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Abstract 

Recently, Xv and CHENEY (1992) have proved that if all the Legendre 
coefficients of a zonal function defined on a sphere are positive then the 
function is strictly positive definite. It will be shown in this paper, that 
even if finitely many of the Legendre coefficients are zero, the strict posi- 
tive definiteness can be assured. The results are based on approximation 
properties of singular integrals, and provide also a completely different 
proof of the results of Xu and Cheney. 

1 Introduction 

Let for rn 2 1, ,Stn c R n*il be the m--dimensional unit sphere. A continuous 
function I< : [ - 1, l] - R defines for a fixed 71 E S, a FD-cakl r)-zonal function 
E - fi(-(ll * I), [ E S,n, on the sphere, where . denotes the usual inner product 
in lRm+l. Thus. the function K(q- ) depends only on the spherical distance 
~TCCOS(< . q) between [ and 7. Such a continuous function is called positive 

definite, if for any choice of pairwisely distinct points 7j1,. . . , r),v E S,n, and any 
non-zero vector (al.. . . . ~2.~1~ E IR”, 
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SCW~ENBERG (1942) has shown that if the function K admits the nniforrnly 
convergent series expansion 

h’(t) = &,P,$), 1 E [-l,l], (‘t) 
t1=0 

in terms of certain Lcgendre (or Gegenbauer or ultraspherical) polynomials, a 
sufficient condition for (1) is that b, > 0, TL = 0, 1,. . . . 

However, when dealing with problems of interpolation, a stronger condition 
on the kernel K is useful: A’ is called sttictly positive definite, if the quadratic 
form (1) is strictly positive for any set {Q, . . . ,~IN} C S, of pairwisely distinct 
points and any choice of a non--zero vector (al,. . . ,a,)l’ E RN. XV, ~HENEY 
(1992) have proved, that a sufficient condition for strict positive definiteness is, 
when all the k-, in the expansion (2) are positive. By a complete different idea 
we will show in this paper, that even if finitely many k, are zero, the kernel K 
is strictly positive definite. 

The value of this result can be explained as follows: assume that a function 
F : S,,, 4 R is known only at finitely many distinct points Q, . . . , T)N E: L5*, and 
one looks for an interpolant of the form 

(3) 
i=l 

satisfying the interpolation conditions S(77;) = F(qi), i = I,. . . , N. Then the 
linear system to be solved is 

If K is strictly positive definite then the matrix is positive definite, i.e. the 
interpolat.ion problem is solvable for any choice of pairwisely distinct nodal 
points. 

In practice, however, there is often more information of the function F 
available, e.g. the low order moments of p in terms of its spherical harmonic 
expansion. In this casp, it is desirable to use kernels K in (3) which are orthog- 
onal to these low order spherical harmonics hnd to perform the interpolation 
only for the difference between the function values F(77i) and the values of the 
known projection of F to the span of the spherical harmonics under consider-. 
ation. But orthogonality of the kernel A’ to spherical harmonics means that 
the corresponding coefficients AZ,, are zero. Thus, the condition given in XU, 
CRENF:Y (1992) can not he satisfied. In this case our stronger result is nect?s- 
sary. :1n example for such a situation is the approximation of the gravitational 
potentid of the earth, From physical properties and measurements of satellite 
orbits t hc contribution of the lower order spherical harmonics are known with a 



sufflcimt accuracy, so that e.g. for space borne gradiometry data this approach 
is very useful. cf. e.g. FREEDEN et al. (1994), Rtih4bfEI, (1986). %XiREINE:K 
(1994). 

The outline of this paper is organized as follows: after some preliminaries, 
we develop an easy-to--handle equivalent condition for strict positive definite- 
ness. After that, we construct a special strictly positive definite function with 
vanishing moment,s, and use afterwards this kernel, which turns out to be a 
spherical approximate identity, for the proof of our main result. 

2 Preliminaries 

Asume lrlz 2 1 to be a fixed integer for the further investigations. Let + and 1 . 1 
denote the usual inner product and the Euclidean norm in RmS1, respectively, 
and let S, = {( E R”*+ll)(l = 1) be th e nL-.dimensional unit sphere in lRm+‘. 
W’e write d~,~ for the induced surface element of S,,,. Then it is well-known 
that the volume of S, is given by 

J 

* 
277 2 

bJ in= 1 bn clwm = IY((m+ 1)/2)’ 

We denote the space of continuous respectively square-integrable functions de- 
fined on S,, by C( S,) or C”( S,). The standard ,C2( S,)--inner product is writ- 
ten as 

In the following, we repeat some basic facts on spherical harmonics and 
Legendre polynomials. Datails can be found e.g. in MUELLER (1966). Let Harm, 
be the space of ail spherical harmonics Y, : S, -+ lR of order n, i.e. Y, E Harm, 
if and only if z c-” \2\nYn(5/\~\) is a homogeneous harmonic polynomial of 
degree n. The dimension of Harm, is 

,V(m, n) = dim Harm, = 
2n + 712 - 1 n + m - 2 

71 ( n-l )‘ 

If YP E Harm, and Ys E Harm, with 2, f q then (Y,,Y,) = 0, i.e. spherical har- 
monics of different order are orthogonal. We assume that {Y,J, . . . , Y,L,~(,,2,tl~} 
is an orthonorma;l basis of Harm,. For p E No, we let Harmo,,,.+ = @&,, Harm,,. 

The addition theorem for spherical harmonics reads as follows: 

(4) 

whore P,, arp the (generalized) Legendre polynomials of degree n. They are 
defined by the requirements 



(i) l’,, is a polynomial of degree n 

(ii) .i_‘, i I PT,(f)(l -P)+it = 0, 1 = o,...,n- 1 

(iii) P,,(l) = 1. 

) for fixed 71 E S, that P7,( -77) E Harm,, and that for ail 

i.e. yPn( b ) is tt le reproducing kernel of Harm,, cf. AHONSZAJN (1950). 
.4pplying the CaurhyU-Schwarz inequality to (4), it can be easily deduced that 
]F,,(2)] 5 Pn(l) = 1 for all t E [-l,l]. Furthermore, the Fourier series of a 
square--integrable function F E ,!Z2(S,) can be written as 

(5) 

If c: E PI-l, I], we obtain for fixed rl E S,D for the 7)-zonal function 
E +-+ cr’(C ’ 7?), I E srn, 

This formula of Punk and Hecke allows to obtain the Fourier coefficients of an 
71~zonal function by a simple one--dimensional integration. Together with the 
addition theorem we conclude that the Fourier expansion of G( .v) is given by 

Note that the Legendre polynomials are also expressible (for nz > 2) by the 
generating function 

1 m n + 711 - 2 
--qxy- = 

(1 - 27-t + r2)li- xC n=o n ) 
Pn(t)rfL, (r( < 1, t E [-l,l]. 

This shows that the Legendre polynomials are up to a constant the Gegenhauer 
or ultra.spherical polynomials Ci with X = (rn - 1)/Z, cf. e.g. SZEG~ ( 1959). 

For I‘ E (0, 1) the uniform convergent series 



has t,he explicit. representation 

which is known as Poisson--kernel. The basic property of c’J~ for our purposes 

is described in 

Theorem 2.1. Let 1”’ : S,?, -+ R be continuous. Then 

This theorem shows that Q, is an approximate identity in the space C(S,), cf. 

e.g. CALDERON, ZYGMUND (1955). We will need a slight generalization of this 

result. We define for p E No 

Then it holds obviously (C),.(17, ), I/n) = 0 for all I/, E Harm,, n. = 0,. . . ,p. 

Furthermore, we easily obtain 

Corollary 2.2. Let F E C(S,) satisfy (F, Y,,) = 0 for all Y, E Harm,,, n = 

0 ).... p. ‘Then 

3 Strictly Positive Definite Kernels 

Let Ii’ : [A, l] - R be continuous and assume that K admits the uniformly 

convergent series expansion 

with constants k,, E R. Note that ]P,(l)] 5 P,%(l), t E [-1, I], implies that the 

series (8) is absolute and uniformly convergent? if the series C~~zo ]lc,] is conver- 

gent, SCHOENBERG (1942) has shown that such a function K is positive definite 

if k, > 0 for all II E N. The strict, posit,ivr definiteness can be characterized by 



Proof. Since k,, 2 0 and CFE0 Ic, < 00 it follows from ARONSZAJN (1950) that 

r;- : s,,, x s,,z - R, defined by f(E, r)) = A’([. q), [, q~ E S,, is the reproducing 

kernel of a Hilbert space (3-1, (+, .)H) with orthonormal basis {(w,&/N( 7~1, TL))‘/’ 

I:,.,/ n = 0, * * *, j = 1,. . .) N(m, n), k,% # 0). 
TilUS, WC2 

have 
K(7); 

. 
7/j) 

= 

(K( rlis ), I<( r)j* ))H, and therefore the matrix 

tUrM 
out to be a Gram matrix with respect to h’(qr- ), . . . , K(qN- ), and 

iS 

therefore positive definite if and only if the functions K(qi* ), . . . , K(T)N- ) are 

linearly independent. cl 

4 
A Special Strictly Positive Definite F’unetion 

In this chapter it is proved that the function Q$-.,pL is strictly positive definite 

for any p E N, We start with 

Lemma 4.1. Letp E No, q E S,,L. Then there exists to any E > 0 a continuous 

function H : S,,, - R with the following properties: 

(i) H(q) = 1 

(ii) suppA C {i$ E S,nI I[ - 7) < E} 

(iii) (If,Y~/,)=OforallY,~Harm,,tl=O,...,p. 

Since the proof of this lemma is rather technical we shift it to the end of this 

paper. 

Fundament,al is 

Theorem 4.2. Let T E (0, l), p E No. Then the function &fi*..J’L is strictly 

positizk- definite. 

Proof. Let ?)I, I * . , q,v E sm Ire pairwisely distinct. According to Lemma 3.1 

we shall show that t,he funct,ions &f,..-PL( 71. ), . . . , ~~““‘p”( qN’ ) are linearly 

independent. t!ssume therefore that for nt ~ . . ct,~ E lR 



Since the series of Quid.-@ in terms of the Legendre polynomials is uniformly 
convergent, it follows for all < E S,,, , 7t 2. p + 1 

i=l 

Thus, CiLI e;Pn( r/;* ) = 0 for all rz > y + 1. The same calculation performed in 
the backward direction implies then 

2 niQ~~~‘.*Pi( r/j. ) = 0 

1=l 
(9) 

for all r E (0,l). 

Now, let i‘ E (1 , . . . , IV} be fixed, and choose E < ON, where the nodal 
width 0,~ is given by 

For this E and rl = rli* let H E C(S,,) have the properties of Lemma 4.1. Then 
we conclude from Corollary 2.2 and the fact that H(qi) = 0 if i # i*, 

On the other hand side it follows from (9) that for all T E (0,l) 

Thus, ai* =t 0. Since i” E { 1,. . . , N} was chosen arbitrarily, it follows nl = 
. . . = U!X- = 0, and hence the functions QF’..+*(r)r+ )!. . ..Q$*,+‘-(T)N. ) are lin- 
early independent, as required. D 



5 The Main Result 

The considerations of the last chapters allow us to prove the main result: 

Theorem 5.1. Let A’ : [- 1, I] --+ R be a continuous kernel with uniformly 
convergent serifs rzpansion 

K(t) = 5 k&(t). 

Assume that k,L 2 0, n E N, and only finitely nmny k, are zero. Then K is 
strictly positive definite, 

Proof. Let Z, denote the index of the largest integer 16 for that k, = 0. Then 
k, > 0 for au n > p. Assume that tll . . . , 7)~ E 7, are pairwisely distinct. We 
shall show that K(Q+ ), , . ., K(~N- ) are linearly independent. 

If C>i, a,h’(T/i* ) = 0, similar arguments as in the proof of Theorem 4.2 
provide tha.t 

IV 

(11) 
i=l 

for all n for which k,, > 0. In particular, (11) is true for all 1~ > p. But then it 
follows that for every r E (0,l) 

We know from Theorem 4.2 that Q$~-@ is strictly positive definite, therefore 
Ul = ..* = UN = 0. Hence, K is strictly positive definite. q 

Since all the Legendre coefficients of Qr are positive, similar arguments as 
above together with Remark 4.3 prove the result of Xv, (TlIENEY (1992): 

Corollary 5.2. if all the k,, in (10) are’ positive then K is strictly positive 
definite, 

The question whether a weaker condition than the one of Theorem 4.2 
is sufficient for strict positive definiteness is still open, We show by an easy 
example that the condition that finitely many k,, are greater than zero is not 
sufficient for strict positive dclfinitenrss: let III = 2 and assume that the k,L 
of the uniformly convergent series expansion of a kernel II- m-e zero for odd 



n and greater than zero for even n. The kernel K is then an even function. 
If we choose r)t to be the North Pole and 772 to be the South Pole, K satisfies 
h’( f)l .() = A-(1/.2 .(), ( E sm. Thus, li( 71. ) and IiF(7)2. ) are linearly dependent, 
and so h’ is not strictly positive definite. 

Appendix: Proof of Lemma 4.1 

Lemma 4.1 follows immediately, if we can construct for any p > 0 and all p E No 
a continuous function L : [-1, 11 -+ R with the properties 

(i) L(1) = 1 

(ii) SuppL C [l - 47, l] 

(iii) i’, IJ(t)Yn(t)(l - t’)y& = 0, n = O,...,p, 

since then the function N E C(Sm) defined by N(t) = 1;(r/ + 0, t E S, satisfies 
all requirements of Lemma 4.1 with E = (2/I)r/‘. 

We will show now, how a function L satisfying (i)-(iii) can be constructed 
for a given 13 > 0 and p E No. Assume first that m is even. Choose real numbers 
hiwithl-d<ho<h~<...hm+p+3<1. WedefinefortE[-l,l] 

and for any given h E (-1, 1) 

a,, = (1 - t”)(t - h)+, 

where t+ means, as usual, 

t+ = t for t>o 
0 for t<O ’ 

Setting especially 11 = lli, i = 1,. . . , m +p+ 3, it follows easily that the functions 
.&). ijh, \ i = 1,. . . , 771 + p + 3 are linearly independent. Furthermore, they are 
Lipschitz-..continuous functions with suppAe = [ho, l] and suppBh, = [hi, I], 
i = I...., m + p + 3. It can be deduced from the Lipschitz continuity (cf. 
GRONWXLL (1913)) that the Fourier series (7) of .4e and ?‘3h, are uniformly 
convergent,, i.e. 



with 

J 
1 R;,(n) = w,-1 &&)&(t)(l - t")~dt. 

-1 

(A similar result holds for A,.) 

We are looking for a function I, of the form 

w = Ao(t) - c b;N/&), t g [A, 11, 
i=l 

with parameters bi to be determined. It can be easily deduced that the condi- 
tions (i) and (ii) are fulfilled for any choice of bl, . . . , bmfp+3. Condition (iii) is 
equivalent to the equations 

i=l 
(1‘4 

)=l In order to study these equations, we see first that since AcJ > 0 and Ao( 
it holds At(O) > 0. Thus, (12) is the linear system of equations 

with non-vanishing right hand side. To get more information on the matrix 
entries, we see that 

I; = J-)t - h)+(l - qr,t(t)(l- t~)=sit 
= J h 

l(i - h)P@)(l - P)%t. 

is a polynomial in the variable h of degree UL + n + 2. In order to ensure the 
solvability of the above system, we enlarge it to 

\ 

i 

) 

0 
0 

0 

4m 

4xP) 

(13) 

7’his linear system, now, can be seen to come from the one--dimensional poly- 
nomial interpolation problem with nodal points hi, . . . , hm+p+3, data v&es 
0. , I . . 0, .A,^( 0). . I . , A,:(p) . and trial functions (I, h, . . . , h,‘lL+l, B;(O), . . . , B;(p)} 
being polynomials of degrees 0, . . . . nt 4 p t 2. Since we know from e.g. DAVIS 

10 



(1963) that this system is unisolvent, there exists a unique solution of (13) 
which also solves then (I’L), and hence fulfils the third requirement. 

If in is odd, we can apply the same arguments, but to achieve that the 
B;LA(~L) are polynomials in h, one has to modify the defining equation of the 
function ljh. For odd no the definition 

I?$) = (1 - i2$(1 - h), 

will ensure that the above arguments can be applied. 
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