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Recently, many online social networks, such as MySpace, Orkut, and Friendster, have faced inactivity decay of their members,
which contributed to the collapse of these networks. The reasons, mechanics, and prevention mechanisms of such inactivity
decay are not fully understood. In this work, we analyze decayed and alive subwebsites from the Stack Exchange platform. The
analysis mainly focuses on the inactivity cascades that occur among the members of these communities. We provide measures to
understand the decay process and statistical analysis to extract the patterns that accompany the inactivity decay. Additionally,
we predict cascade size and cascade virality using machine learning. The results of this work include a statistically significant
difference of the decay patterns between the decayed and the alive subwebsites. These patterns are mainly cascade size, cascade
virality, cascade duration, and cascade similarity. Additionally, the contributed prediction framework showed satisfactorily
prediction results compared to a baseline predictor. Supported by empirical evidence, the main findings of this work are
(1) there are significantly different decay patterns in the alive and the decayed subwebsites of the Stack Exchange; (2) the
cascade’s node degrees contribute more to the decay process than the cascade’s virality, which indicates that the expert
members of the Stack Exchange subwebsites were mainly responsible for the activity or inactivity of the Stack Exchange
subwebsites; (3) the Statistics subwebsite is going through decay dynamics that may lead to it becoming fully-decayed; (4) the
decay process is not governed by only one network measure, it is better described using multiple measures; (5) decayed
subwebsites were originally less resilient to inactivity decay, unlike the alive subwebsites; and (6) network’s structure in the early
stages of its evolution dictates the activity/inactivity characteristics of the network.

1. Introduction

In recent years, online social networks (OSNs) have proven
their aptitude as a new medium for sharing news and
knowledge, expressing opinions, finding jobs, and many
other things. In the literature, there are many works that
focus on the growth dynamics of a network, starting with
the seminal works of Barabásei and Albert [1] and Watts
and Strogatz [2], which were the basis for the field of network
science, via many studies examining the growth dynamics of
social networks [3–6] to community membership evolution
[7], which provide methods and models for analyzing and
understanding growth dynamics in social networks. Never-
theless, the dynamics of members’ interactions in social
networks is not always growth dynamics; many online social

platforms have gone through decay dynamics in terms of low
activity among their members and/or members leaving or
deleting their accounts. Online social platforms such as
MySpace and Orkut are now out of service after being very
active for years and are examples of decayed online social
networks. This phenomenon has not been studied well in
the literature; decay causes, mechanics, and prevention of
decay are still open questions that need to be answered.

Here, we approach the decay dynamics problem from
a network perspective by modeling the members as net-
work nodes and their social interactions as temporal
edges. We aim to better understand the patterns that
occur during the decay process by investigating what we
call inactivity cascades, which were extracted from decayed
Stack Exchange subwebsites. These inactivity cascades are
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mainly constructed from the structure of the modeled net-
work, where the network structure has already shown to be
crucial in understanding the dynamics of any process that
takes place on top of a network such as the structure of the
WorldWideWeb networks [8, 9] and social network analysis
[10–13]. Moreover, network structure is correlated in many
studies to understanding the dynamics of the processes over
networks such as epidemic dynamics [14, 15], knowledge
spread [16], and knowledge transfer [17]. The information
produced and evolved on the Stack Exchange website as an
information exchange platform makes this work also con-
nected to the information dynamics area [15, 18, 19], where
we are concerned in the decay of the information production
process on the Stack Exchange website as a medium of
knowledge production and sharing.

Based on that, the contributions of this work are
summarized as follows:

(i) Extracting and analyzing inactivity cascades from
the decayed and alive subwebsites of Stack Exchange

(ii) Devising measures for understanding the decay
process and possible patterns in both decayed and
alive subwebsites

(iii) Finding different inactivity patterns in alive and
decayed subwebsites

(iv) Finding empirical evidence that an inactivity cascade
is not driven by only one network measure

(v) Building a machine learning framework for predict-
ing the size and virality of inactivity cascades

The previous contributions can be seen as two parts:
(1) analysis of the decay process via cascade modeling
and (2) prediction of cascades’ properties. These two parts
are complementary because the analysis without prediction
limits our control over these platforms and also predicting
the properties of a decay requires a better understanding
of the decay process itself so that we can provide a good
prediction model.

The remainder of this paper is structured as follows.
Section 2 describes the related work and highlights how this
work contributes to the literature. Section 3 provides the
definitions and the methods used throughout this paper,
and Section 4 describes the datasets used and some prelimi-
nary analyses of these datasets. A detailed description of the
results and the prediction framework are provided in Section
5. In parallel to the results, Section 5 also includes a discus-
sion of the results and conclusions of this work. Section 6
presents the limitations of this work and directions for future
research.

2. Related Work

This paper is related to studies and works that are concerned
with decay or inactivity dynamics in social networks. In this
section, we present the related works and show how this work
is compared to them.

Due to limitations on existing data about interaction
decay, researchers have focused on theoretical work based
on random networks. For example, Dorogovtsev andMendes
[20] presented a model for understanding the properties of
random networks if edges are removed, signaling that the
dynamics of a network is not limited to adding nodes and/
or edges. Later, with the rise of many social networks and
social platforms, research primarily focused on growth
dynamics, with very few works dealing with decay dynamics.
Torkjazi et al. [21] studied users’migration from MySpace to
Facebook when the latter was getting more attention from
users. Their study suggests that OSNs have a life cycle that
may end with service decay. Dev et al. [22] studied the rea-
sons behind the failure of what they call knowledge markets,
such as Stack Exchange. They utilized economic production
models in order to understand the dynamics of knowledge
generated on these knowledge markets. Wu et al. [23] pre-
dicted the activity and inactivity of members of the DBLP
coauthorship dataset by modeling the dynamics of the social
engagement of the members of DBLP. They also provide
insights regarding the characteristics of the members who
departed the networks using network measures. Similarly,
Fenner et al. [24] contributed a theoretical model for gen-
eralizing the rich-get-richer model of network evolution,
which focuses mainly on growth dynamics, by extending
it to link deletion in the Web network. Their model
implicitly assumes that dynamics is not limited to growth
dynamics but may include link removal. Asur et al. [25]
approached the activity of users from trend analysis perspec-
tive in Twitter, shedding light on what causes some tweets to
be trendy. They also found that the decay dynamics of a trend
follows a linear function.

Community activity has also been studied by Kairam
et al. [26]; they provide machine learning prediction models
to predict community longevity. The authors also provide
insights into the factors that contribute to keeping online
communities active. In the same vein, Abufouda [27] con-
tributed machine learning prediction models for predicting
users who left decayed and alive communities, with a focus
on the decay dynamics of online communities. Cannarella
and Spechler built an epidemic model for predicting the
dynamics of the members of Facebook [28]. The results
showed that Facebook would lose 80% of its users between
2015 and 2017 (the same model was used by Facebook
researchers and predicted that Princeton University would
lose half of its students by 2018, see https://www.facebook.
com/notes/mike-develin/debunking-princeton/1015194742
1191849/). Decay dynamics also raised some computational
aspects of the decay dynamics problem. Bhawalkar et al.
[29] and Zhang et al. [30] provided a theoretical model
and mathematical framework for finding the set of nodes
whose deletion generates the smallest k-core subgraph of a
network, focusing on the computational challenge of the
decay. Their works assure that the node removal problem
is relevant in social and other networks. Ribeiro [31] studied
user activity and inactivity by providing a model that uses
the number of daily active users as an indicator of the
dynamics in membership-based websites. This author also
presented a prediction model for predicting whether a
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community will continue to grow or not, similar to the work
in [26]. Malliaros and Vazirgiannis [32] provide a model for
social engagement describing the activity and inactivity of
members of social networks based on game theory. Similar
to the work in [32], Garcia et al. [33] investigated the decay
of the Friendster social network using game theory. As one
of the results of their work, Garcia et al. argue that decay
has a direction, which starts from nodes with less coreness;
this was later refuted by Seki and Nakamura [34], who pro-
vide a model that shows that decay starts from nodes with
higher coreness. Abufouda and Zweig [35, 36] presented a
stochastic model for describing the mechanics of inactivity
cascades. The model has optimization guarantees that make
controlling the decay computationally viable.

The previous works fall into two categories: (1) works
that consider both growth and decay processes as a common
behavior of online social networks and (2) works that
approach the decay process in social context only via models,
which were not validated with real inactivity decayed data
using temporal snapshots. Although the first category seems
to be more realistic, none of the related work in this category
provides any thorough analysis of the mechanics of the decay
process compared to the rich analysis of growth dynamics.
This means there is little insight into the decay process of
online social interaction, which would serve to better under-
stand online behavior. As a result, the second category of the
related work realized that decay dynamics needs to be con-
sidered as a separate process and requires further thorough
investigation, particularly after the decline of many online
social networks like MySpace and Friendster. However, these
works used either synthesized data, which led to contradic-
tory conclusions on the same research question (see the work
in [33] and an opposing argument in [34] regarding the
decay direction and our attempt to resolve this issue in
Section 5), or did not consider the temporal aspect of the
problem. This study fills the gap by focusing only on decay
dynamics using real temporal data from decayed online
social communities. Furthermore, we enhance the analysis
using inactivity cascades, which, to the best of our knowl-
edge, have not been covered before. This enables us to
better understand the characteristics of real inactivity cas-
cades and, hence, helps us gain more insights into the
online behavior of humans.

3. Definitions and Methods

3.1. Networks and Measures. An undirected graph G is
defined as a tuple VG, EG , where VG is the set of nodes of
G and EG is the set of edges that is defined as E ⊆VG ×VG.
An edge e = v, u is defined as a pair of two nodes u and v,
where u, v ∈V. Graphs at a specific point of time are denoted
as Gt = Vt , Et , where Vt and Et are the set of nodes and
edges that are observed at time point t, respectively. The set
of graphs G = G0,G1,⋯,Gk−1 is a temporal structure
of a graph at time points 0, 1,⋯, k − 1 , where G = k.
The graph G0 is called the initial network, where VG ⊆VG0

,
∀G ∈ G1,G2,⋯,Gk−1 .

A tree is a connected graph with no cycles. An inactivity
cascade treeI , a cascade for short, is a rooted tree where each

directed edge e = u, v contains two nodes such that the last
observed time points of nodes v and u were τ v = t′ and
τ u = t″, respectively, such that t′ > t″ and e ∈ EG0

. Algo-
rithm 1 describes the steps we followed to extract such cas-
cades. That is, node u became inactive before its neighbor,
node v. The root of a cascade I is called a cascade initiator,
which is any node that becomes inactive while all of its neigh-
bors are active. If no such node exists, we arbitrarily select
one of the earliest nodes that became inactive. The number
of nodes in a cascade is called cascade size.

The edge formation period for an edge e = u, v ,
where e ∈ EI , is defined as τ v − τ u . Based on that, we
measure the normalized cascade duration, which is defined as

CDI = 1
k ⋅ EI

〠
e= u,v

τ v − τ u 1

For the set of graphsG, a set of inactivity cascade trees I is
extracted. The virality of a cascade I measures how far the
effect of the initiator of a cascade goes [37]. The measure is
defined as (this measure was originally proposed as Wiener
index [38])

v I = 1
n n − 1 〠

v,u∈VI

d u, v , 2

where d u, v is the length of the shortest path between the
nodes u and v and n is the number of nodes in a cascade.
We propose a Jaccard-like similarity measure of two cas-
cades. To have more structural similarity, we consider the
structural properties of a cascade by considering the neigh-
borhood of nodes in cascades such that if there is a node
shared between two cascades with also many shared neigh-
bors, then the two cascades are assumed to be more similar.
Thus, we define

sim ℐ 1,ℐ 2 = 1
Vℐ 1

∩Vℐ 2

〠
z∈Vℐ 1∩Vℐ 2

N Zℐ 1
∩N Zℐ 2

N Zℐ 1
∪N Zℐ 2

3

In addition, we used the features in Table 1 for build-
ing a supervised machine learning model for predicting
cascade’s properties.

3.2. Statistical Divergence

3.2.1. Cumulative Distribution Function. The cumulative
distribution function (CDF) for a discrete random variable
X is defined as FX x = P X ≤ x =∑t≤x f t . If X is con-
tinuous, then the CDF is defined as FX x = x

−∞ f X t dt.
Similarly, the complementary CDF is defined as FX x =
P X > x =∑t>x f t .

3.2.2. Kolmogorov-Smirnov Test. The Kolmogorov-Smirnov
test (KS-test) is a statistical test that tells whether two differ-
ent samples were drawn from the same distribution or not.
The test is used to compare two patterns in order to know
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if they are the same or statistically different. Informally, it is
the maximum absolute distance between the two CDFs of
the two samples. More formally, for two CDFs, F1 and F2,
the KS-test statistics D is defined as DKS = sup−∞<x<∞ F1 x
− F2 x , where sup−∞<x<∞ is the supremum of a set.

3.2.3. Patterns’ Entropic Similarity. Shannon entropy [39]
quantifies the information in a discrete random variable
x ~ p x as follows: H P = −∑n

i=1p xi ⋅ log p xi . Given
two probability distributions P and Q, the Kullback-Leibler
divergence [40] (DKL) is a measure that finds how similar
these two distributions are and it is defined as DKL P∥Q =
∑n

i=1p xi ⋅ log p xi /q xi . The Jensen-Shannon divergence
is then defined as DJS P,Q = 1/2 DKL P∥R +DKL Q∥R ,
where R = 1/2 P +Q , which is a symmetric distance vari-
ation of the DKL.

4. Dataset

Stack Exchange (https://StackExchange.com/) is a network of
questions and answer websites that contain subwebsites for

specific topics, such as computer science, German language,
or workplace, to name just a few. Before being available to
the public permanently, each of these websites must go
through a beta version, becoming permanent for the public
if it sustains a certain level of activity. If the subwebsite does
not meet the activity requirement, it is shut down. Some of
these subwebsites go back and forth between being beta and
closed. As a result, all of the users’ accounts and their interac-
tions are saved. This information is the dataset used for this
work. We parsed, structured, and analyzed a set of closed
(decayed) subwebsites as an example of communities that
underwent decay dynamics [27, 36] and alive subwebsites,
respectively. The decayed subwebsites we considered in this
work are Business Startups and Economics. In addition to
that, we also have data for alive websites, such as Statistics,
Latex, and Music. We used both types in order to make a
comparison, if possible, between the patterns and cascades
found in the alive and the decayed communities. One advan-
tage of this dataset is that it contains all the temporal infor-
mation needed to construct temporal social networks based
on the interactions among the users. So, we constructed

Input: G0, G1,… ,Gk−1//The set of temporal networks
Init: I =∅, S = L1, L2,… , Lk−1
//Li ∈ S is defined as: v ∣ τ v = i, ∀v ∈VG0

. L1 contains the initiators of the cascades
1 foreach v ∈ L1 do
2 I = VI = v , EI =∅ //Start a new cascade I
3 //Check if the initiator v is connected to another initiator q
4 foreach q ∈ L1 do
5 if e = v, q ∈ EG0

then
6 VI = VI ∪ q //Add the node q to the cascade’s nodes
7 EI = EI ∪ e = v, q // Add a directed edge (v,q) to the cascade
8 end
9 end

//Check if the initiator v is connected to any non-initiator node
10 foreach L ∈ S \ L1 do
11 foreach u ∈ L do
12 if e = v, u ∈ EG0

then
13 VI = VI ∪ u
14 EI = EI ∪ v, u
15 end

//Check if u is connected to any other nodes in the cacasde ℐ
16 else
17 foreach w ∈VI do
18 if e = u,w ∈ EG0

then
19 EI = EI ∪ e = u,w

//The break prevents triangles from being formed in ℐ
20 break
21 end
22 end
23 end
24 end
25 end

//Add the extracted cascade ℐ to the set of all cascades I
26 I = I ∪ I

27 end
Output: I

Algorithm 1: The steps for extracting inactivity cascades, I, from the set of temporal networks networks G.
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networks where the nodes are the members of these networks
and the edges are the interactions among them, including
replying to a question, upvoting, or downvoting. Table 2
shows a summary of the datasets used, the monitoring period
for the interactions, the number of networks constructed,
information about the first and the last networks, and the
number of extracted cascades. The monitoring period for
the datasets differed according to their active periods; e.g.,
for the decayed subwebsites (the first three rows in
Table 2), the last monitoring day was the last day these sub-
websites were active. Conversely, the last three subwebsites
are still alive, so the last monitoring day was the same.
Note that the set of nodes VG0

refers to the core nodes
used for this study, which means other nodes emerging
in-between were ignored. The core nodes were members
with a reputation score of at least 500; we tried smaller
values, e.g., 100, 200, 300, and 400, for the reputation score,
and the resulting temporal networks were too sparse with
too many disconnected components which hinders any sub-
sequent analysis. The reason for that in the context of the
Stack Exchange websites is that there are many users who
come only for one question or make only one comment
and then do not appear again on the platform. We consider
those users as outliers to the platform’s core activity, e.g.,

information production, and thus, the chosen value, i.e.,
reputation score ≥500, is justified from the lower bound side.
We did not select larger values for two reasons: (1) there are
few users in some communities who have reputation score
larger than 500 and (2) selecting larger reputation score
excludes members with less activity and thus the core nodes
become significantly few nodes. Both cases render the con-
structed networks useless for any analysis. Thus, the chosen
value is justified from the upper bound side.

From the table, it is clear that the alive subwebsites Latex
and Statistics, which are considered very active, succeeded in
keeping nearly 10% of the core nodes in the last network,
whereas this percentage is almost zero in the other subweb-
sites. We found that those 10% of the members were users
with very high overall reputation score. For instance, user
number 5001 (https://tex.stackexchange.com/users/5001/
mico) was active in all of the networks used overtime for
the Latex subwebsite, and he/she is in the top 0 09% among
the whole users of Stack Exchange and have reputation score
236 thousands. The same behavior was found on the Statis-
tics subwebsite for user 805 (https://stats.stackexchange.
com/users/805/glen-b) who is in the top 0 02% among the
Stack Exchange users and have reputation score 191 thou-
sands. We noticed that these two users were active mainly

Table 2: Description of the datasets used and the k constructed networks over the given period. The initial network isG0, and the last network
is Gk−1. The number of the extracted cascades is I .

Dataset Period k VG0
EG0

VGk−1
EGk−1

I
Startups 10.2009–09.2013 32 702 9080 2 1 309

Literature 08.2011–05.2012 12 118 434 4 3 4

Economics 10.2011–03.2012 10 33 67 3 2 17

Latex 07.2010–12.2015 33 498 4823 53 87 169

Statistics 07.2010–12.2015 32 419 4795 36 37 141

Music 04.2011–12.2015 38 293 1303 2 1 48

Table 1: Definitions of the network-based measures used in this work.

Measure Description

D v The degree of a node v, D v = Γ v , is the cardinality of the set of neighbors Γ v .

B v
The betweenness of a node v is defined as B v =∑s∈V G ∑t∈V G σst v /σst , where σst v is the number of the shortest paths between

nodes s and t that include the node v and σst is the number of all the shortest paths between nodes s and t.

C v The closeness of a node v is defined as C v = ∑w∈V G d v,w −1, where d v,w is the distance between nodes v and w.

Core v A k-core subgraph of a graph G is the maximal subgraph such that each node has a degree at least k. The coreness of a node
Core v = k if the node v is in the k-core subgraph and not in the k + 1-core subgraph.

E v The eccentricity of a node v, E v , is the maximum distance between node v and node u.

ℳC v
A minimum cut of two nodes u, v, MinCut u, v is the minimum number of edges that are required to be removed in order to
separate the two nodes. The averaged minimum cut of a node v is defined as ℳC v = 1/n∑u∈E,u≠vMinCut u, v , where n is the

number of nodes in a graph.

Evec v
The eigenvector centrality of a node which is defined as Evec xi = 1/λ∑j∈VG

aijxj, where λ is a constant and aij is a location defined
by i, j in the adjacency matrix. The measure can be written in matrix form as λx =A ⋅ x.

B e
Edge betweenness measures the number of times an edge e appears in the shortest path between any two nodes in a graph. It is
defined as B′ e =∑v,u∈VG

σuv e /σu,v . The incident edge betweenness of a node is defined as the average edge betweenness for all
edges incident to a node v.

D Γ v The average degree of the neighbors of a node v.
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on the corresponding subwebsite, Latex and Statistics,
respectively. For the Music subwebsites, the situation is dif-
ferent. The number of retained members from the core nodes
was only two users, which is very similar to the decayed sub-
websites. Moreover, those two users were mainly active on
other subwebsites; for example, user 932 (https://music
.stackexchange.com/users/932/leftaroundabout) was found
in all of the networks of the Music dataset, but his main activ-
ity was on the Stack Overflow subwebsites. For the decayed
websites, it was hard to get information about the retained

users from the core users because no user information was
available.

5. Results and Discussions

5.1. Analysis and Modeling Results. Here, we start presenting
the results of the analysis by providing information about the
largest cascades extracted from the datasets. Figure 1 shows
the largest cascades of the subwebsites Startups, Economics,
Statistics, and Latex. We observe that the cascades of the

(a) Startups

(b) Economics (c) Statistics (d) Latex

Figure 1: The largest cascades extracted from the datasets. The color of the node is inversely proportional to the time at which the node
became inactive (i.e., the darker the node, the earlier it became inactive), and the size of a node is directly proportional to its
degree in the cascade.
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decayed communities, such as Startups and Economics,
contain a larger fraction of nodes from the initial network
G0. The fraction of the nodes in the largest cascades, consid-
ering the initial network, is 0.44, 0.45, 0.15, 0.21, and 0.09 for
the subwebsites Startups, Economics, Statistics, Latex, and
Music, respectively.

The figure also shows that for the decayed subwebsites,
the color of the nodes is very close to each other, which sug-
gests that the duration of the decayed subwebsites was short
compared to the duration of the alive subwebsites, because
the colors of the nodes in the alive subwebsites are clearly
lighter at the nodes close to the leaves. This will be statisti-
cally supported in the following section.

5.1.1. Cascade Size. The size of a cascade is the number of
nodes it contains. Figure 2 shows the results obtained for
different subwebsites. We can observe in the figure that all
datasets contain cascades that have at least 38% of the nodes

from the nodes of the initial network. This percentage is even
higher in decayed communities (Startups and Economics)
and reaches 55% on the Startups subwebsite. Figure 2 also
shows that the cascade size patterns appear visually different.
The difference is even clearer in Figures 2(b) and 2(d), where
the cascades in the decayed communities contain a lot more
nodes. To get statistical significance concerning this phenom-
enon, we used the KS-test described in Section 3.2. We found
that there is statistical significance between the decayed and
the alive subwebsites. We found that the probability distribu-
tions of the cascade size are the same (e.g., seems to be drawn
from the same distribution) in the alive websites (p ≈ 0 12),
are the same for the decayed subwebsites (p ≈ 0 7), and are
different when testing an alive website and a decayed website
(p≪ 10−6). The only exception to this occurred when testing
the statistical significance between the Statistics and the Latex
subwebsites; although both are still alive, the cascade sizes
were statistically different (p≪ 10−6).

F(
x

) =
 P

(X
 ≤

 x
)

x = Fraction of nodes in a cascade (%)

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30 40 50

𝜇=21.4, 𝜎=12.1,
Startups
𝜇=22.6, 𝜎=09.6,
Economics
𝜇=08.7, 𝜎=06.6,
Latex

𝜇=13.3, 𝜎=08.2,
Statistics
𝜇=07.8, 𝜎=06.6,
Music

(a) 100% of the cascades

F(
x

) =
 P

(X
 ≤

 x
)

x = Fraction of nodes in a cascade (%)

𝜇=31.4, 𝜎=7.6, 
Startups
𝜇=31.1, 𝜎=6.7, 
Economics
𝜇=13.8, 𝜎=5.7, 
Latex

𝜇=19.6, 𝜎=6.4, 
Statistics
𝜇=12.6, 𝜎=6.4, 
Music

10 20 30 40 50

1.0

0.8

0.6

0.4

0.2

(b) Largest 50% of the cascades

Statistics

Music

Latex

Economics

Startups

Fraction of nodes in a cascade (%)
0 10 20 30 40 50

(c) 100% of the cascades

Music

Statistics

Latex

Economics

Startups

10 20 30 40
Fraction of nodes in a cascade (%)

(d) Largest 50% of the cascades

Figure 2: The figure shows the fraction of nodes (of the initial network) in the observed cascades as CDF (a and b) and as box plots (c and d).
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Discussion Point 1. Different inactivity cascade patterns exist
in alive and decayed subwebsites.

The size of the cascades extracted from different subweb-
sites shows that inactivity dynamics is common in both alive
and decayed subwebsites of the Stack Exchange. However,
the size of the cascades in the decayed ones was significantly
larger than the size of the inactivity cascades found in the
alive subwebsites. Based on Figure 2, the smallest cascade in
the largest 50% of the cascades contains more than 20% of
the nodes from the initial network of the decayed subweb-
sites, compared to nearly 10% for the alive ones. Our inter-
pretation of this is that there are members of the alive
subwebsites who are maintaining the aliveness of these com-
munities and continuously provide content (in terms of, for
example, answers to the questions), which keeps the platform
active. This can be clearly seen in Table 2, where in the alive
subwebsites, the number of nodes found in the last observed
network is very much higher than that of the nodes found in
the decayed subwebsites. It seems that those members are
experts whose existence is vital for sustaining these commu-
nities. Investigating the profiles of some of those members
(see Section 4) supports our interpretation.

5.1.2. Cascade Virality. Figure 3 shows the Wiener index of
the cascades extracted from different subwebsites as a
measure of virality. As the size of the networks and the size
of the cascades differ across the subwebsites, it was necessary
to normalize the Wiener index to enable a meaningful
comparison of the distributions. To that end, we used a sig-
moid function for normalization (other normalization
methods like tanh function and min–max normalization
provided almost identical results). Generally, the patterns of
virality across different subwebsites are statistically the same
(p > 0 1), except for the Economics subwebsite, where the
virality patterns are statistically different with p≪ 3 × 10−5.
This special behavior of the Economics dataset is ascribed
to it being a small dataset with only 17 cascades. Surprisingly,
the figure shows that the decayed subwebsite Startups shows
fewer viral cascades, with a mean of 0.27. This suggests that
there should be another feature affecting the decay of the
decayed subwebsites. In the following section, we will discuss
this in more detail.

5.1.3. Maximum Degree of Cascade. Another pattern that we
looked into is the maximum degree in a cascade. Figure 4
shows the normalized maximum degree in a cascade for
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Figure 3: The figure shows the Wiener index of the observed cascades as CDF (a and b) and as box plots (c and d).
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different subwebsites. The visualization suggests that the
decayed subwebsites Startups and Economics contain cas-
cades of nodes with larger degrees than the alive subwebsites.
The statistical analysis shows that the decayed subwebsites
have a very similar distribution of the maximum degree in
a cascade with p > 0 13. The decayed and the alive subweb-
sites are statistically different with p≪ 10−8. Once again, the
Statistics subwebsite shows a different pattern. It is neither

similar to any of the decayed subwebsites nor to any of the
alive subwebsites, with p≪ 10−8.

Discussion Point 2. Inactivity decay is ascribed to a cascade’s
node degrees, not to its virality.

Unexpectedly, the decayed subwebsites we examined had
fewer viral cascades than the alive subwebsites. This led us to
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Figure 5: The figure shows the cascade duration as CDF (a) and as box plots (b). Cascade duration is normalized based on the number of
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investigate the microproperties of the cascades rather than
relying only on the macroproperties. We found that the
cascades in the decayed subwebsites are less viral, but their

nodes have larger degrees compared to those in the alive
subwebsites. Additionally, we discovered that cascade initia-
tors in decayed subwebsites have larger degrees in the cascade
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trees than noninitiators. This indicates that the expert
members (who have larger degrees due to their activity and
contribution) started the inactivity process, followed by non-
expert members. Having said that, one possible reason for
the closure of the decayed subwebsites is the lack of activ-
ity from those members who should have sustained the
community and kept it going until it reached the public
version. On the other hand, the more viral cascades in
the alive subwebsites, which also have a smaller number
of nodes and contain nodes with smaller degrees than
the decayed subwebsites, indicate that the effect of inactivity
is limited. The reason for this is that the size of the cascades
in the alive subwebsites is small, with initiators having
smaller degrees, compared to decayed subwebsites. We
conclude that expert members acted as obstruction points
in the cascade trees, stopping the effect of inactivity cascades
from being very disruptive.

5.1.4. Cascade Duration. Here, we provide the results for the
analysis of cascade duration defined earlier in Section 3.1,
(1). Figure 5 shows the cascade duration of different sub-
websites. The normalized x-axis reflects how long the
cascade takes to be completed, i.e., until the last day of
the observed time. The figure shows that the cascades in
the decayed subwebsite Startups took noticeably less time
to be completed, i.e., it had faster cascades. This is also
clearly visible in Figure 5(a). The statistical analysis of
cascade duration showed that every subwebsite has its
own characteristics, with no common pattern identified
(p < 5−10).

Discussion Point 3.Which subwebsite is going to decay next?

Although the Statistics subwebsite is alive and falls into
the category of alive subwebsites based on the results
described in Sections 5.1.1, 5.1.3, and 5.1.4, we discovered
that the Statistics subwebsite inactivity patterns are closer
to the patterns found in the decayed subwebsites than to
those of the other alive subwebsites. Using the DJS
described in Section 3.2, we found, strangely, that the Sta-
tistics subwebsite is closer to the decayed subwebsites in
terms of cascade size, virality, maximum degree in a cas-
cade, and cascade duration. We investigated this behavior
and found that the Statistics subwebsite is the least active
subwebsite among all Stack Exchange subwebsites with
the fewest answered questions; that is, only 61% of the
questions were answered (https://stackexchange.com/sites),
whereas on other subwebsites, the answer rate is much
higher, for example, reaching 93% and 97% on the Latex
and Music subwebsites, respectively. This odd behavior,
which was caught by our result, supports the effectiveness
of the method we used. We think that the Statistics sub-
website may fall into a decay process if its activity level
remains as low as it is.

5.1.5. Cascade Coreness.Here, we examine the coreness of the
nodes in a cascade as a microscopic property of a cascade. We
start by examining the coreness of an initiator. Figure 6(a)
shows a comparison between the coreness of all noninitiator

nodes in network G0 and the coreness of the initiators from
all subwebsites as CCDF. The figure shows that the probabil-
ity of having a coreness, say x in the initiators, is larger than
what is found for all nodes. This suggests that the coreness of
the initiators is larger than that of the other nodes in the
initial network G0. This was also statistically confirmed with
p≪ 10−6. However, further examination provided different
insights and patterns. We performed the same analysis for
each of the subwebsites. For example, in Figure 6(b), there
was no clearly different pattern for the subwebsite Startups,
where the initiators have higher coreness for the coreness
values [22, 27] but less coreness for the coreness values
[20, 32]. For the other subwebsites in Figures 6(c), 6(e),
and 6(d), the initiators have a clear pattern. They have
more coreness than the other nodes in the corresponding
G0. An opposite pattern was found in the subwebsite
Music (cf. Figure 6(f)).

The previous analysis only refers to the initiators. To
understand the coreness in the temporal context, we define
the following: a cascade pathP is a connected directed sub-
graph of a cascade I , where the maximum degree for all
nodes of P is 2, with no cycles. The coreness monotonicity
of a cascade path P is said to be increasing if core v ≥ co
re u , decreasing if core v ≤ core u , and nonmonotone
otherwise, ∀e = u, v ∈ EP. If the nodes in a cascade path
have the same coreness, then we consider it nonmonotone.
All coreness values are calculated in the initial network G0.
Based on that, we extracted cascade paths from all cascade
trees where the first node in a path is the initiator of this
cascade tree. Then, we examined the coreness monotonicity
of these paths. The results are shown in Figure 7 and indi-
cate that the coreness of the cascade paths is clearly differ-
ent across different subwebsites. Moreover, the fraction of
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Figure 7: The coreness monotonicity of all cascade paths extracted
from all cascade trees originating from the cascade initiators. On the
x-axis, the different subwebsites are shown and on the y-axis,
the fraction of paths is monotonically increasing, monotonically
decreasing, or none monotone.
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monotonically increasing and monotonically decreasing
paths was nearly identical in some cases (see, for example,
the Statistics and Music subwebsites). Also, in the case of
decayed subwebsites (see the Startups subwebsite), the frac-
tion of nonmonotone paths was larger than for any of the
other two types.

Discussion Point 4. Coreness (and generally speaking, any
single measure) alone does not control inactivity cascades.

In their work, Garcia et al. [33] posed the question of
whether the decay starts from the interiors (nodes with high
coreness) or from exteriors (nodes with low coreness). In
their work, they argued that the decay of the Friendster social
network started from exterior nodes. Later, Seki and
Nakamura [34] presented a counter-argument, showing that
the decay started from the interiors, and provided a model for
understanding the decay process. Here, we argue that the
answer to the question “Does the decay start from the interior
or the exterior nodes?” is neither. The results of this work
show no uniform pattern across different subwebsites that
correlates to the direction and the coreness of the decay (cf.
Figure 7). Furthermore, we argue that the question contains
an implicit unsupported assumption, namely, that coreness
only controls the decay. We strongly believe that coreness
alone cannot be used to understand the direction of decay
dynamics if the direction really matters. In Section 5.1.5, we
provided a formal framework defining the direction of the
decay considering the temporal decay so that we can explic-
itly tell whether coreness alone can be used as an indicator
for the direction of the decay. We found that the initiators
of cascades contain opposing patters in terms of whether
their coreness is higher or smaller than the coreness of
noninitiators. Additionally, we analyzed the coreness of the
nodes in the cascade paths (coreness monotonicity) and
found evidence that coreness is not correlated with the direc-
tion of the decay. Moreover, we performed an analysis using

different measures, like degree and betweenness. We con-
clude that it is very hard to describe the decay process using
only one measure. This is also clearly visible in the prediction
results (cf. Figure 8) where the importance of the features
used for predicting cascade size and virality was close. To
further support our argument, we predicted cascade size
and virality using only one feature. In no case were the results
better than when we predicted them using multiple features.
We found the results of prediction using only one feature to
be very close to the baseline predictor; for example, the MAE
was 0.23, 0.23, 0.22, and 0.22 for predicting cascade virality
using betweenness, degree, coreness, and min. cut, respec-
tively. To sum up this point, we think that inactivity decay
may be caused by network-independent factors, like pri-
vacy issues, competence between social network providers,
and/or content quality. If any of these factors manifests
itself, it renders the network measures unusable for describ-
ing inactivity decay.

5.1.6. Cascade Similarity. Using the similarity measure
defined in (3), we calculated the similarity of each pair of
cascades. Figure 9 shows a heat map for the similarity of
the cascades for different subwebsites. Figure 9(a) clearly
shows less similarity between the cascades of the Startups
subwebsite, unlike the other panels in Figure 9. It is also
observed that cascades with a smaller number of nodes
seem to be more similar than those with a large number
of nodes. An exception is the Economics subwebsite,
where cascades with larger nodes are more similar than
those with fewer nodes.

To get statistical confidence about the comparison, we
used the statistics described in Section 3.2. We found that
although all of the subwebsites exhibit different similarity
patterns (p≪ 10−8), the decayed subwebsite Startups has
the smallest average similarity with a value of 0.03, compared
to 0.21, 0.16, 0.17, and 0.11 for the other subwebsites. This
difference can easily be seen in Figure 10.
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Figure 8: The figure shows the prediction performance results for 100 runs for the prediction of cascade size (a) and cascade virality (b). The
figure compares the results of the GBR prediction algorithm and the results obtained from a baseline predictor.
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Discussion Point 5. Cascade similarity reflects how resilient a
network was while it evolved.

The model we described for the extracted cascades in
Section 3.1 allows for cascades with the same nodes and/or
edges. This means that we can measure the similarity of
two cascades. Basically, if there are many similar cascades
in a subwebsite, this means that there are fewer paths on
which the inactivity cascade took place than less similar cas-
cades. This means that, for cascades with less similarity, there
are many decay propagation paths that are susceptible to
inactivity and conversely, for cascades with high similarity,
there exist fewer decay propagation paths that are susceptible
to inactivity. Thus, cascade similarity can be seen as a mea-
sure for the resilience (or vulnerability) of a community for
any future model or simulation of inactivity decay. Based
on the results described in Section 5.1.6, it is apparent that
the decayed subwebsites contain more nodes that are suscep-
tible to inactivity than the alive subwebsites. The similarity of
the cascades in the alive subwebsites is high, suggesting a
lower number of cascade paths.

5.2. Prediction Results. In this section, we provide a pre-
diction framework we designed for predicting some cas-
cade features. We formalize the prediction problem as
follows. Given a training set Z = X1, y1 ,⋯, Xn, yn ,
where Xi = x1,⋯, xm is the set of input features of length
m, yi is the target value to be predicted, and n is the number
of data points in the training set. The prediction problem is
then defined as estimating a function f X = y, where y is
the predicted target value that is being compared to the real
target value y. Thus, the optimization problem is generally
defined as minimize∑ℒ f X , y , where ℒ is an arbitrary
cost function. In this work, we used the mean absolute error
cost function which is defined as MAE = 1/n∑n

i=1 yi − yi . To
evaluate the performance of the model, we used data points

that had not been used during training and then evaluated
them using the cost function with the true values of the
target. We used gradient boosting regression (GBR) [41],
which is basically a decision tree with simple rules that is used
forM iterations, where in each iteration a new decision tree is
used to predict the previous prediction residual (the GBR
outperformed other algorithms and techniques that we
tested, such as logistic regression and classical decision trees.
The technical details of the GBR algorithm can be found in
[41]). We used the scikit-learn [42] Python library imple-
mentation of the GBR.

The features we used are shown in Table 1. We used these
features to predict cascade size and cascade virality. We used
only features from the network G0 and did not use any of the
temporal features in order to make the prediction more
realistic, as temporal features of a network exhibit proxies
for the predicted values, which weakens the applicability of
the method. The features described in Table 1 have different
effects on the prediction; thus, we performed feature ranking
in order to get insights regarding which features are more
important during the prediction. Figure 11 shows the feature
ranking for predicting cascade size and cascade virality.
Figures 11(a) and 11(b) show that the importance of the
features is different; for predicting cascade size, the average
of neighbors’ degrees was the most important one, whereas
the feature coreness was the most importance one for predict-
ing cascade virality. In both cases, the features degree and
eccentricity were the least important ones in the set of
features. Based on that, we used the five best features from
each ranked set. Other combinations of the features resulted
in lower, but very close, prediction performance.

To perform a meaningful prediction, we combined the
values of all features of the subwebsites used into one dataset.
Then, we split this dataset into two subsets, with 75% (1002
cascades) and 25% (334 cascades) for training and testing,
respectively. We used the MAE as a prediction accuracy
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Figure 10: The figure shows the similarity of each pair of cascades as CDF (a) and as box plots (b). The similarity is defined as described in (3).
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measure. As splitting the dataset into training was done in a
randommanner, we ran the prediction experiment 100 times
to get statistical significance regarding the results. Addition-
ally, we compared the results to a baseline predictor that uses
naive rules, such as taking the mean, the median, or a con-
stant value for the predicted target. We compared the predic-
tion results to the best baseline we got, which was the mean
baseline. The prediction accuracy of cascade size in terms of
the MAE was 9.9, which is 35% better than the baseline pre-
dictor. The prediction results mean that, on average, the pre-
dicted cascade size contains ±10 nodes. The prediction
accuracy of cascade virality in terms of the MAE was 0.194
which is more than 25% better than the baseline predictor.
Figure 8 shows the results of the prediction for the 100 per-
formed runs for predicting both cascade size and the cascade
virality in (a) and (b), respectively. The figure shows that
there is a clear significance in favor of the GBR algorithm
over the baseline predictor.

Discussion Point 6. For temporal networks, early network’s
structure encompasses sufficient information to predict the
properties of potential decay cascades.

It was surprising that using only network features from
the network G0 provided a satisfactory prediction of cas-
cade’s virality and size. These results suggest that the early
structure of an evolving network dictates its future. The
prediction model described and evaluated in Section 5.2,
which used no temporal information at all, indicates that
the (in)activity dynamics of social networks is governed by
the topological structure of the network itself.

6. Closing Thoughts

Although the method used in this work is reliable and the
results have been validated, this work is subject to the
following limitations. The networks used in this work were
aggregated from different types of interactions on Stack

Exchange subwebsites. This aggregation used the social inter-
actions among the members of these subwebsites, and we
assumed that the resulting network is a community. In order
to make sure that the networks we used represent real tempo-
ral interaction among the users, we used different time
frames to take a snapshot for each subwebsite. The reason
for this is that each subwebsite has a different timespan; for
example, the alive subwebsites are still active, unlike the
decayed subwebsites, which have a significantly shorter life-
span. We believe that our design decisions for selecting the
time frames have no significant effect on the results and the
conclusions. Also, the results and conclusions in this work
are valid for the Stack Exchange subwebsites and similar plat-
forms. We did not check other types of social networks or
aimed at generalizing the results to any type of social net-
work. Nor did we provide a model (other than data fitting
using the machine learning regression model we described
in Section 5.2) for better understanding the decay of online
social communities. Such a model might help to eventually
control and prevent such decay. This gap remains open and
requires future work.
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