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ABSTRACT

A way to derive consistently kinetic models for vehicular traffic from microscopic
follow the leader models is presented. The obtained class of kinetic equations is
investigated. Explicit examples for kinetic models are developed with a particular
emphasis on obtaining models that give realistic results. For space homogeneous
traffic flow situations numerical examples are given including stationary distributions
and fundamental diagrams.

1 Introduction

Modelling and simulation play an increasing role in the optimization of traf-
fic flow. Traditionally there have been three types of approaches towards the
problem. The first and most basic one concerns microscopic or follow the



leader models, modelling the actual response of single cars to their predeces-
sor, see, e.g., [1, 2, 3, 4]. Macroscopic models based on fluid dynamic equations
have been proposed by a large number of authors, see, e.g., [5, 6, 7, 8, 9, 10].
However some of these models have been subject to a considerable contro-
versy, concerning their validity and applicability to traffic flow. Kinetic or
Boltzmann-like models may present an intermediate step between the above
two types of models. On the one side they can be derived from microscopic
considerations. On the other side at least some macroscopic models can be
derived from kinetic traffic models as has been shown, e.g. in [11, 12, 13].

Kinetic models contain more variables than macroscopic models and less vari-
ables than microscopic ones. Therefore, one expects that computation times
for the simulation of kinetic models range between those for microscopic and
those for macroscopic models. However, we mention here a certain type of mi-
croscopic models, the cellular automaton models. They need simulation times
comparable to those of macroscopic models, see for example [14, 15].

The first kinetic traffic models were published by Prigogine and Andrews [16,
17], who introduced a Boltzmann-like term to account for the slowing down
interactions (see Prigogine and Herman [11] for a review). However, they
and most of their successors, see, e.g., [18, 13, 12], treated the acceleration
of the cars by means of a heuristic relaxation term. Only recently Nelson
[19] succeeded in obtaining reasonable kinetic equations by using a kinetic
description also for acceleration. The derivation of his equation is strictly
based on a microscopic model in contrast to the Prigogine work. He also
proved that his model fulfills the criterion of having a one parameter family
of local equilibrium distributions depending only on the local density of cars.
However, as he himself states, his model is a caricature of traffic flow and
should only be seen as a first step in obtaining a kinetic equation that is also
suitable for real applications.

In the present work we aim at deriving a kinetic equation that is strictly based
on a microscopic model without going back to phenomenological relaxation
terms as in the Prigogine model. The model should however be capable of
giving reasonable results and describing real traffic flow patterns.

The paper is organized in the following way: Section 2 describes the micro-
scopic models that we use as the basic description of traffic flow. Section 3
shows how kinetic models are derived from this type of microscopic models.
In section 4 we describe an explicit kinetic model derived from a very simple
microscopic model. However, as can be seen from the numerical simulations in
section 5, the kinetic model describes already all important features of homoge-
neous traffic flow. Finally, in section 5 we describe a numerical scheme to solve



the kinetic equation and present some numerical results for the space homo-
geneous equation. The numerical investigation of the spatially inhomogeneous
case of real traffic flow situations will be considered in future work.

2 Microscopic Theories

In this section we describe the stochastic microscopic model underlying our
kinetic model.

Usually in microscopic models the response of a car to the behaviour of its
leading vehicle is considered, see [3] and references therein. The drivers are
assumed to change their velocity only in response to the leading car. This as-
sumption is certainly not justified for traffic flow at very low density. However,
once the number of cars is not too low it seems to be reasonable. Moreover
the situation of traffic flow with very low density does not seem to be of very
much interest in traffic flow applications.

If a vehicle is faster than the leading car and the headway to the leading car is
becoming smaller than a certain threshold, its driver is slowing down or pass-
ing the leading vehicle. If the vehicle is slower than the leading car and the
headway to the leading car is becoming larger than another threshold, the car
is accelerating. Actually several different thresholds for slowing down and ac-
celeration procedures are known. One observes, for example, thresholds based
on a certain desired distance or on a minimal acceptable distance between a
driver and his leading vehicle, see [1, 4]. The threshold will in general depend
on the velocity of the car and on the velocity of the leading vehicle. The mo-
tion of the cars is normally described by a second order ordinary differential
equation, e.g.,

dQ.Tk; ( dl‘k " )
= Qg\TE, T y Ty by i),
dt2 k\LkyLEk+1 dt

where an instantaneous change of the acceleration is assumed, if the vehicle k&
is crossing one of the different thresholds.

In our microscopic model we allow stochastically distributed decisions. The
drivers may react in several different ways, e.g., slowing down to certain ve-
locities below the velocity of the leading vehicle. Moreover, to obtain a kinetic
equation, velocity changes due to interaction in the microscopic model are as-
sumed to happen instantaneously. This is certainly a simplification, but more
or less justified on the considered time scales.



Surprisingly even the simplest reasonable examples of such models basing on
just two thresholds - a slowing down and an acceleration line - give already
reasonable results, once they are translated into a kinetic equation. This is
demonstrated in section 5 . In particular, we are able to obtain plausible
results for the velocity distribution functions and the so called fundamental
diagram of homogeneous traffic flow in dependence of vehicle density.

The microscopic model

Consider a car 1 at place x; with the velocity v; and its leading car 2 at z-
with velocity ve. v; and vy are assumed to be in [0, w], where w denotes the
maximal velocity.

Let N be the number of thresholds under consideration. If car 1 is crossing a
threshold i € {1,... N}, i.e., if the headway h = z3 — z; is becoming larger
or smaller than a certain threshold h = H;(vi,v2), then car 1 is changing its
velocity to the new velocity v. v; and vy are, for each threshold 7, out of a
certain range €2; of values associated with the threshold H;. The new velocity
is taken on instantaneously in accordance with a certain distribution function

0i(v; v1,v2),

(v1,v9) € Q;. 0; may also depend on z and ¢, however, for simplicity of notation
we do not write this explicitely. Since o; is a density function it has to fulfill

w
/ oi(v;v1,v9)dv = 1.
0

A slowing down maneuver could be given, e.g., by a function H;(v1, ve) = €(vy),
where € represents the minimal acceptable distance to a leading vehicle with
speed vy. Since a car is slowing down only if its velocity is larger than that of
his leading vehicle, €); is in this case given by {(vi,v2);v1 > v }. In particular,
one can recover the Prigogine slowing-down term by setting H; = 0, o; equal
to a delta distribution d(v — vy), and Q; = {(vy, v2);v1 > va}.

Remark

In the microscopic model of Nelson [19] the drivers adapt their velocities not
only due to the crossing of a threshold but also due to unexpected events, e.g.,
instanteneous changes of the velocity of the predecessor. In contrast, a vehicle
changes its velocity in our model only if a threshold is crossed.



3 Derivation of Kinetic Theories

In this section we will derive from the microscopic model in section 2 a kinetic
equation. The derivation is done by arguments similiar to the derivation of
the Boltzmann equation in gas dynamics, see [20] or [21], as follows:

Let f(x,v,t) denote the phase-space density, i.e., the distribution function of
the number of vehicles at place x and time ¢ with velocity v multiplied by
the density. Writing down the equation for the change of the total number of
vehicles leads as usual to the kinetic equation:

5f 5f
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where ¢ € [0, 00), v € [0,w], and (%) and (%)z’ are gain and loss terms due
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to discontinuous velocity changes, respectively. We can write them as
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where (%)Z and (%); are describing the gain and loss terms that are due to
g

the i-th threshold. We mention that in section 4 we will restrict to the case of

two thresholds corresponding to acceleration and slowing-down interactions.

The gain and loss terms are given by

5 N
(6_556) = Z/Q |v1 — ooy (v; v1, v2) fo(Hi(v1, v2), V2, T, v1, t)dv1dvg,
g =1 4

of —i/ [v — vg| fo(Hi(v1, v2), Ve, 2, v, t)dv
ot ! N i=1 7 (v,v2)€Q 212\ VL, 25 V2,45 Uy 2.

fo denotes the pair distribution function

fQ(ha U?axavlat) = g(ha UZ;xavlat)f(xavlat)a

where g(h,vy; x,v1,t) denotes the distribution of the leading vehicles with
headway h and velocity vs for a vehicle with velocity vy, space = at time
t.

To obtain from these equations a closed equation for f we have to express
g by f. This can be done along the lines of Nelson [19], who introduced



a correlation model using the following basic assumption which he termed
‘generalized vehicular chaos assumption’:

Let m(h; z,v1,t) be the probability density for the leading vehicles at headway
h, i.e.
m(h;ﬂ'),’l)l,t) = / g(h: UZ;xavlat)d,UQ-
0

Let the density of vehicles at place z and time ¢ be given by p(z, 1), i.e.
plat) = [ flz,v,t)dv.
0

Then, the generalized vehicular chaos assumption states that

g(h7 UQ;xa,Ulvt) — f(l',’l)g,t)
m(h;x,vl,t) p(%,t) '

In addition we assume that m does not depend on v;. On x and ¢ it is assumed
to depend only via p(x,t), i.e. m can be written as

m(h; x,v1,t) = p(x, t)k(h, p(z,1)).
Then ¢ has the form

g(h7 U2;x,v1at) = f(l',vg,t)k(h, p)

Without using an explicit form for £ we obtain thus the equation
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Nelson used the following explicit form for k:
k(h, p) = e P,
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where ¢ is the desired headway at speed 0. This is for numerical calculations
somewhat to restrictive. Looking at numerical simulations it seems to be more
appropriate to assume a function k(h,p) that is not so much concentrated
around the minimal headway.

We remark that, similar to Enskogs theory of a dense gas, one actually would
have to introduce a relation like

g(ha UQ;x,vlat) = f(.’L' + ha Ug,t)];?(.’lf, ha t)

to take into account that the leading vehicle is at the point 4+ h. This is
important, if inhomogeneous traffic flow is considered. However, in the present
paper we restrict to an investigation of the homogeneous equation

ft = Q(f)7

where f = f(v,t) with some initial condition

f(U, 0) = fO(U)'

We do not consider inhomogeneous traffic, i.e.the influence of the convection
term v f,. This will be done in a forthcoming publication, see also [22].

Considering the homogeneous equation we remark first of all that an integra-
tion over v of the interaction term Q(f)(v) gives 0, since [ o;(v; vy, ve)dv =
1, 2=1,..., N. This means that the number of vehicles is not changed by in-
teractions. A basic result about existence and uniqueness of the homogeneous
equation can be easily obtained under slight additional assumptions. This can
be done analogously to the classical proof in kinetic theory, see, e.g., Cercig-
nani [20]. This proof shows as well that the density is a conserved quantity
during the evolution of the distribution function.

An interesting question is now to investigate, whether the obtained homo-
geneous equation has a one parameter family of stationary distributions de-
pending only on the density. This leads to unique relation between the mean
velocity - computed from the above stationary distribution at a certain den-
sity - and the density. This is true for certain classes of kinetic equation, see
[20]. For the above general model, where o; is not specified, it is certainly
not true and the stationary distributions may depend on the particular initial
conditions. However, for a simplified model, as in section 5, numerical results
indicate that actually the stationary distribution depends only on the density.

We mention that for real life traffic flow the independence of the stationary
distribution from the inital distribution seems not to be supported by empirical
data. In particular the scattering of data in empirically obtained fundamental
diagrams seems to indicate a dependence on the initial values.
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4 An Explicit Kinetic Model

In this section we present an explicit example for the kinetic models derived
in section 3. The aim is here to obtain a model that is as simple as possible
but reproduces already the essential features of homogeneous traffic flow. We
assume only two threshold, one for slowing down and one for acceleration
interactions.

Slowing Down Interactions

In the simplest case the slowing down threshold is given by a headway
h = Hl(vla UZ) = €1,
where € is a positive constant. For slowing down (2, is given by

Q= {(v1,v9) € [U,U)]Q;Ul > vg}.

The slowing down term is modeled by a Prigogine-like term. However we do
not restrict to slowing down to the actual speed of the leading vehicle as in
the Prigogine work, but to a range of speeds smaller than this one. We allow
slowing down of car 1 to a velocity v € [Bvy,vs]. (3 is some positive constant
smaller than 1. In this range a uniform distribution of velocities is assumed
due to the lack of a more precise knowledge.

If the following car is faster than the leading one, we have - alternatively to
slowing down - also to take into account the possibility of passing with a certain
probability P. We assume the velocity of the passing car to remain the same
as before. This gives

1

o1(v;v1,v2) = Po(vr —v) + (1 — P)mx[ﬂvz,vz](“)v

where d(v) is the delta function at v and X[, is the characteristic function of
the interval [a, b].

The probability of passing P depends on p like

p=1--"

pmaz

where p,q. stands for the maximal vehicular density. This relation was already
assumed by Prigogine and Herman, see [11].
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Acceleration Interactions:

The acceleration threshold is also assumed to be given by a constant
h = HQ(Ula U?) = €9,
where €5 is positive. For acceleration () is given by

Qy = {(v1,v2) € [0, w]} 01 < o}

We assume that car 1 accelerates from its actual speed v; to a certain range
of speeds between v; and v; + a(w — v1). Moreover, we assume again due
to the lack of a more precise knowledge that the velocity after acceleration
is uniformly distributed in the range [v;,v; + a(w — v;)]. This leads to the
distribution function

1
o2 (v; v1,v2) = Xion oo (v).

a(w — vy
Since for dense traffic the possibility of acceleration is more restricted than for
traffic flow with a low density, « is supposed to depend on the density in the
following way:

a=aop(l - P ),
pmaw
where oy < 1 is some positive constant.

Moreover we assume that k(e1, p) and k(ey, p) are equal, i.e.

k(e p) = k(e2, p) = K(p)-

This leads for the homogeneous equation to the same influence of the cor-
relation terms on acceleration and slowing down. In this case the correlation
terms are only influencing the speed of relaxation to the stationary distribution
function in the homogeneous equation, see section 5.

Remark 1
v — v + %(w — v1) is the average increase of velocity for each individual
car during the time interval between two acceleration interactions. This cor-
responds to an acceleration

Q

a=v—(w— 1),

(w0~ )
where v is the acceleration-interaction frequency. With % = v this can be
written as

w—"v

Yo w=v)

T
which corresponds to the Paveri-Fontana acceleration term, see [13].
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Remark 2

Note, that in contrast to the Prigogine theory, we did not introduce a distri-
bution function of desired velocities but used a uniform desired velocity w.
Therefore the number of parameters compared to the Prigogine-equation is
considerably decreased. Introduction of a desired speed distribution is partic-
ularly reasonable for very low densities of cars, where the distribution of the
velocities does not depend on the interactions between the vehicles, but essen-
tially on the drivers wishes. However, for higher densities the drivers wishes
should not play a decisive role in contrast to the drivers response to their
leading vehicles. We remark finally that an introduction of a desired speed
distribution would avoid the singularity in the equation at v = w.

Moreover, it would be possible to include in the model a further variable for
modelling the individual desired speeds of the drivers similarly to the treatment
by Paveri-Fontana [13].

5 Numerical Results for the Homogeneous Case

In the following the model in section 4 is numerically investigated. The equa-
tion under consideration is

fe=Q(f),
with
%Q(f)(v) = /0“’ /Ow |v1 — ve|o(v; v1, va) f(v1,t) f(v2, t)dviduy
= F.t) [ o= vl f (v, ),
where

O'(’U"U v ) _ 0'1(1);1)1,1)2), if’Ul > U2
o T2 oo(v;v1,09), fv; < vy

o1 and o9 depend on the density p = [’ f(v,t)dv as defined in the last section.
We remark again that the density is a conserved quantity of the equation.
k = k(p) was defined in the last section.

We mention here that for the simulation of the homogeneous equation a further
specification of k is not necessary, since different x result only in a change of
the time scale in the homogeneous equation.
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We treat the kinetic equation by a discretization scheme, that is described in
the following:

A simple standard discretization of the equation in velocity-space needs a large
number of discretization points in order to describe correctly the influence of
the singularities appearing at v = 0 and v = w. Therefore we divide the
velocity space into a certain number of cells and calculate the transition rates
between the cells given by the above kinetic equation. Introducing gridpoints
v; = %,1=0,---,N —1 (w is set equal to 1) and the values f; = f(v;) the
discretized equation is given by

N— 1 N-1
Oifi = Z Gikld = kI fife — 50 D 17 — Elf,
k=0 NS

Z\H

with
5 [+LI+LE+1)/N
Oijk =N / o (v; v, va)dvdvidus,
(i,4,k)/N

where 0; ;1 is evaluated analytically. The time derivative is treated in a stan-
dard way. This means we implement a discrete velocity approximation of the
kinetic equation using the discrete transition rates 0;;, which are averaged
values for each cell. Therefore the scheme needs a much lower number of cells
than a standard discretization scheme due to the analytic treatment of the
singularities. Thus, considerably less computing time is necessary to obtain
the same results. Moreover, and this is most important, the density

1N
g

is automatically preserved in the scheme, since

The stationary distribution fs.:(v) of the above homogeneous kinetic equation
turns out to depend only on the density of the initial distribution, but not on
the initial velocity distribution.

In all calculations we used a number of cells N = 50. In the first picture we
show a normalized version of the stationary distribution F(v) = fga(v)/p for
different values of p. The units are taken such that w and p,,., are equal to 1.
o and [ have been chosen equal to 0.3.
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Distribution F(v)
T T T

T T
rho=0.62 ——
rho=0.30 ------ 4
rho=0.16 -

Figure 1: Stationary distributions for p = 0.62,0.3,0.16

In the next two pictures the fundamental diagrams are shown. We plotted the
mean velocity

Vip) = /Ow vF(v)dv

and the flux
q(p) = pV(p)

versus the density for the whole range of densities.

Mean Velocity V(rho)
1 T T
0.8 B
0.6 B
04 + B
0.2 + B
0 L
0 0.2 0.4 0.6 0.8 1

rho

Figure 2: Mean velocity V in dependence of density p for stationary and
spatially homogeneous traffic
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Flux q_e(rho)
0.12 T T

0.1

0.08 -

0.06 -

0.02 -

rho

Figure 3: Fundamental diagram, i.e. flux ¢ in dependence of density p for
stationary and spatially homogeneous traffic

We remark that the fact that the flux is 0 for p values bigger than 0.9 is due
to the discretization. Using more cells one would obtain a smooth decay to 0.
By adjusting the parameters oy and  a whole range of fundamental diagrams
may be obtained. The parameters can be chosen such that the fundamental
diagrams fit very well to different traffic flow situtations. Several different fits
to the actually measured fundamental diagrams are reported, see, e.g. [7].
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