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Abstract

Various physical phenomenons with sudden transients that results into
structrual changes can be modeled via switched nonlinear differential
algebraic equations (DAEs) of the type

Eσẋ = Aσx + fσ + gσ(x) (1)

where Ep, Ap ∈ Rn×n, x 7→ gp(x) is a mapping, p ∈ {1, · · · , P}, P ∈ N
f ∈ R → Rn , σ : R → {1, · · · , P}.

Two related common tasks are:

1. Investigate if (1) has a solution and if it is unique.

2. Find a connection among a solution of (1) and solutions of related
partial differential equations.

In the linear case g(x) ≡ 0 the task 1 has been tackeled already in a
distributional solution framework.

A main goal of the dissertation is to give contribution to task 1 for
the nonlinear case g(x) ̸≡ 0 ; also contributions to the task 2 are given
for switched nonlinear DAEs arising while modeling sudden transients in
water distribution networks. In addition, this thesis contains the following
further contributions:

The notion of structured switched nonlinear DAEs has been intro-
duced, allowing also non regular distributions as solutions. This extend
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a previous framework that allowed only piecewise smooth functions as
solutions. Further six mild conditions were given to ensure existence and
uniqueness of the solution within the space of piecewise smooth distribu-
tion. The main condition, namely the regularity of the matrix pair (E, A),
is interpreted geometrically for those switched nonlinear DAEs arising
from water network graphs.

Another contribution is the introduction of these switched nonlinear
DAEs as a simplication of the PDE model used classically for modeling
water networks. Finally, with the support of numerical simulations of
the PDE model it has been illustrated that this switched nonlinear DAE
model is a good approximation for the PDE model in case of a small
compressibility coefficient.



Zusammenfassung

Verschiedenste physikalische Phänomene, die durch eine plötzliche Än-
derung von Systemparametern entstehen, können durch geschaltete nicht-
lineare Differential algebraische Gleigungen (differential algebraic equa-
tions, DAEs) der Form

Eσẋ = Aσx + fσ + gσ(x) (2)

modelliert werden, wobei Ep, Ap ∈ Rn×n, x 7→ gp(x) eine Abbildung ist,
p ∈ {1, · · · , P}, P ∈ N f ∈ R → Rn , σ : R → {1, · · · , P}. Zwei damit
einhergehende Aufgaben sind:

1. Untersuche, ob (1) eine Lösung hat und diese eindeutig ist.

2. Finde einen Zusammenhang zwischen einer Lösung von (1) und den
Losungen von mit (1) verwandten partiellen Differentialgleichungen.

Im linearen Fall gσ(x) ≡ 0 sind die Aufgabe 1 bereits innerhalb eines
distributionellem Lösungsrahmen behandelt worden.

Ein Hauptziel dieser Arbeit besteht darin, auch fur den nichtlinearen
Fall gσ(x) ̸≡ 0 ; Beitrage zur Aufgaben 1 zu geben; beigetragen wird eben-
falls zur Aufgabe 2, im Rahmen von geschalteten nichtlineare DAEs, die bei
der Modellierung von plötzlichen Veränderungen in Wasserverteilungsnet-
zwerken vorkommen. Im Einzelnen beinhaltet diese Arbeit unter anderem
folgenden Beitrage:
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Eingeführt wird der Begriff einer strukturierten geschalteten nichtlin-
eare DAE (structured switched nonlinear DAE), welcher auch nichtregu-
lare Distributionen als Lösungen erlaubt. Dies erweitert einen fruheren
Ansatz, der lediglich stükweise glatte Funktionen als Lösungen gestat-
tete. Des Weiteren werden sechs, nicht sehr restriktive, Bedingungen
angegeben, die zusammen Existenz einer Lösung und ihre Eindeutigkeit,
innerhalb des Raumes der stuckweise glatten Distributionen, garantieren.
Die Hauptbedingung, namlich die Regularität des Matrixpaars (E, A),
wird geometrisch interpretiert, fur diejenigen geschaltete nichtlineare DAE,
die von Wassernetzwerkgraphen herrühren.

Ein weiterer Beitrag besteht in der Einführung von eben diesen geschal-
teten nichtlineare DAEs, was gegenüber dem klassischen, auf partiellen
Differentialgleichungen basierenden, Modell für Wassernetzwerke, eine
Vereinfachung darstellt.

Schlielißch wurde mittels nummerischer Simulationen des klassischen
Modells aufgezeigt, da solch eine geschaltete nichtlineare DAE eine gute
Approximation fur das klassische Modell darstellt,wenn dort der Kom-
pressionskoeffizient klein gewält ist.
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Chapter 1

Introduction

A water distribution network is a arrangement to transport the water
to the consumer in a regular manner. The discontinuance in the water
supply is troublesome for the consumers. One of the potential reasons of
the cutoff may be pipe breakage. It may crop up by the instantaneous
change in the current conditions in the network due to some inescapable
hard faults. In this dissertation the abrupt events which create such
instantaneous changes in flow conditions are scrutinized. Indicatively, this
work is about the impacts of of these events. Classically the flow of the
fluids into a network is modeled in the framework of a system of hyperbolic
balance laws 8], 6] and 37]. In this work these sudden changes are viewed
as a shift from current steady state to another steady state, this idea is
the catalyst to model and study them in a framework, which is especially
useful for such switches.The solution theory for this framework (so called
framework of switched differential algebraic equations (switched DAEs))
is founded for the systems whose dynamics are shown by linear DAEs,
e.g. linear electrical circuits. Thus, the comportment of the nonlinearities
in the mathematical model of the elements of the water network was a
difficulty in its modeling in the proposed framework of switched DAEs
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(due to the presence of Diracs). One aim of this work is to formulate and
introduce the notion of solution for the switched nonlinear DAEs, which
is applicable for the nonlinearties having a special structure. Further aims
includes the introduction of this simple framework as an approximation
to the classical modeling framework of system of hyperbolic balance laws
to model the transitory events.

1.1 Switched differential algebraic equations

A dynamical system describes the evolution of a state over time. Based
on the type of their state, dynamical systems can be classified into:
Continuous : if the state takes values in Euclidean space Rn for some
n ≥ 1. Then x ∈ Rn denotes the state of a continuous dynamical system,
Discrete: if the state takes values in a countable or finite set {p1, p2, . . . },
where p to denote the state of a discrete system. For example, a light
switch is a dynamical system whose state takes on two values, p ∈
{ON, OFF}.
Hybrid: systems in which these two kinds of dynamics (discrete and
continuous) coexist and interact 52].

A hybrid systems may exhibit unusual phenomena, like impulses
(discontinuous state evolution) and Zeno behaviour (accumulation of
discontinuities in finite time). Whereas the switched systems are special
kind of such hybrid systems, where the discrete dynamics are replaced
by an external input σ, the switching signal. Such systems are used to
describe systems whose (continuous) dynamics are subject to hard faults
i.e. abrupt changes. The evolution of a switched system is described by
continuous trajectories moreover, Zeno behaviour is excluded by definition
7].

For example the sudden changes occur in electrical circuits with
switches on changing the position of the switch. Such circuits are mod-
eled as a switched differential algebraic equation (Ordinary differential
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equatios (ODEs) with algebraic constraints): the system is modeled as
a time-varying whose coefficient matrices are piecewise constant. The
time-variance follows from the action of the switches present in the circuit,
but can also be induced by faults occurring in the circuit. Consider an
electrical circuit modeled with connected and disconnected switch and an
inductor shown in the Figure 1.1.

u(.) L

iL

vL

(a) Connected switch (1.1a)

u(.) L

iL

vL

(b) Disonnected switch (1.1b)

Figure 1.1: Electrical circuit with connected (a) and disconnected switch
(b)

Standard circuit analysis of these two circuits shown in the Figure
1.1(a) and 1.1(b) for the given switch setting (connected and disconnected)
yields differential algebraic equations (1.1a) and (1.1b), respectively.

Switch connected

L
d

dt
iL = vL,

vL = u (1.1a)

Switch disconnected

L
d

dt
iL = vL,

iL = 0 (1.1b)
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where L, iL, vL and u denotes the inductance, current through inductor
and voltage through the inductor and constant voltage of the voltage
source, respectively.

In general, switches or component faults induce jumps in certain
state variables, and it is common to define additional jump maps based
on physical arguments 67]. However, it turns out that the appropriate
formulation as a switched DAE already implicitly defines these jumps, no
additional jump map must be given. Further detail is presented in the
Chapter 3.

In the Figure 1.1, when connecting a coil via a switch to a constant
voltage source, one can observe a spark when opening the switch, which
can be explained by a voltage peak induced by the rapid drop of the
current in the coil. The solution of these equations is abstractly shown in
the Figure 1.2. The jump in the current through the inductor cause an
impulse in the voltage across inductor vL.

In order to allow for jumps in the solution, the problem is embedded
into a distributional solution framework. The solution of the electrical
circuit in the Figure 1.1 is shown in the Figure 1.2.

t

iL(t)

(a) Jump in iL (1.1).

t

vL(t)

u

δ0

(b) Dirac in vL (1.1)

Figure 1.2: Derivative of jump in iL is a Dirac in vL.
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1.2 Motivation

The framework of switched DAEs is used to model the structural changes
in a dynamical system. The occurrence of such structural changes in flow
networks, is a motivation to model and to analyse them in the framework
of switched DAEs.

The transients induce change from one steady state to another. These
outcomes are a short lived and burst of energy in a system caused by
a sudden change of state. Such variety of state passes off in the water
network and is termed as a hydraulic transient. . Moreover occurrence
of hydraulic transients in the procedure of water distribution network is
inevitable and may endanger the ability of the distribution system to fulfill
its operational requirements depending on the rigor and frequency of the
pressure fluctuations that may happen. The typical results are controlled
or uncontrolled changes in pump or valve settings. They may cause certain
transients in the pressure in response to these sudden changes. When
the water distribution system functions normally the flow and pressure
is considered steady; they do not vary with time, or when fluctuations
are small with respect to mean flow values. Any rapid disturbance in the
water which is generated due to a change in the mean flow conditions,
will initiate a sequence of pressure waves in the system. The term ‘water
hammer’, ‘transient flow’, and ‘surge’, describe the unsteady flow of fluids
in the pipes.

A very common sudden change occurs in the water networks is due
to the sudden closing of a valve. Due to this instantaneous closure, the
transformation of kinetic energy into pressure energy causes significant
changes in pressure, which can lead to serious problems in the management
of a pressurised network. The phenomenon is very complex, and a large
number of different factors influence its course. In fact the change in the
momentum of the liquid requires pressure changes results in expansion or
compression of the pipe and liquid. The compression and expansion of
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liquid is given by its compressibility and measured in terms of compress-
ibility coefficient β. This conversion of kinetic energy carried by moving
fluid into strain energy in the pipe walls, causing a ‘pulse wave’ that
may of abnormal pressure travel from the disturbance into pipe system
73]. The hammering sound that is sometimes heard as an indication of
this conversion and create an impact force. The energy losses such as
fluid friction, as well as the reflection and transmission of waves in pipe
junctions, cause the transient pressure waves to gradually decay until new
steady pressures are established 33]. A pressure surge which frequently
generated is shown in the Figure 1.3 along with the possible breakage of
pipeline they may cause is shown in the Figure 1.4.

Hydraulic transient analysis has traditionally focused almost exclu-
sively on preventing catastrophic failure in pipe and pump. Less attention
has been given to the analysis of pressures that may occur in the dis-
tribution system. Furthermore it is very time consuming to analyse
the strength of the pressure spike by classical method of the system of
hyperbolic conservation laws. Also due to numerical restrictions total
compressibility can not be considered. On decreasing the value of β will
increase the pressure spike and a Dirac impulse, which is mathematically
embedded in the solution space of switched DAE framework. The details
are presented in the Chapter 3 and 67]. The pressure transients in response
to the sudden structural changes and in a water network can be analysed
in this simplified framework of switched DAEs. Another motivation to
model water network transients in the switched DAEs framework is the
hydroelectric analogy.

A switch is an electrical circuit component which make current flow
or stop in the electric circuit, it is equivalent in functionality as a valve in
the water flow system which is used to allow or stop the flow.

Classically water flow is modeled by using system of hyperbolic balance
laws. Firstly to do the modeling in the framework of switched DAE a
simplified system of ODE is formed by assuming incompressibility which
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Pressure spike

Time

P
re

ss
u
re

Figure 1.3: Evolution of a surge.

Figure 1.4: The effect of the surge
(pipe breakage) published after permis-
sion of the owner 59].

results into a nonlinear ODE due to the presence of friction and other
nonlinearities in water flow modeling. In modeling water flow other
components that are modeled as algebraic constraints, like reservoir at
an end of pipe or a junction, which are modeled as assigning a constant
pressure or flow balance, respectively. On introducing the switches as
algebraic constraints results into a switched nonlinear DAE. Therefore a
solution theory framework was needed to model nonlinear switched DAE.
In literature 69] the framework is only applicable to the linear switched
DAEs. Moreover the further existence and uniqueness theory already
is presented for switched nonlinear DAEs 53] excluded impulses. In the
case of modeling of hydraulic transient where impulses are expected the
previously developed solution theory is non applicable.

In order to compare classical modeling approach with proposed switched
DAE model an approximation way is needed in case of PDE modeling. If it
can be shown that both modeling approaches are the limiting case of each
other then quantitatively the Dirac impulse length can be approximated
using a simplified framework of switched DAEs.

Furthermore, to model water network, classical PDE model in general
coupling conditions 18] and their wellposedness is given in 17] . Simi-
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larly the wellposedness of general water network for all possible network
topologies in the framework of switched DAEs is required.

1.3 Outline of the thesis

The thesis is structured as follows:

Chapter 2 provides the fundamentals of fluid flow modeling, and novel
approach of hyperbolic balance laws to model water flow.

Chapter 3 preliminaries of the linear switched DAEs are recalled. Fur-
ther a solution framework for switched nonlinear DAEs in the
presence of impulses is established for the structured nonlinearities
present in water network.

Chapter 4 presents a water hammer model for a simple network with
both hyperbolic balance laws and switched differential algebraic
equations is presented . The results of both models are compared
quantitatively.

Chapter 5 will provide a general water network structure is presented
in the framework of switched DAEs and its existence uniqueness of
the solution is presented.

Chapter 6 in this chapter, further networks are presented to demonstrate
the pertinence of the hypothesis developed in the former chapters.

Chapter 7 in this chapter, the conclusion drawn from the thesis has
been presented along with the limitations of this work.
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1.4 Previously published results and joint
work

The following parts of this dissertation are already published or submit-
ted for publication. The results of the Chapter 3 have been published
in 46] which is joint work with StephanTrenn (Technische Universität
Kaiserslautern, now University of Groningen). The results presented in
the Chapter 4 is published in 45]. It is joint work with Stephan Trenn
(Technische Universität Kaiserslautern, now University of Groningen),
and Jochen Kall. The results in the Section 6.2.3 is submitted for publi-
cation 47] (without wellposedness of switched DAEs model). This is joint
work with Stephan Trenn (Technische Universität Kaiserslautern, now
University of Groningen).





Chapter 2

Fluid flow modeling

A water distribution system is a connection of pipelines that distribute
water to the consumers. For the analysis (speed, pressure, different
dynamics, etc.) of the water flow in this system, it is significant to see
the fundamentals of the modeling of flow in pipes.

Many flow problems are modeled by systems of 2 × 2 hyperbolic
balance laws, for instance shallow water equations for hydraulic networks
(e.g.36],63]), isothermal Euler equations for gas pipeline networks (e.g.41]),
and Aw-Rascle equations for road traffic networks (e.g.19]). This chapter
is splited into three parts; in the first part physical variables and fluid
properties that are used for the modeling is presented. In the second part
basic mathematical theory of hyperbolic balance laws is brought out. The
third section is devoted to present modeling of flow in an arbitrary pipe
of a water network.

2.1 Review of flow modeling

In order to model and analyse the flow, firstly it is significant to see fluid
and flow properties in which flow is assessed in different regards. The
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change in these properties is responsible for dynamics (instantaneous
changes lasts for very short interval of time, so called transients). In this
Section those properties will be presented briefly. Moreover, the types
of possible flows which may come out as the outcome of changes in the
values of these attributes will be stated later in this Section 54] ?john16]
32].

Fluid properties

1. Density: The density of a fluid, denoted by the Greek letter ρ,
is defined as mass per unit of volume. Density is typically used
to characterise the mass distribution of a fluid system. Its unit is
g/cm3 or kg/m3.

2. Pressure: One of the important variables in fluid flow and par-
ticularly for water flow in pipes is pressure. The pressure is an
important property to be controlled and observed. The uncontrolled
high pressure may result into some catastrophic situation. The
pressure is denoted by P and formally defined as follows:

Definition 2.1.1. Pressure is a normal force per unit area in a
fluid 54].

The pressure may change as the result of the change in the density,
but it depends on the type of fluid or on the type of flow. Its unit
is Nm−2 or Pa.

3. Velocity : Suppose that the fluid is contained with a domain
D ⊆ Rd where d = 1, 2, 3, and x = (x, y, z)⊤ ∈ D is a position in
D. Imagine a small fluid particle or a speck of dust moving in a
fluid flow field prescribed by the velocity field u(t, x) = (u, v, w)⊤.
Suppose the position (x0, y0, z0)⊤ of the particle at time t is recorded
by the variables (x(t), y(t), z(t))⊤. The velocity of the particle at
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time t at position (x(t), y(t), z(t))⊤ is

d

dt
x(t) = u(x(t), y(t), z(t), t),

d

dt
y(t) = v(x(t), y(t), z(t), t),

d

dt
z(t) = w(x(t), y(t), z(t), t).

Definition 2.1.2. Velocity is defined as a vector quantity that
refers to "the rate at which an object changes its position." Also
referred to as ‘speed with direction’, and it is denoted by u.

4. Trajectory: The particle path or trajectory of a fluid particle is
the curve traced out by the particle as the time progresses. If the
particle begins at position (x0, y0, z0)⊤ then its particle path is the
solution to the system of differential equations (the same as those
above but here in shorter vector notation)

d

dt
x(t) = u(x(t), t),

with initial conditions x(0) = x0, y(0) = y0 and z(0) = z0.

5. Streamline: Suppose for a given fluid flow u(x, t) we fix time t. A
streamline is an integral curve of u(x, t) for t fixed, i.e. it is a curve
x = x(s) parameterised by a variable s, that satisfied the system of
differential equations

d

ds
x(s) = u(x(s), t),

with t held constant.

Remark 2.1.3. If the velocity field u is time independent or
equivalently ∂u

∂t = 0, then trajectories and streamlines coincide.
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Furthermore, the flows for which ∂u
∂t = 0 hold true are said to be

steady.

4. Mass flow: The mass flow is defined as the time rate of this mass
passing through an area.

mass flow = ṁ = lim
△t→0

△m

△t
= ρuA

Where u and A denotes the velocity and area, respectively.

5. Mass flux The mass flux is defined simply as mass flow per unit
area.

mass flux = ṁ

A = ρu

6. Compressibility coefficient: Compressibility is defined as the
amount of pressure change needed to change a given volume of
a fluid. The compressibility of a substance is measured in terms
of a coefficient, which is called the compressibility coefficient and
denoted by β. It is defined as a measure of the relative density
change dρ of a fluid as a response to a pressure change, defined as

β =
dρ
dP

ρ
= 1

ρ

dρ

dP
(2.1)

where the leading coefficient 1
ρ is due to the fact that; it is change

relative to a given density.

7. Bulk modulus: It is a measure of the substance’s resistance to
uniform compression. It is the reciprocal of the compressibility
coefficient (β) and similar to the spring factor2], The bulk modulus
is denoted by K and mathematically can be written as:

K =ρ
dP

dρ
(2.2)
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For water of normal temperature the pressure K = 2.06 × 109Pa

and ρa is the atmospheric density of water that is ρa = 1000kg/m3

8. Relationship of compressibility coefficient β and velocity
of sound c: The speed of sound is defined in classical mechanics
as:

c2 = ∂P

∂ρ
.

and the relationship of β and c is given as

β = 1
ρac2 .

The speed of sound is very important while working with numerical
simulations.

9. Flow dimensionality: In general, all physical flows are three
dimensional (3D). Nevertheless, it is often convenient, and sometimes
quite accurate to view them as being of a lower dimensionality, e.g.,
1D or 2D.

Fluid dimensionality can be formally defined as follows:

Definition 2.1.4. The dimensionality of a flow field corresponds to
the number of spatial coordinates needed to describe all properties
of the flow ?john16].

Throughout the thesis, dimensionality of flow is considered to be
1, because flow in pipes can be described by 1D with sufficient
accuracy.

10: Reynold’s number Re: This is an important number used to
distinguish between two basic types of flow.

Definition 2.1.5. The Reynolds number is the typical ratio of
inertial to viscous forces within the fluid; it is denoted by (Re).
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The inertial forces give rise to the dynamic pressure. The ratio of
(ρu2) and viscous forces ( µu

L ) can be expressed as:

Re =ρu2

µu
L

= ρuL

µ
= uL

ν
(2.3)

where ν = µ
ρ is the kinematic viscosity, L is characteristic dimension

of pipe and u is velocity of the fluid. The viscous forces are the
forces due to the friction between the layers of any real fluid. In
fluid mechanics the fluid is taken as in the continuum condition,
meaning that fluid particles are very closely packed so necessarily
there is friction between layers of fluid. The inertial forces are the
forces which are due to the particles of fluid resisting any change
in momentum.The Reynolds number is a convenient parameter for
predicting if a flow condition will be laminar or turbulent. It can be
interpreted that when the viscous forces are dominant (slow flow,
low (Re)) they are sufficient enough to hold all the fluid particles in
line, then the flow is laminar. Even very low (Re) indicates viscous
creeping motion, where inertia effects are negligible. When the
inertial forces dominate over the viscous forces (when the fluid is
flowing faster and (Re) is larger) then the flow is turbulent.

2.2 Flow transitions

The term flow transition means the change of flow from one type flow
to another type. In order to deduce the flow transition further, different
types of the flows are discussed. To grasp the flow conditions exactly,
it is important to understand governing equations and theories. Here,
concepts are introduced briefly, more details can be read in

Mathematically, incompressibility is expressed by saying that density
ρ of the fluid parcel does not change as it moves in the flow field. This
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additional constraint simplifies the governing equations, especially in the
case when the fluid has a uniform density.

Compressibility is measured by the compressibility coefficient which is
defined in section 2.1.

Remark 2.2.1. If the compressibility of fluid in the course of its flow
becomes significant, Reynolds number is sufficiently large, and in equation
(2.3) inertial forces have to be considered. For incompressible flow inertial
force is negligible.

Remark 2.2.2. All these type of flows can exist independently of each
other. So any of the four combinations of flows possible:

1. Steady uniform flow

2. Steady non-uniform flow

3. Unsteady compressible flow

4. Unsteady incompressible flow

The above flow regimes are possible for water flow in water pipelines.
Some of these regimes include an instantaneous change in the velocity
that results into in a rapid modification in the pressure, which is usually
termed as hydraulic transients or simply transients. The occurrence
of transients may introduce large pressure forces and rapid fluid accel-
erations into a water distribution system, which is the main interest of
research here.

For the modeling water flow via hyperbolic balance laws, water is
considered as slightly compressible hence inertial forces are included to
the model. Before introducing the mathematical model for flow in a pipe
(compressible and incompressible) the general structure and existence
and uniqueness of the solution to the hyperbolic balance laws will be
introduced.
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2.3 Hyperbolic system of balance laws

A balance law is a mathematical expression of physical principle that
the variation of the amount of some extensive quantity over bounded
domain is balanced by its flux through the boundaries of the domain and
its production consumption inside the domain. Balance laws are therefore
used to represent the fundamental dynamics of many physical conservative
systems 9]. This is also a frequently used approach for modeling of the
fluid flow.

A system of hyperbolic balance laws has two parts, conservation laws
and dissipation or a source term. First the system of conservation laws
will be introduced.

2.3.1 System of conservation laws

The differential equation of flow are derived by considering a differential
volume element of fluid and describing mathematically

a) The conservation of mass of fluid entering and leaving the con-
trol volume; the resulting mass balance is called the equation of
continuity.

b) The conservation of momentum entering and leaving the control
volume; this energy balance is called the equation of motion.

Combining both a) and b) results in a system of conservation laws in
one space dimension of the form

∂tU + ∂x[F (U)] =0 (2.4)

U =: Ω × R+ → U ⊆ Rn with Ω := [a, b] ⊆ Rn being the domain and the
open connected set U ⊆ Rn being the range of the problem, F : U → Rn

is the flux function. The total amount of conserved quantities inside
any given interval [a, b] can change because of the flow across boundary
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points. A system of the form (2.4) is called conservation laws in continuum
physics, where small dissipation effects are neglected. In case of water flow
in pipes there exists dissipation due to the friction factor of the pipe walls.
Hence it can not be neglected. An addition of a non zero dissipation to
the system of conservation laws to a nonzero right hand side of (2.4) is
called system of hyperbolic balance laws. In the next Section a general
form of hyperbolic balance laws is presented followed by characterisation
of existence and uniqueness of their solution.

In the following the U denotes the function and u denotes the function
value of u := U(t, x) ∈ U for some x ∈ Ω and t ≥ 0.

2.3.2 Hyperbolic balance laws

In general system of balance laws in one space dimension takes the
following form

∂tU + ∂x[F (U)] = S(U), on [a, b] × R+, (2.5a)

U(0, x) = U0(x), x ∈ Ω, (2.5b)

Ψ1(t, U(t, a)) = 0, t > 0, (2.5c)

Ψ2(t, U(t, b)) = 0, t > 0, , (2.5d)

where S : U → Rn is the source term, U0 : Ω → U is the initial data
and Ψi : R+ × U → Rbi , i = 1, 2, b1 + b2 = n, are the time-varying,
implicit boundary conditions. After the introduction to the general form
of balance laws the wellposedness of (2.5a) along with (2.5b), (2.5c) and
(2.5d) will be discussed. First the notion of weak solution is introduced,
it is because the system (2.5a) does not necessarily admit a classical (i.e.
differentiable) solution, even for “well-behaved” initial data U0. Hence,
weak solutions will be considered.
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Definition 2.3.1. For any given time T > 0, a function U ∈ L1([a, b] ×
R+) is an entropy solution to the system (2.5) on the domain DT =:
{(t, x)|T ∈ R+, a < x < b} if:

I. The function U is a weak solution in the sense of distribution defined
as:

Definition 2.3.2 (Weak solution). A function U : Ω ×R+ → U , is
a weak solution of (2.5) iff, U , F (U) and S(U) are locally integrable
and for every ϕ ∈ C1

c (R+ × Ω → R), one has∫
R+×Ω

(U(t, x)ϕt + F (U(t, x))ϕx)dxdt +
∫
Ω

ϕ(0, x)U0(x)dx

= -
∫

R+×Ω

S(U(t, x))ϕdxdt.

(2.6)

where C1
c denotes the set of C1 functions with compact support of

DT ;

II. When considering weak solutions of (2.5) uniqueness of solutions
cannot be expected in general. Under certain assumptions, unique-
ness can be recovered by imposing a so called entropy condition as
follows (c.f. 35]).

Definition 2.3.3 (Entropy solution). A differentiable function η ∈
C1(Rn → R) is called entropy of the PDE (2.5) if there exists an
entropy flux ζ ∈ C1(Rn → R)

Dη(u) · DF (u) = Dζ(u) ∀u ∈ U . (2.7)
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For a given entropy η with corresponding entropy flux ζ, a weak
solution U of (2.5) is called entropy solution if it additionally satisfies

η(U)t + ζ(U)x ≤ Dη(U) · S(U)

in a weak sense. In other words the function U is entropy admissible
in the sense that there exists an entropy-entropy flux (η, ξ) for the
system (2.5) such that for every ϕ ∈ C1

c (R+ × Ω → R);∫
R+×Ω

(ϕtη(U) + ϕxξ(U))dxdt +
∫

Ω
(ϕ(0, x)η(U)U0(x)dx

−
∫
R+×Ω

ϕDη(U)S(U)dxdt ≤ 0

(2.8)

Remark 2.3.4. For any classical (i.e. differentiable) solution U of (2.5)
it is easily seen that (2.7) implies

η(U)t + ζ(U)x = Dη(U) · S(U).

Moreover, if U satisfies the initial condition U0 for a.e. x ∈ [a, b] and
the boundary conditions,

limx→a+Ψ1(t, U(t, a)) = 0 limx→b−Ψ2(t, U(t, b)) = 0.

that is boundary values are assumed to be satisfied in the trace sense, for
details see (c.f. 51])24],23]) for more details.

Next the assumptions required to ensure the existence of the weak
solution are presented, which are important for the wellposedness.
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Wellposedness of (2.5)

We are concerned with the wellposedness of the initial value problem
for the system above, in the space of functions with bounded variation.
Several results in the literature deal with the wellposedness of balance
laws globally in time. The standard approach relies on the requirement
that the convective part and the source part be “compatible”. This is
usually obtained through suitable estimates, the main examples being
the following: either the convective part dissipates what the source term
increases, or the source term causes a decay in what the convective part
produces see 30],5].

Consider conservation laws with boundary

∂tU + ∂x[F (U)] = 0, on [a, b] × R+, (2.9)

U(0, x) = U0(x), x ∈ Ω,

Ψ1(t, U(t, a)) = 0, t > 0,

Ψ2(t, U(t, b)) = 0, t > 0,

and the source part

∂tU = S(U), on [a, b] × R+, (2.10)

U(0, x) = U0(x), x ∈ Ω,

Ψ1(t, U(t, a)) = 0, t > 0,

Ψ2(t, U(t, b)) = 0, t > 0,

separately. Indeed, the wellposedness of (2.9) is proved below under those
assumptions on F , respectively on S(U), that make (2.10), respectively
(2.10), wellposed. Besides, a sort of compatibility between the conservation
law (2.9) and the ordinary differential equation (2.10) is required. Namely
it is required that there exists a domain which is invariant for both(2.9)
and (2.10). For existence and uniqueness of weak entropy solutions of
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the initial/boundary value problem (2.5) the following wellposedness
assumptions are usually imposed (c.f. 17] 28] 26]). If the flux F is
differentiable, then the PDE (2.5a) can be written in quasi-linear form as

Ut + A(U)Ux = 0, (2.11)

where A(u) := DF (u) for u ∈ U and DF denotes the Jacobian of F .

(B) Connective part; Consider connective part (2.9) for wellposedness

(B-I) Bounded variation
The initial date U0 is a function of bounded variation with
sufficiently small total variation.

(B-II) Strict hyperbolicity
The system of conservation laws (2.9) is strictly hyperbolic, i.e.,
for every u ∈ U ⊆ Rn, the Jacobian matrix A(u) of the flux
function F has n real, distinct eigenvalues denoted by λi(u),
i = 1, · · · , n and are ordered as follows:

λ1(u) < λ2(u) < λ3(u) · · · < λn(u).

(B-III) Genuine nonlinearity and linear degeneracy
For a strictly hyperbolic balance law (2.9) in quasi linear form
](2.11), consider the n eigenvalue/eigenvector pairs (λj(u), rj(u)),
j = 1, . . . , n with differentiable map u 7→ λj(u). An assump-
tion is that for each j either (λj(·), rj(·)) is genuinely nonlinear,
i.e.

Dλj(u) · rj(u) ̸= 0, ∀u ∈ Rn,

or (λj(·), rj(·)) is linearly degenerate, i.e.

Dλj(u) · rj(u) = 0, ∀u ∈ Rn.
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(C) Source part; Consider source part (2.10) for wellposedness; there
exists a positive L̂ such that for all u1, u2 ∈ U .

∥S(u1) − S(u2)∥ ≤ L̂ · ∥u1 − u2∥

(D) Feasible boundary conditions
For a strictly hyperbolic balance law (2.5a) assume that

λb2(u) < 0 < λb2+1(u) ∀u ∈ U

and denote with r1
+(u), r2

+(u), . . ., rb1
+ (u) the collection of eigen-

vectors of A(u) corresponding to the positive eigenvalues of A(u).
Assume that for all u ∈ U the following feasibility assumption for
the left boundary condition holds [c.f. 23],28]].

∀u ∈ U : det
[
DuΨ1(t, u) · R+(u)

]
̸= 0, (2.12a)

where R+(u) := [r1
+(u), . . . , rb1

+ (u)]. To formulate a feasibility as-
sumption for the right boundary condition, we can substitute the
space variable x by a + b − x in (2.5) with variable U : R+ × Ω → U
instead of U . For u ∈ U , let r1

−(u), . . . , rb2
− be the eigenvectors

corresponding to the positive eigenvalues of A(u) = −A(u). With
R−(u) := r1

−(u), . . . , rb2
− (u)] we assume

∀u ∈ U : det
[
DuΨ2(t, u) · R−(u)

]
̸= 0. (2.12b)

If (B), (C) , (D) holds by using (c.f. Theorem 2.2 26]) and (c.f. Theo-
rem 2.3 29]) (2.5)is well posed.

In the next section the equations of water flow in a pipeline, used
throught this thesis are presented.
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2.4 Equation of water flow in pipe

A pipe is the main component for the fluid transportation in a distribution
system. The hyperbolic balance laws for the water flow in a pipe will
be presented. In order to develop a mathematical model for flow q, the
following assumptions are made:

1. The flow is one dimensional, that is mass flow q, density ρ and
pressure P depend on space x and time t.

2. Water is considered slightly compressible.

3. Pipe is laid horizontally, and completely filled up with the trans-
ported water.

4. The flow is adiabatic and isothermal (i.e., no transfer of thermal en-
ergy between fluid and pipeline will be considered, pressure changes
of the fluid do not affect its temperature, also temperature changes
due to the friction are neglected).

5. Friction effects are described by the Darcy–Weisbach equation (for
details see Appendix) with constant value of the friction coefficient
cf 49].

The motion of water flow in a cylindrically pipe is most often described
classically by a p-system.

Definition 2.4.1. A p− system consists of balance laws:

∂tρ + ∂x(ρu) = 0 (2.13a)

∂t(ρu) + ∂x(ρu2 + P (ρ)) + cf

2Dρ
(ρu) | ρu |= 0 (2.13b)
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Assuming, q = ρu (2.13) can be written as :

∂tρ + ∂xq = 0 (2.14a)

∂tq + ∂x(q2

ρ
+ P (ρ)) + cf

2Dρ
q | q |= 0 (2.14b)

Furthermore (4.1) needs a closure of the equations as there as three
variables ρ, q and P and two equations. Hence an equation of state for the
pressure will be derived. In order to model pressure, water is considered
slightly compressible.

2.4.1 Equations for slightly compressible materials

To derive the closure in terms of fluid compressiblity β given as:

β =1
ρ

dρ

dP
(2.15)

Integrate (2.15), we have

ρ =ρaeβ(P −Pa) (2.16)

Here ρa is the density of fluid at Pa. By Taylor’s Theorem,

ρ =ρa{1 + β(P − Pa) + β2(P − Pa)2

2! + · · · } (2.17)

By neglecting the terms of higher power, (2.17) reduced to the following:

ρ ≃ρa{1 + β(P − Pa)} (2.18)

rewriting (2.18)

p = P (ρ) = 1
βρa

(ρ − ρa) + Pa (2.19)
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Hence, (2.19) is the state equation for slightly compressible fluid for the
set of equations (4.1). Hence, the set of equations to describe flow of any
arbitrary pipe having variables ρ, P and q can be written as:

∂tρ + ∂xq = 0 (2.20a)

∂t(q) + ∂x(q2

ρ
+ P (ρ)) + cf

2Dρ
q | q |= 0, (2.20b)

p = P (ρ) = 1
βρa

(ρ − ρa) + Pa. (2.20c)

The aim of this work is the modeling of water flow in switched DAE
framework. For that purpose, an ODE is needed to model the water flow
in pipe. Hence, model (2.20) is simplified by assuming incompressibility
∀ρ ≥ ρa.

2.4.2 Incompressible flow of water in pipe

Consider an arbitrary pipe in the network. Let t ∈ [t0, T ] denote the time
t ∈ R+ and x ∈ [a, b] := Ω denote the space. Rewriting flow q and P

functions as below:

q : [t0, T ] × Ω −→ R P : [t0, T ] × Ω −→ R

Now to derive quasi stationary model using following assumptions:

I: The conduit (pipe) walls are rigid, and water is incompressible
(K = ∞, β = 0).

II: In case of steady and incompressible flow the Reynolds number (as
defined in (2.3)) (Re) << 1 hence , inertial forces are negligible.
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Consider (2.20) and apply assumptions,

∂ρ

∂t
= 0 incompressiblity means ρ = ρa,

q(x, t) = q(t)

On applying assumptions we get:

dq

dt
+ ∂x(P (x, t)) + cf

2D
q | q |=0 (2.21)

where, ρ is the water density, A, cf and D are constant pipe characteristics.
More precisely, for a specific pipe A denotes the cross sectional area, cf

is the Darcy friction factor and D is the diameter. Substitute q = ρau to
get equation of motion of fluid from (2.21) we get

du
dt

+ 1
ρa

∂x(P (x, t)) + ρa
cf

2D
u | u |= 0 (2.22)

For practical purposes it is good to write equation (2.22) in terms of
two variables pressure P and mass flow Q. This can be achieved by
substituting :

u = Q

ρaA

By using this (2.22) the equations result into:

dQ

dt
+ A∂x(P (x, t)) + cf

2DρaAQ | Q |=0 (2.23)

Also ∂P
∂x (t, x) is constant with respect to x as other terms in the equation

does not depend on space x. Hence, we approximate ∂P
∂x (t, x) analytically

as:

∂P

∂x
(t, x) = P (t, x + h) − P (t, x)

h
(2.24)
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where x, x + h ∈ Ω. To find pressure at nodes, formally speaking P (t, 0)
and P (t, L). Hence set x = a and h = b − a we obtain

∂P

∂x
(t, a) =P (t, b) − P (t, a)

b − a
(2.25)

Insert equation (2.25) in (2.23),

dQ

dt
+ A

b − a
(P (t, b) − P (t, a)) + cf

2DρaAQ | Q |= 0 (2.26)

In particular a domain [0, L] with x = 0, x = L as end points of pipe, the
length pipe will be L. (2.26) is read as,

dQ

dt
+ A

L
(P (t, L) − P (t, 0)) + cf

2DρaAQ | Q |=0 (2.27)

On substituting A = π D2

4 in (2.27),

dQ

dt
+ πD2

4L
(P (t, L) − P (t, 0)) + 2cf

πD3ρaAQ | Q |=0 (2.28)

where (2.28) is the nonlinear ODE model for incompressible flow of fluid
in pipes.

2.5 Summary

To sum up; this chapter introduced the building blocks of the modeling
flow of a fluid. Furthermore, the general form of equations for PDE model
along with its mathematical theory is introduced. One of the goals of this
work is to present two different approaches to model water flow in a pipes
(compressible and incompressible). The first approach is used to model
fluid flow in a water network via PDEs. The incompressible approach will
be used to model a water network in the proposed framework of switched
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differential algebraic equations (switched DAEs). This chapter provides
for the initial preprations the aforementioned goal.



Chapter 3

Impulses in structured
nonlinear switched DAEs

Switched systems are a class of hybrid systems encountered in many
practical situations which involve switching between several subsystems
depending on various factors 11]. Generally, a switching system consists
of a family of continuous-time subsystems and a rule that supervises
the switching between them 52]. These subsystems can be modeled via
differential algebraic equations (DAEs), which can be linear or nonlinear
depending on the dynamics of the system.

In case of linear switched DAEs each subsystem is expressed in terms
of linear DAEs, for example linear electric networks with switches. Fur-
thermore, if the system under consideration is nonlinear in nature, then
it may not be able to describe using linear equations. For example, if
an electrical circuit contains nonlinear elements (e.g., nonlinear resistors,
diode, etc.) then each subsystem will turn out to be nonlinear DAEs. A
further example is water flow in a pipe, as derived in the Section 2.4.2
which is a nonlinear ODE. In modeling water flow other components that
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are modeled as algebraic constraints, like reservoir at an end of pipe or
a junction, which are modeled as assigning a constant pressure or flow
balance, respectively. Hence, as a whole the nonlinear ODE for water
flow and algebraic constraints results into a nonlinear differential alge-
braic equation. Furthermore, on the introduction of control element (e.g.,
valve, pumps) which behaves like switches in electrical circuit terms, the
resulting model of the water flow will be switched nonlinear DAEs. The
distributional framework is required for their solutions. The distributional
solution theory for the linear switched DAEs is very much establish, but
the presence of a nonlinearity makes distributional theory inapplicable.
The chapter starts with a general introduction to switched linear DAEs,
followed by the extension of linear switched DAEs theory to switched
nonlinear DAEs.

3.1 Linear switched DAEs

Consider switched linear DAEs of the following form

Eσ(t)ẋ(t) = Aσ(t)x(t) + fσ(t)(t). (3.1)

where Ep, Ap ∈ Rn×n, fp : R → Rn for p ∈ {1, · · · , P}, is a (time-
dependent) inhomogeneity P ∈ N, and σ : R → {1, · · · , P} is a piecewise
constant switching signal, which is assumed to be right continuous and to
have locally finite many jumps.

In particular each subsystem is a linear DAE of the form

Eẋ(t) =Ax(t) + f (3.2)
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In case of a homogeneous DAE i.e, f = 0 in (3.2) takes the form as given
below ;

Eẋ(t) =Ax(t) (3.3)

The origin of the theory of DAEs can be traced back to the works of
Weierstrass 72] and Kronecker 48], but only in the 1960s the interest
in aspects of DAEs, such as computational issues, mathematical theory,
and applications has seen an significant growth. The interest for the
mathematical and control aspects of DAEs is supported by extensive
applications in chemical, electrical and mechanical engineering, as well as
in economics, see 50] and the references therein.

It is well known that the solution of each individual DAE (3.3), evolve
within a consistency space, defined as:

Definition 3.1.1 (Consistency space for (3.3)). The consistency space
of (3.3) {

x0 ∈ Rn

∣∣∣∣∣ ∃x (classical ) solution of (3.3)

with x(0) = x0

}
Each x0 is called consistence initial value.

Definition 3.1.2 (Consistency space for (3.2)). The consistency space
of (3.2) {

x0 ∈ Rn

∣∣∣∣∣ ∃f ∈ C∞ classical solution of (3.2)

with x(0) = x0

}

In general, at a switching time t ∈ R there does not exist a continuous
extension of the solution into the future, because the value x(t−) immedi-
ately before the switch does not have to be within the consistency space
corresponding to the DAE after the switch. Therefore, it is necessary
to allow for solutions with jumps. However, this leads to difficulties in
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evaluating the derivative of the solutions. To resolve this problem the
distributional framework is adopted.

3.2 Distributions

The presence of inconsistent initial values (or switching) makes it necessary
to consider distributional solutions containing in particular Dirac impulses.
This is problematic for switched systems as the pre-switch value does not
necessarily not suitable ad fit to the post-switch algebraic constraints.
To see that a distributional solution theory is required, an example is
presented.

Example 3.2.1. Consider the following initial value problem[
0 0
1 0

]
ẋ = x, x(0−) =

[
1
0

]
,

From above x1 = 0 and ẋ1 = x2 for t ≥ 0. These equations are not
fit with the initial value. A solution starting from x0 would require that
the state component x1 jumps from 1 to 0. By ẋ1 = x2, this implies
that x2 has to be the derivative of the jump from 1 to 0 . The classically
solution will not exist in this case. Therefore briefly the necessary basic
facts about distributions are recalled in the following.

The space of distributions D consists of all continuous linear maps
(functionals) from the space of test functions C∞

0 into the real numbers,
where C∞

0 denotes the space of smooth functions with compact support
equipped with a suitable topology for further details see 62] .Distributions
are also called generalised functions because any locally integrable function
f : R → R induces a distribution via fD

fD(φ) :=
∫
R

fφ.
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Every distribution D ∈ D can be differentiated via

D′(φ) := −D(φ′)

and for every differentiable f : R → R it holds

(fD)′ = (f ′)D.

The most famous distribution which is not induced by a function is the
Dirac delta distribution, given as: (3.4):

δ(φ) = φ(0), φ ∈ C∞
0 (3.4)

It is easily seen that the Dirac impulse is the distributional derivative of
the Heaviside function

1[0,∞)(t) :=

0, t < 0,

1, t ≥ 0.

The distributional derivative of Heaviside function is

δ := (1[0,∞)D)′

Distributions can be multiplied with smooth functions via

(αD)(φ) := D(αφ) D ∈ D, α ∈ C∞ (3.5)

As shown in 68] the whole space of distributions D is not a suitable solution
space for switched DAEs and it is necessary to introduce a appropriate
subspace, namely the space of piecewise-smooth distributions.
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Piecewise-smooth distributions

The space of piecewise smooth distributions has been introduced to
describe switched linear DAEs. Inconsistent initial values are the reason
of the Dirac impulses, for the mathematical description of these impulses
distributional framework is required. To understand distribution theory
some knowledge about the formalities of distribution theory are needed
to understand the concept of piecewise-smooth distribution. First, the
space of piecewise-smooth functions is defined as:

C∞
pw :=

{
α = 1[ti,ti+1)αi

∣∣∣∣∣ {ti ∈ R|i ∈ Z} locally finite

ti < ti+1, αi ∈ C∞, i ∈ Z

}
.

where 1I denotes the characteristic function of the interval I ⊆ R. Switched
systems can be interpreted as time-varying linear systems with piecewise-
constant coefficient matrices. Hence one might aim to generalize the
multiplication (3.5) also to piecewise smooth functions. However for the
general distributions this is not possible in a consistent way 67]. For this
reason the smaller space of piecewise smooth distributions instead of the
whole space D.

Definition 3.2.2 (Piecewise smooth distribution). The space of piecewise-
smooth distributions is defined as:

DpwC∞ :=

D = fD +
∑
τ∈T

Dτ

∣∣∣∣∣∣∣∣
f ∈ C∞

pw, T ⊆ R is discrete

∀τ ∈ T

Dτ ∈ span{δτ , δ′
τ , δ′′

τ , . . .}

.

where δτ is the Dirac impulse located at τ ∈ T .

In other words a piecewise-smooth distributions is the sum of a
piecewise-smooth function and isolated impulses (composed of Dirac-
impulses and their derivatives). It is easily seen, that the space of
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piecewise-smooth distributions is closed under differentiation and therefore
recovers the essential property of the space of distributions. Furthermore,
on each finite interval, every piecewise-smooth distribution is the finite
derivative of a piecewise-smooth function.

In contrast to general distributions, a piecewise-smooth distribution
D = fD +

∑
τ∈T Dτ can be evaluated at any t ∈ R in the following three

different ways:

D(t+) :=f(t+), D(t−) := f(t−)

D[t] :=

Dt, t ∈ T,

0, t /∈ T.

where f(t±) denotes the left/right limit of the piecewise-smooth function
f at t ∈ R. Furthermore the restriction of a piecewise-smooth distribution
D = fD +

∑
τ∈T Dτ to any interval I ⊆ R is well defined by

DI := (fI)D +
∑

τ∈T ∩I

Dτ

where fI(t) = f(t) if t ∈ I and f(t) = 0 otherwise. Further construction
can be seen in 69], as solutions of the switched DAE (3.1) distributions
(generalised functions), in particular Dirac impulses, are considered. For
this, one have to assume that the switching signal has only a locally finite
set of switching times.

3.3 Quasi Weierstrass form

The solutions of the linear DAE (3.3) is strongly related to the concept
of regularity of the matrix pencil (E, A) 60]. The regularity is defined as:

Definition 3.3.1. The matrix pair (E, A) is regular, i.e. m = n and the
polynomial det(sE−A) is not the zero polynomial det(sE−A) ∈ R[s]\{0}.
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An equvivalence of of the regularity of the matrix pair with quasi
Weierstrass form (QWF) is stated as: The matrix pair (E, A) is regular
if and only if there exist invertible transformation matrices S, T ∈ Rn×n

which put (E, A) into quasi Weierstrass form

(SET, SAT ) =
([

I 0
0 N

]
,

[
J 0
0 I

])
(3.6)

where N ∈ Rn2×n2 , with 0 ≤ n2 ≤ n is a nilpotent matrix, J ∈ Rn1×n1

with n1 = n − n2 is some matrix and I is the identity matrix of the
appropriate size. It can be shown 12] that the transformation matrices
can be obtained as T = [V, W ] and S = [EV, AW ]−1, where im V = V∗

and im W = W∗ with V∗ and W∗ are obtained via the so called Wong
sequences, see Appendix 7:

V0 := Rn, Vi+1 := A−1(EVi), i ∈ N, V∗ :=
⋂
i∈N

Vi,

W0 := {0}, Wi+1 := E−1(AWi), i ∈ N, W∗ :=
⋂
i∈N

Wi.

Here, A−1 and E−1 do not stand for the corresponding invertible matrices
but for the preimage operators and n1 is the dimension of the space V∗,
and n2 is the dimension of the space W∗. The space V∗ represents the
manifold, say it has consistency space C(E,A), in which C1 solutions of
the differential algebraic equation evolve, i.e. C(E,f) = V∗. x is solution
x(t) ∈ C(E,A) for all t. The knowledge of the two limiting spaces V∗, and
W∗, used to obtain an explicit solution formula.

3.3.1 Projectors and flow matrices

To formulate the explicit solution formula there is a need to introduce
certain projectors and matrices 65]. From the quasi Weierstrass form (3.6)
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the so called consistency projector can be defined:

Π := T

[
I 0
0 0

]
T −1,

with the identity matrix I ∈ Rn1×n1 . The consistency projector charac-
terises the space where all solutions evolve within, i.e. C(E,A) = im Π.
Hence it plays a role when considering inconsistent initial values, i.e. when
the initial value x(0−) does not belong to the consistency space.

The differential projector is defined as

Πdiff := T

[
I 0
0 0

]
S,

with I ∈ Rn1×n1 . Using Πdiff the flow matrix Adiff is defined as:

Adiff :=T

[
J 0
0 0

]
T −1,

Adiff :=ΠdiffA.

where J ∈ Rn1×n1 . Note that

Adiff = T

[
I 0
0 0

][
J 0
0 I

]
T −1 = T

[
I 0
0 0

]
SA = ΠdiffA.

Due to the particular structure of the consistency projector the following
property holds

AdiffΠ = ΠAdiff = Adiff. (3.7)

Due to the presence of the so called consistency space the solution of (3.3)
may present jumps and also impulses when it is “switched on” at time
t = 0. To deal with the impulses in the solution formula of DAEs the so
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called impulsive projectors are introduced

Π imp = T

[
0 0
0 I

]
S.

with the matrix I ∈ Rn2×n2 . The projectors do not depend on the specific
choice of S and T , furthermore the consistency projector is an idempotent
matrix, i.e. Π2 = Π, in contrast to the the differential and impulse
projectors.

3.3.2 Homogeneous DAEs

The regularity of the matrix pair (E, A) and the definition of the cor-
responding consistency projector and flow matrix, allows to prove that
each solution of the homogeneous DAEs solves the following ordinary
differential equation

ẋ(t) = Adiffx(t), t ∈ R+,

by assuming a consistent initial value, i.e. x0 ∈ V∗. When a DAE is
“switched on” at t = 0 , the initial condition x(0−) is arbitrary, then the
consistency projector is used. Hence the unique solution x(t) on (0, ∞) is
given by:

x(t) = eAdifftx(0+), x(0+) ∈ V∗ (3.8)

where x(0+) = Πx(0−), 70].

3.3.3 Initial trajectory problems (ITP) and switched
DAEs

In the presence of switches,the initial conditions do not have to be consis-
tent, then no solution with this initial data exists. It is therefore required
to produce a precise meaning to the solution to an inconsistent initial
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value problem. In order to do that, notion of the initial trajectory problem
is presented as follows:

Theorem 3.3.2 (68,69]). Let x0 ∈ Dn
pwC∞ , f ∈ Dn

pwC∞ and (E, A) be a
regular matrix pair. Then the linear initial trajectory problem (ITP)

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Ax + f)[0,∞)
(3.9)

has a unique solution x ∈ Dn
pwC∞ . If f is induced by a piecewise-smooth

function the unique solution x satisfies, for t ∈ (0, ∞),

x(t+) = eAdifftΠx0(0−)+
∫ t

0
eAdiff(t−s)Πdifff(s)ds

−
n−1∑
i=0

(Eimp)iΠimpf (i)(t+)

and

x[0] = −
n−1∑
i=0

(Eimp)ix0(0−)δ(i) −
n−1∑
i=0

(Eimp)i

i∑
j=0

f (i−j)(0+)δ(j) (3.10)

where δ(i) denotes the ith derivative of the Dirac impulse δ. In particular,
if f = 0, then

x(0+) = Πx(0−).

By reapplying the ITP at each switching time the following result for
switched DAEs immediately established.

Corollary 3.3.3. The switched system

Eσẋ = Aσx + f

with regular matrix pairs (Ep, Ap), p ∈ {1, · · · , P}, P ∈ N has a unique
solution for every f ∈ Dn

pwC∞ and every initial trajectory x0 ∈ Dn
pwC∞ .
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In particular, the jumps and Dirac impulses induced by the switches are
uniquely determined.

A brief introduction to the solution theory of linear switched DAEs
have been described in the previous section. In the next Section, the
extension of this solution theory to the switched nonlinear DAEs is
presented.

3.4 Switched nonlinear DAE

In general a switched nonlinear DAEs is of the form:

Eσ(t)(x(t))ẋ(t) = gσ(t)(t, x(t)). (3.11)

where, σ is a switching signal, Ep and Ap describe the flow matrices and
g is a nonlinearity. In particular, one assumes that each subsystem can
be written in the form

E(x)ẋ = g(t, x), (3.12)

The solution theory for the linear switched DAEs in the distributional
framework is very much established. The distributional solution theory
background is presented in chapter 2. Rewriting (3.11) in the following
form:

Eσẋ = Aσx + gσ(t, x) + fσ(t). (3.13)

where Ep, Ap ∈ Rn×n, gp : Rn → Rn for p ∈ {1, · · · , P}, P ∈ N,
f : Rn → Rn is a (time-dependent) inhomogeneity and σ : R → {1, · · · , P}
is a piecewise constant switching signal, which is assumed to be right
continuous and to have locally finitely many jumps. In particular each
subsystem is a nonlinear DAE of the form

Eẋ =Ax + g(t, x) + f(t) (3.14)
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Remark 3.4.1 (Motivation for switched nonlinear DAEs). While model-
ing hydraulic transients in water distribution systems in the framework of
switched DAEs 45], each subsystem turns out to be a nonlinear DAE of
the form (3.14), and modeling of transients (e.g., changing valve or pump
settings, etc.), give rise to switched nonlinear DAE of the form (3.13).
This is our main motivation for studying the solution theory of switched
nonlinear DAEs, but certainly these results will likewise be applicable in
other areas.

The existing solution theory available for switched nonlinear DAEs in
53] excludes the presence of Dirac impulses by definition; however, when
studying e.g. the water hammer effect in water distribution networks these
impulses are crucial because if a Dirac impulse occurs in the solution x

of (3.13) then it is unclear how gσ(x) has to be evaluated in general (e.g.
what is the sine of a Dirac impulse).

Remark 3.4.2 (Idea of the solution concept). If the nonlinearity is
not depending on all state variables, this property is called sparsity of
nonlinearity. Especially in the state variables in which Dirac is expected
may not present as the argument. Meaning that if xs ∈ C∞

pw then g(xs) is
nothing but just simple evaluation of function. The formalisation of this
concept is shown in the following Section.

3.4.1 Solution concept

The first challenge in studying the nonlinear switched DAE (3.13)

Eσẋ = Aσx + gσ(t, x) + f

within a distributional solution framework is the nonlinear evaluation gσ(x)
for distributional x. Due to the linear nature of the space of distributions
it is not possible to have a general nonlinear evaluation of distributions
without leaving the space of distributions. The approach to overcome this
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problem is the assumption that the nonlinearity is sparse in some sense
and that gσ is independent of the possible impulsive parts of x. This is
made precise in the following definition.

Definition 3.4.3. Consider a nonlinear switched DAE of the form (3.13)
with f ∈ Dn

pwC∞ . We make the following sparsity assumption for all
p ∈ {1, . . . , P}

(Gp) ∃gp : Rmp → Rnp ∃Mp ∈ Rmp×n ∃Np ∈ Rn×np ∀ξ ∈ Rn :
gp(ξ) = Npgp(Mpξ) with mp ≤ n, np ≤ n.

Then x ∈ Dn
pwC∞ is a solution of (3.13), if

A1: Mσx is impulse-free, i.e. (Mσx)[t] = 0 for all t ∈ R or, in other
words, there exists a piecewise-smooth function x : R → Rn such
that Mσx is induced by the piecewise-smooth function Mσx;

A2: Nσgσ(Mσx) is a piecewise-smooth function; and

A3: Eσẋ = Aσx + Gx + f holds as an equality within the space of
piecewise-smooth distributions where Gx is the distribution induced
by the piecewise-smooth function Nσgσ(Mσx).

Remark 3.4.4. The choice of the matrices Mp and Np in assumption
(Gp) is not unique; in fact, it is always possible to chose Mp = Np = I

and g = g. However, this trivial choice will prohibit Dirac impulses in
the solution, i.e, in this case Mpx will be impulse free if and only if x is
itself impulse free. Therefore it is not suitable for our purpose of studying
nonlinear switched DAEs in the presence of impulses.

Furthermore, it is actually not correct to just say “x is a solution of
(3.13)”, because being a solution depends on the choice of Mp and Np.
Consequently, “x is a solution if” and not “x is a solution if, and only if,”,
because a given x which does not satisfy conditions A1, A2, and A3 may
satisfy them for different matrices Mp and Np (the suitable choice may
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actually depend on x). Even if for a given x there does not exist matrices
Mp and Np such that A1, A2 and A3 holds, it may still be possible that
with a suitably defined nonlinear distributional evaluation x could be seen
as a solution of (3.13).

As in linear case inconsistent initial conditions gives rise to initial
trajectory problems (ITP) see in the Section 3.3.3, similarly, here nonlinear
initial problem (nonITP) is introduced.

Definition 3.4.5 (Solution of nonlinear initial trajectory problem (non-
ITP)). A piecewise smooth distribution x is called a nonITP solution
in the sense of definition 3.4.3 with initial trajectory x0 ∈ Dn

pwC∞ , and
if f ∈ Dn

pwC∞ is induced by a piecewise-smooth function, x fulfills the
nonlinear initial trajectory problem (nonITP).

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Ax + f + g(t, x))[0,∞)
(3.15)

i.e. x is local solution of 3.14 on [0, ∞) which coincides with the initial trajectory
x0 on (−∞, 0).

Next section will establish the existence of uniqueness result for the
solution of nonITP 3.15.

3.4.2 Existence and uniqueness of solutions

Similar as in the linear case an existence uniqueness result for nonlinear
ITPs will be established:

Theorem 3.4.6. For ω ∈ (0, ∞], consider the local nonlinear (nonITP)

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,ω) = (Ax + g(x) + f)[0,ω)
(3.16)

with initial trajectory x0 ∈ Dn
pwC∞ . We make the following assumptions:
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(R): (E, A) is regular.

(F): The inhomogeneity f is induced by a piecewise-smooth function
f : R → Rn, i.e. f = fD.

(S): g : Rn → Rn is locally Lipschitz continuous and piecewise-smooth.

(G): ∃g : Rmg → Rng ∃M ∈ Rmg×n ∃N ∈ Rn×ng ∀ξ ∈ Rn : g(ξ) = N g(Mξ) .

(M): MEimp = 0.

(N): im N ⊆ im E.

If all these assumptions are satisfied, then there exists ω > 0 such that
the local nonlinear ITP (3.16), has a unique solution x ∈ Dn

pwC∞ (in an
analogue sense of Definition 3.4.3) on (−∞, ω).

The proof of this theorem is based on the following lemma.

Lemma 3.4.7 (Modified QWF). Assume the QWF of a regular matrix
pair (E, A) has the special form

(SET, SAT ) =


I 0 0

0 0 0
0 N1 N2

 ,

J 0 0
0 I 0
0 0 I


 (3.17)

where [N1, N2] has full row rank and N2 is nilpotent. Write T =
[T v, T w

1 , T w
2 ] and S⊤ = [Sv⊤, Sw

1
⊤, Sw

2
⊤] corresponding to the block

sizes of (3.17). Then for any M and N as in assumption (G) the following
equivalences hold

MEimp = 0 ⇐⇒ MT w
2 = 0,

im N ⊆ im E ⇐⇒ Sw
1 N = 0.
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Proof. The first equivalence is shown as follows

MEimp = M · T

0 0 0
0 0 0
0 N1 N2

T −1 = 0

⇐⇒ M[T v, T w
1 , T w

2 ]

0 0 0
0 0 0
0 N1 N2

 = 0

⇐⇒ M[0, T w
2 N1, T w

2 N2] = 0

⇐⇒ MT w
2 [N1, N2] = 0

∗⇐⇒ MT w
2 = 0.

where equivalence ∗ is a consequence from the full row rank of [N1, N2].
In order to derive the second equivalence, it has been observed first that

im Sw
1

⊤ = ker E⊤ or, equivalently, ker Sw
1 = im E

hence the second equivalence follows from

Sw
1 N = 0,

⇐⇒ im N ⊆ ker Sw
1 ,

⇐⇒ im N ⊆ im E.

■

Proof of Theorem 3.4.6. The proof proceeds in several steps. Step 1:
The matrices S and T are constructed such that (3.17) holds.
Let V̂∗ and Ŵ∗ be the Wong limits of the transposed matrix pair (E⊤, A⊤)
and let n1 := dim V̂∗, n1

2 := dim ker E⊤, and n2
2 := dim Ŵ∗ − n1

2. Since
by construction ker E⊤ = Ŵ1 ⊆ Ŵ∗ full column rank matrices V̂ and
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Ŵ = [Ŵ1, Ŵ2] can be chosen such that

im V̂ = V̂∗, im Ŵ = Ŵ∗, im Ŵ1 = ker E⊤.

With
S := [V̂ , Ŵ1, Ŵ2]⊤, T := [E⊤V̂ , A⊤Ŵ1, A⊤Ŵ2]−⊤

it follows that (SET, SAT ) is the transpose of the QWF of (E⊤, A⊤)
and hence a QWF itself. Furthermore, by construction Ŵ1E = 0, which
shows that (SET, SAT ) has the form (3.17) and it remains to be shown
that [N1, N2] has full row rank. Assume the contrary, then there exists a
vector v ∈ Rn2

2 \ {0} with v⊤[N1, N2] = 0 and, therefore,

0 = [0, 0, v⊤]

I 0 0
0 0 0
0 N1 N2

 = [0, 0, v⊤]SET,

which is equivalent to 0 = [0, 0, v⊤][V̂ , Ŵ1, Ŵ2]⊤E = 0. Hence v⊤Ŵ ⊤
2 E =

0, or equivalently, E⊤Ŵ2v = 0 which implies that

{0} ≠ im Ŵ2 ∩ ker E⊤ = im Ŵ2 ∩ im Ŵ1.

This contradicts full rank of Ŵ = [Ŵ1, Ŵ2] and Step 1 is complete.
Step 2: Rewriting the nonlinear DAE in coordinates corresponding to the
QWF (3.17).
Let

(
v

w1
w2

)
:= T −1x then Eẋ = Ax + g(x) + f is equivalent to

SET
(

v
w1
w2

)
= SAT

(
v

w1
w2

)
+ Sg

(
T
(

v
w1
w2

))
+ Sf
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Choosing S⊤ = [Sv⊤, Sw
1

⊤, Sw
2

⊤] and T = [T v, T w
1 , T w

2 ] as in Step 1, the
nonITP (3.16) is therefore equivalent to

v(−∞,0) = v0
(−∞,0)

v̇[0,∞) = (Jv + N vg (Mx) + fv)[0,ω)

(3.18a)

w1(−∞,0) = w0
1(−∞,0)

0 = (w1 + N w
1 g (Mx) + fw

1 )[0,ω)

(3.18b)

w2(−∞,0) = w0
2(−∞,0)

(N1ẇ1 + N2ẇ2)[0,∞) = (w2 + N w
2 g (Mx) + fw

2 )[0,ω)

(3.18c)

where
(

v0

w0
1

w0
2

)
:= T −1x0,

(
fv

fw
1

fw
2

)
= Sf and

[
N v

N w
1

N w
2

]
= SN .

Step 3: Existence and uniqueness of solutions.
Assumption (N) together with Lemma 3.4.7 yields that N w

1 = 0, hence
the nonITP (3.18b) simplifies to

w1(−∞,0) = w0
1(−∞,0)

0 = (w1 + fw
1 )[0,ω)

which clearly has the unique solution

w1 = w0
1(−∞,0) − fw

1 [0,ω).

Note that w1 is a piecewise-smooth function (and not a distribution)
on [0, ω). We can plug this solution into (3.18a) and take into account
assumption (M) together with Lemma 3.4.7 to obtain

v(−∞,0) = v0
(−∞,0)

v̇[0,∞) = h(·, v)[0,ω)
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where
h(t, v) = Jv + N vg(MT w

1 v + MT w
1 w1(t)) + fw

1 (t),

i.e. (3.18a) is a usual ODE where h is smooth in v (in particular, locally
Lipschitz) and piecewise-smooth in t (in particular, measurable), hence
classical ODE solution theory guarantees existence and uniqueness of
a (local) solution v. Note that v is a piecewise-smooth and absolutely
continuous function on [0, ω). Finally, (3.18c) can be written as

w2(−∞,0) = w0
2(−∞,0)

(N2ẇ2)[0,∞) =
(

w2 + f̃w
2

)
[0,ω)

where
f̃w

2 = fw
2 − N1ẇ1 + N w

2 g(MT vv + MT w
1 w1).

Hence (3.18c) becomes a usual nilpotent DAE nonlinear ITP with (possi-
bly distributional) inhomogeneity f̃w

2 and has a unique (distributional)
solution on (−∞, ω). · ■

3.4.3 Further remarks on Theorem 3.4.6

Remarks 3.4.8. We want to discuss in the following how the assumptions
of Theorem 3.4.6 may be relaxed.

(R) In linear DAEs the regularity assumption on (E, A) is necessary and
sufficient for existence and uniqueness of solutions. Since no strong
assumptions on the nonlinearity g is made it is not excluded that g

still contains a linear component. In the extreme case g(x) = Mx

for some matrix M , the regularity of the matrix pair (E, A + M)
is more or less independent of the regularity of (E, A). Hence in a
nonlinear setup without further restrictions on g regularity of (E, A)
is neither necessary nor sufficient for existence and uniqueness of
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solutions; however it allows us to use a coordinate transformation
which reveals structural aspects.

(F) Requiring that the inhomogeneity does not contain Dirac impulses
is important to ensure that the solution w1 of (3.18b) does not
contain Dirac impulses, because w1 is plugged into the nonlinearity.
Furthermore, classical solvability of the nonlinear ODE (3.18a) is
only guaranteed for non-impulsive inhomogeneities. However, in
the context of impulsive systems one may allow Dirac-impulses in
fv (but not derivatives of Dirac impulses) then the solution exhibit
jumps. In (3.18c) the presence of Dirac impulses (and its derivatives)
in fw

2 isn’t a problem at all.

(S) Local Lipschitz continuity is needed to have existence and uniqueness
of solutions of the nonlinear ODE (3.18a). Additionally piecewise-
smoothness is assumed to ensure that condition A2 in the solution
Definition 3.4.3 is satisfied.

(M) The intuition behind this assumption is that due to (3.10) the
impulsive parts in the solution x of a (linear) DAE in response
to an inconsistent initial value is in the image of Eimp. Hence if
MEimp = 0 then the nonlinearity satisfying (G) doesn’t “see” the
possible Dirac impulses in x and can therefore be evaluated even
for distributional x. A convenient consequence of (M) is the ability
to solve (3.18a) and (3.18b) independently of (3.18c).

(N) This assumption was used in the proof to show that (3.18b) has
a unique solution which then can be plugged into (3.18a) as an
inhomogeneity. If (M) holds, one can significantly relax (N) by just
requiring that the nonlinear algebraic equation

0 = w1 + N w
1 g(MT vv + MT w

1 w1) + fw
1 (3.19)
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is uniquely solvable for w1 in terms of v and fw
1 or in other words the

combined DAE (3.18a), (3.18b) (which due to (M) is independent
of w2) has index one. The problem with this index one assumption
is that it is depending on g and may be hard to check in the original
coordinates.

In the context of switched DAEs usually a global solutions is required,
i.e. in order to apply Theorem 3.4.6 to (3.13) for this purpose an additional
assumption is needed to exclude the occurrence of finite escape time. From
the equivalent representation of each ITP in the form (4.17) it becomes
clear that the only source for finite escape time is the nonlinearity in
(3.18a). Therefore, it is sufficient to make the following assumption for
each p ∈ Σ:

(∞p) All solutions x ∈ Dn
pwC∞ of the nonITP corresponding to mode p

do not exhibit finite escape time, i.e. ω = ∞.

Provided all assumptions of Theorem 3.4.6 are satisfied, a sufficient
condition for existence of global solutions is global Lipschitz continuity
of the nonlinear term g. However, in water networks the nonlinearity is
quadratic and hence not globally Lipschitz (in that case the nonlinearities
are friction terms and hence have a stabilising effect and do not produce
finite escape time). In general, it is difficult to formulate non-conservative
conditions ensuring global solutions. In the following, the notion is (Rp),
(Sp), (Mp), (Np) for the corresponding conditions (R), (S), (M), (N) for
mode p ∈ Σ. We can now formulate our main existence and uniqueness
result for solutions of switched nonlinear DAEs of the form (3.13) as a
corollary of Theorem 3.4.6.

Corollary 3.4.9. Consider the switched DAE (3.13) satisfying conditions
(Rp), (F), (Sp), (Gp), (Mp), (Np), (∞p) for each mode p ∈ Σ. Then for
any initial trajectory x0 ∈ Dn

pwC∞ on (−∞, 0), there exists a unique distri-
butional solution x ∈ Dn

pwC∞ of (3.13) (in the sense of Definition 3.4.3).
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Remark 3.4.10. The assumption (∞p) is usually too strong because it
suffices that the local solution of mode i on [ti, ti + ωi) covers the (usually
finite) interval [ti, ti+1]. Furthermore, not all initial values for mode i

have to be considered, only the consistent ones from the previous mode.
The advantage of condition (∞p) is the independence of the switching
signal, i.e. existence and uniqueness of solutions can be guaranteed for
arbitrary switching signals.

3.5 Examples

In this Section, some examples are discussed which satisfies all the as-
sumptions of Theorem 3.4.6.

3.5.1 Academic example with nontrivial nonlinearity

This academic example is presented to analyse the application of The-
orem 3.4.6 to a nonlinear DAE with a non trivial and an interesting
nonlinearity. Therefore consider the ITP (3.16) with

E=


-1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 , A=


0 c1 0 1 0 0 0
0 0 0 c1 0 0 -c1
0 0 -1 0 0 0 −c1
1 -1 -1 0 0 0 0
0 0 1 0 1 0 0
0 0 -1 0 0 1 0
0 0 1 -1 0 0 0



g(x) =


c2(x1+x2+x4)2+c3x2

1
c4(x4−x3)3

c5x4
6−c6x2

1
c7(x4−x6)3

c8x2
1

0
0

 , f = 0.
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It is easily verified that conditions (R), (F), (S) are satisfies and S, T ,
and Eimp are calculated as follows:

T =


-1 0 0 0 0 0 0
0 1 1 -1 -1 0 0
0 0 1 -1 0 0 0
0 0 1 -1 -1 0 0
-α 1−α 1 -1 -2 -α α
0 0 1 0 0 0 0
α α α -α 1-α 0 -α

, S =


1 0 0 0 0 c1+1 c1+1
0 1 -1 0 0 c1+1 c1
0 0 0 1 0 -2 -1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 0 0 -c1 0 0
0 0 1 -1 0 0 0

,

Eimp =


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
-α -α 0 -α 0 α -1
0 0 0 0 0 0 0
0 0 0 α 0 -α 0

 with α = 1
c1

.

To satisfy condition (G) M and N are choosen as:

M =
[

1 1 0 1 0 0 0
0 0 -1 1 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 -1 0
1 0 0 0 0 0 0

]
, N =


c2 0 0 0 c3
0 c4 0 0 0
0 0 c5 0 -c6
0 0 0 c7 0
0 0 0 0 c8
0 0 0 0 0
0 0 0 0 0

 ,

ḡ(ξ) =


(ξ1)2

(ξ2)3

(ξ3)4

(ξ4)3

(ξ5)2

 with ξ = Mx =
( x1+x2+x4

x4−x3
x6

x4−x6
x1

)
.

for which g(x) = N ḡ(Mx) holds. With this choice it is easily checked
that (M) and (N) hold. Altogether, the assumptions of Theorem 3.4.6
hold and conclusion is that for any initial trajectory there is a unique
local distributional solution of the nonlinear ITP (3.16).

Remark 3.5.1. The nonzero rows of Eimp correspond to state variables
containing Dirac impulses. For the previous example, this means x5 and
x7 in general contain impulses. Hence, if x5 or x7 explicitly appear in the
nonlinearity, then the assumption (M) will not be satisfiable and Theorem
3.4.6 will not be applicable.
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3.5.2 Nonlinear RL electrical circuit

Example 3.5.2. A nonlinear resistor is often used in electrical modeling of
physical processes e.g., chaotic processes. The characteristics for nonlinear
resistors using nonlinear capacitor are used for further details see 39].

An electric circuit with nonlinear resistor is shown in the Figure 3.1.
In order to formulate the mathematical description of the circuit further
assume, x = (iL, vR, vL)⊤. To show that the Theorem 3.4.6 is applicable
also to the nonlinearities which occur in electrical circuit. Therefore
consider the nonITP (3.16) with the matrix pairs (E1, A1) and (E2, A2)
for switch closed and switch open dynamics, respectively, and switching
signal σ,

σ =

1, switch closed,

2, switch open.

1. Switch closed:
Standard circuit analysis of the circuit in Figure 3.1 yields the
following nonlinear differential algebraic equations (DAE).

−
+e(t)

R(t) iL(t)
switch

Figure 3.1: Nonlinear RL circuit
with switch closed

vL = L
diL

dt
,

vR = γiL + α(iL)3,

e = vR + vL.
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where, γ, α > 0 physical constants.

E1 =

L 0 0
0 0 0
0 0 0

 A1 =

 0 0 1
-γ 1 0
0 1 1

 f1 =

0
0
-e


g1(x) =

 0
-α(iL)3

0



T1 =


1
L 0 0
γ
L 1 0

- γ
L -1 1

 , S1 =

1 1 -1
0 1 0
0 0 1

 , Eimp
1 =

0 0 0
0 0 0
0 0 0


2. Switch open:

Similarly with circuit analysis of the circuit shown in Figure 3.2
yields the following nonlinear (DAE).

−
+e(t)

R(t) iL(t)switch

Figure 3.2: Nonlinear RL circuit
with switch open

vL = L
diL

dt
,

vR = γiL + α(iL)3,

iL = 0,
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E2 =

L 0 0
0 0 0
0 0 0

 A2 =

 0 0 1
-γ 1 0
1 0 0

 f2 =

0
0
0


g2(x) =

 0
-α(iL)3

0



T2 =

0 0 1
0 1 -γ
1 0 0

 , S2 =

1 0 0
0 1 0
0 0 1

 Eimp
2 =

0 0 0
0 0 0
L 0 0


It is easily verified that conditions (Rp), (Fp) (Sp) are satisfies and Sp,
Tp, and Eimp

p are calculated where p = 1, 2. To satisfy condition (G)
choose: As g(x) = g1(x) = g2(x), consider

M =
[
1 0 0

]
N =

0
1
0

 ḡ(iL) = -α(iL)3

for which g(x) = N ḡ(Mx) holds. With this choice it is easily checked
that (M) and (N) hold. Altogether, the assumptions of Theorem 3.4.6
hold. It leads to the conclusion that for any initial trajectory there is a
unique local distributional solution of the nonlinear ITP (3.16).

3.5.3 An example for which the Theorem 3.4.6 is not
applicable

Finally, a small academic example is presented for which our approach
is not applicable yet and it remains a future research topic, how to treat
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these kind of equations. Consider ITP (3.16) with

E=

-1 0 0
0 1 0
0 0 0

, A=

 0 0 1
c1 0 -1
-1 0 0

, g(x) =
( 0

(x3)3

0

)
, f = 0. (3.20)

It is easily verified that conditions (R), (F), (S) are satisfies and S, T ,
and Eimp can be calculated as follows:

T =

0 -1 0
1 -1 0
0 0 1

, S =

1 1 c1

0 0 1
1 0 0

, Eimp =

 0 0 0
0 0 0
-1 0 0

 .

With this choice

SET =

1 0 0
0 0 0
0 1 0

 , SAT =

0 0 0
0 1 0
0 0 1

 ,

i.e. that leads to the modified QWF (3.17) with N1 = [1] and N2 = [0].
In particular, the ITP (3.16) is equivalent to the ITP given by

v̇ =(w2)3, (3.21a)

w1 =0, (3.21b)

ẇ1 =w2. (3.21c)

For a nonzero initial value for w1(0−) it is clear that the jump in w1

(enforced by (3.21b)) results in a Dirac impulse in w2 (as a consequence
from (3.21c)) and the third power of the Dirac impulse enters as an
inhomogeneity the ODE (3.21a) for v. As for now, it is not clear how to
define a suitable solution concept in this case. Since (3.21) is an equivalent
representation of the original nonITP (3.16) given by (3.20) it cannot be
solved with our approach (in fact it will not be possible to find matrices
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M and N such that assumptions (M) and (N) are satisfied). However,
our special QWF allows to identify critical inconsistent initial values. In
particular, if w1(0−) = 0 then the ITP (3.21) is solvable and hence for all
(possibly inconsistent) initial values x0 ∈ T im

[
1 0
0 0
0 1

]
= im

[
0 0
1 0
0 1

]
the ITP

(3.16),(3.20) will have a solution.

3.6 Summary

In conclusion, in this chapter switched nonlinear DAEs with respect to
the existence and uniqueness of solution in the presence of impulses are
studied. A theorem with sufficient conditions for the existence of local
solution of ITP is presented. Moreover, its extension to switched nonlinear
DAEs is presented which is possible under the assumption that no finite
escape time occurs between the switches. This notion of solution is also
applicable to nonliearities in other dynamical systems.





Chapter 4

Water hammer modeling

The flow of the fluid in a water network exhibit changes in flow regimes
for a very short interval of time. Such changes are termed as transients
in response to the changes in the settings of the control elements (valve
or pump, etc.). In particular so called fast transients (instantaneous
closure of the valve, sudden pump shutdown) have always created complex
conditions, which are capable of causing major problems and damages
to the water supply system. The main reason of these possible damages
is pressure waves which are produced in response to these transients.
These pressure waves (spikes) are dampened or dissipated in a very short
interval of time, but they can do enormous damage during that brief
period, ranging from catastrophic pipeline bursts to pump defects. Such
pressure surges are produced as a consequence of sudden change, in flow
rates (for example, with valve closing flow rate tend to zero) in the pipeline
73]. This phenomenon of instantaneous closure of the valve, that generates
a pressure surge in water distribution system is called water hammer 38].

The aim of this chapter is to compare a model of water hammer via
PDEs and switched DAEs.
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4.1 Modeling hydraulic transients

The analysis of the most hydraulic transients in pressurised systems are
carried out assuming one dimensional flow and are based on the continuity
and momentum equations describing the general behavior of fluids in a
closed pipe 4]. These transients intrude the steady state conditions at a
given point in the pipeline and it starts changing with time and a pressure
surge travels along the pipeline starting at the point of the disturbance
and will be reflected back from the pipe boundaries (e.g., reservoirs) until
a new steady state is reached.

The flow of water in pipes is modeled via a nonlinear system of
hyperbolic balance laws. There are two approaches to model the flow in
a water network to investigate the of transients and their concussions.
These approaches are as follows 20]:

Definition 4.1.1 (Lumped system approach (Mass surge analysis)). In
this approach the pipe walls are assumed to be rigid and the liquid inside
is assumed to be incompressible, i.e, the water inside a pipe is considered
to be a solid mass and any flow disturbance is assumed to travel at infinite
speed.

Since, the flow variables in water distribution network vary slowly, the
compressibility effects are important in rapid transients.

Definition 4.1.2 (Waterhammer analysis approach). It is also called
distributive approach, in this approach the liquid is assumed to be slightly
compressible 20].

The water hammer analysis approach is used here to model water
hammer here in pipes using the pipe flow model presented in the Section
2.4. It is useful to check the aim on a small setup before applying it to the
comparatively larger setups. For this reason first a simple setup which
exhibit water hammer effect is shown in the following Section.
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4.1.1 Simple water setup

To study water hammer consider a simple water setup consisting of an
upstream reservoirs with a given pressure PU , a pipe of length L and a
valve conjoined with a downstream reservoir with pressure PD < PU , see
in the Figure 4.1. Here, the most important component is the control
component valve, whose open to close setting will create a pressure surge.
This setup is used in 21], to study optimal boundary condition to mitigate
water hammer, and in 64] for the construction of accurate a finite volume
scheme. Here, this setup is used to compare the novel modeling approach
via switched DAEs with the more classical PDE models in regard to the
water hammer effect.

PU

PD

x = 0 x = L

Figure 4.1: Simple set up for water hammer

It is well known that such a configuration will exhibit the water
hammer in response to the instantaneous closure of the valve.

4.1.2 PDE solution framework

The balance law for the pipe is given by (2.20), i.e. in terms of (2.5):

Ω = [0, L], U ⊆ R+ × R.
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and, for u = (ρ, q) ∈ U .

∂tρ + ∂xq = 0 (4.1a)

∂tq + ∂x(q2

ρ
+ P (ρ)) + cf

2Dρ
q | q |= 0 (4.1b)

Consider U =
(

ρ

q

)

∂tU + ∂x[F (U)] = S(U) (4.2)

where

F (u) =
(

q
q2

ρ + P (ρ),

)
, S(u) =

(
0

−cf
q |q|
2Dρ

)
. (4.3)

The initial condition is given as

q(x, 0) = q0 ρ(x, 0) = ρ0 P (ρ(x, 0)) = p0(x). (4.4)

some initial flow q0 : [0, L] → R and some initial pressure p0 : [0, L] →
R. The initial density ρ0 is induced by the usually considered initial
pressure p0 via the invertible pressure law (2.19). The components in a
water network are introduced in this model as boundary conditions. On
boundary x = 0 there is a reservoir, which will deliver constant pressure
PU at all times. i.e,

P (ρ(t, 0)) = PU (4.5)

The invertibility of the pressure function this induces a boundary condition
for ρ. On the other end of the pipe a valve is installed in conjunction with
a down stream reservoir. Both valve positions on and off are implemented
as in (4.6):
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PD

(PL, qL)

Figure 4.2: Valve setting

valve open : PL =PD,

valve closed : qL =0. (4.6)

where PL, qL denotes the pressure and flow at x = L, respectively i.e,
P (ρ(L, t)) and qL = q(L, t).

The valve independent (4.5) and valve dependent (4.6) boundary
conditions in terms of (2.5c),(2.5d) are read as:

Ψ1(t, (ρ, q)) = P (ρ) − PU , ∀t ∈ R+, (4.7)

and

Ψ2(t, (ρ, q)) =

P (ρ) − PD, t ∈ (0, ts),

q, t > ts,
(4.8)

where ts denotes the time for the valve closure. Note that the discontinuity
induced by the switch only occurs in the boundary condition, therefore
wellposedness can be studied for each mode individually as the PDE can
be “restarted” at time t = ts with the initial value given by the final value
of the solution on the time interval [0, ts]; in particular, the wellposedness
conditions given in section 2.3.2 can be checked independently of the
valve’s state 26]:

(B)(B-I) For the numerical simulations constant initial conditions have
been imposed, which has zero total variation.
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(B-II) The Jacobian of the flux function F (U) is given by:

F (U) =
(

q
q2

ρ + P (ρ),

)
, (4.9)

A(ρ, q) =
(

0 1
− q2

ρ2 + P ′(ρ) 2 q
ρ

)
(4.10)

and invoking the pressure law (2.20c) it can be seen that
P ′(ρ) = K

ρa
> 0 independently of ρ. Hence the eigenvalues of

A(ρ, q) are

λ1/2(ρ, q) = q

ρ
±

√
K

ρa
.

Consequently, λ1(u) > λ2(u) for all u = (ρ, q) ∈ U and hence
(4.2) with pressure law (2.19) is strictly hyperbolic.

(B-III) The eigenvectors of A(u) are

r1(u) =
(

1
λ1(u)

)
, r2(u) =

(
1

λ2(u)

)
.

Hence

Dλ1(u) · r1(u) =
[
− q

ρ2 ,
1
ρ

]( 1
q
ρ +

√
K
ρa

)

= 1
ρ

√
K

ρa
̸= 0 ∀u = (ρ, q) ∈ U

and, analogously,

Dλ2(u) · r2(u) = −1
ρ

√
K

ρa
̸= 0 ∀u = (ρ, q) ∈ U .
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Consequently, genuine nonlinearity is established.

(C) Clearly S(U) is locally Lipschitz continuous.

(D) In order to have sign-definite eigenvalues, i.e.

λ1(u) > 0 > λ2(u) ∀u ∈ U ,

only subsonic flows are considered here, i.e.

U ⊆

{
(ρ, q) ∈ R+ × R

∣∣∣∣∣ q

ρ
<

√
K

ρa

}
.

and it holds true during in the numerical simulation.

In that case R+(u) = [r1(u)] and

DuΨ1(t, u) · R+(u) =
[
P ′(ρ) 0

] [ 1
λ1(u)

]
= P ′(ρ) ̸= 0,

i.e. condition (2.12a) is satisfied for all u = (ρ, q) ∈ U and t > 0.
For the right boundary consider R−(u) = [r2(u)] calculated as:

DuΨ2(t, u) · R−(u) =



[
P ′(ρ) 0

] 1

λ2(u)

 = P ′(ρ) ̸= 0,

t ∈ (0, ts),

[0 1]

 1

λ2(u)

 = λ2(u) ̸= 0,

t > ts,

for all u = (ρ, q) ∈ U ; hence, due to the restriction to the subsonic
case, condition (2.12b) is satisfied.
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The assumptions (B), (C), (D) hold true, hence a reasonable approxi-
mations of solutions via numerical simulations is expected to the corre-
sponding initial/boundary value problem (4.2) with the initial condition
(4.4) and a valve independent boundary condition (4.7), a valve depen-
dent boundary condition (4.8) as long as the solution remains in the
subsonic-case.

In the next Section a switched DAE model which is an approximation
to a model via PDE for the simple setup shown in the Figure 4.1 is
presented, then the outcome of the models are compared.

4.1.3 Motivation for modeling via switched DAEs

Before presenting the water hammer model via switched DAEs , first a
motivation for using this modeling approach is presented, which is based
upon the following observations from the PDE simulations:

Observation 4.1.3. After setting up the mathematical model for Figure
4.1 via PDEs, multiple simulations have been produced with the different
compressibility coefficients β to see the effect of diluting (decreasing) its
value on the pressure profile at the valve. The main observation is that the
pressure peaks increased in response to each decrease in compressibility
(assigning smaller value of the β )

Observation 4.1.4. Another main observation is shown in the Figure
4.3(b) where two pressure spikes are shown after time ts +ε. It is observed
that for a smaller compressibility coefficient β the pressure spikes dissipate
faster as compared to a bigger value of β see the Figure 4.3 (b).

The two above observations provides with the motivation to see effects
to consider the exact incompressiblity β = 0. Due to numerical simulations
such restriction may not be possible, but it leads to the intuition that
in the case of an exact incompressible case this pressure peak may be
an approximated ‘Dirac’ . To model Dirac, switched DAEs framework
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Figure 4.3: Comparison of pressure profile PL = P (ρ(t, L)) with β =
2.0 × 10−9 and β = 8.0 × 10−9,(Above) with visualisation in zoomed
window (below) ; displying the observation 4.1.3 (Left) and observation
4.1.4 (Right). Simulation produced using scheme by the author Jochen
Kall in 44]

is used here due to the presence of correct mathematical description of
‘Dirac’ for details see 69]

4.1.4 Switched DAE framework for the setup 4.1

The quasi-stationary model (2.26) together with the valve-depending
boundary conditions (valve open on [0, ts) and valve closed on [ts, ∞)) for
a setup as shown in Figure 4.1 leads to a switched DAE of the form

Eσẋ = Aσx + fσ + gσ(x), (4.11)
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with

x = (Q, P0, PL)⊤, σ(t) =

1, t ∈ [0, ts),

2, t ≥ ts,

Moreover for both the modes (valve open and valve closed), the non-
switched nonlinear DAE is:

Eiẋ = Aix + fi + gi(x), for i = 1, 2. (4.12)

M = M1 = M2 =
[
1 0 0

]
, N = N1 = N2 =

1
0
0

 ,

g(x) = N1g(M1x), g(Q) = −c2Q|Q|.

1. Valve open: Consider the equation (4.12) for i = 1

E1x = A1x + f1 + g1(x) (4.13)

where,

E1 =

1 0 0
0 0 0
0 0 0

 , A1 =

0 c1 −c1

0 1 0
0 0 1

 ,

g1(x) =

−c2Q|Q|
0
0

 f1 =

 0
-PU

-PD




(4.14)

where c1 and c2 depends on the physical constants of the pipes with
:

c1 = A
L

c2 = cf

2DρaA
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where cf , D, ρa, A is friction factor of the pipe, diameter, atmo-
spheric density and area of the pipes, respectively.

2. Valve close: Consider the equation (4.12) for i = 2

E2x = A2x + f2 + g2(x) (4.15)

where,

E2 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 c1 −c1

0 1 0
1 0 0

 ,

g2(x) =

−c2Q|Q|
0
0

 f2 =

 0
-PU

0




(4.16)

The nonlinearity g is sparse and hence the distributional theory can be
from the linear to the nonlinear case as described in the Section 3.4.

Corollary 4.1.5 (to Theorem 3.4.6). Consider the nonlinear initial-
trajectory problem (nonITP)

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Aẋ + f + g(x))[0,∞)

where either (E, A) = (E1, A1) or (E, A) = (E2, A2) and g(x) = g1(x) =
g2(x) as in (4.14) and (4.16). Then for every initial trajectory x0 ∈
(DpwC∞)3 and every inhomogeneity f which is either f1 or f2 induced by
a piecewise-smooth function, there exists a unique solution x ∈ (DpwC∞)3

of the ITP in the sense of Definition 3.4.3.

Proof. Firstly the conditions of the Theorem 3.4.6 will be utillised to
show existence and uniqueness checked. Therefore, it has to be checked
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whether the assumptions of the Theorem 3.4.6 for both (4.14) and (4.16)
are satisfied.

1. Case (E, A) = (E1, A1), first the following transformation matrices
are calculated using modified QWF using 3.4.7.

T1 =

1 0 0
0 0 1
0 1 0

 , S1 =

1 −c1 c1

0 0 1
0 1 0

 ,

Eimp
1 =

0 0 0
0 0 0
0 0 0

 ,

S1E1T1 =

1 0 0
0 0 0
0 0 0

 , S1A1T1 =

0 0 0
0 1 0
0 0 1

 ,

S1f1 =

c1PU − c1PD

-PD

-PU

 ,

It is easy to verify that det(sE1 − A1) ̸≡ 0, ⇒ (E1, A1) is regular .
Hence, S1, T1, Eimp

1 can be calculated. Under the assumption that
the reservoir pressure only changes smoothly in time (or is constant),
then the inhomogeneity f1 is piecewise-smooth, which implies that
the assumption (F) holds. Furthermore the assumption (G) is also
satisfied for the given choice of M and N . The nonlinearity g is
locally Lipschitz, which satisfies assumption (S).
Clearly MEimp

1 = 0 and im(N ) = [1, 0, 0] and im(E) = [1, 0, 0] ⇒
im(N ) ⊆ im(E) which ensure the validity of the assumptions (M)
and (N). Hence ITP (4.13), has a unique local solution.

2. Case (E, A) = (E2, A2).
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The matrix pair (E2, A2) is regular, i.e. (R) holds. According to
Lemma 3.4.7 the follwing is calculated

T2 =

1 0 0
0 1 0
0 1 - 1

c1

 , S2 =

0 0 c1

0 1 0
1 0 0

 , Eimp
2 =

 0 0 0
0 0 0

- 1
c1

0 0


S2E2T2 =

1 0 0
0 0 0
0 0 0

 , S2A2T2 =

0 0 0
0 1 0
0 0 1

 S2f2 =

-PU

0
0

 .

it is immediately seen that with almost the same arguments as for
mode 1 (S), (G), (M) and (N) hold mode-2 (valve closed). Hence
ITP (4.15) has a unique local solution.

Remark 4.1.6. The nonlinearity g appeared in the ODE part of the
differential algebraic equation. The ODE is of the type d

dt Q = −Q|Q|
with Q ≥ 0 the solution of the ODE d

dt Q = −Q|Q| is not exhibiting finite
escape time as limt→∞ Q(t) → 0, hence assumption (∞p) holds true.

Which concludes that all solutions of the corresponding (nonITP) are
global, hence the Corollary 3.4.9 ensures existence and uniqueness of
distributional solutions of the switched DAE modeling the simple water
network in Figure 4.1.

■

Corollary 4.1.7. The switched nonlinear DAE (4.14), (4.16) has for
every initial condition x(−∞,t0) = (Q0, P 0

0 , P 0
L) ≡ (Q0, PU , PD) ∈ R a

unique solution in the sense of Definition 3.4.3. In particular, the jump
and the Dirac impulse in PL at ts are given by:

PL(t+
s ) = PU , PL[ts] = 1

c1
Q(t−

s )δts .



74 Water hammer modeling

where ts is the time when valve position is changed from open to close.
The jump is PL(t-

s) − PL(t+
s ) = PU − PD.

Proof. Assume first (E, A) = (E1, A1): The state variable x is transformed
using transformation matrices T1, S1. Also dim(ker(E⊤) = 2, then w1 =

{w1
1, w2

1}, with
( v

w1
1

w2
1

)
:= T −1

1 x , result into:

v = Q, w1
1 = PL w2

1 = P0.

The equivalent initial conditions will be (v, w1
1, w2

1)(−∞,t0) = (Q0, PD, PU ).
The nonlinear DAE can be written by using the modified QWF (3.17) as
follows

S1E1T1

( v
w1

1
w2

1

)
= S1A1T1

( v
w1

1
w2

1

)
+ S1N g1

(
T1

( v
w1

1
w2

1

))
+ S1f1

The ITP (4.13) is therefore equivalent to

v(−∞,t0) = v0
(−∞,t0)

v̇[t0,ts) = (c1(PU − PD) + g1(v)) [t0,ts)

(4.17a)

w1
1(−∞,t0) = (w1

1)0
(−∞,t0)

0 =
(
w1

1 − PD )[t0,ts)
(4.17b)

w2
1(−∞,t0) = (w2

1)0
(−∞,t0)

=
(
w2

1 − PU ) [t0,ts)

(4.17c)

Solving (4.17a), (4.17b) and (4.17c), the following (constant) solution is
obtained.

(v, w1
1, w2

1) = (v(t−
s ), PD, PU )
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and using
( v

w1
1

w2
1

)
:= T −1

1 x the result of mode-1 is

x[t0,ts) = (Q[t0,ts), (P0)[t0,ts), (PL)[t0,ts)) = (Q(t−
s ), PU , PD)

Further consider (E, A) = (E2, A2), the solution x from previous mode is
initial trajectory for this mode

x(t−
s ) = (Q(t−

s ), P0(t−
s ), PL(t−

s )) = (Q[t0,ts), PU , PD)

. Assume
(

w1
1

w1
2

w2

)
:= T −1

2 x :

w1
1 = Q, w2

1 = P0 w2 = c1(PL − w2
1).

The same argument as before the nonlinear DAE in coordinates corre-
sponding to the modified QWF (3.17) is,

S2E2T2

(
w1

1
w2

1
w2

)
= S2A2T2

(
w1

1
w2

1
w2

)
+ S2N g2

(
T1

(
w1

1
w2

1
w2

))
+ S2f2.

Componentwise this can be written as:

(w1
1)(t−

s ) = Q[t0,ts)

0 =
(
w1

1 )[ts,∞)
(4.18a)

w2
1(t−

s ) = PU

0 =
(
w2

1 − P 0
0
)

[ts,∞)

(4.18b)

w2(t−
s ) = c1(PU − PD)

ẇ1
1 = (w2)[ts,∞)

(4.18c)

Here w1
1(t−

s ) = Q(t−
s ) and in mode−2 it becomes (w1

1)[ts,∞) = 0, there is
a jump in w1

1 which appeared in (4.18c) as a derivative hence an impulse
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in w2 appears. The solution obtained from (4.18a), (4.18b), (4.18c) is:

(w1
1, w2

1, w2) = (0, PU , −Q(t−
s )δts

) (4.19)

which with
(

Q
P0
PL

)
= T2

(
w1

1
w2

1
w2

)
results into

Q = w1
1 P0 = w2

1 PL = w2
1 − 1

c1
w2.

Hence, the solution in the original coordinates is given in (4.19)

Q = 0

P0 = PU ,

PL = PU + 1
c1

Q(t−
s )δts

In particular, the jump and the Dirac impulse in PL at switching time
t = tS are given by:

PL[ts] = 1
c1

Q(t−
S )δ

Further after the valve closure, the time is denoted by t = t+
s , the Dirac

will be disappeared, and PL will become

PL(t+
s ) = PU .

■

4.2 Comparison of both modeling approaches

In this section, quantitative comparison between the PDE model and
the switched nonlinear DAE model is presented. The jump and Dirac
impulse in the pressure due to closing the valve is the main focus here.
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In particular, the initial condition (4.4) is assumed such that the PDE
solution on [0, tS) is stationary, i.e. q(t, x) is constant in time and space
(or in other words, when the valve is closed the dynamics in the pipe have
settled down). Figure 4.4a shows the results for the pressure profile over
the time interval [0.4s, 3s] with initial values

q0(x) ≡ 0, ρ0(x) ≡ 1.4115 × 103

and pipe parameters

Pa = 1.01 × 106, β = 1
K

= 4 × 10−9, ρa = 1000,

L = 5, D = 0.5, cf = 0.001,

Clearly, there is a strong pressure spike just after the switching time
tS = 0.5s and then the pressure periodically settles to a new pressure
value. The frequency of this periodic behavior is determined by the pipe
length L (the larger L the lower the frequency) and the speed of sound
(higher for smaller compressibility coefficients β).

4.2.1 Approximation of PL = P (ρ(t, L) in PDE

In order to compare both results, one has to obtain an approximation of
the pressure value PL = P (ρ(t, L)) as t tends to infinity. Pressure at the
valve x = L is compared for the time before the valve is closed t < ts, at
the time of switching t = ts and long after the switching time t > ts.

PL = P (ρ(t, L)) for t < ts

To compare the pressure P (ρ(t, L)) for t < ts , the PDE model is executed
for the time that the pressure will get steady enough. Here, the blue line
is showing the pressure before the valve is closed. The calculation from 0
to 0.48 is omitted as it is just the time to get the pressure steady enough.
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It is needed for the comparison with the switched DAE model. For the
DAE model the pressure at x = L, when valve is open is the pressure at
downstream reservoir that is PD. Hence PL = PD for t < ts.

PL = P (ρ(t, L)) for t = ts

In order to compare the peak in PL right after the valve is closed with the
Dirac impulse PL[tS ] in response to the switching time, recall that a Dirac
impulse δts at ts > 0 can be approximated by a sequence of functions
t 7→ δε

ts
(t) such that δε(t) = 0 for t ̸= [ts, ts + ε] and

∫ ts+ε

ts
δε

ts
(t)dt = 1.

The following Ansatz is made

P (ρ(t, L)) ≈ P
imp
tS

δε(t) + P L, t ∈ (tS , T ], (4.20)

hence the following integral of (4.20) over interval (ts, ts + ϵ) provides
with the approximated Dirac impulse occurring in the PDE model written
as:

P
imp
tS

:=
∫ tS+ε

tS

P (ρ(t, L)) − P Ldt.

where the interval (ts, ts + ϵ) is the interval of time in which Dirac impulse
occurred.

The Dirac impulse induced by the switched DAE is (see Corollary 4.1.7):

PL[tS ] = 1
c1

Q(t−
S )δts =: P imp

tS
δts

.
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(a) Comparison of pressure profile at valve (PL = P (ρ(t, L))) with PDE
models (above) and switched DAE model (below)
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Figure 4.4: Numerical illustration of PDE and switched DAE model
comparison for simple setup in Figure 4.1
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Similar as for the PDE simulations it is assumed that the DAE is
stationary before the switch, i.e. Q(t−

S ) is obtained by solving

0 = Q̇ = c1(PU − PD) − c2Q|Q|

Using the parameters above,

Q(t−
s ) = 1.2830 · 106, P imp

tS
= 1

c1
Q(t−

s ) = 3.2670 · 107.

4.2.2 Impulse length comparison

A comparison between P
imp
tS

and P imp
tS

for different values of the compress-
ibility coefficient β is presented in following table.

β P
imp
tS

P imp
tS

RE :=
∣∣P imp

tS
−P imp

tS

∣∣
P imp

tS

4.0 · 10−9 4.1251 · 107 3.2670 · 107 0.2626
2.0 · 10−9 3.4758 · 107 3.2670 · 107 0.0639
5.0 · 10−10 3.1817 · 107 3.2670 · 107 0.0261
2.5 · 10−10 3.2069 · 107 3.2670 · 107 0.0184
1.25 · 10−10 3.2398 · 107 3.2670 · 107 0.0083

Table 4.1: Impulse length comparison

The Table 4.1 shows that for large value of β (more compressibility)
the approximation is not very accurate, however, for decreasing compress-
ibility (considering smaller values of β) the accuracy of the approximation
drastically improves. Further the relative error of the Dirac impulse length
approximated by PDE and switched DAE model, decreasing by assigning
less value to the compressibility coefficient β.
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PL = P (ρ(t, L))for t > ts

Instead of running the simulation for a very long time, a property of the
flow is used which is described in the Section 2.2 and shown in Figure ??,
where the mean flow is well defined and its value remained unchanged
even though the flow is not completely steady, statistically. Figure 4.5
is showing the same feature of fluid flow. Using this idea a formula is
obtained to estimate the pressure P L a long time after the valve is closed
at time ts.

2 3 4
0.4

0.6

0.8

1 ·109

ts

PL

P
L

2 3 4
0.4

0.6

0.8

1 ·109

ts

PL

P
L

Figure 4.5: Long term P (ρ(t, L)) in ts + ε to T

For this a settling time ε > 0 is chosen and by taking the average of
P (ρ(t, L)) on the interval (tS + ε, T ] where T > tS + ε is here the overall
simulation time, i.e.

P L := 1
T − (tS + ε)

∫ T

tS+ε

P (ρ(t, L))dt. (4.21)

with
ε = 1.5, T = 4.

one obtained
P L ≈ 8.23 × 108

The value predicted by the switched DAE is

PL(t+
S ) = PU ≈ 8.23 × 108



82 Water hammer modeling

For large β the approximation is not very accurate, however, for
decreasing compressibility the accuracy of the approximation drastically
improves. In Table 4.2 the relative error between P L and PL(t+

S ) is

β P L
|P L−PL(t+

S
)|

PL(t+
S

)
4.0 · 10−9 8.2336 · 108 5.4678 · 10−04

2.0 · 10−9 8.2329 · 108 4.4046 · 10−04

5.0 · 10−10 8.2305 · 108 7.5942 · 10−05

2.5 · 10−10 8.2303 · 108 4.5565 · 10−05

1.25 · 10−10 8.2299 · 108 1.5188 · 10−05

Table 4.2: Pressure at valve comparison for long after switching.

presented for decreasing compressibility coefficients β. (It is important to
recall that decreasing compressibility means lowering down or the value
of β) Already for the largest value of β, the value PL(t+

S ) is a very good
approximation of P L and the approximation gets better for decreasing
β.

Choice of settling time ε

Finally, it is worth mentioning that the choice of ε influences the approxi-
mation accuracy, see Table 4.3. However, the qualitative behaviour of a

RE RE RE RE
β ε = 1 ε = 1.5 ε = 2 ε = 3

4.0 · 10−9 0.1812 0.2626 0.2616 0.2697
2.0 · 10−9 0.0508 0.0639 0.0809 0.0808
5.0 · 10−10 0.0438 0.0261 0.0253 0.0233
2.5 · 10−10 0.0228 0.0184 0.0016 0.0160
1.25 · 10−10 0.0084 0.0083 0.0078 0.0053

Table 4.3: Error comparison with different ε

decreasing error for decreasing compressibility coefficient remains valid.
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4.3 Summary

This chapter introduced a switched DAEs model for water hammer on a
simple setup, which is compared with a compressible nonlinear system
of balance laws. With the support of numerical simulations of the PDE
model it is quantitatively illustrated using numerical simulations that a
switched DAE model is a good approximation for the PDE model with
small compressibility coefficient (less value is assigned to compressibility
coefficient β) qualitatively independent of the choice of the ε.





Chapter 5

Water network as graph
and its solvability

In the previous chapter, a model in the framework of switched nonlinear
DAEs is presented as an approximation to the PDE model for hydraulic
transient on a simple setup. It turns out that the switched DAEs model
is indeed an approximation to the PDE model. Moreover, for further
analysis on a larger setup first the general structure of the water network
is to be established along with its mathematical wellposedness in both
of the modeling frameworks. The valve closures or pump shutdown at
different locations create diverse network topologies and it is important
to check whether or not all these topologies are solvable in the framework
of switched nonlinear DAEs. To formulate this generalisation first the
water distribution system is introduced as a network, then the network is
expressed as a graph, which results with an improved readability of the
model.

This chapter is divided into the following parts; firstly, an overview of
the water distribution network is presented. Secondly a brief introduction
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to the graph theoretical concepts will be revisited. The mathematical
structure of the components of the water network is described . Finally,
the characterisation of the wellposedness of the solution for the switch
nonlinear DAE of a general water network is presented.

5.1 Water distribution system (WDS) as net-
work

Networks can represent almost all sorts of distribution system in the real
world. A network is simply a collection of connected objects . Some or
all of these objects may be connected together by links. The objects
and links represents the parts of the network. Therefore it gives a visual
picture of how a collection of objects are connected to interact. Based
on this reasoning, it follows that many of the things in our everyday
lives represent examples of networks, from information networks to social
networks through flow networks (water and gas). In the Figure 5.1 a gas
and water network is shown.

(a) US Gas network. (b) Hydraulic network of the Cen-
tral zone and the East-Pest zone of
Budapest.

Figure 5.1: (a) Source: USA energy information (b) Source: 10]
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Further to introduce more insight into the water distribution system, a
simple fictitious network is depicted in Figure 5.2, composed of a reservoir
with a pump station, a storage tank, and number of junctions linked by
pipes and valves, etc.

Figure 5.2: Fictitious water distribution network and its components 71]
66].

As illustrated in the Figure 5.2, a water network is predominantly
represented as collection of hydraulic elements. Table 2.1 lists typical com-
ponents of a WDS and their function. The layout of elements maps their
topographical interdependencies and is often imposed by the structure
of the urban context such as roads, buildings, industrial areas, hospitals,
etc.66]. Moreover, there are the two main layouts of distribution net-
works: branched and looped 71]. Branched networks, or tree networks,
are predominantly used to supply water. The loops provide alternative
flow pathways, hence, water can be supplied from more than one direction.
The presence of loops in the network greatly improve the hydraulics of
the distribution system in order to ensure the regularity of the water
supply. However, most of the large distribution system essentially is the
combination of loop and branches with many interconnected components.

The aim of water network is achieved by means of interconnected
elements, given in the Table 5.1. Each of these elements is interrelated
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Components Type Modeling purpose

Pipe Link Conveys water from on ob-
ject to other

Pump Link(zero length
(node))

Raises the hydraulic pres-
sure to overcome elevation
differences

Reservoirs Object Provides water to the net-
work

Junction Object
connection of two or more
pipes for inflow and outflow
of water

Valve Link (zero length)
or node

Stops or open the flow of
water

Table 5.1: Components of water network and their functions. (c.f. 71])

with its neighbors thus the entire WDN behaviour depends on each
of its elements. The interrelation of the elements can be more easily
represented as a graph. The objects are termed as nodes and links are
called edges. They used to delineate the certain properties of components
and orientation of their connections. In fact presenting a network as a
graph is basically an abstraction of the reality.

5.1.1 Graph preliminaries

Definition 5.1.1 (Graph). A graph G = (N,E) is a mathematical struc-
ture consisting of two sets N and E. The set N is a non empty set whose
elements are called nodes, and elements of E are called edges, where
E ⊆ N × N. Each edge e ∈ E corresponds to a pair (i, j) ∈ N × N , i.e,
edge has set of two nodes associated to it, which are its end points. As
pair (i, j) ∈ E is ordered, the graph G is called an oriented or directed
graph. The node i is called starting (initial) node and j is called ending
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(terminal) node. Graphically, this relation is realized by representing the
edges {e1, · · · , em} ⊆ E as the lines between nodes {1, 2, · · · , n} ⊆ N 34].

Remark 5.1.2 (Index set of set of edges). The set of edges also can be
written as a set of indices {1, . . . , m} such that; k ∈ {1, . . . , m} iff there
exists an edge e = (i, j) ∈ E ∀i, j ∈ N, and e is said to be the kth edge in
the graph representing the network.

There are different types of graph, used to represent a network de-
pending on the functionality of the network. Some basic types are:

A: In a simple graph each edge connects two different nodes and no
two edges connect the same pair of nodes.

B: If there exists more than one edge between two same set of nodes,
the graph will be called as multigraph.

C: A pseudograph may include self loops, as well as multiple edges
connecting the same pair of nodes.

5.1.2 Connectivity

The connectivity is one of the most important concepts in graph and net-
work theory because it may play an important role in the characterisation
of the regularity of a network. A graph may be referred to as (or called)
either connected or disconnected in the reference of topological space.
Before introducing the notion of connectedness some starting concepts
are presented 14].

Definition 5.1.3. An edge e = (u, v) is called incident to v for the
directed graph. If the direction of the edge is ignored, then the edge e

is said to be incident on both u and v. A vertex or node i is said to be
adjacent to j if there exist a directed edge e = (i, j). On ignoring the
direction of edges the nodes i and j are said to adjacent to each other.
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The degree of a vertex v, represented deg(v) is the number of edges
that are connected to it. In a graph with directed edges, the in-degree
of a vertex v, denoted deg+(v), is the number of edges with v as their
terminal (ending) vertex. The out-degree of a vertex v, denoted deg-(v),
is the number of edges with v as their initial (starting) vertex.

Definition 5.1.4. A path is a sequence of edges ek1 , ek2 , · · · , ekl
between

node i to node j, where the end node r of ekm is incident to the edge
ekm+1 and the node r is adjacent to the initial vertex s of ekm+1 for all
m ∈ {1, · · · , l}. Further, i is the initial node of ek1 and j is the terminal
node of ekl

.

Definition 5.1.5. A weak path is a path (for definition see 5.1.4) by
ignoring the direction of the edges.

Definition 5.1.6 (Connectivity in directed graph). In a directed graph,
the connectivity is made symmetric in one of two different ways:

1. A directed graph is said to be strongly connected if given any two
vertices u and v, there exists a directed path (defined in 5.1.4) from
u to v and a directed path from v to u.

2. A directed graph is said to be weakly connected if it is connected
by ignoring the direction.

Definition 5.1.7. A graph is said to be connected if there exists a weak
path ( defined in 5.1.5) between any two nodes in the graph, meaning
that the graph is connected by ignoring the direction of edges.

Remark 5.1.8 (Notion of connectivity in water network). A water net-
work is viewed as a directed graph (to take direction of flow into account).
The notion of connectivity is formulated as; A water network is called
connected if underlying graph is connected weakly as defined in 5.1.7.

Remark 5.1.9. The direction of an edge from the left to the right node
does not mean that the water is always flowing from the left to the right
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node. Later on, it can be seen that the edge direction tells us how we
have to interpret the sign of the flow values. If the flow has a positive
sign then it flows from left to right. If the flow has a negative sign then it
flows from right to left 42].

The representation of the network is important to analyse how the
components of the network may connected and interact. In the next
Section various ways to represent a graph are recollected, which are the
ways also to represent a network.

5.1.3 Representation of a graph

Toplogy of the graph describes the arrangement of the nodes and edges.
It defines how the nodes, within the graph are arranged and connected to
each other.

There are different ways of representing the topology of the graph.
For the purpose of the water network a term modified incidence matrix is
introduced. This term is extended from already existing ways to interpret
a graph (c.f. 43]).

Definition 5.1.10 (Incidence Matrix.). The topology of a directed graph
is conveniently represented by its incidence matrix. The node-edge inci-
dence matrix Iinc(G) of a directed graph G = (N,E), is a matrix of order
n × m, where n and m denotes number of nodes and edges, respectively.
Further each entry aik ∈ Iinc(G) is defined as:

aik =


1, if i is end (terminal) node of the edge k

-1, if i is starting (initial) node of the edge k

0, else


for all kþ edges and nodes i ∈ N.
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Properties of the incidence matrix

The sum of the columns of Iinc(G) is zeros. Therefore, rows of Iinc(G)
are linearly dependent. An important result about rank of the incidence
matrix, is given. The concept of rank is very useful in this setup to show
the regularity of the DAE model of water network. The following Lemma
describes the most important property of incidence matrix.

Lemma 5.1.11. If G is a connected graph with n nodes, then rank of
incidence matrix will be n − 1.

The proof is given in the Appendix A.0.10

Example 5.1.12. A connected graph is shown in the Table 5.1.12 with
nodes 1, · · · , 4 and with edges e1, · · · , e5. The incidence matrix of the
graph is denoted by Iinc(G), with order 4 × 5.

1 4

2 3

e4

e1
e3

e5

e2

Iinc(G) =

e1 e2 e3 e4 e5


-1 0 1 1 0 1
1 -1 0 0 0 2
0 1 -1 0 -1 3
0 0 0 -1 1 4

From the fact that the sum of the rows of Iinc(G) is zero it can only be
concluded that the rank is at most 3, Lemma 5.1.11 indeed shows that is

exactly three because the graph is connected.

There is at least one supply node present in water network, termed as
a reference node. While there is a need to make a node as reference node
another representation is more suitable. That representation is called a
reduced incidence matrix defined as:
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Definition 5.1.13 (Reduced incidence matrix). A matrix Ird(G) is called
reduced incidence matrix, obtained by deleting a row corresponding to
the selected reference node from the incidence matrix Iinc(G). The order
of the matrix Ird(G) is (n − 1) × m for n nodes and m edges.

Observations about reduced incidence matrix

1. If the graph is connected, Ird(G) has full row rank unlike the
incidence matrix Iinc(G) which has the left kernel of dimension 1.
Meaning that on removing one row of the incidence matrix, resulting
matrix will have trivial left kernel .

2. It has analogy to an electric network. The incidence matrix of an
electric network is always reduced by one reference node, which is
called the mass node. The electric potential at the mass node is
fixed. Analogously, the density and the pressure at a supply node is
fixed in the gas or water networks .

3. It is important to know that reference node is not deleted form the
graph. The row corresponding to the reference node is deleted from
the representation. Unlike to incidence matrix by making a node a
reference node sum of each column is not zero in reduced incidence
matrix.

Example 5.1.14. The reduced incidence matrix obtained after taking
node 1 as a reference node is shown in the (5.1).

Ird(G) =

e1 e2 e3 e4 e5 1 -1 0 0 0 2
0 1 1 0 -1 3
0 0 0 1 1 4

(5.1)

In case of the gas and the water network more than one node can
be the mass or supply nodes, keeping in view this, the term modified
incidence matrix is introduced.
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Definition 5.1.15 (Modified incidence matrix). A matrix Imod(G) is
called the modified incidence matrix, of the complete network if in in-
cidence matrix Iinc(G) all the rows corresponds to the supply nodes are
taken as reference nodes are deleted from the representation matrix of
the graph. The resulting matrix after this deletions is called modified
incidence matrix and denoted as Imod(G). Assume ns be number of supply
nodes, therefore order of Imod(G) is (n − ns) × m.

(5.2) showed the the modified incidence matrix obtained after deleting
rows corresponding to node 1 and 4 from incidence matrix.

Imod(G) =

e1 e2 e3 e5( )
1 -1 0 0 2
0 1 -1 -1 3

(5.2)

Remark 5.1.16. In case of reduced incidence matrix of order (n−1)×m

with one node is taken or considered as a reference node and rank of the
matrix will be n − 1 if the graph is connected. For modified incidence
matrix, there will be more than one reference nodes. For ns reference
(supply) nodes the modified incidence matrix will be of order (n−ns)×m,
(n − ns) ≤ m and of rank of n − ns if a graph is connected graph. The
reduced and modified incidence matrix will have trivial left kernel, hence
will have full row rank. In a water network reservoirs are considered as
supply or reference nodes.

Remark 5.1.17. In a modified incidence matrix in a column there may be
two non zero entries 1 and −1 that shows both ends of the corresponding
edge is connected to the junction nodes (other than reference nodes),
for example e2 in (5.2) both ends are connected to node 2 and 3 none
of them is a reference node. Furthermore, exactly one nonzero entry
in the column is due to the fact that one end of the corresponding edge
is connected to the a reference node which is not the part of the matrix
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representation as modified incidence matrix of the graph. For example in
the modified incidence matrix Imod(G) (5.2) the column corresponds to

e1 is
[

1
0

]
; one end of the e1 is connected node 2 and other end of e1 with

node 1. The vertex 1 is not the part of the Imod(G) in (5.2) . Analogously,
this holds for the edge e3 and e5. If all entries in the column is zero
it means both ends of the corresponding edge is connected to reference
nodes (e.g e4)and ommitted from the modified incidence matrix. Also
(Imod(G))⊤ ∈ Rm×(n−ns) also can be written as :

(Imod(G))⊤ =: (Imod(G)l)⊤ + (Imod(G)r)⊤

Remark 5.1.18. The assignment of the left and right nodes of each
branch to the global node numbers may easily described by the incidence
matrices Imod(G)l, Imod(G)r ∈ R(n−ns)×m. Consider assignment of the
left and right node of kth edge in the graph G.

(Imod(G)l)ik =
{

-1, if node i is the left node of edge k

0, otherwise

}

(Imod(G)r)ik =
{

1, if node i is the right node of edge k

0, otherwise

}
additionally, Imod(G) is can be written as:

Imod(G) := Imod(G)l + Imod(G)r ∈ R(n−ns)×m
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Example 5.1.19. The modified incidence matrix (5.2) can be rewritten
as

Imod(G)l =
(

0 -1 0 0
0 0 -1 -1

)

Imod(G)r =
(

1 0 0 0
0 1 0 0

)

It is easy to verfiy the following,

Imod(G) = Imod(G)l + Imod(G)r

Lemma 5.1.20. Consider a modified incidence matrix of a connected
graph Imod(G). Then it has full row rank iff the graph G contains at least
a reference node.

Remark 5.1.21. Lemma 5.1.20 is a direct consequence if facts that is.
Removing one row of the incidence matrix of a connected graph has

full row rank and any subset of linear independent rows is again linear
independent.

5.1.4 Relationship of Iinc(G) and pressure difference
∆P

The pressure difference between two nodes cause a flow through an edge
∀e ∈ E connecting those two nodes. Let P ∈ Rn be the vector of pressure
at the nodes that means, Pi ∈ R describes the pressure at the node i

for ∀i ∈ N. The different representations of graph also used to describe
the pressure difference (∆P )k for kth edge e ∈ E , then (∆P )k can be
expressed as 13] 42].

(∆P )k = Pr(k) − Pl(k) (5.3)
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Where Pr(k) and Pl(k) being the right and left node of the kth edge
e = (i, j), with Pr(k) = Pj and Pl(k) = Pi then (5.3) can be written as

(∆P )k = Pj − Pi ∀k corresponding to the edge e ∈ E (5.4)

Also can be written in terms of the entries of the incidence matrix,

(∆P )k =
n∑

i=1
aikPi ∀k = 1, · · · , m (5.5)

where (∆P )k – pressure drop in branch k; m – number of edges; n – total
number of nodes; aik – element from row i and column k in the incidence
matrix (c.f. 1])

∆P = (Iinc(G))⊤P (5.6)

Remark 5.1.22. Consider modified incidence matrix with m edges and
n nodes, where ns is the number if supply nodes. For P ∈ Rn−ns and
Pi ∈ R, then following will hold

∆P = (Imod(G))⊤P

After brief introduction to graph theory, in next Section mathematical
formulation of the water network is presented. In a water network some
edges are disconnected due to the change in the settings of the control
elements (valve, pumps). This disconnection divides a water network into
some connected components.

5.1.5 Connected components

A connected component of a directed graph G is a set of nodes N′ ⊆ N

such that for every pair of nodes i, j ∈ N′ there is a weak path from i to
j .
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1

2 3 4 5

6

Reference (supply)

e1
e2

e3 e4

e5e6

e7

e8

(a) Connected graph.

1

2 3 4 5

6

Reference (supply)

e1
e2

e3

e5e6

e7

(b) Connected components.

Figure 5.3: Connectivity

In the Figure 5.3(a) a connected graph with a reference (supply)
is shown. In the the Figure 5.3(b) on removal of the edge e4 and e8

results into two components which are internally connected that means
there exists a path from any two nodes in both components.Moreover, a
connected component lost the connection with the reference (supply) node.
Such events in water network may cause inconvenience to the consumer
and effects water supply system. In proposition 5.1.23 an assumption on
the modified incidence matrix is presented which provides a mathematical
framework to avoid such situations.

Lemma 5.1.23. The modified incidence matrix Imod(G) has full row rank
iff each connected component (see definition in 5.1.7 for connectivity)of
the network is connected to at least one reference (supply node).

Proof. Consider a graph G = (N,E) with n nodes and m edges, also
assume ns be number of supply nodes with n − ns ≤ m. The modified
incidence matrix Imod(G) be of order (n − ns) × m. Let G1,G2, · · · ,Gk

be connected components in G. The modified incidence matrix Imod(G)
can be written as:

Imod(G) =


Imod(G1) 0 . . . 0

0 Imod(G2) . . . 0
...

...
. . .

...
0 0 . . . Imod(Gk)

 (5.7)
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(5.7) will have full row rank iff the modified incidence of every connected
component Gi for i = 1, · · · , k has full row rank. To prove this it is to
be shown that the modified incidence matrix of ith connected component
Imod(Gi) has a full row rank if and only if it is connected to at least one
reference node, which is already shown in 5.1.20. The matrix (5.7) is a
block diagonal matrix with all components in the diagonal have full row
rank, then (5.7) has full row rank. This concludes the proof. ■

Remark 5.1.24 (Incidence matrix of cycle graph). A simple directed
cycle (or cycle) in a directed graph is a closed path where all the nodes
i ∈ N are different. In the incidence matrix of such graph, there will be
two non zero entries in each row 58]. Consider the columns of the directed
cycle in a graph is {a1, · · · , an} then choose any arbitrary direction to
traverse a cycle, say clock wise let the corresponding entry in the column
is ai = +1 if the edge ei has same direction and ai = −1 otherwise, hence
it results into the following

1 0 · · · 0 -1
-1 1 · · · 0 0

0 -1
. . . 1 0

...
...

. . .
...

...
0 0 · · · -1 1


.

The reverse direction will result the same .

Example 5.1.25. Consider the graph in the Figure 5.3 there exists a
directed cycle e1, e2, e3, e1 starting traversing from edge e1 then follow
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through e2 then e3 to e1, with incidence matrix:

e1 e2 e3 -1 1 0 1
1 0 -1 2
0 -1 1 3

The directed cycle have exactly two non zero entries in each row 1 and -1.

Lemma 5.1.26. Consider an oriented graph G with modified incidence
matrix Imod(G). Then the columns of Imod(G) are linearly dependent iff
corresponding edges form a cycle in the graph.

Proof. Consider Imod(G) is the modified incidence matrix of the graph
G. Consider C = {c1, · · · , cm} be set of columns. Consider C =
{c̄1, · · · , c̄k} ⊆ C, with k ≤ m. It is to be shown that the set of columns C

are linearly dependent iff subgraph G′ consists of edge set E′ corresponds
to the columns C is a cycle. "=⇒ " Consider C be the set of linearly
dependent columns, meaning that

k∑
l=1

c̄ = 0 (5.8)

(5.8) in turn implies that G′ formed by the columns of C has no row with
odd number of non zero entries. Hence the subgraph G′ has no vertex
of degree one, therefore using the Lemma A.0.11 from Appendix it must
contains a cycle.

"⇐="
Assume G′ formed by the set of edges E′ formed a simple cycle. Then

the columns corresponds to the edge E′ be the incidence matrix of G′,
basically incidence matrix of cycle and then (5.8) holds, since each row
of the incidence matrix of G has exactly two non zero entries −1 and 1.
This completes the proof. ■
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5.2 Mathematical formulation of water net-
work components

In this Section the components of the water network are described in terms
of graph theoretical terms. This description will make general structure
of the water network more readable. It leads towards the mathematical
formulation of the network properties in a unifying language.

5.2.1 Water components: A map to graph theory

The nodes in a water distribution network are typically grouped by sources
(e.g. reservoirs, pipes and storage facilities), control and distribution nodes
(e.g. valves, pipe junctions, pumps). Each node and edge has certain
pressure p = P (ρ) and mass flow q for modeling via PDEs and for DAE
modeling P and Q is used. The components of the water network are as
follows:

A: Pipe: ∀e ∈ Epi where Epi denotes set of the edges which are labeled
as pipes. In graph theoretical sense it is modeled as an edge between
two nodes e = (i, j) with i, j ∈ N as its end points with pressure
denoted Pi and Pj , respectively.

Real pipe

PjPi

kthi = l(k) j = r(k)

Network pipe Pi Pj

Pl(k) Pr(k)

e

Figure 5.4: View of pipe in a network

For PDE modeling, a system of hyperbolic balance laws is used given
in (2.20), the pressure at the end nodes of a pipe are modeled via
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invertible pressure law, p(t, x) = P (ρ(t, x)). The pressure at left is
Pl(k)(t) = Pi(t) and on right of the kth pipe is Pr(k)(t) = Pj(t) for all
pipe edge e ∈ Epi as shown in the Figure 5.4. For DAE modeling over
a network, there is no space coordinate . The dynamics along each
kth pipe edge e ∈ Epi modeled via DAE is mathematically written
by using Quasi stationary model in network is already presented in
the Section 2.4.2. Also each pipe has only one value for the flow
Qk(t) in this model ∀k. Furthermore, with the labeled left and right
end of each pipe (??) can be rewritten as:

dQk

dt
= −ck(Pr(k)(t) + Pl(k)(t)) + g(Qk). ∀e ∈ Epi (5.9)

where ck = Ak

Lk
, with Ak and Lk is the area and length, for every

kth pipe edge e ∈ Epi. The function g(Qk) is the nonlinear friction
of the pipe, and is modeled by the Darcy Weisbach equation see in
Appendix ??.

B: Reservoir A reservoir is termed as a supply node. The set contains
all reservoir nodes is denoted by Nrs ⊆ N with an arbitrary mass
flux (mass flow) but with fixed pressure. In the PDE modeling:
A reservoir modeled via boundary condition, for p(xi, t), where xi

is the location ith reservoir in space. The equation of the reservoir
for PDE model is written as:

pi = P (ρi(t, x = xi)) = Prsi(t) ∀i ∈ Nrs ⊆ N.

DAE modeling
The reservoir equation can be written as an algebraic constraint:

Pi(t) = Prsi(t) for any i ∈ Nrs (5.10)
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for every reservoir i ∈ Nrs there exists a pressure function Prsi(t)
such that (5.10) holds.

C: Junction Formally, junction is defined as a node i ∈ Njc, where
two or more pipes are connected.

i

e1

e2

e3

Figure 5.5: Junction of three edges (pump or pipes)

In case of PDE modeling for each edge k, (pk, qk) is the pressure and
flux along each edge (pipe or pump). For each i ∈ Njc is quipped
with wellposed coupling conditions 1] 44].

(a) Mass conservation: First coupling condition expresses the con-
servation of mass at the junction, that is all the mass from
in-flowing pipes leaves through out-flowing edges. Mathemati-
cally written as for all i ∈ Njc∑

j∈∇−(i)

qj =
∑

j∈∇+(i)

qj (5.11)

similarly, just for the ease in reading consider (Pk, Qk) is pres-
sure and flow for DAE modeling, and mass balance will be:∑

j∈∇−(i)

Qj =
∑

j∈∇+(i)

Qj (5.12)

where ∇+ is the set of edges coming towards the junction i,
and ∇− is the set of edges going away from the junction i.
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(b) Pressure equality: Let there be k edges emerging from a vertex
i ∈ Njc, equipped with the coupling

p1 = p2, · · · , = pk

with pj = P (ρ(t, xj)) for PDE modeling.

D: Valve is a control element which can be opened or closed. In graph
methematical terms it is an edge The right side of edge is denoted
by r(k) and left end of edge l(k), respectively for each kth pipe edge.
In terms of graph theory it is modeled as an edge as shown in the
Figure 5.6.

ji

valve valve

e

Figure 5.6: Valve at the right and left of the kth edgee

There is a valve installed at each end of the pipe edge. The valve
constraints can be written as:

(1 − slk
)qk(t, 0) = slk

(pk(t, 0) − Pi(t)) (5.13)

(1 − srk
)qk(t, Lk) = srk

(pk(t, Lk) − Pj(t)) (5.14)

where plk
(t) = pk(t, 0) = P (ρk(t, 0)) and prk

(t) = pk(t, Lk) =
P (ρk(t, Lk)) for the kth pipe edge e and ∀k. Furthermore, skl

and
skr

denotes the control variable for the valve at left and valve at
right end of the pipe, respectively and can take values as follows:

slk
=


1, the valve at the left of a kth

pipe edge is open
0, otherwise

 (5.15)
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srk
=


1, the valve at the right of a kth

pipe edge is open
0, otherwise

 (5.16)

In case of DAE model, valve is closed only by closing at the right
end of the pipe, meaning that slk

= 1 for all cases and for closing
valve, srk

is used as control variable. Hence on closing srk
= 0 which

equates Qk = 0 (which is same along whole edge e) and for srk
= 1

which will give Pr(k) = Pj and both cases can be combined and
written as in (5.17) , for all e ∈ Epi mathematically written as:

Pi − Pl(k) = 0 (5.17a)

(1 − srk
)Qk − srk

(Pr(k) − Pj) = 0 (5.17b)

Qk(t) is the flow along whole kth pipe edge, that is corresponding
edge e ∈ Epi. Where skr is a control variable defined as (5.16). The
closure of the valve at right end in this case means the flow though
the kth pipe edge will be stopped. In graph theoretical way it means
that the kth edge is deleted from the network graph.

E: Pump is also a control element and it is modeled as an edge between
two pressure nodes in network. When a pump is ON (s̄k = 1), the
characteristic curve of the pump describes the relationship between
the pressure difference across the pump and the flow rate. When
the pump is OFF (s̄k = 1), the flow through the pump is zero. For
kth pump edge e ∈ Epu ∀k that connects nodes i and j with flow
Qk through the pump , the pressure difference across the pump at a
time step can be represented with a polynomial function fpu(Qpu)

Pj − Pi =
{

fpu(Qk) s̄k = 1
unspecified Qk = 0 s̄k = 0

}
(5.18)
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Combining both cases given in (5.18); ∀e = (i, j) ∈ Epu is modeled
as:

(1 − s̄k)Qk + s̄k(Pj − Pi) = s̄kfpu(Qk). (5.19)

In comparison with a pipe, pump have a negligible length and thus
the matter of constant or variable flow in a pump is not encountered.
The flow through a pump is usually restricted in sign that is Qk ≥ 0
31]. ∀e ∈ Epu, ∀k.

All above given components described formulated the equations to model
a network mathematically. Further, the general structure and acceptable
topologies of the water network will be formulated. Usually there are
different coupling conditions can be applied at the junction. For pipe
network under discussion here we need two types of coupling conditions.

5.2.2 Model structure

Consider network with n nodes and m edges, i.e., |E| = m and |N| = n.
Further assume set of edges are divided into the set Epi and Epu, which
denotes set of edges which are pipes and pumps, respectively. Assume m
is the number the edges which are pipes and m̆ are number of edges which
pumps, i.e., m = |Epi| and m̆ = |Epu|. The set of nodes is partitioned into
two parts, Nrs, and Njc with number of nodes, nrs, and njc, respectively
and denotes the set contains reservoir and junction nodes, respectively.
Further n = nrs + njc and m = m + m̆. The overall state vector of this
system description is given by
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x =



Qepi

Qepu

Pl

Pr

Prs

Pjc


x is of dimension Υ = 3m + m̆ + nrs + njc. Further the description of

the variables are as follows,

Qepi =Vector of flows through m pipes.

Qepu =Vector of flow through m̆ pumps.

Pl =Vector of pressure at left end of m pipes

Pr =Vector of pressure at right end of m pipes.

Prs =Vector of pressure at nrs reservoir nodes.

Pjc =Vector of pressure at njc junctions.

Consider the nonlinear DAE for the water network,

Eẋ = Ax + f + g(x) (5.20)
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With the following overall system description can be obtained in terms of
matrix pair E, A ∈ RΥ×Υ

E =

Qepi Qepu Pl Pr Prs Pjc



Ipi 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

A =

Qepi
Qepu

Pl Pr Prs Pjc



0 0 Al Ar 0 0 (5.9)
Ajc

fpi
Ajc

fpu
0 0 0 0 (5.12)

0 0 Av
l 0 Ars

l Ajc
l (5.17a)

Ãcv
r 0 0 Ãv

r Ãrs
r Ãjc

r (5.17b)
0 Ãcv

pu 0 0 Ãrs
pu Ãjc

pu (5.19)
0 0 0 0 Irs 0 (5.10)

(5.21)

g(x) =



-gpi(Qepi)
0
0
0

-Kpugpu(Qepu)
0


f =

[
0(3m+m̆+njc)×1

-f̄nrs×1

]
Kpu = (s̄1, · · · , s̄m)

(5.22)
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For e ∈ Epi gpi(Qepi) =


g1

pi(Q1)
...

gm
pi (Qm)



For e ∈ Epu gpu(Qepu) =


g1

pu(Q1)
...

gm̆
pu(Qm̆)


where gl

pi : R → R is the friction factor lth pipe edge is the nonlinear
friction function for the pipe, also gk

pu : R → R denotes the linear or
nonlinear pump characteristics kth pump edge e ∈ Epu. The vector of
function f̄nrs×1 denotes a vector with the fixed pressures function at each
reservoirs.

Example 5.2.1. This example is given to present the structure of the
general matrix structures for the better understanding.

Reservoir

Reservoir

R1 3

l1 r1

1 2

l2 r2

4 5

r3

l3

r5l5

6

R2

l4

r4

l6

r6

l7 r7

Pipe 1

Pump 1

Pipe 2

Pipe 3

Pipe 5

Pipe 6
Pump 2

Pipe 4

Pipe 7

Figure 5.7: Water network c.f. EPANET example 61]
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Consider E and A in (5.21) with the following block matrices
For the left end of the pipes following blocked matrices are formulated:

Ipi =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



Al =


c1 0 0 0 0 0 0
0 c2 0 0 0 0 0
0 0 c3 0 0 0 0
0 0 0 c4 0 0 0
0 0 0 0 c5 0 0
0 0 0 0 0 c6 0
0 0 0 0 0 0 c7

 Ar =


-c1 0 0 0 0 0 0
0 -c2 0 0 0 0 0
0 0 -c3 0 0 0 0
0 0 0 -c4 0 0 0
0 0 0 0 -c5 0 0
0 0 0 0 0 -c6 0
0 0 0 0 0 0 -c7


Av

l =


-1 0 0 0 0 0 0
0 -1 0 0 0 0 0
0 0 -1 0 0 0 0
0 0 0 -1 0 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 -1 0
0 0 0 0 0 0 -1

 Ars
l =


1 0
0 0
0 0
0 0
0 0
0 0
0 0

 Ajc
l =


0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0


For the right end of the pipes following blocked matrices are formulated:

Av
r =


-sr1 0 0 0 0 0 0

0 -sr2 0 0 0 0 0
0 0 -sr3 0 0 0 0
0 0 0 -sr4 0 0 0
0 0 0 0 -sr5 0 0
0 0 0 0 0 -sr6 0
0 0 0 0 0 0 -sr7

 , Ajc
r =


0 0 sr1 0 0 0
0 sr2 0 0 0 0
0 0 0 sr3 0 0
0 0 0 0 sr4 0
0 0 0 0 sr5 0
0 0 0 0 0 sr6
0 0 0 0 0 0



Acv
r =


1-sr1 0 0 0 0 0 0

0 1-sr2 0 0 0 0 0
0 0 1-sr3 0 0 0 0
0 0 0 1-sr4 0 0 0
0 0 0 0 1-sr5 0 0
0 0 0 0 0 1-sr6 0
0 0 0 0 0 0 1-sr7

 Ar∗

r =


0 0
0 0
0 0
0 0
0 0
0 0
0 sr7


The pump is formulates with the following blocked matrices

Acv
pu =

[
1-s̄1 0

0 1-s̄2

]
Ar∗

pu =
[

0 0
0 0

]
Ajc

pu =
[

s̄1 0 -s̄1 0 0 0
0 0 0 0 s̄2 -s̄2

]
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The modified incidence matrix is partitioned as:

Ajc
fpi

=

 0 -1 -1 0 0 0 0
0 1 0 -1 0 0 0
1 0 0 0 0 0 0
0 0 1 0 -1 -1 0
0 0 0 1 1 0 -1
0 0 0 0 0 1 0

 Ajc
fpu

=

 1 0
0 0
-1 0
0 0
0 1
0 -1


Ajc

f =
[

Ajc
fpi

Ajc
fpu

]
=

 0 -1 -1 0 0 0 0 1 0
0 1 0 -1 0 0 0 0 0
1 0 0 0 0 0 0 -1 0
0 0 1 0 -1 -1 0 0 0
0 0 0 1 1 0 -1 0 1
0 0 0 0 0 1 0 0 -1


Further the reservoir nodes are given in the following matrix

Ir∗ =
[

1 0
0 1

]

The structure of matrices E and A is given as below ,

E=

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0






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A=

0 0 0 0 0 0 0 0 0 c1 0 0 0 0 0 0 −c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c2 0 0 0 0 0 0 −c2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 c3 0 0 0 0 0 0 −c3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 c4 0 0 0 0 0 0 −c4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 c5 0 0 0 0 0 0 −c5 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c6 0 0 0 0 0 0 −c6 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c7 0 0 0 0 0 0 −c7 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1−sr1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −sr1 0 0 0 0 0 0 0 0 0 0 sr1 0 0 0

0 1−sr2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −sr2 0 0 0 0 0 0 0 0 −sr2 0 0 0 0

0 0 1−sr3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −sr3 0 0 0 0 0 0 0 0 0 sr3 0 0

0 0 0 1−sr4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −sr4 0 0 0 0 0 0 0 0 0 −sr4 0

0 0 0 0 1−sr5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −sr5 0 0 0 0 0 0 0 0 sr5 0

0 0 0 0 0 1−sr6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −sr6 0 0 0 0 0 0 0 0 sr6

0 0 0 0 0 0 1−sr7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −sr7 0 sr7 0 0 0 0 0 0

0 0 0 0 0 0 0 1−s̄1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s̄1 0 −s̄1 0 0 0

0 0 0 0 0 0 0 0 1−s̄2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s̄2 −s̄2

0 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0







5.2.3 Structure of the blocked matrices

The matrices Al , Ar ∈ Rm×m consists of the coefficients of Pl(k) and Pr(k)

in the pipe equation (5.9), respectively for kth pipe edge e and e ∈ Epi.
The matrix takes the form:

Al = (c1, · · · , cm) Ar = -Al ∀e ∈ Epi

Further, Ajc
f ∈ Rnjc×m is a matrix constructed from mass balance equa-

tions (5.12) can be written as:

Ajc
f =

[
Ajc

fpi
Ajc

fpu

]
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The matrix Ajc
fpi

is the matrix of the coefficients of the connection of
junction nodes with the pipe edges . The matrix Ajc

fpu
represents the

coefficients of the connection of junction nodes with the pump edges .

Remark 5.2.2. The reservoir (supply) nodes are removed from the
representation of the network topology to get modified incidence matrix.

Av
l is an identity matrix of order m × m consists of the coefficients of

all the equation (5.17a) of the pressure Pl(k), which will be identity, that
is

Av
l = −I

I denoted identity matrix . The matrix of coefficients of the Pi in (5.17a)
is denoted as three different matrices namely, Ars

l and Ajc
l with following

matrices structure:

1. The matrix Ars
l of order m × nrs consists of 1 or 0, each entry

al(k)i ∈ Ars
l is formulated as:

al(k)i =


1, left end l(k) of the kth pipe

is connected to node i ∈ Nrs

0, otherwise


2. The matrix Ajc

l of order m × njc consists of 1 or 0, each entry
al(k)i ∈ Ajc

l formulated as under:

al(k)i =


1, left end l(k) of the kth pipe

is connected to node i ∈ Njc

0, otherwise


Similarly, for the matrices Ãcv

r , Ãv
r , Ãrs

r and Ãjc
r denotes the coefficients of

(5.17b). The matrices are defined as:
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1. The matrix Ãcv
r of order m × m consists of matrix of coefficients of

Qk in (5.17b), for the closing of pipe at the right formulated as:

Ãcv
r = (1 − sr1 , · · · , 1 − srm)

2. Ãv
r is a matrix of order m × m consists of the coefficients of Pr(k)

in (5.17b) formulated as

Ãv
r = −(sr1 , · · · , srm) = I − K2

pi

where K2
pi = (sr1 , · · · , srm), contains control variables for each pipe.

3. The matrix Ãr∗

r of order m × nrs is the coefficients of Pj , in (5.17b),
each entry ar(e)i ∈ Ãrs

r is characterised as under:

ar(k)i =


srk

, right end r(k) of the kth pipe
is connected to node i ∈ Nrs

0, otherwise


4. The matrix Ãjc

r of order m × njc is the coefficients of Pj , the entries
of the matrix formulated as under:

ar(k)i =


srk

, right end r(k) of the kth pipe
is connected to node i ∈ Njc

0, otherwise


where control variable srk

is defined in (5.16).

Furthermore, the coefficient matrices of the pump equation (5.19) are
denoted as Ãcv

pu, Ãrs
pu and Ãjc

pu, for ek = (i, j), for all ek ∈ Epi and can be
given as:

1. The matrix Ãcv
pu is of order m̆ × m̆ and consists of coefficients Qk

showing, the pump on or shutoff equation (5.19) can be written as
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a following diagonal matrix

Ãcv
pu = (1 − s̄1, · · · , 1 − s̄m̆)

2. The matrix Ãrs
pu is of order mpu × nrs matrix and has structure :

aki =


s̄k, kth pump edge is going towards node i ∈ Nrs

-s̄k, kth pump edge is away from node i ∈ Nrs

0, otherwise


for all aki ∈ Ãrs

pu.

3. Finally the matrix Ãjc
pu is of order m̆ × njc with structure given as:

aki =


s̄k, kth pump edge is going towards node i ∈ Njc

-s̄k, kth pump edge is away from node i ∈ Njc

0, otherwise


for every aki ∈ Ãjc

pu where s̄k is defined as follows:

s̄k =
{

1, kth pump is on
0, kth pump is shutdown

}

5.3 Solvability of water network nonlinear
DAE

In the Section 5.2 the structure of matrix pair (E, A) of a general water
network is presented. Further to check whether the solution of the general
nonlinear DAE (5.20) exist or not . For this purpose first regularity of
matrix pair (E, A) is checked, which leads to some further assumptions
on the topology of the water network. In order to show the regularity of
the matrix pair (E, A) it needs to be shown that, det(A − θE) ̸≡ 0 . First
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(A − θE) is calculated as follows;

G[θ] := A-θE =



θIpi 0 Al Ar 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

0 0 Av
l 0 Ars

l Ajc
l

Ãcv
r 0 0 Ãv

r Ãrs
r Ãjc

r

0 Ãcv
pu 0 0 Ãrs

pu Ãjc
pu

0 0 0 0 Irs 0


∈ RΥ×Υ[θ] (5.23)

with Υ = 3m + m̆ + nrs + njc some simplifications will be done, for the
sake of further investigation on the structure of the matrix.

1. Consider the following invertible transformation matrix,

Ū1 =



Im 0 0 0 0 0
0 Injc 0 0 0 0
0 0 Im 0 0 -Ars

l

0 0 0 Im 0 -Ars
r

0 0 0 0 Im -Ars
pu

0 0 0 0 0 Irs


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such that

= Ū1G[θ]

=


Im 0 0 0 0 0
0 Injc 0 0 0 0
0 0 Im 0 0 -Ars

l

0 0 0 Im 0 -Ars
r

0 0 0 0 Im -Ars
pu

0 0 0 0 0 Irs





θIpi 0 Al Ar 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

0 0 Av
l 0 Ars

l Ajc
l

Ãcv
r 0 0 Ãv

r Ãrs
r Ãjc

r

0 Ãcv
pu 0 0 Ãrs

pu Ãjc
pu

0 0 0 0 Irs 0



=



θIpi 0 Al Ar 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

0 0 Av
l 0 0 Ajc

l

Ãcv
r 0 0 Ãv

r 0 Ãjc
r

0 Ãcv
pu 0 0 0 Ãjc

pu

0 0 0 0 Irs 0


:= G1[θ]

2. Assume K1
pi = diag(c1, · · · , cm) ∈ Rm×m

+ , where ci = Ai

Li
> 0 ∀i,

where Ai and Li denotes the area and lenght of the pipe, respec-
tively. By construction Al = K1

piA
v
l , discussed in the Section 5.2.3.

Consider the invertible transformation matrix Ū2

Ū2 =



Im 0 -K1
pi 0 0 0

0 Injc 0 0 0 0
0 0 Im 0 0 0
0 0 0 Im 0 0
0 0 0 0 Im 0
0 0 0 0 0 Irs


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such that

= Ū2G1[θ]

=


Im 0 -K1

pi 0 0 0
0 Injc 0 0 0 0
0 0 Im 0 0 0
0 0 0 Im 0 0
0 0 0 0 Im 0
0 0 0 0 0 Irs





θIpi 0 Al Ar 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

0 0 Av
l 0 0 Ajc

l

Ãcv
r 0 0 Ãv

r 0 Ãjc
r

0 Ãcv
pu 0 0 0 Ãjc

pu

0 0 0 0 Irs 0



=



θIpi 0 0 Ar 0 K1
pi

Ajc
fpi

Ajc
fpu

0 0 0 0
0 0 Av

l 0 0 Ajc
l

Ãcv
r 0 0 Ãv

r 0 Ãjc
r

0 Ãcv
pu 0 0 0 Ãjc

pu

0 0 0 0 Irs 0


:= G2[θ]

3. K2
pi = (s1, · · · , sm) ∈ Rm×m

+ and by the construction the invertible
transformation matrix

Ū3 =



Im 0 0 0 0 0
0 Injc 0 0 0 0
0 0 Im 0 0 0

K2
pi 0 0 -K1

pi 0 0
0 0 0 0 Im 0
0 0 0 0 0 Irs


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such that

= Ū3G2[θ]

=


Im 0 0 0 0 0
0 Injc 0 0 0 0
0 0 Im 0 0 0

K2
pi 0 0 -K1

pi 0 0
0 0 0 0 Im 0
0 0 0 0 0 Irs





θIpi 0 Al Ar 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

0 0 Av
l 0 0 Ajc

l

Ãcv
r 0 0 Ãv

r 0 Ãjc
r

0 Ãcv
pu 0 0 0 Ãjc

pu

0 0 0 0 Irs 0



=



θIpi 0 0 Ar 0 K1
piA

jc
l

Ajc
fpi

Ajc
fpu

0 0 0 0
0 0 Av

l 0 0 Ajc
l

¯̄Acv
r 0 0 0 0 K1

piK
2
pi(Ajc

r − Ajc
l )

0 Ãcv
pu 0 0 0 Ãjc

pu

0 0 0 0 Irs 0


:= G3[θ]

4.

Ū4 =



0 0 0 Im 0 0
0 0 0 0 Im 0
0 Injc 0 0 0 0

Im 0 0 0 0 0
0 0 Im 0 0 0
0 0 0 0 0 Irs


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such that

= Ū4G3[θ]

=


0 0 0 Im 0 0
0 0 0 0 Im 0
0 Injc 0 0 0 0

Im 0 0 0 0 0
0 0 Im 0 0 0
0 0 0 0 0 Irs




θIpi 0 0 Ar 0 K1
piA

jc
l

Ajc
fpi

Ajc
fpu

0 0 0 0

0 0 Av
l 0 0 Ajc

l
¯̄Acv

r 0 0 0 0 K1
piK

2
pi(Ajc

r −Ajc
l

)

0 Ãcv
pu 0 0 0 Ãjc

pu

0 0 0 0 Irs 0



=



¯̄Acv
r 0 0 0 0 K1

piK
2
pi(Ajc

r − Ajc
l )

0 Ãcv
pu 0 0 0 Ãjc

pu

Ajc
fpi

Ajc
fpu

0 0 0 0
θIpi 0 0 Ar 0 K1

piA
jc
l

0 0 Av
l 0 0 Ajc

l

0 0 0 0 Irs 0


:= G4[θ]

Hence the transformation matrix can be written as U written as

U = Ū4Ū3Ū2Ū1

U is invertible as it is product of three invertible matrices and further
G[θ] and G4[θ] are related as follows;

UG[θ] = G4[θ] (5.24)

Also due to invertibility of U (5.24) can be written as (5.25) ;

G[θ] = (U)-1G4[θ] (5.25)

Observation 5.3.1. Using (5.25) ; for the matrix G[θ] ∈ RΥ×Υ[θ] to be
invertible it is sufficient to show that G4[θ] ∈ RΥ×Υ is invertible.
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Further consider

G4[θ] =



¯̄Acv
r [θ] 0 0 0 0 K1

piK
2
pi(Ajc

r − Ajc
l )

0 Ãcv
pu 0 0 0 Ãjc

pu

Ajc
fpi

Ajc
fpu

0 0 0 0
θIpi 0 0 Ar 0 K1

piA
jc
l

0 0 Av
l 0 0 Ajc

l

0 0 0 0 Irs 0


(5.26)

where,

Ãjc
r = K2

piA
jc
r

Ãjc
pu = KpuAjc

pu Kpu = (s̄1, · · · , s̄mpu)
¯̄mcv

r [θ] = (c1(1 − sr1) + θsr1 , · · · , cm(1 − srm) + θsrm

Ãcv
pu = (1 − s̄1, · · · , 1 − s̄m̆)

On interchanging column 3 and column 6 the resulting matrix is;

G5[θ] =



¯̄Acv
r [θ] 0 K1

piK
2
pi(Ajc

r − Ajc
l ) 0 0 0

0 Ãcv
pu 0 Ãjc

pu 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

θIpi 0 K1
piA

jc
l Ar 0 0

0 0 Ajc
l 0 0 Av

l

0 0 0 0 Irs 0


where

Kpi = K1
piK

2
pi,

= (c1, · · · , cm)(sr1 , · · · , srm),

= (c1sr1 , · · · , cmsrm) (5.27)
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The following partitioning of (5.26) is obtained

G5[θ] =



¯̄Acv
r [θ] 0 Kpi(Ajc

r − Ajc
l ) 0 0 0

0 Ãcv
pu KpuAjc

pu 0 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

θIpi 0 K1
piA

jc
l 0 0 Ar

0 0 Ajc
l 0 Av

l 0
0 0 0 Irs 0 0


(5.28)

by using (5.3) , following substitutions can be made

(Ajc
fpi

)⊤ = Ajc
r -Ajc

l

For an edge e ∈ Epu, by using (5.4) following can be written

KpuAjc
pu = Kpu(Ajc

fpu
)⊤

it is due to the fact each pump edge also has a left and right node; as it
is a directed edge. By summing up the above simplifications, (5.28) can
be read as:

G5[θ] =



¯̄Acv
r [θ] 0 Kpi(Ajc

fpi
)⊤ 0 0 0

0 Ãcv
pu Kpu(Ajc

pu)⊤ 0 0 0
Ajc

fpi
Ajc

fpu
0 0 0 0

θIpi 0 K1
piA

jc
l 0 0 Ar

0 0 Ajc
l 0 Av

l 0
0 0 0 Irs 0 0


(5.29)

Further denote the partitions of the matrix (5.29)

G5[θ] =
[

G51[θ] 0

G52 G53

]
(5.30)
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where

G52[θ] =

θIpi 0 K1
piA

jc
l

0 0 Ãjc
l

0 0 0

 G53 =

 0 0 Ar

0 Av
l 0

Irs 0 0

 (5.31)

Remark 5.3.2. The matrix G5[θ] is invertible if and only if G53 ∈
R(2m+nrs)×(2m+nrs) and G51[θ] ∈ R(m+m̆+njc)×(m+m̆+njc)[θ] is invertible.

In order to show G53 is invertible:
Consider

G53 =

 0 0 Ar

0 Av
l 0

Irs 0 0


By construction Av

l ∈ Rm×m is identity matrix, Ar ∈ Rm×m is a diago-
nal matrix. The matrix Irs ∈ Rnrs×nrs is identity matrix. They are all
invertible which results into the invertibility of G53.

Observation 5.3.3. G5[θ] ∈ RΥ×Υ is invertible iff
G51[θ] ∈ R(m+m̆+njc)×(m+m̆+njc)[θ] is invertible.

Further consider for some simplifications

G51[θ] =


¯̄Acv

r [θ] 0 Kpi(Ajc
fpi

)⊤

0 Ãcv
pu Kpu(Ajc

fpu
)⊤

Ajc
fpi

Ajc
fpu

0

 (5.32)
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K1
pi ∈ Rm×m and Kpi ∈ Rm×m diagonal matrices can be partitioned into

open and closed valves (edges) as;

K1
pi =

[
(K1

pi)op 0
0 (K1

pi)cl

]
Kpi =

[
Kop

pi 0
0 Kcl

pi

]

Kpu =
[

Kop
pu 0
0 Kcl

pu

]

where

(K1
pi)op ∈ Rmop×mop

+ , and (K1
pi)cl ∈ Rmcl×mcl

+

(Kpi)op ∈ Rmop×mop
+ and (Kpi)cl ∈ Rmcl×mcl

+ ,

Kop
pu ∈ Rm̆op×m̆op

+ and Kcl
pu ∈ Rm̆cl×m̆cl

+ .

Split (5.32) into close and open valve and pumps, (5.32) takes the form

G51[θ] =


( ¯̄Acv

r )op[θ] 0 0 0 Kop
pi (Ajc

fpi
)⊤
op

0 ( ¯̄Acv
r )cl 0 0 Kcl

pi(A
jc
fpi

)⊤
cl

0 0 (Ãcv
pu)op 0 Kop

pu(Ajc
fpu

)⊤
op

0 0 0 (Ãcv
pu)cl Kop

cl (Ajc
fpu

)⊤
cl

(Ajc
fpi

)op (Ajc
fpi

)cl (Ajc
fpu

)op (Ajc
fpu

)cl 0


(5.33)

Investigating the structure in further detail,

¯̄Acv
r [θ] = (c1(1 − sr1) + θsr1 , · · · , cm(1 − srm) + θsrrm

) (5.34)
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it can be divided into closed srk
= 0 and open valve srk

= 1 for any pipe
k for all ek ∈ Epi

¯̄Acv
r [θ] =

[
( ¯̄Acv

r )op[θ] 0
0 ( ¯̄Acv

r )cl

]

Assume mop be number of open valve and mcl are closed for all
pipe edges e ∈ Epi. Relabel and reordering the the open pipe edges as
1, · · · , mop and closed pipe edges are mop + 1, · · · , mcl in the way that
first writing open and closed edges. First substitute srk

= 1 in (5.27) and
then (5.34), that will results into the following

( ¯̄Acv
r )op = (θ, · · · , θ · · · θ)mop ∈ Rmop×mop [θ]

(K1
pi)cl = (cmop+1, · · · , cmcl) ∈ Rmcl×mcl . (5.35)

where Kop
pi ∈ Rmop×mop is the diagonal matrix with the ci’s corresponding

to open pipe edges. On substituting srk
= 0 in (5.27) for closed pipes j

the following will be found

( ¯̄Acv
r )cl = (K1

pi)cl Kcl
pi = 0mcl×mcl Kcl

pi(A
jc
fpi

)⊤ = 0njc×mcl

Similarly for Ãcv
pu

Ãcv
pu =

[
Kop

pu(Ãcv
pu)op 0

0 Kcl
pu(Acv

pu)cl

]

On substituting s̄k = 1 for working pumps k the following will be obtained

(Ãcv
pu)op = (0, · · · , 0) ∈ Rm̆op×m̆op

Kop
pu = Im̆op , Kop

pu(Ajc
fpu

)⊤
op = (Ajc

fpu
)⊤
op (5.36)
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On substituting s̄k = 0 for shutdown pumps ek the following will be found

(Ãcv
pu)cl = (1, · · · , 1) ∈ Rm̆cl×m̆cl

Kcl
pu = 0m̆cl×m̆cl Kcl

pu(Ajc
fpu

)⊤
op = 0(njc×m̆cl) (5.37)

where op denotes open, and cl denotes close edges via using valves in pipe
or open or closed edges corresponding to the pump settings. That is mop

and mcl denotes the number of pipe edges open and closed, respectively.

G31[θ] =


θImop 0 0 0 Kop

pi (Ajc
fpi

)⊤
op

0 (K1
pi)clI 0 0 0

0 0 0 0 (Ajc
fpu

)⊤
op

0 0 0 I 0
(Ajc

fpi
)op (Ajc

fpi
)cl (Ajc

fpu
)op (Ajc

fpu
)cl 0


(5.38)

further an invertible transformation matrix ¯̄U

¯̄U =


Imop 0 0 0 0

0 Imcl 0 0 0
0 0 Im̆cl 0 0
0 0 0 Injc 0
0 -(Ajc

fpi
)cl((K1

pi)cl)-1 0 -(Ajc
fpu

)cl Im̆cl


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such that

= ¯̄UG51[θ]

=


Imop 0 0 0 0

0 Imcl 0 0 0
0 0 Im̆cl 0 0
0 0 0 Injc 0
0 -(Ajc

fpi
)cl((K1

pi)cl)-1 0 -(Ajc
fpu

)cl Im̆cl

×


θImop 0 0 0 Kop

pi (Ajc
fpi

)⊤
op

0 (K1
pi)cl 0 0 0

0 0 0 0 (Ajc
fpu

)⊤
op

0 0 0 I 0
(Ajc

fpi
)op (Ajc

fpi
)cl (Ajc

fpu
)op (Ajc

fpu
)cl 0



=


θImop 0 0 0 Kop

pi (Ajc
fpi

)⊤
op

0 (K1
pi)cl 0 0 0

0 0 0 0 (Ajc
fpu

)⊤
op

0 0 0 Ijc 0
(Ajc

fpi
)op 0 (Ajc

fpu
)op 0 0


By using Laplace formula see row 2 and column 2 and row 4 and column 4
are discarded from (5.33), and it takes the form

G51[θ] =

 θImop 0 (Kop
pi )(Ajc

fpi
)⊤
op

0 0 (Ajc
fpu

)⊤
op

(Ajc
fpi

)op (Ajc
fpu

)op 0

 (5.39)

On substitution from (5.35) and (5.36) in (5.39). Only the edges cor-
responding to which valves are open in pipe edge and pumps are open
(working pump) are considered.

G51[θ] =

θImop 0 K̂pi(Âjc
fpi

)⊤

0 0 (Âjc
fpu

)⊤

Âjc
fpi

Âjc
fpu

0

 (5.40)
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where

K̂pi := (Kop
pi ) ∈ Rmop×mop ,

Âjc
fpi

:= (Ajc
fpi

)op ∈ Rnjc×mop

Âjc
fpu

:= (Ajc
fpu

)op ∈ Rnjc×m̆op

Observation 5.3.4. The matrix G51[θ] ∈ R(m+m̆+njc)×(m+m̆+njc)[θ] has
full rank iff G51[θ] ∈ R(mop+m̆op+njc)×(mop+m̆op+njc)[θ] has full rank.

Now before presenting the main theorem on the characterisation of the
regularity of the matrix pair E, A the motivation for these assumptions
will be presented. These assumptions are also physically motivated for
the regularity along with mathematical importance.

Motivation for the assumptions on the network topologies:
Consider (5.40) from the row 3 and column 2 the basic conditions for the
regularity are clear and are explained in following Remark 5.3.5.

Remark 5.3.5 (Cycles of pumps ). It is clear that if the columns of Âjc
fpu

∈
Rnjc×m̆op are linearly dependent that will implies the rank deficiency of
(5.40). A Lemma 5.1.26 is presented to make graph topological relation
of the full column rank to avoid this situation. By same arguments the
full row rank of

Âjc
f =

[
Âjc

fpi
Âjc

fpu

]
∈ Rnjc×mop

is required otherwise the matrix will rank deficient. Hence not regular.

Furthermore, the Corollaries 5.3.6 and 5.3.7 are presented to illustrate
the topological network for the assumptions to ensure the regularity of
the water network.

Corollary 5.3.6 (Corollary to the Lemma 5.1.26). The matrix Âjc
fpu

∈
Rnjc×m̆op have full column rank iff there exists no pumps working in a
cycle.
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Proof. The columns of Âjc
fpu

represents the edges which are pumps. Then
the linear dependence of the column of Âjc

fpu
will imply the existence of

the cycle (loop) of the edges representing pumps. Using Lemma 5.1.26
the proof concluded. ■

Corollary 5.3.7 (Corollary to the Lemma 5.1.23). The modified incidence
matrix Âjc

f ∈ Rnjc×mop has full row rank iff each connected component is
connected to a supply node ( reservoir).

Proof. By the definition of modified incidence matrix 5.1.15, all supply
nodes (reference nodes) are deleted from the incidence matrix. The
reservoir nodes are omitted from the description given in the Section 5.2.3.
Then every column in modified incidence matrix representing the edge
whose one end is connected to a reservoir node contains only one non zero
entry. The matrix Âjc

f is the modified incidence matrix will be of full row
rank of it is connected to at least one reservoir (reference) node. By the
same arguments used in the Lemma 5.1.23 concludes the proof. ■

In the next theorem the characterisation of the regularity of the general
water network DAE is presented.

Theorem 5.3.8 (Regularity characterisation of water network
DAE (5.20)). Consider the general structure of water network described
by nonlinear DAE (5.20) with

(1) n = njc + nrs, where n are total number of nodes with njc junction
and nrs reservoir nodes,

(2) m = m + m̆ with m edges out of which m are pipes and m̆ pumps,

(3) mop = mop + m̆op, where mop, m̆op denotes open pipes (not closed
via valve) and open pumps (not shutdown), respectively.

Then the matrix pairs (E, A) of the system (5.21) is regular iff the following
assumptions hold true;
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(C-I): The matrix Âjc
fpu

∈ Rnjc×m̆op have full column rank; that is there
exists no cycle of pumps in the network.

(C-II): The modified incidence matrix Âjc
f =

[
Âjc

pi Âjc
pu

]
∈ Rnjc×mop have

full row rank meaning that, each connected component of the network
is connected to a supply node (reservoir).

Proof. By the observations 5.3.1, 5.3.3 and 5.3.4 it is sufficient to show
that G51[θ] has full rank iff assumptions C-I and C-II holds true.

First assume that the matrix pair (E, A) is regular. Then it is to be
shown that the assumptions C-I and C-II holds true.

By the regularity of the matrix pair (E, A) it means that the matrix
G51[θ] has full rank. On contrary assume the assumptions C-I and C-II
do not hold true that is ; there exists a cycle of pump in the network ;
Ajc

pu does not have full column rank. It implies the column 0
0

Âjc
pu


is the blocked columns which are linearly dependent. Hence G51[θ]
does not has full rank. The matrix pair (E, A) is not regular which is
contradiction to the assumptions. Hence C-I holds true. For analogous
reason also Condition C-II is fulfilled.
Assume now, that Condition C-I and C-II are fulfilled. Schur’s complement
theorem ensures that G51[θ] given as follows;

G51[θ] =

θImop 0 K̂pi(Âjc
fpi

)⊤

0 0 (Ajc
fpu

)⊤

Âjc
fpi

Ajc
fpu

0

 ∈ RΥpi×Υpi [θ]
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with Υpi = mop + m̆op + njc is invertible iff the schur complement of
G31[θ] with respect to θIop defined as follows is invertible.[

0 (Âjc
fpu

)⊤

Âjc
fpu

0

]
− 1

θ

[
0

Âjc
fpi

] [
0 K̂pi(Âjc

fpi
)⊤
]

=
[

0 (Âjc
fpu

)⊤

Âjc
fpu

1
θ Âjc

fpi
K̂pi(Âjc

fpi
)⊤

]
(5.41)

Now it remained to show
[

0 (Âjc
fpu

)⊤

Âjc
fpu

1
θ Âjc

fpi
K̂pi(Âjc

fpi
)⊤

]
have full rank.

Denote

M(ϑ) =
[

0 (Âjc
fpu

)⊤

Âjc
fpu

1
ϑ Âjc

fpi
K̄pi(Âjc

fpi
)⊤

]
ϑ ∈ (0, ∞)

As M has full rank iff UM have full rank, where U is the invertible
transformation matrix.

For the matrix U give as;

U =
[

Im̆op 0
1
ϑ Âjc

fpu
Injc×njc

]

Such that

UM =
[

0 (Âjc
fpu

)⊤

Âjc
fpu

1
ϑ (Âjc

fpi
K̂pi(Âjc

fpi
)⊤ + Âjc

fpu
(Âjc

fpu
)⊤)

]
(5.42)

Further the following is true as well;

Âjc
fpi

K̄pi(Âjc
fpi

)⊤ + Âjc
fpu

(Âjc
fpu

)⊤

=
[
Âjc

fpi
Âjc

fpu

] [K̂pi 0
0 Im̆op

][
(Âjc

fpi
)⊤

(Âjc
fpu

)⊤

]
(5.43)
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where LK =
[

K̂pi 0
0 Im̆op

]
which is a diagonal matrix with positive entries,

hence positive definite by using the Lemma A.0.15.
Further by assumption (C-II) Âjc

f =
[
Âjc

fpi
Âjc

fpu

]
have full row rank.

Hence (5.43) have full rank by using A.0.16 Âjc
f LK(Âjc

f )⊤ have full rank
since LK is positive definite diagonal matrix and B has full rank (row
rank) by assumption C-II. Hence (5.42) can be rewritten as;

UM =
[

0 (Âjc
fpu

)⊤

Âjc
fpu

1
ϑ Âjc

f LK(Âjc
f )⊤

]

UM have full rank if and only of UM have trivial kernel.

Indeed

Consider x ∈ Rm̆×1 ̸= 0, y ∈ Rnjc×1 ̸= 0 and UMz = 0 where z =
[

x

y

]
then [

0 (Âjc
fpu

)⊤

Âjc
fpu

1
ϑ Âjc

f LK(Âjc
f )⊤

][
x

y

]
= 0,

(Âjc
fpu

)⊤y = 0, (5.44)

Âjc
fpu

x + 1
ϑ

Âjc
f LK(Âjc

f )⊤y = 0 (5.45)

From (5.45)

Âjc
fpu

x = 1
ϑ

Âjc
f LK(Âjc

f )⊤y

y = 1
ϑ

(Âjc
f LK(Âjc

f )⊤)-1Âjc
fpu

x (5.46)
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substitute (5.46) into (5.44) this result into the following

1
ϑ

(Âjc
fpu

)⊤(Âjc
f LK(Âjc

f )⊤)-1Âjc
fpu

x = 0, (5.47)

Further Âjc
f LK(Âjc

f )⊤ is positive definite hence invertible. Further inverse
of a positive definite matrix is positive definite. Also using the Lemma
A.0.16 (Âjc

fpu
)⊤(Âjc

f LK(Âjc
f )⊤)-1Âjc

fpu
is positive definite hence invertible.

Since (Âjc
f LK(Âjc

f )⊤)-1 is positive definite, being inverse of a positive
definite matrix. Also Âjc

fpu
has full rank (column rank) by assumption C-I.

Also M is invertible the for invertible transformation matrix Ū ; ŪM is
invertible, as product of two invertible matrices is again invertible.
Hence from (5.47)

x = 0

due to the positive definiteness. Hencethe invertibility of the matrix
(Âjc

fpu
)⊤(Âjc

f LK(Âjc
f )⊤)-1Âjc

fpu
and ϑ ̸= 0. Further from (5.46)

y = 0

Hence the matrix UM have full rank as z = 0 shows it has trivial kernel.
Hence M is invertible for all ϑ ∈ (0, ∞) for invertible transformation
matrix Ū . The matrix G51[θ] have full rank. If there doest not exist a
cycle of pumps in the network and each connected component is connected
to the supply node.

Hence G[θ] is invertible that. Hence the matrix pair (E, A) is regular.
■

The matrix G[θ] has full rank. Hence the system (5.21) is regular.

Example 5.3.9. This example is presented to show in which cases as-
sumption C-II will not hold.
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1

2 3 4 5

6

Reference (supply)

e1
e2

e3 e4

e5e6

e7

e8

Figure 5.8: The matrix G violates C-II

Âjc
f (G) =

e1 e2 e3 e5 e6 e7


1 0 -1 0 0 0 2
0 -1 1 0 0 0 3
0 0 0 0 -1 -1 4
0 0 0 -1 0 1 5
0 0 0 1 1 0 6

Consider the edge e4 and e8 are shown dotted to represent that the
flow through them is zero because of closing of valves at the right ends of
both of them. The matrix does not has full row rank as the component
does not have full row rank. Hence C-II will not hold.

Example 5.3.10. This example is shown to give a clear view of the
assumption C-I

R1 1 R22

3

epi1 epi2

epu1

epu3
epu2

Figure 5.9: The matrix G violates C-I
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Âjc
fpu

(G) =

epu1 epu2 epu3 -1 -1 0 1
0 -1 1 2
0 1 -1 3

The matrix for open (working) pumps is denoted as Âjc
fpu

(G). The rank of
the matrix Âjc

fpu
(G) is not full. Hence C-I does not hold.

Existence and uniqueness of the solution of
(5.20)

(R) The regularity assumption of the Theorem 3.4.6 holds true if the
network topology satisfies the assumption in the Theorem 5.3.8.

(G) Consider following choice of M and cN given as:

M =
[ Impi 0mpi×m̆ 0mpi×mpi 0mpi×nr∗ 0mpi×njc

0m̆×mpi Im̆ 0m̆×mpi 0m̆×nrs 0m̆×njc

]
N =

[ Im 0
0 0
0 0
0 Im̆
0 0

]

with M ∈ R(m+m̆)×(3m+m̆+nr∗ +njc)

and N ∈ R(m+m̆)×(3m+m̆+nr∗ +njc)
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To check the assumption (G): it is clear for the above choice of
M, N the following holds

g(x) =



-gpi(Qepi)
0
0
0

-Kpugpu(Qepu)
0


Mx =

[
Qepi

Qepu

]

ḡ(Mx) =
[

-gpi(Qepi)
-Kpugpu(Qepu)

]
g(x) = N ḡ(Mx)

for above choice of M and N assumption (G) holds.

(M) Further assumption (M) of the Theorem 3.4.6 is check. That is

MEimp = 0

hold true. Where Eimp = T

[
0 0
0 N

]
T -1. Where T is a transforma-

tio matrix.

(N) Further assumption (N) of the Theorem 3.4.6 will be checked. The
following condition hold true when there is no nonlinearity of the
pump that is Kpu = 0

im(N ) ⊆ im(E)

On the other hand if Kpu ̸= 0 then there may exist a pump nonlinear-
ity (in case of nonlinear pump characteristics) then the assumption
im(N ) ⊆ im(E) can be relaxed and Remark (N) in 3.4.8 can be
utilised.
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(F) f is induced by piecewise-smooth function. As usually f̄ usually
denotes constant and pressure or smoothly changed pressure or
demand, that is f̄ ∈pwC∞ .

(S) In order to show that the function g(x) is locally Lipschitz. As
-gpi(Qepi) is locally Lipschitz.

Hence for there exist a local solution for (5.21) . For the global solution
the condition ∞p should be checked, which extend this to the switched
nonlinear DAEs. This will hold just by restricting the nonlinearities for
the pump characteristics. In case of linear pump characteristic it will hold
true. For the pipe friction nonlinearity ∞p will hold true.

5.4 Summary

In nut shell in this chapter a general structure of a water network is
constructed. Further a theorem is presented according to which under two
assumptions on the network topology and networ connectivity the matrix
pair for general water network is regular. Further more the physical
relavence of these assumptions is presented.





Chapter 6

Application to further
water networks

A water network consist of multiple pipes, pumps and reservoirs. The
closure of valves installed at different locations may generate different
kind of network topologies due to origination of the connected compo-
nents. Therefore it is important to testify the mathematical theory of
wellposedness presented in the Chapter 3 and in the Chapter 5. For this
purpose some sample networks are presented. These networks are taken
from EPANET sample networks with some modifications, and are used
for modeling and testing of water networks. Furthermore the resulting
Figures found via simulating PDE model of the respective network and
results got by its modeling via proposed framework of switched DAEs are
compared quantitatively or quantitatively (in some cases) .
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6.1 Transient: Pump shutdown

Instantaneous pump shutdown in a water network can cause hydraulic
transients (pressure surge) and may cause ruptures in the pump casings
(entrance segment of the pump device) 3]. This transient is presented
on a simple example of a water network shown in Figure 6.1 and 6.2 for
PDE and switched DAE modeling, respectively. It is important to recall
that both of the network setups are same in all aspects and just drawn
twice to show how this network may look in real, and realised as a graph
(network) . The motivations behind constructing this example network
with pump are :

1. To present a qualitative comparison of the PDE and switched DAE
modeling for water hammer caused by the sudden pump shutdown.

2. In the solution theory of switched nonlinear DAE condition (N)
of Theorem 3.4.6 does not hold for a mode in this example, but
solution can be found by using the relaxed condition in the Remark
(N) in Remarks 3.4.8.

The pump edge of negligible length e = (f, b) is modeled via the
following nonlinear expression, see e.g. 42] or 55, Sec. 3.2]:

Mode-1: Pb − Pf = gpu(Qpu), (6.1)

Mode-2: Qpu = 0, (6.2)

where Qpu denotes the flow through the pump and gpu(Qpu) is the linear
or nonlinear pump characteristics. The equations modeling both modes
(6.1) and (6.2) are combined in via control variable spu as (6.3).

(1 − spu)Qpu + spu(Pb − Pf − aQd
pu) = 0 (6.3)
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PU

PD

⊗Pipe1 (J)
pump

Pipe2

0 L1 0 L2

Figure 6.1: Pump setup with two
pipes PDE.
Reservoir 1 Reservoir 2

R1

l1 r1

f b R2

r2l2

Pump (J)
Pipe−1 Pipe−2

Figure 6.2: Realisation of network
with two pipe and pump.

where the decision variable spu is defined as

spu =
{

1, pump is working
0, pump shutdown

}

6.1.1 PDE model

Consider the network of two pipes and, a pump is installed at the junction
J of two pipes. The PDE model of the network shown in the Figure 6.1
is modeled as follows:

1. Pipe 1 Assume x ∈ [0, L1] and t ∈ [0, T ] . Further assume p1, q1, ρ1

is the pressure, density and flow in pipe 1 with p1(t, x) = P (ρ1(t, x)).
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∂tρ1 + ∂xq1 = 0 (6.4a)

∂tq1 + ∂x( q2
1

ρ1
+ P (ρ1)) + cf

2D1ρ1
q1 | q1 |= 0, (6.4b)

(6.4c)

boundary conditions:

p1(t, 0) = P (ρ1(t, 0)) = PU (6.4d)

coupling condition for the junction J of pipes with pump

(1 − spu)q1(t, L1) + spu(p1(t, L1) − p2(t, 0) + fpuq1(t, L1)) = 0,

(6.5)

q2(t, 0) = q1(t, L1)
(6.6)

2. Pipe 2 Assume x ∈ [0, L2] and t ∈ [0, T ] . Further assume p2, q2, ρ2

is the pressure and flow in pipe 2. Then it is modeled as

∂tρ2 + ∂xq2 = 0 (6.7a)

∂tq2 + ∂x( q2
2

ρ2
+ P (ρ2)) + cf

2D2ρ2
q2 | q2 |= 0, (6.7b)

p2(t, L2) = P (ρ2(t, L2)) = PD (6.7c)

with initial conditions ∀x ∈ [0, L1] ∪ [0, L2]

q1(0, x) = q2(0, x) = q0

p1(0, x) = p2(0, x) = P (ρ(0, x)) = p0(x). (6.8)
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The pressure in the whole network is modeled via invertible pressure
function 2.20c.

Also consider the notation Pf := P1(L1) = p1(t, L1) and Pb :=
P2(0) = p2(t, 0) for the pressure infront (entrance segment of the
pump device) and at the back of the pump (pressurised side of the
pump).

The PDE model given in the Section 6.1.1 is well-posed 22]. For a rigorous
mathematical study of existence and uniqueness of the Riemann problem
solution at a junction under the assumption of subcritical flows see (25],
27]). In the next Section the approximated switched DAE model is
proposed.

6.1.2 Switched DAE model

The DAE model of the water network consists of two reservoir, pipe 1
and pipe 2 and a pump is shown in the Figure 6.2, with mode 1 and
mode 2 described by (E1, A1, f1, g1) and (E2, A2, f2, g2), respectively is
an nonITP

Epẋ = Apx + fp + gp(x) for p = 1, 2

x = (Q1, Q2, Qpu, Pl1 , Pl2 , Pr1 , Pr2 , PR1 , PR2 , Pf, Pb)⊤

and general Ep and Ap.

Ep =


1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


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Ap =


0 0 0 -c1 0 c1 0 0 0 0 0
0 0 0 0 -c1 0 0 c1 0 0 0
0 0 0 -1 0 0 0 1 0 0 0
0 0 0 0 -1 0 0 0 0 0 1

1−s1 0 0 0 0 -1 0 0 0 1 0
0 1−s2 0 0 0 0 -1 0 1 0 0
0 0 1−spu 0 0 0 0 0 0 spu -spu
1 0 -1 0 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0



fp =


0
0
0
0
0
0
0
0
0

-PU

-PD

 gp =



-c2Q1|Q1|
-c2Q2|Q2|

0
0
0
0

-spugpu(Qpu)
0
0
0
0


Where , PR1 and PR2 denotes the pressure at the upstream and down-
stream reservoir, respectively, with PR1 = PU and PR2 = PD. The
variable Q1, Q2, Qpu denotes the flow through pipe 1, pipe 2 and the flow
through the pump, respectively. Furthermore, Pl1 , Pr1 , Pl2 , Pr2 denotes
the pressure at the left end, right end of the pipe 1, and pressure at the
left end, right end of the pipe 2, respectively. And spu is the control
variable for pump on (spu = 1 ) and shut down (spu = 0 ) ,respectively.
The area and length of both pipes are chosen the same that is and c1 = A

L

with L1 = L and L2 = L.

Lemma 6.1.1. Consider the nonlinear initial-trajectory problem (non-
ITP)

x(−∞,0) = x0
(−∞,0)

(Eẋ)[0,∞) = (Aẋ + f + g(x))[0,∞)

where either (E, A) = (E1, A1), g(x) = g1(x) or
(E, A) = (E2, A2), g(x) = g2(x) as in (6.1.2). Then for every initial

trajectory x0 ∈ (DpwC∞)11 and every inhomogeneity f induced by a
piecewise-smooth function, there exists a unique solution x ∈ (DpwC∞)11

of the (nonITP) in the sense of Definition 3.4.3 if assumptions of the
Theorem 3.4.6 and 5.3.8 holds true. In particular the pressure at ts (time
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when pump shutdown) is

Pf[ts] = PU + 1
c1

Qpu(t−
s )δts , Pb[ts] = PD − 1

c1
Qpu(t−

s )δts

Proof. Pump on

Consider the pump is working for spu = 1 defined by matrices (E1, A1)

E1 =


1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

 A1 =


0 0 0 -c1 0 c1 0 0 0 0 0
0 0 0 0 -c1 0 0 c1 0 0 0
0 0 0 -1 0 0 0 1 0 0 0
0 0 0 0 -1 0 0 0 0 0 1

1−s1 0 0 0 0 -1 0 0 0 1 0
0 1−s2 0 0 0 0 -1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 -1
1 0 -1 0 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0



f1 =


0
0
0
0
0
0
0
0
0

-PU

-PD

 g1 =



-c2Q1|Q1|
-c2Q2|Q2|

0
0
0
0

-gpu(Qpu)
0
0
0
0


Firstly , to ensure regularity the assumptions of the Theorem 5.3.8 namely
C-I and C-II is checked.As it is clear from the Figure 6.2 there is no
loops of pump as there is only one pump present. Further when pump
is on all connected componets are connected to the reservoir. Hence the
assumptions of C-I and C-II of Theorem 5.3.8 holds it in turn means (R)
holds and the network is regular. The transformation matrices S1, T1 are
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calculated as;

T1 =



1
2 0 0 0 1

2
1
2 0 0 0 0 0

1
2 0 0 0 - 1

2 - 1
2 0 0 0 0 0

1
2 0 0 0 - 1

2
1
2 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0
0 - 1

2
1
2 - 1

2 0 0 1
2

1
2

1
2

1
2 - 1

2c1
0 1

2
1
2

1
2 0 0 1

2
1
2

1
2 - 1

2 - 1
2c1

0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 - 1

2
1
2

1
2 0 0 1

2
1
2

1
2 - 1

2 - 1
2c1

0 - 1
2

1
2 - 1

2 0 0 1
2

1
2

1
2 - 1

2 - 1
2c1


S1 =


1 1 -c1 -c1 c1 c1 c1 0 0 -c1 c1
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 -1 0 0 0 0 0 0 0 0 0

 .

where the impulsive projector is denoted as Eimp
1 and is given as:

Eimp
1 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

- 1
2c1

1
2c1

0 0 0 0 0 0 0 0 0
- 1

2c1
1

2c1
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

- 1
2c1

1
2c1

0 0 0 0 0 0 0 0 0
- 1

2c1
1

2c1
0 0 0 0 0 0 0 0 0



S1E1T1 =


1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0

 S1A1T1 =


0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



S1f1 =


c1PD−c1PU

0
0
0
0
0

-PU

-PD
0
0
0


The matrices M1 and N1 can be selected for which assumption (G) is true
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M1 =
[

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

]
N1 =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


The assumption (F) is true as reservoir pressures are constant. It

is easy to see that assumption (M) of the Theorem 3.4.6 also hold, but
assumption (N) does not hold as im(N1) ̸⊆ im(E1) and Theorem 3.4.6
does not directly applicable. In order to utilise the Remark 3.4.8(N) first
rewrite the nonlinear DAE using the modified QWF (3.17):

x = T1

 v

w1

w2

 ,

v = {v},

w1 = {w1
1, · · · , w9

1} w2 = {w2}.

DAE will take the following form in transformed variables,

v̇ = c1PU − c1PD + g1(v + w4
1

2 + w5
1

2 ) + g2(v − w4
1

2 + w5
1

2 ),

wi
1 = 0, i = {1, 2, 3, 5, 8, 9}

w4
1 = gpu(v + w4

1
2 + w5

1
2 ),

w6
1 = PU ,

w7
1 = PD,

ẇ4
1 + ẇ5

1 = w2.
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By solving above equations

x(t−
s ) =(Q1(t−

s )
2 ,

Q1(t−
s )

2 ,
Q1(t−

s )
2 , PU ,

(PU + PD)
2

− gpu(Qpu(t−
s )), ) (PU + PD)

2 + gpu(Qpu(t−
s ))

PU , PU , PD,
(PU + PD − gpu(Qpu(t−

s )))
2 ,

(PU + PD + gpu(Qpu(t−
s ))

2 )

Pump shutdown t = ts

Consider the pump is instantaneously shut down for spu = 0 defined by
matrices (E2, A2), the initial conditions of mode 2 is x(t−

s ).

E2 =


1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

 , A2 =


0 0 0 -c1 0 c1 0 0 0 0 0
0 0 0 0 -c1 0 0 c1 0 0 0
0 0 0 -1 0 0 0 1 0 0 0
0 0 0 0 -1 0 0 0 0 0 1

1−s1 0 0 0 0 -1 0 0 0 1 0
0 1−s2 0 0 0 0 -1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 -1 0 0 0 0 0 0 0 0
0 -1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0



f =


0
0
0
0
0
0
0
0

-PU

-PD

 g2 =


-c2Q1|Q1|
-c2Q2|Q2|

0
0
0
0
0
0
0
0
0


The assumptions of the Theorem will be checked, clearly (E1, A1) is
regular,
Indeed

Âjc
fpi

=
[

1 0
0 -1

]

The matrix Ajc
f also have full row rank as it is connected to two reservoirs,

hence using the Theorem 5.3.8 holds it in turn means (R) holds and
the netowk is regular. The transformation matrices S2, T2 and Eimp

2 are
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calculated as;

T2 =



0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 -1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 1

c1
0 0 0 0 0 1 0 1 0 - 1

c1
0

0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
-1 0 0 0 0 1 0 1 0 - 1

c1
0

0 1 0 0 0 0 1 0 -1 0 1
c1


S2 =


0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0



where the impulsive projector is deonted as Eimp
2 and is given as:

Eimp
2 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1

c1
0 0 0 0 0 0 0 0 0

- 1
c1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1

c1
0 0 0 0 0 0 0 0 0 0

0 1
c1

0 0 0 0 0 0 0 0 0



S2E2T2 =


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 -1 0 0 0 0 0 0

 S2A2T2 =


1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



S2f2 =


0
0
0
0
0

PU

PD
0
0
0


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The matrices M2 and N2 can be selected for which G is true,. The
assumption (M) and (N) is also true.

M2 =
[

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

]
N2 =


1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

 .

Writing nonlinear DAE using the modified QWF (3.17):

x = T1

 v

w1

w2

 ,

v = {},

w1 = {w1
1, · · · , w9

1} w2 = {w1
2, w2

2}.

DAE will take the following form in transformed variables,

w1
i = 0, i = {1, 2, 3, 4, 5, 8, 9}

w6
1 = PU ,

w7
1 = PD,

ẇ3 + ẇ4 = w1
2 + g1(w3

1 + w4
1)

ẇ3 − ẇ5 = w2
2 + g2(w3

1 + w5
1)

where g1(0) = 0, g2(0) = 0.
The solution is read as

x =(0, 0, 0, PU , PD − 1
c1

Qpu(t−
s ), PU + 1

c1
Qpu(t−

s ), PD, PU , PD,

PU + 1
c1

Qpu(t−
s )δts

, PD − 1
c1

Qpu(t−
s )δts

) (6.9)
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In particular, the pressure infront of pump Pf (entrance segment of the
pump device) and after the pump is Pb (pressurised segment of pump)
and its solution is given as ;

Pf = PU + 1
c1

Qpu(t−
s )δts , Pb = PD − 1

c1
Qpu(t−

s )δts).

Further at t = ts it is given as

Pf[ts] = 1
c1

Qpu(t−
s )δts

, Pb[ts] = − 1
c1

Qpu(t−
s )δts

After the pump shutdown all is settled to the following values.

Pf(t+
s ) = PU Pb((t+

s ) = PD.

■

6.1.3 Qualitative comparison

Assume that the PDE solution on [0, tS) is stationary, i.e. qi(t, x) i = 1, 2
is approximately constant in time and space (or in other words, when the
valves are closed the dynamics in all pipe have approximately settled down).
For numerical simulations Flux-Corrected Transport (FCT) scheme with
artificial viscosity (< 0.25) is used.

qi(0, x) ≡ 0, ρi(0, x) ≡ 1 × 103

and pipes parameters:

Pa = 1.01 × 106, β = 1
K

= 4 × 10−9, ρa = 1000,

PU = 8.231 × 108 PD = 6.5081 × 108

L1 = 5, L2 = 5 D1 = 0.5, D2 = 0.5 cf = 0.02 gpu(Qpu) = a(Qpu)3.
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The parameters Pa, ρa and β are physical parameters and cf is chosen
via the so-called moody chart denoting friction of the pipe, see in the
Appendix the Figure 7.1

PU

PD

⊗Pipe1 (J)
pump

Pipe2

0 L1 0 L2

(a) Pump network setup (b) Pressure in the network be-
fore pump shutdown (t < ts)

(c) Pressure in the network at
pump shutdown( t = ts)

(d) Pressure in the network
‘long after’pump shutdown(t =
ts)

Figure 6.3: PDE simulations of the network in the Figure 6.1 x vs P
where 0 is the position of pump in space coordinate

The Figure shown in 6.3 shows the PDE simulation of the network .
The simulation firstly is run till an approximated steady state is achieved
in the network and is shown in the Figure 6.3(b) for the time t < ts which
is the time before switch. In the Figure 6.3, the location of pump in
space is at 0 along x axis. The pump shutdown at time t = ts which is
modeled by spu = 0. The pressure profile in both pipes along with the
pressure across the pump is shown in the Figure 6.3(c) the end of the
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pipe 1 is the space variable infront of the pump (entrance segment of the
pump) and the start of pipe 2 represents the pressure at the back of the
pump (the pressurised side of pump). The Figure 6.3(d) showing when
after shutdown the network reached to other steadty state. The pressure
infront of the pump rises showing a positive pressure impulse at the time
t = ts as shown in the Figure 6.3(c) at x = 0(infront of the pump) and
same can be seen in the Figure 6.4(a) above. The pressure at the back
of pump will decrease due to no further flow across the pump showing a
negative "Dirac impulse". The negative pressure impulse at pressurised
side of pump is shown in the Figure [4-18 33]] is qualitatively same as in
the Figure shown in 6.4(a) (below).
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(a) PDE simulation for pressure
Pf = p1(L1) infront of pump
(above) and Pb = p2(0) (below)
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(b) Switched DAE pres-
sure Pf infront of pump
and Pb after the pump

Figure 6.4: Comparison of the pressure profiles of PDE of the network in
6.1 and switched DAE model of the network in 6.2 with time (t = ts) is
time at which pump shutdown

In the Figure 6.4 PDE and switched DAE plots of pressure against
time are shown. These pressure profile are plotted against time. The
positive impulse infront of the pump (entrance segment of these devices)
and negative impulse at the back of the pump shown. It is to be noted
the direction of the respective Dirac impulse of the both modeling tech-
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niques is same. Hence the qualitatively model via switched DAEs is an
approximation for the PDE model. The Figure shown 6.4(a)(above) is the
main interest as this positive pressure spike will get higher and higher on
decreasing compressibility (lower down the value of β), hence approaching
to the same length as the length of the Dirac in switched DAE model.

Hence the approximated switched DAE model on a network agrees the
result by PDE model. In conclusion, switched nonlinear DAEs framework
provided with simple framework to analyse the impacts of transients in a
water work. Furthermore, location of the positive Dirac which is located
by simplified framework of switched DAE may be the indication where
potentially a pipe or pump shut down may cause a breakage.

6.2 A water network with six pipes

Consider a network of six pipes and two reservoirs (c.f. ?Epanet]). The
topology of the network is shown in the Figure 6.5. Assume the length
of each pipe is Lk for arbitrary kth pipe edge, where k ∈ {1, · · · , 6}. The
space domain for each pipe is [0, Lk]. Define the following sets,

Njc = {1, 2, 3, 4}

Nrs = {R1, R2},

Epi = {e1, e2, e3, e4, e5, e6}.

Where, Epi,Nrs and Njc, denotes the set of pipe edges, reservoir nodes
and the junction nodes, respectively. There is a valve installed at left
and right end of each kth pipe edge e. Further assume |Nrs| = nr∗ = 2,
|Epi| = m = 6 and |Njc| = njc = 4.
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Reservoir 1

Reservoir 2

R1

l1 r1

1

l3 r3

l4

r4

2

3

l6

4

l5

R2

r2l2

r5

r6

Pipe−6

Pipe−1

Pipe−4

Pipe−3

Pipe−5

Pipe−2

Figure 6.5: A network of six pipes

The next Section is presenting a PDE model for the network shown in
the Figure 6.5.

6.2.1 PDE model

The model of water flow in the arbitrary kth pipe edge e in the network is
based on (2.20). The pipe edge is cosidered within space interval [0, Lk]
∀k. Furthermore two or more than two pipes are joined at junction, and
each junction is modeled via two coupling conditions, namely pressure
equality and flow balance equation for all pipe edges emerging from or to
the junction node i ∈ Njc as given in (6.11). These coupling conditions
are wellposed, for detailed investigation on wellposedness of coupling
conditions see, 16] 26] 29] and 40]. For a pipe edge ρk, pk, qk are the state
variables used to describe the water flow in kth edge ∀k. Hence the PDE
model can be drwan up as:
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For each pipe,

∂tρk + ∂xqk = 0,

∂t(qk) + ∂x(q2
k

ρi
+ P (ρk)) + cf

2Diρk
qk | qk |= 0. (6.10)

The coupling conditions on the each junction is given as follows:

pl(t, Ll) = pk(t, 0), ∀ i ∈ Njc, ∀k ∈ ∇−(i) and ∀l ∈ ∇+(i)∑
k∈∇−(i)

qk =
∑

l∈∇+(i)

ql. ∀i ∈ Njc (6.11)

There are two reservoir one R1 is located at the left of pipe 1 and other R2

at the right end of pipe 6 . The pressures at the reservoir Rj is modeled
as under for j = 1, 2:

(R1) p1(t, 0) = P (ρ1(t, 0)) = PU ,

(R2) p6(t, L6) = P (ρ6(t, L6)) = PD. (6.12)

A valve is installed at each pipe at left and right end of the kþ pipe
e = (i, j) and modeled as:

(1 − slk
)qk(t, 0) = slk

(pk(t, 0) − Pi(t)),

(1 − srk
)qk(t, Lk) = srk

(pk(t, Lk) − Pj(t)). i, j ∈ N (6.13)

where the pressure at left of kth edge e, can be written as plk
(t) = p(t, 0) =

P (ρk(t, 0)) and prk
(t) = p(t, Lk) = P (ρk(t, Lk)) where Lk is length of the

kth pipe edge for all k = {1, · · · , 6}.
In the next Section a switched DAE model of setup used for the PDE

model shown in the Figure 6.5 is presented.
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6.2.2 Switched DAE model

Consider the state variable x is expression the dynamics in the netwok.

x = {Q, Pl, Pr, Prs, Pjc},

Qpi = {Q1, Q2, Q3, Q4, Q5, Q6},

Pl = {Pl1 , Pl2 , Pl3 , Pl4 , Pl5 , Pl6},

Pr = {Pr1 , Pr2 , Pr3 , Pr4 , Pr5 , Pr6},

Pi = {P1, P2, P3, P4},

Prs = {PR1 , PR2}.

The nonlinear DAE of the network for each mode p can be written as:

Epx = Apx + fp + gp(x). (6.14)

with p = 1, 2, 3 and the matrices E, A ∈ R(3m+njc+nr∗ )×(3m+njc+nr∗ );

Ep=
[ Ipi 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
, Ap=


0 Al Ar 0 0

Ajc
fpi

0 0 0 0
0 Av

l 0 Ar
l Ajc

l

Ãcv
r 0 Ãv

r Ãr∗

r Ãjc
r

0 0 0 Ir∗ 0

 fp =


0
0
0
0

-fn∗
r



gp(x) =


-gpi(Qpi)

0
0
0
0

 gpi(Qpi) =



g1(Q1)
g2(Q2)
g3(Q3)
g4(Q4)
g5(Q5)
g6(Q6)


fn∗

r
=
[

PU

PD

]


(6.15)



158 Application to further water networks

with matrices description is given as

Ipi = I6×6 Al = (c1, c2, c3, c4, c5, c6) Ar = −Al Av
l = −I6×6

Acv
r = (1 − sr1 , 1 − sr2 , 1 − sr3 , 1 − sr4 , 1 − sr5 , 1 − sr6)

Av
r = (-sr1 , -sr2 , -sr3 , -sr4 , -sr5 , -sr6)

Ars
l =

 1 0
0 0
0 0
0 0
0 0
0 0

 Ajc
l =

 0 0 0 0
0 0 0 1
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 gi(Qi) = Qi|Qi| ∀i = 1, · · · , 6

Ars
r =

 0 0
0 0
0 0
0 0
0 0
0 s2

 Ajc
r =


sr1 0 0 0
0 0 0 0
0 sr3 0 0
0 0 sr4 0
0 0 0 sr5
0 0 0 sr6

 (6.16)

In the next Section the wellposedness of the switched nonlinear ITP
(nonITP) (6.15) for each p will be check which will ensure the existence
and uniquness of the solution. This will be accomplished by checking the
assumptions of the Theorem 3.4.6 and the assumption on the topology of
the network established in 5.3.8. It is important to recall that the these
assumptions is checked on the open edges in the network (only those edge
be the part of modified incidence matrix which are not closed by the valve
at the right end and pump which are working. In this work those pumps
are termed as open pumps).

6.2.3 Wellposedness of the model

For the wellposedness of the model conditions of the theorem 3.4.6 is
checked. For the following choice of M and N condition (G) will hold;

M = M1 = M2 =
[
I{6×6} O{6×18}

]
, N = N1 = N2 = M⊤.
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that is
g(x) = N g(Mx), where g(Mx) = g(Q)

Also
im(N ) ⊆ im(E1)

which in turns means assumption (N) is satisfied. A constant pressure is
assigned to both of the reservoir hence assumption (F) is trivially true.
The assumption (S) is also true as gp(x) is locally Lipchitz, because each
component Qi|Qi| is locally Lipchitz hence whole vector of function is
Locally Lipchitz by the Remark A.0.4.

The assumption (R) is mode dependent, beacause closing of valve will
change the network topology and generate connected components, hence
modified incidence matrix. The fulll row rank modified incidence matrix
will ensure the regularity of the network.

Mode 1: All valves are open

To check assumption(R), in the Theorem 5.3.8. First consider all valve are
open this is modeled by substituting, srj = 1 for all j = 1, · · · , 6 in (6.16)
.The modified incidence matrix for open edges Âjc

f := (Ajc
f )op = [Âjc

fpi
], as

there is no pump in the network so the matrix Âjc
fpu

will not appear in the
modified incidence matrix Âjc

f .

Âjc
f = Âjc

fpi
=


1 0 -1 -1 0 0
0 0 1 0 -1 0
0 0 0 1 0 -1
0 -1 0 0 1 1

 , (6.17)

For regularity the assumptions in the Theorem (C-I) and (C-II) in 5.3.8 is
checked. It has no pump, therefore no need to check the assumption (C-I).
For (C-II) consider that is Âjc

fpi
in (6.17) have full row rank for all open

edges, hence assumption (R) holds. The matrix pair (E1, A1) is regular.
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Therefore the transformation matrices S1, T1 and impulsive projector
Eimp

1 can be calculated, the matrix Eimp
1 is given in (6.18).

Eimp
1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-2α 4α -α -α -α -2α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-4α 2α α α α α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-4α 2α α α α α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-3α 3α -3α 0 3α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2α 4α -α -α -α -2α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-3α 3α 0 -3α 0 3α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2α 4α -α -α -α -2α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2α 4α -α -α -α -2α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2α 4α -α -α -α -2α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2α 4α -α -α -α -2α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-4α 2α α α α α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-3α 3α -3α 0 -α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-3α 3α 0 -3α 0 -3α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2α 4α -α -α -α -α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(6.18)

Where, α = 1
6c1

. The non zero rows in Eimp
1 are the rows corresponding

to the state variables can have impulses. Further the assumption (M) of
the Theorem 3.4.6 can be checked and its easy to see

MEimp
1 = 0

Hence all assumptions of are satisfied and there exist a unique solution
for (6.14).

Consider the transformed variables using modified QWF using the
Lemma 3.4.7

v̇1 = v1 + c1PU − c1PD + g1(Q1) + g2(Q2) − g4(Q4) + g6(Q6)

v̇2 = v2 + g3(Q3) − g4(Q4) + g5(Q5) + g6(Q6)

wi
1 =


0 for i = 1, · · · , 10 and for i = 13, · · · , 18
PU , for i = 11

PD, for i = 12


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ẇ7
1 + ẇ8

1 + ẇ9
1 = w1

2 + g1(Q1) − g5(Q5) − g6(Q6),

−ẇ10
1 = w2

2 + +g2(Q2) − g5(Q5) − g6(Q6),

ẇ8
1 = w3

2,

ẇ9
1 = w4

2.

Where all Qi can be written in terms of v1,v2,wi
1 by using transformation

matrix T1 found by the modified QWF (3.17) and algorithm given in the
Remark A.0.7 and matlab code 7.

x = T1

 v

w1

w2

 ,

v = {v1, v2},

w1 = {w1
1, · · · , w18

1 },

w2 = {w1
2, · · · , w4

2}.

For this mode all consistent intital values in real variable x, the initial
values of transformed variables can be found by using

T -1
1 x =

 v

w1

w2

 .

upon solving above equations, the initial values for the next mode are
found that are x(t−

s ) by using the transformation matrices. Hence x(t−
s )

is as follows:
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Qi(t−
s ) = 1

3(−c1PU + c1PD). i = 1, 2

Qi(t−
s ) = 1

6(−c1PU + c1PD). i = 3, 4, 5, 6

Pl1(t−
s ) = PU ,

Pl2(t−
s ) = 1

3PU + 2
3PD,

Pl3(t−
s ) = Pl4(t−

s ) = 2
3PU + 1

3PD,

Pl5(t−
s ) = Pl6(t−

s ) = 1
2PU + 1

2PD,

Pr1(t−
s ) = 2

3PU + 1
3PD, Pr2 = PD,

Pr3(t−
s ) = Pr4(t−

s ) = 1
2PU + 1

2PD,

Pr5(t−
s ) = Pr6(t−

s ) = 2
3PU + 1

3PD,

PR1 = PU , PR2 = PD,

P1(t−
s ) = 2

3PU + 1
3PD,

P2(t−
s ) = P3(t−

s ) = 1
2PU + 1

2PD,

P4(t−
s ) = 2

3PD + 1
3PU .

It shows when all valves are open there is no Dirac appeared as the
consistent initial conditions have been choosed for this mode .

Mode 2 :Pipe 5 and pipe 6 are closed

For this consider s1 = 1, s2 = 1, s3 = 1, s4 = 1, s5 = 0, s6 = 0 , assump-
tions of the 3.4.6 and 5.3.8 are true. Hence the following matrices are
calculated. In this case
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Figure 6.6: A pipe network six pipes with two closed pipes

Ajc
fpi

=


1 0 -1 -1
0 0 1 0
0 0 0 1
0 -1 0 0


For regularity the assumptions in the Theorem (C-I) will be checked.
Consider that is Ajc

fpi
in (6.17) have full row rank for all open edges, hence

assumption (R) holds. The matrix pair (E2, A2) is regular. Hence the
follwoing matrices S2, T2 and Eimp

2 are calculated:

Eimp
2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 -6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 -6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-6α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


The non zero rows in Eimp

2 are the rows corresponding to the state variables
can have impulses. Further condition (M) of the Theorem 3.4.6 can be
checked and its easy to see

MEimp
2 = 0
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Hence all assumptions of are satisfied and there exist a unique solution.
Transformed the nonlinear DAE into transformed variable using the
modified QWF with variable as:

x = T1

[
w1

w2

]
,

w1 = {w1
1, · · · , w18

1 },

w2 = {w1
2, · · · , w6

2}.

Writing (6.14) in transformed variables

wi
1 =


0 for i = 1, · · · , 10 and for i = 13, · · · , 18
PU , for i = 11

PD, for i = 12


ẇ5

1 + ẇ6
1 + ẇ7

1 + ẇ8
1 + ẇ9

1 = w1
2,

ẇ5
1 + ẇ6

1 − ẇ10
1 = w2

2,

ẇ5
1 + ẇ8

1 = w3
2,

ẇ6
1 + ẇ9

1 = w4
2,

ẇ5
1 = w5

2,

ẇ6
1 = w6

2.

On solving for transformed variable above equations and transforming
into original state variables for t ≥ ts. Here, only the pressure at the right
end of pipe5 and pipe6 are given. The main fact is there will be Dirac
in all right ends of pipe as closing of valve at pipe 5 and 6 completely
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dopped flow in whole network hence is again a case of water hammer.

Qi = 0, i = 1, 2, 3, 4, 5, 6,

Pr5(t) = PU + 2
c1

(Q5(t−
s ) + Q6(t−

s ))δts
,

Pr6(t) = PU + 2
c1

(Q5(t−
s ) + Q6(t−

s ))δts
.

The Dirac impulse at t = ts is given as :

Pr5 [ts] = 2
c1

(Q5(t−
s ) + Q6(t−

s ))δts
,

Pr6 [ts] = 2
c1

(Q5(t−
s ) + Q6(t−

s ))δts
.

For the value ‘long after’ t = ts:

Pr5(t+
s ) = PU ,

Pr6(t+
s ) = PU .

6.2.4 Numerical result (mode 1 to mode 2)

The parameters Pa, ρa and β are physical parameters and cf is chosen
via the so-called moody chart, see e.g. 7.1.
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valve open: [0, ts)

valve closed transition: [ts, ts + ε)

valve closed settled: [ts + ε,∞)
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PV[ts] = α · δts
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P
r
5

valve open on [0, ts)

valve closing at [δts ]

valve closed on [ts,∞]

Figure 6.7: Comparison of pressure profile PDE models (P5(L5)) (above) and
switched DAE model (Pr5 ) (below), profile for P (r6) is approximately symmetrical.
Data for simulation; Pa = 1.01 × 106, β = 1

K
= 4 × 10−9, ρa = 1000 Lk =

5, Dk = 0.5, cf = 0.02 ∀ k

Figure 6.7 clearly shows a strong pressure spike just after the switching
time tS = 4s, the pressure oscillatory settles to a new pressure value say
P

1
R. The same behavior occurs for Pr5 which settles to P

1
R. Instead of

running the simulation for a very long time, we just chose a settling time
ε > 0 and take the average of the pressures on the interval (tS + ε, T ]
where T > tS + ε is our overall simulation time, i.e.

P
1
R := 1

T − (tS + ε)

∫ T

tS+ε

p5(t, L5)dt.

P
2
R := 1

T − (tS + ε)

∫ T

tS+ε

p6(t, L6)dt.

With
ε = 5.5, T = 8

we obtain
P

1
R ≈ P

2
R ≈ 8.23 × 108.
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The value predicted by the switched DAE solution for t > ts is,

Pr5(t+
S ) = PR1 ≈ 8.23 × 108.

In Table 6.1 the relative error between P
i

R, i = {1, 2} and Pr5(t+
S ) is

presented for decreasing compressibility coefficients β. In order to compare

β P
1
R P

2
R

∣∣P 1
R−Pr5 (t+

S
)
∣∣

Pr5 (t+
S

)

∣∣P 2
R−Pr6 (t+

S
)
∣∣

Pr6 (t+
S

)

15.0 · 10−9 8.1613 · 108 8.2494 · 108 8.3 · 10−03 2.4 · 10−03

9.0 · 10−9 8.2644 · 108 8.2419 · 108 4.2 · 10−03 1.4 · 10−03

4.0 · 10−9 8.2401 · 108 8.2408 · 108 1.2 · 10−03 1.3 · 10−03

5.0 · 10−10 8.2329 · 108 8.2352 · 108 3.5 · 10−04 6.3 · 10−04

2.0 · 10−9 8.2317 · 108 8.2348 · 108 2.6 · 10−04 5.8 · 10−04

Table 6.1: Comparison of pressure at valves r5 and r6 for PDE and
switched DAE model.

the peak in Pr5 , Pr6 just after the valve is closed with the Dirac impulse
Pr5 [ts] and Pr5 [ts] in response to the switching time, we recall that a Dirac
impulse δts

at ts > 0 can be approximated by a sequence of functions
t 7→ δε

ts
(t) such that δε(t) = 0 for t ̸= [ts, ts + ε] and

∫ ts+ε

ts
δε

ts
(t)dt = 1.

We therefore make the Ansatz for pr5 and Pr6 ,

pr5 ≈ P
imp1

tS δε(t) + P
1
R, pr6 ≈ P

imp2
tS δε(t) + P

1
R t ∈ (tS , T ].

hence we can approximate the magnitude of the “smoothed-out” Dirac
impulse occurring in the PDE model as follows:

P
imp1

tS :=
∫ tS+ε

tS

pr5 − P
1
Rdt.



168 Application to further water networks

analogously for pr6 ,

P
imp2

tS :=
∫ tS+ε

tS

pr6 − P
1
Rdt.

The Dirac impulse induced by the switched DAE are defined i.e.,

Pr5 [tS ] = 2
c1

(Q5(t−
s ) + Q6(t−

s ))δts
=: P imp1

tS δts
,

Pr6 [tS ] = 2
c1

(Q5(t−
s ) + Q6(t−

s ))δts =: P imp2
tS δts .

A comparison between P
imp1

tS with P imp1
tS and P

imp2
tS with P imp2

tS for
different values of the compressibility coefficient β is presented in Table 6.2.
For large β the approximation is not very accurate, however, for decreasing
compressibility the accuracy of the approximation improves.

β P
imp1

tS P
imp2

tS P
imp1

tS P
imp2

tS Γ1 Γ2

15.0 · 10−9 5.7821 · 107 5.7831 · 107 5.1137 · 107 5.1137 · 107 0.1307 0.1309
9.0 · 10−9 3.3944 · 107 3.3951 · 107 3.8590 · 107 3.8590 · 107 0.1204 0.1202
4.0 · 10−9 3.0906 · 107 3.0918 · 107 2.8407 · 107 2.8407 · 107 0.0880 0.0884
5.0 · 10−10 2.0299 · 107 2.0292 · 107 2.1096 · 107 2.1096 · 107 0.0378 0.0381
2.0 · 10−10 1.8450 · 107 1.8457 · 107 1.8482 · 107 1.8482 · 107 0.0017 0.0014

Table 6.2: Impulse length comparison over a network of six pipes: with

Γ1 =

∣∣∣P imp1
tS −P

imp1
tS

∣∣∣
P

imp1
tS

and Γ2 =

∣∣∣P imp2
tS −P

imp2
tS

∣∣∣
P

imp2
tS

Similar as for the PDE simulations we assume that the DAE is sta-
tionary before we switch, i.e. Qi(t−

S ) for i ∈ {1, · · · , 6} before closing of
the valve. It should be noted that although the compressibility coefficient
β does not effect the parameters of the switched DAE model, it does
effect the initial value q0 (and hence via Qi(t−

S ), because this is chosen
to match the stationary solution of the balance law in the Section 6.2.1
considered on [0, tS) which depends on β. A switched DAE model for
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water hammer on a network of six pipes shown in the Figure 6.6, which is
compared with a compressible nonlinear system of balance laws. With
the support of numerical simulations of the PDE model it is illustrated
that a switched DAE model is a good approximation for the PDE model
with small compressibility coefficient.

Mode 3: Pipe 3 is closed

Firstly the PDE model is simulated the case; the left end valve of pipe 3
is closed. It is done by substituting sl3 = 0 in (6.13).

In order to model the same case for DAE model; the control variable
sr3 = 0 in (6.16). In this network left valve of the pipe edge 3 is closed
but the edge is again closed by the . Consider that the mode 1 before
switching to mode 3 substitute p = 3 in (6.14). The equations of mode 3
are achieved by substituting s3 = 0 in the model in (6.16).

Reservoir 1

Reservoir 2

R1

l1 r1

1

l3 r3

l4

r4

2

3

l6

4

l5

R2

r2l2

r5

r6

Pipe−6

Pipe−1

Pipe−4

Pipe−3

Pipe−5

Pipe−2

Figure 6.8: A pipe network six connected pipes with one closed edge

Âjc
fpi

=


1 0 -1 0 0
0 0 0 -1 0
0 0 1 0 -1
0 -1 0 1 1


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For regularity the assumptions in the Theorem (C-I) and (C-II) in 5.3.8 is
checked. It has no pump, therefore no need to check the assumption (C-I).
For (C-II) consider that is Âjc

fpi
in (6.17) have full row rank for all open

edges, hence assumption (R) holds. The matrix pair (E3, A3) is regular.
Hence the tranformation matrices T3, S3 and impulsive projector Eimp

3
are calculated:

Eimp
3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 3
2 α 9

2 α 0 - 3
2 α 0 - 3

2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 9

4 α 3
2 α 0 3

2 α 0 3
2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 3
2 α 9

2 α 0 - 3
2 α 0 - 3

2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 3

2 α 9
2 α 0 - 3

2 α 0 - 3
2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 3
2 α 9

2 α 0 - 3
2 α 0 - 3

2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 3

2 α 9
2 α 0 - 3

2 α 0 - 3
2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 3

2 α 9
2 α 0 - 3

2 α 0 - 3
2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 3
2 α 9

2 α 0 - 3
2 α 0 - 3

2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 3

2 α 9
2 α 0 - 3

2 α 0 - 3
2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 3
2 α 9

2 α 0 - 3
2 α 0 - 3

2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 3
2 α 9

2 α 0 - 3
2 α 0 - 3

2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 3

2 α 9
2 α 0 - 3

2 α 0 - 3
2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 3
2 α 9

2 α 0 - 3
2 α 0 - 3

2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 3

2 α 9
2 α 0 - 3

2 α 0 - 3
2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


The initial conditions for mode 3 are taken from the solution of mode
1. Rewrite nonITP (6.14)in the modified QWF (3.17) it will have the
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following form:

v̇ = v + c1PU − c1PD + g1(Q1) + g2(Q2) + g4(Q4) + g6(Q6)

w1
i = 0, i = {1, 2, 3, 4, 5, 8, 9, 10, 13, 14, 15, 16, 17, 18}

w11
1 = PU ,

w12
1 = PD,

ẇ3
1 + ẇ7

1 + ẇ9
1 = w1

2 + g1(Q1) + g6(Q6),

ẇ3
1 − ẇ8

1 − ẇ10
1 = w2

2 + g2(Q2) − g6(Q6),

ẇ3
1 = w3

2 + g3(Q3),

ẇ9
1 = w4

2 + g4(Q4) − g6(Q6),

ẇ3
1 − ẇ8

1 = w5
2 + g5(Q5).

Where all Qi = f1(v, , wi
1) by using transformation matrix T1 :

x = T3

 v

w1

w2

 ,

v = {v},

w1 = {w1
1, · · · , w18

1 },

w2 = {w1
2, · · · , w5

2}.
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On solving the set of equations and finding solution in the original coordi-
nates, solution is;

Qi(t) = c1PU − c1PD, i = 1, 2, 4, 5, 6 ∀t ≥ ts

Q3(t) = 0, Pl1(t) = PU ,

Pl2(t) = 3
4PD + 1

4PU + ( 1
4c1

− 3
4c1

)Q3(t−
s )δts

,

Pl3(t) = Pl4(t−
s ) = 3

4PU + 1
4PD − 1

2c1
Q3(t−

s )δts
,

Pl5(t) = 1
4PU + 3

4PD + ( 1
4c1

− 3
4c1

)Q3(t−
s )δts ,

Pl6(t) = 1
2PU + 1

2PD + 1
2c1

(g1(v

4) + g6(v

4)),

Pr1(t) = 3
4PU + 1

4PD + ( 3
4c1

− 1
4c1

)Q3(t−
s )δts

,

Pr2(t) = PD,

Pr3(t) = 3
4PU + 1

4PD + ( 3
4c1

− 1
4c1

+ 1
c1

)Q3(t−
s )δts

,

Pr4(t) = 1
2(PU + PD) + 1

2c1
(g1(v

4) + g6(v

4)),

Pr5(t) = Pr6(t) = 1
4PU + 3

4PD + ( 1
4c1

− 3
4c1

)Q3(t−
s )δts

,

PR1(t) = PU , PR2(t) = PD,

P1(t) = 3
4PU + 1

4PD + ( 3
4c1

− 1
4c1

)Q3(t−
s )δts

,

P2(t) = 1
4PU + 3

4PD + ( 1
4c1

− 3
4c1

)Q3(t−
s )δts

,

P3(t) = 1
2(PU + PD) + 1

2c1
(g1(v

4) + g6(v

4)),

P4(t) = 1
4PU + 3

4PD + ( 1
4c1

− 3
4c1

)Q3(t−
s )δts .
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The Diracs are present in the following state variables ;

Pl2 [ts] = ( 1
4c1

− 3
4c1

)Q3(t−
s )δts

,

Pl3 [ts] = Pl4 [ts] = ( 3
4c1

− 1
4c1

)Q3(t−
s )δts

,

Pl5 [ts] = ( 1
4c1

− 3
4c1

)Q3(t−
s )δts

,

Pr1 [ts] = ( 3
4c1

− 1
4c1

)Q3(t−
s )δts ,

Pr3 [ts] = ( 3
4c1

− 1
4c1

+ 1
c1

)Q3(t−
s )δts

,

Pr5 [ts] = ( 1
4c1

− 3
4c1

)Q3(t−
s )δts

,

P1[ts] = ( 3
4c1

− 1
4c1

)Q3(t−
s )δts

,

P2[ts] = ( 1
4c1

− 3
4c1

)Q3(t−
s )δts ,

P4[ts] = ( 1
4c1

− 3
4c1

)Q3(t−
s )δts .

6.2.5 Numerical results (mode1 to mode 3) impulse

In this Section numerical simulations of the pipe network given in the
Figure 6.9(a). Before ts; when t < ts all the valve both at right and left
edge of each of six pipes are open, the steady state is shown in the Figure
6.9(b). At the time t = ts the valve at the left of pipe 3 is closed the
simulation of the network a that time is shown in the Figure 6.9(c).
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Reservoir 1

Reservoir 2

R1

l1 r1

1

l3 r3

l4

r4
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3

l6

4

l5

R2

r2l2

r5

r6

Pipe−6

Pipe−1

Pipe−4

Pipe−3

Pipe−5

Pipe−2

(a) Pipe network (b) All pipes are open t < ts approxi-
mately steady state

(c) At the switching time t = ts (d) Steady state after switching time t > ts

Figure 6.9: Numerical illustration of PDE model of six pipes of the
topology shown in Figure 6.8

The pressure impulse at the left end of pipe 3 go down first then travel
in the whole network until a new steady state is approached in the Figure
6.9(d).

6.2.6 Numerical result (mode1 to mode 3) jumps

In the Figure 6.10 numerical simulation is shown of the network shown
in the Figure 6.8, before after and at the closing time ts. Further it is
calculated that there is no Dirac impulse in the state variable Pr4 and Pl6

this agrees to the results found in the results via PDE and shown in
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(a) Pressure at the right end of
pipe 4 via PDE
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(b) pressure at the right end of pipe
4 via swDAE.

Figure 6.10: Comparison of (P4(t, L4) and (Pr4)

Similar pressure profile is observed at the left end of the pipe 6. It
also agreed in both modeling frameworks.

6.2.7 Numerical result (mode1 to mode 3) compari-
son

Figure 6.11: Left: Modeling of 6.8 via PDE and Modeling via switched
DAE (Dirac comparison)
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In the Figure 6.11 the pressure vs time plots are presented in PDE
and switched nonlinear DAES modeling framework. The pressure at
P1(L1) := p1(t, 0) via PDE model is compared with the its corresponding
to the pressure (Pr1) plot via switched nonlinear DAE model. The valve
at the left of pipe 3 is closed at ts = 1s the pressure after the valve firstly
lower down and then due to the oscillation and flow from other pipe a
positive pressure hit the valve again. The integral over the fluctuation
from t = 1 to t = 2 is taken and on average this pressure in PDE model
agree in the direction to the Dirac length via switched DAE model. As far
as other pressure profiles are concerned they have very strong agreement
in both of the frameworks.

6.3 Summary

In summary two water networks are presented with different topologies
and hydraulic components in this chapter. These networks are motivated
by EPANET sample netoworks (used for the analysis of water modeling in
engineering). It is shown that both are well posed under the assumptions
of the Theorem 3.4.6 and 5.3.8. Both are solvable with the notion of
solution introduced in the Chapter 3. It is shown in the section 6.1
that the modeling via switched differential algebraic equations is a good
approximation to the PDE model of this network. The pressure spike
behaviour at the entrance segment of pump and the pressurised side
of the pump can be guesstimated via simplified framework of switched
DAE reasonably. A bit more complex network with junctions, pipes and
supply nodes is presented in the Section 6.2, the valve closure effect near
the location where the suddenly closed valve is installed. Relatively far
nodes have less effect or only exhibit jump and these behaviours are again
rationally approximated via the framework of switched DAEs.



Chapter 7

Conclusion

The framework of switched differential algebraic equation is applied to
model the dynamics subject to sharp changes in electrical circuits. The
water network is a compounding of various constituents, and the change in
their settings (e.g., valve closure and pump shutdown etc.) induce indeed
a sudden structural change. The classical hyperbolic system of balance
laws is simplified to a nonlinear ODE; assuming incompressibility, and the
changes in setting of the components by changing the algebraic constraint.
Hence the hydraulic transients can be modeled in the framework of
switched DAEs.

Before starting the modeling in the proposed framework, the classical
method of modeling these component’s settings as a boundary condition
in the system of hyperbolic partial differential equations is recalled and
implemented numerically. For instance the sudden closure of the valve
is modeled with the classical approach as a foremost measure. It works
out that the pressure spike expected in response to the sudden end of
valve getting higher and higher on decreasing compressibility and other
steady state after the sudden transient is also approached faster with
this decrease in compressibility (it is lessened by decreasing the value of
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β; the compressibility coefficient). Hence on considering for β = 0 the
pressure spike looks like a Dirac. The framework of switched DAEs is
indeed suitable and a good approximation to the classical modeling in
which due to numerical limitations a true incompressibility β = 0 can not
be considered.

In order to model the water network transients, in the new proposed
framework first the existence and uniqueness of the solution of the switched
nonlinear DAEs is established as a starting point. Fortunately on analysing
the nonlinearities present in the water network it is demonstrated that
these nonlinearities present are having special kind of sparse structure.
This is basically utillised to determine a novel notion of solution. Equally
it was required and mentioned previously considering the true incom-
pressibility the pressure spike is a Dirac, existence and uniqueness of the
solution to the switched nonlinear DAEs is ensured in the presence of
impulses. A theorem with sufficient conditions for the existence of local
solution of ITP is presented. Moreover, its extension to switched nonlinear
DAEs is presented which is possible under the supposition that no finite
escape time occurs between the switches.

It is established with the aid of numerical simulations of PDE that the
approximated model of water hammer with switched nonlinear DAEs is a
good approximation to the one modeled with a classical PDE model with
small compressibility coefficient (considering water incompressible). This
approximated model is implemented to a simple setup that is oftentimes
applied to study water hammer and it is illustrated by using mathematical
simulations that proposed approximated model is indeed suitable.

Furthermore, the pertinence of the whimsy of the solution on a general
water network with arbitrary bit of hydraulic components for various
hydraulic transients is investigated. Firstly matrix pair (E, A) for de-
scribing the kinetics of the general water network is constructed. It is
shown that two further assumptions are needed to ensure the applicability
of the solution theory developed for the structured nonlinearities in the



179

presence of impulses for all possible sudden changes in the settings of
water components. These assumptions are essentially asked to ensure
regularity of the matrix pair of the general network structures.

Finally, this notion of solution and general network setup introduced
applies to the examples water networks. These networks are modeled using
hyperbolic system of balance laws and then in the framework of switched
nonlinear DAEs. IIt is noted that the new proposed modeling approach is
a good approximation with the simplification of incompressibility. Hence
this simple framework is useful to study the impulsive effects in the
solutions of a water network. It is depicted by the solution of switched
nonlinear DAEs that Dirac appeared in whole network at switching time
in reaction to the change in the context of the component at any position
in the network, but with different signs and approximated length of Dirac
(coefficient of the Dirac delta δ in the solution).

Hence this proposed framework provided with a simple way to examine
the impact of the transients as high low or negative pressure surges on
the pipe walls. The limitation of this approach is all the comparisons are
performed on the end point of every pipe as these components are installed
in the network at the junctions (which are end points of the pipes). This is
very practical as the components may cause there transients are installed
at junctions at thr ends of pipes. The study of the impact at other
locations in the pipe is a direction of future work in the framework of
switched nonlinear DAEs.





Appendix

In this appendix we introduce several mathematical concepts and lemmas
that are used throughout the thesis.

Basic concepts

Definition A.0.1 (Kernel of a linear map). Let V , W be vector spaces
over Rn, and let F : V → W be a linear map. We define the kernel of F

(ker F ) to be the set of elements v ∈ V such that F (v) = 0.

Definition A.0.2 (Image of a linear map). Let F : V → W be a linear
map. The image of F , im F , is the set of elements w ∈ W such that there
exists an element of v of V such that F (v) = w.

An important result is given by the following:

dimV = dim ker F + dim im F.

Consider a linear map represented as a m × n matrix M with coefficients
in R and operating on column vectors x with n components over R. The
kernel of this linear map is the set of solutions to the equation Mx = 0.
The dimension of the kernel of M is called the nullity of M .
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The image of M is defined as im M : {y : x ∈ Rn such that Mx = y}.
The dimension of the image is called rank of a matrix and corresponds to
the number of linearly independent rows or columns of the matrix.

Definition A.0.3 (Lipschitz function). A function f : Rm → Rn is if
there exists a positive constant Lf such that for all ξ1, ξ2 the following
inequality

∥f(ξ1) − f(ξ2)∥ ≤ Lf (∥ξ1 − ξ2∥)

holds.

Remark A.0.4. It is worth noting that the property of a vector valued
function f of being locally Lipchitz continuous in ξ can equivalently defined
by means of seperate Lipchitz conditions for the scalar components fi of
the function. Thus f is locally Lipchitz continuous.

The state of an unstable linear system can go to infinity as time
approaches infinity. A nonlinear system’s state, however, can go to
infinity in finite time.

Definition A.0.5 (Finite escape time). A solution x(t) with the property
that x(t) → ∞ as t approaches some finite time is said to exhibit finite
escape time .

Local Lipschitz continuity suffices to have uniqueness. What it does
not suffice to is global existence. That is, if f is local but not global
Lipschitz, then the (unique) solution to the Cauchy problem might cease to
exist (blow up) in finite time. Hence local Lipchitz function not exhibiting
finite escape time said to be global Lipchitz.

Projectors

Recall that a matrix Π ∈ Rn×n (or its associated linear map) is a projector
by definition if, and only if, it is idempotent, i.e. Π2 = Π. There is a
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one-to-one correspondence between projectors in Rn and direct sums
Rn = V ⊕ W, via

im Π = V, ker Π = W;

the projector is then said to map onto V along W.

Lemma A.0.6. Let Π ∈ Rn×n be a projector and M ∈ Rn×n then

im M ⊆ im Π ⇔ ΠM = M,

ker M ⊇ kerΠ ⇔ MΠ = M.

Proof. Necessity in both cases is trivial. Since Π is the identity on
im Π sufficiency for the first case is also clear. Considering the transpose
and orthogonal complements, sufficiency of the second case follows with
analogous arguments. ■

Matlab codes

To calculate the matrices V and W of the modified Quasi Weierstrass
form introducd in the Lemma 3.4.7, we use the following Matlab codes,
where the build-in Matlab functions ‘colspace” and ‘null’ are used, 69].
The matrix V is obtained by the following E,A

function V = getVspace (E, A)
E = E

′
, A = A

′

[m,n]= size (E);
if (m==n) & size (E )== size (A)
V= eye (n,n);
oldsize =n;
newsize =n;
finished =0;
while finished ==0;
EV = colspace (E · V );
V= getPreImage (A, E · V );
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oldsize = newsize ;
newsize = rank (V);
finished =( newsize == oldsize );
end ;
else
error (’Matrices E and A must be square and of the same size ’);
end ;

The matrix W is obtained by the following

function W = getWspace (E,A)
E = E

′
, A = A

′

[m,n]= size (E);
if (m==n) & size E )== size (A)
W= zeros (n ,1);
oldsize =0;
newsize =0;
finished =0;
while finished ==0;
A⊤W= colspace (A · W );
W= getPreImage (E⊤,A · W );
oldsize = newsize ;
newsize = rank (W);
finished =( newsize == oldsize );
end ;
else
error (’Matrices E and A must be square and of the same size ’);
end ;

where the preimage in the Wong sequences is obtained by

function V = getPreImage (E, S)
E = E

′
, A = A

′

[m1 ,n1 ]= size (A); [m2, n2] = size(S); ifm1 == m2|m2 == 0H = null([A
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Remark A.0.7. After finiding V and W using the above matlab codes
for E⊤ and A⊤. Following steps are perfomed.

Fluid flow

In this Section some background concept used for the modeling of fluid
flows are presented, which have been used in the thesis.

Moody chart

The Moody diagram is a plot of the Darcy friction factor as a function of
Reynolds number and relative roughness. The Moody diagram shows both
the laminar and turbulent regimes as well as a transition zone between
laminar and turbulent flow.

Figure 7.1: Moody chart used to select friction coefficient
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A note on numerics

Consistent coupling conditions

For coupling conditions to make sense, they need to fulfil the following
consistency requirement.

Definition A.0.8. A set of coupling conditions is called consistent with
a given conservation law, if they revert to equal state coupling :

ŭ1 = ŭ2

for one to one coupling situation.

For coupling conditions to be considered consistent with a conservation
law, splitting the domain of an edge into two coupled by a vertex can not
change the solution.

Details on numerical scheme

Unless stated otherwise in the respective section, numerical simulations
use the following default configuration.

Flux-corrected transport (FCT) is a conservative shock-capturing
scheme for solving Euler equations and other hyperbolic equations which
occur in gas dynamics, aerodynamics, and magnetohydrodynamics. It is
especially useful for solving problems involving shock or contact disconti-
nuities. An FCT algorithm consists of two stages, a transport stage and
a flux-corrected anti-diffusion stage. The numerical errors introduced in
the first stage (i.e., the transport stage) are corrected in the anti-diffusion
stage 56] 57].
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Numerical scheme

Flux corrected transport scheme (FCT) is used to simulate the system
(2.20). First the scheme is presented, and (2.20) can be rewritten as:

∂t(QC) + ∂x(BC) = 0

with

Q =
(

ρi
qi

ρi
,

)
B =

(
1
ρi

)
C =

(
qi

q2
i

ρ2
i

+ K
ρa

)

where A is conserving integral, C are values which should be ‘smooth’.
The flux is calculated in the following way.

1. The flux with low order scheme is calculated

Flow,i+ 1
2

= 1
2dt

((BC)i+1 + (BC)i) + CFL
2 c(Qi+1 − Qi)(Ci+1 − Ci)

Here, the disspipation term is CFL
2 c(Qi+1 − Qi)(Ci+1 − Ci).

2. Then the high order flux is calculated

Fhi,i+ 1
2

= 1
2dt

((BC)i+1 + (BC)i)

By using FCT algorithm following formulas are usied to combine low
order and high order scheme:

Ai+ 1
2

= Fhi,i+ 1
2

+ Flow,i+ 1
2
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Then further is calculated as :

Qdt,i = Qi + 1
Bidx

(Flow,i+ 1
2

− Flow,i− 1
2
)

li+ 1
2

= max((0, min(|Ai+ 1
2
|)), dxSi+ 1

2
(Qdt,i+2 − Qdt,i+1),

dxSi+ 1
2
(Qdt,i − Qft,i−1))

where
Si+ 1

2
≡ (Ai+ 1

2
)

ACi+ 1
2

= li+ 1
2
Si+ 1

2

The new result for new time step is calculated as;

Qnew,i = Qdt, i − 1
Bidx

(ACi+ 1
2

− ACi− 1
2
)

Discretization

The scheme of discretization is applied to each pipe show in the Figure
7.2. The boundary points are on pipe ends, and the ghost points with
values necessary for the coupling conditions.

Figure 7.2: scheme discretisation

where in the scheme

∇x = space discretisation

∇t = time step which is same within one time step
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The time steps are calculated on density and flux in all pipes by the
following formula

∇t = ∇x · CFL
max(c + qi

ρi
)

Further introduce following notation

()b = boundary points ()g = ghost points

Each pipe have two boundary and two ghost points thus in formulas
below those indecis represents related to boundary taking part in coupling.
The following types of coupling conditions are considered. The type of
condition change over time. For example for open and closed valves.

Remark A.0.9. The scheme used is flux controlled scheme (FCT), which
is 2nd order scheme of second order at areas where the solution is smooth
solution and 1st order at the areas with fast changing values due to the
change in the boundary conditions. The scheme is designed to provide
mass and flow conservation despite of the discretization error. ; however
dissipation causes small mechanical energy dissipation. It does impact
results until till the point where the dynamics are calculated at the scope
where flux would equal to zero in steady case 15].

Pipe ends intersection

When one ore more pipes intersects means connected together following
condition

(ρi)g =
∑n

k=1(1 − χk,i + ϵχk,i)(ρk)b∑n
k=1(1 − χk,i + ϵχk,i)

,

(qi)g =
∑n

k=1((-1)sa(1 − χk,i)(qk)b

min(
∑n

k=1(1 − χk,i + ϵχk,i), 1)
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where

χa,i − Kronecker delta,

sk − side of the pipe, connected 0− left end 1− right end

If the pipe end is with closed valve, this pipe end is not considered in this
coupling condition.

CFL condition

The time step in the complete network is always synchronized. The
strongest time step restriction on the edges dictates the time step re-
striction on the whole network. The CFL condition is chosen to be
0.95.

Closed valve

(ρk)g = (ρk)b,

(qk)g = 0

Fixed pressure

The fixed pressure boundary represents outliet or reservoir depending on
the pressure value. Pressure conditions applies in the case is following

(Pk)g = resp,

(qk)g = (qk)b

Graphs

In this section some imporant Lemmata about the graph theory are
presented.
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Lemma A.0.10. If G is a connected graph on n vertices, then rank
Q(G) = n − 1.

Proof. Suppose x is a vector in the left null space of Q := Q(G), that is,
x=0. Then xi −xj = 0 whenever i is connected to j It follows that xi = xj

whenever there is an a path between i and j. Since G is connected, x

must have all components equal. Thus, the left null space of Q is at most
one-dimensional and therefore the rank of Q is at least n − 1. Also, as
observed earlier, the rows of Q are linearly dependent and therefore rank
Q ≤ n − 1. Hence, rank of Q = n − 1. ■

Lemma A.0.11. Consider a graph G = (N,E) , where each node v ∈ V

has degree atleast 2. Then G has a cycle.

Proof. Assume, for contradiction, that G has no cycle, and consider the
longest path P ′ in G (one must exist, since the graph is finite). Let v be
the final vertex in P ′, since v has degree 2, it must have two edges e1 and
e2 incident on it, of which one, say e1, is the last edge of the path P ′.
Then e2 cannot be incident on any other vertex of P ′ since that would
create a cycle (v, e2, [section of P ′ ending in e1], v). So e2 and its other
endpoint are not part of P ′ , and can be appended to P ′ to give a strictly
longer path, which contradicts our choice of P ′. Hence G must contain a
cycle. ■

Matrices

Matrices background is very important for the proving the rank properties
used to prove the regualrity of matrix pair.
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Block diagonal matrices

Consider a matrix L of the form:

L =


L11 L12 · · · A1r

L21 L22 · · · A2r

...
... · · ·

...
Ar1 Ar2 · · · Arr


(for which the number of rows of blocks equals the number of columns of
blocks), the ijth block Lij of L is called a diagonal block if j = i and an
off diagonal block if j ̸= i. If all of the off diagonal blocks of L are null
matrices, that is if

L =


L11 0 · · · 0
0 L22 · · · 0
...

. . . · · ·
...

0 0 · · · Lrr


then it is called blocked diagonal matrix.

Important results about definite block diagonal matrix

Lemma A.0.12. Let D = {di} represents n × n diagonal matrix. Then

(1) D is non negative definite if and only if d1, · · · , dn are nonnegative.

(2) D is positive definite if and only if d1, · · · , dn are positive.

(3) D is positive semidefinite if and only if di ≥ 0 for i = 1, · · · , n with
equality holding for more than one value of i.
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It is trivial that, For any matrices L1 and L2,

rank
(

L1 0
0 L2

)
= rank(L1) + rank(L2)

Lemma A.0.13. A blocked diagonal matrix of the form

B =
(
B1 0
B2 B3

)

as full rank iff B1 and B3 have full rank.

Lemma A.0.14. Consider A is a matrix of order m×n further A has full
rank. Then AA⊤, A⊤A for m ̸= n is symmetric positive definite matrix.

Proof. If A is full rank, then rank(A)= min{m, n}. If m ≥ n, then
rank(A)= n. By the rank nulity theorem

nulity(A) = n − rank(A) = 0.

If x⊤A⊤Ax = 0, then Ax2
2 = 0; so Ax = 0; so x ∈ nulity(A); so x = 0.

Hence A⊤A is positive definite.
On the other hand, if m < n, then rank(A) = m; so rank(A⊤) = n.

By the rank nulity thoerem ,

nulity(A⊤) = n − rank(A⊤) = 0

If y⊤AA⊤y = 0, then Ay2
2 = 0; so A⊤y = 0; so y ∈ nulity(A⊤); so y = 0.

Hence AA⊤ is positive definite. ■

Lemma A.0.15. A diagonal matrix Q ∈ Rm with all diagonal entries
qii > 0 is positive definite.

Lemma A.0.16. If M is positive definite and Q has full row rank, then
QMQ⊤ is positive definite.
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Proof. M is positive definite means for all non zero y y⊤My > 0. Moreover
Q has full row rank implies it has full column rank, means

Q⊤x = 0 =⇒ x = 0.

To show that QMQ⊤ is positive definite consider for all x ̸= 0

=x⊤(QMQ⊤)x,

=(x⊤Q)M(Q⊤x), Q⊤x ̸= 0,

=(Q⊤x)⊤M(Q⊤x) > 0 M is positive definte

■

Lemma A.0.17. Every positive definite matrix have full rank.

Proof. Consider a matrix M which is positive definite that means, x⊤Mx >

0 and x ̸= 0. On contrary suppose that M does not have full rank. There
must be a non-zero vector x such that Mx = 0 which implies x⊤Mx = 0
which is contradiction to the assumption that M is positive definite . ■
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