃
i≤j Ui) with

∆′ := {αi | j < 〈u, αi〉 < 0}. We claim that {xδ | δ ∈ ∆} is an Fu
0 A-generating set

of Fu
j A =

K

〈
SMon(Tn) ∩ Fu

j Tn

〉
. As in Part (a), we consider the well-ordering ≺ on

A and proceed by induction with respect to the induced order on SMon(Tn) ∩ Fu
j Tn.

This set has a minimal element, say xβ . Using the map ϕ, there exist δ ∈ ∆ and l ∈ Ns
such that β = δ +

∑
1≤i≤s liαi. From the minimality of xβ and Definition 2.1.1(c), we

deduce that l = (0)1≤i≤s. Thus xβ = xδ and the inductive step works similar to Part (a).

The case j = 0 being clear, we assume now j > 0. Arguing as in the proof of Part (a),
we can compute a minimal finite set of generators G of U+. As above, we obtain⋃

i≤j
Ui = U− + (Γ ∪ {(0)1≤i≤n}),

where Γ := {
∑

γ∈Γ′ lγγ | l ∈ N
Γ′ , |l| ≤ j} ∩

⋃
1≤i≤j Ui with Γ′ := G ∩

⋃
1≤i≤j Ui.

The proof that {1}∪{xγ | γ ∈ Γ} is an Fu
0 A-generating set of Fu

j A is analogous to the
proof for the case j < 0.

We explain now how to represent elements of Fu
0 A in terms of a monomial generating set

of Fu
0 A:
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2.2 Weight filtrations

Definition and Remark 2.2.5. Let u ∈ Zn be a weight vector on A.

(a) The monomial K-algebra generating set of Fu
0 A from (the proof of) Lemma 2.2.4(a) is

denoted by Gu
A := {xα1 , . . . , xαs}.

(b) We effectively represent an element a ∈ Fu
0 A given by a ∈ Fu

0 Tn ∩ K〈SMon(Tn)〉 as a
K-sum of products of elements in Gu

A by constructing a representation by induction on
lm≺(a) with respect to the well-order ≺: As the case a = 1 is clear, we may assume
that 1 ≺ xβ := lm≺(a) ∈ Fu

0 Tn. Hence there is i1 ∈ {1, . . . , s} such that β′ :=
β − αi1 ∈ Nn and 〈u, β′〉 ≤ 0. Continuing this way, we write β =

∑
1≤j≤t αij with

1 ≤ ij ≤ s. Using commutation relations (see Remark 2.1.44(b)) we find f ∈ K∗ and
r ∈

K

〈
SMon(TEn )

〉
with lm≺(r) ≺ lm≺(a) such that a = f

∏
i=1,...,t x

αit + r. As the
commutation relations are compatible with the weight vector u, we may additionally
assume r ∈ Fu

0 Tn. Induction shows the claim.

(c) We fix now for every j ∈ Z a finite set of generators PA,uj of the Fu
0 A-module Fu

j A.
Note that we may assume by Lemma 2.2.4(c) that this set consists of residue classes of

standard monomials in Fu
j Tn, say PA,uj = {xβ

j
1 , . . . , x

βjsj }.

(d) A representation a =
∑

p∈PA,uj
gppwith g ∈ (Fu

0 A)P
A,u
j for a ∈ Fu

j Tn∩K〈SMon(Tn)〉
is also computable by similar methods as in Part (b).

The next remark investigates the interplay for different weight filtrations on A in certain
situations:

Remark 2.2.6.

(a) Let A = (K〈x, y〉, S, I,≺) (with K〈x, y〉 := K〈x1, . . . , xn, y1, . . . , ym〉) be an elemen-
tary PBW-reduction-algebra and v ∈ Zn+m be any weight vector on A. Then we have
for the weight vector w = ((0)1≤i≤n, (1)1≤i≤m) on A

Fv
k A ∩ Fw

l A = Fv
k K〈x, y〉 ∩ Fw

l K〈x, y〉 ∩ K
〈
SMon(K〈x, y〉)

〉
for all k, l ∈ Z: Clearly, it suffices to show that the left hand side is contained in the
right hand side. If a ∈ Fv

k A ∩ Fw
l A, then there exist representatives aw ∈ Fw

l Tn
and av =

∑
(α,β)∈Nn+m a

v
(α,β)x

αyβ ∈ Fv
k Tn of a. As reductions with commutation

relations do not increase the v- or w-degree of elements of Tn, we may assume that
the representatives live in K

〈
SMon(K〈x, y〉)

〉
. As av − aw = 0 and as there is a direct

sum representation of the form A =
⊕

β∈Nm(C[x]/J)yβ , we deduce for β ∈ Nm

with |β| > l that
∑

α∈Nn a
v
(α,β)x

α = 0 ∈ A. Hence
∑

(α,β)∈Nn+m,|β|≤l a
v
(α,β)x

αyβ ∈
Fv
k K〈x, y〉 ∩ Fw

l K〈x, y〉 ∩ K
〈
SMon(K〈x, y〉)

〉
is also a representative of a.
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2 PBW-reduction-algebras

(b) Let v and w ∈ Zn be weight vectors on A = (Tn, S, I,≺) such that

Fv
k A ∩ Fw

l A = Fv
k Tn ∩ Fw

l Tn ∩ K〈SMon(Tn)〉 (2.2.1)

for k, l ∈ Z and denote by PA,vk = {xβk1 , . . . , xβ
k
sk} the Fv

0 A-generating set of Fv
k A

constructed in the proof of Lemma 2.2.4(c) (with the representatives also chosen as in
that proof). Then that proof and Equation (2.2.1) imply

Fw
• F

v
k A =

∑
1≤i≤sk

(Fw
•−〈βi,w〉F

v
0 A) · xβki .

Given a weight vector u on A, we have no general method to determine a PBW-reduction
datum (or even a representation as a quotient algebra of a free K-algebra) of Fu

0 A. Yet, in
certain situations such a PBW-reduction datum is computable:

Lemma 2.2.7. If A is a quasi-commutative PBW-algebra, then Fu
0 A is isomorphic to a quo-

tient of a PBW-algebra and a corresponding PBW-reduction datum is computable.

Proof. According to Lemma 2.2.4(a) a monomial generating set Gu
A = {xα1 , . . . , xα

s} exists
and is computable. By the commutation relations of A and by hypothesis, there are fij ∈ K∗
such that xαjxαj = fijxαixαj ∈ A for 1 ≤ i < j ≤ s. Then

B := K〈y1, . . . , ys〉/ 〈{yjyi − fijyiyj | 1 ≤ i < j ≤ s〉}〉

is obviously a quasi-commutative PBW-algebra. The K-algebra homomorphism

ψ : B → A, yi 7→ xαi

induces now an isomorphism of K-algebras B/ ker(ψ) ∼= Fu
0 A.

We reduce the computation of the kernel of the map ψ to the computation of toric ideals:
Consider the commutative K-algebras Ac := K[z1, . . . , zn] and Bc := K[v1, . . . , vs], which
are isomorphic to A and B as K-vector spaces, respectively. We denote by τA and τB the
corresponding K-vector spaces isomorphisms given by xβ 7→ zβ and yδ 7→ vδ, respectively.
By [Stu96, Lemma 4.1 and Algorithm 4.5] there exists for a given well-ordering ≺ on Bc a
finite computable set Γ ⊆ Zs such that {vγ+ − vγ− | γ ∈ Γ} is a Gröbner basis of the kernel
of the K-algebra homomorphism

ψc : Bc → Ac, vi 7→ zαi ,

where the vectors γ+, γ− ∈ Ns are defined by

(γ+)i =

{
γi, if γi > 0

0, else
and (γ−)i =

{
−γi, if γi < 0

0, else
for 1 ≤ i ≤ s.
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Changing the sign of γ if necessary, we may assume that vγ
− ≺ vγ

+
. We define for δ ∈ Ns

an element cδ ∈ K∗ by the property (xα1)δ1 · · · (xαs)δs = cδx
∑

1≤i≤s δiαi ∈ A and obviously
obtain

p =
∑
δ∈Ns

pδy
δ ∈ ker(ψ) if and only if pc :=

∑
δ∈Ns

cδpδv
δ ∈ ker(ψc)

(where pδ ∈ K.) This implies in particular

ker(ψ) ⊇
A

〈
cγ−y

γ+ − cγ+yγ
− | γ ∈ Γ

〉
.

Denote by ≺ also the well-ordering induced by ≺ on B under τ−1
B and set G := {c−γ yγ

+ −
c+
γ y

γ−}. We claim that (K〈y1, . . . , ys〉, {yjyi − fijyiyj | 1 ≤ i < j ≤ s〉}, G,≺) is a
PBW-reduction datum for B/ ker(ψ). By Remark 2.1.15(a) and (b) it is enough to show that
le≺(p) ∈ L≺(G) for any p ∈ ker(ψ) ∩ K〈SMon(K〈y1, . . . , ys〉)〉. As seen above, we have
pc ∈ ker(ψc) for such p implying that there is γ ∈ Γ and δ ∈ Ns such that lm≺(pc) = vγ

++δ.
We deduce lm≺(p) = yγ

++δ finishing the proof.

Example 2.2.8. Let u ∈ Zn be a weight vector on A.

(a) If u ∈ Zn≤0, then Fu
0 A = A and Gu

A = {x1, . . . , xn}.

(b) Similarly, we have for u ∈ Nn that Gu
A = {xi | 1 ≤ i ≤ n,degu(xi) = 0} and

hence there are 1 ≤ i1 < · · · < il ≤ n such that Gu
A = {xi1 , . . . , xil}. Then Au :=

K〈xi1 , . . . , xil〉/(〈S ∪ I〉 ∩ K〈xi1 , . . . , xil〉) is a PBW-reduction-algebra since Su :=
{xikxij − cijikxijxik − dijik | 1 ≤ j < k ≤ l} is a reduction system with respect to
the ordering induced by≺ on Mon(K〈xi1 , . . . , xil〉), which we also denote by≺. (Note
that indeed dijik ∈ K〈xi1 , . . . , xil〉 since u is a weight vector.) Moreover,

φu : Au → A, xij 7→ xij .

is an injective K-algebra homomorphism inducing an isomorphism Au
∼= Fu

0 A. If ≺
is an elimination ordering for {xk | 1 ≤ k ≤ n, k /∈ {i1, . . . , il}} then we claim
that (K〈xi1 , . . . , xil〉, Su, Iu,≺) with Iu := I ∩ K〈SMon(K〈xi1 , . . . , xil〉)〉 is a PBW-
reduction datum for Au: Clearly, Definition 2.1.13(aii) is an immediate consequence of
that property for A showing that (K〈xi1 , . . . , xil〉, Su, Iu,≺) is a PBW-reduction datum
for the PBW-reduction-algebra A′u := K〈xi1 , . . . , xil〉/ 〈Su ∪ Iu〉. To prove that Au

coincides with A′u it suffices by Proposition 2.1.11 to prove that the inclusion

K〈x〉irr(A,≺) ∩K〈xi1 , . . . , xil〉 = K〈xi1 , . . . , xil〉
irr
(Au,≺) ⊆ K〈xi1 , . . . , xil〉

irr
(A′u,≺)

is in fact an equality. But Definition 2.1.13(aii) for A and A′u shows by the elimination
property of ≺ that the module on the right hand side agrees with that on the left hand
side, hence proving equality.
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(c) Let n, r ∈ N with r ≥ 1 and consider the weight vector v := (v1,−v2, v1, v2) defined
by v1 = (0)1≤i≤n ∈ Zn and v2 := (1)1≤i≤r ∈ Zr on the Weyl algebra Dn+r. We have

Gv
Dn+r = {xi | 1 ≤ i ≤ n+ r} ∪ {xi∂j | n+ 1 ≤ i, j ≤ n+ r}.

Proceeding as in the proof of Lemma 2.2.4(b) and setting

(Dn+r)v := K〈y1, . . . , yn+r, {zij}n+1≤i,j≤r+n〉/ 〈S0〉

for

S0 := {yjyi − yiyj , zklyi − yizkl − δilyk, zpqzkl − zklzpq + δlpzkq − δkqzpl|
1 ≤ i ≤ j ≤ n+ r, n+ 1 ≤ k, l, p, q ≤ r + n with (k, l) ≺lex (p, q)}

we see by that proof that

φv : (Dn+r)v → Fv
0 Dn, yi 7→ xi, zkl 7→ xk∂l

is a K-algebra homomorphism and S0 a standard reduction system with respect to the
ordering defined in that proof. One checks using Corollary 2.1.23 that (Dn+r)v is even
a PBW-algebra. Arguing as in Lemma 2.2.7, we get that ker(φv) is (Dn+r)v-generated
by

{yizkl − ykzil, zijzkl − zkjzil + δijzkl − δjkzil | n+ 1 ≤ i, j, k, l ≤ n+ r},

allowing us to compute PBW-reduction datum for Fv
0 Dn+r by Corollary 2.1.53. More-

over, we have

P
Dn+r,v
k =

{x
βn+1

n+1 · · ·x
βn+r
n+r |

∑
1≤i≤r βn+i = −k}, if k ≤ 0

{∂βn+1

n+1 · · · ∂
βn+r
n+r |

∑
1≤i≤r βn+i ≤ k}, else.

(d) In the situation of Example 2.1.30(b), we have T VX ∼= Fv
0 TX , where v is the weight

vector assigning weights −1 and 1 to xn and ym, respectively, and weight 0 else. Note
that the weight vector w = ((0)1≤i≤n, (1)1≤i≤m) on TX induces the weight vector
wv = ((0)1≤i≤n, (1)1≤i≤m) on T VX by Remark 2.2.6.

Moreover, we have

P TX ,vk =

{
{xkn}, if k ≤ 0

{ylm | 0 ≤ l ≤ k}, else.
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2.2 Weight filtrations

2.2.2 Weight filtrations on submodules of free modules

In this subsection, we consider the PBW-reduction-algebra A = (Tn, S, I,≺) with S :=
{xjxi − cijxixj − dij | 1 ≤ i < j ≤ n} and assume that u ∈ Zn is a weight vector on A.
Our aim is to prove that u is good weight vector on A by giving a computer algebraic proof
that explains how to compute for a given set E, an A-submodule M ⊆ AE and a shift vector
s ∈ ZE a finite set of generators M ′ of the filtration Fu

• [s]M . Here, we say that a finite set
M ′ ⊆ M generates Fu

• [s]M (as Fu
• A-module) if for every m ∈ M there exists an a ∈ AM ′

such that

m =
∑

m′∈M ′
am′m

′ and degu(am′) + degu[s](m
′) ≤ degu[s](m) for all m′ ∈M ′.

We refine the total preorder ≤u[s] defined by the u[s]-degree on SMon(TEn ) via

xα(e) ≤u[s] x
α′(e′) if and only if degu[s](x

α(e)) ≤ degu[s](x
α′(e′)) (2.2.2)

for α, α′ ∈ Nn and e, e′ ∈ E to an ordering on AE as follows:

Definition 2.2.9. Let u ∈ Zn be a weight vector on A, E a finite set, ≺E an ordering on AE

and s ∈ ZE a shift vector. We define the ordering ≺Eu[s] on SMon(TEn ) by

xα(e) ≺Eu[s] x
α′(e′) if and only if degu[s](x

α(e)) < degu[s](x
α′(e′))

or degu[s](x
α(e)) = degu[s](x

α′(e′)) and xα(e) ≺E xα′(e′)

for α, α′ ∈ Nn and e, e′ ∈ E. If s is the zero vector, we also write ≺Eu . We sometimes use the
notation ≺Eu[s] without explicitly defining an ordering ≺E on AE .

In the situation of Definition 2.2.9 note that ≺Eu[s] defines indeed an ordering on AE since
it is compatible with the commutation relations of A. Gröbner bases with respect to orderings
of the above type on submodules of free A-modules and generating sets of the filtration Fu

• [s]
on these modules are related as follows:

Lemma 2.2.10. Let u ∈ Zn be a weight vector on A, E a finite set, s ∈ ZE a shift vector,
≺E an ordering and M ⊆ AE an A-submodule. If G is a Gröbner basis of M with respect to
≺Eu[s], then it generates Fu[s]•M as Fu

• A-module.

Proof. Let m ∈ Fu[s]kM for some k ∈ Z. Choose a representative m′ ∈ K〈SMon(Tn)〉 ∩
Fu[s]kTn of m using Lemma 2.2.3. By assumption there is a ∈ K〈SMon(Tn)〉G and h ∈
K
〈
SMon(TEn )

〉
G with hg = g satisfying

m =
∑
g∈G

agg and le(ag) + ele(hg) �Eu[s] ele(m′)

implying degu(ag) + degu[s](g) ≤ degu(ag) + degu[s](hg) ≤ degu(m′) ≤ k. Hence m ∈∑
g∈G F

u
k−degu[s](g)

A · g.
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2 PBW-reduction-algebras

Note that if≺E is a well-ordering, then≺Eu[s] is a well-ordering if and only if u ∈ Nn. Since
Gröbner bases with respect to well-orderings exist by Proposition 2.1.50, we obtain:

Lemma 2.2.11. The weight vector u ∈ Nn on A is a good weight vector.

If u is not a positive weight vector, we can still compute Gröbner bases with respect to
≺Eu[s] by combining the homogenization methods of [OT01] for the Weyl algebra and those of
[BGTV03] for well-orderings on PBW-algebras. For this, we first define the w-homogenized
PBW-reduction-algebra of A for a given weight vector w, which is isomorphic to the Rees
ring of Fw

• A (see also [BGTV03]):

Definition 2.2.12. Let w ∈ Nn be a weight vector on A, E a finite set and s ∈ ZE a shift
vector.

(a) We define the w[s]-homogenization of p =
∑

m∈Mon(TEn ) pmm ∈ TEn (with pm ∈ K) as

hw[s](p) :=
∑

m∈Mon(TEn )

pmh
degw[s](p)−degw[s](m)m ∈ (T hn )E := K 〈h, x1, . . . , xn〉E .

For G ⊆ TEn , we set hw[s](G) := {hw[s](g) | g ∈ G}. As usual, we suppress s if it
stands for the zero vector.

(b) The w-homogenized PBW-reduction-algebra Ah(w) is defined as

T hn / 〈hw(Tn〈S ∪ I〉 Tn) ∪ {hxi − xih | 1 ≤ i ≤ n}〉 .

(c) We define the ordering ≺E(1,w) on SMon((T hn )E) for the ordering ≺E on AE by

hαxβ(e) ≺E(1,w) h
α′xβ

′
(e′) if and only if α+ 〈w, β〉 < α′ + 〈w, β′〉

or α+ 〈w, β〉 = α′ + 〈w, β′〉 and xβ(e) ≺E xβ′(e′)

for α, α′ ∈ N, β, β′ ∈ Nn and e, e′ ∈ E.

(d) We call the K-algebra homomorphism given by

dh : T hn → Tn, h 7→ 1, xi 7→ xi

dehomogenization map. It induces a map dh : Ah(w) → A. By abuse of notation, we
denote the maps dEh also by dh.

Note that the above dehomogenization map of Ah(w) is well-defined and that we can in-
deed identify Ah(w) with the Rees algebra

⊕
k∈Z F

w
k A · zk ⊆ A[z, z−1] by sending hαxβ

to xβzα+〈w,β〉. Furthermore, homogenized PBW-reduction-algebras are PBW-reduction-alge-
bras:

86



2.2 Weight filtrations

Lemma 2.2.13. Let w ∈ Nn be a weight vector on A. Then

Sh(w) := hw(S) ∪ {hxi − xih | 1 ≤ i ≤ n}

is a standard reduction system with respect to ≺(1,w) and the K-algebra Ah(w) is a (1,w)-
graded PBW-reduction-algebra. In particular, there is a finite set I ′ ⊆ K

〈
SMon(T hn )

〉
con-

sisting of (1,w)-homogeneous elements such that (T hn , S
h(w), I ′,≺(1,w)) represents a PBW-

reduction datum for Ah(w). If A is a PBW-algebra, then so is Ah(w).
Moreover, if ≺′ is any ordering on A, then ≺′(1,w) is an ordering on Ah(w). If w is strictly

positive, then there exists a finite set I≺′ consisting of (1,w)-homogeneous elements such that
(T hn , S

h(w), I≺′ ,≺′(1,w)) is a PBW-reduction datum.

Proof. We have for 1 ≤ i < j ≤ n that hw(xjxi − cijxixj − dij) = xjxi − cijxixj −
hαijhw(dij) for some αij ∈ N since w is a weight vector on A. By definition of the ordering
≺(1,w) we see that Sh(w) is indeed a standard reduction system. According to Lemma 2.1.17,

there exists some I ′′ such that (T
h(w)
n , Sh(w), I ′′,≺(1,w)) is a PBW-reduction datum forAh(w).

Setting I ′ to be the set of the (1,w)-homogeneous parts of the elements of I ′′, the particular
claim follows as Ah(w) is obviously (1,w)-graded. Moreover, the claim in the PBW-algebra
case is due to Corollary 2.1.23.

Arguing as for ≺(1,w), we see that Sh(w) is a standard reduction system for ≺′(1,w). If w
is strictly positive, then the latter ordering is a well-ordering and Lemma 2.1.17 implies the
existence of a corresponding PBW-reduction datum.

The idea is now to homogenize the PBW-reduction-algebra A with respect to a strictly
positive weight-vector w ∈ Nn>0 and then reduce Gröbner basis computations in AE with
respect to the non-well-ordering ≺E to Gröbner basis computations in (Ah(w))E with respect
to the well-ordering ≺E(1,w). We first need to ensure that such a strictly positive weight vector
exists:

Lemma 2.2.14. A weight vector w ∈ Nn>0 on A exists and is effectively computable.

Proof. Consider the set

M := {xixj | 1 ≤ i < j ≤ n} ∪ {xα | there is 1 ≤ i < j ≤ n with (dij)α 6= 0}

of standard monomials appearing with nonzero coefficient in one of the commutation relations
in S. According to [GP08, Lemma 1.2.11] there is a strictly positive weight vector w ∈ Nn
such that

xα ≺ xβ if and only if 〈α,w〉 < 〈β,w〉

for all xα, xβ ∈ M , because ≺ is a well-ordering. As ≺ is an ordering on A, w is a weight
vector on A. The claim on the computability follows from [GP08, Exercise 1.2.7 and Exercise
1.2.9].
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2 PBW-reduction-algebras

If A is an elementary PBW-reduction-algebra, we compute a PBW-reduction datum for the
homogenized PBW-reduction-algebra Ah(w) with respect to the weight vector w ∈ Nn>0 as
follows:

Lemma 2.2.15. Consider the K-algebra K〈x, y〉 := K〈x1, . . . , xn, y1, . . . , ym〉 and the ele-
mentary PBW-reduction-algebra

B = K〈x, y〉/ 〈R〉 ∼=
⊕
β∈Nm

(K[x]/J)yβ.

If w ∈ Nn+m
>0 is a weight vector on B, then Bh(w) is also an elementary PBW-reduction-

algebra.
In particular, if ≺ is an ordering on B, J ′ ⊆ K[x] a Gröbner basis of J with respect to

the ordering induced by≺w and (K〈x, y〉, S, J ′,≺w) a corresponding PBW-reduction datum,
then (K〈h, x, y〉, Sh(w), J ′′,≺(1,w)) represents a PBW-reduction datum for Bh(w), where J ′′

is a Gröbner basis of 〈hw(J ′)〉 ⊆ K[h, x] with respect to the ordering induced by ≺(1,w). So
a PBW-reduction datum of Bh(w) with respect to the ordering ≺(1,w) is computable.

Proof. We denote the canonical isomorphism
⊕

β∈Nm(K[x]/J)yβ → B by ψ. We first show
that the K-linear epimorphism

ψh :
⊕
β∈Nm

(K[h, x]/ 〈hw(J)〉)yβ → Bh(w), hcxαyβ 7→ hcxαyβ

is an isomorphism: We consider p =
∑

c,α,β dc,α,βh
cxαyβ ∈ ker(ψh) (with dc,α,β ∈ K) and

may assume that dc,α,β = 0 for c + 〈(α, β),w〉 6= k for some fixed k ∈ Z because Bh(w)

is (1,w)-graded. Defining d′h :
⊕

β∈Nm(K[h, x]/ 〈hw(J)〉)yβ →
⊕

β∈Nm(K[x]/J)yβ by
sending hcxαyβ to xαyβ , we see that dh ◦ ψh = ψ ◦ d′h. So we obtain for β ∈ Nm that∑

c,α dc,α,βx
α ∈ J . We observe that there exists z ∈ N with∑

c,α

dc,α,βh
cxα = hzhw(

∑
c,α

dc,α,βx
α) ∈ 〈hw(J)〉

since
∑

c,α,β dc,α,βh
cxαyβ and hence also

∑
c,α dc,α,βh

cxα is (1,w)-homogeneous. This im-
plies p = 0 showing injectivity. Thus Bh(w) satisfies the assumptions of Lemma 2.1.28(b).
According to [GP08, Exercise 1.7.5] we have 〈hw(J)〉 = 〈hw(J ′)〉 ⊆ K[h, x] since J ′ is a
Gröbner basis of J with respect to≺w. So the claim is an immediate from Lemma 2.1.28.

We deduce from PBW-reduction data of Ah(w) and A a corresponding datum of the (1,w)-
homogenization of factor algebras of A as explained below:

Lemma 2.2.16. Let w ∈ Nn>0 be a weight vector on A, M ⊆ A be a finite subset, ≺′ an
ordering on A and (T hn , S

h(w), I ′A,≺′(1,w)) a PBW-reduction datum for Ah(w). Then w is
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2.2 Weight filtrations

a weight vector on the PBW-reduction-algebra B, realized as a quotient of Tn, canonically
isomorphic to A/A〈M〉A. We have the representation

Bh(w) = (T hn , S
h(w), τ(Ah(w),≺′

(1,w)
)(G
′) ∪ I ′A,≺′(1,w)),

where G′ is a Gröbner basis of the left Ah(w)-ideal generated by the residue classes of
hw(τ(A,≺w)(G)) with respect to ≺′(1,w) for a left Gröbner basis G of A〈M〉A with respect
to ≺w. In particular, PBW-reduction data for strictly positively homogenized factor algebras
of PBW-algebras are computable.

Proof. Let A = (Tn, S, IA,≺w) and B = (Tn, S, IB,≺) be PBW-reduction data. We first
show that the K-linear morphism

ψ : T hn /
〈
hw(Tn〈S ∪ IA〉 Tn) ∪ {hxi − xih | 1 ≤ i ≤ n} ∪ hw(τ(A,≺w)(G))

〉
→ Bh(w),

p 7→ p

is an isomorphism. Clearly, ψ is well-defined and surjective. So consider for the injectivity
p ∈ T hn with ψ(p) = 0. This entails by definition of homogenized PBW-reduction-algebras
that p ∈ Thn

〈hw(Tn〈S ∪ IB〉 Tn) ∪ {hxi − xih | 1 ≤ i ≤ n}〉 Thn . As ψ is (1,w)-graded, we
may assume that p is (1,w)-homogeneous. Writing p = p′ + q with p′ ∈

∑
k≥0 h

kTn and
q ∈ Thn

〈{hxi − xih | 1 ≤ i ≤ n}〉 Thn , we reduce to the case p ∈
∑

k≥0 h
kTn. We have now

dh(p) ∈ Tn〈S ∪ IB〉 Tn allowing us to consider dh(p) ∈ A〈M〉A ⊆ A. Hence we find a ∈ AG
such that

dh(p) =
∑
g∈G

agg and le≺w(ag) + le≺w(g) �w le≺w(dh(p)) �w le≺w(dh(p)).

Thus there is r ∈ Tn〈S ∪ IA〉 Tn satisfying

dh(p) =
∑
g∈G

τ(A,≺w)(ag)τ(A,≺w)(g) + r and le≺w(r) �w le≺w(dh(p)).

Therefore

p = hdhw(dh(p)) =
∑
g∈G

hd
′
ghw(τ(A,≺w)(ag))hw(τ(A,≺w)(g)) + hdrhw(r) (2.2.3)

for suitable d, dr ∈ N and d′ ∈ NG proving injectivity.
So Bh(w) is canonically isomorphic to

Ah(w)/A

〈
hw(τ(A,≺w)(G))

〉
A

and thus an application of Corollary 2.1.53 finishes the proof.
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2 PBW-reduction-algebras

We investigate now the relationship between ≺E and ≺E(1,w):

Remark 2.2.17. Let w ∈ Nn>0 be a weight vector on A, E a finite set and ≺E an ordering
on AE . Then there exists for e ∈ E a set I ′e consisting of (1,w)-homogeneous elements such
that≺E(1,w) is a well-ordering on (Ah(w))E = (T

h(w)
n , Sh(w), I ′e,≺Ee )e∈E (see Lemma 2.2.13).

Furthermore it holds:

(a) The map ρ(Ah(w),≺E
(1,w)

) preserves (1,w)-homogeneity as well as the (1,w)-degree

since I ′e for e ∈ E and Sh(w) are (1,w)-homogeneous.

(b) We have the following relationship between the ordering ≺E on SMon(TEn ) and the
ordering ≺E(1,w) on SMon((T

h(w)
n )E): If deg(1,w)(h

αxβ(e)) = deg(1,w)(h
α′xβ

′
(e′))

then
xβ(e) ≺E xβ′(e′) if and only if hαxβ(e) ≺E(1,w) h

α′xβ
′
(e′)

for α, α′ ∈ N, β, β′ ∈ Nn and e, e′ ∈ E. It holds for a (1,w)-homogeneous a ∈

K

〈
SMon((T

h(w)
n )E)

〉
that

dh(lm≺E
(1,w)

(ρ(Ah(w),≺E
(1,w)

)(a))) �E dh(lm≺E
(1,w)

(a)) = lm≺E (dh(a)),

where the inequality is due to Part (a). In particular, a′ ∈ K
〈
SMon(TEn )

〉
satisfies

dh(lm≺E
(1,w)

(ρ(Ah(w),≺E
(1,w)

)(hw(a′)))) �E dh(lm≺E
(1,w)

(hw(a′))) = lm≺E (a′).

(c) We point out that≺E(1,w) is indeed a well-ordering on the PBW-reduction-algebra Ah(w)

and hence Gröbner bases with respect to that ordering are computable (see Proposi-
tion 2.1.50) given that an underlying PBW-reduction datum is computable. Since the
commutation relations as well as the I ′e for e ∈ E are (1,w)-homogeneous, Algo-
rithm 2.1.45 preserves homogeneity: That is, if we apply this algorithm to (1,w)-
homogeneous elements in (Ah(w))E , then the so obtained Gröbner basis consists of
(1,w)-homogeneous elements. An analogous statement holds for Algorithm 2.1.48.

We explain now the computation of Gröbner bases with respect to non-well-orderings. The
existence of these Gröbner bases for orderings of type ≺Eu[s] then shows that every weight
vector u on A is good.

Proposition 2.2.18. Let w ∈ Nn>0 be a weight vector on A, E a finite set, ≺E an ordering on
AE , and M =

A

〈
M ′
〉
⊆ AE for M ′ ⊆ K

〈
SMon(TEn )

〉
finite. If the set G ⊆ (Ah(w))E is

a Gröbner basis of
Ah(w)

〈
hw(M ′)

〉
with respect to ≺E(1,w) consisting of (1,w)-homogeneous

elements, then dh(τ≺E
(1,w)

(G)) induces a Gröbner basis of M with respect to ≺E . An analo-
gous statement holds for two-sided modules.
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2.2 Weight filtrations

Proof. We first show that dh(G) ⊆ M : As G ⊆
Ah(w)

〈
hw(M ′)

〉
, there exists for g ∈ G an

a ∈ (Ah(w))M
′

such that g =
∑

m′∈M ′ am′hw(m′). Hence

dh(g) =
∑

m′∈M ′
dh(am′)dh(hw(m′)) =

∑
m′∈M ′

dh(am′)m′ ∈M.

The second step is proving that dh(G) is a Gröbner basis of M : For t ∈ K
〈
SMon(TEn )

〉
with t ∈ M exists a ∈ (Tn)M

′
such that t =

∑
m′∈M ′ am′m

′. This implies that there is
r ∈ Tn

〈
SE ∪ IE

〉
Tn such that t =

∑
m′∈M ′ am′m

′ + r and hence we find β ∈ NM ′t{t}t{r}
such that

hβthw(t) =
∑

m′∈M ′
hβm′hw(am′)hw(m′) + hβrhw(r)

showing that
hβthw(t) ∈

Ah(w)

〈
hw(M ′)

〉
.

As G is a (1,w)-homogeneous Gröbner basis and hβmhw(t) is (1,w)-homogeneous accord-
ing to Remark 2.2.17(a), we obtain a (1,w)[(deg(1,w)(g))g∈G]-homogeneous b ∈ (Ah(w))G

such that
hβthw(t) =

∑
g∈G

bgg

and

le(≺E
(1,w)

)lcomp(g)
(bg) + ele≺E

(1,w)
(g) �E(1,w) ele≺E

(1,w)
(hβthw(t)) �E(1,w) ele≺E

(1,w)
(hβthw(t)).

(2.2.4)
Dehomogenizing we get

t =
∑
g∈G

dh(τ(≺E
(1,w)

)lcomp(g)
(bg)) · dh(τ≺E

(1,w)
(g)). (2.2.5)

By Equation (2.2.4) and Remark 2.2.17(b), we have

le(≺E)lcomp(g)
(dh(τ(≺E

(1,w)
)lcomp(g)

(bg))) + ele≺E (dh(τ≺E
(1,w)

(g))) (2.2.6)

�E ele≺E (dh(hβthw(t))) = ele≺E (t)

concluding the proof.

Lemma 2.2.14, Proposition 2.2.18 and Remark 2.2.17(c) imply

Corollary 2.2.19. Let E be a finite set. Gröbner bases with respect to any ordering ≺E on
AE exist. They are computable if we can compute a weight vector w ∈ Nn>0 on A such that a
PBW-reduction datum of Ah(w) for the ordering ≺E(1,w) is computable. In particular, Gröbner

bases with respect to orderings of type ≺u[s], where u ∈ Zn is a weight vector and s ∈ ZE is
shift vector, exist.
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2 PBW-reduction-algebras

We point out that it is possible by Lemma 2.2.14 to compute some weight vector w ∈ Nn>0

on A, but that we have in general no method to determine a suitable weight vector w′ ∈ Nn>0

onA such that a PBW-reduction datum for (Ah(w′),≺E(1,w′)) is computable even if some PBW-
reduction datum for A is known. However, for PBW-algebras and quotients thereof as well
as elementary PBW-reduction-algebras we can determine such a PBW-reduction datum (see
Lemma 2.2.16 and Lemma 2.2.15).

Definition 2.2.20. Let A be a PBW-reduction-algebra, E a finite set and ≺E a non-well-
ordering on AE . We call ≺E computable if a weight vector w ∈ Nn>0 is computable such that
the ordering ≺E(1,w) on (Ah(w))E is computable.

The following algorithm summarizes the computation of such Gröbner bases. For that no-
tice that when writing algorithms we use . as comment symbol.

Algorithm 2.2.21 Given an A-submodule M of a free A-module and an ordering on that free
module, this algorithm computes a Gröbner basis of M with respect to that ordering.

Input: A finite set E, an A-module M =
A

〈
M ′
〉
⊆ AE with M ′ ⊆ TEn finite and a com-

putable ordering ≺E on AE .
Output: A finite set G ⊆ TEn inducing a Gröbner basis of M with respect to ≺E .

1: if ≺E is a well-ordering then
2: Compute a Gröbner basis G′ of M with respect to ≺E using Algorithm 2.1.45.
3: return τ(AE ,≺E)(G).
4: Determine a suitable weight vector w ∈ Nn>0 on A and a PBW-reduction datum for

((Ah(w))E ,≺E(1,w)).
5: Set M ′ := hw(M ′).
6: Compute a (1,w)-homogeneous Gröbner basisG′ of

Ah(w)

〈
M ′
〉

over the ringAh(w) with
respect to ≺E(1,w) using Algorithm 2.1.45. . Requires corresponding PBW-reduction

datum of Ah(w).
7: Set G := dh(τ((Ah(w))E ,≺E

(1,w)
)(G)).

8: return G.

Remark 2.2.22. Note that reduced Gröbner bases with respect to non-well-orderings do in
general not exist.

Remark 2.2.23. Our application of the above method is the computation of Gröbner bases
with respect to orderings of type ≺Eu[s] on AE , where E is some finite set and s ∈ ZE a
shift vector. We remark that the positive weight vector w chosen for the homogenization is
independent of the weight vector u and the shift vector s. In some instances, namely when the
elements of S are u-homogeneous, we can homogenize in a way depending on u[s], which
might enhance the computation of Gröbner bases with respect to the ordering ≺Eu[s]. More

precisely, we work over Ah(u) and modify Proposition 2.2.18 in this situation as follows:
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2.2 Weight filtrations

Noting that −u is also a weight vector on A, we replace the homogenization hw by h−u[−s]
and the ordering (≺Eu[s])(1,w) by the ordering (≺Eu[s])h defined by

hαxβ(e)(≺Eu[s])hh
α′xβ

′
(e′) if and only if α < α′

or α = α′ and xβ(e) ≺Eu[s] x
β′(e′)

for α, α′ ∈ N, β, β′ ∈ Nn and e, e′ ∈ E. If we replace (1,w)-homogeneous Gröbner basis
by a (1,−u)[−s]-homogeneous Gröbner basis, then one can show that Proposition 2.2.18 still
holds.

We use Gröbner bases with respect to ≺Eu[s] to explicitly find generators of the filtration
induced by Fu[s]•A

E on submodules of AE under the assumption that we can determine the
required PBW-reduction datum:

Proposition 2.2.24. Let u ∈ Zn be a weight vector on A, E and E′ finite sets, s ∈ ZE a shift
vector, ≺E an ordering on AE and ≺′E′ an ordering on AE

′
. If G ⊆ TEn ⊕ TE

′
n induces a

Gröbner basis of the A-submodule M ⊆ AE ⊕AE′ with respect to (≺Eu[s],≺
′E′) then

M ∩ (Fu[s]•A
E ⊕AE′) =

∑
g∈G:πE(g)6=0

F•−degu[s](g)
A · g +

∑
g∈G:πE(g)=0

A · g. (2.2.7)

In particular,M∩(Fu[s]kA
E⊕AE′) =

Fu
0 A

〈
{ag | g ∈ G, πE(g) 6= 0, a ∈ PA,uk−degu[s](g)

}
〉

+

A〈{g | g ∈ G, πE(g) = 0}〉 for k ∈ Z.

Proof. We first observe that the right hand side module of Equation (2.2.7) is obviously con-
tained in the left hand side module of that equation.

Let m ∈M ∩ (Fu[s]kA
E ⊕AE′) for fixed k ∈ Z. By definition of Fu

• [s]AE there exists a
representative m′ ∈ (Fu

k T
E
n ⊕ TE

′
n ) ∩

K

〈
SMon(TEtE

′
n )

〉
of m. Since G induces a Gröbner

basis of M , there is a ∈ K
〈
SMon(TEn )

〉
G such that

m =
∑
g∈G

agg and le(ag) + ele(g) �E,E
′

u[s],′ ele(m′),

where we abbreviate ≺E,E
′

u[s],′ := (≺Eu[s],≺
′E′). If πE(g) 6= 0, this implies that

degu[s](agπE(g)) = degu(ag) + degu[s](πE(g)) ≤ degu[s](πE(m′)) ≤ k,

hence showing that ag ∈ Fk−degu[s](g)
A. As that Fu

0 A-module is generated by PA,uk−degu[s](g)
,

the particular claim follows readily.

Corollary 2.2.19 and Proposition 2.2.24 imply:
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2 PBW-reduction-algebras

Corollary 2.2.25. Every weight vector on A is a good weight vector.

Proposition 2.2.24 yields the following algorithms:

Algorithm 2.2.26 Given a weight vector u and an A-module M ⊆ AE ⊕ AE′ , this algorithm
computes M ∩ (Fu[s]•A

E ⊕AE′).

Input: Two finite sets E,E′, a module M = A〈M ′〉 ⊆ AE ⊕ AE′ with M ′ finite, a weight
vector u ∈ Zn on A, a shift vector s ∈ ZE and computable orderings ≺Eu[s] and ≺′E′ on

AE and AE
′
, respectively.

Output: Two finite setsG1, G2 ⊆ TEn ⊕TE
′

n with πE(G2) = {0} such thatM∩(Fu[s]•A
E⊕

AE
′
) =

∑
g1∈G1

Fu
•−degu[s](g1)A · g1 +

A

〈
G2

〉
.

1: Compute a set G ⊆ TEn ⊕ TE
′

n inducing a Gröbner basis of M with respect (≺Eu[s],≺
′E′)

by Algorithm 2.2.21.
2: Set G1 := {g | g ∈ G, πE(g) 6= 0}.
3: Set G2 := {g ∈ G | πE(g) = 0}.
4: return G1, G2.

Algorithm 2.2.27 Given a weight vector u and an A-module M ⊆ AE ⊕ AE′ , this algorithm
computes M ∩ (Fu[s]kA

E ⊕AE′) for fixed k ∈ Z.

Input: Two finite sets E,E′, a module M = A〈M ′〉 ⊆ AE ⊕ AE′ with M ′ finite, a weight
vector u ∈ Zn, a shift vector s ∈ ZE , computable orderings ≺Eu[s] and ≺′E′ on AE and

AE
′
, respectively, and k ∈ Z.

Output: Two finite setsG1, G2 ⊆ AE⊕AE
′
with πE(G2) = {0} such thatM∩(Fu[s]kA

E⊕
AE

′
) = Fu

0 A
〈G1〉+ A〈G2〉.

1: Compute a set G ⊆ TEn ⊕ TE
′

n inducing a Gröbner basis of M with respect (≺Eu[s],≺
′E′)

by Algorithm 2.2.21.
2: Set G1 := {ag | g ∈ G, πE(g) 6= 0, a ∈ PA,uk−degu[s](g)

}.
3: Set G2 := {g | g ∈ G, πE(g) = 0}.
4: return G1, G2.

Consider now a weight vector u ∈ Zn on A, a finite set E and a shift vector s ∈ ZE .
Abbreviating GrF

u[s] by Gru[s] (and similarly for the corresponding symbol maps) and calling
the associated graded objects also associated u[s]-graded objects, we finish this subsection by
studying the ring GruA and explaining how to express Gru[s]M for anA-submoduleM ⊆ AE
as a GruA-module. (Note that as always we drop the shift vector in the above notation, if it
stands for the zero vector.)

Proposition 2.2.28. Let u ∈ Zn and w ∈ Nn>0 be weight vectors on A, ≺′ an ordering on A,
and Ah(w) = (T hn , S

h(w), Iw, (≺′u)(1,w)) a PBW-reduction datum with (1,w)-homogeneous
Iw.
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2.2 Weight filtrations

(a) We may identify
GruA = Tn/ 〈ltu(S) ∪ ltu(dh(Iw))〉

and a PBW-reduction datum of that PBW-reduction-algebra is given by (Tn, ltu(S),
ltu(dh(Iw)),≺′).

(b) If u ∈ Nn and A = (Tn, S, Iu,≺u), then a PBW-reduction datum for GruA is given by
(Tn, ltu(S), ltu(Iu),≺).

(c) Consider the finite set E, the ordering ≺E on AE , the shift vector s ∈ ZE and the
A-module M ⊆ AE . We have under the identification in Part (a)

Gru[s]AE ∼= TEn /
〈
ltu(S)E ∪ ltu(dh(Iw))E

〉
,

where we put (e) ∈ TEn /
〈
ltu(S)E ∪ ltu(dh(Iw))E

〉
in degree se, and we may consider

Gru[s]M as a GruA-submodule thereof.

Furthermore, if G ⊆ TEn induces a Gröbner basis of M with respect to ≺Eu[s], then

ltu[s](G) ⊆ TEn induces a Gröbner basis of the GruA-module Gru[s]M with respect to
≺E under the above isomorphism.

(d) We have for M ⊆ A

Gru(A/A〈M〉A) ∼= GruA/GruA〈M〉A.

If ≺′ is a well-ordering, then a PBW-reduction datum of the above algebra is given by
(Tn, ltu(S), ltu(dh(Iw))∪ρ(GrwA,≺′)(ltu(G)),≺′), where G ⊆ TEn induces a Gröbner
basis of A〈M〉A with respect to ≺′u.

Proof.

(a) The K-linear surjective map

ψ : Tn → GruA, xi1 · · ·xik 7→ xi1 · · ·xik + Fu
degu(xi1 ···xik )−1A ∈ Grudegu(xi1 ···xik )A

with kernel 〈ltu(Tn〈S ∪ I〉 Tn)〉 induces an isomorphism of K-algebras

Tn/ 〈ltu(Tn〈S ∪ I〉 Tn)〉 ∼= GruA.

As Tn〈S ∪ I〉 Tn = Tn〈S ∪ dh(Iw)〉 Tn , we have clearly

〈ltu(S) ∪ ltu(dh(Iw))〉 ⊆ 〈ltu(Tn〈S ∪ I〉 Tn)〉 .

For the converse inclusion consider a u-homogeneous p ∈ Tn〈ltu(Tn〈S ∪ I〉 Tn)〉 Tn .
We may assume that p ∈ K〈SMon(Tn)〉 and that there exists p′ ∈ K〈SMon(Tn)〉 with
degu(p′) < degu(p) and p + p′ ∈ Tn〈S ∪ I〉 Tn as ltu(S) ⊆ 〈ltu(S) ∪ ltu(dh(Iw))〉
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2 PBW-reduction-algebras

and S are standard reduction systems with respect to ≺′u. Now we find l, l′, l′′ ∈ N such
that hl

′′
hw(p+p′) = hlhw(p)+hl

′
hw(p′) ∈ Thn

〈
Sh(w) ∪ Iw

〉
Thn

. By Remark 2.1.16(a)
we write

hl
′′
hw(p+ p′) =

∑
g∈Iw

agg +
∑

(t,s,t′)∈U

tst′ (2.2.8)

for some (1,w)[(deg(1,w)(g))g∈Iw ]-homogeneous a ∈ K
〈
SMon(T hn )

〉
Iw and some fi-

nite set U ⊆ T hn \ {0} × Sh(w) × T hn \ {0} satisfying

le(ag) + le(g)(�′u)(1,w) le(hl
′′
hw(p+ p′))

and
lecom(t) + lecom(s) + lecom(t′)(�′u)(1,w) le(hl

′′
hw(p+ p′))

with equality for some g ∈ Iw. Here, we may assume for (t, s, t′) ∈ U that t and
t′ are (1,w)-homogeneous and that all terms appearing in Equation (2.2.8) are (1,w)-
homogeneous of the same degree. Dehomogenizing we obtain (see Remark 2.2.17(b))

p+ p′ =
∑
g∈Iw

dh(ag)dh(g) +
∑

(t,s,t′)∈U

dh(t)dh(s)dh(t′)

with
le(dh(ag)) + le(dh(g)) �′u le(p+ p′) = le(p) (2.2.9)

and
lecom(dh(t)) + lecom(dh(s)) + lecom(dh(t′)) �′u le(p+ p′) = le(p)

with equality for some g ∈ Iw. Hence in particular the corresponding inequalities hold
also for the u-degree of the considered elements and we obtain by u-homogeneity of p

p =
∑
g∈I′w

ltu(dh(ag)) ltu(dh(g)) +
∑

(t,s,t′)∈U ′
ltu(dh(t)) ltu(dh(s)) ltu(dh(t′))

for some I ′w ⊆ Iw and U ′ ⊆ U . This shows not only p ∈ Tn〈ltu(S) ∪ ltu(dh(Iw))〉 Tn ,
but also that Definition 2.1.13(aii) is fulfilled by Remark 2.1.15(a): For this first note that
le≺′u(r) = le≺′u(ltu(r)) = le≺′(ltu(r)) holds for r ∈ K〈SMon(Tn)〉 and thus le≺′(p) =
le≺′u(p) by u-homogeneity of p. Choosing g ∈ Iw with equality in Equation (2.2.9),
we obtain le≺′(p) = le≺′(ltu(dh(ag))) + le≺′(ltu(dh(g))) ∈ L≺′(ltu(dh(Iw))). As
Tn〈ltu(Tn〈S ∪ I〉 Tn)〉 Tn is a u-homogeneous ideal, it was enough to consider homoge-
neous p and we are finished.

(b) Follows by similar arguments as Part (a).
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2.2 Weight filtrations

(c) We have canonical graded K-algebra isomorphisms

Gru[s]AE ∼= (GruA)E ∼=(Tn/ 〈ltu(S) ∪ ltu(dh(Iw))〉)E (2.2.10)
∼=TEn /

〈
ltu(S)E ∪ ltu(dh(Iw))E

〉
,

where we put (e) ∈ TEn /
〈
ltu(S)E ∪ ltu(dh(Iw))E

〉
in degree se. Since by the first

isomorphism theorem

Gr
u[s]
k M ∼= (Fu[s]kM + Fu[s]k−1A

E)/Fu[s]k−1A
E ⊆ Gr

u[s]
k AE , (2.2.11)

we may identify Gru[s]M with a submodule of TEn /
〈
ltu(S)E ∪ ltu(dh(Iw))E

〉
.

Under the above identification consider t ∈ K
〈
SMon(TEn )

〉
with 0 6= t ∈ Gru[s]M .

As that module is u[s]-graded and the ordering ≺E is transitive, we reduce to the case
that t is u[s]-homogeneous. Hence there exists t′ ∈ K

〈
SMon(TEn )

〉
with degu[s](t

′) <

degu[s](t) such that t+ t′ ∈M . So it holds

t+ t′ =
∑
g∈G

ag · g ∈M

and
le(≺E

u[s]
)lcomp(g)

(ag) + le≺E
u[s]

(g) �Eu[s] le≺E
u[s]

(t+ t′) = le≺E
u[s]

(t)

for some a ∈ K
〈
SMon(TGn )

〉
by assumption. It follows under the above identification

t =
∑
g∈G′

ltu(ag) · ltu[s](g) ∈ Gru[s]M

and

le≺E
lcomp(g)

(ltu(ag)) + le≺E (ltu[s](g)) �E le≺E (ltu[s](t+ t′)) = le≺E (ltu[s](t))

for g ∈ G′ := {g ∈ G | degu[s](g) + degu(ag) = degu[s](t)}.

(d) The exact sequence

0→ Fu
• A〈M〉A → Fu

• A→ Fu
• (A/A〈M〉A)→ 0

induces the claimed isomorphism. The other claim follows by Part (c) and Corol-
lary 2.1.53.

Corollary 2.2.29. If A is a PBW-algebra and u ∈ Zn a weight vector on A, then GruA is
also a PBW-algebra.
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2 PBW-reduction-algebras

Proof. By Lemma 2.2.14 the exists a weight vector w ∈ Nn>0 onA and Lemma 2.2.13 implies
that Ah(w) is a PBW-algebra. Now the claim is immediate from Proposition 2.2.28(a).

Corollary 2.2.30. Consider the K-algebra K〈x, y〉 := K〈x1, . . . , xn, y1, . . . , ym〉 and the
elementary PBW-reduction-algebra

B = K〈x, y〉/ 〈R〉 ∼=
⊕
β∈Nm

(K[x]/J)yβ

with commutation relations SB . If u ∈ Zn+m is a weight vector on B, then GruB is also an
elementary PBW-reduction-algebra. More precisely,

GruB ∼= K〈x, y〉/
〈
ltu(SB) ∪ ltu(J ′)

〉 ∼= ⊕
β∈Nm

(K[x])/
〈
ltu(J ′)

〉
yβ

for a Gröbner basis J ′ of J ⊆ K[x] with respect to the ordering induced by an ordering of
type ≺′u. In particular, every ordering on GrwB is computable.

Proof. Lemma 2.2.15 implies that

Bh(w) ∼= K〈h, x, y〉/
〈
S
h(w)
B ∪ J ′′

〉
∼=
⊕
β∈Nm

(K[h, x]/
〈
J ′′
〉
)yβ

for some (1,w)-homogeneous J ′′ ⊆ K[h, x] such that J ′′ is a Gröbner basis of K[h,x]〈hw(J)〉
with respect to the ordering induced by (≺′u)(1,w) on K[h, x]. So a corresponding PBW-

reduction datum ofBh(w) is given by (K〈h, x, y〉, Sh(w)
B , J ′′, (≺′u)(1,w)). According to Propo-

sition 2.2.28(a) it follows that (K〈x, y〉, ltu(SB), ltu(dh(J ′′)),≺′u) is a PBW-reduction datum
of GruB. By construction of J ′′ and as J ′ is a Gröbner basis of J with respect to the ordering
induced by ≺′u, we have

K[x]

〈
ltu(dh(J ′′))

〉
= K[x]〈ltu(J)〉 = K[x]

〈
ltu(J ′)

〉
showing

GruB ∼= K〈x, y〉/
〈
ltu(S) ∪ ltu(J ′)

〉
.

Using the isomorphism B ∼=
⊕

β∈Nm(K[x]/J)yβ , one easily proves the second isomorphism
for GruB. The particular claim is now an immediate consequence of Lemma 2.1.28(b).

Example 2.2.31. Consider the PBW-reduction-algebra TX introduced in Example 2.1.30 and
its weight vector w = ((0)1≤i≤n, (1)1≤i≤m). Then Grw TX = (K〈x, y〉, ltw(S), Iw,≺) with
ltw(S) = {[xj , xi], [yl, yk], [yk, xi] | 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ l ≤ m} \ {0}, where Iw
is a Gröbner basis of I with respect to the ordering induced by ≺ on K[x], since ltw(I) = I
(see Corollary 2.2.30 and Lemma 2.1.28). In particular, Grw TX is a quotient algebra of the
polynomial ring K[x, y] and every ordering on it is computable.
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2.3 Interplay of weight filtrations and submodule structures of a free module

Remark 2.2.32. Note that an A-computable field K is also GruA-computable.

Algorithm 2.2.33 Given a weight vector u on A and an A-submodule M of a free A-module,
this algorithm computes Gru[s]M .

Input: A weight vector u ∈ Zn on A, a finite set E, an A-module M =
A

〈
M ′
〉
⊆ AE with

M ′ ⊆ TEn finite, a shift vector s ∈ ZE and a computable ordering ≺′u.
Output: A PBW-reduction datum (Tn, ltu(S), Iu,≺′) of GruA and a finite set G ⊆ TEn of

u[s]-homogeneous elements whose residue classes form GruA-generators of Gru[s]M ⊆
TEn /

〈
ltu(S)E ∪ IEu

〉
.

1: Compute a finite set G ⊆ TEn inducing a Gröbner basis of M with respect to an ordering
of type (≺′Epot,<)u[s] by Algorithm 2.2.21.

2: Set G := ltu[s](G).
3: if ≺′u is a non-well-ordering then
4: Find a weight vector w ∈ Nn>0 such that PBW-reduction datum Ah(w) = (Tn, S

′, I ′,
(≺′u)(1,w)) is computable.

5: Replace I ′ by the set of the (1,w)-homogeneous parts of its elements.
6: Set I ′ := dh(I ′).
7: else
8: Compute a PBW-reduction datum (Tn, S, I

′,≺′u) of A.
9: return (Tn, ltu(S), ltu[s](I

′),≺′) and G.

2.3 Interplay of weight filtrations and submodule structures
of a free module over the PBW-reduction-algebra A

In this section, given two weight vectors v and w on a PBW-reduction-algebra A satisfying
certain assumptions, we study the interplay of the induced weight filtrations on freeA-modules
withFv

0 A- andFw
0 A-submodule structures. While this problem is interesting in this own right,

it also serves as an intermediate step to treat the corresponding problem for quotients of free
A-modules. The assumptions on our weight vectors as well as the concrete choice of problems
in this section are motivated by the applications to Hodge theory we have in mind.

Consider now the following situation: Let A = (Tn, S, I,≺) with S = {xjxi = cijxixj +
dij | 1 ≤ i < j ≤ n} be a PBW-reduction-algebra and v, w ∈ Zn two weight vectors on A
such that v is a w-weight on A, that is, Fw

0 A ⊆ Fv
0 A. Given a finite set E and V ′,W ′ ⊆ TEn

finite subsets, the subjects of our investigation are the submodules V :=
Fv
0 A

〈
V ′
〉
⊆ AE and

W :=
Fw
0 A

〈
W ′
〉
⊆ AE . To simplify notation, we assume that v = v′ ∈ AE for v, v′ ∈ V ′

implies v = v′ (and similarly for W ′).
In view of implementations, we need for our algorithms and for computability the following

additional assumptions:

99



2 PBW-reduction-algebras

Assumption 2.3.1.

(a) We can determine a computable ordering of type ≺′v on A.

(b) We can compute a PBW-reduction-datum for Fv
0 A. More precisely, we can determine

the kernel Kv of the surjective K-algebra map

φv : Av := K〈{yg | g ∈ Gv
A}〉 → Fv

0 A, yg 7→ g

and a PBW-reduction datum for Av/Kv is computable.

(c) Under the assumption made in Part (b), assume additionally that the filtration Fw
• in-

duced by Fw
• F

v
0 A on Av/Kv is given by a weight vector wv on Av/Kv and that we

can determine a computable ordering of type ≺′wv
on Av/Kv.

(d) For any integer d ∈ Z we can determine a finite set of Fv
0 A-generators PA,vd of Fv

d A

and td ∈ ZP
A,v
d such that Fw

• F
v
d A =

∑
p∈PA,vd

Fw
•−(td)p

Fv
0 A · p.

(e) We have Fv
0 F

w
• A = Fv

0 Tn ∩ Fw
• Tn ∩ K〈SMon(Tn)〉.

(f) We can determine a computable ordering of type ≺′w for some well-ordering ≺′ on A.

Note that Remark 2.2.6(b) states a sufficient condition for Assumption 2.3.1(d). Moreover,
we recall that we agreed on Convention 2.1.52.

Remark 2.3.2. We point out that the given PBW-reduction datum of A allows us to com-
pute Gröbner bases with respect to ≺ of A-submodules of free A-modules, to solve module
membership problems for such submodules, to compute intersections of such submodules and
projections to free submodules and to determine syzygies over A (see Remark 2.1.59). More-
over, Assumption 2.3.1 ensures that we can tackle the following problems:

(a) Assumption 2.3.1(a) enables us to compute generators of the filtration Fv
•M for an A-

submodule M of a free A-module. So in particular, we can determine Fv
0 A-generators

of Fv
kM for k ∈ Z.

(b) Assumption 2.3.1(b) ensures that we can perform the Gröbner basics listed above for A
also over the ring Fv

0 A.

(c) A set of Fw
• F

v
0 A-generators of the filtration induced by Fw

• A on Fv
0 A-submodules of

free Fv
0 A-modules is computable by Assumption 2.3.1(c). Similarly, we will see that

Assumption 2.3.1(e) allows us to solve the corresponding problem for Fv
0 A-submodules

of free A-modules.

(d) A computable ordering of type ≺′w on A (see Assumption 2.3.1(f)) enables us to realize
the algebra GrwA as PBW-reduction-algebra by Algorithm 2.2.33.
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2.3 Interplay of weight filtrations and submodule structures of a free module

The objective of this section is to treat the following problems:

Problem 2.3.3.

(a) Module membership problem: Decide for a ∈ AE if a ∈ V under Assumption 2.3.1(a)
and (b).

(b) Find generators of the Fw
0 A-module V ∩W under Assumption 2.3.1(a)-(c).

(c) Given that a set as in Assumption 2.3.1(d) exits, show that V ∩ Fw[s]•A
E is a well-

filtered Fw
• F

v
0 A-module and compute a corresponding generating set under Assump-

tion 2.3.1(a)-(d).

(d) Under Assumption 2.3.1 show that v is a weight on the PBW-reduction-algebra GrwA
and represent Grw[s] V as Fv

0 GrwA-module.

Remark 2.3.4. As F (0)1≤i≤nA = A, the zero vector (0)1≤i≤n is obviously a u-weight for any
weight vector u on A. So solving Problem 2.3.3(b) enables us in particular to compute the
intersection of an A-submodule M of AE with a finitely generated Fu

0 A-submodule of AE .

Example 2.3.5. With regard to our applications to Hodge theory, we are particularly interested
in the situation of Example 2.1.30 in the case

v = ((−δn,i)1≤i≤n, (δm,i)1≤i≤m) ∈ Zn+m and w = ((0)1≤i≤n, (1)1≤i≤m) ∈ Zn+m

under the condition that xn is a local coordinate (see Example 2.1.30(b)). In this case, Fv
• TX

is the so-called V -filtration on DX(X) with respect to the divisor {xn = 0} and Fw
• A is the

filtration with respect to the order of differential operators on DX(X).
Note that we can indeed determine a PBW-reduction datum for TX by Example 2.1.30(a).

Moreover Assumption 2.3.1 is satisfied: Part (a) follows by Lemma 2.2.15 and we have already
seen in Example 2.1.30(b) that Fv

0 TX is isomorphic to the PBW-reduction-algebra T VX and
how to obtain a corresponding PBW-reduction datum. By Example 2.2.8(d) we know that w
induces the weight vector wv = ((0)1≤i≤n, (1)1≤i≤m) on T VX . Choosing P TX ,vd as in that
example, that is,

P TX ,vd =

{
{xdn}, if d ≤ 0

{ylm | 0 ≤ l ≤ d}, else,

we have by Remark 2.2.6(a) and (b) that

Fw
• F

v
d TX =

{
Fw
• F

v
0 TX · xdn, if d ≤ 0∑

0≤l≤d F
w
•−lF

v
0 TX · ylm, else

implying that Assumption 2.3.1(d) is satisfied. Remark 2.2.6(a) shows also that Assump-
tion 2.3.1(e) holds in this situation. Finally Assumption 2.3.1(f) is an immediate consequence
of Lemma 2.1.28.
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2 PBW-reduction-algebras

We remark that part of the difficulty of the above problems stems from the fact that we
have to work with a chain of subrings Fw

0 A ⊆ Fv
0 A ⊆ A and that finitely generated A-

modules are in general not finitely generated as Fv
0 A-modules. Thus we first explain the

transformation of these problems into problems involving only the PBW-reduction-algebra
Fv

0 A and its subalgebra Fw
0 A.

2.3.1 A one-to-one correspondence for Fw
0 A-submodules of bounded

v-degree of a free A-module

We will see that for the reduction of Problem 2.3.3 into problems not involving the ring A it
is sufficient if we can perform the following task: Given a fixed integer d ∈ Z and a finite
set E, find a free Fv

0 A-module of finite rank such that all Fv
0 A- and Fw

0 A-submodules of
AE with v-degree bounded by d can be represented via a one-to-one correspondence as Fv

0 A-
and Fw

0 A-submodules of that free Fv
0 A-module, respectively, and make that one-to-one cor-

respondence algorithmic. Hence we construct in this subsection a surjective Fv
0 A-linear (and

hence also Fw
0 A-linear) map from such a free Fv

0 A-module to Fv
d A. Then we have by the ho-

momorphism theorem a one-to one correspondence between the Fv
0 A- and Fw

0 A-submodules
of Fv

d A and the Fv
0 A- and Fw

0 A-submodule of the free module containing the kernel of our
surjective map.

Note that we do not need for this one-to-one correspondence any assumptions made in
Assumption 2.3.1. However, the algorithmic applications of the technique developed here
require Assumption 2.3.1(a).

Remark 2.3.6. The inclusion Fw
0 A ⊆ Fv

0 A implies that for any finite set N ′ ⊆ AE and for
N = Fw

0 A〈N ′〉
degv(N) = degv(N ′) <∞.

Sometimes, we consider the above problem for Fv
0 A-modules only, and we do this by for-

mally setting w := v.

The construction of an Fv
0 A-linear surjective map from a free Fv

0 A-module to Fv
d A for

d ∈ Z works as follows: Choose a finite set of Fv
0 A-generators PA,vd of Fv

d A (see Definition
and Remark 2.2.5(c)) and define an Fv

0 A-linear map by

ωv,d : Fv
0 A

PA,vd → Fv
d A, q 7→

∑
p∈PA,vd

qpp. (2.3.1)

By choice of PA,vd this map is clearly surjective, and Fv
0 A-generators Kωv,d

of its kernel can

be found as described below: We observe that a ∈ Fv
0 A

PA,vd is in the kernel of ωv,d if and
only if

∑
p∈PA,vd

app = 0, that is, if and only if a ∈ syzA(PA,vd ) ∩ Fv
0 A

PA,vd . Hence Kωv,d

can be determined by Algorithm 2.2.27 under Assumption 2.3.1(a).
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Next, we define a right inverse map of ωv,d

υv,d : Fv
d A→ Fv

0 A
PA,vd

by fixing for every a ∈ Fv
d A a representation

a =
∑

p∈PA,vd

qapp with qa ∈ Fv
0 A

PA,vd (2.3.2)

and setting
υv,d : Fv

d A→ Fv
0 A

PA,vd , a 7→ qa. (2.3.3)

Remark 2.3.7. Note that we can compute representations as in Equation (2.3.2) by Definition
and Remark 2.2.5(d) given that we have a representative of a in Fv

d Tn.

We are finally in the position to formulate the one-to-one correspondence:

Lemma 2.3.8. Let d ∈ Z. There is an inclusion-, intersection- and sum-preserving one-to-one
correspondence

{Fw
0 A-modules K ⊆ (Fv

0 A
PA,vd )E | ker(ωEv,d) ⊆ K} ↔ {Fw

0 A-modules J ⊆ Fv
d A

E}
ΩE
v,d : K 7→ ωEv,d(K)

υEv,d(J) + ker(ωEv,d)←[ J : Y E
v,d.

This correspondence is compatible with Fv
0 A-module structure, that is, K is an Fv

0 A-sub-
module of (Fv

0 A
PA,vd )E if and only if ωEv,d(K) is one of Fv

d A
E . Moreover, ifK ′ ⊆ Fv

d A
E and

u ∈ {v,w}, then
Y E
v,d(Fu

0 A

〈
K ′
〉
) =

Fu
0 A

〈
υEv,d(K

′)
〉

+ ker(ωEv,d).

Proof. As Fv
0 A is naturally an Fw

0 A-algebra, Fv
d A

E and ker(ωEv,d) have compatible Fv
0 A-

and Fw
0 A-module structures. Hence there is by the one-to-one correspondence for submod-

ules of a quotient module an inclusion-, intersection- and sum-preserving bijection of Fw
0 A-

modules

{K ⊆ (Fv
0 A

PA,vd )E | ker(ωEv,d) ⊆ K} ↔ {J ⊆ (Fv
0 A

PA,vd )E/ ker(ωEv,d)}
K 7→ K/ ker(ωEv,d)

with K being an Fv
0 A-submodule if and only if K/ ker(ωEv,d) is an Fv

0 A-submodule. The

claim follows now by the isomorphism Fv
0 A

PA,vd / ker(ωv,d) ∼= Fv
d A.

The following algorithms compute images of Fv
0 A- and Fw

0 A-submodules under the one-
to-one correspondence of the above lemma.
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2 PBW-reduction-algebras

Algorithm 2.3.9 Given a w-weight v on A and an Fw
0 A-submodule M ⊆ AE , this algorithm

computes υEv,d(M) for some d ≥ degv(M).

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight, a finite set E, a
computable ordering of type ≺′v on A, a finite set M ⊆ TEn and an optional natural
number d′.

Output: Two finite subsets M ′,K ⊆ (Fv
0 A

PA,vd )E , such that Y E
v,d(Fu

0 A

〈
M
〉
) = Fu

0 A
〈M ′〉+

Fv
0 A
〈K〉 for u ∈ {v,w} and ker(ωEv,d) = Fv

0 A
〈K〉, where d := max{degv(M)[, d′]}.

1: Set d := max{degv(M)[, d′]} and determine PA,vd .
2: M ′ := ∅.
3: for m ∈M do
4: Find qm ∈ (Fv

0 A
PA,vd )E such that m =

∑
e∈E

∑
p∈PA,vd

qmepp(e) as explained in Defi-
nition and Remark 2.2.5(d).

5: M ′ := M ′ ∪ {qm}.
6: Compute Fv

0 A-generators K of syzA(PA,vd ) ∩ Fv
0 A

PA,vd by Algorithm 2.2.27 using the

ordering (≺′v)
PA,vd
top,< for some order < on PA,vd .

7: return M ′,KE .

In the above algorithm, we mean by max{degv(M)[, d′]} the value max{degv(M), d′} if
d′ is defined and degv(M) otherwise.

Algorithm 2.3.10 Given a weight vector v on A and a subset M ⊆ (Fv
0 A

PA,vd )E , this algo-
rithm computes ωEv,d(M).

Input: A weight vector v ∈ Zn on A, an integer d ∈ Z, a finite set E and a finite subset
M ⊆ (Fv

0 A
PA,vd )E .

Output: A set M ′ ⊆ AE such that ωEv,d(M) = M ′.
1: Set M ′ := ∅.
2: for m ∈M do
3: M ′ := M ′ ∪ {

∑
e∈E

∑
p∈PA,vd

mepp(e)}.
4: return M ′.

2.3.2 Module membership for F v
0 A-submodules of a free A-module

In this subsection, it suffices to assume that Assumption 2.3.1(a) and (b) is satisfied. Recall
that V =

Fv
0 A

〈
V ′
〉
⊆ AE with V ′ ⊆ TEn finite and consider a ∈ TEn . We explain how to

check whether
a ∈ V, (2.3.4)

which is equivalent to

Fv
0 A
〈a〉 ⊆ V.
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2.3 Interplay of weight filtrations and submodule structures of a free module

Since the v-degree of the above ideals is bounded by d := max{degv(V ′),degv(a)} and the
one-to-one correspondence in Lemma 2.3.8 is inclusion-preserving, our problem reduces to
deciding whether

Fv
0 A

〈
υEv,d(a)

〉
+
Fv
0 A

〈
KE
ωv,d

〉
⊆

Fv
0 A

〈
υEv,d(V

′)
〉

+
Fv
0 A

〈
KE
ωv,d

〉
,

which is in turn equivalent to

υEv,d(a) ∈
Fv
0 A

〈
υEv,d(V

′) ∪KE
ωv,d

〉
.

The above module membership problem can be solved over the PBW-reduction-algebra Fv
0 A

by a normal form computation (see also Remark 2.1.55(a) and Assumption 2.3.1(b)).

Remark 2.3.11. In the particular case v ∈ Nn, we can solve the module membership problem
also over the PBW-reduction-algebra A: Note that a ∈ V if and only if there is b ∈ Fv

0 A
V ′

such that a =
∑

v′∈V ′ bv′v
′. We can test this by computing a reduced Gröbner basis G of

syzA({a}, V ′) with respect to a well-ordering of type (≺{a}, (≺′v)V
′
) (see Proposition 2.1.50)

under Assumption 2.3.1(a). Namely, we have a ∈ V if and only if there is b ∈ Fv
0 A

V ′ such
that ((a), b) ∈ G.

The following algorithm checks more generally whether Fv
0 A
〈P 〉 ⊆ V for P ⊆ AE finite.

Algorithm 2.3.12 Given a weight vector v on A and two Fv
0 A-submodules V, P of a free

A-module, this algorithm checks if P ⊆ V .

Input: A weight vector v ∈ Zn on A, such that Assumption 2.3.1(a) and (b) is satisfied, a
finite set E and submodules V :=

Fv
0 A

〈
V ′
〉
, P :=

Fv
0 A

〈
P ′
〉
⊆ AE with V ′, P ′ ⊆ TEn

finite.
Output: true if P ⊆ V and false else.

1: Set d := max{degv(V ′), degv(P ′)}.
2: Compute P ′′ := υEv,d(P

′), V ′′ := υEv,d(V
′) and K := KE

ωv,d
using Algorithm 2.3.9.

3: Set J := Fv
0 A
〈V ′′ ∪K〉.

4: for p′′ ∈ P ′′ do
5: if p′′ /∈ J then . Decide using Gröbner basis theory over the PBW-reduction-algebra

Fv
0 A (see Remark 2.1.55(a)).

6: return false.
7: return true.

Remark 2.3.13. With a little extra bookkeeping the above algorithm can be extended to rep-
resent p′ for p′ ∈ P ′ as an Fv

0 A-linear combination of V ′ if p′ ∈ V .
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2 PBW-reduction-algebras

2.3.3 Intersection of F v
0 A- and Fw

0 A-submodules of a free A-module

Under Assumption 2.3.1(a)-(c) we develop in this subsection a method based on the one-to-one
correspondence introduced Subsection 2.3.1 to compute generators the Fw

0 A-submodule

V ∩W ⊆ AE ,

where V =
Fv
0 A

〈
V ′
〉

and W =
Fw
0 A

〈
W ′
〉
. Setting d := max{degv(V ′),degv(W ′)} ∈ Z,

we get by the one-to-one correspondence in Lemma 2.3.8

V ∩W = ωEv,d(JW ∩ JV ),

where
JW =

Fwv
0 Fv

0 A

〈
υEv,d(W

′)
〉

+
Fv
0 A

〈
KE
ωv,d

〉
(2.3.5)

and
JV =

Fv
0 A

〈
υEv,d(V

′)
〉

+
Fv
0 A

〈
KE
ωv,d

〉
. (2.3.6)

Now consider the modules

R := syzFv
0 A

(
υEv,d(W

′), υEv,d(V
′),KE

ωv,d

)
,

and
R′ := πW ′(R) ∩ Fwv

0 Fv
0 A

W ′ ,

where we implicitly identify Fv
0 A

W ′ and Fv
0 A

V ′ with Fv
0 A

υEv,d(W ′) and Fv
0 A

υEv,d(V ′), respec-
tively. A set of Fv

0 A-generators of R can be obtained using Gröbner basis theory over the
PBW-reduction-algebra Fv

0 A (see Lemma 2.1.57). Now we determine by Algorithm 2.2.27 a
finite set G such that R′ = Fwv

0 Fv
0 A
〈G〉. We claim:

Lemma 2.3.14. We have

JW ∩ JV =

Fwv
0 Fv

0 A

〈
{
∑
w′∈W ′

gw′υ
E
v,d(w

′) | g ∈ G}

〉
+
Fv
0 A

〈
KE
ωv,d

〉
. (2.3.7)

Proof. For q ∈ JW ∩ JV exist a ∈ Fwv
0 Fv

0 A
W ′ , b ∈ Fv

0 A
V ′ and c, c′ ∈ Fv

0 A
K (with

K := KE
ωv,d

) such that

q =
∑
w′∈W ′

aw′υ
E
v,d(w

′) +
∑
k∈K

ckk =
∑
v′∈V ′

bv′υ
E
v,d(v

′) +
∑
k∈K

c′kk.

This implies that (a,−b, c − c′) ∈ R. By the choice of G, there is f ∈ Fwv
0 Fv

0 A
G such that

a =
∑

g∈G fgg and hence
∑

w′∈W ′ aw′υ
E
v,d(w

′) =
∑

g∈G fg
∑

w′∈W ′ gw′υ
E
v,d(w

′), which is
in the right hand side of Equation (2.3.7). As the other inclusion is obvious, that concludes the
proof.
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Since
Fv
0 A

〈
KE
ωv,d

〉
= ker(ωEv,d), we have by Lemma 2.3.8:

Corollary 2.3.15. V ∩W =
Fw
0 A

〈
{
∑

w′∈W ′ gw′w
′ | g ∈ G}

〉
.

Algorithm 2.3.16 Given a w-weight v on A, an Fv
0 A-submodule V and an Fw

0 A-submodule
W of a free A-module, this algorithm computes the intersection V ∩W .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(c) is satisfied, a finite set E, submodules V :=

Fv
0 A

〈
V ′
〉
,W :=

Fw
0 A

〈
W ′
〉
⊆ AE with V ′,W ′ ⊆ TEn finite.

Output: A finite set G ⊆ AE such that Fw
0 A〈G〉 = V ∩W .

1: Set d := max{degv(V ′), {degv(W ′)}.
2: Compute V ′′ := υEv,d(V

′), W ′′ := υEv,d(W
′) and K := KE

ωv,d
by Algorithm 2.3.9.

3: Find R := syzFv
0 A

(W ′′, V ′′,K) ⊆ Fv
0 A

W ′tV ′tK (under the above identification) over
the PBW-reduction-algebra Fv

0 A using Gröbner basis theory.
4: Determine G′ such that Fwv

0 Fv
0 A
〈G′〉 = πW ′(R) ∩ Fwv

0 Fv
0 A

W ′ via Algorithm 2.2.27 by
working over Fv

0 A.
5: Set G := {

∑
w′∈W ′ g

′
w′w

′ | g′ ∈ G′}.
6: return G.

Remark 2.3.17. We remark that similar methods as above can be employed to intersect two
finitely generated Fw

0 A-submodules of a free A-module. However, if an ordering of type ≺w

and a PBW-reduction datum for Fw
0 A are computable, it might be preferable to work over the

ring Fw
0 A.

By setting w := v, Algorithm 2.3.16 enables us to determine the intersection of finitely
generated Fv

0 A-modules. In this case, we do not need to apply Algorithm 2.2.27.

In the case V = Fv[s]kA
E for k ∈ Z, we simplify our method as follows. In view of later

applications, we treat a slightly more general case: Namely, assume that W =
Fw
0 A

〈
W ′
〉

+

Fv
0 A

〈
U ′
〉
⊆ AE (with U ′ ⊆ TEn finite) is a sum of a finitely generated Fw

0 A-submodule and

a finitely generated Fv
0 A-submodule of AE . Replacing d by max{degv(U ′),degv(W ′), k −

min{se | e ∈ E}}, assume now that PA,vd has been chosen such that PA,vk−se ⊆ P
A,v
d for e ∈ E.

If we keep our other notations, we have to replace Equations (2.3.5) and (2.3.6) by

JW =
Fwv
0 Fv

0 A

〈
υEv,d(W

′)
〉

+
Fv
0 A

〈
υEv,d(U

′)
〉

+
Fv
0 A

〈
KE
ωv,d

〉
and

JV =
⊕
e∈E

Fv
0 A

PA,vk−se +
Fv
0 A

〈
KE
ωv,d

〉
,
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where we naturally identify
⊕

e∈E F
v
0 A

PA,vk−se with a free Fv
0 A-submodule of (Fv

0 A
PA,vd )E .

We denote by
πE
PA,vd \PA,vk−se

: (Fv
0 A

PA,vd )E →
⊕
e∈E

Fv
0 A

PA,vd \PA,vk−se

the projection to the complement of this submodule. Abbreviating Ce := PA,vd \ PA,vk−se , we
consider

T := syzFv
0 A

( ⊔
w′∈W ′

{πECe(υ
E
v,d(w

′))},
⊔
u′∈U ′

{πECe(υ
E
v,d(u

′))}, πECe(K
E
ωv,d

)

)
,

and
T ′ := πW ′,U ′(T ) ∩ (Fwv

0 Fv
0 A

W ′ ⊕ Fv
0 A

U ′),

where we identify AW
′

and AU
′

with A
⊔
w′∈W ′{πECe (υEv,d(w′))} and A

⊔
u′∈U′{πECe (υEv,d(u′))}, re-

spectively. Finally, we determine Fv
0 A-generators of T as well as G and G′ such that

T ′ = Fwv
0 Fv

0 A
〈G〉+

Fv
0 A

〈
G′
〉

and πW ′(G′) = 0

by working over the PBW-reduction-algebra Fv
0 A and using Algorithm 2.2.27 to compute G

and G′ and claim:

Lemma 2.3.18. Identifying AW
′tU ′ with AW

′ ⊕AU ′ , we have

V ∩W =

Fw
0 A

〈
{
∑
w′∈W ′

gw′w′ +
∑
u′∈U ′

gu′u′ | g ∈ G}

〉
+

Fv
0 A

〈
{
∑
u′∈U ′

g′u′u
′ | g′ ∈ G′}

〉
.

Proof. We observe that

JW ∩ JV =

(
JW ∩

⊕
e∈E

Fv
0 A

PA,vk−se

)
+
Fv
0 A

〈
KE
ωv,d

〉
.

So consider q =
∑

w′∈W ′ aw′w
′ +

∑
u′∈U ′ bu′u

′ +
∑

k∈K ckk ∈ JW with K := KE
ωv,d

,

a ∈ Fwv
0 Fv

0 A
W ′ , b ∈ Fv

0 A
U ′ , c ∈ Fv

0 A
K . We have q ∈

⊕
e∈E F

v
0 A

PA,vk−se if and only if
πECe(q) = 0, that is,

(a, b, c) ∈ syzFv
0 A

( ⊔
w′∈W ′

{πECe(υ
E
v,d(w

′))},
⊔
u′∈U ′

{πECe(υ
E
v,d(u

′))},
⊔
k∈K
{πECe(k)}

)
.

This in turn is equivalent to (a, b) ∈ πW ′,U ′(T ) ∩ (Fw
0 F

v
0 A

W ′ ⊕ Fv
0 A

U ′) as claimed.

This leads to the algorithm below:
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Algorithm 2.3.19 Given a w-weight v on A, a sum W ⊆ AE of an Fv
0 A-submodule and an

Fw
0 A-submodule of a free A-module with shift vector s, this algorithm computes Fv[s]kW .

Input: Two weight vectors v,w ∈ Zn such that v is a w-weight on A and such that Assump-
tion 2.3.1(a)-(c) is satisfied, a finite setE, a submoduleW :=

Fw
0 A

〈
W ′
〉
+
Fv
0 A

〈
U ′
〉
⊆ AE

with U ′,W ′ ⊆ TEn finite, s ∈ ZE a shift vector and k ∈ Z.
Output: Two finite sets H,H ′ ⊆ AE such that W ∩ Fv[s]kA

E = Fw
0 A〈H〉 + Fv

0 A
〈H ′〉 and

H ′ ⊆
Fv
0 A

〈
U ′
〉
.

1: Set d := max{degv(U ′),degv(W ′), k − min{se | e ∈ E}}. . degv(Fv[s]kA
E) =

k −min{se | e ∈ E}.
2: Choose PA,vd such that PA,vk−se ⊆ P

A,v
d for e ∈ E.

3: Apply Algorithm 2.3.9 with the above choice of PA,vd to obtain W ′′ := υEv,d(W
′), U ′′ :=

υEv,d(U
′) and K := KE

ωv,d
.

4: Find T := syzFv
0 A

(
⊔
w′′∈W ′′{πECe(w

′′)},
⊔
u′′∈U ′′{πECe(u

′′)}, πECe(K)) (and identify it

with a subset of Fv
0 A

W ′tU ′tπECe (K)) via Gröbner basis theory over the PBW-reduction-
algebra Fv

0 A.
5: DetermineG,G′ such that πW ′,U ′(T )∩(Fwv

0 Fv
0 A

W ′⊕Fv
0 A

U ′) = Fwv
0 Fv

0 A
〈G〉+Fv

0 A
〈G′〉

using Algorithm 2.2.27 by working over Fv
0 A. . πW ′(G′) = 0.

6: Define H := {
∑

w′∈W ′ gw′w
′ +

∑
u′∈U ′ gu′u

′ | g ∈ G} and H ′ := {
∑

u′∈U ′ g
′
u′u
′ |

g′ ∈ G′}.
7: return H,H ′.

2.3.4 Induced w-weight filtration on F v
0 A-submodules of a free

A-module

This subsection is dedicated to computing Fw
• F

v
0 A-generators of the module

Fw[s]•V = V ∩ Fw[s]•A
E

under Assumption 2.3.1(a)-(d), where V =
Fv
0 A

〈
V ′
〉

with V ′ ⊆ TEn finite and s ∈ ZE stands
for a shift vector. Setting d := degv(V ′), we obtain

Fw[s]•V = V ∩ Fw[s]•F
v
d A

E .

Since the v-degree of Fw[s]kF
v
d A

E for all k ∈ Z is bounded by d, we proceed similarly as

in Subsection 2.3.3. If we choose PA,vd and td ∈ ZP
A,v
d as postulated in Assumption 2.3.1(d),

that is, with the property Fw
• F

v
d A =

∑
p∈PA,vd

Fw
•−(td)p

Fv
0 A · p, then we get under the one-

to-one correspondence in Lemma 2.3.8

Fw[s]•V = ωEv,d(JV ∩ JFw[s]•),
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where
JV =

Fv
0 A

〈
υEv,d(V

′)
〉

+
Fv
0 A

〈
KE
ωv,d

〉
and

JFw[s]• = Fwv [t]•(F
v
0 A

PA,vd )E +
Fv
0 A

〈
KE
ωv,d

〉
,

with tep = se + (td)p for e ∈ E, p ∈ PA,vd . Consequently, we obtain

JV ∩ JFw[s]• =
(
JV ∩ Fwv [t]•(F

v
0 A

PA,vd )E
)

+
Fv
0 A

〈
KE
ωv,d

〉
.

Applying Algorithm 2.2.26 over the PBW-reduction-algebra Fv
0 A
∼= Av/Kv, we determine a

finite set G ⊆ (A
PA,vd
v )E such that

JV ∩ Fwv [t]•(F
v
0 A

PA,vd )E =
∑
g∈G

Fwv

•−degwv[t](g)
Fv

0 A · g.

This implies that

Fw[s]•V =
∑
g∈G

Fw
•−degwv[t](g)

Fv
0 A · ωEv,d(g) =

∑
g∈G

Fw
•−degw[s](ω

E
v,d(g))

Fv
0 A · ωEv,d(g)

since degw[s](ω
E
v,d(g)) ≤ degwv[t](g) and since the right hand side module of the above

equation is obviously contained in the left hand side module of that equation. We summarize
the computation:

Algorithm 2.3.20 Given a w-weight v on A and an Fv
0 A-submodule V of a free A-module

with shift vector s, this algorithm computes Fw[s]•V .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(d) is satisfied, a finite set E, a submodule V :=

Fv
0 A

〈
V ′
〉
⊆ AE with

V ′ ⊆ TEn finite and a shift vector s ∈ ZE .
Output: A finite set G ⊆ AE and t ∈ ZG such that Fw[s]•V =

∑
g∈G F

w
•−tgF

v
0 A · g =∑

g∈G F
w
•−degw[s](g)

Fv
0 A · g.

1: Set d := degv(V ′).
2: Choose PA,vd and td ∈ ZP

A,v
d such that Fw

• F
v
d A =

∑
p∈PA,vd

Fw
•−(td)p

Fv
0 A · p.

3: Compute V ′′ := υEv,d(V
′) and K := KE

ωv,d
using Algorithm 2.3.9.

4: Define the shift vector t ∈ (ZP
A,v
d )E by tep = se + (td)p for e ∈ E and p ∈ PA,vd .

5: Find G′ ⊆ (A
PA,vd
v )E such that

∑
g′∈G′ F

wv

•−degwv[t](g
′)F

v
0 A · g′ = Fv

0 A
〈V ′′ ∪K〉 ∩

Fwv [t]•(F
v
0 A

PA,vd )E using Algorithm 2.2.26 by working over Fv
0 A.

6: Define t′ ∈ ZG′ by t′g := degwv[t](g
′) for g ∈ G′.
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7: Compute G := ωEv,d(G
′) by applying Algorithm 2.3.10 and define t′′ ∈ ZG by t′′g :=

min{t′g′ | g′ ∈ G′ with ωEv,d(g′) = g}.
8: return G, t.

Remark 2.3.21. Note that we can compute for g ∈ G in the output of the above algorithm a
representative g′ ∈ TEn with degw[s](g

′) ≤ tg. The same holds also for Algorithm 2.3.22.

Alternatively to Algorithm 2.3.16, we hence compute V ∩ Fw[s]kA
E as follows:

Algorithm 2.3.22 Given a w-weight v on A and an Fv
0 A-submodule V of a free A-module

with shift vector s, this algorithm computes Fw[s]kV .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(d) is satisfied, a finite set E, a submodule V :=

Fv
0 A

〈
V ′
〉
⊆ AE with

V ′ ⊆ TEn finite, a shift vector s ∈ ZE and k ∈ Z.
Output: A finite set G ⊆ AE such that V ∩ Fw[s]kA

E = Fw
0 A〈G〉.

1: Set d := degv(V ′).
2: Choose PA,vd and td ∈ ZP

A,v
d such that Fw

• F
v
d A =

∑
p∈PA,vd

Fw
•−(td)p

Fv
0 A · p.

3: Compute V ′′ := υEv,d(V
′) and K := KE

ωv,d
using Algorithm 2.3.9.

4: Define the shift vector t ∈ (ZP
A,v
d )E by tep = se + (td)p for e ∈ E and p ∈ PA,vd .

5: Find Fwv
0 Fv

0 A-generators G′ of Fv
0 A
〈V ′′ ∪K〉 ∩ Fwv [t]k(F

v
0 A

PA,vd )E over the PBW-
reduction-algebra Fv

0 A using Algorithm 2.2.27.
6: Compute G := ωEv,d(G

′) by applying Algorithm 2.3.10.
7: return G.

While the advantage of the above algorithm over Algorithm 2.3.16 is that we omit the
syzygy computation involved in the latter algorithm, the latter algorithm does not require As-
sumption 2.3.1(d) or any particular choice of PA,vd .

2.3.5 Associated graded modules to w-weight filtered F v
0 A-submodules

of a free A-module

We explain how to express Grw[s] V for V = Fv
0 A
〈V ′〉 as a finitely generated Fv

0 GrwA-
module under Assumption 2.3.1.

Proposition 2.3.23. Let s ∈ ZE be a shift vector and GrwA = (Tn, ltw(S), J,≺′) under the
identification made in Proposition 2.2.28(a).

(a) The vector v is a weight vector on the PBW-reduction-algebra (Tn, ltw(S), J,≺′) sat-
isfying GrwFv

0 A
∼= Fv

0 (Tn/ 〈ltw(S) ∪ J〉).
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2 PBW-reduction-algebras

(b) We may consider Grw[s] V as an Fv
0 GrwA-submodule of TEn /

〈
ltw(S)E ∪ JE

〉
, where

we put (e) in degree se. IfG ⊆ TEn is finite withFw[s]•V =
∑

g∈G F
w
•−degw[s](g)

Fv
0 A·g,

then ltw[s](G) ⊆ TEn /
〈
ltw(S)E ∪ JE

〉
is a set of Fv

0 GrwA-generators of Grw[s] V
under the above identification.

Proof.

(a) First note that for k ∈ Z

Grwk F
v
0 A = Fw

k F
v
0 A/F

w
k−1F

v
0 A
∼= (Fv

0 F
w
k A+ Fw

k−1A)/Fw
k−1A = Fv

0 Grwk A

and that v is a weight vector on the PBW-reduction-algebra (Tn, ltw(S), J,≺′), because
it is one on A. Recall the identification of Tn/ 〈ltw(S) ∪ J〉 with GrwA is induced by
the map

ψ : Tn → GrwA, xi1 · · ·xik 7→ xi1 · · ·xik + Fw
degw(xi1 ···xik )−1A

(see the proof of Proposition 2.2.28(a)).Thus the map ψ induces by virtue of Fv
0 F

w
• A =

Fv
0 Tn ∩ Fw

• Tn (see Assumption 2.3.1(e)) the isomorphism

Fv
0 (Tn/ 〈ltw(S) ∪ J〉) ∼= Fv

0 GrwA.

(b) Part (a) allows us to consider

Grw[s] V ∼=
⊕
j∈Z

(
Fw[s]jV + Fw[s]j−1A

E
)
/Fw[s]j−1A

E

as an Fv
0 GrwA-submodule of TEn /

〈
ltw(S)E ∪ JE

〉
, where (e) has degree se.

The equality Fw[s]•V =
∑

g∈G F
w
•−degw[s](g)

Fv
0 A · g =

∑
g∈G F

w
•−degw[s](g)

Fv
0 A · g

implies that the σw[s](g) for g ∈ G are GrwF0A-generators of Grw[s] V . The claim
follows now by the above isomorphism, Part (a) and the identification made in Proposi-
tion 2.2.28(a).

Note that Assumption 2.3.1(a)-(d) enables us to find G as in the above proposition yielding
the following algorithm:

Algorithm 2.3.24 Given a w-weight v on A and an Fv
0 A-submodule V of a free A-module

with shift vector s, this algorithm computes Grw[s] V .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that Assump-
tion 2.3.1 is satisfied, a finite set E, an Fv

0 A-module V =
Fv
0 A

〈
V ′
〉
⊆ AE with V ′ ⊆ TEn

finite and a shift vector s ∈ ZE .
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Output: A PBW-reduction datum (Tn, ltw(S), Iw,≺′) of GrwA and a finite w[s]-homogen-
eous set G ⊆ TEn inducing Fv

0 GrwA-generators of Grw[s] V ⊆ TEn /
〈
ltw(S)E ∪ IEw

〉
.

1: Compute a PBW-reduction datum (Tn, ltw(S), Iw,≺′) of GrwA via Algorithm 2.2.33.
2: Determine a finite set G ⊆ TEn satisfying Fw[s]•V =

∑
g∈G F

w
•−degw[s](g)

Fv
0 A · g by

Algorithm 2.3.20 and Remark 2.3.21.
3: Set G := ltw[s](G).
4: return (Tn, ltw(S), Iw,≺′) and G.

Example 2.3.25. In the situation of Example 2.2.31 consider the weight v = ((−δin)1≤i≤n,
(δim)1≤i≤m) on Grw TX = (K〈x, y〉, ltw(S), Iw,≺). Arguing as in Example 2.1.30(b),
we see that Fv

0 Grw TX is isomorphic to (K〈x, y1, . . . , ym−1, z〉, Sv, Iw,≺0), where Sv =
{[xj , xi], [yl, yk], [yk, xi], [z, xi], [z, ym] | 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ l ≤ m − 1} \ {0} and
≺0 is any well-ordering such that its restriction to SMon(K〈x〉) agrees with the restriction of
≺ to SMon(K〈x〉). Here the isomorphism is defined by sending xαyβ11 · · · y

βm−1

m−1 (xnym)γ to
xαyβ11 · · · y

βm−1

m−1 z
γ .

2.4 Interplay of weight filtrations and submodule structures
of a module over the PBW-reduction-algebra A

Given two weight vectors v and w on a PBW-reduction-algebra A that satisfy certain assump-
tions, the purpose of this section is to extend the methods from the previous section to quotients
of free A-modules. Considering such a quotient AE/L, the main problem here is that L has in
general unbounded v-degree and is hence not compatible with the one-to-one correspondence
from Lemma 2.3.8. However, in many cases it suffices to consider Fv

d L for a suitable integer
d allowing us to reduce our problems to the setting of the previous section.

We study in this section the following situation: LetA = (Tn, S, I,≺) be a PBW-reduction-
algebra with S := {xjxi = cijxixj+dij | 1 ≤ i < j ≤ n} and v, w ∈ Zn two weight vectors
on A such that v is a w-weight. Given a finite set E and L′, V ′,W ′ ⊆ AE finite subsets,
L := A〈L′〉 and M = AE/L, we consider the Fv

• A- and Fw
• A-submodules

V :=
Fv
0 A

〈
V ′
〉
⊆M and W :=

Fw
0 A

〈
W ′
〉
⊆M,

respectively. Note that every finite set N ⊆ AE can be considered as a residue class of a finite
set in TEn and similarly every element a ∈ AE is the residue class of an element in TEn . We
denote such a set and element by NT and aT , respectively.

In addition to Assumption 2.3.1, we need the following supplementary assumption for one
of the problems that we consider in this section:

Assumption 2.4.1. Assumption 2.3.1(a) and (b) holds if we replace A by GrwA.

We will develop in this section algorithms that solve the following problems:
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2 PBW-reduction-algebras

Problem 2.4.2.

(a) Represent V as a quotient of a free Fv
0 A-module under Assumption 2.3.1(a).

(b) Module-membership problem: Check for m ∈ AE whether m ∈ V given that Assump-
tion 2.3.1(a) and (b) holds.

(c) Compute the intersection V ∩W if Assumption 2.3.1(a)-(c) is satisfied.

(d) Given that the Fw
• F

v
0 A-filtration V ∩ Fw[s]•M is good and that Assumption 2.3.1 and

Assumption 2.4.1 are fulfilled, determine generators of that filtration.

Example 2.4.3. We have already seen in Example 2.3.5 that Assumption 2.3.1 is in the setting
of Example 2.1.30, under the condition that xn is a local coordinate, satisfied. Moreover,
Assumption 2.4.1 holds in this situation by Example 2.2.31 and Example 2.3.25.

2.4.1 F v
0 A-presentations of F v

0 A-submodules of an A-module

In this subsection, we only require that v is a weight vector on A and that Assumption 2.3.1(a)
holds. To represent V as a quotient of a free Fv

0 A-module, where V =
Fv
0 A

〈
V ′
〉
⊆ M =

AE/A〈L′〉, we proceed as follows: Note that the surjective Fv
0 A-linear morphism ϕ given by

ϕ : Fv
0 A

V ′ → V, (v′) 7→ v′

induces an isomorphism of Fv
0 A-modules V ∼= Fv

0 A
V ′/ ker(ϕ). We have that a ∈ Fv

0 A
V ′

is in the kernel of ϕ if and only if
∑

v′∈V ′ av′v
′ ∈ L, that is, there exists b ∈ AL′ such that∑

v′∈V ′ av′v
′ =

∑
l′∈L′ bl′ l

′. This implies that

ker(ϕ) = πV ′(syzA(V ′, L′)) ∩ Fv
0 A

V ′ ,

where the above intersection is computable by Algorithm 2.2.27. Hence we obtain:

Algorithm 2.4.4 Given a weight vector v on A and an Fv
0 A-submodule V of a finitely pre-

sented A-module, this algorithm represents V as a quotient of a free Fv
0 A-module.

Input: A weight vector v ∈ Zn on A such that Assumption 2.3.1(a) holds, a finite set E, an
A-module M := AE/A〈L′〉 and a submodule V :=

Fv
0 A

〈
V ′
〉
⊆ M with L′, V ′ ⊆ AE

finite.
Output: A finite set Q ⊆ Fv

0 A
V ′ such that Fv

0 A
V ′/ Fv

0 A
〈Q〉 ∼= V via a 7→

∑
v′∈V ′ av′v

′.
1: Compute an A-generating set S of syzA(V ′, L′) using Gröbner basis theory.
2: Set S′ := πV ′(S).
3: Compute an Fv

0 A-generating set Q of A〈S′〉 ∩ Fv
0 A

V ′ by Algorithm 2.2.27.
4: return Q.
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2.4.2 Module membership for F v
0 A-submodules of an A-module

Assume in this subsection that Assumption 2.3.1(a) and (b) is satisfied. Recall that M =
AE/L and V =

Fv
0 A

〈
V ′
〉
⊆M . We explain how to check for a ∈ AE whether a ∈ V, which

is equivalent to
a ∈

Fv
0 A

〈
V ′
〉

+ L.

Setting d := max{degv(V ′T ),degv(aT )}, we have degv(a), degv(V ) ≤ d and hence the
above condition is in turn equivalent to

a ∈
Fv
0 A

〈
V ′
〉

+ (L ∩ Fv
d A

E). (2.4.1)

An Fv
0 A-generating set L′′ of the above intersection can be determined by Algorithm 2.2.27,

reducing the problem to deciding whether

a ∈
Fv
0 A

〈
V ′ ∪ L′′

〉
.

This problem is solvable by Algorithm 2.3.12.

Algorithm 2.4.5 Given a weight vector v onA and two Fv
0 A-submodules V and P of a finitely

presented A-module, this algorithm checks if P ⊆ V .

Input: A weight vector v ∈ Zn on A such that Assumption 2.3.1(a) and (b) holds, a finite
set E, a module M = AE/A〈L′〉 and submodules V :=

Fv
0 A

〈
V ′
〉
, P :=

Fv
0 A

〈
P ′
〉
⊆ M

with L′, V ′, P ′ ⊆ AE finite.
Output: true if P ⊆ V and false else.

1: Set d := max{degv(V ′T ),degv(P ′T )}.
2: Compute a set L′′ of Fv

0 A-generators of A〈L′〉 ∩ Fv
d A

E using Algorithm 2.2.27.
3: if P ′ ⊆ Fv

0 A
〈V ′ ∪ L′′〉 then . Decide by Algorithm 2.3.12

4: return true.
5: return false.

Remark 2.4.6. By Remark 2.3.13 the above algorithm can be extended to represent p′ ∈ P ′
as an Fv

0 A-linear combination of V ′ if p ∈ V ..

2.4.3 Intersection of F v
0 A- and Fw

0 A-submodules of an A-module

Considering theA-moduleM = AE/L (whereL = A〈L′〉) and its submodules V =
Fv
0 A

〈
V ′
〉

and W =
Fw
0 A

〈
W ′
〉
, we explain in this subsection how to compute the Fw

0 A-submodule

W ∩ V ⊆M
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under Assumption 2.3.1(a)-(c). Since

W ∩ V =
Fw
0 A
〈W ′〉 ∩

(
Fv
0 A
〈V ′〉+ L

)
⊆M, (2.4.2)

the problem of determining W ∩ V reduces to the computation of the intersection of the left
Fw

0 A-module Fw
0 A〈W ′〉 with the sum of the A-module L and the Fv

0 A-module Fv
0 A
〈V ′〉, that

is, we have to compute

I :=
Fw
0 A

〈
W ′
〉
∩
(
Fv
0 A

〈
V ′
〉

+ L
)
.

To tackle this task, we transform the above problem into an intersection of a finitely generated
Fw

0 A-module with a finitely generated Fv
0 A-module this way reducing to the situation in

Subsection 2.3.3. Since Fw
0 A

E ⊆ Fv
0 A

E , we have degv(Fw
0 A〈W ′〉) ≤ degv(W ′T ) < ∞ by

Remark 2.3.6. Setting d := max{degv(V ′T ),degv(W ′T )}, we obtain that

I =
Fw
0 A

〈
W ′
〉
∩
(
Fv
0 A

〈
V ′
〉

+ (L ∩ Fv
d A

E)
)
,

where we find a finite set of Fv
0 A-generators L′′ of L ∩ Fv

d A by Algorithm 2.2.27. Thus

I =
Fw
0 A

〈
W ′
〉
∩
Fv
0 A

〈
V ′ ∪ L′′

〉
reduces the problem to Subsection 2.3.3 and we obtain the following algorithm:

Algorithm 2.4.7 Given a w-weight v on A, an Fv
0 A-submodule V and an Fw

0 A-submodule
W of a finitely presented A-module, this algorithm computes V ∩W .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that Assump-
tion 2.3.1(a)-(c) is satisfied, a finite set E, an A-module M := AE/A〈L′〉, submodules
V :=

Fv
0 A

〈
V ′
〉
, W :=

Fw
0 A

〈
W ′
〉
⊆M with L′, V ′,W ′ ⊆ AE finite.

Output: A finite set G ⊆ AE such that V ∩W =
Fw
0 A

〈
G
〉
.

1: Set d := max{degv(V ′T ),degv(W ′T )}.
2: Determine Fv

0 A-generators L′′ of A〈L′〉 ∩ Fv
d A

E using Algorithm 2.2.27.
3: Compute a set of Fw

0 A-generators G of Fw
0 A〈W ′〉 ∩ Fv

0 A
〈V ′ ∪ L′′〉 by Algorithm 2.3.16.

4: return G.
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In the case W = Fw[s]kM = Fw[s]kAE (with s ∈ ZE and k ∈ Z), we can also replace
Algorithm 2.3.16 by Algorithm 2.3.22 if Assumption 2.3.1(d) additionally holds:

Algorithm 2.4.8 Given a w-weight v on A and an Fv
0 A-submodule V of a finitely presented

A-module with shift vector s, this algorithm computes Fw[s]kV .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(d) holds, a finite set E, an A-module M := AE/A〈L′〉, a submodule
V :=

Fv
0 A

〈
V ′
〉
⊆M with L′, V ′ ⊆ AE finite, a shift vector s ∈ ZE and k ∈ Z.

Output: A finite set G ⊆ AE with degw[s](G) ≤ k such that V ∩ Fw[s]kM =
Fw
0 A

〈
G
〉
.

1: Set d′ := max{degv((PA,wk−se)T ) | e ∈ E}. . degv(Fw[s]kA
E) ≤ d′.

2: Set d := max{d′,degv(V ′T )}.
3: Determine a set of Fv

0 A-generators L′′ of A〈L′〉 ∩ Fv
d A

E using Algorithm 2.2.27.
4: Find a set of Fw

0 A-generators G of Fw[s]kA
E ∩ Fv

0 A
〈V ′ ∪ L′′〉 by Algorithm 2.3.22.

5: return G.

Remark 2.4.9. While we were able to reduce the computation of Fw[s]kM ∩ V to Subsec-
tion 2.3.4, we cannot use a similar approach to determine Fw

• F
v
0 A-generators of Fw[s]•M∩V

(in fact, we do not even know whether a finite set of generators exists): Our reduction step
made use of the fact that the v-degree of V ′ and Fw[s]kA

E is bounded in order to consider
only the elements of L up to a fixed v-degree. But the v-degree of Fw[s]•A

E is only bounded
if v ∈ Zn≤0. (In the latter case, we have Fv

0 A = A and hence we could solve our problem
using Algorithm 2.2.26.)

However, if we replace in the above algorithm Algorithm 2.3.22 by Algorithm 2.3.20, we
compute for fixed k ∈ Z a finite set G ⊆ AE and t ∈ ZG such that

Fw[s]k′M ∩ V =
∑
g∈G

Fw
k′−tgF

v
0 A · g =

∑
g∈G

Fw
k′−degw[s](g)

Fv
0 A · g

for k′ ≤ k. We also remark that the output G of Algorithm 2.3.20 satisfies

Fw[s]• Fv
0 A
〈G〉 =

∑
g∈G

Fw
•−tgF

v
0 A · g =

∑
g∈G

Fw
•−degw[s](g)

Fv
0 A · g.

Moreover, it is possible to determine a representative gT of g ∈ G with degw[s](g) ≤ tg.
If a finite set of Fw

• F
v
0 A-generators of Fw[s]•M ∩V exists, it will be eventually contained

in Fw[s]kM ∩ V for k large enough. While we cannot detect if such a set does not exist, we
can decide whether it is contained in Fw[s]kM ∩ V as we will explain in Subsection 2.4.4.
For this, we need to modify Algorithm 2.4.8 as explained above:
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Algorithm 2.4.10 Given a w-weight v on A and an Fv
0 A-submodule V of a finitely presented

A-module with shift vector s, this algorithm computes Fw[s]kV .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(d) holds, a finite set E, an A-module M := AE/A〈L′〉, a submodule
V :=

Fv
0 A

〈
V ′
〉
⊆M with L′, V ′ ⊆ AE finite, a shift vector s ∈ ZE and k ∈ Z.

Output: A finite set G ⊆ AE and t ∈ ZG with Fw[s]k′V =
∑

g∈G F
w
k′−tgF

v
0 A · g =∑

g∈G F
w
k′−degw[s](g)

Fv
0 A · g for k′ ≤ k and Fw[s]• Fv

0 A
〈G〉 =

∑
g∈G F

w
•−tgF

v
0 A · g =∑

g∈G F
w
•−degw[s](g)

Fv
0 A · g.

1: Set d′ := max{degv((PA,wk−se)T ) | e ∈ E}. . degv(Fw[s]kA
E) ≤ d′.

2: Set d := max{d′,degv(V ′T )}.
3: Determine a set of Fv

0 A-generators L′′ of A〈L′〉 ∩ Fv
d A

E using Algorithm 2.2.27.
4: Compute a finite set G ⊆ AE and a vector t ∈ ZG satisfying Fw[s]• Fv

0 A
〈V ′ ∪ L′′〉 =∑

g∈G F
w
•−tgF

v
0 A · g by Algorithm 2.3.20.

5: return G, t.

Remark 2.4.11. Note that we have for the output of the above algorithm also

Fw[s]k′V =
∑
g∈G

Fw
k′−degw[s](g)

Fv
0 A · g

for k′ ≤ k. Given that Fw[s]•V is separated, we compute degw[s](g), which is bounded from
above by tg, for g ∈ G under Assumption 2.3.1(a) and (b) for w (instead of v) as follows:
We observe that we can solve the module membership problem g ∈ Fw[s]k′V for k′ < tg
by Algorithm 2.4.5 (if we replace v by w in that algorithm). Thus we test this stepwise for
k′ = tg − 1, tg − 2, . . . until the test fails, hence implying degw[s](g) = k′ + 1. Having
assumed that the filtration is separated, this process stops eventually. If the filtration were not
separated, this process might not terminate and we have no method to detect this.

Now consider the case V = Fv
k [s]M . Rewriting Equation (2.4.2) as

W ∩ V =
(
Fw
0 A
〈W ′〉+

Fv
0 A
〈L′′〉

)
∩ Fv[s]kAE ⊆M,

our problem reduces to Algorithm 2.3.19.

Algorithm 2.4.12 Given a w-weight v onA and an Fw
0 A-submoduleW of a finitely presented

A-module with shift vector s, this algorithm computes Fv[s]kW .

Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that As-
sumption 2.3.1(a)-(c) holds, a finite set E, an A-module M := AE/A〈L′〉, a submodule
W :=

Fw
0 A

〈
W ′
〉
⊆M with L′,W ′ ⊆ AE finite, a shift vector s ∈ ZE and k ∈ Z.

Output: A finite set G ⊆ AE such that Fv[s]kM ∩W =
Fw
0 A

〈
G
〉
.
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1: Set d′ := k −min{se | e ∈ E}. . degv(Fv[s]kA
E) ≤ d′.

2: Set d := max{d′,degv(W ′T )}.
3: Determine Fv

0 A-generators L′′ of A〈L′〉 ∩ Fv
d A

E by Algorithm 2.2.27.
4: Compute a set of Fw

0 A-generators G of (Fw
0 A〈W ′〉+ Fv

0 A
〈L′′〉)∩Fv[s]kA

E using Algo-
rithm 2.3.19.

5: return G.

2.4.4 Induced w-weight filtration on F v
0 A-submodules of an A-module

Recall that V =
Fv
0 A

〈
V ′
〉

is an Fv
0 A-submodule of M = AE/L (with L = A〈L′〉) and

s ∈ ZE a shift vector. As already mentioned in Remark 2.4.9, we cannot decide whether
Fw[s]•M ∩ V has a finite set of Fw

• F
v
0 A-generators. However, given that such a finite set

exists and that Assumption 2.3.1 and Assumption 2.4.1 hold, which we assume from now on,
such a set is computable.

Our method is based on the idea to approximate

Fw[s]•V = Fw[s]s•

(
(
Fv
0 A

〈
V ′
〉

+ L)/L
)

using quotients filtrations Fw[s]
q(Vk)
• V (for k > N for some fixed N ∈ Z) for a certain

increasing sequence of finitely generated Fv
0 A-modules Vk ⊆ Fv

0 A
〈V ′〉+L with the property

that we have equality Fw[s]•V = Fw[s]
q(Vk)
• V for k big enough (see Proposition 1.1.15 and

the discussion thereafter). The choice of the Vk is based on the fact that if a finite set of
Fw
• F

v
0 A-generators of Fw[s]•V exists, then these generators have w[s]-degrees smaller or

equal than k for k ∈ Z large enough and are thus contained in Fw[s]kV . Recall that we can
already compute for fixed k ∈ Z a set V ′k ⊆ AE such that

Fw[s]k′V =
∑
v∈V ′k

Fw
k′−degw[s](v)F

v
0 A · v (2.4.3)

for k′ ≤ k and
Fw[s]• Fv

0 A

〈
V ′k
〉

=
∑
v∈V ′k

Fw
•−degw[s](v)F

v
0 A · v (2.4.4)

(see Remark 2.4.9). If Fw[s]kV is a set of Fv
0 A-generators of V , we choose Vk = Fv

0 A
〈V ′k〉

and
Fw[s]

q(Vk)
• V =

∑
v∈V ′k

Fw
•−degw[s](v)F

v
0 A · v

is well-defined. While we could check if Fw[s]kV (or equivalently V ′k) is a such a set of Fv
0 A-

generators via Algorithm 2.4.5, we can also ensure this property by choosing k ≥ degw[s](V
′
T ).

Assuming this is the case, we derive from Proposition 1.1.15 the following criterion for the
equality Fw[s]•V = Fw[s]

q(Vk)
• V :
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Proposition 2.4.13. Assume that
Fv
0 A

〈
V ′k

〉
= V . Then we have

Fw[s]•V =
∑
v∈V ′k

Fw
•−degw[s](v)F

v
0 A · v (2.4.5)

if and only if
Grw[s](Vk) ∩Grw[s](L) = Grw[s](Vk ∩ L). (2.4.6)

Once we have determined finite Fv
0 GrwA-generating sets of the intersection on the left

hand side of Equation (2.4.6) and of the right hand side module of that equation, we can decide
whether these module are equal using Algorithm 2.3.12, because a PBW-reduction datum of
GrwA is computable by Algorithm 2.2.33 and Assumption 2.3.1(f) and Assumption 2.4.1 is
satisfied. We compute Fv

0 GrwA- and GrwA-generators of Grw[s](Fv
0 A
〈Vk〉) ⊆ (GrwA)E

and Grw[s](L) ⊆ (GrwA)E by Algorithm 2.3.24 and Algorithm 2.2.33, respectively. We
note that we may skip the second step of Algorithm 2.3.24 for the former generators since
Vk is already of the desired form. Then we intersect these two modules by Algorithm 2.3.16
using Remark 2.3.4. On the other hand, we obtain Grw[s](Fv

0 A
〈Vk〉 ∩ L) by first applying

Algorithm 2.3.16 and Remark 2.3.4 to get Fv
0 A-generators of Fv

0 A
〈Vk〉 ∩ L and then using

Algorithm 2.3.24.
This leads to the following algorithm:

Algorithm 2.4.14 Given a w-weight v on A, an A-submodule L and an Fv
0 A-submodule V

of a free A-module with shift vector s, this algorithm checks whether the quotient and the
submodule filtration induced by Fw[s]• on (V + L)/L agree.

Input: Two weight vectors v,w ∈ Zn such that v is a w-weight and such that Assump-
tion 2.3.1 and Assumption 2.4.1 are satisfied, a finite set E, submodules L = A〈L′〉 and
V = Fv

0 A
〈V ′〉 ⊆ AE with L′, V ′ ⊆ AE finite and a shift vector s ∈ ZE .

Output: true if Fw[s]s•(V + L/L) = Fw[s]
q(V )
• (V + L/L) and false else.

1: Find GrwA-generators L′′ of Grw[s](L) by Algorithm 2.2.33.
2: Compute Fv

0 GrwA-generators V ′′ of Grw[s](V ) via Algorithm 2.3.24.
3: Find Fv

0 GrwA-generators J of the intersection Fv
0 Grw A〈V ′′〉 ∩ Grw A〈L′′〉 using Algo-

rithm 2.3.16 and Remark 2.3.4. . GrwA is PBW-reduction-algebra.
4: Compute Fv

0 A-generators K of L ∩ V by Algorithm 2.3.16 and Remark 2.3.4.
5: Determine Fv

0 GrwA-generators K ′ of Grw[s](Fv
0 A
〈K〉) via Algorithm 2.3.24.

6: if J ⊆ Fv
0 Grw A〈K ′〉 then . Check by Algorithm 2.3.12.

7: return true. . K ′ ⊆ Fv
0 GrwA〈J〉 is always satisfied.

8: return false.

Thus given that Fw[s]•V is a well-filtered Fw[s]•F
v
0 A-module, the following algorithm

determines generators of this filtration:
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Algorithm 2.4.15 Given a w-weight v on A and an Fv
0 A-submodule V of a finitely presented

A-module with shift vector s, this algorithm computes Fw[s]•V if this filtration is a good
filtration.
Input: Two weight vectors v,w ∈ Zn on A such that v is a w-weight and such that Assump-

tion 2.3.1 and Assumption 2.4.1 are satisfied, a finite set E, an A-module M := AE/L
with L = A〈L′〉, a submodule V =

Fv
0 A

〈
V ′
〉
⊆ M with L′, V ′ ⊆ AE finite and a shift

vector s ∈ ZE .
Output: A finite set G ⊆ AE and t ∈ ZG such that Fw[s]•M ∩V =

∑
g∈G F

w
•−tgF

v
0 A · g =∑

g∈G F
w
•−degw[s](g)

Fv
0 A · g if such a finite set exists.

1: Choose k ∈ Z such that Fw[s]kV is a set of Fv
0 A-generators of V . . E.g. take k =

degw[s](V
′
T ).

2: Initialize an empty set G ⊆ AE and a dynamic vector t ∈ ZG.
3: while Fw[s]•V 6=

∑
g∈G F

w
•−tgF

v
0 A · g do . Test by Algorithm 2.4.14.

4: Compute a finite setG′ ⊆ AE and t′ ∈ ZG′ with Fw[s]k′V =
∑

g∈G′ F
w
k′−t′gF

v
0 A ·g =∑

g∈G′ F
w
k′−degw[s](g)

Fv
0 A · g for k′ ≤ k using Algorithm 2.4.10 and replace G by G′

and t by t′.
5: Increase k.
6: return G, t.

Remark 2.4.16. We have a few remarks on the above algorithm:

(a) If Fw[s]•M ∩ V were not well-filtered, the algorithm would not terminate.

(b) If we apply Algorithm 2.4.14 multiple times during the execution of Algorithm 2.4.15,
we only need to perform the first step of Algorithm 2.4.14 once.

(c) The output of Algorithm 2.4.15 also satisfies

Fw[s]•V =
∑
g∈G

Fw
•−degw[s](g)

Fv
0 A · g.

If Fw[s]•V is separated, we can compute degw[s](g) as explained in Remark 2.4.11.
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3 (Strictly) specializable D-modules

The (rational) V -filtration on DX -modules along a smooth pure codimension one subvariety
X0 ⊆ X is an essential ingredient of the theory of mixed Hodge modules and plays a key
role in the computation of Hodge theoretic direct images. We call DX -modules that possess
such a filtration X0-specializable. Hodge DX -modules do not only admit a V -filtration, but
their Hodge filtration also behaves “well” with respect to this V -filtration making them an
example of so-called strictly X0-specialize DX -modules. V -filtrations are used to define (fil-
tered) localizations and dual localizations of (strictly) X0-specializable DX -modules along
X0. Similar concepts for DX(∗X0)-modules are applied to construct Hodge theoretic direct
images under the open embedding defined by the complement of X0. While these functors
agree with the correspondingD-module theoretic functors, the construction of the filtration on
the (dual) localizations and the direct images is subtle.

This chapter lays the theoretical foundation for the algorithms that we present in the next
chapter. We review many concepts and results involving V -filtrations, localizations and dual
localizations mainly due to Saito or Sabbah (see in particular [Sai88] and [SS17]), and apply
them to prepare the algorithmic treatment of the these constructions on a sheaf-theoretic level.
In the next chapter we then develop actual algorithms for these problems using the computa-
tional theory of weight-filtered PBW-reduction-algebras presented in Chapter 2.

More precisely, given a smooth equidimensional variety X and a pure codimension one
subvariety X0, this chapter is dedicated to the following: In Section 3.1 we treat the unfiltered
situation, that is, D-modules without an order filtration, by first introducing the V -filtration
on coherent DX and D(∗X0)-modules along smooth X0 and reviewing its main properties.
After that, in preparation of the algorithmic computation of the V -filtration, we give a local
realization of this filtration relying on so-called local b-functions. Next we describe the local-
ization and dual localizations of X0-specializable DX - and DX(∗X0)-modules using certain
parts of the V -filtration. Then we extend the concept of X0-specializability to singular X0

by locally considering certain graph embeddings. Such graph embeddings enable us also to
reduce the constructions of localizations and dual localizations to the smooth case. Section 3.2
is dedicated to the analogous constructions in a filtered setting. We first establish for smooth
X0 a notation of strict X0-specializability in the case of (DX , F ◦• )-modules: Loosely speak-
ing, strictX0-specializability of a well-filtered (DX , F ◦• )-module (M, F•) means in particular
that the filtration F• on all part of the V -filtration is already determined by this filtration on
certain parts of a the V -filtration. Unlike for X0-specializability the notation of strict X0-
specializability for (DX(∗X0), F ◦• )-modules differs because well-filtered (DX(∗X0), F ◦• )-
modules are in general not well-filtered as (DX , F ◦• )-modules. After having defined strict
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3 (Strictly) specializable D-modules

X0-specializability also for (DX(∗X0), F ◦• )-modules, we turn the localization and dual local-
ization of strictly X0-specializable (DX , F ◦• )- or (DX(∗X0), F ◦• )-modules into strictly X0-
specializable (DX , F ◦• )-modules by using their description in terms of the V -filtration. We
also prepare the actual computation of these constructions on a sheaf theoretic level in local
coordinates. Finally we extend these constructions to singular X0.

Recall that we work implicitly on the distinguished affine base (see Subsection 1.1.1), as we
are dealing with O-quasi-coherent sheaves.

In this chapter X always denotes a smooth equidimensional variety (over C) and X0 ⊆ X
stands for an equidimensional codimension one subvariety with corresponding embedding ι :
X0 ↪→ X and defining ideal sheaf I. We write X∗ := X \X0 with inclusion jX∗ : X∗ ↪→ X .
Under the assumption that X0 is smooth, we agree upon the following convention:

Convention 3.0.1. Assume that X0 is smooth. Recall that we can find by Proposition 1.2.9
for every point p ∈ X0 a coordinate neighborhood U of X0 ⊆ X containing p and local
coordinates (x, t) := (x1, . . . , xn, t) with differentials (θ, ∂t) := (θ1, . . . , θn, ∂t) on U such
that IU = OU 〈t〉. We sometimes call such a U also coordinate neighborhood of p.

In this chapter when writing t, ∂t or U , we always assume that we work on a coordinate
neighborhood U such that t is part of a local coordinate system with corresponding differential
∂t and IU = OU 〈t〉. If not stated otherwise, all statements involving t, ∂t or U are independent
of the choice of U (and p) and the local coordinate system.

3.1 The V -filtration and application to localization and dual
localization

The subject of study of this section is the (rational) V -filtration. In the analytic setting, the
V -filtration along a coordinate showed up first in the work of Malgrange [Mal83] in the spe-
cial case of D-module theoretic direct images of O under graph embeddings and Kashiwara
extended that concept along submanifolds to regular holonomic D-modules [Kas83]. We re-
view Kashiwara’s definition of the (rational) V -filtration for DX -modules in the codimension
one case and extend this concept to coherent DX(∗X0)-modules following [SS17]. Then we
collect important results about this filtration mainly due to Saito (see [Sai88]) and use them to
describe certain localizations and dual localizations (see [Sai88], [Sai93] and [SS17]). Based
on this, we prepare the algorithmic treatment of these concepts for the next chapter.

3.1.1 Specializability, localization and dual localization along smooth
codimension one subvarieties

We assume in this subsection that X0 is smooth. The V -filtration along X0 on DX (indexed
by Z) is defined by

V X0
• DX := {p ∈ DX | p(Ij) ⊆ Ij−• for all j ∈ Z}, (3.1.1)
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where Ij = OX for j ≤ 0. If it is clear from the context that we consider the V -filtration
along X0, we drop the upper index X0 (we use this convention also for the other V -filtrations
that we will define). In local coordinates (x, t) on U , we have

(V•DX)U = V
V (t)
• DU =

∑
α,β∈N,γ∈Nn:β−α≤•

pα,β,γθ
γtα∂βt with pα,β,γ ∈ OU . (3.1.2)

On the complement X∗, the V -filtration is given by V X0
k DX∗ := (Vk DX)X∗ = DX∗ for all

k ∈ Z.
Following [SS17], we also introduce the V -filtration along X0 on DX(∗X0): Considering

the I-adic filtration defined by Ik := OX(−kX0) for k ∈ Z, we define the V -filtration on
DX(∗X0) by

V X0
• DX(∗X0) := {p ∈ DX(∗X0) | p(Ij) ⊆ Ij−• for all j ∈ Z}. (3.1.3)

So (Vk DX(∗X0))U = Vk DX(∗X0)U = t−kV0DU and Vk DX(∗X0)X∗ = DX(∗X0)X∗ =
DX∗ for k ∈ Z . These V -filtrations define a subring V0DX = V0DX(∗X0) of DX and
DX(∗X0), which is OX -quasi-coherent. Moreover, we have:

Lemma 3.1.1. The sheaf of ring V0DX = V0DX(∗X0) is locally Noetherian, so in particular
coherent.

Proof. We induce the filtration F◦• V0DX on V0DX via the order filtration on DX . On a
coordinate neighborhood U ⊆ X with local coordinates (x, t) the associated graded ring is

(GrF
◦
V0DX)(U) ∼= OX(U)[ξ1, . . . , ξn, tξt].

Since on affine open neighborhoods U ′ ⊆ X∗ with local coordinates x′1, . . . , x
′
n +1

(GrF
◦
V0DX)(U ′) ∼= OX(U ′)[ξ′1, . . . , ξ

′
n +1],

the claim follows by Proposition 1.1.16. Proposition 1.1.7(b) implies now the particular claim.

Notation 3.1.2. We denote by D′X either DX or DX(∗X0).

Recall that all our filtrations are by definition increasing, exhaustive and indexed discretely
by the rational numbers. The V -filtration on coherent left D′X -modules is now defined as
follows (see below for uniqueness and compatibility of the notions for DX - and DX(∗X0)-
modules):

Definition 3.1.3. The (rational) V -filtration along X0 on a coherent left D′X -moduleM is a
V•D′X -filtration V X0

• M = V•M onM satisfying

(a) V X0
α M is a coherent V X0

0 D′X -module for any α ∈ Q,
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(b) V X0
k D′X ·V X0

α M⊆ V X0
α+kM for all α ∈ Q, k ∈ Z,

(c) I ·V X0
α M = V X0

α−1M for all α < 0,

(d) for every point p ∈ X0 exists a coordinate neighborhood U ⊆ X of p such that−∂tt−α
acts nilpotently on (GrV

X0

α M)U for any α ∈ Q.

We say that a D′X -module M is Q-specializable along X0 (or Q-X0-specializable) if the
rational V -filtration along X0 onM exists.

Note that Condition (b) is only listed for reference purposes and is already implicitly con-
tained in the requirement that V•M is a V•D′X -filtration.

We point out that Definition 3.1.3(d) does not depend on the choice of the coordinate neigh-
borhood or of the local coordinates: Indeed, let U ′ be another coordinate neighborhood of
p with local coordinates (x′, t′) and differentials (θ′, ∂t′). Then there is a regular function
u : U ∩ U ′ → C∗ such that t′ = ut and there are a1, . . . , an, b ∈ OU∩U ′ such that ∂t′ =∑

1≤i≤n aiθi + b∂t. Applying that equation to t = u−1t′ gives u−1 + t′∂t′(u
−1) = ∂t′(t) = b.

This implies

∂t′t
′ = ∂tt+

( ∑
1≤i≤n

aiθiu+ t′∂t′(u
−1)∂tu+ u−1∂t(u)

)
︸ ︷︷ ︸

∈V0DU∩U′

t

showing that ∂t′t′ acts as ∂tt on GrαMU∩U ′ for any α ∈ Q. So in particular, if M is Q-
specializable along X0, then Condition 3.1.3(d) holds on every coordinate neighborhood and
system of local coordinates as in Convention 3.0.1.

Since we only considerQ-specializability, we often drop theQ and write ”X0-specializable“
or ”specializable along X0“.

Convention 3.1.4. Our notation of the V -filtration on D′X -modules conflicts for quotients of
free modules with the filtration induced by V•D′X . As we are rarely and only for computational
purposes interested in the latter filtration, we agree upon the following: IfM = (D′X)E/L
(with E finite and L ⊆ (D′X)E a submodule) is an X0-specializable DX -module, we mean by
V•M always its V -filtration in the sense of Definition 3.1.3 and denote the induced filtration
by

V ind
• M := V X0,ind

• M := ((V•D′X)E + L)/L .

On the other hand, we set V•D′E := (V•D′X)E . Note that this last convention does not cause
any ambiguity because DEX is not X0-specializable.

The V -filtration on the complement of X0 is trivial:

Remark 3.1.5. LetM be an X0-specializable DX -module. Then (Vk DX)X∗ = DX∗ for all
k ∈ Z implies VαMX∗ := (VαM)X∗ =MX∗ for all α ∈ Q.
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The V -filtration is in general not separated:

Remark 3.1.6. Following [Bjö93, Section 2.10.22], consider the case X0 = {0} ⊆ X = C
and theDX -moduleM := DX /DX

〈
t2∂t + 1

〉
. Since ta∂bt = ta∂bt (−t2∂t)b+k ∈ V ind

−k M for
all a, b ∈ N and k ∈ N, we haveM = V ind

k M for all k ∈ Z showing that the V -filtration is
constant in this case and hence not separated.

Remark 3.1.7. There are also more general types of V -filtrations.

(a) We can consider V -filtrations indexed discretely by the complex numbers: For this, fix
total order < on C that agrees with the standard order on R and such that a < b implies
a+ c < b+ c for all a, b ∈ C and any c ∈ R. Replacing Q by C, the complexly indexed
V -filtration is now defined as in Definition 3.1.3.

(b) Another natural generalization of Definition 3.1.3 are V -filtrations along smooth subva-
rieties of codimension greater than one: If we assume for a moment thatX0 is smooth of
pure codimension m with defining ideal sheaf I, we define V X0

• DX by Equation (3.1.1)
and in Definition 3.1.3 we replace Condition (d) by

(d’) for every point p ∈ X0 exists a coordinate neighborhood U ⊆ X of p with coor-
dinates (x, t1, . . . , tm) satisfying X0 ∩ U = V (t1, . . . , tm) such that the operator
−
∑

1≤i≤m ∂titi − α acts nilpotently on (GrV
X0

α M)U for any α ∈ Q.

respectively.

If not stated otherwise, we mean by V -filtration always the rational V -filtration along a smooth
codimension one subvariety as in Definition 3.1.3.

V -filtration on DX -modules

We focus now first on the V -filtration onDX -modules. Later we show the compatibility of the
notions of V -filtrations onDX - andDX(∗X0)-modules and use this to develop corresponding
results for V -filtrations on DX(∗X0)-modules. The next remark explains the structure of the
graded parts of the V -filtration on DX -modules:

Remark 3.1.8.

(a) LetM be anX0-specializableDX -module. By definition of the V -filtration, the sheaves
GrVαM and VαM /Vα−1M are GrV0 DX -modules with support on X0. Recalling that
(xi, θi)1≤i≤n is a local coordinate system on U ∩X0, we define the map

(ιDX0)U → GrV0 DU
by sending θi to θi and f ∈ (ιOX0)U to the residue class in GrV0 DU of a representative
of f in OU under the isomorphism (ιOX0)U ∼= OU / IU . One easily checks that the
local maps glue to a global map

ιDX0 → GrV0 DX .
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3 (Strictly) specializable D-modules

This map allows us to regard GrVαM and VαM /Vα−1M as ιDX0-modules. Under
the identification DX0

∼= ι−1ιDX0 , we consider ι−1 GrVαM and ι−1(VαM /Vα−1M)
asDX0-modules. From now on, we drop the ι−1 and write by abuse of notation GrVαM
and VαM /Vα−1M for these DX0-modules.

(b) By Definition 3.1.3(a) and (d) there exist a finite setB ⊆ Q∩(α−1, α] and c ∈ NB such
that the polynomial

∏
β∈B(−∂tt − β)cβ annihilates the module VαMU /Vα−1MU .

Writing 1 =
∑

β∈B dβ
∏
γ∈B\{β}(s − γ)cγ with d ∈ Q[s]B using Bézout’s identity,

we see that VαMU /Vα−1MU decomposes as a direct sum of generalized eigenspaces⊕
β∈B ker((−∂tt− β)N ) with N � 0 and deduce that

VαMU /Vα−1MU →
⊕
β∈B

GrVβ MU , m 7→
(
dβ

∏
γ∈B\{β}

(−∂tt− γ)cγm
)
β∈B

is a GrV0 DU - and (ιDX0)U -linear isomorphism. We conclude that VαM /Vα−1M is
globally isomorphic to

⊕
β∈(α−1,α] GrVβ M as GrV0 DX - and ιDX0-module by similar

arguments as for the independence of Definition 3.1.3(d) on the choice of the coordinate
neighborhood and the local coordinates.

We review now some of Saito’s results concerning the V -filtration along smooth codimen-
sion one subvarieties. All these results are only stated for DX -modules with one exception:
We show that Lemma 3.1.10 and its corollaries hold naturally also for DX(∗X0)-modules
and use these results in Lemma 3.1.25 to prove that the two notions of specializability for
DX(∗X0)-modules are compatible.

Lemma 3.1.9. [Kas83, Theorem 1] The V -filtration on a coherent DX -modules is unique if
it exists.

The following lemma is a direct consequence of Definition 3.1.3(d):

Lemma 3.1.10. [Sai88, (3.1.1.4)] LetM be anX0-specializableD′X -module. Then the maps

t· : GrVαMU → GrVα−1MU and ∂t· : GrVα−1MU → GrVαMU

are bijective for α 6= 0.

Proof. For α 6= 0 and i ∈ N set

Aiα := ker((−∂tt− α)i· : GrVαMU → GrVαMU ).

By Definition 3.1.3(d), we have GrVαMU =
⋃
i∈NAiα.

We first show inductively thatAiα ⊆ ∂t ·GrVα−1MU which implies that ∂t· : GrVα−1MU →
GrVαMU is surjective. Multiplying aiα ∈ Aiα with (−∂tt − α), we see that there is some
ai−1
α ∈ Ai−1

α such that
αaiα = −∂ttaiα + ai−1

α
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3.1 The V -filtration and application to localization and dual localization

and hence aiα ∈ ∂t · GrVα−1MU by induction. Writing (−∂tt − (α − 1)) = (−t∂t − α) and
arguing as above gives that t· : GrVαMU → GrVα−1MU is surjective.

For the injectivity of ∂t· : GrVα−1MU → GrVαMU assume there is aα−1 ∈ GrVα−1MU

such that ∂taα−1 = 0. As t· : GrVαMU → GrVα−1MU is surjective there is aα ∈ GrVαMU

satisfying taα = aα−1. This implies (−∂tt)aα = 0 and hence aα = 0 = aα−1 since α 6= 0.
An analogous argument shows the injectivity of the other map.

Corollary 3.1.11. LetM be an X0-specializable D′X -module. We have for α ∈ [−1, 0] and
k ∈ Z locally that

Vα+kMU =

{
t−kVαMU , if k ≤ 0, α 6= 0∑k

i=0 ∂
i
tVαMU , if k ≥ 0, α 6= −1

and hence globally

Vα+kM =

{
I−k VαM = Vk D′X ·VαM, if k ≤ 0, α 6= 0

Vk D′X ·VαM = Vk DX ·VαM, if k ≥ 0, α 6= −1.

In particular,
VαM = V<αM+V1D′X ·Vα−1M for α > 0

and the V -filtration along X0 onM is a good V•D′X -filtration (see Definition 1.1.11(d)).

Corollary 3.1.12. If the D′X -moduleM is Q-specializable along X0, then we have for m ∈
MU that ∂t ·m ∈ V0MU implies m ∈ V−1MU .

For α < 0, left multiplication with t acts injectively on VαMU :

Lemma 3.1.13. [Sai88, Lemme 3.1.4] LetM be an X0-specializable DX -module. The map

t· : VαMU → Vα−1MU

is bijective for α < 0.

We review Saito’s proof for the convenience of the reader:

Proof. Note that the DX -modulesM′ := Γ[X0](M) (see Proposition 1.4.12(c)) andM′′ :=
M /M′ are coherent and t acts injectively onM′′U . The V -filtration onM induces filtrations

V ′•M′ := V•M∩M′ and V ′•M′′ := (V•M+M′)/M′

onM′ andM′′, respectively. One easily checks that V ′•M′′ satisfies all conditions of Def-
inition 3.1.3 and is hence the V -filtration ofM′′ along X0 by Lemma 3.1.9. Similarly, it is
immediate that V•M induces all properties of Definition 3.1.3 but Condition (c) on V ′•M′,
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3 (Strictly) specializable D-modules

because the coherence of V0DX (see Lemma 3.1.1) implies Condition (a). The missing con-
dition follows locally for α < 0 from the commutative diagram

0 // V ′αM′U //

t·
��

VαMU
//

t·
����

VαM′′U //

∼=t·
��

0

0 // V ′α−1M′U // Vα−1MU
// Vα−1M′′U // 0

and the Snake Lemma, where the surjectivity of the vertical maps in the middle and on the
right is due to Corollary 3.1.11. Hence we have by Lemma 3.1.9 that V•M′ = V ′•M′. Since
M′ has support on X0, Lemma 3.1.16 below implies VαM′ = 0 for α < 0 and another
application of the Snake Lemma to the above diagram shows that the vertical arrow in the
middle is in fact bijective.

Similarly, one shows the “only if ”-part of the next statement, whereas the converse direction
can be proven using so-called local b-functions (see Remark 3.1.19(b)):

Corollary 3.1.14. [Sai88, Corollaire 3.1.5] Let 0 → M′ → M → M′′ → 0 be an exact
sequence of coherent DX -modules. Then M is Q-specializable along X0 if and only if M′
andM′′ are so. In this case

0→ V•M′ → V•M→ V•M′′ → 0

is an exact sequence.

From Lemma 3.1.9 and the above corollary follows:

Proposition 3.1.15. [Sai88, Proposition 3.1.6] If ϕ : M → M′ is a morphism between
X0-specializable DX -modules, then ϕ is strict with respect to the corresponding rational V -
filtrations. In particular, the category of X0-specializable DX -modules is abelian and its
morphisms are always strict.

The following lemma is a consequence of Kashiwara’s equivalence (see Proposition 1.4.12):

Lemma 3.1.16. [Sai88, Lemme 3.1.3] LetM be a coherent DX -module such that its support
is contained in X0. Then M is Q-specializable along X0, and we have on a coordinate
neighborhood U

MU =M0⊗CC[∂t] = (ιX0∩U )+M0 and VαMU =
⊕

0≤i≤bαc

M0⊗∂it ,

where M0 := ker(t· : MU → MU ) and ιX0∩U : X0 ∩ U → U is the restriction of ι. In
particular, V<0M = 0 and

VαMU = ker(tbαc· :MU →MU ) =
⊕

α≥k∈N
ker((−∂tt− k)· :MU →MU )

for α ≥ 0.
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3.1 The V -filtration and application to localization and dual localization

Hence the quasi-inverse in Kashiwara’s equivalence in the codimension one case is ex-
pressed as follows:

Corollary 3.1.17. Let ι : X0 ↪→ X be an embedding of smooth equidimensional varieties of
codimension one. Then a quasi-inverse for ι+ : ModOX0 - qcoh(DX0)→ Mod

ι(X0)
OX - qcoh(DX) is

given by

GrV0 = GrV
ι(X0)

0 : Mod
ι(X0)
OX - qcoh(DX)→ ModOX0

- qcoh(DX0), M 7→ GrV0 M = V0M

by considering GrV0 M = V0M as an DX0-module via the isomorphism X0
∼= ι(X0).

The V<0-part of an X0-specializable DX -module depends only on the restriction of that
module to X∗:

Lemma 3.1.18. [Sai88, Lemme 3.1.7] Let ϕ :M→M′ be a morphism of X0-specializable
DX -modules. If ϕX∗ :MX∗ →M′X∗ is an isomorphism then

VαM∼= VαM′ for α < 0.

We review Saito’s proof:

Proof. By Corollary 3.1.14 and Proposition 3.1.15 we have for α ∈ Q an exact sequence

0→ Vα ker(ϕ)→ VαM
ϕ−→ VαM′ → Vα(M′ / imϕ)→ 0.

Since ker(ϕ) andM′ / imϕ have support on X0 by assumption, the modules on the left and
on the right of the above sequence are zero for α < 0 by Lemma 3.1.16. This shows the
claimed isomorphism.

We collect statements concerning the existence of the V -filtration on DX -modules:

Remark 3.1.19. LetM be a coherent DX -module.

(a) Kashiwara proved that the rational V -filtration along X0 on M exists if M is regu-
lar holonomic and with quasi-unipotent local monodromy (see e.g. [Meb89, Théorème
III.4.10.1]). In particular, Hodge DX -modules are X0-specializable. More generally,
a holonomic DX -module admits a unique V -filtration indexed by the complex num-
bers (with respect to any ordering as in Remark 3.1.7(a)) (see e.g. [Meb89, Théorème
III.4.4.2]).

(b) The existence of (not necessarily rationally indexed) V -filtrations is equivalent to exis-
tence of certain b-functions: The b-function of a local section m ∈ MU is the minimal
monic polynomial bm(s) ∈ C[s] \ {0} such that bm(−∂tt)m ∈ V−1DU ·m if such a
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3 (Strictly) specializable D-modules

polynomial exists. The b-function exists for every local section ofM if and only if the
(complexly indexed) V -filtration exists [Sab87] [Sab01]. In this case we have

VαMU = {m ∈MU | bm(z) = 0 for z ∈ C implies z ≤ α} (3.1.4)

and hence the roots of the local b-functions are rational if and only if the V -filtration is
rational.

Eventually, we are interested in an algorithm for the computation of the V -filtration. Our
algorithm is based on the observation that the filtered part VαM of an X0-specializable DX -
module can be represented using the filtration described below (see [Kas83]):

Definition 3.1.20. LetM be a coherentDX -module. For fixed α ∈ Q, we define the filtration
V α
• M = V X0,α

• M indexed by the integers by the following properties:

(a) V α
i M is a coherent V0DX -module for any i ∈ Z,

(b) Vk DX ·V α
i M⊆ V α

i+kM for all i, k ∈ Z,

(c) I ·V α
i M = V α

i−1M and ∂tV α
−iMU +V α

−iMU = V α
−i+1MU on any coordinate neigh-

borhood U for i� 0,

(d) There exists a finite set A ⊆ Q satisfying the following condition: Every point p ∈ X0

has a coordinate neighborhood U ⊆ X such that for Ai := (A+Z)∩ (α− 1 + i, α+ i]
the operator

∏
a∈Ai(−∂tt − a) acts nilpotently on GrV

α

i MU := V α
i MU /V

α
i−1MU

for every i ∈ Z.

We point out that Definition 3.1.20(d) is independent of the choice of the coordinate neigh-
borhood and of the choice of the local coordinate system. The lemma below shows that the
above filtration exists if and only ifM is X0-specializable, whereas uniqueness can be proven
in the same way as the uniqueness of the V -filtration.

Lemma 3.1.21. LetM be a coherent DX -module and α ∈ Q fixed. Then V α
• M exists if and

only ifM is Q-specializable along X0 and we have for k ∈ Z in this case

Vα+kM = V α
k M .

Proof. Clearly (V α
• M)X∗ = MX∗ and hence both filtrations are uniquely defined by this

property and by their restrictions to coordinate neighborhoods. Thus we may assume that X
itself is a coordinate neighborhood and that X0 has defining ideal sheaf generated by t.

Let M be X0-specializable. Setting V α
k
′M := Vα+kM for k ∈ Z, we see by Defi-

nition 3.1.3 and Corollary 3.1.11 immediately that V α
•
′M satisfies all properties of Defini-

tion 3.1.20.
Conversely, assume that V α

• M exists. We write γ ∈ Q as γ = α+ β + k with β ∈ (−1, 0]
and k ∈ Z and set

V ′γM := V α,β
k M,
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3.1 The V -filtration and application to localization and dual localization

where V α,β
k is the maximal V0DX -submodule of V α

k M containing V α
k−1Mwith the property

that bγ(−∂tt) :=
∏
a∈Ak∩(−∞,γ](−∂tt − a) acts nilpotently on V α,β

k M /V α
k−1M. Then all

conditions of Definition 3.1.3 immediately follow for V ′•M except for Condition (c). We first
show that tV ′γM = V ′γ−1M for γ � 0: Givenm ∈ V ′γ−1M⊆ V α

k−1M, Definition 3.1.20(c)
implies the existence of some m′ ∈ V ′α+kM such that tm′ = m. By definition of Vγ′−1M,
there is a natural number l ∈ N such that bγ−1(−∂tt)lm ∈ V ′α+k−2M = tV ′α+k−1M,
where the equality follows from Definition 3.1.20(c). Thus we have tbγ−1(−∂tt − 1)lm′ ∈
tV ′α+k−1M. Since we can prove the injectivity of t· : V α

i M → V α
i−1M for i � 0 along

the lines of the proof of Lemma 3.1.13, it follows that bγ(−∂tt)lm′ ∈ V ′α+k−1M and hence
m′ ∈ V ′γM. Note that Lemma 3.1.10 also holds in our situation since Definition 3.1.20(c)
was not needed in the proof of that lemma. Thus, if δ < 0 and if V ′<δ−1M = tV ′<δM, the
Snake Lemma and the commutative diagram

0 // V ′<δM //

t·
����

V ′δM //

t·
��

GrV
′

δ M //

t·
����

0

0 // V ′<δ−1M // V ′δ−1M // GrV
′

δ−1M // 0

imply that the vertical map in the middle is also surjective. This proves Definition 3.1.3(c),
because V ′•M is indexed discretely.

The second claim follows now directly from the above construction and by the uniqueness
of the V -filtration.

Locally, we reduce the computation of the V -filtration to that of local b-functions:

Remark 3.1.22. LetM be a coherent DX -module. According to Kashiwara, we can decide
if M is Q-specializable along X0 and approach V α+k

• M for fixed α ∈ Q and for suitably
chosen k ∈ Z in this case using an induced V -filtration: If we represent M locally on a
coordinate neighborhood U as DEU /N with E finite and N ⊆ DEU , then V•DU induces the
filtration

V ind
• MU = ((V•DU )E +N )/N

onMU , which satisfies all properties of Definition 3.1.20 except for Condition (d).
The V (t)-specializability of MU is equivalent to the existence of the b-function of MU

with respect to the induced V -filtration, i.e., the monic nonzero polynomial b(0)(s) ∈ Q[s] of
minimal degree having only rational roots and satisfying

b(0)(−∂tt− •)V ind
• MU ⊆ V ind

•−1MU :

Indeed, if MU is V (t)-specializable then there exist local b-function b
(e)

(s) ∈ Q[s] with
rational roots for e ∈ E by Remark 3.1.19(b). The product

∏
e∈E b(e)(s) satisfies the above

equation and hence there also exists a minimal polynomial, which has rational roots, fulfilling
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3 (Strictly) specializable D-modules

this equation. The converse direction follows from the construction of a filtration satisfying all
conditions of Definition 3.1.20 as described below.

So assume that b(0)(s) as above exists. To determine the rational V -filtration along V (t),
we shift now the roots of this b-function: Choose k ∈ Z such that the minimal root of b(0)(s)

lives in I := (α + k − 1, α + k]. Setting W (0)
• MU := V ind

• MU , we may assume that we
have a filtration W (i)

• MU satisfying Definition 3.1.20(a)-(c) and a polynomial b(i)(s) ∈ Q[s]

with minimal root in I in such that b(i)(−∂tt − •) annihilates GrW
(i)

• MU . Write b(i)(s) =

b
(i)
1 (s)b

(i)
2 (s), where b(i)2 (s) has roots in interval I , while the roots of b(i)1 (s) are strictly greater

than α+ k and set
b(i+1)(s) := b

(i)
1 (s+ 1)b

(i)
2 (s).

This decreases the value of the roots not living in I . Considering

W
(i+1)
• MU := W

(i)
•−1MU +b

(i)
1 (−∂tt− •)W (i)

• MU

the filtration W (i)
• MU induces Properties (a)-(c) of Definition 3.1.20 on W (i+1)

• MU . Since

b(i+1)(−∂tt− •)W (i+1)
• MU =b

(i)
2 (−∂tt− •) b(i)1 (−∂tt− •+ 1)W

(i)
•−1MU︸ ︷︷ ︸

⊆W (i+1)
•−1 MU

+ b
(i)
1 (−∂tt− •+ 1) b(i)(−∂tt− •)W (i)

• MU︸ ︷︷ ︸
⊆W (i)
•−1MU︸ ︷︷ ︸

⊆W (i+1)
•−1 MU

,

we have b(i+1)(−∂tt − •) GrW
(i+1)

• MU = 0. Iterating this process until all roots are in the
interval I , we obtain V α+k

• MU .

Remark 3.1.23. Note that b(0)(s) in the last remark agrees with the minimal monic nonzero
polynomial b′(s) ∈ Q[s] such that

b′(−∂tt)(e) ∈ V ind
−1 MU

for all e ∈ E and b(0)(s) exists if and only if b′(s) exists: Namely, consider v := gθαta∂bt (e) ∈
Vb−aDEU ) with g ∈ OU . Then

(−∂tt− (b− a))v = gθαta∂bt︸ ︷︷ ︸
∈Vb−aDU

(−∂tt)(e)− ∂t(g)tθαta∂bt (e)︸ ︷︷ ︸
∈Vb−a−1DEU

shows that b′(−∂tt)(e) ∈ V ind
−1 MU for all e ∈ E implies b′(−∂tt)v ∈ V ind

b−a−1MU .
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Remark 3.1.24. Keeping the notation of Remark 3.1.22 and assuming thatM is X0-special-
izable, we deduce from b(0)(s) a suitable power p such that (−∂tt−α)p annihilates GrVαMU .
Namely, take p = mb(0)(s)(α) :=

∑
z∈α+Z:b(0)(z)=0 multb(0)(s)(z), where multb(0)(s)(z) de-

notes the multiplicity of the root z. If we choose i ∈ N such that all roots of b(i)(s) live in
the interval I , then b(i)(−∂tt + k) acts as zero on GrVαMU by construction and the root α
has multiplicity p. According to Definition 3.1.3(a) and (d) there is some l ∈ N such that
(−∂tt− α)l annihilates also that module. By Bézout’s identity this implies that our choice of
p is valid.

V -filtration on DX(∗X0)-modules

We study now properties of the V -filtration on DX(∗X0)-modules. In particular, we will see
that the notions of V -filtrations on DX - and on DX(∗X0)-modules are compatible:

Lemma 3.1.25. Let N be a coherent DX(∗X0)-module.

(a) If N is X0-specializable as DX(∗X0)-module, then it is DX -coherent.

(b) The module N is X0-specializable as DX(∗X0)-module if and only if it is X0-special-
izable as DX -module. In this case, the corresponding V -filtrations agree.

Proof.

(a) We deduce from Corollary 3.1.11 and Definition 3.1.3(a) that N is as DX -module on
the coordinate neighborhood U generated by the coherent V0DX -module V0N and is
hence locally DX -finitely generated.

As OX(∗X0) is on U of the form OU [t−1] and agrees with OU ′ on a neighborhood
U ′ ⊆ X∗, it is in particularOX -quasi-coherent. BecauseDX(∗X0) isOX(∗X0)-locally
free, Proposition 1.1.7(a) shows that N is OX -quasi-coherent. Another application of
this proposition gives now the DX -coherence of N .

(b) If N is X0-specializable as DX(∗X0)-module with V -filtration V•N , then it is also
X0-specializable as DX -module with V -filtration V•N by Part (a) and definition of the
corresponding V -filtrations.

Conversely, we only have to show that if V•N is the V -filtration on N considered
as DX -module then t−1VαNU ⊆ Vα+1NU . By Remark 3.1.19(b), there is for n ∈
VαNU some v ∈ V−1DU such that bn(−∂tt)n = vn. This implies bn(−∂tt−1)t−1n =
t−1bn(−∂tt)n = t−1vn = v′t−1n with v′ ∈ V−1DU . Therefore bt−1n(s) divides
bn(s− 1) and hence t−1n ∈ Vα+1NU by this Remark 3.1.19 showing that V•N is also
the V -filtration on N considered as DX(∗X0)-module.
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Lemma 3.1.13 holds for X0-specializable DX(∗X0)-modules for all α ∈ Q:

Lemma 3.1.26. Let N be an X0-specializable DX(∗X0)-module.

(a) The maps
t· : VαNU → Vα−1NU and t· : GrVα NU → GrVα−1NU

are bijective for all α ∈ Q. In particular, we have for all α ∈ Q

Vα−1N = I ·VαN = V−1DX ·VαN .

(b) We have N ∼= DX ⊗V0DXV0N .

Proof.

(a) We have VαNU = t · t−1VαNU with t−1VαNU ⊆ Vα−1NU by Definition 3.1.3(b)
showing that Condition (c) in that definition holds for all α ∈ Q. Thus the claim follows
from the injectivity of the action of t on NU .

(b) According to Corollary 3.1.11 and Lemma 3.1.25(b) the morphism

ϕ : DX ⊗V0DXV0N � N , p⊗ n 7→ pn

is surjective. We check the injectivity on the stalks. So consider q ∈ U and the element∑
0≤i≤s ∂

i
t ⊗ni ∈ ker(ϕq) with n ∈ V0N {0,...,s}q . We may assume that ni /∈ V−1N q =

tV0N q for i > 0 if ni is nonzero, where the last equality holds by Part (a): Namely, if
ni ∈ V−1N q, we write ni = tn′i with n′i ∈ V0N q. We choose now ki ≤ i maximal
such that there is a representation ni = tkin′′i with n′′i ∈ V0N q. Hence we obtain the
representation∑
0≤i≤s

∂it⊗ni = 1⊗n0+
∑

1≤i≤s
∂itt

ki⊗n′′i = 1⊗n0+
∑

0≤i≤s
(∂it⊗

∑
1≤j≤s:j−kj=i

∂
kj
t t

kjn′′j ).

Applying the same procedure to the right hand side representation if necessary, we
obtain after at most s steps the desired representation. Lemma 3.1.10 implies now
∂itni ∈ ViN q \Vi−1N q for i > 0 if ni 6= 0 and n0 ∈ V0NU . As the injectivity
on the stalk at q ∈ X∗ is clear, the map ϕ is an isomorphism.

To represent an X0-specializable DX(∗X0)-module locally as a quotient of a free DX -
module and to compute its V -filtration, we use that it is a localization of a coherent DX -
module, which is even X0-specializable as we will see. Hence we study now the V -filtration
on localizations of DX -modules.
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Localizations

Recall that we defined the localization of the DX -module M along X0 as the DX(∗X0)-
module

M(∗X0) :=M⊗OX OX(∗X0)

and that this localization comes with the canonical DX -linear localization map i(∗X0) :M→
M(∗X0). The following notation will be useful when considering filtered localizations:

Notation 3.1.27. Let M be an X0-specializable DX -module. We write LocX0(M) for the
DX -module M(∗X0). Similarly, we write LocX0(N ) for an X0-specializable DX(∗X0)-
module N considered as DX -module, since N ∼= N (∗X0).

We study now localizations ofX0-specializableDX -modules (see also [SS17, Lemma 9.3.1
and Proposition 9.3.4(4)] for the “only if”-part of Part (a) as well as Part (b) of the following
lemma):

Lemma 3.1.28. LetM be a coherent DX -module.

(a) The DX -moduleM is X0-specializable if and only if the DX(∗X0)-moduleM(∗X0)
is X0-specializable.

(b) IfM is X0-specializable, the natural morphism i(∗X0) :M→M(∗X0),m 7→ m ⊗ 1
induces a representation

V0(M(∗X0)U ) = t−1 · (i(∗X0))U (V−1MU ). (3.1.5)

So in particular,M(∗X0)U is generated by t−1 · (i(∗X0))U (V−1MU ) as DU -module.

Proof.

(a) LetM(∗X0) be Q-specializable along X0 as DX(∗X0)-module and hence also as DX -
module by Lemma 3.1.25(b). By the exact sequence

0→ Γ[X0]M→M→M(∗X0)

the natural map M /Γ[X0](M) → M(∗X0) of DX -modules is injective and thus the
module M /Γ[X0]M is X0-specializable by Corollary 3.1.14 being isomorphic to a
submodule of the X0-specializableDX -moduleM(∗X0). As Γ[X0](M) has support on
X0, it is X0-specializable by Lemma 3.1.16, which implies the Q-specializability ofM
by Corollary 3.1.14.

The other implication is [SS17, Lemma 9.3.1].
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3 (Strictly) specializable D-modules

(b) Since M(∗X0) is an X0-specializable DX -module by Part (a) and Lemma 3.1.25(b),
the natural morphismM→M(∗X0) induces by Lemma 3.1.18 isomorphisms

VαM∼= Vα(M(∗X0)) for α < 0,

and hence
V0M(∗X0)U = t−1 · (i(∗X0))U (V−1MU )

by Lemma 3.1.26(a).

The localization of an X0-specializable DX -module can be represented as follows:

Lemma 3.1.29. Let M be an X0-specializable DX -module. On a coordinate neighborhood
U , there exists a finite set E and a finite subset P ⊆ DEU (U) such that

(a) V−1MU
∼= (V0DU )E/ V0DU 〈P 〉 and

(b) LocX0(M)U ∼= DEU /DU
〈
t−1Pt

〉
.

Proof.

(a) Since V−1MU is a finitely generated V0DU -module by Definition 3.1.3(a) and Corol-
lary 1.1.10, there exist a finite V0DU -generating set E ⊆ V−1MU (U) of V−1MU and
a V0DU -linear surjective map

ρ : (V0DU )E � V−1MU , (e) 7→ e, (3.1.6)

inducing an isomorphism V−1MU
∼= (V0DU )E/ ker(ρ), where ker(ρ) is finitely gen-

erated as V0DU -module, say by P ⊆ V0DEU (U), by Lemma 3.1.1 and Corollary 1.1.10.

(b) SinceM(∗X0) isX0-specializable by Lemma 3.1.28(a), we obtain by Lemma 3.1.28(b)
a surjective V0DU -linear map

ρ′ : (V0DU )E � V0M(∗X0)U , (e) 7→ t−1e.

Its kernel is
V0DU

〈
t−1Pt

〉
by Part (a) as V−1M = V−1M(∗X0) by Lemma 3.1.18,

as the map t−1· : V−1M(∗X0)U → V0M(∗X0)U is bijective by Lemma 3.1.26(a)
and as t−1 · V0DU = V0DU ·t−1. The claim follows now from Lemma 3.1.26(b) and
Lemma 3.1.30 below.

The next lemma explains how to obtain from a finite V0DU -presentation of V0M(∗X0)U a
finite DU -presentation ofM(∗X0)U :
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Lemma 3.1.30. Consider a finite set E and a V0DX -submodule J ⊆ V0DEX . The canonical
isomorphism

DX ⊗V0DXV0DEX ∼= DEX
induces an isomorphism of DX -modules

DX ⊗V0DX (V0DEX /J ) ∼= DEX /DX ·J , p⊗ q 7→ pq.

Proof. By the right-exactness of the tensor product, we have a commutative diagram

DX ⊗V0DXJ //

����

DX ⊗V0DXV0DEX //

∼=
��

DX ⊗V0DX (V0DEX /J ) //

��

0

0 // DX J // DEX // DEX /DX J // 0,

where the dashed arrow is obtained by the universal property of cokernels and agrees with the
map given in the lemma. The assertion follows now by the Snake Lemma.

Dual localizations

The dual localization along X0 for DX -modules is derived from the localization functor along
X0 as its adjoint by theD-module theoretic duality functor. Yet, we follow [SS17, Section 9.4]
and give an alternative definition of dual localization functor along X0 for X0-specializable
DX -modules using the V -filtration.

Definition 3.1.31. LetM be an X0-specializable DX -module. Then

DLocX0(M) :=M(!X0) := DX ⊗V0DXV<0M

is called the dual localization ofM along X0.

The next proposition collects important results concerning the dual localization:

Proposition 3.1.32. [SS17, Proposition 9.4.2] Let M be an X0-specializable DX -module.
Then it holds:

(a) M(!X0) is an X0-specializable DX -module.

(b) The natural map i(!X0) :M(!X0)→M, p⊗m 7→ pm induces isomorphisms

VαM(!X0) ∼= VαM

for α < 0. So in particular,M(!X0)X∗ ∼=MX∗ . Moreover the kernel and the cokernel
of the map

GrV0 i(!X0) : GrV0 M(!X0)→ GrV0 M

are isomorphic to the kernel and cokernel of ∂t· : V−1M→ V0M, respectively.
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3 (Strictly) specializable D-modules

(c) The map
∂t· : GrV−1M(!X0)→ GrV0 M(!X0)

is bijective.

Remark 3.1.33. As every X0-specializable DX(∗X0)-module is also an X0-specializable
DX -module, we use Definition 3.1.31 to define the dual localization of X0-specializable
DX(∗X0)-modules.

3.1.2 Specializability, localization and dual localization along general
codimension one subvarieties

Let X0 ⊆ X now be an arbitrary equidimensional codimension one subvariety. We first
investigate the case that the ideal sheaf I is globally generated by the regular function f : X →
C and extend the concept of X0-specializability to this case using Kashiwara’s equivalence
for the graph embedding along f . More precisely, considering the DX -module M and the
embedding

if : X ↪→ X × Ct′ , x 7→ (x, f(x)),

we study the V -filtration along X × {0} on the D-module theoretic direct image (if )+M.

Specializability for DX -modules

Definition 3.1.34. We say that a coherent DX -moduleM is Q-specializable along f (or f -
specializable) if (if )+M is Q-specializable along X × {0}.

We show that for f being smooth Q-specializability along f and along X0 are equivalent:

Lemma 3.1.35. [Sai88, Lemme 3.2.4] Let ι : Y ↪→ X be a closed embedding of smooth
equidimensional varieties and t : X → C a smooth regular function such that t ◦ ι : Y → C
is smooth and nonzero. Setting X0 = t−1(0) and Y0 = ι−1X0, a coherent DY -moduleM is
Y0-specializable if and only if ι+M isX0-specializable. In this case, we have on a coordinate
neighborhood U with coordinates (x1, . . . , xn, t) and differentials (θ1, . . . , θn, ∂t) such that
ιY ∩ U = V (xl, . . . , xn)

(ι+M)U = (ιM)U ⊗C C[θl, . . . , θn]

and
(V X0
• ι+M)U = (ιV Y0

• M)U ⊗C C[θl, . . . , θn].

We review Saito’s proof:

Proof. As the statement is local, we may assume that Y is a codimension one subvariety of
X and that x, t is a coordinate system on all of X . Hence we have ι+M = ιM⊗CC[θn]
(see Equation (1.4.2) and the paragraph below for the explicit DX -structure). Clearly, ifM
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3.1 The V -filtration and application to localization and dual localization

is Y0-specializable, then ιV Y0
• M⊗CC[θn] satisfies Definition 3.1.3 showing that ι+M is

X0-specializable.
Conversely, assume that ι+M is X0-specializable. Consider m =

∑
0≤i≤smi ⊗ θin ∈

V X0
α ι+Mwithmi ∈ ιM and α ∈ Q. Because we have xn, θn ∈ V X0

0 DX , left multiplication
with

∏
0≤i<s(−θnxn − i) shows that ms ⊗ θsn ∈ V X0

α ι+M. Thus we obtain by multiplying
ms ⊗ θsn with powers of xn or θn that ms ⊗ θjn ∈ V X0

α ι+M for all j ∈ N. Induction implies
V X0
α ι+M = ιV ′αM⊗CC[θn] for some V ′αM ⊆M. One easily checks that V ′•M satisfies

Definition 3.1.3, which finishes the proof.

Corollary 3.1.36. If X0 is smooth, then a coherent DX -module is Q-specializable along X0

if and only if it is f -specializable.

Remark 3.1.37. If M is regular holonomic DX -module, then its direct images (if )+M is
also regular holonomic by [HTT08, Theorem 6.1.5]. Hence Remark 3.1.19(a) implies thatM
is f -specializable.

Specializability for DX(∗X0)-modules

Consider now a coherent DX(∗X0)-module N . Since N ∼= N (∗X0), the direct image
(if )+N is by Lemma 1.4.19 a DX×C(∗X × {0})-module, which is coherent as such. This
motivates the following definition:

Definition 3.1.38. Let N be a coherent DX(∗X0)-module. We say that N is Q-specializable
along f (or f -specializable) if (if )+N isQ-specializable alongX×{0} asDX×C(∗X×{0})-
module.

Remark 3.1.39. Let N be a coherent DX(∗X0)-module.

(a) IfN is f -specializable, then (if )+N isDX×C-coherent according to Lemma 3.1.25(a).
Now Kashiwara’s equivalence implies that N is DX -coherent and Lemma 3.1.25(b)
applied to (if )+N forX×{0} ⊆ X×C shows that the two notions of f -specializability
given in Definition 3.1.34 and Definition 3.1.38 are compatible.

(b) IfX0 is smooth, thenN isX0-specializable if and only if it is f -specializable by Part (a)
and Corollary 3.1.36.

Localization and dual localization

We describe now the localization along X0 of the f -specializable DX -moduleM in terms of
the localization of (if )+M along X × {0}:

Lemma 3.1.40. LetM be an f -specializable DX -module. Then

M(∗X0) ∼= GrV
V (t′−f)

0 (((if )+M)(∗X × {0})) = V
V (t′−f)

0 (((if )+M)(∗X × {0})) .

So in particular,M(∗X0) is a coherent DX -module.
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3 (Strictly) specializable D-modules

Proof. We have by Lemma 1.4.19

(if )+(M(∗X0)) ∼= ((if )+M)(∗X × {0})

and hence Corollary 3.1.17 and Proposition 1.4.12(a) imply the claim.

Following [SS17, Section 9.4.b], we construct the dual localization ofM along f given that
M is f -specializable:

Definition 3.1.41. LetM be an f -specializable DX -module. The DX -moduleM(!f) satis-
fying

(if )+M(!f) = ((if )+M)(!X × {0})

is called the dual localization ofM along f .

The unique existence ofM(!f) (up to isomorphism) in the above definition relies on Kashi-
wara’s equivalence: We have for p ∈ X × C that

((if )+M)(!X × {0})p = DX,p⊗(V0DX)p((if )+M)p.

As (if )+M has support on V (t′ − f), the above formula shows that the same holds for
((if )+M)(!X×{0})p. Now the unique existence ofM(!f) follows from Kashiwara’s equiv-
alence.

Remark 3.1.42. [SS17, Corollary 9.4.9] LetM be an f -specializable DX -module. Then we
have:

(a) By Kashiwara’s equivalence there exists a natural morphism i(!f) : M(!f) → M in-
duced by i(!X×{0}) : ((if )+M)(!X × {0})→ (if )+M .

(b) The DX -moduleM(!f) is coherent and f -specializable by Proposition 3.1.32(a).

In order to define the dual localization along X0, we need to show that the above construc-
tion is independent of the choice of f . Similar considerations are also necessary to extend this
construction as well as the concept of specializability to the case where I cannot be generated
by a single regular function.

Generalization of the above constructions

The following lemma is essential to generalize our notion of Q-specializability to singular
codimension one subvarieties:

Lemma 3.1.43. [SS17, Section 9.3.c] Let u : X → C∗ be a regular function and M a
coherent DX -module.

(a) The DX -moduleM is Q-specializable along f if and only if it is Q-specializable along
uf .
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(b) We haveM(!f) =M(!uf).

Now assume that X0 is any equidimensional codimension one subvariety of X . As X is
smooth, I is locally generated by a single regular function.

Definition 3.1.44. LetM be a coherent DX - or DX(∗X0)-module.

(a) Let U ′ ⊆ X be an open neighborhood and f : U ′ → C a nonzero regular function such
that IU = OU 〈f〉. We say that M is Q-specializable along f (or f -specializable) if
MU ′ is f -specializable.

(b) We say thatM is Q-specializable along X0 (or X0-specializable) if and only ifM is
f -specializable along any regular function f as in Part (a).

Remark 3.1.45.

(a) By Lemma 3.1.43, a coherent DX - or DX(∗X0)-module M is Q-specializable along
X0 if and only if every p ∈ X0 has an affine open neighborhood U ′ such that IU ′ is
generated by a regular function f : U ′ → C andMU ′ is Q-specializable along f .

(b) Assume that X0 is smooth. Then Definition 3.1.44 is compatible with Definition 3.1.3
by Corollary 3.1.36 and Lemma 3.1.43.

Lemma 3.1.43(b) enables us to define the dual localization of X0-specializableM because
local existence implies by uniqueness global existence. In particular this definition will be for
smooth X0 compatible with Definition 3.1.31.

Definition 3.1.46. LetM be anX0-specializableDX -module. The dual localizationM(!X0)
ofM along X0 is defined by

M(!X0)X∗ =MX∗

and
M(!X0)U ′ =MU (!f),

for open neighborhoods U ′ such that IU ′ is generated by the nonzero regular function f :
U ′ → C. It comes with the canonical dual localization map i(!X0) : M(!X0) → M defined
by (i(!X0))U ′ = i(!f).

Remark 3.1.47.

(a) If M is an X0-specializable DX -module, then so are M(∗X0) and M(!X0) [SS17,
Sections 9.3.c and 9.4.b].

(b) As in Remark 3.1.33, Definition 3.1.46 defines also the dual localization along X0 of
X0-specializable DX(∗X0)-modules.

We use a similar notation as in Notation 3.1.27:

Notation 3.1.48. Given that the DX -module M and the DX(∗X0)-module N are X0-spe-
cializable, we set LocX0(M) :=M(∗X0), DLocX0(M) :=M(!X0), LocX0(N ) := N and
DLocX0(N ) := N (!X0) and consider all these modules as (coherent) DX -modules.
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3 (Strictly) specializable D-modules

3.2 Compatibility of the V -filtration with the order filtration
and application to filtered localization and dual
localization

We have studied in Subsection 1.3.2 well-filteredD-modules with respect to the order filtration
and have seen in Remark 1.4.18 that endowing the localization of the well-filtered (DX , F ◦• )-
module (M, F•) with the naive filtration F•M(∗X0) := F•M⊗OX OX(∗X0) can lead to
a non well-filtered (DX , F ◦• )-module even ifM is regular holonomic. However, if F•M or
F•M(∗X0) satisfy compatibility properties with respect to the V -filtration of the underlying
module, we can replace the naive filtration in an intrinsic way by a good F ◦• DX -filtration.
Motivated by this, we study in this section such properties referred to as strict specializability.
For this we first review the corresponding material presented in [Sai88] for the DX -module
case and in [SS17] for theDX(∗X0)-module case and follow then [Sai93] and [SS17] to define
filtered localizations and dual localizations. Based on these considerations, we prepare the
algorithmic treatment of these localizations on a sheaf theoretic level using local coordinates.

3.2.1 Strict specializability, filtered localization and dual localization
along smooth codimension one subvarieties

In this subsection, we assume that X0 ⊆ X is smooth (with defining ideal sheaf I). Recall
that U ⊆ X stands for a coordinate neighborhood with local coordinates (x, t) such that
IU = OU 〈t〉. Our aim is now to study certain compatibility conditions for rational V -filtrations
and filtrations with respect to the order of differential operators.

Compatibility for DX -modules

As pointed out in Corollary 3.1.11, the V -filtration alongX0 on aQ-specializableDX -module
M is completely determined by the VαM for α ∈ [−0, 1]. Another feature of the V -filtration
is that VαM for α < 0 depends only onM(∗X0) = jX∗j

−1
X∗M (see Lemma 3.1.18). Thus we

are now in particular interested in X0-specializable well-filtered (DX , F•)-modules (M, F•)
such that F•V•M is already determined by the F•VαM with α ∈ [−1, 0] and such that
F•VαM = VαM∩jX∗j−1

X∗F•M for α < 0. This motivates the following definition:

Definition 3.2.1. A well-filtered (DX , F ◦• )-module (M, F•) is called quasi-unipotent along
X0 if

(a) M is Q-specializable along X0,

(b) t· : FpVαMU → FpVα−1MU is surjective for p ∈ Z and α < 0,

(c) ∂t· : Fp GrVαMU → Fp+1 GrVα+1MU is surjective for p ∈ Z and α > −1.
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We say that (M, F•) is strictly Q-specializable along X0 (or strictly X0-specializable) if it is
quasi-unipotent along X0 and GrF VαM is a coherent GrF

◦
V0DX -module for all α ∈ Q.

We point out that GrF VαM being GrF
◦
V0DX -coherent is by Proposition 1.1.17 equiva-

lent to F•VαM being a well-filtered F ◦• V0DX -module.

Example 3.2.2. A Hodge DX -module (M, F•) with Hodge filtration F•M is by definition
strictly X0-specializable.

Remark 3.2.3.

(a) Note that ifM is Q-specializable along X0, Definition 3.2.1(c) is equivalent to

F•MU =
∑
i∈N

∂itF•−iV0MU . (3.2.1)

Indeed, if we denote the filtration on the right hand side by F ′•MU , then we have

F ′•VαMU =
∑

0≤i≤bαc

∂itF•−iV0MU +∂
dαe
t F•−dαeVα−dαeMU for α ≥ 0.

Therefore,
GrVα F

′
•MU = ∂

dαe
t (GrVα−dαe F•−dαeMU ) for α > 0

and
F ′•V0MU = F•V0MU .

Since we have by definition of F ′•MU that F ′•MU ⊆ F•MU we have equality if
and only if GrVα F•MU = ∂

dαe
t (GrVα−dαe F•−dαeMU ) for all α > 0 or equivalently

GrVα F•MU = ∂t(GrVα−1 F•−1MU ) for all α > 0.

(b) Definition 3.2.1(b) is equivalent to F•VαM = VαM∩jX∗j−1
X∗F•M := {m ∈ VαM |

m ∈ FpMX∗} for α < 0.

Remark 3.2.4. Lemma 3.1.10 and Lemma 3.1.13 imply that the maps in Definition 3.2.1(b)
and (c) are in fact bijective.

Recall that GrVαM can be considered as a DX0-module by Remark 3.1.8 and that the fil-
tered module (VαM, F•) naturally induces a filtration F•GrVαM on the former module. We
sometimes also write GrVα (M, F•) for this filtered module.

Definition 3.2.5. We call a well-filtered X0-specializable DX -module (M, F•) regular along
X0 if GrF GrVαM is a coherent GrF

◦ DX0-module for each α ∈ Q.

We will see that regularity in the sense of the above definition implies that the induced fil-
tration on the so-called vanishing and nearby cycles is a good filtration (see Subsection 3.2.3).
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Lemma 3.2.6. [Sai88, Lemme 3.4.6] An X0-quasi-unipotent (DX , F ◦• )-module (M, F•) is
regular along X0 if and only if it is strictly X0-specializable.

Proof. Assume that (M, F•) is strictly X0-specializable. Obviously the GrF
◦
V0DX -co-

herence of GrF VαM implies the GrF
◦
V0DX - and hence the GrF

◦
GrV0 DX -coherence of

GrF GrVαM by Proposition 1.1.7(a) for α ∈ Q. Since−∂tt−α acts nilpotently on GrVαMU ,

GrF
◦
• GrV0 DU ∼= GrF

◦
• (ι|X0∩U DX0∩U [∂tt]) ∼=

⊕
i+j=•

ι|X0∩U GrF
◦

i (DX0∩U )(∂tt)
j ,

(where ι|X0∩U : X0 ∩U → U stands for the restriction of ι) implies that GrF GrVαM is even
GrF

◦ DX0-coherent.
The other direction is [Sai88, Lemme 3.4.6].

The category of strictly X0-specializable (DX , F ◦• )-modules supported on X0 can be char-
acterized using a a filtered version of Kashiwara’s equivalence (see Proposition 1.4.12) due to
Sabbah:

Proposition 3.2.7. [SS17, Proposition 7.6.2](Filtered Kashiwara’s equivalence) Consider a
closed embedding ι : X0 ↪→ X of smooth equidimensional algebraic varieties of codimension
one. The functor

ι+ : Modcoh(F•DX0)→ Mod
X0,ssX0
coh (F•DX)

induces an equivalence of categories between the category Modcoh(F•DX0) and the full sub-
category Mod

X0,ssX0
coh (F•DX) of Modcoh(F•DX) whose objects are supported on X0 and

strictly Q-specializable along X0. Its quasi-inverse is given by

(N , F•) 7→ GrV
X0

0 (N , F•)(−1).

Compatibility for DX(∗X0)-modules

Contrary to X0-specializability, the notions of strict X0-specializability differ for DX - and
DX(∗X0)-modules. We define strict Q-specializability of DX(∗X0)-modules as follows:

Definition 3.2.8. We say that a well-filtered (DX(∗X0), F ◦• )-module (N , F•) is strictly Q-
specializable along X0 (or strictly X0-specializable) if

(a) N is Q-specializable along X0,

(b) GrF
◦
• VαN is a coherent GrF

◦
• V0DX(∗X0)-module for all α ∈ Q.

Example 3.2.9. Consider a Hodge DX∗-module (N , F•) with Hodge filtration F•N . Then
the (DX(∗X0), F ◦• )-module (jX∗ N , F•) with filtration defined by F•jX∗ N := jX∗F•N is
strictly X0-specializable.
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The next remark explains why we do not need conditions as in Definition 3.2.1(b) and (c):

Remark 3.2.10. If (N , F•) is anX0-specializable well-filtered (DX(∗X0), F ◦• )-module, then
FpN is an OX(∗X0)-module and hence we have by Remark 3.1.26(a) that

t· : FpVαNU → FpVα−1NU (3.2.2)

is an isomorphism for all α ∈ Q, that is, Definition 3.2.1(b) holds for filtered DX(∗X0)-
modules for all α ∈ Q. So in particular, F•N is already determined by the F•VαN for
α ∈ (−1, 0]. Note however, that Definition 3.2.1(c) is in general not satisfied.

We point out that a strictly X0-specializable (DX(∗X0), F ◦• )-module is in general not even
well-filtered as (DX , F ◦• )-module. However, following [SS17, Proposition 9.3.4], we turn
such modules into strictly X0-specializable (DX , F ◦• )-modules by equipping them with the
following filtration:

Definition 3.2.11. Let (N , F•) be a strictly X0-specializable (DX(∗X0), F ◦• )-module. We
define the F ◦• DX -filtration FLoc

• on LocX0(N ) by

FLoc
• LocX0(N ) =

∑
i∈N

FiDX ·F•−iV0NX

and write LocX0(N , F•) := (LocX0(N ), FLoc
• ) = (N , FLoc

• ).

Clearly, the above filtration is exhaustive as F•N is exhaustive and V0N is a set of DX -
generators of N by Corollary 3.1.11. In particular, we have on a coordinate neighborhood U
that

FLoc
• LocX0(N )U =

∑
i∈N

∂it · F•−iV0NU

and on the complement of X0

FLoc
• LocX0(N )X∗ = F•NX∗ .

Before we prove that LocX0(N , F•) is indeed a strictly X0-specializable (DX , F ◦• )-module,
so in particular well-filtered as such, we state some important properties of this module:

Remark 3.2.12. Let (N , F•) be a strictly X0-specializable (DX(∗X0), F ◦• )-module.

(a) We have FLoc
• VαN ⊆ F•VαN for all α ∈ Q with equality FLoc

• VαN = F•VαN for
α ≤ 0.

(b) It holds by Part (a) and Remark 3.2.10 that F•N ∼= (FLoc
• N ) ⊗OX OX(∗X0). So we

have locally on a coordinate neighborhood U

F•NU = {n ∈ NU | tan ∈ FLoc
• NU for some a ∈ N}.
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Lemma 3.2.13. Let (N , F•) be a strictly X0-specializable (DX(∗X0), F ◦• )-module. Then the
(DX , F ◦• )-module LocX0(N , F•) is strictly X0-specializable.

Proof. We first show that LocX0(N , F•) is F ◦• DX -good: The OX -coherence of FpN im-
plies that of FpV0N , so say the latter module is locally OU -generated by the finite set Gp ⊆
FpV0N (U). Then FLoc

p NU is OU -generated by⋃
j∈N
{∂≤jt Gp−j},

which is finite since Fj N = 0 for j � 0. By strict X0-specializability of (N , F•) there exists
p ∈ Z such that FqV0N = F ◦q−pV0DX ·FpV0N for q ≥ p. Now we have for q ≥ p

F ◦q−pDU ·FLoc
p NU =(

∑
j≥0,j+k=q−p

∂jtF
◦
kV0DU ) · (

∑
i≥0

∂itFp−iV0NU )

=
∑

i,j≥0,j+k=q−p
∂i+jt F ◦kV0DU ·Fp−iV0NU

=
∑
j≥0

∂jtFq−jV0NU ,

which shows that LocX0(N , F•) is indeed a well-filtered (DX , F ◦• )-module.
We show that LocX0(N , F•) is strictly X0-specializable: We know by Lemma 3.1.25(b)

that Condition 3.2.1(a) is satisfied. Condition 3.2.1(b) follows from Remark 3.2.10 and Re-
mark 3.2.12(a), while Condition 3.2.1(c) is immediate from the definition of FLoc

• N and from
Remark 3.2.3(a). Remark 3.2.12(a) and the strict X0-specializability of (N , F•) imply also
the GrF

◦
• V0DX -coherence of GrF

Loc

• VαN for α ≤ 0 and hence Condition 3.2.1(c) entails it
for α ≥ 0 since ∂t ·GrF

◦
p V0DU = GrF

◦
p V0DU ·∂t ⊆ GrF

◦
p+1 V0DU for p ∈ Z.

Example 3.2.14. Consider the Hodge DX∗-module (N , F•) with Hodge filtration F•N . Its
Hodge theoretic direct image (jX∗)+(N , F•) agrees with LocX0(jX∗ N , F•).

As LocX0(N , F•) is (DX , F ◦• )-good, we have for p big enough

FLoc
q N = F ◦q−pDX ·FLoc

p N

for all q ≥ p. Setting

F (p)
q N :=

{
FLoc
q N , if q ≤ p
F ◦q−pDX ·FLoc

p N , else,

p is big enough if and only if F (p)
• N = FLoc

• N . We develop now a criterion that allows us
to check if a given p is big enough. For this note that if N ′ is an OX -submodule of N , we
may identify N ′(∗X0) := N ′⊗OX OX(∗X0) ⊆ N (∗X0) ∼= N with an OX -submodule of
N . Part (a) of the following criterion to test the above equality of filtrations is based on results
by Saito [Sai88, Proposition 3.2.2 and Remarque 3.2.3]:
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Proposition 3.2.15. Let (N , F•) be a strictly X0-specializable (DX(∗X0), F ◦• )-module.

(a) We have
F

(p)
• V0NU = (F

(p)
• NU )(∗X0 ∩ U) ∩ V0NU (3.2.3)

if and only if
t· : V0NU → V−1NU (3.2.4)

is an F (p)-strict isomorphism.

(b) If FpN generates (N , F•) as (DX(∗X0), F ◦• )-module, i.e., FqN = F ◦q−pDX(∗X0) ·
FpN for q ≥ 0, then

(F
(p)
• N )(∗X0) = (FLoc

• N )(∗X0) = F•N . (3.2.5)

Proof.

(a) If Equation (3.2.3) holds, Map (3.2.4) is clearly F (p)-strict as this map is bijective by
Lemma 3.1.26(a).

Conversely, assume that Map (3.2.4) is F (p)-strict and consider n ∈ V0NU such that
there is a ∈ N with tan ∈ F

(p)
q NU . Thus tan ∈ F

(p)
q V−aNU and hence n ∈

F
(p)
q V0NU by assumption and Lemma 3.1.26(a).

(b) As F (p)
• N ⊆ FLoc

• N , the corresponding inclusion is trivial. For the reverse inclusion
we work on a coordinate neighborhood U and choose n ∈ (FLoc

q NU )(∗X0 ∩ U). By
Definition 3.1.3(b) there exists some a ∈ N such that

tan ∈ (FLoc
q NU )(∗X0 ∩ U) ∩ V0NU = FqV0NU ,

where the equality follows from Remark 3.2.12(b). We are done if q ≤ p since then
FqV0N = FLoc

q V0N = F
(p)
q V0N by Remark 3.2.12(a) and definition of F (p)

• N .
Otherwise we have

tan ∈ FqV0NU = (F ◦q−pDX(∗X0)U ·FpNU )∩V0NU ⊆ F ◦q−pDX(∗X0)U ·FpV0NU ,

where the equality holds by assumption. For the inclusion notice that we can write
n′ ∈ V0NU as n′ =

∑
l∈L bll with L ⊆ FpNU finite and b ∈ (F ◦q−pDX(∗X0)U )L

by hypothesis. Choosing c ∈ NL such that tcl l ∈ V0NU by Definition 3.1.3(b),
Remark 3.2.10 implies that tcl l ∈ FpV0NU and we obtain a representation n′ =∑

l∈L(blt
−cl) · (tcl l) ∈ F ◦q−p(DX(∗X0)U )FpV0NU .

Express tan as an element of F ◦q−p(DX(∗X0)U ) ·FpV0NU and multiply this expression
with a suitable power of t to cancel out denominators. Then we get by Remark 3.2.12(a)
and by definition of F (p)

• N

ta+bn ∈ F ◦q−pDU ·FpV0NU = F ◦q−pDU ·FLoc
p V0NU = F ◦q−pDU ·F (p)

p V0NU ,
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3 (Strictly) specializable D-modules

that is, n ∈ (F
(p)
q NU )(∗U ∩X0).

The second equality follows from Remark 3.2.12(a).

The following lemma gives a necessary condition for FLoc
• N = F

(p)
• N :

Lemma 3.2.16. Consider a strictly X0-specializable (DX(∗X0), F ◦• )-module (N , F•). If
we have FLoc

• NU = F
(p)
• NU , then F (p)

p V0NU generates (V0NU , F
(p)
• ) as (V0DU , F ◦• )-

module.

Proof. We have to show

F (p)
q V0NU = F ◦q−pV0DU ·F (p)

p V0NU

for all q ≥ p. As this obviously holds for q = p, we proceed inductively and may assume that
the above equation is satisfied for all p ≤ q < q′. Note that

F
(p)
q′ NU = F ◦q′−pDU ·FLoc

p NU = F ◦q′−pDU ·
∑
i∈N

∂itF
Loc
p−iV0NU

=
∑
i∈N

F ◦q′−p+iDU ·F
(p)
p−iV0NU

by Remark 3.2.12(a). Hence we may choose for n ∈ F (p)
q′ V0NU a minimal integer r ≥ 0 and

for 0 ≤ j ≤ r a finite set Gj ⊆ F
(p)
p V0NU and elements cjg ∈ F ◦q′−deg

F (p) (g)−jV0DU for
g ∈ Gj such that there is a representation

n =
∑

0≤j≤r
(∂jt

∑
g∈Gj

cjgg).

If r > 0,

∂t

 ∑
1≤j≤r

(∂j−1
t

∑
g∈Gj

cjgg)

 = n−
∑
g∈G0

c0
gg ∈ V0NU

implies by Corollary 3.1.12 that
∑

1≤j≤r(∂
j−1
t

∑
g∈Gj c

j
gg) ∈ V−1NU . Iterating the above

argument shows
∑

g∈Gr c
r
gg ∈ F

(p)
q′−rV−1NU . According to Remark 3.2.12(a) and assumption

this implies the existence of an element n′ ∈ F
(p)
q′−rV0N such that

∑
g∈Gr c

r
gg = tn′. By

induction assumption there exist, given that q′ − r ≥ p, a set G′ ⊆ F
(p)
p V0NU and c′ ∈

(F ◦q′−p−rV0DU )G
′

satisfying n′ =
∑

g∈G′ c
′
g′g
′. Setting G′ := {n′} and c′n′ = 1 otherwise,

we obtain
n =

∑
0≤j≤r−1

(∂jt
∑
g∈Gj

cjgg) + ∂r−1
t

∑
g∈G′

∂ttc
′
g′g
′

contradicting the minimality of r.
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Lemma 3.2.17. Let (N , F•) be a strictlyX0-specializable (DX(∗X0), F ◦• )-module. If FpNU

generates (NU , F•) as (DX(∗X0)U , F
◦
• )-module and F (p)

p V0NU generates (V0NU , F
(p)
• ) as

(V0DU , F ◦• )-module, then FLoc
• NU = F

(p)
• NU if and only if t· : V0NU → V−1NU is F (p)-

strict.

Proof. As (N , F•) is strictly X0-specializable, we have by Remark 3.2.12(a) and (b)

FLoc
• V0NU = F•V0NU = (FLoc

• N )(∗X0)U ∩ V0NU .

This implies by assumption and Proposition 3.2.15(b) that

FLoc
• V0NU = (F

(p)
• N )(∗X0)U ∩ V0NU . (3.2.6)

Note that FLoc
• V0N generates FLoc

• N as F ◦• DX -module by definition. On the other hand
F

(p)
• V0N generates F (p)

• N as F ◦• DX -module: Indeed, since (N , FLoc
• ) is strictly X0-spe-

cializable as (DX , F•)-module and FLoc
q N = F

(p)
q N for q ≤ p, we have

F (p)
q N =

{
FLoc
q N =

∑
i∈N F

◦
i DX ·F

(p)
q−iV0N , q ≤ p

F ◦q−pDX ·FLoc
p N = F ◦q−pDX ·

∑
i∈N F

◦
i DX ·F

(p)
p−iV0N , else.

Therefore the condition F (p)
• NU = FLoc

• NU is equivalent to

F
(p)
• V0NU = FLoc

• V0NU = (F
(p)
• N )(∗X0)U ∩ V0NU , (3.2.7)

where the last equality is due to Equation (3.2.6). By Proposition 3.2.15(a), Equation (3.2.7)
is again equivalent to t· : V0NU → V−1NU being an F (p)-strict isomorphism. This finishes
the proof.

This leads to the following criterion for testing FLoc
• N = F

(p)
• N , which depends only on

F•N and F (p)
• N :

Corollary 3.2.18. Let (N , F•) be a strictly X0-specializable (DX(∗X0), F ◦• )-module. We
have F (p)

• NU = FLoc
• NU if only if the following conditions are satisfied:

(a) FpNU generates (NU , F•) as (DX(∗X0)U , F
◦
• )-module.

(b) F (p)
p V0NU generates V0NU as V0DU -module.

(c) F (p)
p V0NU generates (V0NU , F

(p)
• ) as (V0DU , F ◦• )-module.

(d) F (p)
p V−1NU generates (V−1NU , F

(p)
• ) as (V0DU , F ◦• )-module.

The corresponding global statement also holds.
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3 (Strictly) specializable D-modules

Proof. Assume that F (p)
• NU = FLoc

• NU holds. Then Lemma 3.2.16 implies Condition (c)
and hence also Condition (b), because FLoc

• = F
(p)
• is exhaustive. Moreover, we deduce that

FLoc
p V0NU generates FLoc

• V0NU as (V0DU , F ◦• )-module implying that FpV0NU generates
F•V0NU as (V0DU , F ◦• )-module by Remark 3.2.12(a). Now Condition (a) follows from Re-
mark 3.2.10. As t· : V0NU → V−1NU is F (p)-strict and bijective by Lemma 3.2.17 and
Lemma 3.1.26(a), Condition (d) follows from Condition (c) and t · F ◦• V0DU = F ◦• V0DU ·t.

Conversely, Conditions (c) and (d) imply that t· : V0NU → V−1NU is F (p)-strict: As
F

(p)
q N = FLoc

q N for q ≤ p, we have according to Remark 3.2.12(a) and Remark 3.2.10 that

t · F (p)
q V0NU = F

(p)
q V−1NU in the case q ≤ p. On the other hand for q > p it holds by

Condition (c), the previous case, and Condition (d) that

t · F (p)
q V0NU = t · F ◦q−pV0DU ·F (p)

p V0NU = F ◦q−pV0DU ·t · F (p)
p V0NU

= F ◦q−pV0DU ·F (p)
p V−1NU = F (p)

q V−1NU .

So the claim follows by Lemma 3.2.17 since Condition (a) holds.

Localization and dual localization

Consider a strictly X0-specializable (DX , F ◦• )-module (M, F•). We introduce the filtration
F• on the DX(∗X0)-moduleM(∗X0) by

F•(M(∗X0)) := (F•M)(∗X0) = F•M⊗OX OX(∗X0), (3.2.8)

where the right hand side means the image of F•M⊗OX OX(∗X0) inM(∗X0).

Remark 3.2.19. We have by Definition 3.2.1(b), Lemma 3.1.18 and the definition of the fil-
tration F•M(∗X) that the natural map i(∗X0) :M→M(∗X0) induces isomorphisms

F•VαM∼= F•Vα(M(∗X0))

for α < 0.

Lemma 3.2.20. Let (M, F•) be a strictly X0-specializableDX -module. Then (M(∗X0), F•)
is strictly X0-specializable as (DX(∗X0), F ◦• )-module.

Proof. Clearly, (M, F•) is (DX(∗X0), F ◦• )-well-filtered. ItsX0-specializability follows from
Lemma 3.1.28(a). By Remark 3.2.10 for N = M(∗X0) and since t · GrF

◦
V0DX(∗X0) =

GrF
◦
V0DX(∗X0) · t it suffices to show that Definition 3.2.8(b) holds for α < 0. Be-

cause GrF• VαM is GrF
◦
• V0DX -coherent by assumption and F ◦• V0DX = F ◦• V0DX(∗X0),

Remark 3.2.19 implies that GrF• VαM(∗X0) is coherent as GrF
◦
• V0DX(∗X0)-module for

α < 0.
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The above lemma enables us to endowM(∗X0) with the filtration FLoc
• M(∗X0) via Def-

inition 3.2.11 turning
LocX0(M, F•) := (M(∗X0), FLoc

• ) (3.2.9)

into a strictly X0-specializable DX -module. As in Lemma 3.1.28(b) we use the V -filtration
onM to describe LocX0(M, F•):

Remark 3.2.21. Let (M, F•) be a strictly X0-specializable (DX , F•)-module. According to
Remark 3.2.10 and Remark 3.2.19, the canonical map i(∗X0) :M→M(∗X0),m 7→ m ⊗ 1
induces a representation

F•V0M(∗X0)U = t−1 · i(∗X0)(F•V−1MU ).

Thus, we rewrite FLoc
• M(∗X0)U in terms of F•V−1MU as

FLoc
• M(∗X0)U =

∑
i∈N

∂itt
−1(F•−iV−1MU ⊗OU OU ), (3.2.10)

where F•−iV−1MU ⊗OU OU stands for its image inMU ⊗OX(∗X0)U .

Example 3.2.22. Consider a Hodge DX -module (M, F•) with Hodge filtration F•M. Then
the Hodge theoretic localization (jX∗)+j

−1
X∗(M, F•) agrees with LocX0(M, F•).

Defining the filtration FDLoc
• M(!X0) by

FDLoc
• M(!X0) :=

∑
i∈N

F•−iV
X0
<0 M⊗OXF

◦
i DX (3.2.11)

(interpreted in the same manner as above) we set DLocX0(M, F•) := (M(!X0), FDLoc
• ).

Then a filtered version of Proposition 3.1.32 holds:

Lemma 3.2.23. [SS17, Proposition 9.4.2] Let (M, F•) be a strictly X0-specializable DX -
module.

(a) Then DLocX0(M, F•) is strictly X0-specializable as (DX , F ◦• )-module.

(b) The isomorphisms in Proposition 3.1.32(b) and (c) are filtered.

Remark 3.2.24. Given a strictly X0-specializable (DX(∗X0), F ◦• )-module (N , F•), we en-
dow N (!X0) with the filtration F•N (!X0) defined as in Equation (3.2.11) and set

DLocX0(N , F•) := (N (!X0), FDLoc
• ).

Since this filtered module agrees with the dual localization of the strictly X0-specializable
(DX , F ◦• )-module LocX0(N , F•) and as F•VαN = FLoc

• VαN for α ≤ 0, Lemma 3.2.23
holds also in this situation.

Example 3.2.25. Given a Hodge DX -module (M, F•), the Hodge theoretic dual localiza-
tion (jX∗)!j

−1
X∗(M, F•) is realized by DLocX0(M, F•). Similarly, for a Hodge DX∗-module

(N , F•), the Hodge theoretic extraordinary direct image (jX∗)!(N , F•) is represented by
DLocX0(jX∗ N , F•).
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3.2.2 Strict specializability, filtered localization and dual localization
along general codimension one subvarieties

As for X0-specializability, we extend strict X0-specializability to singular codimension one
subvarieties by locally considering filtered direct images under certain graph embeddings as
in Subsection 3.1.2. So let X0 ⊆ X now be an arbitrary pure codimension one subvariety.
First we assume that its defining ideal sheaf I is globally generated by the regular function
f : X → C and consider the corresponding graph embedding if : X → X × Ct′ .

Strict specializability for DX -modules

Mirroring Definition 3.1.34, we define:

Definition 3.2.26. We say that a well-filtered (DX , F ◦• )-module (M, F•) is quasi-unipotent,
regular and strictly Q-specializable along f if (if )+(M, F•) is quasi-unipotent, regular and
strictly Q-specializable along X × {0}, respectively.

As usual we abbreviate strictly Q-specializable along f by f -specializable.

Example 3.2.27. A Hodge DX -module (M, F•) with Hodge filtration F•M is by definition
strictly f -specializable.

Analogously to Lemma 3.1.35, our two notations of strictX0-specializability are compatible
for smooth X0:

Lemma 3.2.28. [Sai88, Lemme 3.2.4] Let ι : Y ↪→ X be a closed embedding of smooth
equidimensional varieties and t : X → C a smooth regular function such that t◦ ι : Y → C is
smooth and nonzero. Setting X0 = t−1(0) and Y0 = ι−1X0, a well-filtered (DY , F ◦• )-module
(M, F•) is quasi-unipotent and strictly Q-specializable along Y0 if and only if ι+(M, F•) is
quasi-unipotent and strictly Q-specializable along X0, respectively.

Proof. As in the proof of Lemma 3.1.35, we may assume that Y is of codimension one in X .
Keeping the notion of that proof (so in particular assuming that X is a coordinate neighbor-
hood), the claim on the quasi-unipotence follows from that lemma and from the representation

F•ι+M =
⊕
k∈N

ιF•−k−1M⊗θkn

(see Equation (1.4.6)).
Assuming now that (M, F•) and hence ι+(M, F•) are quasi-unipotent along X0, we show

that GrF V Y0
α M is GrF

◦
V Y0

0 DY -coherent if and only if GrF V X0
α ι+M is GrF

◦
V X0

0 DX -
coherent, which then implies the claim on the strict specializability. We proof this by applying
the equivalence in Proposition 1.1.17: Note that by Lemma 3.1.35

F•V
X0
α ι+M =

⊕
k∈N

ιF•−k−1V
Y0
α M⊗θkn. (3.2.12)
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3.2 Compatibility of the V -filtration with the order filtration and applications

Using F ◦0 V
X0

0 DX = OX and F ◦0 V
Y0

0 DY = OY one checks that the F ◦0 V
Y0

0 DY -coherence of
FqV

Y0
α M for all q < p and the F ◦0 V

X0
0 DX -coherence of FpV X0

α ι+M are equivalent. Now
assume that the F ◦• V

Y0
0 DY -module F•V Y0

α M is generated by FpV Y0
α M. Then F•V X0

α ι+M
is generated by Fp+1V

X0
α ι+M as F ◦• V

X0
0 DX -module: Namely, we have for q > p+ 1

FqV
X0
α ι+M =

⊕
k∈N

θkn(ιFq−k−1V
Y0
α M⊗1)

=
⊕

k∈N:q−k−1≤p
θkn(ιFq−k−1V

Y0
α M⊗1)

+
⊕

k∈N:q−k−1>p

θkn(ιFq−k−1−pV
Y0

0 DY ιFpV
Y0
α M⊗1)

⊆
⊕

k∈N:q−k−1≤p
FkV

X0
0 DX(ιFq−k−1V

Y0
α M⊗1)

+
⊕

k∈N:q−k−1>p

θknFq−k−1−pV
Y0M

0︸ ︷︷ ︸
Fq−(p+1)V

Y0
0 DY

(ιFpV
Y0
α M⊗1).

Similarly, if F•V X0
α ι+M is generated by FpV X0

α ι+M as F ◦• V
X0

0 DX -module, F•V Y0
α M is

generated by Fp−1V
Y0
α M as F ◦• V

Y0
0 DY -module.

Corollary 3.2.29. If f is smooth, thenM is quasi-unipotent and strictlyQ-specializable along
X0 if and only if it is quasi-unipotent and strictly Q-specializable along f , respectively.

Recall that ι stands to the embedding X0 ↪→ X with defined ideal sheaf I = OX 〈f〉.

Corollary 3.2.30. [Sai88, Corollaire 3.2.5] Let X0 be smooth and (M, F•) be strictly X0-
specializable (DX , F ◦• )-module. Then we have for α ∈ Q

ι+(GrV
X0

α M, F•) ∼= GrV
X×{0}

α (if )+(M, F•)

as (DX , F ◦• )-modules.

The subcategory Mod
X0,ssX0
coh (F•DX) of the category of well-filtered and strictly X0-spe-

cializable F ◦• DX -modules supported on X0 plays an important role in filtered Kashiwara’s
equivalence (see Proposition 3.2.7) if X0 is smooth. It can be characterized as follows:

Lemma 3.2.31. ( [Sai88, Lemma 3.2.6]) Let (M, F•) be a well-filtered (DX , F ◦• )-module
such thatM is supported on f−1(0). Then the following are equivalent:

(a) (M, F•) is quasi-unipotent and regular along f ,

(b) f · F•M⊆ F•−1M,
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(c) there exists a canonical isomorphism (if )+(M, F•) ∼= (i0)+(M, F•) of (DX×C, F ◦• )-
modules.

If X0 is smooth, then the above conditions are equivalent to

(d) (M, F•) is strictly Q-specializable along X0.

Proof. The first part of the lemma is [Sai88, Lemma 3.2.6]. The additional condition for X0

smooth follows from Lemma 3.2.6 and Corollary 3.2.29.

Strict specializability of DX(∗X0)-modules

By Remark 1.4.22, we may define strict X0-specializability for (DX(∗X0), F ◦• )-modules as
follows (see also Lemma 1.4.19):

Definition 3.2.32. A well-filtered (DX(∗X0), F ◦• )-module (N , F•) is called strictly Q-spe-
cializable along f if (if )+(N , F•) is strictly Q-specializable along X × {0} considered as
(DX×Ct′ (∗X × {0}), F

◦
• )-module.

Remark 3.2.33. Analogous to Corollary 3.2.29 we have for smooth X0 that the well-filtered
(DX(∗X0), F ◦• )-module (N , F•) is strictlyQ-specializable alongX0 if and only if it is strictly
Q-specializable along f .

As for smooth X0 we want to endow the strictly X0-specializable (DX(∗X0), F ◦• )-module
(N , F•) with a good filtration that makes it strictly f -specializable as (DX , F ◦• )-module. We
use for this our standard trick of considering the direct image under the graph embedding if .
As the (DX×C(∗X × {0}), F ◦• )-module (if )+(N , F•) is strictly X × {0}-specializable, the
(DX×C, F ◦• )-module LocX×{0}((if )+(N , F•)) is well-defined and strictly X × {0}-special-
izable. If the latter module is strictly t′ − f -specializable, we may apply filtered Kashiwara’s
equivalence (Proposition 3.2.7), that is, induce a filtration FLoc

• on N via

(N , FLoc
• ) :∼= (GrV

V (t′−f)
0 (LocX×{0}((if )+(N , F•))))(−1) (3.2.13)

to get a good filtration onN asN is isomorphic to GrV
V (t′−f)

0 (LocX×{0}((if )+N )) by Kashi-
wara’s equivalence. We write LocX0(N , F•) := (N , FLoc

• ) and we will see in Lemma 3.2.39
that the definition of the filtration does not depend on the choice of f . While such an approach
is not possible in Sabbah’s more general situation (see [SS17, Section 9.3.c]), we show that
our setting allows the application of filtered Kashiwara’s equivalence:

Proposition 3.2.34. Let (N , F•) be a strictly f -specializable (DX(∗X0), F ◦• )-module. Then
the (DX×C, F•)-module LocX×{0}((if )+(N , F•)) is strictly Q-specializable along t′ − f .
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3.2 Compatibility of the V -filtration with the order filtration and applications

Proof. By Lemma 3.2.31 it is equivalent to show that (t′− f) ·FLoc
• (if )+N ⊆ FLoc

•−1(if )+N
holds locally on an affine open cover of X × Ct′ . Choosing an affine open cover U of X , the
U ′ × C for U ′ ∈ U form an affine open cover of X × C and we have

((if )+N )U ′×C ∼= (if |U ′)+NU ′ ,

where if |U ′ : U ′ → U ′×C denotes the corresponding restriction of if . Hence we may assume
that X is affine.

Since (N , F•) is by assumption a well-filtered (DX(∗X0), F ◦• )-module, there exists a finite
set H ⊆ N (X) and d ∈ ZH such that F•N =

∑
h∈H F

◦
•−dh DX(∗X0) ·h. Consider now the

DX -submodule N ′ :=
∑

h∈H DX ·h of N with filtration

G•N ′ :=
∑
h∈H

(F ◦•−dh DX) · h.

Then (N ′, G•) is a well-filtered (DX , F ◦• )-module such that we may canonically identify

(N , F•) = (N ′(∗X0), G•), (3.2.14)

where G•N ′(∗X0) is defined as in Equation (3.2.8). This leads by Remark 1.4.21 to a natural
identification

(if )+(N , F•) = (if )+(N ′, G•)(∗X × {0}). (3.2.15)

According to filtered Kashiwara’s equivalence (Proposition 3.2.7), (if )+(N ′, G•) is strictly
(t′ − f)-specializable and Lemma 3.2.31 implies (t′ − f) · G•(if )+N ′ ⊆ G•−1(if )+N ′. It
follows from Equation (3.2.15) that

(t′ − f) · F•(if )+(N ) ⊆ F•−1(if )+N .

As (if )+(N , F•) is strictly X × {0}-specializable by assumption, the preceding inclusion
induces for α ∈ Q an inclusion

(t− f) · F•V X×{0}
α (if )+N ⊆ F•−1(if )+N ∩V X×{0}

α (if )+N = F•−1V
X×{0}
α (if )+N .

By Remark 3.2.12(a) this shows

(t′ − f) · FLoc
• V X×{0}

α (if )+N ⊆ FLoc
•−1V

X×{0}
α (if )+N ,

for α ≤ 0, where ((if )+N , FLoc
• ) = LocX×{0}((if )+(N , F•)). Since FLoc

• (if )+(N ) =∑
i∈N ∂

i
t′F

Loc
•−iV

X×{0}
0 (if )+N and (t′ − f) · ∂it′ = ∂it′(t

′ − f)− i∂i−1
t′ , we obtain

(t′−f)·FLoc
• (if )+N ⊆

∑
i∈N

(∂it′ (t
′ − f)FLoc

•−iV
X×{0}

0 (if )+N︸ ︷︷ ︸
⊆FLoc
•−i−1V

X×{0}
0 (if )+N

−i∂i−1
t′ FLoc

•−iV
X×{0}

0 (if )+N )

and hence
(t′ − f) · FLoc

• (if )+N ⊆ FLoc
•−1(if )+N

as desired. The claim follows now by Lemma 3.2.31.
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3 (Strictly) specializable D-modules

The module LocX0(N , F•) is indeed strictly f -specializable:

Proposition 3.2.35. ( [SS17, Corollary 9.3.6 and Remark 9.3.8]) Let (N , F•) be strictly f -
specializable as (DX(∗X0), F ◦• )-module. Then LocX0(N , F•) is strictly f -specializable as
(DX , F ◦• )-module.

Localization and dual localization

Consider a strictly f -specializable (DX , F ◦• )-module (M, F•). The definition of a good fil-
tration FLoc

• onM(∗X0) which makesM(∗X0) strictly f -specializable reduces to the above
case as (M(∗X0), F•) is a strictly f -specializable (DX(∗X0), F•)-module according to Re-
mark 1.4.21 and Lemma 3.2.20. Namely, we define

LocX0(M, F•) := LocX0(M(∗X0), F•) ∼= (GrV
V (t′−f)

0 (LocX×{0}((if )+(M, F•))))(−1),
(3.2.16)

where the isomorphism follows from Remark 1.4.21 and Equation (3.2.9). We denote the
filtration on LocX0(M, F•) also by FLoc

• .
On the other hand, we introduce a good (DX , F ◦• )-filtration FDLoc

• on M(!f) by applying
the same method as for defining the filtration FLoc

• on strictly f -specializable (DX(∗X0), F ◦• )-
modules: Using that (if )+(M(!f)) = ((if ) +M)(!X × {0}) (see Definition 3.1.41), we
consider the filtration

FDLoc
• (((if )+M)(!X × {0}))

defined by Equation (3.2.11). If the above filtered (DX×C, F ◦• )-module is strictly specializable
along t′ − f , we induce a good filtration FDLoc

• onM(!f) via

(M(!f), FDLoc
• ) :∼= GrV

V (t′−f)
0 (DLocX×{0}((if )+(M, F•))(−1). (3.2.17)

The next proposition justifies our approach:

Proposition 3.2.36. Let (M, F•) be a strictly f -specializable (DX , F ◦• )-module. Then the
(DX×C, F ◦• )-module DLocX×{0}((if )+(M, F•)) is strictly Q-specializable along t′ − f .

Proof. Arguing as in the proof of Proposition 3.2.34 and using Lemma 3.2.23(b), we have

(t′ − f)FDLoc
• V

X×{0}
<0 ((if )+M)(!X × {0}) ⊆ FDLoc

•−1 V
X×{0}
<0 ((if )+M)(!X × {0}).

Considering m ∈ FpV X×{0}
<0 (if )+M, we obtain for ∂it′ ⊗m ∈ FDLoc

p+i ((if )+M)(!X × {0})
that

(t′ − f)(∂it′ ⊗m) = ∂it′ ⊗ (t′ − f)m− ∂i−1
t′ ⊗ im ∈ F

DLoc
p+i−1((if )+M)(!X × {0})

and the claim follows now as in the proof of Proposition 3.2.34.
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Corollary 3.2.37. [SS17, Corollary 9.4.9] If (M, F•) is a strictly f -specializable (DX , F ◦• )-
module, then so is (M(!f), FDLoc

• ).

Remark 3.2.38. Remark 3.2.24 allows us to extend the above construction of dual localiza-
tions along f to strictly X0-specializable (DX(∗X0), F ◦• )-modules.

Generalization of the above constructions

The following lemma is needed to generalize the notion of strict X0-specializability to arbi-
trary codimension one subvarieties:

Lemma 3.2.39. [SS17, Section 9.4.b]Let u : X → C∗ be a regular function. Then a
well-filtered (DX , F ◦• )-module is strictly Q-specializable along f if and only if it is strictly
Q-specializable along uf . An analogous statement holds for well-filtered (DX(∗X0), F ◦• )-
modules. Moreover all constructions in this subsection yield the same results if we replace f
by uf .

Now assume that X0 is any pure codimension one subvariety of X . Note that locally I is
generated by a single regular function. This motivates the following definition (recall that D′X
stands either for DX or DX(∗X0)):

Definition 3.2.40. Let (M, F•) be a well-filtered (D′X , F ◦• )-module.

(a) Let U ′ ⊆ X be an open subset and f : U ′ → C a nonzero regular function such that
IU ′ = OU′

〈f〉. We say that (M, F•) is strictly Q-specializable along f (or strictly
f -specializable) if (MU ′ , F•) is a strictly f -specializable (D′U ′ , F ◦• )-module.

(b) We call (M, F•) strictly Q-specializable along X0 (or strictly X0-specializable) if the
(D′X , F ◦• )-module (M, F•) is strictly f -specializable along any regular function f as in
Part (a).

Remark 3.2.41. We have in the situation of Definition 3.2.40:

(a) Assume that X0 is smooth. Then Definition 3.2.40 is compatible with Definition 3.2.1
by Lemma 3.2.39.

(b) In Definition 3.2.40(b) it is enough to require that every point p ∈ X0 has an open
neighborhood U ′ ⊆ X with a regular function f : U ′ → C as in Part (a) such that
(M, F•) is strictly f -specializable.

As in Subsection 3.1.2, Lemma 3.2.39 allows us to introduce a filtration on the dual local-
ization ofX0-specializableM because local existence implies by uniqueness global existence.
In particular this definition will be for smoothX0 compatible with Definition 3.1.46 and Equa-
tion (3.2.11).
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3 (Strictly) specializable D-modules

Definition 3.2.42. Let (M, F•) be a strictly X0-specializable (DX , F ◦• )- or (DX(∗X0), F ◦• )-
module. The dual localization DLocX0(M,F•) of (M, F•) along X0 is defined by

DLocX0(M,F•)X∗ = (MX∗ , F•),

and
DLocX0(M,F•)U ′ = (MU (!f), FDLoc

• ),

where U ′ is an open neighborhood such that IU ′ is generated by the nonzero function f :
U ′ → C. We denote the filtration on DLocX0(M,F•) also by FDLoc

• .
The filtration FLoc

• on LocX0(M) is defined analogously and we write LocX0(M,F•) :=
(LocX0(M), FLoc

• ).

Remark 3.2.43. Let (M, F•) be a strictly X0-specializable (DX , F ◦• )- or (DX(∗X0), F ◦• )-
module. The LocX0(M,F•) and DLocX0(M,F•) is strictly X0-specializable [SS17, Sections
9.3.c and 9.4.b].

Example 3.2.44. Examples 3.2.14, 3.2.22 and 3.2.25 generalize to the filtered setting.

3.2.3 Vanishing and nearby cycles

We finish this section by introducing the so-called vanishing and nearby cycle functors. Let
U ′ ⊆ X be an open subset, f : U ′ → C a regular function with IU ′ = OU 〈f〉 and (M, F•) a
good (DX , F ◦• )-module. We set

(M̃, F•) := (if )+(MU ′ , F•),

where if : U ′ ↪→ U ′×Ct stands for the graph embedding. Recall that ifM is f -specializable

then GrV
U′×{0}

α M̃ for α ∈ Q is naturally endowed with a filtration F• defined by(
F•V

U ′×{0}
α M̃+ V

U ′×{0}
<α M̃

)
/V

U ′×{0}
<α M̃ ∼= F•V

U ′×{0}
α M̃/F•V

U ′×{0}
<α M̃.

Definition 3.2.45. Let (M, F•) be an f -specializable well-filtered (DX , F ◦• )-module. We
define for α ∈ [−1, 0) and λ = exp(2πiα)

ψf,λ(M, F•) := (ψf,λM, F•) := (GrV
U′×{0}

α M̃, F•)

and call (ψfM, F•) :=
⊕
−1≤α<0(GrV

U′×{0}
α M̃, F•) the nearby cycles and (ψf,1M, F•)

the unipotent nearby cycles.
Similarly, we define for α ∈ (−1, 0] and λ = exp(2πiα)

φf,λ(M, F•) := (φf,λM, F•) := (GrV
U′×{0}

α M̃, F•+1)

and say that (φfM, F•) :=
⊕
−1<α≤0(GrV

U′×{0}
α M̃, F•+1) are the vanishing cycles and that

(φf,1M, F•) are the unipotent vanishing cycles.
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By Lemma 3.2.31 and filtered Kashiwara’s equivalence we have for f : X → C such that
(M, F•) is strictly f -specializable and supported on V (f) that

φf,1(M, F•) ∼= GrV
X×{0}

0 (i0)+(M, F•)(−1) ∼= (M, F•)

motivating the shift in the definition of the filtration on φf,λM.

Remark 3.2.46. Forgetting the filtrations in Definition 3.2.45, we define the corresponding
notations in a non-filtered situation. Notice that while φfM ∼= V

U ′×{0}
0 M̃/V

U ′×{0}
−1 M̃ as

DU ′-module by Remark 3.1.8, this isomorphism is not compatible with the F ◦• DU ′-structures
of these modules.

Remark 3.2.47. We point out that by Remark 3.1.8 the (unipotent) vanishing and nearby
cycles can be considered as (DU ′ , F ◦• )-modules supported on V (f) and the ψf,λ(M, F•) and
φf,λ(M, F•) are equipped with (DU ′ , F ◦• )-linear filtered nilpotent endomorphisms

N = −∂tt− α : ψf,λ(M, F•)→ ψf,λ(M, F•)(−1)

N = −∂tt− α : φf,λ(M, F•)→ φf,λ(M, F•)(−1)

for λ = exp(2πiα). The unipotent vanishing and nearby cycles come with (DU ′ , F ◦• )-linear
filtered morphisms

ψf,1(M, F•)

can=−∂t·

%%

φf,1(M, F•)

var=t·
(−1)

ee

such that can ◦ var = N on φf,1(M, F•) and var ◦ can = N on ψf,1(M, F•), where the (−1)
on the lower arrow indicates the corresponding shift in filtration on ψf,1(M, F•).

Remark 3.2.48. The above considerations can be generalized to arbitrary non-zero functions
f : U ′ → C.
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4 Algorithms for (strictly) specializable
D-modules

The purpose of this chapter is to develop algorithms for the computation of the constructions
from the previous chapter by combining the theory established in that chapter and the com-
putational methods for (bi)-weight-filtered PBW-reduction-algebras from Chapter 2. More
precisely, given a smooth equidimensional variety X with a pure codimension one subvari-
ety X0 and assuming that X0 is smooth, we develop algorithms for the (filtered) V -filtration
along X0 on DX -and DX(∗X0)-modules as well as the corresponding graded parts. Based
on this we establish methods for the computation of vanishing and nearby cycles and their
attached morphisms var, can and N. Moreover, we give new algorithms for the localizations
and dual localizations along (not necessarily smooth) X0 of (strictly) X0-specializable DX -
and DX(∗X0)-modules relying on the V -filtration and extend them to the filtered situation.

The outline of this chapter is as follows: In Section 4.1 we justify our passage to global
sections for affine X and investigate the ring DX and, if X0 is smooth, also the V -filtration
on DX along X0. As a first step to solve the problems outlined above, we then consider in
Section 4.2 the case that X is a global coordinate neighborhood of X0 and use that the global
sections DX(X) have a realization as PBW-reduction-algebra with V X0

• - and F ◦• -filtrations
induced by weight vectors permitting us to apply the algorithms from Chapter 2. Building on
this we develop techniques to compute (filtered) V -filtrations and their graded parts as well as
localizations and dual localizations along X0. Next, we consider in Section 4.3 computations
in local coordinates for not necessarily smooth X0 by reducing them to the previous section
via a graph embedding and a coordinate change. Finally, we extend in Section 4.4 the results
of the previous two sections to general affine varieties via an algorithm that glues filtered
presentations given on an affine open cover of X . Moreover, we indicate how to generalize
these methods to non-affine X .

We keep the notation of the previous chapter. So in particular X stands for a smooth
equidimensional variety and X0 ⊆ X is a pure codimension one subvariety with embedding
ι : X0 ↪→ X and defining ideal sheaf I. We write X∗ = X \X0 for the complement and jX∗
for the corresponding inclusion into X .

Algorithmically the following questions arise in the context of this chapter: Given coher-
ent DX - and DX(∗X0)-modules M and N with optional good F ◦• DX - and F ◦• DX(∗X0)-
filtrations F•M and F•N , respectively, find algorithms that perform the following tasks:

• Decide ifM and N are (strictly) X0-specializable.
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4 Algorithms for (strictly) specializable D-modules

• If (M, (F•)) and (N , (F•)) are (strictly) X0-specializable and X0 is smooth, compute
(VαM, (F•)) and (V•N , (F•)), respectively for all α ∈ Q.

• IfM and N are (strictly) X0-specializable, compute presentations of the (dual) local-
izations LocX0(M, (F•)), LocX0(N , (F•)), DLocX0(M, (F•)) and DLocX0(N , (F•))
as (DX , (F ◦• ))-modules.

• Given that U ′ ⊆ X is open and f : U ′ → C is a regular function such that M is
(strictly) f -specializable, find representations of the vanishing and nearby cycle func-
tors φf (M, (F•)) and ψf (M, (F•)), of their unipotent equivalents φf,1(M, (F•)) and
ψf,1(M, (F•)) and of the maps can and var.

Here, we mean for instance by (M, (F•)) the pair (M, F•) ifM is equipped with the optional
good filtration F•M and the module M otherwise. We solve in this chapter all problems
expect for checking if a given modules is strictly X0-specializable. In addition to that, we
indicate how to make the quasi-inverse in Kashiwara’s equivalence for mixed Hodge modules
computationally accessible.

4.1 Reducing the problem to a global section situation

As every smooth equidimensional variety has a finite cover by smooth irreducible affine va-
rieties of the same dimension and a sheaf is uniquely determined by its restrictions to such a
cover and the gluing data, it suffices to explain how to do the computations on elements of such
a cover and how to patch the so obtained objects together. Hence we assume in this chapter if
not stated otherwise thatX is a (smooth) irreducible affine variety and identify it with a closed
set of Cn for a suitable natural number n ∈ N.

For our computations, we wish to pass to the global sections, requiring equivalences of
categories

Γ(X, •) : Modcoh(AX)→ Modfg(Γ(X,AX)) (4.1.1)

and
Γ(X, •) : Modcoh(F ◦•AX)→ Modfg(Γ(X,F ◦•AX)), (4.1.2)

where AX stands for DX ,DX(∗X0) or (if X0 is smooth) V X0
0 DX = V X0

0 DX(∗X0). The
sheaf of rings AX being OX -quasi-coherent and locally Noetherian (see Proposition 1.2.18,
Remark 1.4.17 and Lemma 3.1.1), the equivalence of categories in the unfiltered situation is
immediate by Corollary 1.1.10. Since the ring GrF AX is locally left Noetherian and OX - or
OX(∗X0)-locally free by Lemma 1.2.17, Remark 1.4.17 and the proof of Lemma 3.1.1, we
have according to Corollary 1.1.10 that

Γ(X, •) : Modcoh(GrF
◦ AX)→ Modfg(Γ(X,GrF

◦ AX))

is an equivalence of categories. By Proposition 1.1.17 and [HTT08, Proposition D.1.1] the
functor in Equation (4.1.2) is hence essentially surjective with an essentially surjective inverse.
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One easily checks that filtered morphisms are indeed preserved under this functor and that this
functor is fully faithful. This allows us to replace all sheaves involved by their global sections.
All notations and results carry over to the global section case by applying the above equiva-
lences of categories. Replacing X by X0 (if X0 is smooth), we see that similar considerations
hold also in this case.

Let now OX , DX , DX(∗X0), V0DX = V0DX(∗X0) (for smooth X0), DX0 (for smooth
X0), M , M(∗X0), N and I denote the global sections of OX , DX , DX(∗X0), V0DX =
V0DX(∗X0), DX0 , M, M(∗X0), N and I, respectively. As M and N are finitely gener-
ated DX - and DX(∗X0)-modules with optional good F ◦•DX - and F ◦•DX(∗X0)-filtrations,
respectively, we may assume

(M,F•) = (DE
X/K,F

◦[s]•) and (N,F•) = (DX(∗X0)E/L, F ◦[s]•)

with E some finite set, s ∈ ZE a shift vector and K ⊆ DE
X and L ⊆ DX(∗X0)E submodules,

respectively.
Before we start with developing actual algorithms, we need to understand the structure and

computational properties ofDX and, ifX0 is smooth, also of V X0
0 DX : While we can represent

DX as a C-algebra in terms of generators and relations and consider it is a PBW-reduction-
algebra (see [Bav10, Theorem 1.2]), we do not know how to determine a corresponding PBW-
reduction datum and hence how to solve Gröbner basics over such a type of ring. However, we
have seen in Chapter 2 that a PBW-reduction datum of DX is computable for certain X: For
instance the global sections of DCn coincide with the Weyl algebra Dn allowing us to apply
our considerations of Chapter 2 (see Example 1.2.2 and Example 2.1.26). More generally, if
X has a global coordinate system then DX is by Example 2.1.30 a PBW-reduction-algebra
with computable PBW-reduction datum and similarly good properties. So our approach will
be to do the computations locally using local coordinate systems and then glue the so obtained
objects. Before we begin with the local computations, we assume now for a moment that X0

is smooth and describe the V -filtration on DX along X0:

Lemma 4.1.1. The C-subalgebra V X0
0 DX of DX is generated by OX and DerI(OX) :=

DerI(OX)(X). Moreover, it holds

V X0
k DX =

{
I−kV X0

0 DX , if k ≤ 0

V X0
k−1DX + ΘX(X) · V X0

k−1DX , else

and
V X0
k DX(∗X0) = I−kV X0

0 DX for k ∈ Z .

Proof. Denoting our claimed V -filtration by V ′•DX , we obviously have V ′•DX ⊆ V•DX . For
the converse inclusion it suffices to show that for some affine open cover {D(g)}g∈G of X
with G ⊆ OX finite

V•DD(g) ⊆ (V ′•DX)⊗OX OX [g−1] for all g ∈ G,
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under the identification DD(g) = DX ⊗OX OX [g−1]. This is clearly the case for D(h) ⊆ X∗

as h ∈ I implies h ·ΘX(X) ⊆ I ·ΘX(X) ⊆ DerI(OX). Thus DerI(OX)⊗OX OX [h−1] =
ΘX(X)⊗OX OX [h−1] and hence V ′kDX ⊗OX OX [h−1] = DX ⊗OX OX [h−1] = VkDX ⊗OX
OX [h−1] for all k ∈ Z. This reduces the problem to the case that D(g) is a coordinate
neighborhood ofX0 with coordinates x1, . . . , xdimX−1, t and derivations θ1, . . . , θdimX−1, ∂t
such that ID(g) is generated by t. By the definition of local coordinate systems, we have
θi, t∂t ∈ DerOD(g)I(OD(g)) = DerI(OX) ⊗OX OX [g−1], where the equality is due to Re-
mark 1.2.15. The claim follows now by the representations of V•DD(g) in Equation (3.1.2)
and by a similar representation of V•DX(∗X0)D(g).

Hence it remains to describe DerI(OX).

Lemma 4.1.2. LetX0 =
⊔
j∈J V (Ij) be the decomposition ofX0 into irreducible components

with Ij ⊆ C[x1, . . . , xn] prime and generated by I(j) = {f j1 , . . . , f
j
sj}. Then we have:

(a) The OX -module DerIj (OX) is generated by the operators induced from I(j)ΘCn(Cn)
and

det

(
(∂lm(f jki))1≤i≤r,

1≤m≤r+1

(∂lm)1≤m≤r+1

)
for 1 ≤ k1 < · · · ≤ kr ≤ sj and 1 ≤ l1 < · · · ≤ lr+1 ≤ n, where r = n−dimX0.

(b) The OX -module DerI(OX) is OX -generated by
⋃
j∈J

(∏
j′∈J\{j} I(j′)

)
DerIj (OX).

Proof.

(a) Follows immediately from [Bav10, Theorem 1.1].

(b) Write DerI(OX)′ for theOX -module generated by
⋃
j∈J

(∏
j′∈J\{j′} I(j)

)
DerIj (OX).

It clearly holds that this module is contained in DerI(OX). It is now enough to show

DerI(OX)⊗OX OX [g−1] ⊆ DerI(OX)′ ⊗OX OX [g−1]

for a finite affine open cover {D(g)}g∈G of X with G ⊆ OX . Arguing as in the proof
of Lemma 4.1.1, we may restrict ourselves to those g such that X0 ∩ D(g) 6= ∅.
So in particular it suffices to consider g =

∏
j∈J\{j′} f

j
kj

with 1 ≤ kj ≤ sj and
j′ ∈ J . But now we have DerI(OX)′ ⊗OX OX [g−1] = DerIj′ (OX) ⊗OX OX [g−1] =

DerI(OX)⊗OX OX [g−1] finishing the proof.

As for DX we do in general not know how to realize V0DX in terms of a PBW-reduction
datum. However, on a coordinate neighborhood of X0 in X , Example 2.1.30 explains how
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

to obtain such a presentation. Hence we first consider the case that X0 is smooth and X is
a global coordinate neighborhood of X0 and develop algorithms for the problems outlined at
the beginning of this chapter using the methods from Chapter 2. Then we generalize this in
two directions. Via gluing we consider the case of smooth X0 and general X and via graph
embeddings and gluing we treat the case that X0 is singular. Before we start, we agree upon
the following convention:

Convention 4.1.3. In this chapter when formulating algorithms, we assume that there exists a
computable subfieldK ⊆ C containingQ such that we can decide whether all (complex) zeros
of a given polynomial p(s) ∈ K[s] are rational and such that X0 ⊆ X ⊆ Cn are defined by
the vanishing of polynomials in K[x1, . . . , xn]. We also assume that all appearing input data
(such as generators of modules) is defined over K.

For readability of our algorithms, when writing (DE
X/K,F

◦[s]•), we implicitly assume that
E is a finite set, K ⊆ DE

X a submodule given by a finite set of generators and s ∈ ZE (and
likewise for finitely presented (DX(∗X0), F ◦• )-modules).

4.2 Computations using global coordinate systems for
smooth codimension one subvarieties

Consider the affine n +1-space Cn +1 with coordinates x1, . . . , xn, t and the smooth, irre-
ducible subvariety X = V (J) ⊆ Cn +1 of dimension m +1, defined by the prime ideal
J ⊆ C[x, t] := C[x1, . . . , xn, t], with the property that it is a global coordinate neighborhood
of its smooth pure codimension one subvariety X0. By Remark 1.2.12, we may assume that a
set of global coordinates is given by the residue classes of f1, . . . , fm, t ∈ C[x, t], that X0 =
V (J ∪ t) and that corresponding derivations are induced by derivations θl1, . . . , θ

l
m, θ

l
m +1 ∈

Der(C[x, t]) of the form θli =
∑

1≤j≤n a
i
j(x)∂i + δi(m +1)∂t (for aij ∈ C[x]). So it holds

in particular θli(t) = δi,(m +1). According to Example 2.1.30 DX is realized as the PBW-
reduction-algebra

TX := (C〈x, t, θ1, . . . , θm, ∂t〉, S, J ′,≺)

with

S = {[xj , xi], [t, xi], [θp, θk], [θk, t], [θk, xi]− θlk(xi), [∂t, θk], [∂t, xi]− θlm +1(xi), [∂t, t]− 1|
for 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ p ≤ m} \ {0},

≺ any well-order such that S is a standard reduction system with respect to ≺ (for instance
a well-ordering satisfying xαtβθγ∂δt ≺ xα

′
tβ
′
θγ
′
∂δ
′
t if |γ| + δ < |γ′| + δ′ using usual multi-

index notation) and J ′ ⊆ C[x, t] a Gröbner basis of J with respect to the ordering induced
by ≺. Obviously, the isomorphism between DX and TX is given by sending x, t, θ1, . . . , θm

and θm +1 to x, t, θ1, . . . , θm and ∂t, respectively. Denoting by v ∈ Zn + m +2 the weight
vector on TX that assigns weight 1 to ∂t, weight −1 to t and weight 0 else, that isomorphism
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4 Algorithms for (strictly) specializable D-modules

induces isomorphisms V•DX
∼= Fv

• TX . Similarly, writing w ∈ Zn + m +2 for the weight
vector that gives ∂t and θi (1 ≤ i ≤ m) weight 1 and the other variables weight 0, we
obtain F ◦•DX

∼= Fw
• TX . Note that by Example 2.3.5 and Example 2.4.3 all assumptions

of Section 2.3 and Section 2.4 are satisfied and we may hence apply the methods developed in
Chapter 2. We point out that PBW-reduction data of the subalgebra Fv

0 DX and the subquotient
algebras Grv0 DX

∼= DX0 [t∂t] and DX0 of DX are computable by Example 2.1.30.
From now on we identify DX with TX and use also the notation Fu

• DX for a weight vector
u on TX . We usually write DX , but we represent its elements as elements of TX , which
are in turn given as residue classes of elements of C〈x, t, θ, ∂t〉 := C〈x, t, θ1, . . . , θm, ∂t〉.
We usually omit the residue class notation when its clear from the context that we interpret
elements of the latterC-algebra as elements of TX by taking residue classes. We use analogous
conventions also for other PBW-reduction-algebras considered in this section.

Remark 4.2.1. In view of Convention 4.1.3 we may assume that some generating set of J is
defined overK[x1, . . . , xn]. Hence our system of global coordinates can be realized as residue
classes of polynomials in K[x1, . . . , xn] implying that we may assume that K is a TX - and
TX0-computable field.

Equipped with the tools from Chapter 2, we start by developing an algorithm for the V -
filtration:

4.2.1 The V -filtration on DX-modules

We want to check whether M = DE
X/K is Q-specializable along X0 and compute the V -

filtration in this case. As X is a global coordinate system, we may apply Lemma 3.1.21
and Remark 3.1.22 globally. This reduces the computation of VαM to the computation the
b-function with respect to the induced V -filtration along X0 on DE

X/K. Recall that by Re-
mark 3.1.23 the polynomial b(s) ∈ K[s] is the induced b-function on that module if and only
if b(s) is the minimal nonzero monic polynomial satisfying

b(−∂tt)(e) ⊆ Fv
−1(DE

X/K) (4.2.1)

for all e ∈ E. Hence it suffices to give an algorithm for the computation of a minimal poly-
nomial as in Equation (4.2.1) on finitely presented DX -modules. We call this polynomial also
the induced b-function with respect to v. For this purpose we adapt the methods of Oaku and
Takayama (see [OT01]) to our situation:

We identify by Proposition 2.2.28 GrvK with a submodule of (GrvDX)E and GrvDX =
Grv TX with an elementary PBW-reduction-algebra of type

(C〈x, t, θ, ∂t〉, ltv(S), J ′v,≺),

where v-homogeneous J ′v ⊆ C[x, t] is determined using Corollary 2.2.30.
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Remark 4.2.2. We point out that we may consider C[∂tt] as a C-subalgebra of GrvDX : Note
that C[∂tt] ⊆ C〈t, ∂t〉/ 〈[∂t, t]− 1〉 has C-basis {tk∂kt | k ∈ N}. As GrvDX is an elementary
PBW-reduction-algebra we have

∑
k∈N akt

k∂kt = 0 (with ak ∈ C) in GrvDX if and only
if aktk = 0 for all k ∈ N. If there is k ∈ N with ak 6= 0, then it follows that there exists
f ∈ C[x, t] with tk + tk+1f ∈ J implying t ∈ J or 1 + tf ∈ J as J is prime. In both cases
that is a contraction to X0 = V (J, t) being a codimension one subvariety of X = V (J).

Lemma 4.2.3. The b-function with respect to v on DE
X/K corresponds under the substitution

of s by −∂tt to the monic generator of the C[−∂tt]-ideal⋂
e∈E

(C[−∂tt] ∩Ke),

where Ke := {πe(k) | k ∈ GrvK,πe′(k) = 0 for all e′ ∈ E \ {e}} for e ∈ E. In particular,
the b-function with respect to v exists if and only if that ideal is nonzero.

Proof. If b(s) is the b-function with respect to v then b(−∂tt)(e) ∈ (K + Fv
−1D

E
X) ∩ Fv

0 D
E
X

implies b(−∂tt)(e) ∈ GrvK. Hence b(−∂tt) is an element of
⋂
e∈E(C[−∂tt] ∩Ke).

Conversely, let b′(−∂tt) be the monic generator of the ideal
⋂
e∈E(C[−∂tt] ∩Ke). We see

that b′(−∂tt)(e) ∈ K + Fv
−1D

E
X for e ∈ E and hence

b′(−∂tt)(e) ∈ Fv
−1(DE

X/K).

Consequently, b′(s) must agree with the b-function b(s).

Recall that a v-homogeneous GrvDX -generating set G of GrvK can be determined by
Algorithm 2.2.33. From G we obtain GrvDX -generators Ge of Ke by computing a Gröbner
basis G′e of G with respect to an ordering of type ≺pot,<, where < is an order on E such that e
is the minimal element, and settingGe := πe(G

′
e∩DX(e)). To computeC[−∂tt]∩Ke we first

eliminate x, θ fromKe by computingG′′e ⊆ C〈x, t, θ, ∂t〉 inducing a Gröbner basis ofKe with
respect to an elimination ordering for these variables. Note that for instance the well-ordering

xαtβθγ∂δt ≺elim xα
′
tβ
′
θγ
′
∂δ
′
t if and only if xαθγ ≺ xα′θγ′

or xαθγ = xα
′
θγ
′

and tβ∂δt ≺ tβ
′
∂δ
′
t

for α, α′ ∈ Nn, β, β′, δ, δ′ ∈ N and γ, γ′ ∈ Nm is indeed an ordering on GrvDX of desired
type. We observe that the elements of G′′e are v-homogeneous because Gröbner basis com-
putations over the PBW-reduction-algebra GrvDX preserve v-homogeneity since ltv(S) and
J ′v are v-homogeneous. Then

{tmax{degv(g),0}∂
max{−degv(g),0}
t g | g ∈ G′′e ∩ C〈t, ∂t〉}

is a set of C[−∂tt]-generators of C[−∂tt]∩Ke. Substituting−∂tt by s and performing a great-
est common divisor computation in C[s] of that set of generators, gives a principal generator
of the latter ideal. A principal generator of

⋂
e∈E(C[−∂tt] ∩ Ke) is now given by the least

common multiple of these principal generators of the C[−∂tt] ∩Ke.
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4 Algorithms for (strictly) specializable D-modules

Algorithm 4.2.4 Given global coordinate neighborhood X of X0 and a DX -module M , this
algorithm computes the induced b-function along X0 on M .

Input: A DX -module M := DE
X/K.

Output: A polynomial b(s) ∈ K[s] such that b(s) is the induced b-function along X0 on M
if b(s) is nonzero. Otherwise that b-function does not exist.

1: Compute a setG ⊆ K〈x, t, θ, ∂t〉E inducing GrvDX -generatorsG′ of GrvK ⊆ GrvDE
X

by Algorithm 2.2.33. . GrvDX is a PBW-reduction-algebra.
2: for e ∈ E do
3: Compute a Gröbner basis G′e of G′ with respect to an ordering of type ≺pot,<, where <

is an order on E such that e is minimal.
4: Set Ge := πe(G

′
e ∩DX(e)).

5: Compute a set G′′e ⊆ K〈x, t, θ, ∂t〉 inducing a Gröbner basis of GrvDx
〈Ge〉 with respect

to an elimination ordering for x, θ.
6: Consider He := {tmax{degv(g),0}∂

max{−degv(g),0}
t g | g ∈ G′′e ∩K〈t, ∂t〉} as a subset of

K〈t, ∂t〉/ 〈[∂t, t]− 1〉.
7: if He = ∅ then
8: return 0.
9: Substitute −∂tt by s in He.

10: Compute the monic greatest common divisor be(s) ∈ K[s] of the elements in He.
11: Set b(s) to be the monic least common multiple of the be(s) for e ∈ E.
12: return b(s).

We derive now from Lemma 3.1.21 and Remark 3.1.22 the following algorithm for the
computation of the V -filtration.

Algorithm 4.2.5 Given a global coordinate neighborhood X of X0 and a DX -module M , this
algorithm tests whether M is X0-specializable and computes V X0

α M in this case.

Input: A DX -module M := DE
X/K and α ∈ Q.

Output: If M is X0-specializable, a finite set V ⊆ DE
X such that V X0

α M =
Fv
0 DX

〈
V
〉
⊆

DE
X/K. Otherwise a notification that M is not X0-specializable.

1: Compute the induced b-function b(s) ∈ K[s] along X0 of M using Algorithm 4.2.4.
2: if b(s) = 0 then
3: return Module is not specializable along X0.
4: Compute the roots Z := {z ∈ C | b(z) = 0}.
5: if Z 6⊂ Q then
6: return Module is not Q-specializable along X0.
7: if Z = ∅ then
8: return 1.
9: Set k := dminZ − αe and l := dmaxZ − (α + k)e. . Minimal root of b(s) lives in the

interval (α+ k− 1, α+ k] and maximal root is in the interval (α+ k+ l− 1, α+ k+ l].
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

10: for i = 0, . . . , l do
11: Zi := {z ∈ Z | α+ k + i− 1 < z ≤ α+ k + i}.
12: V−i−k := {tmax{0,i+k}∂

≤max{0,−i−k}
t (e) | e ∈ E}. . Residue classes are generators of

V ind
−i−kM .

13: for i = 1, . . . , l do
14: for j = 0, . . . , l − i do
15: V−j−k := V−j−k−1 ∪ (

∏
i≤r≤l

∏
z∈Zr(−∂tt− z+ j + k+ i− 1)multb(s)(z)) · V−j−k.

. Residue classes form generators of W (i)
−j−kM (see Remark 3.1.22).

16: return V−k.

The V -filtration is computable if it exists:

Remark 4.2.6. Assume that M = DE
X/K is X0-specializable. Consider the set R := {−1 ≤

z ≤ 0 | there is k ∈ Z : b(z + k) = 0}, where b(s) stands for the induced b-function with
respect to v on M , and assume moreover that the residue classes of Vα ⊆ DE

X form a finite set
of V0DX -generators of VαM for α ∈ R.

(a) V•M is already determined by the VαM with α ∈ R by Corollary 3.1.11: For β = α+k
with α ∈ R and k ∈ Z we have

VβM =

Fv
0 DX

〈
t−kVα

〉
, if k ≤ 0, α 6= 0

Fv
0 DX

〈
∂≤kt V α

〉
, if k ≥ 0, α 6= −1.

As V•M is discretely indexed by R+ Z, it is completely computable.

(b) Assume we have computed finite sets V−1 and V0 ⊆ DE
X such that their residue classes

Fv
0 DX -generate V−1M and V0M , respectively. According to Definition 3.1.3(b), there

are b ∈ (Fv
0 D

V−1

X )V0 and c ∈ (Fv
0 D

V0
X )V−1 such that tv0 =

∑
v−1∈V−1

(bv0)v−1v−1 and
∂tv−1 =

∑
v0∈V0(bv−1)v0v0 for v0 ∈ V0 and v−1 ∈ V−1. Such representations are de-

termined by Algorithm 4.2.5 on the fly without additional Gröbner basis computations:
Recall that Lemma 3.1.21 and Remark 3.1.22 enable us to find Fv

0 DX -generators of
V0M and V−1M by computing such generators of V k

−kM and V k
−k−1M , respectively,

for a suitably fixed k. For the computation of V k
• M , we first pick sets G0

j ⊆ DE
X for

j ∈ Z such that their residue classes V0DX -generate V ind
j M , namely we set

G0
j := {tmax{0,−j}∂

≤max{0,j}
t (e) | e ∈ E}. (4.2.2)

We easily read off of g ∈ G0
j an Fv

0 DX -linear combination of tg and ∂tg in terms of
G0
j−1 and G0

j+1, respectively. Using the notation of Remark 3.1.22, we then compute

iteratively generators Gi• of W (i)
• M by setting

Gi+1
j = Gij−1 ∪ b

(i)
1 (−∂tt− •)Gij .
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4 Algorithms for (strictly) specializable D-modules

Now we express tg and ∂tg for g ∈ Gi+1
j as Fv

0 DX -linear combinations of Gi+1
j−1 and

Gi+1
j+1, respectively, by using the corresponding combinations for the elements of Gij−1,

Gij and Gij+1 and the commutation relation [∂t, t] = 1.

Hence the V -filtration along X0 is determined by the following algorithm:

Algorithm 4.2.7 Given a global coordinate neighborhood X of X0 and a finitely generated
DX -module M , this algorithm tests whether M is X0-specializable and computes V X0

• M in
this case.
Input: A DX -module M := DE

X/K.
Output: If M is X0-specializable, a finite set V ⊆ DE

X and a vector d ∈ [−1, 0]V such that
V•M is discretely indexed by {dv | v ∈ V } + Z and V•M =

∑
v∈V F

v
b•−dvcDX · v and

VdvM =
∑

v′∈V :dv′=dv
Fv

0 DX · v for v ∈ V . Otherwise a notification that M is not
X0-specializable.

1: Compute the induced b-function b(s) ∈ K[s] of M along X0 using Algorithm 4.2.4.
2: if b(s) = 0 then
3: return Module is not specializable along X0.
4: Compute the roots Z := {z ∈ C | b(z) = 0}.
5: if Z 6⊂ Q then
6: return Module is not Q-specializable along X0.
7: Initialize an empty set V and a (dynamic) vector d ∈ ZV .
8: Set R := (Z + Z) ∩ [−1, 0].
9: if R = ∅ then

10: Set V = {1} and d1 = −1.
11: for α ∈ R do
12: Compute a finite set V ′ ⊆ DE

X such that VαM =
Fv
0 DX

〈
V ′
〉

using Algorithm 4.2.5.
13: Set V := V t V ′ and define dv′ := α for v′ ∈ V ′.
14: return V , d.

Remark 4.2.8. The above algorithm can be modified to compute the not necessarily rationally
indexed V -filtration and the V -filtration along smooth equidimensional subvarieties of higher
codimension if this subvarity is defined by the vanishing of a subset of global coordinates: The
above algorithm relies only Lemma 3.1.21 and Remark 3.1.22 as well as the computability of
the induced b-function, which can be generalized to such a situation. We remark that the com-
putation of the b-function in the higher codimension case is a bit more complicated, because
in Lemma 4.2.3 we do not have to intersect with C[−∂tt], but with a C-algebra of the form
C[−

∑
i ∂titi]. This can be done by adapting the methods of Oaku and Takayama [OT01] to

our situation.
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4.2.2 The V -filtration on strictly X0-specializable (DX , F
◦
• )-modules

If (M,F•) = (DE
X/K,F

◦[s]•) is strictly X0-specializable, then we can also compute F•VαM
for fixed α ∈ Q. Since the filtrations F ◦•DX and V•DX are induced by the weight vectors
w and v on TX , respectively, the problem reduces by Example 2.3.5 and Example 2.4.3 to
Algorithm 2.4.15. More generally, we have:

Algorithm 4.2.9 Given a global coordinate neighborhood X of X0 and an X0-specializable
(DX , F

◦
• )-module (M,F•) such that (V X0

α M,F•) is (V X0
0 DX , F

◦
• )-good, this algorithm com-

putes the latter filtered module.

Input: An X0-specializable (DX , F
◦
• )-module (M,F•) = (DE

X/K,F
◦[s]•) and α ∈ Q such

that (VαM,F•) is a good (V0DX , F
◦
• )-module.

Output: A finite set G ⊆ DE
X and d ∈ ZG such that F•VαM =

∑
g∈G F

w
•−dgF

v
0 DX · g =∑

g∈G F
w
•−degFw[s](g)

Fv
0 DX · g.

1: Determine a finite set V ⊆ DE
X satisfying VαM =

Fv
0 DX

〈
V
〉

by Algorithm 4.2.5.

2: Find G ⊆ DE
X and d ∈ ZG such that Fw[s]• Fv

0 DX

〈
V
〉

=
∑

g∈G F
w
•−dgF

v
0 DX · g using

Algorithm 2.4.15.
3: return G,d.

Remark 4.2.10.

(a) With regard to the output G of the above algorithm, we note that for g ∈ G a representa-
tive g′ ∈ K〈x, t, θ, ∂t〉 with F•VαM =

∑
g∈G F

w
•−degFw[s](g

′)F
v
0 DX · g is computable.

(b) The above algorithm does not detect if the (V0DX , F
◦
• )-module (VαM,F•) is not well-

filtered. In such a case it does not terminate because neither does Algorithm 2.4.15
(see Remark 2.4.16(a)). We also remark that we have no method to check whether a
well-filtered X0-specializable (DX , F

◦
• )-module is X0-regular.

(c) If (M,F•) = (DE
X/K,F

◦[s]•) is strictly X0-specializable, then a filtered analogue of
Remark 4.2.6(a) holds: Consider the set R := {−1 ≤ z ≤ 0 | there is k ∈ Z :
b(z + k) = 0}, where b(s) stands for the induced b-function with respect to v on M
and let Vα ⊆ DE

X be such that F•VαM =
∑

v∈Vα F
w
•−degFw[s](v)F

v
0 DX · v for α ∈ R.

Then F•V•M is already determined by the F•VαM for α ∈ R by a filtered version of
Corollary 3.1.11: We have for β = α+ k with α ∈ R and k ∈ Z

F•VβM =

t
−kF•VαM, if k ≤ 0, α 6= 0∑

0≤i≤k
∂itF•−iVαM, if k ≥ 0, α 6= −1.

As V•M is discretely indexed by R+ Z, (V•M,F•) is completely computable.
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4.2.3 The V -filtration on DX(∗X0)-modules

Notice that for N = DX [t
−1

]E/L exists some DX -submodule L′ ⊆ DE
X such that

N = (DE
X/L

′)[t
−1

].

According to Lemma 3.1.28(a) the module N is X0-specializable if and only if DE
X/L

′ is
X0-specializable and hence we reduce the computation of the V -filtration on N to that of the
V -filtration on DE

X/L
′ as follows: By Lemma 3.1.18 and Lemma 3.1.28(a) we have

VαN ∼= VαD
E
X/L

′

for α < 0 given that N is X0-specializable. As

Vα+kN = t
−k
VαN

for any k ∈ Z by Lemma 3.1.26(a), this completely determines the V -filtration leading to the
following algorithm:

Algorithm 4.2.11 Given a global coordinate neighborhood X of X0 and a finitely generated
DX [t

−1
]-moduleN , this algorithm tests whetherN isQ-specializable alongX0 and computes

V X0
• N in this case.

Input: A DX [t
−1

]-module N := DX [t
−1

]E/L with L =
DX [t

−1
]
〈L′〉 and L′ ⊆ DE

X .

Output: If N is X0-specializable, a finite set V ⊆ DE
X and a vector d ∈ QV such that

Vdv+kN =
∑

v′∈V :dv=dv′
t
−k
Fv

0 DX · v′ for v ∈ V and k ∈ Z, and such that V•N is
discretely indexed by {dv | v ∈ V } + Z. Otherwise a notification that N is not X0-
specializable

1: if DE
X/DX 〈L

′〉 is not Q-specializable along X0 then . Test by Algorithm 4.2.7
2: return Module is not Q-specializable along X0.
3: Determine V ⊆ DE

X and d ∈ QV as in Algorithm 4.2.7 for DE
X/DX 〈L

′〉. . Compute
V•(D

E
X/DX 〈L

′〉).
4: Set V ′ := {v ∈ V | dv 6= 0} and define d′ ∈ QV ′ by d′v′ := dv′ for v′ ∈ V ′.
5: return V ′,d′.

Remark 4.2.12. While it was relatively easy to reduce the computation of the V -filtration
of finitely presented X0-specializable DX [t

−1
]-modules to that of DX -modules, the filtered

case is more subtle. The problem stems for the fact that if (N,F•) = (DX [t
−1

]E/L, F ◦[s]•)

is a strictly X0-specializable (DX [t
−1

], F ◦• )-module with N ∼= (DE
X/L

′)[t
−1

], then in gen-
eral F [s]◦•VαN 6= F ◦[s]•VαD

E
X/L

′ for α < 0. We will explain in Subsection 4.2.6 (see in
particular Remark 4.2.31) how to solve this problem.

Alternatively, we compute the V -filtration along X0 on N by representing N as a quotient of
a free DX -module and then applying Algorithm 4.2.7 to this representation. Such a represen-
tation is determined as explained below:
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

4.2.4 Localizations of X0-specializable DX- and DX(∗X0)-modules

We want to finitely present LocX0(M) = M ⊗OX OX [t
−1

] and LocX0(N) = N as DX -
modules given that M and N are X0-specializable. As every finitely presented DX -module
N ′ with N = LocX0(N ′) is X0-specializable if and only if N is so (see Lemma 3.1.28(a)),
we may restrict ourselves to computing LocX0(M). Now Lemma 3.1.29 yields the following
algorithm:

Algorithm 4.2.13 Given a coordinate neighborhood X of X0 and an X0-specializable DX -
module M , this algorithm represents the localization LocX0(M) as a quotient of a free DX -
module.
Input: An X0-specializable DX -module M = DE

X/K.
Output: A finite set E′ and a finite set L ⊆ Fv

0 D
E′
X that satisfy LocX0(M) ∼= DE′

X /DX 〈L〉,
Vk(D

E′
X /DX 〈L〉) = Fv

k (DE′
X /DX 〈L〉) (for all k ∈ Z) and Fv

0 DX
〈L〉 = Fv

0 DX
〈L〉.

1: Compute E′ ⊆ DE
X finite such that E′ is a set of Fv

0 DX -generators of V−1M by Algo-
rithm 4.2.5.

2: Represent V−1M as a quotient Fv
0 D

E′
X / Fv

0 DX
〈L〉 with L ⊆ Fv

0 T
E′
X finite using Algo-

rithm 2.4.4. . Fv
0 DX
〈L〉 = ker(Fv

0 D
E′
X → V−1M, (e′) 7→ e′).

3: Set L := t−1 · L · t ⊆ DE′
X .

4: return E′, L.

Remark 4.2.14. Assume M = DE
X/K is X0-specializable and that we have computed a

representation LocX0(M) ∼= DE′
X /L

′ by the above algorithm.

(a) Keeping the notation of that algorithm, we want to make the natural DX -linear local-
ization map i(∗X0) : M → DE′

X /L
′ explicit. As V0M generates M as DX -module,

it suffices to compute the images of a finite set of Fv
0 DX -generators of V0M repre-

sented by V0 ⊆ DE
X under this map. If we choose V0 as in Remark 4.2.6(b) and write

tv0 =
∑

e′∈E′(qv0)e′e
′ for v0 ∈ V0 with q ∈ (Fv

0 D
E′
X )V0 using that remark, then

v0 ⊗ 1 = tv0 ⊗ t−1
=

(∑
e′∈E′

(qv0)e′e′

)
⊗ t−1

=
∑
e′∈E′

t−1(qv0)e′t
(
e′ ⊗ t−1

)
implies that i(∗X0)(v0) =

∑
e′∈E′ t

−1(qv0)e′t(e′). Hence we extend Algorithm 4.2.13
as described in Algorithm 4.2.15 below.

(b) To patch our local computations together, we also need to be able to compute the image
of m ⊗ t

−k with k ∈ N under the isomorphism M [t
−1

] ∼= DE′
X /L

′. This amounts
to finding p ∈ DE′

X such that tkp = i(∗X0)(m). For that assume that i(∗X0)(m) is
the residue class of r ∈ DE′

X and degv(r) ≤ l. Then i(∗X0)(m) ∈ Vl(D
E′
X /L

′) =

175



4 Algorithms for (strictly) specializable D-modules

tkVk+l(D
E′
X /L

′) = tkFv
k+l(D

E′
X /L

′) by Algorithm 4.2.13 and Lemma 3.1.26(a). As
the latter module is Fv

0 DX -generated by the residue classes of

V := {tk+max{0,−k−l}∂
≤max{0,k+l}
t (e′) | e′ ∈ E′},

we compute a ∈ Fv
0 D

V
X such that r =

∑
v∈V avv by Algorithm 2.4.5 and Remark 2.4.6.

Now we set p :=
∑

v∈V t
−kavv ∈ DE

X and obtain tkp = i(∗X0)(m) and hence m⊗ t−k
is mapped to p under the above isomorphism.

We point out that the converse task of finding the image of m ∈ DE′
X /L

′ for m ∈ DE′
X

under the isomorphism DE′
X /L

′ ∼= M [t
−1

] is easy. Namely, that image is given by∑
e′∈E′me′ · (e′ ⊗ t−1).

Algorithm 4.2.15 Given a coordinate neighborhood X of X0 and an X0-specializable DX -
module M , this algorithm represents the localization LocX0(M) as a quotient of a free DX -
module and computes the natural map i(∗X0) : M → LocX0(M).

Input: An X0-specializable DX -module M = DE
X/K.

Output: A finite set E′, a finite subset L ⊆ Fv
0 D

E′
X and q ∈ (DE′

X )E such that LocX0(M) ∼=
DE′
X /DX 〈L〉 as DX -modules, Vk(DE′

X /DX 〈L〉) = Fv
k (DE′

X /DX 〈L〉) for all k ∈ Z,
Fv

0 DX
〈L〉 = Fv

0 DX
〈L〉 and the natural map M → DE′

X /DX 〈L〉 is given by (e) 7→ qe
for e ∈ E.

1: Compute by Algorithm 4.2.5 finite sets E′, V0 ⊆ DE
X such that E′ and V0 are Fv

0 DX -
generators of V−1M and V0M , respectively.

2: Represent V−1M as a quotient Fv
0 D

E′
X / Fv

0 DX
〈L〉 with L finite via Algorithm 2.4.4. .

Fv
0 DX
〈L〉 = ker(Fv

0 D
E′
X → V−1M, (e′) 7→ e′).

3: Set L := t−1 · L · t.
4: Find c ∈ (DV0

X )E such that (e) =
∑

v∈V0(ce)vv ∈ DE
X/K for e ∈ E using Gröbner basis

theory. . Use that V0 is a set of DX -generators of DE
X/K.

5: Apply Remark 4.2.14(a) to determine d ∈ (Fv
0 D

E′
X )V0 such that tv =

∑
e′∈E′(dv)e′e

′ for
v ∈ V0.

6: Define q ∈ (DE′
X )E by (qe)e′ =

∑
v∈V0(ce)vt

−1(dv)e′t.
7: return E′, L, q.

Remark 4.2.16. If X = Cn, the localization LocX0(M) can in many cases also be computed
via various algorithms developed by Oaku, Takayama and Walther (see [Oak97, Section 7]
for M being f -saturated, [OT01, Algorithm 6.4] for M holonomic, [OTW00, Algorithm 3]
for LocX0(M) holonomic). Note that unlike our algorithm these algorithms do not require
that f is part of a global coordinate system. As Algorithm 4.2.13, these algorithms rely on
some kind of b-function (or Bernstein-Sato polynomial) computation. However, our method
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is advantageous if we are also interested in the V -filtration along X0 on LocX0(M): Our
approach allows the determination of V• LocX0(M) without an additional b-function compu-
tation, whereas the other approaches need an extra b-function computation, namely that of the
induced b-function of LocX0(M), to compute V• LocX0(M).

4.2.5 Localizations of strictly X0-specializable (DX , F
◦
• )-modules

Unlike in the previous subsection we consider here only the case of strictly X0-specializable
(DX , F

◦
• )-modules and treat the case of strictly X0-specializable (DX(∗X0), F ◦• )-modules

separately later. The reason for this is that while is was trivial to represent an X0-specializable
DX(∗X0)-module as a localization of an X0-specializable DX -module, this is not that easy
for strictly X0-specializable modules and involves additional algorithms and theory because
we also have to take the F•-filtration into account.

So assume that (M,F•) = (DE
X/L, F

◦[s]•) is a strictly X0-specializable (DX , F
◦
• )-mod-

ule. We base our computation of LocX0(M,F•) on Equation (3.2.10), which states that

FLoc
• M [t

−1
] =

∑
i∈N
{∂itt−1(m⊗ 1) | m ∈ F•−i(V−1M)}.

So we may proceed as in Algorithm 4.2.13 if we additionally assume that the set E′ ⊆ DE
X

inducing a set of Fv
0 DX -generators of V−1M satisfies

F•V−1M =
∑
e′∈E′

Fv
•−degv(e′)DX · e′.

Such a set is determined by Algorithm 4.2.9 and we can even find for e′ ∈ E a representative
e′r ∈ K〈x, t, θ, ∂t〉 such that the above equality holds if we replace degv(e′) by degv(e′r).
To represent the localization map, we need to modify Algorithm 4.2.15, because we are not
in the position to apply Remark 4.2.6(b) as we did in Remark 4.2.14(a). But we can replace
that method by Algorithm 2.4.5 and Remark 2.4.6 (or by suitably tracing our computations in
Algorithm 4.2.9), yielding the following algorithm:

Algorithm 4.2.17 Given a coordinate neighborhood X of X0 and a strictly X0-specializable
(DX , F

◦
• )-module (M,F•), this algorithm represents LocX0(M,F•) as (DX , F

◦
• )-module and

computes the natural map i(X0) : M → LocX0(M).

Input: A strictly X0-specializable (DX , F
◦
• )-module (M,F•) = (DE

X/K,F
◦[s]•).

Output: A finite set E′, a finite subset L ⊆ Fv
0 D

E′
X , d ∈ ZL and q ∈ (DE′

X )E that satisfy
LocX0(M,F•) ∼= (DE′

X /DX 〈L〉, F
w[d]•) as (DX , F

◦
• )-modules, Vk(DE′

X /DX 〈L〉) =

Fv
k (DE′

X /DX 〈L〉) for all k ∈ Z, Fv
0 DX

〈L〉 = Fv
0 DX
〈L〉 and represent the natural local-

ization map M → DE′
X /DX 〈L〉 by (e) 7→ qe for e ∈ E.

1: Find a finite setE′ ⊆ DE
X and d ∈ ZE′ that satisfy F ◦• V−1M =

∑
e′∈E′ F

w
•−de′

Fv
0 DX ·e′

by applying Algorithm 4.2.9.
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4 Algorithms for (strictly) specializable D-modules

2: Use Algorithm 4.2.5 to compute a finite set V0 ⊆ DE
X such that V0 is a set of Fv

0 DX -
generators of V0M .

3: Represent V−1M as a quotient Fv
0 D

E′
X / Fv

0 DX
〈L〉 with L finite via Algorithm 2.4.4. .

Fv
0 DX
〈L〉 = ker(Fv

0 D
E′
X → V−1M, (e′) 7→ e′).

4: Set L := t−1 · L · t.
5: Determine c ∈ (DV0

X )E such that (e) =
∑

v∈V0(ce)vv for e ∈ E using Gröbner basis
theory. . Use that V0 is a set of DX -generators of DE

X/K.
6: Compute d ∈ (Fv

0 D
E′
X )V0 such that tv =

∑
e′∈E′(dv)e′e

′ for v ∈ V0 by Algorithm 2.4.5
and Remark 2.4.6.

7: Define q ∈ (DE′
X )E by (qe)e′ =

∑
v∈V0(ce)vt

−1(dv)e′t.
8: return E′, L,d, q.

4.2.6 Localizations of strictly X0-specializable (DX(∗X0), F
◦
• )-modules

Now consider the strictly X0-specializable (DX(∗X0), F ◦• )-module

(N,F•) = (DX [t
−1

]E/L, F ◦[s]•).

The basic framework for our algorithm to determine the (DX , F
◦
• )-module LocX0(N,F•) =

(N,FLoc
• ) with filtration FLoc

• given by

FLoc
• N =

∑
i∈N

∂itF•−iV0N

is as follows: We first represent N as a quotient NX of a free DX -module such that V0NX =
Fv

0 NX and compute the image F•NX of F•N under this representation. Then we find p ∈ Z
such that FpN = 0 which implies FLoc

p NX = 0, where FLoc
• NX is induced by the corre-

sponding filtration onN . While FpV0NX does not generate FLoc
• NX (see below), we increase

p by 1 and compute FLoc
p V0NX = FpV0NX . Finally, we use our interim results from the

computation of the various FpV0NX to explicitly give generators of the filtration FLoc
• NX .

Hence there are three main algorithmic tasks:

• Represent N as a quotient NX of a free DX -module and transfer F•N to this setting.

• For a fixed p ∈ Z, use the aboveDX -representation to compute FLoc
q V0NX = FqV0NX

and FLoc
q NX for all q ≤ p.

• Check for fixed p ∈ Z ifFLoc
p V0NX generatesFLoc

• NX , that is, ifFLoc
q NX = F ◦q−pDX ·

FLoc
p V0NX for q > p.

Before we explain how to tackle these tasks, we fix some notation:
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Notation 4.2.18. Let A′ ≤ A be C[t]-modules. We define for b ∈ N the quotient A′ :A tb and
the saturation of A′ by t in A by

A′ :A t
b := {a ∈ A | tba ∈ A′} ≤ A and A′ :A t∞ :=

⋃
b∈N

A′ :A t
b ≤ A,

respectively. If t acts bijectively on A, we identify the localization A′[t−1] := A′ ⊗C[t]

C[t][t−1] ≤ A[t−1] ∼= A with the saturation A′ :A t∞. In this case, we write A′[t−1] =
A′ :A t

∞ and consider this module as a submodule of A.

Representing N as a quotient of a free DXmodule

Using Algorithm 4.2.15 we compute a DX -linear isomorphism

ρ : N → NX := DE′
X /L

′

and determine the images of (e) for e ∈ E under this isomorphism. Recall that we may also
assume that V0NX = Fv

0 (DE′
X /L

′) and that L′ and Fv
0 L
′ are DX - and Fv

0 DX -generated by
the finite set L′′ ⊆ Fv

0 D
E′
X , respectively. So in particular V0NX = Fv

0 D
E′
X / Fv

0 D
E′
X

〈L′′〉. We
need to describe the image of F•N under ρ, which we denote by F•NX :

Lemma 4.2.19. We have

F•NX =

(∑
e∈E

(F ◦•−seDX) · ρ((e))

)
[t−1] ≤ DE′

X /L
′.

Proof. We write m ∈ FpN as m =
∑

e∈E t
−aeme(e) with a ∈ NE and me ∈ F ◦p−seDX .

Setting a′ := max{ae | e ∈ E}, we obtain by DX -linearity

ta
′
ρ(m) = ρ(ta

′
m) =

∑
e∈E

ta
′−aemeρ((e)) ∈

∑
e∈E

(F ◦•−seDX) · ρ((e)).

Conversely, if m′ ∈ (
∑

e∈E(F ◦•−seDX) · ρ((e)))[t−1] then there exist m′′ ∈ N such that
m′ = ρ(m′′) and b ∈ N such that

ρ(tbm′′) = tbρ(m′′) ∈
∑
e∈E

(F ◦•−seDX) · ρ((e)) ⊆ ρ(FpN).

As ρ is an isomorphism this implies tbm′′ ∈ FpN and hence m′′ ∈ FpN because (N,F•) is a
filtered (DX(∗X0), F•)-module. This shows m′ ∈ ρ(FpN).
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4 Algorithms for (strictly) specializable D-modules

Computation of FLoc
p V0NX for fixed p

The computation of FLoc
p V0NX for fixed p ∈ Z is based on the following lemma.

Lemma 4.2.20. Let D′X ∈ {DX , F
v
0 DX}. Then for any a ∈ NE we have

F•NX =

(∑
e∈E

Fw
•−seD

′
X · taeρ((e))

)
[t−1]

and

FLoc
• V0NX =

(
V0NX ∩

∑
e∈E

Fw
•−seD

′
X · taeρ((e))

)
:V0NX t∞.

Proof. Since tae+•Fw
p F

v
• DX ⊆ Fw

p (Fv
0 DX)tae ⊆ Fw

p DXt
ae ⊆ Fw

p DX for any p ∈ Z and
ae ∈ N, the first claim follows by Lemma 4.2.19. This finishes the proof as the filtration FLoc

•
on V0NX agrees with the filtration induced by F•NX according to Remark 3.2.12(a).

Retaining the notation of the previous lemma, we calculate FLoc
p V0NX by first intersecting

P := Fv
0 NX ∩

∑
e∈E

Fw
p−seD

′
X · taeρ((e)) (4.2.3)

and then using a saturation technique to obtain FLoc
p V0NX = P :V0NX t∞. While P can be

determined by Algorithm 2.4.7, we can even avoid having to compute such an intersection by
setting D′X = Fv

0 DX and choosing ae big enough such that
∑

e∈E F
w
p−seF

v
0 DX · taeρ((e)) ⊆

Fv
0 NX : More precisely, if qe ∈ C〈x, t, θ, ∂t〉E

′
is a representative of ρ((e)), a suitable choice

is ae := max{0,degv(qe)} by Definition 3.1.3(b) since V0NX = Fv
0 NX . The drawback of

taking D′X = Fv
0 DX and picking ae > 0 is that the inclusion

Fv
0 NX ∩

∑
e∈E

Fw
p−seF

v
0 DX · taeρ((e)) ⊆ Fv

0 NX ∩
∑
e∈E

Fw
p−seDX · ρ((e)),

is in general proper. So we might not start with the largest possible choice of P , which could
lead to a more expensive saturation process.

Next, we reduce the computation of P : t∞ := P :V0NX t∞ to that of P : ta := P :V0NX ta

for increasing a ∈ N:

Lemma 4.2.21. The equality P : ta = P : ta+1 for a ∈ N implies that P : t∞ = P : ta.

Proof. Assume that P : t∞ 6= P : ta. Then there exists b > a + 1 such that P : ta = P :
tb−1 ( P : tb. Choose m ∈ P : tb \ P : tb−1. Since tm ∈ V0NX and tb−1(tm) ∈ P it
follows that tm ∈ P : tb−1 = P : tb−2. This implies that tb−2(tm) = tb−1m ∈ P and hence
m ∈ P : tb−1 contradicting our assumption.
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We explain now an inductive method that computes P : ta for a given nonnegative integer
a. We may assume that we have computed a finite set Gj ⊆ Fv

0 C〈x, t, θ, ∂t〉E
′

inducing a set
of C[x, t]-generators of P : tj for all j < a, since P : tj is a finitely generated C[x, t]-module
being a C[x, t]-submodule of the finitely generated C[x, t]-module FLoc

p Fv
0 NX .

Lemma 4.2.22. If we set Pa := ker(C[x]

〈
Ga−1

〉
→ Grv0 NX = Fv

0 NX/tF
v
0 NX), we have

that
P : ta = P : ta−1 + C[x, t] · {t−1n | n ∈ Pa}.

Proof. First note that t−1n for n ∈ Pa is uniquely defined since t acts bijectively onN ∼= NX .
So in particular t−1n ∈ Fv

0 NX = V0NX and hence t−1n ∈ P : ta. The claim follows now
since n ∈ P : ta implies that tn ∈ P : ta−1.

For the computation of Pa, we represent Fv
0 NX/tF

v
0 NX as a quotient of a free Grv0 DX -

module and realize Grv0 DX as PBW-reduction-algebra

(C〈x, θ, z〉, St,0, J t,0,≺t,0)

as explained in Example 2.1.30(c). The corresponding isomorphism

Grv0 DX
∼= C〈x, θ, z〉/

〈
St,0 ∪ J t,0

〉
(4.2.4)

is induced by the C-linear map

ν : Fv
0 DX → C〈x, θ, z〉/

〈
St,0 ∪ J t,0

〉
: xαtβθγ(t∂t)

δ 7→ xα0βθγzδ (4.2.5)

(where we define 00 = 1). To simplify notation we identify the above algebras and we often
write t∂t instead of z.

Lemma 4.2.23. Consider the Fv
0 DX -module Q = Fv

0 D
E
X/ Fv

0 DX
〈R〉. Then Q/tQ can be

realized under the above isomorphism as

Grv0 D
E
X/Grv0 DX

〈
νE(R)

〉
.

Recalling that V0NX = Fv
0 D

E′
X / Fv

0 DX
〈L′′〉, we now obtain

Fv
0 NX/tF

v
0 NX

∼= Grv0 D
E′
X /

Grv0 DX

〈
νE
′
(L′′)

〉
.

We represent p ∈ Fv
0 D

E′
X as p = p0 + tp′ ∈ Fv

0 D
E′
X with p′ ∈ Fv

0 C〈x, t, θ, ∂t〉E
′

and
p0 ∈ C

〈
{xαθβ(t∂t)

γ | α ∈ Nn, β ∈ Nm, γ ∈ N}
〉
E′ and get for its image νE

′
(p) = p0. Going

back to the problem of determining Pa, we have for c ∈ C[x]Ga−1∑
g∈Ga−1

cgg ∈ Pa if and only if
∑

g∈Ga−1

cgg0 ∈
Grv0 DX

〈
νE
′
(L′′)

〉
.
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Thus our problem reduces to a syzygy computation of G0
a−1 :=

⊔
g∈Ga−1

{g0} and L′′0 =⊔
l∈L′′{l0} in Grv0 DX with respect to the block ordering ≺b:= ((≺t,0)

G0
a−1

u , (≺t,0)L
′′
0 ), where

u denotes the weight vector assigning weight 1 to z and θ1, . . . , θm and 0 else. Notice that ≺b
is indeed an ordering on the elementary PBW-reduction-algebra Grv0 DX , which implies by
Lemma 2.1.28 that a corresponding PBW-reduction datum and thus also a Gröbner basis R of
the above syzygy module are computable. Consequently,

R′ := {
∑

g∈Ga−1

τ(r)g0g | r ∈ R, πG0
a−1

(τ(r)) ∈ C[x]G
0
a−1}

C[x]-generates Pa, where we abbreviate τ
(Grv0 D

G0
a−1tL

′′
0

X ,≺b)
by τ (see Definition 2.1.33(b)). It

remains to find representatives the elements of t−1R′ in Fv
0 D

E′
X , which is achieved as follows:

Suitably tracing our Gröbner basis computations (or by using a normal form computation), we
write for r ∈ R in the C-algebra C〈x, θ, t∂t〉∑

g∈Ga−1

τ(r)g0g0 = −
∑
l∈L′′

τ(r)l0 l0 +
∑

(q,j,q′)∈Q

qjq′

with Q ⊆ C〈x, θ, t∂t〉 × (St,0 ∪ J t,0)E
′ × C〈x, θ, t∂t〉 finite. By construction of the sets St,0

and J t,0 we then determine for j ∈ (St,0 ∪ J t,0)E
′

an element j′ ∈ C〈x, t, θ, t∂t〉E
′

such that
j + tj′ = 0 ∈ Fv

0 D
E′
X and therefore∑

g∈Ga−1

τ(r)g0g0 = −
∑
l∈L′′

τ(r)l0 l0 −
∑

(q,j,q′)∈Q

qtj′q′ ∈ Fv
0 D

E′
X .

We conclude that in Fv
0 D

E′
X

{
∑

g∈Ga−1

τ(r)g0g
′ + t−1(

∑
l∈L′′

τ(r)l0tl
′ −

∑
(q,j,q′)∈Q

qtj′q′) | r ∈ R, πG0
a−1

(τ(r)) ∈ C[x]G
0
a−1}

induces a set of C[x]-generators of {t−1n | n ∈ Pa}.

Remark 4.2.24. We outline some alternative approaches for the computation of P : ta.

(a) Writing P : ta = P : ta−1 + t−1 · (C[x,t]

〈
Ga−1

〉
∩ Fv

−1NX), we could also apply
Algorithm 2.4.12 instead of the above method. However this approach seems to be
computationally more involved as it requires multiple Gröbner basis computations.

(b) We can use for the computation of Pa that V0NX/tV0NX = V0NX/V−1NX is even
a finitely represented DX0-module (see Remark 4.2.37 in Subsection 4.2.8) and reduce
the problem to a syzygy computation over DX0 . However, the computation of such a
DX0-representation is quite involved. So it should be advantageous to use the method
we suggested above.

182



4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Algorithm 4.2.25 Auxiliary procedure for Algorithm 4.2.26

Input: A DX -module N = DE
X/DX 〈L〉 with L ⊆ Fv

0 C〈x, t, θ, ∂t〉E finite and Fv
0 DX
〈L〉 =

DX
〈L〉 ∩Fv

0 D
E
X such that t· acts bijectively on N and a finite set G ⊆ Fv

0 C〈x, t, θ, ∂t〉E .
Output: A finite set R ⊆ Fv

0 D
E
X such that C[x,t]

〈
R
〉

= C[x,t]

〈
G
〉

:Fv
0 N

t ⊆ Fv
0 N .

1: Write g ∈ G and l ∈ L in DX as g = g0 + tg′ and l = l0 + tl′ with g′, l′ ∈ C〈x, t, θ, t∂t〉
and g0, l0 ∈ C

〈
{xαθβ(t∂t)

γ | α ∈ Nn, β ∈ Nm, γ ∈ N}
〉
.

2: Set L0 :=
⊔
l∈L{l0} and G0 :=

⊔
g∈G{g0}.

3: Compute a Gröbner basis R of syzGrv0 DX
(G0, L0) with respect to an ordering of type

(≺G0
u ,≺L0), where u is a weight vector on Grv0 DX assigning weight 1 to θ1, . . . , θm and

t∂t and 0 else. . Identify Grv0 DX with a PBW-reduction-algebra as above.
4: for r ∈ R with πG0(τ(r)) ∈ C[x]G0 do
5: Determine kr ∈

〈
St,0 ∪ J t,0

〉
and k′r ∈ C〈x, t, θ, t∂t〉 with kr + tk′r = 0 ∈ Fv

0 DX and∑
g∈G τ(r)g0g0 = −

∑
l∈L τ(r)l0 l0 + kr ∈ C〈x, θ, t∂t〉.

6: Set R′ := {
∑

g∈G τ(r)g0g
′ +
∑

l∈L′ t
−1τ(r)l0tl

′ − k′s | r ∈ R, πG(τ(r)) ∈ C[x]G}.
7: return G ∪R′.

Note that the output of the above algorithm can be effectively represented by elements in
Fv

0 C〈x, t, θ, ∂t〉E .
We remark that eventually P : ta−1 = P : ta, because NX is strictly X0-specializable

and hence FpV0NX is a finitely generated C[x, t]-module. We check this equality by Algo-
rithm 2.4.5. Thus the algorithm below correctly computes FpV0NX and terminates if we take
NX and C :=

∑
e∈E F

w
p−seD

′
X · taeρ((e)) as input:

Algorithm 4.2.26 Given a DX [t
−1

]-module N and a C[x, t]-submodule C, this algorithm
computes the saturation (Fv

0 N ∩ C) :Fv
0 N

t∞.

Input: A DX -module N = DE
X/DX 〈L〉 with L ⊆ Fv

0 C〈x, t, θ, ∂t〉E finite and Fv
0 DX
〈L〉 =

DX
〈L〉 ∩ Fv

0 D
E
X such that t· acts bijectively on N , and a finite set C ⊆ DE

X .
Output: A set G ⊆ Fv

0 D
E
X inducing a set of C[x, t]-generators of (Fv

0 N ∩ C[x,t]〈C〉) :Fv
0 NX

t∞ if this C[x, t]-module is finitely generated.
1: Set P := tjC, where j ≥ max{0,degv(c) | c ∈ C}.
2: Find a finite set G ⊆ Fv

0 D
E
X inducing C[x, t]-generators of P : t by Algorithm 4.2.25.

3: while P 6= P : t do . Check with Algorithm 2.4.5
4: P := P : t.
5: Compute a finite set G ⊆ Fv

0 D
E
X inducing C[x, t]-generators of P : t using Algo-

rithm 4.2.25.
6: return G.
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4 Algorithms for (strictly) specializable D-modules

Combining the above algorithm with the methods from the previous subsection, we formu-
late the following algorithm for the computation of FLoc

p V0NX :

Algorithm 4.2.27 Given a coordinate neighborhood X of X0 and a strictly X0-specializable
(DX(∗X0), F ◦• )-module (N,F•), this algorithm represents N as a quotient of a DX -module
and computes FLoc

p V0N .

Input: A strictly X0-specializable (DX [t
−1

], F ◦• )-module (N,F•) = (DX [t
−1

]E/L, F ◦[s]•)
with L′ ⊆ DE

X finite such that L =
DX [t

−1
]

〈
L′
〉

and an integer p ∈ Z.

Output: A finite set E′ and finite subsets L′′, G ⊆ DE′
X such that N ∼= DE′

X /DX 〈L
′′〉 as

DX -module and FLoc
p V0N ∼= C[x,t]

〈
G
〉
⊆ DE′

X /DX 〈L
′′〉.

1: Use Algorithm 4.2.15 to determine a representation NX := DE′
X /DX 〈L

′′〉 of N =

DE
X/DX

〈
L′
〉
⊗OX OX [t

−1
] as DX -module and b ⊆ (DE′

X )E such that (e) ⊗ 1 is rep-
resented by be ∈ NX (for e ∈ E).

2: Set j := min{se | e ∈ E}. . FLoc
q NX = 0 for q < j.

3: if p < j then
4: return E′, L′′, {0}.
5: Compute G ⊆ DE′

X inducing generators of FLoc
p Fv

0 NX by Algorithm 4.2.26 with input
NX and {θα∂βt be | e ∈ E,α ∈ Nm, β ∈ N, |α|+ β + se ≤ p}. . See Lemma 4.2.20.

6: return E′, L′′, G.

Computation of FLoc
p NX for fixed p

Recall that
FLoc
p N =

∑
i∈N

∂itFp−iV0N ∼=
∑
i∈N

∂itF
Loc
p−iF

v
0 NX .

Since FLoc
q V0NX = 0 for q < j := min{se | e ∈ E} by definition, {FLoc

q NX}q≤p is
determined by C[x, t]-generators Gq ⊆ DE′

X of FLoc
q Fv

0 NX (which can be found by Algo-
rithm 4.2.27) for q = j, . . . , p. Namely, we have

FLoc
q NX =

∑
j≤i≤p

∑
g∈Gi

(Fw
q−iDX) · g (4.2.6)

for all q ≤ p. The above equation shows that it is even sufficient to determine generators of
FLoc
q Fv

0 NX/F
w
1 F

v
0 DX · FLoc

q−1F
v
0 NX for q = j + 1, . . . , p. Hence we reduce the number of

generators by dropping members ofGq that have residue class 0 in that module. So we modify
Algorithm 4.2.27 as follows:
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Algorithm 4.2.28 Given a coordinate neighborhood X of X0 and a strictly X0-specializable
(DX(∗X0), F ◦• )-module (N,F•), this algorithm represents N as a quotient of a DX -module
and computes FLoc

p N .

Input: A strictly X0-specializable (DX [t
−1

], F ◦• )-module (N,F•) = (DX [t
−1

]E/L, F ◦[s]•)
with L′ ⊆ DE

X finite such that L =
DX [t

−1
]
〈L′〉 and an integer p ∈ Z.

Output: A finite set E′, finite sets P,G ⊆ DE′
X and d ∈ ZG such that N ∼= DE′

X /DX 〈P 〉 as
DX -module and FLoc

q N ∼=
∑

g∈G F
w
q−dgDX · g ⊆ DE′

X /DX 〈P 〉 for q ≤ p.

1: Use Algorithm 4.2.15 to determine a representation NX := DE′
X /DX 〈P 〉 of N =

DE
X/DX

〈
L′
〉
⊗OX OX [t

−1
] as DX -module and b ∈ (DE′

X )E such that (e) ⊗ 1 is rep-
resented by be ∈ NX (for e ∈ E).

2: Set j := min{se | e ∈ E}. . FLoc
q NX = 0 for q < j.

3: Initialize an empty set G ⊆ DE′
X and a (dynamic) vector d ∈ ZG.

4: for q = j, j + 1, . . . , p do
5: Compute a finite set G′ ⊆ DE′

X inducing C[x, t]-generators of FLoc
q Fv

0 NX by using
Algorithm 4.2.26 with input NX and {θα∂βt be | e ∈ E,α ∈ Nm, β ∈ N, |α|+β+ se ≤
q}. . See Lemma 4.2.20.

6: for g′ ∈ G′ do . Check if generator is needed and add to G if necessary.
7: if g′ /∈

∑
g∈G(Fw

q−dgF
v
0 DX) · g then . Check by Algorithm 2.4.5.

8: Set G := G ∪ {g′}.
9: Set dg′ := q.

10: return E′, P,G,d.

By the above algorithm we compute for a fixed integer p ∈ Z a set G ⊆ Fv
0 D

E′
X and a vecor

d ∈ ZG such that
FLoc
q V0NX =

∑
g∈G

Fw
q−dgF

v
0 DX · g (4.2.7)

and
FLoc
q NX =

∑
g∈G

Fw
q−dgDX · g (4.2.8)

for q ≤ p. The next step is now to check whether the latter Equation holds for all q ∈ Z.

Finding generators of FLoc
• NX

Recall that the filtration F (p)
• on NX is defined by

F (p)
q NX =

{
FLoc
q NX , if q ≤ p
F ◦q−pDX · FLoc

p NX , if q > p
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4 Algorithms for (strictly) specializable D-modules

and hence agrees with ∑
g∈G

Fw
•−dgDX · g

for G as above.
We apply Corollary 3.2.18 to test whether FLoc

• NX = F
(p)
• NX . Criterion 3.2.18(a) is

satisfied if we choose p ≥ max{se | e ∈ E}, because we have F•N = F ◦[s]•DX [t
−1

]E/L.
We check Part (b) of that criterion by testing Fv

0 NX =
∑

g∈G F
v
0 DX · g via Algorithm 2.4.5

since V0NX = Fv
0 NX by construction. Assuming that the former conditions are fulfilled, our

verification of the remaining two conditions is based on Algorithm 2.4.14, which tests whether
certain submodule and quotient filtrations agree. For that, and in preparation of expressing the
filtration FLoc

• N on a suitable isomorphic module by a shift vector, we compute the kernel of
the surjective DX -linear map

κ : DG
X → NX , (g) 7→ g

using Gröbner basis theory to obtain an isomorphism (DG
X/ ker(κ), Fw[d]•) ∼= (NX , F

(p)
• ).

Note in particular that Vk(DG
X/ ker(κ)) = Fv

k (DG
X/ ker(κ)) for k ∈ Z. This implies that

Conditions 3.2.18(c) and (d) are equivalent to

Fw[d]•F
v
0 (DG

X/ ker(κ)) =
∑
g∈G

(Fw
•−dgF

v
0 DX) · (g)

and
Fw[d]•F

v
−1(DG

X/ ker(κ)) =
∑
g∈G

(Fw
•−dgF

v
0 DX) · t(g),

that is, the submodule and the quotient filtrations induced by Fw[d]• on(
Fv
0 DX
〈(g) | g ∈ G〉+ ker(κ)

)
/ ker(κ)

and (
Fv
0 DX
〈t(g) | g ∈ G〉+ ker(κ)

)
/ ker(κ)

agree, respectively. The latter equivalent conditions can be decided by Algorithm 2.4.14. This
leads to the following algorithm:

Algorithm 4.2.29 Given a coordinate neighborhood X of X0 and a strictly X0-specializable
(DX(∗X0), F ◦• )-module (N,F•), this algorithm computes a representation of the localization
LocX0(N,F•) as (DX , F

◦
• )-module.

Input: A strictly X0-specializable (DX [t
−1

], F ◦• )-module (N,F•) = (DX [t
−1

]E/L, F ◦[s]•)
with L′ ⊆ DE

X finite such that L =
DX [f

−1
]

〈
L′
〉
.
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

Output: A finite setG, a finite setK ⊆ DG
X , and d ∈ ZG such that we have LocX0(N,F•) ∼=

(DG
X/DX 〈K〉, F

w[d]•).

1: Compute a representation NX = DE′
X /P of N = DE

X/DX

〈
L′
〉
⊗OX OX [t

−1
] as DX -

module and b ∈ (DE′
X )E such that (e) ⊗ 1 is represented by be ∈ NX (for e ∈ E) using

Algorithm 4.2.15.
2: Set j := min{se | e ∈ E}. . FLoc

q NX = 0 for q < j.
3: Set k := max{se | e ∈ E}. . FkN generates F•N as F ◦•DX -module.
4: Initialize an empty set G ⊆ DE′

X and a (dynamic) vector d ∈ ZG. . Save generators of
the filtration in G and corresponding degrees in d.

5: for q = j, j + 1, . . . do
6: Compute a finite set G′ ⊆ DE′

X inducing C[x, t]-generators of FLoc
q Fv

0 NX by applying
Algorithm 4.2.26 with input NX and {θα∂βt be | e ∈ E,α ∈ Nm, β ∈ N, |α|+β+ se ≤
q}. . See Lemma 4.2.20.

7: for g′ ∈ G′ do . Check if generator is needed and add to G if necessary.
8: if g′ /∈

∑
g∈G(Fw

q−dgF
v
0 DX) · g then . Check by Algorithm 2.4.5.

9: Set G := G ∪ {g′}.
10: Set dg′ := q.
11: if q ≥ k then . Condition 3.2.18(a) is satisfied.
12: if Fv

0 NX =
∑

g∈G F
v
0 DX · g then . Check using Algorithm 2.4.5.

13: Find DX -generators K of the kernel of the DX -linear map κ : DE
X → NX , (g) 7→

g using Gröbner basis theory.
14: if Fw[d]•F

v
0 (DG

X/ ker(κ)) =
∑

g∈G(Fw
•−dgF

v
0 DX) · (g) then . Check by Algo-

rithm 2.4.14.
15: if Fw[d]•F

v
−1(DG

X/ ker(κ)) =
∑

g∈G(Fw
•−dgF

v
0 DX) · t(g) then . Check by

Algorithm 2.4.14.
16: return G,K,d.

Remark 4.2.30. We remark that the isomorphism in the above algorithm is traceable in anal-
ogy with Remark 4.2.14(b).

Remark 4.2.31. Recall that given a strictly X0-specializable (DX [t
−1

], F ◦• )-module (N,F•)
the problem of computing F•VαN for α ∈ Q is still open. As we have FLoc

• VαN = F•VαN
for α ≤ 0 (see Remark 3.2.12(a)), the above algorithm enables us to describe F•VαN for
α ≤ 0. By Remark 3.2.10 this completely determines F•V•N .

4.2.7 Dual localization of (strictly) X0-specializable DX- and
DX(∗X0)-modules

Given an X0-specializable DX -module M = DE
X/K and an optional filtration F•M =

Fw[s]•(D
E
X/K) making this module strictly X0-specializable, we explain how to compute
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4 Algorithms for (strictly) specializable D-modules

DLocX0(M, (F•)). As we have by definition

DLocX0(M) = M(!X0) = DX ⊗V0DX V<0M

and the V0DX -module on the right hand side can be represented as a quotient of a free V0DX -
module by Algorithms 4.2.5 and 2.4.4, Lemma 3.1.30 allows us to represent DLocX0(M)
as a quotient of a free DX -module. In the filtered case, replacing Algorithm 4.2.5 by Al-
gorithm 4.2.9, the filtration F• on V<0M will be given by a shift vector on the computed
quotient of a V0DX -module. Hence, by definition, the filtration on DLocX0(M) is also given
by the same shift vector on its representation as a quotient of a free DX -module obtained by
Lemma 3.1.30. This leads to the following algorithm, which in addition represents the natural
map i(!X0) : DLocX0(M)→M :

Algorithm 4.2.32 Given a coordinate neighborhood X of X0 and a strictly X0-specializable
(DX , F

◦
• )-module (M,F•), this algorithm represents DLocX0(M,F•) as (DX , F

◦
• )-module

and computes the natural map i(!X0) : DLocX0(M)→M .

Input: A strictly X0-specializable (DX , F
◦
• )-module (M,F•) = (DE

X/K,F
◦[s]•).

Output: A finite set E′, a finite subset L ⊆ DE′
X , d ∈ ZL and q ∈ (DE

X)E
′

that satisfy
DLocX0(M,F•) ∼= (DE′

X /DX 〈L〉, F
◦[d]•) as (DX , F

◦
• )-modules, V<0(DE′

X /DX 〈L〉) =

Fv
0 (DE′

X /DX 〈L〉) and induce the natural map i(∗X0) : DE′
X /DX 〈L〉 → M via (e′) 7→ qe′

for e′ ∈ E′.
1: Compute the induced b-function b(s) ∈ Q[s] along X0 on M by Algorithm 4.2.4 and set
α := max{r + z | r ∈ Q, b(r) = 0, z ∈ Z, r + z < 0}. . VαM = V<0M .

2: Find a finite set E′ ⊆ K〈x, t, θ, ∂t〉E that satisfies F ◦• VαM =
∑

e′∈E′ F
w
•−degFw[s](e

′)DX ·
e′ by Algorithm 4.2.9 and Remark 4.2.10(a).

3: Define d ∈ ZE′ by de′ = degFw[s](e
′) for e′ ∈ E′.

4: Represent VαM as a quotient Fv
0 D

E′
X / Fv

0 DX
〈L〉 with L finite via Algorithm 2.4.4. .

Fv
0 DX
〈L〉 = ker(Fv

0 D
E′
X → V<0M, (e′) 7→ e′).

5: Define q ∈ (DE
X)E

′
by qe′ = e′ for e′ ∈ E′.

6: return E′, L, q.

Remark 4.2.33. The dual localization of a strictly X0-specializable (DX(∗X0), F ◦• )-module
(N,F•) is computed by using

DLocX0(N,F•) = DLocX0(LocX0(N,F•))

(see Remark 3.2.24), where the localization and dual localization on the right hand side are
determined by Algorithm 4.2.29 and Algorithm 4.2.32, respectively.
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4.2.8 Graded parts of V -filtrations

In view of the computations of the vanishing and nearby cycle functors (see Subsection 4.3.3),
we explain how to represent the graded parts of the V -filtration along X0 on DX -modules
as DX0-modules. Recall that (M,F•) = (DE

X/K,F
◦[s]•) and denote by K ′ a finite set of

DX -generators of K. Assuming that (M,F•) is strictly X0-specializable, or more generally
that M is X0-specializable and F•VαM is a good (V0DX , F

◦
• )-filtration, we give a method

to represent (GrVα M,F•) as a well-filtered (DX0 , F
◦
• )-module for fixed α. For that we first

write (GrVα M,F•) as a quotient of a free (V0DX , F
◦
• )-module, then we derive from this a free

(GrV0 DX , F
◦
• )-presentation of (GrVα M,F•) and finally we use the nilpotence of (−∂tt − α)

on (GrVα M,F•) to obtain the desired (DX0 , F
◦
• )-representation.

Note that since (VαM,F•) is a well-filtered (V0DX , F
◦
• )-module, (GrVα M,F•) is a well-

filtered (V0DX , F
◦
• )-module generated by the residue classes of a set of (V0DX , F

◦
• )-genera-

tors of (VαM,F•). It is represented as a quotient of a free (V0DX , F
◦
• )-module as follows:

First compute a finite set G ⊆ DE
X and a shift vector d ∈ ZG such that

F•VαM =
∑
g∈G

Fw
•−dgF

v
0 DX · g =

∑
g∈G

Fw
•−degFw[s](g)

Fv
0 DX · g.

Then there is a surjective strict Fv
0 DX -linear map

ρ : (Fv
0 D

G
X , F

wv [d]•) � (GrVα M,F•), (g) 7→ g + V<αM,

where wv denotes the weight vector induced by w on the PBW-reduction-algebra Fv
0 DX (see

Example 2.2.8(d)). To determine its kernel, we first find a set of Fv
0 DX -generators of V<αM :

Setting
β := max{r + z | r ∈ Q, b(r) = 0, z ∈ Z, r + z < α},

where b(s) denotes the induced b-function along X0 on M , we get that V<αM = VβM . If
G′ ⊆ DE

X is finite such that G′ is a set of Fv
0 DX -generators of VβM , then a ∈ Fv

0 D
G
X is in

the kernel of ρ if and only if
∑

g∈G agg ∈ VβM , that is, if and only if∑
g∈G

agg ∈ Fv
0 DX

〈
G′
〉

+K. (4.2.9)

Hence
ker(ρ) = πG

(
syzDX (G,G′,K ′) ∩ (Fv

0 D
GtG′
X ⊕DK′

X )
)

and generators of the above intersection are obtained as outlined in Algorithm 2.2.27. Conse-
quently, we have

F•GrVα M
∼= Fwv [d]•((F

v
0 D

G
X)/ ker(ρ)).
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Algorithm 4.2.34 Given a coordinate neighborhood X of X0 and an X0-specializable good
(DX , F

◦
• )-module (M,F•) such that (VαM,F•) is (V0DX , F

◦
• )-good, this algorithm com-

putes a representation of (GrVα M,F•) as (V0DX , F
◦
• )-module.

Input: An X0-specializable good (DX , F
◦
• )-module (M,F•) = (DE

X/K,F
◦[s]•) with K =

DX
〈K ′〉 for K ′ ⊆ DE

X finite and α ∈ Q such that (VαM,F•) is (V0DX , F
◦
• )-good.

Output: A finite set G, a finite set J ⊆ Fv
0 D

G
X and d ∈ ZG such that (GrVα M,F•) ∼=

((Fv
0 D

G
X)/ Fv

0 DX
〈J〉, F ◦[d]•) as (V0DX , F

◦
• )-module.

1: Compute the induced b-function b(s) along X0 on M , a set G ⊆ DE
X and d ∈ ZE such

that F•VαM =
∑

g∈G F
w
•−dgF

v
0 DX · g using Algorithm 4.2.9.

2: Set β := max{r + z | r ∈ Q, b(r) = 0, z ∈ Z, r + z < α}. . VβM = V<αM .
3: Determine a finite set G′ ⊆ DE

X such that G′ is a set of Fv
0 DX -generators of VβM by

Algorithm 4.2.5.
4: Compute a finite set S ofDX -generators of πG,G′(syzDX (G,G′,K ′)) using Gröbner basis

theory.
5: Find Fv

0 DX -generators J of DX 〈S〉 ∩ F
v
0 T

GtG′
X by Algorithm 2.2.27.

6: Replace J by πG(J).
7: return G, J,d.

As in Remark 3.1.8, if (GrVα M,F•) is (V0DX , F
◦
• )-well-filtered, then it is also well-filtered

as (GrV0 DX , F
◦
• )-module and (DX0 , F

◦
• )-module, because t acts by zero on GrVα M and the

action of −∂tt− α on that module is nilpotent. Hence given that

(GrVα M,F•) ∼= ((Fv
0 D

G
X)/J, Fwv [d]•)

with J = Fv
0 DX
〈J ′〉 for J ′ finite and d ∈ ZG, we have tFv

0 D
G
X = Fv

−1D
G
X ⊆ J and

(−∂tt− α)mb(s)(α) · (g) ∈ J (for g ∈ G) according to Remark 3.1.24. By Lemma 4.2.23
we hence write

(GrVα M,F•) ∼= ((Grv0 D
G
X)/νG(J), Fw′v [d]•),

where w′v stands for the weight vector induced by wv on the realization of Grv0 DX in Equa-
tion (4.2.4), that is, the weight vector assigning weight 1 to θi (1 ≤ i ≤ m) and t∂t and weight
0 else. Noting that GrV0 DX = DX0 [t∂t] according to Example 2.1.30(d), the residue classes
of

G′′ := {(t∂t)j(g) | g ∈ G, 0 ≤ j < mb(s)(α)} ⊆ Grv0 D
G
X

DX0-generate (Grv0 D
G
X)/νG(J). So we get a surjective DX0-linear morphism

µ : DG′′
X0

� (Grv0 D
G
X)/νG(J), (g′′) 7→ g′′

inducing an isomorphism of (DX0 , F
◦
• )-modules

(GrVα M,F•) ∼= (DG′′
X0
/ ker(µ), Fw0 [d′]•),
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4.2 Computations using global coordinate systems for smooth codimension one subvarieties

where d′g′′ := degFwv [d](g
′′) ≤ dg + j for g′′ = (t∂t)

j(g) ∈ G′′. Note that d′g′′ is computable

by checking if g′′ ∈ F
w′v
k ((Grv0 D

G
X)/νG(J)) for k = dg + j − 1,dg + j − 2, . . . using

Algorithm 2.4.5 until this test fails, because the filtration under consideration is separated.
To compute generators of ker(µ) note that a ∈ DG′′

X0
is in the kernel of µ is and only if∑

g∈G′′ ag′′g
′′ ∈ νG(J). Since Grv0 DX

∼= DX0 [t∂t], a set of Fu
0 GrV0 DX -generators of

πG′′(syz(G′′, νG(J))) ∩ Fu
0 Grv0 D

G′′
X ,

where u stands for the weight vector on Grv0 DX assigning weight 1 to t∂t and weight 0 else,
DX0-generates also ker(µ).

Remark 4.2.35. The isomorphism GrVα M
∼= DG′′

X0
/ ker(µ) is traceable: Namely, write m ∈

VαM as an Fv
0 DX -linear combination ofG by Algorithm 2.4.5 and Remark 2.4.6. Since t acts

as zero on GrVα M , we may even assume that the coefficients of the linear combination live in
DX0 [t∂t]. Noting that (−∂tt−α)mb(s)(α) annihilates GrVα M , and writing (t∂t)

mb(s)(α)−(∂tt+
α)mb(s)(α) =

∑
0≤i<mb(s)(α) ai(t∂t)

i, we replace recursively any (t∂t)
mb(s)(α) appearing in the

coefficients by
∑

0≤i<mb(s)(α) ai(t∂t)
i. From this we derive aDX0-linear combination ofm ∈

GrVα M in terms of G′′ from which we can read off the representation of m in DG′′
X0
/ ker(µ).

Tracing the isomorphism in the converse direction is trivial.

We summarize our method:

Algorithm 4.2.36 Given a coordinate neighborhood X of X0 and an X0-specializable good
(DX , F

◦
• )-module (M,F•) such that (VαM,F•) is (V0DX , F

◦
• )-good, this algorithm com-

putes a representation of (GrVα M,F•) as (DX0 , F
◦
• )-module.

Input: An X0-specializable good (DX , F
◦
• )-module (M,F•) = (DE

X/K,F
◦[s]•) and α ∈ Q

such that (VαM,F•) is a good (V0DX , F
◦
• )-module.

Output: A finite set G, a finite set J ⊆ DG
X0

and d ∈ ZG such that we have isomorphisms
(GrVα M,F•) ∼= (DG

X0
/
DX0

〈
J
〉
, F ◦[d]•) as (DX0 , F

◦
• )-modules.

1: Find by Algorithm 4.2.34 a representation (Fv
0 D

E′
X / Fv

0 DX
〈J ′〉, Fw[c]•) of (GrVα M,F•)

(with J ′ finite).
2: Set J ′ := νE

′
(J) ⊆ Gr0

V D
E′
X .

3: Determine mα := mb(s)(α), where b(s) is the induced b-function along X0 on M . . See
Remark 3.1.24.

4: Set G := {(∂tt)i(e′) | 0 ≤ i < mα, e
′ ∈ E′} ⊆ Gr0

V DX

5: for e′ ∈ E′ do
6: for i = 0, . . . ,mα − 1 do
7: Set j := de′ + i− 1.
8: while (t∂t)i(e′) ∈ Fw′v

j−1(GrV0 D
E′
X /GrV0 DX

〈J ′′〉) do . Check by Algorithm 2.4.5.
9: Set j := j.
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4 Algorithms for (strictly) specializable D-modules

10: Set d(t∂t)j(e′) := j.
11: Find a set J of Fu

0 GrV0 DX -generators of πG(syz(G, νG(J))) ∩ Fu
0 Grv0 D

G
X by Algo-

rithm 2.2.27, where u stands for the weight vector on Grv0 DX assigning weight 1 to t∂t
and weight 0 else.

12: Write h ∈ H as h =
∑

0≤j<mα,e′∈E′ h(t∂t)j(e′)(t∂t)
j(e′) with (t∂t)j(e′) ∈ DX0 .

13: Return G, J,d.

Remark 4.2.37.

(a) Algorithms 4.2.34 and 4.2.36 can be modified to represent (VαM/Vα−1M,F•) by re-
placing β by α− 1 in Algorithm 4.2.34 and mb(s)(α) by deg b(s) in Algorithm 4.2.36.

(b) Given an X0-specializable (unfiltered) DX -module M , we adapt Algorithms 4.2.34
and 4.2.36 to this situation by computing in Algorithm 4.2.34 just any set of Fv

0 DX -
generators of VαM and forgetting all the shift vectors involved.

The following remark is needed to realize the morphisms can and var later on:

Remark 4.2.38. Recall that (GrVα M,F•) is endowed with a nilpotent DX0-linear endomor-
phism N = −∂tt − α = −t∂t − (α + 1). We make this morphism under the isomorphism
(GrVα M,F•) ∼= (DG′′

X0
/ ker(µ), Fw0 [d′]•) explicit : Using the notation of Remark 4.2.35, we

obtain

t∂t· : (DG′′
X0
/ ker(µ), Fw0 [d′]•)→ (DG′′

X0
/ ker(µ), Fw0 [d′]•+1);

(t(∂t)j(g)) 7→

{
((t∂t)j+1(g)), if j < mb(s)(α)− 1∑

0≤i<mb(s)(α) ai((t∂t)
i(g)), if j = mb(s)(α)− 1.

We also represent the (DX0 , F
◦
• )-linear morphisms

∂t· : (GrVα M,F•)→ (GrVα+1M,F•+1) and t· : (GrVα+1M,F•)→ (GrVα M,F•) :

Since these maps involve not only the module GrVα M but also GrVα+1M , we adapt our no-
tation by additionally using the lower indexes α and α − 1 (e.g. we write Gα instead of
G for the set whose residue class V0DX -generates VαM and so on). We find by Algo-
rithm 2.4.5 and Remark 2.4.6 elements b ∈ (Fv

0 D
Gα+1

X )Gα and c ∈ (Fv
0 D

Gα
X )Gα+1 such

that ∂tg =
∑

g′∈Gα+1
(bg)g′g′ and tg′ =

∑
g∈Gα(cg′)gg for g ∈ Gα and g′ ∈ Gα+1. Hence

these morphisms are given by

∂t· : DG′′α
X0
/ ker(ρα)→ D

G′′α+1

X0
/ ker(ρα+1), ((t∂t)j(g)) 7→ (t∂t + 1)j

∑
g′∈Gα+1

(bg)g′ · ((g′))

and

t· : DG′′α+1

X0
/ ker(ρα+1)→ D

G′′α
X0
/ ker(ρα), ((t∂t)j(g′)) 7→ (t∂t − 1)j

∑
g∈Gα

(cg′)g · ((g)).
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4.3 Computations using global coordinate systems for general codimension one subvarieties

To evaluate the above actions on the right hand sides, note that the action of Fv
0 DX on the

above modules is given by letting t act as zero on them and that t∂t operates as described
above.

4.3 Computations using global coordinate systems for
general codimension one subvarieties

Let X = V (J) ⊆ Cn with J ⊆ C[x] := C[x1, . . . , xn] prime be a smooth irreducible affine
variety of dimension m with global coordinate system and X0 a codimension one subvari-
ety with defining ideal sheaf generated by f for f ∈ C[x]. The main aim of this section
is to represent the localizations LocX0(M, (F•)), LocX0(N, (F•)), DLocX0(M, (F•)) and
DLocX0(N, (F•)) as well as the vanishing cycle functors along f ∈ OX . We point out that if
X0 is smooth then the localizations along X0 is locally computable by the methods of the last
section (i.e., shrink X such that f is part of a global coordinate system) and that it is possible
to glue them together using the method outlined in Section 4.4. However, the advantage of the
method in this section, which relies on the graph embedding along the graph of f , is that we
do not need to work locally and to glue our local results.

By assumption there exist local coordinates given by the residue classes of f1, . . . , fm ∈
C[x] and corresponding commuting derivations θ1, . . . , θm ∈ ΘX(X) induced by derivations
θl1, . . . , θ

l
m ∈ Der(C[x]).

Remark 4.3.1. In view of Convention 4.1.3 we may assume that f and some generating set
of J are defined over K[x1, . . . , xn]. Hence the derivation θl1, . . . , θ

l
m can be realized over the

field K implying that we may assume that K is a TX -computable field.

Remark 4.3.2. According to Example 2.1.30(a)DX is realized as the PBW-reduction-algebra

TX := (C〈x, θ1, . . . , θm〉, S, J ′,≺)

with

S := {[xj , xi], [θp, θk], [θk, xi]− θlk(xi) | for 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ p ≤ m} \ {0},

≺ any well-order such that S is a standard reduction system with respect to ≺ (for instance
a well-ordering satisfying xαθβ ≺ xα

′
θβ
′

if |β| < |β′| using usual multi-index notation) and
J ′ ⊆ C[x] a Gröbner basis of J with respect to the ordering induced by ≺. From now on,
we identify DX and TX . Denoting by w ∈ Zn + m the weight vector assigning weight 1 to θk
(1 ≤ k ≤ m) and weight 0 else on TX , we have under the above identification

F ◦•DX = Fw
• TX .

However, we will not perform our computations over this PBW-reduction-algebra but rather
over a certain tensor product of this algebra.
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4 Algorithms for (strictly) specializable D-modules

All our algorithms rely on taking direct images under the graph embedding

if : X → Y := X × Ct, x 7→ (x, f(x))

and translating the corresponding computations to computations on Y fitting in the situation
of Section 4.2. Note that Y has a global coordinate system consisting of t and of the global
coordinates of X with corresponding differentials induced by ∂t and θl1, . . . , θ

l
m. Therefore,

DY is isomorphic to the PBW-reduction-algebra

TY = (C〈x, t, θ, ∂t〉, SY , JY ,≺Y ),

where SY = S ∪ {[t, xi], [∂t, xi], [θj , t], [θj , ∂t], [∂t, t]− 1 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, ≺Y any
well-order such that SY is a reduction system with respect to ≺Y and JY a Gröbner basis of
〈J ∪ {t}〉 ⊆ C[x, t]. In particular, TY satisfies all properties needed to apply the algorithms of
Section 4.2 for the embedding Y0 := X × {0} ⊆ Y . We denote by v ∈ Zn + m +2 the weight
vector assigning weight 1 to ∂t, weight −1 to t and weight 0 else. By abuse of notation, the
weight vector w ∈ Zn + m +2 stands also for the weight vector on TY assigning weight 1 to θk
and ∂t and weight 0 else. As in Section 4.2 we identify DY with TY , represent its elements in
the same manner and use the notation Fu

• DY for a weight vector u on TY .
To represent direct images of finitely presented DX -modules under the graph embedding

if , we factor if via

X �
� if

//� r

i0:x 7→(x,0) ##

X × Ct

X × Ct,
λ:(x,t)7→(x,t+f(x))

99
(4.3.1)

and then Example 1.4.10 implies that we have an identification

(if )+(DE
X/DX 〈Q〉) = DE

Y /DY

〈
ΛE(Q), t− f

〉
, (4.3.2)

where we regard Q as a subset of DY = DX ⊗C DC in order to apply ΛE . When writing
(if )+P for a finitely presented DX -module, we always assume that (if )+P is presented as
above. To simplify notation, we often write Λ for ΛE and similarly for the inverse λ′ of λ.

4.3.1 Specializable DX- and DX(∗X0)-modules

Our aim is to decide if M = DE
X/K and N = DX [f

−1
]E/L are X0-specializable. By defini-

tionM isX0-specializable if and only if (if )+M is Y0-specializable, which can be checked by
Algorithm 4.2.5. Similarly, writingN = N ′[f

−1
] withN ′ a finitely presentedDX -module, we

have (if )+N ∼= ((if )+N
′)[t
−1

] (see Lemma 1.4.19). HenceN isX0-specializable if and only
if ((if )+N

′)[t
−1

] is Y0-specializable which is equivalent to (if )+N
′ being Y0-specializable

according to Lemma 3.1.28(a). As above we test the latter condition by Algorithm 4.2.5.
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4.3 Computations using global coordinate systems for general codimension one subvarieties

Remark 4.3.3. If X0 is smooth, it is also possible to compute the filtration along X0 on M :
We briefly outline two methods for this. One of them uses the methods from Subsection 4.2.1,
while the other relies on a graph embedding as above. The first method determines locally
on coordinate neighborhoods of X0 the V -filtration by Algorithm 4.2.7. The gluing process
presented in Subsection 4.4.4 patches then the local results together.

The other method uses the graph embedding if and computes the V -filtration on (if )+M
along Y0 by Algorithm 4.2.7. Applying Lemma 3.1.35, that locally links V Y0

• (if )+M and
V X0
• M , allows us also to describe V X0

α M on coordinate neighborhoods reducing the prob-
lem again to a gluing process as above. The advantage of this method is that it requires only
one b-function computation to determine the V -filtration along X0 on all coordinate neighbor-
hoods that we have to consider, whereas the first method needs one b-function computation
per coordinate neighborhood.

Remark 4.3.4. We point out that we have no method to check in the filtered situation if
(M,F•) and (N,F•) are strictly X0-specializable. However, if they are strictly X0-specializ-
able, we can compute for smoothX0 the filtrations F•VαM and F•VαN for α ∈ Q by adapting
the methods in the above remark.

4.3.2 Localizations and dual localizations of (strictly) X0-specializable
DX- and DX(∗X0)-modules

Considering strictly X0-specializable (DX , F
◦
• ) and (DX [f

−1
], F ◦• )-modules (M,F•) and

(N,F•), respectively, the objective of this subsection is to finitely present the (DX , F
◦
• )-

modules LocX0(M,F•), LocX0(N,F•), DLocX0(M,F•) and DLocX0(N,F•). All compu-
tations are based on the same method of taking direct images under the graph embedding if ,
then doing the corresponding computations for Y0 ⊆ Y and finally using strict Kashiwara’s
equivalence to derive the results. More precisely, we obtain by Equation (3.2.16) and Equa-
tion (3.2.17)

(D)LocX0
(M,F•) = GrV

V (t−f)
0 ((D)LocY0((if )+M,F ◦[s]•−1))(−1)

= V
V (t−f)

0 ((D)LocY0((if )+M,F ◦[s]•−1))(−1).

Recall that a representation of (D)LocY0(Mf , (F
◦[s]•−1) in terms of a quotient of a free

DY -module with a corresponding shift vector inducing the filtration is computable by Al-
gorithm 4.2.17 in the localization case and by Algorithm 4.2.32 in the dual case.

Choosing a finitely presented DX -module N ′ = DE
X/L

′ satisfying N = N ′[f
−1

] and
setting F•N ′ = F ◦[s]•N

′, we have (N,F•) = (N ′(∗X0), F•) and hence Equation (3.2.13)
and Remark 1.4.21 imply

LocX0(N,F•) = GrV
V (t−f)

0 (LocY0(((if )+N
′)(∗Y0), F ◦[s]•−1))(−1)

= V
V (t−f)

0 (LocY0(((if )+N
′)(∗Y0), F ◦[s]•−1))(−1).
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4 Algorithms for (strictly) specializable D-modules

Similarly, by Remark 3.2.38 and Equation (3.2.17)

DLocX0(N,F•) = GrV
V (t−f)

0 (DLocY0(LocY0(((if )+N
′)(∗Y0), F ◦[s]•−1)))(−1)

= V
V (t−f)

0 (DLocY0(LocY0(((if )+N
′)(∗Y0), F ◦[s]•−1)))(−1).

The (DY , F
◦
• )-module LocY0(((if )+N

′)(∗Y0), F ◦[s]•−1) as well as its dual localization along
Y0 can be written as quotients of freeDY -modules with filtration induced by shift vectors using
Algorithm 4.2.29 and Algorithm 4.2.32. and Remark 4.2.33.

It remains now the following task: Given a strictly V (t−f)-specializable (DY , F
◦
• )-module

(DE′
Y /K

′′, F ◦[s′]•) supported on V (t − f), determine a finite presentation of the (DX , F
◦
• )-

module Gr
V (t−f)
0 (DE′

Y /K
′′, F ◦[s′]•). Factorizing if as in Equation (4.3.1) via i0 and λ and ap-

plying the inverse λ′ of the coordinate change λ yields by Proposition 3.2.7, Proposition 1.4.7
and Example 1.4.9(c) that the latter module is isomorphic to

GrV
V (t)

0 (DE′
Y /Λ

′(K ′′)) = V
V (t)

0 (DE′
Y /Λ

′(K ′′))

as (DX , F ◦• )-module reducing the problem to Algorithm 4.2.36.
The remark below explains how to represent the corresponding (dual) localization maps and

how to trace our isomorphisms. The latter task is crucial for patching local results together as
will be done Section 4.4.

Remark 4.3.5.

(a) We compute the canonical map M → LocX0(M) as follows in the above situation:
Assume that LocY0((if )+M) is represented by DE′

Y /K
′′ and that q ∈ (DE′

Y )E defines
the natural localization morphism (if )+M → DE′

Y /K
′′ via (e) 7→ qe. (Note that q is

computable by Algorithm 4.2.17.) Then Λ′(q) defines in the same manner the natural
morphism (i0)+M → DE′

Y /Λ
′(K ′′). Since both DY -modules appearing in the latter

morphism are Y0-specializable by Lemma 3.1.16 and (e) ∈ V Y0
0 (i0)+M = ker(t· :

(i0)+M → (i0)+M), Proposition 3.1.15 implies that Λ′(q)e ∈ V Y0
0 (DE′

Y /Λ
′(K ′′)).

Representing the latter module as DG′′
X /J via Algorithm 4.2.36, Remark 4.2.35 allows

us to determine the image q′e ∈ DG′′
X /J of Λ′(q)e. Now the localization map M →

DG′′
X /J is given by (e) 7→ q′e.

(b) We keep the notation of Part (a). As in Remark 4.2.14(b) we also need to be able to
compute the image of m ⊗ f−k ∈ M ⊗OX OX [f

−1
] for m ∈ DE

X and k ∈ N under
the isomorphism LocX0(M) ∼= DG′′

X /J . Regarding m ⊗ f
−k ⊗ 1 as an element of

(if )+(M ⊗OX OX [f
−1

]) = if (M ⊗OX OX [f
−1

])⊗C C[∂t] = (M ⊗OX OX [f
−1

])⊗C
C[∂t], Remark 1.4.20, Equation (4.3.2) and Remark 4.2.14(b) enable us to compute its
image under the isomorphisms (if )+(M ⊗OX OX [f

−1
]) ∼= (if )+M ⊗OX OX [t−1] ∼=
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DE
Y /K

′′. By construction this element is in the V t−f
0 -part of the latter module and we

continue as in Part (a).

On the other hand consider the element m ∈ DG′′
X /J for m ∈ DG′′

X . By construction of
DG′′
X /J in Algorithm 4.2.36 (see Remark 4.2.35), m corresponds to an computationally

accessible element m′ ∈ DE′
Y /Λ

′(K ′′). Rewriting the latter element as an element of
(i0)+(M ⊗OX OX [f

−1
]) = (M ⊗OX OX [f

−1
]) ⊗C C[∂t] using the above remarks,

we have by construction that this element can be considered as an element of M ⊗OX
OX [f

−1
].

(c) Using a similar argument as in Part (a), we can also make to dual map DLocY0(M) →
M explicit. Similar remarks apply for the localization and dual localization of strictly
X0-specializable (DX [f

−1
], F ◦• )-modules.

(d) We point out that all steps involved in the computation of the (dual) localization ofM are
traceable by the previous parts of this remark. In particular, we can trace for ? ∈ {∗, !}
the isomorphism V

V (t−f)
0 (((if )+M)(?Y0)) ∼= M(?X0) (in both directions). Moreover,

we can decide ifm ∈ ((if )+M)(?Y0) is in the V V (t−f)
0 -part of this module (by applying

the coordinate change λ′) and or if it is in a certain layer of the F•-filtration.

The following algorithm summarizes the computation of LocX0(M,F•).

Algorithm 4.3.6 Given a variety X with a global coordinate system and a strictly V (f)-
specializable (DX , F

◦
• )-module (M,F•), this algorithm computes the localization of this mod-

ule along V (f).

Input: A strictly V (f)-specializable (DX , F
◦
• )-module (M,F•) = (DE

X/DX 〈K〉, F
◦[s]•)

with K ⊆ DE
X finite.

Output: A finite set E′, a finite set L ⊆ DE′
X and a shift vector d ∈ ZE′ such that there is an

isomorphism LocV (f)(M,F•) ∼= (DE′
X /DX 〈L〉, F

◦[d]•).
1: Set K ′ := Λ(K) ∪ {(t− f)(e) | e ∈ E} ⊆ DY . . (if )+M = DE

Y /DY 〈K
′〉.

2: Apply Algorithm 4.2.17 to determine a finite set E′, a finite subset L ⊆ DE′
Y and a shift

vector d ∈ ZE′ such that LocV (t)((if )+M,F ◦[s]•−1) ∼= (DE′
Y /DY 〈L〉, F

w[d]•).
3: Set L′ := Λ′(L). . (i0)+(LocV (f)(M)) ∼= DE′

Y /DY 〈L
′〉.

4: Determine finite sets E′′ ⊆ DE′
Y , L′′ ⊆ DE′′

X and d′ ∈ ZE′′ such that there is an iso-
morphism GrV

V (t)

0 ((DE′
Y /DY 〈L

′〉, Fw[d]•))(−1) ∼= (DE′′
X /DX 〈L

′′〉, Fw[d′]•) by Algo-
rithm 4.2.36.

5: return E′′, L′′,d′.

Remark 4.3.7. As in Remark 4.2.16, if X = Cn the localization can in many cases also
be computed by the methods of Oaku, Takayama and Walther. If one is only interested in
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the localized module, it seems advantageous to use their method because in contrast to their
algorithms we have to compute two b-functions.

For completeness, we state the algorithms for the dual localization DLoc(M,F•) as well as
the localization and dual localization of (N,F•):

Algorithm 4.3.8 Given a variety X with a global coordinate system and a strictly V (f)-
specializable (DX , F

◦
• )-module (M,F•), this algorithm computes the dual localization of this

module along V (f).

Input: A strictly V (f)-specializable (DX , F
◦
• )-module (M,F•) = (DE

X/DX 〈K〉, F
◦[s]•)

with K ⊆ DE
X finite.

Output: A finite set E′, a finite set L ⊆ DE′
X and a shift vector d ∈ ZE′ such that we have

DLocV (f)(M,F•) ∼= (DE′
X /DX 〈L〉, F

◦[d]•).
1: Set K ′ := Λ(K) ∪ {(t− f)(e) | e ∈ E} ⊆ DY . . (if )+M = DE

Y /DY 〈K
′〉.

2: Apply Algorithm 4.2.32 to determine a finite set E′, a finite subset L ⊆ DE′
Y and a shift

vector d ∈ ZE′ such that DLocV (t)((if )+M,F ◦[s]•−1) ∼= (DE′
Y /DY 〈L〉, F

w[d]•).
3: Set L′ := Λ′(L). . (i0)+(LocX0(M)) ∼= DE′

Y /DY 〈L
′〉.

4: Determine by Algorithm 4.2.36 finite sets E′′ ⊆ DE′
Y and L′′ ⊆ DE′′

X and d′ ∈ ZE′′ such
that GrV

V (t)

0 ((DE′
Y /DY 〈L

′〉, Fw[d]•))(−1) ∼= (DE′′
X /DX 〈L

′′〉, Fw[d′]•).
5: return E′′, L′′,d′.

Algorithm 4.3.9 Given a variety X with a global coordinate system and a strictly V (f)-
specializable (DX(∗V (f)), F ◦• )-module (N,F•), this algorithm computes the localization of
this module along V (f).

Input: A (DX [f
−1

], F ◦• )-module (N,F•) = (DX [f
−1

]E/
DX [f

−1
]
〈L〉, F ◦[s]•) with L ⊆

DE
X finite that is strictly V (f)-specializable.

Output: A finite set E′, a finite set P ⊆ DE′
X and a shift vector d ∈ ZE′ such that we have

LocV (f)(N,F•)
∼= (DE′

X /DX 〈P 〉, F
◦[d]•).

1: Set L′ := Λ(L′) ∪ {(t− f)(e) | e ∈ E} ⊆ DY .
2: Apply Algorithm 4.2.29 to determine a finite set E′, a finite subset P ⊆ DE′

Y and d ∈ ZE′

such that LocV (t)((D
E
Y /DY 〈L

′〉)(∗V (t)), F ◦[s]•−1) ∼= (DE′
Y /DY 〈P 〉, F

w[d]•).
3: Set P ′ := Λ′(P ).
4: Determine by Algorithm 4.2.36 finite sets E′′ ⊆ DE′

Y and P ′′ ⊆ DE′′
X and d′ ∈ ZE′′ such

that GrV
V (t)

0 ((DE′
Y /DY 〈P

′〉, Fw[d]•))(−1) ∼= (DE′′
X /DX 〈P

′′〉, Fw[d′]•).
5: return E′′, P ′′,d′.
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Algorithm 4.3.10 Given a variety X with a global coordinate system and a strictly V (f)-
specializable (DX(∗V (f)), F ◦• )-module (N,F•), this algorithm computes the dual localiza-
tion of this module along V (f).

Input: A (DX [f
−1

], F ◦• )-module (N,F•) = (DX [f
−1

]E/
DX [f

−1
]
〈L〉, F ◦[s]•) with L ⊆

DE
X finite that is strictly V (f)-specializable.

Output: A finite set E′, a finite set P ⊆ DE′
X and a shift vector d ∈ ZE′ such that we have

DLocV (f)(N,F•)
∼= (DE′

X /DX 〈P 〉, F
◦[d]•).

1: Set L′ := Λ(L′) ∪ {(t− f)(e) | e ∈ E} ⊆ DY .
2: Apply Algorithm 4.2.29 to determine a finite set E′, a finite subset P ⊆ DE′

Y and d ∈ ZE′

such that LocV (t)((D
E
Y /DY 〈L

′〉)(∗V (t)), F ◦[s]•−1) ∼= (DE′
Y /DY 〈P 〉, F

w[d]•).
3: Use Algorithm 4.2.32 to determine a finite set E′′, a finite subset P ′ ⊆ DE′′

Y and a shift
vector d′ ∈ ZE′ with DLocV (t)(D

E′
Y /DY 〈P 〉, F

w[d]•) ∼= (DE′′
Y /DY 〈P

′〉, Fw[d′]•).
4: Set P ′′ := Λ′(P ′).
5: Determine by Algorithm 4.2.36 finite sets E′′′ ⊆ DE′′

Y and P ′′′ ⊆ DE′′′
X and d′′ ∈ ZE′′′

such that GrV
V (t)

0 ((DE′′
Y /DY 〈P

′′〉, Fw[d′]•))(−1) ∼= (DE′′′
X /DX 〈P

′′′〉, Fw[d′′]•).
6: return E′′′, P ′′′,d′′.

Remark 4.3.11. Forgetting the filtrations involved in the above algorithms, the algorithms
compute localizations and dual localizations ofX0-specializableDX - andDX(∗X0)-modules.

4.3.3 Vanishing and nearby cycles

The representation of the vanishing and nearby cycles of (M,F•) as well as of the morphisms
var and can follows immediately from Algorithm 4.2.36 and Remark 4.2.38.

4.4 Computations on (affine) varieties via gluing

Assume now that X is a smooth irreducible affine variety and X0 ⊆ X is a pure codimension
one subvariety defined by the ideal sheaf I. The purpose of this section is to develop algo-
rithms for the computation of localizations, dual localizations and nearby and vanishing cycles
and the corresponding maps in this more general situation. Our method for this is based on
covering X with open neighborhoods that fit into the setting of the last two sections, doing
the computations locally on the elements of this cover and then gluing the local results. As all
local results are finitely presented D-modules with a filtration, the main task in this section is
to devolop an algorithm that glues (filtered) free presentations.

Moreover, the above method can also be employed to make a quasi-inverse for Kashiwara’s
equivalence for Hodge D-modules explicit.

Before we start, we fix some notation: Let X = V (J) ⊆ Cn be defined by the vanishing
of the prime ideal J ⊆ C[x] := C[x1, . . . , xn] and X0 = V (I ′) defined by the radical ideal
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4 Algorithms for (strictly) specializable D-modules

I ′ ⊆ C[x]. Choose {fb | b ∈ B} ⊆ C[x] for a finite index set B such that the residue classes
of the fb generate the ideal I = I ′/J . This in particular implies I = OX

〈
{fb | b ∈ B}

〉
. We

set Ug := D(g) ∩X for g ∈ C[x].

4.4.1 Constructing a gluing cover

First we explain how to construct a cover of X by affine principal open neighborhoods suited
for our local computations. Since we may omit considering certain graph embeddings if we
choose for smooth X0 these neighborhoods carefully, we treat this case separately:

Gluing cover in the smooth subvariety case

So assume that X0 is smooth. We cover X by two different types of affine open subsets,
namely coordinate neighborhoods of X0 and affine open subsets that cover X∗ = X \ X0.
Recall that we have by Remark 1.2.13(a) a method to determine a partial cover of X by co-
ordinate neighborhoods that covers all of X0. More precisely, we can compute a finite set
C0 ⊆ C[x] and a0 ∈ BC0

such that Uc for c ∈ C0 is a coordinate neighborhood of X0 with
IUc = OUc

〈
fa0c
〉

and such that X0 ⊆
⋃
c∈C Uc.

On the other hand, X∗ forms an affine open cover of itself. However this cover is for
computational purposes often too coarse. Therefore we refine it in two steps: The U ′b :=
D(fb) ∩X are an affine open cover of X∗ such that on U ′b the empty set U ′b ∩X0 is defined
by the vanishing of fb. To perform actual computations we refine this cover by covering the
U ′b themselves by an affine principal open cover such that element of this cover have a global
coordinate system. Such a cover is given by open sets Uc corresponding to c ∈ C∗ for a
suitable finite set C∗ ⊆ C[x], which can be found as outlined in Remark 1.2.13(a). Hence
there exists in particular a∗ ∈ BC∗ such that Uc ∩X0 = Uc ∩ V (fa∗c ) for c ∈ C∗. Moreover,
we may assume that C∗ was chosen such that for c ∈ C∗ there is a c′ ∈ C[x] such that
c = c′fa∗c

To unify our notation, we set C := C0 ∪ C∗ and define a ∈ BC by ac = a0
c for c ∈ C0 and

by ac = a∗c for c ∈ C∗.

Gluing cover in the general subvariety case

We drop now the assumption that X0 is smooth. As for smooth X0, we cover X again by two
different types of subsets. The cover of X∗ is constructed as in the smooth case and we keep
the corresponding notation. We complete this cover by open patches of the form Uc for c ∈ C0

for some finite set C ⊆ C[x] with the property that IUc generated by single regular function.
Note that such a cover exists indeed because the defining ideal sheaf of a pure codimension
one subvariety of a smooth equidimensional variety is locally generated by one equation. So
for x ∈ X0 exists by Nakayama’s Lemma b ∈ B such that Ix = OX,x〈fb〉. This holds then
also on an open neighborhood Ux of x in X , that is, IUx is OUx-generated by fb. Therefore it
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is enough to find for given b ∈ B the maximal open set of X such that the restriction of I to
that set is generated by fb and cover this set by affine opens. Algorithmically this is achieved
by computing for all b′ ∈ B \ {b} a C[x]-generating set Sb′ of syzC[x](fb, fb′ , J) via Gröbner
basis theory and setting S′b′ := {sfb′ ∈ Sb′ | sf ′b 6= 0 ∈ C[x]/J}. Then

{U∏
b′∈B\{b} sb′

| sb′ ∈ S′b′}

is a cover of that maximal open set. By covering theU∏
b′∈B′ s

′
b

by affine principal opens having
a global coordinate system, we may assume that we have constructed a finite set C0 ⊆ C[x]
and an element a0 ∈ BC0

such that Uc has a global coordinate system and IUc is generated by
fa0c for c ∈ C0. The set C and the element a are now defined as in the smooth case.

Representing the ring of differential operators on elements of the cover

Consider g ∈ C[x] such that Ug has a global coordinate system with corresponding derivations
θ1, . . . , θm induced by θl1, . . . , θ

l
m ∈ DerJ(C[x])[g−1] and obtained by Remark 1.2.11(b). In

this situation we have an isomorphism

ηg : Ug ∼= Vg := V (J, xn +1g − 1) ⊆ Cn +1, (x1, . . . , xn) 7→ (x1, . . . , xn,
1

g(x)
)

with isomorphism of the corresponding rings of differential operators defined via sending the
derivation θ ∈ ΘUg(Ug)

∼= ΘX(X)[g−1] represented by θl ⊗ g−k for θl ∈ Der(C[x]) (see
Remark 1.2.3) to xkn +1(θl − x2

n +1θ
l(g)∂n +1) ∈ ΘVg(Vg). The inverse maps θ̃ ∈ ΘVg(Vg)

represented by θ̃l =
∑

1≤i≤n +1 ai(x, xn +1)∂i ∈ Der(C[x, xn +1]) to
∑

1≤i≤n ai(x, g
−1)∂i

interpreted in the canonical way as an element of DX [g−1].
We point out that the ηc(X0)∩Vc ⊆ Vc for c ∈ C0 fit in the situation of Section 4.3. IfX0 is

moreover smooth, we may by Remark 1.2.12 further assume that the ηc(X0) ∩ Vc ⊆ Vc fulfill
the assumptions of Section 4.2. On the other hand, for c ∈ C∗, we represent DVc as a PBW-
reduction-algebra following Example 2.1.30(a) such that the filtration F ◦•DVc is induced by a
weight vector. From now on, we implicitly identifyDUc with the corresponding representation
of DVc as PBW-reduction-algebra for c ∈ C.

4.4.2 General principle of the gluing process

Recall that we are interested in (filtered) localizations and dual localizations of DX - and
DX(∗X0) together with the natural (dual) localization maps as well as in the (unipotent) van-
ishing and nearby cycle functors together with the morphisms can and var. Our aim is to
represent these objects as quotients of free DX -modules with filtrations given by shift vectors.
Before we explain in detail how to glue the various constructions from certain local data, we
outline a gluing process for locally given filtered free presentations on which the patching of
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4 Algorithms for (strictly) specializable D-modules

these constructions is based. Our method relies from a categorical point of view on the con-
struction of a certain inverse limit and does not depend on the underlying ring. Hence we
explain the gluing in the following more general setting:

Let {Ua}a∈A be a cover of X for a finite subset A ⊆ C[x] of cardinality greater than
one. Consider a Noetherian filtered ring (S, F•) with the property that S is an OX -module
inducing an OX -structure on its filtered parts FkS (k ∈ Z). Then the filtration F•S defines a
filtration on S[a−1] for a ∈ A via F•(S[a−1]) := (F•S)[a−1] (and similarly for S[a−1][a′

−1
]

for a, a′ ∈ A). We equip the set

D := A ∪ (A×A \ {(a, a) | a ∈ A})

with a partial order ≤ defined by a ≥ a, a ≥ (a, a′), a ≥ (a′, a) and (a, a′) ≥ (a, a′) for all
a, a′ ∈ A with a 6= a′. Given for every a ∈ A a well-filtered (S[a−1], F•)-module (Pa, F•)

and S[aa′
−1

]-linear filtered isomorphisms τa,a′ : F•P(a,a′) := (F•Pa)[a′
−1

] ∼= F•P(a′,a) for
all a′ ∈ A \ {a}, the (Pd)d∈D define inverse systems in the categories of S-modules and of
OX -modules if we take as bonding maps Pa → P(a,a′) the usual localization maps, denoted
by ρaa′ , and as bonding maps Pa → P(a′,a) the map ρaa′ composed with τa,a′ . Then there
exists an S-module P representing the inverse limit of this inverse system (in the category of
S-modules). Noting that the inverse limit in the category of S-modules is compatible with
the inverse limit in the category of OX -modules and that the inverse limit functor for abelian
categories is left exact, we also obtain OX -submodules FkP of P by considering the inverse
system (of OX -modules) with the bonding maps FkPa → P(a,a′) and FkPa → P(a′,a) defined
by restriction of the bonding maps of (Pd)d∈D for k ∈ Z. By construction this endows P with
the (S, F•)-filtration F•P and we obviously have:

Lemma 4.4.1. The projection maps πa : P → Pa of the inverse limit induce canonical iso-
morphisms

(F•P )[a−1] ∼= F•Pa

for all a ∈ A.

Our aim is to compute a free (S, F•)-representation of (P, F•) under the assumption that we
can perform the following tasks and are given our inverse system in the following form:

Assumption 4.4.2. For (a, a′) ∈ D we assume:

(a) We are given Pa, a finite set Ga ⊆ Pa and sa ∈ ZGa with the property that F•Pa =∑
g∈Ga F•−sagS[a−1] · ga.

(b) The module membership problem p ∈ FkPa is solvable for p ∈ Pa and k ∈ Z.

(c) We are given the isomorphism τa,a′ and are able to compute images under this map.

(d) We can decide if p ∈ P(a,a′) is 0.
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(e) We can compute the S[a−1]-syzygy module of elements of Pa.

Example 4.4.3. In our applications, the (Pa, F•) for a ∈ A are given in form of filtered
presentations. More precisely:

(a) We have for every a ∈ A a presentation of Pa as a quotient S[a−1]Ea/Ka with Ka =

S[a−1]〈K ′a〉 for a finite set Ea and a finite subset K ′a ⊆ S[a−1]Ea .

(b) For every a ∈ A we are given a finite set Ga ⊆ S[a−1]Ea and a shift vector sa ∈ ZGa
such that F•Pa =

∑
g∈Ga F•−sagS[a−1] · ga and we have moreover a method to test for

s ∈ S[a−1]Ea if s ∈ FkPa[a−1] for k ∈ Z.

(c) We are given the isomorphism τa,a′ : (S[a−1]Ea/Ka)[a′
−1

] → (S[a′
−1

]Ea′/Ka′)[a
−1]

for all (a, a′) ∈ D.

(d) We can compute the S[b
−1

]-syzygy module of elements of an S[b
−1

]-free module for
all b ∈ A ∪ {aa′ | (a, a′) ∈ D}.

Note that hence Assumption 4.4.2 is fulfilled, because Assumption 4.4.2(d) can be reduced to
a module membership problem for

S[aa′
−1

]
〈K ′a〉, which is solvable by a syzygy computation.

Similarly, the task in Assumption 4.4.2(e) can be performed by a syzygy computation over
S[a−1].

Under Assumption 4.4.2, we compute a filtered free presentation of the inverse limit F•P
based on the above lemma and the observation that this limit can be realized as the kernel of
the map

∆ :
∏
a∈A

F•Pa →
∏

(a,a′)∈D

P(a,a′), (pa)a∈A 7→ (ρaa′(pa)− τa′,a(ρa
′
a (pa′)))(a,a′)∈D

as outlined below: First we construct a finite set G, a shift vector s ∈ ZG and strict surjective
maps αa : (S[a−1]G, F [s]•) → (Pa, F•) and α(a,a′) : (S[a−1][a′

−1
]G, F [s]•) → (P(a,a), F•)

inducing an morphism of inverse systems by regarding the S[a−1]G and S[a−1][a′
−1

]G for
(a, a′) ∈ D as an inverse system indexed by D with bonding maps induced by the natural
localization maps (and analogously for the filtered parts). As the Mittag-Leffler condition is
satisfied we then obtain a surjective strict map

α : (SG, F [s]•)→ (P, F•).

Let us now explain how to find the above data: To determine maps αa, we observe that for
p ∈ FkPa (with a ∈ A) exists by Lemma 4.4.1 a natural number l ∈ N such that (pa′)a′∈A ∈
ker(∆) with pa = alp and pa′ ∈ FkPa′ for a 6= a′ ∈ A suitably chosen. The number l
and the elements p′a for a′ ∈ A are constructed as follows from Assumption 4.4.2: We first
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find l ∈ N such that alτa,a′(ρaa′(p)) = pa′ ⊗ 1 ∈ ρa
′
a (Pa′) with pa′ ∈ Pa′ for all a′ ∈

A \ {a} and set pa := alp. Using the method from Assumption 4.4.2(b) we increase l until
pa′ ∈ FkPa′ for all a′ ∈ A and adapt (pa′)a′∈A accordingly. This process terminates as
pa′ ⊗ 1 ∈ τa,a′((FkPa)[a′

−1
]) = (FkPa′)[a

−1]. By design we have for all (a′, a′′) ∈ D that
ak(τa′,a′′(ρ

a′
a′′(pa′))−ρa

′′
a′ (pa′′)) = 0 for k big enough, which is tested by Assumption 4.4.2(d).

Replacing l by l+ k for suitably chosen k and changing pa′ for a′ ∈ A accordingly, we obtain
that (pa′)a′∈A is in the kernel of ∆. We summarize the computation of (pa′)a′∈A:

Algorithm 4.4.4 Auxiliary procedure for Algorithm 4.4.7

Input: A cover {Ua}a∈A of X with A ⊆ C[x] finite, a Noetherian filtered ring (S, F•) such
that S is anOX -module inducing anOX -structure on FkS (for k ∈ Z). Moreover, assume
we are given the data and methods of Assumption 4.4.2 and an element p ∈ FkPa (with
k ∈ Z and a ∈ A also given).

Output: An element (pa′)a′∈A ∈ ker(∆) ∩
∏
a′∈A FkPa′ with ∆ defined as above such that

pa = alp for some l ∈ N.
1: Choose l ∈ N and pa′ ∈ Pa′ with alτa,a′(ρaa′(p)) = pa′ ⊗ 1 for all a′ ∈ A \ {a}.
2: Set pa := alp.
3: Initialize i := 0.
4: while aipa′ ⊗ 1 /∈ FkPa′ for all a′ ∈ A do . Test by the method in Assumption 4.4.2(b).
5: Set i := i+ 1.
6: while ai(τa′,a′′(ρa

′
a′′(pa′)) − ρa

′′
a′ (pa′′)) 6= 0 for all (a′, a′′) ∈ D do . Test by Assump-

tion 4.4.2(d)
7: Set i := i+ 1.
8: Replace pa′ := aipa′ for all a′ ∈ A.
9: return (pa′)a′∈A.

Remark 4.4.5. In the unfiltered situation, we do not need Assumption 4.4.2(b). Hence we
simply drop Lines 4 and 5 in the above algorithm.

Remark 4.4.6. The above procedure requires many tests to make sure that the constructed
element (pa′∈A)a∈A is in ker(∆). In certain situations, we do not need to perform all these
tests, and we can also avoid establishing the isomorphisms in Assumption 4.4.2(c) or perform-
ing the task in Assumption 4.4.2(d). Namely, we can sometimes consider the inverse limit
P as a subquotient of an already explicitly given object. More precisely, assume addition-
ally that we are (explicitly) given an S-module R such that Pa is isomorphic to R′a/R

′′
a with

R′′a ⊆ R′a ⊆ Ra := R[a−1] satisfying the following properties: Using the same notation as for
P , the canonical isomorphism R(a,a′)

∼= R(a′,a) induces isomorphisms R′(a,a′)
∼= R′(a′,a) and

R′′(a,a′)
∼= R′′(a′,a) compatible with the isomorphism τa,a′ for (a, a′) ∈ D. Moreover the R′d

and R′′d for d ∈ D with bonding maps induced by the localization maps and the isomorphisms
R(a,a′)

∼= R(a′,a) for (a, a′) ∈ D form an inverse system. Then we may replace Assump-
tion 4.4.2(c) and (d) by the assumption below:

204



4.4 Computations on (affine) varieties via gluing

(cd’) For every a ∈ A, we are given the submodule R′a ⊆ Ra and methods to decide for
r ∈ Ra if r ∈ R′a and to compute images and an element in the preimage of a given
element under the surjective map µa : R′a � Pa lifting the isomorphism R′a/R

′′
a
∼= Pa.

In this situation, keeping the notation as above, we construct the element (pa′)a′∈A as outlined
below: We first compute a preimage p′ ∈ R′a ⊆ Ra of p under the map R′a � Pa. Canceling
negative powers of a, we find l ∈ N and p′′ ∈ R such that alp′ = p′′ ⊗ a0 ∈ R[a−1]. By the
above criterion and by the method from Assumption 4.4.2(b) we can decide if p′′ ⊗ a′0 ∈ R′a′
and if µa′(p′′⊗a′

0
) ∈ FkPa′ for all a′ ∈ A. If not, we increase l and adjust p′′ accordingly until

this is eventually the case. Arguing similarly as above, we see that this process terminates.

Setting G :=
⊔
a∈AGa and defining s ∈ ZG by sga = saga for ga ∈ Ga, we obtain the strict

surjective maps

αa : (S[a−1]G, F [s]•)→ (Pa, F•), (g) 7→ ga

for a ∈ A inducing maps α(a,a′) by localization. By construction this defines a morphism of
inverse systems giving rise to the strict surjective map

α : (SG, F [s]•)→ (ker(∆), F•), (g) 7→ (ga)a∈A.

We extend this map to a free presentation by iterating the above process as follows: Note
that (ker(αd))d∈D with induced bonding maps is also an inverse system. Moreover, we have
by Lemma 4.4.1 and exactness of localization that ker(αa) ∼= ker(α)[a−1] and ker(α(a,a′)) ∼=
ker(α)[a−1][a′

−1
] inducing isomorphisms ker(α(a,a′)) ∼= ker(α(a′,a)) for (a, a′) ∈ D. By left

exactness of the inverse limit functor, the inverse limit of the inverse system (ker(αd))d∈D
agrees with ker(α). So we repeat the above process (forgetting any filtrations) with the inverse
system (Pd)d∈D replaced by (ker(αd))d∈D to obtain a map

β : ST → SG

surjecting on ker(α). Notice that ker(αa) is computable by Assumption 4.4.2(e) for (Pd)d∈D
showing that (ker(αd))d∈D satisfies Assumption 4.4.2(a). Assumption 4.4.2(b) is not needed
because we do not have to consider filtrations. Condition (cd’) is fulfilled with R = SG

and R′ = ker(α), because we can check for r ∈ Ra if r ∈ R′a by testing if
∑

g∈G rgga =
0 ∈ Pa via Assumption 4.4.2(e) for (Pd)d∈D. Note that Assumption 4.4.2(e) is not required,
because this condition was only assumed to compute ker(αa). So the above process is indeed
applicable and we obtain:
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Algorithm 4.4.7 Blueprint for the gluing process of filtered finitely presented modules from
local data.
Input: A cover {Ua}a∈A of X with A ⊆ C[x] finite, a Noetherian filtered ring (S, F•) such

that S is anOX -module inducing anOX -structure on FkS (for k ∈ Z). Moreover, assume
we are given the data and methods of Assumption 4.4.2.

Output: A finite set G, a finite set T ⊆ SG and s ∈ ZG such that (SG/ S〈T 〉, F [s]•) repre-
sents the inverse limit of (F•Pd)d∈D defined in Assumption 4.4.2.

1: for a ∈ A do
2: for g ∈ Ga do
3: Apply Algorithm 4.4.4 to g ∈ FsagPa to obtain the output (ga′)a′∈A.
4: Set G :=

⊔
a∈AGa and define s ∈ ZG by sg := sag for g ∈ Ga.

5: Initialize an empty set T ⊆ SG.
6: for a ∈ A do
7: Determine a set T ′ ⊆ S[a−1]G of S[a−1]-generators of the S[a−1]-syzygy module of⊔

g∈G{ga} ⊆ Pa. . Use Assumption 4.4.2(e).
8: for t ∈ T ′ do
9: Find l ∈ N such that alt ∈ SG.

10: for a′ ∈ A \ {a} do
11: while

∑
g∈G a

ltgga′ 6= 0 ∈ Pa′ do . Checks if alt ∈ ker(αa′) by Assump-
tion 4.4.2(e).

12: l := l + 1.
13: Set T := T ∪ {alt}.
14: return G,T, s.

Remark 4.4.8. A problem appearing naturally in this context is the following: Consider an-
other inverse system (P ′d)d∈D satisfying the same properties as (Pd)d∈P with inverse limit
P ′ = SG

′
/L′ and projection maps P ′ → P ′a, (g

′) 7→ g′a (for g′ ∈ G′). Given S[a−1]-linear
maps

νa : P ′a → Pa

for a ∈ A inducing a morphism of inverse system by taking as maps ν(a,a′) : P ′(a,a′) → P(a,a′)

the localization of νa at a′, determine the limit map ν : P ′ → P .
To solve this problem, we use the standard gluing method for this sort of situation (see

e.g. [Har77, Proof of Proposition II.5.6]): As πa(ν((g′))) = νa(g
′
a) for g ∈ G′ and a ∈ A

and νa(g′a) can be expressed as an S[a−1]-linear combination of the (ga)g∈G, we derive a

representation ν((g′)) = qg
′
a ⊗ ak

g′
a ∈ P [a1] with qg

′
a ∈ SG and kg

′
a ∈ N. So there exists for

(a, a′) ∈ D a natural number l ∈ N such that

aa′
l
(a′

kg
′
a′ qg

′
a − ak

g′
a qg

′

a′) = 0 ∈ SG/ S〈T 〉,
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which is equivalent to aa′
l
πa′′(a′

kg
′
a′ qg

′
a − ak

g′
a qg

′

a′) = 0 for all a′′ ∈ A and can hence be tested
by Assumption 4.4.2(e). Choosing one l that works for all possible choices of a and a′, we

replace now qg
′
a by alqg

′
a and kg

′
a by kg

′
a + l for all a ∈ A implying a′

kg
′
a′ qg

′
a − ak

g′
a qg

′

a′ = 0 ∈
SG/ S〈T 〉 = P for all a, a′ ∈ A. As {Ua}a∈A is a cover of X , we compute via Gröbner basis

theory a representation 1 =
∑

a∈A haa
kg
′
a + j with h ∈ C[x]A and j ∈ J . It follows that

µ((g)) =
∑

a∈A haq
g′
a since a′

kg
′
a′
∑

a∈A haq
g′
a =

∑
a∈A haa

′k
g′
a′ qg

′
a =

∑
a∈A haa

kg
′
a qg

′

a′ = qg
′

a′

for all a′ ∈ A.

4.4.3 Localizations of strictly specializable DX- and DX(∗X0)-modules

We apply the gluing principle presented in the previous subsection to represent the localization
of the strictly X0-specializable (DX , F ◦• )-module (M,F•) = (DE

X/K,F
◦[s]•) along X0 as

quotient of a free (DX , F
◦
• )-module. Considering LocX0(M) = M ⊗OX OX(∗X0) as a

subquotient of itself, it suffices to show that Example 4.4.3(a), (b) and (d) as well as (cd’)
are satisfied in this situation. Hence, before we actually glue, we investigate the OX -module
OX(∗X0) and its localizations:

Remark 4.4.9.

(a) By definition of OX(∗X0), we can write q
fkb
∈ OX(∗X0) (where q ∈ C[x] and k ∈ N)

of the form q′

f i
b′
∈ OX(∗X0) for b, b′ ∈ B. We construct q′ and i as follows: As J is a

prime ideal, we check for increasing i whether f ib′q ∈ C[x]

〈
fkb , J

〉
using Gröbner basis

theory until this test is positive. From the corresponding representation f ib′q = q′fkb + j
with j ∈ J , we read off q′ ∈ C[x].

(b) Let g ∈ C[x] such that on Ug that IUg is OUg -generated by fb for some b ∈ B. Then
there is an isomorphism

νg : OX(∗X0)⊗OX OX [g−1] ∼= OX [fb
−1

]⊗OX OX [g−1],
q

fb
i
⊗ p

gk
7→ q

fb
i
⊗ p

gk
,

where representations of elements of the module on the left hand side as above are deter-
mined by Part (a). Moreover there exists some l ∈ N such that g

l

fb
∈ OX(∗X0) making

the inverse map explicit. The exponent l is determined by testing gl ∈ C[x]〈J, fb〉 : f∞b′
for all b′ ∈ B for increasing l, where the saturation as well as the ideal membership
problem are computable via Gröbner bases.

We coverX as in Subsection 4.4.1 and describe first the localization of (M,F•) on the open
subsets covering X∗. We have

LocX0(M,F•)Uc
∼= (MUc , F•) = (DE

Uc/KUc , F
◦[s]•)
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for c ∈ C∗, since OX(∗X0)Uc
∼= OUc shows M(∗X0)Uc

∼= MUc and Remark 3.2.19 and
Remark 3.1.5 imply the claim on the filtration. Notice that the isomorphism M(∗X0) ⊗OX
OX [c−1] → DE

Uc
/KUc is given by sending (m ⊗ q

fb
k ) ⊗ p

cl
to m⊗ c′iq′p

ci+l
with q

fb
k = q′

fa∗c
i ∈

OX(∗X0), where i ∈ N and q′ ∈ OX are computed as outlined in Remark 4.4.9(a).
Next, we explain how to obtain a presentation as above on Uc for c ∈ C0. By Algo-

rithm 4.2.15 (if X0 is smooth) or Algorithm 4.3.6 we get

LocX0(M,F•)Uc
∼= LocV (fac )(MUc , F•)

∼= (DEc
Uc
/Kc, F

◦[sc]•).

Note images and preimages under the isomorphism MUc ⊗OUc OUc [fac
−1

] ∼= DEc
Uc
/Kc can be

determined by Remark 4.2.14(b) or Remark 4.3.5(b) (depending on whether X0 is smooth).
On the other hand, the first isomorphism is induced by νc (see Remark 4.4.9(b)) and is made
explicit by the considerations in that remark.

Moreover, for c ∈ C, we are able to solve the module membership and the syzygy prob-
lem over the PBW-reduction-algebra DUc . As Algorithm 2.4.5 can be taken as the method
in Example 4.4.3(b) and Condition (cd’) is satisfied as seen above, all assumption for Algo-
rithm 4.4.7 are fulfilled and we may apply this algorithm to represent LocX0(M,F•) as a
quotient of a free DX -module with filtration induced by a weight vector.

Remark 4.4.10.

(a) The localization map is constructed as explained in Remark 4.4.8.

(b) We adapt the above gluing process to localizations of well-filtered (DX(∗X0), F ◦• )-
modules by replacing Algorithm 4.2.15 and Algorithm 4.3.6 by Algorithm 4.2.29 and
Algorithm 4.3.9, respectively,

4.4.4 Dual localizations of strictly specializable DX- and
DX(∗X0)-modules along a smooth subvariety

We consider at the moment only the dual localization along smooth X0, because - unlike for
singular X0 - we may use in this situation the simpler Condition (cd’). Recall that for smooth
X0 (the underlying module of) the dual localization of (M,F•) = (DE

X/K,F
◦[s]•) is given

by DX ⊗V0DX V<0M with V<0M being a subobject of M . By definition of the filtration on
DLocX0(M) and Lemma 3.1.30 it is now sufficient to present (V<0M,F•) as a quotient of the
form (V0D

E′
X /L, F

◦[s′]) since this implies DLocX0(M,F•) ∼= (DE′
X /DXL,F

◦[s′]).
Therefore, we explain more generally how to glue (VαM,F•) for α ∈ Q from local data.

By Remark 3.1.5, we have

(VαM,F•)Uc
∼= (MUc , F•) = (DE

Uc/KUc , F
◦[s]•)
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for c ∈ C∗. Hence we use Algorithm 2.4.5 for the method in Example 4.4.3(b) on Uc. On
the other hand, on the open subsets of type Uc with c ∈ C0 we compute by Algorithm 4.2.9 a
representation

(VαM,F•)Uc
∼= ((V0D

Ec
Uc

)/Kc, F
◦[sc]•),

where the above isomorphism is already explicit by construction. Moreover, we test for
m ∈ MUc whether m ∈ VαMUc by Algorithm 2.4.5 and explicitly represent it in terms of
given generators of VαMUc by Remark 2.4.6 if the test is positive. Thus Condition (cd’) is sat-
isfied on our cover. While the data in Example 4.4.3(a) and the filtration in Example 4.4.3(b)
are given by the above representation, we take Algorithm 2.4.5 for the method in Exam-
ple 4.4.3(b). As we can solve syzygy problems over DUc , we may use Algorithm 4.4.7 to
construct the desired representation of DLocX0(M,F•).

Remark 4.4.11.

(a) The dual localization map can be constructed as explained in Remark 4.4.8.

(b) To glue dual localizations ofDX(∗X0)-modules we use Remark 4.2.33 and the material
presented in this subsection as well as the previous subsection.

4.4.5 Vanishing and nearby cycles

We want to compute the vanishing and nearby cycles of the (DX , F•)-module (M,F•) =
(DE

X/K,F
◦[s]•) along the regular function f : X → C given that this modules is strictly f -

specializable. Setting Y := X × Ct and Y0 := V (t) ⊆ Y our problem reduces to computing
the graded parts GrV

Y0

α ((if )+(M,F•)).
We only briefly sketch the gluing process and leave the details to the reader: Representing

GrV
Y0

α ((if )+(M,F ◦)) as a quotient of a V Y0
0 DY -module with filtration induced by a weight

vector works in analogy to Subsection 4.4.4 by considering GrV
Y0

α M as a subquotient of
(if )+M . Regarding now GrV

Y0

α (if )+M as the trivial subquotient of this representation, using
Algorithm 4.4.7 with Condition (cd’) for the gluing and Algorithm 4.2.36 for the required local
representations, we express GrV

Y0

α (if )+M as a quotient of a free DX -module with filtration
induced by a shift vector.

The representation of the morphisms can and var relies now again on gluing the correspond-
ing local maps using the principle outlined in Remark 4.4.8.

Remark 4.4.12. To compute the nearby and vanishing cycles of (M,F•) along the regular
function f : W → C with W being a proper open subset of X , we shrink X such that we
may assume X = W . If W is affine, we continue now as above. Otherwise we refer to
Subsection 4.4.8.
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4.4.6 Dual localizations of strictly specializable DX- and
DX(∗X0)-modules along singular subvarieties

Assume now that X0 is singular. We are interested in computing the dual localization along
X0 of the strictly X0-specializable (DX , F

◦
• )-module (M,F•) = (DE

X/K,F
◦[s]•). Covering

X as explained in Subsection 4.4.1, we first describe the dual localization of (M,F•) on the
open subsets of the cover of X∗. We have by definition

DLocX0(M,F•)Uc
∼= (MUc , F•) = (DE

Uc/KUc , F
◦[s]•)

for c ∈ C∗. Note that on Uc the empty set Uc ∩ X0 is defined by the vanishing of fa∗c . In

particular, we make the isomorphism (DE
Uc
/KUc , F

◦[s]•) ∼= V
V (t−fa∗c )

0 (ifa∗c
)+MUc(!Uc×{0})

explicit by proceeding as in Algorithm 4.3.8 and Remark 4.3.5(d), where we write by abuse of
notation ifa∗c for the map Uc → Uc × C, u 7→ (u, fa∗c (u)).

On the other hand, on open sets of type Uc with c ∈ C0 Algorithm 4.3.8 computes a repre-
sentation

DLocX0(M,F•)Uc
∼= V

V (t−f
a0c

)

0 (if
a0c

)+(MUc , F•)(!Uc × {0}) ∼= (DEc
Uc
/Kc, F

◦[sc]•)

with computable images and preimages under the second isomorphism (see Remark 4.3.5(d))
(here if

a0c
is to be understood in the same sense as above). This shows that Example 4.4.3(a)

and (b) are satisfied on our cover (for the method in the latter part use Algorithm 2.4.5).
Considering c, c′ ∈ C there exists on Ucc′ = Uc ∩ Uc′ an invertible regular function uc,c′ :

Ucc′ → C such that fac′ = uc,c′fac inducing a coordinate change λc,c′ : Ucc′×Ct → Ucc′×Ct :
(x, t) 7→ (x, uc,c′(x)t). According to Lemma 3.2.39

V
V (t−fac )

0 ((ifac )+MUcc′ )(!V (t)) ∼= V
V (t−fac′ )

0 ((ifac′
)+MUcc′ )(!V (t))

with morphism induced by

DUcc′×C ⊗V V (t)
0 DUcc′×C

V
V (t)
<0 (ifac )+MUc′ → DUcc′×C ⊗V V (t)

0 DUcc′×C
V
V (t)
<0 (ifac′

)+MUcc′ ,

p⊗m 7→ Λc,c′(p)⊗ Λc,c′(m)

with Λc,c′ : DUcc′×C → DUcc′×C defined as in Example 1.4.9. This establishes together with
the above isomorphisms in Example 4.4.3(b).

Remark 4.4.13.

(a) The computation of the dual localization map is again based on Remark 4.4.8.

(b) Using similar methods as in Remark 4.4.11(b) allows us to glue dual localizations of
strictly X0-specializable (DX(∗X0), F ◦• )-modules.
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4.4.7 A quasi-inverse for Kashiwara’s equivalence

Given a closed embedding ι′ : X ⊆ Y of affine smooth pure dimensional varieties of dimen-
sions m and n, there is by Proposition 1.4.12 an equivalence of categories

ι′+ : Modcoh(DX)→ ModXcoh(DY ). (4.4.1)

Moreover, we have a functor

ι′+ : Modcoh(F ◦• DX)→ ModXcoh(F ◦• DY ),

where the right hand side category denotes the category of well-filtered (DY , F ◦• )-modules
supported on X . Direct images as above are easily computable by Equation (1.4.1) and Defi-
nition 1.4.13. However, the computation of a quasi-inverse of the functor in Equation (4.4.1)
is more involved.

We directly consider a similar question in the setting of well-filtered modules: A module
(M, F•) ∈ Modcoh(F ◦• DX) is (up to isomorphism) uniquely determined by ι′+(M, F•) and
is recovered from a representation (P, F•) := (DE′

Y /Q, F
◦[t]•) of ι′+(M, F•) as follows:

Compute a partial affine open cover U of Y covering X with the following property: The
set U ∈ U is a coordinate neighborhood of X with local coordinates f1, . . . , fn such that
f1, . . . , fk are global coordinates on Uk := U ∩ V (fk+1, . . . , fn) and such that Uk ⊆ U has
defining ideal sheaf generated by fk+1, . . . , fn for m ≤ k ≤ n (see Remark 1.2.13(b)). By
filtered Kashiwara’s equivalence (Proposition 3.2.7) we see that (ι′Uk)+(MUm , F•) is strictly
fk-specializable if k > m, where ιUk stands for the inclusion Um ⊆ Uk. As (ι′+(M, F•))U =
(ι′Un

)+(MUm , F•), we can stepwise compute a filtered (DUk , F ◦• )-presentation of

(ι′Uk)+(MUm , F•) = GrV
Uk

0

(
(ι′Uk+1

)+(MUm , F•)
)

= V Uk
0

(
(ι′Uk+1

)+(MUm , F•)
)

using Algorithm 4.2.36 (after applying Remark 1.2.12) for k = n−1, · · · ,m. This way we
determine a presentation (DEUX∩U /LU , F ◦[wU ]•) of (M, F•)U∩X . As DEUX∩U /LU is iden-
tified with a subset of P (and this identification can be made explicit by the methods in
Subsection 4.2.8), it is possible to establish the necessary gluing isomorphism (see Assump-
tion 4.4.2(c)). Since the other assumptions for Algorithm 4.4.7 are obviously satisfied because
we work over coordinate rings, we may apply this algorithm to compute a representation of
(M,F ◦• ).

Remark 4.4.14. Note that we cannot check whether a well-filtered (DY , F
◦
• )-module (P, F•)

supported on X is the direct image of some (DX , F
◦
• )-module. Yet, for Hodge DY -modules

this is always the case due to Kashiwara’s equivalence for mixed Hodge modules.

4.4.8 Computations on arbitrary varieties

Let X be an (arbitrary) smooth equidimensional algebraic variety, X0 a pure codimension one
subvariety and {U}U∈U a finite affine open cover of X . A well-filtered (DX , F ◦• )-module
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(P, F ◦• ) is uniquely defined by (P(U), F ◦• ) and (P(U ∩ U ′), F ◦• ) as well as the restriction
morphisms P(U)→ P(U ∩ U ′) for all U,U ′ ∈ U .

If (M, F•) and (N , F•) are given by the data as above, we compute their localizations and
dual localizations along X0 and the vanishing and nearby cycles on the cover {U}U∈U as well
as on intersections of this cover by the methods presented in the previous subsections. More-
over it is possible to extend these methods to represent also the restriction maps by keeping
track of the corresponding restrictions ofM and N throughout all algorithms of this chapter.
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