
Vom Fachbereich Informatik der
Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

Towards Efficient Ray Casting-Based
Visualization on Heterogeneous HPC

Architectures

Tim Biedert

Dekan Prof. Dr. Stefan Deßloch

Berichterstatter Prof. Dr. Christoph Garth

Berichterstatter Prof. Dr. Hank Childs

Datum der Aussprache 27. August 2019

D 386

Abstract

Visualization is vital to the scientific discovery process. An interactive high-fidelity
rendering provides accelerated insight into complex structures, models and relation-
ships. However, the efficient mapping of visualization tasks to high performance
architectures is often difficult, being subject to a challenging mixture of hardware
and software architectural complexities in combination with domain-specific hurdles.
These difficulties are often exacerbated on heterogeneous architectures. In this
thesis, a variety of ray casting-based techniques are developed and investigated
with respect to a more efficient usage of heterogeneous HPC systems for distributed
visualization, addressing challenges in mesh-free rendering, in-situ compression,
task-based workload formulation, and remote visualization at large scale.

A novel direct raytracing scheme for on-the-fly free surface reconstruction of particle-
based simulations using an extended anisoptropic kernel model is investigated on
different state-of-the-art cluster setups. The versatile system renders up to 170
million particles on 32 distributed compute nodes at close to interactive frame rates
at 4K resolution with ambient occlusion. To address the widening gap between
high computational throughput and prohibitively slow I/O subsystems, in situ
topological contour tree analysis is combined with a compact image-based data
representation to provide an effective and easy-to-control trade-off between storage
overhead and visualization fidelity. Experiments show significant reductions in
storage requirements, while preserving flexibility for exploration and analysis. Driven
by an increasingly heterogeneous system landscape, a flexible distributed direct
volume rendering and hybrid compositing framework is presented. Based on a task-
based dynamic runtime environment, it enables adaptable performance-oriented
deployment on various platform configurations. Comprehensive benchmarks with
respect to task granularity and scaling are conducted to verify the characteristics
and potential of the novel task-based system design. A core challenge of HPC
visualization is the physical separation of visualization resources and end-users.
Using more tiles than previously thought reasonable, a distributed, low-latency
multi-tile streaming system is demonstrated, being able to sustain a stable 80 Hz
when streaming up to 256 synchronized 3840x2160 tiles and achieve 365 Hz at
3840x2160 for sort-first compositing over the internet, thereby enabling lightweight
visualization clients and leaving all the heavy lifting to the remote supercomputer.

iii

Kurzfassung

Visualisierung ist essentiell im wissenschaftlichen Entdeckungsprozess. Eine hochqual-
itative interaktive Darstellung bietet beschleunigten Erkenntnisgewinn in komplexe
Strukturen und Zusammenhänge. Oft ist eine effiziente Abbildung von Visual-
isierungsverfahren auf Hochleistungsarchitekturen jedoch schwierig aufgrund von
Komplexitäten sowohl in Hardware als auch Software, sowie domänenspezifischer
Herausforderungen. Heterogene Architekturen verschärfen diese Schwierigkeiten.
In dieser Arbeit werden verschiedene Raycasting-basierte Techniken im Hinblick
auf die effiziente Nutzung heterogener HPC Systeme für die verteilte Visualisierung
vorgestellt und untersucht. Dies umfasst Herausforderungen in gitterfreier Darstel-
lung, in-situ Kompression, taskbasierter Algorithmusformulierung, sowie verteilter
Remote-Visualisierung.

Ein neues direktes Raytracing-Schema zur Rekonstruktion freier Oberflächen par-
tikelbasierter Simulationen basierend auf einem erweiterten Modell anisotropischer
Kernels wird auf verschiedenen aktuellen Clustersystemen untersucht. Es können
bis zu 170 Millionen Partikel auf 32 verteilten Rechenknoten nahezu interaktiv bei
4K-Auflösung mit Ambient Occlusion dargestellt werden. Hinsichtlicher der wach-
senden Lücke zwischen Rechendurchsatz und langsamen I/O Subsystemen wird in-
situ topologische Kontourbaum-Analyse in Kombination mit kompakter bildbasierter
Datenrepräsentation untersucht. So lässt sich auf effiziente und leicht kontrollier-
bare Weise der Schwerpunkt zwischen Speicherkosten und Visualisierungsflexibilität
steuern, wobei Experimente signifikante Reduktionen der Datenmengen belegen.
Motiviert durch eine zunehmend heterogene Systemlandschaft wird ein flexibles
Task-basiertes Framework zum verteilten direkten Volume Rendering und Com-
positing vorgestellt. Auf Basis einer Task-basierten dynamischen Laufzeitumgebung
werden Task-Granularität und Skalierungscharakteristika der neuartigen Algorith-
musformulierung untersucht. Eine zentrale Herausforderung der HPC Visualisierung
ist die räumliche Trennung zwischen Visualisierungsressourcen und Endanwen-
der. Es wird ein verteiltes Multi-Tile Streaming-System vorgestellt, welches durch
niedrige Latenzen und effiziente Hardware-Kompression bis zu 256 synchronisierte
4K-Streams bei stabilen 80 Hz verarbeitet, und bis zu 365 Hz für 4K Sort-First
Compositing über das Internet bietet.

v

Acknowledgement

First and foremost I offer my sincerest gratitude to my supervisor, mentor and
worst critic, Christoph Garth, who has supported me throughout this thesis with his
knowledge, creativeness, and passion for nerdy technical details. Likewise, I thank
my initial mentor, Hans Hagen, who has motivated and guided me during my early
days in the department’s PhD program.

A considerable amount of research in this thesis would not have been possible
without the ample contributions from my research assistants Kilian Werner and Jan-
Tobias Sohns, who have always striven for rock-solid and efficient implementations
to strengthen our scientific endeavors.

At the same time, this work has profited enormously from valuable feedback and
fruitful discussions with my co-authors Simon Schröder of Fraunhofer ITWM, Bernd
Hentschel of RWTH Aachen University, Ingo Wald and Jefferson Amstutz of Intel
Corporation, as well as Peter Messmer and Tom Fogal of NVIDIA Corporation, who
are now my colleagues.

Regarding daily work I am grateful for enjoyable and fun times with my friends and
office mates Tobias Gauweiler, Mathias Hummel and Jonas Lukasczyk. A (computer
administration) sorrow shared is a sorrow halved. Also, I wonder who has eaten the
largest amount of fries in the university’s canteen?

Finally, I thank my parents and family for supporting me throughout all my studies
and activities at university. Most importantly, I am eternally grateful for my loving
and supporting wife, Elena, our wonderful baby son, Demian, and our remarkably
crazy dog, Rocky, all of whom provide unending inspiration. I will never forget baby
sling-carrying three-week-old Demian on my chest while finishing the fluid surfaces
paper mere hours before the deadline.

vii

Contents

1 Introduction 1
1.1 High Performance Computing . 1

1.1.1 Heterogeneous Architectures 3
1.1.2 Performance and Scaling . 4
1.1.3 Challenges in HPC Visualization 6

1.2 Contributions . 8
1.3 Structure . 11

2 Background 13
2.1 Ray Casting . 13
2.2 Volume Rendering . 16
2.3 Image Compositing . 20
2.4 Topology-Based Data Analysis . 25
2.5 Video Compression . 28

3 Raytracing Particle-Based Fluid Surfaces 33
3.1 Motivation . 33
3.2 State of the Art . 35
3.3 Finite Pointset Method . 36
3.4 Surface Reconstruction . 38

3.4.1 Surface Definition . 38
3.4.2 Preprocessing . 39
3.4.3 Intersection . 44

3.5 Implementation . 49
3.6 Results . 50
3.7 Discussion . 53

4 Contour Tree Depth Images 57
4.1 Motivation . 57
4.2 State of the Art . 59
4.3 Method Overview . 61
4.4 Segmentation and Filtering . 62

ix

4.5 Depth Image Rendering . 64
4.5.1 Segment Intersection . 64
4.5.2 GPU Acceleration . 65

4.6 Storage . 66
4.7 Interactive Viewer . 67
4.8 Results . 68

4.8.1 Compression . 69
4.8.2 Analysis . 71
4.8.3 Scaling . 71

4.9 Discussion . 73

5 Task-Based Distributed Volume Rendering 77
5.1 Motivation . 77
5.2 State of the Art . 79
5.3 System Design . 81

5.3.1 Task Granularity . 81
5.3.2 Distributed Compositing . 82
5.3.3 Optimization . 84

5.4 Implementation . 85
5.5 Results . 86

5.5.1 Task Granularity . 87
5.5.2 Scheduling . 91
5.5.3 Scaling . 91

5.6 Discussion . 91

6 Hardware-Accelerated Multi-Tile Streaming 95
6.1 Motivation . 95
6.2 State of the Art . 96
6.3 Multi-Tile Streaming . 98
6.4 Implementation . 101
6.5 Results . 102

6.5.1 Codec Performance . 103
6.5.2 Full Tiles Streaming . 106
6.5.3 Strong Scaling / Sort-First Compositing 110
6.5.4 Interoperability . 114

6.6 Discussion . 116

7 Conclusion 119

Bibliography 125

x

List of Figures 139

List of Tables 141

List of Listings 143

Publications 145

Curriculum Vitae 147

xi

Introduction 1
1.1 High Performance Computing

Microprocessors constitute the foundation of computational sciences and have seen
a rapid development over the past decades, having given rise to diverse disciplines
building upon the rich execution capabilities of increasingly powerful and complex
processing units. Their performance is characterized by transistor speed, energy scal-
ing and system integration density. Increases in transistor density by approximately
35% per year are complemented by additional growths in the overall die sizes of
about 10% to 20% per year. These two factors combined result in annual transistor
count increases of 40% to 55% [Chi14]. This trend was captured by Gordon Moore,
the cofounder of Intel Corporation, who predicted that the number of transistors on
an integrated chip would double roughly every two years [Ste07]. Typically referred
to as Moore’s law, this observation and prediction has proven uncannily accurate for
the past five decades.

With increasing operational frequencies and architectural advances exploiting the
growth in available transistors according to Moore’s law, new microarchitectures
have been empirically characterized by Pollack’s rule [BC11], which broadly captures
the area, power, and performance tradeoffs from several generations of microarchi-
tecture. According to Pollack, if not limited by other parts of the system, performance
increases as the square root of the number of transistors or area of a processor. Thus,
each new generation doubling the number of transistors on a chip enables a new
microarchitecture delivering a performance increase of 40%. An additional 40%
performance improvement due to generally increased transistor frequencies results
in an overall approximate two-fold performance increase within the same power
envelope.

However, implementing a new microarchitecture every generation is difficult in
practice and processor frequencies are close to hitting a solid wall due to heat
dissipation constraints. Driven by an ever increasing demand for energy efficiency,
the focus of chip designers has shifted from microarchitectural techniques towards
alternate approaches. In contrast to optimizing a single large monolithic core, multi-
core microarchitectures have proven to be a lucrative design choice, where each

1

core delivers lower performance than a larger complex core, but the total compute
throughput of all cores combined increases significantly. While multi-core systems
can compute at increased throughput, their effective utilization at full potential is
challenging. Many scientific codes and applications often provide opportunities for
concurrent execution, but the overall performance gain through parallelization is
ultimately limited by the sequential critical sections in a program. This relationship
between potential parallel speed up and the fraction of code which benefits from a
system’s resource improvements is commonly known as Amdahl’s law [Amd67].

High performance computing (HPC) takes the idea of increased computational
throughput through hardware parallelism to the extreme by implementing con-
currency and parallelism along several axes: A modern supercomputer consists of
thousands of compute nodes, each with several multi- or many-core processors per
node, which in turn might even utilize instruction-level parallelism and vectorized
instructions. The latter is typically referred to as single instruction multiple data
(SIMD) according to Flynn’s taxonomy. There are fundamental similarities to a basic
personal computer in terms of general hardware components (control hardware,
computational units, internal memory, communication, mass storage, input/output
channels) and software components (operating system, drivers, file systems, com-
pilers, tools). However, the distinctiveness of an HPC system which distinguishes it
from a conventional computer is the structured organization, interconnectivity and
scale of the components, combined with the ability to manage the operation of such
a system at large scale.

Today, the broader ecosystem around high performance computing is a vibrant multi-
billion dollar market, projected to grow to more than $30 billion by 2020, with a
compound annual growth rate of 8%. The fast-growing market is driven by end-user
demand in a multitude of application domains, such as earth and life sciences,
natural laboratories, oil and gas industry, manufacturing, financial services and gov-
ernment intelligence. The underlying mathematical models and techniques cover a
wide sprectrum, including linear algebra (search engines, finite-element simulations,
climate modeling), the solution of partial-differential equations (weather prediction,
hurricane modeling, sea-ice modeling, oil reservoir modeling, compressible flow
computation), large systems with pair-wise force interactions (cosmology, molecular
dynamics simulations, medicine development, biomolecular development, plasma
modeling), graph problems (machine learning, data analytics, fraud detection) and
stochastic systems (radiation transport, particle physics, nuclear reaction design, risk
analysis in finance, public health, disease spread modeling) [SAB17].

2 Chapter 1 Introduction

1.1.1 Heterogeneous Architectures

The vast amount of different application domains and underlying scientific models
inherently entails a multitude of diverse requirements towards the computing system
at hand. While standard CPUs can be considered a general-purpose architecture
with high versatility, they are far from being a universally optimal architecture for
all domains. In modern CPUs, a large portion of the overall die area consists of
complex control flow units and caching hierarchies, leaving not much space for
actual computational units, i.e., algorithmic logic units (ALUs).

The traditional approach in the everlasting pursuit of increasing an HPC system’s
total peak performance has been to simply scale the number of CPUs and combine
them with a high-speed interconnect. However, in recent years the subject of power
consumption has become a critical issue, with modern supercomputers consuming
almost up to 20 MW [Top]. With globally rising energy prices, this results in
excessive maintenance costs over a system’s lifetime, which typically exceed its
initial costs of acquisition. This development and the need for specific computational
capabilities has given rise to heterogeneous supercomputer architectures, where a
general-purpose CPU is combined with specialized accelerator hardware. While the
former is particularly suited for low-latency processing of complex control flows
seeking to optimize the execution of sequential programs, the latter typically enables
high throughput through massive hardware parallelization. Thus, heterogeneous
architectures are designed to maximize throughput for specific applications or parts
of codes, thereby drastically improving the ratio of computational performance to
overall power consumption.

Graphics processing units (GPUs) are inherently suited for massively parallel opera-
tions, e.g., the parallel processing of large vertex counts or parallel rasterization and
processing of the resulting fragments. The term embarassingly parallel is often used
in this context to describe workloads where little to no effort is required to separate
the problem into many parallel tasks. Typically, these workloads are enabled by
no or negligible amounts of interdependencies or communication needs. With the
rise of general-purpose computing on graphics processing units (GPGPU), develop-
ers can now directly harness the parallel compute capabilities of such devices by
implementing arbitrary parallel programs in high-level languages and frameworks
such as NVIDIA’s CUDA or the vendor-neutral OpenCL standard. NVIDIA has coined
the phrase single instruction multiple threads (SIMT) for their many-core GPU archi-
tectures, which virtually contain several types of parallelism, i.e., multithreading,
multiple instruction multiple data (MIMD), single instruction multiple data (SIMD),
and instruction-level parallelism [CGM14]. From an architectural point of view,

1.1 High Performance Computing 3

CUDA is based on a scalable array of multithreaded Streaming Multiprocessors (SMs),
where each SM contains a specific number of CUDA cores and CUDA programs are
executed in so-called warps of 32 threads per SM. Several modern supercomputers
make use of NVIDIA GPUs as accelerator cards [Top]. Parts of this thesis have
been conducted on the Piz Daint supercomputer at Swiss National Supercomputing
Centre (CSCS), which at the time of writing consists of 5320 compute nodes with a
12-core CPU and a NVIDIA Tesla P100 accelerator card, each providing 56 Streaming
Multiprocessors and 3584 CUDA cores in total [NVI16].

Originally based on an earlier GPU design by Intel, the Xeon Phi series is another pop-
ular accelerator choice for parallel workloads in modern HPC systems. In contrast to
modern GPUs, the Intel Xeon Phi is a manycore architecture based on the common
x86 instruction set, thereby aiming for easier development and portability of existing
codes. While originally designed as a PCI Express-connected coprocessor card, the
second-generation Xeon Phi models codenamed Knights Landing (KNL) now consti-
tute a standard standalone processor that can boot an off-the-shelf operating system.
Furthermore, KNL is binary compatible with prior Intel Xeon server processors,
enabling legacy software to run on the manycore platform without modifications.
While getting functional code is rather straightforward as promoted, simple data
structures and massive parallelism are critical for Xeon Phi to perform well. Without
proper compiler-assisted parallelization and vectorization, efficient programming
for Xeon Phi is still a challenging task [Fan+14]. Parts of this thesis have been
conducted on the Stampede2 supercomputer at Texas Advanced Computing Center
(TACC), which houses 4200 Intel Xeon Phi Knights Landing nodes, each with 68
cores on a single socket supporting 4 hardware threads per core and interconnnected
by a mesh of rings [Sod+16].

1.1.2 Performance and Scaling

The fundamental defining property and ultimate value provided by a high perfor-
mance system is large-scale performance. Without proper definition, performance as
a quantitive measure can be ambiguous, as there are different objective and subjec-
tive meanings and interpretations to it. There are several concepts of performance
which have in common that they relate time to some unit of work.

The peak performance of a system denotes the theoretical maximum rate at which
operations can be performed by the hardware resources, i.e., a combination of
clock rate and hardware parallelism. Peak performance is usually measured in
floating-point operations per second (FLOPS), which in contrast to instructions

4 Chapter 1 Introduction

per second (IPS) provides a better bearing on the arithmetic capability of a ma-
chine in the context of scientific computing. With current systems in the lower
petaFLOPS range, peak performance is anticipated to hit exaFLOPS by the end of
this decade [SAB17].

In practice however, the actual or real performance that can be achieved on a
supercomputer is often much less than theoretical peak performance. The so-called
sustained performance is considered a more pragmatic indicator of an HPC system’s
true capabilities based on more realistic workloads. Sometimes also referred to as
wall clock time or time to solution, the sustained performance represents the total
average performance of program over its runtime, since the momentary performance
of a program can vary throughout execution due to variable system circumstances.
Similar to peak performance, sustained performance is typically expressed in floating-
point operations per second, but can capture any unit of interest depending on the
context, e.g., integer, load/store, or conditional operations per second. Clearly,
measuring sustained performance for comparison purposes is only uses if it is based
on standardized measurement approaches. The LINPACK benchmark and its portable
implementation HPL [DLP02] are widely employed and referenced, serving as a
baseline for the Top 500 list, which tracks the world’s fastest supercomputers on
a semiannual basis [Top]. For this task, HPL generates a random dense linear
system of equations of order n and solves it using LU decomposition with partial
row pivoting. The Top 500 list demonstrates that a large number of HPC systems
are in fact heterogeneous architectures using commercial off-the-shelf hardware.

The relationship between the performance and the size of a high performance system
is denoted by scaling, an important measure often used to describe possible gains
achievable through the utilization of larger hardware setups. A typical measure
of system size in this setting is the total number of cores, independent of their
specific architectural organization which can actually have significant impact on
performance. Given a fixed problem size, strong scaling measures how the time to
solution improves with increased system size. In this case, cutting the execution time
in half by utilizing twice as many cores would be considered ideal strong scaling.
In contrast to strong scaling, weak scaling assumes a fixed problem size per core,
i.e., the overall data size grows proportionally with the size of the system. Ideal
weak scaling describes using twice as many cores to solve a twice as large problem
size in the same time frame. In practice, weak scaling is often more relevant as
it can be used as a measure to describe how much money needs to be invested
into a supercomputer to be able to solve a problem of a specific size. However,
the total amount of main memory does not grow proportionally to system size due
to costs. Thus, the amount of memory per core has been decreasing, limiting the

1.1 High Performance Computing 5

opportunities for weak scaling [SAB17]. In this thesis, both strong and weak scaling
are studied for all benchmarks conducted.

There is a wide spectrum of possible reasons for the discrapency between theoretical
peak performance and actually measured sustained performance. Mostly inherent to
the hardware architectures and programming models, performance-limiting factors
typically have in common the failure to effectively and efficiently exploit available
resources in their entirety. In general, the negative impact of bottlenecks is more
noticable when targeting larger machines, thus limiting scalability. Performance
degradation is formally often referred to through the acronym SLOW, identifying its
reasons as starvation, latency, overhead, and waiting for contention [Ste+14].

Starvation refers to an insufficiency of available concurrent work to maintain a
high utilization of all resources. Typical causes for starvation are either not enough
parallelism exhibited by the application or load imbalance due to workloads not
being distributed evenly. Latencies are imposed by the time-distance delay intrinsic
to accessing remote resources and services, such as memory accesses, data transfers
between nodes or the overall length of an execution pipeline. Possible approaches
to solve latency-based performance degradation include reducing latency through
locality or hiding latencies by not letting computational resources run idle. Common
hardware-architectural designs to mitigate the effects of latency include cache
hierarchies and multithreading hardware. Overhead refers to the additional work
required for the management of parallel tasks and resources on the critical execution
path, which would otherwise not be necessary in a purely sequential variant of the
algorithm at hand. Examples for overhead include resource management, thread
scheduling and synchronization. Waiting for contention resolution denotes delay
due to lack of available of oversubscribed shared resources, such as bank conflicts in
memory or insufficient communication bandwidth.

1.1.3 Challenges in HPC Visualization

Visualization is vital to the scientific discovery process, where the ideally interactive
viewing of a high-fidelity rendering or animation can provide accelerated insight into
complex structures, models and relationships. However, the efficient mapping of not
only simulation codes but also visualization tasks to homogeneous and in particular
heterogenerous high performance architectures is often difficult, as they are natu-
rally also subject to performance degradation due to starvation, latency, overhead
and waiting for contention. The growing field of high performance visualization
addresses this interesting and challenging mixture of general hardware and software

6 Chapter 1 Introduction

architectural complexities in combination with domain-specific hurdles [BCH12].
This section provides a brief overview over common difficulties, trade-offs and
challenges in visualization on large-scale HPC systems, which have given rise to the
solutions developed and investigated in this thesis.

At the current scale of computational capability provided by large-scale parallel
computer architectures such as commodity clusters and modern supercomputers,
high-fidelity computational simulation models have assumed a significant role in
scientific research and engineering applications. However, this increased amount of
computation has incurred architectural trade-offs. While arithmetic capacity and
in-core memory have grown at a tremendous rate, I/O subsystems have not been
able to keep abreast in relative bandwidth [Chi+10]. As a consequence, numerical
data produced during typical simulations cannot be persistently stored, e.g. to
hard drives, in its entirety; a lack of available I/O bandwidth would make this
prohibitively costly with respect to time. This limitation has given rise to so-called
in situ visualization techniques, which aim to perform visualization directly on the
compute system in tight connection with the underlying simulation. By storing
only rendered images or other resulting artifacts [Ahr+14], in situ techniques trade
smaller output size for reduced post-processing flexibility.

The handling of large-scale computational simulation models does not only pose
a challenge to the efficient utilization of HPC hardware subject to its architectural
trade-offs and limitations. An increasingly heterogeneous system landscape in
modern high performance computing requires the efficient and portable adaption
of performant algorithms to diverse architectures, which is often conflicting with
traditional software frameworks and design practices. In recent years, parallel
algorithms for concrete classes of visualization problems have been presented, such
as direct volume rendering [HBC12] or integral curve computation [Pug+09]. Most
large data approaches typically utilize a distributed memory model, where bulk-
synchronous execution and communication using the Message Passing Interface
(MPI) is standard. For improved scalability, hybrid approaches commonly resort to
MPI for the coarse distribution of parallelly executable parts of an algorithm to a set
of processes, where within each process a second concept - e.g. OpenMP, OpenCL,
or CUDA - is used for additional finegrained parallelization of these steps. These
practices require detailed knowledge of the different parallelization concepts and
often result in specific optimizations for certain platform configurations or obligating
the usage of distinct hardware components, which complicates or even hinders
portability towards other architectures.

1.1 High Performance Computing 7

The parallelization of visualization concepts poses an additional difficulty by the
fact that, in contrast to simulation computations, visualization tasks are frequently
bandwidth-limited and inherently unbalanced. Thus, achieving scalable parallel
execution demands not only an efficient utilization of the available memory band-
width, where memory accesses ideally are overlapping with computational tasks, but
also dynamic load balancing. A classic example for a visualization workload highly
sensitive to load imbalance is distributed integral curve computation, where the path
of each seeded streamline is dependent on the vector field at hand to be visualized
and interpreted, prohibiting an a priori computation or estimate of a well-balanced
seed or data block distribution.

Another core challenge of HPC visualization is the physical separation of visualization
resources and end-users, which is becoming increasingly relevant given the rise and
popularity of streaming-based solutions over the internet, such as video on demand,
live video and game streaming, or even interactive remote gaming. With increasing
dataset sizes, in situ scenarios, and complex visualization algorithms, transfer to
a separate visualization system becomes impractical. Not only are transfers of
large-scale simulation results prohibitively costly with respect to time, but dedicated
visualization systems are typically not able to scale with the size of the compute
system. Modest demand for interactivity, low screen resolutions and user bases
on relatively high-speed connections made frame based compression sufficient to
provide a workable remote visualization experience in previous settings. However,
with novel interactive workflows, commodity high-resolution monitors, complex
rendering algorithms, latency sensitive display technologies and globally distributed
user bases, new approaches to solve the remoting challenge are required.

1.2 Contributions

Ray casting-based techniques represent a specific subset of visualization methodology,
where rays are intersected typically with a model or data set to sample, accumulate
or compute per-pixel values such as output colors. In this thesis, several approaches
based on ray casting are developed and investigated with respect to a more efficient
usage of heterogeneous high performance computers for visualization workloads,
addressing the aforementioned challenges in HPC visualization.

Particle-based simulation models have assumed a significant role in the numerical
computation of complex and highly dynamic transient flow and continuum mechani-
cal problems. However, direct visualization of surfaces from particle data without

8 Chapter 1 Introduction

intermediary discrete triangulation remains a challenging task. In this thesis, a
novel direct raytracing scheme for on-the-fly free surface reconstruction is presented,
building upon the rich anisotropic kernel approach, which is adapted and tuned to
the surface definition of FPM-based fluid simulations. The improved anisotropic
kernel-based surface definition incorporates automatic kernel scaling for variable
smoothing lengths, provides intuitive visuals for isolated particles, and is easily
parallelized. For this surface definition, a novel direct ray tracing scheme is de-
scribed. This on-demand two-pass iterative sampling algorithm intelligently reduces
intersection candidates for both opaque and transparent surface rendering, provides
optimization opportunities for secondary rays, and allows the dynamic mapping
of particle attribute values on to the surface using arbitrary transfer functions. By
reducing the number of candidate kernels evaluated to converge to the surface
threshold, the approach runs in image space rather than object space complexity.
Based on an implementation within the OSPRay raytracing framework, comprehen-
sive benchmarks are conducted and analyzed in order to quantify preprocessing and
rendering times on different state-of-the-art hardware setups, including workstation,
standard cluster and Xeon Phi accelerator systems. Furthermore, the applicability of
the approach to a variety of medium and large scale FPM data sets is demonstrated.
The system is suitable for both high quality and interactive desktop rendering, scales
reasonably well even with trivial parallelization and renders up to 170 million
particles on 32 distributed compute nodes at close to interactive frame rates at 4K
resolution with ambient occlusion.

While high-fidelity simulation models on large-scale parallel computer systems can
produce data at high computational throughput, modern architectural trade-offs
make full persistent storage to the slow I/O subsystem prohibitively costly with
respect to time. In this thesis, the feasibility and potential of combining in situ
topological contour tree analysis and compact image-based data representation is
demonstrated to address this problem. Based on in situ contour tree analysis and
simplification, a segmented representation of the scalar fields contained in the simu-
lation data at every time step is obtained. A rendering of this segmentation is then
generated describing all components visible in every pixel (similar to an A-buffer),
and stored together with the simplified contour tree. These ingredients can then
be used in post-analysis to flexibly select specific subsets of the segmentation, after
further simplification if required. Several experiments are conducted to quantify
the I/O savings prossible from such an approach, showing significant reductions
in storage requirements using topology-guided layered depth imaging, while pre-
serving flexibility for explorative visualization and analysis. Intended as a baseline
demonstration, the presented technique highlights the feasibility and potential of the

1.2 Contributions 9

combination of topological analysis and image-based representation in large-scale
in situ scenarios, and represents an effective and easy-to-control trade-off between
storage overhead and visualization fidelity for large data visualization.

An increasingly heterogeneous system landscape in modern high performance com-
puting requires the efficient and portable adaption of performant algorithms to
diverse architectures. However, classic hybrid shared-memory/distributed systems
are designed and tuned towards specific platforms, thus impeding development,
usage and optimization of these approaches with respect to portability. In this thesis,
a flexible parallel framework for distributed direct volume rendering is demon-
strated. Built upon a task-based dynamic runtime environment, it enables adaptable
performance-oriented deployment on various platform configurations. The novel
task-based definition aims to provide a flexibly tunable task granularity by subdivid-
ing in both image and data space, thus yielding a hybrid scheme between sort-first
and sort-last compositing. Based on an asynchronous binary tree compositing scheme
including optimizations such as empty space skipping and early ray termination,
the technique enables good scalability in combination with inherent dynamic load
balancing. Internally, the approach is based on the High Performance ParalleX (HPX)
framework, an aspiring task-based runtime environment supporting asynchronous
communication across nodes. Each block is represented as an individual component
in the active global address space (AGAS), allowing blocks to directly communicate
in the compositing pattern. A custom priority queue scheduler is implemented on
top of HPX’s standard FIFO scheduler by manually keeping track of the number
of rendering and compositing tasks being executed by HPX. Per-block rendering
is performed using the OSPRay framework, whereas manual AVX2 instrinics are
used for accelerated vectorized blend-over image compositing. Comprehensive
benchmarks with respect to task granularity and scaling are conducted to verify
the characteristics and potential of the novel task-based system design for high
performance visualization.

The growing use of distributed computing in computational sciences has put in-
creased pressure on visualization and analysis techniques. In this context, a core chal-
lenge of HPC visualization is the physical separation of visualization resources and
end-users. While GPUs are routinely used in remote rendering on GPU-accelerated
heterogeneous supercomputers, a heretofore unexplored aspect is these GPUs’ special
purpose video encoding/decoding hardware that can be used to solve the large-
scale remoting challenge. The high performance and substantial bandwidth savings
offered by such hardware enable a novel approach to the problems inherent in re-
mote rendering, with impact on the workflows and visualization scenarios available.
Using more tiles than previously thought reasonable, in this thesis, a distributed,

10 Chapter 1 Introduction

low-latency multi-tile streaming system is demonstrated, being able to sustain a
stable 80 Hz when streaming up to 256 synchronized 3840x2160 tiles and achieve
365 Hz at 3840x2160 for sort-first compositing over the internet. Intended as a
comprehensive case study, the impact of video compression and multi-tile streaming
based on the H.264/HEVC codec family is investigated in order to address a multi-
tude of novel use cases, such as directly streaming content from a cluster to remote
large-scale tiled displays at sufficiently high frame rates, or how to strong-scale
the rendering and delivery task by using video hardware to accelerate direct-send
sort-first compositing. Using hardware-accelerated multi-tile streaming, traditional
dedicated visualization clusters or workstations can be reduced to mere thin clients
that leave the heavy lifting to the remote supercomputer.

1.3 Structure

The structure of this thesis is as follows. Intended for audiences with a general
background in computer science, Chapter 2 covers the necessary fundamental
concepts and relevant prior work in the field of scientific visualization necessary to
understand the research presented in this thesis. This includes introductions to ray
casting, volume rendering and transfer functions, image compositing techniques,
topology-based data analysis, parallelization techniques in visualization, and a brief
outline of lossy video compression.

Chapters 3 through 6 contain the major contributions of this thesis, i.e., direct
raytracing of particle-based fluid surfaces, combining in situ topological data anal-
ysis with image-based storage as contour tree depth images, a novel task-based
formulation of distributed volume rendering, and a comprehensive case study on
hardware-accelerated multi-tile streaming. Each chapter is introduced with a brief
motivation and overview of the state of the art in the respective field, followed
by the theoretical and methodological concepts of the approach presented. Af-
ter a section about implementation details providing helpful insights for accurate
technical reproduction, a comprehensive results section covers the performance
and scaling characteristics of the topic at hand. Each chapter is concluded with a
short summarizing discussion and potential future work building upon the research
outlined.

The overall conclusion of this thesis as well as directions for future research are
presented in Chapter 7.

1.3 Structure 11

Background 2
This chapter serves as a brief introduction to the fundamental concepts in scientific
visualization and related fields on which the contributions presented in this thesis
build on. While this is intended as a general overview to the overall field, each main
chapter features a dedicated section about important related work and the state of
the art in the respective specialized research area.

2.1 Ray Casting

The central goal of computer graphics is simulating the distribution of light in a
typically three-dimensional scene. In modern applications, there are only a few
fundamentally different algorithms, which can loosly by classified into projective
and image-space algorithms [Suf07]. Implemented on all modern graphics cards,
the so-called rasterization approach belongs to the former category by projecting
geometric primitives such as triangles onto the image plane and applying local
shading models to the resulting pixel fragments, thus being amenable to pipeline
processing and highly efficient hardware implementations. In contrast, image-
space algorithms compute pixel colors by approximating the light transport which
contributes to each pixel. The name of the popular ray tracing image synthesis
algorithm reflects the core operations which it is based on, i.e., determining the
nearest objects long lines of sight and following light along rays through the scene.
Since the 1980s, ray tracing has been considered an eye opener due to its capability
to produce high quality images with naturally included global light paths such as
specular reflection and transmission, which in particular are difficult to compute
using projective algorithms. However, due to its enormous computational complexity,
ray tracing has long been restricted to high-fidelity offline rendering scenarios such
as movie production. More than 35 years after its introduction, ray tracing has
eventually found applicability in interactive and real-time rendering, enabled by
modern high-performance hardware, parallel processing, sophisticated acceleration
structures and state-of-the-art algorithms in combination with low-level engineering
and optimization [Suf07].

13

Fig. 2.1: In ray casting-based algorithms, e.g., ray tracing or direct volume rendering, rays
are sent from the virtual camera through each pixel of the screen and intersected
with the scene.

The fundamental concept of ray tracing is called ray casting, a term which was origi-
nally introduced by Scott Roth in 1982 in the context of rendering constructive solid
geometry models [Rot82]. While often used interchangeably in computer graphics
literature, ray casting and ray tracing can and should be distinguished. Essentially,
ray tracing builds upon ray casting by recursively tracing secondary rays such as
shadow rays or reflections, refractions and transmissions to approximate global light
transfer in a scene. Thus, ray casting can be considered performing only the first
iteration of primary ray casting in the ray tracing mindset. However, in general,
the term ray casting is used to refer to a variety of problems in computer graphics
and computational geometry. Besides the non-recursive ray tracing algorithm using
primary rays only, this includes the general problem of determining the nearest
object intersected by a ray, performing hidden surface removal based on finding the
closest intersection of a ray cast from the eye through each pixel of an image, or
direct volume rendering using volume ray rasting, where a three-dimensional scalar
data is sampled along rays to accumulate color and opacity values using so-called
transfer functions.

The basic structure of ray casting for image synthesis is illustrated in Figure 2.1.
Depending on the context and problem at hand, the scene to be rendered typically
consists of an arbitrary number of objects made of primitives such as triangles
or implicit surfaces, in combination with materials specified for each object, and
light sources to illuminate the scene. Given a virtual image plane whose surface is

14 Chapter 2 Background

covered with pixels, for each pixel a ray is shot (or cast) towards the objects in the
scene through the center of the pixel. The nearest hit point is computed, which is
often assisted with an acceleration data structure to speed up intersection candidate
traversal by quickly discarding irrelevant objects. If a closest hit exists, the respective
object’s material is used in conjunction with all light sources of influence to compute
the pixel’s output color. Otherwise the pixel is set to a predefined background or
miss color.

Note that the rays used in ray casting (and ray tracing) differ from real light rays
or photons as they travel in the oppositive direction. The reason for this becomes
clear when considering a perspective pinhole camera, where rays originate at the
pinhole. Starting rays from the camera is the only practical way to render images,
as the vast majority of rays started from the light sources would never pass through
the camera’s infinitely small pinhole. [Suf07]

All research topics covered in this thesis are utilizing some form of ray casting.
The on-the-fly surface reconstruction of particle-based fluids (Chapter 3) is used in
conjunction with standard ray tracing for surface intersection and global lighting
including shadowing and ambient occlusion. In contrast, in the subsequent combi-
nation of in situ topological data analysis with image-based storage (Chapter 4), a
variant of volume ray casting is used to idenfity all entities in the topological data
segmentation contributing to each image pixel. Similarly, the task-based formulation
of distributed volume rendering (Chapter 5) is based on standard block-wise volume
ray casting for each image tile. In the comprehensive hardware-accelerated multi-tile
streaming case study (Chapter 6), an extension of ray tracing called path tracing is
highlighted as a show case amenable to distributed sort-first compositing.

Path tracing is a Monte-Carlo rendering method approximating a numerical solution
to the integral of the so-called rendering equation [Kaj86], which adheres to the three
principles of optics: global illumination, equivalence (reflected light is equivalent to
emitted light), and direction (reflected light and scattered light have a direction).
Similar to ray tracing, rays are cast from the eye through the pixels of the image plane
into the scene. At the closest hit point, the rendering equation is evaluated using
Monte Carlo integration. In order to approximate the required incident radiance,
rays are traced into random sample directions, where typically so-called importance
sampling is used to guide the sampling towards faster convergence by considering the
local material properties and light sources. As long as there is a significant amount
of radiance transported along a ray, this scheme is applied recursively. An example
of path tracing applied to a scientific flow visualization scenario is illustrated in
Figure 2.2.

2.1 Ray Casting 15

Fig. 2.2: Luminous streamlines rendered with path tracing, enabling advanced visual effects
such as emissive materials, global illumination and depth of field. Data provided
by Dr. Mohamed Salim from Humboldt University of Berlin, based on simulations
with the urban mircroscale model PALM-4U. Rendered with NVIDIA’s RTX path
tracer for ParaView.

2.2 Volume Rendering

An increased amount of measured and simulated volume data in modern medical
and computational sciences necessitates intelligible representations of a volume’s
interior. Common visualization applications of measured three-dimensional volume
data include computed tomography (CT), magnetic resonsance imaging (MRI) and
ultrasound scans, whereas simulated volume data can for instance originate from
computational fluid dynamic applications and represent physical quantities such as
velocity magnitude, pressure or porosity.

Several techniques have been proposed for the visualization of volume data, which
can be differentiated based on their dimensionality. A simple but popular two-
dimensional approach is slicing, where the volume is intersected by a possibly
non-aligned planar slice, and the volume data is interpolated accordingly for direct
slice display. In contrast, three-dimensional techniques do not simply eliminate one
data dimension for rendering and can be classified into indirect and direct solutions.
Isosurface extraction is called an indirect technique, as an intermediate triangle mesh
is constructed for a given isovalue, for instance using the popular marching cubes
algorithm [LC87]. In this thesis, variants of direct volume rendering are regularly
used, which in contrast to isosurfacing is a direct technique without intermediate
representations as the name suggests.

16 Chapter 2 Background

Sampling Classification &
Illumination Compositing

Fig. 2.3: Volume rendering pipeline as described by Levoy.

Direct volume rendering [DCH88] represents a crucial class of algorithms used in
scientific scalar field visualization. Today, direct volume rendering typically follows
the principle of ray casting as proposed by Levoy [Lev90], where primary rays are
traced through a volumetric data set starting at a virtual camera and depending on
the underlying sample locations optical properties are determined and accumulated
along each ray. To systematically capture this, Levoy described a volume rendering
pipeline consisting of three steps denoted by sampling, classification and illumination,
and compositing, which is illustrated in Figure 2.3.

Levoy’s approach is built around the goal of numerically approximating the so-called
volume rendering integral, which is based on the density-emitter model introduced
by Sabella [Sab88]. The density-emitter model is a simplified light transport model
only considering emission and absorption, thereby neglecting more complicated
radiative phenomena such as scattering, or wavelength-dependent effects such as
diffraction. The volume rendering integral is defined as

I(s) = I(s0)T (s0, s) +
∫ s

s0
Q(t)T (t, s)dt (2.1)

where s denotes a location on a ray traversing the volume and entering it at s0,
I(s) is the resulting intensity computed along the ray up to position s, I(s0) is the
ambient intensity entering the volume, T (x, y) is the accumulated absorption of
along all points from x to y, and Q(t) is the isotropic emission at t. Intuitively, in
this model each particle is considered a tiny light source emitting light throughout
the volume without interacting with it.

The above volume rendering integral describes the intensity along a ray traversing
the volume to be visualized. In order to solve the volume rendering integral nu-
merically, contributions have to be accumulated along the ray at discrete locations.
This process is called sampling and denotes the first step in the volume rendering
pipeline. The straightforward approach is to perform uniform sampling along the ray.
However, care must be taken to use enough samples in order to sufficiently represent
the resolution of the volume data at hand. The sampling theorem states that the
data can be reconstructed exactly if the minimal wavelength (maximal frequency)
is sampled more than twice. Thus, each cell should be sampled at least once for
sufficient accuracy. A possible optimization over uniform sampling is to perform

2.2 Volume Rendering 17

(a) Transfer Function (b) Direct Volume Rendering

Fig. 2.4: Direct volume rendering applied to a computed tomography (CT) scan of a human
skull. The transfer function is chosen such that the teeth and bone structures
are highlighted, using a high opacity for the low intensity values of the data set
(blue/green color). Rendered with ParaView Glance.

adaptive sampling based on the local volume properties, e.g., using empty-space
skipping. Typically, for a given sample location, the discrete volume data has to be
interpolated. For the regular grids used throughout this thesis, this can be achieved
through simple trilinear interpolation.

In the subsequent classification and illumination step, the contribution of each
sample to the rendering integral has to be computed. Using the potentially interpo-
lated volume value at the given sample location, the sample value is first classified
according to a so-called transfer function. Transfer functions allow the user to specify
basic rules for color and opacity, thereby providing an intuitive way to define the
appearance and transparency of a data region. The process is defined in feature
space, i.e., transfer functions typically consist of two continuous one-dimensional
functions describing color and opacity for each possible isovalue. The key idea in
good transfer function design is that certain function ranges are expected to repre-
sent specific materials. Thus, these function ranges should be mapped to distinct
visual properties. An example of this approach is illustrated in Figure 2.4, where the
transfer function is chosen such that the teeth and bone structures within the CT
scan are highlighted.

After classification, the resulting color and opacity values of the sample at hand are
used by the lighting model to produce an illuminated and shaded output intensity
for improved depth perception. Since the human visual system is trained to perceive

18 Chapter 2 Background

surfaces, Levoy has considered strong gradients in the data to represent object
boundaries, thereby interpreting object boundaries as surfaces. Thus, at each sample
location, the gradient of the volume data is used as local normal in the lighting
model. In the case of regular data, gradients can be computed numerically via finite
differences.

Once the sample values are computed, classified and illuminated, they are accumu-
lated along the ray according to the underlying physical model. This process is called
compositing and denotes the numerical approximation of the volume rendering
integral. The standard approach is to use recursive alpha-blending derived from
back-to-front compositing defined as

C
′
i = Ci + (1−Ai)C

′
i−1 (2.2)

where C
′
i denotes the radiant energy observed at position i, Ci is the radiant energy

emitted at position i, (1−Ai) is the absorption at position i, and C
′
i−1 is the radiant

energy observed at position i− 1. Note that i = 0 denotes the foremost sample in
reverse viewing direction, i.e., the last sample along the ray. However, when using
ray casting it is beneficial to compute the recursion via front-to-back compositing
along the ray using

C
′
i = C

′
i+1 + (1−A′

i+1)Ci (2.3)

with
A

′
i = A

′
i+1 + (1−A′

i+1)Ai (2.4)

describing the accumulated opacity for decreasing values of i. Using front-to-back
compositing enables to perform an optimization technique called early ray termi-
nation, as the ray’s opacity is saturated when A

′
i ≈ 1. Thus, based on Equation 2.3,

once the accumulated opacity along a ray reaches saturation, the sampling process
can be stopped for this ray.

A substantial body of research focuses on both hardware-accelerated and distributed
volume rendering of large data, which will be covered in depth in Section 5.2. In
this thesis, the combination of in situ topological data analysis with image-based
storage (Chapter 4) uses a variant of volume ray casting to intersect the volume and
determine sample locations, however does not compute an approximation of the
volume rendering integral. Instead, at each sample location, the associated branch in
the topological segmentation is determined in order to idenfity boundaries between
segments for layered depth image construction. In contrast, the novel task-based
formulation of distributed volume rendering (Chapter 5) performs standard direct

2.2 Volume Rendering 19

volume rendering based on ray casting as outlined above for each data block visible
from each image tile.

2.3 Image Compositing

Image compositing is a crucial part of large-scale distributed visualization on high
performance computers. Next to I/O, compositing is one of the most expensive
operations in parallel rendering pipelines due to increased communication overhead
for large node codes [BCH12]. Thus, crucial requirements to image compositing are
concurrency and especially scalability.

Following the nomenclature of Molnar et al. [Mol+94], there are three approaches
to the implementation of parallel rendering, which are classified based on what is
distributed and what is replicated among the processes involved. In sort-first render-
ing, data is replicated across nodes, whereas image pixels are distributed, i.e., every
node has the complete data, but renders only a partial tile of the final image. This
scheme is often hard to apply in practice, as high-fidelity applications generate data
possibly orders of magnitude larger than the memory capacity of a single node. Thus,
sort-first compositing is not frequently encountered in HPC visualization. In contrast,
sort-last rendering is suitable for data which is distributed across nodes, while pixels

Pr
oc

es
s

1
Pr

oc
es

s
2

Pr
oc

es
s

3

Fig. 2.5: Sort-first compositing. Every node has the complete data, but renders only a
partial tile of the final image.

20 Chapter 2 Background

Pr
oc

es
s

1
Pr

oc
es

s
2

Pr
oc

es
s

3

Fig. 2.6: Sort-last compositing. Every node renders a complete full-resolution image of a
subset of the overall data.

are replicated, i.e., every node renders a complete full-resolution image of a subset
of the overall data. Afterwards, the resulting images need to be combined into a
single final output image. This process is called compositing and is typically based
on each pixel’s depth value similar to the conventional Z-buffer algorithm found
in rasterization pipelines. Sort-middle approaches aim to represent a combination
of sort-first and sort-last by distributing both data and image pixels across nodes.
However, as the data per node depends on the actual viewpoint and thus requires
a redistribution when the camera changes, this approach is considered difficult to
implement and scale. Examples of sort-first and sort-last compositing are illustrated
in Figures 2.5 and 2.6, respectively.

While both sort-first and sort-last compositing techniques have specific advantages
and drawbacks [Mol+94], most scalable systems typically employ the sort-last
approach, primarily due to the slower increase in image resolution compared to
overall data size. A survey of methods for sort-last compositing can be found in
[Sto+03], and an analysis of relative theoretical performance in [CMF05]. The
performance and scalability of a multitude of common compositing implementations
is demonstrated in the popular IceT framework [Mor+11]. Sort-last compositing
algorithms can be loosely classified into direct-send and tree-based approaches. The
essential concepts and commonly used techniques are outlined in the following.

2.3 Image Compositing 21

Process 1 Process 2 Process 3 Process 4

Fig. 2.7: Direct-send compositing using four processes. Each process is responsible for 1/4
of the final image.

In direct-send compositing [Hsu93; Neu94; EP07], each of the p processes is re-
sponsible for 1/p of the final image. All other processes send this respective image
tile to its owner, as illustrated in Figure 2.7. However, direct-send is typically not
suitable for large processor counts due to increased network congestion caused
by many simultaneous messages. An alternative approach represent tree-based
communication patterns, where the levels in the tree structure represent rounds
of the tree-based algorithm. In each round, partial images are exchanged between
a manageable number of processes forming a group. In contrast to direct-send
algorithms, which try to perform as much work as quickly as possible by generat-
ing the maximum number of messages in a single round, tree-based approaches
generate fewer simultaneous messages over multiple rounds to balance the overall
communication load [BCH12].

A well-known tree compositing algorithm is binary-swap [Ma+94], which tries to
avoid the bottleneck of a growing subset of processes going idle in later rounds.
Each process composes the incoming part of an image with the same part of the
image it already has, and all processes remain active by continuous swapping. In
each round of binary-swap compositing, the distance is doubled, i.e., neighbors are
chosen twice as far apart, and the image size is halved. This scheme is illustrated in
Figure 2.8 for four processes performing binary-swap over two rounds. Note that
binary-swap is the same as direct-send for group sizes of two.

Several optimizations to the direct-send and binary-swap image compositing al-
gorithms have been proposed. A common performance improvement is the size
reduction of active image regions by exploiting the spatial locality and sparseness
typically present in scientific visualization renderings. Other standard means to
faster compositing times are load-balancing and performing improved scheduling
in order to keep compute and communication resources busy. Reducing the active
image size to minimize communication and compute costs can be achieved through

22 Chapter 2 Background

Process 1 Process 2 Process 3 Process 4

(a) Round 1

Process 1 Process 2 Process 3 Process 4

(b) Round 2

Fig. 2.8: Binary-swap compositing using four processes over two rounds. In each round the
distance is doubled and the image size is halved.

lossless compression based on run-length encoding [AP98], or identifying bounding
boxes of non-empty image regions [Ma+94]. Scan line interleaving [TIH03] is a
form of load-balancing, where individual disjoint scan lines are assigned to different
processes to distribute active pixels and balance workload. Note that this approach
has the drawback that image scan lines must be rearranged for transmission and
compositing. The so-called SLIC algorithm [Sto+03] is based on direct-send and
uses the encoding of active pixels, scan line interleaving and scheduling of opera-
tions, where spans of compositing tasks are assigned to processes in an interleaved
way.

An extension of binary-swap compositing to nonpower-of-two process counts was
introduced by Yu et al. in an algorithm called 2-3-swap [YWM08]. The goal is to
combine the flexibility of direct-send with the scalability of binary-swap compositing.
The 2-3 swap algorithm is based on the fact, that any natural number greater than
one can be expressed as a sum of twos and threes. This observation is then used
to assign the processes to the communication groups of the first round. By clever
assignment of image subtiles, Yu et al. proved that, in each round, group sizes
can be between two and five, where each round can have multiple different group
sizes present within the same round. For p processes, the total number of rounds is

2.3 Image Compositing 23

Process 5 Process 6 Process 7

Process 3 Process 4

Process 1 Process 2

(a) Round 1

Process 5 Process 6 Process 7

Process 3 Process 4

Process 1 Process 2

(b) Round 2

Fig. 2.9: 2-3-swap compositing using seven processes. In the first round (left), groups of
twos and threes execute direct send compositing. In the second round (right),
each process owns 1/7 of image, where the group size in the second round is
between two and five.

equal to the base of log(p). Figure 2.9 illustrates an example of 2-3-swap for seven
processes.

The radix-k algorithm [Pet+09] improves on 2-3-swap by allowing more combina-
tions of rounds and group sizes. Let ki represent the communication group size in
round i, where within each group direct-send is performed. Then, the k-values for
all rounds can be expressed as a vector k = [k1, k2, ..., kr], where r is the number of
rounds. Let p denote the number of processes, then using above notation, direct-
send can be expressed as r = 1 and k = [p]. Similarly, binary-swap is defined as
r = log(p) and k = [2, 2, 2, ...]. While 2-3-swap allows k-values between two and
three, radix-k allows any factorization of p =

∏r
i=1 ki, where all groups in round i

are of equal size ki. Figure 2.10 illustrates the radix-k scheme for twelve processes
and k = [4, 3]. Other possible factorizations for this example include [12], [6, 2],
[2, 6], [3, 4] or [2, 2, 3]. The flexibility of radix-k allows to achieve higher compositing
rates by selecting a factorization best suited for the underlying communication
hardware, which might offer support for multiple simultaneous links or overlap-
ping communication with compute. A number of optimizations to radix-k have
been proposed, including active-pixel encoding and compression [Ken+10], scan
line interleaving and improved compositing using telescoping for nonpower-of-two
processor counts [Mor+11].

24 Chapter 2 Background

Process 9 Process 10 Process 11 Process 12

Process 5 Process 6 Process 7 Process 8

Process 1 Process 2 Process 3 Process 4

(a) Round 1

Process 9 Process 10 Process 11 Process 12

Process 5 Process 6 Process 7 Process 8

Process 1 Process 2 Process 3 Process 4

(b) Round 2

Fig. 2.10: Radix-k compositing using twelve processes over two rounds with k = [4, 3].

In this thesis, several contributions with respect to accelerated compositing are pre-
sented. The novel task-based definition for distributed volume rendering (Chapter 5)
provides a flexibly tunable task granularity by subdividing in both image and data
space, thus yielding a hybrid scheme between sort-first and sort-last compositing.
Based on an asynchronous binary tree compositing scheme including optimizations
such as empty space skipping and early ray termination, the technique enables
good scalability in combination with inherent dynamic load balancing. Additionally,
a hardware-accelerated multi-tile streaming system is presented (Chapter 6) as
a promising approach to make the distributed rendering capabilities of the GPUs
within a remote supercomputer directly accessible to visualization systems. In this
context, the feasibility and advantageousness of performing direct-send compositing
on the client and displaying tiles at very high frame rates is demonstrated. This
enables a system design in which render nodes directly send to the end-user client.
With vastly improved hardware-accelerated compression and decompression based
on progressive video codecs, even a large number of render nodes do not overwhelm
the recipient of their images.

2.4 Topology-Based Data Analysis

Visualization of large-scale simulation output has to rely on a number of differ-
ent strategies to facilitate meaningful analysis in reasonable time frames. Multi-

2.4 Topology-Based Data Analysis 25

resolution schemes represent data on varying scales of resolutions and have a long
standing tradition in this setting. They enable an essential compromise between
fidelity and accuracy of visualization results on one hand, and computation and
I/O bandwidth expended on the other. Among the large set of available methods,
topological techniques such as the so-called contour tree stand out because they are
able to provide meaningful simplification for scalar fields.

Topology-based data analysis and visualization use concepts and methods from
mathematical and computational topology, such as homeomorphism, homotopy,
connectivity, quotient spaces and cell complexes. By focusing on spatiotemporal
relations between data subsets treated as functional units, an abstract and less
redundant structural overview of the data can be provided. This overview can not
only be used as a direct visual representation, but also for guided filtering and
mapping in the visualization process. While topological methods are mathematically
sound and typically feature robust algorithmic solutions, they require the joint work
of domain and visualization scientists to define topological models that to not destroy
the relevant structure in the data.

A particularly successful construct in the area of topology-based data analysis and
visualization is the contour tree, which is used in this thesis as a tool for semi-
automatic simplification in the context of in-situ data compression. This section will
give a brief introduction to the concept of contour trees. A comprehensive overview
of the state of the art in topology-based visualization and analysis is presented in
Section 4.2.

Given a real-valued function f : Ω → R over a domain Ω, the so-called level set
defines for each value in the function’s range the set of points where the function
value equals the given value v, i.e., the preimage of v with respect to f : f−1(v).
Commonly known from topographic elevation maps, level sets can be depicted
via contour maps, i.e., curves representing equal function value. Note that such a
contour map typically only shows the curves for a few select values, while there
is actually an infinite number of level sets resulting from an infinite number of
values in the function’s range. Level sets are not necessarily connected, and a
connected component of a level set is formally called a contour. A key observation for
visualization purposes is that contours can potentially serve as feature boundaries.

In order to reduce the infinite number of contours to a finite number of classes, a
topological equivalence transformation is defined based on a continuous deformation
of space that does not create new intersections or loops. Formally, this concept of
properties of space that are invariant under transformation is called homeomorphism,
and is based on the notion of Betti numbers from algebraic topology. Besides the

26 Chapter 2 Background

Fig. 2.11: Critical points and contour tree of a triangle mesh with height being interpreted
as function value. The nodes of the contour tree are local minima (red), local
maxima (blue) and saddles (green).

basic intuitive notion of connectivity Betti numbers also comprise higher-order
connectivity in the form of loops and voids.

The evolution of level sets is reflected in so-called Reeb graphs, which are typically
tought with the help of an imaginary flooded terrain. Assuming the function to be
represented by a landscape, where each point’s height is equal to its function value,
the initial condition is a sufficiently high water level such that the landscape is fully
submerged. By slowly draining the water, an intuition can be developed about how
level set connectivity changes with changing function value. New contours become
visible at peaks in the landscape, which correspond to local maxima of the function.
Correspondingly, contours cease to be at local minima. Points where contours merge
or split are called saddles. All of the above points are called critical points of f , and
have in common that the gradient of f vanishes: ∇f(x) = 0.

The Reeb graph encodes a compact representation of this process by contracting each
contour to a point. Contour adjacency is translated to point adjacency in a process
formally known as quotient space in topology, where two points are equivalent if
they belong to the same connected component of a level set. If Ω, the domain of f ,
is simply-connected, i.e., can be contracted to a point without destroying loops, the
Reeb graph contains no loops and is then called the contour tree.

In a computational setting, where the function is the result of some numeric simula-
tion, the domain is typically discretized into cells. In computational topology, this

2.4 Topology-Based Data Analysis 27

discretization can be modeled using cell complexes known from algebraic topology.
A frequently used model are simplicial complexes, where cells are convex com-
binations of affinely independent points. Assuming the function is modeled as a
piecewise linear function on a simplicial complex, an efficient and elegant algorithm
to compute the contour tree was presented by Carr et al. [CSA00]. This is illustrated
in Figure 2.11 showing the critical points and contour tree of a three-dimensional
mesh, where the height is intepreted as function value.

Topological concepts such as contour trees are powerful tools for noise reduction
and data simplification. The idea of topological persistence gives a measure of
relevance to parts of the contour tree. Based on the mathematical guarantee that a
slightly perturbed function with simpler structure exists, topological simplification is
a process reducing the contour tree in size and complexity. However, topological
persistence is not only valuable in noisy settings, but can also be used to differentiate
between large-scale and small-scale features.

In this thesis, in situ topological analysis and simplification based on the so-called
branch decomposition of the contour tree is combined with compact image-based
data representation to address the widening gap between increased computational
throughout and prohibitive I/O overhead (Chapter 4).

2.5 Video Compression

Video compression is the process of converting raw digital video material into a
format which takes significantly less space when stored or transmitted over network.
Ubiquitously used in the entertainment industry, video compression is an essential
tool enabling modern technologies such as digital television, DVD and Blu-ray disc,
video conferencing, and internet streaming. In this thesis, hardware-accelerated
video compression is applied to real-time rendered content in order to enable
distributed remote rendering interactively at large scale (Chapter 6).

Both H.264 [Wie+03] and H.265 [Sul+12], also known as Advanced Video Coding
(AVC) and High Efficiency Video Coding (HEVC), are industry standard video codecs,
defining a syntax for storing compressed video and methods to decode this syntax in
order to produce a displayable video sequence. Notably, the specifications do not
define the details of the actual encoding process, which is left to the manufacturer
of a video encoder. However, typically the encoder is designed such that it mirrors
the procedure of the decoding process.

28 Chapter 2 Background

Both H.264 and H.265 essentially share the same encoding pipeline, which is
illustrated in Figure 2.12. Conceptually, it consists of a lossless compression scheme
based on spatial and temporal prediction followed by a binary encoding, as well as an
optional lossy transformation and quantization routine. The corresponding decoder
carries out the complementary decoding, inverse transformation and reconstruction
steps to reproduce the original input as faithfully as possible.

Prediction Transform Quantization Binary
Encoding BitstreamFrame

Lossless
Lossy

Fig. 2.12: Encoding pipeline for the H.264/H.265 video codec family consisting of both
lossless and lossy compression steps.

In the prediction phase, video frames are processed in blocks of pixels, where for
each block a prediction is formed based on previously-encoded data, either from
within the current frame (intra prediction) or from other frames (inter prediction).
This step leverages the redundancies between neighboring pixels, and determines
what kind of compressed frame output is produced by the encoder. While so-called
I-frames only perform intra prediction, P-frames and B-frames apply both intra and
inter prediction. For P-frames, the search for redundancy is limited to prior frames
in display order, whereas B-frames are able to use frames both before or after it.
Note that while B-frames enable slightly better compression by providing a larger
temporal search space for redundancy, they are unsuitable for low-latency streaming
of interactively produced frames, which should be encoded and transmitted on
the fly. The so-called residual is the difference between the current block and its
prediction, and is preserved throughout the encoding pipeline, thus making the
prediction phase lossless. In this context, the term motion estimation usually refers
to the process of finding a suitable inter prediction within the given frame, whereas
motion compensation denotes the subtraction of an inter prediction from the current
block. Figure 2.13 illustrates the processes of both intra and inter prediction.

The H.264 standard processes frames in so-called Macroblock units of size 16x16
pixels, which can be further devided into smaller prediction blocks down to 4x4
pixels. H.265 improves on this by being able to adjust the block size into bigger or
smaller blocks, called coding tree units (CTU), ranging from 4x4 to 64x64 pixels. An
improved CTU segmentation, as well as better motion compensation and spatial
prediction are just a few of H.265’s optimizations over H.264, which are out of the
scope of this thesis.

2.5 Video Compression 29

Current
block

Previous
blocks

Current frame

(a) Intra prediction

Current framePrevious frames

(b) Inter prediction

Fig. 2.13: Prediction leverages the redundancies between spatially and temporally neigh-
boring pixels. While intra prediction only considers previously encoded blocks
from within the same frame, inter prediction also utilizes blocks from previously
encoded frames.

The optional subsequent transform stage applies an approximate Discrete Cosine
Transform (DCT) to a block of residual samples, producing a set of coefficients
based on a standard basis pattern. Using these weighted basis patterns, the block of
residual samples can be recreated. This transformation to frequency-space enables
the prioritization of detail based on visual structure. The precision of the resulting
transform coefficients is afterwards reduced by the quantization stage, where each
coefficient is divided by an integer value. This process is guided by the so-called
quantization parameter (QP), an index used to derive a scaling matrix, where there
is a logarithmic relationship between QP and the quantizer step size. The larger QP,
the more coefficients are set to zero, providing larger opportunity for compression
at the expense of decoded image quality.

While QP is essentially the primary control to trade quality for output size, in
practice it is typically chosen automatically based on other user-defined metrics such
as a specific constant target bitrate. Setting a fixed QP would result in a strongly
varying bitrate depending on each scene’s complexity, resulting in rather inefficient
encodings. In contrast, for streaming scenarios as investigated in this thesis, it
makes more sense to have encoders vary the QP automatically in order to meet a
user-defined bitrate target. Figure 2.14 illustrates the impact of a given target bitrate
on the reconstruction quality of an encoded scientific visualization rendering. Note
the washed out look of the green landmass and the missing fine structures of the
ocean floor at low bitrate. The impact of bitrate on encoding/decoding latency and
streaming performance is further investigated in Chapter 6.

Ultimately, the produced quantized transform coefficients and associated parameters
such as quantization range, prediction mode and other meta information on the
structure of the compressed data must be encoded to form a single compressed

30 Chapter 2 Background

(a) 4 Mbps (b) 8 Mbps

(c) 16 Mbps (d) 32 Mbps

Fig. 2.14: Impact of bitrate on image reconstruction quality for different H.264 bitrates
at 4K resolution based on a refresh rate of 90 Hz. Demo scenes from NASA’s
Synthesis 4K video, which was selected as a stand-in for high-resolution scientific
visualization renderings. A low bitrate results in a washed out look with missing
fine structures.

output bitstream. A lossless compression method such as variable-length coding or
arithmetic codec is applied by the encoder. The resulting bitstream can be stored
or streamed over network. For entertainment purposes, the raw video stream can
be muxed into a container format such as MP4, where it is synchronized with other
streams such as audio or subtitle tracks. In this thesis, the raw H.264 or H.265
streams produced by the rendering server are transmitted over the network and
decoded at client-side for display.

2.5 Video Compression 31

Raytracing Particle-Based
Fluid Surfaces

3
3.1 Motivation

The visualization of numerical simulation results based on mere point clouds is a
challenging task. Such data sets emerge from Smoothed Particle Hydrodynamics
(SPH) or Finite Pointset Method (FPM) simulations, two particle-based simulation
techniques in the context of transient flow and continuum mechanical problems. In
scenarios with free surfaces or moving geometry, classical grid-based numerical pro-
cedures, e.g., Finite Elements or Finite Volumes, fail due to their inherent necessity
for remeshing.

However, currently there exist few well-elaborated standard visualization approaches
tailored to grid-free methods. A multitude of contemporary rendering techniques are
grid-based, and thus inappropriate for the evaluation and analysis of particle-based
simulation results. Furthermore, for high density point clouds with great geometric
complexity relative to the rastered image, it seems natural to stay within the context
of point-based shape representation and directly use the surface points as display
primitives.

In this context, numerous visualization approaches for particle-based surface re-
construction rely on scalar field visualization techniques. Using different kinds

Fig. 3.1: Watercrossing simulation using 2.1 million particles. Rendered at 4K resolution
with ambient occlusion and hard shadows in 2.4 seconds on 32 Xeon Phi KNL
nodes of the Stampede2 supercomputer.

33

of overlapping basis functions, a scalar field representation of the fluid volume is
computed, and subsequently used for direct volume rendering or isosurface ex-
traction. A particularly interesting approach for SPH settings was presented by
Yu and Turk [YT13], who have used each particle’s neighborhood structure to
compute anisotropic basis functions, thereby capturing local particle distributions
more accurately and enabling smoother surfaces with distinct features. While the
anisotropic surface definition itself is sound and promising, Yu and Turk have only
used Marching Cubes for discrete triangulated surface extraction, thus preventing
smooth visualizations which scale transparently with resolution. To achieve a pixel-
accurate representation of the surface, the required resolution for the MC grid is
prohibitively costly in terms of computational time for most relevant cases.

In this work, we build upon the rich anisotropic kernel approach, adapt and tune
the surface definition to FPM-based fluid simulations, and present a novel direct ray
tracing scheme for on-the-fly surface reconstruction. Specifically, after a brief review
of relevant prior work (Section 3.2) and a compendiary introduction to the specifics
of the FPM (Section 3.3), we make the following contributions:

• In Sections 3.4.1 and 3.4.2, we present an improved anisotropic kernel-based
surface definition that specifically targets FPM simulations, incorporates auto-
matic kernel scaling for variable smoothing lengths and intuitive visuals for
isolated particles, and is easily parallelized.

• For this surface definition, we describe a novel direct ray tracing scheme defi-
nition (Section 3.4.3). This on-demand two-pass iterative sampling algorithm
intelligently reduces intersection candidates for both opaque and transparent
surface rendering, provides optimization opportunities for secondary rays, and
allows the dynamic mapping of particle attribute values on to the surface using
arbitrary transfer functions. Details of our implementation within the OSPRay
raytracer are outlined in section 3.5.

• We conduct and analyze comprehensive benchmarks to quantify preprocessing
and rendering times on different state-of-the-art hardware setups, including
workstation, standard cluster and Xeon Phi accelerator systems, and demon-
strate the applicability of our approach to a variety of medium and large scale
FPM data sets (Section 3.6).

34 Chapter 3 Raytracing Particle-Based Fluid Surfaces

3.2 State of the Art

The reconstruction, tracking and visualization of fluid surfaces has been an object of
research since the advance of fluid simulation and computational fluid dynamics. In
the context of mesh-based simulation, various techniques for surface extraction have
been developed such as level-set methods [OF03], particle level-set methods [ELF05],
semi-Lagrangian contouring [Bar+06], volume of fluid methods [HN81] and explicit
surface tracking [M0̈9].

However, especially for transient flow and continuum mechanical problems, particle-
based simulation techniques such as SPH or FPM are more versatile than their
grid-based counterparts. Different approaches have been investigated to reconstruct
fluid surfaces directly from their point-based representations, such as splatting in
combination with image-space curvature flow reduction [LGS09], collecting con-
tributing particles using cylindrical rays [SJ00], globally fitting smooth interpolants
based on radial basis functions [TO02], or point-set surfaces based on local moving
least squares fits [Ale+01], which can also be used for adaptive advancing front
surface triangulation [SFS05]. While point-set surfaces work well for densely sam-
pled surface representations, e.g., from laser scans, they fail in turbulent and noisy
scenarios with increasing counts of isolated particles. High quality volume rendering
of particle data has been studied by Fraedrich et al. [FAW10] and Hochstetter et
al. [HOK16]. Goswami et al. [Gos+10] present a voxel-based rendering pipeline on
the GPU which constructs a partial distance field for subsequent ray casting. Reichl
et al. [Rei+14] use binary voxel hashing to accelerate ray casting of point-based
fluids on the GPU.

We follow the well elaborated approach of defining the fluid surface as an isosurface
of a scalar field constructed from overlapping basis functions. The use of simple
isotropic basis functions dates back to Blinn’s metaballs [Bli82], which typically
result in blobby surfaces. Zhu and Bridson [ZB05] extend this idea to compensate
for local particle density variations to create considerably smoother surfaces. Adams
et al. [Ada+07] track the particle-to-surface distance over time to create smooth
surfaces for both fixed-radius and adaptively sized particles. Müeller et al. [MCG03]
introduced the idea of creating a normalized scalar field based on the density as
estimated by SPH, which we also follow. Solenthaler et al. [SSP07] propose a surface
reconstruction technique based on considering the movement of the center of mass
to reduce rendering errors in concave regions. Premžoe et al. [Pre+03] use isotropic
kernels with interpolation weights stretched along the velocity field.

3.2 State of the Art 35

Owen et al. [Owe+98] inspired the use of anisotropic smoothing kernels, which were
later combined by Ding et al. [DTS01] with variational implicit surfaces. Kalaiah
and Varshney [KV03] have applied principal component analysis (PCA) to extract
anisotropy from point clouds for point-based modeling, whereas Liu et al. [LLL06]
have used anisotropic smoothing kernels for material deformation accuracy. Yu and
Turk [YT13] have built upon these previous works and extracted a surface from
the resulting normalized scalar field using the marching cubes algorithm [LC87].
Ando et al. [ATT12] employed this to determine and visualize thin fluid sheets in
fluid simulations, while Macklin and Müller [MM13] combined it with the splatting
approach of van der Laan et al. [LGS09] for their iterative density solver to achieve
real-time fluid simulation. Akinci et al. [Aki+12] parallelized marching cubes-based
surface extraction by considering only grid nodes in a narrow band around the
surface. Yu et al. [Yu+12] used the anisotropic kernel method to construct an initial
explicit triangle mesh, which is advected over time to track the air/fluid interface.

We improve on Yu and Turk’s surface definition by presenting a novel direct ray-
tracing scheme for anisotropic smoothing kernels in combination with a modified
preprocessing procedure for FPM simulations. We also incorporate a variant of
velocity-based stretching of isolated particles, which was shown by Bhatacharya et
al. [BGB11] for level-set surface approximation minimizing thin-plate energy.

3.3 Finite Pointset Method

All simulations for this work have been performed using MESHFREE, a CFD soft-
ware developed by Fraunhofer ITWM. MESHFREE uses the Finite Pointset Method
(FPM, [Hie+05; Tiw+07]) to solve the Navier-Stokes equations on a point cloud.
As the equations are solved in the Lagrangian formulation, particles move with
the current local velocity in every timestep. In contrast to SPH techniques [LL03],
particles are only numerical points and carry no mass, allowing to continuously
adapt the point cloud by filling and deleting points. Furthermore, this also permits
local refinement of the point cloud in areas of interest. Based on a generalized finite
difference scheme, the FPM in contrast to SPH supports physical boundary and initial
conditions, as well as many well known material models like Darcy, Johnson-Cook,
and Drucker-Prager.

Typical real-world simulations discretize using less than 500 000 particles, as there
is always a trade-off between computation time, accuracy and available resources.
Lower particle counts are preferable as the time step size decreases with a finer

36 Chapter 3 Raytracing Particle-Based Fluid Surfaces

(a) Sponza (b) Sloshing

(c) Dam Break (d) Water Crossing

(e) Droplet (f) Double Dam Break

Fig. 3.2: Benchmark scenes rendered with ambient occlusion and shadows.

resolution due to numerical requirements. For this work we pushed the number
of particles far beyond this to prove that our visualization method will be future-
proof.

The visualization requires, per particle, information about position, velocity, smooth-
ing length and kind of boundary. The smoothing length h controls the density of the
point cloud; a distance of about 0.4 · h among particles is ideal. The velocity infor-
mation is used to deform isolated particles according to their direction of movement.
Kind of boundary assigns each particle their type of boundary, which is divided into
inner points, isolated points, wall points and free surface points. Isolated points are
determined by the number of their neighbors within their smoothing length, wall
points are permanently assigned by the FPM and the detection of free surface points
is based on a local Delaunay tetrahedralization. Our visualization treats both wall
and free surface points in the same way as boundary particles.

3.3 Finite Pointset Method 37

3.4 Surface Reconstruction

The proposed surface reconstruction pipeline consists of two steps: preprocessing
and rendering. The former includes several computationally intensive steps such as
smoothing of particle positions or computing anisotropy information based on local
neighborhood structures. The resulting anisotropic kernel representation is used in
the subsequent surface visualization via direct raytracing.

In Section 3.4.1 we will briefly recapitulate the mathematical foundation of the
surface definition based on anisotropic kernels, with concrete algorithmic details
and optimizations being presented in the following Sections 3.4.2 and 3.4.3.

3.4.1 Surface Definition

Our surface definition is based on the approach proposed by Yu and Turk [YT13],
where a scalar field is constructed by overlapping anisotropic smoothing kernels
representing the neighborhood structure of each particle. In contrast to previous
isotropic approaches, these anisotropic kernels capture local particle distributions
more accurately, enabling smooth surfaces, thin streams and sharp features in the
reconstruction. We follow the original notation and mark contributed adaptions,
optimizations and extensions accordingly.

The surface is defined as an isovalue of the normalized scalar field

φ(x) =
∑

i

1
ρi
W (x− x̄i,Gi), (3.1)

where ρi is the sum of the weighted contributions of nearby particles

ρi =
∑

j

W (x̄i − x̄j ,Gj) (3.2)

and W is an anisotropic smoothing kernel of the form

W (r,G) = det(G)P (‖Gr‖). (3.3)

In the preceding equations, x̄i is a smoothed particle position, Gi is a 3x3 linear
transformation matrix and P is a symmetric decaying spline with finite support.
The linear transformation G rotates and stretches the radial vector r to normalized

38 Chapter 3 Raytracing Particle-Based Fluid Surfaces

isotropic kernel space, making W (r,G) an anisotropic kernel with iso-surfaces of
ellipsoidal form.

The scalar field φ(x) is designed as a normalized density field smoothing out the
scalar value of 1 at each particle’s position over a continuous domain. Thus, an
isosurface of φ(x) gives a surface representation encompassing the particles. We use
a surface treshold of 0.2 for all of our use cases.

Note that the original surface definition by Yu and Turk [YT13] was designed for
a SPH context and additionally included the mass of each particle. However, since
FPM works with massless particles as transient nodes for computation these terms
are not required in our definition.

3.4.2 Preprocessing

For each simulation frame, a dedicated preprocessing step is performed to compute
the necessary data for the interactive surface renderer such as per-particle anisotropy
information. The complete preprocessing procedure consists of several operations
which will be discussed in the following.

Build search structure. We use hash grids for fixed-radius nearest neighbor
searches, which are required in several pipeline steps. In this first step, we construct
a hash grid over the complete set of fluid particles. Since nearest neighbor searches
are the computationally most expensive operation during preprocessing, we try to
cache and reuse previous search results as often as possible. Note that since FPM
does allow a variable smoothing length (in contrast to SPH), we use the average
smoothing length for the bucket size of the hash grid. Thus, the grid implementation
needs to support search radii potentially larger than the grid size.

Determine thick boundary. In contrast to Yu and Turk [YT13], we do not use the
complete particle set for kernel-based surface evaluation, but consider only particles
in a given vicinity of the surface boundary, which we call the thick boundary. For this
we use the MESHFREE-provided classification of free surface particles. However, if
not already available, one could alternatively classify boundary particles based on
their neighborhood count. For each boundary particle, we mark all particles within
a radius rb as thick boundary particles. rb should be chosen as small as possible to
reduce the number of candidate ellipsoids which are traversed during sampling, but
at the same time large enough such that the surface is sufficiently represented and
inner spheres do not intersect the outer surface. To this end, we empirically choose
rb = 0.8 · hi, where hi is the smoothing length of the i-th particle.

3.4 Surface Reconstruction 39

The classification into thick boundary and inner particles is crucial to the subsequent
preprocessing and the visualization. While inner particles are directly used by the
renderer as a means for fast inner fluid traversal, only thick boundary particles
are processed in the remaining preprocessing pipeline. After classification, particle
data is regrouped such that inner and thick boundary particles reside in consecutive
ranges, and search structure indexing is updated accordingly.

Update search structure. After data restructuring, the neighborhood hash grid
is rebuilt to reflect the new particle indexing. In addition to the full particle set
hash grid, we also construct a smaller additional hash grid only containing the
thick boundary particles to speed up the subsequent computation of connected
components.

Compute connected components. In order to alleviate attraction effects between
approaching fluid components, a connected component analysis is performed on
all particles in the thick boundary. Two particles i and j are defined as being
connected if ‖xi − xj‖ ≤ rcc, where rcc = 0.45 · hi. We identify this value since the
dynamic point management algorithm of MESHFREE typically results in particles
with distance 0.4 · hi to each other. We use a straightforward union-find algorithm to
compute connected components and obtain a component id for each thick boundary
particle. We only need to consider thick boundary particles, since components which
are connected through inner particles necessarily are connected through boundary
particles. Thus, when checking for connected component equality, inner particles
are always considered valid.

Smooth particle positions. To improve the visual quality of flat surfaces, a single
iteration of Laplacian smoothing is applied to the thick boundary particle positions.
The updated particle positions x̄i are computed via

x̄i = (1− λ)xi + λ
∑

j

wijxj/
∑

j

wij , (3.4)

where λ ∈ [0, 1] is constant describing the degree of smoothing and wij is a weighting
function with finite support. Note that the updated smoothed particle positions are
only used by the visualization pipeline and do not affect the underlying simulation.
We typically use a value of 0.9 for λ to apply a strong smoothing effect. However,
we find that conglomerates of isolated particles tend to be smoothed into a single
particle, which can lead to visual artifacts. Thus, we set λ to 0.1 for particles with
less than 20 neighbors.

The particle smoothing adheres to the previously established connected component
labeling, i.e., for each particle only neighbors which belong to the same connected

40 Chapter 3 Raytracing Particle-Based Fluid Surfaces

component as the particle itself are considered. This is reflected in the following
weighting function

wij =

1− ((‖xi − xj‖)/rs)3 if ‖xi − xj‖ < rs and ci = cj

0 otherwise
, (3.5)

where ci denotes the connected component of the i-th particle and rs is the search
radius used for nearest neighbor searches during particle smoothing; we use rs =
rb +rcc = 1.25 ·hi, since inner particles are always considered part of each connected
component. Thus, when a particle approaches a surface belonging to another
connected component, the inner particles behind that respective thick boundary are
not considered for smoothing until the two connected components are close enough
to merge.

We cache neighborhood information determined during particle smoothing in order
to reuse them in the subsequent computation of anisotropic smoothing kernels and
normalization densities. Note that this results in an approximation since particle po-
sitions have been smoothed after neighborhood querying. However, our experiments
show that reusing unsmoothed neighborhood information as an approximation has
only negligible visual impact.

Determine kernel scaling factors. This step is a preliminary optimization for the
subsequent computation of the actual anisotropic kernels, where a scaling factor
is used to keep the volume of W (Equation 3.3) approximately constant for all
particles with full neighborhood. Yu and Turk [YT13] have used an empirically
chosen constant for all particles, which is dependent on the data set at hand and
furthermore only makes sense for SPH which has a constant smoothing length. In
contrast to this, we employ an automatic randomized sampling strategy to derive
a polynomial relationship between local smoothing length and an optimal kernel
scaling factor for a given particle.

To achieve this, we pick a random subset of inner particles and perform for each
particle a simplified variant of the anisotropic kernel computation (the exact formu-
lae will be outlined in the subsequent paragraph). For each particle, a covariance
matrix C is constructed based on a local neighborhood query. Since inner particles
are expected to have a full isotropic neighborhood, a convenient scaling factor for
the particle at hand is computed based on the determinant of the covariance matrix
as ki

s = 3
√
det−1(C).

All resulting (hi, k
i
s) pairs are collected and averaged into a fixed number of buckets

(20 in our experiments), and a least squares polynomial fit of degree 4 is computed,

3.4 Surface Reconstruction 41

which we denote by ks(h). This polynomial relationship is used in the following
anisotropic kernel computation to pick a suitable kernel scaling factor for each
particle based on its respective local smoothing length.

Compute anisotropic kernels. The foundation of the anisotropic kernel method is
the determination of an anisotropy matrix Gi for each particle that describes the
particle density distribution around it. By applying weighted Principal Component
Analysis (WPCA) to the neighborhood of each particle in the thick boundary, the
weighted covariance matrix Ci is constructed as

Ci =
∑

j

wij(xj − xw
i)(xj − xw

i)T /
∑

j

wij , (3.6)

where xw
i is the weighted mean defined as

xw
i =

∑
j

wijxj/
∑

j

wij . (3.7)

Note that the weight function wij (Equation 3.5) now uses the updated particle
positions originating from the preceeding smoothing operation and still considers
connected components. We reuse the previously cached neighborhood information
from the smoothing step, but only consider neighbors within the search radius
rs = hi.

After the weighted covariance matrix has been constructed, a Singular Value De-
composition (SVD) is applied, yielding the principal vectors of deformation in the
particle set considered. Assuming the SVD is denoted by Ci = RΣRT , where R
is a rotation matrix with principal axes as column vectors and Σ = diag(σ1, σ2, σ3)
a diagonal matrix with eigenvalues σ1 ≥ σ2 ≥ σ3, extreme deformations are pre-
vented by restricting the proportions between largest and smaller eigenvalues, i.e.,
σ̃2,3 = max(σ2,3, σ1/kr), where kr is a scaling factor denoting the maximum ratio
between largest and smallest axis of the resulting ellipsoid. For our experiments we
set kr = 4.

Since the desired transformation matrix Gi is an inversion of the modified covariance
matrix, its computation can be expressed as

Gi = 1
hi

RΣ̃−1RT , (3.8)

where
Σ̃−1 = 1

ks(hi)
diag(1

σ1
,

1
σ̃2
,

1
σ̃3

). (3.9)

42 Chapter 3 Raytracing Particle-Based Fluid Surfaces

In contrast to Yu and Turk [YT13], we do not represent isolated particles with
insufficient neighbors as simple spherical kernels, but also transform those along
each particle’s velocity vector vi as given by the simulation. From our experiments
this approach leads to much more intuitive visuals for fast moving isolated particles
such as splashing water droplets. Specifically, if a particle has less than 20 neighbors,
the normalized velocity vn = ‖vi‖/hi is used to determine the major transformation
strength asma = 1+d·min(vn, vmax)/vmax, where vmax is the maximum normalized
velocity and d is the maximum degree of deformation. For our experiments we set
vmax = 50 and d = 0.3. In order to preserve volume during transformation, the
corresponding orthogonal minor transformation strength equals to mb =

√
1/ma.

The final transformation matrix Gi is then

Gi = 1
hi

R(ex,vi) S−1, (3.10)

where R(ex,vi) is a matrix that rotates the x-axis ex onto vi, S = kn diag(ma,mb,mb)
is a scaling matrix and kn is a size factor for isolated particles. We use kn = 0.35 to
prevent isolated particles from looking too bold.

Compute ellipsoid bounding boxes. Once all anisotropic transformations Gi have
been computed, tight axis-aligned bounding boxes are constructed for each ellipsoid
of influence as these are needed by the BVH acceleration structure used in the
renderer for fast intersection candidate retrieval.

Using the standard derivation for tight bounding boxes around ellipsoids using
projective geometry, the desired axis-aligned bounds can be computed as

x = px ±
√

(G−1
i,11)2 + (G−1

i,12)2 + (G−1
i,13)2

y = py ±
√

(G−1
i,21)2 + (G−1

i,22)2 + (G−1
i,23)2

z = pz ±
√

(G−1
i,31)2 + (G−1

i,32)2 + (G−1
i,33)2

, (3.11)

where pi = (px, py, pz) is the particle’s center.

Compute weighted contributions per particle. As last preprocessing step, the
sum ρi of weighted contributions of nearby particles as outlined in Equation 3.2 is
computed for each particle based on the previously constructed anisotropic kernels.
For the symmetric decaying spline P in Equation 3.3 we make use of the reversed
smootherstep function defined as P (x) = 1− (6x5 − 15x4 + 10x3) for x ∈ [0, 1]. Also,
we precompute the combined coefficient value of det(Gi)/ρi for each particle which
is needed in the renderer for surface sampling as illustrated in Equation 3.1.

3.4 Surface Reconstruction 43

After preprocessing has finished, only the data relevant for our direct ray-based
rendering technique is kept in memory. For each particle in the thick boundary
this boils down to position pi, transformation matrix Gi, bounding box, coefficient
det(Gi)/ρi and optionally a user-selected attribute value which is used for color
mapping onto the surface in conjunction with a given transfer function. For inner
particles only the position pi and a radius ri = s · hi is stored, where s is a scaling
factor that should be chosen sufficiently large such that the resulting inner spheres
overlap completely with themselves and the thick boundary, i.e., there are no holes,
however at the same time as small as possible to improve acceleration structure
efficiency during traversal. We choose s = 0.5 in our approach.

3.4.3 Intersection

Contrary to previous work based on isosurface extraction via marching cubes, we per-
form a direct raycasting of the scalar field formed from the preprocessed anisotropic
(ellipsoidal) smoothing kernels.

In order to determine ray-surface intersection position, it is necessary to sample and
test the scalar field along the ray. Since the field is defined at any point as the sum
of contributing kernel values, multiple overlapping kernels may be needed to reach
the surface value. On the other hand, intersecting a single arbitrary kernel does
not guarantee that the surface is hit. Figure 3.3 shows a typical scenario, where a
fluid volume defined by multiple overlapping anisotropic kernels form in the thick
boundary is partially occluded by an isolated particle in front. Additionally, we use
spherical inner particles to overlap the complete fluid volume in order to reduce the
number of sampling locations and perform fast traversal of inside segments.

While a ray may encounter an isolated particle as a candidates for intersection, the
surface threshold is not surpassed during sampling. The first actual surface hit is
encountered at the surface of the fluid bulk. If the surface is completely opaque, then
rendering for this particular ray stops here. However, e.g., in the case of transparent
rendering, a new ray may be started an epsilon behind the former hit point, which
continues sampling through the set of contributing anisotropic kernels. It is crucial to
keep the number of required samples to a minimum and efficiently skip ray intervals
which are completely inside the fluid volume.

To collect contributing kernels for each ray, an all-hit intersection test is performed,
computing entrance and exit positions for all candidate anisotropic kernels along the
ray. Candidates are provided by the underlying acceleration structure based on their

44 Chapter 3 Raytracing Particle-Based Fluid Surfaces

Fig. 3.3: Intersection scheme: anisotropic smoothing kernels (blue), inner spheres (gray),
sampling locations (red dots) and actual surface (black). The smoothing kernel of
a candidate isolated particle in front is intersected and sampled, but the surface
threshold is not reached until the surface of the fluid bulk is intersected. In
transparent rendering, a secondary ray is started, which utilizes the inner spheres
to reduce the number of required samples until the exit intersection is reached.

axis-aligned bounding boxes. The resulting events are inserted in an ordered list,
which in our case has proven to be faster than saving them unordered and sorting
them afterwards, as studied in [Ams+15]. If no kernels were hit, there can be no
surface intersection.

However, gathering all intersected ellipsoids along the complete ray can be quite
costly and is often not even necessary, e.g., for opaque surfaces, since the essential
contributing kernels are located in close vicinity to the frontmost ellipsoid hit.
Motivated by this observation, we perform a two-pass approach for opaque surface
rendering, where in a first step only kernels close to the first hit are gathered and
checked for intersection. Since typical acceleration structures do not guarantee strict
sorted ordering of query results for performance reasons, we guide the acceleration
structure to converge to the frontmost candidates as fast as possible.

To achieve this, we introduced an optimization we call offset culling: whenever a
candidate ellipsoid is evaluated, the end of the ray is clamped to the respective
entry intersection point plus a predefined offset. The offset must be chosen large
enough, such that in any case all kernels contributing to the surface are returned
by the search structure, even when the first candidate encountered is the frontmost
ellipsoid. We use 0.5 · havg, where havg denotes the average smoothing length of the
whole data set. Offset culling yields a significant performance improvement over a
naïve all-hit query, since the number of candidate kernels potentially contributing
to the surface is dramatically reduced, as can be seen in Figure 3.4. This leads to
another improvement as we do not need to sort ellipsoids during gathering, but
rather simply store them in any order. If the surface was not hit during the first
pass, the ray is cast again without offset culling to gather all kernels as described

3.4 Surface Reconstruction 45

(a) Offset culling (b) Naïve all-hit

Fig. 3.4: Total number of ellipsoids collected per ray, from zero (blue) to 200 (red). Using
offset culling dramatically reduces the number of smoothing kernels considered
for surface sampling. Red halos in Figure 3.4a indicate areas where the front-
most kernels are hit, but the surface threshold is not reached and offset culling
terminates. Thus, an all-hit intersection is performed to reach the real surface
intersection.

above. Offset culling is only performed for opaque surfaces, where rays always start
outside of the volume and stop at the first surface intersection. When rendering with
transparency, large numbers of rays start after the first surface intersection and pass
through the inner fluid, where next surface interaction does not lie in vicinity of the
frontmost ellipsoids encountered. Listing 3.1 shows the handling of each candidate
ellipsoid during the all-hit phase.

1 compute intersections of ray with ellipsoid
2 if (no intersection)
3 return
4 if (offset culling)
5 if (ellipsoid behind end of ray)
6 return
7 set end of ray to entry + offset
8 store ellipsoid in unsorted array
9 else

10 construct events for entry and exit

46 Chapter 3 Raytracing Particle-Based Fluid Surfaces

11 insert events in sorted array

Listing 3.1: Per-ellipsoid callback for all-hit intersection.

In addition to the anisotropic kernels for particles in the thick boundary, we make
use of the remaining inner particles of spherical form for fast traversal of inner ray
segments. Each sphere along the ray marks an interval that is always inside the
volume. Therefore, there can be no intersection with the surface during this interval
and it is safe to skip sampling on this segment of the ray. Similiar to the gathering of
candidate ellipsoids, we perform an all-hit intersection in the local spheres scene. To
reduce the number of intervals to be checked during sampling, intervals are merged
with overlapping ones in a sorted list of intervals as they are detected, as outlined in
Listing 3.2.

1 compute intersections of ray with sphere
2 if (no intersection)
3 return
4 check existing intervals for overlap
5 if (no overlap)
6 insert new interval in sorted list
7 else
8 merge overlapping intervals with new interval

Listing 3.2: Per-sphere callback for all-hit intersection.

Having collected all potentially contributing anisotropic smoothing kernels and
having constructed the minimal list of inner intervals, uniform sampling is performed
along the ray between all recorded events. For our experiments we employ 0.1 · havg

as sampling step size. At each sampling position, we first check if an inside segment
can be skipped. Then, the list of currently contributing anisotropic kernels is updated.
If no ellipsoids are actually contributing at the sample position, we jump to the next
ellipsoid’s entry event. Otherwise, the surface’s scalar field value is evaluated over
the sum of contributing kernels. If the computed value passes the defined surface
value, the surface was hit between the current and the last sample position. We
then perform recursive sub-sampling using value-weighted bisection to refine the
intersection point on the given interval. With only a few iterations this approximates
the surface position up to single floating point precision in our cases. The surface
normal is interpolated from the weighted contributions of the individual kernel
normals. The complete surface intersection scheme is outlined in Listing 3.3.

3.4 Surface Reconstruction 47

1 // 1st pass: offset culling
2 if (offsetCulling)
3 all -hit intersect ellipsoids (with culling)
4 if (no intersection)
5 return
6 sample from first hit to offset :
7 sum up scalar field over contributing kernels
8 if (surface value passed)
9 determine exact hit (value - weighted bisection)

10 interpolate normal
11 if (color mapping)
12 interpolate attribute
13 return
14 go to next sampling position
15
16 // 2nd pass: full traversal
17 all -hit intersect ellipsoids (no culling)
18 if (no intersection)
19 return
20 all -hit intersect spheres (construct inner intervals)
21 sample from first event to last event:
22 if (sample point inside inner interval)
23 jump to end of interval
24 update list of contributing ellipsoids
25 if (no contributing ellipsoids)
26 jump to next event
27 continue
28 sum up scalar field over contributing kernels
29 if (surface value passed)
30 determine exact hit (value - weighted bisection)
31 interpolate normal
32 if (color mapping)
33 interpolate attribute
34 return
35 go to next sampling position

Listing 3.3: Two-pass surface intersection scheme.

For secondary rays such as shadow rays or ambient occlusion there is no need for
precise hit point sampling. In order to accelerate occlusion tests, we also perform a
two-pass approach here. First, only the inner spheres are intersected for occlusion,
terminating upon any sphere hit. If there is no occlusion from spheres, the actual
surface intersection algorithm is performed as outlined above in a simplified form.
In this case, we do not perform recursive subsampling, and we do not compute
interpolated normals and attributes.

48 Chapter 3 Raytracing Particle-Based Fluid Surfaces

3.5 Implementation

We extensively use local OpenMP parallelization in conjunction with MPI distribution
across nodes throughout our preprocessing pipeline, in which nearest neighbor
searches are the dominant computational effort. Our experiments have shown that
in general dynamic scheduling for local parallelization is superior to static scheduling
due to the slightly imbalanced workload depending on each particle’s neighborhood.
For the multi-threaded construction of the hash grids we use the concurrent libcuckoo
hash map [Li+14] as back-end. We also investigated search structures based on
kD-trees, which exhibited slightly slower performance than the hash grid-based
approach for our use cases.

Since the input data sets are relatively small in size even for practically large point
clouds, we begin with the complete particle set on each node. All operations on the
thick boundary are distributed across nodes, i.e., each node performs processing
on only a subset of the particles. After each preproccesing step, state is exchanged
through MPI messages. The partial thick boundary markings are all-reduced using
a logical or-operator. Partial connected component labelings are exchanged and
merged to a global labeling on each node using the same union-find approach as
locally. Smoothed particle positions and anisotropic kernels are simply all-gathered
on each node. Since the kernel scaling factors are based on random sampling
with low performance impact, the scaling curve is computed on a single node
only and broadcasted to the others. Eventually, at the end of preprocessing, the
partially computed densities are gathered at the master node which then has the
fully preprocessed data and sets up the visualization.

The intersection algorithm was implemented as a user geometry in the OSPRay
framework [Wal+17]. Internally, the all-hit kernels to collect thick boundary ellip-
soids and inner spheres make use of two additional manual Embree scenes, which
can be queried for intersection and occlusion independently and are based on the
all-hit kernel studies in [Ams+15]. The complete visualization code is automatically
vectorized by the ISPC compiler, which compiles a C-based SPMD programming
language to run on the SIMD units of CPUs and the Intel Xeon Phi architecture,
without the need for tedious writing of manual SSE/AVX intrinsics.

We use OSPRay’s scientific visualization renderer and for distributed rendering the
MPI offloading device, which replicates the scene model on all worker nodes and
performs sort-first compositing at the master node.

3.5 Implementation 49

3.6 Results

To investigate the characteristics and potential of our direct raytracing scheme, we
conduct comprehensive benchmarks with respect to data set size, scene complexity,
visual fidelity and hardware setup. We consider three hardware setups: a desktop
workstation with an Intel i7-6700K CPU (4x 4.0 GHz), the Elwetritsch cluster using
one Intel Xeon E5-2640 v3 (8x 2.6 Ghz) per node with InfiniBand QDR interconnect,
and the Stampede2 supercomputer providing Intel Xeon Phi 7250 Knights Landing
accelerator cards (68x 1.4 GHz, 272 hardware threads) with Intel Omni-Path in-
terconnect. We choose three base cases for rendering: opaque rendering, opaque
rendering with ambient occlusion (16 samples per hit) and hard shadows, and trans-
parent rendering. All renderings have been performed at standard 4K resolution
(3840x2160), except for the low resolution desktop scenario which was performed
at 960x540 to represent a downsampled rendering mode for interactive use cases.

Figure 3.2 shows the different test scenes for our benchmarks, covering a wide spec-
trum of particle counts and rendered with ambient occlusion and hard shadows. As
expected from the anisotropic kernels method, surfaces are smooth while preserving
sharp features such as thin shields and isolated particles. The visualization can
be considered faithful to the simulation, even if this exposes the dynamic particle
management in the form of occasionally popping particles across time steps.

Complete timings for preprocessing and rendering are presented in Table 3.1. Pre-
processing scales roughly linearly with the number of thick boundary particles. Basic
opaque rendering times can be considered interactive for reduced resolutions on
single nodes, whereas distributed rendering enables interactive frame rates at full 4K
resolution. Depending on scene complexity, we observe highly increased rendering
workload for ambient occlusion, which is not due to our method per se but generally
expected in raytracing contexts. From a hardware perspective, the Stampede2 accel-
erator cards outperform standard CPU-based machines in rendering due to ample
vectorization opportunities in packed raytracing. On the other hand, preprocessing
provides less room for vectorization, for instance during hash grid construction or
connected component analysis. Distributed rendering requires enough workload in
relation to communication overhead in order to scale reasonably well.

To better understand our method’s capability to handle large data, we perform an
extensive scaling study using the Double Dam Break data set, which was iteratively
refined from 1 million particles up to 170 million particles. Thus, we can observe ap-
proximately the same scene complexity at different resolutions. Figures 3.5 and 3.6
show two fundamentally different scaling studies on Elwetritsch and Stampede2,

50 Chapter 3 Raytracing Particle-Based Fluid Surfaces

0

50

100

150

200

250

300

1 2 4 8 16 32

Ti
m

e
[s

]

Nodes

Grids Thick CC Smooth Kernels Densities Render

(a) Elwetrisch: 170 million particles on 1 - 32 nodes.

0
10
20
30
40
50
60
70
80
90

100

1 36 68 101 138 170

Ti
m

e
[s

]

Number of particles [millions]

Grids Thick CC Smooth Kernels Densities Render

(b) Elwetrisch: 1 - 170 million particles on 32 nodes.

Fig. 3.5: Scaling on Elwetritsch using the Double Dam Break data set, rendered at 4K
resolution with ambient occlusion and shadows.

respectively. Figures 3.5a and 3.6a show the highest resolution data set preprocessed
and rendered on varying node counts, whereas Figures 3.5b and 3.6b present timings
for different particle counts on 32 nodes of each cluster. In all cases, rendering was
performed with ambient occlusion and hard shadows to provide enough opportunity
for workload distribution during rendering. We highlight that while our core aim
was not perfect scalability but rather a feasibility study, our method also performs
well in these computationally involved scenarios.

3.6 Results 51

0

50

100

150

200

250

300

1 2 4 8 16 32

Ti
m

e
[s

]

Nodes

Grids Thick CC Smooth Kernels Densities Render

(a) Stampede2: 170 million particles on 1 - 32 nodes.

0
10
20
30
40
50
60
70
80
90

100

1 36 68 101 138 170

Ti
m

e
[s

]

Number of particles [millions]

Grids Thick CC Smooth Kernels Densities Render

(b) Stampede2: 1 - 170 million particles on 32 nodes.

Fig. 3.6: Scaling on Stampede2 using the Double Dam Break data set, rendered at 4K
resolution with ambient occlusion and shadows.

When considering the same full resolution data set on increasing node counts, it
becomes obvious that hash grid construction is a purely local operation on each
node which does not scale well. Connected component construction scales to some
degree, but it still limited by the eventual merge of partial connected components
on each node. The increase in rendering time for two nodes is explained by the
way we use OSPRay’s MPI offloading device, where the master rank has only
organizational duties and performs sort-first compositing, while the remaining nodes

52 Chapter 3 Raytracing Particle-Based Fluid Surfaces

do the actual rendering. Thus, only one of two ranks is rendering, with additional
communication overhead. In contrast to Elwetritsch, the overhead seems to be
negligible on Stampede2.

While preprocessing times increase approximately linearly with particle count, ren-
dering appears rather unaffected in these cases. This is expected, as the offset culling
optimization in opaque rendering is based on the local smoothing length, resulting in
approximately the same magnitude of anisotropic kernels contributing to the surface
intersection for each ray. The same behavior can be observed on both Elwetritsch
and Stampede2, while the former is in general the better preprocessor and the latter
the faster renderer.

We conclude that our direct rendering technique is versatile and suitable for both
high fidelity and interactive rendering scenarios. It scales reasonably well even using
trivial parallelization, and is thus an option for in-situ use cases by easily enabling
preprocessing and rendering on multiple nodes. An additional design aspect of our
method is that it runs in image space rather than object space complexity, which is
a desirable feature for large scale data applications and is common for raytracing
based approaches.

3.7 Discussion

We presented a novel approach to the direct visualization of particle-based fluids and
have demonstrated its applicability to a wide spectrum of FPM simulations. Our tech-
nique is based on an anisotropic kernel model, in which the neighborhood of each
particle is used to construct a locally deformed smoothing kernel, allowing smoother
surfaces with sharp features. In our raytracing-based rendering scheme we perform
optimizations such as offset culling to effectively reduce the number of contributing
kernels per surface intersection. We conducted comprehensive benchmarks to study
the performance and scaling characteristics of our parallelized and distributed imple-
mentation on various hardware configurations and have demonstrated its general
versatility.

We anticipate that many improvements to our approach are possible. Since FPM
relies on local moving least squares interpolation, it by necessity incorporates nearest
neighbor search structures with managed ghost particle information in distributed
cluster mode, which could be reused in the preprocessing state of our pipeline.
Furthermore, we would like to investigate using our system for production visualiza-
tion, i.e., full path tracing, which is an important use case, e.g., in the automobile

3.7 Discussion 53

industry. Finally, comparing performance of our implementation against a GPU
implementation would be interesting to shed light on the relative strength of the
differing architectures for our use case. We intend to investigate all these aspects in
future work.

54 Chapter 3 Raytracing Particle-Based Fluid Surfaces

D
at

a
Se

t
Pa

rt
ic

le
s

(T
hi

ck
)

Pr
ep

ro
ce

ss
ed

Si
ze

Ti
m

e
D

es
kt

op
(4

K
)

D
es

kt
op

(L
ow

R
es

)
El

w
et

ri
ts

ch
(1

N
od

e)
El

w
et

ri
ts

ch
(3

2
N

od
es

)
St

am
pe

de
2

(1
N

od
e)

St
am

pe
de

2
(3

2
N

od
es

)

Sp
on

za
16

1
00

0
(9

7%
)

12
M

B

Pr
ep

ro
ce

ss
1.

0
1.

0
1.

2
0.

3
4.

3
2.

2
O

pa
qu

e
1.

6
0.

1
1.

9
0.

1
0.

4
0.

6
A

O
+

Sh
ad

ow
s

41
.9

2.
9

26
.4

1.
8

5.
3

0.
6

Tr
an

sp
ar

en
t

7.
1

0.
7

7.
8

0.
6

2.
1

0.
6

Sl
os

hi
ng

45
7

00
0

(4
9%

)
20

M
B

Pr
ep

ro
ce

ss
1.

9
1.

9
1.

8
0.

5
4.

8
1.

7
O

pa
qu

e
4.

9
0.

4
5.

5
0.

4
1.

6
0.

5
A

O
+

Sh
ad

ow
s

56
.2

3.
7

56
.0

4.
3

32
.9

2.
8

Tr
an

sp
ar

en
t

50
.5

4.
8

51
.4

3.
3

17
.9

1.
6

D
am

B
re

ak
58

6
00

0
(4

9%
)

26
M

B

Pr
ep

ro
ce

ss
2.

0
2.

0
2.

0
0.

5
4.

8
2.

3
O

pa
qu

e
3.

1
0.

3
3.

6
0.

2
0.

9
0.

5
A

O
+

Sh
ad

ow
s

16
6.

4
10

.5
16

4.
5

10
.2

81
.2

5.
9

Tr
an

sp
ar

en
t

28
.2

2.
7

30
.0

1.
7

8.
7

0.
6

W
at

er
C

ro
ss

in
g

2
15

3
00

0
(7

9%
)

13
6

M
B

Pr
ep

ro
ce

ss
10

.3
10

.3
11

.9
1.

9
11

.4
7.

1
O

pa
qu

e
3.

5
0.

3
3.

8
0.

2
1.

3
0.

6
A

O
+

Sh
ad

ow
s

55
.9

3.
7

57
.4

3.
0

29
.9

2.
4

Tr
an

sp
ar

en
t

27
.1

3.
4

27
.9

1.
6

11
.9

1.
5

D
ro

pl
et

3
76

5
00

0
(1

9%
)

10
3

M
B

Pr
ep

ro
ce

ss
5.

2
5.

2
5.

0
1.

1
6.

8
4.

6
O

pa
qu

e
6.

0
0.

6
6.

7
0.

4
1.

8
0.

7
A

O
+

Sh
ad

ow
s

34
.5

2.
4

35
.4

2.
0

17
.7

2.
1

Tr
an

sp
ar

en
t

48
.2

4.
9

51
.7

2.
5

13
.9

0.
7

D
ou

bl
e

D
am

B
re

ak
17

0
00

0
00

0
(1

4%
)

4.
1

G
B

Pr
ep

ro
ce

ss
32

9.
9

32
9.

9
23

0.
6

44
.9

20
5.

6
10

2.
8

O
pa

qu
e

15
.0

6.
8

13
.5

1.
0

8.
2

2.
3

A
O

+
Sh

ad
ow

s
20

2.
9

20
.1

19
9.

6
11

.3
80

.7
5.

8
Tr

an
sp

ar
en

t
15

0.
2

24
.8

14
7.

2
9.

4
77

.7
14

.4

Ta
b.

3.
1:

Pr
ep

ro
ce

ss
in

g
an

d
re

nd
er

in
g

ti
m

in
gs

in
se

co
nd

s.

3.7 Discussion 55

Contour Tree Depth Images 4
4.1 Motivation

At the current scale of computational capability provided by large-scale parallel
computer architectures such as commodity clusters and modern supercomputers,
high-fidelity computational simulation models have assumed a significant role in
scientific research and engineering applications. However, this increased amount of
computation has incurred architectural trade-offs. While arithmetic capacity and
in-core memory have grown at a tremendous rate, I/O subsystems have not been
able to keep abreast in relative bandwidth [Chi+10]. As a consequence, numerical
data produced during typical simulations cannot be persistently stored, e.g. to
hard drives, in its entirety; a lack of available I/O bandwidth would make this
prohibitively costly with respect to time.

Visualization of large-scale simulation output thus has to rely on a number of
different strategies to facilitate meaningful analysis in reasonable time frames. Multi-
resolution schemes represent data on varying scales of resolutions and have a long
standing tradition in this setting. They enable an essential compromise between
fidelity and accuracy of visualization results on one hand, and computation and

Fig. 4.1: Automatic segmentation of the turbulent jet5 λ2 data set into 1024 branches based
on branch persistence.

57

I/O bandwidth expended on the other. Among the large set of available methods,
topological techniques such as the contour tree stand out because they are able to
provide meaningful simplification for scalar fields.

A further smart approach to reduce the volume of data generated from simulations
while preserving a significant amount of analysis flexibility was recently introduced
by Ahrens et al. [Ahr+14]. The underlying idea is to generate in situ an image
database that stores multiple layers of predefined visualization renderings. The
layers can then be composited in post processing depending on specific demands by
the scientist conducting analysis.

In this context, the intent of this work is to study the combination of in situ topo-
logical analysis with the image-based approach of Ahrens et al. Based on in situ
contour tree analysis and simplification, we obtain a segmented representation of
scalar fields contained in the simulation data at every time step. A rendering of
this segmentation is then generated describing all components visible in every pixel
(similar to an A-buffer), and stored together with the simplified contour tree. These
ingredients can then be used in post-analysis to flexibly select specific subsets of the
segmentation, after further simplification if required.

The overall intent of this work is to investigate possible advantages of such an
approach for the visualization of large-scale data. Specifically, after a brief review of
relevant prior work (Section 4.2), we make the following contributions:

• In Sections 4.3 through 4.7, we describe a system to combine in situ con-
tour tree analysis, simplification, and image-based representation to facilitate
reduced I/O requirements while preserving flexibility in visualization.

• We conduct several experiments to quantify the I/O savings possible from such
an approach, and describe results and analysis in Section 4.8.

• We anticipate that many enhancements and improvements are possible, and
discuss a number of such opportunities in Section 4.9.

Our contribution is intended as a baseline demonstration of the feasibility and
potential of the combination of topological analysis and image-based representation
in large-scale in situ scenarios.

58 Chapter 4 Contour Tree Depth Images

4.2 State of the Art

A classic use case of topology in scalar field visualization is isosurface extraction,
where typically several topological properties such as the number of connected
components or the genus of the isosurface, i.e., the number of independent tunnels,
are of central interest. Based on Morse theory, showing that topological changes
in scalar fields defined on manifolds happen only at distinct critical points, Reeb
graphs capture the topological evolution of individual contours using these critical
points and their relationships. The efficient construction of Reeb graphs in general
is still an active field of study [DN09]. However, for simply connected domains,
the Reeb graph is always a tree structure [BR63], called contour tree, which is algo-
rithmically computable for tetrahedral [CSA00] and hexahedral [PCM04] meshes.
Since contour trees can become hard to understand due to high complexity, Weber
et al. [WBP07] introduced topological landscapes, a visual metaphor for contour
trees by creating a representative terrain with the same topological structure as a
given contour tree, which can be further extended to reflect the geometric proximity
of the features represented therein [Bek+12] or hierarchically used for topology
exploration [Dem+12].

Topological techniques have proven highly valuable for the analysis, visualization and
exploration of scientific data. Bajaj et al. [BPS97] introduced the contour spectrum,
an interface providing the contour tree and additional properties such as area
and enclosed volume alongside isosurface visualization. Fujishiro et al. detected
significant isovalues automatically using the contour tree for transfer function
design [Fuj+00]. Weber et al. based scalar field exploration on the detection of
critical points and critical regions [WSH03]. Van Kreveld et al. [Kre+97] performed
seeded isosurface extraction based on the contour tree, which was extended by
Carr and Snoeyink to use the contour tree as a visual index for a volume data
set and identify all contours for a given isovalue [CS03]. Takahashi et al. [TFT05]
employed interval volumes to visualize regions of uniform topology, providing means
to examine internal structures by peeling away top layers. Takashima et al. [Tak+05]
further investigated the idea of peeling off layers by using topological information
such as isosurface inclusion level in multi-dimensional transfer function design.

Noise in data sets can lead to large numbers of irrelevant critical points, complicating
feature-driven exploration based on topology. Topological simplification eliminates
insignificant features by cancellation, i.e., removing irrelevant pairs of critical points.
The Volume skeleton tree [TTF04] and the Morse-Smale complex [Ede+03; Bre+04;
Gyu+05] are two topological structures widely used for scalar topological simpli-

4.2 State of the Art 59

fication besides the contour tree. However, our work relies on the simplification
approaches introduced by Carr et al. [CSP04] and Pascucci et al. [PCMS04]. Carr
et al. [CSP04] used leaf pruning and node collapse operations for contour tree
simplification. Removing a leaf and the arc incident to the leaf from the contour
tree discards the corresponding contours from further consideration when using
seed-based contour extraction. Pascucci et al. [PCMS04] introduced the branch
decomposition of a contour tree, which can be interpreted as a hierarchy of contour
tree simplifications. Since a branch is defined by a monotone path connecting a
saddle and an extremum vertex, discarding a branch is equivalent to the topological
cancellation of the respective two critical points. Our work is inspired by Weber
et al. [Web+07], who used the branch decomposition for the segmentation of a
volume into regions of equivalent contour topology and applying separate transfer
functions to each region. Carr et al. [CSP10] also used the simplified contour tree as
an interface for exploratory visualization.

Bremer et al. studied the application of topological methods to large data sce-
narios, defining feature identification by thresholding isosurfaces in terms of the
Morse complex and representing the complete evolution of all features over time
in tracking graphs [Bre+10]. Also, Bremer et al. used hierarchical merge trees
as a compact feature representation reducing data storage [Bre+11]. Thompson
et al. [Tho+11] introduced hixels as a new compact representation of large scalar
data, storing a histogram of values for each sample point of the domain, thereby
trading off data size and complexity for scalar value uncertainty. Landge et al.
used segmented merge trees to encode a wide range of threshold based features
to obtain a reduced data representation while maintaining post-processing flexibili-
ties [Lan+14]. More recently, also image-based approaches to large data storage
and visualization emerged. Tikhonova et al. [TCM10] presented the idea of using
proxy images for interactive exploration without accessing the original 3D data.
View changes, transfer function exploration, and relighting are handled in proxy
image space only. Ahrens et al. [Ahr+14] generated an in situ image database,
storing multiple layers of predefined visualization renderings, which can then be
composited in post processing. The central idea, which is also key to our work, is
to achieve a massive data reduction when storing the simulation output of large-
scale numerical simulations, while preserving visualization fidelity and flexibility
for future post-processing. Frey et al. presented an interesting novel scheme for
progressive rendering which helps to achieve a fluent interactive visualization of
large data at high frame rates [Fre+14].

Building on this rich methodological foundation, we investigate the feasibility and
potential of combining in situ topological analysis and image-based representation

60 Chapter 4 Contour Tree Depth Images

Raw Data Layered Depth
Image Rendering AnalysisContour Tree

(Simplified)

In Situ Reduction Viewer
100

0

40

55

90

40

80 80

65

30

35

20

+

Input Storage

Compressed
Bundle File

Fig. 4.2: Conceptual architectural overview of our contribution, providing a framework for
the flexible exploration of in-situ generated compressed renderings. Volume data
is segmented into topological regions based on its contour tree. After automatic
filtration, the segments imposed by the simplified contour tree are intersected
by a ray casting rendering approach. All resulting fragments form a layered
depth image, which is compactly stored combined with the contour tree and of
significantly smaller size than the original data.

to tackle the problems in permanent data storage of high-fidelity simulation re-
sults, caused by the modern architectural trade-offs in large-scale parallel computer
systems.

4.3 Method Overview

We aim to achieve substantial reductions in data size by leveraging topological
simplification and compact image-based storage. Our approach essentially consists
of two components: an image rendering library and an interactive viewer application.
A conceptual overview of the central steps in the processing workflow is depicted in
Figure 4.2.

The rendering library is directly includable into simulation code and targets high-
performance cluster environments or workstations. Simulation output data is seg-
mented into topological regions based on its contour tree, which in turn are inter-
sected by a ray casting rendering approach. However, instead of only determining
the fragment closest to the camera, we store each intersection together with a set
of local properties in a linked fragment list, similar to an A-buffer [Car84]. These
properties include the element in the contour tree corresponding to the intersected
segment and further additional attributes used for rendering such as the normal or
ray depth at the intersection. The fragment lists combined with the contour tree
are stored in a proprietary binary file format, which is considerably smaller in size

4.3 Method Overview 61

than the original simulation data, yet provides enough flexibility for subsequent data
exploration.

Once compressed layered depth image data has been generated, it represents a
significant size reduction of the original input data and can be explored in the
interactive viewer application running on the user’s desktop computer. By inter-
actively modifying visual properties of the regions imposed by the contour tree or
applying further filtering schemes, the user can control which topological regions
are displayed.

4.4 Segmentation and Filtering

Given a scalar field defined on a regular grid as input data, we construct the
contour tree using the sweep and merge algorithm by [CSA00], where the split
and join sweep phases are executed in parallel. Afterwards, the so-called branch
decomposition is computed using a variant of [PCMS04]. The branch decomposition
can be interpreted as a hierarchy of contour tree simplifications. Since a branch is
defined by a monotone path connecting a saddle and an extremum vertex, discarding
a branch is equivalent to the topological cancellation of the respective two critical
points. The output of the above algorithm is a tree structure representing the branch
decomposition of the contour tree and a mapping of vertices to their corresponding
branch in the decomposition. Notably, the latter is used for rendering only, whereas
the branch decomposition is stored in the final image, with each branch being
characterized by index, volume and critical value pair.

Filtering is a central concept inherent to the hierarchical branch decomposition
structure. In our context, if a branch is to be discarded, all vertices belonging to
this branch are reassigned to the closest unfiltered parent branch. We employ this
technique in two ways. First, the initial branch decomposition used for rendering
can be controlled by a user-provided maximum number of branches. This is a crucial
step to achieve significant data reduction at in situ time, as the initial unfiltered
branch decomposition consists of numerous branches which are irrelevant for the
later visualization, either due to negligible importance or being caused by noise.
Second, in the interactive viewer application, the user can apply several consecutive
filtering steps in order to simplify the layered depth image visualization.

Besides manual branch selection, the library provides means to automatically identify
branches of interest. Automatic branch selection can be either done by range, i.e.,
select all branches whose critical values intersect a given input range, or by sorting,

62 Chapter 4 Contour Tree Depth Images

(a) 90 branches (b) 50 branches

(c) 30 branches (d) 10 branches

Fig. 4.3: Incremental simplification of the central turbulence in the plate λ2 data set by
sorted branch persistence, enabling a flexible and topologically-guided exploration
of vortex core structures.

i.e., sort all branches either by persistence or volume and pick the first k branches
which fulfill a given minimum persistence or volume threshold. Notably, if the
sorting criterion of two branches is equal, they are sorted by their depth in the
branch decomposition tree, ensuring child branches are discarded before their
parent. Once expendable branches are identified, filtering is performed recursively.
If a branch is flagged for discard, also all of its children are discarded. Otherwise they
are individually checked. However, other filtering criteria are certainly possible.

The consequences of performing a filtering step depend on whether it is done for
in situ data reduction or in the viewer application. Automatic filtering after the
construction of the initial branch decomposition prior to rendering only requires an
update to the vertex-to-branch mapping. However, when applying additional user-
controlled filtering in the viewer application, the branch indices of all fragments in
all depth images linked to this contour tree need to be updated. Furthermore, since
branch filtering can geometrically lead to the merging of neighboring topological
regions, replacing branch indices in the linked fragment lists can produce duplicate
intersections which need to be eliminated. In this case, we only keep the one closest
to the camera.

4.4 Segmentation and Filtering 63

4.5 Depth Image Rendering

After the contour tree for a single simulation time step has been constructed, multiple
layered depth image renderings can be computed based on its branch decomposition.
Thus, given a scalar field defined on a regular grid, the vertex-to-branch mapping,
camera position and orientation, resolution and an optional maximum number of
depth layers, we perform a concurrent ray casting procedure for image generation.

4.5.1 Segment Intersection

The goal is to record all intersections of rays with the boundaries of the topological
regions defined by the contour tree. Assuming a sequence of sample positions
along the ray, we principally need to determine the branch index at each location
and detect an intersection if the branch index at the current candidate location is
different from the branch index at the previous accepted intersection. However,
while we want to achieve high intersection precision, performing naïve uniform
sampling with sufficiently small step size along the complete ray obviously suffers
from bad performance in large homogeneous segments.

Rather, our sampling algorithm traverses data voxels following a three-dimensional
Bresenham approach. For each cell encountered, we check if all eight corner vertices
belong to the same branch, in which case we can trivially use this respective branch
index and return the entering intersection of the ray with the voxel boundary as
intersection candidate. Otherwise, there are potential intersections with topological
segment boundaries within the cell, which we approximate by a local uniform
sampling scheme restricted to the cell volume.

At each sample position, we need to determine the topological segment containing
the given location, i.e., determine the respective branch index. We follow the
approach presented in [Web+07], which is based on the relation that monotone
paths in the scalar field always map to monotone paths in the corresponding contour
tree and vice versa. First, the unique monotone path going through the given sample
position and two cell corners is determined by exploiting the linearity of the trilinear
interpolant within the cell along axis-oriented lines. We then follow the monotone
path in the contour tree until the branch containing the data value at the sample
position is found. Eventually, for each detected fragment, the associated branch
index and additional optional parameters such as gradient of the scalar field or
depth value are stored.

64 Chapter 4 Contour Tree Depth Images

Notably, the central idea of this proof-of-concept work is independent of the em-
ployed data sampling scheme, providing opportunities for performance optimization.
Also, together with an appropriate intersection detection scheme, our approach is
easily applicable to non-regular data.

4.5.2 GPU Acceleration

We have implemented the above layered depth image rendering algorithm both as a
CPU- and GPU-version. While the multi-threaded CPU version of our library targets
rendering of large data sets in traditional cluster environments without accelerator
cards, we have additionally implemented GPU hardware acceleration as a proof of
concept of our highly parallelizable algorithm.

As described above, rendering by ray casting creates a list of fragments for each ray,
representing the visual properties for all intersections with topological segments
it encounters. Our implementation is conceptionally similar to per-pixel linked
lists [Yan+10], a recent technique in computer graphics for hardware-accelerated
order-independent transparency [Mau+12] based on the classic A-buffer approach
[Car84]. For each pixel, a linked list of fragments keeps track of the intersections
encountered during traversal. The respective fragment properties themselves are
stored in a global shared fragment pool.

Based on OpenGL 4.3 [SA13], our implementation relies on shader storage buffer
objects and image load/store extensions. Input volume data and the vertex-to-branch
mapping originating from the branch decomposition of the contour tree are stored
in uniform volume samplers. Per-pixel information, i.e., the head node of the linked
fragment list and the number of nodes in the list, is stored in two uimage2D samplers
in r32ui layout, sized at the requested rendering resolution. A shader storage buffer
object holds the global fragment pool, where each fragment stores its properties and
a link to the next fragment. An atomic counter buffer object is used to keep track of
the next free fragment in the global fragment pool. Whenever a newly generated
fragment is to be stored in the pool, the counter is incremented, the head node is
exchanged and the number of fragments in the list is increased, using the respective
atomic buffer and image operations. In order to maintain linked list consistency, the
next node of the new fragment is set to the previous head node of the pixel’s linked
fragment list.

Fast parallel ray generation is achieved by first rendering only the back faces of the
data volume cube to an offscreen framebuffer and storing the generated interpolated

4.5 Depth Image Rendering 65

fragment position, i.e., ray exit point of this pixel, in the respective framebuffer’s
color attachment. In the next pass, the same procedure is applied to the front faces
only, yielding the ray starting positions.

In summary, our GPU-based rendering procedure consists of four phases, all of which
are executed highly parallel by hardware:

1. Draw back faces of data cube to offscreen framebuffer to obtain ray exit
locations.

2. Draw fullscreen quad clearing linked fragment lists, i.e., reset head nodes and
node counts in per-pixel samplers.

3. Draw front faces of data cube to obtain ray entry locations.

4. Perform ray casting and store intersections in linked fragment lists.

Step 3 and 4 are executed in a single shader pass. After rendering, the contents of
the global fragment pool and the per-pixel samplers are read back to host memory.

4.6 Storage

Reducing data storage requirements while maintaining flexibility for interactive
exploration of results is central to our contribution. Thus, compactly storing the
output of our rendering algorithm is crucial. For a given (filtered) contour tree,
multiple depth renderings from different perspectives and resolutions can be gen-
erated. These bundles are stored in a single file in HDF5 format with zlib deflate
compression enabled at level 6, which we found to be a good compromise between
size and speed.

The branch decomposition of the contour tree is serialized recursively in depth-first
manner, where for each branch we store index, saddle value, extremum value,
and volume. However, with only a few kilobytes, the contribution of the branch
decomposition to the final file size is negligible. Clearly, the majority of storage is
consumed by the depth images, which thus require more optimization w.r.t. memory
consumption. We need to store for each pixel a list of fragments, where a single
fragment consists of its associated branch index and additional attributes such as
normal. While during rendering fragments are stored and manipulated as linked lists
distributed across memory and potentially shared by rendering threads, this data
can be compactly reorganized for permanent storage. We remove the next-pointers
of the linked lists by rearranging fragment lists as contiguous blocks in a single large

66 Chapter 4 Contour Tree Depth Images

layout, where each pixel of the final layered depth image only stores the starting
offset and the number of fragments.

Since the largest offset, the maximum number of fragments per pixel and the
maximum branch index (i.e. total number of branches in the branch decomposition)
are known, primitive data types used for storing the respective values can be
intelligently chosen. As an example, if we can restrict the total number of branches
to 256, this allows branch indices to be stored in single bytes, yet provides sufficient
segmentation detail in many scenarios.

While storing the branch index of each fragment is mandatory, additional attributes
are optional and depend on the intended visualization. In our studies, we addition-
ally compactly store the normal at each intersection in two bytes using a spheremap
transformation [Pra10]. Also, we store the intrinsic and extrensic camera parame-
ters used for image generation, serving as reference for lighting and shading in the
viewer.

4.7 Interactive Viewer

Compressed layered depth image bundle files can be loaded and interactively ex-
plored on the user’s desktop machines in the interactive viewer application, the
counterpart of the parallel rendering library in our framework.

The interface is split in two parts: the visualization of the selected depth image and
a tree widget used for the display and modification of the branch decomposition
tree, including color, persistence, value range and volume of each branch. Users can
manually or automatically select multiple branches by range or sorted minimum
persistence/volume criterion as described in section 4.4. Additionally, picking
branches in the visualization using the mouse cursor is an efficient way of selecting
regions of interest. Picking can either be restricted to automatic selection of the
front-most fragments or further guided by presenting all intersected segments in
a cross-section interface. Selected branches are visually highlighted by distinct
coloring. Given a set of selected branches, the user can apply filtering in order
to simplify the visualization. Filters can even be combined by applying them on
top of previous filtering steps. Undo is supported by storing the history of filtering
operations.

Depth images are interactively updated and displayed in real time, being powered
by hardware-accelerated rendering similar to the techniques outlined in section

4.7 Interactive Viewer 67

Fig. 4.4: Automatic segmentation of the plate λ2 data set into 100 branches sorted by
branch volume. An HSV color scale has been applied to all branches, where for
each branch the average scalar branch value was approximated by the mean of
saddle and extremum values stored with the branch.

4.5.2. Image data and branch properties as edited in the branch decomposition
tree interface are transferred to shader storage buffer objects on the GPU and
rendered to an offscreen framebuffer, which is afterwards displayed at flexible
scale or exported to an image file. For each pixel, the fragments are back-to-front
composited (they are already sorted by design), with shading being computed based
on the stored fragment normal and branch coloring as defined for the respective
branches. In addition to standard Phong illumination, we partially apply angle-based
view-dependent transparency as presented in [Hum+10].

4.8 Results

We have tested our framework on two regular vector field data sets. The jet5 data set
(given on a 256×512×256 grid over 3000 timesteps) results from a direct numerical
simulation of a jet of high-velocity fluid entering a medium at rest and exhibits
progressively finer vortical structures in the velocity field. Similarly, the plate data
set (with a resolution of 1024×256×256 over 285 timesteps) describes the mixing
of fluid flowing past a plate at different speeds that undergo mixing due to viscous
effects. Both data sets have been converted to regular scalar fields based on velocity,
vorticity magnitude or the λ2 vortex detection criterion [JH95]. Full examplary
renderings of the data sets are depicted in Figures 4.7 and 4.4, respectively. An HSV
color scale has been applied to all branches based on λ2, where for each branch the
average scalar branch value was approximated by the mean of saddle and extremum
values stored with the branch.

All images depicted in this chapter have been rendered at 1920x1080 resolution on
a standard desktop workstation using an Intel Core i7-4770k quad-core CPU and a

68 Chapter 4 Contour Tree Depth Images

NVIDIA GeForce GTX 770 GPU. The complete topological segmentation of a single
time step took less than one minute using the above hardware for both data sets.
Rendering times varied depending on the chosen perspective, but typically ranged
from 20 to 60 seconds. The final compression and storage of the resulting depth
images was performed in less than one second.

4.8.1 Compression

The key goal of our contribution is to provide a flexible trade-off between storage
memory consumption and interactive data exploration, essentially controllable by the
branch decomposition simplification level used for layered depth image rendering.

Figure 4.5 depicts the output bundle file sizes of our technique applied to the jet5 data
set in relation to several user-provided maximum branch numbers, using the same
camera perspective as in Figure 4.1. For each number of branches, the graph shows

Number of Branches
0 200 400 600 800 1000

F
ile

 S
iz

e
 (

M
B

)

0

5

10

15

20

25

30

35

Mean + Std Dev
Maximum
Minimum

Fig. 4.5: Impact of limiting the maximum number of branches in the automatic simplifi-
cation of the jet5 λ2 data set on the compressed layered depth image file size,
using the same camera perspective as in Figure 4.1. Depth image file size can
vary greatly depending on the complexity of the scene captured in the rendering,
however in general stays significantly smaller than the input data size of 134 MB.

4.8 Results 69

the mean, standard deviation, minimum and maximum file sizes measured across
the complete time range of the data set. Clearly, the mean file size is monotonously
increasing with the number of branches. Notably, there is a small jump visible at
256 branches, when fragments are required to use shorts instead of bytes for branch
index storage. However, in our studies, a maximum number of 256 branches has
emerged as a very good compromise between file size and segmentation detail,
providing a mean output size of approximately 7 MB, compared to the input data
size of 134 MB for each scalar jet5 time step, i.e., a size reduction of 95%.

The size reduction is even more prominent for full-view renderings of the larger
plate data set as in Figure 4.4. Figure 4.6 illustrates the raw output size and
compressed output size of our algorithm applied to each time step in relation to
the constant input data size. In contrast to the great variation in file size due to
the continuously increasing complexity of the jet5 data set over time, the graph
reflects the rather uniform complexity of the plate data set. Also, the graphs clearly
highlight the fundamental reduction in data size compared to the input data even

Time Step
0 50 100 150 200 250

F
ile

 S
iz

e
 (

M
B

)

0

50

100

150

200

250

300

Input Data
Raw
Compressed

Fig. 4.6: Comparison of raw and compressed layered depth image sizes in relation to the
input data size of the plate λ2 data set across the full time range, using 256
branches and the same camera perspective as in Figure 4.4. The reduction in file
size is even more prominent for larger input data sets.

70 Chapter 4 Contour Tree Depth Images

when storing the layered depth images in raw format, i.e., without additional zlib
deflate compression, which usually achieves further compression ratios of about
50-60%.

4.8.2 Analysis

By design, our approach features a powerful framework for hierachical simplification
and automatic segmentation based on the branch decomposition of the contour tree,
which is interactively controllable in the viewer application.

Figure 4.3a depicts a close-up on the central turbulences of the plate data set, which
is located behind the main whirl visible in Figure 4.4. After an initial simplification
of the whole data set to 256 branches prior to layered depth image rendering, the
surrounding branches have been manually pruned in the viewer application. The
remaining 90 branches visible in the depicted scene have been colored using a HSV
color scale based on the branches’ average λ2 values. In the following Figures 4.3b,
4.3c and 4.3d, the branch decomposition subsequently has been further simplified
to 50, 30 and 10 branches, respectively. Simplification was performed automatically
based on sorted persistence as described in section 4.4, while maintaining the color
scheme for non-discarded branches. One can clearly see the incremental reduction in
complexity, which has been achieved with minimal user interaction and immediate
visual feedback.

A comparison of applying automatic persistence-based simplification to the jet5 data
set is shown in Figure 4.7. In each image, the same scene is depicted consisting
of 256 branches in total, with data having been constructed using either velocity
(4.7a), vorticity magnitude (4.7b) or λ2 (4.7c).

In our studies, the topological segmentation based on the branch decomposition of
the contour tree has proven itself useful as a flexible representation of the major
structures of interest occurring in the data sets, which furthermore provides an
intuitive approach to simplification and filtering in both pre- and postprocessing.

4.8.3 Scaling

We have studied the scaling characteristics of the task-parallel CPU-based layered
depth image renderer on the Elwetritsch cluster at TU Kaiserslautern, which is
depicted in Figure 4.8, using the example of the jet5 velocity data set.

4.8 Results 71

(a) velocity

(b) vorticity magnitude

(c) λ2

Fig. 4.7: Comparison of automatic persistence-guided simplification of the jet5 data set into
256 branches and applying an HSV color scale based on the average branch value.

72 Chapter 4 Contour Tree Depth Images

1 2 4 8 16 32 64 128 256

Processors

1

2

4

8

16

32

64

128

S
p

e
e
d

u
p

Strong
Strong (Perfect)
Weak
Weak (Perfect)

Fig. 4.8: Strong and weak scaling behavior of the distributed layered depth image rendering
approach using HPX on the Elwetritsch cluster. Subblocks of the jet5 velocity data
set are distributed across nodes and rendered in parallel. The resulting partial
images are composited to a single layered depth image afterwards. We achieve
overall good strong scaling and excellent weak scaling characteristics.

Considering strong scaling, we achieve an overall good efficiency. As expected, there
is a minor decrease when using more than 16 processors due to the required network
communication between nodes for image composition after parallel rendering.

Moreover, the algorithm exposes excellent weak scaling behavior, which is of greater
significance to practical considerations than strong scaling. To measure weak scaling,
the jet5 velocity data set was resampled for each run proportionally to the respective
increase in processors used. Interestingly, the results show that bigger volumes can
be rendered using proportionally more processors in shorter time.

4.9 Discussion

We have demonstrated the feasibility and potential of combining in situ topological
analysis and compact image-based data representation. Our approach significantly

4.9 Discussion 73

reduces the amount of I/O bandwidth required to store the numerical results of
high-fidelity numerical simulations running on large-scale parallel computer systems,
while preserving flexibility in visualization.

Based on in situ contour tree analysis and simplification, we obtain a segmented
representation of scalar fields contained in the simulation data at every time step.
Together with the simplified contour tree, we store a rendering of this segmentation
that describes all components visible in every pixel. Rendering can leverage hardware
acceleration, as we have demonstrated by the GPU-based implementation of our
rendering algorithm. The resulting compressed layered depth images can then be
used in post-analysis to flexibly select specific subsets of the segmentation, and
perform further topological simplification if required.

While our results already show substantial reductions in output file size, especially
for larger data sets, our contribution is intended as a baseline demonstration investi-
gating possible advantages of such an approach for the visualization of large-scale
data. We anticipate that many enhancements and improvements of our approach
are possible:

• Similar to Ahrens et al. [Ahr+14], our technique could be easily extended
to generate a complete in situ image data base from multiple perspectives,
which can be combined in the viewer application to enable a flexible 3D data
exploration, or even be used for reconstruction purposes.

• Multivariate topological methods such as Joint Contour Nets [CD14] might be
investigated to obtain improved segmentations.

• A critical shortcoming of our current implementation is frame-to-frame tem-
poral consistency. Since contour trees are computed and decomposed in-
dependently at each time step, the resulting contours can vary noticeably
between time steps depending on the chosen automatic simplification criteria,
potentially undermining analysis due to the lack of frame-to-frame coherence.
This crucial problem could be addressed by incorporating feature tracking
techniques into the branch selection and simplification process.

• The simplified contour tree stored with the compressed image files could be
further annotated to compactly contain relevant properties of the original
input data set, thereby improving the power and flexibility of the resulting
visualization. However, not only the contour tree, but also the fragments can
be used to compactly store local information of the intersected segment useful
for later visualization.

74 Chapter 4 Contour Tree Depth Images

• Notably, the general idea of our concept is not restricted to regular scalar data
and is easily applicable to different kinds of potentially more complex data
structures, providing means for topological segmentation and intersection.

• More sophisticated compression schemes might be used to further increase the
compactness of the layered depth images generated.

We will investigate these possibilities in future work.

4.9 Discussion 75

Task-Based Distributed
Volume Rendering

5

5.1 Motivation

High-fidelity computational simulation models have assumed a significant role
in scientific research and engineering applications, thereby necessitating efficient
visualization techniques at large scale. In recent years, parallel algorithms for
concrete classes of visualization problems have been presented, such as direct
volume rendering [HBC12] or integral curve computation [Pug+09]. Most large data
approaches typically utilize a distributed memory model, where bulk-synchronous
execution and communication using the Message Passing Interface (MPI) is standard.
For improved scalability, hybrid approaches commonly resort to MPI for the coarse
distribution of parallelly executable parts of an algorithm to a set of processes, where
within each process a second concept - e.g. OpenMP, OpenCL, or CUDA - is used for
additional finegrained parallelization of these steps.

These practices require detailed knowledge of the different parallelization concepts
and often result in specific optimizations for certain platform configurations or
obligating the usage of distinct hardware components, which complicates or even
hinders portability towards other architectures. An additional challenge in the
parallelization of visualization concepts is posed by the fact that, in contrast to
simulation computations, visualization tasks are frequently bandwidth-limited and
inherently unbalanced. Thus, achieving scalable parallel execution demands not
only an efficient utilization of the available memory bandwidth, where memory
accesses ideally are overlapping with computational tasks, but also dynamic load
balancing.

Considering the general parallelization of complex algorithms against this back-
ground, in recent years the paradigm of task-based parallelization has been estab-
lished [DG15]. Here, an algorithm is formulated as a set of tasks which can be
carried out concurrently, where a single task represents an atomically executable
subsequence of the algorithm. Interdependencies between tasks can be modelled
explictly by the developer. These relationships are used by the underlying runtime

77

environment to coordinate the parallel execution. Thus, with the help of the task
graph the developer specifies what should be executed, whereas the how of the
execution is left to the runtime environment [Kai+14].

The task-based paradigm entails several crucial advantages. Conceptionally, tasks
enable a more straightforwad formulation of massively parallel programs, where
the maximum degree of parallelism is determined by the maximum width of the
task graph for the given computation. Technically, the coordinated execution by
the runtime environment ensures a flexible and transparent portability to diverse
hardware platforms. Furthermore, task-based systems can inherently handle the
parallel execution of dynamically changing computational loads by the principle of
work stealing [Din+09].

In this context, the intent of this work is to study a task-based system design
for distributed direct volume rendering. Our task definition is based on hybrid
parallelization in both image and data space (see Figure 5.2), thus representing
an effective and easy-to-control trade-off between sort-first and sort-last image
compositing. The presented asynchronous binary tree compositing scheme enables
good scalability in combination with inherent dynamic load balancing.

The overall intent of this work is to investigate possible advantages of such an
approach for the design of large scale visualization systems. Specifically, after a brief
review of relevant prior work (Section 5.2), we make the following contributions:

• In Sections 5.3 through 5.4, we describe a task-based formulation for a dis-
tributed direct volume rendering system.

• We conduct comprehensive benchmarks to verify the characteristics and poten-
tial of our novel task-based system design for high-performance visualization
and describe results and analysis in Section 5.5.

• We anticipate that many enhancements and improvements are possible, and
discuss a number of such opportunities in Section 5.6.

Our contribution is intended as a baseline demonstration of the applicability of
the emerging task-based paradigm in large scale high performance computing to
distributed algorithms and challenges in scientific visualization.

78 Chapter 5 Task-Based Distributed Volume Rendering

Fig. 5.1: The jet reference data set used for all benchmarks with 20483 voxels (32 GB) on a
single node. For weak scaling, the number of voxels is increased proportionally to
the number of cores, up to 65023 (275 gigavoxels) on 32 nodes. All renderings are
performed at 3840x2160 resolution.

5.2 State of the Art

Direct volume rendering [DCH88] represents a crucial class of algorithms used
in scientific scalar field visualization. Today, direct volume rendering typically
follows the principle of ray casting [Lev90], where primary rays are traced through
a volumetric data set starting at a virtual camera and depending on the underlying
sample locations optical properties are determined and accumulated along each
ray.

Following the nomenclature of [Mol+94], there are two fundamental approaches for
the parallelization of volume ray casting: sort-first and sort-last volume rendering.
In sort-first, the image plane is subdivided into rectangular tiles for which rendering
is performed concurrently [CM93; Bet+03; Mol+11]. Sort-last algorithms perform
parallelization based on a spatially disjunct partion of the input data, where each
process computes a partial image of its assigned data. The resulting images are
afterwards composed to the final output image. While both techniques have specific
advantages and drawbacks [Mol+11], most scalable systems typically employ the
sort-last approach, primarily due to the slower increase in image resolution compared
to data size. Müller et al. present a hardware-accelerated sort-last approach,
using block subdivision for fast empty-space skipping and performing dynamic load
balancing by block redistribution based on previous computation times [MSE06].
Marchesin et al. achieve load balancing by dynamic restructuring of the underlying

5.2 State of the Art 79

k-d tree [MMD06]. Navratil et al. use queue-based dynamic scheduling in order
to increase ray coherence and memory bandwidth utilization, leading to improved
L2-cache access patterns [Nav+07]. Childs et al. present a hybrid scheme, using
distributed parallelization both in input data and in image space [CDM06].

Dedicated graphics and accelerator cards providing numerous processing cores have
proven to be a powerful tool for computationally expensive applications such as
ray casting on large data [BHP15; Kno+14]. Consequently, the prevalent usage of
multi-/many-core processor architectures and accelerator cards in distributed high
performance systems has given rise to diverse hybrid parallelization approaches.
Peterka et al. implement hybrid parallel volume visualization of massive data sets
on the IBM BlueGene/P architecture using MPI and POSIX-Threads, where up to
90% of the total runtime are dedicated to I/O [Pet+08]. Fogal et al. study direct
volume visualization using OpenGL-based slicing on distributed memory multi-GPU
clusters in combination with subsequent MPI-based compositing [Fog+10]. Howison
et al. compare different common hybrid approaches based on POSIX-Threads,
OpenMP and CUDA in combination with MPI for direct volume visualization, In
general, hybrid techniques offer improved performance with reduced memory and
communication overhead [HBC12].

A crucial bottleneck in the performance of massively parellel sort-last volume render-
ing algorthms is the final composition of the partial per-process images. A compari-
son of the common approaches (Direct Send [EP07; Sto+03], Binary Swap [Ma+94],
Radix-k [YWM08; Pet+09; Ken+10]) shows that notable runtime benefits can be
achieved using hybrid strategies with variable granularity.

Faced by the emergence of increasingly hierarchical and heterogeneous system archi-
tectures, the hybrid MPI-threading model prevalent in high performance computing
turns out to be more and more suboptimal. The resulting parallelism is fragile due to
the lack of a strict separation between computational kernel and parallel execution,
in addition to the strong coupling with the underlying architectures.

In scientific high performance computing task-based dynamic runtime environments
are considered as a promising alternative model [DG15], whose benefits have al-
ready been demonstrated in diverse disciplines. Haidar et al. present the dynamic
scheduling of algorithms in linear algebra [Hai+11]. A dynamic runtime envi-
ronment for grid workflows can be found in [AA07]. Notz et al. demonstrate a
graph-based system design with a dynamic runtime environment for multiphysics
software based on partial differential equations [NPS12]. The simulation of large
biomolecular systems is shown in [Kal+08]. However, the majority of scientific

80 Chapter 5 Task-Based Distributed Volume Rendering

applications has not yet integrated dynamic runtime environments, or is still in early
experimental stages [DG15].

Current programming languages, libraries or runtime environments start to offer
task-based programming models. A comparison of numerous independent runtime
environments and task-based execution models can be found in [Gil+13]. Popular
frameworks for single shared memory multicore systems are the task implemen-
tation in the OpenMP standard (starting with version 3.0), the Intel Threading
Building Blocks (TBB) library or Intel Cilk Plus. Our work heavily utilizes the HPX
(High Performance ParalleX) framework [Kai+14], which implements the ParalleX
execution model and provides task-based parallelization across node boundaries.
HPX manages an active global address space and focuses on latency hiding by the
dynamic scheduling and asynchronous execution of fine-grained tasks with minimal
context switching overhead. Other recent frameworks for distributed task-based
parallelization include Charm++ [Acu+14] and Legion [Bau+12], which has been
used to explore the applicability of asynchronous many-task (AMT) programming
models in the context of in-situ data analysis [Péb+16].

5.3 System Design

5.3.1 Task Granularity

In a task-parallel system the achievable degree of parallelization and scalability is
crucially characterized by the so-called task granularity, i.e., the size of the individual
tasks, balancing the width of the task graph versus individual task overhead.

Our approach aims to provide a flexibly tunable task granularity by subdividing in
both image and data space, thus yielding a hybrid scheme between sort-first and
sort-last compositing. Volume data is split into regular blocks of equal size, which
are distributed across nodes, whereas the image plane is divided into rectangular
tiles. The general approach is to render the visible blocks within each tile, compose
all images per tile in correct order and eventually align all completed tile images to
form the resulting output image.

An example of the hybrid subdivision in both tiles and blocks is illustrated in Figure
5.2. The corresponding communication tree for image compositing is depicted in
Figure 5.3, also showing the interleaved scheduling order of the individual rendering
and compositing tasks.

5.3 System Design 81

Fig. 5.2: Hybrid parallelization in both image and data space. For each tile, the set of
visible blocks is topologically sorted and composited using a distributed binary
tree communication scheme. The numbering represents an arbitrary enumeration
of the visible blocks within the highlighted tile’s frustum. See Figure 5.3 for the
corresponding compositing tree. Note that block 1 is discarded due to empty-block
skipping.

This scheme allows to balance the number of mutual partners for image compositing
by tweaking both block and tile size, while also providing means to incorporate
common optimization techniques such as empty-block skipping and early ray termi-
nation.

The following Section 5.3.2 describes the interplay and dependencies of the individ-
ual rendering and compositing tasks in our novel distributed compositing scheme.
The incorporation of additional optimizations is presented in Section 5.3.3.

5.3.2 Distributed Compositing

Initially, each node computes for all tiles the visible blocks within the respective
viewing frustums and schedules for each local block a rendering task. As these
render tasks begin execution, each node calculates a sequence of compositing steps
for each tile. A compositing step consists of an initiating block, whose rendered
image will be blended behind the image of the receiving block. The goal is to find a
sequence of compositing steps so that every step maintains the correct z-ordering of
fragments and ultimately after the last step one block holds the complete image for
the respective tile. The node containing that last block will contribute the tile to the
final output image.

82 Chapter 5 Task-Based Distributed Volume Rendering

1 2 3 6 4 7 5 81 2 3 6

Node 1

4 7 5 8

Node 2

R1 R2 R3 R6 R4 R7 R5 R8

Empty

(Skipped)

M M

C1

C5

C6

C2 C3 C4

Opacity Culling

(a) Communication tree

Node 1 Node 2

M

R4

R7

C3

R5

R8

C4

M

R3

R6

C2

C6

C5

R2

C1

Other

Tiles

Other

Tiles

Tile Result

Message

(b) Scheduling timeline

Fig. 5.3: Communication pattern and possible task execution order for the eight blocks
(numbered cubes) shown in Figure 5.2 after topological sorting (from left to right)
distributed across two nodes. In this example, for each block a rendering task
(R) is scheduled by the respective node, except for the first block which is empty.
Additionally, each node calculates the necessary compositing steps and supplies
each local block with the resulting meta information (M) it needs for sending
to its receiving block. According to this meta information the ready blocks may
send their image data to their receiving blocks, which will initiate the scheduling
of composition tasks (C). In this example, the composited image of the partial
images from block 4 and 7 is already opaque, allowing early initiation of the next
compositing step, thereyby skipping the wait for the result of C4. The execution
timeline assumes only a single local thread per node for simplicity. Due to the
asynchronous execution of tasks the results of C2 and C3 are composited before
C1 is performed. Note, that the execution of tasks may be interleaved with tasks
from other tiles.

First, all (including remote) blocks inside the viewing frustum of the tile are topo-
logically sorted based on the Manhattan distance to the camera, so that each block
in the sorting can never overlap a block prior to it.

A naïve approach would be to iterate over this sorting from back to front and
schedule a compositing step for each block as initiator and its successor in the
sorting as receiving block, thus yielding a correct, sequential compositing of all
block images. This would result in every block being the initiator and receiver of a
composition step exactly once, except for the frontmost block who never initiates a
compositing and the backmost block who never receives one.

For a scheduled compositing step to start and execute the following dependencies
are necessary: First, the rendering task for the initiating block needs to be finished.
Second, the compositing step which will be received by the current initiator needs
to be completed. An exception to this is the backmost block who can initiate
compositing immediately after rendering.

5.3 System Design 83

Our communication pattern is more sophisticated than the aforementioned naïve
sequential approach. Compositing steps are chosen to form a binary tree over the
topological sorting of the involved blocks across node boundaries. Every second
block initiates just after rendering is completed for the tile, with its successor in the
sorting being the receiver. Every second of these receivers is scheduled to initiate
a compositing step with its successive receiver and so on. In the end, every block
was initiator exactly once, half of the blocks received once, a fourth received twice
and so on. The number of times the frontmost block is receiver of a compositing
step is equal to the height of the binary compositing tree formed by the compositing
steps.

Note that while the compositing steps are determined and scheduled per level of the
tree, there is no barrier in their execution. Each compositing step can be performed
once the initiating block has rendered its image and all compositing steps scheduled
with him as receiver have been completed. This allows the tree to be worked off in
any order and in parallel as long as these dependencies are met.

Furthermore, each node can determine the structure of the compositing tree com-
pletely on its own and inform all local blocks appropriately about their roles as
initators or receivers, thus completely avoiding costly network communication for
coordination.

5.3.3 Optimization

Note that a block for which two compositing steps are scheduled with him being the
receiver can merge the two images he receives even before his own rendering task is
done, since the compositing steps are associative. However, since the calculation of
the compositing steps is performed redundantly on each node and in parallel, one
node might finish this calculation for a certain tile long before others. This would
require to buffer incoming images for receiving blocks in the nodes lagging behind
until they have scheduled the corresponding compositing steps.

To circumvent this buffering, the initiating block of each compositing step not
only sends its image for compositing to the receiving block, but also the number
of compositing steps the receiver should execute before dealing with the current
step. This allows receiving blocks to merge multiple received images before their
own image is ready and even before the compositing steps are calculated on its
node. Consequently, the successful completion of these local operations is now only
necessary to initiate a compositing step, not for being the receiver of one. This

84 Chapter 5 Task-Based Distributed Volume Rendering

sender-initiated approach allows to perform each compositing operation as early as
possible.

Additionally, we have implemented two common acceleration techniques for volume
rendering: empty-block skipping and early ray termination. While empty-block
skipping can be trivially integrated as a data preprocessing step during block initial-
ization, it should be noted that there is a strong relationship to the optimal block
size, as smaller blocks are more likely to be completely empty and can be skipped in
compositing.

In constrast to early ray termination in standard shared-memory ray casting, our
distributed tile-based compositing scheme performs opacity culling at tile granularity.
After each compositing operation, the resulting image is checked against a predefined
opacity threshold. Whenever the opacity of all fragments is saturated, all outstanding
blend-under compositing operations can be skipped and the tile can be immediately
forwarded in the compositing tree. The corresponding superfluous rendering tasks
that have not been started yet can be removed from the scheduling system, whereas
the resulting images of already executing rendering tasks will simply be ignored.

To assist early opacity culling, we have implemented a custom priority queue task
scheduler, where pending block rendering tasks are dynamically kept sorted based
on their Manhattan distance to the camera. This ensures full compute occupancy
at any time while improving the execution order with respect to opacity culling as
more rendering tasks are scheduled.

Figure 5.3 illustrates an exemplary compositing tree pattern and possible task
execution timeline on two nodes for the scenario presented in Figure 5.2, featuring
both empty-block skipping and opacity culling.

5.4 Implementation

Our novel task-based distributed rendering approach is based on the HPX (High
Performance ParalleX) framework [Kai+14], an aspiring task-based runtime envi-
ronment with means for asynchronous communication across nodes. Each block is
represented as an individual component in the active global address space (AGAS),
allowing blocks to directly communicate in the compositing pattern. The custom
priority queue scheduler is implemented on top of HPX’s standard FIFO scheduler
by manually keeping track of the number of rendering and compositing tasks being
executed by HPX.

5.4 Implementation 85

OSPRay [Wal+17] is used as rendering backend with its default internal TBB-
based parallelization being disabled. A seperate scientific visualization renderer
is instantiated for each CPU core, so all scheduled rendering tasks can render
concurrently. Each block aggregates a shared structured volume instance and a pre-
committed model instance, which is set as active model in the respective executing
renderer.

Manual AVX2 intrinsics are used for standard blend-over image compositing, which
allows to perform vectorized instructions on 8 consecutive RGBA pixels with 8 bit
per channel. The same degree of vectorization was not achievable by relying on
compiler-generated auto-vectorized code.

5.5 Results

To investigate the characteristics and potential of our novel task-based rendering
system we have conducted comprehensive benchmarks with respect to optimal task
granularity, task scheduling and scaling.

The jet data set (see Figure 5.1), which results from a direct numerical simulation of
a jet of high-velocity fluid entering a medium at rest, was used with a standard fire
and ice transfer function, thus yielding empty, transparent and fully opaque image
areas. As reference configuration the data set was resampled to 20483 voxels (32
GB) on a single node. Timings were measured by rendering a full rotation around
the data set at 3840x2160 resolution and computing the mean. The camera distance
is adjusted to view the complete volume.

We have identified four important base scenarios to focus on: in-situ vs. offline and
weak vs. strong scaling up to 512 cores. The in-situ scenario assumes block data is
already in memory (e.g. after a preceding simulation run), whereas offline rendering
requires additional on-demand I/O to load blocks into memory. For weak scaling,
the total data size is upscaled proportionally to the number of cores, e.g. 65023 for
512 cores (approx. 275 gigavoxels). Strong scaling keeps the data size constant
while increasing the number of cores.

All benchmarks were performed on the Elwetritsch cluster providing two Intel E5-
2637v3 CPUs (16 cores) per node, 64GB of main memory and InfiniBand QDR
interconnect.

86 Chapter 5 Task-Based Distributed Volume Rendering

5.5.1 Task Granularity

The granularity of the individual tasks in a task-based system crucially defines and
limits the degree of possible parallelization and scalability. In our approach, we have
two parameters to control task granularity: block size and tile size.

Figure 5.4 illustrates the mean rendering times across the full spectrum of block and
tile sizes for 16, 64, 256 and 512 cores in the weak in-situ scenario, thus focusing on
pure rendering performance without I/O. The sweet spots are clearly indicated in
the middle ranges of both block and tile size parameters, with severe performance
penalties in the extreme corner cases. The optimal configuration shifts slightly
towards smaller tile sizes and larger block sizes as the number of cores increases.

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le
 S
ize

0

10

20

30

40

50

60

Ti
m
e
(S
ec

on
ds

)

(a) 16 cores

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le
 S
ize

0

10

20

30

40

50

60

Ti
m
e
(S
ec

on
ds

)

(b) 64 cores

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le
 S
ize

0

10

20

30

40

50

60

Ti
m
e
(S
ec

on
ds

)

(c) 256 cores

12
8³

19
2³

25
6³

38
4³

51
2³

76
8³

10
24

³

20
48

³

Block Size

3840x2160

1920x1080

960x540

480x270

240x135

120x68

64x34

32x17

Ti
le
 S
ize

0

10

20

30

40

50

60

Ti
m
e
(S
ec

on
ds

)

(d) 512 cores

Fig. 5.4: Mean rendering times for different task granularities at 16, 64, 256 and 512
cores (20483, 32503, 51603 and 65013 voxels, respectively) in the weak in-situ
scenario. The sweet spots are indicated as white contour lines with a threshold of
0.5 seconds around the best rendering time. Optimal performance is achieved in
the middle ranges of both block and tile size parameters, with severe performance
penalties in the extreme corner cases. The optimal configuration shifts slightly
towards smaller tile sizes and larger block sizes as the number of cores increases.

5.5 Results 87

64 128 192 256 320 384 448 51216
Cores

128³

192³

256³

384³

512³

768³

1024³

2048³

Bl
oc

k
siz

e

Weak (In-situ)
Strong (In-situ)
Weak (Offline)
Strong (Offline)

(a) Optimal block size

64 128 192 256 320 384 448 51216
Cores

32x17

64x34

120x68

240x135

480x270

540x270

960x540

1920x1080

3840x2160

Ti
le
 si
ze

Weak (In-situ)
Strong (In-situ)
Weak (Offline)
Strong (Offline)

(b) Optimal tile size

Fig. 5.5: Optimal block and tile sizes for up to 512 cores in the in-situ and offline scenario
(both weak and strong scaling). The ideal block count appears to be independent
from the number of cores. However, in offline rendering the block size additionally
influences I/O performance. In general, the optimal tile size decreases with the
number of cores. In the offline scenario larger tiles are beneficial.

88 Chapter 5 Task-Based Distributed Volume Rendering

0 5 10 15 20 25
Time (Seconds)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Co
re

I/O Rendering Compositing

Fig. 5.6: Task scheduling for offline rendering of 20483 voxels using 16 cores on a single
node at block size 5123 and tile size 960x540. Block loading, rendering and com-
positing happen interleaved without barriers, so the resulting image is immediately
ready after the final rendering and compositing tasks. Whitespace indicates unmet
task dependencies such as outstanding I/O tasks or compositing partners.

The optimal block and tile sizes for all four scenarios across different core numbers
is depicted in Figure 5.5. The ideal block count appears to be independent from
the number of cores, in both weak and strong scaling scenarios. However, in offline
rendering the block size additionally influences I/O performance. In general, the
optimal tile size decreases with the number of cores as the increased fine-grained
subdivision promotes latency hiding by task overlapping. Interestingly, in the offline
scenario larger tiles are beneficial. A possible explanation is that larger tiles improve
the early scheduling of on-demand I/O tasks.

5.5 Results 89

64 128 192 256 320 384 448 51216
Cores

2

3

4

5

6

7

8

9

10

Ti
m
e
(S
ec
on
ds
)

Weak (In-situ)
Strong (In-situ)

(a) In-situ scaling

64 128 192 256 320 384 448 51216
Cores

5

10

15

20

25

Ti
m
e
(S
ec

on
ds
)

Weak (Offline)
Strong (Offline)

(b) Offline scaling

Fig. 5.7: Weak and strong scaling up to 512 cores for both in-situ and offline scenarios.
The corresponding block and tile sizes are depicted in Figure 5.5. After an initial
performance improvement, weak scaling shows for both in-situ and offline cases
approximately constant runtime. Strong scaling rendering times in the offline
scenario drop rapidly as the I/O overhead is distributed across nodes.

90 Chapter 5 Task-Based Distributed Volume Rendering

5.5.2 Scheduling

Figure 5.6 depicts the scheduling of the individual I/O, rendering and compositing
tasks in the offline scenario onto the 16 available cores of a single node. The diagram
is representative for both the single and multi node cases.

Clearly, there are no barriers in our task-parallel approach. Block loading, rendering
and compositing happen interleaved, so the resulting image is immediately ready
after the final rendering and compositing tasks. Especially the latency of costly I/O
is hidden by automatic overlapping with computational tasks. The compositing tasks
themselves are rather cheap in comparison to I/O and rendering.

5.5.3 Scaling

We have studied both weak and strong scaling characteristics of our approach in the
in-situ and offline scenarios, as depicted in Figure 5.7. Note that in these benchmarks
scaling only refers to the data size per node. However, for each benchmark the
camera is adjusted such that the complete volume rendering is visible and its image
area stays constant, thereby reducing the contribution of each node to the final
image at bigger node counts.

After an initial performance improvement, weak scaling shows for both in-situ and
offline cases approximately constant runtime, which is near optimal. This initial
improvement is explained by the quick reduction in image contribution (i.e. rays)
per node. Strong scaling rendering times in the offline scenario drop rapidly as the
I/O overhead is distributed across nodes.

In general, strong scaling seems to be relatively limited in the tested scenarios. How-
ever, weak scaling suggests that strong scaling would improve at bigger workloads.

5.6 Discussion

We have demonstrated a novel approach to large scale volume rendering based on
distributed task-based runtime environments, an emerging trend in modern high
performance computing on increasingly heterogeneous architectures. Our technique
is based on a hybrid task-definition using parallelization in both image and data
space, representing an effective and easy-to-control trade-off between sort-first and
sort-last image compositing.

5.6 Discussion 91

In our distributed asynchronous compositing scheme, each node determines the set
of visible blocks for each tile. After an initial topological sorting, a sender-initiated
binary tree communication scheme is used to correctly compose all block images
within a tile. The compositing scheme incorporates common optimization techniques
such as empty-block skipping and opacity culling, which is aided by a custom task
priority scheduler based on the Manhattan distance to the camera.

We have conducted comprehensive benchmarks to study the characteristics of possi-
ble block and tile configurations in order to achieve optimal task granularity. The
employed asynchronous binary tree compositing scheme enables good scalability
in combination with inherent dynamic load balancing. The dynamic scheduling
of initialization, rendering and compositing tasks on a single node ensures good
latency hiding of network communication and I/O access.

Our contribution is intended as a baseline investigation of the applicability of task-
based runtime environments to distributed scientific visualization. We anticipate
that many enhancements and improvements of our approach are possible:

• Distributed work stealing would be an interesting approach to implement
proper load balancing across node boundaries. Since each block is represented
by an individual component in HPX’s active global address space, the migration
of blocks could be performed transparently with little to no modifications to
the distributed compositing scheme. Distributed load balancing is especially
important in an interactive setup with user-controlled camera navigation.

• In conjunction to distributed work stealing, a more sophisticated scheduling
algorithm could also be used to improve task overlap and ensure the available
I/O bandwidth is always kept saturated while executing rendering tasks as
long as there are still blocks left to be loaded.

• Out of core handling could be used to support larger block counts on individual
nodes.

• So far, our approach relies on the regular structure of blocks at various places.
Support for unstructured data would involve complex enhancements to the
distributed compositing scheme.

• In general, performance benchmarks on larger core counts would be very
interesting. The integration of additional accelerator cards such as Intel
Xeon Phi or GPGPUs is theoretically easy in the spirit of task-based runtime
environments, but in practice still technically challenging.

92 Chapter 5 Task-Based Distributed Volume Rendering

• Additional benchmarks for comparison against traditional non-task-based ap-
proaches are required to further characterize the benefits and drawbacks of the
presented approach. We do not expect significiant benefits from applications
that already scale well on large machines using traditional data parallel ap-
proaches, especially if they are highly tuned and optimized towards a specific
system or architecture. However, as elaborated in Section 5.1, we believe the
major promising advantages of task-based designs lie in their portability to
diverse and heterogeneous architectures, as well as the conceptionally more
straightforward formulation of massively parallel programs.

• Besides distributed rendering, other load-sensitive techniques from scientific
visualization such as topological methods or integral curve computations would
certainly make promising candidates for task-based parallelization.

• Once enough task-based designs of standard visualization algorithms exist,
their interplay and dependencies in a (complex) visualization pipeline could
be studied.

• The task graph could be used for theoretical models and estimates about
runtime, possible parallelization and scalability.

We will investigate these possibilities in future work.

5.6 Discussion 93

Hardware-Accelerated
Multi-Tile Streaming

6

6.1 Motivation

The growing use of distributed computing in computational sciences has put in-
creased pressure on visualization and analysis techniques. A core challenge of HPC
visualization is the physical separation of visualization resources and end-users.
Furthermore, with increasing dataset sizes, in-situ scenarios, and complex visual-
ization algorithms, transfer to a separate visualization system becomes impractical.
Modest demand for interactivity, low screen resolutions and user bases on rela-
tively high-speed connections made frame based compression sufficient to provide a
workable remote visualization experience. With novel interactive workflows, com-
modity high-resolution monitors, complex rendering algorithms, latency sensitive
display technologies and globally distributed user bases, new approaches to solve
the remoting challenge are required.

The wide availability of GPUs in current and future generation HPC systems allows
not only to leverage the GPUs’ rendering capabilities, but also their special purpose
video en-/decoding hardware: to both weakly scale and render significantly more
pixels without requiring large amounts of streaming bandwidth, and to strongly
scale the rendering tasks and reduce the overall latency.

Being able to drive high-resolution displays directly from a remote supercomputer
opens up novel use cases. In particular, it enables cheaper infrastructure at the
client’s side, as all the heavy lifting is done on the server side. It also allows the
visualization and rendering system to scale with the scale of the simulation, rather
than having to scale a separate system for visualization of large-scale data sets. As
will be shown in Section 6.2, driving remote tiled displays is nothing new. However,
contemporary resolutions of at least 4K or more per display at interactive frame
rates far exceed the capabilities of previous approaches.

Strong scaling the rendering and delivery task enables novel interactive uses of
HPC systems. Splitting the rendering load enables expensive rendering solutions

95

at interactive frame rates. This can improve perception when visualizing a high-
resolution simulation’s results. In addition, the renewed interest in virtual reality
with head mounted displays begs the question for streaming directly from the HPC
system.

In this comprehensive case study, we demonstrate the impact of video compression
and multi-tile streaming for low-latency distributed remote rendering at interactive
frame rates. Using comprehensive benchmarks we demonstrate the practicability
of this approach and the impact on possible workflows and visualization scenarios.
With these investigations, we address several basic questions:

• Is it feasible to stream content directly from a supercomputer to to remote
large-scale tiled displays at sufficiently high frame rates (e.g. interactively)?
Which latency and bandwidth requirements does this entail, and how do they
correlate to image contents?

• How does hardware-accelerated progressive video compression compare to
conventional CPU-based compressors applied to individual frames?

• What frame rates can be delivered to a remote end-user by strong scaling the
rendering and delivery task, i.e., using video hardware for direct-send sort-first
compositing?

• Could this even be used for latency-sensitive environments such as VR?

It is not our intention to validate remote visualization as a general approach, but
rather to highlight possible process improvements and streamline the end-user
experience through the use of hardware-accelerated video compression.

The outline of the chapter is as follows. In Section 6.2 we provide some background
on related activities in this field. Sections 6.3 and 6.4 show the general setup of
our multi-tile streaming approach using hardware-accelerated video compression.
Section 6.5 demonstrates the achievable frame rates that our system provides in
various configurations. Possible opportunities for enhancements are discussed in
Section 6.6.

6.2 State of the Art

As observed above, remote visualization techniques have by necessity been in
practical use since the advent of computational sciences. Fundamentally, this is
a consequence of the fact that end-user analysis resources cannot be expected to

96 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

scale with data-production resources, severely limiting visualization capability for
state-of-the-art problems.

A substantial body of previous work focuses on using dedicated computational
resources (such as a visualization server or visualization clusters) where images
are generated and transmitted to commodity hardware such as a PC or mobile
device. Engel et al. [ESE00] observe the necessity to access remotely available high-
performance visualization clusters, and provide a web-based interface to the remote
servers. Lamberti and Sanna [LS07] and Noguera and Jiminez [NJ16] examine
the challenges and opportunities of using low-powered, mobile viewing devices,
which naturally integrate into this setting. Several general purpose frameworks have
been described in the literature, e.g. SAGE2 [Mar+14] and Equalizer [EMP09],
but standard visualization tools such as e.g. VisIt [Chi+12] and ParaView [AGL05;
Her+08] also support corresponding modes of operation. As visualization is typically
used in an interactive setting, latency is important. Stegmaier et al. [Ste+03] de-
scribe improvements to naive image streaming aimed at improving poor interactive
performance due to high latency. Most notably, they find image compression to be
beneficial in reducing latency. Focusing especially on compression of visualization
images, specific solutions can be developed for particular algorithms. For example,
Cui et al. addressed latency by transmitting annotated depth images from which
different viewpoints can be reconstructed without data retransmission [CMP14].
Similarly, Lalgudi et al. [Lal+09] exploit view coherency to derive effective com-
pression for volume rendering. Similar techniques have also been used in other
applications, e.g. remote gaming [FE10]. While both these works exemplify non-
standard compression schemes for specific visualization techniques, it is difficult to
extend them to a general setting.

The present research is inspired by the work of Jiang et al. [Jia+16], who describe
a lightweight general purpose image compression library that utilizes the video
compression hardware on NVIDIA GPUs [NVI]. They use temporal and spatial
image coherence during compression to obtain 25x improved compression ratios at
reduced latency, and demonstrated the benefits of their approach through integration
with ParaView for single-tile streaming. The compression scheme is based on the
H.264 standard [Wie+03], and is thus in principle a lossy approach. However, this
is acceptable in practice as evidenced by the nowadays ubiquitous use of such codecs
in the entertainment industry. While to the best of our knowledge the specialized
video hardware available in modern GPUs is still mostly unused in high performance
visualization, an interesting alternative application was recently presented by Leaf et
al. [LMM17], who have demonstrated in-situ compression of floating-point volume
data using hardware encoders.

6.2 State of the Art 97

In this work, we take the hardware-accelerated video streaming approach to the ex-
treme by applying it to diverse large-scale multi-tile scientific visualization scenarios.
Although demonstrated on vendor hardware, the technique is in principle vendor-
independent and could be extended to utilize corresponding hardware in Intel [Int]
and AMD GPUs [AMD], which provide similar codec capabilities. Furthermore, given
modern hardware support, it appears feasible to adopt the HEVC standard [Sul+12]
that improves image quality while retaining strong compression. In this work, we
consider both H.264 and HEVC codecs, but focus on the still more ubiquitous H.264
variant, given its wide availability of hardware implementations.

A necessity of using distributed resources to compute visualization images in a re-
mote scenario is compositing: to send a single image to the end-user, partial results
computed on different nodes must first be composited onto a single node. This
implies that the image data incurs latency twice – first when sent to the compositing
node, and a second time when sent to the client. Since compositing speed and
latency can dramatically limit end-to-end performance of remote visualization sys-
tems, a significant body of prior work has therefore investigated how to in particular
conduct the compositing phase with minimum latency. Corresponding strategies
broadly fall into several classes. In direct send compositing [EP07; Sto+03], render
nodes directly send pixel data to the compositing node. The binary swap [Ma+94]
and radix-k [YWM08; Pet+09; Ken+10] strategies improve on this by intelligently
spreading intermediate compositing operations across many nodes and exchang-
ing pixel data using optimized communication schemes. The performance and
scalability of corresponding implementations are demonstrated e.g. in the IceT
framework [Mor+11].

In constrast, in this work, we demonstrate that it is feasible and advantageous
to perform direct-send compositing on the client and display tiles at very high
frame rates. This enables a system design in which render nodes directly send
to the end-user client. We set out to demonstrate that with vastly improved (de-
)compression, even a large number of render nodes do not overwhelm the recipient
of their images.

6.3 Multi-Tile Streaming

Hardware-accelerated multi-tile streaming is a promising approach to make the
distributed rendering capabilities of the GPUs within a remote HPC system directly

98 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

HPC System Clients

A

B

C

D

X

Y

Buffer
(Device)

Buffer
(Host)EncodeRender Send

Buffer
(Host)

Buffer
(Device)Decode DisplayReceive

01
010101 01

01
010101 01

01
010101 01

01
010101 01

01
010101 01

01
010101 01

01
010101

01

01
010101

01

01
010101

01

01
010101

01

01
010101

01

01
010101

01

A B

C D

A B

C D

X Y

Tiled Display

VR

Fig. 6.1: Conceptual overview of the multi-tile streaming approach using asynchronous
pipelines. Several tiles are streamed directly from the compute nodes’ GPUs in the
HPC system (left) to muliple client GPUs for display (right). Each pipeline consists
of individual threads for hardware-accelerated en-/decoding and communication.
The threads within a pipeline interact through buffers that are strategically placed
on device or host memory, thereyby minimizing costly PCIe bus transfers. Frames
rendered by the source GPU are immediately encoded and sent to the destination
GPU for direct decoding to the display engine.

accessible to visualization systems, such as tiled displays, CAVEs [Feb+13], worksta-
tions, virtual reality (VR) headsets, thin clients or mobile devices.

A multitude of contemporary GPUs is equipped with dedicated hardware units that
enable low latencies and interactive frame rates for high-resolution remote stream-
ing. For instance, NVIDIA GPUs contain one or more hardware-based decoders and
encoders (separate from the CUDA cores) that provide hardware-accelerated video
decoding and encoding for several popular codecs [NVI]. With decoding/encoding
offloaded, the rendering engine and the CPU are free for other operations, such as
visualization, computation, and data management. In contrast to the stand-alone
compression of individual frames based on compression algorithms such as LZ4,
Squirt (run-length encoding) or Zlib that have been used in previous remote visual-
ization applications [AGL05], progressive video-based encoders such as H.264 or
HEVC provide better compression ratios by exploiting not only the spatial coherence
within but also the temporal coherence between frames in scientific visualization
applications. Using the hardware-accelerated codec units of NVIDIA GPUs, we have
implemented a prototypical client/server library providing concurrent streaming
pipelines between source and target applications.

Conceptually, a pipeline connects two GPUs and streams (parts of) a source image
from the rendering framebuffer to a remote destination for display. Figure 6.1
illustrates multiple concurrent pipelines connecting rendering nodes from a remote
HPC cluster and local visualization systems driving tiled displays or virtual real-

6.3 Multi-Tile Streaming 99

ity devices. A streaming pipeline essentially consists of three stages for encoding,
transmission and decoding. Technically, each pipeline is implemented as a series of
parallel tasks connected through thread-safe queues. This ensures the high degree of
asynchronicity within each pipeline that is crucial to achieve high throughput at low
latencies. All involved hardware units, i.e., rendering/display (GPU), encoding/de-
coding (GPU) and network transmission (CPU), work concurrently. Depending
on the stage, buffers are strategically placed on either device or host memory to
minimize host bus transfers. Notably, host memory transfers can be completely
avoided by using DMA transfers (e.g. GPUDirect RDMA on recent NVIDIA GPUs).
This technique requires certain hardware configurations and is out of the scope of
this work.

The following section describes all stages in the life of a streamed frame (or tile)
through the pipeline from source to destination. After rendering the main render
thread accesses the framebuffer and pushes the requested tile into the device-
memory encode buffer. The encode thread pulls from its input buffer and forwards
the raw image data into the hardware encoder. The resulting compressed bitstream
is enqueued into a host-memory send queue. Compressed data in the send buffer
is continuously transmitted onto the network by a separate thread. On the client
side, a pipeline consists of a receive thread and a decode thread. As the receive
thread receives compressed frames from its network socket, it pushes them into the
host-memory decode queue. The subsequent decode thread pulls compressed data
from its input queue and performs hardware-accelerated decoding. The resulting
raw tiles are placed into a device-memory display queue. The main display thread of
the client application pulls from the display queue to assemble the complete output
image. A single server or client process can contain one or more concurrent pipelines.
For instance, a server application could split the framebuffer into two tiles and use
two concurrent pipelines to better utilize the available hardware encoding units. A
similar approach can be employed at client-side, either to decode and display full
frames to distinct monitors, or composite partial tiles of a single display.

For synchronization purposes the frame number of each tile is passed through the
pipeline, in addition to latency statistics. While synchronization between server
processes is optional depending on the context (e.g., typically already provided by
the underlying simulation in case of in-situ scenarios), synchronization at client-side
is obligatory to ensure consistent display of all contributing tiles. In our benchmarks
we perform synchronization across processes at both server-side (before frame grab)
and client-side (before display). Note that by synchronization across processes we
only refer to processes contributing to a single output device, e.g., all pipelines to a
tiled display wall in case of weak scaling or all pipelines to a single display in case

100 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

of strong scaling. There is no need for precise per-frame synchronization between
seperate isolated output devices.

6.4 Implementation

We have implemented the multi-tile streaming approach based on concurrent asyn-
chronous pipelines as a server-client library that can be combined with arbitrary
rendering applications. Both server and client internally use MPI for synchronization
across processors and support using multiple GPUs for encoding and decoding,
respectively. Newly created pipeline instances are assigned to the node’s available
GPUs in a round robin way.

The streaming server creates a standard TCP socket and listens for incoming con-
nections. The use of the TCP protocol instead of UDP relieves from additional
frame/packet loss handling, while still enabling high performance as demonstrated
in Section 6.5. For each connection, a server pipeline instance is created as described
in Section 6.3. The rendering application can retrieve the bounding rectangles
of the required tiles from the server instance to optimize the rendering process
by restricting rasterization or ray casting to the relevant regions. OpenGL-based
renderers require the use of the CUDA/GL interoperability APIs to copy (parts of)
the frame buffer to device memory, either via PBO or framebuffer texture access.
OptiX-based renderers output directly to CUDA device memory. Pre-rendered frames
as used in our synthetic benchmarks are placed in device memory.

Analogously, the streaming client can connect to one or multiple servers simultane-
ously and request specific (sub) tiles. For each connection, the application creates
a separate client pipeline instance. Similar to an OpenGL-based server, this step
utilizes CUDA/GL interop to copy each tile into the mapped color texture of a frame-
buffer object or a target PBO. Using the frame number provided with each tile, initial
client-side synchronization at the beginning of the streaming process is ensured
by dropping outdated tiles based on the maximum frame number until all clients
involved are synchronized. Since frame loss is prevented by TCP, display of subse-
quent frames is easily synchronized using barriers. In case of multiple distributed
client processes, e.g., multiple nodes driving a tiled display wall, an MPI-based
all-reduction is used to collectively determine the maximum frame number all clients
must synchronize to.

6.4 Implementation 101

Fig. 6.2: NASA’s Synthesis 4K video footage used for streaming benchmarks, representing
typical content of scientific visualizations at various image complexities: Space
(low), Orbit (medium), Ice (high), Streamlines (extreme).

6.5 Results

We have conducted comprehensive benchmarks to demonstrate the practicality of
the presented multi-tile streaming approach and its impact on possible workflows
and visualization scenarios.

As a stand-in for high-resolution scientific visualization renderings, we have selected
the Synthesis 4K footage from NASA. Figure 6.2 illustrates scenes of varying com-
plexity we have streamed from this source. Pre-rendered frames are extracted from
the video, copied into device memory, and pushed into the multi-tile streaming
server, as described in Sections 6.3 and 6.4. We have restricted our benchmarks to
two commonly used resolutions: 3840x2160 and 2160x1200. The former is usually
referred to as 4K and the latter is a typical resolution for current-generation VR
devices, such as Oculus Rift and HTC Vive. We have used YUV 4:2:0 color format
with a color depth of 8 bits per channel. The required CUDA-based conversion
kernels between RGB and YUV have been profiled to be of negligible impact.

All benchmarks have been conducted on the Piz Daint supercomputer at the Swiss
National Supercomputing Centre (CSCS). In our experiments we have used up to
512 GPU nodes for simultaneous multi-tile encoding and decoding. Additionally,
at client-side we have benchmarked a multitude of scenarios on three locations for
multi-tile decoding:

102 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

• Site A (ping 5 ms, 1x NVIDIA Quadro GP100)

• Site B (ping 25 ms, 2x NVIDIA Quadro GP100)

• Site C (ping 200-1000 ms, 4x NVIDIA Tesla P100)

Both the NVIDIA Tesla P100 and the Quadro GP100 are from the Pascal architecture
family, featuring two independent hardware units for both encoding and decoding.
In all benchmarks the hardware encoders were configured to use the low latency -
high quality preset for both H.264 and HEVC. The target frame rate was set to 90
Hz, which always has to be considered in conjunction with a specific bitrate.

6.5.1 Codec Performance

The encoding quality of H.264 and HEVC can be configured to aim for a constant
target bitrate. Intuitively, bandwidth requirements increase with frame complexity
to sufficiently represent important details. We have used the structural similarity
index (SSIM) [Wan+04] to measure and compare the encoding quality of H.264
and HEVC. Figure 6.3 shows the SSIM for the four test scenes at different bitrate
settings. Higher bitrates improve reconstruction detail, where more complex scenes
require higher bitrate settings to look acceptable. In general, HEVC outperforms
H.264 by providing higher quality at the same bitrate. However, interestingly the

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1 2 4 8 16 32 64 128 256

SS
IM

Bitrate (90 Hz) [Mbps]

Space (H.264) Orbit (H.264) Ice (H.264) Streamlines (H.264)

Space (HEVC) Orbit (HEVC) Ice (HEVC) Streamlines (HEVC)

Fig. 6.3: Structural similarity (SSIM) index of the four test scenes at different encoder
bitrates for H.264 and HEVC.

6.5 Results 103

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128 256

La
te

nc
y

[m
s]

Bitrate (90 Hz) [Mbps]

Encode (HEVC, Space)

Encode (HEVC, Orbit)

Encode (HEVC, Ice)

Encode (HEVC, Streamlines)

Encode (H.264, Space)

Encode (H.264, Orbit)

Encode (H.264, Ice)

Encode (H.264, Streamlines)

Decode (HEVC, Space)

Decode (HEVC, Orbit)

Decode (HEVC, Ice)

Decode (HEVC, Streamlines)

Decode (H.264, Space)

Decode (H.264, Orbit)

Fig. 6.4: Comparison of en-/decode latencies for the four test scenes at different bitrates
for H.264 and HEVC at 4K resolution.

0

2

4

6

8

10

12

14

16

3840x2160 2720x1530 1920x1080 1360x766 960x540 672x378 480x270

La
te

nc
y

[m
s]

Resolution

Encode (HEVC) Encode (H.264) Decode (HEVC) Decode (H.264)

Fig. 6.5: Comparison of en-/decode latencies (averaged across test scenes) at different
resolutions for H.264 and HEVC. Default bitrate for 4K at 90 Hz is 32/16 Mbps
(H.264/HEVC), downscaled proportionally with pixel count.

high complexity Ice scene is slightly better reconstructed using H.264 for lower
bitrates. Based on our visual experiments, we have chosen default bitrates of 32
Mbps for H.264 and 16 Mbps for HEVC in all following streaming benchmarks. If
not specified otherwise, benchmarks are based on the Ice scene as a representative
for high complexity.

The impact of image complexity on en-/decoding latencies is close to negligible for
both H.264 and HEVC as illustrated in Figure 6.4. Also, the bitrate level only starts
to affect latencies slightly at very high settings with increased memory bus pressure.
In general, H.264 requires approx. 10 ms for encoding a full 4K frame on our test
hardware, whereas HEVC needs 14 ms at the same bitrate. Decoding latency is
similar for both codecs at 5-6 ms. When considering smaller tiles, overall latencies

104 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

0

300

600

900

1200

1500

1800

2100

2400

0

20

40

60

80

100

120

140

160

180

200

220

HEVC
(GPU)

H.264
(GPU)

HEVC
(CPU)

H.264
(CPU)

BloscLZ LZ4 LZ4HC Snappy

Ba
nd

w
id

th
 [

M
B/

s]

La
te

nc
y

[m
s]

Encode Decode Bandwidth

Fig. 6.6: Comparison of average en-/decode latencies and required bandwidths at 90 Hz for
4K using different GPU and CPU codecs. Bandwidth shows min/max ranges across
test cases. H.264/HEVC configured to 32/16 Mbps at 90 Hz, others to maximum
compression level.

decrease as expected and the gap between encoding latencies narrows, as shown in
Figure 6.5.

We set out to demonstrate that hardware-accelerated progressive video encoding is
superior to conventional single frame compression approaches for realtime streaming
scenarios. Figure 6.6 shows the latency and required bandwidths at 4K resolution
and a fixed frame rate of 90 Hz for several popular compression algorithms in
comparison to the GPU. Both latency and bandwidth depict averages measured
across the four test scenes. While the impact of image complexity is negligible for
latency, high complexity content requires increased amounts of bandwidth. This is
indicated by the error bars depicting the bandwidth range for the low and extreme
complexity scenes. All CPU-based compressor benchmarks have been conducted
on an Intel Core i7-6850K CPU at 3.6 GHz with hyper threading. The compressors
have been set to use multi-threading and the maximum compression level possible.
When considering latencies, GPU-accelerated video codecs are faster than their
CPU-variant (using FFmpeg) by an order of magnitude. Interestingly, modern
CPU-based compressors such as LZ4 or Snappy are comparable in latency to GPU
video encoding, even with the additional PCIe bus transfer of the rendered frame
between device and host memory included. The compressors Zlib and Zstd are not
shown due to impractically large encoding latencies. In contrast, when considering

6.5 Results 105

0

100

200

300

400

500

600

700

800

900

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 128 256

Ba
nd

w
id

th
 [

M
B/

s]

Fr
am

e
Ra

te
 [H

z]

Tiles

HEVC (Bandwidth) H.264 (Bandwidth) HEVC (Frame Rate) H.264 (Frame Rate)

Fig. 6.7: Weak scaling (N:N) within Piz Daint: Client-side frame rates and bandwidths for up
to 256 concurrent full 4K streams of the Ice video at 32/16 Mbps (H.264/HEVC).

required streaming bandwidth, progressive video encoding starts to shine due to its
consideration of temporal coherence between frame. While for instance HEVC at 16
Mbps needs approximately 2 MB/s to stream the high complexity Ice scene at good
quality, LZ4 requires an excessive bandwidth of more than 2 GB/s.

6.5.2 Full Tiles Streaming

Being able to drive tiled displays directly from a remote supercomputer enables
cheaper infrastructure at the client side, as all the heavy lifting is done on the server
side, and allows the rendering system to scale with the simulation, rather than
having to scale a separate system for visualization.

This begs the question of how many simultaneous full resolution streams can be
handled by GPUs and network to fulfill given requirements such as interactivity. For
instance, how many GPUs are required to drive a particular tiled display or CAVE
configuration at a certain target frame rate? To investigate such questions, we have
conducted synthentic benchmarks for streaming within the Piz Daint supercomputer:
up to 256 synchronized server nodes stream 4K frames from the complex Ice scene
to up to 256 synchronized client nodes, which virtually display into an offscreen
framebuffer via EGL. Figure 6.7 shows the mean frame rates and accumulated
bandwidths for both H.264 and HEVC. Even for 256 concurrent streaming pipelines,

106 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

0

20

40

60

80

100

120

0 ms 50 ms 150 ms 500 ms

Fr
am

e
Ra

te
 [H

z]

Network Delay

1 2 4 8 16 32 64 128 256

Fig. 6.8: Weak scaling (N:N) within Piz Daint: Mean frame rates and min/max ranges for
different simulated network delays (+10% jitter), streaming up to 256 concurrent
full 4K tiles of Ice sequence using H.264 at 32 Mbps.

the system manages to sustain stable frame rates of 80 Hz and 60 Hz, respectively.
The required bandwidths increase linearly with node count. While this setup may
appear overly optimistic at first, we expect this to be a plausible environment for
possible improvements towards cheaper infrastructures: provided a sufficiently large
low-latency link, a large-scale tiled display wall could be directly driven by super
computer located either at the same site or possibly even a remote facility.

By delaying the sending of frames for a predefined amount of simulated network
latency plus a random jitter within a given range, we have measured the impact
of network latency on the multi-tile setup. A sufficiently large buffer was used to
correctly simulate in-flight network packets without blocking the encoding pipeline.
As each frame is assigned a random amount of delay within the specified window,
frame burst patterns start to emerge, thereby affecting frame rate stability. Figure 6.8
shows the mean, minimum and maximum frame rates for different network delays
with 10% jitter. While frame rate stability decreases with simulated network latency
due to increased amounts of jitter, the overall frame rate remains in interactive
magnitudes.

However, not only throughput, i.e., frame rate, but also the complete pipeline latency
for a single frame from source to destination has to be considered for interactivity.
Figure 6.9 illustrates the mean latencies of each pipeline stage across nodes without
simulated network delay. Besides the expected encoding and decoding latencies,

6.5 Results 107

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 128 256

La
te

nc
y

[m
s]

Tiles

Synchronize (Servers) Encode Network Decode Synchronize (Clients)

Fig. 6.9: Weak scaling (N:N) within Piz Daint: Pipeline latencies for full 4K streams of Ice
using H.264 (32 Mbps).

synchronization across nodes at both server and client side contributes a considerable
amount of additional latency, which increases with node count. With overall latencies
of up to approx. 40 ms plus potential network delay this can still be considered
highly interactive. While server-side synchronization can be eliminated depending
on the scenario, client-side synchronization is obligatory for multi-node clients, e.g.
for coherent display and buffer swap on a tiled display wall.

Since modern GPUs can drive multiple screens at 4K or higher resolutions, an
interesting question is how many full streams can be handled by a single device
at which frame rates, esp. when aiming for cheaper infrastructure. Figure 6.10
shows the achievable frame rates at client side for 4K resolution when streaming
multiple concurrent full size tiles to Site A and Site B. A single NVIDIA Quadro
GP100 card can decode up to two full 4K streams at approximately 80 Hz, using its
two independent hardware decoding units. Given that this card features four display
connectors, it is interesting to see that it can still handle four full 4K streams at 50
Hz. This performance capability enables high-resolution tiled displays with high
tile counts driven by only a few GPUs for multi-tile decoding at interactive frame
rates. As indicated by the shifted curve when using two GP100s for decoding, using
hardware-accelerated multi-tile streaming is a scalable approach with the number of
devices and is mainly limited by the available network bandwidth. As expected, the
difference of network latency between Site A and Site B seems to be of negligible
impact on frame rate.

108 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 128 256

Fr
am

e
Ra

te
 [H

z]

Tiles

Site A (1x GP100) Site B (1x GP100) Site B (2x GP100)

Fig. 6.10: Weak scaling (N:1): Client-side achieved frame rate for streaming full 4K frames
of Ice sequence to Site A (blue) and Site B (orange, gray) using H.264 at 32
Mbps.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

Fr
am

e
Ra

te
 [H

z]

Time [s]

1 2 4

Fig. 6.11: Weak scaling (N:1): Streaming up to 4 full 4K frames of Ice sequence across
Atlantic Ocean to Site C using HEVC at 16 Mbps. Frame rate sampled at 10 Hz.

To demonstrate the severe effect of a highly erratic link on frame rate, we have
benchmarked multiple 4K streams from Piz Daint to Site C, California, USA. Fig-
ure 6.11 shows the effective client-side frame rate sampled at 10 Hz over 45 seconds.

6.5 Results 109

The presented graphs exemplify the unpredictability in such a setup, where due to
frequent extreme latency spikes the overall frame rate drops significantly.

6.5.3 Strong Scaling / Sort-First Compositing

Strong scaling the remote rendering and delivery task opens up novel interactive
uses of HPC systems. A plethora of server nodes enables expensive rendering
solutions at interactive frame rates and low latency. This can be in support of
improved perception in challenging visualization tasks, for instance by computing
sophisticated global illumination models for complex geometries. In addition, the
renewed interest in virtual reality (VR) gives rise to the question if streaming directly
from the HPC system is a viable approach for time-critical VR scenarios. We have
conducted several experiments to quantify the strong-scaled multi-tile streaming
performance using up to 256 Piz Daint nodes streaming to a single client which
performs sort-first compositing.

Figure 6.12 shows the achievable frame rates using strong scaling for 4K and VR
resolution. Considering a single Quadro GP100 for decoding, frame rates up to 190
Hz are possible for 4K when utilizing 4 servers for encoding (Figure 6.12a). Full 4K
encoding on a single node is limited by the encoder at approx. 80 Hz. With increased
tile counts the maximum achievable frame rate slowly decreases due to increasing
overhead from decode session multiplexing. The curves for Site A and Site B are
almost identical for the 1x GP100 case, confirming that 20 ms of network latency
has little effect on achievable throughput. Adding a second GP100 for decoding
strongly amplifies the decoding capabilities at client side, enabling frame rates up
to 365 Hz for 4K when utilizing 8 servers for encoding. Evidently, also the second
card is subject to decode session overhead at high tile counts. Yet, strong scaled
multi-tile 4K streaming from 256 servers is still possible at 120 Hz using two GP100s
for decoding.

The graphs look similar for the reduced VR resolution (Figure 6.12b), generally
showing much higher frame rates, which is expected due to reduced en-/decoding
latency. A full 2160x1200 tile can be streamed from a single server node at 260 Hz,
whereas streaming multiple tiles peaks at 520 Hz in the 1x GP100 case. Strongly
scaling to 8 server nodes can achieve frame rates up to 900 Hz in the 2x GP100 case.
Despite the decoding bottleneck at high tile counts, utilizing two GPUs for decoding
of 256 tiles we can still achieve 135 Hz, comfortably above the suggested 90 Hz
threshold for common VR applications. Again, the curves for Site A and Site B are
almost identical.

110 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128 256

Fr
am

e
Ra

te
 [H

z]

Tiles

Site A (1x GP100) Site B (1x GP100) Site B (2x GP100)

(a) 4K (3840x2160)

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32 64 128 256

Fr
am

e
Ra

te
 [H

z]

Tiles

Site A (1x GP100) Site B (1x GP100) Site B (2x GP100)

(b) VR (2160x1200)

Fig. 6.12: Strong scaling (N:1): Client-side frame rate for streaming Ice sequence at 4K (left
panel) and VR resolution (right panel) from up to 256 servers to Site A (blue),
Site B (orange) and Site B with two GPUs per tile (gray) using H.264 (32 Mbps).

Figure 6.13 illustrates the strong scaled en-/decoding latencies for 4K frames in the
1x GP100 case and helps to further understand curve progression in Figure 6.12.
Clearly, full 4K frame encoding (approx. 11 ms) is more than twice as costly as
decoding (approx. 5 ms). In this context, note that the NVIDIA Tesla P100 and
Quadro GP100 cards are very similar with respect to their en-/decoding hardware

6.5 Results 111

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 128 256

M
ea

n
La

te
nc

y
pe

r T
ile

 [m
s]

Tiles

Encode (1x P100 per Tile) Decode (1x GP100)

Fig. 6.13: Mean latency for encoding a 4K frame (blue) on the server side (strong-scaled,
N:1) and decoding all tiles on the client side (Site B, orange) using H.264 (32
Mbps).

units. In the strong scaling scenario, encoding latencies drop as expected with
increased tile counts due to the reduced pixel count per tile. Note that each tile
is encoded by a different GPU in this case. At the same time, the mean decode
latency per tile increases due to the high number of simultaneous decode sessions
on the single decoding GPU. Based on Figure 6.13, the frame rate peak at 4 tiles
in Figure 6.12 can thus be interpreted as the setup with minimal decode overhead
where the frame rate is not limited by the encoder anymore.

The influence of encoding bitrate on frame rate is depicted in Figure 6.14. The
results demonstrate the negative effect of high bitrate settings on the maximum
achievable throughput, which drops from 185 Hz at low quality (4 Mbps @ 90 Hz)
to 176 Hz at high quality (72 Mbps @ 90 Hz), and to 148 Hz at extreme quality
(256 Mbps @ 90 Hz) for H.264. However, note that the extreme quality setting
maximizes bandwidth utilization at approx. 46 MB/s, which coincides with the
physical bandwidth limit measured in a separate network speed benchmark between
Site B and Piz Daint. This finding is backed by the clamped nature of the high bitrate
graph in comparison to the lower bitrate graphs, suggesting a theoretically greater
achievable frame rate on high bandwidth connections. In practice, the particular
bandwidth envelope at hand must be considered for stream design to prevent frame
queueing effects from reducing interactivity.

112 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 128 256

Fr
am

e
Ra

te
 [H

z]

Tiles

4 Mbps @ 90 Hz 72 Mbps @ 90 Hz 256 Mbps @ 90 Hz

Fig. 6.14: Client-side frame rate for strong-scaled streaming of Ice 4K frames from up to 256
servers at different H.264 bitrates. Highest setting is limited by link bandwidth
(gray).

In addition to the synthetic pre-rendered benchmarks, we have implemented a basic
distributed path tracer, which builds on the path tracer sample from the OptiX SDK
and uses screen space tiling in combination with replicated geometry. As a test scene
we have used the Groundwater data set, which consists of approximately 8 million
triangles. Previous benchmarks have used a regular tiling, but this tiling exhibits
a strong load imbalance for the path tracing situation. We thus use an irregular
tiling, an example of which is shown in Figure 6.15a, for benchmarks with the path
tracer.

We have implemented simple two-dimensional recursive auto-tuning for this irregu-
lar tiling. The tiling is iteratively modified in a guided way until all tiles are subject
to approx. the same rendering times. Starting with the regular tiling for a given
number of tiles, e.g. 8x4 for 32 tiles, the algorithm works in two phases. First,
only the vertical tiling is optimized by shifting the row heights until the differences
between the rendering times of all rows are minimal. Once the optimal vertical
tiling has been determined, the same procedure is applied to the horizontal tiling
in each row recursively. In both dimensions, each iteration the shifting process
determines the tile with maximum rendering time, decreases its size and increases
the size of the fastest tile appropriately. After each iteration timings are re-evaluated
and the tiling is shifted until convergence. The tiling of each iteration is checked
against a recorded history for cycle detection. Convergence is then approximated

6.5 Results 113

by selecting the tiling configuration from the different tilings in the detected cycle
with the minimum total rendering latency. An example auto-tuned tiling for 32 tiles
is depicted in Figure 6.15a, demonstrating smaller tiles due to increased computa-
tional requirements for path tracing in the vicinity of the emissive streamlines going
through the stone geometry.

Figure 6.15b shows the achievable client-side frame rates when strong scaling the
path tracer at 4K resolution up to 256 nodes streaming to Site A. Clearly, the auto-
tuned tiling provides highly improved load balancing and thus reduced overall
latencies in comparison to regular tiling. Starting with 0.5 Hz when streaming from
a single node, the auto-tuned tiling strong-scales well: up to 14 Hz on 32 nodes, a
scaling efficiency of almost 90%. Adding additional servers further increases the
overall achievable frame rate up to 28 Hz on 256 nodes, yet with worse scaling
efficiency. This can be explained by the high sensitivity of the approach towards
load imbalances at high counts of tiny tiles, for which the path tracer in this scenario
is a good example.

While effective load-balancing of distributed path tracers is out of the scope of this
work, the presented path tracer benchmark shows how an otherwise slow-performing
rendering application can easily be strong-scaled to interactive frame rates by using
a remote HPC system to benefit from hardware-accelerated multi-tile streaming at
low latencies.

6.5.4 Interoperability

Although demonstrated on vendor hardware, the presented approach is compatible
with any hardware or software following the H.264/HEVC specification, thus inher-
ently providing interoperability. For instance, for verification we have successfully
mixed GPU and FFmpeg-based compressors, or have directly written a sequence of
raw H.264 to a file for playback with VLC media player.

Motivated by direct (potentially hardware-accelerated) support for video decoding
in modern web browsers, we have implemented a prototypical streaming imple-
mentation based on WebSockets and JavaScript through Media Source Extensions.
Figure 6.16 shows the simpleGL CUDA example running on Piz Daint and streamed
into the browser. Aiming for minimal changes at application-side, we have created
an EGL-based shim library as dynamic replacement for GLUT, which is normally
used by that demo for display and interaction. Our shim library internally creates
an EGL offscreen buffer for rendering, starts a WebSocket server for bidirectional

114 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

(a) Groundwater (Auto-Tuned Tiling)

0

10

20

30

1 2 4 8 16 32 64 128 256

Fr
am

e
Ra

te
 [H

z]

Tiles

Regular Tiling Auto-Tuned Tiling

(b) Strong Scaling

Fig. 6.15: Left: Groundwater scene used in the OptiX-based pathtracer for the 4K strong
scaling rendering experiments with auto-tuned distribution of tile sizes. Data
courtesy of TACC/FIU. Right: Client-side frame rate achieved for strong scaling of
path traced image at 4K resolution on up to 256 nodes using fixed tile distribution
(blue) and auto-tuned tile sizes (orange).

6.5 Results 115

Fig. 6.16: Streaming unmodified CUDA simpleGL example from headless node to web
browser using EGL-based shim library as GLUT replacement, WebSocket-based
bidirectional communication (including interaction), on-the-fly MP4 wrapping of
raw H.264 stream, and a JavaScript client.

communication with the browser client (including mouse interaction events), and
replaces the buffer swap by encoding and streaming. The latter involves an addi-
tional on-the-fly wrapping of the raw H.264 stream into the MP4 container format,
as required by the browser. Since the container specification only allows constant
frame rates (as common for standard video content), the streaming application must
take care not to let the browser buffer frames, thereby delaying interaction events
and reducing responsiveness. In our experiments we have specified the container
frame rate to 30 Hz and adjusted the encoder to drop frames as nececessary to
maintain a constant browser-side buffer underrun.

6.6 Discussion

We have demonstrated how the specialized video encoding/decoding hardware
on current and future generation GPUs can be harnessed for high performance
multi-tile streaming at low latencies for scientific visualization. It is a promising
approach to address modern challenges in remote HPC visualization, such as interac-
tive workflows with complex rendering algorithms, supporting globally distributed

116 Chapter 6 Hardware-Accelerated Multi-Tile Streaming

user bases and driving latency-sensitive display technologies at high resolutions.
Using hardware-accelerated multi-tile streaming, traditional dedicated visualization
clusters or workstations can be reduced to mere thin clients that leave the heavy
lifting to the remote supercomputer.

Based on these encouraging results, we anticipate that many enhancements are
possible and look forward to seeing multi-tile streaming as a technical foundation for
future HPC visualization workflows. Similar to classic direct send, our approach will
be limited in scalability at high tile counts. A hybrid tree-based/direct send composit-
ing approach such as radix-k could alleviate this bottleneck. Hardware-accelerated
sort-last compositing could be investigated based on depth buffer compression using
video codecs. With high frame rates and low latencies indicating suitability for
time-critical VR scenarios, the combined strong-scaled hardware power could be
used for predictive rendering and streaming to remedy network latency.

6.6 Discussion 117

Conclusion 7
In this thesis, several approaches based on ray casting have been developed and in-
vestigated with respect to a more efficient usage of heterogeneous high performance
computers for visualization workloads, addressing a variety of challenges in modern
HPC visualization, as discussed in Section 1.1.3.

Particle-based simulation models have assumed a significant role in the numerical
computation of complex and highly dynamic transient flow and continuum mechan-
ical problems. In this thesis, a novel direct raytracing scheme for on-the-fly free
surface reconstruction has been presented, building upon the rich anisotropic kernel
approach, which has been adapted and tuned to the surface definition of FPM-based
fluid simulations. The improved anisotropic kernel-based surface definition incor-
porates automatic kernel scaling for variable smoothing lengths, provides intuitive
visuals for isolated particles, and is easily parallelized. For this surface definition,
a novel direct ray tracing scheme has been described. This on-demand two-pass
iterative sampling algorithm intelligently reduces intersection candidates for both
opaque and transparent surface rendering, provides optimization opportunities for
secondary rays, and allows the dynamic mapping of particle attribute values on to
the surface using arbitrary transfer functions. By reducing the number of candidate
kernels evaluated to converge to the surface threshold, the approach runs in image
space rather than object space complexity. Based on comprehensive benchmarks on
different state-of-the-art hardware setups, including workstation, standard cluster
and Xeon Phi accelerator systems, the versatile system has been shown to be suitable
for both high quality and interactive desktop rendering, to scale reasonably well
even with trivial parallelization and to render up to 170 million particles on 32
distributed compute nodes at close to interactive frame rates at 4K resolution with
ambient occlusion. Many improvements to the presented approach are possible.
Since FPM relies on local moving least squares interpolation, it by necessity incorpo-
rates nearest neighbor search structures with managed ghost particle information in
distributed cluster mode, which could be reused in the preprocessing state of the
pipeline. Furthermore, it seems natural to investigate the suitability of the system
for production visualization, i.e., full path tracing, which is an important use case,
e.g., in the automobile industry. Finally, comparing performance of the presented

119

implementation against a GPU implementation would be interesting to shed light on
the relative strength of the differing architectures for the given use cases.

While high-fidelity simulation models on large-scale parallel computer systems can
produce data at high computational throughput, modern architectural trade-offs
make full persistent storage to the slow I/O subsystem prohibitively costly with
respect to time. In this thesis, the feasibility and potential of combining in situ
topological contour tree analysis and compact image-based data representation has
been demonstrated to address this problem. Based on in situ contour tree analysis
and simplification, a segmented representation of the scalar fields contained in the
simulation data at every time step is obtained. A rendering of this segmentation is
then generated describing all components visible in every pixel, and stored together
with the simplified contour tree. These ingredients can then be used in post-analysis
to flexibly select specific subsets of the segmentation, after further simplification
if required. Several experiments have been conducted to quantify the I/O savings
prossible from such an approach, showing significant reductions in storage require-
ments using topology-guided layered depth imaging, while preserving flexibility
for explorative visualization and analysis. The presented technique highlights the
feasibility and potential of the combination of topological analysis and image-based
representation in large-scale in situ scenarios, and represents an effective and easy-
to-control trade-off between storage overhead and visualization fidelity for large data
visualization. While the results already show substantial reductions in output file
size, especially for larger data sets, the contribution is intended as a baseline demon-
stration investigating possible advantages of such an approach for the visualization
of large-scale data. Many enhancements and improvements of the approach are
possible. Similar to Ahrens et al. [Ahr+14], the technique could be easily extended
to generate a complete in situ image data base from multiple perspectives, which can
be combined in the viewer application to enable a flexible 3D data exploration, or
even be used for reconstruction purposes. Multivariate topological methods such as
Joint Contour Nets [CD14] might be investigated to obtain improved segmentations.
A shortcoming of the current implementation is frame-to-frame temporal consistency.
Since contour trees are computed and decomposed independently at each time step,
the resulting contours can vary noticeably between time steps depending on the
chosen automatic simplification criteria, potentially undermining analysis due to the
lack of frame-to-frame coherence. This issue could be addressed by incorporating
feature tracking techniques into the branch selection and simplification process.
The simplified contour tree stored with the compressed image files could be further
annotated to compactly contain relevant properties of the original input data set,
thereby improving the power and flexibility of the resulting visualization. However,

120 Chapter 7 Conclusion

not only the contour tree, but also the fragments can be used to compactly store
local information of the intersected segment useful for later visualization. Notably,
the general idea of the presented concept is not restricted to regular scalar data and
is easily applicable to different kinds of potentially more complex data structures,
providing means for topological segmentation and intersection. More sophisticated
compression schemes might be used to further increase the compactness of the
layered depth images generated.

An increasingly heterogeneous system landscape in modern high performance com-
puting requires the efficient and portable adaption of performant algorithms to
diverse architectures. However, classic hybrid shared-memory/distributed systems
are designed and tuned towards specific platforms, thus impeding development,
usage and optimization of these approaches with respect to portability. In this
thesis, a flexible parallel framework for distributed direct volume rendering has been
demonstrated. Built upon a task-based dynamic runtime environment, it enables
adaptable performance-oriented deployment on various platform configurations.
The novel task-based definition aims to provide a flexibly tunable task granularity by
subdividing in both image and data space, thus yielding a hybrid scheme between
sort-first and sort-last compositing. Based on an asynchronous binary tree com-
positing scheme including optimizations such as empty space skipping and early ray
termination, the technique has been shown to enable good scalability in combination
with inherent dynamic load balancing. Comprehensive benchmarks with respect
to task granularity and scaling have been conducted to verify the characteristics
and potential of the novel task-based system design for high performance visualiza-
tion. This contribution is intended as a baseline investigation of the applicability
of task-based runtime environments to distributed scientific visualization. Future
research includes distributed work stealing to be considered as an interesting ap-
proach to implement proper load balancing across node boundaries. Since each
block is represented by an individual component in HPX’s active global address
space, the migration of blocks could be performed transparently with little to no
modifications to the distributed compositing scheme. Distributed load balancing is
especially important in an interactive setup with user-controlled camera navigation.
In conjunction with distributed work stealing, a more sophisticated scheduling algo-
rithm could also be used to improve task overlap and to ensure that the available
I/O bandwidth is always kept saturated while executing rendering tasks as long
as there are still blocks left to be loaded. Out of core handling could be used to
support larger block counts on individual nodes. So far, the approach relies on
the regular structure of blocks in various places. Support for unstructured data
would involve complex enhancements to the distributed compositing scheme. In

121

general, performance benchmarks on larger core counts would be very interesting.
The integration of additional accelerator cards such as Intel Xeon Phi or GPGPUs is
theoretically easy in the spirit of task-based runtime environments, but in practice
still technically challenging. Additional benchmarks for comparison against tradi-
tional non-task-based approaches are required to further characterize the benefits
and drawbacks of the presented approach. Significant benefits are not expected for
applications that already scale well on large machines using traditional data parallel
approaches, especially if they are highly tuned and optimized towards a specific
system or architecture. However, the major promising advantages of task-based
designs lie in their portability to diverse and heterogeneous architectures, as well as
the conceptionally more straightforward formulation of massively parallel programs.
Besides distributed rendering, other load-sensitive techniques from scientific visual-
ization such as topological methods or integral curve computations would certainly
make promising candidates for task-based parallelization. Once enough task-based
designs of standard visualization algorithms exist, their interplay and dependencies
in a (complex) visualization pipeline could be studied. The task graph could be used
for theoretical models and estimates about runtime, possible parallelization and
scalability.

The growing use of distributed computing in computational sciences has put in-
creased pressure on visualization and analysis techniques. In this context, a core chal-
lenge of HPC visualization is the physical separation of visualization resources and
end-users. While GPUs are routinely used in remote rendering on GPU-accelerated
heterogeneous supercomputers, a previously unexplored aspect has been these GPUs’
special purpose video encoding/decoding hardware that can be used to solve the
large-scale remoting challenge. The high performance and substantial bandwidth
savings offered by such hardware has been demonstrated to enable a novel approach
to the problems inherent in remote rendering, with impact on the workflows and vi-
sualization scenarios available. Using more tiles than previously thought reasonable,
in this thesis, a distributed, low-latency multi-tile streaming system has been imple-
mented, being able to sustain a stable 80 Hz when streaming up to 256 synchronized
3840x2160 tiles and achieve 365 Hz at 3840x2160 for sort-first compositing over the
internet. Within a comprehensive case study, the impact of video compression and
multi-tile streaming based on the H.264/HEVC codec family has been investigated
in order to address a multitude of novel use cases, such as directly streaming content
from a cluster to remote large-scale tiled displays at sufficiently high frame rates, or
to strong-scale the rendering and delivery task by using video hardware to accelerate
direct-send sort-first compositing. Using hardware-accelerated multi-tile streaming,
traditional dedicated visualization clusters or workstations can be reduced to mere

122 Chapter 7 Conclusion

thin clients that leave the heavy lifting to the remote supercomputer. Based on
these encouraging results, we anticipate that many enhancements are possible and
look forward to seeing multi-tile streaming as a technical foundation for future HPC
visualization workflows. Similar to classic direct send, the presented approach will
be limited in scalability at high tile counts. A hybrid tree-based/direct send composit-
ing approach such as radix-k could alleviate this bottleneck. Hardware-accelerated
sort-last compositing could be investigated based on depth buffer compression using
video codecs. With high frame rates and low latencies indicating suitability for
time-critical VR scenarios, the combined strong-scaled hardware power could be
used for predictive rendering and streaming to remedy network latency.

123

Bibliography

[Acu+14] B. Acun, A. Gupta, N. Jain, et al. “Parallel Programming with Migratable Objects:
Charm++ in Practice”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’14. New Orleans,
Louisana: IEEE Press, 2014, pp. 647–658 (cit. on p. 81).

[Ada+07] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. “Adaptively Sampled Particle
Fluids”. In: ACM Trans. Graph. 26.3 (July 2007) (cit. on p. 35).

[AP98] J. Ahrens and J. Painter. “Efficient Sort-Last Rendering Using Compression-
Based Image Compositing”. In: in Proceedings of the 2nd Eurographics Workshop
on Parallel Graphics and Visualization. 1998, pp. 145–151 (cit. on p. 23).

[Ahr+14] J. Ahrens, S. Jourdain, P. O’Leary, et al. “An Image-based Approach to Extreme
Scale in Situ Visualization and Analysis”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
SC ’14. New Orleans, Louisana: IEEE Press, 2014, pp. 424–434 (cit. on pp. 7,
58, 60, 74, 120).

[AGL05] J. Ahrens, B. Geveci, and C. Law. “ParaView: An End-User Tool for Large Data
Visualization”. In: The Visualization Handbook. Ed. by C. D. Hansen and C. R.
Johnson. 2005 (cit. on pp. 97, 99).

[Aki+12] G. Akinci, M. Ihmsen, N. Akinci, and M. Teschner. “Parallel Surface Reconstruc-
tion for Particle-Based Fluids”. In: Comput. Graph. Forum 31.6 (Sept. 2012),
pp. 1797–1809 (cit. on p. 36).

[Ale+01] M. Alexa, J. Behr, D. Cohen-Or, et al. “Point Set Surfaces”. In: Proceedings of
the Conference on Visualization ’01. VIS ’01. San Diego, California, 2001 (cit. on
p. 35).

[AMD] AMD. Advanced Media Framework. http://gpuopen.com/gaming-product/
advanced-media-framework. Accessed: 2018-01-20 (cit. on p. 98).

[Amd67] G. M. Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM,
1967, pp. 483–485 (cit. on p. 2).

[Ams+15] J. Amstutz, C. Gribble, J. Günther, and I. Wald. “An Evaluation of Multi-Hit
Ray Traversal in a BVH using Existing First-Hit/Any-Hit Kernels”. In: Journal
of Computer Graphics Techniques (JCGT) 4.4 (2015), pp. 72–88 (cit. on pp. 45,
49).

125

http://gpuopen.com/gaming-product/advanced-media-framework
http://gpuopen.com/gaming-product/advanced-media-framework

[ATT12] R. Ando, N. Thurey, and R. Tsuruno. “Preserving Fluid Sheets with Adaptively
Sampled Anisotropic Particles”. In: IEEE Trans. Visualization and Computer
Graphics 18.8 (Aug. 2012) (cit. on p. 36).

[AA07] S. Ayyub and D. Abramson. “GridRod: A Dynamic Runtime Scheduler for Grid
Workflows”. In: Proceedings of the 21st Annual International Conference on
Supercomputing. ICS ’07. Seattle, Washington: ACM, 2007, pp. 43–52 (cit. on
p. 80).

[BPS97] C. L. Bajaj, V. Pascucci, and D. R. Schikore. “The Contour Spectrum”. In: Pro-
ceedings of the 8th Conference on Visualization ’97. VIS ’97. Phoenix, Arizona,
USA: IEEE Computer Society Press, 1997, 167–ff. (Cit. on p. 59).

[Bar+06] A. W. Bargteil, T. G. Goktekin, J. F. O’Brien, and J. A. Strain. “A semi-Lagrangian
Contouring Method for Fluid Simulation”. In: ACM Trans. Graph. 25.1 (Jan.
2006), pp. 19–38 (cit. on p. 35).

[Bau+12] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. “Legion: Expressing local-
ity and independence with logical regions”. In: High Performance Computing,
Networking, Storage and Analysis (SC), 2012 International Conference for. 2012,
pp. 1–11 (cit. on p. 81).

[Bek+12] K. Beketayev, G. H. Weber, D. Morozov, A. Abzhanov, and B. Hamann. “Geometry-
preserving Topological Landscapes”. In: Proceedings of the Workshop at SIG-
GRAPH Asia. WASA ’12. Singapore, Singapore: ACM, 2012, pp. 155–160 (cit. on
p. 59).

[BCH12] E. W. Bethel, H. Childs, and C. Hansen. High Performance Visualization: Enabling
Extreme-Scale Scientific Insight. 1st. Chapman & Hall/CRC, 2012 (cit. on pp. 7,
20, 22).

[Bet+03] E. W. Bethel, G. Humphreys, B. Paul, and J. D. Brederson. “Sort-First, Distributed
Memory Parallel Visualization and Rendering”. In: Proceedings of the 2003 IEEE
Symposium on Parallel and Large-Data Visualization and Graphics. PVG ’03.
Washington, DC, USA, 2003, pp. 41–50 (cit. on p. 79).

[BHP15] J. Beyer, M. Hadwiger, and H. Pfister. “State-of-the-Art in GPU-Based Large-
Scale Volume Visualization”. In: Computer Graphics Forum 34.8 (2015), pp. 13–
37 (cit. on p. 80).

[BGB11] H. Bhatacharya, Y. Gao, and A. Bargteil. “A Level-set Method for Skinning
Animated Particle Data”. In: Proceedings of the 2011 ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation. SCA ’11. Vancouver, British Columbia,
Canada, 2011, pp. 17–24 (cit. on p. 36).

[Bli82] J. F. Blinn. “A Generalization of Algebraic Surface Drawing”. In: ACM Trans.
Graph. 1.3 (July 1982), pp. 235–256 (cit. on p. 35).

[BC11] S. Borkar and A. A. Chien. “The Future of Microprocessors”. In: Commun. ACM
54.5 (May 2011), pp. 67–77 (cit. on p. 1).

126 Bibliography

[BR63] R. L. Boyell and H. Ruston. “Hybrid Techniques for Real-time Radar Simulation”.
In: Proceedings of the November 12-14, 1963, Fall Joint Computer Conference.
AFIPS ’63 (Fall). Las Vegas, Nevada: ACM, 1963, pp. 445–458 (cit. on p. 59).

[Bre+10] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell. “Analyzing and Tracking
Burning Structures in Lean Premixed Hydrogen Flames”. In: IEEE Transactions
on Visualization and Computer Graphics 16.2 (2010), pp. 1–1 (cit. on p. 60).

[Bre+11] P.-T. Bremer, G. Weber, J. Tierny, et al. “Interactive Exploration and Analysis of
Large-Scale Simulations Using Topology-Based Data Segmentation”. In: Visu-
alization and Computer Graphics, IEEE Transactions on 17.9 (2011), pp. 1307–
1324 (cit. on p. 60).

[Bre+04] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. “A topological
hierarchy for functions on triangulated surfaces”. In: IEEE Transactions on
Visualization and Computer Graphics 10 (2004), p. 2004 (cit. on p. 59).

[Car84] L. Carpenter. “The A -buffer, an Antialiased Hidden Surface Method”. In: SIG-
GRAPH Comput. Graph. 18.3 (Jan. 1984), pp. 103–108 (cit. on pp. 61, 65).

[CD14] H. Carr and D. Duke. “Joint Contour Nets”. In: Visualization and Computer
Graphics, IEEE Transactions on 20.8 (2014), pp. 1100–1113 (cit. on pp. 74,
120).

[CSP04] H. Carr, J. Snoeyink, and M. van de Panne. “Simplifying flexible isosurfaces
using local geometric measures”. In: Visualization, 2004. IEEE. 2004, pp. 497–
504 (cit. on p. 60).

[CS03] H. Carr and J. Snoeyink. “Path Seeds and Flexible Isosurfaces Using Topology
for Exploratory Visualization”. In: Proceedings of the Symposium on Data Visual-
isation 2003. VISSYM ’03. Grenoble, France: Eurographics Association, 2003,
pp. 49–58 (cit. on p. 59).

[CSA00] H. Carr, J. Snoeyink, and U. Axen. “Computing Contour Trees in All Dimen-
sions”. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’00. San Francisco, California, USA, 2000, pp. 918–926 (cit.
on pp. 28, 59, 62).

[CSP10] H. Carr, J. Snoeyink, and M. van de Panne. “Flexible Isosurfaces: Simplifying
and Displaying Scalar Topology Using the Contour Tree”. In: Comput. Geom.
Theory Appl. 43.1 (Jan. 2010), pp. 42–58 (cit. on p. 60).

[CMF05] X. Cavin, C. Mion, and A. Filbois. “COTS cluster-based sort-last rendering: perfor-
mance evaluation and pipelined implementation”. In: VIS 05. IEEE Visualization,
2005. 2005, pp. 111–118 (cit. on p. 21).

[CGM14] J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Programming.
Wrox, 2014 (cit. on p. 3).

[Chi14] M. Chiesi. “Heterogeneous Multi-core Architectures for High Performance Com-
puting”. PhD thesis. University of Bologna, 2014 (cit. on p. 1).

Bibliography 127

[Chi+10] H. Childs, D. Pugmire, S. Ahern, et al. “Extreme Scaling of Production Visualiza-
tion Software on Diverse Architectures”. In: Computer Graphics and Applications,
IEEE 30.3 (2010), pp. 22–31 (cit. on pp. 7, 57).

[CDM06] H. Childs, M. Duchaineau, and K.-L. Ma. “A Scalable, Hybrid Scheme for Volume
Rendering Massive Data Sets”. In: Proceedings of the 6th Eurographics Conference
on Parallel Graphics and Visualization. EGPGV ’06. Braga, Portugal: Eurographics
Association, 2006, pp. 153–161 (cit. on p. 80).

[Chi+12] H. Childs, E. Brugger, B. Whitlock, et al. “VisIt: An End-User Tool for Visualizing
and Analyzing Very Large Data”. In: High Performance Visualization—Enabling
Extreme-Scale Scientific Insight. Ed. by E. W. Bethel, H. Childs, and C. Hansen.
Chapman & Hall, CRC Computational Science. Boca Raton, FL, USA: CRC
Press/Francis–Taylor Group, Nov. 2012, pp. 357–372 (cit. on p. 97).

[CM93] B. Corrie and P. Mackerras. “Parallel volume rendering and data coherence”. In:
Proceedings of 1993 IEEE Parallel Rendering Symposium. 1993, pp. 23–26, 106
(cit. on p. 79).

[CMP14] J. Cui, Z. Ma, and V. Popescu. “Animated Depth Images for Interactive Remote
Visualization of Time-Varying Data Sets”. In: IEEE Transactions on Visualization
and Computer Graphics 20.11 (2014), pp. 1474–1489 (cit. on p. 97).

[Dem+12] D. Demir, K. Beketayev, G. H. Weber, et al. “Topology Exploration with Hierar-
chical Landscapes”. In: Proceedings of the Workshop at SIGGRAPH Asia. WASA
’12. Singapore, Singapore: ACM, 2012, pp. 147–154 (cit. on p. 59).

[Din+09] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha.
“Scalable Work Stealing”. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. SC ’09. Portland, Oregon: ACM,
2009, 53:1–53:11 (cit. on p. 78).

[DTS01] H. Q. Dinh, G. Turk, and G. Slabaugh. “Reconstructing surfaces using anisotropic
basis functions”. In: Proceedings Eighth IEEE International Conference on Com-
puter Vision. ICCV 2001. Vol. 2. 2001, 606–613 vol.2 (cit. on p. 36).

[DLP02] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: Past, present,
and future. 2002 (cit. on p. 5).

[DN09] H. Doraiswamy and V. Natarajan. “Efficient Algorithms for Computing Reeb
Graphs”. In: Comput. Geom. Theory Appl. 42.6-7 (Aug. 2009), pp. 606–616
(cit. on p. 59).

[DCH88] R. A. Drebin, L. Carpenter, and P. Hanrahan. “Volume Rendering”. In: Pro-
ceedings of the 15th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’88. New York, NY, USA: ACM, 1988, pp. 65–74 (cit. on
pp. 17, 79).

[DG15] A. Dubey and D. T. Graves. “A Design Proposal for a Next Generation Scientific
Software Framework”. In: Euro-Par 2015: Parallel Processing Workshops: Euro-
Par 2015 International Workshops, Vienna, Austria, August 24-25, 2015, Revised
Selected Papers. Ed. by S. Hunold, A. Costan, D. Giménez, et al. Cham: Springer
International Publishing, 2015, pp. 221–232 (cit. on pp. 77, 80, 81).

128 Bibliography

[Ede+03] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. “Morse-smale Com-
plexes for Piecewise Linear 3-manifolds”. In: Proc. of the Nineteenth Annual
Symposium on Computational Geometry. SCG ’03. San Diego, California, USA:
ACM, 2003, pp. 361–370 (cit. on p. 59).

[EMP09] S. Eilemann, M. Makhinya, and R. Pajarola. “Equalizer: A Scalable Parallel
Rendering Framework”. In: IEEE Transactions on Visualization and Computer
Graphics 15.3 (2009), pp. 436–452 (cit. on p. 97).

[EP07] S. Eilemann and R. Pajarola. “Direct Send Compositing for Parallel Sort-last
Rendering”. In: Proceedings of the 7th Eurographics Conference on Parallel Graph-
ics and Visualization. EGPGV ’07. Lugano, Switzerland, 2007, pp. 29–36 (cit. on
pp. 22, 80, 98).

[ESE00] K. Engel, O. Sommer, and T. Ertl. “A Framework for Interactive Hardware
Accelerated Remote 3D-Visualization”. In: Data Visualization 2000: Proceedings
of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization in
Amsterdam, The Netherlands, May 29–30, 2000. Ed. by W. C. de Leeuw and
R. van Liere. Vienna: Springer Vienna, 2000, pp. 167–177 (cit. on p. 97).

[ELF05] D. Enright, F. Losasso, and R. Fedkiw. “A Fast and Accurate semi-Lagrangian
Particle Level Set Method”. In: Comput. Struct. 83.6-7 (Feb. 2005), pp. 479–490
(cit. on p. 35).

[Fan+14] J. Fang, H. Sips, L. Zhang, et al. “Test-driving Intel Xeon Phi”. In: Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineering. ICPE
’14. Dublin, Ireland, 2014, pp. 137–148 (cit. on p. 4).

[Feb+13] A. Febretti, A. Nishimoto, T. Thigpen, et al. CAVE2: a hybrid reality environment
for immersive simulation and information analysis. 2013 (cit. on p. 99).

[FE10] P. Fechteler and P. Eisert. “Accelerated video encoding using render context
information”. In: Proceedings of the International Conference on Image Processing,
ICIP 2010, September 26-29, Hong Kong, China. IEEE, 2010, pp. 2033–2036
(cit. on p. 97).

[Fog+10] T. Fogal, H. Childs, S. Shankar, et al. “Large Data Visualization on Distributed
Memory Multi-GPU Clusters”. In: High Performance Graphics. Ed. by M. Doggett,
S. Laine, and W. Hunt. HPG ’10. Saarbrucken, Germany, 2010, pp. 57–66 (cit.
on p. 80).

[FAW10] R. Fraedrich, S. Auer, and R. Westermann. “Efficient High-Quality Volume
Rendering of SPH Data”. In: IEEE Transactions on Visualization and Computer
Graphics 16.6 (2010) (cit. on p. 35).

[Fre+14] S. Frey, F. Sadlo, K.-L. Ma, and T. Ertl. “Interactive Progressive Visualization
with Space-Time Error Control”. In: Visualization and Computer Graphics, IEEE
Transactions on 20.12 (2014), pp. 2397–2406 (cit. on p. 60).

[Fuj+00] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi. “Volume data mining
using 3D field topology analysis”. In: Computer Graphics and Applications, IEEE
20.5 (2000), pp. 46–51 (cit. on p. 59).

Bibliography 129

[Gil+13] T. Gilmanov, M. Anderson, M. Brodowicz, and T. Sterling. “Application char-
acteristics of many-tasking execution models”. In: The 19th International Con-
ference on Parallel and Distributed Processing Techniques and Applications. Las
Vegas, USA, 2013 (cit. on p. 81).

[Gos+10] P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola. “Interactive SPH Simula-
tion and Rendering on the GPU”. In: Proceedings of the 2010 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation. SCA ’10. Madrid, Spain, 2010,
pp. 55–64 (cit. on p. 35).

[Gyu+05] A. Gyulassy, V. Natarajan, V. Pascucci, P. T. Bremer, and B. Hamann. “Topology-
based Simplification for Feature Extraction from 3D Scalar Fields”. In: Pro-
ceedings of IEEE Conference on Visualization. Minneapolis, MN, 2005 (cit. on
p. 59).

[Hai+11] A. Haidar, H. Ltaief, A. YarKhan, and J. Dongarra. “Analysis of Dynamically
Scheduled Tile Algorithms for Dense Linear Algebra on Multicore Architectures”.
In: Concurr. Comput. : Pract. Exper. 24.3 (Mar. 2011), pp. 305–321 (cit. on
p. 80).

[Her+08] M Hereld, E Olson, M. E. Papka, and T. D. Uram. “Streaming visualization
for collaborative environments”. In: Journal of Physics: Conference Series 125.1
(2008) (cit. on p. 97).

[Hie+05] D. Hietel, M. Junk, J. Kuhnert, and S. Tiwari. “Meshless Methods for Conserva-
tion Laws”. In: Analysis and Numerics for Conservation Laws (2005), pp. 339–362
(cit. on p. 36).

[HN81] C. Hirt and B. Nichols. “Volume of fluid (VOF) method for the dynamics of free
boundaries”. In: Journal of Computational Physics 39.1 (1981), pp. 201 –225
(cit. on p. 35).

[HOK16] H. Hochstetter, J. Orthmann, and A. Kolb. “Adaptive Sampling for On-the-fly Ray
Casting of Particle-based Fluids”. In: Proceedings of High Performance Graphics.
HPG ’16. Dublin, Ireland, 2016, pp. 129–138 (cit. on p. 35).

[HBC12] M. Howison, E. W. Bethel, and H. Childs. “Hybrid Parallelism for Volume
Rendering on Large-, Multi-, and Many-Core Systems”. In: IEEE Transactions on
Visualization and Computer Graphics 18.1 (2012), pp. 17–29 (cit. on pp. 7, 77,
80).

[Hsu93] W. M. Hsu. “Segmented ray casting for data parallel volume rendering”. In:
Proceedings of 1993 IEEE Parallel Rendering Symposium. 1993, pp. 7–14 (cit. on
p. 22).

[Hum+10] M. Hummel, C. Garth, B. Hamann, H. Hagen, and K. I. Joy. “IRIS: Illustrative
Rendering for Integral Surfaces”. In: IEEE Transactions on Visualization and
Computer Graphics 16.6 (Nov. 2010), pp. 1319–1328 (cit. on p. 68).

[Int] Intel. Intel Media SDK. https://software.intel.com/en-us/media-sdk.
Accessed: 2018-01-20 (cit. on p. 98).

130 Bibliography

https://software.intel.com/en-us/media-sdk

[JH95] J. Jeong and F. Hussain. “On the Identification of a Vortex”. In: Journal of Fluid
Mechanics 285 (1995), pp. 69–94 (cit. on p. 68).

[Jia+16] J. Jiang, T. Fogal, C. Woolley, and P. Messmer. “A Lightweight H.264-based
Hardware Accelerated Image Compression Library”. In: 2016 IEEE 6th Sympo-
sium on Large Data Analysis and Visualization (LDAV). 2016, pp. 99–100 (cit. on
p. 97).

[Kai+14] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. “HPX: A Task
Based Programming Model in a Global Address Space”. In: Proc. of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models.
PGAS ’14. Eugene, OR, USA: ACM, 2014, 6:1–6:11 (cit. on pp. 78, 81, 85).

[Kaj86] J. T. Kajiya. “The Rendering Equation”. In: Computer Graphics. 1986, pp. 143–
150 (cit. on p. 15).

[KV03] A. Kalaiah and A. Varshney. “Statistical Point Geometry”. In: Proc. of the 2003
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. SGP ’03.
Aachen, Germany, 2003, pp. 107–115 (cit. on p. 36).

[Kal+08] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng. “Programming
Petascale Applications with Charm++ and AMPI”. In: Petascale Computing:
Algorithms and Applications. Ed. by D. Bader. Chapman & Hall / CRC Press,
2008, pp. 421–441 (cit. on p. 80).

[Ken+10] W. Kendall, T. Peterka, J. Huang, H.-W. Shen, and R. Ross. “Accelerating and
Benchmarking Radix-k Image Compositing at Large Scale”. In: Proceedings of the
10th Eurographics Conference on Parallel Graphics and Visualization. EG PGV’10.
Norrköping, Sweden, 2010, pp. 101–110 (cit. on pp. 24, 80, 98).

[Kno+14] A. Knoll, I. Wald, P. Navratil, et al. “RBF Volume Ray Casting on Multicore
and Manycore CPUs”. In: Proceedings of the 16th Eurographics Conference on
Visualization. EuroVis ’14. Swansea, Wales, United Kingdom: Eurographics
Association, 2014, pp. 71–80 (cit. on p. 80).

[Kre+97] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. “Contour
Trees and Small Seed Sets for Isosurface Traversal”. In: Proceedings of the
Thirteenth Annual Symposium on Computational Geometry. SCG ’97. Nice, France:
ACM, 1997, pp. 212–220 (cit. on p. 59).

[LGS09] W. J. van der Laan, S. Green, and M. Sainz. “Screen Space Fluid Rendering
with Curvature Flow”. In: Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games. I3D ’09. Boston, Massachusetts, 2009, pp. 91–98 (cit. on
pp. 35, 36).

[Lal+09] H. G. Lalgudi, M. W. Marcellin, A. Bilgin, H. Oh, and M. S. Nadar. “View Com-
pensated Compression of Volume Rendered Images for Remote Visualization”.
In: IEEE Transactions on Image Processing 18.7 (2009), pp. 1501–1511 (cit. on
p. 97).

[LS07] F. Lamberti and A. Sanna. “A Streaming-Based Solution for Remote Visualization
of 3D Graphics on Mobile Devices”. In: IEEE Transactions on Visualization and
Computer Graphics 13.2 (2007), pp. 247–260 (cit. on p. 97).

Bibliography 131

[Lan+14] A. G. Landge, V. Pascucci, A. Gyulassy, et al. “In-situ Feature Extraction of Large
Scale Combustion Simulations Using Segmented Merge Trees”. In: Proc. of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’14. New Orleans, Louisana, 2014, pp. 1020–1031 (cit. on
p. 60).

[LMM17] N. Leaf, B. Miller, and K. L. Ma. “In situ video encoding of floating-point volume
data using special-purpose hardware for a posteriori rendering and analysis”.
In: 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV).
2017, pp. 64–73 (cit. on p. 97).

[Lev90] M. Levoy. “Efficient Ray Tracing of Volume Data”. In: ACM Trans. Graph. 9.3
(July 1990), pp. 245–261 (cit. on pp. 17, 79).

[Li+14] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman. “Algorithmic Im-
provements for Fast Concurrent Cuckoo Hashing”. In: Proceedings of the Ninth
European Conference on Computer Systems. EuroSys ’14. Amsterdam, The Nether-
lands, 2014 (cit. on p. 49).

[LL03] G. R. Liu and M. B. Liu. Smoothed particle hydrodynamics: a meshfree particle
method. 2003 (cit. on p. 36).

[LLL06] M. B. Liu, G. R. Liu, and K. Y. Lam. “Adaptive smoothed particle hydrodynamics
for high strain hydrodynamics with material strength”. In: Shock Waves 15.1
(2006), pp. 21–29 (cit. on p. 36).

[LC87] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface
Construction Algorithm”. In: SIGGRAPH Comput. Graph. 21.4 (Aug. 1987),
pp. 163–169 (cit. on pp. 16, 36).

[Ma+94] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. “Parallel volume rendering
using binary-swap compositing”. In: IEEE Computer Graphics and Applications
14.4 (1994), pp. 59–68 (cit. on pp. 22, 23, 80, 98).

[MM13] M. Macklin and M. Müller. “Position Based Fluids”. In: ACM Trans. Graph. 32.4
(July 2013), 104:1–104:12 (cit. on p. 36).

[MMD06] S. Marchesin, C. Mongenet, and J.-M. Dischler. “Dynamic Load Balancing for
Parallel Volume Rendering”. In: Proceedings of the 6th Eurographics Conference
on Parallel Graphics and Visualization. EGPGV ’06. Braga, Portugal: Eurographics
Association, 2006, pp. 43–50 (cit. on p. 80).

[Mar+14] T. Marrinan, J. Aurisano, A. Nishimoto, et al. “SAGE2: A new approach for
data intensive collaboration using Scalable Resolution Shared Displays”. In:
10th IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing. 2014, pp. 177–186 (cit. on p. 97).

[Mau+12] M. Maule, J. Comba, R. Torchelsen, and R. Bastos. “Memory-Efficient Order-
Independent Transparency with Dynamic Fragment Buffer”. In: Graphics, Pat-
terns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on. 2012, pp. 134–
141 (cit. on p. 65).

132 Bibliography

[Mol+94] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. “A Sorting Classification of
Parallel Rendering”. In: IEEE Comput. Graph. Appl. 14.4 (July 1994), pp. 23–32
(cit. on pp. 20, 21, 79).

[Mol+11] B. Moloney, M. Ament, D. Weiskopf, and T. Moller. “Sort-First Parallel Volume
Rendering”. In: IEEE Transactions on Visualization and Computer Graphics 17.8
(Aug. 2011), pp. 1164–1177 (cit. on p. 79).

[Mor+11] K. Moreland, W. Kendall, T. Peterka, and J. Huang. “An image compositing solu-
tion at scale”. In: 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). 2011, pp. 1–10 (cit. on pp. 21, 24, 98).

[MSE06] C. Müller, M. Strengert, and T. Ertl. “Optimized Volume Raycasting for Graphics-
hardware-based Cluster Systems”. In: Proceedings of the 6th Eurographics Con-
ference on Parallel Graphics and Visualization. EGPGV ’06. Braga, Portugal:
Eurographics Association, 2006, pp. 59–67 (cit. on p. 79).

[M0̈9] M. Müller. “Fast and Robust Tracking of Fluid Surfaces”. In: Proceedings of the
2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA
’09. New Orleans, Louisiana, 2009 (cit. on p. 35).

[MCG03] M. Müller, D. Charypar, and M. Gross. “Particle-based Fluid Simulation for
Interactive Applications”. In: Proceedings of the 2003 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation. SCA ’03. San Diego, California,
2003, pp. 154–159 (cit. on p. 35).

[Nav+07] P. A. Navrátil, D. S. Fussell, C. Lin, and W. R. Mark. Dynamic Ray Scheduling
to Improve Ray Coherence and Bandwidth Utilization. Tech. rep. 2007 (cit. on
p. 80).

[Neu94] U. Neumann. “Communication costs for parallel volume-rendering algorithms”.
In: IEEE Computer Graphics and Applications 14.4 (1994), pp. 49–58 (cit. on
p. 22).

[NJ16] J. M. Noguera and J. R. Jiménez. “Mobile Volume Rendering: Past, Present
and Future”. In: IEEE Transactions on Visualization and Computer Graphics 22.2
(2016), pp. 1164–1178 (cit. on p. 97).

[NPS12] P. K. Notz, R. P. Pawlowski, and J. C. Sutherland. “Graph-Based Software
Design for Managing Complexity and Enabling Concurrency in Multiphysics
PDE Software”. In: ACM Trans. Math. Softw. 39.1 (Nov. 2012), 1:1–1:21 (cit. on
p. 80).

[NVI16] NVIDIA. NVIDIA Tesla P100 – The Most Advanced Data Center Accelerator Ever
Built. Tech. rep. 2016 (cit. on p. 4).

[NVI] NVIDIA. NVIDIA Video Codec SDK. https://developer.nvidia.com/nvidia-
video-codec-sdk. Accessed: 2018-01-20 (cit. on pp. 97, 99).

[OF03] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. 2003
(cit. on p. 35).

Bibliography 133

https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk

[Owe+98] J. M. Owen, J. V. Villumsen, P. R. Shapiro, and H. Martel. “Adaptive Smoothed
Particle Hydrodynamics: Methodology. II.” In: The Astrophysical Journal Supple-
ment Series 116.2 (1998), p. 155 (cit. on p. 36).

[PCM04] V. Pascucci and K. Cole-McLaughlin. “Parallel Computation of the Topology of
Level Sets”. English. In: Algorithmica 38.1 (2004), pp. 249–268 (cit. on p. 59).

[PCMS04] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. “Multi-resolution computation
and presentation of contour trees”. In: Proc. IASTED Conference on Visualization,
Imaging, and Image Processing. 2004, pp. 452–290 (cit. on pp. 60, 62).

[Péb+16] P. P. Pébay, J. C. Bennett, D. S. Hollman, et al. “Towards Asynchronous Many-
Task in Situ Data Analysis Using Legion”. In: 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2016, Chicago,
IL, USA, May 23-27, 2016. 2016, pp. 1033–1037 (cit. on p. 81).

[Pet+09] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur. “A Configurable
Algorithm for Parallel Image-compositing Applications”. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis.
SC ’09. Portland, Oregon: ACM, 2009, 4:1–4:10 (cit. on pp. 24, 80, 98).

[Pet+08] T. Peterka, H. Yu, R. Ross, and K.-L. Ma. “Parallel Volume Rendering on the IBM
Blue Gene/P”. In: Eurographics Symposium on Parallel Graphics and Visualization.
Ed. by J. M. Favre and K.-L. Ma. The Eurographics Association, 2008 (cit. on
p. 80).

[Pra10] A. Pranckevičius. Compact Normal Storage for Small G-Buffers. http://aras-
p.info/texts/CompactNormalStorage.html. Accessed: 2018-02-22. 2010
(cit. on p. 67).

[Pre+03] S. Premžoe, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker. “Particle-Based
Simulation of Fluids”. In: Computer Graphics Forum 22.3 (2003), pp. 401–410
(cit. on p. 35).

[Pug+09] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber. “Scalable Computa-
tion of Streamlines on Very Large Datasets”. In: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. SC ’09. Portland,
Oregon: ACM, 2009, 16:1–16:12 (cit. on pp. 7, 77).

[Rei+14] F. Reichl, M. G. Chajdas, J. Schneider, and R. Westermann. “Interactive Ren-
dering of Giga-particle Fluid Simulations”. In: Proc. High Performance Graphics.
Lyon, France, 2014 (cit. on p. 35).

[Rot82] S. D. Roth. “Ray casting for modeling solids”. In: Computer Graphics and Image
Processing 18.2 (1982), pp. 109 –144 (cit. on p. 14).

[Sab88] P. Sabella. “A Rendering Algorithm for Visualizing 3D Scalar Fields”. In: SIG-
GRAPH Comput. Graph. 22.4 (June 1988), pp. 51–58 (cit. on p. 17).

[SJ00] G. Schaufler and H. W. Jensen. “Ray Tracing Point Sampled Geometry”. In:
Proceedings of the Eurographics Workshop on Rendering Techniques 2000. 2000,
pp. 319–328 (cit. on p. 35).

134 Bibliography

http://aras-p.info/texts/CompactNormalStorage.html
http://aras-p.info/texts/CompactNormalStorage.html

[SFS05] C. E. Scheidegger, S. Fleishman, and C. T. Silva. “Triangulating Point Set Sur-
faces with Bounded Error”. In: Proceedings of the Third Eurographics Symposium
on Geometry Processing. SGP ’05. 2005 (cit. on p. 35).

[SA13] M. Segal and K. Akeley. OpenGL 4.3 Core Profile Specification. https://www.
opengl.org/registry/. Accessed: 2018-02-22. 2013 (cit. on p. 65).

[Sod+16] A. Sodani, R. Gramunt, J. Corbal, et al. “Knights Landing: Second-Generation
Intel Xeon Phi Product”. In: IEEE Micro 36.2 (2016), pp. 34–46 (cit. on p. 4).

[SSP07] B. Solenthaler, J. Schläfli, and R. Pajarola. “A Unified Particle Model for Fluid &
Solid Interactions: Research Articles”. In: Comput. Animat. Virtual Worlds 18.1
(Feb. 2007) (cit. on p. 35).

[Ste07] J. K. Steehler. “Understanding Moore’s Law—Four Decades of Innovation”. In:
Journal of Chemical Education 84.8 (2007), p. 1278 (cit. on p. 1).

[Ste+03] S. Stegmaier, J. Diepstraten, M. Weiler, and T. Ertl. “Widening the remote
visualization bottleneck”. In: 3rd International Symposium on Image and Signal
Processing and Analysis, 2003. ISPA 2003. Proceedings of the. Vol. 1. 2003, 174–
179 Vol.1 (cit. on p. 97).

[SAB17] T. Sterling, M. Anderson, and M. Brodowicz. High Performance Computing:
Modern Systems and Practices. Morgan Kaufmann, 2017 (cit. on pp. 2, 5, 6).

[Ste+14] T. Sterling, D. Kogler, M. Anderson, and M. Brodowicz. “SLOWER: A per-
formance model for Exascale computing”. In: Supercomputing Frontiers and
Innovations 1.2 (2014) (cit. on p. 6).

[Sto+03] A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, and J. Patchett. “SLIC: Scheduled
Linear Image Compositing for Parallel Volume Rendering”. In: Proc. of the 2003
IEEE Symposium on Parallel and Large-Data Visualization and Graphics. PVG ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 6– (cit. on pp. 21, 23,
80, 98).

[Suf07] K. Suffern. Ray Tracing from the Ground Up. Natick, MA, USA: A. K. Peters, Ltd.,
2007 (cit. on pp. 13, 15).

[Sul+12] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. “Overview of the High
Efficiency Video Coding (HEVC) Standard”. In: IEEE Transactions on Circuits
and Systems for Video Technology 22.12 (2012), pp. 1649–1668 (cit. on pp. 28,
98).

[TFT05] S. Takahashi, I. Fujishiro, and Y. Takeshima. Interval volume decomposer: a
topological approach to volume traversal. 2005 (cit. on p. 59).

[TTF04] S. Takahashi, Y. Takeshima, and I. Fujishiro. “Topological Volume Skeletoniza-
tion and Its Application to Transfer Function Design”. In: Graph. Models 66.1
(Jan. 2004), pp. 24–49 (cit. on p. 59).

[Tak+05] Y. Takeshima, S. Takahashi, I. Fujishiro, and G. M. Nielson. “Introducing Topo-
logical Attributes for Objective-based Visualization of Simulated Datasets”. In:
Proceedings of the Fourth Eurographics / IEEE VGTC Conference on Volume Graph-
ics. VG’05. New York, 2005, pp. 137–145 (cit. on p. 59).

Bibliography 135

https://www.opengl.org/registry/
https://www.opengl.org/registry/

[TIH03] A. Takeuchi, F. Ino, and K. Hagihara. “An Improved Binary-swap Compositing
for Sort-last Parallel Rendering on Distributed Memory Multiprocessors”. In:
Parallel Comput. 29.11-12 (Nov. 2003), pp. 1745–1762 (cit. on p. 23).

[Tho+11] D. Thompson, J. Levine, J. Bennett, et al. “Analysis of large-scale scalar data
using hixels”. In: Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on. 2011, pp. 23–30 (cit. on p. 60).

[TCM10] A. Tikhonova, C. Correa, and K.-L. Ma. “Visualization by Proxy: A Novel Frame-
work for Deferred Interaction with Volume Data”. In: Visualization and Computer
Graphics, IEEE Transactions on 16.6 (2010), pp. 1551–1559 (cit. on p. 60).

[Tiw+07] S. Tiwari, S. Antonov, D. Hietel, et al. “A Meshfree Method for Simulations of
Interactions between Fluids and Flexible Structures”. In: Meshfree Methods for
Partial Differential Equations III (2007) (cit. on p. 36).

[Top] Top500 List. https://www.top500.org. Accessed: 2018-03-02 (cit. on pp. 3–5).

[TO02] G. Turk and J. F. O’Brien. “Modelling with Implicit Surfaces That Interpolate”.
In: ACM Trans. Graph. 21.4 (Oct. 2002) (cit. on p. 35).

[Wal+17] I. Wald, G. Johnson, J. Amstutz, et al. “OSPRay - A CPU Ray Tracing Framework
for Scientific Visualization”. In: IEEE Transactions on Visualization & Computer
Graphics 23.1 (2017), pp. 931–940 (cit. on pp. 49, 86).

[Wan+04] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality as-
sessment: from error visibility to structural similarity”. In: IEEE Transactions on
Image Processing 13.4 (2004), pp. 600–612 (cit. on p. 103).

[WBP07] G. Weber, P.-T. Bremer, and V. Pascucci. “Topological Landscapes: A Terrain
Metaphor for Scientific Data”. In: IEEE Transactions on Visualization and Com-
puter Graphics 13.6 (Nov. 2007), pp. 1416–1423 (cit. on p. 59).

[WSH03] G. H. Weber, G. Scheuermann, and B. Hamann. “Detecting Critical Regions in
Scalar Fields”. In: Proceedings of the Symposium on Data Visualisation 2003.
VISSYM ’03. Grenoble, France: Eurographics Association, 2003, pp. 85–94 (cit.
on p. 59).

[Web+07] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann. “Topology-
Controlled Volume Rendering”. In: IEEE Transactions on Visualization and Com-
puter Graphics 13.2 (Mar. 2007), pp. 330–341 (cit. on pp. 60, 64).

[Wie+03] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. “Overview of the
H.264/AVC video coding standard”. In: IEEE Transactions on Circuits and Systems
for Video Technology 13.7 (2003), pp. 560–576 (cit. on pp. 28, 97).

[Yan+10] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz. “Real-time Concurrent Linked
List Construction on the GPU”. In: Proceedings of the 21st Eurographics Conference
on Rendering. EGSR’10. Saarbrücken, Germany: Eurographics Association,
2010, pp. 1297–1304 (cit. on p. 65).

136 Bibliography

https://www.top500.org

[YWM08] H. Yu, C. Wang, and K.-L. Ma. “Massively Parallel Volume Rendering Using 2-3
Swap Image Compositing”. In: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing. SC ’08. Austin, Texas: IEEE Press, 2008, 48:1–48:11 (cit. on
pp. 23, 80, 98).

[YT13] J. Yu and G. Turk. “Reconstructing Surfaces of Particle-based Fluids Using
Anisotropic Kernels”. In: ACM Trans. Graph. 32.1 (Feb. 2013), 5:1–5:12 (cit. on
pp. 34, 36, 38, 39, 41, 43).

[Yu+12] J. Yu, C. Wojtan, G. Turk, and C. Yap. “Explicit Mesh Surfaces for Particle Based
Fluids”. In: Comput. Graph. Forum 31.2pt4 (May 2012), pp. 815–824 (cit. on
p. 36).

[ZB05] Y. Zhu and R. Bridson. “Animating Sand As a Fluid”. In: ACM Trans. Graph. 24.3
(July 2005), pp. 965–972 (cit. on p. 35).

Bibliography 137

List of Figures

2.1 Ray casting . 14
2.2 Path tracer example: Luminous streamlines 16
2.3 Volume rendering pipeline . 17
2.4 Direct volume rendering example: Skull 18
2.5 Sort-first compositing . 20
2.6 Sort-last compositing . 21
2.7 Direct-send compositing . 22
2.8 Binary-swap compositing . 23
2.9 2-3-swap compositing . 24
2.10 Radix-k compositing . 25
2.11 Contour tree . 27
2.12 Video encoding pipeline . 29
2.13 Intra and inter prediction . 30
2.14 Image reconstruction quality . 31

3.1 Watercrossing simulation . 33
3.2 Benchmark scenes . 37
3.3 Intersection scheme . 45
3.4 Offset culling . 46
3.5 Scaling on Elwetritsch . 51
3.6 Scaling on Stampede 2 . 52

4.1 Automatic jet5 segmentation into 1024 branches 57
4.2 Conceptual overview . 61
4.3 Incremental simplification of t . 63
4.4 Automatic segmentation of plate dataset 68
4.5 Impact of maximum number of branches 69
4.6 Compression ratio complete data set 70
4.7 Persistence-guided simplification comparison 72
4.8 Strong and weak scaling . 73

5.1 Volume rendering of jet dataset . 79

139

5.2 Hybrid parallelization in image and data space 82
5.3 Communication pattern . 83
5.4 Task granularity heat maps . 87
5.5 Optimal block and tile sizes . 88
5.6 Task scheduling . 89
5.7 Weak and strong scaling . 90

6.1 Conceptual overview . 99
6.2 Synthesis 4K benchmark scenes . 102
6.3 Structural similarity (SSIM) index . 103
6.4 Encode/decode latencies . 104
6.5 Impact of resolution on latency . 104
6.6 Codec comparison . 105
6.7 Weak scaling (N:N) . 106
6.8 Network delay . 107
6.9 Pipeline latencies . 108
6.10 Weak scaling (N:1) . 109
6.11 Transatlantic link . 109
6.12 Strong scaling (N:1) . 111
6.13 Mean strong-scaled latencies . 112
6.14 Client-side frame rate . 113
6.15 Groundwater path tracing and tiling 115
6.16 Browser streaming . 116

140 List of Figures

List of Tables

3.1 Preprocessing and rendering timings 55

141

List of Listings

3.1 Per-ellipsoid callback for all-hit intersection. 46
3.2 Per-sphere callback for all-hit intersection. 47
3.3 Two-pass surface intersection scheme. 48

143

Publications

The results presented in this thesis have been published as follows:

T. Biedert1, C. Garth1

Contour Tree Depth Images For Large Data Visualization
In Proceedings of Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV), Cagliari, Italy, 2015

T. Biedert1, C. Garth1

In Situ Large Data Visualization using Layered Depth Images
In Proceedings of Young Researchers Symposium (YRS), Kaiserslautern, Germany,
2016

T. Biedert1, K. Werner1, B. Hentschel2, C. Garth1

A Task-Based Parallel Rendering Component For Large-Scale Visualization Ap-
plications
In Proceedings of Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV), Barcelona, Spain, 2017

T. Biedert1, J.-T. Sohns1, S. Schröder3, J. Amstutz4, I. Wald4, C. Garth1

Direct Raytracing of Particle-based Fluid Surfaces Using Anisotropic Kernels
(Honorable Mention)
In Proceedings of Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV), Brno, Czech Republic, 2018

T. Biedert1, P. Messmer5, T. Fogal5, C. Garth1

Hardware-Accelerated Multi-Tile Streaming for Realtime Remote Visualization
(Best Paper)
In Proceedings of Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV), Brno, Czech Republic, 2018

1Technische Universität Kaiserslautern
2RWTH Aachen University
3Fraunhofer ITWM
4Intel Corporation
5NVIDIA Corporation

145

Curriculum Vitae: Tim Biedert

Education

2014 Master of Science (M.Sc.) in Computer Science
Technische Universität Kaiserslautern, Germany
Thesis: Vortex Visualization of Flapping Wing Insect Flight in
Virtual Reality Environments

2012 Bachelor of Science (B.Sc.) in Computer Science
Technische Universität Kaiserslautern, Germany
Thesis: FPM Post Processing: Real-Time Ray Tracing of Point Set
Surfaces in OptiX

2009 Abitur
Elisabeth-Langgässer-Gymnasium Alzey, Germany

Experience

since 2018 NVIDIA GmbH, Würselen, Germany
Developer Technology
Senior Scientific Visualization Developer Technology Engineer

2014 - 2018 Technische Universität Kaiserslautern, Germany
Scientific Visualization Lab / Computational Topology Group
Research assistant / Ph.D. candidate

2017 NVIDIA Switzerland AG, Zurich, Switzerland
Developer Technology
Internship

2010 - 2017 Fraunhofer Institute for Industrial Mathematics ITWM,
Kaiserslautern, Germany
Dept. of Transport Processes
Research assistant

2014 Wright State University, Dayton, Ohio, USA
Advanced Visual Data Analysis Group
Visiting researcher

147

	Titlepage
	Abstract
	Kurzfassung
	Acknowledgement
	1 Introduction
	1.1 High Performance Computing
	1.1.1 Heterogeneous Architectures
	1.1.2 Performance and Scaling
	1.1.3 Challenges in HPC Visualization

	1.2 Contributions
	1.3 Structure

	2 Background
	2.1 Ray Casting
	2.2 Volume Rendering
	2.3 Image Compositing
	2.4 Topology-Based Data Analysis
	2.5 Video Compression

	3 Raytracing Particle-Based Fluid Surfaces
	3.1 Motivation
	3.2 State of the Art
	3.3 Finite Pointset Method
	3.4 Surface Reconstruction
	3.4.1 Surface Definition
	3.4.2 Preprocessing
	3.4.3 Intersection

	3.5 Implementation
	3.6 Results
	3.7 Discussion

	4 Contour Tree Depth Images
	4.1 Motivation
	4.2 State of the Art
	4.3 Method Overview
	4.4 Segmentation and Filtering
	4.5 Depth Image Rendering
	4.5.1 Segment Intersection
	4.5.2 GPU Acceleration

	4.6 Storage
	4.7 Interactive Viewer
	4.8 Results
	4.8.1 Compression
	4.8.2 Analysis
	4.8.3 Scaling

	4.9 Discussion

	5 Task-Based Distributed Volume Rendering
	5.1 Motivation
	5.2 State of the Art
	5.3 System Design
	5.3.1 Task Granularity
	5.3.2 Distributed Compositing
	5.3.3 Optimization

	5.4 Implementation
	5.5 Results
	5.5.1 Task Granularity
	5.5.2 Scheduling
	5.5.3 Scaling

	5.6 Discussion

	6 Hardware-Accelerated Multi-Tile Streaming
	6.1 Motivation
	6.2 State of the Art
	6.3 Multi-Tile Streaming
	6.4 Implementation
	6.5 Results
	6.5.1 Codec Performance
	6.5.2 Full Tiles Streaming
	6.5.3 Strong Scaling / Sort-First Compositing
	6.5.4 Interoperability

	6.6 Discussion

	7 Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Publications
	Curriculum Vitae

