
Similarity Search Algorithms

over Top-k Rankings and

Class-Constrained Objects

Thesis approved by
the Department of Computer Science
Technische Universität Kaiserslautern
for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Evica Milchevski

Date of defense: Dean:

August 15, 2019 Prof. Dr.-Ing. Stefan Deßloch

Reviewers: PhD committee chair:

Prof. Dr.-Ing. Sebastian Michel (TU Kaiserslautern) Prof. Dr. Katharina Anna Zweig

Prof. Dr.-Ing. Avishek Anand (Leibniz University, Hannover)

Prof. Nikolaus Augsten, PhD (University of Salzburg)

D 386

To my parents...

Abstract

In this thesis, we consider the problem of processing similarity queries over a

dataset of top-k rankings and class constrained objects. Top-k rankings are the

most natural and widely used techniques to compress a large amount of infor-

mation into a concise form. Spearman’s Footrule distance is used to compute

the similarity between rankings, considering how well rankings agree on the

positions (ranks) of ranked items. This setup allows the application of metric

distance-based pruning strategies, and, alternatively, enables the use of tradi-

tional inverted indices for retrieving rankings that overlap in items. Although

both techniques can be individually applied, we hypothesize that blending these

two would lead to better performance. First, we formulate theoretical bounds

over the rankings, based on Spearman’s Footrule distance, which are essential

for adapting existing, inverted index based techniques to the setting of top-k

rankings. Further, we propose a hybrid indexing strategy, designed for efficiently

processing similarity range queries, which incorporates inverted indices and met-

ric space indices, such as M- or BK-trees, resulting in a structure that resembles

both indexing methods with tunable emphasis on one or the other. Moreover,

optimizations to the inverted index component are presented, for early termina-

tion and minimizing bookkeeping. As vast amounts of data are being generated

on a daily bases, we further present a distributed, highly tunable, approach,

implemented in Apache Spark, for efficiently processing similarity join queries

over top-k rankings. To combine distance-based filtering with inverted indices,

the algorithm works in several phases. The partial results are joined for the

computation of the final result set. As the last contribution of the thesis, we

consider processing k-nearest-neighbor (k-NN) queries over class-constrained ob-

jects, with the additional requirement that the result objects are of a specific

type. We introduce the MISP index, which first indexes the objects by their

(combination of) class belonging, followed by a similarity search sub index for

each subset of objects. The number of such subsets can combinatorially explode,

thus, we provide a cost model that analyzes the performance of the MISP in-

dex structure under different configurations, with the aim of finding the most

efficient one for the dataset being searched.

I

Zusammenfassung

In dieser Arbeit betrachten wir das Problem, Ähnlichkeitsanfragen über einem

Datensatz von Top-k-Ranglisten oder Objekten mit klassenspezifischen Selekti-

onskriterien zu berechnen. Top-k-Ranglisten sind eine natürliche und geläufige

Technik, um große Mengen an Informationen in einer prägnanten Form darzu-

stellen. Spearman’s Footrule Distanz wird benutzt, um die Ähnlichkeit zwischen

Ranglisten zu berechnen. Sie berücksichtigt dabei, wie stark die Listen im Bezug

auf die Positionen (Ränge) der aufgeführten Elemente übereinstimmen. Dieser

Problemstellung erlaubt die Anwendung von Strategien basierend auf metri-

schen Distanzen, um Objekte, die nicht im Ergebnis enthalten sein werden,

frühzeitig zu eliminieren. Alternativ dazu können auch traditionelle invertierte

Indexe über Ranglisten benutzt werden, um solche Ranglisten zu finden, die in

mindestens einem Eintrag mit der Anfragerangliste überlappen. Obwohl beide

Techniken eigenständige Ansätze darstellen, liegt die Vermutung nahe, dass eine

Kombination der beiden zu einer verbesserten Effizienz führen könnte. Zunächst

präsentieren wir ein theoretisches Modell, um bestehende mengenbasierte An-

sätze über invertierten Indexen auch für Top-k-Ranlisten anwendbar zu machen.

Weiterhin stellen wir eine hybride Indizierungsstrategie vor, die zur effizienten

Verarbeitung ähnlichkeitsbasierter Bereichsanfragen entworfen ist. Diese Stra-

tegie umfasst sowohl invertierte Indexe als auch Indexe für metrische Räume,

wie beispielsweise M- oder BK-Bäume. Sie resultiert in einer Struktur, die beide

Indizierungsmethoden abbildet und einen zwischen ersterer und letzterer justier-

baren Schwerpunkt bietet. Außerdem stellen wir Optimierungen für die Anfrage-

verarbeitung über der Invertierten-Index-Komponente vor, die frühzeitige Ter-

minierung und Minimierung von Buchführung ermöglicht. Enorme Mengen von

Daten werden täglich generiert, weswegen wir einen verteilten und hochgradig

anpassbaren Ansatz vorstellen, der mittels Apache Spark implementiert wurde,

um Ähnlichkeits-Verbundanfragen über Top-k-Ranglisten effizient beantworten

zu können. Distanz-basierte Filter werden in einem mehrphasigen Algorithmus

mit invertierten Indizes kombiniert, wobei partiellen Ergebnisse für die Berech-

nung der finalen Ergebnismenge kombiniert werden. Als letzten Beitrag der

Arbeit betrachten wir die Verarbeitung von k-Nächste-Nachbar-Anfragen über

Objekten mit klassenspezifischen Selektionskriterien, wobei vorgegeben wird,

dass Ergebnisobjekte einem spezifischen Typ angehören. Wir präsentieren den

MISP-Index, der Objekte zunächst anhand der Klassenzugehörigkeit (oder einer

Kombination von Klassen), darauf folgend mittels Ähnlichkeitssuche auf einem

III

IV

Subindex für jede Teilmenge von Objekten indiziert. Die Anzahl solcher Teilmen-

gen kann kombinatorisch explodieren, weswegen wir ein Kostenmodell vorstellen,

das die Performanz der MISP Indexstruktur unter verschiedenen Konfiguratio-

nen analysiert, sodass die effizienteste für den zu durchsuchenden Datensatz

gefunden wird.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions . 4

1.3 Publications . 5

1.4 Outline of the Thesis . 6

2 Background and Preliminaries 7

2.1 Similarity Search . 7

2.1.1 Metric Space . 7

2.1.2 Distance Functions . 8

2.1.3 Similarity Queries . 9

2.1.4 Data Partitioning . 11

2.1.5 BK-tree . 12

2.1.6 iDistance . 13

2.1.7 Inverted Index . 15

2.2 Top-k Rankings . 17

2.2.1 Distance Functions . 17

2.3 Platforms for Distributed Data Processing 19

2.3.1 MapReduce . 19

2.3.2 Apache Spark . 20

3 Related Work 25

3.1 Similarity Search . 25

3.1.1 Indexing Techniques for Set-Valued Atributes 25

3.1.2 Metric Space Indexing Techniques 26

3.1.3 K-NN Queries under Categorical Constraints 28

3.2 Similarity Joins . 30

3.2.1 In-memory All-Pairs Similarity Search 30

3.2.2 MapReduce-based All-pairs Similarity Search 32

4 Theoretical Bounds for Top-k Rankings 35

4.1 Introduction . 35

4.2 Bounds on Overlap . 36

4.2.1 Different Size Rankings 38

4.3 Prefix Size for Top-k Rankings 39

V

VI CONTENTS

4.4 Bounds on Item Positioning . 40

5 Similarity Range Queries over Top-k Rankings 43

5.1 Introduction . 43

5.1.1 Problem Statement and Setup 44

5.1.2 Contributions and Outline 44

5.2 Framework . 45

5.2.1 Index Creation . 46

5.2.2 Query Processing . 47

5.3 Parameter Tuning . 48

5.4 Inverted Index Access & Optimizations 52

5.4.1 Pruning by Query-Ranking Overlap 53

5.4.2 Partial Information . 53

5.4.3 Blocked Access on Index Lists 54

5.5 Experiments . 56

5.5.1 Query Processing Performance 58

5.5.2 Index Size and Construction Time 62

5.6 Summary . 65

6 Distributed Similarity Joins over Top-k Rankings 67

6.1 Introduction . 67

6.1.1 Problem Statement and Setup 68

6.1.2 Contributions and Outline 69

6.2 Adaptation of Set-Based Algorithms to Top-k Rankings 69

6.2.1 Vernica Join . 69

6.3 Approach . 71

6.3.1 Clustering . 73

6.3.2 Joining . 75

6.3.3 Expansion . 76

6.4 Repartitioning using Joins . 78

6.5 Experiments . 80

6.5.1 Results . 81

6.6 Summary . 89

7 Class-Constrained k-Nearest Neighbor (CCk-NN) 91

7.1 Introduction . 91

7.1.1 Problem Statement . 92

7.1.2 Contributions and Outline 93

7.2 Multi-Key Inverted Index with Smart Posting Lists (MISP) . . . 93

7.2.1 Index Creation . 94

7.2.2 Querying . 95

7.3 Cost Model . 96

7.3.1 Cost for Querying . 96

7.3.2 Estimating the Size of the Index 99

7.3.3 Overall Cost . 100

7.4 Experiments . 101

CONTENTS VII

7.4.1 Results . 102

7.5 Summary . 106

8 Conclusion and Outlook 109

List of Figures 113

List of Algorithms 114

List of Tables 115

References 116

Chapter 1

Introduction

Current data processing trends are increasingly moving away from standard

database techniques, and are leaning toward unstructured, or semi-structured

data, where exact-match queries cannot be applied and different information re-

trieval methods are needed. The flourishing of research fields like machine learn-

ing, natural language processing or data exploration, and the prevalence of data

handling frameworks like Apache Hadoop [HDP], Apache Spark [SPK], Mon-

goDB [MDB] and HBase [HBS] further reinforce this shift toward non-traditional

data management methods. Similarity searching is one way of answering the

information need when faced with such schema-free data. For instance, consider

the case of image search engines, like Google Image Search, that offer query by

example search—as input the user provides an image, and as a result the sys-

tem returns images similar to the input. Similarity searching has been an active

research field for decades now, and some of its focuses include similarity search

index structures and algorithms in metric space [Sam06, CNBM01], sets and

strings [MAB16], or developing scalable, distributed algorithms [FAB+18].

In this thesis, we address the task of similarity search over top-k rankings

and class-constrained objects, both being of great value for a large number of

diverse applications, e.g., business analysis, data cleansing, or for searching in

the geospatial domain. Top-k rankings allow users and algorithms to effectively

and efficiently inspect the best performing items within a certain category. Con-

sidering the information deluge we are facing today, rankings are a ubiquitous

information representation. They are used in databases for business intelligence

and other forms of insight-seeking analyses, in politics and other social aspects

of our lives for mutual comparison, or expressing dominance. Often, they are

also crowd-sourced through mining user polls on the Web, in portals such as

IMDB or Netflix (for movie ratings), or specifically created by users in form of

favorite lists on personal websites. Similarity search over top-k rankings can

give access to valuable analytical insights. For instance, consider the rankings

in Figure 1.1 representing favorite lists from IMDB users, where they rate their

preferences for TV series. Based on their similarity, we could suggest to users

1

2 1. Introduction

series that they would like to watch. Considering the lists of Alice and Bob as

similar, we could propose the TV series Disenchantment to Bob and The Amer-

icans to Alice. Another application would be to detect communities within the

users database, based on the similarities of the lists.

Class-constrained objects are as well omnipresent, as all objects can have a

set of classes or attributes associated to them. For instance, movies can be clas-

sified by different genres, the year when they were produced or their director,

geospatial data can be classified by their type, for instance, sightseeing, recre-

ational, restaurant, administrative or also more fine-grained, such as cuisine of a

restaurant. To contemplate the need for similarity search over class-constrained

objects, consider Bob, who is planning a trip to Brazil. His first destination is

São Paulo and he wants to see where to go from there. He likes large cities,

so he wants to find the nearest cities to São Paulo with over million inhabi-

tants. In this thesis, we specifically aim at answering such questions, where the

user is interested in finding the nearest objects that also belong to a concrete,

user-defined, set of classes.

Alice Bob John

1. Narcos Narcos The Big Bang Theory

2. Stranger Things Stranger Things The Office

3. Black Mirror Sherlock Narcos

4. Disenchantment Black Mirror Modern Family

5. Sherlock The Americans Planet Earth

Figure 1.1: Example top-k lists of favorite TV Series for IMDB users.

1.1 Problem Statement

In this thesis, we address three types of similarity search queries, namely, sim-

ilarity range queries, similarity join, and a variation of the nearest neighbors

query. The former two we solve over a dataset of top-k rankings, while the

latter, over class-constrained objects. In all three cases the focus is on the query

execution performance. In the following, we define each one more formally and

discuss the challenges that come with them.

The first problem that we address in this thesis is to efficiently process sim-

ilarity range queries over a dataset of top-k rankings T , defined as:

Definition 1 (Similarity Range Search) Given a dataset T of top-k rank-

ings, a distance function d, a user-defined query ranking q, and distance thresh-

old θ, the task is to efficiently find all rankings in T with distance below or equal

to θ, i.e., {τi|τi ∈ T ∧ d(τi, q) ≤ θ}.

Furthermore, we also address the similarity joins problem for top-k rankings,

1.1 Problem Statement 3

where we specifically focus on devising an efficient distributed solution, defined

as:

Definition 2 (Similarity Joins) Given two dataset S and T of top-k rank-

ings, a distance function d, and distance threshold θ, the task is to efficiently

find all pairs (τi ∈ S, τj ∈ T) with distance below or equal to θ, i.e., {(τi ∈
S, τj ∈ T) ∧ d(τi, τj) ≤ θ}.

Without loss of generality, in this thesis, we discuss the self join problem,

i.e., to find all pairs {(τi, τj)|τi, τj ∈ T , i 6= j ∧ d(τi, τj) ≤ θ}.
For the similarity range queries, we assume that the dataset T remains the

same, while the query ranking q and the threshold θ change at query time. This

entails indexing the rankings in T . Thus, the challenge here is developing an

index structure that allows efficient answering of this type of queries over top-

k rankings. Since the threshold value changes at query time, no assumption

should be made about its value when designing the index structure. While

the index construction time and the memory consumption should be taken into

consideration, the focus here is on minimizing the query answering time. On

the other hand, for similarity join queries we assume that the threshold θ is

given upfront, and thus, could possibly be used for improving the performance.

However, since the similarity join result set includes all pairs of rankings in T
with distance smaller than θ, this entails processing all rankings in T . In fact,

the naive solution has O(n2) complexity, where n is the size of the dataset,

as all records need to be compared to each other. The challenge here is to

determine ranking-specific filtering techniques which would reduce the number

of comparisons that need to be made. In addition, since we focus on developing

a distributed solution, we need to handle the data distribution, which ideally

should be equal among all nodes, and the communication or data shuffling

between nodes, which should be kept as low as possible.

In this thesis, as a distance measure for comparing the rankings we use Spear-

man’s Footrule. Fagin et al. [FKS03] show that there is a metric Spearman’s

Footrule adaptation for top-k rankings, whose ranked items do not necessar-

ily match or overlap at all. This immediately suggests employing metric data

structures, like BK-trees [BK73] or M-trees [CPZ97], for indexing and similarity

search, however, as we will show later in our thesis, a better performance can

be achieved when these are combined with an inverted index.

Furthermore, in this thesis we address the problem of a special type of k

nearest neighbor query, named class-constrained k-NN (CCk-NN).

Definition 3 (Class-Constrained k Nearest Neighbor) Given a dataset

of objects O = {o1 . . . on}, where each object has a set of classes Cor ⊆ C

associated to it, from one global domain of classes C, a distance function d, a

user-specified query q, and a user-specified query classes Cq ⊆ C. The task is to

find k objects OR ⊆ O, such that ∀or ∈ OR : Cor ⊇ Cq, and there is no object

os ∈ O and or ∈ OR such that d(q, os) < d(q, or) and Cos ⊇ Cq.

4 1. Introduction

A naive solution to this problem would be for each object in the dataset O

to check if it satisfies the query classes Cq and if so, compare it to q. However,

a better performance can be reached when the objects are indexed using an

inverted index. Then, the dataset objects that satisfy the classes Cq, can be

determined upfront. Further sequential scan over these classes is needed to

find the nearest objects to q. Alternatively, similarly as with the rankings,

the dataset objects can be indexed using a spatial index structure like the R-

tree [Gut84] or the M-tree [CPZ97]. To process the CCk-NN query, the index

structure’s k-NN retrieval mechanism can be used. By executing a k′-NN query,

where k′ > k and check which of the results satisfy the classes in Cq. If the results

found are less than k the process should be repeated with larger k′. Ideally, the

CCk-NN search process can be implemented in an incremental fashion and stops

right after k objects with classes Cq are found. In this thesis, similarly as before,

we make the hypothesis that a combination of an inverted index with a spatial

index structure would be a more suitable solution for such type of queries.

This opens a new set of challenges, like for instance, how these two should be

combined in order to achieve the best query performance, while keeping the

index construction time and memory consumption low.

1.2 Contributions

With this work, we make the following contributions to the area of similarity

search:

• We devise theoretical bounds for top-k rankings, based on the Spearman’s

Footrule distance between them, which find its application in several dif-

ferent problems where top-k rankings are used. Especially important is

their use for the adaptation of existing set-based similarity search and join

algorithms for handling top-k rankings.

• We present a novel index structure, coined Coarse index, and algorithms

for processing similarity range queries over a dataset of top-k rankings.

The presented index structure combines two well known indexing tech-

niques, typically used independently from each other in different problem

settings, to bring the best out of both worlds.

• We present a theoretical cost model that based on the dataset distribution

can compute the performance sweet spot of our proposed Coarse index.

Furthermore, trough experiments, by using two real-world datasets, we

show that the cost model correctly predicts the parameters of the Coarse

index, that would lead to its best performance.

• As a complement to the proposed approach for similarity range queries

over top-k rankings, we propose an efficient solution to the problem of

similarity join for top-k rankings. The proposed solution is implemented

in Apache Spark [SPK], a highly established platform for large scale data

1.3 Publications 5

analytics, and thus is able to handle large amounts of data. Furthermore,

we adapt existing set-based distributed MapReduce approaches to top-k

rankings and implement them using Apache Spark.

• To complete our contributions, we also address the third type of similarity

queries, the k nearest neighbors (k-NN). Concretely, we analyze the prob-

lem of k nearest neighbors where as input we are provided with a dataset of

class-constrained objects, and the user is interested in the nearest objects

to the query that also satisfy some set of classes, coined class-constrained

k-NN. We propose MISP, an index structure for efficiently handling such

type of similarity queries, and a cost model, that estimates the perfor-

mance and memory consumption of the proposed index structure based

on the properties of the input data.

1.3 Publications

The work presented in this thesis has been published in several peer-reviewed

papers in conferences and workshops.

In [MAM15], we have introduced the problem of similarity search over top-k

rankings and presented our Coarse index, described in Chapter 5, a hybrid index

structure, which partitions the data according to their pairwise distance. The

span of the partitions affects the performance of the Coarse index, and thus, we

also conceive a cost model, that, depending on the data distribution, computes

the partitioning sweet spot. In this paper, we also define some theoretical bounds

over top-k rankings, which allow us to apply a well known set-based filtering

technique to our problem setting.

• Evica Milchevski, Avishek Anand, and Sebastian Michel. The Sweet Spot

between Inverted Indices and Metric-Space Indexing for Top-K-List Simi-

larity Search. 18th International Conference on Extending Database Tech-

nology (EDBT), 2015.

In [MNM18], we have addressed the problem of Class-Constrained k nearest

neighbors (CCk-NN). In this paper we have focused on devising a cost model

that estimates the performance of an index structure for answering CCk-NN

queries.

• Evica Milchevski, Fabian Neffgen, and Sebastian Michel. Processing Class-

Constraint K-NN Queries with MISP. 21st International Workshop on the

Web and Databases (WebDB), 2018.

The theoretical bounds, presented in Chapter 4 and its applications have

been published in different publications. In [MM16] we have presented our

work on maintaining a set of crowd-sourced top-k rankings, based only on the

distance, i.e., similarity, between the rankings.

6 1. Introduction

• Evica Milchevski, and Sebastian Michel. Quantifying Likelihood of

Change through Update Propagation across Top-k Rankings. 19th Inter-

national Conference on Extending Database Technology (EDBT), 2016.

In [PMM16] we have extended the PALEO system [PM16], initially designed

to reverse engineer an SQL query that, given a database and a sample top-k

input list, would return the same input list, to be able to also find SQL queries

that would result in lists similar to the input top-k list. In this paper, some of

the bounds presented in Chapter 4 have been applied in order to improve the

efficiency of the system.

• Kiril Panev, Evica Milchevski, and Sebastian Michel. Computing sim-

ilar entity rankings via reverse engineering of top-k database queries.

Workshop on Keyword Search and Data Exploration on Structured Data

(KEYS), 2016.

In [PMMP16] a complete prototype implementation of PALEO has been

demonstrated.

• Kiril Panev, Sebastian Michel, Evica Milchevski, and Koninika Pal. Ex-

ploring Databases via Reverse Engineering Ranking Queries with PALEO.

42nd International Conference on Very Large Databases (VLDB), 2016.

1.4 Outline of the Thesis

This thesis is organized as follows. In Chapter 2 we present the background

concepts, algorithms and frameworks needed for understanding the work pre-

sented in this thesis. Chapter 3 discusses related work in the filed of similarity

search. Here, we specifically describe work for similarity search in metric space

and similarity join and search for sets and strings. In Chapter 4 we present

theoretical bounds for top-k rankings based on Spearman’s Footrule distance

between them. In Chapter 5 and 6 we present our approaches for similarity

search over top-k rankings. Specifically, in Chapter 5 our work on similarity

range queries, where a novel index structure is presented, and in Chapter 6 we

present distributed approaches for efficiently solving the problem of similarity

joins over top-k lists. In Chapter 7 we present our work on the special type of

k nearest neighbors queries, the class-constrained k nearest neighbors. Finally,

in Chapter 8 we summarize our work and present directions for future work.

Chapter 2

Background and

Preliminaries

In this chapter, we present background knowledge necessary for understanding

the work described in this thesis. We start by introducing the concepts of simi-

larity search where we explain the different types of queries, distance functions,

and index structures applied in our methods. The fundamentals of metric space

and the indexing techniques for metric space are also explained. We continue by

discussing rankings, top-k rankings and the distance functions that can be used

for comparing them. Finally, the core concepts behind platforms for distributed

data processing, specifically MapReduce and Apache Spark, are explained.

2.1 Similarity Search

2.1.1 Metric Space

In this thesis, we mainly deal with metric distance functions, or simply metrics.

The following definition defines metric space M [O’S06]:

Definition 4 Suppose M is a set and d is a real function defined on the Carte-

sian product M ×M . Then d is called a metric on M if, and only if, for each

a, b, c ∈M :

• Positive property: d(a, b) ≥ 0 with equality if, and only if, a = b.

• Symmetric property: d(x, y) = d(y, x)

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

M is called a metric space, and d is a metric distance, or simply a metric.

One of the most well-known metric distances is the absolute-value function on

R. In general, if the distance between two objects a and b is smaller, the objects

7

8 2. Background and Preliminaries

are more similar or closer to each other. In some domains, it can be assumed

that d never exceeds some value r, i.e., for all a, b ∈ M , d(a, b) ≤ r. Then, the

metric space is called bounded metric space. In this thesis, we consider such

bounded metric spaces.

2.1.2 Distance Functions

There are many different distance functions that belong to the metric space.

They can be divided into discrete and continuous functions. Discrete functions

have a limited set of possible values, whereas continuous functions map onto

infinitely many possible values.

Minkowski Distances

The most well-known family of continuous functions are the Minkowski dis-

tances, called Lp metrics, Lp : Rn × Rn 7→ R+:

Lp[(x1, . . . , xn), (y1, . . . , yn)] =
p

√√√√ n∑
i=1

|xi − yi|p (2.1)

for p ∈ R and p ≥ 1.

For p = 1, the metric is called Manhattan, or the taxicab distance, since it

resembles the way for measuring the distance from one place to another using

the parallel network of roads in the city of New York.

For p = 2, the Minkowski distance is called the Euclidean distance and it is

the most widely used distance function in vector space.

Hamming Distance

The Hamming distance is used to quantify the distance (similarity) of two strings

a and b of equal length n. Initially described in the paper of R. W. Ham-

ming [Ham50], it measures the number of positions at which the two strings

differ. For comparing strings with different lengths, the shorter string is padded

with null characters to reach the length n, to make the Hamming distance com-

putation possible. The Hamming distance is a metric for a fixed length of words

n. Figure 2.1 shows three example strings where the characters which differ are

marked with red. The Hamming distance between the strings s1=house and

s2=hoouse is 4, h(s1, s2) = 4, since only the first 2 characters are matching.

Similarly, we can compute h(s1, s3) = 3 and h(s2, s3) = 4.

Edit Distance

The edit distance, also called Levenshtein distance, is similar to the Hamming

distance. It is calculated as the minimum number of edit operations that are

2.1 Similarity Search 9

s1 :

s2 :

s3 :

h o u s e

h o o u s e

h o t

Figure 2.1: Example strings where the difference in characters is marked with

red. The Edit and the Hamming distance are the same between (s1, s3) and

(s2, s3), with values 3 and 4, respectively. For the pair (s1, s2), h(s1, s2) = 4

while e(s1, s2) = 1.

needed to transform one string into the other. The edit operations considered

include: inserting a character into a string, deleting a character from the string,

or, replacing one character with another. Considering the example strings in

Figure 2.1, the Edit distance for strings s1 and s2 is 1, e(s1, s2) = 1, since

inserting the character o at position 3 in s1 would make the two strings identical.

The edit distance for pairs (s1, s3) and (s2, s3) is the same as their Hamming

distance, i.e., e(s1, s3) = 3 and e(s2, s3) = 4.

There are several variations of the edit distance which include adding either

weights to the operations considered, or to the characters being replaced. These

variations are useful for spelling corrections of strings.

Jaccard Distance

The Jaccard distance is the complement of the Jaccard coefficient [Jac12], com-

puted as:

dJ(s1, s2) = 1− J(s1, s2)

where s1 and s2 are sets. The Jaccard coefficient is the standard measure

used for measuring the similarity between two sets s1 and s2. It is defined as:

J(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

The maximum value of the Jaccard coefficient is 1, meaning that the two

sets have no overlap at all, and its minimum value is 0, meaning that the two

sets are identical. For empty sets, the Jaccard coefficient is 1.

2.1.3 Similarity Queries

A similarity query is a type of query where at input we are given a query object

q and, usually, some type of distance or similarity constraint. As output, all

objects that satisfy the constraint need to be returned, and usually, these are

objects that are close to, or similar to, the query object q [ZADB06].

10 2. Background and Preliminaries

Range Query

This type of queries is probably the most used and well known type of similarity

queries, denoted as R(q, r), where r is the query radius. Given some dataset D,

a query q and a distance (similarity) radius r, the goal of the range query is to

retrieve all objects, o ∈ D with distance (similarity) within r:

R(q, r) = {o ∈ D, d(o, q) ≤ r}

Note that the query object q does not need to be a member of the dataset

D. If the search radius r is zero, then the query is called a point query. In

this case, only the elements that are duplicates to the query object q should be

returned as results

Nearest Neighbor Query

In cases where the search range is difficult to specify, for instance, when we do

not have any a priori knowledge of the data, it would be more appropriate for

searching for those objects that are closest to the query object q. These type of

queries, where instead of a search range, we are searching for the nearest object

to q with respect to some distance function d, are called the nearest neighbor

queries. This concept can be generalized to searching for the k nearest neighbors

to q, called k nearest neighbor queries, or k-NN. Formally, the result should be:

k-NN(q) = {R ⊆ D, |R| = k ∧ ∀o ∈ R, y ∈ D −R : d(q, o) ≤ d(q, y)}

If the size of the dataset to be searched is smaller than k, then the whole

dataset is returned as a result. When there are more than k objects with the

same distance to the query object, ties are broken arbitrarily.

Reverse Nearest Neighbor Query

In certain application scenarios, like for instance in decision support systems, a

different type of k-NN query can be useful, where instead of searching for the

nearest object to q, we want to retrieve all objects that have q as their nearest

neighbor. This is called reverse nearest neighbor queries, and the general case is

called reverse k nearest neighbor queries (k-RNN). In the general case we want

to retrieve all objects that have q in their k-NN result set. Formally:

k-RNN(q) = {R ⊆ D,∀o ∈ R : q ∈ k −NN(o) ∧ ∀o ∈ D −R : q /∈ k-NN(o)}

Note that for this type of queries, also objects that have a large distance to

the query object can be in the result set.

2.1 Similarity Search 11

Similarity Join

The last type of similarity query that we are going to discuss in this thesis,

is the similarity join, or in this thesis also referred to as all-pairs similarity

search, which usually finds its application in the fields of data cleaning or data

integration. The similarity join between two datasets X and Y retrieves all

pairs of objects (x ∈ X, y ∈ Y) whose distance (similarity) is smaller (larger)

than a given distance (similarity) threshold, θ. More specifically:

SimJoin(X,Y, θ) = {(x, y) ∈ X × Y : d(x, y) ≤ θ}

We also define a similarity self join where we have only one dataset X and

we want to find all pairs of objects (xi ∈ X,xj ∈ X,), i 6= j, such that their

distance, d(xi, xj), is smaller or equal to θ.

2.1.4 Data Partitioning

The main task in this thesis is searching for similar objects. This is usually

done by first indexing the data using some kind of index structure, and then,

given a query object and a distance (similarity) threshold, searching this index.

In metric space, the index structures are constructed such that no assumption

is being made about the data being indexed. The only assumption made is

that the distance between the objects in the dataset can be computed, and used

while indexing, and searching the data. These indexing methods divide the data

space into subsets, based on the distance between the objects. When searching,

certain partitions which share some piece of information (e.g., spatial closeness),

can be ignored, again, depending only on the distance between the data in the

partition and the query object.

There are two basic partitioning schemes that are applied by the metric

index structures, ball partitioning and hyperplane partitioning, first defined by

Uhlmann [Uhl91]. The here described concepts are used by several index struc-

tures referenced in this thesis.

Ball Partitioning

One possibility is to split the data objects o based on the distance d to one

pivot element p. One partition is the data that is inside a ball around the pivot

element, and another partition is formed by the data outside the ball [Uhl91].

The following formula describes this formally:

bp1(o, p, r) =

{
0 d(o, p) ≤ r
1 d(o, p) > r

(2.2)

This can be extended to use more than one radius. Basically, the distance cuts

the space in n+ 1 parts. For example, for n = 2:

12 2. Background and Preliminaries

bp2(o, p, r1, r2) =


0 d(o, p) ≤ r1

1 d(o, p) > r1 ∧ d(o, p) ≤ r2

2 d(o, p) > r2

(2.3)

An example of ball partitioning is given in Figure 2.2. In this example

2 dimensional data is used, which is divided in 2 (left) and 3 (right) regions

around a chosen pivot.

p
r

0
1

p
r1

0
1

r2
2

Figure 2.2: Example of ball partitioning where the space is divided in two (left)

and three (right) partitions.

Hyperplane Partitioning

The hyperplane partitioning choses at least two pivot elements and divides the

data into two, or more partitions by the relative distance of the objects to the

pivots. A data object o belongs to the partition represented by the nearest pivot

pn. For instance, when we have two pivots, then:

hp2(o, p1, p2) =

{
0 d(o, p1) ≤ d(o, p2)

1 d(o, p1) > d(o, p2)
(2.4)

This strategy can be extended to use more pivots. Figure 2.3 illustrates the

division of the data into two partitions.

2.1.5 BK-tree

The BK-tree is one of the earliest distance based index structures that works

with discrete metrics. Proposed by Burkhard and Keller [BK73], the BK-tree

resembles an n-ary search tree, where the data is partitioned according to the

ball-partitioning principle.

Index Creation

The subtrees in the BK-tree group items according to their distance to the parent

node. Thus, each node in the BK-tree can have at most m children, where m

2.1 Similarity Search 13

p1

0

1

p2

Figure 2.3: Example of hyperplane partitioning where the space is divided in

two partitions

is the number of values that the distance function can take. For creating the

tree, first a random object is chosen and is set as the root of the tree. Then,

the distance from each element of the tree to the root node is computed, and

according to the distance, the object is placed in a corresponding branch. This

is repeated recursively, until there are no more than b children in one subset. b

is called bucket capacity

Thus, the BK-tree, at each level of the tree, divides the data objects into m

subsets, based on their distance to a randomly chosen pivot element.

Querying

A range search is done by traversing the tree from the root to the leaves, and

the triangle inequality is used for deciding which subtrees have to be visited.

Given a query object q and a threshold distance θ, we start by computing

the distance from the q to the root object r, d(q, r). Then, all the branches

with distance i, such that d(q, r) − θ ≤ i ≤ d(q, r) + θ need to be searched.

This is done recursively until a leave node is reached, where all the elements

are compared to the query object. All compared objects, o, where the distance

d(q, o) ≤ θ are returned as result to the user. The triangle inequality ensures

that that there are no false negatives.

2.1.6 iDistance

iDistance [JOT+05] is a distance based indexing strategy, specifically designed

for high dimensional data that allows incremental searching. It utilizes the idea

of mapping the objects into linear space, so that indexing these values can be

achieved with other well known strategies. The authors propose using a B+-

tree, but other structures can be used as well.

iDistance uses the hyperplane partitioning method. Initially, i reference

points (pivots) Oi are chosen. They do not have to be among the data points,

but must be in the same data space. The pivots are used as an anchor for data

points d, where each d gets assigned to a pivot element and the partition that

it represents. The authors propose and discuss several partitioning methods.

14 2. Background and Preliminaries

Index Creation

The creation of the index is done in three main steps. First, according to the

partitioning scheme, the pivots are chosen. Then, for each object d, the distances

to all pivots Oi is calculated and the closest pivot is chosen as a reference point.

In the last step, for each object d, an index key is calculated based on the

distance to its reference point, dist(d,Oi):

keyd = i · c+ dist(d,Oi)

where c is a constant and i is the index of the partition to which the object d

belongs. These keys are indexed using a B+-tree. c is used to achieve mapping

of the objects that belong to one partitions into regions, and it should be set to

sufficiently large number, preferably greater or equal to the maximum distance

d+ of the data space. Note that two points around a pivot element can be

equidistant to the pivot, and thus can have the same index key, but this does

not affect the correctness of the index, as long as the chosen structure can handle

multiple entries per value.

Querying

k-NN queries q, with k as parameter, are done by performing a range search

with radius r and incrementally expanding r until k results are found. Range

queries are executed by analyzing the distances of the query to each pivot Oi.

Under certain circumstances, partly or all data points associated with this pivot

can be pruned. Based on the triangle inequality, it follows that:

dist(Oi, q)− dist(p, q) ≤ dist(Oi, p) ≤ dist(Oi, q) + dist(p, q)

and thus all points with dist(p, q) ≤ r must fulfill the following equa-

tion [JOT+05]:

dist(Oi, q)− r ≤ dist(Oi, p) ≤ dist(Oi, q) + r

For easier pruning, dist maxi is remembered, which is the distance between Oi
and the point furthest away from it. If dist(Oi, q)− r ≤ dist maxi holds, then

the partition represented by Oi has to be searched, otherwise it can be pruned.

The actual search is done by scanning the one dimensional index structure

for every qualifying pivot Oi. To be more precise, the bounds of i ·c and (i+1) ·c
are considered, because everything outside this bounds belongs to another pivot.

For every found data object, the real distance is calculated, because in the one

dimensional index there can be false positives due to the overlap in the keys.

When the values are stored in an index structure, which supports interval queries

on the values, then searching can be done efficiently.

2.1 Similarity Search 15

a < R1, R2, R3 >

b < R1 >

c < R1, R2 >

d < R1, R2, R3 >

e < R1, R3 >

R1 = {a, b, c, d, e}
R2 = {a, c, d}
R3 = {a, d, e}

Figure 2.4: Example inverted index for three relations R1, R2, and R3.

2.1.7 Inverted Index

The inverted index, or sometimes also called inverted file, is one of the first ma-

jor concepts introduced in the field of information retrieval [MRS10]. Its ap-

plication since then has expanded greatly, including answering similarity search

queries for set-valued types of data.

An inverted index consists of two components—a dictionary D of objects

and the corresponding posting lists (aka. index list) that record for each object

information about its occurrences in the document or relation.

Figure 2.4 shows an example inverted index for three relations, R1, R2 and

R3, with dictionary D = {a, b, c, d, e}. For instance, if we look at the posting

list for object b we can see that this object is only a member of R1.

The initial and main purpose of the inverted index was efficient answering

of keyword queries in search engines. However, inverted indices can be used

for many other tasks, like for instance, in our specific case, for similarity search

of top-k rankings. In this case, we can either use the standard inverted index,

where rank information would be lost, or, to support arbitrary ranking queries,

an inverted index which contains all items from the rankings in its dictionary

and record rank information in its index lists, like the inverted index depicted

in Figure 2.5. Thus, the entry (τ12 : 1) found in the index list for item b conveys

that the object occurs at rank 1 in ranking τ12.

Querying through Filter and Validate

In the standard inverted index, a separate full access for each of the found

rankings is required; as there is no positional information given. We call this

method Filter and Validate (short, F&V). This is the most basic inverted-index–

based method, consisting of the following two phases:

Filter Phase: To process a ranking query q with similarity threshold θ,

the inverted index is queried for each item in the the query. The obtained index

lists are merged to identify the distinct rankings that overlap with the query

ranking (in at least one item). These are considered candidates.

Validation Phase: For each identified candidate ranking θ, the distance

d(q, τ) to the query is computed. And all θ with d(q, τ) ≤ θ are returned as

results.

16 2. Background and Preliminaries

inverted index with ranks

item 2 <(τ : 0),(σ : 0)>

item 1 <(τ : 1)>

Figure 2.5: Example position-augmented posting lists for the top-k rankings

shown in Figure 2.6

.

Doing so, the plain inverted index is sufficient, as no rank information is

required. This Filter and Validate approach is also independent of the actually

employed distance function, which does not even have to be a metric. Again, we

obviously assume θ < 1. Otherwise, rankings τi that are not overlapping with q

at all, would be missed in the results, as these cannot be identified in the filter

phase using an inverted index.

In the inverted index augmented with rank information, this additional

lookup is not required. In the latter, the index lists can be sorted by rank-

ing id for efficient multi-way merge operations; or be ordered by rank to be able

to derive early stopping and pruning thresholds. These more efficient processing

techniques are discussed later in the thesis.

Processing Keyword Queries

Our inverted index processing techniques follow some well-known methods for

processing keyword queries from the information retrieval field.

The task of keyword queries is, given a small set of keywords, to return

the most relevant documents, according to some scoring function, from a large

collection of documents. To achieve this inverted indices are used. There are

many different approaches for realizing this, and various implementation details,

which we are not going to describe here. Instead, we are going to briefly outline

two of the most common approaches for processing the index lists in the case of

keyword queries:

Term-at-a-Time: In a Term-at-a-Time (TaaT) query processing, the terms

of the keyword query are processed one at a time. This means, that for each

term in the query, we retrieve its posting list, and read it completely, before

starting to process the posting list for the next term. In order to compute the

score for each document that contains the terms, an accumulator is stored and

updated while processing the lists.

Document-at-a-Time: In a Document-at-a-Time (DaaT) query processing,

the posting lists of the terms in the keyword query are processed concurrently.

In this type of query processing, the posting lists are ordered by the document

id, and with this, the score of one document can be completely evaluated at

2.2 Top-k Rankings 17

once. The posting lists are traversed in parallel and aligned on a matching

document.

2.2 Top-k Rankings

Complete rankings are considered to be permutations over a fixed domain D.

We follow the notation by Fagin et al. [FKS03] and references within. A per-

mutation σ is a bijection from the domain D = Dσ onto the set [n] = {1, . . . , n}.
For a permutation σ, the value σ(i) is interpreted as the rank of element i. An

element i is said to be ahead of an element j in σ if σ(i) < σ(j). For instance,

in Figure 2.6, item 2 is ahead of item 5 in τ , thus τ(2) < τ(5) holds.

τ σ

rank τ(i) item i rank σ(i) item i

0 2 0 2

1 1 1 5

2 5 2 7

3 3

Figure 2.6: Two top-k lists containing items with domains Dτ = {1, 2, 3, 5} and

Dσ = {2, 5, 7}.

We consider incomplete rankings, called top-k lists in [FKS03]. Formally, a

top-k list τ is a bijection from Dτ onto [k]. The key point is that individual top-

k lists, say τ1 and τ2 do not necessarily share the same domain, i.e., Dτ1 6= Dτ2 .

Intuitively, a top-k ranking is an ordered list of distinct items, which represents

an incomplete ranking of the total amount of known items. Figure 2.6 shows

two top-k rankings τ and σ of different length with two items in common, called

overlapping items.

2.2.1 Distance Functions

Pairwise similar rankings can be retrieved by means of distance functions, like

Kendall’s Tau or Spearman’s Footrule distance, over all pairs or selectively for

a given query ranking. We first introduce metrics over complete rankings over

a single domain and then we discuss results on computing distances for top-k

lists (incomplete rankings).

For two permutations σ1 and σ2 over the same domain, the Kendall’s Tau

K(σ1, σ2) and Spearman’s Footrule F (σ1, σ2) measures are two prominent ways

to compute the distance between σ1 and σ2.

The Kendall’s Tau between two permutations σ1, σ2 is computed as the sum

over the concordant and discordant pairs in one ranking. To put that more

formally, let P = {(i, j)|i 6= j and i, j ∈ D} be the set of unordered pairs in

the domain of the rankings. Then, Kendall’s Tau for two permutations σ1, σ2 is

computed such that, for each pair (i, j) in P we add one to the distance if i and j

18 2. Background and Preliminaries

σ1 σ2

rank σ1(i) item i rank σ2(i) item i

0 2 0 2

1 1 1 3

2 3 2 1

Figure 2.7: Two permutations σ1 and σ2 containing items from the domain

D = {1, 2, 3}, P = (1, 2), (1, 3), (2, 3). K(σ1, σ2) = 1, F (σ1, σ2 = 2)

are in the opposite order in σ1 and σ2. For instance, consider the permutations

σ1 and σ2 given in Figure 2.7. Their Kendall’s Tau distance is K(σ1, σ2) = 1

since only the pair (1, 3) is in an opposite order, i.e., in σ1 item 1 is ranked

higher then item 3 while in σ2, item 3 is the better ranked one. The other pairs

in P are in the same order in both permutations.

Spearman’s Footrule metric is the L1 distance between two permutations,

i.e., F (σ1, σ2) =
∑
i |σ1(i)− σ2(i)|. Thus, the Footrule distance for the permu-

tations σ1 and σ2 given in Figure 2.7 is F (σ1, σ2) = 0 + 1 + 1 = 2.

Both measures are distance metrics, that is, they have symmetry property,

i.e., d(x, y) = d(y, x), are regular, i.e., d(x, y) = 0 iff x = y, and suffice the

triangle inequality d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z in the domain.

Fagin et al. [FKS03] discuss how the above two measures can be computed

over top-k lists. For both Kendall’s Tau and for Spearman’s Footrule distance,

they propose several adaptations, depending on how the non-overlapping items

are handled. In this thesis, we specifically focus on using Spearman’s Footrule

adaptation that is also a metric for top-k lists, and thus in the following we only

describe this measure. For a solution of the similarity search problem for top-k

rankings, where Kendall’s Tau is used as a distance function, we refer the reader

to [Pal18].

Fagin et al. [FKS03] define the Footrule distance with location parameter l,

such that for the items that belong to only one ranking σ1 an artificial rank l,

l > k is assumed, i.e., σ1(i) = l if i /∈ Dσ1 . Considering the rankings in Figure

2.6, we can calculate the distance of τ1 and τ2 by setting l = 4:

F (τ1, τ2) = |τ1(2)− τ2(2)|+ |τ1(1)− τ2(1)|+ |τ1(5)− τ2(5)|+ |τ1(3)− τ2(3)|
+ |τ1(7)− τ2(7)|
= |0− 0|+ |1− 4|+ |2− 1|+ |3− 4|+ |4− 2|
= 7

One can see another very intuitive behavior of this distance measure. When

comparing an item i, with i ∈ D̃τ1and i 6∈ D̃τ2 , there is a smaller penalty when

i is ranked worse in τ1 than if it is further ahead in the ranking. Fagin et al.

prove that this measure is a metric, for all values of the parameter l.

In this thesis, we assume that τ(i) takes values from 0 to k − 1 (instead

of 1 to k), It is clear that this does not affect our algorithms. When it comes

to the calculation of the Footrule distance between two rankings τ1 and τ2,

2.3 Platforms for Distributed Data Processing 19

Map : (k1, v1) 7→ list(k2, v2)

Reduce : (k2, list(v2)) 7→ list(v3)

Figure 2.8: Map and Reduce function. Note that ki are keys while vi are values.

we fix the value of l to k as suggested in [FKS03]. We further consider only

rankings of same size k, thus the largest possible value of the Footrule distance

is k × (k + 1) and occurs if two disjoint rankings are compared. The smallest

distance is 0, for the compared rankings are identical. In the rest of the thesis,

for ease of presentation, unless otherwise specified, we use normalized values for

the Footrule distance and θ, ranging from 0 to 1, i.e., dmax = 1.

2.3 Platforms for Distributed Data Processing

2.3.1 MapReduce

In 2004, Jeffrey Dean and Sanjay Ghemawat presented MapReduce [DG04], a

framework for analyzing and processing big data. This approach is based on

data being organized as key-value pairs, which are then processed by a map

and reduce concept, adapted from functional programming. The strength of

this framework lays in the concurrency of scalable data processing in a shared-

nothing cluster and the high fault tolerance on the worker side as well as on the

master side.

Figure 2.8 depicts the basic syntax of the user-defined Map and Reduce func-

tions. First, workers retrieve the key-value pairs and execute the Map function.

Each worker processes one chunk of the input data file, called a split. For each

record, the Map function emits a user defined set of intermediate key-value pairs

(k2, v2). The next step, called Shuffle phase, redistributes the pairs with identi-

cal keys k2 to the same workers, called Reducers. Then those nodes apply the

predefined Reduce function on the retrieved values v2, usually performing some

kind of merging operation, and output a list of resulting values v3. Finally, these

are collected and returned. This process can be seen in Figure 2.9

In order to reduce network traffic and usage of memory space a Combine

function was introduced, which is executed before the Shuffle phase and basi-

cally does the same task as the Reducer function, at each mapper node.

Some example problems that can easily be implemented and executed us-

ing MapReduce are counting the frequencies of the words in a collection of

documents, building an inverted index, a distributed grep, etc. A popular open-

source implementation of MapReduce is Apache Hadoop [HDP].

Alongside criticism about the incompatibility with other DBMS tools and

20 2. Background and Preliminaries

1

Mapping
phase

Input
split

Map Reduce

Input
split

Input
split

Input
split

Map

Map

Map

Reduce

Reduce

Result

Result

Result

Shuffle
phase

Reduce
phase

Input Output

Figure 2.9: MapReduce data processing flow.

being a low-level language not able to describe larger programs efficiently, the

main flaw of the framework is the restrictive programming paradigm based on

acyclic data flows, which can result in an unnecessary slow computation of

complex algorithms.

2.3.2 Apache Spark

Apache Spark [SPK] is a general purpose, open-source platform that enables

easy and fast development and execution of distributed application. It is con-

sidered as an evolution of MapReduce since it provides the same capabilities

with an improved performance. Additionally, several other functionalities are

provided and many libraries are built on top of its core. Parallelization of appli-

cations is easier when using Spark due to the notions of RDD, transformations

and actions used in the platform. Spark performs computations on Java Virtual

Machines (JVMs).

An important characteristic of Apache Spark is its ability to execute iterative

processes, using mostly the main memory in order to reduce disk I/O, thus

reducing the overall execution time of the application. This is the main difference

between Spark and MapReduce, thus the better performance of the former, as

shown by Shi et al. [SQM+15]. The reason for such difference is that when

using MapReduce it is necessary to have a map and a reduce phase, and the

reduce phase necessarily needs to store its results. If a job can not be done in a

single map and reduce phase, a second map and reduce is necessary, and thus,

the data written by the first phase needs to be read from disk again. Apache

Spark does not have this drawback, and keeps intermediate results in memory,

whenever possible.

On its own, Spark is not a data storage solution. However, it supports

different data storage systems, as for example HDFS [SKRC10], Apache Cas-

sandra [CSD], HBase [HBS], or the local file-system as well, when running in

local mode. Furthermore, Spark is often used together with a cluster manager,

which coordinates the distribution of Spark applications. Supported cluster

2.3 Platforms for Distributed Data Processing 21

the concepts in this chapter throughout the text. Further, we hope this explanation
will provide you with a more precise understanding of some of the terms you’ve
heard tossed around by other Spark users and encounter in the Spark documenta‐
tion.

How Spark Fits into the Big Data Ecosystem
Apache Spark is an open source framework that provides methods to process data in
parallel that are generalizable; the same high-level Spark functions can be used to per‐
form disparate data processing tasks on data of different sizes and structures. On its
own, Spark is not a data storage solution; it performs computations on Spark JVMs
(Java Virtual Machines) that last only for the duration of a Spark application. Spark
can be run locally on a single machine with a single JVM (called local mode). More
often, Spark is used in tandem with a distributed storage system (e.g., HDFS, Cassan‐
dra, or S3) and a cluster manager—the storage system to house the data processed
with Spark, and the cluster manager to orchestrate the distribution of Spark applica‐
tions across the cluster. Spark currently supports three kinds of cluster managers:
Standalone Cluster Manager, Apache Mesos, and Hadoop YARN (see Figure 2-1).
The Standalone Cluster Manager is included in Spark, but using the Standalone man‐
ager requires installing Spark on each node of the cluster.

Figure 2-1. A diagram of the data processing ecosystem including Spark

Spark Components
Spark provides a high-level query language to process data. Spark Core, the main
data processing framework in the Spark ecosystem, has APIs in Scala, Java, Python,
and R. Spark is built around a data abstraction called Resilient Distributed Datasets
(RDDs). RDDs are a representation of lazily evaluated, statically typed, distributed
collections. RDDs have a number of predefined “coarse-grained” transformations
(functions that are applied to the entire dataset), such as map, join, and reduce to

8 | Chapter 2: How Spark Works

Figure 2.10: Distributed data processing ecosystem, including Spark (Image

source: [KW17]).

managers include Hadoop YARN or Mesos, where the management is done by

these external platforms, creating containers where the Spark application will

run using the desired amount of resources, or the so called Standalone Cluster

Manager for more simple setups where Spark takes care of the entire manage-

ment. Figure 2.10 shows a diagram of the data processing ecosystem, including

Spark [KW17].

In addition to its core functionalities, the Spark supporting infrastructure

includes several APIs, like GraphX for handling graphs, MLib for machine learn-

ing tasks, Spark Streaming to handle streaming data and Spark SQL for work-

ing with structured data. In this thesis we rely only on the core components

of Spark, since it provides all necessary operations for implementing our algo-

rithms.

Resilient Distributed Dataset (RDD)

Spark represents datasets as RDDs, which are immutable, distributed collections

of elements stored across the nodes of a cluster, i.e., the executors [KW17]. Once

created, RDDs are partitioned among the available nodes of a cluster. This way

each node, or executor, handles a subset of the data. RDDs are evaluated

lazily, meaning that, instead of directly computing each RDD transformation,

the computation is performed only at the end, when the final RDD data needs

to be computed. Since they are immutable, and fault-tolerant, whenever an

operation is performed on an RDD, a new RDD is created based on the previous

one and both can be accessed through their pointers.

Furthermore, RDDs can contain any type of Java, Python, or Scala objects,

as well as user defined classes, thus, providing flexibility on the possible data

types to be processed. Spark works preferably with the system’s main mem-

ory, i.e., stores RDDs in the main memory of the executors, allowing faster

repeated computations. However, in the case of large intermediary result, it is

also possible to store data on disk.

22 2. Background and Preliminaries

Transformations, Actions, and Lazy Evaluation

Spark supports two types of operations, which defer in the way they are evalu-

ated, and the result that they return [KW17]:

Transformations: Transformations are operations executed on RDDs, which

are lazy evaluated and always return a new RDD as a result. We refer to

these RDDs as parent and child RDD of the transformation. Based on their

dependencies, there are two types of transformations, transformation with wide

dependencies, and transformations with narrow dependencies. The type of the

transformation has a great effect on its evaluation. Transformation with nar-

row dependencies are those where there are only simple, finite dependencies

between the partitions of the child RDD and the parent RDD, and thus, can

be determined at design time. On the other hand, this is not the case with the

transformations with wide dependencies, where data usually needs to be parti-

tioned in a specific way, and thus, usually require shuffling of the data across

partitions. These transformations are usually more expensive, and thus need

to be used carefully. Figure 2.11 shows the difference in the dependency graph

between the partitions of parent and child RDDs for the two types of trans-

formations. Several transformations are available and the most common ones

with narrow dependencies are map and filter, and transformations with wide

dependencies include sort, join, groupByKey, etc..

Actions: Actions, on the other hand, do not transform the RDDs, but rather,

they bring the data to the driver, or write it to disk. Common actions are count

and saveAsTextFile: the first counts the number of elements in the collection and

the second stores the RDD to persistent storage. Note that all Spark programs

must have at least one action, since actions are the ones that force the evaluation

of the program.

Lazy evaluation: Another key characteristic of Spark is lazy evaluation.

Spark does not begin computing the partitions of an RDD, until an action

is called. To achieve this, Spark first creates a directed acyclic graph (DAG)

of execution stages, each consisting of possibly multiple transformations and

actions. Actions are leafs in the execution DAG, since the edges in a DAG are

based on the dependencies between the partitions of the RDDs. Each execution

DAG with one action and all the transformations needed for computing that

action, forms a job in Spark. Jobs are further divided into stages by wide trans-

formations that require shuffling of the data. This means that one stage ends,

and another stage begins whenever there is a need for a network communication

between worker nodes. In addition, the partitioning of the RDDs can also play

a role in the forming of the stage boundaries. Depending on the type of the

transformations, the engine can optimize the execution, allowing Spark to avoid

unnecessary data reads and writes, reducing I/O. For instance, Spark can com-

bine narrow transformations, like map and f ilter, performed on the same RDD,

2.3 Platforms for Distributed Data Processing 23

1

OR

Child RDD

Parent RDD

(a) Narrow transformations

1

Parent RDD

Child RDD

(b) Wide transformations

Figure 2.11: Dependency graph between the partitions of parent and child

RDDs for the two types of transformations (Image source: [KW17]).

to avoid multiple passes over the data. Stages further consist of tasks, which

are the smallest unit of computation in Sparks’s execution hierarchy. Each task

represents one local computation.

Modes, Runtime, and Tuning

In Spark, two deployment modes are provided: local and cluster [KKWZ15].

The first aims at local machines, mainly for development purposes, where one

can develop and test an application without the need of a cluster. The second

mode is for production applications, running in a cluster with up to several

thousand nodes. There are two main interfaces for interacting with the plat-

form, namely spark-shell and spark-submit, both capable of running in either

deployment mode. On one hand, spark-shell offers an interactive way to run

commands and check for its outcomes, which is very handy during develop-

ment since one can easily check the behavior of the application and can take

advantage of running it either in a local machine or in a cluster itself, which is

desirable when big amounts of data are being processed. On the other hand,

spark-submit allows submitting an entire task to Spark’s environment and run

it. This, for example, can be done providing a Java or Scala .jar file and setting

the main class and the method to be called.

Spark has one driver and more executors. ExecutorBackends represent a

bridge between the driver and an executor, i.e., there is one back-end per execu-

tor. As there is one single driver running in the environment, several back-ends

are connected to it updating the status of the executors as the task progresses

and send heartbeats to check if the executors are still alive and executing. Figure

24 2. Background and Preliminaries

2.12 shows such architecture, including also the placement of resource manager

when it is used.

Figure 2.12: Spark Runtime Architecture (Image source: [KKWZ15])

Finally, tuning Spark to make full use of available resources is also required

to achieve the best possible performance using the underlying hardware. One

can tune the total number of executors, the memory allocated for each executor

and the memory allocated for the driver in each node of the cluster. This can

be done either by passing the configuration as Spark’s arguments when running

an application or using the interactive shell utility, or by setting and configuring

files inside Spark’s installation. General recommendation is, in order to increase

the parallelism, to allocate to each executor more than one core; the exact

number depending on the configuration of the cluster.

Chapter 3

Related Work

This chapter gives an overview of state-of-the-art approaches for (all-pairs) sim-

ilarity search. We primarily distinguish two indexing paradigms for handling

ranked lists. First, considering the distance function used, i.e., Spearman’s

Footrule distance, for which Fagin et al. [FKS03] show that it retains its metric

properties also for incomplete rankings under certain assumptions, and applying

indexing techniques for metric spaces. Second, treating ranked lists as plain sets

and indexing them using methods like inverted indices. Thus, in Section 3.1.1

we describe works that can handle different types of similarity search queries for

set-valued attributes. In Section 3.1.2 we describe indexing techniques in metric

space. Section 3.1.3 focuses on indexing techniques that can handle incremen-

tal k-NN queries. Section 3.2.1 presents work on in memory all-pairs similarity

search approaches and Section 3.2.2 presents distributed approaches.

3.1 Similarity Search

3.1.1 Indexing Techniques for Set-Valued Atributes

Helmer and Moerkotte [HM03] present a study on indexing set-valued attributes

as they appear for instance in object-oriented databases. Retrieval is done based

on the query’s items; the result is a set of candidate rankings, for which further

validation should be computed. The focus in their work is on set containment

queries, i.e., given a query q the task is to find all sets s ∈ S such that qθs,

where θ ∈ {⊆,≡,⊇}. They compare four indexing methods, three signature-

based retrieval methods, and an inverted index. The signature based methods

work such that sets are represented using binary signatures. Using a coding

function, each set is mapped into a signature of length b, where k bits are set.

During search time, the signature of the query is checked against the signature

of the object. If both signatures are equal, then the pair is a possible result

and needs to be verified. Otherwise, we can be sure that the two sets are not

equal. The authors propose and compare three indexing schemes for the set

25

26 3. Related Work

signatures, sequential, hierarchical and partitioned. In their experimental study

they showed that inverted index seems to perform better than signature-based

index structures.

Mamoulis [Mam03] addresses processing joins between relations of tuples

with set-valued attributes. They propose new algorithms for processing set

containment joins over set-valued attributes by using inverted indices, and show

that inverted indices perform better than signature based indices.

Terrovitis et al. [TPVS06] propose a new indexing structure, the HTI index,

that is a combination of inverted index and trie-trees for indexing set valued

attributes with the aim of efficient evaluation of containment queries. The

proposed index performs especially well for skewed datasets. To adapt the trie

for indexing sets, they first impose a canonical ordering on the sets, i.e., the sets

are sorted according to the items frequency in a descending order. Then, they

insert the items of the sets to the trie, such that, for items that share a common

prefix, only the additional items are added. For each trie node, the set to which

this node belongs is stored. The HTI index combines the trie with an inverted

index, such that, the items that appear most frequently in the set, are indexed

using a trie, and the less frequent items, are indexed using an inverted index.

Terrovitis et al. [TBV+11] further address the problem of answering set

containment queries for skewed datasets. For this purpose they present an

ordered inverted file (OIF) which is again a combination of two index structures,

an inverted index, where the index lists are ordered using a specific ordering,

and a B-tree index, which is used for fast access of the needed positions in the

inverted lists.

All of these indices also support k-NN queries over set-valied attributes.

Other work on k-NN search in databases [BCG02] transforms the k-NN problem

into a range query over the involved dimensions, that can be answered using

standard database indices that support range queries, like B+ trees [BM72].

Note, however, that these works assume that data resides on disk, and thus,

concentrate on reducing the number of page accessed on the disk, while in our

work we assume that the data can completely fit in the main memory.

3.1.2 Metric Space Indexing Techniques

The book by Hanan Samet [Sam06] or the article by Chávez et al. [CNBM01]

give a comprehensive overview of indexing techniques for metric spaces.

When the data can be represented using vectors, then we are dealing with a

special case of the metric space, called vector space. In vector space the coor-

dinate information is used when designing and searching the index structures.

The most popular index structures for vector space, also called spatial access

methods, are the R-tree [Gut84], the kd-tree [Ben75] and the quad-tree [Sam84].

The R-tree [Gut84] hierarchically groups nearby objects in a minimum

bounding rectangle (MBR). It is a height-balanced tree, that contains internal

non-leaf nodes and leaf nodes. Each node corresponds to a page on the disk and

3.1 Similarity Search 27

each node has a predefined minimum and maximum number of entries. The

non-leaf internal nodes contain pointers to the children nodes and they store the

smallest bounding rectangle, that contains the rectangles of its children. Each

leaf node also contains a minimum bounding rectangle, which is the bounding

box of the data objects which are indexed. Additionally, the leaf node contains

pointers to the data objects stored in the corresponding node. When searching

the tree, the MBR of the nodes are checked against the MBR of the query

object, and if there is an overlap, the corresponding subtree is searched. The

quad-tree [Sam84] is a tree structure where each internal node has at most four

children. The idea is that the data is divided in a grid like manner. The data

are placed in the “right” quadrant by comparing its coordinates to the ones of

the parent node. The kd-tree [Ben75] is an improvement over the quad-tree. It

is a binary tree where the data at each level is divided into two partitions based

on the value of one coordinate.

Furthermore, for metric spaces, many data-agnostic structures for indexing

objects are known. In addition to the BK-tree, described in Chapter 2, another

index structure, designed to work with a discrete metric distance functions,

is proposed by Baeza-Yates et al. [BYCMW94]. They propose Fixed Query

Trees (FQT), which gets its name because the keys on one level of the tree

are the same, and thus, the comparisons on one level do not depend on those

previously made. As keys are chosen random elements from the objects being

indexed, and the leave nodes contain at most b objects. The tree is build re-

cursively until there is a leave node with less than b elements. When searching

the tree, the distance from the query to the key node is computed, and again,

based on the triangle inequality, only parts of the tree are searched recursively.

Further improvements over the FQT are also presented, like the Fixed Height

FQT [BYCMW94] and the Fixed Queries Arrays [CMN01], both further re-

ducing the number of distance function computations done while searching the

tree.

Similarly, there are also many metric index structures that adapt to contin-

uous distance functions. The Vantage Point (VP) tree [Yia93] is a binary tree,

where at each level a random element is chosen as a root, i.e., a pivot. Then, the

distance of every element in the dataset to the root element is calculated and the

median is computed. Then, every element with distance smaller than the median

is placed in the left subtree, and the rest, in the right subtree. For searching the

tree the splitting median value is used, and the distance of the query to the pivot

element, to decide which subtree needs to be searched. This is similar to the k-d

tree [Ben75]. There are many variations of the VP tree [BÖ97, Yia93, Chi94]

all trying to reduce the distance function computations done while searching.

Another option to partition the data is by the generalized hyperplane par-

titioning strategy. In this partitioning strategy instead of choosing only one

point to partition the data, two objects are chosen, and data is partitioned

depending on its closeness to these objects. The generalized hyperplane tree

(gh-tree) [Uhl91] is a tree that applies this partitioning strategy. Two random

28 3. Related Work

elements are used to split the space. Points closer to the first element are placed

in the left subtree and those closer to the second are placed in the right subtree.

This is applied recursively, resulting in a binary tree. While searching the tree,

the distance from the query to the reference objects is computed, and based

on its distance, and the triangle inequality, it can be calculated if the subtree

needs to be searched or not. The Bisector tree [KM83] is again a binary tree

which is very similar to the gh-tree. The only difference is that the radius of

each partition is kept and used while searching the tree, to decide which subtree

needs to be searched. This, depending on the data, can sometime lead to tighter

bounds around the partitions. There are many improvements over the Bisector

tree, like the work by Noltemeier et al. [NVZ92] where the covering radius of

the subtrees is decreased when moving down the tree.

One of the most well known metric index structures is the M-tree by Ciaccia

et al. [CPZ97, ZSAR98], which behaves similarly to the R-tree [Gut84]. R-

trees can only store vector space data, or spatial data. M-trees generalize this

principle for metric space. They are balanced trees that aim at reducing the I/O

cost of the index, in addition to reducing the distance function computations.

M-trees are also capable of dynamic inserts and deletions and several strategies

for splitting of nodes have been proposed.

All of the aforementioned approaches have the problem that as the (in-

tristic) dimensionality of the data increases, they start to perform poorly.

There are some proposed approaches addressing this specific issue. Chávez and

Navarro [CN05] describe an algorithm to create non-overlapping partitions of

data in a metric space based on pivots and fixed-diameter or fixed-size partitions;

several ways to choose pivots are studied. Similarly, in our proposed approach

for similarity search of top-k rankings (Chapter 5) we consider indexing clusters

of rankings to shrink the size of the inverted index, by considering partitions

of rankings within a pre-determined distance threshold—effectively trading-off

cluster retrieval time and final result validation cost. The partitioning can be

done in any of the above ways; however, we choose the BK-tree [BK73].

3.1.3 K-NN Queries under Categorical Constraints

All of the aforementioned works can handle standard k-NN queries, however,

they are not designed for handling class-constraint k-NN (CCk-NN) queries,

which we tackle in our work presented in Chapter 7, and thus, would perform

worse for these types of queries. In this section we present approaches that are

more suitable for handling this special type of k-NN queries.

Hjaltason and Samet [HS99] propose an algorithm that can compute the k+n

nearest neighbors, if needed, without accessing the already searched data again,

i.e., the processing is incremental. This way CCk-NN queries can be efficiently

answered, since if retrieving the first k nearest neighbors results in having items

that do not satisfy the constraints, the index needs to be further searched for

additional nearest neighbors that do satisfy the imposed constrains.

3.1 Similarity Search 29

To allow the computation of the k+n nearest neighbors, they employ a mod-

ification of an R-tree [Gut84]. The standard strategy to find nearest neighbors

within an R-tree is to make a depth-first search on the tree to find the rectangle,

which holds the query point at the leaf node. Because neighbors do not need to

reside in the same node as the query point, the tree is tracked back higher and

the larger bounding box is searched, until all k items are found. To support the

idea of getting always the next nearest neighbor, they implement a “best-first”

approach, backed up by a priority queue. This queue contains bounding boxes

and objects in such a way, that they are sorted by their distance to the query

point, and thus, allows for finding the next nearest object. It is also ensured,

that bounding boxes have higher priority than all their contained objects. When

now the first element of the queue is picked, all objects closer to the query ob-

jects have already been examined, thus, the next nearest neighbor or a bounding

box would be found. In the case when a bounding box is found, its sub bound-

ing boxes or contained objects are inserted into the queue with respect to their

distance to q. The threshold of the population can vary, thus, the query has

to be able to dynamically expand the search area. On the other hand, when

a point is hit, it means that the next nearest neighbor to q is identified. It

is guaranteed, that the point is in the queue and is the next nearest, since its

bounding box triggered the inclusion of the point and the boxes distance to q is

always smaller. This procedure is repeated until the queue is emptied.

Another indexing strategy that allows incremental searching is the iDistance,

presented by Jagadish et al. [JOT+05], already explained in Chapter 2.

A similar problem to the CCk-NN search is the problem of location-based

web search. The main task of this problem is to determine documents that

are in terms of content and location relevant to the query. Many approaches

that combine information retrieval techniques with nearest neighbors search

have been proposed. These are summarized in [JP08] and [CCJW13]. Zhou

et al. [ZXW+05] investigate and compare the performance of three indexing

strategies: indexing the data using both an inverted index and an R*-tree,

indexing the first using an inverted index, and then, indexing the objects in

each posting list using an R*-tree, and indexing the data first using an R*-

tree, then an inverted index. They show that the hybrid indices perform better

than double indexing the data. Cong et al. [CJW09] propose a new indexing

structure named IR-tree. The IR-tree is in fact an R-tree whose nodes are

augmented with inverted files which can provide estimation of the document’s

score, in a certain subtree, while searching the tree. This allows searching the

tree in an R-tree style. Although our approach for handling CCk-NN search also

combines inverted indices with a tree-based indexing structure, we address the

more general problem of handling any type of data where classes are present.

Therefore, the challenges presented are different, and thus, the proposed solution

as well.

30 3. Related Work

3.2 Similarity Joins

3.2.1 In-memory All-Pairs Similarity Search

There is an ample work on computing the all pair similarity join for sets or

strings. Mann et al. [MAB16] summarize and compare the in-memory based

approaches.

Previous approaches are mainly based on a filter and verification framework,

which uses inverted indices as the initial filter for pairs that do not have any

items in common. First, in the filter phase, a set of candidate pairs is generated.

This set is kept small by applying additional filters that filter out the dissimilar

pairs. In the next verification phase, the candidates are verified by computing

their true similarity score in order to find the true results.

Recently, the most prominent techniques for answering set similarity joins

are the prefix-filtering based methods [XWLY08, BMS07, CGK06]. The main

idea behind this method, initially proposed by Chaudhuri et al. [CGK06] and

Sarawagi and Kirpal [SK04] is to reduce the size of the inverted index, and thus,

the number of candidate pairs. It works by first imposing a total ordering of

the elements in the universe U , sorting all records in the dataset in the same

canonical order, and then, indexing only a prefix of the records with an inverted

index. The size of the prefix depends on the threshold, the length of the records,

and the distance, i.e., similarity measure used and its value. The prefix-filtering

principle guarantees that all similar records for the given similarity value will

have at least one common token in their prefixes. The initial papers propose that

the records should be sorted by the ascending frequency of the elements in the

sets, which makes the index lists significantly smaller, and thus, less candidate

pairs will be generated. The framework guarantees that no true candidate will

be missed, however, the generated candidates still need to be verified if they

qualify given the similarity threshold.

There are many works [BMS07, XWLY08, RLW+13, WLF12, WQL+17] that

propose improvements over the initial prefix-filtering algorithm.

Bayardo et al. [BMS07] focus on algorithms for finding the similar pairs given

a large collection of sparse vectors. For comparing the vectors, they use the Co-

sine similarity measure. They propose the AllPairs algorithm where in addition

to filtering based on the prefix of the vectors, they further filter candidates by

sorting the vectors in the dataset by decreasing order of their maximum weight.

Then, by keeping an upper bound of the score, they are able to index fewer

features of the vector, while still ensuring the correctness of the algorithm. In

addition to this, they introduce filtering of the candidates by their size, and by

computing an upper bound between the candidates and filtering them, if the

upper bound cannot reach the threshold.

Xiao et al. [XWLY08] further improve the AllPairs algorithm. They pro-

pose the PPJoin+ algorithm, one of the best known prefix-filtering algorithms.

PPJoin+ algorithm outperforms previous AllPairs algorithm by introducing suf-

3.2 Similarity Joins 31

fix filtering, filtering based on the tokens positions, and by indexing fewer tokens

from the records. The positional filtering works by computing an upper bound

of the overlap between the unseen parts of the two records, based on the position

of the token under consideration, and the fact that all the records are sorted

in a canonical order. Then, if the sum of the overlap computed so far and the

estimated upper bound for the unseen part is smaller than the threshold, the

candidate pair is filtered out. The suffix filtering works by probing the records

for random tokens in the yet unseen, suffix of the record. Then, using this prob-

ing token, the suffix is partitioned into a left and right partition. By using an

equivalent Hamming distance constraint to the overlap constraint, and the sizes

of these partitions, they are able to further eliminate candidate pairs.

Wang et al. [WLF12] propose the AdaptJoin algorithm. They claim that

if the length of the prefix of the records is varied, a better performance can

be achieved, because lengthier prefixes have more pruning power, and shorter

prefixes require longer verification time. Thus, they present an adaptive prefix

scheme where by using a cost model, they estimate for each object, which length

of the prefix would lead to the best performance. The adaptive index they build

supports storing different prefix lengths for the objects. Furthermore, they

also propose an adaptive framework for processing similarity search queries,

AdaptSearch. For creating the adaptive prefix indexing scheme, the threshold

needs to be known upfront, which is not the case for similarity search queries.

Thus, they propose grouping the sets by their size and creating an adaptive

indexing framework for the maximum threshold that can be applied for each

group of rankings.

Recently Wang et al. [WQL+17] motivated by the conclusions presented

in [MAB16] proposed an approach that improves upon existing prefix-filtering

approaches by introducing index level and answer-level skipping. The index

level skipping reduces the unnecessary checks done by position and length based

filters, by using length-sorted skipping blocks in the posting lists augmented with

the positions of the elements in the sets. The answer-level skipping is based on

the idea that the answer sets of similar sets should be also similar, thus, the

already computed answer set of one set is used for computing the answer set of

another, similar, set.

Since top-k rankings can be seen as sets as well, all of the presented ap-

proaches can, with modifications, be applied to our problem setting as well.

Note however, that some of the filtering techniques presented could not be ap-

plied to our setting, or if applied, would lead to no or very little benefit. There-

fore, in Chapter 5 and Chapter 6 we present solutions better suitable for our

problem setting.

Jacox and Samet [JS08] proposed in memory algorithms for the similarity

join problem in metric spaces, later used as basis for the distributed approaches.

The algorithm they propose partitions the data recursively, using either the ball

partitioning method, or the hyperplane partitioning method, until the partitions

are small enough so that objects in it can be compared using a nested loop

32 3. Related Work

join. To keep the correctness of the algorithm, also some objects from different

partitions need to be compared. Specifically, the objects within distance θ,

where θ is the threshold used, of the radius of the partitions need to be also

compared, in order not to miss any true result.

Li et al. [LDWF11] present PassJoin, an algorithm specifically designed to

solve the problem of similarity join for strings, where the distance measure

used is the edit distance. They partition the strings into θ + 1 non-overlapping

segments, where θ is the distance threshold. Based on the pigeon hole principle,

it is guaranteed that if two strings s and r have edit distance higher than θ

then s must contain at least one substring, which matches a segment of r. The

non-overlapping segments are indexed using an inverted index. To compute

the join, they traverse the dataset D in an ordered manner, starting with the

shortest strings, and for each string s ∈ D they check if any subset of the string

matches some of the indexed segments. These are candidate results and need

to be verified. They further develop techniques for choosing which substrings

of a string need to be taken for querying the inverted index, and for efficient

evaluation of the candidate pairs.

3.2.2 MapReduce-based All-pairs Similarity Search

To handle larger datasets, many distributed solutions for all-pairs similarity

search have also been proposed. Recently, Fier et al. [FAB+18] summarized and

compared the MapReduce-based all-pairs similarity search solutions.

Vernica et al. [VCL10] present a distributed solution, referred to as VJ,

based on the well known prefix-filtering method. The algorithm they propose is

a three stages approach. The first stage is needed so that the records could be

sorted into the same canonical order. To do this, first, they sort the tokens in

the records according to the frequency of the elements in the sets. Then, in the

next stage, the sorted tokens are loaded in the memory of the mappers and while

processing the records, they are first sorted in ascending frequency, and then the

element as key, and the whole set as value is emitted, but only those elements

that belong to the prefix. Then on each machine, for all the rankings that share

at least one element, in the reduce phase the PPJoin+ algorithm [XWLY08],

is used to find the similar rankings. In the final stage, duplicate pairs must

be removed, since the same pair can be generated at several machines and the

complete records are retrieved.

The V-SMART algorithm adopts a different idea from prefix filtering, of

distributively computing the ingredients of the similarity measure which are later

joined to compute the final results. Their approach is initially presented for the

purpose of self-similarity joins of multisets, but with no, or little modifications

can be applied to sets as well. In their approach they, first, analyze the similarity

measures and conclude that the similarity measures used for comparing sets,

e.g., Jaccard, Dice, Cosine, can be computed using partial results. The partial

results for these measures can be computed by scanning the elements in only one

3.2 Similarity Joins 33

dataset, also called as unilateral functions, combined with scanning the elements

of the intersection of the two multisets (called conjunctive functions), which can

be more efficiently done by using an inverted index. For instance, the Jaccard

similarity for two sets S1 and S2 is computed as: J(S1, S2) = |S1∩S2|
|S1∪S2| , where

S1 ∪ S2 = |S1| + |S2| − |S1 ∩ S2|. The size of each set can be computed by

scanning the elements in each set, and the size of the intersection, by scanning

the elements in the intersection of the two sets. Thus, they propose V-SMART

algorithm that works in two stages, a joining stage and a similarity stage. In the

first stage, the joining stage, by scanning the elements in each set, the partial

result is computed and joined to all the elements in the sets. In the similarity

stage, the algorithm as input takes the output from the first stage, builds an

inverted index, and then, while traversing the posting lists for each element

si, emits pairs of sets together with the information needed to compute the

intersection between the elements. Then, the similarity between each pair of

sets is computed and only the qualifying onces are written to disk.

Deng et al. present MassJoin [DLH+14]. This approach is based on

PassJoin [LDWF11], a main memory method for string similarity joins. Deng et

al. implement the signature based algorithm in Map Reduce using two stages.

The first stage they call the filter stage, where they filter the sets that do not

have a matching signature. The mapper reads the sets from both datasets and

generates the signatures accordingly. For each signature, it emits the signature

as key, and the set id. All the candidate pairs that share the same signature will

end up at the same reducer. As output the reducer for each set from the first

dataset generates a list of candidate sets from the other datasets and outputs it

as < sid, list(rid) >. Note that all the set pair that do not end up at the same

reducer are not candidates automatically since they do not share any signature.

In the next stage, called verification stage, the candidate pairs generated from

the filtering stage are verified using two MapReduce jobs. To improve the per-

formance filtering techniques are proposed that reduce the number of messages

send between different stages.

Rong et al. present FS-Join [RLS+17]. They claim that their algorithm out-

performs the competitors because it addresses some of the issues that previous

approaches had, i.e., it does not generate duplicate results and achieves better

load balancing. The dataset is both vertically and horizontally partitioned, by

dividing each set into segments, and then, partitioning the data according to

the segments. In addition, they propose length filters for further performance

improvement.

Since Spearman’s Footrule distance is a metric, metric space approaches can

also be applied for finding the similar rankings. Wang et al [WMP13] present an

algorithm for solving the all-pairs similarity search problem where the distance

(similarity) function is a metric. They first, based on the triangle inequality,

define a partitioning scheme. They state that, for a dataset D, there is an all

pair similarity search (APSS) division if the set can be divided into N inner sets

∪Ni=1Ii = D and N outer sets Oi, Oi ⊆ D, such that ∪Ni=1SimSet(Ii, Ii ∪Oi) =

34 3. Related Work

SimSet(D,D). The goal is to find an APPS division of the dataset D into a

worksets Wi, where each Wi is a pair of inner set and an outer set < Ii, Oi >.

In order to create an APPS division of the dataset they define a partitioning

of the input dataset D into N disjoint partitions Pi, Pi ∪ Pj = ∅,∪Ni=1Pi = D,

created by randomly choosing N centroids pi and assigning each point p ∈ D
to the partition represented by the closest centroid. As inner set of a workset

Wi all the data in one partition are assigned, Ii = Pi and to the outer sets Oi
belong all the points pj ∈ D such that pj |d(pj , ci) ≤ (ri + θ) ∧ pj /∈ Pi, where

ci is the centroid of Pi, ri = maxpi∈Pi
, d(ci, pi) is the radius of Pi and θ is the

distance threshold. The algorithm for computing the APPS division of a dataset

D consists of two main stages. In the first stage, N centroids are sampled and

the partition statistics, such as the radii of the partitions, are computed. In

the second stage, the all pair similarity join is computed. The basic approach

that the authors propose results in many duplicate pairs being computed and

in uneven partitioning. Therefore, the authors propose optimizations based on

reducing the number of duplicate pairs and algorithms for repartitioning, as well

as compression techniques.

Similarly to the work in [WMP13], Sarma et al. [SHC14] propose a method

for all-pairs similarity search in metric spaces. Their method, as they claim,

works very well for very small distance thresholds. In fact, the experiments they

perform using only threshold up to 0.1. The algorithm they propose works in

three stages. In the first phase, similarly to [WMP13], they compute the statistic

for the dataset for creating the partitions. In the second stage, they decide into

which partition centroid each point should be mapped to. The novelty in this

work is that they apply here some filtering techniques, both distance specific

and not, which lead to having tighter partitions, and thus, fewer comparisons.

In the last stage they compute the similar pairs for all partitions. They also

propose a load balancing method using a 2D hashing technique.

Interestingly, Fier et al. [FAB+18] came to the conclusion that the approach

proposed by Vernica et al. [VCL10] outperforms the other approaches in most

scenarios. Therefore, in this thesis we compare our approach, presented in

Chapter 6, to the one presented in [VCL10].

Chapter 4

Theoretical Bounds for

Top-k Rankings

4.1 Introduction

In this chapter, we present theoretical bounds for top-k rankings, some of which

found its use in the similarity search algorithms presented in the next chapters.

The described bounds are especially important for adapting existing set-based

similarity techniques to the setting of top-k rankings, like for instance, the prefix-

filtering framework, however, they can be applied to other problem settings

concerned with top-k rankings. For instance, consider the task of maintaining a

set of crowdsourced entity rankings where the similarity between the rankings is

used to reason about the degree of change in a set of rankings due to an update

in one ranking. Since the distance between two rankings resembles not only

structural but semantic similarity as well, it is reasonable to assume that once

a ranking changes, it is more likely that similar rankings change, rather than

dissimilar ones. If one ranking changes, this means that items that are present in

this ranking changed, respectively their features. Such changes might or might

not propagate to other rankings with a distance λ to the affected ranking. The

bounds presented here can be used to reason about the likelihood of such a

propagation. Another problem setting where these bounds are applied is in

the case of exploring databases by using top-k rankings [PMM16, PMMP16].

Specifically, a user submits a top-k ranking to the system which then aims at

returning a set of queries that do return a list similar to the input, when executed

on the given database instance. In this scenario, the bounds are used to make

the searching for the similar ranked lists more efficient.

The work presented here has been published in several of our works, de-

pending on its application. The bounds applied to the problem of similarity

search for rankings have been published at EDBT 2015 [MAM15], the ones con-

sidered in the problem for maintaining crowdsourced entity rankings have been

35

36 4. Theoretical Bounds for Top-k Rankings

published at EDBT 2016 [MM16], while at KEYS 2016 [PMM16] and PVLDB

2016 [PMMP16] the bounds and its applications related to the problem of ex-

ploration of databases through top-k rankings have been published.

4.2 Bounds on Overlap

In this thesis, we often assume that only the distance between two top-k rankings

is known, and, based only on this, we want to apply some pruning techniques,

or make further assumption over the data. Therefore, in this section, we reason

about the overlap bounds that two top-k rankings, τi and τj , with Footrule

distance θ, i.e., d(τi, τj) = θ of each other, can have.

Lemma 4.2.1 (Minimum Overlapping Criterion) Let τi and τj be two

top-k rankings, both with length k, such that the Footrule distance between them

is θ, i.e., d(τi, τj) = θ. The minimum overlap ωmin of these rankings is given

by

ωmin = b0.5 · (1 + 2 · k −
√

1 + 4 · θ)c.

Proof Assume two top-k rankings τi and τj have an overlap of ω. The smallest

Footrule distance between them is achieved when the overlapping items are

placed at the top ω ranks of both rankings and they are perfectly aligned.

Because the w best ranked items have a partial distance of 0, we can treat this

Footrule distance as the distance between two disjoint rankings of length k−ω.

This distance can be calculated by

d(τi, τj) = (k − ω) · (k − ω + 1). (4.1)

Solving

(k − ω) · (k − ω + 1) = θ

for ω derives the smallest overlap possible between τi and τj , since rankings

with an overlap smaller than ω or when the ω overlapping items are not on the

top positions, would lead to a strictly higher distance.

Solving the equation leads to

(k − ω) · (k − ω + 1) = θ

⇔ w2 − 2 · ω · k − w + k2 + k − θ = 0

⇔ w2 + ω · (−2 · k − 1) + (k2 + k − θ) = 0

4.2 Bounds on Overlap 37

τi :

τj :

i1 i2 i3 i4 i5

i6 i7 i5 i4 i3

Figure 4.1: Example rankings with k = 5 and ω = 3 with maximum Footrule

distance U(k, ω) = 22.

which resolves in

ω1,2 =
2 · k + 1

2
±
√

(−2 · k − 1)2

4
− (k2 + k − θ)

=
2 · k + 1

2
±
√

4 · θ + 1

4

= 0.5 · (2 · k + 1±
√

4 · θ + 1).

Because of

k < 0.5 · (2 · k + 1 +
√

4 · θ + 1) = ω1, (4.2)

meaning that the ranking length is smaller than ω, only the solution

ω = b0.5 · (1 + 2 · k −
√

1 + 4 · θ)c (4.3)

is reasonable.

Note that, we require the floor function since ωmin ∈ N and using the ceil

function could lead to a Footrule distance greater than θ. �

Lemma 4.2.2 (Maximum Overlapping Criterion) Let τi and τj be two

top-k rankings, both with length k, such that the Footrule distance between them

is θ, i.e., d(τi, τj) = θ. The maximum overlap ωmax of these rankings is given

by

ωmax = min(k, b(−1 +
√

1− 2 · λ+ 2 · k + 2 · k2)c).

Proof We again follow the same reasoning. Assume two top-k rankings τi and

τj have an overlap of ω. The maximum Footrule distance, U(k, ω), that these

top-k rankings can have, occurs when the items that they do not have in common

are positioned in the top (k − ω) places and the common items are positioned

in the last ω items in both rankings, but in reverse order.

To give an example, consider two top-k rankings τi and τj with k = 5 and

ω = 3, shown in Figure 4.1. Note that the actual items do not matter, what

matters is whether the items are overlapping or not, and their positions.

Therefore:

U(k, ω) = Fmax(ω) + 2 ·
k∑

i=ω+1

i (4.4)

38 4. Theoretical Bounds for Top-k Rankings

where, Fmax(ω) is the maximum Footrule distance that two complete rank-

ings with size ω can have. According to Fagin et al. [FKS03], Fmax(ω) can be

computed as:

Fmax(ω) =

{
ω2

2 if ω is even
(ω+1)·(w−1)

2 if ω is odd
(4.5)

We use Fmax(ω) to compute the distance between the items i ∈ Dτ1 ∩ Dτ2
in the two rankings. Since these items are always the same, positioned in the

last ω positions, we can also consider them as permutations stemming from

one domain D = Dτ1 ∩ Dτ2 . We use the summation
∑k
i=ω+1 i to factor in the

remaining items in τ1, i ∈ Dτ1 \ (Dτ1 ∩ Dτ2), and for τ2 analogously.

Solving U(k, ω) by ω gives us the formula for computing the maximum over-

lap, ωmax, of two rankings, when the Footrule distance θ between them is known,

and their size is k. �

4.2.1 Different Size Rankings

In this thesis, the presented algorithms work only on rankings of same size

k. This is because when evaluating the performance of different algorithms, we

want to focus mainly on the core performance of the algorithm. In this section we

discuss how the aforementioned bounds can be extended to rankings of different

length, and how an additional length filtering technique can be derived, based

on the Footrule distance between the top-k rankings.

When we are considering the problem of comparing rankings of different size,

for the Footrule distance with location parameter l, we follow the principle used

for comparing top-k rankings of same size and set l using the largest ranking in

the dataset, i.e., l = max(|τi|). Then, for two top-k rankings τi and τj , where

|τi| = li, |τj | = lj , li < lj , the best Footrule distance that can be achieved is:

L(li, lj) =

lj−li∑
i=1

lj − i (4.6)

This is the case when Dτi ⊂ Dτj and all the li overlapping items are posi-

tioned at the top ranks in both rankings, and perfectly aligned. If we assume

that the rankings have ω overlapping entities where ω < li then the best distance

that can be achieved is:

L(li, l, ω) = L(li, l) + L(li, ω) (4.7)

and the worst distance that can be achieved is:

U(li, l, ω) = L(li, l) + U(li, ω) (4.8)

Where L(li, ω) and U(li, ω) are the aforementioned lowest Footrule distance

(Equation 4.1) and highest Footrule distance (Equation 4.4) that can be achieved

4.3 Prefix Size for Top-k Rankings 39

by two rankings of same length li and overlap of ω, respectively. By using the

same logic as for rankings of same size, by setting L(li, l, ω) = θ and solving

this equitation by ω, we can find the minimum number of overlapping entities

that we need to have between the two rankings to have a Footrule distance

d(τi, τj) ≤ θ. Furthermore, L(li, L) can be used for deriving a length filter based

on the Footrule distance between τi and τj , d(τi, τj) = θ. Solving L(li, L) = θ

by li gives us the minimum length that a ranking τi needs to have in order

d(τi, τj) ≤ θ, |τj | = l−1, while solving it by l gives us the maximum length that

a ranking τj needs to have in order d(τi, τj) ≤ θ.

4.3 Prefix Size for Top-k Rankings

One of the main tasks that we are concerned with in this thesis is similarity

search for top-k rankings. As discussed in Chapter 3, recent state-of-the-art

similarity search techniques rely on the prefix filtering technique, where, given

a distance threshold θ, we need to index only a prefix of the record of size p in

order to find all similar records.

In this section we derive this prefix size for top-k rankings, where the Footrule

distance is used as a metric for comparing the top-k rankings. We propose two

different techniques for computing this prefix, the later providing slightly tighter

prefix sizes than the first, however, the former allows more freedom in choosing

the items in the prefix.

Considering Lemma 4.2.1, we define the following corollary:

Corollary 4.3.1 For top-k rankings of size k and a minimum overlapping cri-

terion ωmin, the prefix size, p, can be computed as:

p = k − ωmin

.

This corollary immediately follows from Lemma 4.2.1. It is clear that we can

set the prefix size to p = k−ωmin+ 1, since we know that the minimum overlap

between the top-k rankings is ωmin, and thus, they must have at least one

overlapping item. We further limit the size of the prefix to p = k − ωmin by

considering the way that the minimum overlap was computed. Since, as already

discussed, the items of both rankings need to be ranked at the top w places, we

can define p = k− ωmin, if we include at least one top ωmin ranked item in the

prefix.

The above definition of the prefix of a top-k ranking mainly relies on the

overlap between the items, and it does not impose restrictions on which items

should be included in the prefix. Next, we define an ordered prefix of top-k

rankings, where we specify the number of best p ranked items that need to be

included in the prefix of a ranking in order to have at least one item overlapping.

40 4. Theoretical Bounds for Top-k Rankings

τi :

τj :

i1 i2 i3 i4 i5

i3 i4 i1 i2 i5

Figure 4.2: Example rankings with k = 5 and p = 2 with maximum Footrule

distance d(τi, τj) = 8.

Lemma 4.3.2 (Ordered Prefix) For a given distance threshold θ and a rank-

ing length k, when the distance function used is Spearman’s Footrule, the size of

the ordered prefix po of the top-k rankings is given by

po = b
√
θ√
2
c+ 1

Proof The lowest Footrule distance that two top-k rankings τi and τj can have,

when none of the first p items of each ranking are not overlapping, L(p, k), is

when the items are overlapping in the rankings, but they are positioned in the

next p places in the other ranking. This is so, because the partial Footrule

distance of an item we get either by the difference in its positions, when they

are overlapping, or as k−τi(i) when the item is non overlapping. As an example,

consider the rankings τi and τj where p = 2, shown in Figure 4.2.

For the items i positioned in the first p places in ranking, where p < k
2 , the

partial distance of the items being overlapping and placed at the next p places

is always lower than if an item is non overlapping. L(p, k) can be computed as
(p∗2)2

2 .

Solving L(p, k) = θ gives us the first p = b
√
θ√
2
c items that can be non-

overlapping in case of θ. Taking one more item guaranties that we will not miss

any candidate pair. Note that this only holds when θ ≤ k2

2 . In the case when

θ > k2

2 computing the formula for the ordered prefix size is more complicated

and is out of the scope of this thesis. Using values of θ ≤ k2

2 is more than enough

for our problem setting, as it is common practice to use values of θ ≤ 0.41. �

4.4 Bounds on Item Positioning

To increase the pruning power of our searching techniques, we further compute

bounds on the positioning of the items in two top-k rankings τi and τj , when the

Footrule distance between them is known. These bounds allow us to perform

positional pruning while searching for similar rankings. In order to derive these

bounds on the position of the items, we leverage the properties of the Footrule

distance. We first define the concept of displacement of an item i, ηi as:

1θ = k2

2
is around 0, 45 when normalized, depending on the value of k.

4.4 Bounds on Item Positioning 41

Definition 5 Displacement of an Item For two top-k rankings τi and τj,

τi 6= τj, we define a displacement of an item i, i ∈ Dτi ∩ Dτj , denoted with

ηi, as the difference of the position of the item in the two rankings, i.e., ηi =

|τi(i)− τj(i)|. In the case when i ∈ Dτi \ Dτj , ηi = k − τi(i) or vice versa.

The Footrule distance of two lists τi and τj is in fact a sum over the dis-

placements of the items in Dτi ∪Dτj . Next, with the following lemma we define

the maximum value for the displacement of any item i in any two list τi and τj ,

where their Footrule distance is d(τi, τj) = λ:

Lemma 4.4.1 (Maximum Displacement) The maximum displacement of

an item i for two top-k lists τi and τj of size k with Footrule distance d(τi, τj) = λ

is

max(ηi) = min{bλ · k · (k + 1)

2
c, k}

Proof Restricting the maximum displacement max(ηi) to k is clear. Consider-

ing the fact that the rankings (lists) are of size k (have k items), by the definition

of a displacement it follows that the max(ηi) for two rankings τi and τj cannot

be larger than k for any distance d(τi, τj).

Now lets look at the case of showing that the maximum displacement

max(ηi) for any two rankings τi and τj with Footrule distance d(τi, τj) = λ,

cannot be larger than λ·k·(k+1)
2 . Top-k rankings are bijections from the set Dτi

to itself, where Dτi 6= Dτj for two top-k lists τi and τj . The Footrule distance,

in this case, is a sum not only over the displacement of the overlapping items,

but over the displacement of the missing items as well. Since we are working

with lists of same size, we have the same number m of missing items in τj and

τi. Therefore, if we ignore the fact that the missing items are different in the

two top-k lists, and just consider that we have m missing items in each list and

k −m common items, there is a bijection between the set of k items and the

lists τi and τj . Now, let us assume that max(ηi) is larger than λ·k·(k+1)
2 . If

max(ηi) >
λ·k·(k+1)

2 then we have to have at least one more item j displaced in

order to keep the bijection between the two sets. Since F (τi, τj) =
∑
i∈D ηi it

follows that we have at least one item whose displacement is ηj <
λ·k·(k+1)

2 , or

we have more than one displaced item, but the sum of their displacements is

smaller than λ·k·(k+1)
2 . However, this would break the bijection relation between

the two permutations, which is not possible, proving that max(ηi) ≤ λ·k·(k+1)
2 .

Therefore, it holds that max(ηi) = min{bλ · k · (k+1)
2 c, k}. �

Chapter 5

Similarity Range Queries

over Top-k Rankings

5.1 Introduction

This chapter is based on our own publication at EDBT 2015 [MAM15] and

presents a novel index structure for efficient processing of similarity range queries

over top-k rankings. This specific problem has several notable applications. For

instance, consider the task of query suggestion in web search engines that is

based on finding historic queries by their result lists with respect to the currently

issued query, or dating portals that let users create favorite lists that are used

to search for similarly minded mates.

As a generic access substrate for such services, we consider querying sets of

top-k rankings by means of distance functions. That is, retrieving all rankings

that have a distance to the query less than or equal to a user-provided threshold.

As already mentioned before, for comparing the ranking we use Spearman’s

Footrule metric adaptation for top-k rankings [FKS03]. Dealing with metrics

immediately suggests employing metric data structures like M-trees [CPZ97]

for indexing and similarity search. On the other hand, similar rankings, for

reasonable query thresholds, should in fact overlap in some (or all) of the items

they rank. Searching overlapping sets for ad-hoc queries [HM03, TPVS06] or

joins [Mam03] is a well studied research topic. Inverted indices or signature

trees are used to indexing tuples based on their set-valued attributes [HM03].

Such indices are very efficient to answer contained-in, equal-to, or overlaps-

with queries, but do not exploit the distances between the indexed objects, as

metric index structures do. In this chapter, we present a hybrid index structure

that smoothly blends an inverted index with metric space indexing. With an

assumption-lean but highly accurate theoretic cost model, we further show that

the estimated sweet spot reaches runtime performances almost identical to the

manually tuned one.

43

44 5. Similarity Range Queries over Top-k Rankings

T
ranking id ranking content

τ1 [2, 5, 4, 3]

τ2 [1, 4, 5, 9]

τ3 [0, 8, 5, 7]

Table 5.1: Sample dataset T of rankings where items are represented by their

ids.

5.1.1 Problem Statement and Setup

As input we are provided with a dataset T of rankings τi. Each ranking has

a domain Dτi of items it contains. We consider fixed-length rankings of size

k, i.e., |Dτi | = k, but investigate the impact of various choices of k on the

query performance. The considered rankings do not contain any duplicate items.

Table 5.1 shows an example dataset T of three rankings.

Rankings are represented as arrays or lists of items, where the left-most po-

sition denotes the top ranked item. Without loss of generality, in the remainder

of this work, we assume that items are represented by their ids. The rank of an

item i in a ranking τ is given as τ(i). In Table 5.2 a summary of the notations

used throughout this chapter is shown.

A distance function d quantifies the distance between two rankings—the

larger the distance the less similar the rankings are. Therefore, for a given

query ranking q, distance function d, and distance threshold θ, we want to find

all rankings in T with distance below or equal to θ, that is,

{τi|τi ∈ T ∧ d(τi, q) ≤ θ}

In this thesis, we focus on the computation of Spearman’s Footrule distance,

but the proposed coarse index can be applied to any metric distance function,

or any distance function that satisfies the triangle inequality.

The objective of this work is to study in-memory indexing and query pro-

cessing techniques, with the overall aim to decrease the average query response

time. We consider ad-hoc similarity queries over rankings, where the query

ranking and query similarity threshold are specified at query time. We make

the natural assumption that the query threshold θ is strictly smaller than the

maximum possible distance dmax.

5.1.2 Contributions and Outline

With this work we make the following contributions:

• To the best of our knowledge, this work is the first to consider the prob-

lem of similarity search of top-k rankings. We present a coarse index for

efficient processing of similarity range queries.

5.2 Framework 45

τ A ranking

τ(i) The rank of item i in ranking τ

F (τi, τj) Footrule distance between τi and τj
d(τi, τj) Distance between τi and τj
dmax maximum distance between two rankings

T Set of rankings to be indexed

k Size of rankings

Dτ Items contained in ranking τ

D Global domain of items

q Query ranking

θ Similarity threshold, set at query time

θC Maximum pairwise similarity within a partition

Pi A partition of rankings. Partitions are pairwise disjoint.

Table 5.2: Overview of notation used in this paper

• We present a cost model that allows automated tuning of the coarsening

threshold for optimal performance

• We derive distance bounds for early stopping / pruning inside position-

augmented inverted indices—concepts that are largely orthogonal to each

other and can be combined; we describe how, unless apparent

• We show the results of a carefully conducted experimental evaluation in-

volving a suite of algorithms and hybrids under realistic workloads derived

from real-world rankings

The remainder of this chapter is organized as follows. Section 5.2 introduces

a coarse, hybrid index that indexes partitions of rankings. Section 5.3 describes

a cost model that allows picking the sweet spot between inverted-index-access

time and result-validation time. Section 5.4 shows how to apply the bounds

presented in Chapter 4 to our problem setting and to enable effective pruning of

entire index lists at runtime. Section 5.5 presents the experimental evaluation,

while Section 5.6 summarizes the work in this chapter.

5.2 Framework

As discussed before in Chapter 2, rankings can be considered as plain sets and

accordingly indexed in traditional inverted indices [HM03] that keep for each

item a list of rankings in which the item appears. At query time such a structure

allows efficiently finding those rankings that have one or more items in common

with the query ranking.

The key point of using inverted indices is their ability to efficiently reduce

the global amount of all rankings to potential candidates by eliminating the

rankings with maximum distance dmax to the query. Although the inverted

46 5. Similarity Range Queries over Top-k Rankings

index is good for finding rankings (sets) that intersect with the query, the F&V

algorithm, described in Chapter 2 comes with two drawbacks:

(i) It naively indexes all rankings and, hence, is of massive size, despite the

fact that often rankings are (near) duplicates

(ii) The validation phase evaluates the distance function on each ranking sep-

arately, although known metric index structures suggest pre-computing

distances among (similar) rankings for faster identification of true results

While directly using metric index structures, like M-trees [CPZ97] or BK-

trees [BK73], appears promising at first glance, they are not ideal for reducing

down the space to the intersecting rankings. In fact, we show in our experiments

that using metric data structures is an order of magnitude slower than using

pure inverted indices.

To harness the pruning power of inverted indices, but at the same time not

to ignore the metric property of the Footrule distance, we present a hybrid ap-

proach that blends both performance sweet spots by representing near duplicate

rankings by one representative ranking, which is then put into an inverted in-

dex. That way, depending on how aggressive this coarsening is, the inverted

index drastically shrinks in size, hence, lower response time, and the validation

step is benefiting from the fact that near duplicate rankings are represented by

a metric index structure.

Below, we describe more formally how such an index organization is realized

and how queries are processed on top of it. We present a highly accurate cost

model that allows trading-off the coarsening threshold to find the optimal trade-

off between the inverted index cost and the cost to validate rankings in the metric

index structure.

5.2.1 Index Creation

The aim is to group together rankings that are similar to each other—with a

quantifiable bound on the maximum distance. That is, partitions Pi of similar

rankings are created, and each represented by one τm ∈ Pi, the so called medoid

of the partition. It is guaranteed that ∀τi ∈ P : d(τm, τ) ≤ θC . The distance

bound θC is called the partitioning threshold. We write τm ≺ τ to denote that

ranking τ is represented by ranking (medoid) τm.

To find partitions of rankings, we employ a BK-tree [BK73], an index struc-

ture for discrete metrics, such as the Footrule distance. Figure 5.1 depicts the

general shape of a BK-tree. Ignoring for a moment the different colors and

black, solid circles: each node represents an object (here, ranking) and main-

tains pointers to subtrees whose root has a specific, discrete distance. We create

such a BK-tree for the given rankings. Then, in order to create partitions of

similar rankings, the tree is traversed and, for each node, the children with dis-

tance above θC are considered in different partitions. The procedure continues

recursively on these children. The children within distance ≤ θC are forming a

5.2 Framework 47

1 2 3 4 5 6 . . .

1 2 3 4 . . .

Figure 5.1: Creating partitions based on the BK-tree. The green (distance 1 and

2) subtrees are indexed by their parent node (medoid, as black dot). Distance

0 is not shown here.

partition with their root node, which acts as the medoid. In Figure 5.1, each

partition is illustrated by its root (representative ranking) shown as a black,

solid circle, and the green subtrees below it (those with distance 1 or 2). A

partition is not represented as a plain set (or list) of rankings, but by the corre-

sponding subtree of the BK-tree. The immediate benefit is that these subtrees

(that are full-fledged BK-tree themselves) are used to process the original query

(with threshold θ) on the clusters, without the need to perform an exhaustive

evaluation of the partition’s rankings. Alternatively, any algorithm that creates

(disjoint) partitions of objects within a fixed distance bound can be used, such

as the approach by Chávez and Navarro [CN05], which randomly picks medoids,

assigns objects to medoids, and continues this procedure until no object is left

unassigned. We use this simple model to reason about the trade-offs of our

algorithm below.

Irrespective of the way of finding medoids and their partitions, medoids are

rankings too and can be indexed using inverted indices. In Section 5.4 we further

propose techniques for more efficient retrieval of the rankings indexed with an

inverted index.

5.2.2 Query Processing

Lemma 5.2.1 For given query threshold θ and partitioning threshold θC , at

query time, for query ranking q, all medoids τm with distance d(τm, q) ≤ θ+ θC
need to be retrieved in order not to miss a potential result ranking.

Proof The largest distance between any ranking τ and its representative

medoid τm, τm ≺ τ , is θC , i.e., d(τm, τ) ≤ θC . The triangle inequality states

that for three rankings τm, τ and q it holds that d(τm, q) ≤ d(q, τ) + d(τm, τ).

Since we want to retrieve only those rankings that have d(q, τ) ≤ θ, it directly

follows that d(τm, q) ≤ θ + θC . �

Lemma 5.2.1 ensures that rankings {τi|τm ≺ τi ∧ d(τi, q) ≤ θ ∧ d(τm, q) > θ}
will not be omitted from the result set. In other words, Lemma 5.2.1 avoids

48 5. Similarity Range Queries over Top-k Rankings

method: processCoarse

input: QueryProcessor over Medoids qp, double θ, θC ,

Map:Int→ BK-tree map

output: list of query results rlist

1 rTemp ← qp.execute(θ+θC) . query with relaxed threshold

2 for each id ∈ rTemp

3 tree ← map[id]

4 rList.addAll(tree.execute(θ))

5 return rList

Algorithm 1: Query processing using the coarse index.

missing result rankings with distance ≤ θ, which are represented by a medoid

with distance > θ. On the other hand, since the medoids are indexed using an

inverted index, we assume that θ + θC < 1. This is needed because medoids

τm that are not overlapping with q at all, cannot be retrieved from the inverted

index.

For each of the found medoids τm (i.e., d(τm, q) ≤ θ + θC), the rankings

R := {τ |τm ≺ τ} are potential result rankings. For each such candidate ranking

τi ∈ R it needs to be checked if in fact d(q, τi) ≤ θ. The rankings τi ∈ R with

d(q, τi) > θ are so called false positives and according to Lemma 5.2.1 there

are no false negatives. As for each affected medoid τm, the rankings in R are

represented in form of a BK-tree (or any other metric index structure), it is the

task of this tree to identify the true result rankings (i.e., eliminating the false

positives).

Algorithm 1, depicts the querying using the relaxed query threshold, and

the subsequent retrieval of result rankings. In this algorithm, as well as in the

actual implementation, the partitions, represented by the medoids, are arranged

as BK-trees, created at partitioning time.

It is clear that the partitioning threshold θC affects the cost for querying the

metric index structure: The larger the partitions are (i.e., the larger θC is) the

larger is the tree to be queried. On the other hand, then, there are less medoids

to be indexed in the inverted index. This apparent tradeoff is theoretically

investigated in the following section to find the design sweet spot between the

naive inverted index and the case of indexing the entire set of rankings in one

metric index structure.

5.3 Parameter Tuning

Setting the clustering threshold θC allows tuning the performance of the coarse

index. For a clustering threshold θC = 0, only duplicate rankings are grouped

together, whereas for θC = 1 there is only one large group that consists of all

rankings. That means, for larger θC the inverted index becomes smaller, with

5.3 Parameter Tuning 49

more work to be done at validation time inside the retrieved clusters. For smaller

θC the inverted index is larger, but clusters are smaller, hence, less work to be

done in the validation phase. There are, hence, two separate costs: filtering

cost—the cost for querying the inverted index, and, validation cost—the cost

for validating the partitions represented by the medoids returned as results by

the inverted index, in order to get the final query answers.

We try to make as few assumptions as possible and for now we assume

we know only the distribution of pairwise distances. That is, for a random

variable X that represents the distance between two rankings, we know the

cumulative distribution function P [X ≤ x], hence, we know how many rankings

of a population of n rankings are expected to be within a distance radius r of

any ranking, i.e., n×P [X ≤ θC]. We assume that medoids are also just rankings

(by design) and are accordingly distributed. According to the clustering method

described by Chávez and Navarro [CN05], we randomly select medoids, one after

the other. After each selected medoid, all rankings that are not yet assigned to

any medoid before and that are within distance θC to the current medoid are

assigned to it. The process ends as soon as no ranking is left unassigned:

The radius r of the created partitions around the medoids is modeled as

P [X ≤ θC]. We are interested in the number of medoids that need to be

created to capture all rankings in the database. This resembles the coupon

collector problem [FGT92]. The solution to this problem describes how many

coupons a collector needs to buy, in expectation, to capture all distinct coupons

available. The first acquired coupon is unique with probability 1. The second

pick is not seen before with probability (c − 1)/c; c denoting the total number

of distinct coupons. The third pick with probability (c − 2)/c, and so on. In

the case of medoids and their partitions, we specifically consider the variant

of the coupon collector problem with package size larger or equal to one, i.e.,

batches of coupons are acquired together. Within each such package, there are

no duplicate coupons. Figure 5.2 depicts the generic sampling of the ranking

space, where fixed-diameter circles are forming the partitions around the medoid

at the center. The deviation from the standard coupon collectors problem is

that for picking medoids, in each round of picks, the medoid itself has not been

selected before. Thus, the number of “coupons” that need to be acquired to get

the ith distinct coupon, given package size p = P [X ≤ θC]× n, and a total of c

distinct coupons, which in our case is the number of distinct rankings n is then:

h(n, i, p) =

{
1, if imod p = 0
n−(imod p)

n−i , otherwise
(5.1)

And overall, the number of medoids (packages) is given as

M(n, θC) = p−1
n−1∑
i=0

h(n, i, p) (5.2)

This gives us the expected number of medoids indexed by the inverted index.

50 5. Similarity Range Queries over Top-k Rankings

m1
m2

m3

m4

Figure 5.2: Four medoids with fixed-diameter partitions.

Next, we first reason about the cost for validating the partitions, and then we

discuss the filtering cost, i.e., the cost for querying the inverted index.

Cost for Validating Partitions

The number of medoids retrieved is following again the given distribution of

pairwise distances. Since we query the inverted index with threshold θ+ θC we

obtain

E[retrieved medoids] = P [X ≤ θ + θC]×M (5.3)

where M , for brevity, denotes M(n, θC).

Assuming that the retrieved medoids have the same size on average, i.e.,

n/M for a total number of rankings n, we have

E[candidate rankings] = P [X ≤ θ + θC]× n (5.4)

candidate rankings retrieved that need to be checked against the distance to

the query ranking. This is also very intuitive.

For the case of brute-force evaluation of such candidate rankings this is multi-

plied with the cost of computing the distance measure. The cost of representing

the partitions by full-fledged BK-tree is expected to be lower, but it introduces

a complexity to the model. Our goal is to provide an easy to compute, and yet

accurate model. For a more complex reasoning about the cost of querying the

BK-tree we refer the reader to [BYCMW94].

Cost for Retrieving Partitions

When querying the inverted index with a threshold θ+ θC to find the resulting

medoids, the overall cost is based on the average index list length and the final

medoids to be checked against the threshold. We should first estimate the

average size of an index list in an inverted index.

We assume that the popularity of items in the rankings follows Zipf’s law

with parameter s. Sorting all items by their popularity (frequency of appearance

in the rankings), the law states that the frequency of the item at rank i is given

5.3 Parameter Tuning 51

by:

f(i; s, v) =
1

isHv,s
(5.5)

where Hv,s is the generalized harmonic number and v is the total number of

items. The size of the index list for an item is equal to the number of rankings

that contain the item, i.e., n× f(i; s, v) for the ith most popular item; where n

is the number of indexed rankings. Consider a random variable Y representing

sizes yi of index lists for items i. We are interested in E[Y] =
∑
i yi P [yi] and

assume that the chance of item i, that is the ith most popular item, to be selected

as a query item is following the same Zipf distribution, f(k; s, v). That means,

the items appearing frequently in the data are also used often in the queries.

The average size of an index list is then given as E[Y] =
∑
i n×f(i; s, v)2. This

is a generic result for inverted indices, which in our cost model is applied on an

inverted index over M medoids (not n rankings) that together have v′ distinct

items; v′ is derived thereafter, so the expected length of an inverted list for the

inverted index is:

E[index list length] =
∑
i

M × f(i; s, v′)2 (5.6)

For each query, k such index lists need to be accessed. This is one part of the

cost caused by the retrieval of the medoids. For these k × E[index list length]

medoids, we have to compute the distance function, assuming that there are no

duplicate medoids retrieved.

The expectation of distinct items v′ within the medoids is derived as follows.

The probability that an item, out of a global domain of v items, is not selected

into a single ranking of size k is (v−1
v)k, but we do know that a ranking does

not contain duplicate items, hence:

P [¬selected] =
v − 1

v
× v − 2

v − 1
. . .

v − k
v − k + 1

= Πk
i=0

v − i
v − i+ 1

= 1− (
k

v
) (5.7)

The probability that an item, out of a global domain of v items, is not

selected into a single ranking of size k, knowing that the items in the ranking

are unique, is P [¬selected] = 1− (kv). The probability not to be selected in any

of the M medoid rankings is then (1− k
v)M . And thus

E[v′] = v ×

(
1−

(
1− k

v

)M)
(5.8)

To compute the overall cost, the above estimates are combined as shown

in Table 5.3. To bring both parts of the overall cost to a comparable unit, we

precompute the cost (runtime) of a single Footrule computation CostFootrule(k)

(for various k) and the cost (runtime) to merge k lists of a certain size,

52 5. Similarity Range Queries over Top-k Rankings

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ru
n
ti
m

e
 c

o
s
t

 threshold θC

New York Times rankings, k=10, θ=0.2

filter
validate

overall (+)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ru
n
ti
m

e
 c

o
s
t

 threshold θC

Yago rankings, k=10, θ=0.2

filter
validate

overall (+)

Figure 5.3: The behavior of the theoretically derived performance for varying

θC .

Costmerge(k, size). If a subset of the inverted index lists are dropped ac-

cording to Section 5.4.1, the above reasoning remains the same, except that the

parameter k is adapted according to Corollary 4.3.1.

Figure 5.3 shows the model for vary θC for the two datasets used in the

experimental evaluation (we refer the reader to Section 5.5 for a description of

the datasets). We empirically estimated the skewness parameter s from samples

of the datasets—s = 0.87 for the New York Times dataset (left plot) and s =

0.53 for the Yago dataset (right plot)—and fitted it in the above estimate of the

expected index list length.

Find medoids for query:

Inv. Index Cost: Costmerge(k,
∑
i f(i; s, v′)2 ×M)

+

Validation Cost: k
(∑

i f(i; s, v′)2 ×M
)
× CostFootrule(k)

Validation of retrieved rankings:

Validation Cost: n× P [X ≤ θ + θC]× CostFootrule(k)

Table 5.3: Model of query performance (∼runtime) of the coarse index.

5.4 Inverted Index Access & Optimizations

Medoids are rankings as well and thus they can be indexed using inverted indices.

In this section, two optimizations over inverted indices are presented.

First, we describe how the minimum-overlap criterion and the prefix sizes,

derived in Chapter 4 can be applied here; it is used for calculating how many of

the k index lists can be dropped from consideration, guaranteeing that no true

result ranking can possibly be missed.

For the second optimization, for a query ranking of size k, the k correspond-

ing index lists are accessed one after the other, and the contained information

in each list in the form of (τi, τ(i)) are continuously aggregated for each (seen)

ranking. For each ranking observed during accessing the index lists, upper and

lower bounds for the true distance are derived, to allow accepting or rejecting

5.4 Inverted Index Access & Optimizations 53

final result rankings early.

5.4.1 Pruning by Query-Ranking Overlap

This inverted index optimization is based on the prefix-filtering framework de-

scribed in Chapter 3. By using either Corollary 4.3.1 or Lemma 4.3.2, at query

time, based on the threshold θ, we compute the (number of) posting lists, p,

that need to be retrieved from the inverted index. Note that, since we do not

know the threshold θ upfront, we have to index the complete rankings. Further-

more, in our problem setting, due to the way that the prefix size is computed,

no additional sorting of the rankings is required.

Independent of the actual choice of the prefix used (either Corollary 4.3.1 or

Lemma 4.3.2) k−p index lists can be dropped. Still, the expected impact of the

candidate pruning is larger if the largest lists are dropped. In fact, experiments

will show that specifically for the query-log–based benchmark, drastic perfor-

mance gains can be enjoyed, literally for free. Therefore, in this work we use

the prefix computation based on Corollary 4.3.1. For the remaining lists and

rankings within, the exact distance still needs to be determined, as there are

obviously so called false positives with distance larger than the query threshold.

But we can guarantee that there are no false negatives, i.e., no ranking τ with

F (τ, q) ≤ θ is missed.

Algorithms that make use of this dropping of entire index lists carry the

suffix +Drop in the title.

5.4.2 Partial Information

Instead of having only ranking ids stored in the inverted index, such that an

additional lookup is required to get the actual ranking content, we can augment

the inverted index to make it hold the rank information as well, such that

the true distance can be directly computed. This possible extension of the

inverted index with rank information was already mentioned in Chapter 2. Here

we describe the exact query processing algorithm using such rank-augmented

inverted index.

inverted index with ranks

item a <(τ1 : 3),(τ5 : 1),(τ7 : 4)>

item b <(τ4 : 2),(τ9 : 11),(τ12 : 1),(τ19 : 2)>

In a List-at-a-Time fashion, the individual index lists determined by the

query are accessed one after the other. Similarly to the NRA algorithm by Fagin

et al. [FLN03], for a ranking τ that has been seen only in a subset of the index

lists, we can compute bounds for its final distance. This is done by keeping track

of the common elements seen between the query q and ranking τ . The lower

and upper bounds are computed by reasoning about the yet unseen elements:

A lower bound distance L(τ, q) is given by assuming the best configuration of

54 5. Similarity Range Queries over Top-k Rankings

τ0 = [1, 2, 3, 4, 5] τ5 = [4, 5, 1, 2, 3]

τ1 = [1, 2, 9, 8, 3] τ6 = [1, 6, 2, 3, 7]

τ2 = [9, 8, 1, 2, 4] τ7 = [7, 1, 6, 5, 2]

τ3 = [7, 1, 9, 4, 5] τ8 = [2, 5, 9, 8, 1]

τ4 = [6, 1, 5, 2, 3] τ9 = [6, 3, 2, 1, 4]

Table 5.4: Sample set T of rankings

the unseen elements, that is, the remaining elements are common to both q and

τ , and are additionally present in the same ranks in both rankings. Thus, their

partial contribution to the Footrule distance is zero.

The upper bound distance U(τ, q) is obtained when none of the (yet) unseen

elements in τ will be present in the query q. The partial distance contribution

of such an item i, at rank τ(i) in τ is |k − τ(i)|, and overall we have

U(τ, q) = L(τ, q) +
∑

i unseen

|k − τ(i)|

The bounds allow pruning of candidates: If L(τ, q) > θ we know that τ is

not a result ranking, since L(τ, q) is monotonically non-decreasing. Similarly, if

U(τ, q) ≤ θ, we report τ as the result, as U(τ, q) is monotonically non-increasing.

For small values of θ, many candidates can be evicted early on in the execution

phase. For larger values of θ, candidate results can be reported early—reducing

bookkeeping costs.

Consider for instance the set T of the rankings presented in Table 5.4 and a

query q = [7, 6, 3, 9, 5]. The index list for item 7 is:

item 7 <(τ3 : 0),(τ6 : 4),(τ7 : 0)>

We can compute the bounds for the seen rankings, τ3, τ6, and τ7. For

all these rankings, we know the seen element is item 7 and we have 4 unseen

elements, since k = 5. Thus, L(τ3, q) = L(τ7, q) = 0 and L(τ6, q) = 4, as

τ3(7)−q(7) = τ7(7)−q(7) = 0, and τ6(7)−q(7) = 4 and for the unseen items we

assume they are on the same position in all rankings. U(τ3, q) = U(τ7, q) = 20

and U(τ6, q) = 24, as we assume that all of the unseen elements are not present

in τ3, τ6, and τ7.

These distance bounds are used in the following online aggregation algorithm

that encounters partial information. Algorithms that make use of this pruning

for partial information carry the suffix +Prune in their title.

5.4.3 Blocked Access on Index Lists

When index lists are ordered according to the rank values, since the ranks are

integers, there might be a sequence of index lists whose ranks are the same. We

refer to this sequence of index lists as a block of index lists. Formally, we let

the block Bi@j to denote the set of rankings in which item i appears at position

j. We additionally have a secondary index, one for each index list, which stores

5.4
In

verted
In

d
ex

A
ccess

&
O

p
tim

ization
s

55

item 1→ (τ0 : 0), (τ1 : 0), (τ6 : 0) , (τ3 : 1), (τ4 : 1), (τ7 : 1), (τ10 : 1) , (τ2 : 2), (τ5 : 2) , (τ9 : 3) , (τ8 : 4)

item 2→ (τ8 : 0) , (τ0 : 1), (τ1 : 1) , (τ6 : 2), (τ9 : 2) , (τ2 : 3), (τ4 : 3), (τ5 : 3), (τ10 : 3) , (τ7 : 4)

item 3→ (τ9 : 1) , (τ0 : 2) , (τ6 : 3) , (τ1 : 4), (τ4 : 4), (τ5 : 4)

item 4→ (τ5 : 0) , (τ10 : 2) , (τ0 : 3), (τ3 : 3) , (τ2 : 4), (τ9 : 4)

item 5→ (τ5 : 1), (τ8 : 1) , (τ4 : 2) , (τ7 : 3) , (τ0 : 4), (τ3 : 4), (τ10 : 4)

item 6→ (τ4 : 0), (τ9 : 0) , (τ6 : 1) , (τ7 : 2)

item 7→ (τ3 : 0), (τ7 : 0) , (τ6 : 4)

item 8→ (τ2 : 1) , (τ1 : 3) , (τ8 : 3)

item 9→ (τ2 : 0), (τ10 : 0) , (τ1 : 2), (τ3 : 2), (τ8 : 2)

Figure 5.4: Inverted Index for rankings in Table 5.4 with highlighted blocks of same-rank entries.

56 5. Similarity Range Queries over Top-k Rankings

the offsets of the individual blocks.

The advantage with such an index list organization strategy is that process-

ing the entire index list can be avoided in many cases. We describe this in detail.

It is obvious that result candidates which have a partial distance greater than θ

can be pruned out. In such an index organization approach, we avoid processing

blocks which would produce candidates with a partial distance greater than θ.

Given a query q = [q1, . . . , qk] with a threshold θ, all result candidates obtained

while traversing the block Bi@j have a partial distance of at least |j − i|. Thus,

we modify the List-at-a-Time algorithm so that blocks, Bi@j , where |j − i| > θ

are omitted, avoiding processing the bulk of the index list.

Consider for instance the inverted index in Figure 5.4, constructed according

to the rankings in Table 5.4. For the query q = [3, 2, 1] and θ = 1, blocks B3,1

need to be accessed for item 3, B2,1, B2,1 and B2,3 for item 2. Finally, blocks B1,2,

B1,3 and B1,4 for item 1. In the process 17 out of 28 index lists are processed

which accounts for less than 50% index lists being accessed.

5.5 Experiments

We implemented the described algorithms in Java 1.7 and report on the setup

and results of an experimental study. The experiments are conducted on a quad-

core Intel Xeon W3520 @ 2.67GHz machine (256KiB, 1MiB, 8MiB for L1, L2,

L3 cache, respectively) with 24GB DDR3 1066 MHz (0.9 ns) main memory.

Datasets

Yago Entity Rankings: We have mined top-k entity rankings out of the

Yago knowledge base, as described in [IMS13]. The facts, in form of sub-

ject/predicate/object triples, are used to define constraints, for which the quali-

fying entities are ranked according to certain criteria. For instance, we generate

rankings by focusing on type building and predicate located in New York, ranked

by height. This dataset, in total, has 25,000 rankings.

NYT: We executed 1 million keyword queries, randomly selected out of a pub-

lished query log of a large US Internet provider, against the New York Times

archive [NYT] using a unigram language model with Dirichlet smoothing as a

scoring model. Each query together with the resulting documents represents

one ranking.

The two datasets are naturally very different: while the Yago dataset features

real world entities that each occur in few rankings, the NYT dataset has many

popular documents that appear in many query-result rankings.

Algorithms under Investigation

• the baseline approaches Filter and Validate (F&V) and Merge of Id-Sorted

Lists (ListMerge) both described below

5.5 Experiments 57

• filter and validate technique combined with the optimization based on

dropping entire index lists (F&V+ Drop)

• blocked access with pruning (Blocked+Prune)

• blocked access with pruning based on both overlap and pruning

(Blocked+Prune+Drop)

• query processing on the coarse index using the F&V technique (Coarse)

• query processing on the coarse index using the F&V+ Drop technique

(Coarse+Drop)

• a competitor AdaptSearch, and Minimal F&V algorithm, both de-

scribed below

Next to the actual algorithms, we implemented a minimal Filter and Validate

algorithm (Minimal F&V) that has for each query materialized a single index

list in an inverted index that contains exactly the true query-result rankings.

For each of these, the Footrule distance is computed. The cost for the single

index lookup and the Footrule computations serves as a lower bound for the

performances of the discussed algorithms.

We also implemented AdaptSearch [WLF12] as the most recent and com-

petitive work on ad-hoc set similarity search in main memory at that time. We

implemented AdaptSearch by following the C++ implementation of the Adap-

tJoin algorithm available online1. We computed the size of the prefix of the

query using the overlap threshold ω derived in Section 5.4. In the validation

phase, AdaptSearch computes the Footrule distance for each of the candidate

rankings.

The implementation of the M-tree is obtained from [MTI]. We implemented

the BK-tree ourselves, according to the original work in [BK73]. The inverted

index implementations make use of the Trove library2.

Merge of Id-Sorted Lists with Aggregation: If the information within

each index list is sorted by ranking id, and further contains rank information,

the problem of computing the actual distances of the rankings to the query

ranking can be achieved using a classical merge “join” of id-sorted lists. This

is very efficient, in particular as the index lists do not contain any duplicates.

Cursors are opened to each of the lists, and the distances of each ranking is

finalized on the fly. There is no bookkeeping required as, at any time, only one

ranking is under investigation (the one with the lowest id, if sorted in increasing

order). Rankings do either qualify the query threshold or not. It is clear that

this algorithm is threshold-agnostic, that is, its performance is not influenced

by the query threshold θ; the index lists have to be read entirely.

We mainly focus on rankings of size 10 since in a previous study [AIMS13]

we observed that at ranker.com most common are rankings of size 10.

1https://github.com/sunlight07/similarityjoin
2http://trove.starlight-systems.com/

58 5. Similarity Range Queries over Top-k Rankings

Performance Measures

• Wall-clock time: For all algorithms we measure the wall-clock time needed

for processing 1000 queries.

• Distance function calls: For the filter&validate algorithms, specifically

F&V, F&V+Drop, Blocked+Prune+ Drop, Coarse, and Coarse+Drop,

we measure the number of distance function computations performed.

For the coarse index processing techniques, we also investigate the perfor-

mance of the individual phases.

5.5.1 Query Processing Performance

Inverted Index vs. Metric Index Structures

We first compare the two main concepts of processing similarity queries over

top-k rankings: First, the use of metric index structures is compared, here,

represented by the BK-tree and the M-tree [ZSAR98] (Figure 5.5). Second, the

use of inverted indices is compared to the BK-tree (Figure 5.6).

Figure 5.5 reports the query performance of the BK-tree compared to the

M-tree and Figure 5.6 on the query performance of the BK-tree index struc-

ture versus the plain query processing using the inverted index with subsequent

validation, i.e., filter and validate, F&V. We see that the inverted index per-

forms orders of magnitudes better than the M-tree. Although the M-tree is

a balanced index structure it still performs worse than the BK-tree. Chávez

et al. [CNBM01] show that balanced index structures perform worse than un-

balanced ones in high dimensions—we calculated the intrinsic dimensionality

of both datasets to be around 13 (cf. [CNBM01] for the definition of intrinsic

dimensionality). Despite the better performance of the BK-tree, the inverted

index still outperforms it. Hence, only techniques using the inverted index

paradigm are further studied.

Coarse Index Performance Based on θC

Next, we studied the performance of the coarse index for different θC values.

We focus on the performance of the coarse index combined with the F&V tech-

nique as this combination is the most comparable to the model presented in

Section 5.2. In Figure 5.7, the filtering and validation times are shown when

varying θC and fixed k = 10, for both datasets. We see that the curves resemble

the ones plotted for the cost model in Figure 5.3. Both dataset show a similar

behavior of the execution time. The filtering time is reducing as we increase the

value of θC , since the number of indexed medoids reduces. The validation time,

on the other hand, is rising, since the size of the partitions is increasing propor-

tionally with θC . Most importantly, we see that we can find a specific value of

θC for which the coarse index performs optimally and this value depends on the

value of θ + θC as modeled in Section 5.2.

5.5 Experiments 59

 0
 100
 200
 300
 400
 500
 600
 700

 5 10 15 20 25

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

k

θ=0.1

BK-tree
M-tree

 0
 100
 200
 300
 400
 500
 600
 700

 0 0.05 0.1 0.15 0.2 0.25 0.3

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threshold (θ)

k=10

BK-tree
M-tree

Figure 5.5: Performance of the M-tree vs. BK-tree for NYT dataset

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

k

θ=0.1

BK-tree
F&V

 0

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Threshold (θ)

k=10

BK-tree
F&V

Figure 5.6: Performance of the BK-tree vs. the performance of inverted index

for NYT dataset.

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Partitioning threshold (θc)

filtering time
validation time

overall time

(a) NYT

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Partitioning threshold (θc)

filtering time
validation time

overall time

(b) YAGO

Figure 5.7: Trend of the filtering and validation time of the coarse index for

k = 10, θ = 0.2 and varying θC . The small rectangle depicts the performance

of the coarse index if θC was chosen by the model and the vertical line the

difference in performance.

Cost Model Correctness

The performance of the coarse index if the trade-off value of θc as computed by

the model is chosen, is shown in the plots in Figure 5.7 as a small rectangle.

60 5. Similarity Range Queries over Top-k Rankings

θ = 0.1 θ = 0.2 θ = 0.3

NYT 29.47 10.23 4.75

Yago 3.28 0.41 2.38

Table 5.5: Difference in ms between the minimal performance of the coarse

index, and the performance for the theoretically computed best value of θc
(k = 10)

The vertical line denotes the difference between the performance of the coarse

index in case of the two trade-off θc values—the modeled optimal one and the

real optimal one. We observe that except for θ = 0.1, for the NYT dataset,

the difference in performance is smaller than 11ms (Table 5.5). For θ = 0.1 the

difference is 29.47ms. For the Yago dataset, the difference in performance is less

than 4ms for any value of θ.

As we are considering the task of processing ad-hoc queries, even choosing

the optimal value of θC for some previously defined maximum value of θ would

result in a performance close to the optimal one, as the performance of the coarse

index remains stable in this region. The major increase in the performance

happens for very small values of θC or larger than the optimal θC . We show this

in the experiments comparing different algorithms, where we set θC = 0.5—the

optimal value for θ = 0.3.

We also measure the performance of the coarse index combined with the

F&V+Drop technique as this should result in even bigger performance gains.

For this technique, we measured the optimal value for θC to be 0.06, since for

smaller values of θ + θC we can drop more index lists.

Comparison of Different Algorithms

Next, we study the performance of different query processing methods performed

over the two datasets; for rankings of size 10 and 20 and θ ranging from 0 to 0.3.

First, in Figure 5.8 we compare the performance of the coarse index with the

remaining techniques, for the NYT dataset. For a better visibility, we group the

algorithms in the plots in two groups. The first (left) group contains the Coarse

and Coarse+Drop techniques, the two baseline approaches F&V and ListMerge,

and the competitors AdaptSearch and Minimal F&V. The second (right) group

contains the remaining hybrid techniques.

We see that for all threshold values the coarse index, with and without drop-

ping index list, significantly outperforms the AdaptSearch algorithm. In fact,

the Coarse+Drop index outperforms the competitor by at least factor of 34.

The coarse index outperforms the Minimal F&V technique by a factor of up to

7, since the number of Footrule distance function calls reduces significantly as

shown in Figure 5.10. Dropping entire lists from the query even further boosts

the performance of the coarse index, and results in up to 24 times better per-

formance than the Minimal F&V. The baseline approaches, although threshold

5.5 Experiments 61

agnostic, perform worse than the rest of the algorithms. Increasing the values

of θ degrades the performance of all the processing techniques except for the

baseline F&V and ListMerge techniques, as they are threshold agnostic. In fact,

because of its simple and efficient implementation, the ListMerge even outper-

forms the AdaptSearch algorithm for θ ≥ 0.1 for rankings with k = 10. For

k = 20, since we increase the number of lists that need to be merged, the per-

formance of the ListMerge is worse and thus the AdaptSearch outperforms it

for all values of θ.

For rankings of size 10, all hybrid techniques outperform AdaptSearch, but

not the coarse index. The Blocked+Prune algorithm dynamically computes

the best score for the yet unseen blocks to decide when to terminate further

scheduling of blocks. In cases where the best blocks will not result in similar

rankings, Blocked+Prune terminates early. Thus, when searching for exact

matches, the Blocked+Prune technique performs especially well, outperforming

AdaptSearch by a factor of 1.2. Same as for the coarse index, dropping lists

further improves the performance of the Blocked+ Prune technique. Increasing

the values of θ degrades the performance of all the processing techniques. The

Blocked+ Prune+Drop technique performs worse than the F&V+Drop, because

sorting the lists adds some overhead to the processing while the pruning is

not so effective. The F&V+Drop technique is performing very well, in fact

we measured its performance to be very close to the Minimal F&V, especially

for small values of θ. Although they are both based on the same concept,

F&V+Drop performs better than AdaptSearch, first because it drops one index

list more than AdaptSearch, and second, because we are processing relatively

short rankings, thus the simple algorithms perform well.

Most of the query processing techniques display the same behavior in the

experiments performed on the Yago dataset (Figure 5.9). What is different here

is that none of the processing techniques perform as good as the Minimal F&V,

which shows a runtime close to zero. This is due to the fact that the items in

the Yago dataset are more equally distributed. In this dataset we have small

clusters of similar rankings. However, the clusters seem to be different among

them, allowing more rankings to be pruned early on. Moreover, for the Yago

dataset the Blocked+Prune technique performs very poorly. We believe this

is because the overhead of sorting the index list is too big for the small index

size. In fact, we measured that for 35% of the queries sorting of the index

lists accounts for a third of the execution time, when k = 10. The percentage

increases as we increase k. The simple baseline ListMerge technique surprisingly

outperforms the coarse index and the AdaptSearch algorithm. We believe that

this happens because of the small data size and the size of the rankings. Still,

ListMerge does not perform better than the Coarse+Drop technique, except

for θ = 0.3 and k = 10. For this dataset, the AdaptSearch algorithm shows

better performance, performing better than the coarse index in most of the

cases. However, the Coarse+Drop technique and some of the hybrid techniques

still outperform the competitor, AdaptSearch.

62 5. Similarity Range Queries over Top-k Rankings

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0 0.1 0.2 0.3

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Threshold (θ)

Coarse θc=0.5; Coarse+Drop θc=0.06

(a) k = 10

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

0 0.1 0.2 0.3

P
e
rf

o
rm

a
n
ce

 (
in

 M
ill

is
e
co

n
d
s)

Threshold (θ)

F&V
ListMerge

AdaptSearch
Minimal F&V

Coarse
Coarse+Drop

Blocked+Prune
Blocked+Prune+Drop

F&V+Drop

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

0 0.1 0.2 0.3

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Threshold (θ)

Coarse θc=0.5; Coarse+Drop θc=0.06

(b) k = 20

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

0 0.1 0.2 0.3

P
e
rf

o
rm

a
n
ce

 (
in

 M
ill

is
e
co

n
d
s)

Threshold (θ)

F&V
ListMerge

AdaptSearch
Minimal F&V

Coarse
Coarse+Drop

Blocked+Prune
Blocked+Prune+Drop

F&V+Drop

Figure 5.8: Comparing query processing over coarse index with baseline and

competitor approaches (left block) and with other hybrid methods over inverted

index (right block) for NYT dataset, for k = 10 and k = 20.

Distance Function Computations

The difference in performance between the Coarse, Coarse+ Drop, F&V+Drop

and Blocked+Prune+Drop algorithms can be explained by looking at the num-

ber of distance functions calls, shown in Figures 5.10 and 5.11 . We see that for

the Yago dataset the final result set is very small, practically almost 1, and the

number of distance function computations performed by all the algorithms is sig-

nificantly larger than the final result set. On the other hand, for the NYT data

set—where we have a skewed distribution of the items—the number of false pos-

itives is very small, resulting in a very good performance of the F&V+Drop and

Blocked+Prune+Drop processing techniques. Combining these with the coarse

index even further reduces the number of distance function computations, i.e.,

the number of distance function computations is smaller than the final result set.

This is because for the exact matching rankings in one partition, the Footrule

distance is not computed again during query processing time.

5.5.2 Index Size and Construction Time

In Table 5.6 the size and the index construction time is shown for both datasets

for k = 10. Delta Inverted Index is the index used in the AdaptSearch algorithm.

For the coarse index, we set θC = 0.5. We see that all the indices are smaller

5.5 Experiments 63

 0

 10

 20

 30

 40

 50

 60

 70

0 0.1 0.2 0.3

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Threshold (θ)

Coarse θc=0.5; Coarse+Drop θc=0.06

(a) k = 10

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

0 0.1 0.2 0.3

P
e

rf
o

rm
a

n
ce

 (
in

 M
ill

is
e

co
n

d
s)

Threshold (θ)

F&V
ListMerge

AdaptSearch
Minimal F&V

Coarse
Coarse+Drop

Blocked+Prune
Blocked+Prune+Drop

F&V+Drop

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

0 0.1 0.2 0.3

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Threshold (θ)

Coarse θc=0.5; Coarse+Drop θc=0.06

(b) k = 20

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

0 0.1 0.2 0.3

P
e

rf
o

rm
a

n
ce

 (
in

 M
ill

is
e

co
n

d
s)

Threshold (θ)

F&V
ListMerge

AdaptSearch
Minimal F&V

Coarse
Coarse+Drop

Blocked+Prune
Blocked+Prune+Drop

F&V+Drop

Figure 5.9: Comparing query processing over coarse index with baseline and

competitor approaches (left block) and with other hybrid methods over inverted

index (right block) for Yago dataset, for k = 10 and k = 20.

than 1GB. All indices store the complete rankings, thus their sizes do not differ

significantly. The rank-augmented inverted index requires the most storage as

it keeps both the complete rankings, and the position augmented index lists to

support different processing techniques.

The construction time of the coarse index is the most expensive one, as

we need to build a BK-tree, partition it and add the medoids to the inverted

index. The construction of the BK-tree is expensive as the tree is unbalanced

and in worst case, we need O(n2) distance computations. The M-tree index

construction time is lower than the BK-tree. Both construction times are worse

than the one of the inverted index; creating the inverted index does not imply

making any distance computations. However, the construction time of the plain

inverted index is cheaper than the augmented one, as we do not consider the

position of the rankings.

It is difficult to compare the complexity of the construction time of the

different index structures, since the complexity of the metric index structures is

usually measured in distance function computation, as this is the most costly

operation. On the other hand, in the case of the inverted index there are no

distance functions performed during construction at all.

64 5. Similarity Range Queries over Top-k Rankings

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 0.1 0.2 0.3

#
D

F
C

 i
n
 t
h
o
u
s
a
n
d
s

Threshold (θ)

(a) k = 10

 0
 1000
 2000
 3000
 4000
 5000
 6000

0 0.1 0.2 0.3

N
u

m
b

e
r

o
f

D
F

C
 in

 t
o

u
sa

n
d

s

Threshold (θ)

NYT, k=10

F&V
F&V+Drop

Blocked+Prune+Drop
Coarse

Coarse+Drop
Minimal F&V

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 0.1 0.2 0.3

#
D

F
C

 i
n
 t
h
o
u
s
a
n
d
s

Threshold (θ)

(b) k = 20

 0
 1000
 2000
 3000
 4000
 5000
 6000

0 0.1 0.2 0.3
N

u
m

b
e

r
o

f
D

F
C

 in
 t

o
u

sa
n

d
s

Threshold (θ)

NYT, k=10

F&V
F&V+Drop

Blocked+Prune+Drop
Coarse

Coarse+Drop
Minimal F&V

Figure 5.10: Number of distance function calls (DFC) for different query pro-

cessing methods for NYT dataset (Coarse θc=0.5; Coarse+Drop θc = 0.06)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.1 0.2 0.3

#
D

F
C

 i
n
 t
h
o
u
s
a
n
d
s

Threshold (θ)

(a) k = 10

 0
 1000
 2000
 3000
 4000
 5000
 6000

0 0.1 0.2 0.3

N
u

m
b

e
r

o
f

D
F

C
 in

 t
o

u
sa

n
d

s

Threshold (θ)

NYT, k=10

F&V
F&V+Drop

Blocked+Prune+Drop
Coarse

Coarse+Drop
Minimal F&V

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.1 0.2 0.3

#
D

F
C

 i
n
 t
h
o
u
s
a
n
d
s

Threshold (θ)

(b) k = 20

 0
 1000
 2000
 3000
 4000
 5000
 6000

0 0.1 0.2 0.3

N
u

m
b

e
r

o
f

D
F

C
 in

 t
o

u
sa

n
d

s

Threshold (θ)

NYT, k=10

F&V
F&V+Drop

Blocked+Prune+Drop
Coarse

Coarse+Drop
Minimal F&V

Figure 5.11: Number of distance function calls (DFC) for different query pro-

cessing methods for Yago dataset (Coarse θc=0.5; Coarse+Drop θc = 0.06)

Lessons Learned

Combining the coarse index with the proposed optimizations on the inverted in-

dex always leads to performance improvements, independent of the distribution

5.6 Summary 65

size in MB construction

time in sec.

NYT Yago NYT Yago

Plain Inverted In-

dex

480 24 3.37 0.03

Augmented In-

verted Index

661 38 5.72 0.11

Delta Inverted In-

dex

417 35 3.63 0.086

BK-tree 276 11 1206.75 12.11

M-tree 265 11 35.00 0.47

Coarse Index 367 26 1392.35 19.57

Table 5.6: Size and construction time of indices for k = 10

of the items in the dataset. The experiments demonstrate that the Coarse+

Drop technique outperformed state-of-the-art algorithm for similarity search,

AdaptSearch, for both datasets. The simple yet accurate model for picking the

optimal trade-off point (cf., Section 5.2) leads close to the best performance of

the coarse index. When the query threshold is not known, we can tune the

coarse index for the maximum query threshold that we might have. In these

cases, the coarse index shows to perform better for a skewed dataset. When

having a dataset where the items are unevenly distributed, the F&V+Drop al-

gorithm alone results in huge gains as we only process the smallest index lists.

These, as the distribution of the items is skewed, can often contain only few

false positives. On the contrary, when the dataset contains chunks of rankings

similar to each other, i.e, we have more evenly distributed items, the effect of

the early pruning of rankings is most expressed. Thus in these cases, using

the Blocked+Prune+Drop algorithm, which combines the early pruning with

dropping of entire index lists, leads to the biggest benefits, for small values of θ.

Varying the size of the rankings does not have a great impact on the different

algorithms. Only when having very small ranking sizes, for instance k=5, the

simple baseline ListMerge shows to perform well.

5.6 Summary

In this chapter, we addressed indexing mechanisms and query processing tech-

niques for ad-hoc similarity search inside sets of rankings. We specifically con-

sidered Spearman’s Footrule distance for top-k rankings and investigated the

trade-offs between metric index structures and inverted indices, known in the

literature for indexing set-valued attributes. The presented coarse index syn-

thesizes advantages of metric-space indexing and the ability of inverted indices

to immediately dismiss non-overlapping rankings. To understand and automat-

ically tune the necessary partitioning of the rankings, we developed an accurate

66 5. Similarity Range Queries over Top-k Rankings

theoretic cost model; and showed by experiments that it allows reaching perfor-

mance close to the optimal trade-off point. Further, we presented an algorithm

that avoids accessing blocks of an index list during query processing thereby

improving performance. We derived upper and lower distance bounds for such

an online processing and, further, studied the impact of dropping entire parts of

the query depending on the tightness of the query threshold. The presented ap-

proaches are to a large extent orthogonal and, by a comprehensive performance

evaluation using two real-world datasets, we showed that the individual benefits

add up, showing better performance than the competitor, AdaptSearch.

Chapter 6

Distributed Similarity Joins

over Top-k Rankings

6.1 Introduction

As a natural extension to the problem of processing similarity range queries

over top-k rankings, in this chapter, we present algorithms for efficiently solv-

ing the problem of similarity joins over top-k rankings. The work presented in

this chapter has not been published yet, however, is under submission. Simi-

larity joins have been a popular research topic in the database community for

more than a decade. Previous research in this topic is concerned with solving

the problem of similarity join for sets [GIJ+01, CGK06, XWLY08, WLF12],

strings [JLFL14] or the more general problem of finding the similar objects in

metric space [JS08]. However, to the best of our knowledge, the problem of

similarity joins over top-k rankings has not been addressed so far.

Since presently huge amounts of data are being generated and processed, in

this chapter, we specifically focus on solving the problem of distributed simi-

larity joins for top-k rankings. Recently, Fier et al. [FAB+18] summarized and

compared existing distributed solutions on similarity joins for sets, strings and

metric space. In their study, they showed that the existing distributed solutions

in Map Reduce do not scale well, and propose that Apache Spark [SPK] is used

as a platform for developing new alternative solutions. Thus, in this thesis, we

focus on studying an efficient and scalable top-k rankings similarity joins using

Apache Spark [SPK].

The similarity join algorithms for top-k rankings can be applied in some of

the same contexts as the similarity range approach. For instance, in the case of

query suggestion or expansion in search engines based on finding similar queries

by comparing their result lists, or in a dating portal where we can use the

preferences and affinities of users, presented in a form of top-k lists, for match-

making, where we compare all the lists, in order to find people whose interests

67

68 6. Distributed Similarity Joins over Top-k Rankings

match. For instance, consider Table 6.1 containing favorite movies of members

of some dating portal. By comparing the lists we see that Alice and Chris have

similar taste so the system should match them for a date. Furthermore, these

algorithms can be applied in the case of recommender systems, where the sim-

ilarity between the top sold (liked, favored) items for different clients can help

in recommending products.

Alice Bob Chris

1. Pulp Fiction The Schindler List Indiana Jones

2. E. T. Lord of the Rings Pulp Fiction

3. Forrest Gump Avengers Forrest Gump

4. Indiana Jones Indiana Jones E. T.

5. Titanic E. T Titanic

Table 6.1: Example top-k lists of favorite movies for users of a dating portal

As in the prior chapter, Spearman’s Footrule distance is used as a distance

measure for comparing two top-k lists, and thus, the presented solution, similarly

as in Chapter 5, combines an inverted index approach with metric, distance-

based, filtering. Furthermore, the proposed approach is implemented in Apache

Spark, and thus, is better tailored to the properties of this platform. In contrast

to MapReduce, where each stage is composed of only a map and reduce function,

and the data from each stage is written to disk, Apache Spark is more suitable

for iterative processing of data and performs the computation in memory. Thus,

we propose an iterative approach that computes the similarity join in several

stages while storing the intermediate results in memory. By using the triangle

inequality, the number of candidate pairs generated is reduced—very similar

rankings are clustered together, and then, only the cluster representatives are

joined, reducing the size of the data joined. Through a detailed experimental

study, we show that our algorithm outperforms the competitor, for larger values

of the distance threshold, θ.

6.1.1 Problem Statement and Setup

Similarly as in Chapter 5 as input we are provided with a set T of fixed-length

rankings of size k, τi, where each ranking has a domain Dτi of items it contains.

Furthermore, the ranked items in a ranking are represented as arrays or lists of

items, where the left-most position denotes the top ranked item. In addition,

each ranking has an id associated with it. We follow the same notation as in

Chapter 5.

The problem that we want to solve in this chapter is: Given a dataset of

top-k rankings T = {τ1, . . . , τn} and a distance threshold θ we want to efficiently

find all pairs (τi, τj), τi, τj ∈ T , i 6= j, where the distance d between τi and τj
is smaller or equal to θ, i.e., d(τi, τj) ≤ θ.

In this work, as in Chapter 5, for comparing the rankings Spearman’s

6.2 Adaptation of Set-Based Algorithms to Top-k Rankings 69

Footrule distance is used. The main difference to our work on similarity range

queries, presented in Chapter 5, is first, that the distance threshold is known

beforehand, and second, that for this problem, we do not have a preprocessing

step where the data is indexed before being queried, but instead the whole

dataset is being processed at join time. Furthermore, our focus is on developing

a distributed solution, which introduces additional challenges, like handling the

data distribution.

6.1.2 Contributions and Outline

The contributions of our work can be summarized as follows.

• We adapt existing set-based similarity join algorithms to the problem of

top-k rankings. We furthermore implement and adapt these algorithms to

the Apache Spark framework.

• We introduce a new iterative, highly configurable, algorithm that com-

bines metric space distance-based filtering with state-of-the-art set-based

similarity join algorithms.

• We propose further optimization to the proposed algorithm by presenting

a method for repartitioning large partitions.

• We implemented our methods and competitors in Apache Spark and

through an extensive experimental study on two real-world datasets,

we show that our methods consistently outperform state-of-the-art ap-

proaches for larger values of the threshold θ.

The rest of the chapter is structured as follows. In Section 6.2 we describe

how set-based algorithms can be adapted for processing top-k rankings using

Spearman’s Footrule distance. The clustering algorithm and its components are

introduced in Section 6.3. Section 6.4 proposes a Spark based repartitioning

technique. We experimentally evaluate the presented approaches in Section 6.5.

Finally, we summarize the chapter in Section 6.6.

6.2 Adaptation of Set-Based Algorithms to Top-

k Rankings

6.2.1 Vernica Join

To find all pairs of similar top-k rankings for a given set T and a threshold θ we

can use the Vernica Join (VJ) algorithm, described in Chapter 3. This algorithm

is based on the prefix-filtering method, therefore, we can use the prefix sizes,

defined in Chapter 4 in order to be able to apply it on top-k rankings.

The first step in the VJ algorithm is counting the frequency of the elements

in the sets and ordering them by frequency. This step is not needed for top-k

70 6. Distributed Similarity Joins over Top-k Rankings

!1 [2,5,4,3,1]
!2 [1,4,5,9,0]
!3 [0,8,5,7,3]

broadcast sort

compute items
frequency in rankings

and sort ascending

7, 2, 8, 9, 1, 3, 4, 0, 5

items sorted by frequency

!1 [(2,0),(1,4),(3,3),(4,2),(5,1)]
!2 [(9,3),(1,0),(4,1),(0,4),(5,2)]
!3 [(7,3),(8,1),(3,4),(0,0),(5,2)]

!4 [8,3,0,4,5]
!5 [5,2,0,1,9] !4 [(8,0),(3,1),(0,2),(4,3),(5,4)]

!5 [(2,1),(9,4),(1,3),(0,2),(5,0)]

(2, !1)
(1, !1)
(1, !2)
(9, !2)
(7, !3)
(8, !3)

(8, !4)
(3, !4)
(2, !5)
(9, !5)

transform
(2, {!1, !5})
(1, {!1, !2})
(9, {!2, !5)
(7, !3)

(8, {!4, !3})
(3, {!4})

aggregate
by key

apply in-memory join
algorithm per item list
and compute results

distinct and
output

Figure 6.1: Example of computing the similarity join for top-k rankings using

the Vernica Join algorithm in Spark.

rankings and it can be skipped. However, since most real-world datasets follow

a skewed distribution, through experiments we concluded that reordering the

rankings by the item’s frequency leads to major performance gains, and thus,

we keep this step for top-k rankings as well. This entails that only the prefix

size based on the overlap between the rankings, defined in Corollary 4.3.1, can

be applied. To perform the reordering, we first count the frequency of the items

in the rankings. Then, in order to make this collection available to all the

nodes, in Spark, we use a broadcast variable which is cached on each machine

and then used to sort the items of all rankings τ ∈ T by increasing order of

their frequency. Note that, while we reorder the items in the rankings, we still

need to keep track of their original rank for the computation of the Footrule

distance. In the next step, we transform the rankings into (iid, τ) pairs, where

as key we have the item id, and as value we have the ranking. This we only

do for the items that belong to the prefix of the ranking. Then, in the next

step, in order to bring all rankings that share an item to the same partition, we

aggregate the tuples (RDD) created in the previous step by key. In the next

step, for the rankings that share an item, a main memory approach for finding

the similar pairs is applied. For the rankings on each item list, we again sort

the items by frequency, and index their prefixes using an inverted index. In

addition, we apply a position filter, based on Lemma 4.4.1 in order to filter

out more candidate pairs. In Chapter 4 we proved that two rankings τi and τj
cannot have distance smaller than θ if at least one of the items in the rankings

have a difference in their ranks larger than k∗(k+1)∗θ
2 , i.e., if there is at least

one item i ∈ τi, τj , such that, |τi(i) − τj(i)| > k∗(k+1)∗θ
2 , we can be sure that

d(τi − τj) > θ. For the candidate pairs that pass the filters, we compute the

Footrule distance. Before writing the final result, we remove the duplicate pairs.

Figure 6.1 illustrates the algorithm through an example.

Improved Memory Usage

Previous similarity join distributed approaches were designed and implemented

in MapReduce. As discussed in Chapter 2, Spark as a successor of MapReduce,

has different characteristics than MapReduce, and thus existing approaches need

6.3 Approach 71

to be adapted to the computational properties of Spark in order to improve

their performance. Large datasets in Spark are represented as RDDs, which

are immutable, distributed collections of objects, stored in the memory of the

executors. This means that for every transformation of an RDD, a new RDD is

created. In addition to this, Spark runs in the JVM, and thus garbage collection

can easily cause performance issues for Spark jobs. Thus, keeping objects in the

memory of Spark’s executors is not recommended, since this can lead to crashes

or performance overhead for large datasets. Instead, working with iterators is

more native to the Sparks computational model, since this allows the framework

to spill some data to disk, when needed.

The VJ algorithm that shows the best performance, according to [VCL10],

works such that rankings that share the same item are distributed to different

partitions. Next, on each partition, an in memory join algorithm is executed, to

compute the rankings with distance smaller than θ. This entails, first, storing

a dictionary of the items, second, storing an inverted index for the rankings for

this partition, and storing the partial result sets until the final computation is

done. In addition to this, since Spark works with immutable objects, sorting

the objects for performing the per partition in memory join, imposes creating

new objects for each ranking. This means that VJ algorithm can lead to having

both of the issues that we mentioned above, bad performance caused by the

garbage collector overhead and memory overhead crashes, due to keeping data

structures and objects in memory.

Instead, we claim that a nested loop modification to the VJ algorithm, is

more native to Spark’s processing style. Instead of indexing the rankings per

partition, we propose using iterators to loop through the rankings in a nested

loop fashion. For each ordered pair of rankings, (τi, τj), where τi < τj that

passes the position filter defined above, we compute the Footrule distance, and

output those pairs where d(τi, τj) ≤ θ. This approach, as we will show in our

experiments, performs better for large datasets, since allows Spark to spill the

data to disk when needed.

6.3 Approach

Driven by the idea that similar rankings should have similar results sets, we pro-

pose an approach where we introduce a pre-processing step, where very similar

rankings are grouped together, forming clusters. Then, only one representative

ranking from the clusters, called centroid, is considered in the next similarity join

phase. The idea is that in this way we would reduce the number of records being

joined, and thus, reduce the execution time of the main joining phase, which is

actually the most expensive part of the similarity join algorithms. Since Spark

is suitable for iterative processing, adding an additional phase should not be a

performance issue. Note that in contrast to the work presented in Chapter 5,

the execution time of this step is included in the total execution time. Thus,

this pre-processing phase should be very efficient, so that we do not end up

72 6. Distributed Similarity Joins over Top-k Rankings

global ordering of
the items in the

rankings

cluster data into
clusters using small

threshold θc

centroids

compute similar
clusters using

threshold θ+2*θc

Expansion

clusters

joined
centroids

1 2

3 4

Figure 6.2: Overall architecture. The algorithm has four main phases: ordering,

clustering, joining and expansion.

with having a higher overhead than benefit. Another key observation is that

the triangle inequality can be used for forming and expanding the clusters after

finding the similar centroids, to compute the final result set more efficiently.

Making use of the above observations, we propose our approach consisting

of four main phases: Ordering, Clustering, Joining and Expansion, depicted in

Figure 6.2.

Ordering: The first phase of our approach is ordering the items in the rank-

ings by their occurrence, i.e., items that occur less frequently in the rankings,

are moved to the top positions of the rankings. In our proposed algorithm,

as later described, the VJ similarity join algorithm is applied twice, once for

clustering the rankings, and once for finding the similar clusters. Instead of

reordering the rankings twice, we choose to do this only once, using the original

dataset T . As our approach does not depend on the similarity join algorithm

used for clustering or for joining the clusters, the re-ordering of the items in the

rankings can be skipped if it is of no use to the joining algorithm applied later

on. The reordering is done just for determining which items will be included

into the prefix of the rankings, while the rankings still preserve their original

item ordering for the computation of the distance. The first steps of Figure 6.1

show an example of the ordering phase.

Clustering: The second phase of our approach is forming clusters, such

that similar rankings will belong to the same cluster, Ci. First, a similarity

join algorithm is executed to find the similar rankings that need to be grouped

together. Then, clusters are formed such that the pairwise distance between each

member of the cluster and its representative is at most θc. In this work, we will

6.3 Approach 73

refer to θc as the clustering threshold. Note that in contrast to other similarity

join algorithms in metric space, where formed clusters have different radius,

the radius of all clusters formed by our approach is bounded by the clustering

threshold, θc. Similarly as in Chapter 5, we write τi ≺ ci to denote that ranking

τi belongs to the cluster, Ci, represented by ranking (centroid) ci. Rankings in

the dataset T that do not have any similar rankings with distance smaller than

the clustering threshold, θc, form singleton clusters, i.e., one element clusters.

Joining: In this phase a similarity join algorithm is executed over the cen-

troids with a threshold θo = θ+2∗θc. Using threshold θo instead of θ is necessary

in order to insure the correctness of the algorithm. Note that any similarity join

algorithm can be applied here, however, similarly to Fier et al. [FAB+18], our

experiments showed that VJ is the most efficient one, and thus we use this

algorithm.

Expansion: In the last step of the algorithm, the final result set is computed

by joining the results from the joining phase with the formed clusters in the

clustering phase. The members of the joined clusters from the joining phase are

checked against each other if the distance between them is smaller than θ. Using

the metric properties of the distance measure, we are able to directly filter out

some candidates, and thus compute the final result list more efficiently.

Before we describe each phase more formally, how each phase is realized and

how the final join result is computed, we first discuss the correctness of the

proposed algorithm.

Lemma 6.3.1 For given join threshold θ and clustering threshold θc, in the

joining phase, all pairs of centroids ci, cj with distance d(ci, cj) ≤ θ+ 2∗ θc need

to be retrieved in order not to miss a potential join result.

Lemma 6.3.1 ensures that pairs {(τi, τj)|τi ≺ ci, τj ≺ cj ∧ d(τi, τj) ≤ θ ∧
d(ci, cj) > θ} will not be omitted from the result set.

In other words, Lemma 6.3.1 avoids missing result rankings with distance

≤ θ, which are represented by centroids which are with distance larger than θ

from each other.

This follows from the fact that for all rankings {τi|τi ≺ ci∧d(τi, ci) ≤ θc}. It

follows that for any pair of rankings {τi, τj |τi ≺ ci, τj ≺ cj} the distance of the

corresponding centroids d(ci, cj) must be ≤ θ + 2 ∗ θc. Thus, using a threshold

θo = θ + 2 ∗ θc in the joining phase is enough to ensure that no true result will

be missed.

6.3.1 Clustering

When forming the clusters, the following points need to be considered:

• To ensure correctness, the radius of all the clusters should be the same, i.e.,

for any ranking τi ∈ Ci, represented by a top-k ranking ci, d(τi, ci) ≤ θc.

74 6. Distributed Similarity Joins over Top-k Rankings

• The clustering method should be very efficient, otherwise the cost of the

clustering would overweight its benefit.

• The performance of the expansion phase depends on the clusters formed.

We address each point individually while explaining our design choices for

the clustering algorithm.

For forming the clusters, we could turn to existing methods [WMP13,

SHC14], where, first, the centroids of the clusters are randomly chosen, and

then, by computing the distance from the centroids to the other points in the

dataset, the members of the clusters are found. However, considering that we

aim at forming equal range clusters, where the points are very close to each

other, this approach has two main drawbacks, which make it not suitable for

our use case. First, due to the very small clustering threshold, and the random

choice of the clusters, it could happen that for some, or in the worst case, for

all of the chosen centroids, there are no other points in the dataset such that

their distance to the centroids is smaller than the clustering threshold, θc. This

leads to having singleton clusters which do not cause any performance benefit

in the joining phase. Another drawback of this approach is that the number of

clusters needs to be chosen upfront.

Figure 6.3 shows through an example the creation of the clusters. First,

to find the rankings that are very similar to each other, instead of selecting

the centroids first and comparing the distance for each point to the centroids,

we execute a similarity join algorithm with the clustering threshold over the

whole dataset T . Here any similarity join algorithm can be applied, however,

since prefix filtering approaches are especially efficient for very small thresholds,

in our implementation we use the VJ algorithm. Note that the rankings have

already been sorted, so we do not perform any additional sorting in this phase.

The result of the VJ algorithm are all pairs of rankings (τi, τj) whose distance is

smaller than the clustering threshold, i.e., d(τi, τj) ≤ θc. The clusters are formed

such that, from the pairs, we take the first ranking as the cluster centroid, and

the second one as their member. This does not only keep the clustering phase

efficient, but also simplifies the expansion of the results in the last phase, since

then the expansion can simply be performed by joining the result set from

the joining and clustering phase. Furthermore, this way we can also efficiently

apply filters based on the distance of the elements to their centroids, explained

in Section 6.3.3. Clusters formed this way theoretically correspond to clusters

formed by grouping the results by the first ranking, and taking the first ranking

as the centroid. For instance, in Figure 6.3, the following clusters would be

formed C1 = {τ1, τ2, τ5}, C2 = {τ3, τ4} with centroids τ1 and τ3, respectively.

Since Spearman’s Footrule distance is a metric, we know that for any two

rankings τi, τj ∈ Ci it holds that d(τi, τj) ≤ 2·θc, and thus, members of the same

clusters can directly be written to disk as partial results, as long as θc · 2 < θ.

By creating the clusters in this way, all of the afore-listed requirements are

satisfied. The radius of all the clusters is the same, i.e., θc, and both forming

6.3 Approach 75

!1 [(2,0),(1,4),(3,3),(4,2),(5,1)]
!2 [(2,1),(1,4),(3,3),(4,2),(5,0)]
!3 [(7,3),(8,1),(3,4),(0,0),(5,2)]

!4 [(7,3),(8,0),(3,4),(0,1),(5,2)]
!5 [(2,0),(1,4),(3,2),(4,3),(5,1)]
!6 [(9,1),(6,0),(7,3),(8,2),(3,4)]

((!1, !5), 0.1)
((!3, !4), 0.1)

transform
and
repartitionVJ join

algorithm
((!1, !2), 0. 1)

(!1, (!5, 0.1))
(!1, (!2, 0.1))

(!3, (!4, 0.1))

ordered rankings

output pairs of
members of the
same cluster

Join
phase

centroids (!1)
(!3)

compute singletons

union(!6)
Cs

Cm

Figure 6.3: Example of how clusters are formed and centroids (marked with

red) are chosen, where θc = 0.1.

the clusters and expanding the result set is kept simple, and thus, very efficient.

One minor drawback of this approach is that the formed clusters would be

overlapping, however, resolving this would negatively impact the performance

of both the clustering and the expansion phase.

As input to the next, joining phase, we union the set of centroids Cm that

contains all centroids representatives of clusters with at least two members,

i.e., |C| ≥ 2 with the set of centroids Cs that represent the singleton clusters

i.e., |C| = 1. The set Cs is derived from the original dataset, by finding those

rankings τi ∈ T where there is no other ranking τj ∈ T , such that, d(τi, τi) ≤ θc.
An example of a singleton cluster in Figure 6.3 is C3 = {τ6}.

6.3.2 Joining

In the joining phase we need to find all centroids pairs (ci, cj) such that

d(ci, cj) ≤ θo. To do this, we execute the VJ algorithm over all centroids

ci, with a threshold θo = θ + 2 ∗ θc. However, the VJ algorithm is sensitive to

the threshold value—for larger threshold values the algorithm performs worse.

Thus, it could happen that, even though we are joining a dataset C ⊆ T , due

to the larger threshold used, the joining phase performs worse than simply

executing the VJ algorithm over the whole dataset T . Again, note that we do

not perform additional reordering of the rankings here, but the VJ algorithm is

executed on the initially ordered rankings.

According to Lemma 6.3.1, using a threshold θo is only needed to avoid

missing pairs of rankings {(τi, τj)|τi ≺ ci, τj ≺ cj ∧ d(τi, τj) ≤ θ ∧ d(ci, cj) >

θ}. Furthermore, due to the small clustering threshold, in the dataset C we

have many centroids which are representatives of singleton clusters. For these

centroids, we can actually use a smaller threshold, without missing any true

result. Lemma 6.3.2 defines this:

Lemma 6.3.2 Given a join threshold θ, a clustering threshold θc, and a set

of centroids C = Cm ∪ Cs, where Cs is the set of centroids that represent the

76 6. Distributed Similarity Joins over Top-k Rankings

method: Centroids Join

input: Dataset C = Cm ∪ Cs, double θ, θc
output: all pairs (ci, cj) s.t. d(ci, cj) ≤ θ + 2 ∗ θc
1 pm = get prefix(θ + 2 ∗ θc,k)

2 ps = get prefix(θ,k)

3 grouped ← transform and emit(Cm, Cs, pm, ps)
4 R ← compute sim(grouped,k,θ,θc)

return R

Algorithm 2: Joining of centroids based on the type of the centroid.

singleton clusters and Cm = C \ Cs is the set of centroids representing non-

singleton clusters. The following pairs of centroids need to be retrieved in order

not to miss a potential join result:

(ci, cj)|d(ci, cj) ≤ θ + 2 ∗ θc if ci, cj ∈ Cm (6.1)

(ci, cj)|d(ci, cj) ≤ θ + θc if ci ∈ Cm ∧ cj ∈ Cs or vv (6.2)

(ci, cj)|d(ci, cj) ≤ θ if ci, cj ∈ Cs (6.3)

Lemma 6.3.2 allows us to more efficiently join the centroids. It follows that,

only for the centroids cm ∈ Cm we need to use θo for joining and thus, only

for these centroids, we need to use a prefix based on the threshold θo. For the

centroids cs ∈ Cs we can actually use the prefix based on the original threshold θ.

Then, when computing the distance between the candidate pairs, we keep track

of the type of the centroid, and accordingly, we output the pair if it satisfies the

corresponding threshold. This is outlined in Algorithm 2.

Since we propose using small values for the clustering threshold θc, we expect

that in practice, the cardinality of Cm will be significantly smaller than |C|, and

thus, by applying a threshold of θo only for centroids cm ∈ Cm, the savings

should be notable.

6.3.3 Expansion

In the last phase, the final result set is generated. For this purpose, the results

from the clustering phases, Rc, and the result from the joining phaseRj , need to

be joined together, and the generated pairs need to be verified. Depending on the

joined pair from the joining phase, the expansion is done differently. The pairs

where both centroids are singletons do not need to be expanded and are directly

written to disc. Pairs where at least one of the rankings is not a singleton, need

to be joined with the set of clusters, so that similar pairs of rankings between

cluster members from different clusters, or with other singleton centroids, are

generated.

6.3 Approach 77

((!1, !5),0.1)
((!1, !2),0.1)

((!1, !8), 0.15)
((!1, !6), 0.2)

map

filter

(!1, (!5,0.1))
(!1, (!2,0.1))

(!1, ((!5,0.1), (!8,0.15)))
(!1, ((!5,0.1), (!6,0.09)))
(!1, ((!2,0.1), (!8,0.15)))
(!1, ((!2,0.1), (!6,0.09)))join

((!1, !8), 0.15)
((!1, !6), 0.2)

((!7, !9), 0.2)
((!9, !12), 0.1)

((!3, !4),0.1) (!3, (!4,0.1))

((!1, !3), 0.12)
((!7, !9), 0.2)
((!9, !12), 0.1)

((!1, !3), 0.12)

(!1, (!8, 0.15))
(!1, (!6, 0.2))

(!1, (!3, 0.12))

output

(!3, ((!4,0.1), (!1,0.12)))
(!3, ((!2,0.1), (!1,0.12)))
(!3, ((!5,0.1), (!1,0.12)))

filter, verify and output

(!3, ((!4,0.1), (!1,0.12)), (!4,0.1))
(!3, ((!2,0.1), (!1,0.12)), (!4,0.1))
(!3, ((!5,0.1), (!1,0.12)), (!4,0.1))

filter, verify
and output

map

join

join

filter and
map

(!1, ((!4,0.1), (!3,0.12)))
(!1, ((!2,0.1), (!3,0.12)))
(!1, ((!5,0.1), (!3,0.12)))

result set
clustering phase

result set
join phase

Rj

RC

Rm

Rs

join

Figure 6.4: Example of computing the final result set using the result set from

the joining phase and the clusters where θc = 0.1 and θ = 0.2. Cluster’s

centroids are marked with red.

Algorithm 3 outlines how the final result set is computed. First, the result

set from the join phase, Rj , is divided into two sets: Rs = {(ci, cj)|ci, cj ∈
Cs ∧ d(ci, cj) ≤ θ} and Rm = Rj \ Rs. Rs is the set of candidate pairs,

where both centroids are singletons. These pairs can be directly written to disc

without further processing and verification. In addition, a subset of Rm, i.e.,

pairs (ci, cj)|θc < d(ci, cj) ≤ θ, can already be included to the final results set.

Candidate pairs, where at least one centroid is not a singleton, Rm, need to

be further joined with the set of clusters Rc, in order to find the result pairs

where at least one ranking is a cluster member. These pairs are missing from

Rj , since in the joining phase the join was performed only over the centroids.

To do this, first the set of clusters and the set Rj are transformed, so that they

are brought into a format where as key we have the centroids. Next, Rm and

Rc are joined into RRc./Rm
. RRc./Rm

is used to further generate the following

result pairs:

Rm,c = {(τi, cj)|(τi, cj) ≤ θ ∧ τi ≺ ci ∧ (ci, cj) ∈ Rj} (6.4)

Rm,m = {(τi, τj)|(τi, τj) ≤ θ ∧ τi ≺ ci ∧ τj ≺ cj ∧ (ci, cj) ∈ Rj} (6.5)

To generate the first result set Rm,c, the candidate tuples in RRc./Rm need

to be transformed into the needed pairs and further verified if their distance is

in fact smaller then θ. For pairs (τi, cj), where τi ≺ ci, we already know d(τi, ci)

and d(ci, cj). Thus, using the triangle inequality we verify only those candidate

pairs (τi, cj) such that d(τi, ci) + d(ci, cj) >= θ or (d(ci, cj)− d(τi, ci) <= θ and

the rest we can filter out since we can be certain that their distance is larger

than theta.

78 6. Distributed Similarity Joins over Top-k Rankings

method: expand

input: Dataset Rc, Rj , double θ, θc
output: all pairs (τi, τj) s.t. d(τi, τj) ≤ θ
1 Rm,Rs ← split(Rm)

2 Rp ← get partial results(Rm,θ,θc)

3 Rj ,Rm ← prepare for join(Rj ,Rm)

4 RRj./Rm ← join(Cm,Rj ,Rj)
5 Rm,c ← get partial results(RRj./Rm ,θ,θc)

6 RRj./Rm
← prepare for join(RRj./Rm

)

7 R(Rj./Rm)./Rj
← join(RRj./Rm

, C)
8 Rm,c,Rm,m ← get partial results(R(Rj./Rm)./Rj

, θ, θc)

return distinct(Rp ∪Rs ∪Rm,c ∪Rm,m)

Algorithm 3: Computation of the final result set.

For generating the set Rm,m the set RRc./Rm is first transformed, so that

the second centroid is set as key of the tuples, and then it is joined with the

set of clusters. The joined set is then used to add pairs to the set Rm,c. These

will be candidate pairs from the members of the newly joined centroids to the

centroids we already had in RRc./Rm . Filtering based on the triangle inequality

is applied here as well. As last step, we generate all candidate pairs (τi, τj), such

that τi ≺ ci, τj ≺ cj and d(ci, cj) ≤ θ+ 2 ∗ θc. For these the Footrule distance is

computed, and the ones where d(τi, τj) ≤ θ are written to disc. Before writing

the results to disc, the duplicates are removed.

Figure 6.4 illustrates through an example how the join of the two result sets

is performed.

6.4 Repartitioning using Joins

As with all distributed algorithms, the data distribution over the partitions

greatly influences the performance of the algorithms. The VJ algorithm parti-

tions the rankings based on the items that they contain—rankings that share an

item end up at the same partition. This means that in the case of a skewed data

distribution, which is often the case, for the items that appear very frequently

in the rankings, we would have large partitions. This problem is partially solved

by the prefix filtering framework, especially for smaller values of the threshold,

θ, since the most frequent items would not be included. However, as we increase

the value of the threshold, θ, so does the size of the prefix, and then we can have

skewed distribution of the data among the partitions. This leads to having few

partitions that dominate the overall execution time of the algorithm.

To solve this issue we propose an algorithm where large partitions are split

into smaller sub-partitions. Then, the resulting pairs are computed for each

small partition, and for each pair of sub-partitions. Algorithm 4 describes this

6.4 Repartitioning using Joins 79

(i2, {!1, !3 … })
(i5, {!2, !3 ,… })

filter"(i10, {!5, !15, … })

compute similarity
join pairs per partition

and output

I

(in, {!2, !55, … })

…

(i2, {!1, !3 … })

(i10, {!5, !15, … })

(im, {!2, !55, … })

…

(i5, {!1, !3 … })

(i25, {!5, !15, … })

(in, {!2, !55, … })
…

I>"

I<"

((i2,1), {!1, !3 … })

((i10,19), {!5, !15, … })

((im, 17), {!2, !55, … })

…

((i2,5), {!101, !105, … })

((i2,9), {!204, !209, … })

((i10, 5), {!101, !105, … })

((im, 7), {!102, !155, … })

compute similarity join pairs
per partition and output

((i2,1,5), ({!1, !3 … }, {!101, !105, … }))

((i2,1,9), ({!1, !3 … }, {!204, !209, … }))

((i2,5,9), ({!101, !105, … },{!204, !209, … }))

partition

self join
and filter

((i10,5,19), ({!5, !15, … }, {!101, !105, … }))…
((im, 7,17), ({!102, !155, … }, {!2, !55, … }))

compute R-S similarity
join pairs per partition

and output

Figure 6.5: Example of repartitioning of the large partitions using a partitioning

threshold δ.

procedure. First, using a user defined partitioning threshold δ we divide the

inverted index into two parts, one where the partitions per item have more

that δ rankings, I>δ, and those whose partitions per item are smaller then the

partitioning threshold, δ, I<δ. This in Spark can be easily computed, since

the distributed inverted index is kept in one RDD, which allows easy access

to the sizes of each partition. For those partitions that are smaller then the

partitioning threshold, we compute the all pair similarity join as before. The

partitions larger than the partitioning threshold, I>δ, are first split into smaller

sub-partitions with at most δ rankings. This is done by assigning to each sub-

partition a random number as a secondary key. To compute the final result set,

we first compute the all pair similarity join over each sub-partition. Then, we

self join the sub-partitions by the item id, and for those join results where the

secondary key of the first join pair is smaller than the secondary key of the second

join pair, we execute a R-S similarity join algorithm for the joined partitions.

To redistribute the working load equal among nodes, we partition by both the

primary and secondary key, i.e., by both the item id and the randomly assigned

number. Figure 6.5 illustrates through an example the all pair similarity join

computation in case of repartitioning.

In our experiments, we show that the performance of the algorithm does

not significantly vary, when changing the partitioning threshold δ. However,

the value of δ still needs to be chosen carefully, such that it is not set to a

very small value, leading to too many partitions being split into many small

sub-partitions. If this happens, then joining the sub partitions in step 5 of

Algorithm 4 becomes too expensive, and the benefit of the repartitioning is lost.

In addition, due to the use of Spark joins, choosing a very small value of δ can

also lead to memory crashes of the executors.

80 6. Distributed Similarity Joins over Top-k Rankings

method: Repartitioning

input: inverted index over D, I. partitioning threshold, δ

output: all pairs (τi, τj) s.t. d(ci, cj) ≤ θ
1 I>δ, I<δ = split(I,δ)

2 R<δ = compute sim(I<δ,θ,k)

3 P ← repartition(I>δ, δ)
4 Rp1 ← compute sim(P,θ,k)

5 Rp2 ← compute sim(join(P,P),θ,k)

return R<δ ∪Rp1 ∪Rp2

Algorithm 4: Computing the all pair similarity join with repartitioning of

large partitions using a partitioning threshold δ.

6.5 Experiments

We implemented all algorithms in Spark using Scala 2.10. We deployed all

algorithms on a Spark 1.6 (using YARN and HDFS) cluster running Ubuntu

14.04.5 LTS. The cluster consists of 8 nodes, each equipped with two Xeon E5-

2603@ 1.6GHz/ 1.7GHz of 6 cores each, 128GB of RAM, out of which 40GB

is reserved for execution of jobs by Yarn, and 4TB hard disks. All nodes are

connected via a 10GBit Ethernet connection. Next, we report on the setup and

the results of the experimental study.

Datasets

Due to the lack of real top-k ranking datasets, for the experiments we used

datasets that are often used in previous work on similarity join of sets and were

also used for performing the experimental study for distributed similarity join

algorithms [FAB+18]. Specifically, we use the DBLP [DBL] and ORKU [ORK]

datasets. To transform the records of these dataset into a top-k rankings, we

simply take the top k tokens in the sets, and consider them as items in the rank-

ings. Since we are working with rankings of same size, we remove records with

size smaller than k. In addition the datasets are preprocessed as in [FAB+18].

Note that, while in the preprocessing step duplicates are removed from the

dataset, since we cut the records to size k it can happen that we have a small

amount of records with distance 0 to each other. However, this should not af-

fect the performance of the algorithms, since duplicate records are not handled

differently, i.e., the performance of the algorithms should be the same as if there

were no duplicates. As we will show later on in our experimental study, what

affects the performance of our algorithm is the number of records with distance

smaller than θc.

After the preprocessing the DBLP dataset has approximately 1.2 million

top-10 rankings, and ORKU has approximately 2 million top-10 rankings. Each

datasets has a size of 67MB and 173MB. Since these datasets are relatively small

6.5 Experiments 81

spark.driver.memory 12G

spark.executor.memory 8GB

spark.executor.instances 24

spark.executor.cores 5

Table 6.2: Spark parameters used for the evaluation

for a distributed setting, we also increase their size using the same method as in

[VCL10, FAB+18], where the domain of the items remains the same, and the

join result increases approximately linearly with the size of the dataset. We use

xn to denote the number of times the dataset has been increased. For instance,

”ORKUx5” represents the ORKU datasets increased 5 times.

The files in Spark are read as text files, and are directly partitioned into

the number of partitions specified at input. Throughout the experiments we

write the number of partitions that the data is divided into. Additionally, we

show experiments that illustrate the behavior of the effect that the number of

partitions has to the performance of the algorithms.

Algorithms under investigation

We investigate the performance of the following algorithms:

• The VJ adaptation for top-k rankings (VJ)

• The VJ adaptation for top-k rankings using iterators instead of inverted

index (VJ-NL)

• The clustering algorithm using iterators (CL)

• The clustering algorithm with iterators and re-partitioning of the data

(CL-P)

The experiments are run such that we restrict the memory utilization of

Spark, and the number of cores used by an executor, based on the configuration

of our cluster. Table 6.2 reports these parameters. In case we use different

settings, we write these changes for the specific experiments. We report on the

average wall-clock time measured in seconds over 3 runs. If an algorithm runs

more than 10 hours we stop its execution.

6.5.1 Results

Performance Based on the Distance Threshold θ

We first evaluate and compare the performance of the above listed algorithms

when we vary the distance threshold θ. Figure 6.6 reports on the performance of

the four algorithms for both datasets DBLP and ORKU, for values of θ ranging

from 0.1 to 0.4. We see that our algorithm outperforms the competitor algorithm

82 6. Distributed Similarity Joins over Top-k Rankings

VJ for larger values of θ. Most importantly, we see that, with the exception of

the DBLP dataset, each optimization that we propose brings additional per-

formance improvement. For all algorithms, the execution time increases, as we

increase the distance threshold θ, however, for our proposed algorithms, CL

and CL-P, the increase in performance is smaller, especially for the latter. For

instance, for the DBLPx5 dataset, the execution of the VJ algorithm for the

largest threshold value, 0.4, is 100 times more expensive than when executing it

for the smallest threshold value of 0.1. On the other hand, the increase in execu-

tion time for the CL and CL-P algorithms is 33 and 13 times, respectively. This

can be attributed to the design of the CL algorithm. Since in the joining phase

less rankings are being processed, the algorithm is not so sensitive to the dataset

skewness. With the partitioning of the large partitions into smaller ones, and

their redistribution among the nodes in the cluster, the CL-P algorithm shows

even larger performance improvement for larger threshold values.

Furthermore, we see that for the datasets DBLPx5 (Figure 6.6(b)) and

ORKU (Figure 6.6(d)) the gains in performance are the largest. Here, we can

clearly see that using iterators over an inverted index is more efficient when it

comes to a Spark implementation. Furthermore, we see that the largest per-

formance benefit from our clustering algorithm are for values of θ of 0.3 and

0.4. When θ is set to 0.4, clustering combined with partitioning based on joins

(CL-P) performs 5 and 3 times better than the VJ and VJ-NL algorithms, re-

spectively, for the ORKU dataset (Figure 6.6(d)). For the DBLPx5 dataset,

the CL-P algorithm outperforms the VJ and VJ-NL algorithms by almost 4

and 3 times, respectively (Figure 6.6(b)). For lower values of the partitioning

threshold, i.e., when θ = 0.1 or θ = 0.2, the CL and CL-P algorithms either

perform slightly worse than the VJ or VJ-NL, or the gain in performance is not

that large. This is especially true for θ = 0.1. This is due to the fact that the

VJ algorithm is very efficient for a very small thresholds, since the prefix size is

then small. In these cases, the overhead from the additional clustering phase in

the CL approach, or partitioning for the CL-P, is larger than the benefit that

we could get from it.

Note that, in all cases, the clustering threshold for the CL and CL-P algo-

rithms is set to 0.03. The reason for this is explained bellow, where we study the

effect that this threshold has on the performance of the algorithms. The value

of the partitioning threshold δ differs depending on the dataset, and the thresh-

old value, θ. For larger thresholds θ, we choose larger partitioning threshold δ,

since we expect an increase in the size of the posting lists. Later we discuss how

choosing the partitioning threshold δ affects the performance. For the smallest

dataset, DBLP (Figure 6.6(a)), where the original VJ algorithm is already very

efficient, the proposed optimizations lead to worse performance. The CL-P al-

gorithm in this case always performs worse than VJ, since it brings additional

overhead of repartitioning and joining already small posting lists. The CL al-

gorithm outperforms VJ only for large values of θ. On the other hand, for the

ORKUx5 dataset (Figure 6.6(e)), for θ = 0.4, only the CL-P algorithm finished

under 10 hours. Similarly, for the DBLPx10 dataset (Figure 6.6(c)), the VJ

6.5 Experiments 83

 0

 100

 200

 300

 400

 500

 600

 700

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

threshold Θ

VJ

VJ-NL

CL

CL-P

(a) DBLP

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

threshold Θ

VJ

VJ-NL

CL

CL-P

(b) DBLPx5

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

threshold Θ

VJ

VJ-NL

CL

CL-P

(c) DBLPx10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

threshold Θ

VJ

VJ-NL

CL

CL-P

(d) ORKU

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

threshold Θ

VJ

VJ-NL

CL

CL-P

(e) ORKUx5

Figure 6.6: Comparison of different algorithms when varying θ

algorithm did not finish under 10 hours.

Scalability

To test the scalability of the proposed algorithm, we varied the number of nodes

in our cluster. We executed the CL-P algorithm on a cluster with 4 nodes and

with 8 nodes. For this experiment, we reduced the number of cores per executor

to 3, and we did not fix the number of executors to be used, i.e., this was left

to be decided by YARN, based on the cluster size. The memory restriction per

executor and for the driver were kept as specified in Table 6.2. Figure 6.7 shows

the performance of the CL-P algorithms for different values of the theshold θ,

for the DBLPx5 and ORKU datasets. The values for the clustering threshold

84 6. Distributed Similarity Joins over Top-k Rankings

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

threshold Θ

4 nodes

8 nodes

(a) DBLPx5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

threshold Θ

4 nodes

8 nodes

(b) ORKU

Figure 6.7: Performance of CL-PL algorithm when varying the number of

nodes in the cluster

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

dataset increase

Θ=0.1

Θ=0.2

Θ=0.3

Θ=0.4

Figure 6.8: Performance of CL-PL algorithm when varying the dataset size

θc and the partitioning threshold δ were kept the same as for the previous

experiment. We see that for both datasets, the CL-P algorithm exhibits better

performance, when the number of nodes is increased. For the DBLPx5 dataset,

when increasing the number of nodes from 4 to 8, the time cost decreases from

22% to 46%, and for the ORKU dataset the time savings are similar, ranging

from 26% to 44%. Again, the largest performance improvement is observed for

θ = 0.4.

Furthermore, in Figure 6.8 we plotted the performance of the CL-P algorithm

as we increase the size of the DBLP dataset. Note that the result size increases

approximately linearly with the increase in the number of records. The rise of

the execution time is the largest, i.e., for θ = 0.4, when we increase the dataset

size from x5 to x10. In this case the CL-P algorithm executes 7 times slower.

However, the reason for this we see in the value of the partitioning threshold

δ. We believe that with a more carefully chosen value for δ this increase in

the execution time can be avoided. For all other cases of θ the decrease in

performance is lower than 5 times.

6.5 Experiments 85

 0

 100

 200

 300

 400

 500

 600

0.03
0.06

0.09

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

clustering threshold θc

θ=0.2
θ=0.3
θ=0.4

(a) DBLP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0.03
0.06

0.09

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

clustering threshold θc

θ=0.2
θ=0.3
θ=0.4

(b) DBLPx5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.03
0.06

0.09

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

clustering threshold θc

θ=0.2
θ=0.3
θ=0.4

(c) ORKU

Figure 6.9: Performance of CL algorithm when varying the clustering

threshold θc

Effect of the Clustering Threshold θc

Another threshold that can have impact on the performance of the proposed

clustering algorithm is the clustering threshold θc. Depending on the value of

this threshold, the size and number of the formed clusters varies, and thus the

performance of the whole algorithm. Figure 6.9 shows the performance of the CL

algorithm for different values of θc for both datasets. We see that in almost all

cases, setting θc = 0.03 brings the best performance for the CL algorithm. This

can be explained by two reasons. First, as we increase the clustering threshold

θc, the running time of the clustering phase increases, since here we use the

VJ algorithm to find the similar pairs. Second, the benefit by the additionally

formed clusters does not seem to compensate for this increase in the running

time. Thus, setting the clustering threshold θc to a very small value is the

recommend choice, and in all further experiments we set θc to 0.03 for both CL

and CL-P.

Effect of the Partitioning Threshold δ

The partitioning threshold δ is a parameter which decides which and how many

posting lists need to be partitioned, and as such, it influences the performance

of the CL-P algorithm. In Figure 6.10 we see the performance of the CL-P

86 6. Distributed Similarity Joins over Top-k Rankings

algorithm as the partitioning threshold changes, for both datasets DBLP and

ORKU and for different values of the threshold θ. For the DBLP dataset we

show only the DBLPx5 increased dataset, since, as we showed in Figure 6.6(a),

the DBLP dataset is small and does not benefit from the partitioning of the

posting lists. For each dataset, we chose different varying ranges for the par-

titioning threshold, since its value is directly dependent from the size of the

dataset. For ORKU (Figure 6.10(a)) we vary δ from 500 to 5000, for ORKUx5

(Figure 6.10(b)) we vary δ from 10000 to 50000 and for DBLPx5 (Figure 6.10(c))

we vary δ from 1000 to 50000. Furthermore, for ORKU and DBLPx5 we plot the

performance for θ = 0.3 and θ = 0.4 (Figures 6.10(c) and 6.10(a), respectively),

while for ORKUx5, for practical reasons, due to the large execution times when

having large values of θ, we plot the performance for θ = 0.1 and θ = 0.2 (Fig-

ure 6.10(b)). In Figure 6.6(a) we see that the performance of CL-P is not greatly

influenced by the partitioning threshold δ. Starting with small values of δ, the

performance is slightly worse, due to the larger number of posting lists that need

to be joined, and thus the overhead imposed by the Spark join is larger. Then,

as we increase δ, the performance at first drops and reaches its minimum, and

then starts to slightly increase. This is important to note, since it gives us more

freedom of choosing the value for δ. Note, however, that choosing very small

values can lead to either bad performance or crashes of the executors due to

memory overhead caused by the joins. During our experiments execution, we

experienced crashes due to memory overhead, whenever the δ value was set to

an inappropriately small value, when considering the number of records being

processed. On the other hand, setting δ to a very large value will not bring any

performance benefit, since no postings lists will be partitioned.

Increasing the Size of the Rankings

Top-k rankings usually contain only very few items. In fact in our study [AIMS13]

we showed that most of the rankings are of size 10 or 20. Therefore, in the

previous experiments we focused on rankings of size 10. To see how the perfor-

mance of the algorithms changes, when we have rankings of larger size, we also

run experiments where k = 25. For this purpose we used the ORKU dataset,

which contains also longer records. From the original dataset, we extracted

around 1.5 million top-25 rankings, as described above. This dataset has a size

of 289MB. The DBLP dataset contained only shorter records, and thus for this

experiment we rely only on the ORKU dataset. Figure 6.11 shows the perfor-

mance of the four algorithms when varying the distance threshold θ. While our

algorithms still outperform the VJ algorithm, there are two important things

to note here. First, the difference in the performance between VJ-NL and VJ

is not so significant, and second CL performs almost the same as VJ-NL. This

might be explained with the size of the dataset, since our clustering algorithms,

CL and CL-P, perform better on larger datasets. The CL-P algorithm shows

the best performance, except for θ = 0.1, and is, as with rankings of size 10,

least susceptible to the increase of the threshold θ. For θ = 0.1, the VJ-NL

6.5 Experiments 87

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

500
1000

2000
5000

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

partitioning threshold δ

θ=0.3
θ=0.4

(a) ORKU

 0

 1000

 2000

 3000

 4000

 5000

10000

20000

30000

40000

50000

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

partitioning threshold δ

θ=0.1
θ=0.2

(b) ORKUx5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1000
10000

20000

30000

40000

50000

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

partitioning threshold δ

θ=0.3
θ=0.4

(c) DBLPx5

Figure 6.10: Performance of CL-P algorithm when varying the partitioning

threshold δ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

threshold Θ

VJ

VJ-NL

CL

CL-P

Figure 6.11: Performance of different algorithms for rankings of size 25 when

varying the distance threshold θ, for the ORKU dataset.

algorithm performs slightly better than the other algorithms. The CL-P algo-

rithm outperforms the VJ-NL algorithm for 1.5 and 1.9 times for θ = 0.2, and

θ = 0.3 and 0.4, respectively. Note that for this experiment, for both CL and

CL-P, we set θc = 0.03 and the partitioning threshold δ, for CL-P, we set to

5000, for all values of θ.

88 6. Distributed Similarity Joins over Top-k Rankings

 0

 50

 100

 150

 200

 250

86 186
286

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

number of Spark partitions

VJ
VJ-NL

CL

(a) DBLP

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

86 186
286

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

number of Spark partitions

VJ
VJ-NL

CL

(b) DBLPx5

Figure 6.12: Performance of the VJ, VJ-NL and CL algorithms when varying

the number of Spark partitions, for θ = 0.3, for DBLP and DBLPx5.

Varying the number of Spark partitions

The general recommendation when executing Spark jobs is to set the number of

partitions to be at least four times as the number of executors running. In our

setting, this means that the general recommendation is to have at least 100 par-

titions. Figure 6.12 shows the performance of different algorithms (VJ, VJ-NL

and CL) for different number of partitions. For this experiments the partition-

ing threshold θ is fixed to 0.3. We see that, for both DBLP and DBLPx5, the

performance does not change much as we increase the number of partitions. In

fact, we see that whether the performance increases or decreases, as we increase

the number of partitions, depends on the size of the dataset. For the smaller

dataset, DBLP, the best performance is observed when the number of parti-

tions is set to 86, and then the performance slightly decreases. For DBLPx5,

on the other hand, we have the best performance of both CL and VJ-NL for

186 partitions. Figure 6.13 shows the performance of the CL-P algorithm when

changing the number of partitions. For CL-P we used a larger span of the num-

ber of partitions, from 286 to 686. Since here we additionally repartition the

large partitioning into smaller ones, we believed that using a larger number of

partitions is more appropriate for this approach However, as we can see from

Figure 6.13, the performance is again not greatly influenced by the change of the

number of the partitions. In fact, there is also a slight drop in the performance

in the initial increase in the number of partitions, from 286 to 486. In all of the

experiments presented before, the number of partitions was set to 286.

Lessons Learned

The proposed clustering algorithms, CL and CL-P, outperform the adaptation

of the state-of-the-art algorithm for similarity joins over sets, VJ, for higher

values of the distance threshold θ. For small values of θ the VJ algorithm is

very efficient on its own, and thus, the benefits introduced by the additional

stages of the CL approach, do not seem to pay off. This is also the case for

6.6 Summary 89

 0

 200

 400

 600

 800

 1000

 1200

 1400

286
486

686

e
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s

number of Spark partitions

CL-P

Figure 6.13: Performance of the CL-P algorithm when varying the number of

Spark partitions, for δ = 10000 and θ = 0.3, for the DBLPx5 dataset.

small datasets. However, more importantly, for larger datasets, the CL and

CL-P approaches seem to bring larger performance improvements over the VJ

algorithm. Additionally, the both seem to be less susceptible to the increase of

the distance threshold. This seems to be especially true for the CL-P algorithm,

in particular, when the partitioning threshold is chosen right. Furthermore, our

approach is more appropriate for handling datasets with skewed distribution,

as first, the dataset is reduced for the joining phase, and second, large posting

lists are split into smaller ones and processed in parallel. For choosing the

partitioning threshold, δ, statistics like the number of records in the dataset, and

the size of the vocabulary, or item domain, can be used. Although, we showed

that the performance of the CL-P algorithm does not change drastically with the

alteration of this threshold, still its value should be appropriately chosen, since

assigning very small values leads to memory crashes. This is the drawback of our

solution—since we rely on Spark joins, memory crashes are possible, especially

where the result set is larger. Regarding the clustering threshold, we showed

that using a very small values, like θc = 0.03, leads to the best performance of

the CL algorithm, regardless of the dataset.

6.6 Summary

In this chapter, we addressed distributed similarity join processing techniques

for a datasets of top-k rankings. First, we adapted existing state-of-the-art

set-based algorithm for distributed similarity joins for processing of top-k rank-

ings. Next, we presented an approach which synthesizes this state-of-the-art dis-

tributed similarity join algorithm with the advantages of metric-space, distance-

based, filtering. It works in several stages, where each can be independently

configured from each other. Furthermore, our algorithms are designed and im-

plemented in Apache Spark, as suggested by a recent experimental study. By a

comprehensive performance evaluation using two real-world datasets, we showed

that the presented approach exhibits better performance than the competitor,

Vernica Join.

Chapter 7

Class-Constrained

k-Nearest Neighbor

(CCk-NN)

7.1 Introduction

Another typical similarity query is the k-Nearest-Neighbor (k-NN) query. As

described in Chapter 2, a classical k-Nearest-Neighbor (k-NN) query returns

k objects with the smallest distances to a query object q. In this chapter,

we address a variation of this type of similarity query, i.e., we address the

problem of processing k-NN queries where the result objects should additionally

be constrained to specific user-defined classes, Cq. We refer to this problem as

a Class-Constrained k-Nearest Neighbor (CCk-NN). The work presented in this

chapter is based on our own publication at WebDB 2018 [MNM18].

This problem can be applied to many settings where the searched objects

can have different attributes, however, it is especially common in the domain

of geospatial data where we have objects of different classes, like sightseeing,

recreational, restaurant, administrative and also more fine-grained types such

as cuisine of a restaurant. For instance, consider Alice, who is visiting London.

While out for sightseeing, she would like to have lunch in a French restaurant.

She is traveling on budget, so the restaurant should be inexpensive. To assist

Alice, an application would need to find the nearest k French restaurants, that

have good reviews but are also not expensive. The application of CCk-NN is

not restricted to geospatial data, but it is the most illustrative one.

To solve the CCk-NN problem, we could index the dataset using an index

structure suitable for k-NN search, for instance, an R-tree [Gut84]. To process

our k-NN query with class constraints, first a k′-NN query is executed, where

k′ > k. Then, it is checked whether the results fulfill all the classes in Cq. If

not enough results are found, the query is executed once again with a larger

91

92 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

k′, ideally in an incremental fashion. This solution has already been presented

by Hjaltason and Samet [HS99]. The drawback of this approach is that many

unnecessary comparisons have to be made, when the classes in Cq have low

selectivity, i.e., only a small percentage of objects fall into the classes in Cq.

Another possibility is creating an inverted index that maps a class to all objects

that fall into this class. Then, instead of going through all objects, we could

directly determine those objects that satisfy the classes Cq upfront. Then, we

need to compute the distance to the query for all of them, and return the k

objects with the smallest distance.

In this paper, similarly as in our work presented in Chapter 5, we present

a solution which combines an inverted index with a spatial index structure.

An inverted index is used to find the objects that satisfy the classes in Cq, but

instead of comparing all these objects to the query, an index structure is used to

find the k closest objects to q. One major challenge that arises from our indexing

approach is the question for how many and for which classes, or combination of

classes, do we create sub indices. Since one object can belong to several classes,

it would also be indexed by multiple indices. The number of sub indices that

can be created, and thus the memory and construction time overhead, quickly

increase as the set of classes increases. The focus of this work is to explore

and in particular optimize the potential of having inverted indices of different

granularity, in the sense that not only single classes but pairs, triplets, etc. of

classes are used as keys to determine the corresponding objects.

7.1.1 Problem Statement

The problem addressed in this chapter can be defined as follows:

Given a set of objects O = {o1 . . . on}, where each object oi ∈ O has a set

Coi of associated classes from a global set of classes C = {c1, . . . , cj}, and a

distance function d, the task is, for a user specified query q and query classes

Cq ⊆ C to find k objects OR ⊆ O such that ∀or ∈ OR : Cor ⊇ Cq and there is

no object os ∈ O and or ∈ OR such that d(q, os) < d(q, or) and Cos ⊇ Cq.
If there is more than one class constraint given (|Cq| > 1), then they are all

applied, thus they have a conjunctive meaning. The result set can be smaller

than k in the case when less than k objects satisfy the classes in Cq. Each class

is of the form attribute:value, for instance color:blue.

As with standard k-NN search, we aim at having as few object comparisons

as possible, low memory usage, fast index creation time, while having low query

response time.

In prior work of our group [dSTM18], this problem was already presented

and it was shown that creating an index for all combination of classes can lead

to performance gains, however, it also leads to significantly increased memory

and construction time overhead. It is clear that materializing all combination of

classes is not a feasible when having larger global set of classes, C, as it requires

possibly generating 2|C| sub indices. In this work, we specifically address this.

7.2 Multi-Key Inverted Index with Smart Posting Lists (MISP) 93

7.1.2 Contributions and Outline

The contributions of this work are as follows:

• We propose an index, coined MISP, to efficiently solve the CCk-NN. In

MISP, objects that belong to the same class, or combination of classes, are

indexed together using a separate similarity-search index like an R-tree,

which we call sub indices. In addition, MISP integrates an inverted index

to easily match the classes, or combination of classes, to the sub indices.

• We present a cost model which estimates the performance and index size

of the MISP index. Furthermore, we sketch an algorithm and discuss how

a configuration of MISP can be chosen that would perform best under

limited memory resources.

• Using both a synthetic and a real dataset, we first experimentally evaluate

the correctness of the proposed cost model, and, second, we evaluate the

performance gain of the proposed index against existing approaches under

different configuration setups.

Section 7.2 presents our combined index, how it is constructed and queried.

In Section 7.3, we provide a cost model that estimates the performance of the

index depending on the number of sub indices created. In Section 7.4, we show a

detailed experimental evaluation with both synthetic and real dataset, where we

also show the accuracy of our cost model. Finally, in Section 7.5, we summarize

the work presented in this chapter.

7.2 Multi-Key Inverted Index with Smart Post-

ing Lists (MISP)

In this work, similarly to the work presented in Chapters 5 and 6, we combine

an inverted index with an existing spatial indexing technique, into a new in-

dex, named Multi-Key Inverted Index with Smart Posting Lists (MISP). MISP

combines the benefits of both inverted indices and k-NN index structures. The

idea behind this mixture, for this specific problem setting, is that we can easily

find the data objects that belong to the classes we are searching for, and then,

find the most similar k ones without comparing them all to q. Figure 7.1 illus-

trates this index. Instead of having data stored in plain posting lists, we index

them using iDistance [JOT+05], an index structure for searching data in metric

space that allows incremental k-NN searching—but any other index structure

for k-NN search can be used instead. The MISP index can also have combi-

nations of classes as keys in the inverted index. Thus, only the objects that

satisfy all of the key’s classes are indexed in the corresponding iDistance sub

index. We call these m-key sub indices, where m is the number of keys for this

sub index. Figure 7.1 illustrates a simplified MISP index for the Alice example

94 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

Keys	
type:restaurant	

type:bakery	
	

type:coffeehouse	
	

cuisine:French	

	type:bakery	
cuisine:French	

type:restaurant	
cuisine:French	

.	.	.	

sub-index	for	objects	
satisfying	type:restaurant	

sub-index	for	objects	
satisfying	type:bakery	

sub-index	for	objects	
satisfying		type:restaurant	

cuisine:French	

Figure 7.1: Multi-Key Inverted Index with Smart Posting Lists

presented in Section 7.1. This MISP index has indexed in 1-key sub indices all

objects that are of type restaurant, coffeehouse, or bakery, as well as objects

with cuisine French. In addition, via 2-key sub indices, both French restaurants

and French bakeries are indexed. Hence, when Alice is searching for the nearest

French restaurant, we can directly search for the nearest French restaurant using

the created 2-key sub index—instead of searching all the restaurants and then

pruning the ones which are not French.

However, there is also the drawback that a French restaurant will be indexed

three times: once for restaurants, once for objects with French cuisine, and once

in the sub index for French restaurants. However, when searching for French

coffeehouses, we have the opposite situation: During search, we have to access

either the sub index containing all coffeehouses, or the one for French cuisine,

but we do not have an additional storage overhead. If we do not expect many

queries for French coffeehouses, this would be the preferred solution.

7.2.1 Index Creation

MISP is built layer-by-layer in a bottom-up manner. First, we create the 1-key

sub indices. For correctness reasons, in order not to miss any potential result

object, this layer is completely built, i.e., there is one sub index for each class

c ∈ C. This layer represents a foundation for the next layers and also serves as

fallback for every query, because every data object must fall into one of these

indices. For instance, if we are given a query q with two class constraints,

restaurants and French, |Cq| = 2, it can happen that there is no sub index

created for this combination of classes. Then, to find the results, we can query

the single-key sub indices, either the one for restaurants or for French objects

depending on its size. For the next layer(s), the 2-key sub indices (and 3-key sub

indices, etc.), we can decide, if we want to build all possible ones. We combine

every 1-key sub index with every other. In order to speed up construction,

we use the layer below as basis for calculating the possible combinations. The

7.2 Multi-Key Inverted Index with Smart Posting Lists (MISP) 95

drawback of this approach is that we have to have all possible combinations

from the layer below, to make every possible combination in the current level.

If we do not build the level of m − 1 fully, we will miss some combinations in

the m-key sub indices. The maximum m for which we create m-key sub indices

we refer to as the depth of the MISP index. The depth of the MISP index in

Figure 7.1 is two.

7.2.2 Querying

Querying the MISP index is slightly different than querying the inverted index.

Instead of querying all sub indices for each class in Cq, and then merging the

results, we query only the sub index for the most selective class (combination

of classes) in Cq, and the sub index is incrementally searched until we find k

nearest objects that satisfy all the constraining classes. This is possible since

each object in the index has a set of classes that it belongs to, Coi , attached

to it. In order to find the most selective class, during construction time of the

index, we gather statistics for how many elements each sub index has indexed

and, we keep class co-occurrence statistics. When at query time we are given

a set of classes Cq where we have a combination of classes that do not occur

together in the dataset, we terminate the search early, as there are no possible

results.

When we have MISP index with larger depth, finding the most selective sub

index imposes a small overhead, because in order to find it, we first create the

power set of the query’s classes, that is, 2Cq . Then, for each element of this

power set, we check if we have the corresponding sub index and, if so, its size.

Therefore, in order to reduce the overhead, while increasing our chances to

“hit”a selective multi-key sub index, we create only those multi-key indices of the

classes that contain the most elements in the dataset D. The idea behind this is

that we assume that the issued queries would follow the same class distribution

as our dataset D. In order to find the most popular classes, we use the class

co-occurrence statistics mentioned above. If the queries are not following the

dataset characteristics, one would require a query log for analysis, but the idea

would remain the same.

Since an object can take on multiple classes, the drawback of MISP is that

its memory consumption as well as construction and maintenance overhead in-

creases with the number of sub indices created. Furthermore, the time needed

for searching for the best most selective sub index increases, as we have to check

for every m-combination of class constraints, if they exist and if yes, how many

objects are in this sub index. Even when creating the multi-key sub indices

only for the most popular classes, the number of possible combinations of sub

indices, computed as
∑c

1

(
c
i

)
, drastically increases with the number of possible

classes (i.e., |C| = c). To address this issue, in the next section, we present a

cost model that finds the cutting point at which the creation of additional sub

indices would lead only to negligible performance gains.

96 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

7.3 Cost Model

In the following, we propose a cost model that estimates the cost for querying

and the cost for storing the MISP index. As the MISP index employs an in-

verted index, the cost model has some resemblance with the cost model devised

for estimating the performance of the Coarse index, described in Chapter 5.

However, the two indicies differ in the way they are queried, which, in turn,

highly impacts the query performance.

7.3.1 Cost for Querying

In order to understand the cost for querying MISP, we compute the expected

number of distance function calls, for a given query q and a set of constraining

classes Cq. For this, we need to estimate the size of the sub index, the probability

of hitting an index structure at some index level m, and the cost for querying

the specific sub index structure used. However, since our goal is to devise a

general and simple cost model, independent of the underlying index structure

used, we devise a cost model where we assume that all indexed objects in the

queried sub index are evaluated via a full scan. This gives us an estimation of

the upper bound of the cost for querying the MISP index. Furthermore, for

simplicity, we assume that the data is uniformly distributed over the global set

of classes C, and we assume that the size of the dataset |D| = d and of the global

set of classes |C| = c is known. We also assume that the average expected size

of the set of constraining classes |Cq| = aq is known. We start by estimating

the cost for querying a MISP index with depth 1, which is basically an inverted

index where each sub index contains elements from only one class and we build

up our cost model from there.

Let Y be a random variable representing the number of objects, yi, in the sub

index for the i-th class ci. E[Y] is then the expected number of data points in

this index. When the objects in the dataset belong to more than one class, they

will be inserted into every sub index they belong to. Therefore, to estimate the

expected size of the sub indices, we need to estimate the average count of classes

that an object belongs to, avgco . This can be computed as avgco =
∑
i
Coi

|O| . The

total number of stored objects in the MISP index can be estimated as d · avgco .

Then yi =
d·avgco

c and P (yi) = 1
c as we are always querying only one sub index

in MISP. Thus, the expected size of the queried sub index can be computed as:

E[YInvSeq] =

c∑
i=1

yi · P (yi) =

c∑
i=1

d · avgco
c

· 1

c
=
d · avgco

c
(7.1)

Thus, in the case of having a sub index only for each individual class, the

upper bound on the number of distance function computations can be computed

as:

E[YInvSeq] =
d · avgco

c
(7.2)

7.3 Cost Model 97

Next, we extend the cost model to estimate the cost of a MISP index of

depth 2, where in addition to the sub indices for each class, the MISP index

also contains sub index for each pair of classes in C. In this case, we need to

take into account the number of additional sub indices created. This can be

calculated as:

maxextra =

(
c

2

)
=

1

2
c(c− 1) (7.3)

Since in practice the number of maxextra sub indices can be very large, we

actually would create only l, l ≤ maxextra sub indices. To calculate the expected

number of items in such an index, we first need to estimate the expected size of

a 2-key sub index. Similarly to the expected size of the single-key sub indices,

we have P (yi) = 1
l and:

yi =
d · avgco

c︸ ︷︷ ︸
first “entry”

· avgco − 1

c− 1︸ ︷︷ ︸
matching

second “entry”

Then:

E[Y2−key] =

l∑
i=1

yi · P (yi) =

l∑
i=1

d · avgco
c

· avgco − 1

c− 1
· 1

l
(7.4)

Next, we need to estimate the probability, that we hit such 2-key sub index.

The probability depends on the number of class constraints |Cq| provided at

query time. If we have only one class constraint on the query, we can not hit

a 2-key sub index at all. If we have built all possible 2-key sub indices and

|Cq| ≥ 2, we have a 100% chance that we will hit such sub index. This is

estimated with the following formula:

P (2− key) =


0 aq = 1

1 l = maxextra ∧ aq ≥ 2
l

maxextra
aq = 2

1−Bn,p,k(
(
aq
2

)
, l
maxextra

, 0) aq > 2

(7.5)

Bn,p,k =
(
n
k

)
pk(1 − p)n−k is the probability to hit exactly k times in a

Bernoulli process with n trials and p is the success probability. In our case, we

have a Bernoulli process where n is the number of pair of classes that we can

build with the classes in Cq. Then, we want to know, which are the chances

that these would match at least one of the 2-key sub indices that are created.

This is expressed by the complementary probability of hitting exact zero times.

98 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

The final expectation of data point in the accessed index is:

E[YMISP2−key
] = P (2− key) · E[Y2−key]

+ (1− P (2− key)) · E[YInvSeq]
(7.6)

Estimating the cost at any level m can be done accordingly. The number

of m-key sub indices, under the assumption that all indices at each level are

created, is lm =
(
c
m

)
, and the total number of sub indices would be ltotal =∑m

i=1 li. The number of items can be computed as:

yi(m) =
d · avgco

c
· avgco − 1

c− 1
. . .

avgco − (m− 1)

c− (m− 1)
= d ·

m−1∏
i=0

avgco − i
c− i

(7.7)

and similarly P (yi) = 1
lm

. Thus E[Ym-indexSeq] can be computed as:

E[Ym-key] =
d

lm
·
m−1∏
i=0

avgco − i
c− i

(7.8)

Next, we need to calculate the probability of hitting such an index. Since we

are always favoring the sub indices for keys created as a combination of more

class constraints, we estimate the probability of hitting some level i, where

1 ≤ i ≤ m, recursively as:

prop(i) =

1−
m∑

j=i+1

prop(i)

 · (1−Bn,p,k(

(
aq
i

)
,
li

limax

, 0)) (7.9)

The first part of Equation 7.9 estimates the probability that we have not yet

hit a level having more class constraints than the current level i. The second part

is the generalization of Equation 7.5. It is still a series of Bernoulli processes,

however, this time we estimate to hit at least one of the combination of the

classes in Cq with the probability of the number of sub indices build at level i,

li, divided by the possible sub indices at this level, limax
. To get the estimated

number of distance function calls when we have the general case of MISP index,

we sum up the numbers:

E[YMISP (m) =

m∑
i=1

prop(i) · E[Yi-key] (7.10)

By plugging a value for the number of created sub indices l at level m, lm,

in Equation 7.10 we can estimate the number of distance function computations

depending on the number of sub indices created at each level of the MISP index.

Thus, Equation 7.10 should ideally help us not only in choosing the depth of

the index, but also the number of sub indices created at level m.

According to Equation 7.6, Figure 7.2(a) shows the estimation of the number

of distance function computations when varying the number of 2-key sub indices

7.3 Cost Model 99

 0

 50000

 100000

 150000

 200000

 0 20 40 60 80 100 120 140 160 180 200

#
 o

f
D

F
 c

o
m

p
u
ta

ti
o
n
s

of 2-key sub indices

(a)

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180 200

in
d
e
x
 s

iz
e
 i
n
 M

B

of 2-key sub indices

(b)

Figure 7.2: Cost estimation (#df computations (a) and index size in MB (b))

for 2-key MISP index when varying the number of 2 key sub indices created

(d = 1, 000, 000, c = 20, avgco = 5 and aq = 5).

for a dataset with the following parameters: d = 1, 000, 000, c = 20, avgco = 5

and aq = 5. As expected, the number of distance function computations is

decreasing as we increase the number of sub indices created. However, we can

see that the rate at which the value is decreasing is dropping, and after some

point, in this case around l = 60, the decrease in distance function computations

becomes insignificant. One way of choosing the number of sub indices to be

created at level m would be to calculate the percent decrease and then stop

when this becomes lower than some threshold value t. Below, we propose an

algorithm for choosing the number of sub indices to be created that also takes

into account the estimated size of the index.

7.3.2 Estimating the Size of the Index

The size of the MISP index can be easily estimated using the equations from

before. Note that in this approximation, the occupied space for the data itself

will be left out, because it will always be constant for one data set, independent

of the employed indexing method. This means, when comparing two different

index structures, only the difference of their overhead is relevant. We try to

formulate this as general as possible, as this overhead depends heavily on the

implementation.

For estimating the size of the MISP index we again need the expected size of

the sub indices, the size of |C|, and the overhead imposed by the index structure.

Let X be a random variable representing the size of the sub indices. Without

loss of generality, we assume that in the index we only store pointers to the data

objects. For the MISP index with depth one we would have:

E[XMISP1] = c · (ohtree+pointer+ string+ integer) + c · d · ad
c
· ohnode (7.11)

where the string and the pointers take into account for storing the key in the

inverted index, and a pointer to each sub index, and ohtree and ohnode account

100 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

input: |D|, |C|, aq, avgco , step

1 while m ≤ aq do

2 li = 0; increase(m,1)

3 while improvement(L,M) > cost(L,M) do

4 increase(li,step)

5 M=est size(m, li);

6 L=est df computations(m, li)

7 return L,m

Algorithm 5: Algorithm for determining the depth m and the number of

sub indices per level for the MISP index by accounting the performance gained

versus the memory consumed for the created sub indices.

for the overhead of each sub index and each node in the sub index which we

consider them to be trees.

Generalizing this cost model to level m is straightforward, keeping in mind

that we can reuse the estimations from the previous subsection. We have:

E[XMISPm] = (lm · (ohtree + pointer + i · string + integer)

+lm · ((d ·
m−1∏
i=0

ad − i
c− i

+ 1) · ohnode)
(7.12)

where 1 ≤ lm ≤
(
c
m

)
is the number of sub indices created at level m. To

get the total size of the MISP index we just need to sum up the costs from

each level. Figure 7.2(b) shows the estimated cost for a 2-key MISP index for

a dataset with d = 1, 000, 000, c = 20, avgco = 5 and aq = 5. Furthermore, as

overhead for the tree and node we have used ohtree = 704b, ohnode = 1024b,

pointer = 256b, string = 576b and integer = 128b, which account to our Java

implementation. As expected, the size of the index increases linearly with the

number of sub indices added (cf., Figure 7.2(b)).

7.3.3 Overall Cost

To put the two costs together one needs to consider the trade-off between the

performance gain induced by having more sub indices and the price of increased

memory consumption. At some point, as it can be seen in Figure 7.2, the

reduction in distance function computations becomes marginal, while the mem-

ory consumption steadily increases. At this point, the price paid, in terms of

memory consumption, for creating more sub indices is larger than the benefit

gained.

Algorithm 5 sketches this idea. For each level m, the distance function

computations and the index size is estimated, for varying number of sub indices

7.4 Experiments 101

created. While the benefit from having these indices is higher than the cost

paid, we continue adding more indices. Once this stopping condition applies,

the number of sub indices that should be created for the current level is marked,

and we continue with the estimations for the next level m.

Depending on the use case scenario, as cost paid can be considered also the

construction time, or the overhead imposed for updates. Considering that when

adding more sub indices we also increase the redundancy of objects in the MISP

index, the cost for updates needs to be considered. While the construction

time can be deduced form the size of the index, the cost for updates needs

more detailed investigation. However, estimating the cost for updates, and

how exactly the trade-off between the benefit gained and the cost paid can be

computed is left for future work.

7.4 Experiments

All experiments were executed on a desktop machine running Ubuntu 16.4 with

an Intel CoreTM i5-4570 CPU and 8 GB of RAM (5 GB used by the Java VM).

We implemented the different indexing strategies using Java 8.

Datasets

For the experiments we used both a synthetic and a real dataset. The synthetic

dataset consist of two dimensional points where the value of every dimension is

fixed between 0 and 100. The dataset is created by first randomly picking points

that act as the pivot of the partitions. Then points in each partition are added

by moving the points away from the pivot. The direction, and the distance

is chosen randomly, however, it does not exceed the radius of the partition,

provided at input. Important to note is that the data objects are distributed

uniformly over the classes. For the experiments in this paper, we have generated

a dataset with the parameters: |O| = 1, 000, 000, |C| = 20, |Coi | ≤ 5, |Cq| ≤ 5.

For the real-world dataset, we used geospatial data provided by Open-

StreetMap (OSM). We used the available data from within the boundaries of

Germany1. For the experiments we focus on Points of Interest (POIs), and the

rest of the data, e.g., streets, railroads or buildings, were dropped. We were left

with about 1.3 million data entries. The data in the OSM dataset is described

by a set of user specified tags whose values are freely inputed by users. The

tags we cleaned and adapted as classes of the data objcets. To each data ob-

ject we assigned at most six classes, thus ∀oi ∈ O : |Coi | ≤ 6: amenity, shop,

city, hasName, hasOperator, hasOpeningHours. The first two classes can take

many values. Amenity can take more than 8500 and shop more than 10000

different values. For city the values are only sometimes there. The last three we

made them as boolean classes, an object either belongs to this class or not. For

instance, a data object with the tags “amenity=pub, name=Wladi Rockstock,

1http://download.geofabrik.de/europe/germany.html, downloaded on 2016-11-20

http://download.geofabrik.de/europe/germany.html

102 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

opening hours=Tu-Su 18:00+” would get the classes “amenity:pub”, “hasName”

and “hasOpeningHours”. The queries that we use for the experiments are ran-

domly chosen from the data.

Indexes under Investigation

We have focused on measuring the performance of the following indexing strate-

gies:

• Sequential scan (Seq), as a baseline approach

• iDistance [JOT+05] having all the data objects indexed.

• Inverted index using single classes as keys (InvSeq).

• Additionally, for understanding the accuracy of the cost model, we also

look at MISP-seq, that is, MISP where the elements in the inverted index

are evaluated by sequential scan (MIPS-seq).

• Our combined index, MISP, where iDistance is used as sub index (MISP).

Performance Measures

To get some insights into the performance of the different indexing strategies we

measured the following: (i) index creation time, (ii) memory consumption, (iii)

wallclock time, and (iv) number of distance function (df) computations. We

report the time (df computations) needed to execute 100 queries, with k = 20.

7.4.1 Results

Validity of the Cost Model

In order to assess the validity of our cost model, we conduct an experiment

where we measure the performance of the MISP index as we vary the number of

2-key and 3-key sub indices created. For this experiment, we used the synthetic

dataset described above. We also measured the performance for a version of the

MISP index, where the sub indices are plain posting lists, denoted as MISP-seq.

We did this because this better reflects the cost model, which estimates the

distance function comparisons to all the objects in a sub index.

As we can see in Figure 7.3, the cost model provides an accurate estimation

of the real performance and size of the MISP index for level 2. The performance

of the MISP index where as sub index we use the iDistance index is lower than

the one estimated with the cost model. However, what is important is that the

performance improvement when adding more sub indices follows the same trend.

For the estimation for the number of sub indices at level 3 (Figure 7.3(c)), we

have created only 60 sub indices at level 2, as this seems to be the point at

which the improvement in distance function computations becomes marginal.

7.4 Experiments 103

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

 2.5x10
7

 3x10
7

0 1 5 10 15 20 50 100 200

#
 o

f
D

F
 c

o
m

p
u

ta
ti
o

n
s

of 2-key sub indices (l)

cost model
MISP-seq

MISP

(a)

 0

 0.5

 1

 1.5

 2

 2.5

0 1 5 10 15 20 50 100 200

in
d

e
x
 s

iz
e

 i
n

 G
B

of 2-key sub indices (l)

cost model
MISP

(b)

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

1 10 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

#
 o

f
D

F
 c

o
m

p
u

ta
ti
o

n
s

of 3-key sub indices (l)

cost model
MISP-seq

MISP

(c)

Figure 7.3: Comparison of the cost model estimation with the experimentally

measured df computations (a) and index size (b) when changing the number of

2-key and 3-key (c) sub indices (synthetic dataset).

We see that the cost model, at first, overestimates the decrease in the number

of distance function computations, but then at around 200 sub indices, the

cost model starts to more realistically capture the decline in distance function

computations of the MISP index.

Comparison of Different Indexing Techniques

Next, using the OSM dataset, we compare the MISP index against the inverted

index and the iDistance. We also plot the result when having a plain sequential

scan, as a baseline. To see whether introducing 3-key sub indices would lead to

more performance benefits, we have also created a version of the MISP index

with the best 500 2-key iDistance sub indices, and the objects belonging to the

remaining 2-key combinations indexed in a corresponding posting list, instead of

using an iDistance index. In addition to this we also created 500 3-key iDistance

sub indices. This MISP index version is denoted as MISP2+3 in Figures 7.4

and 7.5 .

Figure 7.4 shows the memory consumption and the creation time of the MISP

where we have created the best 500 2-key sub indices, compared to the iDistance

the inverted index and a sequential scan. The reason for creating 500 sub indices

104 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

 0

 200

 400

 600

 800

 1000

S
e
q

iD
is

ta
n
c
e

In
v
S

e
q

M
IS

P

M
IS

P
2
+

3

In
d
e
x
 S

iz
e
 (

M
B

)

(a)

 0.1

 1

 10

 100

 1000

 10000

S
e
q

iD
is

ta
n
c
e

In
v
S

e
q

M
IS

P

M
IS

P
2
+

3

In
d
e
x
 C

re
a
ti
o
n
 T

im
e
 (

s
)

(b)

Figure 7.4: Memory consumption (a) and creation time (log-scale) (b) of differ-

ent indexing strategies (OSM dataset).

 1

 100

 10000

 1x10
6

 1x10
8

S
e
q

iD
is

ta
n
c
e

In
v
S

e
q

M
IS

P

M
IS

P
2
+

3

#
 o

f
D

F
 c

o
m

p
u
ta

ti
o
n
s

(a)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

S
e
q

iD
is

ta
n
c
e

In
v
S

e
q

M
IS

P

M
IS

P
2
+

3

Q
u
e
ry

 t
im

e
 (

m
s
)

(b)

Figure 7.5: Log-scale plots of df computations (a) and query execution time (b)

different indexing strategies (OSM dataset).

is explained below. As expected, the creation time and memory consumption

of the MISP index is worse compared to the two baselines. Especially for the

creation time, we see that creating additional sub indicies presents quite some

overhead, especially when we have created all 2-key sub indices and 500 3-key

sub indices (MISP2+3). However, even though we are working with relatively

large dataset of 1.3 million objects, the memory consumption is still reasonable,

i.e., under 1GB.

Figure 7.5 shows the distance function computations and the query execution

time for different indexing techniques. As we can see in Figure 7.5(a) by using

the MISP index with 500 2-key sub indices we have significantly lower number of

distance function computations compared to the iDistance index or the inverted

index. Accordingly, the MISP index has the best query execution time as well

(Figure 7.5(b)). It is interesting to notice that the inverted index outperforms

the iDistance index for this dataset. We can see that adding the additional 3-key

7.4 Experiments 105

 0

 20000

 40000

 60000

 80000

 100000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

#
 o

f
D

F
 c

o
m

p
u

ta
ti
o

n
s

of 2-key sub indices

(a)

 0

 50

 100

 150

 200

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

Q
u

e
ry

 t
im

e
 (

m
s
)

of 2-key sub indices

(b)

Figure 7.6: df computations (a) and query time (b) of MISP index for different

number of 2-key sub indices (OSM dataset).

sub indices only slightly reduces the number of distance function computations.

There is even a slight degradation in the query execution time due to overhead

for finding the best index. Note, that Figure 7.5 is in logarithmic scale.

Varying the Number of 2-Key Sub Indices

Next we evaluate the performance of the MISP index using the OSM dataset

when varying the number of 2-key sub indices. Since this dataset has a very large

set of possible classes, we first investigate the performance of the MISP index in

the case when we vary the number of only 2-key sub indices created. Only for

2-key sub indices in this dataset there are 196, 284 possible combinations. Note

that all the 1-key sub indices are also present in the MISP index, and we create

the n best 2-key sub indices as described in Section 7.2. Figure 7.6(a) shows that

for the real dataset the distance function computation follow a similar trend as

with the synthetic dataset. At first, there is a drastic drop in the number of

distance function computations, which then starts to slowly decrease. However,

in Figure 7.6(b) we see that as we increase the number of 2-key sub indices there

is an added overhead from finding the best index, and thus the query execution

time at first improves, but then starts to slightly deteriorate. At the moment

this overhead is not taken into account in our cost model.

We see that for 500 2-key sub indices the df computations only marginally

improve, and there is no significant performance degradation. That is why in

the previous experiment only the best 500 sub indices were created.

Performance Based on the Depth of MISP Index

To better investigate the performance of the MISP index, when having an index

with different depth, i.e., when increasing the value of m, we performed an

experiment using the synthetic dataset. We test the performance of the MISP

index for values 2 ≤ m ≤ 5. However, to reduce the overhead, on each level we

create only the 100 best m-key sub indices. The performance of the MISP index,

106 7. Class-Constrained k-Nearest Neighbor (CCk-NN)

 0

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

2
-k

e
y

3
-k

e
y

4
-k

e
y

5
-k

e
y

#
 o

f
D

F
 c

o
m

p
u
ta

ti
o
n
s

(a)

 0

 100

 200

 300

 400

 500

 600

2
-k

e
y

3
-k

e
y

4
-k

e
y

5
-k

e
y

Q
u
e
ry

 t
im

e
 (

m
s
)

(b)

Figure 7.7: Comparison of df computations (a) and query execution time (b)

when different levels of m-key sub indices are build (synthetic dataset).

as it can be seen in Figure 7.7, does not improve much as we add additional

layers. We have measured that the construction time increases significantly

with adding layers of m-key sub indices. The memory consumption, on the

other hand, shows not to be such an issue.

Lessons Learned

From the presented experiments we can conclude that the MISP index clearly

outperforms the inverted index and the iDistance index. The query execution

benefits of the MISP index can already be seen when having sub indices at level

2. Adding more levels to the index, as expected, brings additional performance

improvement, however, it comes with the expense of higher memory consump-

tion and index creation time. In fact, the index creation cost seems to be more

of an issue that the memory consumption, when it comes to adding more sub

indices. This is because the creation of each iDistance index is expensive. An in-

teresting observation is that adding more sub indices at some level is not always

beneficial, when it comes to the performance, especially when the cardinality

of the global set of classes C is very large. In this case, the cost for searching

the best index to be queried, seems to outweigh the benefit of having these

indices. Finally, and most importantly, we could see that the presented cost

model correctly captures the performance and memory consumption cost of the

MISP index, and thus, could be used for estimating the number of sub indices

that would bring the best performance time versus memory consumption trade

off, for some dataset D, with an associated set of global classes C.

7.5 Summary

In this work, we proposed and analyzed an indexing strategy for solving the

Class-Constrained k-NN problem. As a solution we proposed an index that

7.5 Summary 107

combines an inverted index with a similarity search index. We specifically use

the iDistance, but any other index can be used. To solve the problem imposed

by the proposed indexing strategy, of how many and which sub indices do we

need to create to get the best performance, while reducing the overhead, we

proposed an experimentally validated cost model and discussed how the user

can find the point at which the performance gain will be minor when creating

more sub indices. Furthermore, in an experimental study we show that our

indexing strategy performs better over existing indexing techniques.

Chapter 8

Conclusion and Outlook

In this thesis we addressed the problem of similarity search over top-k rankings

and class-constrained objects. All of the presented solutions combine in some

way an inverted index with distance-based filtering.

First, we have presented some theoretical bounds for top-k rankings, which

allow the adaptation of existing state-of-the-art set-based similarity search algo-

rithms to our problem setting. Next, the Coarse index, which unites an inverted

index and a BK-tree, in order to efficiently process similarity range queries over

top-k rankings has been presented. The Coarse index first indexes the data using

a BK-tree, and uses this tree to divide the data into partitions with fixed radius.

The centroid of each partition is then indexed using an inverted index. How-

ever, in order to achieve the best performance, this index blend requires some

tunning, which dictates the granularity of the partitions and the size of the data

indexed with an inverted index. Thus, we have also presented a theoretical cost

model, which, based on the data distribution, enables choosing the performance

sweet spot of the Coarse index. We further presented optimizations over the in-

verted index, that can either be used independently or in combination with the

Coarse index, to even further reduce the time cost needed for processing simi-

larity range queries. Furthermore, we have presented an iterative, distributed,

algorithm, implemented in Apache Spark, for efficiently answering similarity

join queries over top-k rankings, which reuses the concepts introduced for solv-

ing the similarity range problem, and applies them for answering similarity join

queries in a distributed setting.

In addition, we have presented the MISP index structure, which is specif-

ically designed to efficiently handle a special type of the k nearest neighbors

query, where class constraints are also introduced, the class-constrained k near-

est neighbors query (CCk-NN). Similarly as the Coarse index, MISP combines

and inverted index with a spatial index structure, specifically the iDistance—an

inverted index is used to index the objects per class, or combination of classes.

Then, instead of placing the objects in regular posting lists, MISP indexes them

with the iDistance index. This allows both fast access to the objects that satisfy

109

110 8. Conclusion and Outlook

the query class constraints and efficient execution of the k-NN query. As the

combination of classes, and thus, the number of possible iDistance sub indices,

explodes combinatorially, we have presented a cost model that assesses the per-

formance and memory consumption of the MISP index, with the goal of finding

the number of sub indices and the combination of classes needed in order to

achieve the best trade-off between the performance gained and the cost paid in

memory consumption or construction time.

The presented similarity search approaches over top-k rankings are designed

to work only over same size rankings. Extending these solutions to work for

rankings of different sizes would be a possible future work. In Chapter 4 we

have already sketched some of the bounds needed for this extension, however,

applying and evaluating these in practice still needs to be done. Another inter-

esting direction of future work would be to apply the proposed approaches for

similarity search over sets when using an appropriate distance measure that also

satisfies the triangle inequality, e.g., the Jaccard distance. It would be interest-

ing to see how the proposed approaches perform against set-based approaches

using existing benchmarks.

As for the MISP index, as future work the presented cost model could be

extended to actually propose concrete number of sub indices that need to be

created, so that some performance-overhead trade-off is achieved. For this,

approaches like the weighted sum method, the weighted metric method or the

ε-constrained method, which work with competing costs, could be used—one

cost being the cost for querying the index, and the other one, the construction

(memory consumption) cost.

List of Figures

1.1 Example top-k lists of favorite TV Series for IMDB users. 2

2.1 Example strings where the difference in characters is marked with

red. The Edit and the Hamming distance are the same between

(s1, s3) and (s2, s3), with values 3 and 4, respectively. For the

pair (s1, s2), h(s1, s2) = 4 while e(s1, s2) = 1. 9

2.2 Example of ball-partitioning . 12

2.3 Example of ball-partitioning . 13

2.4 Example inverted index for three relations R1, R2, and R3. . . . 15

2.5 Example position-augmented posting lists for the top-k rankings

shown in Figure 2.6 . 16

2.6 Example of two Top-K Lists . 17

2.7 Example of two permutations σ1 and σ2 18

2.8 Structure of MapReduce . 19

2.9 Structure of MapReduce . 20

2.10 Structure of MapReduce . 21

2.11 Structure of MapReduce . 23

2.12 Spark Runtime Architecture (Image source: [KKWZ15]) 24

4.1 Example rankings with k = 5 and ω = 3 with maximum Footrule

distance U(k, ω) = 22. 37

4.2 Example rankings with k = 5 and p = 2 with Footrule distance

d(τi, τj) = 8. 40

5.1 Creating partitions based on the BK-tree. The green (distance

1 and 2) subtrees are indexed by their parent node (medoid, as

black dot). Distance 0 is not shown here. 47

5.2 Four medoids with fixed-diameter partitions. 50

5.3 The behavior of the theoretically derived performance for varying

θC . 52

111

112 LIST OF FIGURES

5.4 Inverted Index for rankings in Table 5.4 with highlighted blocks

of same-rank entries. 55

5.5 Performance of the M-tree vs. BK-tree for NYT dataset 59

5.6 Performance of the BK-tree vs. the performance of inverted index

for NYT dataset. 59

5.7 Trend of the filtering and validation time of the coarse index for

k = 10, θ = 0.2 and varying θC . The small rectangle depicts the

performance of the coarse index if θC was chosen by the model

and the vertical line the difference in performance. 59

5.8 Comparing query processing over coarse index with baseline and

competitor approaches (left block) and with other hybrid meth-

ods over inverted index (right block) for NYT dataset, for k = 10

and k = 20. 62

5.9 Comparing query processing over coarse index with baseline and

competitor approaches (left block) and with other hybrid meth-

ods over inverted index (right block) for Yago dataset, for k = 10

and k = 20. 63

5.10 Number of distance function calls (DFC) for different query pro-

cessing methods for NYT dataset (Coarse θc=0.5; Coarse+Drop

θc = 0.06) . 64

5.11 Number of distance function calls (DFC) for different query pro-

cessing methods for Yago dataset (Coarse θc=0.5; Coarse+Drop

θc = 0.06) . 64

6.1 Example of computing the similarity join for top-k rankings using

the Vernica Join algorithm in Spark. 70

6.2 Overall architecture. The algorithm has four main phases: or-

dering, clustering, joining and expansion. 72

6.3 Example of how clusters are formed and centroids (marked with

red) are chosen, where θc = 0.1. 75

6.4 Example of computing the final result set using the result set from

the joining phase and the clusters where θc = 0.1 and θ = 0.2.

Cluster’s centroids are marked with red. 77

6.5 Example of repartitioning of the large partitions using a parti-

tioning threshold δ. 79

6.6 Comaprison of different algorithms when varying θ 83

6.7 Performance of CL-PL algorithm when varying the number of

nodes in the cluster . 84

6.8 Performance of CL-PL algorithm when varying the dataset size . 84

6.9 Performance of CL algorithm when varying the clustering thresh-

old θc . 85

LIST OF FIGURES 113

6.10 Performance of CL-P algorithm when varying the partitioning

threshold δ . 87

6.11 Performance of different algorithms for rankings of size 25 when

varying the distance threshold θ, for the ORKU dataset. 87

6.12 Performance of the VJ, VJ-NL and CL algorithms when varying

the number of Spark partitions, for θ = 0.3, for the DBLP and

DBLPx5 datasets. 88

6.13 Performance of the CL-P algorithm when varying the number of

Spark partitions, for δ = 10000 and θ = 0.3, for the DBLPx5

dataset. 89

7.1 Example Multi-Key Inverted Index with Smart Posting Lists . . 94

7.2 Cost estimation (#df computations (a) and index size in MB (b))

for 2-key MISP index when varying the number of 2 key sub

indices created (d = 1, 000, 000, c = 20, avgco = 5 and aq = 5). . 99

7.3 Comparison of the cost model estimation with the experimentally

measured df computations (a) and index size (b) when changing

the number of 2-key and 3-key (c) sub indices (synthetic dataset). 103

7.4 Memory consumption (a) and creation time (log-scale) (b) of dif-

ferent indexing strategies (OSM dataset). 104

7.5 Log-scale plots of df computations (a) and query execution time

(b) different indexing strategies (OSM dataset). 104

7.6 df computations (a) and query time (b) of MISP index for differ-

ent number of 2-key sub indices (OSM dataset). 105

List of Algorithms

1 Query processing using the coarse index. 48

2 Joining of centroids based on the type of the centroid. 76

3 Computation of the final result set. 78

4 Computing the all pair similarity join with repartitioning of large

partitions using a partitioning threshold δ. 80

5 Algorithm for determining the depth m and the number of sub

indices per level for the MISP index by accounting the perfor-

mance gained versus the memory consumed for the created sub

indices. 100

114

List of Tables

5.1 Sample dataset T of rankings where items are represented by

their ids. 44

5.2 Overview of notation used in this paper 45

5.3 Model of query performance (∼runtime) of the coarse index. . . . 52

5.4 Sample set T of rankings . 54

5.5 Difference in ms between the minimal performance of the coarse

index, and the performance for the theoretically computed best

value of θc (k = 10) . 60

5.6 Size and construction time of indices for k = 10 65

6.1 Example top-k lists of favorite movies for users of a dating portal 68

6.2 Spark parameters used for the evaluation 81

115

Bibliography

[AIMS13] Foteini Alvanaki, Evica Ilieva, Sebastian Michel, and Aleksandar

Stupar. Interesting event detection through hall of fame rankings.

In Kristen LeFevre, Ashwin Machanavajjhala, and Adam Silber-

stein, editors, Proceedings of the 3rd ACM SIGMOD Workshop

on Databases and Social Networks, DBSocial 2013, New York,

NY, USA, June, 23, 2013, pages 7–12. ACM, 2013.

[BCG02] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Top-k se-

lection queries over relational databases: Mapping strategies and

performance evaluation. ACM Trans. Database Syst., 27(2):153–

187, 2002.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for

associative searching. Commun. ACM, 18(9):509–517, 1975.

[BK73] Walter A. Burkhard and Robert M. Keller. Some approaches to

best-match file searching. Commun. ACM, 16(4):230–236, 1973.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and main-

tenance of large ordered indices. Acta Inf., 1:173–189, 1972.

[BMS07] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant.

Scaling up all pairs similarity search. In Carey L. Williamson,

Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J.

Shenoy, editors, Proceedings of the 16th International Conference

on World Wide Web, WWW 2007, Banff, Alberta, Canada, May

8-12, 2007, pages 131–140. ACM, 2007.

[BÖ97] Tolga Bozkaya and Z. Meral Özsoyoglu. Distance-based index-

ing for high-dimensional metric spaces. In Joan Peckham, ed-

itor, SIGMOD 1997, Proceedings ACM SIGMOD International

Conference on Management of Data, May 13-15, 1997, Tucson,

Arizona, USA., pages 357–368. ACM Press, 1997.

[BYCMW94] Ricardo A. Baeza-Yates, Walter Cunto, Udi Manber, and Sun

Wu. Proximity matching using fixed-queries trees. In Maxime

Crochemore and Dan Gusfield, editors, CPM, volume 807 of Lec-

ture Notes in Computer Science, pages 198–212. Springer, 1994.

116

BIBLIOGRAPHY 117

[CCJW13] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu.

Spatial keyword query processing: An experimental evaluation.

PVLDB, 6(3):217–228, 2013.

[CGK06] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A

primitive operator for similarity joins in data cleaning. In Ling

Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang, ed-

itors, Proceedings of the 22nd International Conference on Data

Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA,

page 5. IEEE Computer Society, 2006.

[Chi94] Tzi-cker Chiueh. Content-based image indexing. In Jorge B.

Bocca, Matthias Jarke, and Carlo Zaniolo, editors, VLDB’94,

Proceedings of 20th International Conference on Very Large Data

Bases, September 12-15, 1994, Santiago de Chile, Chile, pages

582–593. Morgan Kaufmann, 1994.

[CJW09] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient re-

trieval of the top-k most relevant spatial web objects. PVLDB,

2(1):337–348, 2009.

[CMN01] Edgar Chávez, José L. Marroqúın, and Gonzalo Navarro. Fixed

queries array: A fast and economical data structure for proximity

searching. Multimedia Tools Appl., 14(2):113–135, 2001.

[CN05] Edgar Chávez and Gonzalo Navarro. A compact space decompo-

sition for effective metric indexing. Pattern Recognition Letters,

26(9):1363–1376, 2005.

[CNBM01] Edgar Chávez, Gonzalo Navarro, Ricardo A. Baeza-Yates, and

José L. Marroqúın. Searching in metric spaces. ACM Comput.

Surv., 33(3):273–321, 2001.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An ef-

ficient access method for similarity search in metric spaces. In

Matthias Jarke, Michael J. Carey, Klaus R. Dittrich, Freder-

ick H. Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld,

editors, VLDB’97, Proceedings of 23rd International Conference

on Very Large Data Bases, August 25-29, 1997, Athens, Greece,

pages 426–435. Morgan Kaufmann, 1997.

[CSD] Apache Casandra. http://cassandra.apache.org. Accessed:

26.03.2019.

[DBL] DBLP dataset. https://www.cs.sfu.ca/~jnwang/projects/

adapt/. Accessed: 26.03.2018.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data

processing on large clusters. In Eric A. Brewer and Peter Chen,

http://cassandra.apache.org
https://www.cs.sfu.ca/~jnwang/projects/adapt/
https://www.cs.sfu.ca/~jnwang/projects/adapt/

118 BIBLIOGRAPHY

editors, 6th Symposium on Operating System Design and Imple-

mentation (OSDI 2004), San Francisco, California, USA, Decem-

ber 6-8, 2004, pages 137–150. USENIX Association, 2004.

[DLH+14] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jian-

hua Feng. Massjoin: A mapreduce-based method for scalable

string similarity joins. In Isabel F. Cruz, Elena Ferrari, Yufei Tao,

Elisa Bertino, and Goce Trajcevski, editors, IEEE 30th Interna-

tional Conference on Data Engineering, Chicago, ICDE 2014, IL,

USA, March 31 - April 4, 2014, pages 340–351. IEEE Computer

Society, 2014.

[dSTM18] Jéssica Andressa de Souza, Agma J. M. Traina, and Sebastian

Michel. Class-constraint similarity queries. In Hisham M. Haddad,

Roger L. Wainwright, and Richard Chbeir, editors, Proceedings of

the 33rd Annual ACM Symposium on Applied Computing, SAC

2018, Pau, France, April 09-13, 2018, pages 549–556. ACM, 2018.

[FAB+18] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and

Johann-Christoph Freytag. Set similarity joins on mapreduce: An

experimental survey. PVLDB, 11(10):1110–1122, 2018.

[FGT92] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. Birth-

day paradox, coupon collectors, caching algorithms and self-

organizing search. Discrete Applied Mathematics, 39(3):207–229,

1992.

[FKS03] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k

lists. SIAM J. Discrete Math., 17(1):134–160, 2003.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggrega-

tion algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–

656, 2003.

[GIJ+01] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick

Koudas, S. Muthukrishnan, and Divesh Srivastava. Approximate

string joins in a database (almost) for free. In VLDB 2001, Pro-

ceedings of 27th International Conference on Very Large Data

Bases, September 11-14, 2001, Roma, Italy, pages 491–500, 2001.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching. In Beatrice Yormark, editor, SIGMOD’84, Proceedings

of Annual Meeting, Boston, Massachusetts, June 18-21, 1984,

pages 47–57. ACM Press, 1984.

[Ham50] Richard W Hamming. Error detecting and error correcting codes.

The Bell system technical journal, 29(2):147–160, 1950.

[HBS] Apache HBASE. https://hbase.apache.org. Accessed:

26.03.2019.

https://hbase.apache.org

BIBLIOGRAPHY 119

[HDP] Apache Hadoop. https://hadoop.apache.org. Accessed:

26.03.2019.

[HM03] Sven Helmer and Guido Moerkotte. A performance study of four

index structures for set-valued attributes of low cardinality. VLDB

J., 12(3):244–261, 2003.

[HS99] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial

databases. ACM Trans. Database Syst., 24(2):265–318, 1999.

[IMS13] Evica Ilieva, Sebastian Michel, and Aleksandar Stupar. The

essence of knowledge (bases) through entity rankings. In Qi He,

Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, ed-

itors, 22nd ACM International Conference on Information and

Knowledge Management, CIKM’13, San Francisco, CA, USA,

October 27 - November 1, 2013, pages 1537–1540. ACM, 2013.

[Jac12] Paul Jaccard. The distribution of the flora in the alpine zone. 1.

New phytologist, 11(2):37–50, 1912.

[JLFL14] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String

similarity joins: An experimental evaluation. PVLDB, 7(8):625–

636, 2014.

[JOT+05] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui

Zhang. idistance: An adaptive b+-tree based indexing method for

nearest neighbor search. ACM Trans. Database Syst., 30(2):364–

397, 2005.

[JP08] Christopher B. Jones and Ross S. Purves. Geographical informa-

tion retrieval. International Journal of Geographical Information

Science, 22(3):219–228, 2008.

[JS08] Edwin H. Jacox and Hanan Samet. Metric space similarity joins.

ACM Trans. Database Syst., 33(2), 2008.

[KKWZ15] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Za-

haria. Learning Spark: Lightning-Fast Big Data Analytics. 1st

edition, 2015.

[KM83] Iraj Kalantari and Gerard McDonald. A data structure and an

algorithm for the nearest point problem. IEEE Trans. Software

Eng., 9(5):631–634, 1983.

[KW17] Holden Karau and Rachel Warren. High performance Spark: best

practices for scaling and optimizing Apache Spark. ” O’Reilly Me-

dia, Inc.”, 2017.

[LDWF11] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng.

PASS-JOIN: A partition-based method for similarity joins.

PVLDB, 5(3):253–264, 2011.

https://hadoop.apache.org

120 BIBLIOGRAPHY

[MAB16] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. An empir-

ical evaluation of set similarity join techniques. PVLDB, 9(9):636–

647, 2016.

[Mam03] Nikos Mamoulis. Efficient processing of joins on set-valued at-

tributes. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan,

editors, Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, San Diego, California, USA,

June 9-12, 2003, pages 157–168. ACM, 2003.

[MAM15] Evica Milchevski, Avishek Anand, and Sebastian Michel. The

sweet spot between inverted indices and metric-space indexing for

top-k-list similarity search. In Gustavo Alonso, Floris Geerts, Lu-

cian Popa, Pablo Barceló, Jens Teubner, Mart́ın Ugarte, Jan Van

den Bussche, and Jan Paredaens, editors, Proceedings of the

18th International Conference on Extending Database Technol-

ogy, EDBT 2015, Brussels, Belgium, March 23-27, 2015., pages

253–264. OpenProceedings.org, 2015.

[MDB] MongoDB. https://www.mongodb.com/. Accessed: 26.03.2019.

[MM16] Evica Milchevski and Sebastian Michel. Quantifying likelihood

of change through update propagation across top-k rankings. In

Pitoura et al. [PMK+16], pages 660–661.

[MNM18] Evica Milchevski, Fabian Neffgen, and Sebastian Michel. Pro-

cessing class-constraint K-NN queries with MISP. In Proceedings

of the 21st International Workshop on the Web and Databases,

Houston, TX, USA, June 10, 2018, pages 2:1–2:6. ACM, 2018.

[MRS10] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze.

Introduction to information retrieval. Natural Language Engineer-

ing, 16(1):100–103, 2010.

[MTI] M-tree implementation. https://github.com/erdavila/M-

Tree. Accessed: 01.12.2013.

[NVZ92] Hartmut Noltemeier, Knut Verbarg, and Christian Zirkelbach.

Monotonous bisector* trees - A tool for efficient partitioning of

complex scenes of geometric objects. In Burkhard Monien and

Thomas Ottmann, editors, Data Structures and Efficient Algo-

rithms, Final Report on the DFG Special Joint Initiative, vol-

ume 594 of Lecture Notes in Computer Science, pages 186–203.

Springer, 1992.

[NYT] The New York Times Annotated Corpus.

http://corpus.nytimes.com.

[ORK] ORKU dataset. http://ssjoin.dbresearch.uni-salzburg.

at/datasets.html. Accessed: 01.12.2018.

https://www.mongodb.com/
http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
http://ssjoin.dbresearch.uni-salzburg.at/datasets.html

BIBLIOGRAPHY 121

[O’S06] Mı́cheál O’Searcoid. Metric spaces. Springer Science & Business

Media, 2006.

[Pal18] Koninika Pal. Mining and Querying Ranked Entitites. PhD thesis,

Kaiserslautern University of Technology, Germany, 2018.

[PM16] Kiril Panev and Sebastian Michel. Reverse engineering top-k

database queries with PALEO. In Pitoura et al. [PMK+16], pages

113–124.

[PMK+16] Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amélie

Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefani-

dis, editors. Proceedings of the 19th International Conference on

Extending Database Technology, EDBT 2016, Bordeaux, France,

March 15-16, 2016, Bordeaux, France, March 15-16, 2016. Open-

Proceedings.org, 2016.

[PMM16] Kiril Panev, Evica Milchevski, and Sebastian Michel. Computing

similar entity rankings via reverse engineering of top-k database

queries. In 32nd IEEE International Conference on Data Engi-

neering Workshops, ICDE Workshops 2016, Helsinki, Finland,

May 16-20, 2016, pages 181–188. IEEE Computer Society, 2016.

[PMMP16] Kiril Panev, Sebastian Michel, Evica Milchevski, and Koninika

Pal. Exploring databases via reverse engineering ranking queries

with PALEO. PVLDB, 9(13):1525–1528, 2016.

[RLS+17] Chuitian Rong, Chunbin Lin, Yasin N. Silva, Jianguo Wang, Wei

Lu, and Xiaoyong Du. Fast and scalable distributed set simi-

larity joins for big data analytics. In 33rd IEEE International

Conference on Data Engineering, ICDE 2017, San Diego, CA,

USA, April 19-22, 2017, pages 1059–1070. IEEE Computer Soci-

ety, 2017.

[RLW+13] Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du, Yueguo

Chen, and Anthony K. H. Tung. Efficient and scalable process-

ing of string similarity join. IEEE Trans. Knowl. Data Eng.,

25(10):2217–2230, 2013.

[Sam84] Hanan Samet. The quadtree and related hierarchical data struc-

tures. ACM Comput. Surv., 16(2):187–260, 1984.

[Sam06] Hanan Samet. Foundations of Multidimensional and Metric Data

Structures. Morgan Kaufmann, 2006.

[SHC14] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. Cluster-

join: A similarity joins framework using map-reduce. PVLDB,

7(12):1059–1070, 2014.

122 BIBLIOGRAPHY

[SK04] Sunita Sarawagi and Alok Kirpal. Efficient set joins on similar-

ity predicates. In Gerhard Weikum, Arnd Christian König, and

Stefan Deßloch, editors, Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data, Paris, France,

June 13-18, 2004, pages 743–754. ACM, 2004.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. The hadoop distributed file system. In Mohammed G.

Khatib, Xubin He, and Michael Factor, editors, IEEE 26th Sym-

posium on Mass Storage Systems and Technologies, MSST 2012,

Lake Tahoe, Nevada, USA, May 3-7, 2010, pages 1–10. IEEE

Computer Society, 2010.

[SPK] Apache Spark. https://spark.apache.org. Accessed:

26.03.2019.

[SQM+15] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen

Wang, Berthold Reinwald, and Fatma Özcan. Clash of the ti-

tans: Mapreduce vs. spark for large scale data analytics. PVLDB,

8(13):2110–2121, 2015.

[TBV+11] Manolis Terrovitis, Panagiotis Bouros, Panos Vassiliadis,

Timos K. Sellis, and Nikos Mamoulis. Efficient answering of set

containment queries for skewed item distributions. In Anasta-

sia Ailamaki, Sihem Amer-Yahia, Jignesh M. Patel, Tore Risch,

Pierre Senellart, and Julia Stoyanovich, editors, EDBT 2011, 14th

International Conference on Extending Database Technology, Up-

psala, Sweden, March 21-24, 2011, Proceedings, pages 225–236.

ACM, 2011.

[TPVS06] Manolis Terrovitis, Spyros Passas, Panos Vassiliadis, and

Timos K. Sellis. A combination of trie-trees and inverted files for

the indexing of set-valued attributes. In Philip S. Yu, Vassilis J.

Tsotras, Edward A. Fox, and Bing Liu, editors, Proceedings of the

2006 ACM CIKM International Conference on Information and

Knowledge Management, Arlington, Virginia, USA, November 6-

11, 2006, pages 728–737. ACM, 2006.

[Uhl91] Jeffrey K. Uhlmann. Satisfying general proximity/similarity

queries with metric trees. Inf. Process. Lett., 40(4):175–179, 1991.

[VCL10] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel

set-similarity joins using mapreduce. In Ahmed K. Elmagarmid

and Divyakant Agrawal, editors, Proceedings of the ACM SIG-

MOD International Conference on Management of Data, SIG-

MOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages

495–506. ACM, 2010.

https://spark.apache.org

BIBLIOGRAPHY 123

[WLF12] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat

the prefix filtering?: an adaptive framework for similarity join

and search. In K. Selçuk Candan, Yi Chen, Richard T. Snod-

grass, Luis Gravano, and Ariel Fuxman, editors, Proceedings of

the ACM SIGMOD International Conference on Management of

Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,

pages 85–96. ACM, 2012.

[WMP13] Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scal-

able all-pairs similarity search in metric spaces. In Inderjit S.

Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul

Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, and

Ramasamy Uthurusamy, editors, The 19th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining,

KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 829–

837. ACM, 2013.

[WQL+17] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang.

Leveraging set relations in exact set similarity join. PVLDB,

10(9):925–936, 2017.

[XWLY08] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Ef-

ficient similarity joins for near duplicate detection. In Jinpeng

Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma,

Andrew Tomkins, and Xiaodong Zhang, editors, Proceedings of

the 17th International Conference on World Wide Web, WWW

2008, Beijing, China, April 21-25, 2008, pages 131–140. ACM,

2008.

[Yia93] Peter N. Yianilos. Data structures and algorithms for nearest

neighbor search in general metric spaces. In Vijaya Ramachan-

dran, editor, Proceedings of the Fourth Annual ACM/SIGACT-

SIAM Symposium on Discrete Algorithms, 25-27 January 1993,

Austin, Texas, USA., pages 311–321. ACM/SIAM, 1993.

[ZADB06] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal

Batko. Similarity Search - The Metric Space Approach, volume 32

of Advances in Database Systems. Kluwer, 2006.

[ZSAR98] Pavel Zezula, Pasquale Savino, Giuseppe Amato, and Fausto Ra-

bitti. Approximate similarity retrieval with m-trees. VLDB J.,

7(4):275–293, 1998.

[ZXW+05] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and

Wei-Ying Ma. Hybrid index structures for location-based web

search. In Otthein Herzog, Hans-Jörg Schek, Norbert Fuhr,

Abdur Chowdhury, and Wilfried Teiken, editors, Proceedings of

the 2005 ACM CIKM International Conference on Information

124 BIBLIOGRAPHY

and Knowledge Management, Bremen, Germany, October 31 -

November 5, 2005, pages 155–162. ACM, 2005.

Evica Milchevski
Education

11/2013 –
08/2019

PhD in Computer Science, TU Kaiserslautern (11/2014 – 08/2019), Ger-
many,
International Max Planck Research School for Computer Science
(IMPRS-CS Scholarship), Saarland University (11/2013 – 10/2014),
Germany.
Thesis: Similarity Search Algorithms over Top-k Rankings and Class-Constrained
Objects.

10/2011 –
09/2013

Masters in Computer Science, Saarland University, Saarbrücken, Germany,
GPA: 1.1 out of 1.0.
Thesis: Analyzing and Creating Top-K Entity Rankings.
Grade of Master’s Thesis: 1.0 out of 1.0

10/2005 –
03/2010

Bachelor of Computer Science, Faculty of Natural Sciences and Mathemat-
ics - Institute of Informatics, University “St. Cyril and Methodius”, Skopje,
Macedonia, GPA: 9.28 out of 10.
Thesis: Horizontal and Vertical Partitioning of Data in Databases.
Grade of Bachelor’s Thesis: 10 out of 10

Work Experience
12/2012 –

09/2013
Part Time Research Assistant (HiWi), DFKI GmbH, Germany.
Main activities and responsibilities:
{ Developing Eclipse plugins

03/2009 –
09/2011

Junior Analyst/Developer, T-Mobile Macedonia, Skopje, Macedonia.
Main activities and responsibilities:
{ Developing ETL procedures utilizing PL/SQL
{ Administration of existing ETL processes
{ Database design for new systems

Languages
Macedonian Native

English Level C1 by CEFR
German Level B2 by CEFR

	Dedication
	Introduction
	Problem Statement
	Contributions
	Publications
	Outline of the Thesis

	Background and Preliminaries
	Similarity Search
	Metric Space
	Distance Functions
	Similarity Queries
	Data Partitioning
	BK-tree
	iDistance
	Inverted Index

	Top-k Rankings
	Distance Functions

	Platforms for Distributed Data Processing
	MapReduce
	Apache Spark

	Related Work
	Similarity Search
	Indexing Techniques for Set-Valued Atributes
	Metric Space Indexing Techniques
	K-NN Queries under Categorical Constraints

	Similarity Joins
	In-memory All-Pairs Similarity Search
	MapReduce-based All-pairs Similarity Search

	Theoretical Bounds for Top-k Rankings
	Introduction
	Bounds on Overlap
	Different Size Rankings

	Prefix Size for Top-k Rankings
	Bounds on Item Positioning

	Similarity Range Queries over Top-k Rankings
	Introduction
	Problem Statement and Setup
	Contributions and Outline

	Framework
	Index Creation
	Query Processing

	Parameter Tuning
	Inverted Index Access & Optimizations
	Pruning by Query-Ranking Overlap
	Partial Information
	Blocked Access on Index Lists

	Experiments
	Query Processing Performance
	Index Size and Construction Time

	Summary

	Distributed Similarity Joins over Top-k Rankings
	Introduction
	Problem Statement and Setup
	Contributions and Outline

	Adaptation of Set-Based Algorithms to Top-k Rankings
	Vernica Join

	Approach
	Clustering
	Joining
	Expansion

	Repartitioning using Joins
	Experiments
	Results

	Summary

	Class-Constrained k-Nearest Neighbor (CCk-NN)
	Introduction
	Problem Statement
	Contributions and Outline

	Multi-Key Inverted Index with Smart Posting Lists (MISP)
	Index Creation
	Querying

	Cost Model
	Cost for Querying
	Estimating the Size of the Index
	Overall Cost

	Experiments
	Results

	Summary

	Conclusion and Outlook
	List of Figures
	List of Algorithms
	List of Tables
	References

