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Abstract

Many loads acting on a vehicle depend on the condition and quality of roads trav-
eled as well as on the driving style of the motorist. Thus, during vehicle develop-
ment, good knowledge on these further operations conditions is advantageous. For
that purpose, usage models for different kinds of vehicles are considered. Based
on these mathematical descriptions, representative routes for multiple user types
can be simulated in a predefined geographical region. The obtained individual
driving schedules consist of coordinates of starting and target points and can thus
be routed on the true road network. Additionally, different factors, like the to-
pography, can be evaluated along the track.
Available statistics resulting from travel survey are integrated to guarantee reason-
able trip length. Population figures are used to estimate the number of vehicles in
contained administrative units. The creation of thousands of those geo-referenced
trips then allows the determination of realistic measures of the durability loads.
Private as well as commercial use of vehicles is modeled. For the former, com-
muters are modeled as the main user group conducting daily drives to work and
additional leisure time a shopping trip during workweek. For the latter, taxis as
example for users of passenger cars are considered. The model of light-duty com-
mercial vehicles is split into two types of driving patterns, stars and tours, and in
the common traffic classes of long-distance, local and city traffic.
Algorithms to simulate reasonable target points based on geographical and sta-
tistical data are presented in detail. Examples for the evaluation of routes based
on topographical factors and speed profiles comparing the influence of the driving
style are included.
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1. Introduction

1.1. Motivation and problem description

The usage of vehicles is very variated. There exists a large number of different
types, special equipments and diverse fields of application. Thus, during vehicle
development specific knowledge on the future operating conditions is needed. The
forces acting on a vehicle have to be estimated realistically to enable design deci-
sions fulfilling the required demands. These forces strongly depend on the roads
traveled as well as on the driving style of the motorist.
The common approach conducting a measurement campaign in the region for
which the vehicles are constructed has multiple disadvantages. It is expensive, re-
quiring a lot of money and time. Additionally, it is not directly clear if the roads
passed are representative for the considered usage type and how the obtained
measurements have to be combined to achieve reliable estimates for the expected
damage values. Furthermore, at an early stage of development, there might be no
prototype available which can be used for the campaign.
In an alternative situation, different regions shall be compared. This is then still
more expensive. If emerging markets shall be considered, reliable information on
the vehicle usage is also expected to be missing.
In this work we solve these problems by gaining the required knowledge virtually.
We develop usage models for different kinds of vehicles and apply mathematical
methods to simulate the routes of several thousands typical drivers. We inte-
grate different kinds of statistics in order to create representative routes and use
geographical data allowing the evaluation of attributes depending on the routes
traveled.
The advantages of this approach are versatile. First of all, it is not restricted to a
specific region. Once a usage model is at hand, it only has to be adapted slightly
to the new area of interest and the simulation can be restarted directly. Fur-
thermore, the influence of different factors can be compared. In the usage model
for commuters for instance, trips to shopping locations are included. Here, the
difference between the application of a distance distribution resulting from some
travel survey and the selection of the nearest shopping facility could be investi-
gated. Additionally, also parameters of the vehicle can be varied for the routing
between the computed origin-destination pairs. Shortest and fastest connections
can be compared as well. For the measurement campaign, one has to decide before
the start which forces to measure. In our approach, a subsequent supplementary
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evaluation of the roads covered is always possible. The results obtained from the
simulation of usage models can be used in combination with already conducted
campaigns and enhance the results. They provide the missing settings for the
computation of pseudo-damage values in the usage simulation.

We want to clarify that the goal of usage modeling lies not in the creation of
individual really existing travel schedules. We rather want to reproduce the vehi-
cle population of interest as a whole. Only the summarized outcomes for a sample
size large enough are significant.

1.2. Outline of this work

The overall problem of creating representative routes automatically is split into
several subproblems in the following. We start with the development of differ-
ent usage models. First, we concentrate on light-duty commercial vehicles. We
demonstrate the complete process from preparing required inputs, simulating and
evaluating representative routes. At last we show how they can be combined with
measurement campaigns. This chapter extends the methods already presented in
[22] and also [60].
Afterwards, we consider passenger cars. We repeat the model of commuters de-
scribing the common usage of private passenger cars introduced in [21]. Addition-
ally, we sketch the preparation and integration of available traffic surveys. We
finish the chapter with a usage model for taxis as example of users of commercial
passenger cars covering large distances during a week conducting various types of
trips.
In chapter 4 we consider different kinds of data required for the simulation. We
start with geographical information forming the basis for the calculation of origin-
destination pairs. We distinguish between point and areal data and describe math-
ematical methods to select suitable coordinates. Afterwards, we show that, at least
for Germany, population figures can be applied to estimate vehicle distributions.
We also demonstrate that the population counts available in map data used are of
sufficient quality to replace official population statistics that otherwise had to be
integrated in the database. We finish the chapter with a look at distance distri-
butions. On basis of the travel survey "Mobilität in Deutschland 2008" (Mobility
in Germany 2008)[6] we describe the analysis and integration of such data.
Chapter 5 treats different aspects concerning the implementation of the algorithm.
We start with the mathematical method for the choice of home locations of vehi-
cles. We introduce different techniques for the modeling of population distribu-
tions found in literature. We then create a method exploiting the characteristics
of the available geographical data. Next, we try to find influencing parameters for
detour factors which indicate the dissimilarity of linear and driven distances. We
also sketch how these can be used to integrate the distribution of driven distances
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from traffic surveys in our techniques based on linear distances. At last, we con-
sider the situation that our algorithm is not able to create a feasible trip chain.
This could happen if a distance is prescribed in which no adequate target point is
located.
In chapter 6 we demonstrate the algorithm of creating representative routes with
the example of a commuter living in Kaiserslautern. We depict how his driving
schedule for a complete workweek is assembled. Like in chapter 2.6, topographical
factors are analyzed for the obtained routes. In the second part of that chapter
we consider a taxi driving around Kaiserslautern. Here, two speed profiles for a
single trip are created, one for an aggressive and one of a careful driver. It is
sketched that the driving style of the motorist has a remarkable influence on the
forces acting on the vehicle driving on the same roads.

For this work we use VMC®, a software developed at ITWM, for the routing
and analysis of covered roads as well as for the simulation of the speed profiles.
The methods applied are taken as provided, applying standard settings. We also
extract the geographical data introduced in chapter 4.1 and the population counts
employed in chapter 5.1 from the VMC® database.

1.3. Related work

Some of the problems to be solved for the simulation of usage models also have
been considered by different people. The list of sources does not claim to be
comprehensive, only an extract shall be reviewed here.
Most literature can be found for the commuter model. Daily travel patterns are
analyzed and simulated for more than forty years. The regular conduction of traffic
surveys shows that the interest in current data still legitimates the costs and effort
required. However, usually no concrete locations represented by their geographical
coordinates are treated, like they are needed in our simulation. Mostly, households
and the persons belonging to them are created like in [20], [23] or [45]. The
spatial classification is at the most performed on basis of zones therein. The
overall population is simulated such that socio-economic attributes are reflected
well. Beckman, Baggerly and McKay obtain geographical coordinates in [19], but
they follow a different approach. They extract subsamples from available original
census data. Hay et al. [34] instead consider the locations of people like we
do, even they require them for public health applications. Trip chains are not
considered there.
They are the central theme for Bhat et al. [20] and Lovelace et al. [45] again. In
the former source time is used as critical attribute. In the latter shortest routes
are assumed but they are just computed between zones, not specific points. This
does not match our needs for reliable values for covered distances. Susilo and
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Kitamura [57] work with both, trip chains and driven distances, but on one hand
they restrict their examinations on the cities of Karlsruhe and Halle, Germany.
On the other hand they introduce the concept of action spaces, "a set of places
where an individual visits to carry out activities" [57].
Literature dealing with the creation of population densities shall be skipped here
since a comparison of different methods is given in chapter 5.1. Summarizing,
there is active research in the same direction like the usage models, but the focus
always lies on different aspects lacking of some attributes required for our purposes.
Especially the geographic component seems to be mostly neglected.
A second concept that has gained a lot of interest is the one of detour or circuity
factors. Phibbs and Luft [48] compared the linear distance with travel time and
stated that with decreasing distance the time to travel one mile grows up. Ballou et
al. [18] replaced the time aspect by the distance covered. Giacomin and Levinson
[32] consider both measures. Concerning the factors based on distances only, two
different methods to compute the average are applied. Ballou et al. compute
the detour factors for inter-city distances first and then calculate the mean of all
values. Giacomin and Levinson divide the sum of network distances by the sum
of Euclidean distances. For our purposes we work with the concept of Ballou et
al.. Levinson and El-Geneidy [43] perform detailed comparison of the difference
in circuity between randomly sampled points and true work-home pairs and state
that the second average is significantly lower than the first. However, again only
metropolitan areas are considered. This is not sufficient for our calculation where
people are simulated in rural districts also. Hence, [18] is used as a basis but the
applied factors should be adapted to our purposes.
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2. Usage model for light-duty
commercial vehicles

In this chapter, we introduce our approach in a rather simple setting by looking
at a specific example, the simulation of light-duty commercial vehicles. It extends
the rather tersely described concepts given in [22].

2.1. Introduction

Even if usage modeling is concentrated on light-duty commercial vehicles, such
as parcel services, craftsmen or long-distance services, the daily utilization of mo-
torcars is strongly varying. The differences mainly lie in the commercial sector.
Delivery services for example are often faced with time restrictions because goods
have to be delivered in a certain time slot. Diverse customers are waiting in line,
not accepting delays. Craftsmen on the other hand only have to meet their work-
ing hours. They are expected to visit fewer customers per day and often have a
less strict time schedule. The typical trips of these motorists during their shift
show different driving patterns. The goal in vehicle development is to guarantee a
desired target mileage for all motorcars. In order to reach this, reliable estimates
on damage values are requested. Those are influenced by the forces acting on
single components of a vehicle. Depending on the usage group and the derived
characteristics, these forces are expected to differ. The following chapter describes
the process how the required damage values can be estimated. Therefore repre-
sentative routes reflecting ordinary vehicle life depending on industrial sector and
motorist are computed. We concentrate on the modeling and simulation of the
vehicle usage for light-duty commercial vehicles and show how these results can
be combined with measurement campaigns.

2.2. Characterization of model

The goal of modeling vehicle usage is the generation of artificial data representing
the typical use of, in our case, light-duty commercial vehicles. Each individual
observation which we want to generate represents a route R of a vehicle over
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several days. We start with a network of roads of various categories like highway,
country road etc. which mathematically correspond to a planar graph G with
marks on the edges. These marks not only signify the road category, but also
other information, e.g. if the road lies in a residential or in a commercial area.
The route

R = R(GI,MP, IV ) (2.1)

which we want to generate or, more precisely, its distribution, depends on three
sets of parameters, where GI stands for geographical and user identification, MP
for model parameters and IV for, usually random, input variables,

GI = (region, index) (2.2)

MP = (classlimits, classcharacteristics) (2.3)

IV = (U, P,D, n,B, S) (2.4)

which we distinguish due to their different roles:
GI consists of control parameters which we choose to suit the goal of the particu-
lar simulation, e.g. to simulate routes in a particular region as subset of the whole
road network graph G.
MP contains parameters which are fixed somewhat arbitrarily. We partition
routes with regard to the maximal distance traveled into three classes (long,
medium, short) where there is no natural or established rule for choosing the
separating points. Table 2.1 contains examples for such class limits depending on
the shape of the route. E.g. for a “tour” defined later, the "medium distance"
class consists of routes with linear distance between 20km and 50km between the
start location of the route and approached stopovers. MP also contains parame-
ters of the distribution of inputs from IV . Due to lack of appropriate data, these
parameters are mainly set to plausible but yet arbitrary values but, preferably,
have to be replaced by estimated ones in the future once appropriate data are
available.
Finally, IV contains the random input variables into the system generating the
route. They consist of various qualitative random variables like shape of the route
or distance class, discrete numerical random variables like number of stopovers
and continuous random variables like the coordinates of the home base of the
vehicle and of the stopovers on the route. The joint distribution of those inputs
has to be estimated which is not trivial as they depend on each other. We later
discuss which data would be needed ideally and which data is currently available
and how they may be used to approximate the distributions of the inputs as the
basis for the simulation.

First, we provide some more details about the parameters and inputs. The intro-
duced values have the following interpretation:
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• R: A route R consists of a list of significant points given by their latitu-
dinal and longitudinal coordinates. The driving schedule begins with the
origin or “home” location where the vehicle is parked usually at start of
work. Subsequently, stopovers visited during a shift are listed. These might
be job-sites for craftsmen or the positions of customers for delivery services.
Those points are approached according to their order, thus the last desti-
nation is again the parking position. Of course, the stopovers need not to
be nonrecurring. Craftsmen for example often return to the office between
jobs, delivery services carrying food always need to retrieve the next offers.

• region: The geographical unit in which the vehicles drive around. This
might be a country, a federal state, a town or even a artificially created com-
bination. The region needs to be represented by a “multipolygon” consisting
of a description of its boundary. See section 4.1.6 for detailed information
on this datatype.

• index: Consecutive number for identification of single vehicle in bulk of
simulations. Combination of region, index and user U forms a unique iden-
tifier.

• classlimits: Fixed bounds for distance classes used in simulation. For
all cases of driving pattern P suitable values are required. This variable is
directly connected to classcharacteristics providing further information on
the classes. An example for the split in three classes is given in the first row
of table 2.1.

• classcharacteristics: Values further describing the distance classes con-
tained in simulation. These include the expected distribution of trip lengths
regarding classlimits and corresponding pattern P . Additionally, the distri-
bution of the number of customers visited on one trip is reported. For each
class given in classlimits, all associated values have to be provided. Table
2.1 shows an example for a complete configuration of the model parameters
MP .

• U : User of vehicle. Depending on the simulated vehicle type or industrial
sector, the usage differs. For light-duty commercial vehicles, "craftsmen"
and "delivery services" are common values of this variable.

• P : Driving pattern. The order of points visited during one or multiple trips
shows a specific pattern. For light-duty commercial vehicles “stars” and
“tours” and a combination of both are typical shapes. “Stars” are character-
ized by alternation between a central destination like the home of the vehicle
and varying further positions. An ideal example for this driving pattern is
that of a craftsmen who visits several customers but goes back to his office
after each job. “Tours” ’ are usually performed by delivery services visiting
multiple customers one after another before they return to their base. Mix-
tures of both patterns contain some locations that are visited repeatedly
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without returning home in between but driving to further places. Those
can be cut smartly into pieces and be treated as combination of the base
patterns. The general form of “stars” and “tours” is sketched in figure 2.1.
It includes the special case that the depot is located outside a town, usually
easy to reach by road, and the customers live in the city center. The pattern
is a bit degenerated then but still tour-shaped. Examples for the base types
projected on the map are given in figure 2.2. The actual driving pattern
P = i is depending on the chosen user U = j.

• D: Actual distance class. The probability for a distance class D = k de-
pends on chosen user and pattern, Pr (D = k |U = i, P = j ). At the mo-
ment, the frequencies are prescribed in classfrequencies and are reflected
exactly when simulating a population of vehicles. A treatment as frequency
distribution allowing deviations can be integrated.

• n: Number of stopovers. This variable determines the count of customers
who are visited on the specific simulated trip. Up to now, this number is
taken as the constant value set in classcharacteristics. In the future, more
variation shall be added. One possible data source might be the survey
“Kraftfahrzeugverkehr in Deutschland” [26]. The public use file allows to
count the number of routes conducted per day by a single vehicle, see section
2.3.3. The distribution of the number of stopovers can then be estimated
with respect to various constraints like day of week or industrial sector. n
always depends on these influencing factors, n = n(U,D).

• B: Base location of vehicle given as geographical coordinates, B ∈ S2.
Usually, a light-duty commercial vehicle has a common parking position
where it is returned to after end of shift. This location often lies near the
companies site. The specific place is chosen in a commercial, industrial or
retail area as well as in a residential one if the vehicle belongs to a small
family company for instance. It can also be chosen from a list of businesses
registered in the considered region. More information on available data
sources and the corresponding data types is given in chapter 4.1.

• S: List of stopovers. S ∈ Rn×2 gives the coordinates of all simulated des-
tinations except B. Depending on P , the list is reordered after creation of
all positions. For P ="star" each customer is visited individually resulting
in n single trips to one stopover each and returning home afterwards. If
P ="tour", all places have to be visited one after another before returning
home. This creates n+ 1 tracks forming one single trip starting at B.
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(a) Star (b) Tour (c) Tour with center outside

Figure 2.1.: Outline of the two patterns, own illustration from [22].

Figure 2.2.: Examples of base patterns given in [22]. Simulated points are
connected linearly by gray lines, routes on the road network are
painted black.

2.3. Determination of values for MP

2.3.1. Background of distance classes and patterns

In the usage model described above driving patterns play an important role. Usu-
ally, traffic classification is only based on driven distances but does not include
such a concept. In this section, the usefulness of the new approach is illustrated.
The usage of light-duty commercial vehicles typically is divided into the three
categories city, local and long-distance traffic. This legal partition into different
distance classes was disestablished in Germany more than 40 years ago, but the
terms are often still in use. When having a closer look at typical trips, some draw-
backs of this classification for usage modeling get obvious since it is only based on
the operation range of the vehicle. Like it is shown in figure 2.3, people working
in various industrial sectors perform journeys in more than one distance category
regularly. However, in all three categories we can determine similar driving pat-
terns for vehicles with the same trip purpose, just differing in scaling.
A craftsman for instance has a catchment area depending on the structure of ur-
ban development in his place of residence. If he is living in a large city, he might
find enough customers in a short distance. If he is living in the countryside, he
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presumably has to accept orders in a larger region. The same holds for delivery
services. Considering postal services, one can distinguish between parcel and let-
ter delivery having different operating radii. Postmen visit nearly every house,
whereas parcel carriers stop at addresses further apart. Thus, those can serve a
larger area. In both examples, the driven distance and the number of customers
visited varies, but the basal pattern stays the same.

Figure 2.3.: Classical and new division of traffic, own illustration from [22]

If the traditional subdivision into three traffic types is necessary in the end, a
translation between both partitions is possible. First of all, the model parame-
ters MP can incorporate the old concept by setting three entries for classlimits
for each pattern. Additionally, classcharacteristics allows constant frequencies or
differentiates between the patterns. Hence, it is possible to characterize one traffic
class as a combination of patterns with different distance bounds. The weighting
of all components allows the incorporation of the influence of the industrial sector.
Returning to our standard example, city traffic for the building industry in con-
trast to postal or delivery services for instance can be composed of the same
distance classes but can have different proportions of the two patterns. In the
first case, 80% stars and 20% tours can be adequate, in the second one more tours
are expected. A weight of zero for one pattern is even possible. The specific pro-
portions can be given from available statistics or can be obtained from available
customer data. A method how the ratios can be estimated from traced routes is
introduced in detail in chapter 2.3.3.

2.3.2. Default values

As a start for the determination of the variables summarized in MP , a set of de-
fault values shall be introduced. Ideally, statistics or customer data are available
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which can be evaluated like described in the following sub-chapters. However,
often no such data is available and expert knowledge on the industrial sector or
good guesses based on experience are required. The settings in this chapter are
chosen in order to translate the results back to the classical distance classes and
can be used in a general simulation without further input. Due to their interde-
pendencies, the combination of pattern P , classlimits and classcharacteristics
shall be considered in common.
Based on the subdivision into city, local and long-distance traffic, three distance
classes are used. The smallest one contains trips with a maximal linear distance
of 20km from the base location of the vehicle to single destinations. Inside this
radius, all relevant points are of same importance and are thus chosen with the
same probability. It is expected that this choice covers larger towns as well as
villages belonging together. The next class mainly representing local traffic, gets
an upper limit of 50km. In order to clearly separate the classes, only customers
settled in a linear distance larger than 20km from the headquarters are accepted
here. For the long-distance traffic the two patterns are distinguished. They both
take 50km as a lower limit, but the upper one is set differently. For the star
pattern, a larger area of operation is accepted since single trips are independent
of each other. It does not matter, in which directions consecutive customers are
located. Additionally, longer routes are expected to exhibit a smaller deviation
between linear and driven distance. A detailed investigation on this topic is given
in chapter 5.2.1. In the case of tours a smaller radius of action is assumed to be
adequate. It is fixed to 100km since all stopovers have to be visited on one route.
The specific locations of two successive destinations can cause large journeys. The
extreme situation can easily be understood thinking of two points placed at oppo-
site geographic directions. We then rather expect that the customers are supplied
by different vehicles or on different tours.
Further distance bounds of 1,000km and 500km respectively could be included if
the considered region is rather broad. Then three classes introduced might not
be sufficient to create trips traversing the complete area. An example for such
a scenario is a simulation in Brazil. Here, even stars of 1,000km radius cannot
cover routes from east to west or north to south. Surely, such trips might be im-
probable for the vehicle population as a whole, but they can be feasible for single
industrial sectors. Since the default values shall be suitable for a large amount of
use cases, the partition into three classes is usually sufficient. Another important
point referencing the size of the considered region is also its “negative” influence.
Like a large area requires larger distances, a smaller one reduces them. Usually,
regions have no circular shape such that points lying in acceptable distance to the
base location might fall outside the region. Then they are not incorporated in the
selection process. Consequently, some distance classes decrease to lower maximal
distances naturally or even can be dropped completely for rather small regions.
The classcharacteristics consist of the following quantities: numbers of stopovers
are assumed to be constant and thus described by one value for each combination
of distance class and pattern. Here, the default values are rather simple. They
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are set to decrease with growing maximal distance. Then a truck conveying goods
over a long route performs less trips than a distributor serving businesses in a
more bounded region. For the extrapolation to a given target mileage at the end
of the evaluation, this shortens the difference in the overall distance traveled in
the three classes. The smaller ones add shorter single trips but in exchange a
larger number of them. In particular, numbers of 30, 15 and 10 stopovers are used
in order to obtain a sufficient overall covered distance. Thinking of postmen for
instance, these counts still seem to be by far too small at a first glance. Deliverers
are expected to submit more letters a day. However, they do not stop at every
house, but also cover small ways by foot. Additionally, it depends on the aim and
analysis of simulation results if the number of stops is relevant. In the applications
examples given in the following and in chapter 6, in most of the cases one is inter-
ested in topographical factors. These stay the same for a journey, no matter how
often the vehicle stops in between. Only if the driving behavior has an influence,
the results change according to the given number. Furthermore, the simulation
might also select one destination multiple times. This usually happens, if there
are only few candidates of stopovers in a region. Depending on the pattern, this
results in a natural deviation from the default number or in a higher importance
of some destinations. Both cases happen in reality and enhance the results instead
of falsifying them.
Now, the last information given in classcharacteristics is considered. It con-
cerns the direction in which stopovers are chosen. For the default settings, no
preferences are set. Thus, the shape of the region prescribes the distribution of
customers in a natural way. In general, they can be located in the complete circle
or circular ring around the base location without preference. However, if the base
location is lying near a border of the region, only few or even no feasible points
can be found further in this direction.

Pattern Star Tour
Upper value of classlimits 500km 50km 20km 100km 50km 20km

Number of stopovers
10 15 30 10 15 30

given in classcharacteristics
Proportion in simulation 20% 40% 40% 10% 20% 70%

Table 2.1.: Summary of default parameters, compare to [22]

As a last setting, the proportions of patterns and distance classes are prescribed.
Again, these depend on the considered region and industrial sector. For the general
simulation, both patterns shall be of the same importance. Their fractions are
fixed and shall not be treated as relative frequencies allowing some variation. A
summary of the default values is given in table 2.1. For each pattern, a different
partition is set. For stars, city and local traffic are of same importance, long-
distance traffic is rated less. For tours, the smallest class is clearly preferred
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whereas the largest category is reduced. Again, the proportions are prescribed
and not used in a frequency distribution. Surely, this can easily be incorporated
in a further step. However, for the sake of simplicity, this basic parameter set is
kept. It is denoted as M̂P in the following.

2.3.3. Evaluation of available customer data

A better approach than using standardized default values is of course the em-
ployment of customer data measured for the user types of interest. With help
of this, the model parameters can be tuned to reflect the vehicle usage in the
field optimally. In an ideal situation, starting points and stops are given by their
coordinates. After the identification of the vehicle’s home location, the pattern
of each trip can be determined easily. Therefore the complete trace is split into
parts starting and closing at this base, first. Afterwards, every track is identified
as one ray of a star if only one stopover is found. Successive rays are combined
to one complete star, their number is representing n. Multiple stops approached
before returning home indicate tours. Their count again gives n. Furthermore,
the distances between origin and every destination are computed. The largest
and smallest one allow the assignment to a distance class. If those have a large
variation for a star, a split into multiple shapes containing less rays shall be taken
into account.
The resulting distribution of pattern, distance classes and number of stopovers
is then included in classlimits and classcharacteristics and the simulation can
be started. Taking the proportions as relative frequencies and applying random
number generators for the computations of IV , the resulting trips model the cus-
tomer group very well. This approach has the advantage, that the distances do
not have to be measured on the road network but can be computed as linear
ones just connecting the points. If the data is anonymized by translation or ro-
tation, the results still are of good quality. We assume that the trips are short
enough to avoid problems concerning the earth’s curvature when the coordinates
are moved. Nevertheless, this method suffers from some problems. There need
to be a sufficient amount of data in order to estimate the distributions reliably.
Often, recording driving schedules is expensive or time-consuming such that only
few data sets are at hand. Additionally, the trips are highly depending on the
industrial sector and might not be transferred to other applications. At least, the
classification of locations approached is not possible. Since the data usually is
anonymized, it cannot be determined what kind of destinations are important.
Depending on the desired final result, a further classification could be of interest.
Returning to the subdivision into traffic classes, the customer data also has to be
classified as city, local and long-distance traffic. Therefore either each trip, if the
data is mixed from different vehicles or user types, or the whole set of data also
gets such a label. Usually, this requires some manual work and is influenced by
the industrial sector.
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Evaluation of traffic surveys

One possible data source for the type of data currently described are polls regard-
ing motor traffic. In case of the traffic survey “Kraftfahrzeugverkehr in Deutsch-
land” (KiD) [26] for instance, public use files containing information on single trips
can be ordered. Due to protection of the personal rights of the study participants,
no geographical coordinates are computed. However, standardized descriptions
of the origins and destinations are given. Additionally, driven distances covered
between subsequent stops are recorded. Furthermore, a classification of the indus-
trial sector is included. From this data, the number of stopovers of each trip can
be counted. Here the problem lies in the identification of the base location and
in determining when it is approached. A classification as site of own or foreign
company is inserted, but for businesses having multiple places of location, it might
be misleading to treat those points as one. It could also be the case that a vehicle
returns to the nearest station between the trips. Additionally, it is not possible to
find out if some ways recur. If the same distances and destination classifications
are repeated, this does not mean that the same trip is performed. Depending on
the usage type, there might also be a significant loss of data since only ten routes
are reported in detail. If more are conducted, these are just summarized by their
number without providing further information on them.
The advantage of the KiD data set lies in its completeness regarding the trip
purpose. For each route for instance it can be identified if it was an official or pri-
vate trip. In addition, the area of operations is indicated such that vehicles only
employed on premises can be distinguished from those used locally, from those
driven in the surroundings of the company or in complete Germany. This can be
used for a split in city, local and long-distance traffic if required. The mentioned
characteristics of the trips unfortunately can only be found in combination in the
public use file which is not accessible. The reports available online at [26] directly
summarize the characteristics independent of each other. Most of the time only
two features are compared in tables. However, they still provide information, like
mean values of the number of trips performed on a day, that can enhance the
simulation, especially if no further data source is available.
Using the distances reported, either in the data file or in the final report, it should
always be kept in mind, that driven distances covered on the road network are
given. The simulation of S shown in the next chapter is based on linear distances.
Thus, a translation between both concepts has to be performed. Therefore detour
factors for a region are used. More details on those and how they can be incorpo-
rated in the model are presented in chapter 5.2.1.

Analysis of GPS traces

As a second example of customer input data to adapt MP , GPS traces shall be
discussed. These usually are anonymized and can only be taken as reliable infor-
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mation if the computation of linear distances is possible without large distortions.
Thus, the coordinates can be shifted to start at any place on earth and the whole
journey can be rotated around this new starting point, but no scaling or trans-
formation of single points is allowed to have been carried out. If these conditions
on the data are guaranteed, the evaluation starts with splitting large traces. De-
pending on the data source, trips on multiple days might be contained in one set
and have to be identified first. If some time stamp is available, this could give
good hints where to cut. However, a straightforward split at midnight might be
wrong since light-duty commercial vehicles are allowed to drive at night without
restrictions. It is better to check for immobilization times, but those can also be
misleading due to legal restrictions on driving periods. Where necessary, manual
processing might be inevitable. Additionally, single trips have to be identified.
Again, automation is not always possible, especially when no information on spe-
cific starting points is given. Figure 2.4 sketches an example of a track obtained
after the split.

Figure 2.4.: Single tour obtained after splitting, figure taken from [22] was
modified.

Next, all routes have to be classified as stars or tours. Usually this has to be done
manually by examining each individually. In principle, an assignment using some
statistical classification method is possible. However, the training set adjusting
the parameters in the corresponding model has to be created first. Hence, a strat-
egy how the trips have to be rated has to be determined in any case. Furthermore,
the number of available GPS traces often is rather low. Then, after the required
amount of training data is extracted, there are only few trips left that have to
be classified. The effort assigning them also manually might be smaller than that
setting up the learning algorithm. Returning to the example in figure 2.4, the
track is classified as tour. The loops in the west are rated as small detours for
stopovers. On the other hand, especially if the base location was set at cross-over
point x, also a degenerated star-shape consisting of two smaller and one large rays
could be determined. The tour seems to be more probable, but the alternative is
not impossible. Obviously, the classification of trips without further information is
not unambiguous but is influenced by the knowledge and experience of the person
conducting the manual preprocessing.
Whatever approach is used finally, as a result all routes are labeled as stars or
tours. If the stopovers are marked in the traces, their linear distance to the start-
ing point and their number can be determined easily. Hence, MP can be set
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without further problems. If single destinations cannot be determined, the fol-
lowing workaround can be used. For each continuous track, the maximal distance
between all given points and the origin is computed. Thus, at least some informa-
tion on the upper bounds is given and the distance classes can be split according
to them. Of course, some deviations due to the road network and possible detours
are possible, but they are expected to be of same magnitude for all traces. Thus,
just the class limits are shifted but the distribution is not changed. Unfortunately,
there is no way finding out how many stops have been made on one trip. Even
if some information on times when the vehicle stood still or when the engine was
turned off was given, this would not help determining if it was just because of red
lights, level crossings or just traffic jams. It can be used as an indicator, but not
as a reliable final result. Then, the default values provided in M̂P can be used
instead as suitable distance limits.

Analysis of GPS data without directions or with reduced information

At last, the special case of GPS data with missing directional information shall be
considered. This means, that the data available consists of points that are con-
nected, but it is not clear in which order single points are approached. A minimal
example of this type is shown in figure 2.5. It contains ten points where the base
location is labeled with A and point C is visited twice. Obviously, the most likely
pattern is that of tours. However, it is not clear if path ABC or CBA is included
for instance. Thus, the split into two tours is not unique. Figure 2.6 shows three

Figure 2.5.: Minimal example for GPS coordinates with undirected connec-
tions and marked base location A.

possible ways to assign the single points, the first two options even use identi-
cal directions to connect all destinations. If such kind of data is at hand, either
with or without the orientation of the arrows, still some important characteris-
tics enhancing the default values can be obtained. Foremost, the distribution of
patterns can be estimated like already explained in the sections before. Secondly,
the maximal linear distance on a track with respect to the base stays the same
independent of the order of the sequence. If dist(A,C) is maximal, it does not
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matter if it is computed on route ABC or CBA. Thus, the resulting distance
class stays the same. The only thing that cannot be determined without further
information is the number of stopovers. Here, two splits with five stops on each
tour and one with three and seven are sketched. Consequently, only a mean value
or some other estimation can be used. The default values could also be applied if
they seem reasonable in the specific situation.

Figure 2.6.: Three possible allocations of destinations to tours, own illustra-
tion.

2.3.4. Integration of analyzed customer data

Independent of the specific data source, the evaluation of customer data always
results in a distribution of patterns and distance classes. Of course, the number of
stopovers is also obtained, but this shall be neglected at the moment. More inter-
esting is the beneficial exploitation of the categorical data. As already noted, it
can directly be utilized in the usage simulation, but sometimes results are required
for traffic classes or other further partitions. Thus, a transformation between both
partitions is needed. In the general paragraph of section 2.3.3, it was already men-
tioned that single routes or complete data sets can also be enriched with labels
for traffic classes. Thus, the routes can be regrouped according to a combina-
tion of both divisions. An example for a possible result is given in table 2.2.

Pattern Star Tour Other
Maximal distance 500km 50km 20km 100km 50km 20km all

Long-distance traffic 43% 1% 0% 52% 1% 2% 1%
Local traffic 3% 39% 3% 6% 47% 2% 0%
City traffic 0% 0% 6% 0% 0% 93% 1%

Table 2.2.: Possible results for the different traffic classes
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Here, the composition of traffic classes regarding patterns and distances is summa-
rized. The percentages are computed according to driven distances in the single
cells. As an example, the city traffic shall be considered. The corresponding
row gives the information that of all analyzed customer trips, 93% of the overall
driven distance in city traffic is conducted in tours and only 6% in star pattern.
1% cannot be classified properly. Usually, this results from short trips on fac-
tory premises when multiple arriving vehicles have to be organized and parked.
Additionally, journeys with missing information, for instance if there was some
problem with the GPS signal, are listed here. Those insignificant or problematic
routes are excluded from the simulation and their proportion is skipped. Hence,
the composition of city traffic is recalculated as 94% against 6% for instance.
If the fraction of unclassified trips is high, the feasibility of the data should be
reviewed.

2.4. Determination of IV

The set of input variables IV summarizes the settings chosen for a single vehicle.
Once the values for B and S have been simulated, the requested route R can be
assembled. The specific values in IV have to be determined one after another in
the given order. Hence, first U has to be fixed. For the light-duty commercial ve-
hicles considered here, we mainly concentrate on craftsmen and delivery services,
i.e. U assumes only two values. “Ideal” examples of them only perform trips in
one pattern. Of course, this is not always the case in reality. Thus, depending on
the chosen value U = j the probability for a value P = i varies, some conditional
probability Pr(P = i|U = j) is prescribed in variable classcharacteristics. A
random number generator is used to simulate j first, then also i depending on this
result. In the default parameter set, only one value i is feasible for each j.
In the next step, the actual distance class is selected. Again, randomness is in-
cluded via Pr(D = k|U = i, P = j) and a specific value has to be chosen accord-
ingly. Using M̂P , this step reduces to a simple choice depending on the actual
index. Since the proportions of D are set to be fixed, the complete amount of
vehicles can be split directly into groups.
Afterwards, the number of stopovers n is computed. Using traffic polls or GPS
traces, information on the maximum m and mean value mv of customers visited
on one trip can be determined. Based on these, the probability p̃ of the binomial
distribution B(m, p̃) can be estimated with p̃ = mv

m
. For each vehicle, n can be

simulated as number of successful trials from this distribution then.
After those rather simple values have been found, the more complex simulation
of geographical coordinates for B and S begins. It starts with the selection of
reasonable data. Subsequently, specific points are identified.
The resulting trips shall be routed and evaluated on the road network in the next
step. Therefore, they have to be found directly in real map data. This data is
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split into two categories, points and areas. Exact descriptions of both types are
given in detail in chapter 4.1 where also the methods used to select specific coor-
dinates are explained. Here, only the basic difference and possible values shall be
mentioned.

• Points of interest (POIs): POIs are classically used in navigation systems.
They specify precise places by their coordinates and give a hint on the use of
the marked building. With regard to usage modeling, POIs tag locations at
roadside that are worth stopping at. Common examples relevant for light-
duty commercial vehicles are fuel stations, supermarkets or pharmacies for
instance, as customers of delivery services.

• Regions of interest (ROIs): ROIs are the area-like counterparts to POIs.
They identify complete areas experiencing a special land utilization. Exam-
ples for those are residential or industrial areas. For certain types of crafts-
men, e.g. stopovers correspond to private households, i.e. are located in
residential or mixed areas.

The usage simulation for light-duty commercial vehicles is now based on a prese-
lection of POIs and ROIs, differing also between B and S. Here, we still consider
a general simulation and thus use the most available data possible. If a specific
industrial sector shall be considered, a specialization reducing the relevant data
has to precede.
The first location that has to be chosen then is the base location B of the vehicle.
Since we are considering commercial vehicles, they are expected to be parked in
some build-up area. Their owners’ offices are usually placed in industrial, commer-
cial or retail areas. Since family businesses like small crafts enterprises often are
run from home, also residential neighborhoods are considered. Inside all of those
individual districts, a single place is chosen by the methods described in chapter
4.1.3. In doing so, only the sizes of the areas are used to weight them. Thus, per-
forming multiple simulation runs, more locations found for B are settled in larger
districts than in smaller ones. Of course, the proportions might not be reflected
exactly due to the use of a random number generator, but the trend should be
visible already for few computations. Sometimes, warehouses, distribution centers
or even the businesses offices are tagged in maps directly. Companies want to be
found easily by potential customers and are registered including their industrial
sector. Then they can be used as POIs and B is determined from this data source
straightforwardly like it is explained in chapter 4.1.2.
In the last step, the list of stopovers S has to be found. The n geographical
coordinates have to be chosen within distance class D = k around B. Again,
the methods described in chapters 4.1.2 and 4.1.3 are applied. Prior to that, the
database has to be reduced to relevant entries. In the general case, nearly all POI
categories like different types of shops, pharmacies, restaurants or post-offices are
suitable. Additionally, customers can be located in all types of build-up areas
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including commercial and residential ones. Only a specific industrial sector or
specialization of the delivery service gives further constraints. The n requested
stopovers can then be determined independently. It has always to be kept in mind,
that a reduction of accepted data can impede the simulation especially when small
distance classes are used. Sometimes, less then n POIs are left, thus at least one
is chosen multiple times. This might be correct, but it also might be wrong. The
consequences of a restart of the simulation following then are considered in chapter
5 for a special case.

2.5. Setting up R

Having determined B and S, the simulation part is completed and the resulting
route can be put together. In the case of a star pattern, this is rather easy and
can be done immediately. Since the stopovers are independent of each other, they
just have to be alternated with the home location. For tours, further work for
reordering the customers is required to find a reasonable driving schedule.
When multiple locations are visited on one trip, the driver usually wants to use
some optimal way. The optimality criterion could for instance be the minimal over-
all distance or the travel time. Some delivery services also apply some strategy
that they prefer to turn right which enhances both factors mentioned. Summariz-
ing, the composition of R reads

R =

{
(B, S (1) , B, S (2) , B, ..., S (n) , B)T ∈ R(2n+1)×2 if P = "star",

r = (B, r(2), ..., r(n+ 1), B)T ∈ R(n+2)×2 if P = "tour"
(2.5)

where r is the result of a traveling salesman algorithm applied to p = (B, S, B)T ,
starting at B. This means that all locations approached on a trip are brought in
a clever order such that the linear distances between them are minimized. After-
wards, the tour is shifted to start at B.
The solution of the computations does not have to be optimal. Depending on
the specific coordinates, the algorithm might cause disproportional computational
effort if the optimum is requested. However, since the distances are measured on
the earth’s surface without respecting the road network, this "linear" optimum
might not be the true one for the real driven route. Additionally, not all vehicles
have a tour planning software on board. Thus, the driver’s experience and knowl-
edge on the area influence his route. Local drivers usually know shortcuts and
time-consuming bottlenecks they try to avoid. This experience cannot be quan-
tified in the simulation. Consequently, there will always be some deviation from
the optimal tour in reality and the traveling salesman algorithm can be stopped
after having found a reasonable order of the stopovers. Due to the accepted dis-
crepancies, the distances could also be estimated using plane geometry and the
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Pythagorean theorem instead of calculating them on the earth surface. We are
aware that for larger distances they can deviate drastically but the saving of time
is rated higher.
In a prospective version performing these computations in VMC® , real distances
could be used in the algorithm enhancing the results. However, the computation
time might grow drastically if no precomputed distance matrix is available. Then
ways between all coordinates, base location and stopovers, have to be found. In-
deed, then time- and traffic dependent routes can be optimized.

2.6. Processing and evaluating created routes
with VMC®

The outcome of the simulation consists of an amount of kml-files (kml= Keyhole
Markup Language, a data type to store geographical information comfortably),
one for each route R, including coordinates of places visited on one journey each.
These are now further processed with VMC®, a software product developed by
Fraunhofer ITWM, see [53]. The methods described in this section are imple-
mented and can be applied directly. The only work left to do is the choice of
options and parameters provided there.
First of all, the obtained routes consist of geographical coordinates located near
the roadside and have to be transferred to tracks on the road network. Therefor
the routing algorithm of VMC® is used. First, it projects each point to the near-
est suitable road. “Suitable” in this context means, that sometimes streets a bit
farther away are preferred, for instance if motorways are passing. This concept
is explained in detail in chapter 5.2.1. Afterwards, the search for a connection of
successive coordinates is started. Here, the customer specific travel behavior can
be incorporated by adapting the optimization parameters. Commonly, the choice
between shortest and fastest routes is included in these settings. Depending on
the area of operations the vehicle driver for instance might prefer the first option
saving driven distance and thus reducing fuel consumption or the second one if
goods have to be delivered in a certain time slot.
Afterwards, the traversed roads are analyzed regarding different aspects. Factors
to compute can for instance be related only to topographical data like hilliness,
curviness or slopes measured on single road segments differentiated by their type.
This can for example be based on the highway types used by OSM like motorway,
major, primary and so on but can also be adapted to user defined designations.
The separation between urban and rural sections is also of huge importance. As
a result, for each trip a table summarizing the computed values for each road
segment is obtained. Figure 2.7 shows an extract of the export of such a ta-
ble. It includes the location of each segment, its road type, length, etc. Its
specific appearance depends on the factors chosen and the settings of VMC®.
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Figure 2.7.: Extract of the segment table exported from VMC®.

Here, we consider the same outputs as requested in [22] and [60]. The factors of in-
terest are hilliness and curviness, both split in two categories, which are combined
to the three topographical classes low (flat and straight), high (hilly and curvy)
and moderate (else). More details on this choice are given in the second reference.
Summarizing all segment tables for all simulated vehicles gives a table like 2.3.
Again, the proportions are computed based on the driven distances conducted in
each combination of pattern, distance and road type.

Road type Topography

Pattern Motorway
Rural Urban

High Moderate Low
A B+C A B+C

Star 500 79% 10% 1% 8% 2% 34% 46% 20%

Star 50 44% 11% 10% 25% 10% 22% 45% 33%

Star 20 20% 10% 15% 20% 35% 24% 40% 36%

Tour 100 50% 17% 7% 18% 8% 31% 41% 28%

Tour 50 25% 13% 14% 33% 15% 33% 33% 34%

Tour 20 18% 12% 22% 17% 31% 26% 39% 35%

Table 2.3.: Exemplary results for the created routes.
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2.7. Combining results

Finally, the obtained results can be combined and used as an input for a usage
simulation estimating damage values.
Though first of all, tables 2.3 and 2.2 are merged. The former shows the distribu-
tion of requested topographical factors based on patterns and distance classes, the
latter links this partitioning of routes to the requested one into traffic classes. A
proper matrix multiplication of both tables easily gives the desired result shown
in table 2.4. The traffic classes are analyzed regarding the chosen factors. Of-

Road type Topography

Traffic class
Motor- Rural Urban

High Moderate Low
way A B+C A B+C

Long-distance 88% 4% 4% 3% 1% 31% 46% 23%
Local 45% 11% 12% 14% 18% 30% 48% 22%
City 11% 13% 19% 17% 40% 32% 47% 21%

Table 2.4.: Combination of results for customer simulation, taken from [22].

ten the final outcome shown in the last table is not satisfying. A further es-
timation of load distribution is desired. This can be simulated based on the
already provided data in combination with results recorded at measurement cam-
paigns.

2.7.1. Planning and evaluating measurement campaigns

Planning a measurement campaign is a challenging task since a balance of the qual-
ity and completeness of results, costs and further conditions has to be found. A
detailed description of the process of planning, performing and analyzing measure-
ment campaigns is given in [60]. Here, only the basic concepts shall be explained.
The goal of a measurement campaign in this context is the determination of road
conditions in a specific region and their influence on the vehicle. Therefore, data
like the forces on different components, acceleration or other interesting informa-
tion is collected and stored in combination with positions determined by a GPS
receiver.[22] In order to achieve a reliable statistical distribution of all relevant
elements the driven route has to be chosen smartly. All combinations of factors of
interest, like topographical ones or the road surface for instance, have to be mea-
sured with sufficient accuracy. On these grounds the region as a whole has to be
examined first, then a matching route has to be found well reflecting the obtained
distribution of factors. On the other hand, the entire trip is not allowed to take
too long. The fixed costs of bringing the measurement vehicle to the considered
region, as well as the time dependent ones like personnel costs of the drivers and
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crews, must not exceed a predetermined bound. Usually these limits are formu-
lated as time conditions on the campaign. Thus, especially for broad areas, the
proportion of small roads is reduced in favor of motorways where large distances
can be overcome faster. This enables measurements in more parts of a region and
enhances the representativeness for the conditions in the country as a whole. In
doing this, not only cities with good transport connections and expected better
road conditions but also more isolated villages with possibly older paving can be
reached and included in the sample.
After the campaign has been conducted, the measured data has to be analyzed
and checked for errors and implausible values. Afterwards, the remaining GPS
traces are again evaluated with VMC®. First, the route is projected to the map
and segmented. Afterwards, the same factors like those used for the simulated
routes are computed. In addition, each segment is also equipped with the values
measured during the campaign. Since the campaign often is conducted only for
one load setting, further calibration measurements are performed. These allow an
estimation of the forces for different loads. Details on this procedure are given in
[60].

2.7.2. Simulating customer specific load distributions

The damage values for single users are then simulated with the software U·Sim,
also developed at Fraunhofer ITWM. It takes the division of factors from usage
modeling and measurement campaign as input values. According to the first dis-
tribution, segments from the campaign combined with their measurements are
drawn until a desired target mileage is reached. Then the expected damage value
for this trip is computed. For each traffic type a large number of customers is
simulated this way and damage values per kilometer are computed. Based on
these, the three groups can be compared to each other. For a sufficient amount
of data even reliable quantiles for the damage values for single measuring chan-
nels can be computed. The complete process is explained extensively in [54] and
[60].
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3. Usage models for passenger
cars

3.1. Introduction

A further usage model that shall be considered is that of passenger cars. In con-
trast to the model introduced before, here private and commercial use has to be
differentiated. Both types can also be characterized by R = R(GI,MP, IV ), with
MP adapted to the specific case and slightly different interpretation of the com-
ponents of IV .
The main user group of private passenger cars are commuters. Their usage model
has already been introduced in [21], summarizing the main facts. Here, we want
to have a detailed look at all facets of frequently performed trips. Taxis form an
important part of commercial users of passenger cars. They show much more vari-
ation in their routes since they have to react on their passengers. They often per-
form many trips and cover large distances during one shift.

3.2. Usage model for private passenger cars

The most mileage of typical commuters is covered during workweek. Thus, we
restrict ourselves to the simulation of five typical days. We skip journeys going on
vacation and routes on weekends in order to keep the model simple. These two
exhibit a great variation requiring various input to compute representative routes.
In addition to the regular trips between home and work place, different kinds of
private trips are included. These contain more or less regular shopping trips to
the supermarket or leisure time activities.
In principle, it is not important for the simulation when trips are performed,
thus those scheduled after work can for instance be adopted to happen on Sat-
urday. If only the topographical characteristics of the roads traveled are rele-
vant, the order of tours can be completely neglected. Only if influences of the
motorist, like his manner of driving, are of interest, the starting time can be
important.
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3.2.1. Characterization of model

The usage model for commuters can be described by the same structure like
that used for light-duty commercial vehicles in equation (2.1), split in three pa-
rameter sets. GI stays the same for all usage types. The region where routes
shall be generated and a unique index identifying single vehicles are always re-
quired. The model parameters MP are more extensive. Since different types
of trips have to be simulated, multiple distance distributions have to be pro-
vided in classlimits and classcharacteristics (compare equation (2.3)). Fur-
thermore, the transition probabilities between tours of different classification are
needed. A new parameter partitions is inserted to store parameters of addition-
ally required distributions independent from those for distances. IV contains the
same components as in the previous model. They have the following interpreta-
tion:

• U : The only private users of passenger cars considered are commuters.

• P : The driving pattern for commuters is distinguished in three groups dif-
fering in additional regular trips. One performs none, one has a stopover
attending children and the last goes out for a trip during break. A descrip-
tion of all of them is given in section 3.2.2. Due to the influence of the
cultural background, the expected frequencies for the patterns are included
in partitions.

• D: The single distance class sufficient for light-duty commercial vehicles
is expanded to a set of distance classes for different types of trips. At
least it contains a choice for the distance between home and work loca-
tion and one for an activity like the weekly shopping. The probability
for a single entry Di = k depends on the chosen pattern and trip pur-
pose, Pr (Di = k |P = j, triptype = m). m takes feasible values provided in
classcharacteristics.

• n: Number of leisure time activities. This variable determines the number
of trips performed additionally to those prescribed by P . Up to now, this
number is taken as a constant value set in classcharacteristics. Thus, each
commuter simulated conducts the same number of additional journeys per
week. In a further step, more variation shall be added. If the distribution
of the count of such trips is available, n can be enlarged to a vector dis-
tinguishing the types of destinations like shops selling convenience goods or
sports facilities.

• B: Home location of vehicle. Since private passenger cars are considered,
the base locations of those vehicles usually lie in residential neighborhoods
inside region. The rare case that a garage or other parking lot used regularly
is farther away is skipped in the model. It can be incorporated by inserting
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additional trips in the evening, but it is assumed that the enhancement of
the result is not worth the effort.

• S: List of destinations. S gives the coordinates of all places visited except
B. At least it includes the work location and one leisure time activity.
Depending on P , further entries have to be provided.

The route R is then again assembled from the coordinates given in the last two
entries. Here, not only one driving schedule is created but five, one for each day
in workweek. Some of them are the same since P is constant but the additional
destinations are distributed over the week. The complete process is shown in
section 3.2.5.

3.2.2. Simplification of model

Daily routes between home and work form the most important trip during a work
week, but also additional private tours are not negligible. They can be divided in
different types contingent of order or frequency. The partitioning which plays the
larger role is when additional destinations are approached. Here we can distinguish
six cases that are sketched in figure 3.1. First of all, stopovers can be included
in the way to work. Typical examples for this situation are parents dropping off
their children at kindergarten or school. The next possibility for tours is during
break when people go out to get food or take care of quick errands like going to
pharmacies. Private matters that take longer, like going to doctor or doing the
weekly shopping, are shifted to the way home or are executed on new trips starting
from home. The latter can be conducted either after work but sometimes also
before work. They are assumed to end at home again.

Figure 3.1.: Time schedule for additional target points
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Since the simulation at this point does not respect starting times, these two cases
can be handled as one in a simplified model. However, more important is the
concentration on three base patterns. The first and most relevant is that of a
commuter who mainly travels between home and work. In contrast to him, there
exist people having a stop on the way to work and partly also on the way back.
They have a fixed routine bringing their children to school or kindergarten and
collecting them again. The last and smallest group are the persons exploiting
their breaks. All other types of stopovers and additional trips are included in the
simulation for every driver.

3.2.3. Setting up MP

classlimits and classcharacteristics have to provide distributions of driven dis-
tances for each trip type. Furthermore, the target points can be categorized by
their frequency of occurrence. This depends on the chosen driving pattern. Some
of them, like kindergarten and schools, are visited everyday, partly before or after
work or on both ways. But those are only relevant as additional stops for one
commuter pattern. Leisure time activities are performed multiple times a week,
depending on the number and type of hobbies. There are shops of daily or weekly
needs as well as stores that are visited once a month or even less frequent like
home-centers. All of those stopovers are of interest for everybody.
Unfortunately, the transition probabilities pij indicated in figure 3.1 are not con-
stant for individual drivers. They always depend on the complete route the con-
sidered person already traveled. If one or more supermarkets have already been
visited on the way home, it is less probable that an additional way to a further
store is conducted. If the person went straight home, it is more likely. This
probability even grows, if on previous days just the basic trips were performed.
That makes the simulation more complicated and the theory of Markov chains
cannot be applied. Therefore, a constant number of additional trips per week is
prescribed in the simplified model at the moment. Thus, n always stays the same
for each commuter but a variation between the days is included, like shown in
section 3.2.4. Of course, even for the small number of two or three extra trips per
week, there does not always have to be only one stopover on a day. The selection
is done independently using a uniform distribution. Multiple destinations are just
approached one after another. On the remaining days then only the basic trips
are performed.

As already mentioned, different distance distributions have to be included. Those
vary in the underlying source data and their extensiveness and are incorporated
in differing ways. The routes to work and to leisure time activities can be based
easily on available statistics. The stopovers for attendance and during break are
treated differently:
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Distances between home, work and general leisure time activities

The way between home and work is the major part of the weekly driving schedule.
Thus, a reasonable choice is essential. The main constraint the workplace has to
fulfill is its "suitable" distance to the place of residence. Of course, it should not
be too large, since people only accept a certain distance and travel time. If they
are unacceptable, people move, live in a nearer place during week, or search for a
new job, depending of their social and familial situation. On the other hand, the
daily traveled distance should not be too short, otherwise people prefer going by
bike or just walk. The limits in both cases depend on individual preferences and
mainly also on the infrastructure of the region they live in. Persons originating
from rural areas rather tend to go by car than inhabitants of large cities accus-
tomed to a well developed urban transport system.
The process of selecting a workplace is contingent of the data situation. The
results of mobility surveys like "Mobilität in Deutschland (MiD) 2008" [38] or
its French counterpart "Enquête nationale transports et déplacements (ENTD)
2008" [46] are used as a basis. In both, people are asked to report all trips on one
randomly selected day. These mobility diaries include not only driven distances
but also the vehicle used, the trip purpose and further personal or geographical
characteristics. The designated sources provide evaluations in tabular form. They
contain distance bounds and corresponding frequencies for the selected regions.
However, it is of great interest to determine influencing factors for these distances.
Then the mentioned differences between rural and urban areas can be quantified.
Here, more detailed driving schedules including information on the region of the
home place are required. The analysis of the German data and its preparation for
usage simulation is described in chapter 4.3.1.
The obtained distance distributions, independent if they result from tables or more
verbatim reports, still exhibit of one problem: People naturally register covered
distances measured on the road network. In the algorithms used to simulated the
entries of S we can only work with linear distances. A straightforward solution
to solve this problem is the application of so called "circuity factors" introduced
in [18]. They quantify the necessary detours between both distance calculations
and can be used directly to translate them. However, the values proposed are
estimated only from a small number of road segments and summarized to one
value per country, though they should be dependent on topographical factors. In
chapter 5.2.1 an algorithm enhancing the provided detour factors is shown. They
can then be applied to perform the calculations in section 5.2.2 computing the
distribution of driven distances. As a result, a list of intervals with respective
frequencies for the required trip type in the considered region is obtained. These
are stored in MP then.
This procedure can also be applied directly for the distance distributions for gen-
eral leisure time activities. They can be included in a similar way like just de-
scribed. Depending on the richness of detail of the simulation, these distributions

29



can be further separated regarding the classification of destinations. For each, ad-
ditional entries in classlimits and classcharacteristics including frequencies are
required. In the most simplified model, only two distributions, one for the way to
work and one for distances to stops measured from home, are provided.
It is important to keep in mind that in the summarized results the connection
between trips is lost. Hence, a stop when returning home can split the way in one
part from work to a supermarket for instance and the other one from the super-
market to home, but both distances cannot be linked anymore in the table. Thus,
if for either section a distance class has been chosen, these might not fit together.
If no feasible destination fulfilling both displacements can be found, the simula-
tion restarts. In order to reduce this waste of effort, a single suitable distance only
is accepted. Since the home location is the central point of the simulation, the
distribution of trip length between shopping and home is rated higher. Surely this
can lead to detours if the stopover is not directly on the way, but people usually
accept larger distances for destinations worth it.

Distances for trips attending children and during breaks

The ways that have some special characteristics are those attending children and
those performed during break. Both of them are not tagged in a directly usable
way in the survey data. The former can be obtained by comparing the traffic
diaries of adults and children living in one household. On one hand, it has to be
found out which persons were traveling together, on the other hand, the purpose of
the trip has to be selected correctly. If children are accompanying their parents, the
true value is given in the adult’s diary, if they are dropped off at the kindergarten,
parents have "attendance" as main scope. A method to combine records belonging
together in order to obtain feasible distance distributions is given in chapter 4.3.1.
This evaluation is only possible if this special type of data is available. Usual
statistics do not contain the required information. Then a different approach is
more suitable: The distribution of kindergartens and schools strongly depends
on administrative structures and local conditions. Usually, the nearest or best
accessible institutions are preferred. Thus, it is assumed that a selection in the
same commune or in a certain radius provides adequate results with less work.
The same holds for trips during breaks. They are not classified with a special trip
purpose but are assigned to the standard types like shopping or detailed leisure
time activities including going out for lunch. Hence, the order of all destinations
has to be reviewed and those between two trips ending at work are marked as
approached during break. Details of this procedure are also given in chapter
4.3.1.
Due to the restriction on a single workplace omitting people with multiple jobs
in the simplified model, the resulting distance distribution might be wrong. An
employee traveling between two working places rather covers a larger distance then
somebody who has to return to his origin within 30 minutes for instance. Usually,
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it cannot be determined from traffic surveys if different places are targeted since
the destinations are just classified as “work” without further information. Again,
the evaluation is even not possible with summarizing statistics. An upper bound
for the distance is expected to be sufficient as well. People only have limited time
available and will not drive that far from work.
In this simplified model we use 30km in case of attendance trips and 10km for
break activities as default values for maximal covered distances. Especially the
first bound might be doubted as being too large, but this is a consequence of two
facts. First of all, in the MiD data there are trips larger than 25km reported
that should not be neglected. Additionally, simulations conducted with a smaller
maximum showed a lot of restarts due to non available candidates for target
points. Enlarging the search radius made the procedure more stable. Since the
longer trips are not assumed to be too bad and parents often accept big detours
for their children, the larger limit is accepted.

Some further settings included in partitions

In addition to the distance distributions, some further frequencies have to be
included in MP . First of all, the proportions of the three commuter types have
to be determined. Here, traffic surveys could be used again. Available driving
chains have to be checked for attendance trips or activities between two ways to
work, see chapter 4.3.1. If any of these special routes is included, the commuter
pattern is clear. All remaining persons are summarized as the main group driving
to work and back. As default, frequencies of 20%, 10% and 70% can be taken,
see [21]. The parents additionally are split into two groups performing one or two
extra trips. The proportion of attendance trips strongly depends on the region
considered, since the cultural background influences the attitude of parents. In
some countries for instance children usually go to school by bus whereas in other
states parents prefer bringing them to school themselves.[21]
For the general additional trips also some probabilities have to be prescribed.
People can again be split into three groups performing trips on their way to work,
on the way home or additional trips. Of course this kind of information can also be
extracted from traffic surveys, if available as detailed reports. However, often such
data is not at hand or the results are not rated as reliable since only single days
are reported, no complete weeks. As already mentioned in the introduction of this
chapter, the pij in figure 3.1 are not constant. Thus, the mean value of number
of trips performed on one day shall be used to find a good approximation. In the
simplified model, no trips besides that classified as attendance are simulated on
the journey to work. The leisure time activities after work are divided into 52.5%
performed on the way home and 47.5% as new trips.[21]
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3.2.4. Determination of IV

Since for commuters the user type U only attains a single value, the simulation of
IV directly starts with the choice of a pattern. Due to the reduction to the simpli-
fied model, the prescribed frequencies for the three commuter types can be easily
inserted in some random number generator selecting one of them. Concerning n,
no work has to be done since this value is taken as constant at the moment. If in
a next step more variation shall be added, the mean and maximal count of leisure
time activities during a week can be used to determine a binomial distribution
and individual numbers can be simulated without much effort.
The determination of D, B and S is more demanding. The number of entries
needed in D and S depends on P . Additionally, all values have to fit together.
If one selected distance class cannot be fulfilled for the chosen home location, the
complete simulation has to be restarted. An example for that situation is a com-
muter living in some rural area. If a short way to work is selected, there might not
be any feasible candidate for the location inside this distance. Thus, that person
and the corresponding driving schedule are not realistic.
The order of simulating D and B depends on the distribution classes provided in
D. Their frequencies usually are assumed to be constant for the complete region
such that the choice of an initial interval is independent of B. However, otherwise
or if the detour factors required to transform the interval bounds vary, the home
location has to be chosen first. The specific procedure depends on the data given
inMP . We concentrate on the case that the detour factor is constant with respect
to the influence of region and stay with the assumption that classlimits already
contains linear distance bounds. This does not mean that the detour factor cannot
vary for different distance classes, see chapter 5.2.1.

Simulating D

The distances classes stored in D vary with the chosen pattern P . In any case,
bounds for the way to work are included. These are determined from the corre-
sponding distribution given in MP . Limits for the n leisure time activities are
chosen independently from each other for each commuter. Again, a frequency
distribution of reasonable intervals is provided in MP . A single interval is chosen
randomly applying the cumulative-size method given in [44]. Further entries are
only needed for the two special patterns. Since the simplified model uses prescribed
upper limits, those only have to be repeated if required.

Choosing a home location B

The choice of the precise place of residence of the commuter is the crucial point
since it determines the starting point of the complete simulation. All trips depend
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on its location. This origin obviously has to be settled in some residential area
of the considered region or country. Hence, the first challenge is to scatter the
home places correctly. Thereto the true distribution has to be known or it has to
be estimated. Depending on available data, there are multiple possibilities to do
this. They are sketched in figure 3.2.

Figure 3.2.: Different possibilities for choosing a home location. "Larger
units" are short for rural districts and urban communes or federal
states. Dashed lines represent the selection based on population
figures.

In an ideal situation, the distribution of private cars is known for the complete con-
sidered region. This means the number of vehicles is available for every commune.
Depending on the division into further units and the presence of population num-
bers like those of suburbs, a smaller district can be chosen first or the residential
areas are used as basis directly. In the next case, the vehicle distribution is given
on administrative units like counties or states. Again, population figures allow
the selection of a city or village before concentrating on neighborhoods. Extensive
details on the method are given in chapters 4.2 and 5.1. If no vehicle statistics are
at hand, two more deficient methods can be applied. At least for Germany, the
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population figures have an area-wide good quality up to the rural district level.
They can be used to select communes, assuming that vehicles are distributed uni-
formly to people. This presumption is not completely correct since large cities
with better infrastructure concerning public transport are rated too high whereas
rural districts, where few people live but proportionately possess more cars, are
underrepresented. However, as shown in chapter 4.2.2, the resulting distributions
are acceptable.
The special case of available commuter statistics is considered in section 3.2.6.
Applying them slightly changes the simulation procedure and shall not be con-
sidered here. As a result, also a list of residential areas as candidates for areas
containing B are computed.
Independent of the actual determination of these candidates, the choice of home
location inside the preselected residential area is performed with the standard
method for choices in ROIs described in chapter 4.1.3

Selecting a work location

After the selection of the home, the job location has to be found. We concen-
trate on commuters with a fixed workplace which is constant over the complete
simulated week. We postulate that no business trips, including customer visits,
have to be performed with private cars. We assume that such routes always are
covered in company cars that shall not be considered here. The working place
can be located at various positions. First of all, most kinds of POIs are adequate
including shops, fuel stations, restaurants, etc. Additionally, it can be situated
in retail, industrial or commercial areas, obviously. Further more, like it was ex-
plained before, family businesses often are settled in dwelling houses. Certainly,
there are also persons hired not living there. Besides, caretakers or household
helpers also work in residential areas. Thus, these also have to be included in the
simulation. What is still to consider in detail are large facilities like universities
or hospitals. They are often only marked as POIs but are not included in one of
the mentioned types of areas. Compared to supermarkets, usually more people
are employed there, but this is not reflected in the simulation directly. Hence,
we introduce a new class of areas called "work" summarizing such large buildings
that are underrated otherwise. Since we do not have any information if POIs or
ROIs are more important, we simulate the same share from both by default.
The selection of a specific place is performed by applying the methods given in
sections 4.1.2 and 4.1.3. The corresponding entry of D is used to determine the
circular rings in which the work places is searched. The result is stored as first
part of S.
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Determining additional stops

The selection of additional stops again splits between leisure time activities after
work and those for the two specific patterns. In any case, the destinations are
chosen from POIs of multiple types of classification. For trips with purpose atten-
dance, clearly kindergartens, day-care centers and all types of schools are suitable.
During breaks small tours going to cash points, pharmacies or post boxes for ex-
ample are considered. Of course, cafés, restaurants, bars etc. are also included.
Leisure time activities can take place in even more locations, though the list is
enlarged with all sorts of shops, sports facilities, doctor’s offices and so on.
Again, the methods presented in section 4.1.2 are applied. For the additional
trips due to the commuter pattern the method selecting a POI in a given radius
is used. Certainly, for the break activities the circle is drawn around the work
place. All other distances are measured from B. For the general trips performed
by everybody the distances classes stored in D give upper and lower bounds. Even
if multiple additional destinations are approached on the same day, they are cho-
sen independently from each other. The obtained stopovers are added to S, also
recording the trip type.

3.2.5. Assembling R

After all relevant coordinates stored in B and S have been found, R can be put
together. In contrast to the simulation of light-duty commercial vehicles, here
five kml-files, each listing the route points of a single day, are created. They all
start with the characteristic part of the commuter pattern. In the easiest case
this means home and work are concatenated. For the attendance pattern, the
secondary destination is inserted between these points. In case of an activity
during break, this target point is appended and the work location is repeated.
The leisure time activities now have to be distributed over the week. Therefor n
uniformly distributed integers between one and five are generated. These indicate
the days when the additional trips are performed. Then, n decisions based on
the frequencies given in partitions are made, determining if the stopovers are
approached on the way home or if new trips from home are started. The kml-files
selected in the first step are then extended according to the decision in the last
step. Figure 3.3 summarizes all possibilities. The entries of S got an indicator
on the specific trip purpose. S(LT) represents leisure times activities, S(A) and
S(B) respectively characterize the routes attending children and during breaks.
Solid lines mark ways that are conducted on every day by each passenger car
assigned to the considered commuter pattern. Dashed lines are used if routes
are possible but not guaranteed. Looking at the first graph for instance, the
work place is approached every day. The leisure time activities are first of all
not performed every day. Secondly, they might be included on the way home or
form new trips. The sketch of commuters attending children additionally contains
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dotted lines. These designate routes picking them up again. Since this pattern
is split, a person drives those ways every day in workweek or never. Trip chains
belonging together, like the two individual ways from home to leisure time activity
and the way back, are styled in the same manner even if only the first one includes
the option. The following need to be conducted if the first one was performed. In
the given example this just means that people have to return home in case they
went out again.

(a) Commuters only going to work and back home

(b) Commuters with additional attendance trips

(c) Commuters performing trips during their breaks

Figure 3.3.: Route components split by commuter patterns

In the outcome of simulating additional destinations, multiple targets can lie on
one trip. One possibility would be to order them such that the overall distance
of that route is minimized. An algorithm solving the traveling-salesmen problem
could be adapted to sort the locations. However, the quality of the result does
not compensate the computational effort. On the contrary, it is often even not
correct. People choose their route intuitively, preferring ways with short time
instead of distance. Furthermore, they possibly do not find what they are search-

36



ing for in the first store and then decide to go to another. The resulting de-
tour was not planned before but was required and accepted. Thus, the unsorted
stopovers are also correct and the additional effort reordering them is not neces-
sary.

3.2.6. Inclusion of commuter flow matrices

One type of statistics for distances between home and work location that has not
been considered yet is that of commuter flows. Those summarize the combination
of both places in tables, i.e. the rth row and the cth column contain the number
of people commuting from area r to area c. Thus, no distance classes are directly
available. This type of data can be included in the commuter model by omitting
the according distributions in MP and changing the way B and the work place
in S are selected.
Commuter flow matrices usually have the administrative units for the places of
residence given as rows and those for the work locations summarized in columns.
Adding up all entries gives the total t of all registered commuters. Summing up
single rows or columns gives the counts r and c split by units. Hence, different
types of simulations can be performed.

• First, a unit h containing the home location can be selected based on their
frequencies given in r. In order to choose a work location, the counts in row
h are taken as partitioning and a unit w is selected randomly considering
the frequency distribution.

• The same can be done the other way around. A unit for the workplace is
selected depending on c first, then one containing the home is simulated.

• The last possibility is to consider the complete subdivision of t and choose
a cell representing both units in combination.

In all cases the selected units have to be matched with their residential areas for
the home location and suitable POIs and ROIs for the work places. Then again
the methods described in section 4.1.2 and 4.1.3 have to be applied to determine
concrete coordinates.
At a first glance, commuter flow matrices seem to be more adequate for the simu-
lation than the vehicle distribution used before, but we assume that they are less
reliable. Vehicles are usually registered on the place of residence of their own-
ers and are combined with their types, like private or commercial. Commuter
statistics have the disadvantage that workers often are not recorded at their real
place of work but at the head office of their employer. Additionally, commuter
statistics contain employees using all means of transport, not only passenger cars.
If these statistics are used anyway, the available detail of administrative units is
also essential. Usually only larger regions are summarized. A reduction to the

37



lowest level, for instance based on population figures, should be performed before
the residential areas are employed.

3.3. Usage model for taxis as commercial
passenger cars

The commercial usage of passenger cars is very variated. Some cars are necessary
for daily work, like in case of sales representatives or distribution services, others
are just used occasionally for instance for irregular business trips. Most of these
routes can be modeled like those for light-duty commercial vehicles with appro-
priately adapted parameters. However, there are customer groups that cannot be
included that way. One of them are taxis. They are on the move every day and
perform many different kinds of trips.
In the following chapter, a usage model for these special commercial passen-
ger cars is introduced. Seven days are simulated for one vehicle, distinguish-
ing between differing characteristics of workweek and weekend. In this, hailed
shared taxi having a rather controlled schedule are not modeled explicitly. They
can be included by adding bus stops and a suitable frequency of trips between
them.

3.3.1. Characterization of model

As already stated at the beginning of this chapter, the usage model for taxis
can also be summarized by equation (2.1). Again, the single components have a
special meaning in this case. In contrast to the two usage models already intro-
duced, that for taxis is the most complex and contains more variation between
the created single routes. MP includes a multitude of different distance distri-
butions not only distinguished by trip type but also by the distinction between
workweek and weekend. The input variables in IV consist of the following com-
ponents.

• U : Commercial users of passenger cars are split in multiple groups like
salesmen, distribution services and especially taxis. Only the latter are
modeled and simulated according to the methods shown next. For the first
examples the algorithms introduced in chapter 2 can be applied.

• P : The driving pattern for taxis is only split in two cases. In the first one,
some kind of self-employed taxi driver is assumed who can only exercise one
shift per day. On the other hand, a vehicle owned by a taxicab company is
assumed. Then two separate shifts a day are simulated where the drivers
meet at the head office to hand over the car. Apart from that, the second
pattern just doubles the first one. The restriction to these two cases is
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sufficient to explain the overall concept. Surely also more shifts can be
simulated easily.

• D: Like it was already introduced for private passenger cars, also the route
of taxis consists of different types of trips. Their explicit number cannot
be predetermined since it depends on the specific composition. Some types
contain multiple tracks of varying length. At least n distance classes have
to be simulated, the extreme case requires 2n. The probability for a single
entry depends on the chosen pattern, the trip purpose and the current part
of that trip, Pr (Di = k |P = j, triptype = m, trippart = l ) where m takes
feasible values provided in classcharacteristics and l is suitable for m. An
easy example describing the situation for two parts is the common case that
people call a taxi to drive to the airport. Then first the distance between
current taxi position and home location of customer has to be selected,
afterwards the distance between home and airport has to be chosen. Those
are independent of each other but not all values are accepted here.

• n: The count of performed trips n ∈ R7×j conducted on each single day,
where j ∈ {1, 2} indicates the number of shifts simulated. The entries in the
first five rows of n are independent and identically B (nmax, p̃) distributed.
nmax indicates the maximal number of trips on a day during workweek pro-
vided by some statistic and p̃ is determined such that the also reported mean
number of trips is achieved. The same structure is applied for the last two
rows, the distribution parameters are computed for the weekend accordingly.

• B: The base location of the car is influenced by P . A self-employed driver is
assumed to park his taxi at his home. Thus B is chosen in a residential area.
In case of a taxicab company, the vehicle is expected to be placed at the head
office if it is not driving around. Candidates for these specific locations are
not registered as POIs reliably. Hence, they are simulated inside commercial
or industrial areas.

• S: Like D, the list of approached destinations strongly depends on P as
well as on n and the simulated trip types. According to the latter, the
target points have to be chosen from all types of POIs and ROIs since taxis
travel between various locations. Common examples are the home locations
of passengers, stations and airports and additionally detached taxi stands
where drivers wait for their next customers.

Compared to the usage models for light-duty commercial vehicles and private
passenger cars, the components of IV have more variation. For some of them
the size cannot be predetermined but grows during simulation since it depends
on the randomly selected trip purposes. No central location from which dis-
tances are measured is suitable here. B still is a basis, but it is only approached
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to change drivers or at the end of day. All other target points have to be se-
lected subsequently, a parallel processing is only possible for different shifts and
days.

3.3.2. Simplification of model

Taxis perform a lot of different single routes. Typical trip purposes depend not
only on day and time but also on the geographical region for instance. In some
countries taxis are applied in public transport and replace buses on lines that are
only used by few people. In Germany for instance, so called hailed shared taxi
are common in rural areas. Additionally, taxis are used as patient transport am-
bulance driving immobile persons to doctor’s offices or hospitals and bring them
back home after the appointment.[39] In other regions taxis replace school buses
or are daily used by commuters on their way to work. [50] for instance splits
the trips performed with taxis in 15 groups and compares the partitions for eight
cities including New York, Paris and Berlin. These groups do not coincide with
the seven categories reported in [38] or [39].
In our reduced model, this large amount of trip purposes is summarized to more
general categories, resulting in the following eight different classes.

• Toward public transport: The classical taxi trip where people are col-
lected at home or at some other specific location and are driven to a place
of public transport like a station or airport.

• From public transport: On the contrary to the trip before, people are
collected at such a transport nodal point and are taken home. Here, also
official visits are included where people are chauffeured to meetings, hotels,
etc.

• Health care: A trip where immobile people are driven to a doctor’s office
or hospital. They are collected from home and are brought back after the
appointment. These patient transport ambulance drives usually are called
on by elder persons or patients requiring some therapy not allowing them to
drive themselves.

• Toward working place: Especially in huge cities it is common to travel
to work by taxi.

• From working place: Often used in combination with the trip purpose
before, people also take a taxi to return back home after work.

• From leisure activities and shopping trips: This summarized group of
trips contains rides bringing people back from all kinds of private activities.
The take on places include restaurants and bars, shopping facilities, cinemas,
sports centers, etc. The destination of the route is always the home of the
passenger.
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• Visits and official trips: With this category, different other kinds of pri-
vate or official trips are integrated into the model. People can be picked
up from any type of ROI and are driven to another. The probability for
the classification of ROIs depends on the specific day. During work week
business trips are more supposable, thus industrial or commercial areas are
rated higher. On weekends, people are expected to conduct rather private
visits, hence residential areas are more probable.

• Return to taxi stand: This trip type adds the situation that a taxi has
no further drive directly after the last one is finished. Instead, a taxi stand
is approached where either the next passenger asks for a ride or the central
dispatch office announces a new order.

The simplified model does not implicitly include the situation that passengers stop
a taxi directly from the roadside. This common procedure usually observable in
large cities is not completely neglected. In the evaluation of routes later on it does
not matter why the taxi stopped at a specific location. It is irrelevant if the taxi
was called there or if it passed by chance and stopped unscheduled. The driven
road segments stay the same. Only in case that speed profiles are simulated, an
unexpected and a planned stop might cause different results, depending on the
base speed of the vehicle.

3.3.3. Returning to the legal driving area

One important constraint for the taxi simulation that influences MP and IV is
the legal driving area. Its consideration in the model shall be broached to the
issue next, before both parameter sets are determined.
The legal driving or mandatory coverage area indicates the region in that a taxi
is licensed for passenger transport. In Germany for instance, drivers have to
accept rides inside that zone even if they are short and probably unprofitable.
Additionally, special payment guidelines are statutory. In the simulation, the
driver should be prevented from departing away too far from this area. Otherwise,
a reasonable way back at the end of his shift cannot be guaranteed. Therefore,
some correction of the next initial point is performed. Supposed a passenger
takes a long ride leaving the legal driving area. Then, after dropping him, the
cabdriver starts his way back to his zone, waiting for the next customer. If the
next passenger would be picked up near the last one and if that person also wanted
a long trip in a direction opposite to the mandatory zone, the taxi would move
even farther away. At the end of his shift, the driver might be located more than
hundred kilometers away from the place he lives or where he has to hand over the
vehicle. Depending on the considered country, he could even not be allowed to
pick up passengers that far off his legal zone.
The simulation prevents this problem by projecting back the current position. If
the distance between initial starting point and destination of the last passenger is
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larger than some given bound, the search for new customers is centered in a point
in-between with an acceptable distance. Hence, each time a new trip is started,
some "pulling back" is performed first. Figure 3.4 sketches the procedure. As a
simplification the legal driving area is assumed to be circular even if this is not
correct for most regions. Two different distances are employed in order to make
the simulation more stable. The larger radius is used to check if the taxi departed
too far, the smaller one is applied to determine the next start. B indicates the
base fixed in IV . Point A lies near this center and is accepted directly. C is
located in a zone which is assumed to be critical. Points lying here are still taken
over even if they are outside the boundary. In doing so, not too much positions
are corrected. D is settled too far away to be ignored. It is projected back to D′.
Of course a smaller translation only towards the outer limit would be sufficient to
accept it. However, by this the probability of the adjustment of the subsequent
starting point is reduced since the taxicab already drove nearer to the center of
the legal zone.

Figure 3.4.: Determination of feasible initial point for passenger search.

3.3.4. Description of MP

The model parameters MP are similar to those of the commuter model. Again,
distance distributions for all types of trips are required. Here, a distinction be-
tween work week and weekend is appropriate for the frequencies of the trip pur-
poses. Different data sources provide adequate values but nearly none of them
include all information needed in an acceptable level of detail. The MiD tables,
compare chapter 4.3.1, already mentioned in the description of the commuter
model summarize primary purpose, length and days when conducted for trips
performed by taxi but do not combine the separate categories. Only the public
use file allows a more detailed analysis. However, the match between trip pur-
poses is costly and it is not clear in advance if enough ways are conducted for each
case. [50] compares the frequencies of trip purposes for different cities without
mentioning driven distances or time indicators. The same holds for [39]. In the
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latter some graphics for night rides are given, but those are too vague to be used.
More information on the distance distribution is provided in the KiD data [26].
There, distance classes and according frequencies are given split in workweek and
weekend. The same holds for the mean number of trips for mobile vehicles. The
problem of this data source lies in the summary by trip type. The tables freely
available split up the way reported by industrial sector. Taxi companies form no
individual category there but are included in class "communications and informa-
tion transmission". If again the public use file is at hand, a concentration on trips
indicated as "collecting, taking and conveyance of passengers" can be identified,
but the purpose of the passengers is lost.
MP also has to include the two boundaries introduced in the last section used to
keep the taxi near his legal driving zone. Additionally, such radii also have to be
provided for the search of the new passengers around this last position. Depending
on the statistics at hand, it is not possible to estimate the distance distribution
for ways between subsequent passengers. Thus, when one trip is finished, the next
customer is looked for in a certain circle around the probably adjusted last stop. If
no feasible starting point for the requested new trip type can be found, this circle
is enlarged. Only if still no suitable location can be found, the complete route is
recalculated. Again, this two stage process is applied in order to prefer starting
points in vicinity but prevent the simulation to restart too often. Instead slightly
larger distances are accepted. An example for the situation described is the fol-
lowing. Shortly before the end of the shift a passenger ordered a trip to some
industrial area. The next and even last trip purpose selected is that of picking
up the successive passenger at a transport node and driving him home. From the
industrial area, the nearest airport for instance lies in a distance of 25km. If then
the lower limit for the search was strict and smaller than 25km, the taxi driver
would refuse this request. If some larger upper bound, 30km for instance, was in-
cluded, the circumstances would be checked and the job would be accepted if the
home lies in the legal driving area. The taxi has to drive back anyway and taking
a passenger additionally gives some money. The shift can be completed without
problems. In the first case with the strict limit, the route gets infeasible and has
to be recalculated. Summarized over a huge number of taxis to be simulated, the
effort of the re-computation cannot be neglected.

Default values

As already mentioned before, none of the statistics at hand provide all required
distance and trip purpose distributions. Hence, a mixture of them is used in the
default values. For all trip types the distance classes reported in the tables of [26]
are applied. The necessary distinction between workweek and weekend is included
there. Like for the commuter model, the distance classes have to be translated
from driven to linear ones by use of detour factors, see chapter 5.2.1 and especially
section 5.2.2. The lower bounds for the search of new passengers as well as for the
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directly accepted last stops are set to 20km. The outer radii are limited to 30km.
Here, a simulation for complete Germany including rural regions is assumed, for
single cities these values of course might be too large.
The frequencies of trip purposes is obtained by combining [38], [39] and [50]. They
are summarized in table 3.1. It also includes the specification of points that have
to be simulated later on when setting up S.

Type of trip Required points Frequency
in work
week

Frequency
on weekend

Health care Domicile of patient, POI
like hospital, medical
practice, . . .

8% 0.02%

Toward public trans-
port

Point within all types of
ROI, POI like airport,
station, . . .

20% 12%

From public transport Point within all types of
ROI, POI like airport,
station, . . .

15% 8%

Toward working place Home location and
workplace of passenger

5% 2.49%

From working place Home location and
workplace of passenger

5% 2.49%

From leisure activities
and shopping trips

POI like cinema, bar or
supermarket, home loca-
tion of passenger

17% 60%

Visits and official trips Point within all types of
ROI

15% 10%

Return to taxi stand Taxi stand 15% 5%

Table 3.1.: Estimated distribution of taxi trips and according points to be
simulated

3.3.5. Determination of IV

Setting up IV for the taxi model differs from that of commuters with respect to
the order the input variables are created. User types for commercial passenger
cars other than taxis are not regarded here, thus U takes only one possible value.
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For the pattern P , single and multi-shift operation are randomly chosen. It is
assumed that they are of same importance if no further information is given. In
contrast to the usage models for commuters and light-duty commercial vehicles,
the number of trips n is more important for taxis and influences the size of other
parameters. It has to be selected before D and S can be assembled. For each
day of the week independent values have to be generated. They are randomly
selected from a binomial distribution where the mean and maximal number of
trips performed are used to estimate the distribution parameters. In that process,
workweek and weekend are separated since usually more trips are performed on
the latter. Additionally, if P ="multi-shift", for each shift an individual count is
needed.
Afterwards, appropriate numbers of trip purposes have to be selected depending
on the frequencies given in MP . These

∑
i,j ni,j categories might influence the

assembling of the entries of D. It also contains
∑

i,j ni,j different distance classes
that have to be selected in one of the following ways. If the distance distribution in
MP is summarized for all rides, like it is the case for the default values introduced
before, D can be filled with a correspondent random vector directly. If individual
distributions for different trip purposes are reported, these additional categories
have to be respected and more effort is required.
The creation of specific coordinates has then to be performed subsequently. First
of all, B has to be determined. It is influenced by P . If a single shift taxi was
chosen, B is assumed to be located at the home of the driver. Thus, it is selected
inside a residential area. If P ="multi-shift", the base of the car is searched in an
industrial or commercial area since it is assumed to be parked at the head office
of the taxi company when it is not mobile. These are expected to be settled at
central locations with good traffic connections.
After B is fixed, S is filled step by step. For each day and shift the corresponding
ni different trips have to be set up. For this the procedure sketched in figure 3.5
is repeated. As a start, it is necessary to make the last stop feasible. Of course,
at the beginning B is accepted directly but for the next iterations this step is
essential. For each trip, the location where the passenger enters the taxi has to
be simulated first. Figure 3.5 includes a verbal description of the place, table
3.1 already included the classification of the data from which the coordinates are
chosen. Afterwards, depending on the chosen trip purpose, the target location
of the passenger has to be selected. In case of a drive to a health center, the
passenger additionally is returned to his origin. The last stop of the trip is used as
the new initial point for the search of the next passenger and is probably projected
back to the legal driving zone. However, only the original position is stored in
S. In this process, the choice of passenger respects the two radii given in MP ,
his destination is selected according to the distance class simulated in D. The
adjustment of the last points uses the second set of radii.
Only the procedure for trip purpose "return to taxi stand" is slightly different.
Here, no passenger is picked up but the taxicab approaches a parking position in
order to wait for his next job. Therefore the class given in D is used directly.
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All days and shifts are simulated this way independently of each other. Only

Figure 3.5.: Simulation steps in trip generation for taxis.

in S it has to be indicated where they belong to, and their order must not be
changed.

3.3.6. Setting up R

The assembling of R is easy now since the driving schedule already was created
in IV . For each day, only B has to be inserted between the coordinates given in
S. Every shift starts at the base, then all trips are performed and at least B is
appended again. In case of multi-shift operation, the single slots are joined and the
double entry of B in-between is removed once. In order to tell the different days
apart, seven single routes are created for each taxicab. Equation (3.1) summarizes
this assembling of R. Index i represents the day, Si,j,k gives all points on the kth
trip on the jth shift of day i.

Ri =

{ (
B, Si,1,1, . . . , Si(1,ni,1

, B
)T if P = "single shift"(

B, Si,1,1, . . . , Si,1,ni,1
, B, Si,2,1, . . . , Si,2,ni,2

, B
)T if P = "multi-shift".

(3.1)
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4. Working with different types
of data

4.1. Geo-referenced data

In order to obtain authentic journeys, all customer simulations should be based
on real geographical data. More precisely, the resulting routes should consist of
points represented by their lateral and longitudinal coordinates. This allows their
projection on maps and thus the routing between them to determine genuine trips
respecting the road network in the considered region. We have seen that the dif-
ferent usage models need a classification of target points. Thus the data has to
be available in a manageable way including positional and land use information.
In the following, a short description of geo-referenced data incorporated in the
VMC® database is given. It is based on data provided by the Open Street Map
consortium (OSM) [9] and well suited for our purposes. Unless otherwise stated,
all geographical data used in the simulation is taken from this source. Neverthe-
less, an additional different data source, POIPlaza [13], is introduced. It is not
the best choice, since it is less complete, but might give an opportunity to enlarge
the data basis.
Adapted to the structure of VMC® data, based on the one used by OSM, math-
ematical methods to select representative target points were developed. These
are not limited on this special type of data but can easily be used for other
data types using geographical coordinates. Since OSM data has a good coverage,
we restrict our considerations and simulations only on this source of informa-
tion.

4.1.1. Interesting points and regions: POIs and ROIs

In chapters 2 and 3 we have already seen that the usage modeling needs two
different types of origins and targets. On one hand, there are precise locations
identifying special facilities like supermarkets or hospitals for instance. These
locations, commonly called points of interest (POIs), directly consist of latitudinal
and longitudinal coordinates mostly representing the middle of the considered
building, i.e. a single POI marks a point in S2 . If a larger structure can be split
in smaller parts, like a commercial center for example comprising various stores,
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each of the single units should be labeled individually. This enables the distinction
between unequal types of classifications which might have different importance for
the considered customer group. Furthermore, this finer division allows a better
estimation of the density of POIs.
The second type of places are areas for variable kinds of land-use. In the style
of POIs, these structures are called regions of interest, ROIs, in the following.
They consist of boundaries of polygons with a unique utilization like residential
neighborhoods or industrial zones. A single ROI forms a compact subset of S2.
POIs and ROIs are equipped with markers. These are given as texts and can store
various characteristics of the point or area. The general class “sports center” for
instance is combined with the type of sports that is exercised there. A “shop” is
described further by the category of goods that are sold like food or clothing. OSM
applies a system of keys and values where the keys can be used for a generous
preselection and the values can be taken to select further specifications.
Both types of data can easily be extracted from the VMC® database on a regional
or national level. Depending on the usage model of interest, their scope varies and
a reduction to relevant units is conducted. An introduction to both types of data
and how they can be used is already given in [21, 22]. Here, we want to have
a closer look on the data format and how the choice of concrete representative
locations can be realized in detail. In the next sections we assume that a selection
of relevant data already has taken place.

4.1.2. Simulating with POIs

Points of interest are the simpler of the two data types. We do not consider the size
of a building or the volume of sales of a shop, but only its position and category.
Due to their limitation on this two pieces of information, simulating destinations
from POIs is rather easy. We begin with the situation that the requested POI is
the starting point of a trip chain. Thus, there exists only the condition that it has
to belong to a specific category or lie in a predefined domain. Hence, we first filter
all available points of interest to match these requirements. This step needs no
extensive computations but can be done with standard GIS-tools. Afterwards, we
list all remaining POIs. Since they all should have the same selection probability,
we use a simple random number generator to determine an integer i between one
and the number of entities. The point on the ith position in the list is then taken
as origin. Figure 4.1 visualizes the procedure on the example of Kaiserslautern
as field of activity. The picture on the left shows all regarded POIs inside the
city boundary. They have already been colored with respect to their keys. The
right graphic only contains a reduction to some specific categories of interest.
Additionally, one possible choice is marked. The small house indicates that the
base position B of the vehicle has been selected for which no distance limits have
to be fulfilled.
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Figure 4.1.: Possible selection of a POI; own illustration embedding [27].

The selection of stopovers or destinations stored in S is done in a similar way.
Here, we do not have the claim that the resulting point has to lie in a specific
region, but we have some demand on its distance to its predecessor. This dis-
tance always has an upper bound, depending on the usage model considered, it
might also have a lower one. Again, we use GIS-tools to detect those POIs that
fulfill these demands and choose one with help of a random number generator.
Hence, we obtain suitable target points in the desired distance. Figure 4.2 de-
picts the method. On the left, only an upper bound is specified. A circle is drawn
around the origin and all POIs not complying the distance limits are shown grayed
out. On the right, an additional lower bound is postulated. Thus the number of
candidates is reduced. In both pictures one possible simulation result is high-
lighted.

Figure 4.2.: Possible selection of a POI with bounds; own illustration embed-
ding [27, 28].

If the list of feasible candidates is empty, there is no trip possible with the given
parameters. Then some simulation steps have to be repeated. When applying the
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random number generator, we always assume that all POIs are of same importance
and a uniform distribution is sufficient to pick an index in the list. This makes the
simulation quite easy but raises the question if this distribution is correct. The
answer here depends on the point of view. If the interest lies on the geograph-
ical distribution of the simulated destinations, the methods surely provide good
results because they were constructed with this intent. We assumed that accu-
mulated POIs are rather attractive because multiple errands can be performed
at once. Shopping malls for instance gain greater importance automatically since
they consist of a larger number of shops accumulated at one place. Usually, it
does not matter which store was the principal destination since ways inside the
building are covered by foot and do not influence the simulation results for the
vehicle usage.
If the goal is to reflect the regional importance of different types of shops for
instance, this simulation surely achieves non-satisfying distributions. In this sit-
uation, some indicators of relevance have to be provided. Then we can switch to
the cumulative-size method described in [44, p. 225] for example. Alternatively,
huge premises associated with just one category which are of larger importance,
like universities or hospitals, can be included as new class of regions of interest
relevant for special usage models. In the simulation of commuter patterns for
example, a category "work" is added. Furthermore, superstores are included in
regions of interest classified as "retail" and thus supplementary get importance
depending on their areas in comparison to small shops. Therefore we omit the
potentially time-consuming retrieval and inclusion of sales statistics or further
weighting of POIs in the simulation.

4.1.3. Simulating with ROIs

Regions of interest represent connected parts on the surface featuring the same
land-use. Multiple neighboring residential estates for instance are abstracted to
one single zone including not only the precise location of buildings but also yards
and internal streets. This concept is illustrated on the left part of figure 4.3 for
a residential area in Kaiserslautern. Obviously, major streets bordering the zone
are excluded but smaller streets inside are not cut out. The screenshot on the
right shows a second type of complexity.
Here, not only outer boundaries of the residential area are given, but also the
vertices of an inner polygon where a different land-use is tagged. In this case for
instance, an allotment is registered. When preparing the regions of interest for
simulation, such holes have to be treated carefully. Small embeddings usually do
not have an extensive influence on the results. Since the routing algorithm applied
later on first projects all sampled locations on the street network, it often makes
little difference if the point lies in a small recess. On the contrary, a huge area
inside another might falsify its shape and size drastically. This can cause severe
errors in the simulation. Thus, the storage format of such multipolygons [7] has
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to be kept in mind when processing the data. It is described in detail in section
4.1.6.

Figure 4.3.: Examples of residential areas in Kaiserslautern. Screenshots are
taken from [5]. Left: Simple zone including small streets. Right:
Area includes sector that has to be excluded.

The algorithm for selecting representative starting and target points in ROIs re-
quires more computational effort, because here we begin with a heap of polygonal
structures and want to simulate coordinates inside one of them. In the common
case that there is no further information available on the importance of the single
objects, we use the surface area as an indicator for the latter.
When simulating commuters for instance, the population distribution gives a kind
of rating to communes and their appropriate residential areas. We postulate here,
that this step has already be done, like described in chapter 4.2, and we get a
list of ROIs with same relevance. Additionally, we assume that the surface ar-
eas have already been calculated. The easiest way to obtain these values is to
let them be computed by GIS-tools directly when extracting the ROIs from the
VMC® database.
Again, we have to distinguish two different situations. First, we want to consider
the case that we start a trip chain and have to find the origin. Then we only
have the requirement that the computed point has to belong to one of the given
multipolygons. It is expected that larger areas have a larger probability to contain
reasonable locations. Thus we take the surface areas as indicators for relevance.
Using a cumulative-size method (see [44]), we generate a uniformly distributed
random number and trace back to the selected region. Afterwards, we choose a
specific origin inside that ROI. We therefore compute the minimum bounding box
of the multipolygon and simulate a point inside that rectangle. Finally, we check
if this candidate is also contained in the region. If this is the case, the algorithm
terminates, otherwise the last simulation step is repeated until a feasible origin is
found. Figure 4.4 visualizes this procedure. The first diagram depicts all residen-
tial areas in Kaiserslautern and their individual portion on the total surface area.
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The second picture shows the selected neighborhood and its bounding box. The
third graphic contains some rejected points and the finally chosen one fulfilling
the requirements.

(a) All residential areas of
Kaiserslautern

(b) One specific neighborhood
within its bounding box

(c) Random selections until
success

Figure 4.4.: Selection of a location inside a residential area; own illustration
embedding [27].

It can easily be seen that the described algorithm produces locations that are uni-
formly distributed in single ROIs but weighted by area over the complete input
data.
Figure 4.5 demonstrates this characteristic on the result of a simulation of 1,000
initial points in residential areas of Kaiserslautern. On the upper, the outcomes
are recorded at their simulated location. The second picture visualizes the frac-
tion of obtained homes for each residential area. The last graphic repeats the
distribution based on surface areas to facilitate the comparison. Obviously, the
selection algorithm produces appropriate results. Small areas are chosen less often
than larger ones. The huge zone in the center gets the most importance in both
cases. Even the smallest neighborhoods are sometimes selected as base points.
The holes are left blank like expected.

In the second situation again a target has to be simulated. In addition to the
classification of ROIs it has to lie in, it also has to fulfill some distance condition
to its predecessor. Like already seen for POIs, an upper limit always has to be
respected. Depending on the trip type, also a lower bound may be given. In
a first step, we thus reduce the list of correctly categorized ROIs meeting these
conditions. For that purpose, a circle with the upper distance bound as radius is
drawn around the predecessor. In the case of an additional lower bound, a circular
ring is constructed. Both alternatives can be summarized to one procedure if we
allow the minimal distance to be equal to zero. Next, we determine those ROIs
that have a non-empty intersection with the circular ring. The result is sketched
in figure 4.6.

The simulation of a specific point is performed on basis of some kind of polar
coordinates. Two uniformly distributed random variables are generated such that
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(a) 1000 home locations simulated in
Kaiserslautern, colorbar indicates input

distribution

(b) Fraction of simulated locations in
areas

(c) Fraction of areas regarding surface area

Figure 4.5.: Result of a simulation of 1000 home locations in Kaiserslautern.
The colorbars indicate the fraction in percent.

the first is chosen between the two distance limits and the second has to lie in
the half-open interval from zero to 2π. Obviously, the first value represents the
chosen distance between origin and target on the surface. The second gives the
initial bearing. Afterwards, spherical geometry is applied to calculate geographic
coordinates on basis of these parameters using great-circle distances. More infor-
mation on this topic can be found in appendix A. The resulting point then lies
somewhere in the requested circular ring and it has to be decided if it belongs to
the reduced amount of ROIs.
If this is not the case, the random number generator is started again. The pro-
cedure is repeated until a valid location is found. The algorithm is constructed
such that the cross section between ROI and circular ring indicates the probabil-
ity of a target point being settled in that region. Within all permitted surfaces,
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(a) Only an upper bound prescribed (b) Also a lower bound given

Figure 4.6.: Determination of locations in ROIs in feasible distance; own il-
lustration embedding [27].

the generated points are distributed uniformly. Figure 4.7 sketches this result.

Figure 4.7.: Determination of areas in feasible distance; own illustration em-
bedding [27].

The reduction of all correctly classified ROIs to the ones intersecting the circular
ring might seem unnecessary at a first glance, but it serves two purposes. On one
hand, it helps reducing the number of checks, if the candidate point is contained in
a ROI. Considering the simulation in a large country, the number of comparisons
is hence shortened drastically. The more important point is the avoidance of a
futile candidate generation. It is possible that the requested distance class does
not match the local circumstances and that there is no suitable ROI left. Then
the desired trip is not feasible. The treatment of such incidents is discussed in
chapter 5.
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4.1.4. Simulation of stopovers on given trips

In the last two sections the simulation of initial and target points was described in
detail. However, a special situation has not been discussed yet. It deals with the
circumstance that the main parts of the trip already have been determined but
afterwards, a stopover lying in-between is requested. For the sake of simplicity,
the distance classes for both tracks are expected to be available, i.e. the joint
distribution of the two rides splitting the original one is known.
The easiest way to include the extra destination in the given trip is to expand
the illustrated algorithms by drawing two circular rings instead of only one, like
shown in figure 4.8. This postulates that the additionally driven kilometers should
not dominate. However, obviously the amount of suitable POIs and ROIs might
be very small. Depending on the considered usage model and even the trip pur-
pose, this limitation is acceptable or not. In the case of commuter patterns for
instance, it is expected that people avoid too large detours doing shopping trips
on their way home from work. Parents dropping off their children at school or
kindergarten rather accept moving around because these stopovers are fixed and
allow no variation. For them a restriction to a regional based selection instead of
a distance based might be better. Alternatively, the one nearest to the place of
residence might be a good choice.

Figure 4.8.: Suitable destinations are reduced drastically when multiple dis-
tance classes are demanded; own illustration embedding [27, 28].

These two examples show that no general statement for the handling of intermedi-
ate destinations can be made. Depending on usage model and trip type, different
conditions influence the decision for or against such a two-sided stopover deter-
mination. The algorithms simulating locations from POIs and in ROI presented
before can easily be adapted to these requests. The problem in the majority of
cases lies in the availability of the joint distribution of the combined distance
classes.
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4.1.5. Benchmark of OSM data

The benefits of using POIs and ROIs from the OpenStreetMap project [9] have al-
ready been discussed in detail in [22] and [21]. A summary is given here. The main
advantage of this database is its good coverage for most countries of the world in
combination with its flexibility. Undoubtedly, the quality of data depends on the
considered region and is not as good in isolated areas as in metropolitan areas
since it subsists on the participation of the over two million people [11] contribut-
ing their collected data. However, errors are fixed continuously and the coverage
grows constantly.
In contrast to other sources, OSM contains POI and ROI data. In the majority
of the cases, alternative data providers offer POI information in various different
categories, but exceedingly few also supply land-use data. However, this is essen-
tial for the usage simulation. If ROIs can yet be extracted from other sources,
high costs are imposed. OSM data in contrast to that is free of charge and it lives
from the work of volunteers, donations and material support [10].
Both data types extracted from OSM, regions and points, can rather easily be
preprocessed for the usage modeling. As already mentioned before, the attached
markers consisting of key and value tags can be used directly for a classification of
single data points. Since POIs are given by their geographical coordinates, no fur-
ther work is needed for them. Regions of interest require a bit more effort due to
the employed multipolygons. Their preparation for non-GIS tools like MATLAB
is explained in the last section subsection 4.1.6. However, even this does not take
much time and only has to be conducted once for multiple simulations in the same
region. Thus, the data format is still easy to handle.

Reconstructing missing neighborhoods

One issue arising using OSM data is the lack of tagged neighborhoods in some
cases. Having a look at the city of Paris for example, the map shows a reasonable
distribution of residential areas including numerous housing developments, see fig-
ure 4.9. When the ROIs for the town center are extracted from the database, only
few residential areas are obtained, nowhere near covering the complete district.
The available zones are sketched in figure 4.10(a). This difference between map
and database is a result of the map renderer filling the complete area inside the
city boundaries. Often, "special" land-use like industrial, but also parks or grave-
yards, are registered and thus drawn on top. The obvious residential areas are
neglected and not tagged and contained in the database. Since these are indis-
pensable in the usage models, an auxiliary construction is needed.
In the following method we assume that residential neighborhoods are the only
category missing or incomplete. Then it is possible to take the administrative
boundary and subtract all fields with a different land-use reported. We result in
the most likely residential areas of the town represented as one single structure. In
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Figure 4.9.: Screenshot of the map of the city center of Paris taken from [5].

small communes with small areas, this structure can be simple and sufficient, but
for larger cities it is expected to be very complicated. The generation of random
points and especially the check if a candidate is valid, is then very time-consuming.
Hence, a split into smaller pieces is preferred.
Some kind of individual "look and cut" procedure surely gives good and logical
solutions, yet it is involving and inefficient. A general algorithm dividing the area
automatically is favored. The method applied for Paris for instance computes the
bounding box and lays a grid upon it. For every emerging square or rectangle an
intersection with the obtained structure is performed. Parts inside the box not in-
cluding fractions of residential areas are deleted directly. Non-empty intersections
are stored as new ROIs in combination with their surface area and classification as
residential. After all blocks have been processed, the large structure is deleted and
the new regions are added to the list of ROIs used in computation. Additionally,
they could also be added directly to the database.
The size of the resulting areas strongly depends on the constructed mesh. Its
density has to be adapted to the shape and the size of the considered region. A
benefit of the approach lies in its flexibility. Squares are not the only possible
base, also a triangulation can be performed in advance to the cutting procedure.
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(a) Residential areas available in OSM (b) Available non-residential areas

(c) Grid over Paris (d) Obtained residential areas

Figure 4.10.: Computation of residential areas in Paris.

Ancillary data sources

After the close look on the OSM data integrated in the VMC® database, we also
want to review some other sources. Here, POIPlaza [13] is one prominent free of
charge alternative. On this website one can download POIs of various categories
for single countries.
Its advantage lies in the manifold of supported data formats. Users can obtain for
instance all stores of one supermarket chain or all fuel stations of one operator.
The achieved information can then directly be imported to navigation devices.
For our purposes it can also be used easily in the usage modeling. However, like
the name says, POIPlaza does not provide further data. The same holds for the
fee-based alternatives POIbase[12] or GPS Data Team[3].
Since maps are already available on navigation devices and updates are released
regularly by the producers, people usually are not interested in ROIs. Land-use
information can hardly be found in any other source, least of all low-priced or
free. The usage models only can benefit from additional POIs when countries are
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better covered than in OSM or if special sector-specific destinations are required
that can be downloaded directly instead of performing a complex search. For our
purpose, the VMC® database is of sufficient quality and offers everything needed
so we base our simulation only on this available data.

4.1.6. Multipolygons

Multipolygons are the common data type for ROIs as well as administrative bor-
ders defining regions for the usage simulation. A description and some examples
for feasible and invalid structures can be found on [7]. Here, we use areas included
in the VMC® database as examples to demonstrate the concept. In addition,
we turn our attention to the translation of multipolygons for the processing with
MATLAB.
As the name indicates, multipolygons are a combination of several single poly-
gons. These contain a list of the coordinates of the vertices, see [15]. Like de-
scribed on [14], polygons are intuitively composed of a necessary outer boundary
bouter and possibly inner rings binner. The latter mark zones that are excluded
from the overall shape. In order to explain this concept, we consider a parking
area in Kaiserslautern. This type of land-use plays a minor role in the usage
modeling up to now, but due to its clear and easy profile it is suited as a demon-
stration example. Its geometric description extracted from the VMC® database
reads

MULTIPOLYGON(((7.7506002 49.4333364,7.7505018 49.4335709,7.7515812
49.4337596,7.7516763 49.4337577,7.751747 49.4337424,7.7518025
49.4337075,7.7518355 49.4336591,7.751844 49.4336028,7.751808
49.4335241,7.7516886 49.4334411,7.7515436 49.4333768,7.7512403
49.4332231,7.7510963 49.4331686,7.7509117 49.4331135,7.7507111
49.4330755,7.7506002 49.4333364),(7.7507368 49.4335589,7.7507747
49.4334639,7.7507028 49.4334518,7.7507417 49.4333544,7.7508125
49.4333663,7.75087 49.433222,7.7512052 49.4332785,7.751071

49.4336153,7.7507368 49.4335589)))

its visualization is given in figure 4.11(a). bouter is painted in blue, binner is given
in red. Obviously, both components can be found in the multipolygon, just split
by a comma. Similar, a true multipolygon, that is not just a polygon, can then be
obtained by combining several of such structures. Usually, its description then gets
rather lengthy and shall be skipped here. Figure 4.11(b) depicts the administrative
boundary of the federal state of the Free Hanseatic City of Bremen. It is split in
the city municipality of Bremen and the exclave of Bremerhaven. The polygons
are not connected geometrically but form one political unit. Multipolygons enable
their storage as one entity.
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(a) A parking area in Kaiserslautern. (b) The federal state of Bremen.

Figure 4.11.: Sketches of two geometric representations.

In contrast to MATLAB for instance, where such structures are described by the
coordinates of the vertices ordered clockwise and counter-clockwise, the single
components are connected using parenthesis.

4.2. Estimating vehicle distributions

One main issue in the simulation of vehicle usage is the choice of initial locations.
The analysis of driven roads strongly depends on the region people are traveling
around. Thus, the distribution of vehicle population has to be reflected well. Since
the computation of further destinations uses the home location of the vehicle as a
basis for distance calculations, discrepancies in these data might cause huge errors
in the final results.
The problem in estimating the correct distribution is the availability and accessi-
bility of data. Surely, for each country of the world some vehicle statistics or at
least some population figures exist, but they have to be found and included in the
database before the simulation can be started. We want to omit this additional
effort and use only data that is already at hand in VMC®. However, we first
have to check the quality of this. The next sections summarize how this can be
done on the example of Germany. In that process we compare population counts
reported in OSM with those from official statistics. Afterwards, we show how
the simulation of the usage model handles this data. In the end we also check if
additional official vehicle statistics are required or if they can be estimated from
data at hand.
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4.2.1. Working with population figures

For the comparison of population counts, first a suitable data base has to be cho-
sen. In Germany for instance, population figures are published by the Federal
Statistical Office several times a year summarized on different levels. The number
of inhabitants of the Federal states is released quarterly in [56], the population
counts based on rural districts and urban municipalities are published once a year
reporting the numbers of the last year. The data used for the comparison, [55],
includes the average population over the year 2015. Since data needs some time
to be forwarded to OSM, we take the VMC® database from 2017 as reference. It
was extracted in December 2016 and hence might be too close to the release data
of the statistics. However, it is the newest available. Additionally, we assume that
population figures do not change that much between subsequent years and are not
adapted that frequently in OSM. Even some larger differences, like the consoli-
dation of two rural districts in 2016, are not reflected, yet. Thus, a comparison
between statistics for 2015 and OSM data from 2016 is admissible.
Unfortunately, the data that shall be matched cannot be employed directly. It is
provided on different levels and has to be linked first. Some more or less prepro-
cessing has to precede the actual comparison.

Considering available statistics

Official statistics about population figures like [55] group the counts by admin-
istrative districts which are only represented by name and some official identi-
fication number like the "Official Municipality Key" in Germany. In some rare
cases they also contain the coordinates of the city center, but this is rather an
exception than a rule. Usually they lack a geographical position. Some reference
between lower and higher level administrative units, like rural districts and fed-
eral states, is often only given by the municipality key. For entities of the same
level, no neighboring relation can be determined. Nevertheless, statistical data
can be processed easily in order to extract corresponding population numbers and
municipality keys.

Preparing VMC® data

In the OSM database the population counts are not stored consistently. Unfor-
tunately, these problems are passed to the VMC® database. According to [8],
population numbers commonly are reported at nodes marking the center of a com-
mune or other administrative unit. Additionally, they are often adjoined to the
description of the boundaries. The same inhomogeneity holds for the municipality
keys. Usually, they are provided for those areas but are as well given at nodes,
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compare [16] and [17]. Consequently, there exist two sources containing the re-
quired information which are not directly linked in OSM. In order to combine
them, first a check for inconsistent and double municipality keys resulting from
differing authors or update times is conducted. In the worst, and regrettably ex-
isting, case, a commune is even not enriched with the required information in any
source. Thus, a more geometric match is required.
The rather easy test for nodes lying in the multipolygons describing the admin-
istrative boundaries has to be handled with care. Again, different levels of units
are available. Thus, the nodes are naturally contained in several of them. They
have to be distinguished by the key-value pair (compare chapter 4.1.6) marking
the levels. Suburbs and rural districts are skipped, only places tagged as munic-
ipality, town, city or village are considerd. Then, population numbers for larger
units can be computed as the sum of the smaller ones lying inside. The check for
doubly inserted keys twice performed in advance should prevent that entities are
added multiple times. As a result, we obtain a table including all VMC® data
needed in the comparison like municipality keys, if available, population figures,
computed from smaller units, and geographic coordinates of the boundaries and
their administrative level.

Linking both data sources

Before official statistics and population numbers in VMC® can be compared, they
also have to be matched first. The goal is to have both figures for each administra-
tive unit of interest. Here, we restrict ourselves to federal states and rural districts
for two reasons. First of all the data provided in OSM on a commune level seems
to be defective. For instance, there are municipality keys included that cannot be
found in the statistics. Since local government reorganization is performed every
year, new keys are created and old ones are removed regularly. Often this is not
transferred to OSM directly. In addition, the number of communes is high but
not consistent between data extracted in subsequent years. Hence, the extensive
check for changes has to be performed every year for every country. However, the
main point for the restriction to larger units lies in the availability of statistical
data. For Germany for instance, population counts up to the commune level are
published. Vehicle statistics in contrast are only provided on a rural district level.
Since the overall goal is to reflect the vehicle distribution well, no smaller units
can be included in the comparison. Thus, the check for municipalities gives infor-
mation on the quality of the OSM data but cannot be used later on for the usage
modeling.
Consequently we concentrate on the 16 federal states and 402 rural districts. The
match between both data sources shall be performed via the municipality keys.
Unfortunately these are not reported thoroughly in many cases, even not in the
official statistics. Actually, this code consists of different blocks of fixed size mak-
ing it possible to identify regions of various levels of importance like federal states
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or rural districts. However, often they are reduced to the "relevant" digits. We
do the same for the comparison. We remove leading an closing zeros and only
take the remaining numbers. We only have to guarantee that "10" is kept and not
reduced to the already available number "1". Additionally, the city states have
to be included as rural districts, also. Afterwards, all administrative units needed
are correctly linked and can be compared.

Comparison of official statistics and data given in the VMC® database

After the matching of data, each administrative unit of interest is equipped with
several pieces of information. These include the geographic description of the
boundary, the name, the reduced municipality key and population counts from
statistics and VMC®. The latter are compared in two different ways. First of all
and suitable for federal states as well as rural districts and urban municipalities,
a map of Germany can be drawn for each data source and level. The absolute
population counts here only play a minor role. It is not important if we have
differences up to some hundred inhabitants as long as the relation between the
units is reflected well. In the simulation of the usage model only a fraction of the
population is selected.
Hence, we sum up the counts for the complete country and calculate the fraction
of each unit on this. Afterwards, we draw maps including colorbars indicating the
proportions. Figure 4.12 shows the result for the federal states, figure 4.13 depicts
that or rural districts and urban municipalities. Obviously, the correspondence
is quite good. For the federal states we only have slight differences in Saxony-
Anhalt.

(a) Population distribution reported in
[55]

(b) Population distribution computed
from VMC® database

Figure 4.12.: Comparison of population distribution for federal states. The
proportions of inhabitants are indicated by the coloring.
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For the smaller administrative units the result is similar. Some small entities
show a minor change in color, but the overall result is acceptable. As a second

(a) Population distribution reported in
[55]

(b) Population distribution computed
from VMC® database

Figure 4.13.: Comparison of population distribution for rural districts and
urban municipalities. The colors illustrate the proportions of
inhabitants.

tool for comparison, we directly face the resulting fractions and for the sake of
completeness also the absolute numbers. Since this gets confusing for the 402
smaller units, we concentrate on the federal states. Figures 4.14 and 4.15 include
both charts. It can be seen that only in few cases the absolute population numbers
coincide. For the proportions the situation is a bit better. Here, about half of the
fractions have a difference less that 0.1 percentage points.
Hence, at least for Germany, no population figures from official statistics are
required to determine the population distribution sufficiently well. The counts
included in the VMC® database are of good quality and can be used directly.
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Figure 4.14.: Comparison of absolute population values of statistics for 2015
and VMC® database.

Figure 4.15.: Comparison of population distribution of statistics for 2015 and
VMC® database.
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4.2.2. Including the vehicle distribution

Up to now we have shown that the true population distribution provided by official
statistics is reflected well by population counts included in the VMC® database.
In this process we concentrated on federal states and rural districts and urban mu-
nicipalities. These are sufficient for the comparison with the vehicle distribution.
The determination of a good estimator for this is the actual goal of this chapter.
As a basis, we use the number of passenger cars in Germany on January 1st in 2016
published in [41] in April 2016. In this report the counts of all kinds of registered
vehicles are provided, but for the sake of simplicity we concentrate on this specific
group. We also do not distinguish between private and commercial ones. They
exhibit similar shares for most of the units with same classification. Again, like
for the population figures, the numbers are summarized on the two levels of ad-
ministrative units already mentioned. There is no information available allowing
the assignment to smaller communes like villages.

Comparison of population and vehicle statistics

It would be comfortable if the vehicle distribution could be estimated from data
already available in the VMC® database. Otherwise, each time a simulation of a
usage model is performed, a search for official statistics and their inclusion into the
existing structure is necessary. It is assumed that the vehicle distribution strongly
depends on the population distribution, thus these shall be compared first. Other
candidates for influencing factors are the area of the complete administrative units
or that of the residential neighborhoods. Both can be computed from available
geographical data. A different parameter could be some further classification of
districts depending on their regional importance. However, this specification of
so called Kreisregionstypen is special for Germany. Since it is not intuitive and
several entities have to be combined, it cannot be transfered to other countries.
Thus, it is not suitable as a general factor.
Figures 4.16 and 4.17 sketch the comparison between vehicle and computed pop-
ulation distribution. For most of the federal states the results look quite well.
Again, there is only some slight overestimation for Berlin, North Rhine-Westphalia
and Saxony-Anhalt and an underestimation for the Free State of Bavaria. In the
match for the smaller units, the Ortenaukreis and the region around Stuttgart
have a smaller proportion of inhabitants than passenger cars. For Leipzig and
Dresden it is the other way around.
For a more detailed analysis we concentrate on the federal states. We have a look
at the precise numbers and try to enhance them by using the available parameters
already mentioned, namely the two types of areas.
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(a) Passenger cars reported in [41]. (b) Population distribution computed
from VMC® database

Figure 4.16.: Comparison of passenger cars reported in statistics and com-
puted population distribution for federal states. The colors il-
lustrate the proportions for both quantities on their overall sum.

(a) Passenger cars reported in [41]. (b) Population distribution computed
from VMC® database

Figure 4.17.: Comparison of passenger cars reported in statistics and com-
puted population distribution for rural districts and urban mu-
nicipalities. The colors illustrate the proportions for both quan-
tities on their overall sum.

In figure 4.18 the single shares of the available quantities are opposed. For each
factor, its overall sum is computed and then the proportion of each administrative
unit is calculated. It can be seen that for these initial values the population dis-
tribution resembles most that for the passenger cars. The areas seem to behave
differently compared to the vehicle counts. However, we are interested in the mag-
nitude of the error we make when using the population distribution only and its
reduction due to inclusion of additional factors. Thus, we compute the expected
difference in the shares. For the sake of readability we assume the population
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Figure 4.18.: Comparison of proportions for available quantities.

figure to be completely described by a vector x1 = (x1,1, ...x1,16)
T summarizing

the proportions for all federal states. Similar to that the distribution of passenger
cars is given as x2 = (x2,1, ...x2,16)

T . So the first index of x distinguishes the two
distributions, the second represents the federal state. Recall that x1,j is the pro-
portion of population coming from state j. In particular, x1,1 + ...+x1,16 = 1. The
same holds for passenger cars and x2 analogously. If we want to pick a car in a
representative manner from the whole population, we would choose the state from
a multinomial random vector η = (η1, ..., η16) with parameter (1, x2,1, ..., x2,16), i.e.
one ηj = 1 and all other ηi, i 6= j, are 0. The expectations are Eηj = x2,j, as the
individual ηj are Bernoulli variables.
If x2 is not known, we might use x1 as an approximation, resulting in a corre-
sponding multinomial η∗ with parameter (1, x1,1, ..., x1,16). The expected error
is

E
(
η∗j − ηj

)
= x1,j − x2,j, j = 1, ...16. (4.1)

However, we are more interested in the relative error which we define as

E
(
η∗j − ηj

)
Eηj

=
x1,j − x2,j

x2,j
, j = 1, ...16. (4.2)

This has the advantage that it does not depend on the number of cars used in the
simulation. If we would generate z cars, then the numbers ηj from state j form a
multinomial random vector with parameters (z, x2,1, ...x2,16), and correspondingly
for η∗j . The expectation is Eηj = x2,jz respectively Eη∗j = x1,jz, and the relative
error

E
(
η∗j − ηj

)
Eηj

=
x1,jz − x2,jz

x2,jz

=
xi,j − x2,j

x2,j
, j = 1 : 16

(4.3)
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independent of z. An overview for all federal states is given in figure 4.19 in the
blue bars. Obviously, for most of them the error is small but there are three
outliers, Berlin, Hamburg and Bremen. Hence, the city states seem to behave
differently than all others, which does not come as a surprise. This dissimilarity
is also reflected when the ratio of residential and complete area is computed, see
figure 4.20. These three states show a huge ratio whereas the others’ are bounded
by a ratio of less than 1%.

Figure 4.19.: Comparison of expected difference in shares after simulation.

As a remedy, x1 is replaced by some modified vector x′1 of multinomial probabili-
ties, such that

x′1,j − x2,j
x2,j

≈ 0 (4.4)

for all j = 1, ..., 16. Therefor some entries of x1 have to be reduced by a certain
amount to be calculated. We proceed in the following way:
First of all we decide that the correction shall be performed by a multiplication
with some factor, i.e. x′1,j = pjx1,j with p = (p1, ...p16) depending on the ra-
tios

tj =
Ares,j

Acomplete,j
, j = 1, ..., 16, (4.5)

of residential and complete area of administrative unit j. This ratio is large for
urban areas, here in particular for the three city states, and small for rural areas.
Regarding (4.4) with equality, the ideal choice would be x′1,j = pjx1,j = x2,j, i.e.
pj =

x2,j
x1,j

= p0j .
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Figure 4.20.: Ratio of residential and complete area of administrative unit
in percent against expected proportion of wrongly computed
vehicles.

We restrict ourselves to the easiest assumption that the entries of p are represented
as a linear function of the ratios t1, ..., t16 up to some small error:

p(t) = m · t+ b, (4.6)

where m, b are chosen such that p(tj) ≈ p0j , j = 1, ...16. We use a linear regression
model

p0j = mtj + b+ εj, j = 1, ..., 16, (4.7)

and calculate the least squares estimates m̂, b̂ ofm and b:

m̂ =

∑16
j=1

(
p0j − p0

) (
tj − t

)∑16
j=1

(
tj − t

)2 ,

b̂ = p0 − m̂t

(4.8)

where

p0 =
1

16

16∑
j=1

p0j ,

t =
1

16

16∑
j=1

tj.

(4.9)

In the real data example of the German federal states, this results in

m̂ = −0, 035016278 (4.10)

and b̂ = 1, 017340841. (4.11)
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The resulting values p̂j = m̂tj + b̂ then lie between 0.68 for Bremen and 1.02 for
North Rhine-Westphalia.
Note that we have (intentionally for simplicity) neglected the dependency caused
by the requirement x′1,1+...+x′1,16 = 1. The resulting x′j,1 = p̂jxj,1 do not sum to 1,
but only to 0.998. We correct this in a final step by setting

x′′1,j =
x′1,j∑16
k=1 x

′
1,k

=
p̂jx1,j∑16
k=1 x1,k

. (4.12)

Alternatively, we could have used a constrained based least-squares estimate with
the constraint

16∑
j=1

x′1,j = m
16∑
j=1

tjx1,j + b = 1. (4.13)

As the unconstrained least-squares estimate already almost fulfills the constraint,
this will not make much difference.

Figure 4.19 already included the expected differences in shares after the simula-
tion with this new proportions as orange bars. Obviously, for most of the federal
states the height of the bar is reduced. In some cases, like for Saxony-Anhalt or
the already mentioned North Rhine-Westphalia, the error grows slightly but for
the city states it is reduced significantly. For Bremen the error changes its sign,
i.e. now few vehicles are expected to be simulated instead of too many, but its
absolute value is lessened. For Berlin the new share is better but still far from
optimal.
These declines might only result from the use of a linear approximation, but they
show the general problem that improvements for some entities often are disad-
vantageous for other administrative units. Depending on the country considered,
some different values for m and b might be more suitable also. Thus, the anal-
ysis has to be repeated multiple times. Even for the rural districts and urban
communes a new calculation has to be performed. The overall correspondence be-
tween population and vehicle figures seems to be sufficient for the usage modeling,
though the additional computational effort is expected to overshoot the enhance-
ment. Section 5.1.3 includes an examination of the simulation results using the
population only in detail. It is shown there that the obtained locations look quite
reasonable. Thus we do not invest more time in the correction of the applied
distribution here.

4.3. Determining distance distributions

After the simulation of the home locations of the vehicles the next required input
of the usage modeling is the distribution of distances. These depend on various
factors like the region in which the simulation is conducted as well as on the user
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and trip purpose. Especially the driving patterns of commuters or taxis can be
decomposed into differing types of single trips. The simulation of representative
routes requires several settings for each of those. Only then the examined usage
group can be mirrored adequately. In the description of the models given in chap-
ters 2 and 3 two different kinds of bounds were used. First of all, applied for the
light-duty commercial vehicles as well as for attendance and break activities of
commuters for instance, upper limits were prescribed. In addition, for all other
commuter and taxi trips, distance classes also lower bounds were used. The former
can be included in the second concept by just using zero as missing value. Thus,
in the following we mainly concentrate on the more complex type.
The distance distributions are required to create the circular rings introduced in
sections 4.1.2 and 4.1.3 where target points are searched. They should be chosen
in such a way that reasonable driven distances are obtained in the end. Thus, two
inputs are requested. First of all, the actual distance distribution obtained usu-
ally from traffic surveys or other statistics. Secondly, a method to transform the
usually reported driven distances into linear distances required for the simulation
independent from the road network. Both issues are considered independently of
each other. The first is rather easy to handle. In most countries there exists some
ministry of transport regularly executing, or ordering from special companies,
traffic surveys. Therein people are asked to record their trips during a predefined
time period in combination with characteristics of the routes. These additional
attributes usually include trip purpose, possible attendants, traveled distance and
duration, means of transport and other pieces of relevant information. Summa-
rized results are published in tabular form. There, the outcomes for combinations
of various variables of interest are reported. Commonly, they contain distance dis-
tributions aggregated by trip types, general specifications of the origin or starting
times. Thus, rough distance distributions can be extracted directly, more complex
combinations have to be calculated by iterative proportional fitting for instance.
This method is described in [23] or [45] for instance.
Examples for such traffic surveys include the Enquête nationale transports et dé-
placements (ENTD)[46] for France or the Mobilität in Deutschland(MiD)[38] for
Germany. For the latter even some public use files exit including anonymized
travel diaries. These allow more elaborate evaluations. A detailed description on
this is presented in the next section. The tabular form can be applied nevertheless,
often they are the only data available that is especially free of charge.
The translation of the distances classes included in the summary statistics of the
traffic diaries can be performed based on detour factors already mentioned earlier.
Rough values for them can be found in literature for selected countries, but we
are also able to estimate them using VMC®. This topic is handled in detail in
chapter 5.2.1. We also mention there how correctly determined detour factors
could solve the problem of unavailable data.
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4.3.1. Evaluation of MiD2008 data as an example of travel
surveys

The main goal of the evaluation of traffic surveys is to gain the distribution of
trip lengths. These essentially depend on the purpose of the trips and have to
be determined correctly for the specific usage model of interest. Like already
discussed, they are contingent on the starting point of the trip, on the available
time or on the overall purpose of the complete journey. If people run on errands
on their way to or back from work for instance, they often prefer stores in between
their home and work place. If they go shopping on a day off, they are expected to
accept a larger distance. Other people like doing their daily shopping during lunch
break and are limited to a certain time span. These examples give an impression on
the amount of distributions of trip lengths that have to be identified. Additionally,
the frequency of the different trips has to be approximated reasonably.
In the following sections poll data collected in the framework of "Mobilität in
Deutschland 2008" ([38]) is considered. This survey was conducted by the Institute
of Transport Research of the DLR([2]) in cooperation with the social research
institute "infas"([4]) by order of the Federal Ministry of Transport and Digital
Infrastructure([1]). In this project people in Germany were, amongst other things,
asked to report their trips on a single day.
Prepared data provided by the DLR Clearing House Report shall be used to
determine several settings for the usage simulation of commuters. We roughly
describe the different parts of the data set and sketch how relevant information
can be extracted but we do not go too far into details.

Description of data

Information collected in the survey is summarized in the five main tables "Auto",
"Haushalte", "Personen", "Reisen" and "Wege". These public usage files (PUF)
were accompanied with one additional file each where data was cleaned but not
checked for plausibility. In two sequential passes people were asked about at-
tributes of their households like number and age of members or count and type of
available means of transportation first. Afterwards household members were in-
terviewed individually. In addition to personal characteristics such as personal life
or health restrictions they were inquired of their trips on an appointed date and of
journeys including at least one accommodation during the last three months.[37]
In order to guarantee anonymity, people can only be identified by a combination
of household id and a number for each member of it. Their places of residence
can only be reproduced by the name of the federal states they belong to and the
settlement structural municipality type defined by the Federal Office for Building
and Regional Planning (BBR) at different levels of aggregation. These include for
instance information on the degree of urbanization of the considered region.
As a basic sample for the survey 25,000 households were selected reflecting the
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German residential distribution in the federal states. Inside those, administrative
units were classified by districts and settlement structure and chosen depending
on their number of inhabitants. In order to obtain sufficient data for each category
and level of detail, further survey participants were added. In combination with
regional adjustments a total of 661 household belonging to 490 different commu-
nities was selected.[36]

Preselection of attributes

The data relevant for commuter simulation can be taken from table "Wege" con-
joined with its supplementary file. In combination, these two data sets allocate
about 134 characteristic values for 193,290 single trips. Restricting to daily or
weekly tours, the remaining MiD tables are skipped due to their minor impor-
tance for the time being. In the case that further information on which brand or
type of car is used for which kind of journey, they can be joined by common key
variables without difficulty.
Our goal is to detect commonly carried out trips essentially classified by purpose,
origin and destination. Afterwards, we want to analyze their proportion, sequence
and particularly the distribution of corresponding driven distances. Additionally,
the dependence on the home location of test persons shall be investigated. We
want to restrict ourselves to car usage, thus not all reported trips are relevant.
For that purpose most of the travel data is just used to determine journeys of
interest whereas the actual evaluation is only performed only on a minor count of
characteristic values.
First, we concentrate on 46 variables from the PUF and eight from the additional
file. Some of them are combined such that the overall number of attributes per
single trip is reduced to 34. In that process, the following rules were applied:
Initially, the two identification numbers "hhid" and "pid" were combined to a
single attribute. These serial numbers for households in the survey and persons
belonging to those were liaised such that trips of persons can be filtered easier by
just considering a single variable. Though, it is still possible to determine people
living together. This new code number also enables the comfortable join of data
from PUF and additional file.
Next, various logical variables indicating the usage of single means of transport
like bikes, cars or trains on each trip were added and saved as a new parameter.
Since we want to investigate the trips performed by passenger cars, the additional
information that parts of the routes are conducted as motorist, is still kept. These
two characteristics facilitate the exclusion of irrelevant trips. Subsequently, the
possibility of attendance is examined. In the survey people were asked if they were
on the move together. If they were accompanied by at least one child or adoles-
cent living in the same household, this was registered and allows for example the
identification of trips performed by parents taking their children to kindergarten
or school before heading to their place of work.
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Determination of trip types

In the MiD data different trip purposes are already included by classification of
the target points. However, the usage modeling requires the combination with
the origin. Only then the distance distributions needed in the simulation can be
determined reliably. A way with purpose "shopping" for instance is further speci-
fied as daily or weekly commodity, which is of course also of interest in a detailed
usage model where destinations are chosen from a diversity of POIs, but this is
not the most relevant information. We rather want to know which trips in the
simulation can be matched. Thus, the trip chain for each individual of the survey
is passed, including all means of transport, and all origin-destination pairs are
assigned. Hence, the ways from work to home can for instance be distinguished
from those between leisure time activities and the home location. It is not possible
to conduct this split directly on the original data. Additionally, the number of
stops on the ways home can be estimated now, even separately for different types
of activities. Thus, detailed distance distributions and corresponding frequencies
of trip types can be obtained.
Routes with purpose attendance or breaks can also not be extracted directly from
the traffic diaries. As already stated, the search for candidates for the former is
rather easy. First, people are checked to be accompanied, afterwards the destina-
tions for all individuals driving together are compared to find out who is escorting
whom. Two possibilities are for example that children are brought to school or
kindergarten, which is the trip purpose we are looking for, but alternatively adults
are accompanying their children to shopping or other activities.
Breaks are even harder to identify. Here, also some time component is respected.
One necessary criterion is that a work location is approached twice a day. However,
no geographic coordinates are given, neither some hint if it is the same workplace
in both cases. Hence, the time between leaving and returning is employed. Based
on "common" working hours limits of 30 or 60 minutes are assumed to be suitable.
In this process it is ignored when the break is taken. Thus, multiple shifts can be
modeled and even those lasting from one day to the following are included. The
identification of the activities during breaks obviously is the most problematic.
The reliability of the resulting distance distribution is also put into question since
only few entities are obtained.

Determination of distance distributions

The final definition of distance classes is then rather easy. Trip purposes or rather
the origin-destination pairs are aggregated to groups first. Afterwards, for each
category the reported driven distances are split into intervals. Here, an upper
limit even for the last interval is required. Otherwise the computation of a circular
ring during the simulation of target points is not possible. If some outliers are
present, it is expected that these can be dropped without destroying the accuracy

75



of the distribution estimation. Additionally, also trip purposes can be combined
if single groups contain too few data points. This is especially the case if the
detailed classification of target points is used. It makes sense to put all shopping
trips in one category since otherwise also in the simulation of the usage model
a fine differentiation of POIs is required. On one hand this causes additional
computation time in the preparation of the data. On the other hand the density
of suitable target points is reduced. Then it happens more often that no adequate
POI is located in the selected distance class, and the simulation of this vehicle
has to be restarted. In the overall sum this could enlarge the computation time
significantly.
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5. Reliability of algorithm

Up to now we have considered the structure and components of different usage
models as well as different data sources the simulation can be based on. How-
ever, for some of them the integration is not self-explanatory. Special methods
are required. The most important are described and reviewed in this chapter.
Additionally, we examine the influence of abort criteria restarting the simula-
tion.

5.1. Simulation of home locations based on
available population data

In this section we illustrate the simulation of home locations for commuters based
on statistics in more details. We only consider population statistics here, but the
basic procedure stays the same also if the vehicle distribution or some other data
is available which is more suited for other types of usage models. In chapter 4.1.3
we already showed how specific coordinates in land-use areas can be simulated. In
that process we distinguished the two cases that an initial point or a destination
lying in some given distance class are searched. There, we assumed that the
relevant regions have already been preselected. These result from the procedure
described here. Recapitulating figure 3.2, we consider the central node "Choose
unit". The determination of a commune is neglected since the outcomes can
only be compared reliably on the level of federal states and rural districts in
combination with urban municipalities due to lack of more details in the data. In
the following, we assume that the corresponding level l of the administrative units
has already been chosen.
The input of the simulation of the home location then consists of three major
components:

• A list AU = (AUi)i=1:kl
of all kl administrative units of level l, given by their

boundaries represented as multipolygons (compare chapter 4.1.6).

• The considered statistics of interest stored as discrete distribution summa-
rized in p = (pi)i=1:kl

. pi contains the ratio of the overall population that
lies in AUi. If the statistics include absolute numbers, these are converted
such that

∑kl
i=1 pi = 1.
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• A catalog of residential areas Ri,j combining their geometric description with
an indicator for the administrative unit they belong to. Thus, i still runs
from one to kl. The upper limit of j is not constant but gives the number of
single residential neighborhoods in unit i. For each neighborhood Ri,j also
its area ai,j is already computed.

If required, also geometric centers (ci)i=1:kl
of the administrative units or those of

the single residential zones, (ci,j)i=1:kl,j=1:#residential areas in AUi
, can be computed.

The requested result of this part of the simulation are the indices of selected
administrative units. If for instance n home locations are required, a list I =
(i1, ...in) is computed. Afterwards, all corresponding residential areas Rir,j are
extracted one after another for each r = 1 : n and used as input for the methods
given in section 4.1.3 in order to compute the n geographic coordinate pairs. Since
we usually simulate the drivers one after another, we assume n = 1 in the following
and drop the second index in the notation.

5.1.1. Methods to model population figures in other sources

The modeling and simulation of population distributions has been an active field
of research for several decades. It is still of current interest since the ongoing
development of geographical software enables the cost-efficient application of new
methods based on by now available geographical data. We want to give an on no
account complete overview of methods presented in literature that can be applied
to create representative synthetic populations like we require them in the usage
modeling.
Some of them, like Birkin and Clarke [23] and Bhat et al. [20], concentrate on
microsimulations that produce large numbers of households and the individuals
belonging to them according to joint distributions for several attributes like socioe-
conomic ones aggregated from different surveys. Unfortunately, they stop at the
level of districts used in the always included census. Thus, even if the population
is reflected well, these methods are not suited for our purposes. Lovelace et al.
[45] start with the same approach but include some considerations about the de-
termination of specific home locations inside the administrative units. They prefer
the inclusion of population densities inside these units to obtain a more realistic
distribution of locations than resulting from the simple technique of just placing
all households at the zone centroids. Additionally they propose the application of
shortest path algorithms for the determination of work places instead of the use
of employment centers. However, they do not report methods for implementation.
Beckman et al.[19] include public use micro-data samples containing true home
locations. Such data is not available in our case.
There are also a lot of researchers that explicitly consider the construction of
population densities based on geographical data. For that matter, multiple dif-
ferent methods to construct reliable and realistic distributions are proposed, but
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the opinions about suitability, correctness and practicability differ strongly. The
following excerpt of considered techniques again makes no claim to be complete,
neither on papers dealing with them.

• Pycnophylactic interpolation: This method introduced by Tobler [58]
at the end of the seventies seems to be the benchmark to rate most other
techniques. The goal in this procedure is the creation of a smooth map based
on packaged data [58]. A lattice is laid over the complete region such that
in each administrative polygon at least one lattice point is placed. Then
the whole weight of the population count is distributed over all points in-
side and shifted iteratively, such that smooth crossovers to neighboring units
are created. In that process, the pycnophylactic property, this means mass-
preserving inside the units, is guaranteed. Though, after aggregating the
counts on the original level, the initial values are obtained. Additionally,
non-negative population counts can be prescribed. Tobler also mentioned
that individuals could be assigned to particular lattice points using Monte
Carlo simulation. One critical point in this approach lies in the determina-
tion of boundary values. Counts assigned outside of a domain will effect the
smoothness near the edges, the effect even propagates inside.[58] Thus they
have to be chosen carefully. Some details on this approach can also be found
in [34] and [61]. Additionally, Rase [49] enhances Tobler’s pycnophylactic
interpolation by using irregular triangular networks (TINs). He argues that
this data structure is better suited to the polygonal shape of the adminis-
trative units than a simple equidistant mesh. However, this approach is not
able to solve the problem of suitable boundary conditions. Especially Hay
et al. [34] also note that it is unrealistic to assume no sharp boundaries in
human population distributions, even if the method gives an elegant way to
map a discontinuous to a continuous surface.

• Areal weighting: This simple approach is also used in comparisons often.
Like in pycnophylactic interpolation, a regular grid is overlaid over the ad-
ministrative unit. Then a population count according to the proportion of
the polygon area inside the raster grid is assigned. It has the advantage of
being rather simple, but human population is not to distributed uniformly
in space.[34] Details on this method can also be found in [33].

• Dasymetric mapping: "A dasymetric map depicts quantitative areal data
using boundaries that divide mapped area into zones of relative homogene-
ity with purpose of best portraying the underlying statistical surface".[31]
It "uses ancillary information [...]at higher spatial resolution than the popu-
lation polygon data to help allocate population [...] who are assumed to dif-
ferentially inhabit land-use types".[34] The zones have boundaries resulting
in sharp changes in the mapped statistical surface and thus are halfway be-
tween a smooth and stepped representation.[31] This approach is also rather
simple and requires little additional information, but has the disadvantage
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that weights to possibly different land-use classes have to be defined.[34] Ac-
cording to Gregory [33], it suffers from less error than areal weighting when
data between source and target areal units has to be transfered.

• Smart interpolation: This method expands the dasymetric mapping in
the way that it incorporates a huge variety of ancillary data. It is based on
the fact that humans distribute themselves non-randomly in an environment
but rather live near roads, not on top of mountains, etc. It tries to respect
the geography of the area explicitly. Thus it can be highly complex and
needs good estimates on the required weights.[34]

• Area-to-point kriging and other geostatistical methods: The sum-
mary of these methods all reproduce areal data when re-aggregating the
computed surface to the original units. Physical boundaries can be pre-
scribed as well as inequality constraints like the non-negativity of population
counts. The geostatistical methods have the advantage that the uncertainty
in each point value of the created surface can be assessed. Additionally,
Tobler’s pycnophylactic interpolation is included as a special case as well as
common methods like choropleth maps or kernel smoothing.[61]

• Choropleth mapping and kernel smoothing: These two traditional
methods shall only be mentioned for the sake of completeness. In the for-
mer the inhabitants of an administrative unit are considered as volumes and
prisms are visualized over their polygonal boundaries. The heights of these
prisms are computed as the volume divided by the polygonal area.[49] In
kernel smoothing, a smooth surface, free of abrupt chances at boundaries
and without the assumption of homogeneity inside an area is created. How-
ever, here the support differences between the source data and the prediction
surface are not properly taken into account.[61]

As already mentioned, in the cited papers some of the methods are compared to
each other but no common favorite can be found. Yoo et al. [61] for instance pre-
fer geostatistical methods before pycynophylactic interpolation since the obtained
results are comparable but the statistical techniques can be applied in stochastic
simulation. Hay et al. [34] prefer areal weighting as easy to implement method
that is most accurate. It is stated that pycnophylactic interpolation always de-
creases accuracy and is only justified by aesthetic reasons. Smart interpolation is
also not preferred since it strongly depends on the spatial resolution of the em-
ployed GIS data. Dasymetric mapping is considered as problematic there, due to
the definition of relative weights. Gregory [33] instead favors dasymetric mapping
as producing less error compared to areal weighting.
Since land-use information can be easily extracted from the VMC® database, we
expect some kind of dasymetric mapping to be a good choice. Eicher et al. [31]
compare three slightly different alternatives for this. The first two are conducted
both with polygon and grid form of land-use data. Their difference cannot be
verified statistically but, based on the examples used, the polygon versions are
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usually better. Since we get this type of data directly from the database, we see
no advantage is converting it to a grid form, either. The three methods can be
distinguished in the following way according to [31]:

• Binary method: In this technique the population data of each county is
assigned to only urban and agricultural or woodland cells. Thus a binary
labeling as inhabited and uninhabited zone is conducted. This approach is
the simplest of the three.

• Three-class method: Here, some weighting scheme is applied to distribute
the population counts over three different land-use types within each county.
In addition to urban and agricultural or woodland zones, the third category
of forested areas is included. The sum of all zones of each type are filled
with a fixed proportion of the population count for the county. In the cited
paper, shares of 70%, 20% and 10% are used. Again, this method is easy
to implement, but the proportions are hard to determine correctly. The
given values are just estimated and actually have to be adapted properly.
Depending on the distribution of types, small zones might get too much
importance.

• Limiting variable method: In this most complex technique, as the name
indicates, some limits on the population densities, in the sense of number
of inhabitants per km2 in the area, are prescribed. It also works with the
three land-use classes and starts with single area weighting in the first step.
Afterwards, some upper limits for the three types are fixed and the zones
violating these limits are adapted. The spillover is evenly distributed to the
remaining zones of the county.

A comparison of the three methods in [31] yielded that the last method was the
one producing the least error before the second and the first technique. However,
the binary method is the only one not requiring additional input. The others need
some kind of prior computations determining the proportions and limits optimally.
Since we have no indication for good values, we want to avoid these expensive cal-
culations. Kim [40] introduces a hybrid technique combining the binary method
with pycnophylactic interpolation which requires even more computational effort.
Additionally, we decided earlier to concentrate on residential neighborhoods only
for the simulation of commuters’ home locations. We ignore retail areas including
possibly also flats and assume that industrial and commercial zones are uninhab-
ited in the sense of not containing residential properties. Hence, the binary method
seems to be the most suited and is taken as a basis. The algorithm explained in
the next section does not contain the reconstruction of the population distribution
explicitly. It directly deals with the simulation of home locations which is required
in the usage model simulation.
There, also a hybrid technique merging binary method and pycnophylactic inter-
polation is introduced. For our purposes however, it is also not optimal and thus
neglected.
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5.1.2. Description of algorithm applied in usage modeling

The modeling of the population distribution should fulfill several demands. First of
all, it has to be efficient in the way that it does not require too much computation
time to be constructed. Alternatively it could be stored in the VMC® database
after it was created once, but then loading it should be fast. Even if this is
possible, the construction has to be redone for every new region in the usage
model, compare chapter 2.2, and thus is usually conducted several times. Secondly,
the algorithms should be flexible such that they can directly be applied to the new
region without further preliminary work. The last and most critical point is the
random selection of locations from the model. This step has to be performed for
every run of the usage model simulation. Hence, the computation time of this
step is multiplied by factors in the scale of several thousands for each population
creation. A large amount here could thus make the whole procedure inapplicable.
These specifications also support the use of some kind of dasymetric mapping.
The actual algorithm employed to simulate a single location conducts the following
steps:

1. All administrative units AUi and their corresponding relative probabilities
pi for the chosen administrative level are extracted from the database.

2. Using the discrete version of the inverse transform method, the index ichosen
of a single unit is selected randomly. In detail, a random number u is
generated for the uniform distribution U(0, 1). Then the index ichosen is
determined as the single index fulfilling

∑ichosen
j=1 ≤ u <

∑ichosen+1
j=1 .

3. All residential areas Richosen,j contained in the selected administrative unit
as well as their surface areas aichosen,j are extracted. The new overall sum
aichosen =

∑
k aichosen,k is used to determine the new proportions

pichosen,j =
aichosen,j∑
k aichosen,k

=
aichosen,j
aichosen

of the single zones.

4. The discrete inverse transform method is repeated with this proportions and
a neighborhood Richosen,jchosen is selected.

5. Inside Richosen,jchosen , a home location is simulated. Here, the methods for
ROIs presented in chapter 4.1.3 are applied.

The last two steps already have been described in the mentioned chapter 4.1.3 but
are repeated to illustrate where some kind of dasymetric mapping is performed.
Obviously, this algorithm fulfills the pycnophylactic constraint due to the first
selection procedure. Of course, a pure dasymetric mapping would consider all
Ri,j directly without choosing AUi first. Though, then a count is assigned to
each zone Ri,j and summing them up gives the population count for the whole
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region. The application of a random number generator then implicitly computes
a frequency distribution by dividing the single counts by their sum resulting in
the same pi,j that are obtained in our approach. We prefer this two-step method
since there exist lots of residential areas, thus the unit interval is split in many
parts. For Germany for instance more than 267,000 neighborhoods exists. This
could promote rounding errors and blow up the computation time. The number
of pis is comparable small and the amount of Richosen,j can be handled better then
the complete data set.

5.1.3. Comparison of simulated and true distribution

The verification of the employed algorithm shall be done graphically. Therefor
multiple simulations on different administrative levels and with varying sample
size shall be conducted. We start with the comparison for a simulation of 10,000
home locations using population statistics on the federal state level as input of
the algorithm. Figure 5.1 first depicts the specific simulated locations. These are
assigned to the federal states they lie in and the resulting proportions are shown
in the second graphic. In order to compare the distributions, also the population
computed from OSM as well as the official vehicle statistics are presented with
the same colorbar. Obviously, the proportions used in the algorithm are treated
correctly. The distribution obtained after aggregation can hardly be optically dis-
tinguished from the population figure. Additionally, the difference in densities can
already be detected from the marked locations. Especially in eastern Germany the
city of Berlin can be identified inside a large area containing clearly less simulated
homes.
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(a) Specific locations simulated. (b) Distribution obtained after
aggregation of simulated locations.

(c) Population distribution computed
from VMC® used as input.

(d) Vehicle distribution given in statistics.

Figure 5.1.: Comparison of distribution obtained from 10,000 simulated home
locations and input statistics based on federal states.

The same results are obtained for the evaluation for the simulation based on the
smaller units of rural districts and urban municipalities shown in figure 5.2. Again,
the overall distribution is reflected well but single units are defective, especially in
eastern Germany, where one region got a too small share and one was rated too
high, but also in West-Germany where there is one area which was nearly ignored.
However, this results from the random number generator used in the algorithm.
Now we know that the algorithm works well for the two different administrative
levels. The level of federal states respectively of urban districts and municipalities.
What is still open for discussion is the preference for one of them if the only request
is the usage modeling in the complete country. Does it make a difference which
level is used concerning accuracy and computation time? An easy answer on this
question is not possible. It can be said that there was no apparent difference in
the time needed to chose the 10,000 home locations comparing multiple runs. The
number of residential areas handled in the second selection step is ignorable. In the

84



OSM database there exist neighborhoods that range over multiple administrative
units and have to be split, but the overall count of zones to consider grows only
about one percent from federal states to rural district and urban municipalities.
In the first random choice, 16 units are enlarged to 402 units when considering
the smaller entities. This also has no serious effect on the computation time.

(a) Specific locations simulated. (b) Distribution obtained after
aggregation of simulated locations.

(c) Population distribution computed
from VMC® used as input.

(d) Vehicle distribution given in statistics.

Figure 5.2.: Comparison of distribution obtained from 10,000 simulated home
locations and input statistics based on rural districts and urban
municipalities.

A significant difference between the two levels is found in the distribution of the
home locations inside the units. Figure 5.3 depicts the results for simulations
of 10,000 and 2,000 homes for both levels. The graphics based on federal states
show a more uniform distribution of points over the country. The areas of high
population density can still be identified, but the concentration is more smoothed
out. Especially when the plot for the lower number of simulated locations are
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compared, it can be seen that there are more "white spaces" that means more
regions that are not included in the result. Which outcome is more suited depends
on the purpose of the usage modeling. If the number of simulated vehicles is low,
the federal states allow a better coverage of the country and thus potentially
include more different roads traveled in the end. However, using the smaller units
presumably reflects the vehicle distribution in more detail even if several districts
are only included for a growing sample.

(a) 10,000 locations based on federal
states.

(b) 10,000 locations based on rural
districts and urban municipalities.

(c) 2,000 locations based on federal states. (d) 2,000 locations based on rural districts
and urban municipalities.

Figure 5.3.: Comparison of distribution of 10,000 and 2,000 simulated home
locations. The left pictures used federal states as basis, the right
ones used rural districts and urban municipalities in the first
choice.

Additionally, the administrative level of detail for the final evaluation is important.
Using rural districts and urban municipalities allows the aggregation on the federal
state level. Though, disaggregating the larger administrative units produces an
error in the population distribution, see figure 5.4. The accordance of the upper
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graphics is quite good, the disaggregation yields the expected errors. Especially in
North-Rhine Westphalia the smoothing of the density leads to higher proportions
in more rural zones. The same holds for the area around Stuttgart where part of
the population is moved away from the city.

(a) Aggregation of simulated locations to
larger units..

(b) Aggregation of population to larger
units..

(c) Disaggregation of simulated locations
to smaller units.

(d) Disaggregation of population to
smaller units.

Figure 5.4.: Comparison of results after aggregation and disaggregation.

Thus, the goal of the usage modeling and the number of simulated vehicles is
essential. Due to the possibility of aggregation without remarkably growing com-
putation time, the use of the smaller units is proposed. Though we know that
the availability and preparation of data of this level might be a drawback, only
allowing the use of the coarse division of the country into federal states.
The last point that shall be mentioned here is that the pure dasymetric mapping
suffers from the same problems since there also a basis for the initial weighting
has to be chosen.
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5.2. Conversion between driven and linear
distances

In the last chapter it was sketched that distance classes and their proportions
are essential for the simulation of usage models. It was also mentioned that
available data resulting from traffic diaries cannot be integrated directly but has
to be preprocessed. That is the topic of this section. The applied factors are
known with different names. In literature the notation "circuity factor" has been
established, though the description as "detour factor" is more intuitive. Since we
base our considerations on papers introducing the first notion, we use both names
synonymously in the following.

5.2.1. Estimating circuity factors

Available traffic surveys still require some further work before they can be included
in the simulation of the usage models. People usually report driven distances
whereas the algorithms for the simulation of target points previously described
can only handle airline distances measured on the earth’s surface. Thus, some
translation between both measures is needed. Ballou et al. [18] introduce the con-
cept of "circuity factors" (CFs) defined as the ratio between both corresponding
values. They even provide some mean values and standard deviations for multiple
countries of the world. In section 5.2.2 it is shown how such values can be used
directly in order to compute fairly reasonable distance classes for the simulation.
Obviously, the final results are improved using these values, instead of neglect-
ing any translation, but the proposed factors are presumably too vague for larger
countries. Since they are assumed to depend on the topology and traffic facilities,
thinking of Germany for instance, rural, mountainous and urbanized regions are
expected to have different factors. In [18] only a rather small number of sections
of roads is considered and it is not shown how these parts are distributed over the
whole country. Hence, the given values can be taken as a basis but not as opti-
mal. Using VMC®, route dependent circuity factors can easily be computed and
different influencing factors can be evaluated. As a start, the provided values are
used to simulate a large amount of trips. Afterwards, these are routed, segmented
and analyzed. Hence, a huge amount of road segments including characteristics
like road type is obtained in combination with their geographic position. Thus, a
more accurate analysis is possible. If regional or other significant differences are
found, those can improve further simulations. Apart from this, the computation
of factors using the same software and parameters as for the final evaluation gen-
erates the best and most consistent results. The complete procedure is explained
in detail on the example of commuters in Germany in the following.
An additional benefit of using circuity factors is the possible workaround in case
of missing data. Sometimes it is hard to find reliable distance distributions. Then,
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often values are guessed or those of "similar" countries are applied. The use of
circuity factors could also enhance this procedure. Here, a country with available
mobility statistics is taken as a basis and the circuity factor is used to adapt the
distance to the actually considered region. Hence, the topographical characteris-
tics and the quality of the road network in the target area are taken into account.
Depending on the availability of statistics and circuity factors the simulation of a
usage model starts with at least one iteration of preconditioning. The results are
analyzed regarding the specific circuity factor which is then applied in the true
simulation afterwards.

Algorithm for determination of circuity factors

After the rather rough description how to compute better circuity factors, the
procedure is explained in detail on the example of commuter simulation in Ger-
many. As a basis, the mean value of 1.32 and standard deviation 0.95 given in [18]
are taken. With them, the distance classes in the commuter poll are transformed
like described in chapter 5.2.2. Afterwards, the simulation of the usage model
is started with default values. Later on, influencing factors of the CFs shall be
determined, therefore the number of commuters simulated should be large enough
to provide reliable values for all types of trips. On the other hand, the computa-
tion time for the model simulation as well as the processing with VMC® cannot
be neglected. As a good balance, the driving schedules of 4,020 commuters in
Germany are created leading to routes on 20,100 days and an even higher number
of single trips that can be analyzed in detail. Applying the standard settings in
the commuter model, a number of more than 68,000 was obtained for the example
data. Here, of course many tracks are included multiple times since people use to
take the same way for regular trips without unusual incidents. These are only con-
sidered once in the evaluation, still keeping more than 36,000 different routes. The
number of commuters is chosen in the way that in each of the 402 rural districts
and urban municipalities in Germany exactly 10 vehicles are places. Of course,
then the population distribution is violated, but in doing so the availability of a
sufficient amount of trips in each region is guaranteed. Otherwise, there can be
areas in Germany for which no reliable estimation of the detour factor is possible.
Before the kml-files produced as outcome of the simulation of the usage model
can be processed with VMC®, according settings have to be determined. It is
recommended to employ the same factor model that should be applied for the
true evaluation later on. The distinction of road types for instance influences the
segmentation performed and might lead to slightly different trip lengths for the
same route with different preferences. Surely, those imbalances are expected to
be of small magnitude, but they might bias the obtained circuity factors. Since
the settings have to be adapted at least after the preprocessing and before the
true evaluation with VMC® is started, this step should be conducted in advance
in order to get consistent values. Some details on the preferences that can be set
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are illustrated in the concrete examples of chapter 6. Elaborative descriptions on
factor models can be found in [52]. In short they form a concept to easily structure
data by dividing it in different cells.
After the setting of all preferences, several steps are performed with VMC® for
each driving schedule. First of all, the kml-file is loaded and the single trips rep-
resented by their starting and target points are routed. At the same time, the
provided coordinates are mapped to the nearest feasible road. This is inevitable
due to the characteristics of the input data of the simulation. POIs for instance
are tagged at their actual places which are not necessarily directly at the adjacent
road. ROIs might include streets but those are not considered in the random
selection procedure since attached property boundaries of single estates are less
meaningful than areas. The assignment by VMC® also has the advantage that
multiple proximate candidates can be rated. At corner properties for instance,
smaller streets can be preferred against busy ones. It is prevented that trips start
on highways directly for instance, if a neighborhood is settled close to it. Figure
5.5 illustrates this circumstance on the example of a route parallel to motorway
A100 near Bundesplatz in Berlin. Here, the points are mapped to the next smaller
roads although their distance to the highway is shorter.
Afterwards, the shortest connection between consecutive points is computed. Again,
this setting has to be consistent to the analysis of the actual usage simulation. The
alternative of calculating the fastest route obviously leads to different distances
traveled and thus different circuity factors.

(a) Original position of points (b) Route after mapping to road network

Figure 5.5.: Mapping of points to adjacent smaller routes instead of highway
A100 in Berlin close to Bundesplatz.

Identification of influencing factors

The result of this preconditioning iteration consists of thousands of single trips
aggregated with various factors. The most important are the driven distance com-
puted with VMC® and the straight line distance on the earth’s surface. Their
quotient gives the circuity factors for each trip. Additionally, for every route
the initially simulated points prior to the mapping on the road network and cor-
responding expected linear distances are available. Figure 5.6 shows that both
values are nearly everywhere the same. Only for small distances the differences
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Figure 5.6.: Comparison of linear distances expected in simulation and ob-
tained ones after projection of locations on road network.

look more severe. Calculating the relative errors with respect to the expected
distances yields some outliers suffering from great disagreement. Though, the
central 95% of the errors range from -2% to 2.7% . This is sufficient for our
purposes. We prefer the use of the actual obtained distances in the following,
if possible, because they base on identical coordinates like the driven distances.

Circuity factors are now calculated as the fraction Driven distance
Linear distance . They have a nat-

ural lower bound of 1 since the distance on the road network cannot be shorter
than the straight line between the points. Due to some missing bridges in the
map data and the avoidance of ferries in the routing, the simulations achieve an
upper bound of about 36.1 which is really large. This limits strongly depends on
the region considered and varies depending on the chosen points. Even in smaller
areas of interest large detours are inevitable when the road network is poor or
multiple one-way streets are existent. In our case this huge value forms an outlier
that could be excluded from the next evaluations. The 99% quantile of the ob-
tained detour factors has a value of 3.57 and even the 99.9% quantile is less than
10 and thus considerably smaller than the maximum. Hence, we now concentrate
on those factors between one and five since we expect them to be reliable. Addi-
tionally, this reduction makes the next graphics more readable. Having a look at
the histogram of the obtained CFs given in figure 5.7(a), it is suspected that the
factors are not only influenced by effects similar for the complete region but also
depend on some other parameter. The estimation using a kernel density estimator
shown in figure 5.7(b) supports this assumption.

91



(a) Histogram of obtained CFs (b) Kernel density estimate for obtained CFs

Figure 5.7.: Visualization of obtained circuity factors.

Obviously, the standard assumption of a normal distribution can be dropped di-
rectly. However, the strict lower natural limit of one makes a transformed log-
normal distribution a promising candidate. In this process we try two types of
transformation. First, we apply the natural logarithm directly, in the other case
we first shift the detour factors by one. For the latter values CF − 1 the following
relation holds:

CF − 1 =
Driven distance
Linear distance

− 1

=
Driven distance− Linear distance

Linear distance

=
Detour

Linear distance

(5.1)

Hence, it gives the additional amount of covered distance in relation to the linear
distance. Here, we have to exclude all factors attaining the lower bound for which
the logarithm is not defined. Since for these routes no detour is reported, this
means we just leave out the rare events that can only occur if origin and destination
are connected by a straight road. Due to the street network, this is expected to
be achieved just for short trips.
For the two transformed samples we obtain the histograms given in figure 5.8.
Both are still skewed. On a first glance, figure 5.8(b) would come from a log-
normal distribution, whereas figure 5.8(a) resembles a mixture of two normal
distributions, where the majority of data have mean≈ 0. Testing the hypothesis
of a log-normal distribution with an Anderson-Darling test, in both cases the null
hypothesis is rejected on the 5% level. We thus follow the visual hint that the
logarithmic data might be a mixture of normal variables, and we try to divide the
trips in groups of similar behavior in order to model the overall distribution of
detour factors as a mixture of multiple components. We expect that the original
data follow a log-normal distribution, the shifted and logarithmized ones a normal
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distribution respectively. This assumption is based on the shape of the histogram
just considered. It is supported by the quantile-quantile and normal probability
plot given in figure 5.9. The middle 98% of the transformed values seem to follow
a normal distribution. Though, the original values could result from a shifted log-
normal distribution. Applying the Kolmogorov-Smirnov-Test to the data limited
by these bounds, we are still not able to prove the assumption of an underlying
single log-normal distribution. Accordingly, we have to group the obtained CFs
by more complex criteria.

(a) Histogram of ln(CF-1), cut on the left to
emphasize to obtained shape.

(b) Histogram of log(CF).

Figure 5.8.: Histograms for the two transformed samples.

(a) Quantile-quantile plot for ln(CF-1). (b) Normal probability plot for ln(CF-1).

Figure 5.9.: Comparison of log(CF-1) with normal distribution based on
quantile-quantile and normal probability plot.

In order to determine the main influencing factors we have more than 13 at-
tributes with multiple different values available for each route which may be used
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for splitting up the sample. Since the amount of data is huge, statistical tests for
differences shall not be performed for all of them. We rather start with some vi-
sual check reducing the candidates. Therefore we again plot the linear against the
driven distance and employ some group-coloring. Figure 5.10 shows the scatter
plot obtained for a split by federal state. The dotted line marks the lower bound
of a detour factor of one. The dashed line has a slope of the mean detour factor
computed from the sample routes. For small distances, it is rather longer than
the prediction-based on the dashed line, i.e. using the overall mean of the indi-
vidual circuity factors. It reflects the relation between driven and linear distance
reasonably well in the intermediate range, and it overestimates driven distance
considerably for distances beyond roughly 100km. Note, that the points in the
scatter plot lying considerably above the desired line essentially come from only
some of the federal states.

Figure 5.10.: Scatter plot of linear against driven distance including coloring
of data points based on federal states.

These observations are not surprising at all. Without natural obstacles like a river
or mountains, it is expected that for long distances, the ratio between driven and
linear distance is closer to 1 than for short distances as the driver will have more
options for planning his route to be as short as possible. For driving to a nearby
location, on the other hand, often only one route is available anyhow which may
include a considerable detour. Of course, this phenomenon also depends on the
density of the road network which may vary between states. As a first attempt, we
therefore split the sample into different parts corresponding to distinct intervals
of linear distance, and we attribute an own circuity factor to each subsample.
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We work with the shifted and logarithmized circuity factors only, because those are
expected to follow a normal distribution if the groups are chosen correctly. A com-
bination of analysis of variance and multiple comparison test with a significance
level of 5% were performed. The required groups are obtained by splitting the
driven distances of the routes into several intervals. The separation in three, four
and even more groups showed that shorter and larger distances can be partitioned
on different grids, but the medium part should be assigned to one group. We
tested the upper bounds of 20km, 35km and 50km for instance and examined that
the difference between intervals [20,35) and [35,50) cannot be shown. Two-sample
t-tests performed on different splits of the data into two groups yielded that the
interval limit should lie between 20km and 100km. Otherwise the null-hypothesis
could not be rejected. Thus, there are various possibilities how to define new
classes that influence the detour factors. The big advantage of this investigation
is that the required information for the assignment to a group is available in the
simulation.
Since no reliable effects resulting from other attributes of the routes can be found,
the new knowledge on the circuity factors can be exploited easily on the simula-
tion of usage models. We recommend that the number of separated groups should
be based on the applied statistics. The outcomes of traffic surveys usually are
summarized for distance classes. These can be used as initial configuration of the
split. The routes created in the preconditioning iteration are then assigned to
these classes. Again, statistical test have to be performed then. If the sample
sizes in some intervals are too small, the groups can be combined. Depending
on the results of the test, a number of mean values and standard deviations is
computed then. Their count can reach from one, when in the considered region
no influence on the driven distance can be found, up to the number of distances
classes we started with. It is not recommended to perform a further split if it is
not essential for the correctness of the results. Otherwise, each time a distance
class is selected in the simulation, a check which detour factor has to be applied
is necessary first.
After the correct mean and standard deviation are found, the chosen distance class
is translated like it is described in the next section in order to simulate a suit-
able linear distance. For our examination of the routes in Germany we prefer the
utilization of an individual circuity factor for each distance class with lower limit
larger than 2km or 5km. The left-over classes are combined and a single mean
and standard deviation are calculated. Of course, other factors not considered
here can also have an influence on the detours. In a more detailed analysis also
combinations of them should be examined. We tried to fit Gaussian mixture mod-
els to the transformed data and conducted regression calculations based on two
factors each. We gained no significant improvement on the dependence already
found. In the simulation of usage models defects in the final outcomes also arise
from other data employed. Thus, the obtained results are of sufficient accuracy
for our purposes even if they are not optimal.
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5.2.2. Translation of distance classes employing mean and
standard deviation

The minimal required input for the translation of distance classes consists of a
mean value and the corresponding standard deviation. Even though we have
shown in the last section that the assumption of a single value is not correct gen-
erally, we now work with an overall mean for all classes in the following in order
to simplify the notation, i.e. we focus on one of the components. The required
values are also provided in [18] for inter city distances for instance. They can be
used directly, especially in the preconditioning iteration when the true values are
not known yet, but the options are limited to basic transformations.
From the last chapters we know that the circuity factor is defined as

CF =
Driven distance
Linear distance

. (5.2)

Since our goal is to determine the linear distances needed in the simulation, we
use this formula as

Linear distance =
Driven distance

CF
. (5.3)

The distance classes reported in mobility statistics shall then be transformed by
just recomputing the lower and upper bounds. If only the mean value is inserted as
CF in equation (5.3), the variation in the data is neglected. In order to overcome
this problem, the computed unknown circuity factors are taken as realizations of
a random variable X and Chebyshev’s inequality

P (|X − E(X)| ≥ kσX) ≤ 1

k2
∀k > 0, (5.4)

compare [35] or [25] for instance, is considered. Here, σX represents the standard
deviation of X, E(X) its expectation. We try to find some realistic bounds which
proceed to limits of the linear distances. Therefore, the given sample mean and
sample standard deviations have to be transformed to estimates of expectation
and true standard deviation. Unfortunately, figures 5.7(a) in the sections before
unmistakably showed that the easiest assumption of an underlying normal distri-
bution avoiding extensive parameter transformations is not realistic. CFs have a
natural lower bound of one and their distribution is far from symmetric. However,
we stated that the true distribution of all circuity factors follows some mixture
distribution with components distinguished by one or more different influencing
factors. When using the values given in [18], we assume that we are limited to one
homogeneous component, due to the restriction to inter-city connections. Further-
more, we presume that its distribution function has a similar shape and can be
approximated well with a shifted log-normal distribution. Therefor a new random
variable Y = X−1 is introduced. Obviously, Y possesses the same standard devi-
ation as X, σY = σX , its mean value can easily be computed as Y = X−1. Due to
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the fact that only intercity distances are considered, all circuity factors obtained
in [18] are assumed to be larger than one. This lower bound can only be attained
for completely straight routes without any curves. Hence, the requirement Y > 0
necessary for the log-normal distribution is also fulfilled. The goal is now to com-
pute the expectation of Y , transform back to X and apply Chebyshev’s inequality.
According to [42, page 143] or [47, 136], the expected value of Y following a two-
parameter log-normal distribution, Y ∼ LN (µ, σ2), is E(Y ) = exp

(
µ+ 1

2
σ2
)
. Its

variance reads var(Y ) = (exp (σ2)− 1) exp (2µ+ σ2). The population mean and
variance can be used as estimators for those quantities. Since Y = X − 1, Cheby-
shev’s inequality yields, conditioning on Y given,

1

k2
≥ P (|Y − E(Y )| ≥ kσ)

≈ P (|Y − Y | ≥ kσ)

= P (|X − 1− (X − 1)| ≥ kσ)

= P (|X −X| ≥ kσ).

(5.5)

Hence, the next goal is to determine a suitable value for k. Due to the definition of
the detour factor and the relation pointed out in equation (5.3), small changes in
the values for the CF s lead to significant changes in the computed linear distance.
Consequently, a higher probability that the true factor lies in some bounded, but
large, interval causes the linear distance to vary drastically.
The condition in the probability of (5.5) gives an interval for the true detour
factor,

CF ∈
(
CF − kσ, CF + kσ

)
, (5.6)

for different values for k. The class limits for driven distances given in [38] shall
then be transformed to limits for linear distances. In doing so, as much suitable
values as possible should be included which means that resulting left bounds
shall be lessened, upper limits shall be raised compared to the use of the mean
value. Exploiting the inverse proportionality between linear distance and detour
factor, the right limit in (5.6) is used to determine the new minimum, the lower
limit is applied for the maximum of the linear distance. Table 5.1 shows the
transformation of the limits of the distance classes in the MiD data given in [38]
using the smallest multiples of the standard deviation. Rows “+” and “-” indicate
the difference in computation.
Unfortunately, only the values for k ∈ 0, 1 are reasonable. In particular, we obtain
a change of sign in the subtraction case. Here, CF−kσ < 0 for k > kcrit− = 1.3895
and the formula for the upper bound turns into one for a lower one. Thus, using
this approach, no information on the maximum linear values is given anymore for
growing k. The probability for the detour factors to lie in a kcrit−σ neighborhood
around the mean is larger than 0.482 by Chebyshev’s inequality. This is of course
a more valuable information than that for inserting k = 1, but yet not satisfying.
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k
Limits

1 2 5 10 20 35 50 80
[km]

0 Both 0.76 1.52 3.79 7.58 15.15 26.52 37.88 60.61

1
+ 0.44 0.88 2.20 4.41 8.81 15.42 22.03 35.24
- 2.70 5.41 13.51 27.03 54.05 94.59 135.14 216.22

2
+ 0.31 0.62 1.55 3.11 6.21 10.87 15.53 24.84
- -1.72 -3.45 -8.62 -17.24 -34.48 -60.34 -86.21 -137.93

3
+ 0.24 0.48 1.20 2.40 4.80 8.39 12.00 19.18
- -0.65 -1.31 -3.27 -6.54 -13.07 -22.88 -32.68 -52.29

4
+ 0.20 0.40 0.98 1.95 3.91 6.84 9.77 15.63
- -0.40 -0.81 -2.02 -4.03 -8.06 -14.11 -20.16 -32.26

Table 5.1.: Easy transformation of interval limits of driven distances given in
[38] for different factors applying mean and standard deviation for
Germany reported in [18]

What is still not exploited is the circumstance that linear distances cannot be
larger than the driven ones. This corresponds to the condition that the detour
factor is larger or equal than one. Accordingly, the following relation can be
derived:

1

k2
≥ P

(
|CF − CF | ≥ kσ

)
⇔ 1− 1

k2
≤ P

(
|CF − CF | < kσ

)
= P

(
CF ∈

[
CF − kσ, CF + kσ

])
= P

(
CF ∈

[
CF − kσ, 1

))
+ P

(
∈
[
1, CF + kσ

])
= P

(
CF ∈

[
1, CF + kσ

])
.

(5.7)

The partitioning of the interval is feasible for all k larger than some critical value
kcrit1 = CF−1

σ
. In our example, using the values given in [18] for Germany, kcrit1 =

0.3368 which is smaller than the critical value found before. Hence, the expansion
of the intervals for k = 1 is also directly prevented when the upper limits of the
driven distance are used for the linear distances as well if k > kcrit1. As a results
we get feasible lower and natural upper limits. For a single distance class it is
valid to take these transformations. An optimal k ensuring a claimed probability
can be computed easily from (5.7).
However, considering the complete classification, the resulting bins for the linear
distances overlap. Taking another look at table 5.1, the lower interval limits are
still given in the "+"-row of each k, the upper bound equals the column heading.
Naturally, the lower bounds decrease for growing k, accordingly the intersection
between classes increases. In particular, single values might not belong only to
two classes but to even more. A linear distance of 0.99 for instance lies in bins 1
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and 2 for k ≤ 3 but additionally in class 3 for k = 4. The gain in confidence for
a detour factor to lie in the specific interval suffers from inaccuracy in simulated
proportions.
Accordingly, the probabilities for the distance classes have to be adapted. After
the reasonable selection of k, the limits are translated and the overlap between
the distance classes can be computed. Since the original classes are distinct, the
resulting intervals can be assigned to the corresponding ones. Then, the size of the
intersection and the complete length can be used to calculate the share of overall
proportion that has to be redistributed over the new classes. As an example,
we take the two short intervals I1 = [0, 1) and I2 = [1, 2). We assume that
k = 2 which gives the partitioning in Ĩ1 = [0, 1) and Ĩ2 = [0.88, 2) for the linear
distances during the simulation. Hence, the intersection I = [0.88, 1) obtains a
higher probability than expected. If we assume a uniform distribution inside the
class limits, we get

P (u ∈ I) = P (I1) · P (I|I1) + P (I2) · P (I|I2) = 0.12(P (I1) + P (I2)) (5.8)

with distinct intervals, the second summand was skipped. The probabilities for
Ĩ1 \ I, Ĩ2 \ I and I do not sum up to one anymore but overshoot. Of course,
depending on the considered region, this might not always propagate to the final
distribution for the driven distances after the simulation. However, for the mul-
tiple runs we performed for different usage models, we always got a remarkable
difference to the true distribution.
A possible solution to this problem is the adaption of the probabilities for the
single classes used in the random number generator. The overvalued volume has
to be extracted. Therefore, one could introduce the intersections as new intervals
having a reduced share of the joint proportions or the “old” intervals have to be
reduced accordingly. However, more knowledge on the distribution inside the sin-
gle intervals is required to find a suitable improvement. An optimal solution is not
expected to exist since it depends on the underlying road network in combination
with the home locations chosen. Some simple tests for k = 2 did not succeed since
an intended reduction of the proportion of large classes only moved importance
to the two next lower classes. Others also decreased their frequency instead of
increasing it. An extensive further search exceeds the scope of this work. We
accept the methods explained above and rather use different detour factors for
the single intervals to enhance the accuracy.

5.3. Influence of the restart of simulation

During the simulation of commuter models sometimes combinations of values are
created that do not match. In the common case a chosen distance class is not
feasible for a home location. Let us consider the simple situation that a commuter
is residing in some rural area, in a small village for instance. There, the density
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of working places as well as shopping facilities is usually low, in a certain distance
often no feasible target points exists. Thus, there exist classes in the distance
distribution that are not suited for this home. Nevertheless, they can be selected.
They can even be valid for people living in an other part of the neighborhood.
Especially if small communes are aggregated in one ROI only. Hence, the choice
of that distance bounds is just a problem for that individual commuter, not a
general one, and cannot be removed from the random selection.
Such a situation can be solved in two ways. First of all, the distance is simu-
lated anew and the home location and all other trips determined so far are kept.
Secondly, the complete iteration is restarted. This requires more effort than the
former approach since feasible parts of the trip are dropped here and have to be
created again. Nevertheless, the simulation performs more stable in that case. It
could happen that, due to errors in the map data for instance, none of the distribu-
tion classes fits at all. In order to prevent too large trips, the distance classes are
bounded such that the largest possible value might still be too small. Particularly
this can happen if different distributions depending on the trip type are applied.
Then a route towards a target point is created but there is no feasible destination
lying in acceptable distance. Hence, the specified commuter cannot exist and has
to be determined correctly. In the first approach, some back-propagation could be
caused, stopping and restarting somewhere inside the complete simulation proce-
dure. In the second approach, the behavior can be supervised better.
It has to be checked, if the prescribed proportions and distributions are correctly
reproduced after the restart of the simulation. We therefore log some intermedi-
ate values and evaluate the created kml-files. The influence of the processing with
VMC® is skipped here since it is not one the main parts of the usage modeling.
It is obvious that missing bridges or newly constructed roads for instance could
affect the results. The following review is conducted on ten runs for the simulation
of 1,000 independent commuters in Germany each.
We start with the distribution of home locations. These form the center of the
driving pattern and have to be selected properly. For the 10 series, we obtain a
mean value of 2.2 restarts. For that calculation just the initial and resulting places
of residence is compared. In all cases only one recalculation was necessary. Thus,
for the computation of driving patterns of 1,000 persons 1,002.2 single iterations
of the complete method are required on average, not producing much additional
effort. The small number of changed home locations directly verifies that the ob-
tained vehicle distribution, which was shown to be reflected well in chapter 4.2
and 5.1, is not destroyed.
The same holds for the proportions of the different commuter route types. The
obtained frequencies of the three different types are depicted in figure 5.11. The
dotted histogram indicates the prescribed discrete distribution. Obviously, the
fractions are reflected well. This visual result can be verified statistically by
the computation of confidence intervals for the proportions like it is described
in [23] and [24]. In our case, the sample size of only 10 for the comparison is
not large enough to apply the central-limit theorem enabling the use of the nor-
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mal distribution. However, if we separate the 10,000 single commuters in 100
groups of 100 individuals each, we can calculate the three confidence intervals.
Of course, some samples can be excluded from that process forming a test set
to check the accuracy of the simulation. The obtained results were quite good.

Figure 5.11.: Frequency distribution obtained for the simulation of 1,000 com-
muters in each run.

Due to the problem of determining the correct settings for the translation of dis-
tance classes explained in chapter 5.2.2, the obtained driven distances to not fit
the prescribed ones that good. The application of an average detour factor for
all distances led to reduced proportions of large distances on the linear case but
yielded a huge amount of long trips after the routing. It was examined that the
change from k = 1 to k = 2 produced the expected positive effect on the result,
yet it was not optimal. Thus, if suitable translations between the intervals are
found, also these outcomes should be enhanced.
Of course, some discrepancies are always expected since the selection of partic-
ipants of the survey and especially the infrastructure and road network around
their place of residence have an influence that cannot be ignored. Additionally,
for our comparisons we employed the distributions freely available online in the
report of the MiD2008 [38] where no detailed information on the fraction of trips
conducted by car is contained in the applied statistics. Hence, also this uncer-
tainty might derange the outcomes. The small number of required restarts shown
before indicates that once a suitable distribution is used, it will be reflected well
by the algorithm.
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6. Application examples

In the last part of chapter 2 we already repeated the example how the usage model
for light-duty commercial vehicles can be combined with measurement campaign
to estimate reliable pseudo-damage values presented in [22]. There, the simula-
tion played a minor role and we concentrated on the determination of attributes
related to the driven routes. Here, we want to sketch the single steps during the
simulation of a usage model. We therefore consider a typical commuter living in
Kaiserslautern as an example. We depict in detail how the different types of data
introduced in chapter 4 are employed. We finish with the computation of speed
profiles for taxis. As an example, we compare the influence of the driving style of
an aggressive with that of a careful driver.

6.1. Simulation of representative routes for
commuters

In order to illustrate the steps conducted in the simulation of usage models, the
example of a commuter living in Kaiserslautern given in [21] is reproduced adding
some further details. First, the model components have to be initialized.
It is assumed that also the workplace shall be located there, hence region is set to
Kaiserslautern including suburban municipalities. Adequate statistics for all re-
quired distance distributions are available and already transformed using detour
factors. P is chosen as the base pattern without special regular trip, D can then be
determined easily containing three different types of distance classes. One for the
way between home and work and two for the leisure time activities. The first more
involving step is the simulation of B. Figure 6.1 depicts the selection of a home
location in three steps. At the beginning, all residential areas of Kaiserslautern
are rated by their size. One of them is selected randomly and the home location is
placed there afterwards applying the methods in chapter 4.1.3. The central loca-
tion B is indicated by a small house in the following.

In the next step, the first entry ofD is used to search a workplace. Here, only ROIs
are considered as an example. Figure 6.2 shortly sketches the procedure. First,
all feasible areas are intersected with the requested distance class represented by
a circular ring. Afterwards a specific location is chosen, flagged with the high-rise
building. Since the simplest commuter pattern has been chosen, no attendance
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(a) Residential areas in
Kaiserslautern

(b) Selection of a single neighborhood (c) Choice of coordinates for B

Figure 6.1.: Choice of B conducted in three steps; illustration embedding [27].

(a) Determination of suitable areas (b) Selection of a work location

Figure 6.2.: Choice of a workplace in two steps; own illustration using [27, 28].

or break activities have to be simulated. Thus, the stopovers can be determined
next. It is prescribed that exactly two additional destinations are approached
over the week. Then, feasible target points have to be determined. If no further
restrictions are set, all POIs located in Kaiserslautern are used as a basis, see

103



figure 6.3. By chance, the same distance class has been chosen for both leisure

Figure 6.3.: Feasible target points for stopovers in Kaiserslautern

time activities. Hence, figure 6.4 summarizes the selection of both. Usually,
the described steps have to be repeated with the different entries of D. The
remaining, correctly classified, POIs are checked if the fulfill the requested distance
conditions. Afterwards, specific ones are selected randomly. In that process no
rating is conducted, all points have equal probability. The two resulting target
points are indicated in the right graphic. One destination is classified as shopping
facility, the other is placed at a sports center.

(a) Determination of suitable POIs (b) Selection of two stopovers

Figure 6.4.: Choice of stopovers in two steps, own illustration embedding [27,
28, 29, 30].

The last required input of the route assembling is the scheduling of the leisure
time activities. For these the days are chosen first. In the simple model it is
assumed that all days have equal probability, thus a basis integer random number
generator is used to independently select two numbers between one and five. In
the example given in [21], the number three is chosen twice. This means both
trips are performed on Wednesday.
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Next, the chronological order on this day has to be determined. Again, two bi-
nary random numbers are generated. In this process the frequency distribution
provided in MP is used. In the example one additional destination is approached
as stopover on the way home, the other is visited on a new trip.
The routes on the five days can be split in two groups. On Monday, Tuesday,
Thursday and Friday the simulated commuter only travels from home to his work
location and returns directly afterwards. They are visualized in figure 6.5. The
upper picture shows the two locations on the map. They are connected linearly.
The lower screenshot depicts the result after the routing algorithm of VMC® has
been applied. First of all, the proposed coordinates are projected to the nearest
suitable roads. Afterwards, a path through the road network is determined.
Graphic 6.6 shows the trips performed on Wednesday. In addition to the already
known locations, also the leisure time activities are inserted. All ways are sum-
marized on one map but the two trip chains starting from the home location can
be identified easily. Again, the resulting routes can be segmented and analyzed

(a) Home and work location connected linearly

(b) Home and work connected on road network

Figure 6.5.: Home and work location projected on map, connected linearly
and by feasible route, compare [21]

by VMC®. The results provided in [21] are repeated in tables 6.1 and 6.2. Obvi-
ously, no motorway is passed since the simulated commuter only travels inside the
city and Kaiserslautern does not posses an urban motorway. Additionally, only
the extra trip is performed on rural roads and has only a minor share on the overall
driven distance during week. Due to the topography of the city the slopes are not
that severe and most roads traveled are rather flat.
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Figure 6.6.: More complex route on Wednesday, destination in eastern part of
city is visited on extra trip starting from home.

Motorway Rural A Rural B+C Urban A Urban B+C Other

0% 3.1% 6.6% 21.6% 66.3% 2.3%

Table 6.1.: Split of all routes on five days according to road type, see [21]

Slope class 0-3% 3-6% 6-9% 9-12% 12-15% >15%

Proportions 83.2% 14.5% 1.8% 0.2% 0.3% 0.0%

Table 6.2.: Split of all routes on five days according to slope classes, compare
[21]

6.2. Using created routes: Speed profiles for taxis

Like in the last section, we choose the base location of the simulated taxi to be
settled in Kaiserslautern. Due to the different trip types and distance distribution
resulting from KiD data [26], the car also leaves the city, but it is forced to return
back after each tour. Again, the kml-files created during the simulation of the
taxi model are routed with VMC® to find the streets traveled. We always prefer
the shortest distance, since often taxi prices are composed of a basic charge and
costs per kilometer. Hence, large detours are not allowed. In the end we obtain
the routes for seven days. For these different speed profiles are calculated. In
that process we employ each trip twice. On one hand we assume that the driver
is careful and rather respects the legal speed limits. On the other hand, a more
aggressive behavior is simulated.
For the comparison of the results we concentrate on the single trip between two
suburbs shown in figure 6.7. It is traveled from east to west. Hence, it starts in
some residential area, then a major road is reached shortly after and it finishes
on small roads in an industrial area. It has a length of nearly 3km. The route
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Figure 6.7.: Taxi trip used for comparisons. The route is conducted from east
to west.

itself can be analyzed for different attributes. Figure 6.8 for instance presents its
slope and curvature. The sharp turns required to enter and leave the major road
can be detected easily in the curvature. These signals along the route have an
influence on the velocity of a vehicle driving there. However, the impact of the
different styles can be easily detected in figure 6.9. Both curves are created with
VMC® and summarized in one plot to facilitate the comparison. As expected,
the velocity of the careful driver is nearly always lower than that of the aggressive
motorist. The latter also breaks and accelerates more often. The resulting forces
in direction of and orthogonal to the driving direction are presented in figure 6.10.
Especially the latter have a significantly larger amplitude for the aggressive driver,
but also those measured in the driving direction differ. Here, the larger accelera-
tions are visible. VMC® also offers to draw graphics for lateral and longitudinal
acceleration, though these shall be skipped here since they offer no essentially new
information. All types of analysis can be conducted and corresponding plots can
be created for a large number of simulated taxis for all days and trips. The accel-
eration or the forces can for instance be divided into different classes. Based on
those, the two motorists can be well compared. Some additional load data analysis
can be applied to examine the influence of the driving style on the damage of a
vehicle.
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Figure 6.8.: Slope and curvature measured on the roads traveled.

Figure 6.9.: Comparison of velocity of aggressive and careful driver.
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(a) Force in direction of the driving direction.

(b) Force orthogonal to the driving direction.

Figure 6.10.: Comparison of forces for aggressive and careful driver.
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7. Summary and further
prospects

In this work the concept of usage models and subproblems that have to be solved
was developed and discussed. We started with the mathematical description of
models for different user types. Afterwards, we considered the different kinds of
data required to simulate reliable routes. The algorithm applied for the creating
of single routes was introduced. Especially the determination of a correct popu-
lation distribution and the selection of specific home locations was demonstrated
in detail. We showed, that the population counts included in the OSM data are
of sufficient quality and currentness to rely on. We also proved that population
data is a good indicator for the number of vehicles registered in an administrative
unit. Thus, the vehicle distribution is reflected well and we can simulate home
locations of individuals without providing additional data. The VMC® database
is sufficient.
The computation of detour factors was not that successful. Alternating the simu-
lation of the usage model, routing of the created trips with VMC® and computing
the resulting circuity factors could be performed to enhance the mean values given
in [18], but it is too costly. Unfortunately, the determination of influencing factors
based on a single iteration did not yield satisfying results. We expect that the
CFs follow a mixture of log-normal distributions, but we are not able to prove this
assumption. Quantile-quantile and normal probability plots for the detour CF−1
show some linear behavior for the middle part of the data, but trimming lower
and higher values does not cause positive test results. Additionally, the intervals
for linear distances required in the simulation overlap and produce wrong shares
of some classes in the final results. An optimal value for k as well as a method to
distribute the augmented volume has not been found, yet.
Hence, future work has to be invested in this topic. The combination of multiple
influencing factors has to be considered. Especially some characteristics not at
hand at the moment, like the accessibility of motorways or the fraction of mo-
torway kilometers on the complete road network in an administrative unit should
be investigated. After more suitable CFs are determined, also the effect of the
routing algorithm applied can be examined. There should be a difference between
shortest and fastest ways.
Further tasks consider the usage models themselves. That of light-duty commer-
cial vehicles should be adapted for heavy-duty trucks. In the commuter model,
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leisure time activities on the weekend as well as vacation trips shall be included.
Professional trips conducted in private cars should be checked for relevance. Addi-
tionally, socio-economic factors splitting population in workers, non-workers and
retired people should be considered.
Population distribution based on communes should be check for availability. There-
fore, the population counts on this lower administrative level have to be of good
quality.
According to the traffic surveys, iterative proportional fitting can be applied to
filter only relevant distances covered by cars.

This list of problems and extensions is rather long and might create the impression
that the presented method of automatic usage modeling for automotive applica-
tions could not be working reliably, yet. Different use cases however already
showed that the results are quite good to reflect complete populations. The sim-
ulated routes can be evaluated with VMC® and then used for various purposes.
They can be combined with the results of measurement campaigns providing the
settings for the usage simulation with the U·Sim software package. Hence, suitable
pseudo-damage values can be computed. Additionally, they can be applied for all
types of evaluations in VMC® requiring routes. Different regions or driving styles
can be compared easily. In that process, the behavior of a complete population is
reproduced.
Summarizing, usage models form a good basis to estimate the loads acting during
typical vehicle use.

111



112



Bibliography

[1] Federal Ministry of Transport and Digital Infrastructure. http://www.bmvi.
de.

[2] German Aerospace Center (DLR). http://www.dlr.de.

[3] GPS Data Team. See https://www.gps-data-team.com.

[4] infas Institute for Applied Social Sciences. http://www.infas.eu.

[5] Karte in OpenStreetMap. See https://www.openstreetmap.de/karte.
html, This data is made available under the Open Database License:
http://opendatacommons.org/licenses/odbl/1.0/. Any rights in individ-
ual contents of the database are licensed under the Database Contents Li-
cense: http://opendatacommons.org/licenses/dbcl/1.0/.

[6] Mobilität in Deutschland 2008 (MiD 2008). See www.mobilitaet-in-
deutschland.de.

[7] MultiPolygon. See https://msdn.microsoft.com/de-de/library/
bb964739.aspx.

[8] Open street map wiki, key:population. See https://wiki.openstreetmap.
org/wiki/Key:population, retrieved May 31st, 2017, last modified on
November 21st, 2015.

[9] OpenStreetMap. See www.openstreetmap.org.

[10] OpenStreetMap - Deutschland, FAQs. See https://www.openstreetmap.
de/faq.html\#was_ist_osm.

[11] OpenStreetMap Wiki, join the community. See http://wiki.
openstreetmap.org/wiki/Join_the_community, retrieved December
1st, 2015, last modified on September 3rd, 2015.

[12] POIbase. See https://www.poibase.com/en.

[13] POIplaza. See poiplaza.com.

[14] Polygon. See https://docs.microsoft.com/de-de/sql/relational-
databases/spatial/polygon.

113



[15] Polygon in PostgreSQL. See https://www.postgresql.org/docs/9.4/
static/datatype-geometric.html.

[16] taginfo - de:amtlicher_gemeindeschluessel. See https://taginfo.
openstreetmap.org/keys/de:amtlicher_gemeindeschluessel.

[17] taginfo - opengeodb:community_identification_number. See
https://taginfo.openstreetmap.org/keys/openGeoDB:community_
identification_number.

[18] R. H. Ballou, H. Rahardja, and N. Sakai. Selected country circuity factors
for road travel distance estimation. Transportation Research Part A: Policy
and Practice, 36(9):843–848, 2002.

[19] R. J. Beckman, K. A. Baggerly, and M. D. McKay. Creating synthetic baseline
populations. Transportation Research Part A: Policy and Practice, 30(6):415–
429, 1996.

[20] C. Bhat, J. Guo, S. Srinivasan, and A. Sivakumar. Comprehensive Econo-
metric Microsimulator for Daily Activity-Travel Patterns. Transportation
Research Record, 1894:57–66, 2004.

[21] C. Biedinger and S. Feth. Usage modeling of commuters on basis of ge-
ographical data for vehicle engineering. In Young Researchers Symposium
2016 (YRS 2016), Stuttgart, 2016. Fraunhofer Verlag.

[22] C. Biedinger, T. Weyh, A. Opalinski, and M. Wagner. Simulation of
customer-specific vehicle usage. In K. Berns, editor, Commercial vehicle tech-
nology 2016. Shaker Verlag, Aachen, 2016.

[23] M. Birkin and M. Clarke. Synthesis—A Synthetic Spatial Information System
for Urban and Regional Analysis: Methods and Examples. Environment and
Planning A, 20(12):1645–1671, 1988.

[24] H. M. Blalock. Social statistics. McGraw-Hill series in sociology. McGraw-Hill
Kogakusha, Tokyo, 2. ed., internat. student ed. edition, 1972.

[25] J. Bortz. Lehrbuch der Statistik: Für Sozialwissenschaftler. Springer, Berlin
[etc.], mit 69 abbn. und 213 tabn edition, 1977.

[26] Bundesministerium für Verkehr und digitale Infrastruktur. Kraft-
fahrzeugverkehr in Deutschland 2010 (KiD2010), 2012. www.kid2010.de.

[27] Clker-Free-Vector-Images, https://pixabay.com/users/Clker-Free-
Vector-Images-3736/?utm_source=link-attribution&amp;utm_medium=
referral&amp;utm_campaign=image&amp;utm_content=295214. Down-
loaded from https://pixabay.com/de/vectors/geb%C3%A4ude-haus-
home-bau-immobilien-295214, color was changed.

114



[28] Clker-Free-Vector-Images, https://pixabay.com/users/Clker-Free-
Vector-Images-3736/?utm_source=link-attribution&amp;utm_medium=
referral&amp;utm_campaign=image&amp;utm_content=295511. Down-
loaded from https://pixabay.com/de/vectors/geb%C3%A4ude-hochhaus-
h%C3%A4user-immobilien-295511.

[29] Clker-Free-Vector-Images, https://pixabay.com/users/Clker-Free-
Vector-Images-3736/?utm_source=link-attribution&amp;utm_medium=
referral&amp;utm_campaign=image&amp;utm_content=304843. Down-
loaded from https://pixabay.com/vectors/shopping-cart-caddy-
shopping-trolley-304843, color was changed.

[30] Clker-Free-Vector-Images, https://pixabay.com/users/Clker-Free-
Vector-Images-3736/?utm_source=link-attribution&amp;utm_medium=
referral&amp;utm_campaign=image&amp;utm_content=310390. Down-
loaded from https://pixabay.com/vectors/racquets-rackets-tennis-
sport-310390, color was changed.

[31] C. L. Eicher and C. A. Brewer. Dasymetric Mapping and Areal Interpolation:
Implementation and Evaluation. Cartography and Geographic Information
Science, 28(2):125–138, 2001.

[32] D. J. Giacomin and D. M. Levinson. Road network circuity in metropolitan
areas. Environment and Planning B: Planning and Design, 42(6):1040–1053,
2015.

[33] I. N. Gregory. The accuracy of areal interpolation techniques: Standardising
19th and 20th century census data to allow long-term comparisons. Comput-
ers, Environment and Urban Systems, 26(4):293–314, 2002.

[34] S. I. Hay, A. M. Noor, A. Nelson, and A. J. Tatem. The accuracy of human
population maps for public health application. Tropical medicine & interna-
tional health : TM & IH, 10(10):1073–1086, 2005.

[35] H.-D. Hippmann. Statistik: Praxisbezogenes Lehrbuch mit Beispielen.
Schäffer-Poeschel, Stuttgart, 4., überarb. aufl. edition, 2007.

[36] infas Institut für angewandte Sozialwissenschaft GmbH and Deutsches Zen-
trum für Luft- und Raumfahrt e.V. Institut für Verkehrsforschung. Mo-
bilität in Deutschland 2008 Methodenbericht, 2010. www.mobilitaet-in-
deutschland.de/pdf/MiD2008_Methodenbericht_I.pdf.

[37] infas Institut für angewandte Sozialwissenschaft GmbH and Deutsches Zen-
trum für Luft- und Raumfahrt e.V. Institut für Verkehrsforschung. Mo-
bilität in Deutschland 2008 Nutzerhandbuch, 2010. www.mobilitaet-in-
deutschland.de/pdf/MiD2008_Nutzerhandbuch.pdf.

115



[38] infas Institut für angewandte Sozialwissenschaft GmbH and Deutsches Zen-
trum für Luft- und Raumfahrt e.V. Institut für Verkehrsforschung. Mo-
bilität in Deutschland 2008 Tabellenband, 2010. www.mobilitaet-in-
deutschland.de/pdf/MiD2008_Tabellenband.pdf.

[39] IRU-Taxigruppe. Faktensammlung TAXI - flexibel. http://www.bzp.org/
Content/RUND_UMS_TAXI/Merkblatt_D_-_Flexibel.pdf.

[40] H. H. Kim. Intelligent interpolation for population distribution modeling.
Dissertation, University of Georgia, Athens, Georgia, 08/2009.

[41] Kraftfahrt Bundesamt. Fahrzeugzulassungen (FZ): Bestand an Kraftfahrzeu-
gen und Kraftfahrzeuganhängern nach Zulassungsbezirken 1.Januar 2016.
2017. http://www.kba.de/SharedDocs/Publikationen/DE/Statistik/
Fahrzeuge/FZ/2016/fz1_2016_pdf.pdf?__blob=publicationFile&v=5.

[42] E. T. Lee. Statistical methods for survival data analysis. Wiley series in
probability and mathematical statistics : Applied probability and statistics.
Wiley, New York, 2. ed. edition, 1992.

[43] D. Levinson and A. El-Geneidy. The minimum circuity frontier and the
journey to work. Regional Science and Urban Economics, 39(6):732–738,
2009.

[44] S. L. Lohr. Sampling: Design and analysis. Duxbury Press, Pacific Grove,
1999.

[45] R. Lovelace, D. Ballas, and M. Watson. A spatial microsimulation approach
for the analysis of commuter patterns: From individual to regional levels.
Journal of Transport Geography, 34:282–296, 2014.

[46] Ministère de l’écologie, du développement durable et de l’énergie (MEDDE),
Commissariat Général au Développement Durable (CGDD), Service de
l’Observation et des Statistiques (SOeS). Les déplacements locaux un jour
de semaine selon les motifs -hors marche à pied, enquête nationale transports
et déplacements (entd) 2008, 2010.

[47] D. C. Montgomery and G. C. Runger. Applied statistics and probability for
engineers. John Wiley, Hoboken, N.J., 5th ed., si version edition, 2011.

[48] C. S. Phibbs and H. S. Luft. Correlation of travel time on roads versus straight
line distance. Medical Care Research and Review, 52(4):532–542, 1995.

[49] W.-D. Rase. Volume-preserving interpolation of a smooth surface from
polygon-related data. Journal of Geographical Systems, 3(2):199–213, 2001.

[50] Richerd Darbéra. Taxicab regulation and urban residents’ use and percep-
tion of taxi services: a survey in eight cities. In 12th World Conference on
Transport, Jul 2010, Lisbonne, Portugal.

116



[51] B. Schuppar. Geometrie auf der Kugel: Alltägliche Phänomene rund um Erde
und Himmel. Mathematik Primarstufe und Sekundarstufe I + II. 2017.

[52] M. Speckert, K. Dreßler, M. Lübke, and T. Halfmann. Automatisierte und
um Geo-daten angereicherte Auswertung von Messdaten zur Herleitung von
Beanspruchungsverteilungen. In Tagung des DVM-Arbeitskreises Betriebsfes-
tigkeit, Deutscher Verband für Materialforschung und -prüfung 2016 – Poten-
ziale im Zusammenspiel von Versuch, volume 143, pages 165–180. 2016.

[53] M. Speckert, K. Dreßler, N. Ruf, T. Halfmann, and S. Polanski. The virtual
measurement campaign (vmc) – a methodology for geo-referenced descrip-
tion and evaluation of environmental conditions for vehicle loads and energy
efficiency. In 3rd Commercial Vehicle Technology Symposium, pages 88–98.
2014.

[54] M. Speckert, K. Dreßler, N. Ruf, R. Müller, and C. Weber. Customer usage
profiles, strength requirements and test schedules in truck engineering. In 1st
Commercial Vehicle Technology Symposium, pages 298–307, 2010.

[55] Statistische Ämter des Bundes und der Länder. Bevölkerungsstand:
Durchschnittliche Jahresbevölkerung nach Geschlecht - Jahresdurchschnitt
-regionale Tiefe: Kreise und krfr. Städte: Zeitraum: 2015. https://www.
regionalstatistik.de/genesis/online/.

[56] Statistisches Bundesamt. Gemeindeverzeichnis Gebietsstand: 31.12.2015
(Jahr), July 2017. https://www.destatis.de/DE/ZahlenFakten/
LaenderRegionen/Regionales/Gemeindeverzeichnis/Administrativ/
Archiv/GVAuszugJ/31122015_Auszug_GV.html.

[57] Y. Susilo and R. Kitamura. Analysis of day-to-day variability in an individ-
ual’s action space: Exploration of 6-week mobidrive travel diary data. Trans-
portation Research Record: Journal of the Transportation Research Board,
1902:124–133, 2005.

[58] W. R. Tobler. Smooth pycnophylactic interpolation for geographical regions.
Journal of the American Statistical Association, 74(367):519–530, 1979.

[59] C. Veness. Movable Type Scripts: Calculate distance, bearing and more
between Latitude/Longitude points, January 2015. www.movable-type.co.
uk/scripts/latlong.html.

[60] T. Weyh, M. Speckert, A. Opalinski, and M. Wagner. Planning a measure-
ment campaign in Eastern Europe using Fraunhofer VMC (“Virtual Measure-
ment Campaign“). In Commercial Vehicles 2015, VDI-Berichte, 0083-5560.
VDI-Verlag GmbH, Düsseldorf, 2015.

117



[61] E. H. Yoo, P. C. Kyriakidis, and W. Tobler. Reconstructing population den-
sity surfaces from areal data: A comparison of tobler’s pycnophylactic inter-
polation method and area-to-point Kriging. Geographical Analysis, 42(1):78–
98, 2010.

118



List of Figures

2.1. Outline of the two patterns, own illustration from [22]. . . . . . . 9

2.2. Examples of base patterns given in [22]. Simulated points are con-
nected linearly by gray lines, routes on the road network are painted
black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Classical and new division of traffic, own illustration from [22] . . 10

2.4. Single tour obtained after splitting, figure taken from [22] was mod-
ified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5. Minimal example for GPS coordinates with undirected connections
and marked base location A. . . . . . . . . . . . . . . . . . . . . . 16

2.6. Three possible allocations of destinations to tours, own illustration. 17

2.7. Extract of the segment table exported from VMC®. . . . . . . . 22

3.1. Time schedule for additional target points . . . . . . . . . . . . . 27

3.2. Different possibilities for choosing a home location. "Larger units"
are short for rural districts and urban communes or federal states.
Dashed lines represent the selection based on population figures. . 33

3.3. Route components split by commuter patterns . . . . . . . . . . . 36

3.4. Determination of feasible initial point for passenger search. . . . . 42

3.5. Simulation steps in trip generation for taxis. . . . . . . . . . . . . 46

4.1. Possible selection of a POI; own illustration embedding [27]. . . . 49

4.2. Possible selection of a POI with bounds; own illustration embedding
[27, 28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3. Examples of residential areas in Kaiserslautern. Screenshots are
taken from [5]. Left: Simple zone including small streets. Right:
Area includes sector that has to be excluded. . . . . . . . . . . . . 51

4.4. Selection of a location inside a residential area; own illustration
embedding [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

119



4.5. Result of a simulation of 1000 home locations in Kaiserslautern.
The colorbars indicate the fraction in percent. . . . . . . . . . . . 53

4.6. Determination of locations in ROIs in feasible distance; own illus-
tration embedding [27]. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7. Determination of areas in feasible distance; own illustration embed-
ding [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8. Suitable destinations are reduced drastically when multiple distance
classes are demanded; own illustration embedding [27, 28]. . . . . 55

4.9. Screenshot of the map of the city center of Paris taken from [5]. . 57

4.10. Computation of residential areas in Paris. . . . . . . . . . . . . . 58

4.11. Sketches of two geometric representations. . . . . . . . . . . . . . 60

4.12. Comparison of population distribution for federal states. The pro-
portions of inhabitants are indicated by the coloring. . . . . . . . 63

4.13. Comparison of population distribution for rural districts and urban
municipalities. The colors illustrate the proportions of inhabitants. 64

4.14. Comparison of absolute population values of statistics for 2015 and
VMC® database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.15. Comparison of population distribution of statistics for 2015 and
VMC® database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.16. Comparison of passenger cars reported in statistics and computed
population distribution for federal states. The colors illustrate the
proportions for both quantities on their overall sum. . . . . . . . . 67

4.17. Comparison of passenger cars reported in statistics and computed
population distribution for rural districts and urban municipalities.
The colors illustrate the proportions for both quantities on their
overall sum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.18. Comparison of proportions for available quantities. . . . . . . . . 68

4.19. Comparison of expected difference in shares after simulation. . . . 69

4.20. Ratio of residential and complete area of administrative unit in
percent against expected proportion of wrongly computed vehicles. 70

5.1. Comparison of distribution obtained from 10,000 simulated home
locations and input statistics based on federal states. . . . . . . . 84

120



5.2. Comparison of distribution obtained from 10,000 simulated home
locations and input statistics based on rural districts and urban
municipalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3. Comparison of distribution of 10,000 and 2,000 simulated home
locations. The left pictures used federal states as basis, the right
ones used rural districts and urban municipalities in the first choice. 86

5.4. Comparison of results after aggregation and disaggregation. . . . . 87

5.5. Mapping of points to adjacent smaller routes instead of highway
A100 in Berlin close to Bundesplatz. . . . . . . . . . . . . . . . . 90

5.6. Comparison of linear distances expected in simulation and obtained
ones after projection of locations on road network. . . . . . . . . . 91

5.7. Visualization of obtained circuity factors. . . . . . . . . . . . . . . 92

5.8. Histograms for the two transformed samples. . . . . . . . . . . . . 93

5.9. Comparison of log(CF-1) with normal distribution based on quantile-
quantile and normal probability plot. . . . . . . . . . . . . . . . . 93

5.10. Scatter plot of linear against driven distance including coloring of
data points based on federal states. . . . . . . . . . . . . . . . . . 94

5.11. Frequency distribution obtained for the simulation of 1,000 com-
muters in each run. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1. Choice of B conducted in three steps; illustration embedding [27]. 103

6.2. Choice of a workplace in two steps; own illustration using [27, 28]. 103

6.3. Feasible target points for stopovers in Kaiserslautern . . . . . . . 104

6.4. Choice of stopovers in two steps, own illustration embedding [27,
28, 29, 30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5. Home and work location projected on map, connected linearly and
by feasible route, compare [21] . . . . . . . . . . . . . . . . . . . . 105

6.6. More complex route on Wednesday, destination in eastern part of
city is visited on extra trip starting from home. . . . . . . . . . . 106

6.7. Taxi trip used for comparisons. The route is conducted from east
to west. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8. Slope and curvature measured on the roads traveled. . . . . . . . 108

6.9. Comparison of velocity of aggressive and careful driver. . . . . . . 108

6.10. Comparison of forces for aggressive and careful driver. . . . . . . . 109

121



A.1. Sketch of the situation on the earth’s surface. Picture was drawn
on basis of [51, fig. 3.1, page 34]. . . . . . . . . . . . . . . . . . . 124

A.2. Sketch of the spherical triangle, adapted to [51, fig 5.1, page 79]. . 125

Figures without reference are created with MATLAB or VMC® on basis of sim-
ulation results.
Geo-referenced data visualized is extracted from OpenStreetMap [9]. This data
is made available under the Open Database License: http://opendatacommons.
org/licenses/odbl/1.0/. Any rights in individual contents of the database are
licensed under the Database Contents License: http://opendatacommons.org/
licenses/dbcl/1.0/.

122



List of Tables

2.1. Summary of default parameters, compare to [22] . . . . . . . . . . 12

2.2. Possible results for the different traffic classes . . . . . . . . . . . 17

2.3. Exemplary results for the created routes. . . . . . . . . . . . . . . 22

2.4. Combination of results for customer simulation, taken from [22]. . 23

3.1. Estimated distribution of taxi trips and according points to be sim-
ulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1. Easy transformation of interval limits of driven distances given in
[38] for different factors applying mean and standard deviation for
Germany reported in [18] . . . . . . . . . . . . . . . . . . . . . . . 98

6.1. Split of all routes on five days according to road type, see [21] . . 106

6.2. Split of all routes on five days according to slope classes, compare
[21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

123



A. Background for simulation of
geographical coordinates

In chapters 4.1.3 and 4.1.4 the simulation of specific geographic coordinates within
a certain distance to some central point was brought to the issue. There, we did
no go into detail how the new point can be determined after the linear distance
measured on the surface of the earth and the initial bearing have been selected.
The method applied, based on spherical geometry, shall be explained here. Figure
A.1 visualizes a possible result on the earth surface. This special case where both
points lie on the northern hemisphere and the target point B is in the east of the
initial point A is used to demonstrate the basic procedure. The adaption of signs
for other configurations is skipped here.

Figure A.1.: Sketch of the situation on the earth’s surface. Picture was drawn
on basis of [51, fig. 3.1, page 34].

The input variables for the computation are the geographic coordinates (ϕA, λA) of
A, the initial bearing α and the great circle distance δ. The goal is the calculation
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of the position of B, also given by its coordinates (ϕB, λB). In order to do this,
the colored component-wise differences ∆ϕ and ∆λ are determined. As already
indicated in the figure, the angle ∆λ can also be found in the spherical triangle
between A, B and the north pole N. It is extracted in figure A.2. The inscribed
length of the edge between A and N results from the fact that meridians have a
length of π measured between the two poles and thus π

2
on one hemisphere. The

latitude ϕA has to be subtracted to obtain the true edge length. The same holds
for the other edge.

Figure A.2.: Sketch of the spherical triangle, adapted to [51, fig 5.1, page 79].

The spherical version of the cosine rule can be used to compute ϕB. It reads

cos
(π

2
− ϕB

)
= cosδ · cos

(π
2
− ϕA

)
+ sinδ · sin

(π
2
− ϕA

)
· cosα (A.1)

compare [51, eq. (4.1), page 63]. It can easily be transformed to

cos
(π

2
− ϕB

)
= cosδ · cos

(π
2
− ϕA

)
+ sinδ · sin

(π
2
− ϕA

)
· cosα (A.2)

⇔ sinϕB = cosδ · sinϕA + sinδ · cosϕA · cosα
⇔ ϕB = arcsin (cosδ · sinϕA + sinδ · cosϕA · cosα) .

The computation of a formula for ∆λ is more demanding. It also starts with the co-
sine rule, this time applied for δ, and is solved for ∆λ. In order to simplify the nota-
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tion, the terms including π
2
have been replaced directly.

cosδ = sinϕB · sinϕA + cosϕB · cosϕA · cos (∆λ) (A.3)

⇔ cos (∆λ) =
cosδ − sinϕB · sinϕA

cosϕB · cosϕA

⇔ cos (∆λ) =
(sin2ϕA + cos2ϕA) cosδ − sinϕB · sinϕA

cosϕB · cosϕA

⇔ cos (∆λ) =
cosϕAcosδ

cosϕB
+
sin2ϕA · cosδ − sinϕB · sinϕA

cosϕB · cosϕA

⇔ cos (∆λ) =
cosϕAcosδ

cosϕB
+
sinϕA · sinδ · (−cosα)

cosϕB

⇔ cos (∆λ) =
cosϕA · cosδ − cosα · sinϕA · sinδ

cosϕB
⇔ cos (∆λ) · cosϕB = cosϕA · cosδ − cosα · sinϕA · sinδ

⇔cos (∆λ) · sinδ · sinα
sin (∆λ)

= cosϕA · cosδ − cosα · sinϕA · sinδ

⇔ cos (∆λ)

sin (∆λ)
=
cosϕA · cosδ − cosα · sinϕA · sinδ

sinδ · sinα

⇔ tan (∆λ) =
sinδ · sinα

cosϕA · cosδ − cosα · sinϕA · sinδ

Inside the transformation cosine and sin rule as well as relation sin2x+ cos2x = 1
are exploited. The result given in equation (A.3) can be solved for ∆λ by inverting
the tangent since it only contains already known quantities δ, α and ϕA. It
is independent of the already determined ϕB. However, replacing cosα by the
formula applied before, it can be included easily:

tan (∆λ) =
sinδ · sinα

cosϕA · cosδ − cosα · sinϕA · sinδ
(A.4)

⇔tan (∆λ) =
sinδ · sinα

cosϕA · cosδ −
(
sinϕB−sinϕA·cosδ

cosϕA·sinδ

)
· sinϕA · sinδ

⇔tan (∆λ) =
sinδ · sinα

cos2ϕA·cosδ+sin2ϕA·cosδ−sinϕB ·sinϕA

cosϕA

⇔tan (∆λ) =
sinδ · sinα · cosϕA
cosδ − sinϕB · sinϕA

⇔ ∆λ = arctan2 (sinδ · sinα · cosϕA, cosδ − sinϕB · sinϕA) .

The special version of the arc tangent function is used in equation (A.4) in order
to be able to reproduce all possible locations of A and B on the earth’s sur-
face, for instance on northern or southern hemisphere or on the equator. The
formula obtained is the same that can be found on [59], where no derivation is
given.
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