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SUMMARY

Planar force or pressure is a fundamental physical aspect during any people-vs-people and people-vs-environment
activities and interactions. It is as significant as the more established linear and angular acceleration (usually acquired
by inertial measurement units). There have been several studies involving planar pressure in the discipline of activity
recognition, as reviewed in the first chapter. These studies have shown that planar pressure is a promising sensing
modality for activity recognition. However, they still take a niche part in the entire discipline, using ad hoc systems and
data analysis methods. Mostly these studies were not followed by further elaborative works. The situation calls for a
general framework that can help push planar pressure sensing into the mainstream.

This dissertation systematically investigates using planar pressure distribution sensing technology for ubiquitous
and wearable activity recognition purposes. We propose a generic Textile Pressure Mapping (TPM) Framework, which
encapsulates (1) design knowledge and guidelines, (2) a multi-layered tool including hardware, software and algorithms,
and (3) an ensemble of empirical study examples. Through validation with various empirical studies, the unified TPM
framework covers the full scope of application recognition, including the ambient, object, and wearable subspaces.

The hardware part constructs a general architecture and implementations in the large-scale and mobile directions
separately. The software toolkit consists of four heterogeneous tiers: driver, data processing, machine learning,
visualization/feedback. The algorithm chapter describes generic data processing techniques and a unified TPM feature set.
The TPM framework offers a universal solution for other researchers and developers to evaluate TPM sensing modality in
their application scenarios.

The significant findings from the empirical studies have shown that TPM is a versatile sensing modality. Specifically,
in the ambient subspace, a sports mat or carpet with TPM sensors embedded underneath can distinguish different
sports activities or different people’s gait based on the dynamic change of body-print; a pressure sensitive tablecloth
can detect various dining actions by the force propagated from the cutlery through the plates to the tabletop. In
the object subspace, swirl office chairs with TPM sensors under the cover can be used to detect the seater’s real-
time posture; TPM can be used to detect emotion-related touch interactions for smart objects, toys or robots. In the
wearable subspace, TPM sensors can be used to perform pressure-based mechanomyography to detect muscle and body
movement; it can also be tailored to cover the surface of a soccer shoe to distinguish different kicking angles and intensities.

All the empirical evaluations have resulted in accuracies well-above the chance level of the corresponding number of
classes, e.g., the ‘swirl chair’ study has classification accuracy of 79.5% out of 10 posture classes and in the ‘soccer shoe’
study the accuracy is 98.8% among 17 combinations of angle and intensity.
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T he discipline of pervasive and wearable computing, combined with artificial intelligence algorithms, have made
great contributions to the improvement of life quality, or simply changing our lifestyles in the past years, bringing

automation, feedback, novel human-computer interactions and statistical analysis into our everyday activities. With
multiple embedded sensors in people’s digital devices, not only the software can self-adjust to the users’ activity and
use it as non-invasive input methods, but people can also use life-logging and activity tracking to improve their lifestyle.
Most recently, smart home has also become a popular topic, not just among researchers, but also global leading technology
companies, e.g., smart lighting systems can adjust different tones to the occupant’s activity and mood, or automated by
schedules or sensors. This chapter introduces the background and applicable area of this dissertation. Every main chapter
will start with such a cover page to briefly introduce and summarize its content.

Activity recognition and pattern discovery is an important branch of the artificial intelligence discipline [1]. The general
goal of activity recognition is to provide the user personalized and context-customized support, by information feedback
or environmental changes that are unique to different activities of the user. Fig. 1 shows several possibilities of how activity
recognition can help not only users with their daily activities but also the experts to understand the users’ activities through
different aspects and discover patterns from a large collection of data.

Fig. 1. Main blocks of activity recognition. Red color outlines the scope of this dissertation.

Currently, motion-based sensors (inertial measurement units, IMUs) are widely available in smartphones, smartwatches,
and smartglasses; therefore a lot of activity recognition research is based on IMUs, and IMUs have become a mature sensing
method. [2] IMUs typically measure the movement of the users’ body or the objects which they are using. [3]

In this thesis, instead of the motion, force is evaluated for detecting activities, since usually force is the cause or
the consequence of motions. More specifically, this dissertation builds a framework for textile pressure mapping (TPM)
sensing technology, and uses it to look at the dynamic change and distribution of planar surface pressure force in various
applications.

The work of this dissertation within the activity recognition structure is marked with red in Fig. 1. It starts from the
Sensors block, with building a hardware architecture for TPM sensing technology. Then Machine Learning algorithms that
specifically for the pressure mapping data to extract information that represent the users’ activities. The hardware, software
and the related algorithm parts of the framework is evaluated through various empirical studies. These studies, in turn,
inspire the improvement and evolution of the framework.

The structure of this chapter:

• First, the background of this work, pervasive and wearable activity recognition is introduced in more details;
• Then the motivation of this work and where it lies within the activity recognition background is explained;
• A review of the state of the art follows, especially in the scope of planar pressure force mapping technologies;
• Finally, with a comparison of this work and the state of the art, the chapter concludes with the contribution of this

work.
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1.1 Background
1.1.1 Ubiquitous Sensing and Computing
As computing and sensing devices grow smaller and more
affordable during the past two decades, visions of how to
utilize them in daily environments of people’s normal life
have emerged. [4] [5]

Some direct and simple examples of how ubiquitous
sensing is helping our daily life are sound activated light
or proximity sensitive automated doors. In these systems,
simple sensors act as a switch based on certain physical
variables such as the sound volume or proximity to control
other electronics and automated devices. Fall detection for
elderly and patients [6] is another more advanced ubiq-
uitous sensing and computing applications that deal with
more sophisticated sensor signal processing and data min-
ing techniques to discover the patterns of certain events.
Regardless of the complexity, those ubiquitous sensing and
computing applications share a similar core structure as
from Fig. 1: sensors pick up signals that are related to
the people’s activity and the physical world, the digitized
signals are processed by a computing unit to determine the
activity, then support the people by trigger certain changes
in the environment or notifying related experts. [7]

Ubiquitous sensors are the first step of these appli-
cations. [7] By the sensing principle, sensors can be cat-
egorized as passive and active sensors. Passive sensors’
outputs are caused directly by the physical variable they
are sensitive to, such as inertial measurement units (IMUs)
or optical sensors; active sensors are transceivers, they emit
stimuli into the world and measure the change of the signal
that is reflected back to its receivers, such as proximity
sensors, ultrasonic systems or 3D cameras. There are also
other types of devices that are widely used in ubiquitous
sensing and computing that do not belong to either passive
or active sensors, such as Bluetooth beacons and RFID tags
that only functions when a user carries certain devices (such
as smartphones) in the proximity.

In general, there are three categories in terms of the
sensor installation spaces:

• Ambient: Sensors are placed in the surrounding
environment where the targeted activity happens.
Active sensors, such as cameras [8] and Kinect [9],
can directly track the occupants movement; passive
sensors, such as indoor seismic sensor [10], ambi-
ent atmosphere sensor [11], may also be used for
monitoring the changes of the environment itself
caused by occupants’ activities. Beacons and RFID
tags can be installed in the environment to assist
indoor localization and occupant tracking.

• Object: Objects that people interact with can be
equipped with sensors to track the objects’ motion
or the interaction between the people and the object
such as touch or force. The separation principle of the
object and ambient in this work is defined that objects
have more mobility and typically smaller scale. For
example, a smart couch would be categorized as
ambient while an office swivel chair is object.

• Wearable: Miniaturized sensors can be directly
worn on-body, and move with the attached body
parts. IMUs have been maturely developed [2] and

most current consumer devices (smartphones, smart-
watches) are equipped with them. Head-mounted
cameras and eye trackers are also trending sensing
methods. [12]

While in some studies these spaces or domains are not
clearly separated, for example, in [13] or [14], non-wearable
sensors are all categorized as ambient sensors. The space
categorization is defined mainly from the sensor platform
design point of view, which are in the later chapters of this
work. The object space is necessary to represent a specific
hardware implementation between wearable and ambient.

1.1.2 Activity Recognition
The basic principle driving the research of human activity
recognition is finding the correlation between certain activ-
ities and the data from the sensing systems. The activities
can be of different scenarios such as elderly assist, home
automation, sports performance and interactions, infrastruc-
ture management, security, etc. The sensing systems can
consist of either a single type of sensors or a combination
of different sensors in different installation categories. A
combination of sensors are typically interesting since dif-
ferent installations and sensing modalities can compensate
each others’ weak points or blind spots and the challenge of
combining their data in the machine learning algorithms.

The activities can have meaning on two different levels:
First is the atomic activity, (also known as the transient
activity or the activity state), which is typically the direct
classification result of a temporal window of the sensor
data. The temporal sequences of sensor data are processed
to extract features that can uniquely represent the data,
and then using supervised machine learning, classifiers can
be trained to recognize different activities. [15] They may
represent simple actions such as raising a hand, running
or sitting down. The higher level is activity context, which
is a combination of atomic activities. [1] For example, if a
person is (1) in the kitchen (from location sensing) and (2)
moving arms (from wearable motion sensing) and (3) mak-
ing sharp metal noise (from ambient microphone), they may
be cooking. [16] Such scenarios combine multiple sensor in-
puts, sensor fusion techniques are therefore proposed, either
dealing with multiple sensors from the same domain [17] or
cross-domain sensors that both are in the surroundings and
on the users [14].

1.1.3 Sensors
In Section 1.1.1, ubiquitous sensors are categorized into
three different spaces from the system design point of view.
Yet the same type of sensors can be installed in different
scenarios.

IMUs, the combination of accelerometers, gyroscopes,
and magnetometers, are typically the primary choice for
pervasive activity recognition, because they directly mea-
sure the physical movement. Yang et al. [18] has summarized
the capabilities of using IMUs as wearable activity recogni-
tion sensor, including posture and movement classification,
energy expenditure estimation and balance control evalu-
ation. Embedded IMU sensors are available in very small
integrated circuits (IC) packages such as the Bosch BMI055
or InvenSense 9250, which are both a mere millimeter in
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size. To utilize the sensors, embedded devices are needed
to support operating the IMU ICs, such as the ready-to-use
solutions offered by Xsens. As most recently, the emerging
of the smartphone and smartwatch market, with integrated
IMUs is also helping the study of IMU-based activity recog-
nition, since they can be easily programmed and contains
plenty of connectivity and output interfaces. [19] [20]

In the computer vision discipline, human motion anal-
ysis is a classic central topic. [21] offers a comprehensive
overview of different methods: Vision-based motion anal-
ysis can either identify body parts or track the human as
a cluster of pixels; some methods also involve building a
joint-connected volumetric 3D model of the human body
and fit the model on the 2D images. State-space approaches
[22] [23] and template matching are both used to recognize
human activities. In recent years, the development of depth
cameras (or RGB-D cameras) such as the Microsoft Kinect,
has also broadened the potential of computer vision based
applications.

Object-based binary sensors such as Radio-Frequency
Identification (RFID) tags are a low-cost solution when
detecting activity based on localized objects usages. Such
methods typically focus on the activity context and rather
than atomic activities, for example: shaking a coffee con-
tainer and opening it can be the same from the sensor’s
output. In [24], users wear an RFID reader glove and 60
household objects are tagged with RFID chips such as the
coffee container or toilet lid. Using an aggregate model, 11
activity contexts such as ‘using the bathroom’ or ‘making
oatmeal’ can be recognized by up to 81.2% accuracy.

Microphones are another popular sensor, thanks to their
small footprint and established signal processing techniques
such as spectrum analysis. More importantly, sound can
be picked up even from a distance and typically won’t
be obstructed compared to computer vision based meth-
ods. In [25], microphone and IMUs are worn on the hand
while participants are doing carpenter workshop activi-
ties, two sensing modalities are compared and also com-
bined together. From 21 activities, two sensing modalities
have on-par results for user-dependent validations, and
the microphone has superior accuracy than IMUs for user-
independent cases. In [26], the sound picked up from the
neck can be used to classify 12 activities including laughing,
eating, etc.

1.1.4 Issues in Selecting the Right Sensors

Examining the sensing modalities introduced above, there
are several common issues when selecting sensors for activ-
ity recognition:

Sensitivity: some sensors such as IMUs, microphones,
and capacitive sensors are very sensitive to even small
atomic activities, while some sensors such as RFID only has
binary sensitivity. High sensitivity, however, usually also
makes the sensor prone to noise (e.g. for IMUs, random
movements that are not interested for the target activities;
or for microphones environment noise or sound from other
users that are not relevant). For cameras, extreme lighting
condition changes is also a significant problem. While TPM
can be placed at the locations where the activity happens,
thus it generally suffers less motion artifact.

Location dependency: some wearable sensors are typically
fit at specific locations. In [27], Kunze, et al. have pointed out
the problem that sensor placement variations will greatly
influence the activity recognition result while investigating
microphones and IMUs. Typical lab experiments the sensors
are fit on fixed locations, but in the real world the sensors
may shift over time and displaced completely based on the
users (e.g. putting a smart glass off from the head and into
the pocket). As a flexible textile matrix, it can cover more
area easily than rigid sensors; and thus TPM sensors are
less influenced by sensor location shifting.

User acceptance: comfort, consent of information and pri-
vacy are determinant factors for a sensing modality to be
accepted in people’s daily activity. TPM can detect activities
from the surrounding instead of directly on the users, which
makes it very unobtrusive. It also gathers less personal,
private information such as people’s face, words, biometric
information that can be possibly used for identification
or testimony. However, from this work, it is shown that
identification is possible through people’s force signature
or pressure body-print. Hence it is important to know what
level of information this sensing modality can reveal, which
would help with improving awareness and regulations in
this aspect.

1.2 State of the Art

By the start of this work, thin-film based, single force sensi-
tive resistors (FSRs) have already become widely available
[32] [33]. FSRs typically utilize the property of carbonated
polymers, that being pressed, its local electrical resistance
will change, due to the deformation caused by external
pressure force. When combined with compression garments,
FSRs can be used to detect muscle activities such as the work
in [34] [35].

FSRs can be constructed into a matrix format to map
the distribution of the force. Tekscan also offers a range of
pressure mapping sensors based on their thin-film based
FSRs that has a matrix structure. The products are mainly
sold for medical or industrial evaluation and diagnostics.

Fig. 2 shows several works from the academic commu-
nity of ubiquitous computing, using planar pressure sensing
technologies to detect human activities [28] [29] [30] [31].
Dementyev, et al. used a wrist-worn FSR (force sensitive
resistor) array to detect hand gestures [28]. [29] proposed a
system to detect tongue control gestures with a face-worn
TPM patch. Pressure mat placed on the chair surfaces to
detect seating postures have also been studied in [30] [36].
Sundholm, et al. have demonstrated that sports exercises
can be recognized from a sports mat which sense the
pressure distribution in [37]. Schneegass, et al. investigated
using a pressure matrix as a sleeve for the forearm to
recognize writing gestures in [38].

These projects are all conducted on an ad hoc basis.
From the apparatus including hardware and software, to
the data mining algorithms, every project is developed
from the scratch level. If a unified framework covering the
hardware, software and data analysis for planar pressure
mapping sensing technology exists, which can be used
for a broad spectrum of activity recognition and human-
computer interaction studies, these said projects and many
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Fig. 2. Academic related work with planar pressure sensors with ad hoc systems. a. detect hand gestures from a wrist worn FSR array [28]. b.
tongue control gestures with a face worn TPM prototype [29]. c. detect seating posture with a commercial pressure mat [30]. d. evaluate sleeping
postures with FSR matrix [31].

more ideas can be developed with much less effort. And
their findings, especially in how to process the data for
specific applications, can also compliment each other.

Most of the state of the art commercial pressure map-
ping systems have a closed loop driving and data logging
system and high cost, which is not suitable as smart objects,
furniture and wearable garments for everyday use. And
they are typically engineered for specific purposes, with
limited adaptation flexibility and lacking an open, modular
structure that can be easily modified for a wide range of
pervasive and wearable applications. Recently, startup com-
panies such as Sensing Tex, S.L. is also offering development
kits up to 48× 24 matrix for a 90× 180cm2 area at the cost
of 1999 Euros.

For example, if a computer science research team plans
to implement a real-time recognition system with their own
algorithms, based on above-mentioned systems, they need
to start from the undocumented raw data transmission for-
mat, because the included software is a closed-loop system
designed for experts from other disciplines to inspect the

pressure mapping sensor. [39] In this work, the entire textile
sensor matrix, data acquisition electronics, software struc-
ture is an open, heterogeneous, reconfigurable, hackable
framework, therefore it can be easily adapted to any novel
applications.

The off-the-shelve systems are also not easily scalable.
Developers are restricted to the resolution offered by the
manufacturers. For example, if developers want to use two
pieces of a 32-by-32 matrix together as a longer matrix,
they have to use two separated hardware, and hack the
data receiving program to accommodate the double input
channels. The framework in this work has a strong emphasis
on scalability on multiple levels:

• The individual sensors can be cut and tailored, and
even connected together to meet the need of sophis-
ticated sensing shapes such as a glove or a shoe
surface. This is also both supported on the hardware
and software level, and has been tested through
applications. In a specific application of a smart-belt,
the ADC input pins are also reprogrammed as output
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Fig. 3. The advertising materials from a.Tekscan and b. SensingTex.

pins so that the hardware that was designed to
support a 32-by-32 pseudo-square-space is actually
driving a 60-by-4, long matrix which exceeds the
pseudo-square-space but meets the pin counts of the
actual hardware.

• Heterogeneity and parallelism guide the framework
development, which makes it easy to scale up the
sensing area with connecting multiple hardware to-
gether. The software takes care of combining parallel
input on the Tier 1 level and the rest of the framework
on the higher abstract level can be unchanged.

Most of the off-the-shelf solutions also lack wireless
capabilities, whereas, in this work, stable Bluetooth trans-
mission, power management, and optimization as a mobile
Li-Po battery powered device have enabled a range of
applications with the mobility that only wireless systems
can provide, especially in scenarios out of the labs.

Capacitive principles can detect very small motions due
to its high sensitivity [40] [41]. Capacitive sensing also does
not require the material’s property to change with force,
instead, it measures the distance change or dielectric change
between two plates of the capacitor. Thus only metallic

conductive material is required. And the spacer material
requires only mechanical properties that would change its
thickness with the force, instead of electrical properties.
However, measuring a single capacitive node normally
requires sine signal sweep excitation, which results in rel-
atively longer sampling periods. This therefore makes it
more difficult to scale up a capacitive matrix system because
the sampling rate will suffer exponential degradation as
dimension increases. [42]. In [43], a capacitive textile matrix
is demonstrated to measure seating posture. Every node is
sensed at 90Hz; however, with multiplexing, the total 240
nodes requires 3 seconds to sample (3Hz refresh rate).

1.3 Contribution of This Work
The contributions of this work on textile pressure mapping
(TPM) technology are two-fold:

1) A full-stack framework is constructed to develop
TPM systems from the essential hardware to the
upper-level software and machine learning. The
framework is an encapsulation of design knowledge
and guidelines, a multi-layered tool, and also an
ensemble of examples. Unlike other ad-hoc studies
using pressure sensing in application recognition,
this work uses a unified framework to cover the
full scope of application recognition including the
ambient, object and wearable subspaces.

2) TPM is extensively evaluated for activity recog-
nition in three scopes: smart environment, smart
objects, and smart wearables. Empirical knowledge
of utilizing TPM is gained throughout these scopes.

The TPM framework covers from multiple angles to
develop TPM systems.

• Through design space exploration, five design di-
mensions (propagation, intention, coverage, mobil-
ity, and sampling) and three sub-spaces (ambient,
object and wearable) are outlined to help specify and
direct the designing process of TPM systems.

• A general hardware architecture to drive the TPM
sensors is proposed, with the emphasis on the flex-
ible scalability of the sensing surface area. Multiple
versions of the architecture are implemented, either
with parallel hardware such as field-programmable
gate arrays (FPGAs) or power efficient micro-
controllers, according to the need of different design
space requirements.

• The framework includes a heterogeneous software
stack, which is consisted of four tiers to cover the
needs of driver, signal processing, machine learning,
output and feedback.

• The framework also evaluates different algorithms
for data processing and machine learning with TPM
sensor outputs. A preset of features, the TPM feature
set, is presented specifically for data mining with
TPM’s spatial-temporal data format, including spa-
tial domain features (8x10), temporal and frequency
domain features (17x39), and deep neural network
features.

• The effectiveness of feature subsets is analyzed using
neighborhood component analysis to evaluate their
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Fig. 4. Brief overall structure of the TPM framework

contribution with a unified process on datasets from
different design subspaces. Thus a new dataset with
a TPM system can be evaluated directly using the
TPM feature set, and further optimized by feature
selection.

The TPM framework is designed to be easy to scale and
developer friendly. Fig. 4 shows the brief structure of the
TPM framework’s actual tool chain part, which consists
of three sectors: Sensor Matrix (Textile), Hardware (Elec-
tronics), Software (Receiver Device). Developers can first
directly use this framework to design and validate a TPM
system in novel activity recognition scenarios, and then
make their own customizations for further evaluation and
deployment. The TPM framework is developed iteratively
with a series of empirical studies, where the TPM sensing
modality is validated for activity recognition tasks.

Force is an essential physical interaction that causes all
of the change of motions. TPM sensors can be utilized in
activity recognition tasks by measuring the planar pressure
(force applied on surfaces). Through the empirical studies,
significant findings prove that TPM technology has poten-
tial in various application scenarios of the field of ubiquitous
activity recognition.

TPM can detect activity from the pressure body-print on
various surfaces, since earth’s gravity is constantly pulling
us onto supporting surfaces. TPM sensors can cover not only
flat surfaces, but also soft, curved and cushioned surfaces.

Touch is a fundamental interaction and most often car-
ries emotions through the minor changes in force patterns.
TPM can be unobtrusively installed on surfaces and objects
for not only gesture interface, but also sensing emotional
related physical interactions.

TPM can be integrated into comfortable fitting garments.
Muscle activity can be detected through the planar pressure
change on the garment that is caused by the wearer’s body
motions. This method is also called pressure mechanomyog-
raphy (MMG) in the biomedical discipline. Compared to the
electrically coupled electromyography (EMG), TPM MMG
has the advantages of no skin-electrode contact, robust
against ambient electromagnetic interference, easy to form a
mesh to over bigger area with fine spatial granularity, etc.

Specifically, the following significant findings of to what
extent TPM technology can be used to detect activities are
discovered:

In the ambient subspace:

• A table cloth made of TPM matrix can detect 8
classes of micro-interactions of acquiring food, which
is propagated from the cutlery through the plates to
the table, with up to 0.946 accuracy (0.125 chance
level).

• A 2-by-1 meter sports mat with a 128-by-64 TPM
matrix under the surface can detect 9 exercise cat-
egories from the dynamic time sequence of body-
prints with 0.804 accuracy (0.111 chance level), and
also distinguish 47 trivial variations of these exercise
categories with 0.387 accuracy (0.021 chance level).

• A carpet with TPM under the surface (the same from
the said sports mat) can identify the person from 13
user groups by the force signature of their gaits with
up to 0.877 accuracy (0.077 chance level).

In the object subspace:

• An office chair with a 32-by-32 TPM matrix (1.5cm
pitch) covering the back surface can detect 10 differ-
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ent postures from the back-print with 0.795 accuracy
(0.100 chance level).

• A pressure sensitive garment for objects such as
robot arms can detect people’s emotional interactions
such as poking and stroking. Using a 20-by-20 TPM
matrix (1cm pitch), with 7 categories of defined in-
teractions, the classification accuracy is up to 0.933
(0.143 chance level).

In the wearable subspace:

• An 8-by-16 TPM matrix (1cm pitch) fixed on wearer’s
thigh with a stretchable band can detect 4 workout
plus 3 non-workout activities inside the gym with
0.817 accuracy (0.143 chance level).

• A soccer shoe covered by TPM sensors across its
surface, with 33 sensing points sampling at 550Hz,
can detect the angle and intensity of shooting a ball
from 17 variations at 0.988 accuracy (0.059 chance
level).

Fig. 5. Dissertation structure

1.4 Dissertation Structure
This dissertation first introduces the basic knowledge, in-
cluding the sensing principle and the design space, of
using TPM sensors for activity recognition systems. From
a bottom-up approach, individual empirical studies are car-
ried out in different scenarios covering the ambient, object
and wearable scopes. Then the general hardware, software
and algorithm framework is constructed by comparing and
summarizing the empirical studies from a top-down ap-
proach.

Chapter 2 first introduces the sensing principle. The tex-
tile pressure mapping matrix emphasizes the integration of
electrically conducting polymer composite fabrics to extract
useful pressure information. The functioning principle of

interconnected sensing matrix is explained via simulation.
Then the design space of utilizing TPM sensors is discussed,
which includes five dimensions: Propagation, Intention, Cov-
erage, Mobility, and Sampling.

As introduced in Chapter 1, the design space can also be
divided into three sub-spaces: Ambient, Object and Wearable.
In every sub-space, several empirical studies are carried
out to evaluate what sorts of information TPM sensors
can provide. Chapter 3 explores the Ambient space. After
a discussion of the ambient space, three empirical studies is
introduced including TPM augmented table cloth, sport mat
and ID carpet.

In Chapter 4, the Object space is explored. Smart objects
are equipped with TPM sensors in different studies to detect
user activities, including a smart seat cover that detect the
user’s sitting posture, robot skin patches that recognizes
emotional related touch interactions with human. This chap-
ter also contains a student workshop, in which students
use the TPM framework to develop and evaluate their own
smart object projects.

The Wearable space is discussed in Chapter 5, introducing
how TPM can be used as smart garments. In particular, TPM
can be used as means of performing mechanomyography
to measure muscle activities. A smart soccer shoe can also
detect the ball impact by the TPM sensor on its upper
surface.

The empirical studies from Chapter 3 Chapter 4 and
Chapter 5 all use different hardware, software and algo-
rithms. If an hierarchy of those aspects is to be extracted
from these studies, it would be a bottom-up structure.
Chapter 7 looks at the hardware aspect from top-down. This
chapter fist proposes a general hardware architecture, then
discuss the problems and solutions of implementing the
driver electronics for data acquisition. To achieve the goal
that the framework should be flexibly scaled up and down,
two branches (portable and high performance) of electronics
are finalized.

The general software implementation is explained from
top-down in Chapter 6. Implementation mainly considers
the requirements for meeting real-time data acquisition,
classification and visualization during development and
deployment. A heterogeneous software system framework,
as well as an all-in-one independent C++ executable appli-
cation are developed as examples.

Chapter 8 discusses the data processing and machine
learning algorithms on the theoretical level without con-
cerns of the trade-off of different software and hardware
implementation environments (e.g. sampling rate, program-
ming languages, libraries, dependencies, etc.). After all
the empirical studies are explained in details in previous
chapters, this chapter looks at the data mining processes
from a top-down view and focuses on a generic algorithm
workflow and investigating which part of the information
are more important in specific applications.

Finally, Chapter 9 concludes the entire dissertation with
a summary of key contributions, and discussions on limita-
tions and outlook.
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Chapter 2 Sensing Principles and Design
Space Exploration

This chapter first introduces the textile sensing principles and the types of materials that can be used for constructing
TPM sensors. An overall view of the design space is discussed thereafter, regarding how textile pressure mapping can

be deployed to acquire information about user activities.
The primary sensing principle of planar pressure mapping can be generalized as: an electrically measurable variance

factor that is related to the pressing force onto the sensitive material. The variance can be electrical conductivity (e.g.,
the resistance of flexible resistor materials), electrical capacitance (e.g., two electrode plates separated by a flexible spacer),
optical luminance (e.g., light leakage of two knotted optical fibers), etc. The work of this dissertation is focused on resistance
based fabric material, a fabric CarboTex produced by Sefar AG, together with their fabric with metallic stripes developed
during the EU project SimpleSkin. Apart from those fabrics, low-cost materials can also be used such as electrostatic
discharge protection materials.

To use TPM for activity recognition, the designing of the system should consider aspects including:

• How the force is propagated from the source to the sensing fabrics.
• Whether the captured information is intended or unintended performed by the users.
• The coverage relationship between the TPM sensor area and the user(s).
• The mobility requirements of the TPM sensor hardware.
• The sampling rate, which can be limited by many factors such as activity nature, hardware and software constraints,

algorithm requirements, etc.

The design space is explored regarding those aspects. Concerning the form of implementation, the design space can be
divided into three sub-spaces: ambient space, object space, and wearable space.

Fig. 6. TPM design space with its five dimensions

The structure of this chapter:

• The sensing principles, materials, and their relative characteristics are first introduced;
• A brief but in-depth simulation is presented (more in-detailed simulations are already documented in [44]);
• The design space is analysed in five dimensions: propagation, intention, coverage, mobility, and sampling.
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2.1 Sensing principles
The core principle of electrical resistance based pressure
mapping is the special property of electrically conducting
polymer composites (ECPCs), that their deformation, which
could be caused by either tension or pressure, will cause
its electrical impedance in the vicinity of the deformation
to change. [45] ECPCs are typically a colloidal form of
conductive particles (e.g., carbon black, metal and metal
oxide particles) dispersed into a polymer matrix. [46] [47]
Deformation will change the polymer matrix’s molecular
structure so that the suspended conductive particles (filler
particles) form new conductive paths, which in turn changes
the local electrical impedance on the supermolecular level.
[48] Under 20-70 ◦C, the temperature dependency of carbon
black polymer is found to be very weak; therefore the mea-
sured resistance variation of the composite can be practically
directly linked to the pressure and tension. [49]

The pressure force can be measured by the volume
resistance, that is, the electrical resistance from the top to
the bottom side of a thin film ECPC material. In order
to practically measure the resistance with analog-digital
converters (ADC), a voltage divider is used as shown in
Fig. 7(a detailed discussion of why Wheatstone bridge is
not superior to a voltage divider, in this case, can be
found in [50]). The signal source impedance (R0) should
be matching the ADC input impedance, which in reality
varies based on models and manufactures, and is typically
not specified except for high-performance units. Thus R0
is usually determined empirically. It is also important that
the source impedance stays relatively stable during the
sampling, so the configuration in Fig. 7 with the reference
resistor R0 connected to ground is a better choice compared
to exchanging Rx and R0, even though both configurations
are theoretically possible.

To map the pressure force of the material, we can mea-
sure the volume resistance distribution across the area as
illustrated in Fig. 7. The volume resistance can be measured
by placing parallel stripe electrodes on both sides of the
material; each side is perpendicular to one another. Name
one side of the parallel electrodes as active electrodes (offers
voltage stimuli) and the other side as passive electrodes (each
connected to an ADC input with a voltage divider). Two
layers of operation loops complete the scanning cycle:

• turn on one active electrode, while connecting
the other active electrodes to the ground or high
impedance.

• measure the voltage at the passive electrodes one by
one.

However, the matrix structure is not simply a 2D array
of the individual volume resistors from each cross-point:
between two neighboring electrodes on the same side, there
is a measurable electrical resistance (parasitic resistance Rp
in Fig. 7); even only considering a 2D array of the individual
volume resistors, the electrical stimuli and ADC input are at
specific points of an interconnected network, which involves
all the resistors between this point and the ground.

In [51], a MEMS (micro-electro-mechanical systems) sen-
sor is proposed with a similar strategy, using strain gauge
arrays on a microscopic membrane to detect microscopic 3D
objects.

Fig. 7. The matrix structure of measuring the resistance distribution of a
semi-conductive sheet

Detailed simulation considering the matrix network can
be found in [44], Chapter 2. To summarize the findings from
the simulation:

• The scanning cycle with two layers of operation
loops mentioned above generates a voltage mapping
that can represent the sensor resistor values.

• The electrical property of the active electrodes is rele-
vant to the imagery result, especially an influence to
the range and contrast; in this regard, grounding the
inactive active electrodes is better than connecting
them to high impedance.

• The parasitic resistance acts similar to a spatial av-
erage filter with a small blurring effect; therefore
special treatment is not necessary.

2.2 Low cost ECPC materials

One of the goals of this work is to promote pressure
mapping application on a broader scale in everyday en-
vironment, therefore, low cost materials is crucial. ECPC
materials are quite ubiquitous even though their force-
sensitive properties are usually not exploited. For example,
the plastic package material Velostat for ESD (electrostatic
discharge) protection for electronics are typically made of
carbon polymer foils. To dissipate the electrostatic charge
without short-circuiting the electronics it’s protecting, the
ESD-safe bags usually have a few kilo- to a few mega-
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ohms volume resistance per square centimeter when the
electrodes are slightly fixed on the material to maintain
full contact. As external force press on the electrodes, the
resistance decreases down to mere 1 to 5 % of the slack
state. Some early prototypes are made using ESD safe foils
and foams as shown in Figure 8, 9. One major drawback
of these cheap ESD protection materials is that they are
not produced for sensing purpose. So the chemical mixture
process has a big range of tolerance, possibly resulting in
varying levels of conductivity from different batches even
of the same supplier article number.

The CARBOTEX from Sefar AG is a series of anti-static
fabrics, that can also be classified as an ECPC material.
[52] It is originally produced for filtration in flammable gas
and liquid substances, as a fabric sheet of carbon-polymer.
Except for the fabric level flexibility, CARBOTEX is also
washable and air-permeable.

Figure 11 shows the volumetric resistance per 7× 7mm2

to load weight relationship. The test method is: a sensor
patch of 7-by-7 with 1.5cm electrode pitch is placed on a
flat weight scale, while a manual force is placed on five

Fig. 8. Early prototype with foam ESD safe package material

Fig. 9. Early prototype with thin film ESD safe package material

different points of the matrix (one at the center and one
at each corner) through a probe, one point at a time. At the
meantime, the resistance of the pressed point is measured by
a multimeter. However, manual force is not ideal in terms
of precision and stability; a more comprehensive testing
method is described in [53] for measuring the repeatability
of force sensors, which requires more sophisticated equip-
ment that applies highly repeatable force on the same area.
Nonetheless, such tests only show the ideal situation where
the sensors are always fixed in the test-bench to study the
absolute properties of the sensing material.

Most of the empirical studies in this dissertation use
CARBOTEX as the sensing material. It has been proven to be
very suitable for activity recognition and touch interaction
tasks. The absolute sensor value is usually not needed,
since normalization is typically a standard pre-processing
operation. As the dynamic change and sensitivity are highly
related to the activity, the pressure mapping result can
resemble the real-time movement and state of the interaction
between the people and sensor-equipped objects or gar-
ments. In those applications, the fabric structure is usually
being moved: the fabric layers may shift or form wrin-
kles, and different layers may move separately, especially
in some application that the fabrics are not attached to a
sturdy surface and being frequently bent. However, what
is important for activity, gait or gesture recognition is the
repeatability of the dynamic change in pressure, that after
standard normalization, data from different instances of the
same activity would be similar to each other, and contains
unique features for different activities. The training data
can also offer the machine learning algorithms sufficient
reference for classification in repeatable experiments.

2.3 Textile Integration of the TPM Fabrics

The general structure of TPM is a matrix structure formed by
two perpendicular groups of parallel conductive stripes as
shown in Fig. 7. The conductive stripes are both electrodes
and the connection paths. Most of the budget flexible con-
ductive material relies on the non-conductive side (usually
a layer of plastic film laminated with the metal film layer)

Fig. 10. Full fabric sensor with SimpleSkin fabrics produced by Sefar.
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Fig. 11. Volumetric resistance and load characteristic test of the CAR-
BOTEX fabric.

for the flexibility; thus the conductive side should face the
ECPC material.

The surface area of the intersection between two stripes
directly relates to the effective resistance. The sequential
resistor in the measurement circuit should match the ef-
fective resistance. The effective resistance also decides the
power consumption when a DC stimulus powers the active
electrodes.

A budget method to construct such a matrix is using
conductive (typically copper or aluminum) tapes and car-
bonated film material (normally for ESD protection). Con-
ductive tapes can be fixed on a conventional non-conductive
plastic or even paper sheet as substrate, and cover the ECPC
material in the center. Examples are shown in Fig. 8 and Fig.
9.

Sefar’s SimpleSkin metallic stripe fabric is a mass-
producible fabric with the metallic stripes exposed on the
one side of the fabric and covered by a non-conductive
polymer substrate on the other. Together with CARBO-
TEX, these two types of fabrics can construct whole fabric
pressure sensors. The fabric sensors can also be sewn with
conventional tailoring methods to fix on different surfaces.
During the EU project SimpleSkin, a washing test is carried
out by DFKI and iTV. As the result shown in Fig. 11, the
TPM sensors are still sensitive to force changes after 40
washing cycles (with electronics disconnected), only with
magnitude shifts of the response curve after being washed.

The integration methods do not have to be restricted by
the perpendicular matrix. For example, in 5.2, the soccer
shoe surface is made of three diamond shape patches to
accommodate the shape of the shoe. It can also be tailored
into smaller patches to fit on irregularly shaped objects
which a single matrix would not fit, such as a glove. This
aspect is further elaborated in the virtual surface concept in
Chapter 7.

The fabrics used in the TPM sensors in this work are not
stretchable, although a stretchable sensor structure can be
more versatile. Thus when an elastic garment is required,
the sensing fabrics are placed on elastic fabrics as a sub-
strate, the sensing region is then not stretchable, but the
rest of the substrate fabric is. On the one hand, the direct
pressure interaction can be measured; on the other, if the
circumference of the closed stretchable garment increases,
the garment will have increased tension, which will also
increase the initial pressure on the sensing area. This will be
further discussed in the propagation design space dimension.

The connection from the fabric to the electronics is usu-
ally implemented by standard electronic ribbon cables. For
the time being during this work, it is the most efficient and
stable way to connect big numbers of connections. The wires
can be soldered directly onto the metallic stripes from the
Sefar SimpleSkin fabric. The other end of the cables can be
fixed on clamp-on style headers, which can be interfaced
with matching headers on the electronics. During the Sim-
pleSkin project, iTV has also developed a prototype of em-
broidery wire connection, with solder bumps for connection.
However, the method was still in its developing stage and
thus is not suitable for the various applications this work
involves. We believe one of the major future challenges in
smart fabric integration is easy and cheap to access wiring
solutions.

2.3.1 Matrix Simulation
Next, we consider the matrix structure as a circuit network.
Take a 5-by-5 matrix as an example. The equivalent resistor
matrix is drawn in Fig. 13. Assume a situation that the whole
matrix is evenly pressed to a default level (Vdefault = 1kΩ),
then several points are differently triggered. Next one node
G26 is changed from 0.9kΩ to 0.1kΩ with 0.2kΩ steps;
eventually, it is decreased to an infinitely small value (near
Zero). The results in Fig. 12 a-e are reconstructed imagery
of the resistors’ matrix. The values in every cell are the
normalized voltage valuesVsense/VCC . First, the result val-
ues increase as the resistance decreases. From Fig. 11, the
resistance decreases as the applied pressure increases. Thus
the voltage value overall can be interpreted as related to the
pressure value. Second, we can observe that the changed
resistor influences the remaining nodes connected to the
same passive electrode (rows in Fig. 12), resulting in smaller
Vsense in those remaining nodes than without this changed
resistor. This phenomenon is most evident in the second
row (connected to passive electrode 26). To compensate for
this, we can use the same concept of the relative contrast
introduced before. For every row, the values are subtracted
by the minimum value of the row:

Vsense − Vrow minimum

VCC

Fig. 12 f-j shows the result after removing row minimums.
In the real application, this effect exists only in some

versions of the hardware. It is due to the physical char-
acteristics of different component devices. Specifically, the
row influence is noticeable in hardware version F1, F2, F3
mentioned in Table 17, but not observable in the remaining
versions. By ruling out variables from hardware iterations,
the reasons could be:

1) Typically one ADC is connected to multiple pas-
sive electrodes via analog switches or multiplexers.
When the passive electrodes are not being sampled
by the ADC, how they are handled is typically not
specified by the manufacturers. They can have an
impedance that is influencing the remaining of the
circuit.

2) In hardware version F3, the active electrodes are
driven by an analog multiplexer. When it is not the
current stimuli, the output of the channel is also
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Fig. 12. Matrix circuit simulation result.

Fig. 13. Matrix circuit simulation schematic.

unknown. Through experience, the best practice is
connecting the idle active electrodes to the ground.

2.4 Design Space Exploration

Designing a sensing system with TPM for activity recog-
nition is a multi-dimensional problem. Unlike integrated
circuit (IC) sensors such as IMU sensors, textile pressure

sensors rely on a piece or pieces of sensing fabrics. Pieces
of fabrics are more expansive and mobile than single IC
sensors, which increases the complexity of the design pro-
cess. Where and how to install those fabrics to retrieve
activity information is decided by many factors. Fig. 14
shows several examples of use cases and design concerns in
three subspaces: ambient, object and wearable. One should
consider: (1) the propagation of force from the source of the
activity to the sensing fabrics; (2) the intention of the user
when the activity or interaction happens; (3) the coverage
relationship between the sensing fabrics and the targeted
user or objects; (4) the mobility of the fabric sensor during
the activity and interaction; (5) and the sampling rate of the
fabric surface.

2.4.1 propagation

For user activity recognition, there are generally three sec-
tors as shown in Fig. 16: (1) target users, (2) objects or
other users that the target user is interacting with, and (3)
environment or static objects surrounding the target user.
Additionally, target users may also wear smart garments.
TPM sensors acquire activity information through the force
from the target users to the other sectors in the scope.
During the design process, how the force is propagated is
a differentiating factor.

1) Surface force can be a direct cause or result of the
activity - it can initiate a motion or deformation, or
the consequence of contact. In this case, the TPM
sensors are generally placed on the surface where
the direct interaction happens, such as on objects’
surfaces to detect touch gestures.

2) It can also be indirectly propagated from the activity
source to the sensor surface through a medium.
Such as on a tabletop of a dining table, the actions of
cutting, acquiring food with cutlery on the plate will
propagate through the plates to the table surface.

3) The sensor fabric can be part of smart garments, and
the motion of the surface of the garments would
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Fig. 14. The design concerns and example use cases in the ambient, object and wearable subspaces.

cause pressure force changes to the sensor fabric. In
this case, the target users do not interact with any
external objects, users or environment, but with the
sensing fabric itself (self ). An example is that when
users wear fitted garments, as they move their body,
they would feel the pressure from the garments - the
garments can then measure this pressure force.

In the first and second propagation cases, the TPM sensor
can either be installed on the target user or the objects and
environments. Moreover, for the third propagation method,
the sensor is attached to the target user, typically with a
fitted garment that covers the moving parts of the body
during the activity under investigation.

2.4.2 Intention
In an activity recognition system design with TPM, the
pressure force can be intended by the user or unintended as
the user is aware of the sensor; while the user can also
be unaware of the sensor system. Intended interactions are
generally human-machine input or control gestures, such
as a textile force-sensitive trackpad or sleeve [54] [38]; or

directly picking up and manipulate an object [55]. Unin-
tended interactions are usually ‘side-effects’ of the targeted
interaction, for example, the change of the body print while
a person is doing exercise on a sports mat [37] or the change
of fabric surface pressure of a fitted garment caused by the
user’s body motion [56]. Unaware intentions are naturally
unintended; however, with the unawareness, the sensor is
usually disguised as ordinary objects, and the users are
not necessarily notice their existence. This can be the force
signature detected from under a chair while the person is
doing different actions [57]; or detecting a person’s identity
from their footprints’ pressure profile [58].

The intention dimension is thus on the information level,
not the physical level. The same TPM sensor can be used
to recognize intended, unintended or unaware interactions.
For example, a mat for detecting different sports postures
can also be used to identify the person’s footstep; it can
also be used as a foot gesture input [59]. Thus for ethical
and privacy reasons, it is essential to identify what kind of
information the TPM sensors can acquire from the users.
Because some of the activities that can be detected from
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Fig. 15. In general the sensor can be placed in three fashions: exact
coverage, partial coverage and excessive coverage.

analyzing the sensor data may not be what the users are
aware of, or what the users are willing to disclose.

2.4.3 Coverage

In general, there are three categories of the relationship be-
tween a TPM sensor and the target object/user, as shown in
Figure 15: the sensor exactly matches the target object/user
(exact), only partially covers the target (partial) and signifi-
cantly larger than the target (excessive). This categorization
is made because for different type of relationship a special
pre-processing step may be required: for partially covering,
it needs to be taken into consideration that the sensor
may move during action; for a canvas style, segmentation,
tracking and tracing of the moving target may be required.

The relationship is usually defined as soon as the sensor
installation is designated. However it also changes accord-
ing to specific applications: a sportmat for mostly lying-
down exercises can be considered as an exact match, since
the user generally stays in the middle of a mat such as in
[37]; while for mostly footstep-only activities, a mat is an

Fig. 16. The propagation dimension of the design space.

excessive area for the users’ footsteps such as in [60]. Or a
wearable sensor patch placed on a limb can be considered
as partially cover, if it is used to detect the covered muscle
activity of the wearer such as in [61]; but if the sensor
is used to detect external events, such as emotional touch
towards the wearer user (or possibly a toy or robot), it can
be considered an exact match or canvas such as the work in
[62].

Overall coverage describes the spatial characteristics of
the design. It should also include the granularity of the
placement of the sensing nodes. If the sensing nodes are
constructed by a matrix, the distance between lines of elec-
trodes (pitch) and the width of the electrodes should be the
concerns in this aspect. In some occasions the sensing nodes
are individual sensors, the placement and the size of the
sensors need to be designed in this dimension. The coverage
of a TPM sensing system may not be a rectangular area. In
Chapter 8 the virtual surface concept is introduced to cope
with arbitrary shape and asymmetric granularity.

2.4.4 Mobility
The TPM sensors can have different mobility installation
methods.

1) The sensor is completely static during operation.
Normally such sensors are installed on the surfaces
of the environment or static objects such as the floor,
a static furniture piece, etc.

2) The sensor is movable, but within a restricted space.
Usually they are tethered with a cable to a comput-
ing device (including both computers via standard
USB or Android smartphones via USB-OTG) either
due to high data bandwidth requirement or power
supply. Such scenarios can be on a chair surface, or
under a mouse pad. Although movable installations
can also be wireless, but the application does not
require the sensors to be frequently moved from a
limited space.

3) The sensor is mobile, with wireless communication
and battery power. Most wearable or smart objects
require mobile level mobility, so that the users can
carry them around.

Sometimes, a system may only have static and movable
installations, due to the necessity of wired connection, if the
sensor has large amount of sensing nodes which exceeds
wireless transmission’s bandwidth. Or the application does
not require the system to be wireless, static or movable
installation is sufficient. It is apparent that whether the TPM
sensor system can be implemented in a wireless configura-
tion with the current popular standards is a major threshold
to divide the overall design space.

2.4.5 Sampling Rate
In activity recognition, the requirement of sampling rates
varies based on the application’s specific demands. For
example, sports applications need higher sampling rates to
capture the fast movements, such as left < 20Hz for body
motion or left < 100Hz for the impact of a soccer ball;
while applications such as posture recognition only need
slower sampling rates such as 10Hz or less. These numbers
are not hard defined, and shall be determined empirically
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based on the actual requirement of the application. Video
is a proper analogue of this case: in regular Internet video
websites, the standard frame rate is around 25Hz (or frames
per second). With this frame rate, most activities are visually
distinguishable. However, for sports videos such as a person
kicking a soccer ball, only a few frames can be captured
during the kicking moment. Thus high frame rate is needed,
such as 120Hz or higher, so that the action details can be
distinguished from the slow motion video.

As will be introduced later in Chapter 7, with the
current popular wireless standard Bluetooth serial profile,
an embedded system can stream to the host computer or
smartphone with up to 30KB/s bandwidth. This becomes
the design envelop of balancing between the number of
sensing nodes and the sampling rate for mobile mobility
systems. While with a wired data connection, the bandwidth
is up to 30MB/s, which is virtually not a bottleneck.

In the software aspect, the sampling rate can also be re-
stricted by many factors. For logging data, the writing speed
of the storage media, and whether it occupies the processor
during the writing cycle can both limit the sampling rate. If
the data needs to be processed and visualized per frame, the
computational capability of the processor and the efficiency
of the implemented programming language may not be
sufficient to process all the frames. This problem can even
be present when the data rate is the same, but the hardware
is generating a higher frame rate with a smaller matrix. If
those limiting factors are challenged with the sampling rate,
the typical result is data loss. More details on how this topic
is discussed in Chapter 6.

Thus while designing a sensor matrix, the sampling rate
should be considered in two aspects: what range of the
sampling rate is needed and what sampling rate can be
achieved, considering other design space dimensions, espe-
cially the mobility and coverage dimensions. For example,
if in the mobility dimension, wireless data transmission
is a hard requirement, then the data bandwidth may be
a bottleneck that limits combinations of relatively large
sensing node counts and a fast sampling rate. Then compro-
mises need to be found between the sampling and coverage
dimensions, such as the necessity of certain sampling rate
or sensing node density.

2.5 Three Design Subspaces

These dimensions above can be used to define and guide
the design specifications of TPM sensing in different use
cases prior to implementing the hardware and software of a
sensing system. The five dimensions can be categorized into
two groups:

• Core dimensions or abstract dimensions are Propaga-
tion and Intention. Because they define the function-
ality of the system.

• Practical dimensions or physical dimensions are the
remaining Coverage, Mobility and Sampling dimen-
sions.

The general approach is:

• First specify the design space according to the five
dimensions.

• Then design initial prototypes to cover the core di-
mensions: propagation and intention.

• Validate the idea of the system with the prototypes
via empirical studies.

• Improve the hardware and software to cover the
remaining physical dimensions.

• More thorough validation and user studies with the
improved system.

The last two steps can well be iterative for further improve-
ment.

While there are multiple dimensions as mentioned
above, based on the use cases, as introduced in Chapter
1, the design space can be divided into three subspaces:
ambient, object and wearable.

Fig. 17. Ambient application examples: a. smart mat - a person is doing
abdominal crunches; the left picture shows the pressure mapping at the
moment of the action in the top right, with feet facing upwards of the
pressure map; bottom right is the change of the average value of the
whole mapping over time during this set of repetitions. b. smart table
cloth - left shows a person pocking a steak with a fork, then cutting a part
off, and take the part away; middle is the pressure mapping at a moment
of this process; and right is the change of average value, and center of
mass coordinate of the plate’s pressure profile during this process.

2.5.1 Ambient Subspace
Ambient applications are usually immobile surfaces or large
pieces of furniture in the environment of people’s daily
activities, such as the floor or table. Due to gravity, people
are eventually in contact with a supporting surface. Also,
all the atomic activities will propagate onto the supporting
surface even with small details. Take a person seated on a
four-legged chair for example, when they are nodding; the
head motion can be detected by the force between the chair
legs and the floor. [57] This work evaluates TPM sensing
in the ambient subspace through the following empirical
studies:

Smart mat is a soft sports mat that detects sports activities
based on the pressure ‘body print’ from the users. A vari-
ance of the sport mat in the form of a carpet is also useful
for everyday pervasive tasks such as gait analysis.
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Smart Table cloth is a tabletop cover that detects users’
hand motions while dining that is propagated through
cutlery and plates to the table surface.

Fig. 18. Object application examples: a. Seat Cover - left two pictures
show a person sitting upright with a slouch posture and the subsequent
pressure mapping on the back of the chair; right two pictures show
the person lying very flat on the chair and the back pressure mapping.
b. Robot Skin - left two pictures show a person is grabbing a dummy
arm and the temporal change of the average pressure of many of such
repeated actions; right two pictures show a person stroking gently on a
surface.

Fig. 19. Wearable application examples: a. Leg Band - left shows the
placement of the pressure sensor on a person’s thigh, it is fitted with a
stretchable band; right shows the person doing leg press, the change of
the average pressure values and the pressure mapping at the moments
of the minimum and maximum average pressure. b. Soccer Shoe - the
left shows a show with pressure sensors installed at the upper face; the
right shows the change of average pressure on every patch for a certain
type of ball kick.

2.5.2 Object Subspace
Object applications typically look at the force from people’s
body (hand, body) to small or medium-sized objects (such
as a plush toy or a chair). They are usually mobile or
movable in the mobility dimension. Through the distinct
shapes of people’s body print and the force signatures,
various activities or people’s identity can be recognized.

Seat Cover is a furniture cover with TPM under conven-
tional fabrics. It is placed at the back of a chair to detect
seating postures. The empirical study showcases explicitly
how the software environment is built to give real-time
feedback from classification results.

Robot Skin is a TPM sensing patch that is meant to be
the skin or clothing of robots with which people would
interact. This application evaluates how emotion-related
touch gestures can be detected for human-robot interaction
studies.

2.5.3 Wearable Subspace
Wearable applications are mainly based on the contact be-
tween the body and the fabrics. When people are moving,
the skin is essentially pressing against the covering clothes.
Therefore, the pressure on the clothing fabric can be related
to people’s activities. The TPM can be placed at either
the pressed surface when people are interacting with the
outside world (e.g., at the palm side of the glove, shoe
front surface) or pressed onto the body with a compression
garment that applies initial pressure.

Leg Band and related Trainwear shirt utilizes the idea that
the pressure on a fitting wearable garment from our body is
related to the body and muscle activities. TPM can be used
to perform planar pressure mechanomyography.

Soccer Shoe elaborates the advantages of the versatile tai-
loring, fast sampling speed and wireless data transmission
to cover the top layer of a soccer shoe to measure the impact
of kicking a soccer ball, which happens between 10 to 20 ms.

The subspace separations appear to be similar to the
mobility dimension, but the subspaces are a combination
of all the design space dimensions: the wearable subspace
most likely are mobile devices, but mobile devices can also
be in the object or ambient domain, such as beacons. Alter-
natively, a design for the wearable subspace can be movable
in the mobility dimension during the initial prototype stage,
and develop to a fully mobile device in later refining stages.
The design space dimensions and subspaces are thus gen-
eral guidelines based on existing studies. The aim of this
work is to offer a universal starting platform for elaborating
existing researches or exploring novel applications with
TPM technology.
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Chapter 3 Ambient Subspace Empirical Stud-
ies

Smart environment systems typically use sensors integrated into the physical world to detect users’ specific activities to
adapt to the activity contexts, gather information about the environment usage for infrastructure management, etc.
There are a wide range of ambient sensing categories including (1) ranged sensors, such as cameras, infrared arrays,

proximity sensors. (2) contact sensors, such as RFIDs, capacitive floor mats, individual FSR sensors, the TPM sensing
systems in the ambient space also fall in this category. (3) physical parameter sensors, such as smart utility meters, ambient
light sensors or atmosphere sensors.

Ranged ambient sensor and physical parameter sensor systems typically cover bigger space in the physical environment
with single points of sensors. These ranged sensors can also be installed at the ceiling. These two features give them better
independence and unobtrusiveness. However, the ranged sensor systems suffer from several problems. The obstruction
of the target users or activities can result in invalid detection outputs, or undermine tracking processes. Complex
background and especially for cameras changing lighting also challenge object detection and filtering algorithms as well
as computational cost.

Contact sensor systems compliment the disadvantages of the ranged sensor systems at obstruction and complex
background problems. They usually are more specific in the activity detection tasks they carry. For example, RFID tags are
usually only able to detect the usage or presence of the user at specific objects and locations; while ranged systems such as
a computer vision system, can detect various activities with a single camera input.

TPM sensor systems physically are in the contact sensor systems’ scope. However, the information they offer is more
similar to some ranged computer vision sensors since the TPM sensors offer pressure imagery. Typically the data TPM offers
can be processed with computer vision techniques. Moreover, since the contact pressure is close to zero at those sensing
nodes where there are no other objects, TPM imagery has the unique advantage that the background is usually clean of
any complexity, because where there is no object or user, there is no external pressure. Also, there are usually no irregular
textures in TPM imagery comparing to real camera images, such as texture patterns on clothing. As a result, adapting
computer vision techniques in TPM imagery typically deal with the contour, shape and simple profile. As computer vision
techniques are developed to process much more complex images, they have proven to be quite effective with the much
cleaner and simpler TPM imagery. Artificial neural networks trained with images can also be used to extract features and
classify TPM imagery in the form of transfer learning.

From the five design dimensions, ambient space normally spans over direct and indirect in the propagation dimension.
Ambient space can cover the whole Intention and Coverage dimensions. In the Mobility dimension, ambient space stays
mainly in the unmovable part; while some designs can be movable or mobile, with relatively smaller sensor patches
attached to movable parts of the environment such as a door or dining tray. The Sampling dimension of the ambient space
is focused on the medium and static range.

This chapter discusses three empirical studies:

• Smart Table Cloth: this study evaluates the idea that activity can be detected indirectly in the Propagation dimension,
from the source of the action which is users’ hand holding cutlery, propagated through the plate onto the tabletop.

• Sports Mat: in this study, a TPM matrix is implemented inside a sports mat to discover differences in the dynamic
body print from various exercise activities.

• ID Carpet: a TPM matrix similar to that in the Sport Mat study is implemented under a carpet to detect a person’s
identity from the dynamic pressure change of single footprints.
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3.1 Table cloth

TPM sensors do not necessarily need to be directly placed
with the source of activity, which is the indirect method in
the Propagation dimension of the design space. In particular,
the force propagated from the activity source, through the
object, to the supporting structure would represent distinct
patterns of the activity source. To study such a method, a
dining scenario is designed: a TPM sensor takes the form of
a piece of table cloth, placed under dining plates, to detect
and distinguish different micro-actions of acquiring food.

From the design space point of view, the core dimensions
Propagation and Intention of the system should be indirect
and unintended/unaware. In the physical dimensions, in
Coverage it should be excessive so that the surface can
enclose the dining containers. In Mobility, since a table cloth
is typically fixed at the dining area; therefore, unmovable or
movable is sufficient. Yet it is possible that a dining tablet
needs to be carried around a bigger area such as dining halls
or hospitals. Therefore mobile can also be a possible range
in the Mobility dimension. In Sampling, the actions of cutting
and acquiring food are typically moderate speed activities;
therefore the medium sampling rate is sufficient.

This study includes 10 participants, each having con-
sumed a total of 8 meals chosen from 17 possible main
dishes (divided into four classes according to the predomi-
nant cutlery action involved) combined with 6 possible side
dishes (divided into 3 classes). 1

Fig. 20. Table cloth study: prototype hardware illustration.

3.1.1 Empirical Case Introduction

A wide range of global medical studies have shown that
dietary habits are related to risks of various health problem
from digestive problems, obesity [65], diabetes [66] [67] to
coronary heart disease (CHD) [68] and even gastric cancer
[69]. Food intake patterns are also an important issue in
elderly care, in healthy children development and in general
physical and mental well-being. In summary, it can be said
that nutrition habits are at least as important for health
and well being as is physical exercise. As a consequence,
in the past decade, much research in pervasive computing
has been devoted to using various sensor systems to auto-
matically monitor eating habits to improve the traditional
methods for dietary tracking such as self-recalls, surveys,

1. This section is based on the publications [63] and [64]. As the
leading author of the publications, I have only included my own work;
unless other authors’ contribution is an integral part of explaining my
work, in which case it will be explicitly stated. Since the published work
has gone through extensive wording, some sentences and passages
have been quoted verbatim from the said sources.

caretakers, etc. Recently, first consumer products such as
sensor-equipped cups, forks, in-ear microphones have also
emerged. However, while automated monitoring of physi-
cal exercise has become commonplace, automatic nutrition
monitoring has so far had very little impact on real-life
applications. Instead, state of the art in electronic nutrition
monitoring support is smartphone apps that help users
note down their daily dietary intake. Such apps make self-
reporting easier; however, they cannot fully eliminate prob-
lems such as compliance and reliability that are inherent in
manual reporting.

The main challenge of automatic dietary monitoring is
finding sensors that are (1) unobtrusive, cheap and suitable
for long term every day use while (2) providing sufficient
information on nutrition related behaviour. An overview
nutrition monitoring approaches can be found in [70]. Ex-
amples of approaches that were investigated to date range
from spotting nutrition related gestures with motion sensors
[71] through detecting chewing/swallowing with in-ear or
neck-worn microphones [72] [73], textile capacitive collar
sensors [74], and neck mounted EMG electrodes [75], to
instrumented cutlery [76] and camera based food analysis
[77]. On the other hand, ambient sensing mostly focus on
event level activity recognition (e.g. eating schedule) by
tracking food items being placed/removed in the fridge and
cupboards [78] [79] [80].

For big meals such as lunch, dinner, or elaborate break-
fasts, food intake is primarily determined by cutlery use.
This includes not only the actual intake (putting food into
the mouth), but also acquisition operations such as cutting,
poking, and scooping. This work is motivated by the obser-
vation that such operations and the way they are performed
are closely related to the type of food being consumed. Thus,
food such as steak requires cutting before eating. Chopped
meat, such as goulash, might require only “poking” with a
fork. Rice, mashed potatoes, and so on are “scooped”, while
noodles are often swirled onto the fork. If such different
actions can be recognized, they can provide information
that can be used to augment other sensing modalities to-
wards more detailed dietary monitoring. Further informa-
tion, which we obtain by detecting the plate on which an
operation has been performed, can reveal how much main
dish and how much side dish has been consumed. Finally,
the frequency and number of cutlery actions are obviously
related to eating speed and the amount of consumed food.
These considerations have led to the development of “smart
cutlery”. Here, we investigate the value of a different sens-
ing modality that can be used either instead of or in ad-
dition to such augmented cutlery: pressure-sensitive eating
surfaces that can detect and analyze subtle pressure signals
caused by the application of cutlery on the plate. The two
sensing modalities we’ve selected are largely unobtrusive.
Our textile pressure-sensing matrix is covered by a water-
resistant layer topped by a traditional tablecloth (that can
be washed or exchanged); as such, it can be permanently
kept on a family table with no relevant disturbing effect.
Furthermore, our simple FSRs can be installed under any
firm surface, such as a dining tray or personal eating surface.
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3.1.2 Hardware Requirement
A simple meal tray is used as the base structure (see Figure
1). The tray is inverted so that the space below its rim can
be used for housing the wirings and electronics. As Fig. 20
shows, a layer of the TPM fabric is placed on top of the tray
as a smart tablecloth. The force sensitive resistors (FSRs)
are placed underneath the four corners. Custom spacers are
added to focus all the weight from the tray platform into the
sensitive area of the FSRs.

The electronics is hardware version F-2 from Table 17
in Chapter 2. The matrix size is 30-by-42 with a pitch of 1
cm. Every pixel of the TPM is scanned at 24-bit and 40Hz.
The FSRs are scanned at 5120Hz, but every 128 samples are
calculated as average to strongly suppress noise and match
the TPM’s sampling rate of 40Hz. Instead of soldering wires
right at the edge of the sensing area, the metallic stripe layer
of fabric is used to extend the connection so that it can be
folded underneath the platform. Therefore, the users only
feel a continuous, fabric-only surface. This also highlights
how a textile integration technique can make the smart
fabrics more unobtrusive.

Fig. 21. a. object placement, b. frame and object detection after signal
conditioning.

3.1.3 Experiment
For data collection, we conducted an experiment with a
group of 10 users: seven males and three females who
ranged in age from 22 to 27 years old. Group members
included vegetarians and people who were left-handed, and
members came from various cultural backgrounds across

Eurasia. Our primary goal was to distinguish between dif-
ferent actions as listed in Table 1. During the study, each
volunteer chose two dishes from each class in the provided
menu (see Table 1). Overall, volunteers consumed eight
meals (lunches) over a two-week period. Soup or salad was
chosen to accompany the main dishes in equal numbers, but
only one of the two was served as a side dish in each meal.
The order of meals was decided based on the convenience
of the cook, availability of the persons each day, and overall
scheduling issues.

To simulate a canteen/cafeteria/restaurant environment,
shift the volunteers’ attention away from their eating ac-
tions, and introduce realistic noise, the volunteers were
encouraged to watch TV and socialize with other people
during the experiment. Also, we arranged to have people
walk around in the same room because a pressure sensor to-
gether with a mass constructs a simple accelerometer, which
can pick up vibrations from the floor. The volunteers were
not restricted to use specific tools for specific actions. Some
people, for example, used a spoon for scooping risotto/rice
or gathering salad, while others used a fork; and some used
only a fork for stirring noodles, while others used a knife
or spoon to assist the fork. Although the sensor matrix is
capable of tracking multiple objects, it was not the focus
of this case study, so the volunteers were not allowed to
rearrange the plates. The containers were weighed before
and after the meal to determine the consumption ground
truth.

3.1.4 Dataset and Features
The data analysis schemes include the following steps: pro-
cessing the raw data from the sensors, extracting features,
verifying the sensing modalities by cross-validation from
labelled data, and gesture spotting from data recordings
without labels.

The raw data stream of the matrix (Source 1) is a standard
TPM Stream introduced in Chapter 8, while the raw data
of the four FSRs (Source 2) is four-channel. Every frame
in Source 1 is up-scaled four times on each dimension
to 120 × 168 using bicubic interpolation. The background
(where there is no object placed) is filtered out using a
dynamic threshold, calculated by the histogram of the 2D
frame. Because the focus is not dynamic tracking, the ob-
ject detection and segmentation part of data processing is
simplified. The 2D frames within a second are accumulated
per pixel basis, then Atherton and Kerbyson’s phase coding
method [81] is used to locate the three objects (plate, bowl
and glass). Because in this experiment the food containers’
placement is not altered, the majority of the positions and
radii of the 3 objects are used as the static location. The
original data stream is then segmented into streams of 3
subframes (P1, P2, and P3), which is the pressure mapping
changes over time of the 3 containers. An example of the
signal conditioning result is shown in Figure 2. The four
FSRs are mean-filtered and the data stream named as R4.

Because the food containers are rigid objects, the overall
shape of each pressure mapping is stable. However, the
strength and focus of the force changes as people use
cutlery to handle the food. Therefore, for every subframe,
we calculate the spatial average of pixels (weight) and the
weighted center on each dimension (center(x, y)). Then,
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TABLE 1
Table Cloth Study: Action Classes and Menu Options

Class Index Action Class Menu Options

Main Plate (P1)
C1 Stir Spaghetti with meat sauce, Asian noodles, instant noodles, spaghetti with vegetarian sauce
C2 Scoop Chilli con carne with rice, salmon with rice, chao fan (fried rice), risotto
C3 Cut Schnitzel, steak, burger steak, vegetarian soya schnitzel, vegetarian soya steak
C4 Poke Chicken nuggets, curry wurst, mini-frikadeller, vegetarian soya nuggets

Side Plate (P2)
C5 Scoop(liquid) Chunky vegetable soup, creamy soup
C6 Collect Garden salad (green leaves), bean salad, wurst salad

Glass (P3)
C7 Remove/Replace Any drink

Fig. 22. Table cloth study: confusion matrix of table cloth and four FSR sensors.

within every time window containing an action event (seg-
mented from the ground truth), the sequences of weights
(w(t)) and centers (c(t)) are normalized according to the
mean and standard deviation values. Next, we extract 16
overall features that describe the signal’s statistic and dy-
namic properties, calculating the mean values of w(t) and
c(t) before normalizing: The features used during the study
are:

• mean of w(t)
• mean of c(t)
• std of w(t)

• std of c(t)
• max and min of w(t)
• range of w(t)
• max and min of w′(t)
• mean of | w′(t) |
• max and min of w′′(t)
• mean of | w′′(t) |
• central frequency of the FFT spectrum of w(t)

For the four FSRs, information containing only individ-
ual sensors should not be used since they are biased by
specific container placement. Therefore, the 4 channels of

26



Chapter 3 Ambient Subspace Empirical Studies

Fig. 23. Table cloth study: signal example of the table cloth and four FSR sensors.

data are converted into a sequence of the average of four
channels (f(t)). Then the following set of 12 features is
chosen for each event:

• mean, std, max, min and range of f(t)
• max and min of f ′(t)
• mean of | f ′(t) |
• max and min of f ′′(t)
• mean of | f ′′(t) |
• central frequency of the FFT spectrum of f(t)

For Source 1 (TPM), the classification process is 2-staged:
firstly a KNN classifier takes only the range and std of
w(t) and c(t) of all three objects to decide on which plate
the action is happening. Thus the non-action class (C8)
and the objects where only one possible action is defined
(in this case, remove then replace the glass - C7); classes
of the same objects are also grouped (C1-C4 and C5-C6).
Then for each object, a separate confidence-based AdaBoost
algorithm (ConfAdaBoost.M1) with decision trees as the
base classifier is used. Each classifier takes only the 16
features and is trained with only the respective classes from
the object. For Source 2 (FSRs), again the same ConfAd-
aBoost.M1 algorithm is used. Since it is also interesting to
investigate how the two sources can compensate for each
other, a sensor fusion process is done by using the matrix
to decide the object; then separate ConfAdaBoost.M1 based
classifiers take corresponding features from the matrix and
FSRs.

The spotting approach is based on the observation that,
in general, the only changes in the weight distribution on
the plate come from the handling of food. Thus all we need
to do is to analyze the dynamic change in the data stream
(in the pressure matrix case, the data stream is summed
weight w(t) and weighted center c(t) of each, and in the
four FSRs case, the average of the four channels f(t)). For

actions when the person is acquiring food from the plates,
an adapted threshold is applied to the standard deviation
of the data stream. This results in a binary mask along the
time domain, where logic ‘1’ marks a possible action. For
actions such as removing/replacing the object (e.g., drinking
with the glass), only the transient state of the removal and
replacement can be registered by the previous method, and
the state when the object is not on difference between data
stream and the corresponding polynomial curve fitting at
every sample point. The use of polynomial curve fitting
instead of linear approximation is due to the fact that the
overall data stream of the complete meal is a decreasing
curve instead of having a stable average value, which is
caused by the decreasing of food and the sensor material’s
settling effect.

Through combining the two masks, removing small
instances (less than half a second) and grouping adjacent
instances (less than one second), events can be spotted. The
events are then classified by the same method mentioned
above.

Fig. 24. Table Cloth Study: average Spotting F1-score from every partic-
ipants with different input source(es) in person-dependent/independent
cases.
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3.1.5 Classifying Action Types

The first evaluation step is the classification of individual
cutlery actions (e.g., single poke, single cut, etc.) on pre-
segmented data. Note that the data also includes segments
from the NULL class, which encompasses the setting of
the table and times when the user applies the cutlery
without actually taking food (such as placing them on a
plate without eating). In the person-dependent case, ten-
fold cross-validation with balanced training was performed.
For the person-independent case, leave-one-participant-out
cross-validation was conducted.

Fig. 22 shows the average results of both person-
dependent and -independent cases as confusion matrices,
and the detailed spotting results of each person are dis-
played in Fig. 24 as F1-scores. As the figure shows, on
the person-dependent case, approximately 90% of individ-
ual cutlery actions are correctly recognized by all sensing
modalities, with the combined classification going up to
94% and the FSR-only case being just below 90%. It is also
important to note that the NULL class recognition goes
up to 97 percent. The primary source of confusion came
(as expected) from C1 and C2, and C3 and C4. This is
possibly because the food content of each pair has a similar
texture and thus requires similar force to acquire (risotto and
noodles are both soft and scattered, while steak and nuggets
are more rigid and have distinguishable pieces).

The accuracy of the person-independent case is signif-
icantly lower; the best result achieved by combining both
sensing modalities is 77%. Given the individual variance
of eating styles, the diversity of our participants and menu
selections, and the small sample size, this is not surprising.
During the study, diversities such as people using different
cutlery for the same action are observed(both forks and
spoons were used to scoop risotto, for example). Also,
participants have different uses of the same fork for the
same dish, as when some participants stirred noodles with
their fork at a flat angle, while others stirred with the fork
almost horizontal. In addition, some participants first did a
scoop-like action to locate a big bulk of noodle threads, and
then started slowly flipping the fork, while others merely
pierced the fork into the food and the major action was to
swiftly rotate the fork. In such cases, the former could be
classified as scooping (C2).

The average accuracy values for different containers in
the combined modality case were 92%, 93%, and 100% for
P1 (C1-C4), P2 (C5-C6), and P3 (C7), respectively, for the
person-dependent case; and 63%, 68%, and 99% for the same
containers, respectively, in the person-independent case.
The localized accuracy seems to decrease as more action
classes are defined.

3.1.6 Spotting Results

As Fig. 25 shows, the classifier is trained by the other meals
of the same participant, and leave-one-meal-out validation
is performed. The classified instances are then compared
with the ground truth. A match is defined by a significant
(> 50%) overlapping between the classified instance and the
ground truth in the time domain, with the two labels having
the same class. Thus, precision and recall are calculated, and
the F1-score is used to evaluate the spotting result.

For the person-dependent cases, the F1-scores range
from 0.8 to 0.9; for the user-independent cases, they range
from 0.6 to 0.8; and the combined system mostly scored the
best by a few percentage points. Overall, this is consistent
with the pre-segmented classification results.

3.1.7 Estimating Food Content and Weight

The motivation for tracking and recognizing cutlery actions
lies in their relevance to various aspects of food monitoring.
The spotting results indicate that the estimation of food
intake speed is possible at least at a qualitative level. The
next aspect is the detection of food type. As described, cut-
lery usage is suitable to distinguish between certain broad
categories related to different eating techniques. Essentially,
it is the assumption that consuming a meal belonging to a
particular category implies that the majority of the cutlery
actions performed will fall within the specific class (for
example, when eating a rice meal, the majority of actions
will be scooping).

Majority analysis is applied to the recognition data. In
the user-dependent case, 78 out of the 80 consumed main
dishes and 74 out of the 80 side dishes were classified
correctly. In the user-independent case, 67 out of the 80 main
dishes, and 68 out of the 80 sides were correct. Obviously,
such performance is based on fixed menu categories in a
study; however, this core idea can help shrink the number
of possible food types in real-life applications.

The final high-level analysis aspect is food weight and
volume estimation. Obviously, high-precision weight sen-
sors exist that could be placed in the tray. However, the
question is how well the estimation As mentioned in Chap-
ter 2, compared to rigid force sensors and weight scales,
flexible sensors are more sensitive to dynamic transient
changes, but less likely to return to the exact state with the
same weight, yielding poor repeatability. We compared the
food weight difference and the difference of the four FSRs’
average output before and after a meal. As shown in Fig.
26a, between the weight range of 0.3 and 1.2 kilograms, the
root mean square of the variation takes approximately 16
percent of the range. This, however, can be further improved
by stacking rigid scale sensors with the FSRs.

Another possibility for estimating the amount of eaten
food is to count the individual cutlery operations. The
general idea is that, at least statistically, people take similarly
sized bites. The advantage of such an approach is that it
would allow the system to break down the amount into
different classes of food as given by the different types of
food acquisition actions and different plates (main dish, side
dish) from which they were taken. To see how feasible this
approach is, the ground truth of bite times and food weight
differences are summarized to derive the average weight-
per-bite value of each meal in Fig. 26b. As the figure shows,
although the average bite size varied among participants
(for example, the female participants usually had a smaller
bite size), for a fixed participant, the fluctuation range
was limited. By comparing the main dish (four categories
of meals) and the side dish (2 categories), the range of
variation in average bite size tended to increase as the food
diversified.
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Fig. 25. Table cloth study: dietary details extracted from a meal (a) data (average pressure) and the spotting result (b) comparison of dietary details
between the ground truth and machine learning result.

Fig. 26. Table cloth study: the link to food weight approximation from
the study result. (a) FSR measurement compared with real consumed
weight. (b) average bite size fluctuation of all paritipants (max, min, 75
percentile and 25 percentile of ground truth).

3.1.8 Conclusion

In the user-dependent case, the system is able to correctly
identify up to 94% of individual actions. Given the fact

that, in general, dietary monitoring is likely to require a
statistical analysis of such actions, this can be considered
sufficiently accurate for most purposes. Clearly, in user-
independent cases — in which individual variations in how
cutlery is used obviously exist — the accuracy lowered to
approximately 77%. In terms of comparison of the textile
pressure matrix with the FSR, it is clear that the TPM’s
ability to precisely locate dishes outweighs the disadvan-
tage of noisier signal quality. This manifests itself in the
nearly 10 percent higher accuracy in the user-dependent
recognition. Understanding how the position information
can be leveraged in the case of multiple users and more
complex dish setups (such as bowls from which food is
taken onto personal plates) can be an interesting subject of
future research.

The results of this study clearly show that pressure-
sensitive surfaces such as TPM table cloth analyzing cutlery-
related actions are a valuable source of information for
dietary monitoring. As outlined at the beginning, dietary
monitoring is inherently a multimodal problem; obviously,
as with other information sources, surface pressure sensing
is insufficient to cover all daily dietary intake aspects, par-
ticularly with snacks and casual drinking. However, with
its unique unobtrusiveness regarding the dining experience
for users during meals, we believe that surface pressure
sensing will become a major contributor for augmented and
connected dietary monitoring systems that could include
ambient, portable, and wearable devices.

In a grander scope, this study shows that TPM can be
used as an unobtrusive activity detection method that is
not coupled directly with the activity source, but through
objects that the activity source is interacting with.

29



Chapter 3 Ambient Subspace Empirical Studies

3.2 Smart-Mat
3.2.1 Introduction
This project is motivated by the observation that many
strength related exercises involve contact between different
body parts and the ground, resulting as a ‘body-print’. For
different exercises, a characteristic dynamically changing
body-print can be identified. As a soft material based sensor,
TPM can be embedded under the surface of exercise mats
to measure such body-print changes. This also means the
monitoring exercises can be performed without the need to
wear any additional sensors. In contrast to fitness trackers
and smartwatches that are detecting gym exercises, these
IMU based sensors can only accurately detect motion on the
attached body part. For example, a smartwatch may be able
to detect upper body exercises, but not the swing of the arm
which is not wearing the smartwatch, or leg exercises. 2

We consider the core design space dimensions. Since
the body-prints are direct results of the user’s activity on
the floor, the propagation dimension is direct. As the goal of
exercise activities in this study is not creating those body-
prints, the intention dimension is unintended. For an sports
mat, normally the users have a fixed position relationship
with the mat while doing exercise, and the mat has a
dimension that approximately covers the area of the users
while they are lying down. Therefore the coverage dimension
should be exact.

This empirical study is conducted in two phases. In
Phase 1, a pilot study with a prototype hardware explores
the plausibility and the algorithms to detect various exer-
cises. The hardware in Phase 1 made compromises in the
coverage dimension due to the technology limitation at the
time. An improved hardware that meets all design space
requirements enables Phase 2 of this study. In Phase 2,
the TPM enabled sports mat can distinguish even minor
variations of the same exercise category.

3.2.2 Phase 1 Study: Prototype Hardware
In the first phase, the prototype uses an early version of the
TPM system. The electronic hardware is Version F-2 from
Table 17 from Chapter 7. The hardware follows the archi-
tecture based on FPGA and parallel ADCs, and achieves a
scale of 80×80 matrix (6400 sensing points) at the sampling
rate of 40 frames per second. The operation is controlled
by an Altera EP4CE6 FPGA, another Altera EP3C24Q240
FPGA is used for powering the 80 active electrodes. Three
of the four 24-bit ADCs operate in parallel to measure the
resistance of the passive electrodes. Every ADC has a 32-
to-1 analog multiplexer to route the analog signal into its
input. The output of every ADC is sent to the computer via
a dedicated virtual COM port (VCP) channel to the data
receiving computer. A program implemented in C++ with
the Qt environment receives, parses and logs the data for
further analysis.

Details about the hardware are described together with
the systems from other studies in Chapter 2. The electrode
arrays are hand-tailored laminated aluminium stripes with
a pitch of 1cm, since by the time the SimpleSkin universal

2. This section is partially based on the publication [37]. Section
3.2.3 and Section 3.2.4 are brief summaries from Sundholm, Mathias’s
contribution. The rest of the chapter is my own contribution.

Fig. 27. Exercises performed in the experiment: I.push-up, II.quadruped,
III.abdominal crunch, IV.chest press with dumbbell, V. bridge, VI. seg-
mental rotation, VII. calf raise, VIII. squat, IX. biceps curl with dumbbell,
X. lunge. The pictures on the right are typical frames corresponding to
the exercise.

metallic stripe fabric has not been developed. The middle
layer is the CarboTex fabric produced by Sefar.
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Fig. 28. Smart-mat Phase 1 algorithm flow chart

3.2.3 Identify Exercise Categories
Ten exercise categories are defined as shown in Fig. 27, and
performed by 7 participants. These exercises are compiled
based on the training commonly used and recommended
by fitness trainers. From Fig. 27, every category in general
has its specific dynamic body-print which can be already
visually distinguishable. Every participant performed 10
exercises for 2 sets × 10 repetitions.

In this study, feature domain is defined as temporal se-
quences of 10 image moments of every frame (3 central
moments and Hu’s seven moments [82]). It is essentially
the frame descriptor concept which is described in Chapter
8. Then features for classification are calculated from a time
window of the feature domain as mean, standard deviation,
minimum, maximum, range of the window, and minimum,
maximum of the approximate 1st derivative.

10-fold cross-validation is performed with a KNN clas-
sifier. For the same person, leave-one-set-out is performed.
Every repetition is individually annotated, and taken as a
single sample. The confusion matrix is shown in Fig. 29
(a) with 88.7% accuracy. For the person independent case,
leave-one-participant-out is performed. Instead of using the
annotated repetition, a sliding window is used with 100-
sample window size and 10-sample window step within
every set. Within each set, it is assumed that only one
exercise exists. Thus majority voting decides the class of the
set. The resulting accuracy is 86.4% as shown in Fig. 29 (b).

3.2.4 Counting Repetitions
Counting exercise is performed by dynamic time warping.
For every feature domain, the template is calculated by the
following method:

1) interpolate all the training exercise repetitions to the
same length;

2) first a crude template is produced by calculating the
average at every point in time of all the training
exercises;

3) then the training repetitions are shifted, so that has
the least error from the crude template, then padded
with border values;

4) every training repetition is then given a weight,
which is the inverse value of the error between the
weight and the crude template;

5) the final template is then calculated as the weighted
average of the training repetitions.

Then a sliding window is used. Every window τ is
compared with the template as a 10-dimensional dynamic
time warping process. The resulting measure µ(τ) is defined
as the warping path / warping distance. Thus a peak of the
time sequence of µ(τ) indicates currently there is a local best
match of the template, and thus can be used to determine
the central time of the repetition. A threshold and tolerance
are combined to find the highest peak when there are several
peaks inside a small period.

Every participant generates a group of training tem-
plates. A cross-validation of each participant tested with
every other participants’ templates is carried out. By com-
paring to the time ground truth, the average counting F1-
score is 82.8%. The best template group is selected from the
cross-validation process, and the resulting counting F1-score
is over or close to 90% in most cases, only 2 exercises from
certain participants are below 60% and 3 more below 70%.

3.2.5 Discussion of the First Phase
The result of using the ‘smart-mat’ for sports exercise
recognition has motivated the further progress of the large
scale hardware direction. Version F-2.1, F-4 from Table 17
in Chapter 7 are specifically designed for a better inte-
grated smart-mat system. Not only the hardware is more
mature and integrated, but the analog part that measures
the passive electrodes has also been significantly improved
to address multiple problems such as the ‘row shadow’
problem and broken line problems in the hardware of the
paper [37]. The ‘row shadow’ is a phenomenon that one
pressed sensing point will influence all the points connected
to the same passive electrode, as explained in Chapter 2.3.1.

The introduction of the metallic stripe fabric by Sefar
has also contributed to the next phase. It superior to the
hand-tailored aluminum foils in terms of uniformity and
durability. Aluminum foils are easy to break after repetitive
deformation. Also, the solder joints between the foils and
the copper wires connecting to the electronics are easy to
break, leading to some of the broken line problems.

In [37] the data analysis is offline. As a further improve-
ment, openCV in Qt has been used to produce an online
application that performs feature calculation, classification
and peak counting (without dynamic time warping). 3 The
counting result is also directly sent to a Google Glass
through the wireless network for real-time feedback.

In future work, apart from gathering more data, with
more exercise variances with the improved hardware, it is
interesting to evaluate if the workout quality can be dis-
tinguished or measured. In computer vision, some skeleton

3. The result has been demonstrated live interactively to public
visitors on Cebit 2015 in Hannover for 5 days, and Government Open
Door 2016 in Berlin for 2 days, with exercise counting of push-ups and
abdominal crunching.
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Fig. 29. Smart-mat Phase 1 classification confusion matrix: a. leave-one-recording-out person dependent result; b. leave-one-person-out with
majority voting within set.

models can be constructed from the 2D or 3D image for
activity tracking [83]. This inspires a similar algorithm pro-
posal for matching a skeleton model based on the ground
body-print pressure profile.

3.2.6 Phase 2 Study: Distinguish Minor Variances

The work of Phase 1 has proven that the distinct dynamic
body prints can be used to distinguish different exercises.
However, these exercises are drastically distinctive from
each other. Therefore the exercises from Phase 1 is re-
phrased as ‘exercise categories’. In Phase 2, we intend to
distinguish further minor variations of exercises from the
same category. Table 3 lists the categories and variations
this study has defined. The exercise from Phase 1, standing
dumbbell curls, is removed since it requires weights, and
also the propagation from the design space point of view is
indirect instead of direct as the other exercises. Each category
has a shared reference pose. The variations are different
types of exercises, different range/direction of motions, or
different balances.

The dataset is consisted of 3 recordings from 12 partic-
ipants each. 9 exercise categories and in total 47 exercise
variations. Each variation is repeated for 10 times in every
recording.

In Phase 2, the TPM enabled sports mat sensor has
a larger area of 2-by-1 meters compared to the 0.8-by-0.8
meters. This allows the surface to cover the entire person’s
exercise range. While in Phase 1, when a person is lying
down, the prototype could only cover the upper body; or
when the person is in the bridge pose, it could only cover
the upper shoulders. Thus the feet or legs cannot be covered
by the Phase 1 prototype. Also, in the lunge exercise, one
foot has to step out of the Phase 1 mat, making it impossible
to acquire any information regarding both feet such as the
distance or balance.

The feature extraction workflow described in Fig. 28 has
been improved through other studies in this dissertation by
the time of Phase 2, with details explained in Chapter 8.
In particular, the pool of 10 frame descriptors is expanded
to 17. Also, while converging temporal sequence of frame
descriptors into time domain features, instead of simple
statistical features, frequency features through Fast Fourier
Transform and Wavelet Transform are added, resulting in 39
temporal features instead of 7 in Phase 1.

Fig. 30. Smart-mat study Phase 2 setup

3.2.7 Deep Features

The frame descriptors rely on image moments to describe
the information about the shape. However, when it comes
to minor variations when two classes share a common ref-
erence shape, these frame descriptors become less effective.
One alternative is to use deep learning techniques. There are
several pre-trained convolutional neural network models
for image classification such as GoogleNet or Inception-
V3. In general, these networks are trained by thousands of
images to extract detailed information. Then the features
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TABLE 2
Smart-Mat Phase 2 Study: Deep Features and Frame Descriptors

Comparison

Deep Features Frame Descriptors
exclusive cross-val exclusive cross-val

F-Tree 0.218 0.392 0.284 0.459
L-SVM 0.332 0.568 0.301 0.686
C-SVM 0.304 0.611 0.350 0.878
F-KNN 0.218 0.599 0.220 0.929

W-KNN 0.232 0.519 0.228 0.843
B-Tree 0.361 0.898 0.382 0.920

are fed to fully connected classification neural networks to
classify the image. For our purpose, which is to extract TPM
imagery information, the outputs of the last layer before
the classification network can be used as features. Instead
of using the pre-trained models’ classification network, the
said features are taken as deep features in the spatial domain,
which is similar in concept with the frame descriptors. More
details on the deep features are explained in Chapter 8.

This study takes GoogleNet as the deep feature extractor
model. It generates 1024 deep features, of which 362 have
constant zero values. Then the same 39 temporal features
are performed on the time sequences of the first 20 non-zero
deep features.

3.2.8 Results
To compare the performance of the deep features and frame
descriptors, the following procedure is used:

1) The dataset is divided into the training dataset and
testing dataset with data from different participants
in the two groups.

2) 5-fold cross-validation (cross-val) with the training
dataset is performed on different classifiers to com-
pare the performance of each, including: fine tree (F-
Tree), support vector machine with linear kernel (L-
SVM), support vector machine with cubic kernel (C-
SVM), fine K nearest neighbour (F-KNN), weighted
KNN (W-KNN) and bagged trees with 500 learners
(B-Tree).

3) The trained classifier models are tested on the test-
ing dataset, which is essentially person independent
(exclusive) validation, meaning the models have
never encountered the data from the testing person.

Table 2 shows the accuracy results of the said validation
procedure. For reference, the chance level of 47 classes is
0.0213. With the lowest cross-validation result being 0.392,
meaning the variations can be detected on some extent
much better than the random chance level. B-Tree gives
around 0.9 accuracies with both feature extraction methods.
Also, for every classifier model, cross-validation normally
out-performs the person independent exclusive validation.
This is expected since in cross-validation, the data from the
same person, or over-lapping sliding windows can exist
both in the training and testing data pools. With all classifier
models, in the cross-validation results, frame descriptors
out-perform the 20 deep features by slight margins. How-
ever, since there are in total 662 valid deep features, the
first 20 deep features chosen here are only the order of

appearance in the network. There could be more effective
features from the network, which requires further analysis
in the future.

Fig. 31. Smart-mat study phase 2 confusion matrix of 9 exercise cate-
gories with first 20 deep features × 39 temporal features

Fig. 32. Smart-mat study Phase 2 confusion matrix of 9 exercise cate-
gories with 17 frame descriptors × 39 temporal features

All the evaluation of phase 2 follows the process of
leave-3-people-out cross-validation. To compare with Phase
1, the best performing classifier model B-Tree is used to
classify among the 9 categories. The confusion matrix of
deep features is drawn in Fig. 31 and that of frame de-
scriptors is in Fig. 32. In Phase 1, it is assumed that within
every repetition, all the sliding windows belong to the same
exercise. Therefore majority voting within every repetition is
used, which essentially further improved the final accuracy.
However, in Phase 2, majority voting within a repetition is
not used since variations can happen during consecutive
exercise actions.

Deep feature, in this case, performs better than frame
descriptors by 7%. The miss-classifications gives further in-
sights on how the two feature groups differ. In both feature
groups, Category II (Push-ups) and Category III (Planking)
are similarly miss-classified. Both categories share a similar
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pose that two hands or forearms are in the front while two
feet are in the back. With frame descriptors, Category VIII
(Bridge) is often confused by the classifier with Category
IV (Only Back Visible) and Category V (Back and Arms
Visible). This can also be caused by the fact that all three
categories have similar overall body-print shapes. The same
can be said with frame descriptors for Category IX (Side
Plank) against Category II (Push-ups) and Category III
(Planking). However, with deep features, these two cases are
very well distinguished with almost no miss-classification.
This could be the result that CNN models like GoogleNet
distinguish components and details within images, and em-
phasize less on the overall shape of the whole picture. This
assumption can also be supported by the result that in the
deep features confusion matrix, some Category VIII (Bridge)
data samples are classified as Category VI (Standing Up). In
this case, the frame descriptors method successfully distin-
guishes the two categories, since standing and bridge cast
distinct body-print on the mat. In both categories, two feet
are present in the body-print. This could contribute to the
miss-classification by the model trained by deep features.

The confusion matrices of the exclusive validation results
with all 47 variation classes are shown in Fig. 33 for the
deep features and Fig. 34 for the frame descriptors. From
the confusion matrices, it appears that even the overall
accuracy is less than 0.4, most of the miss-classifications
are within categories. For example, for both methods, a
prominent group of miss-classification is class 31 (shallow
squat), 32(deep squat) and 33(toe touch), all under Category
VI (standing up). All of the three variations are apparently
two feet standing at the same position, with different up-
and-down motions. From the design space point of view,
these activities are indirectly propagated onto the TPM
sensor. The same can be said with class 44 (Side Hip Thrust),
45 (Side Leg Raise), 46 (Arm Swing I) and 47 (Arm Swing II)
under Category IX (Side Plank). Some variations have over
70% classification accuracy such as 28 (Leg Swing I) and 29
(Leg Swing II).

3.2.9 Conclusion
Overall, the Smart-Mat study has proven through both
Phase 1 and Phase 2, that TPM sensors implemented inside
an exercise mat can be used to distinguish various exer-
cises through the dynamic change of body-prints. Directly
propagated body-prints by the exercise, such as push-ups
or crunches, can be most effectively distinguished. Further,
indirectly propagated exercises can also be distinguished,
such as through the pressure changes under the feet while
doing upper body movements, including dumbbell curls,
squats or touch toes. Phase 2 also established a more com-
prehensive dataset in this context with 47 exercise varia-
tions. Those variations can also be well distinguished 38.7%
accuracy against the 2.13% chance level.
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Fig. 33. Smart-mat study Phase 2 confusion matrix of 47 variation exercise classes with first 20 deep features × 39 temporal features
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Fig. 34. Smart-mat study Phase 2 confusion matrix of 47 variation exercise classes with 17 frame descriptors × 39 temporal features
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TABLE 3
Smart-Mat Phase 2 Study: Class Definition

Index Exercise Variation and Descriptions

Category I : Crunches
1 Reference: Lie Down knees up, feet down
2 Crunches I lower range of motion, regulated by hands pointed to the sky with arms straight
3 Crunches II medium range of motion, regulated by hands reaching to the knees with arms straight
4 Crunches III higher range of motion, regulated by elbows reaching to the knees with arms straight
5 Side Crunches I lower range of motion, regulated by hands pointed to the sky with arms straight
6 Side Crunches II medium range of motion, regulated by both hands pointed to each knee alternatively
7 Side Crunches III higher range of motion, regulated by elbow touching the opposite knee alternatively

Category II : Push-ups
8 Reference: Hold Push-up hands shoulder wide
9 Push-up I hands shoulder wide and half range of motion, regulated by not fully extending elbows

10 Push-up II hands shoulder wide and full range of motion, regulated by having elbows fully extended
11 Push-up III hands wider than shoulder, full range of motion
12 Alternating Push-up alternating single side push-up, hands wider than shoulder.

Category III : Planking
13 Reference: Standard Plank depending on the person, either feed or knees can be on the floor
14 Slack Plank torso not engaged so the spine bends downwards naturally
15 High Hip Plank raise hip higher than standard straight plank
16 Plank Dip Standard Plank but move body forward and backwards around the elbow support
17 Plank Push-up hands are chest wide, change between plank position and push-up position
18 Chest Wide Push-up hands are chest wide (same as 17), only push-up without placing elbows on the mat

Category IV : Only Back Visible
19 Reference: Back lift legs and elbows, place hands on the back of the head
20 Leg-up Crunches lift legs, crunching exercise till elbows touch the knees
21 Alternating Cycling lift legs, alternately touch one elbow with the opposite knee, while the other opposite elbow-knee

pairs are extended
22 Leg-only Cycling lift elbows, empty cycle with only leg motions
23 Leg-lift I raise legs from flat position to vertical position, with lower back pressing on the mat, this

variation engages the abdominal muscles more effectively
24 Leg-lift II same leg motion as 23, but have lower back suspended with an arched spine, and instead use

hip as the anchoring point, this variation engages the abdominal muscles less effectively

Category V : Back and Arms Visible
25 Reference: Hold Leg-up with arms and back relaxed on the mat, while legs are raised up vertically
26 Leg-raise I raise leg vertically and upwards from the relaxed horizontal position with lower back suspended
27 Leg-raise II similar as 26, but always keep thighs upwards without lowering legs to the horizontal position,

this variation engages the torso muscles more than Leg-raise I
28 Leg Swing I swing legs from the left and horizontal, then upwards vertical, to the right horizontal positions,

with knees bent
29 Leg Swing II similar as 28, but knees are extended straight

Category VI : Standing Up
30 Reference: Stand feet shoulder width, feet angle is decided by squeezing glutes
31 Shallow Squat empty squat, half range of motion, regulated by with relaxed arms, the hands reach the knees
32 Deep Squat empty squat, full range of motion, regulated by with relaxed arms, the elbows reach the knees
33 Toe Touch bend downwards and reach toes with fingers repetitively, heels may leave the mat
34 Tip Toe raise the heels repetitively

Category VII : Arch Step
35 Reference I alternately step forwards and then back, with one foot staying behind
36 Reference II alternately step backwards and then front, with one foot staying in front
37 Lunge forwards step similar as 35, but with the knee behind bent downwards
38 Lunge backwards step similar as 36, but with the knee behind bent downwards

Category VIII : Bridge
39 Reference: Bridge with feet or heels, upper back, shoulders, arms and head staying on the mat, suspend the hip

and lower back so that the thighs and torso are on the same slope line
40 Hip Thrust same pose as 38, but move hip up and down with the help of glutes
41 Single Hip Thrust same motion as 39, but with only one leg supporting the body and the other leg extended

Category IX : Side Plank
42 Reference: Side Plank body face to one side, with one foot or knee and one elbow of the same side supporting the

body, torso and legs are straight on the same line
43 Slack Side Plank similar pose as 41, but with the torso relaxed
44 Side Hip Thrust similar pose as 41, and move hip up and down
45 Side Leg Raise similar pose as 41, and raise and lower the leg that is not supporting the body
46 Arm Swing I similar pose as 41, and swing the free arm from below the body to the vertical upwards position,

face the front of the body
47 Arm Swing II similar motion as 45, but face the moving hand

37



Chapter 3 Ambient Subspace Empirical Studies

3.3 ID Carpet

3.3.1 Introduction

In most of the previously discussed algorithms for extract-
ing information from TPM imagery, features calculated from
time and space domain are all rather hand-picked. Although
through the feature selection discussion in Chapter 8, spe-
cific applications can use only part of those pre-defined fea-
tures, it is still less than a fully automatic process. Artificial
neural networks are generally ‘black boxes’ that learn the re-
lationship between the input and response by enhancing the
neural connections in the network. This section continues on
the discussion of utilizing deep features from the previous
section. 4

Convolutional neural networks (CNN) [84] can achieve
super-human accuracy on image classification tasks [85]
[86] [87] [88]. Recurrent neural networks (RNN) especiall
with Long Short-Term Memory cells (LSTM) [89] have been
used to classify sequences of images [90] and to recognize
activities [91] [92]. Since TPM generates imagery data which
is similar to pictures or videos, and computer vision tech-
niques have already been used in extracting features, it is
interesting to see how deep neural networks can recognize
activities from the TPM imagery data.

A major limitation of using deep learning techniques is
that the training of the networks requires a large amount of
annotated data. In the computer vision discipline, images
are easy to acquire, such as the ImageNet [93] and MS-
COCO [94] datasets. However, for novel sensing techniques,
a dataset on such scales is difficult, if not impossible, to
acquire. This limitation can be overcome by performing
transfer learning, i.e., using labelled data from one domain
and transferring the learned knowledge or model to a target
domain. A typical scenario for transfer learning involves
using a convolutional neural network trained on a very
large dataset, and then further fine-tune it on the target
dataset which is relatively small in size. An already trained
CNN is used for transfer learning by removing the last
fully-connected layer and using the activation responses of
the last hidden layer as the feature descriptors of the input
dataset. The resulting feature descriptors (deep features) are
then used to train a classification model.

3.3.2 Experiment and Baseline

The dataset used for evaluating transfer learning is acquired
in a carpet application scenario. As people walk, we cast
dynamic morphing sequences of our footprint as shown in
Fig. 37. The study is carried out in [60]. The hardware is
an improved version of the ‘smart-mat’ mentioned in the
previous section. The electronics is Version F-2.1 from Table
17 in Chapter 2. The TPM matrix is made of metallic fabric
stripes and CarboTex, and thus is fully fabric as shown in
Fig. 35. There are 120 × 54 points with 1.5cm pitch, each
sampled at 25 Hz with 24-bit ADCs.

4. This section is based on the publications [60] and [58]. As the
leading author of [60], I have only included my own work; as the
supervisor of the first author of [58], Section 3.3.3 is a brief summary
of the method and results from the work by Singh, Monit Shah and
Pondenkandath, Vinaychandran. Since the published work has gone
through extensive wording, some sentences and passages have been
quoted verbatim from the said sources.

Fig. 35. ID carpet: Hardware

Fig. 36. Step segmentation: a. sum of pressure mapping over a walking
event, b. all bounding boxes during the event, c. detection of the first
step, d. detection of the second step

From the design space point of view, the important
dimensions in this study are the intention and coverage
dimensions. As a floor based biometric system, the intention
dimension can be unaware. This has a strong indication
in the privacy and ethical aspects, as the users can give
away their identity simply by a single step without noticing
a biometric monitoring device is present. The coverage is
excessive, thus the system can be implemented in a corridor
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Fig. 37. The morphing footprints of one step (top) and the first attribute - average pixel value (bottom), The blue circles are original data A1 and the
black dots are A′1

Fig. 38. Gait analysis workflow

or walk path.
13 people participated in the experiment; each walks

with their normal shoes on the smart carpet of at least 12
rounds. Overall, 529 steps were recorded. The ground truth
includes the starting and ending time for every step, and
their identity.

To offer a baseline for further deep learning evaluation,
a workflow with standard feature-classification process is

Fig. 39. Gait analysis confusion matrix

established as shown in Fig. 38. First, the footprint steps
need to be segmented by the algorithm. Take Fig. 36(a),
which is an accumulated frame during a time window, for
example, segmenting the steps follows this procedure:

1) Dynamic thresholding is performed to remove the
background. Every frame is sorted into a 10-bin
histogram, the threshold is decided as the center
value of the next bin of the highest count bin. This
is because, for a carpet, most of the pixels are the
background.

2) Then bounding boxes are placed on the frame by
blob detection. Fig. 36(b) shows all of such bounding
boxes added up together. Each box is filled with the
average pixel value within its region.

3) If the box’s average pixel value is higher than a
second dynamic threshold, it is decided as the start
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Fig. 40. Gait analysis workflow with neural networks

Fig. 41. Pipeline diagram of using key frames with CNN.

of a step (a spawning point). This second threshold
is calculated again with a similar histogram selec-
tion method, but of all the average pixel values of
the boxes of all the frames within a single walking
event.

4) After the spawning point, the step is tracked by
looking for the box whose center is closest to the
step box in the previous frame, and no more than 30
pixels away. When no such box is present, this step
is decided as finished.

5) The next step detection does not happen after the
finishing of the previous step, but for every frame,
the algorithm looks for new spawning points that
are further away from the detected steps by 30
pixels. This is because the next step usually happens
before the previous step finishes. This also makes
the algorithm natively support multiple concurrent
steps.

The step segmentation algorithm for the start and end time
results in 97% precision and 91% recall considering an error
margin of 2 frames.

Fig. 42. Pipeline diagram of using sequences of frames with RNN.

Every detected footprint is cropped with the bounding
box that covers all its bounding boxes, then seven frame
descriptors are calculated:

• average pixel value;
• centroid coordinate;
• maximum pressure point’s value;
• maximum pressure point’s coordinate;
• pressed area.

Every step has then 7-by-T (T is the number of frames) of
temporal sequences of frame descriptors as a set of Ai. It
is interpolated on the time domain to 150 samples as A′i as
shown in Fig. 37 with the dash line.

The first set of features is statistical representations of
A′i: mean(A′i),std(A′i),var(A′i),max(A′i) − min(A′i). Then
wavelet transform as mentioned in Chapter 8 is performed,
with 10 filterbank iterations and ‘db8’ as the mother
wavelet. Then features are calculated by the same method
from Chapter 8. For every filterbank’s wavelet transform
coefficients, mean, variance, standard deviation, skewness
and kurtosis are calculated. In total, every step has 336
features.

A support vector machine classifier with the quadratic
kernel is used for the 10-fold cross-validation. The resulting
confusion matrix is shown in Fig 39, with an accuracy of
76.9%.

3.3.3 Deep Neural Network
To use deep learning methods with transfer learning, the
general approach is to replace the features calculated from
pre-processed morphing footprint imagery, as the workflow
in Fig. 40. First, the frames are converted into gray-scale
images with a linear colormap, with brighter pixels rep-
resenting higher sensor value. Since CNN can be used to
recognize individual images and RNN can be used to rec-
ognize an image sequence, both approaches are evaluated.
With CNN, two key frames - maximum frame and average
frame (KF5 and KF1 from Chapter 8) are used from each
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step. Key frames are a concept proposed in this work, to
use static spacial matrices to represent the signal changes
from a temporal window of spacial frames, by performing
operations per pixel along the time axis. With RNN, the
entire sequence of the step is fed into the neural network.

The transfer learning approach follows the idea of trans-
ferring from the image classification task, i.e., using a pre-
trained model from ImageNet or Coco-DB. Either the clas-
sification layer is removed or used as a feature extractor
and a new classification layer is added. Thus the CNN is
used as a fixed feature extractor. The CNN is provided
with the transformed image input, which is resized to fit
the CNN input size. The activations for the entire network
are computed by forward propagating the input through
the network. The pre-trained CNN in this project is the
Inception-v3 model from [95], which is a CNN variant that
focuses on improving computational efficiency along with
performance. The Inception-v3 architecture consists of 17
layers: 3 convolutional layers followed by a pooling layer, 3
convolutional layers, 10 Inception blocks and a final fully
connected layer, and requires the image input to be of
229 × 229 pixels. The activations from the fully connected
layer is used as a 2048 dimensional output for every image
input, which is then used as a feature vector for further
classification with a new fully connected layer. The pipeline
is shown in Fig. 41.

For the RNN method using the entire sequence of
frames, the pipeline is shown in Fig. 42. All of the frames
associated with a step are processed through the Inception-
v3 model to extract a single descriptor for each frame.
These descriptors are then fed one after another into a layer
of Gated Recurrent Units (GRU) [96], which generates a
classification result upon completing the sequence.

The cross-validation results are summarized in Table 4.
From it, it can be seen that using the average frame with a
single CNN and the complete sequence with RNN result in
higher accuracy than the baseline using conventional feature
extraction processes. Especially, with RNN, taking the infor-
mation of the time sequence, the result is > 10% higher than
the conventional approach. Note that in the conventional
approach, wavelet analysis also takes information about the
pattern on the time domain, but without the time order.

TABLE 4
Accuracy comparison of different approaches

Feature Type Image Set Type Accuracy to baseline

Conventional All sequences in a step 76.9% 0%
Deep CNN Max Frame 71.99% -4.91%
Deep CNN Average Frame 78.41% 1.51%
Deep RNN All sequences in a step 87.66% 10.76%

3.3.4 Significance and Outlook
The major significant finding of this project is that, dynamic
pressure profiles from individual footsteps can be measured
by a TPM enabled carpet and be used for person tracking
and identification. The approach in this work only requires
a single footstep, instead of looking at the relationships
between adjacent footsteps.

Another significance of this study is on the cross knowl-
edge domain transfer learning. Normally, transfer learning
of neural networks is from one image dataset to another
image dataset. In this project, a neural network trained by
images such as cat, car, people, etc., is able to detect pres-
sure mapping sensor data, and outperform conventional
methods with statistical and frequency features. And more
interestingly, this dataset in particular, every sample is just
a morphing footprint, which is even difficult for actual
humans to distinguish.

This project is still on a small scale. The core concept
should be elaborated in the future work. First, more datasets
from other applications with the TPM sensor should be
evaluated. And in this project, the baseline features are only
part of the entire feature base introduced in Chapter 8. It is
interesting to see when the conventional feature approaches
are exhausted, if the deep learning approaches are still
superior. Also, it will be interesting to test on other pre-
trained models. In this project, the CNN is essentially used
as an automated feature calculation model; feature selection
algorithms such as Neighbourhood Component Analysis
(NCA) from Chapter 8 can be used here to investigate which
features from the CNN model have more contribution.
Also, it would be interesting to compare the result of using
standard linear classifiers such as KNN or SVM with those
CNN calculated features.

And ultimately, the vision is to develop a ‘TPM AI’ that
is a unified neural network model, which can recognize
activities not only per application, but also distinguish what
the application is. Just like human experts in TPM sensor
data, when the experts see the pressure imagery data, they
may already be able to tell the application scenario.

41



Chapter 4 Object Subspace Empirical Studies

Chapter 4 Object Subspace Empirical Studies

There has been a wide range of studies involving smart objects in ubiquitous computing, especially with the rise of
the Internet of Things [97] [98]. Smart objects are typically daily objects augmented with sensors and connectivity to

give insights on people’s activity or behaviour. Actuators can also be implemented inside smart objects to offer interactive
experience or information feedback.

Smart objects can help offer information on several levels, including:

• Control input: the simplest being the already omnipresent binary sound or motion detectors for door and lighting
controls. With more potent sensors that can offer information on multiple dimensions, such as X, Y, Z axis, smart
objects can serve as more fine-grained control input such as navigating a cursor or tuning intensities. In this regard,
TPM sensors can offer both two-dimensional localization information (X and Y axis) and intensity information at
every location (Z axis).

• Utility/object usage: the usage information of certain objects, including the times of use, consumption quantity, or
the usage context, is widely studied in areas like workplace management and elderly assistant. TPM can sense not
only if an item is in use, but also how much specific parts of the item has been used through touch.

• Emotional states: human factors such as phycological and emotional states are an important aspect in the field of
human-computer interaction, computing systems, education, elderly care, etc. [99] [100] [101] Emotional states are
well known to be related to bodily contacts [102], which can be measured by touch-sensitive sensors such as FSR or
TPM sensors.

From the design space aspect, in the object subspace, the Propagation dimension is mostly direct, since typically users
interact with smart objects through contact. The Intention dimension can be any of intended, unintended and unaware. In
interactive smart objects, the intention is obviously intended. And in smart object studies that aim at using the objects
as a media to acquire information on the users’ behavior and psychological aspects, and knowing the smart objects may
influence the result, the intention is thus either unintended or unaware. The TPM can either be partially or exactly covering
the augmented objects or the target users. Virtual surface can be used to accommodate irregular shapes of coverage, such
as different parts of a toy or a robot. The Sampling rate of smart object TPM sensors depends on the target activity. For
example, usual interactive touch can be measured with around 10 to 30 Hz, but fast-moving gestures, or sports activities
require higher speed sampling rates. Since smart objects are supposed to be moved around, the Mobility dimension is
usually mobile. While in some studies, where the data throughput (decided by the number of sensing points and sampling
rate) exceeds the mobile bottleneck, mobility can be compromised to movable, especially in the early prototype stage.

This chapter covers three empirical studies in the object subspace.

• Seat Cover: (object, exact match) while the algorithm to detect posture from the back of a seat is simple yet efficient,
this application demonstrates the entire software stack including all four layers from Fig. 90 in Chapter 6, to give
user real-time feedback.

• Robot Skin: (object, canvas) in this application the wavelet analysis features are examined in depth, as the application
goal is to distinguish emotional related touch gestures.

• Student Workshop: a modular framework of the TPM system including both hardware and software resources are
given to groups of master students in an organized workshop to implement their own ideas. Through the workshop,
not only various projects were rapidly developed, the TPM framework implementation is also proven to be helpful
in the computer science education process.
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4.1 Seat cover
This chapter presents a smart object sensing system in the
form of a wireless chair cover that unobtrusively monitors
people’s posture on ergonomic design chairs, by covering
the back piece of the chair and measuring the pressure
profile of the user’s back (back body-print). The sensor
system has 1024 sensitive points, covering 48-by-48 cm2

area. With a simple and efficient classification algorithm, the
classification accuracy is around 80% among 10 postures,
including lordotic and kyphotic lumbar spine on different
extends, and lean to the sides on different extends. The
web browser based user interface offers timely and repro-
grammable intervention from the user’s posture history. 5

Fig. 43. Internal of the smart seat cover

Fig. 44. A chair equipped with the smart seat cover

4.1.1 Empirical Study Background
In the office, transportation, home, etc., scenarios, er-
gonomic products that are designed to offer users better
comfort, regulate their postures and help them relieve stress
for seating and relaxing are ubiquitous. However, the man-
ufacturers and ergonomic designers have very little control
or feedback on the proper usage of the post-sale ergonomic
products; while the users, on the other hand, would mostly
use the products in an intuitive way.

5. This section is based on the publication [36]. As the leading author
of the publication, I have only included my own work; unless other
authors’ contribution is an integral part of explaining my work, in
which case it will be explicitly stated. Since the published work has
gone through extensive wording, some sentences and passages have
been quoted verbatim from the said source.

For example, many office chairs offer adjustable features
to accommodate a wide range of sitting preferences. As
studies have shown in [103], sometimes the users may use
ergonomically designed chairs in a comfortable way which
they were used to (before adopting the new chair), yet is not
the way the designers and ergonomic engineers intended
the products to be used, nor how physiotherapy studies
have recommended. Moreover, as the user’s attention may
be occupied by their activities such as working, interacting
with other people or objects, or relaxing, they could stay in
certain postures for extended periods, which is also shown
by physiotherapy studies to promote increased stress on the
spinal region. [104] By making ‘bad postures’ comfortable,
this could have none or negative influences on the users’
health and quality of life.

In modern society, people with sedentary occupations
spend a major part of their time sitting on chairs. [105]
[106] A wide range of clinical ergonomic and orthopaedic
studies have suggested that inappropriate postures can have
negative effects on the cervical, thoracic, lumbar part of the
spine region, shoulder and pelvis, including fatigue, stress
or pain. [107]

Traditionally, children are taught to sit uptight for a
better back; however, studies have shown different postures
have different effects on the spine and muscles, without
an agreement of which posture is the best for sitting. For
example, in [108], two basic postures (‘erected posture’ and
‘flexed posture’) are studied, concluding that sitting with the
flexed posture mechanically flattens the lumbar spine and is
thus more beneficial when sitting and lifting heavy weights
compared to an erected posture which imposes a lumbar
lordosis. In [109], O’Sullivan, et al. investigated the trunk
muscle activations in different postures similar in the last
study. The findings suggest that in ‘erected posture’ the lum-
bar multifidus and internal oblique muscles are significantly
more activated; while in the ‘thoracic upright posture’, the
neck muscles are significantly activated, this posture thus
causes more shoulder region stress as supported by the
study in [110]. And in the ‘flexed and slump posture’, most
of the trunk muscles investigated remain relaxed. Thus, it
appears flexed and slump postures, or ‘lumbar kyphosis
postures’ is more beneficial for the spine and disc structures
and causes less muscle stress. However, it may cause greater
stress to articular and ligamentous structures [111] [112], as
well as stress on the anterior annulus and an increase in the
hydrostatic pressure in the nucleus pulposus at low load
levels [108].

Based on various evidence, it appears that various pos-
tures have their own advantages and disadvantages. In
[104], Vergara and Page suggest that low mobility are the
principal causes of the increase in sitting discomfort. This
study agrees with the muscle activation studies and con-
siders that static muscular effort is a major contributor to
short term lumbar and dorsal pain. It is supported in more
recent studies such as [113], which shows less sitting fatigue
in dynamic sitting compared to static sitting.

This calls for a method that automatically detects the
user’s real-time posture, compare to the recommendations
from clinical ergonomic expert knowledge, and distinct
chair manufactures, and offer timely feedback. Studies have
shown that pressure sensors placed between the user and
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TABLE 5
Seat Cover Study: Class Definition

Class Definition

C1 Sit straight up, with the spine up tight (the back piece is locked straight, all the others the chair is unlocked)
C2 Sit with flexed spine, look forward (as if looking at a computer screen)
C3 Sit with flexed spine, look deep downwards (as if writing on the desk, or looking at a smartphone on the legs)
C4 Lean back, the back fully in contact with the chair
C5 Lie on chair, slide down from the lean back posture, with the lower back suspended from the chair
C6 Reach to left, with body facing the side (as if talking to people, or operating the telephone, etc. on the side)
C7 Lean left, with the upper body’s weight focused on the armrest, face front (as if looking at a computer screen)
C8 Slight lean left, the person’s weight is still on the back piece, without elbow support, but the spine is slightly bent to the side
C9 Reach to right, with body facing the side (as if talking to people, or operating the telephone, etc. on the side)
C10 Lean right, with the upper body’s weight focused on the armrest, face front (as if looking at a computer screen)
C11 Slight lean right, the person’s weight is still on the back piece, without elbow support, but the spine is slightly bent to the side
C12 Not a posture, no user is seated on the chair, instead, some bags may be put on the chair or jackets hang on the back piece.

the chair can be a useful source of information. For example,
in [114], four pressure sensors are placed at the back of the
chair, and in [115], an 8-by-8 pressure sensor matrix is placed
on the seating surface. However, most of the systems used
in such studies are not suitable for public consumers in their
everyday lives.

4.1.2 Hardware Requirement

Since a swivel office chair can be dragged around dur-
ing work, the sensing system should be tether-free. Thus
the hardware version M-1.1 from Table 17 in Chap-
ter 2 is used to power a 32-by-32 TPM matrix with a
pitch of 1.5 cm. Every pixel is scanned with the inte-
grated 12-bit, multi-channel ADC from the micro-controller
dsPIC33FJ256GP710A at 20 frames per second. The data is
sent to a computer through the Bluetooth module RN42 on
the electronics board. The TPM sensor is covered inside a
microfiber shroud, resulting in a thin and soft fabric piece
as in Fig. 43.

An office chair, the ‘Please’ model from Steelcase is used,
which is ergonomically designed to offer many adjustment
options, including: height and horizontal retraction of the
seating piece for different leg lengths; back piece height
and maximum tilt; the back piece is also separated into
two parts, with spring support so the curvature can fit the
user’s back. The TPM sensor is hung on the back piece to
measure the seater’s back pressure profile. It is also possible
to place the sensor at the seating piece. However, this study
opted for the back piece because (1) the pressure under the
user’s body is much greater than behind the back, which
may cause deep wrinkles to the fabric and (2) from the
user experience point of view, people are generally more
comfortable being monitored at the back than under the
buttocks.

4.1.3 Experiment

First, to validate the methodology and to establish a training
dataset, a controlled experiment is set up, where partici-
pants are asked to sit at the chair with defined postures
listed in Table 5, with visual demonstrations in Fig. 45 and
Fig. 46. The postures are decided based on observations of
daily office activities, the descriptions in Table 2 instruct
how the postures are performed, and the definitions em-
phasize variations of the spine movement.

Overall 16 people (5 females and 11 males) participated
in the experiment. Their age ranges are 23-30 (males) and 22-
27 (females), and their height ranges are 170-193cm (males)
and 144-171cm (females). Every participant is asked to
progress through the postures for two iterations. In every
iteration, each posture is performed for three instances, ev-
ery instance lasts for at least thirty seconds. Between every
instance, regardless of the posture class, the participants are
asked to step away from the chair and sit down again, so
that they do not stay at the same spot every instance.

4.1.4 Posture Detection Algorithm

This application shows a more straightforward activity
recognition task than the other examples in this work.
Essentially, the postures are transient states, and thus there
is only the spatial domain for every data sample. In Fig.
45 and Fig. 46, example pressure mapping data are shown
side by side with the corresponding postures. For every
instance of the participant’s sitting, in the time domain 10
frame samples are evenly selected, and manually annotated
according to Table 5.

First, for a single participant the data are randomly sepa-
rated (evenly each posture) into training groups and testing
groups, the algorithm is given the ground truth of the
training data and will predict the class of the testing data.
For every testing frame, the normalized cross-correlation be-
tween this frame and every training data frame (templates)
is calculated one by one. Every normalized cross-correlation
returns a value between -1.0 and 1.0, corresponding to the
correlation coefficient between the testing frame and the
template. For N templates, every testing frame will have
an array of N correlation values corresponding to every
template, named as the correlation score vector. K majority
voting (in this case, K=20) is used to decide the prediction
class. If an alias occurs (two different classes occupy the
same number in the K largest values), for each class in the
K largest values, the sum of the correlation score values is
calculated, and the prediction is determined by the bigger
sum. The process from taking a new testing frame to con-
clude the final posture class takes 0.4-0.5 second in the test
with a Dell XPS 9550 (i7 CPU) computer with the algorithm
implemented in Python.
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Fig. 45. The examples of Postures 1 to 5 and the corresponding pressure mapping data.

Fig. 46. The examples of Postures 6 to 11 and the corresponding
pressure mapping data.

4.1.5 Cross-validation
Leave-one-recording-out cross-validation is performed. The
predicted results are compared with the ground truth of
the testing data, and visualized in Fig. 47 as a confusion
matrix. From the confusion matrix, it can be seen that a
vast majority of the data samples are correctly classified.
For 12 classes, the random chance level is 8.3%. Therefore,
an average accuracy of 72.1% can be considered high above
randomness.

C1 and C4 are confused by an average of 20%, from Table
5 and Fig. 45, these two classes are very similar to each other.
In the actual experiment, the participants do not subjectively
distinguish these two postures in general, except for that
the chair back is locked at the vertical position in C1 and

Fig. 47. Confusion matrix of the classification result for 12 classes in the
Seat Cover study.

unlocked in C4. More miss-classifications happen between
C2 and C3. These two postures share the feature of a
kyphotic curvature of the spine. It is worth mentioning that
C8 and C11, slightly lean to the side, are very well separated
from the frontal neutral postures (C1 to C5). Moreover, all
the side postures are very well separated from each side.
Most miss-classifications only happen within the same side
(C6 to C8 and C9 to C11). Therefore, it makes sense to group
C1 and C4, C2 and C3 and redraw the confusion matrix as in
Fig. 48. From it, a much clearer separation between different
classes is presented, and the accuracy progresses to near
80%.

The cross-correlation-majority voting algorithm then is
taken as the classification engine, and all the data used in
the cross-validation is taken as the training database. The
cross-validation result measures how trustworthy the clas-
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Fig. 48. Confusion matrix of the classification result for 10 classes in the
Seat Cover study.

sification engine with the database is in the unsupervised
scenario in the following sections.

Fig. 49. The structure of the software for real-time feedback and notifi-
cation.

4.1.6 Real-time Intervention System
The classification engine is implemented in Python, since it
is a popular open source platform. The full software stack
from Fig. 90 in Chapter 6 is demonstrated in this application.
To have a more flexible and fluent user interface imple-
mentation, web designing is used. The central part of the
software system is implemented in HTML and JavaScript
that runs in a browser as illustrated in Fig. 49 which is an
implementation of Fig. 95.

The basic structure includes critical data links across
different language platforms for bi-directional real-time data
transmission (webchannel between Qt and JavaScript, Flask
Socket-IO between Python and JavaScript). First, the raw
sensor pressure mapping data from the smart blanket is
received by the Bluetooth receiver executable program, and
forwarded to the JavaScript program. The JavaScript pro-
gram can visualize the pressure mapping data, but more
importantly, it relays the data to the Python classification
engine. If the system is shared by different users, the user
can also select his or her ID from the Web browser, and
the ID is also sent to the Python engine. The classification
program then predicts the current posture using the classi-
fication engine, and sends the prediction result back to the
JavaScript program. This process can operate on a 1-second
cycle, giving a fine time grain posture information.

The JavaScript program then keeps the history of the
user’s posture of the day, and offers timely interventions
via means of sound and desktop notifications. For the scope
of this work, the intervention is decided on two criteria:

1) If the user has been in a bad posture (out of C5, C6,
C7, C10 and C11) for more than 1 minute.

2) If the user has been in the same posture for the
majority (over 80%) of the past 10 min.

This decentralized design makes it easier for future
modifications. The classification engine can be changed
into other methods that are implemented in Python with-
out modifying the other components of the software; the
intervention decision can be easily modified within the
JavaScript program for other orthopedic or clinical er-
gonomic opinions.

4.1.7 Conclusion
Through this empirical study, TPM is an ideal option for
smart furnitures as force sensitive furniture covers. Apart
from this posture monitoring application, demonstrators
with car-seat to detect driver posture and body-shape iden-
tification have been developed; a couch cover with a force-
touch wireless trackpad has also been made.

Another major contribution of this application is to
showcase the entire heterogeneous software stack running
in real-time, which includes the low-level, hardware inter-
face, middle-level data processing and classification, and the
upper-level user interface and feedback.
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4.2 Robot Skin/Clothing for Sensing Emotional
Touches

Previously, we have used the TPM sensor to detect control
gestures [116]. This empirical study evaluates the possibility
of using TPM sensors as robotic skin or clothing, to detect
emotional-related gestures for human-robot interactions. It
is a cross-over between wearable and object-based applica-
tions. 6

The sensor covers a 20− by − 20cm2 area with 400 sen-
sitive points and samples at 50 Hz per point. Seven gestures
are defined inspired by the social and emotional interactions
of typical people to people or pet scenarios. Two groups
of mutually blinded experiments are conducted, involving
29 participants in total. The data processing algorithm first
reduces the spatial complexity to frame descriptors, and
temporal features are calculated through basic statistical
representations and wavelet analysis. Various classifiers
are evaluated and the feature calculation algorithms are
analyzed in detail to determine each stage and segments’
contribution. The best performing feature-classifier combi-
nation can recognize the gestures with 93.3% accuracy from
strangers.

4.2.1 Study Background

Tactile sensors are an essential sensory in robotics, since they
contribute largely as the synthetic counterpart of biological
skins on humans and other animals. They are crucial in
providing control feedback for safely and securely grasping
and manipulating objects [117] [118] [119].

However, a majority portion of biological skins are not
sensitive enough, or evolved for precise force sensing and
localization for assisting controls [120]. In nature, bodily
contact is an important aspect of emotional communication
between humans and animals [102]. Studies have shown
that body movements are specific for certain emotions [121].
As pointed out in [119], most tactile sensors are based on
piezoresistive materials, which have the problem of hys-
teresis and poor linearity. However, for sensing emotional
touches, precision tactile sensing is not necessary.

In recent years, the focus on robotics research has
evolved from precise and delicate movements to perform
various tasks, to a more in-depth communication between
human and robotic interactions. In [122], a humanoid robot
WE-4RII can effectively express seven emotion patterns with
body language. Touch is fundamental in human-human
interaction and as robots enter human domains, touch be-
comes increasingly important also in human-robot interac-
tion (HRI). In recent years, several approaches have been
developed to whole-body tactile sensing for robots, e.g.,
for the iCub [123], [124] or the HPR-2 [125] robots. These
systems are cell-based, where each cell comprises a small
circuit board holding necessary sensors and electronics and,
while presenting excellent sensing capacity, they constitute
a relatively hard surface with limited flexibility.

6. This section is based on the publication [62]. As the leading author
of the publication, I have only included my own work; unless other
authors’ contribution is an integral part of explaining my work, in
which case it will be explicitly stated. Since the published work has
gone through extensive wording, some sentences and passages have
been quoted verbatim from the said source.

In a recent study comprising 64 participants communi-
cating emotions to an Aldebaran Nao robot using touch,
people interacted for longer time when the robot was
dressed in a textile suite [126], compared to a standard
Nao with a hard plastic surface. These results indicate that
the surface material of the robot may be significant for
extending and directing tactile HRI. This application is thus
inspired by these results, investigating the use of touch-
sensitive smart textiles TPM as a potential alternative to cell
based-robot skins.

One informative aspect of tactile HRI is the type of touch
[126]. In [127], individually designed 56 capacitive sensors
are installed in a toy bear to detect affection-related touch.
The data processing algorithm relies on signal features such
as amplitude and base frequency from all the sensors.
In [128], a touch sensing furry toy is developed with a
combination of conductive fur touch sensors and piezore-
sistive touch-localization sensors. Using statistical features
of the signal and random forests classifier, the prototype
recognizes 8 gestures with a 86% accuracy. This application
investigates the capacity of distinguishing between seven
different types of touch, listed in Table 6, based on sensor
data gathered from the smart fabric.

TABLE 6
Robot Skin Study: Prediction Class of Gestures Definition

Index Gesture Details

P1 grab whole hand grabbing the dummy’s arm
P2 poke with one finger, quick and forceful action
P3 press with multiple finger tips, slow action
P4 push whole hand including palm, slow action
P5 scratch with multiple finger tips, quick repeating actions
P6 pinch on a small area, forceful action
P7 stroke with multiple fingers, gentle repeating actions

Fig. 50. Robot skin study: electronic hardware

4.2.2 Hardware Requirement
In this study, the hardware Version M-1.1 from Table 17 in
Chapter 2 is used (Fig. 50). A 20× 20 square TPM sensor is
used, with 1cm pitch, 12-bit ADC resolution and 50 frames
per second sampling rate.

4.2.3 Experiment
Seven gestures are defined as listed in Table 6. Only in P1
- grab, the sensing skin is wrapped around a dummy arm
(Fig. 51 a), and for the rest of the gestures, the sensor is
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Fig. 51. Robot skin study: experiment setup and gesture example a. P1
Grab and b. P7 Stroke

fixed on a flat surface (Fig. 51 b). This setup should be
seen as a pre-stage to mounting the fabric as the skin for a
robot, constituting a robot-agnostic baseline without the full
complexity of uneven surfaces and the robot’s own motions.
The focus of the evaluation is to investigate if the sensor can
be used to physically distinguish these expressive gestures.

4.2.4 Dataset
Two groups of data are recorded using the same sensor
setup. The two groups are conducted by different persons,
and they do not have knowledge of how the other group
recorded the experiment. The two groups are therefore
mutually blinded, including the experiment conductors. It
ends up that in Group A, the conductors instructed the
participants to perform P5 Scratch and P7 Stroke as a quick
burst of three repetitions in a single action; while in Group
B, the participants only perform the gestures continuously
for every action.

• Group A: 24 people, 2 recordings per person. Every
gesture is repeated 16 times. During the recording,
the participants are asked to use both their right and
left hands to perform the gestures equally in multiple
repetitions. The participant pool consists of 12 males
and 12 females. The hand size is assumed to be a
contributing influence factor in this experiment. The
hand sizes of the males range from 17.5 to 20 cm, and
17 - 18.7 cm for the female participants. There is one
left-handed participant in each gender.

• Group B: 5 people, single recording per person.
Every gesture is repeated 16 times. The participants
use only one hand of their choice to perform all the
gestures. There are 2 female and 3 male participants.
Their hand size ranges from 16.5 cm to 21.5 cm.

Group A is used for the majority of data analysis and
algorithm evaluation. Group B serves as a reference to see
how the algorithm is influenced by a completely new setup
with different environment and directing persons.

The participants are given the literal descriptions of the
seven gestures only as in Table 6, without visual guidance.
They are instructed that they can relate each gesture to
suitable emotions, however, the experiment instruction does
not prescribe specific emotion-gesture bindings. The data
is manually annotated to separate every gesture action by
the experiment conductor. Overall, 5376 gesture actions are
recorded in Group A and 560 in Group B.

4.2.5 Evaluation
Every frame is up-sampled from 20-by-20 to 40-by-40 to
increase the spatial resolution with bicubic interpolation.
To extract information, first, the 2D spatial data is reduced
into limited information as frame descriptors. The following
descriptors are calculated from every frame:

• D1 mean value of all pixels’ value
• D2 maximum value of all pixels’ value
• D3 standard deviation of all pixels’ value
• D4 distance from the center of gravity to the frame

center
• D5 distance from the maximum point to the frame

center
• D6 the number of pixels that has higher value than a

threshold
(threshold = mean+ standard deviation)

The frame descriptors, therefore, reduce the 2-dimensional
information to 6 temporal vectors. For example, if a gesture
lasts 3 seconds, a stream of 150 frames (each 20-by-20) are
generated by the tactile sensor, and six arrays, each 150 in
length, are abstracted as the temporal sequences of frame
descriptors. D1 and D4 describes the intensity and location
of the center of the pressure; D2 and D5 offers information
of the highest pressure point; D3 describes how scattered
the pressure is on the surface; D6 describes the surface area
of the contact.

The experiment data is manually segmented by the
experiment conductor roughly before and after the contact.
To make sure the data samples cover exactly the contact
time, a cut-off threshold is defined:

Thresholdcutoff = min(D1)+(max(D1)−min(D1))×10%

The samples before the first t1 when D1(t1) >
Thresholdcutoff , and after the last t2 when D1(t2) >
Thresholdcutoff are removed.

Fig. 52 visualizes the temporal sequences of frame descrip-
tors from different classes. One action of each gesture from
every person is randomly selected. For comparison pur-
poses, the sequences are scaled to the same 400-sample win-
dow using linear interpolation; the original data sequences
have different lengths. The next step is to extract features
to distinguish between different classes. For example, in
subplot D6 − P2, P2 Poke has significantly smaller D6 than
the other gestures; P5 Scratch and P7 Stroke have distinct
higher frequency movements than the other gestures in
all the frame descriptors; P1 Grab and P4 Push has higher
average value in D1 and D2 than the other gestures.

Two types of features are used from the temporal se-
quences Dx(t) of size T : basic statistic representations, and
wavelet analysis.

The 5 basic statistic representations are:

• the average value in the window

mean(Dx) =
T∑

t=1

Dx(t)

• the standard deviation in the window, defined as

std(Dx) =

√√√√ 1

T − 1

T∑
t=1

|Dx(t)−mean(Dx)|2
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Fig. 52. Comparison of the temporal sequence of frame descriptors from each class. Each curve is from a different person within Group A. The x-
axis are sample in the temporal domain, the y-axis are scales of the values from different frame descriptors. The original data has different temporal
length; in this plot they are scaled to the same 400-sample window using linear interpolation for visual comparison.

• the absolute range of the sequence: max(Dx) −
min(Dx)

• the kurtosis of the sequence, which measures how
outlier-prone the data is. defined as:

kur(Dx) =

1
T

T∑
t=1

(Dx(t)−mean(Dx))4

(std(Dx))4

• the skewness of the sequence, which is the asymme-
try measurement of the data around the mean value.
It is defined as:

skw(Dx) =

1
T

T∑
t=1

(Dx(t)−mean(Dx))3

(std(Dx))3

These features would describe the distribution of the tem-
poral sequence, and are commonly used in statistic analysis.

The temporal features are not to be confused with the
frame descriptors. For example, D3(t) is the standard devi-
ation of all the pixels from a frame at sample t at a particular
point in time; D3 is the sequence of the standard deviation
of each frame within the window; std(D3) is the standard
deviation of all the 2D standard deviation frame descriptors
within the window. Frame descriptors reduce the spatial do-
main data into limited measures, and the temporal features
further reduce the temporal domain information. For one
window of gesture, 6 sequences of frame descriptors are
calculated, which results in overall 30 basic features.

Wavelet transform converts frequency-related informa-
tion from the data into features. It offers frequency and
temporal localization of the target signal.

The Dx(t) signal of length T is padded with its bound-
ary values with a padding size of T/2: before Dx, Dx(1)
are inserted T/2 times repeatedly, and at the end of Dx,
Dx(T ) are inserted T/2 times. Then the padded signal
D′x(t), t ∈ [1, T ] is multiplied with a symmetric Hamming
window w(t), t ∈ [1, T ]:

D′′x(t) = D′x(t)× w(t),

w(t) = 0.54− 0.46cos

(
2πt

T − 1

)
, t ∈ [1, T ]

Fig. 53 visualizes the boundary padding and hamming
window process. Padding and window functions are typical
techniques in signal processing to remove the influence of
the sampling window.

Fast wavelet transform implemented by the LTFAT tool-
box [129] is used, which follows Mallat’s basic filterbank
algorithm for discrete wavelet transform [130]. Fig. 54 of-
fers an illustration and comparison of two different source
signals going through 5-level and 10-level filterbanks. Es-
sentially, each filterbank iteration calculates a vector of co-
efficients as results. The calculation uses a mother wavelet,
which is scaled and shifted to provide frequency variance
and temporal localization. In this study, the Daubechies 8
(db8) wavelet is used as the motherwavelet [131]. Other
standard mother wavelets can also be used in this process;
however, once chosen, the mother wavelet should not be
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Fig. 53. Visualization of the boundary padding and hamming window pre-processing before wavelet transform

Fig. 54. Visual illustration of deriving wavelet features. (a) and (b) are the source signal; (c) - (f) are scaleograms of the wavelet transform coefficients;
;(c) and (e) are the results from (a); (d) and (f) are the results from (b); (c) and (d) are the results of 10 filterbank iterations; (e) and (f) are 5 filterbank
iterations.

changed because the wavelet transform will have different
references. Higher iteration targets the higher frequency and
finer temporal localization, which results in a longer vector
of coefficients. For example, assume the sample frequency is
f , with T = 1600 samples, a five-level filterbank discrete
wavelet transform as in Figure 54 (e) and (f) results in
wavelet coefficients as shown in Table 7. With the highest
level defined as J , the coefficients are

C(Dx) =

(
Cdj(Dx), j ∈ [1, J ]

Caj , j = J

)
These coefficients are unique to the specific signal, as they
can be used to reconstruct the signal by the inverse wavelet
transform. Each subband contains temporal localization of
the corresponding frequency. Therefore their distribution
information can be used as unique features.

For the last three subbands (in the example in Table
7, level 3-5, subband d3, d4, d5, a5), we calculate the

mean(Cn(Dx)), n ∈ {aJ, dJ, d(J − 1), d(J − 2), d(J − 3)}
as the first four wavelet features. For the lower levels
Cdj(Dx), j ∈ [1, J − 4] which have significantly finer
temporal granularity and bigger number of coefficients, the
following features are calculated to describe the distribution
information:

• mean(Cn(Dx))
• max(Cn(Dx))−min(Cn(Dx))
• std(Cn(Dx))
• kur(Cn(Dx))
• skw(Cn(Dx))

Therefore, for every sequence of frame descriptors Dx for
J = 5, 14 features are calculated from the wavelet trans-
form; for J = 10, 39 features are calculated.

4.2.6 Evaluation
The following classifiers from the Matlab Classification
Learner app are used for comparison:
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TABLE 7
Robot Skin Study: frequency range and coefficients of the discrete wavelet transform.

Subband frequency in fn frequency in Hz coefficients C(Dx)

d1 fn/2 - fn 25 - 50 Cd1(Dx, n), n ∈ [1, 800]
d2 fn/4 - fn/2 12.5 - 25 Cd2(Dx, n), n ∈ [1, 400]
d3 fn/8 - fn/2 6.25 - 12.5 Cd3(Dx, n), n ∈ [1, 200]
d4 fn/16 - fn/8 3.125 - 6.25 Cd4(Dx, n), n ∈ [1, 100]
d5 fn/32 - fn/16 1.5625 - 3.125 Cd5(Dx, n), n ∈ [1, 50]
a5 0 - fn/32 0 - 1.5625 Ca5(Dx, n), n ∈ [1, 50]

• Medium Tree (maximum 20 splits decision tree)
• Linear Discriminant Analysis (LDA)
• Support Vector Machine (SVM) with linear kernel
• SVM with quadratic kernel
• K-nearest neighbors (KNN) with K = 10
• distance weighted KNN with K = 10
• Bagged Trees (random forest bag, with decision tree

learners)

For cross-validation, three settings are considered:

• Random cross-validation (K-Fold): the training data
and testing data are from the same data set with k-
fold cross-validation.

• Leave-one-recording-out: as the data from the same
experiment session may exhibit greater similarity, we
use separate different sessions from the same person
into training and testing data of the classifier.

• Person independent exclusive: the training data and
testing data are from two groups of persons; the two
groups are mutually exclusive. So that the classifier
has no previous knowledge of the person being
tested.

TABLE 8
Robot Skin Study: Classification accuracy comparison of different

classifiers using basic features.

Classifier Accuracy

Medium Tree 80.50%
LDA 79.10%
SVM(Linear) 90.80%
SVM(Quadratic) 91.90%
KNN(K=10) 86.20%
Weighted KNN(K=10) 87.00%
Bagged Trees 89.60%

The basic features are considered with all the frame
descriptors (Dx, x ∈ [1, 6]). The results are listed in Table
8. The average accuracy of all classifiers is 86.44%, which
is well above the chance level of seven classes 14.29%. The
best performing classifier is SVM with a quadratic kernel
with an accuracy of 91.90%.

Different from the basic features, the amount of wavelet
features depends on the filterbank iteration (J ) of the dis-
crete wavelet transform. Therefore, the wavelet features are
evaluated by trying different filterbank iterations, as shown
in Table 9. The obvious trend is that as J increases, the
accuracies of all classifiers are increasing. On average, while
J = 6 and J = 4, the results are inferior to the basic features,
while J = 8 and J = 10 yields slightly better results than
the basic features most of the classifiers (except for LDA

and KNN). Even though there are instances that a higher J
yields slightly lower accuracy (for example, Quadratic SVM
with J = 10 and J = 8, it is within the random error range,
because every result is from a unique randomly separated
5-fold cross-validation.

Next, both the basic features and wavelet features are
combined. From Table 10, all of the results are better than
either basic features as in Table 8 and wavelet features from
Table 9. For example, with the LDA classifier, basic features
and wavelet features (J = 4) yield the accuracy of 79.10%
and 77.20%; while when both feature sets are combined, the
accuracy is improved by 4.50% to 83.60%.

Assuming application is not limited by the computa-
tional power, after comparing the contribution of the basic
features and wavelet features, basic features and wavelet
features (J = 10) combined are chosen for the following
evaluation.

The six frame descriptors offer information from dif-
ferent angles: D1 and D4 describes the average center
pressure point by the value and location; D2 and D5 are
the maximum pressure point; D3 is the variation of the
pressure profile; D6 measures the pressed area. Here how
each frame descriptor contributes to the classification result
is discussed. Table 11 shows the results of cross-validations
with separate frame descriptors. The results are based on all
basic features and wavelet features with J = 10. Different
descriptors contribute differently in combination with dif-
ferent classifiers. For example, [D1, D4] give less accuracy
than D6 with the KNN classifiers, but more with Quadratic
SVM. Overall, the combination of all frame descriptors
[D1−6] offer superior result than any of the individual
descriptors. This means that all of the descriptors make
positive contributions to the classification result.

4.2.7 Result and Discussion
Base on the previous analysis, all the frame descriptors, with
both basic features and wavelet features (J = 10) are taken
into consideration, because all analysis findings indicate that
all of the factors contribute positively to the classification re-
sult. The support vector machine classifier with a quadratic
kernel is chosen as it offers the best accuracy.

The first result in Figure 55a is from the randomly sepa-
rated 5-fold cross-validation from all participants in Group
A, it is essentially the confusion matrix of the corresponding
result from Table 9. The values in the matrix are ratios of the
current prediction in the overall ground truth of its class; on
the diagonal, the values are the true positive ratio of each
class. The F1 score is calculated as the harmonic mean of the
average precision and recall of all the classes; the ACC score
is the accuracy, which is the average true positive rate.
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TABLE 9
Robot Skin Study: Classification accuracy comparison of different classifiers using wavelet features with varied levels of filterbanks.

Classifier ACC(J=10) ACC(J=8) ACC(J=6) ACC(J=4)

Medium Tree 82.10% 79.70% 78.10% 77.70%
LDA 75.00% 77.90% 74.10% 77.20%
SVM(Linear) 91.70% 91.10% 88.50% 87.10%
SVM(Quadratic) 92.30% 92.40% 89.70% 87.80%
KNN(K=10) 85.40% 84.30% 77.50% 77.00%
Weighted KNN(K=10) 86.10% 84.60% 77.80% 77.60%
Bagged Trees 91.60% 91.00% 88.00% 86.60%

TABLE 10
Robot Skin Study: Classification accuracy comparison of using different classifiers with both basic and wavelet features (for wavelet features, with

varying J).

Classifier ACC(J=10) ACC(J=8) ACC(J=6) ACC(J=4)

Medium Tree 83.80% 83.70% 83.20% 81.20%
LDA 80.20% 82.30% 81.20% 83.60%
SVM(Linear) 92.80% 92.70% 92.10% 91.70%
SVM(Quadratic) 93.30% 93.60% 92.80% 92.20%
KNN(K=10) 87.10% 86.90% 84.00% 86.00%
Weighted KNN(K=10) 87.70% 87.20% 83.90% 86.00%
Bagged Trees 92.40% 92.30% 91.50% 90.80%

TABLE 11
Robot Skin Study: Comparison of the contribution of different frame descriptors, the features used are both basic and wavelet (J = 10) features.

Classifier ACC(D1, D4) ACC(D2, D5) ACC(D3) ACC(D6) ACC(D1−6)

Medium Tree 70.90% 70.50% 71.40% 74.30% 83.80%
LDA 68.80% 67.70% 64.50% 73.00% 80.20%
SVM(Linear) 85.80% 83.40% 85.20% 85.00% 92.80%
SVM(Quadratic) 88.00% 84.60% 86.10% 85.30% 93.30%
KNN(K=10) 74.90% 73.70% 73.10% 78.80% 87.10%
Weighted KNN(K=10) 75.50% 74.70% 74.10% 79.10% 87.70%
Bagged Trees 84.90% 82.50% 83.10% 85.00% 92.40%

Fig. 55. Robot skin study: confusion matrix of the cross-validation result on Group A dataset.

Data recorded in the same session may possess greater
similarity than another session from the same person. In
Group A, every participant attended two recording sessions
on different days. These sessions are separated into two sets,
each set contains one session from all participants. One set
is used as training, and the other as testing; the process is
then reversed as the training and testing sets are exchanged.
The confusion matrix in Figure 55(b) is the average of both

results.
Next, the study evaluates how well the classifier can pre-

dict on a stranger’s data. The 24 participants are randomly
separated into 4 parties, each 6 people. Then every party is
used as the testing data while the other three parties are the
training data. This process is repeated 4 times so that every
party is used as testing data once. The result in Figure 55(c)
is the average confusion matrix of the four repetitions.
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Fig. 56. a. Confusion matrix of the person independent exclusive case of Group B, b. and c. Confusion matrix of the validations using Group A and
Group B as training and testing.

All three results show very well separation among all
of the classes. Major miss-classification happens between P3
Press and P4 Push, P5 scratch and P7 stroke. Press and push
are similar actions, except push has greater contact area and
generally greater force; scratch and stroke are both repeating
actions, while scratch may have smaller area of contact.
Overall, the average 88.8% and 89.1% accuracy in leave-1-
recording-out and person independent exclusive cases are
also well above the random chance level of 14.3%.

For the mutually blinded experiment Group B, the con-
fusion matrix of person independent exclusive validation
is shown in Figure 56a. Except for the miss classifications
observed in Group A, more data from P6 Pinch are classified
as P3 Press.

Then a classifier is trained with the feature data from
Group A, and tested with the data from Group B. Figure
56b shows the confusion matrix result. Compared to the
confusion matrix from Figure 55c in the person independent
exclusive case, CM A-B has near 19% drop of accuracy
and F1-score. This means the mutually blinded experiment
setting does decrease the recognition rate of the gesture
recognition approach. Notably, 12% of P4 Push gestures are
classified as P1 Grab, but most of the P1 Grab gestures are
correctly classified. The mutual miss classifications between
the pairs of P3 Press and P4 Push, P5 scratch and P7 stroke,
which are observed in the cross-validation of Group A, are
further increased. Most interestingly, in the Group A only
cross-validation, P6 Pinch is clearly distinguishable from the
other classes, while in CM A-B, it is largely miss classified
into P2 Poke and P3 Press. Also gestures from P5 Scratch is
miss-classified as P6 Pinch. The mutually blind experiment
setting could mainly cause this.

Figure 56c shows the result of using Group B as training,
and Group A as testing (CM B-A). As the accuracy decreases,
the classifier for CM B-A has only 560 samples as training
data, while in CM B-A, the classifier is trained with 5376
samples. And also Group B contains only the data from one
hand of each person, while in Group A, both hands are used
for recording the data. The major miss-classification caused
by P6 Pinch also exists in CM B-A, further suggesting the

mutually blind setting is the underlying cause.
Overall, the comparison of CM A-B, CM B-A, and the

cross-validations within Group A and Group B concludes
that (1) a completely blinded setting regarding experiment
and instruction can make a difference in recognition results;
(2) more training data can improve the accuracy for person
independent cases.

4.2.8 Conclusion
This application developed a textile robot skin prototype
from tactile pressure mapping sensors and algorithms to
investigate Human-Robot interfaces through various kinds
of touch, which is still uncharted territory. The textile touch
sensing skin is soft and the feel is close to clothing materials.
In a small region, it can detect different modes of touch
gestures with the same skin patch through our evaluation.

The data processing and feature mining algorithms also
serve as a detailed analysis with example data on the
wavelet analysis features first introduced in Chapter 8. The
contribution of each frame descriptor and each feature set
is evaluated, with different classifiers. The overall result
is that all of the frame descriptors with all of the feature
sets provide the optimal classification result of 93% with a
support vector machine classifier with a quadratic kernel.
The contribution breakdown also helps further optimizing
computational complexity. For example, with only the basic
features on all the frame descriptors, the accuracy drops less
than 2% from the optimal accuracy; with only D1 and D4

frame descriptors, the accuracy only drops 5%.
The increased miss-classification in the exclusive person

independent settings (Fig. 55c and Figure 56a) and the mu-
tual blind experiment settings (Figure 56) evaluation reveals
interesting aspects when it comes to strangers, which is
similar to what may happen between human-human inter-
actions: for example, someone’s normal pet on the shoulder
may feel too heavy for some certain people. This opens the
possibility to progressively improve tactile communication
through learning or even differentiate between users of the
robot through social-purposed touch sensing.
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4.3 Student Developer Workshop Projects

A couple of researchers with the knowledge and access to
TPM technology only has limited time to explore empirical
applications. Therefore a student workshop is held, with
existing hardware version M-1.1 from Table 17 in Chapter
2, and a collection of software functions as a sandbox
implemented by Ankur Mawandia in Matlab. 7 8

Fig. 57. Typical procedures in new application exploration with textile
pressure sensing matrix: the “Textile Sandbox” serves as the general
framework for data recording and mining.

4.3.1 the Matlab Textile-Sandbox
The typical workflow of exploring an application with the
Textile-Sandbox is shown in Fig. 57. The design guidelines
of the sandbox are:

• Per step support: Every step in the workflow should
be provided with software tools.

• Configurable: Application-specific parameters such
as matrix size, refresh rate, etc. can be configured by
an editable .csv file.

• Fast kickstart: Together with the framework, a com-
pact example of an annotated dataset and configura-
tions is provided to execute the data processing chain
by calling a single function and a few more mouse
clicks.

7. This section is based on the publication [132] in which I am the
leading author. The Matlab ‘sandbox’ from Section 4.3.1 is implemented
by co-author Ankur Mawandia and the student workshop is lead by
co-author Prof. Jingyuan Cheng. Since the published work has gone
through extensive wording, some sentences and passages have been
quoted verbatim from the said source.

8. The developer user study is carried out by Mawandia, Ankur and
supervised by Prof. Jingyuan Cheng, in the Technical University of
Braunschweig. Mawandia implemented a software sandbox in MAT-
LAB based on previous publications from me and my co-authors.
And student participants use the sandbox to evaluate TPM sensing
in their own proposed applications. I also supported with advising on
hardware and software details during the study and the paper writing
after the study.

Fig. 58. Data processing flow and corresponding design in Textile-
Sandbox.

• Modular design: The Sandbox is divided into three
layers of modules as in Fig. 58. Users can sequentially
execute each module and validate its output. The
intermediate outcome of former steps is automati-
cally saved, so that the user can resume the data
processing at any step in the progress.

• Documented: An online ‘help’ documentation is cre-
ated about resource downloading, experiment de-
sign tutorials and how to use the labelling tools and
data mining tool. It is indexed and can be searched
upon.

Two annotation tools are included in the Sandbox. The
first one is a light-weight online tool for the experiment
participants to record annotation while performing the ex-
periment; the second is an offline tool that plots the recorded
data to manually input annotation. The second tool is meant
for experiments where the participants perform some pro-
cess which may include combinations of different activities,
and is difficult to control while conducting the experiment.

The data mining tool has similar functionality as the Tier
1-3 in Chapter 8 but with more simplified functions to make
it easier for beginner developers to grasp the concept of
processing TPM imagery. The first part of the data mining
tool is a set of preprocessing methods such as DC removal,
upscaling, filtering to enhance the data quality within each
frame. The second part is the feature calculation. 21 basic
features are provided but this part also supports custom
features. The 21 basic features are:

Statistical features from the time series of frame descriptors (10
features): two descriptors are calculated from each frame: the
sum of all pixels and the number of pixels with higher val-
ues than a calculated threshold. From the time series formed
by these two descriptors within the event, the maximum,
minimum, mean, number of peaks and number of mean-
crossing are calculated.
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TABLE 12
Time distribution in application exploration with Textile-Sandbox

Project Matrix Classes Participant×Repetitions Evaluation1 Accuracy

SpyOnMe 32× 8 2cm pitch 6 2 3× 5 Bagged Trees 8-fold 91%
Win Your Heart 16× 16 2cm pitch 7 3 1× 10 Random Forest 10-fold 84%
Pressure Password 16× 16 1cm pitch 5 4 2× 10 SVM 5-fold 76%
Smart Pillow 16× 16 2cm - 4cm pitches 5 5 6 3× 10 Bagged Trees 10-fold 87%
1 all projects used the 21 basic features provided by the Textile-Sandbox.
2 typing on keyboard, writing with a pen, sketching with a pen, internet surfing, playing computer games, idle, and absence.
3 scratching, hugging, holding the toy’s upper part, holding the lower part, beating, pinching and touching with the face.
4 five distinct passwords.
5 the asymmetric pitch is used to accompany the length of the pillow.
6 4 sleep positions ( supine position , prone position , lying on the left side , lying on the right side ) and 1 kneeing posture .

Pressure center shift (4 features): Three frames from each
activity event, the first, the last, and the frame with the
highest pixel-sum, are selected. The center of weight [x,y] of
these frames are calculated. The difference of [x,y] between
the first and the last frame, and between first and the highest
pixel-sum frame, are considered as another 4 features.

Image descriptors the average frame (7 features): Each pixel
in the average frame is the average of the pixel location
within the event period. The 7 Zernike image moments [133]
of this frame are calculated as features.

The third part performs cross-validation using the fea-
tures from the second part, with the Matlab Classification
Learner.

Fig. 59. Applications explored using Textile-Sandbox, along with the
representing pressure distribution of one selected activity, (a)SpyOnMe
(two arms lying on the table while tying on keyboard), (b)Win Your Heart
(grabbing with thumb), (c)Pressure Password (pressing with the middle
and the little fingers), (d)Smart Pillow (supine position).

4.3.2 Student Workshop Results
A workshop for master students major in Computer Science
or System Techniques is held, where the students develop
their own application from scratch. From 10 participants,
only 3 had background knowledge on ubiquitous comput-
ing through some earlier lectures. Four groups were formed
voluntarily. All the groups managed to individually propose
and explore one application within only 40 hours (The
applications are shown in Fig. 59, detailed time distribution
is listed in Table 13). All applications are based on general
ready-to-use electronics, version M-2.1.

The details of every application are written in [132].
Table 4.3.1 briefly summarizes the evaluation process and
results of every application. Briefly, the motivation for every
application are:

SpyOnMe: activity monitoring at workplace. Detection
of typical activities like typing on a keyboard, browsing the

TABLE 13
Time distribution in application exploration with Textile-Sandbox

Task Time Spent

Introduction lecture* 6 hr
Software practice with existing dataset 4 hr
Propose an application 3 hr
Making matrix 4 hr
Data recording and evaluation 20 hr
with Textile-Sandbox
Presentation on the explored applications 0.5 hr
Sum 37.5 hr

web or away from work can give insights into the person’s
role, his/her methods and performance at workplaces. Spy-
OnMe is proposed, as an non-intrusive method to monitor
workspace activities based on pressure between forearms
and the desk.

Win Your Heart: a toy for children behavior analysis.
This application aims to enable non-obtrusive monitoring of
children’s behaviour and their mental status by identifying
their interactions with a pressure sensitive stuffed toy.

Pressure Password: motionless unlocking. Pattern or nu-
merical locks are fairly common on mobile devices and
keyless entry systems. However, pattern-based locks have
been shown to be highly insecure as intruders can observe
movements and easily crack the pattern [134]. Numerical
entry systems such as in ATM machines have been shown
vulnerable to thermal cameras [135]. The developers ex-
plored a motion-less password system based on the born
shape of palm and length of fingers, and the combination of
multiple fingers at different intensities of pressure. All the
combinations look the same, making the password hard to
copy by observing.

Smart Pillow: sleep position detection. A pillow cov-
ered with pressure sensing matrix can help monitor the
sleep posture and enhance sleep quality. Five postures are
defined, including 4 sleep positions (supine position, prone
position, lying on the left side, lying on the right side) and 1
kneeing posture.

This pilot developer user study shows that making a
well-documented framework can unleash the potential of
the TPM sensing technology in pervasive and wearable
sensing. This would also be a continuous future evaluation
with the more matured, open-sourced framework from the
work of this dissertation.
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Chapter 5 Wearable Subspace Empirical
Studies

W earable technology has seen a successful transition from academic research to consumer electronics and is still
continuously growing, incorporating new technological innovations. For example, smartwatches has a global market

of 10 million USD as of 2017, and is projected to have a growth of 23% in the following five years. [136] They offer convenient
information access, activity tracking, and computing capabilities.

In general, there are two categories of wearable computing devices: solid and soft. In solid wearable devices, all the
functional components are rigid, such as smartwatches or smart glasses. Their entire assembly can have moving or soft
parts such as watch bands or hinges, but those parts do not serve any purpose in the computing system of the wearable
devices. Soft wearable devices have flexible essential and functional components, such as optical fiber, rubber or textile
sensors, etc. With the development of flexible displays and flexible electronics, the future of wearable technologies seems
to move towards the soft side of the spectrum.

In wearable sensing, TPM can be used as touch sensitive buttons as control inputs to build smart textile human-
computer interface systems. TPM can also be used for wearable activity recognition. One general approach is to relate the
activities with the external force applied onto certain surfaces of garments, such as an in-sole that measures the pressure
distribution from the foot, or a soccer shoe that detects ball kicks from the impact on the upper surface. Another approach
is to relate the activities with the motion of the garments’ surface, which is the self propagation in the Propagation design
space dimension. Essentially, as people move their bodies, they can feel the clothing they are wearing as a force. As a
result of Newton’s third law, the clothing also receives the counter force, which can be measured by the TPM sensors.
When applied mechanically tightly coupled with the skin, such approaches can also be categorized as planar pressure
mechanomyography.

With fabrics such as the CARBOTEX and SimpleSkin produced by Sefar, TPM has several traits that can is very suitable
for integrating into soft wearable devices. The fabrics are comfortable to wear, and can be tailored to fit irregular surfaces,
together with wireless electronic hardware versions M-1 and M-2, wearable garments with pressure sensors can be worn
and tested in real-life sports activities without obstructing the users’ freedom of motion.

In the wearable design space, as explained above, the Propagation dimension includes both direct and self methods.
Users normally are aware of the smart garments, thus the Intention is either intended or unintended. Unintended systems are
mostly aimed at unobtrusive activity tracking, while intended systems are typically control interfaces. Smart garments are
normally partial in their Coverage, with a common problem of sensor shifting. In this regard, matrix sensors such as TPM
can handle slight position changes as long as the active locations stay in the sensors’ region of interest. Wearable garments
are apparently mobile in the Mobility dimension, which may limit the size of coverage. Normal wearable activity recognition
requires medium sampling rate, while as shown in later in the soccer shoe study, some sport activities require high speed in
the Sampling dimension.

This chapter then discusses 2 empirical studies on using TPM in the wearable space for sports activity recognition.

• Textile Pressure Mechanomyography (MMG): this study demonstrates that TPM sensors can measure muscle
activities by the pressure between the garment and the body (mechanomyography). A tight-fitting leg band is
placed on the thigh to recognize various leg exercises. The approach is also demonstrated on other parts of the body
and compared with off-the-shelf electromyography (EMG) devices.

• Soccer Shoe: in this study, TPM sensors are placed on top of a soccer shoe to capture the moments of the ball impact.
This study showcases what only a wireless sensor system with high-speed sampling rates can achieve - not only
detecting the ball kick events, but also analyzing the force pattern during the kick which is less than 20ms.
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5.1 Textile Pressure Mechanomyography (MMG)

This section discusses a wearable motion monitoring so-
lution with textile pressure mapping sensors. 9 The core
concept is that motion and activities from the users will
cause planar pressure variations of worn textiles garments.
The sensing fabric can be supported with elastic bands made
out of a combination of rubber and textile, which is common
in sports accessories as shown in Fig. 60. The fabric can be
fit into normal clothing without the support of elastic bands.
Slim-fitting or tight-fitting clothing can be used in a similar
way as with elastic bands to monitor muscle activities.
Regular-fitting or loose-fitting clothing can be used to detect
contact-triggered activities such as posture monitoring from
the back, or touch input for human-computer interaction as
in Fig. 61.

Fig. 60. TPM sensors can be integrated into stretch bands that targets
different body part movements.

5.1.1 Abstract
In the recent years, fitness and sport have become an
important topic in wearable and pervasive computing, as
many consumer products include hardware with IMU-
based fitness tracking, heart-rate reading, and also software
kits to enable people to relate their activity and vital data
with their activity level and training progresses. A vast
number of consumers use running trackers with pedometers
(IMU) and GPS-location tracking. Some body-builder also
use smart-phone based training log to keep track of their
training. However, most of the current data are from motion
sensors and user input, and the information that can be

9. This section is based on the publications [61] and [56]. As the
leading author of the publications, I have only included my own work;
unless other authors’ contribution is an integral part of explaining my
work, in which case it will be explicitly stated. Since the published work
has gone through extensive wording, some sentences and passages
have been quoted verbatim from the said sources.

Fig. 61. TPM sensors can also be buried under a slim fit clothing without
stretch band support for body motion monitoring.

interpolated from them are basically repetitions of a specific
motion.

Yet staying in the motion and repetition does not cover
the entirety of training goals. The purpose of modern fitness
and sport can be (1)well-being and health, (2)weight loss, (3)
sports performance, (4)body form building. And the roots
are primarily aimed at balancing calorie intake and output,
improving cardiac performance and muscle hypertrophy.
Sport science researchers have shown that the same motion
of moving the weight can result in different muscle stim-
ulation in terms of sections and intensities, depending on
various factors such as weight and pose. [137], [138], [139],
[140], [141], [142]

Therefore, the focus of exercise tracking should see a
shifting from the motions alone to the muscles. Muscle activ-
ity study is also an important topic in life and sport science.
Understanding how muscles move during various activities
and exercises can help us compare the effect of different
exercises, choose more efficient and secure methods for exer-
cising the muscles and inducing muscle hypertrophy, which
asserts its role in fields such as bodybuilding, professional
sport, injury rehabilitation, elderly caring, etc.

Today muscle monitoring is largely restricted to con-
strained lab experiments. Long-term monitoring under real-
life conditions is difficult due to the lack of unobtrusive
mobile systems. Most existing approaches such as elec-
tromyography (EMG), magnetic resonance imaging (MRI),
ultrasound imaging (USI), etc require either bulky hard-
ware or specialized attachment of electrodes to the skin,
making widespread deployment unfeasible. While more
straightforward approaches such as force sensitive resistors
attached to elastic bands [143] or inertial measurement units
that measure skin surface motion have been studied, they
provide only a very limited amount of information about
the muscle.
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5.1.2 Hardware
An evaluation experiment is set to determine that various
activities can be distinguished from the same sensor at one
particular body part. The experiment is set in a leg-band
configuration to attach the sensors on the surface of the
tight. The hardware used during the experiment is F-3.1 as
from Table 17 in Chapter 2. It has a 24-bit ADC scanning at
50fps. It is connected to an Android smartphone via USB-
OTG implemented with a FTDI interface chip.

Fig. 62. Leg band study: experiment hardware set up.

An 8 × 16 sensor patch is stitched onto an off-the-shelf
elastic sportband, which is commonly used for supporting
joints and muscles. As no electrode-skin contact is required,
we cover the sensors with a cohesive textile band to shield
it from sweat during an intensive workout. The sensor is
wrapped around the leg to cover the lower part of vastus
lateralis and vastus medialis from the quadriceps muscle
group as in Fig. 62(2).

After the evaluation experiment, the data is truncated
from 24 bit to 12 bit, the classification results do not change
noticeably. Therefore the newer hardware version M-1.1 or
M-2 can also be used for wearable garments. The newer
versions have lower resolution ADCs but better power effi-
ciency and wireless transmission capability, thus the design
can meet the mobility design dimension requirement. The
major advantages are that those are built on low power
consumption microchips instead of FPGAs, and they have
wireless Bluetooth connectivity. With a 800mAh Li-Po bat-
tery, version M-1.1 or M-2 can operate continuously with the
Bluetooth transmission for over 8 hours; while in the version
F-3.1, the FPGA alone consumes > 150mA depending on
the implemented logic.

5.1.3 Experiment
To introduce controlled movement, and for safety con-
cerns, exercises with free weights such as barbell squats
are avoided; instead, gym machines that are designed to
limit the freedom of movement are chosen and hence, in
most cases, the movement of the weight is initiated by
the targeted muscles. Each session includes the following
procedures:

1) Warm up with the Cross Trainer’s ‘7-minute warm-
up’ program (Fig. 63 A);

2) For each machine, perform 3 sets of each 12 repeti-
tions, followed by one set, in which the participant

performs until either 15 repetitions or failure. The
machines include:

a) Leg Press Machine (Fig. 63 B)
b) Seated Leg Curl Machine (Fig. 63 C)
c) Leg Extension Machine (Fig. 63 D)

3) Cool down with the Cross Trainer’s ‘7-minute
warm-up’ program, same as step 1.

The participants are free to take pauses, drink, walk around
or any normal activities inside the gym. The system will
record all of those non-workout movements as the ‘NULL’
class. Every participant recorded four sessions, numbered
Day1 − 4. Between every workout day, the participants
take several days off to rest the leg muscles. For Day1 and
Day3, the weight of each machine is constant; while for
Day2 and Day4, the weight is increased after each set. The
actual constant weight, starting weight and increment is
participant dependent because they have different muscle
strength, and their performance actually improves from
Day1 to Day4. In Step 2, the order of the three machines is
shuffled within the four days, so that the participants begin
and end with a different machine each day to eliminate
the possible bias that he/she might be already tired upon
arriving at the last machine.

The exact wrapping tension and position of the sensor is
not precisely defined; instead, the only standards are (1) the
shapes of the muscles are visible on the app while the users
stand and tighten their legs; (2) the users can fully curl their
legs easily (stand and squat) with the band. The user can
adjust the band if it slides during training.

5.1.4 Dataset
Overall 6 participants recorded 24 complete sessions, con-
taining 288 sets of the three leg machines and 48 sets of
the cross trainer. To ensure safety while performing those
heavyweight exercises, the participants are regular members
at the gym, and they are aware of how to perform all of
the exercises safely. One participant is a professional gym
trainer, also a university student in sport science. Three
participants are university students who do regular sports
or gym exercises, but are not professional athletes. Two
participants are full-time researchers in the institute and do
occasional sports. One of the three students is female, and
the other participants are male. Their ages range: 21 − 27,
heights range: 171−187cm, and weights range: 70kg−85kg.

The ground truth is annotated manually, detailed to the
second of the start and end of each set or other movements.
The class definitions are listed in Table 14. The single rep-
etition is not annotated, because (1) counting can be easily
implemented by the movement of the weights (e.g., some
smart training machines are commercially available); (2)
exercises with weights are slower, less consistent compared
to free-hand exercises (e.g., push-ups), therefore, usually the
exact separation between adjacent reps is not clear simply
by looking at the person’s movement. Instead, the repetition
number and weight of each set are recorded in the form of
a normal workout diary by the experiment supervisor.

After each set, the participant is asked to rate his/her
effort of the past set from difficulty scores of easy (under
weight), normal (the person feels fair effort from the muscles
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Fig. 63. Leg band study: signal example of different activities

moving the weight), hard (the person needs to continue
focus and self-motivate moving the weight, movements
may be inconsistent), limit (the person’s movements are
close to failure in moving the weight). Then the experiment
supervisor, with a third person who looks at the recorded
video, gives a rating of the effort based on the participant’s
rating, movement consistency, and facial expressions. It is
worth mentioning that, the effort is a subjective score; and
the effort does not necessarily increase as the set proceeds or
weight increases. During the experiment, sometimes if the
participant takes a long pause, he/she might regain more
strength, and the next set can be easier than the previous
one.

5.1.5 Signal Processing and Feature Extraction

The signal from the sensor is essentially a time sequence
(stream) of 2D pressure distributions (frames). The 2D frame
is first spatially up-sampled from 8× 16 to 16× 32. For the
training and initial recognition, the data is pre-segmented
according to the annotation. Then a sliding window (win-
dow size 8s, step size 2s) approach is used to step through
the stream of data; each window is denoted as i. Features
are extracted from two aspects:

TABLE 14
Leg Band Study: Class Definition

Class Definition

Workout Activities
Class 1 Cross Trainer
Class 2 Leg Press
Class 3 Seated Leg Curl
Class 4 Leg Extension

Non-workout Activities
Class 5 Mounting/Dismounting/Adjusting machines
Class 6 Pause (on or off machines)
Class 7 walking

• Temporal: For each frame, the system computes three
central moments (sum wi and centroid xi, yi ) and
the pixel value of the pixel (σi) which has the maxi-
mum standard deviation during the current window.

• Spatial: the inter-frames are calculated, which are the
difference per pixel between every pair of adjacent
frames. They represent the change of the pressure
mapping. We then sum those inter frames within
the window, resulting in a single key frame ADi,
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Fig. 64. Leg band study: Leave-1-day-out average result

which represents the overall 2D pressure change in
the window.

Several practical reasons could cause the sensor to have
different offset values, such as the difference in wrap-
ping tensions and positions, sliding and adjusting of the
sensor band. To make the system more robust against
such variations, the algorithm avoids involving absolute
values in extracting features. For each temporal sequence
s ∈ {wi, xi, yi, σi}, s is normalized so the average value is 0,
and the standard deviation(SDs) is 1. The signal is filtered
to remove DC and high frequency noise with zero-phase
digital filtering. Then the following features are computed,
denoted as Ft(s):

1) magnitude range (max(s)−min(s));
2) average absolute of the 1st-order derivatives

(avg(|s′|));
3) standard deviation of the 1st-order derivatives

(SD(|s′|));
4) range of the 1st-order derivatives (max(s′) −

min(s′));
5) central frequency of the FFT spectrum (without

0Hz);
6) divide the spectrum into 5 even portions of fre-

quency band, and then use the mean magnitude of
each as a feature;

7) sort the data into a histogram of five bins, and use
the count number of each bin as five features;

8) using half of SDs as minimum peak height, find
the local maxima and minima. The number count of
maxima, minima, and maxima-to-minima ratio are
used as three features.

Again, to make the feature extracted from the key frame
ADi translation invariant, instead of directly using ADi,
first the maximum pixel is located within a field that is 4
pixels retracted from the four borders. This pixel represents
the most movement during the window. A 9 × 9 region is
selected, centered at this pixel as the region of interest ROIi.
Thenthe first three cental moments and Hu’s 7 moments
[82] of ROIi are computed, denote those 10 features as
Fs(ROIi).

Overall 82 features are calculated from every window:

F (i) = {Ft(wi), Ft(xi), Ft(yi), Ft(σi);Fs(ROIi)}

Fig. 65. Leg band study: event-based Leave-1-day-out average result

5.1.6 Window Based and Event Based Classification

First, the classification results on the basis of individual
windows are considered. The confidence-based AdaBoost
algorithm ConfAdaBoost.M1 [144] with decision trees as the
base classifier is used. The dataset is balanced by randomly
picking an even number of samples from every class. Since
the amount of data from every class is very unbalanced,
9 classifiers are trained with such random pick process;
the final result is the majority of the 9 classifiers’ outputs.
10-fold cross-validation of the complete dataset from each
person is performed. This yields over 95% average accuracy;
however, this is over-optimistic: the data from the same
repetition set have larger similarity compared with other
sets. Therefore, for everyone’s 4 days, leave-1-day-out cross-
validation is performed.

Fig. 64 (1) shows the average result of all participants
as confusion matrix; the detailed precision, recall, F1 and
ACC of every day from every person are listed in Fig.
66. Among the results, the gym trainer - ID5, has the
highest scores, with minimum daily scores deviation. This
is speculated to be a result of the participant doing the
same machine exercise in a very consistent manner across
different sessions, as his workout experience and body
build allow him to control the weights with ease. We then
performed leave-one-participant-out validation to examine
the system’s robustness against encountering unregistered
users; the confusion matrix is shown in Fig. 64 (2).

Next, the classification is elevated to the event level.
For every segmented set of C1 − C4, the majority of all
windows’ output is used as its final class. The remaining
non-workout classes are combined into a single class C5−7.
As shown in Fig. 65, there exists accuracy improvement
in every class, and the resulting overall F1 scores increase
to 0.943 and 0.852, as this process essentially smooths the
window based result.

In this application, it is important to first separate the
machine workout activities (C1 − C4) from non-workout
activities (C5 − C7), and then further distinguish which
machine the user is using. From the confusion matrix, it
is obvious the most misclassifications happen within the
workout classes, and non-workout classes; while very little
confusion happens between the two categories. Among the
four machines, the cross trainer is the most distinct from oth-
ers; while it is misclassified with walking in some occasions,
it is reasonable since the workout is a stepping action. In
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Fig. 66. Leg band study: distribution of leave-1-day-out individual day
results

the person independent case, the misclassifications among
C2, C3, C4 are increased but not significantly.

The accuracy degradation from the person dependent
to the person independent case can also be a result of the
participants’ physiology variety in terms of muscle size,
density, etc. As a baseline, it is speculated that the system
can be more robust against switching users with more train-
ing data that cover more body types, and that in practical
use case such a personal device can be easily trained with
individual users for optimum accuracy.

5.1.7 Activity Detection (Spotting)

As a system that accompanies the user out of the lab envi-
ronment, it should be able to automatically spot the user’s
activities in a continuous data stream without annotation.
The challenge is to be able to separate the relevant activities
from a NULL class containing anything that the user can
possibly do in between.

For activity spotting, the same sliding window i step and
size are used to scan through the data without annotation,
and extract the same set of features F (i). The person de-
pendent use case is assumed for optimal accuracy. For each
day’s data, a ConfAdaBoost.M1 classifier is trained with
the annotated data from the other three days of the user
(leave-1-day-out); during the training C1−C4, C5−C7 are
combined into two classes C1 − 4, C5 − 7 to distinguish
between workout activities and non-workout activities. The
classifier is tested with F (i) from every window of this day,
and the output is named as the binary spotting result, in
which ′1′ indicates the workout activities. Singular events
are removed, then adjacent ′1′s are grouped into ‘instances’,
each with the start and end points, then instances with less
than 10 seconds gap are merged.

Then, two different sets of classifiers are trained: one
trained with data from {C1, C2, C3, C4}, and tested on
the windows marked as workout instances; another with
{C5, C6, C7} and tested on the remaining windows. The
results within each workout instance are majority-voted. We
compare this final spotting result with the ground truth on a
2 seconds (window step) temporal precision. The resulting
F1-score is on average 0.779; however, only 31 out of 336
workout sets are not correctly spotted and classified (error
< 10%). The major misses are among C5, C6, C7, which
also do not have a clear separation during the annotation.

Fig. 67. Leg band study: spotting example for the session in Fig. 63,
before and after combining C5, C6, C7

For example: when the user is approaching a machine,
he/she might as well start adjusting the machine during
the last few steps; when a user is relaxing, he/she might
adjust the machine to release his body, or stand and slightly
step around; some adjusting machine movements might last
much shorter than the window size (pulling the weight pin).
After all, the muscles are not actively asserting force on
a workout level. Therefore, we combine C5 − C7 in the
spotting result, reducing the classes from 7 to 5, and the
resulting average F1-score is 0.856.

Fig. 67 shows the spotting result of the experiment
session in Fig. 63; Fig. 68 shows the distribution of the F1-
scores of every session from every participants. The spotting
result of each person accords with the classification result in
Fig. 66.

5.1.8 Counting and Workout Quality
To automatically assess not only the type of training ex-
ercise, but also the amount is relevant. The next evalu-
ation task is to count the number of repetitions within
each spotted instance. For every instance, the sum w(t)
of each frame is scanned with a sliding window to locate
the local maxima with the minimum peak height criteria
of median(w) + SD(w)/2, and local minima smaller than
median(w) − SD(w)/2 (w is the samples of the current
window instead of the whole instance). Then define the
smallest minima between two adjacent maxima as the start
of a partition, and end of the previous partition. While this
already defines a naive counting algorithm, it is sensitive to
minor variations in the timing and execution of the individ-
ual repetition. Therefore, dynamic time warping (DTW) is
used to inspect whether the same pattern has been repeated,
or it is an overcounting of a locally abnormal peak. Because
the repetitions here are not annotated, rather than choosing
a standard template, the algorithm derives a template for
each set, by a recursive DTW process:

1) the partitions are separated into pairs of two;
2) the time series of each pair are warped to have the

same length in the time domain to have the opti-
mum distance using dynamic programming [145];
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Fig. 68. Leg band study: distribution of spotting F1-scores of all participants

Fig. 69. Examples of partition and counting result. Red vertical lines mark the partition separations, orange and dash purple horizontal lines mark
the standard deviation and median of each window.
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Fig. 70. Leg band study: histogram of counting errors

3) a new time series is calculated as the average of the
two warped series;

4) by generating one new time series from each pair,
the collection of new time series are grouped into
pairs of two and go to step 2 until only one time
series is left.

The remaining single time series is then taken as the tem-
plate of the current set.

Then, the algorithm looks for the partitions shorter than
half of the average partition length in the current set, which
is an overcounting candidate. To decide if it is actually an
overcounting, three time series are derived for each can-
didate: its own partition, the previous partition plus itself,
itself plus the following partition. Then each of the three
series is matched with the set’s template with DTW, and
calculates the mean value of the difference between the two
warped series as the DTW warping error. The series with
the smallest warping error is the one that best matches the
template. Hence, if either the previous plus itself, or itself
plus the next has the smallest error among the three, the
corresponding two partitions are merged. DTW is used for
correcting the counting results instead of the major counting
criteria. To further save computational time, for cases that
over counting candidates do not exist in a set, or for the cross
trainer with hundreds of repetitions, the DTW correction
process is not performed.

While counting of movement repetitions can be easily
done through wearable IMUs or machines with position
sensors on the weights/cable, the actual meaningful infor-
mation is how much effort the user is asserting with the
targeted muscles, and the consistency of the force patterns
during the workout. For each partition’s time series w, the
following properties are calculated to represent the consis-
tency variation:

1) p1 length of the partition in seconds
2) p2 range of absolute value (max(w)−min(w))
3) p3 average of absolute value (avg(w))
4) p4 DTW distance normalized by warping path
5) p5 DTW warping error as previously explained.

The template of the DTW is calculated as the same re-
cursive process, but after removing overcounting. Fig. 67

shows an example of the partitioning process from each
machine workout class, and the according p1−5. In the end,
p1−5 outliers (within a dataset, points whose distance to
the median is greater than the standard deviation) at the
beginning and end of the set are removed, and the number
of the remaining partitions is the final counting result. The
counting results are compared with the ground truth, and
shown as the histogram of errors in Fig. 70, from which, zero
error takes the majority. In Fig. 67, outliers are kept to show
how different the p values are for signals out of the set. p1−5
describe the speed, force intensity, and pattern variations,
thus they can be used as a new measure for evaluating the
workout consistency in future studies.

5.1.9 Observation of Warm-up Process
Muscle warm-up is an important process for improving
sports performance and safety [146], [147], [148]. In this
subsection, we demonstrate the capability of the system for
evaluating the warm-up phase. While the skin temperature
of the used muscles indicates the warm-up status; muscle
warm up is, by nature, the process of increased blood flow,
oxygen, metabolism, and adrenaline in the muscle, which
also results in muscle volume and strength improvement.
With a fixed elastic band around the muscle, this improve-
ment causes an increment in the average pressure which can
be measured by our sensor.

In Fig. 63, it is visible that the average w(t) during the
warm-up is increasing, while during the cool down phase,
the increment is not as obvious; this difference exists in
every experiment session. While the magnitude range for
each step is smaller during warm up than during cool down
in the particular session of Fig. 63, this does not apply
to all workout sessions (in some sessions the difference is
not distinguishable or even reversed). To quantify this and
review all experiment sessions statistically, we fit each cross-
trainer session’s x = w(t) with the following two functions:

y = k × x+ b

to approximate the linear increment;

y = m× (1− e−x/a)

to approximate the start to saturation trend. Fig. 71 shows
the resulting k, b, a and m for every session(values are nor-
malized for each coefficient to compare only the difference),
from which, it can be concluded that during the warm-up,
the average pressure increases more, with a lower starting
value; and the average pressure saturates faster after the
main workout routines, with a smaller start-to-saturation
range.

5.1.10 Individual Set Difficulty
As each workout set has been rated an effort score, the
relevance between the people’s subjective perception of the
exercise effort and the consistency of the force measured by
the sensor is evaluated. To avoid building upon errors from
counting, p1−5 in Section 5.1.8 is not used; instead, for every
set, the algorithm uses the same peak detection scheme
on the average pressure data with a sliding window, and
also calculates the standard deviation of the signal within
the window SDi. Then the following pairs of features that
describes the signal consistency are derived:
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Fig. 71. Distribution of muscle warm up parameters. x-axis: 1=warm
up sessions, 2=cool down sessions. Higher k means more increment;
higher b means more starting tension; higher a means slower to satura-
tion; higher m means bigger start-to-saturation range

Fig. 72. Distribution of d9 and d10. (before and after grouping easy-
normal and hard-limit; left: 1-easy, 2-normal, 3-hard, 4-limit; right: 1-easy
& normal, 2-hard & limit)

1) avg (d1) and SD (d2) of local maxima heights;
2) avg (d3) and SD (d4) of local minima heights;
3) avg (d5) and SD (d6) of local maxima distances;
4) avg (d7) and SD (d8) of local minima distances;
5) avg (d9) and SD (d10) of SDi;

The last pair of features are shown in Fig. 72, from which
the trend of more significant deviation related to higher
difficulty score is observable. To determine how well those
features are separated among the four rating classes (easy:
1; normal: 2, hard: 3, limit: 4), 10-fold cross-validation with
the ConfAdaBoost.M1 algorithm is performed. The resulting
average accuracy is 42.50%, which is not high, yet still above
random (with four balanced classes, the accuracy of random
selection is 25%). Easy and normal are grouped as class
1; hard and limit as class 2, resulting in a cross-validation
accuracy of 72.99%. As the ground truth is subjective, the
TPM sensor offers a new aspect for evaluating the quality
of the work out by measuring the consistency within each
repetition set.

5.1.11 Alternative Sensor Placements
After evaluating the sensing modality through leg exercises,
the hardware is further improved to enable a wireless set-
up between the sensor and the paired Android devices with
version M-1.1 from Table 17 in Chapter 2. Therefore, the
elastic band can be easily worn onto other parts of the user
to explore the possibility of targeting different muscles. In
Figure 73,74 and 75, the sensor is attached on the chest, back
and arm.

In Figure 73, the user is performing flat bench presses
with dumbbells. In Figure 74, the user is doing dead-lifts
with a barbell: with a straightened back posture all the
time, from an initial pose of deep squat, the user pulls up

a weighted barbell from the floor till the straight standing
pose, then reverses the action. In Figure 75, the user is doing
cable curl-bar triceps extension: that is, while standing in
front of a cable station, with the cable’s terminal pulley fixed
at top, he pulls down the attached bar to the lowest possible
position, then releases the bar slowly to the level of his chest.

We calculate the 10 image moments (3 central moments
and Hu’s 7 moments) of every frame and visualize one
set of repetitions in each figure. From the visualized data,
the repetitions can be easily distinguished from the rest of
the data by the significant magnitude, frequency, repeating
pattern, etc. And in the bench press case, breathing is also
visible during the relax period.

5.1.12 Comparing with EMG
From the ease of wearing, the TPM approach has a major
advantage that the sensor does not require direct skin con-
tact with the sensing elements. Yet it remains necessary to
compare this approach with the existing electromyography
(EMG) approaches. An easily available wearable EMG de-
vice with easy data access, the MYO armband (Thalmic Labs
Inc.) is chosen. It is primarily designed for arm and hand
gesture control by monitoring the muscles on the lower arm.
It has 8-channel, 8-bit EMG measurement evenly distributed
on the circular housing. The electrodes of MYO are solid
metal pads, and are fixed on the skin by the compression of
the rubber from the housing. In Figure 75, the MYO is worn
on the upper arm of the same user while performing the
exercise, and the data of the 8 channels is visualized together
with the data (10 image moments) from our approach.

First of all, the MYO EMG signal reaches saturation
(at ±128) during most of the exercises; yet this could be
a problem that the MYO is only 8-bit and is tuned to
monitor less extreme muscle stimuli. Then, in the EMG
data, it is easy to distinguish when the muscle is exerting
force (actually pulling the weight); but it appears more data
processing effort is needed to extract the actual pattern of
the repetition. In comparison, the peaks and the repeating
pattern is already visible from our approach simply after
calculating the image moments.

5.1.13 Planar Pressure Mechanomyography (MMG)
While surface electromyography (EMG), which is measur-
ing the electrical current changes from the body, is currently
a popular sensing modality when it comes to measuring
muscle movement, another method in physiological appli-
cations is surface mechanomyography (MMG), which is
measuring mechanical changes introduced by muscle move-
ments. [149] Unlike EMG, MMG is not a single method, but
a branch of sensing methods in which the sensors’ reading
can be influenced by the attached muscle movement. The ac-
tivation of small muscle motor units in combination results
in macroscopic changes such as muscle thickness, stiffness
and surface displacement.

In [150], Orizio, et al. demonstrated that the ripples of the
surface force measured by a load cell, surface displacement
measured by laser and muscle surface vibration measured
by an accelerometer can be used for muscle activation
measurement. A piezoelectric crystal contact sensor is used
to measure the lateral oscillation on the muscle surface in
[151]. Optical fibers can be wrapped around the body part
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Fig. 73. Left: the pressure sensor band is attached on the chest, targeting pectoralis major muscle; right: the data (10 image moments of every
frame) during a set of dumbbell bench presses, the y axis is the value of the calculated moments

Fig. 74. Left: the pressure sensor band is attached on the lower back, targeting the lower part of spinal erectors muscles; right: the data (10 image
moments of every frame) during a set of barbell dead-lifts, the y axis is the value of the calculated moments

Fig. 75. (a) a MYO armband is fitted around the biceps and triceps muscles and our pressure sensor covers the triceps, (b) the data from our
sensor during a set of cable triceps extension, the y axis is the value of the calculated moments (c) the data from MYO during the same set of
exercise, the y axis is the value of the raw EMG reading.
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and bending on the micro structure results in changes of the
light passed through the fiber. In [152], three optical fiber
transducers are used around the arm to detect 6 distinct
gestures.

In [153], a single point planar pressure MMG sensor
is made from a force-sensitive resistor, with rigid enclo-
sures on both sides to introduce a mass with inertia, and
the muscle surface displacement will cause a dynamically
changing force between the body surface and the mass. Even
though this method is based on planar pressure sensors, the
physical principle is more similar to an accelerometer.

The wearable garments in this work are essentially
performing MMG based on planar surface pressure. With
a stretchable garment that is closed around the muscle,
the change of muscle volume during muscle motor units’
movement essentially changes the tension between the body
and the fabric surfaces. Overall the advantage of MMG over
EMG is that there needs to be only mechanical coupling
between the sensor and the body, while EMG requires stable
electrical coupling, namely the conducting electrodes need
to be firmly attached to the skin, in some cases liquids or
gels need to be applied for better signal quality. Especially
TPM sensor matrix, with its bigger area of coverage, is
more robust against sensor sliding during movements. EMG
is also sensitive to electro-magnetic interference (EMI), for
example, the smartphone antenna can produce artefact in
the EMG signal which may be mis-intepreted as physical
motions [154].

5.1.14 Conclusion
In conclusion, this application has demonstrated a novel
wearable system based on TPM MMG to measure the mus-
cle movement during various sports activities. The approach
is validated in a real world leg workout experiment with a
first version prototype, which can be used for not only sport
activity recognition, but also quality evaluation. With an
improved tether-free prototype, other placements including
chest, back, and arm also show similar potential from the
quality of data during the relative workouts.

The major advantages of the approach are:

1) the high amount of sensing points make the device
more robust against fixing variations;

2) its air permeability, flexibility and possibility to be
isolated with sweat absorbing textiles make it very
suitable for sports activities without introducing
uncomfortableness and restriction;

3) the information can be extracted about the muscle
activity goes beyond mere movement as shown by
the warm-up and difficulty level analysis.

It remains interesting to investigate further leg exercises
with free weights, such as squats, lunges, and the variations
of pose and stance with our approach. With the wireless
hardware making it possible to fit many other parts of the
body without impairing the movement freedom, it is also
interesting to perform detailed evaluations of other muscle
workouts and, apart from the weighted resistance training,
outdoor training, and other sports activities.

The approach has also led to the development of the
Trainwear project in a fashion challenge hosted by Deutsche
Telekom in Berlin, as well as a Percom demo [155] (best
demo award), and presented in the Mobile World Congress
2018 in Barcelona.
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5.2 Smart Soccer Shoe

In this section, a novel smart soccer shoe is implemented
with TPM technology that measures the pressure force
distribution on the non-planar shoe surface. 10 The smart
shoe can be used for testing shot impact pressure and distri-
bution which is interesting in the analysis of ball sports,
especially soccer. The system is evaluated with a robotic
leg in the Adidas robotic facility, with 17 different types
of shots. The smart soccer shoe system endured extreme
levels of impact with over 100km/hr ball speed. The fi-
nal classification accuracy/F-score was almost 100 %. The
evaluation demonstrated that such a system is capable of
distinguishing various shot angles and intensities, which
can be further translated into ball trajectories.

5.2.1 Study Background
As the world’s most popular sport [157], much research ef-
fort has been put into the study of the science behind soccer
[158]. From the classic projectile mathematics models [159],
[160] to the more recent aerodynamics of the ball’s flight
path [161], [162], [163], [164] which concern the influence of
a wider range of factors such as spin, surface roughness and
the seam geometry of patches.These studies cover trajectory
data measured by high-speed camera systems, both from
real players and launching machines. Wearable systems to
study kinematics and detect shot/pass actions based on in-
ertial measurement units (IMU) are also being investigated
[165], [166]. However, the actual physical contact which
occurs between the shoe surface and the ball when kicking
has not been sufficiently studied. This is mainly due to
the constraints that the instrumentation should not change
the physical properties of the contact surface, which is soft
and irregular in shape; and that the impact time can be
less than 20 milliseconds, making it difficult for tether-free
implementations.

In [166], Akins has extensively validated IMU sensors
and magnetic field angular rate and gravity sensors em-
bedded into soccer shoes and shin guards. Compared to
high-speed cameras and vision markers, the data showed
a consistent correlation under all the testing activities. Data
from IMU-instrumented soccer shoes and shin guards are
also proven to be able to detect several soccer related actions
in the work of [165]. In [167], in-shoe IMUs are compared
with wearable electromyography on the leg muscles to
evaluate kinematics and muscle activation.

Several insole foot planar pressure mapping systems can
be found in [168], [169]. They are mainly used for gait
analysis during walking, running or jumping; however, the
placement would not give more information about shoe-ball
contact, only ground-shoe contact. However, in [170], a 4-by-
4 pressure mapping sensor is installed over the shoelaces
to visualize the kicking force and center of pressure. This
framework-focused pilot research did not include sufficient

10. This section is based on the publication [156]. As the leading
author of the publication, I have only included my own work; unless
other authors’ contribution is an integral part of explaining my work,
in which case it will be explicitly stated. Since the published work has
gone through extensive wording, some sentences and passages have
been quoted verbatim from the said source. I would like to express
special thanks to Markus Wirth for making the experiment recording
possible in the Adidas Herzogenaurach facility.

data in terms of shot variations, and furthermore, the cover-
age of the shoe surface is limited to only the shoelace area.

5.2.2 Hardware Requirement
Instead of introducing add-ons to the shoe, the sensing
element should be integrated into the shoe surface material
in an unobtrusive fashion that can be manufactured together
with the shoes. In this application, an Adidas Messi 15.3
indoor soccer shoe is instrumented with TPM sensors.

The sensors are separately tailored into 3 patches. In
order to form a grid of the two sets of parallel stripes,
instead of 90◦ cross, each of them has a 40◦ angle. These
are shown in Fig. 76, indexed as A (outside front), B (inside
front) and C (inside heel). Each crossing of the metallic
stripes form a sensing node, and the resolution of the nodes
of A, B, C are 3− by− 4, 3− by− 4 and 3− by− 3. The front
two patches are covered with very thin and soft protective
textile sports tape, which does not significantly influence the
sensors’ readouts.

The sensors are powered by a hardware version similar
to M-1.1 from Table 17 in Chapter 2. Every pixel is scanned
with a 12-bit ADC at > 550Hz per sensing node. The data
is sent via Bluetooth to an Android device (Samsung Galaxy
Tab 2 or S6 in this study). The smartphone/tablet saves
the data for further processing. The sensors measure the
pressure on the shoe surface cover material, which can be
caused externally, by higher speed ball impacts or internally,
by the lower speed movements from the wearer’s foot (i.e.,
toes). As shown in Figure 78, every 1.8ms there is a data
point, and for every actual ball impact, we have around ten
observations.

While designing the system, we ensured that it would
be feasible for implementation in real sports. With a small
800mAh Li-Po battery, the system can operate continuously
for 8 hours. In this initial prototype, we have only one side
of the shoe paired to one Android device. We also imple-
mented connecting two shoes (a pair) with one Android
device, which has a slight drop of scanning speed from
550Hz to 420Hz per sensing node. The dimensions of the
printed circuit board and the battery are 2.6 × 3.5cm and
4.4× 3.4cm.

5.2.3 Experiment Design
To test the sensors’ capability of measuring different football
shot angles and forces, an experiment is conducted with a
robotic leg that is designed specifically for simulating foot-
ball kicking actions. Its mechanical details and the variation
of ball flight paths are documented in [171]. The robotic
leg has a controlled motor at the thigh joint, which offers
a controllable leg swing speed υ. At the ankle joint, there
are two adjustable hinges:

• the angle of the foot’s rotation around the length axle
of the leg cylinder α;

• the angle of the foot’s tilt around the radius direction
of the leg cylinder β.

Adidas Brazuca 2014 match balls are used in the experi-
ment with 0.6 Bar pressure. The foot-vs-ball impact position
is marked on the ball with a laser cross and is controlled
to be at the vertical center of the ball from the view of the
foot as in Figure 84. Different classes are defined by kicking
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Fig. 76. Soccer shoe study: instrumented shoe with dummy sensor patches on the side

Fig. 77. Soccer shoe study: 3D illustration of the robotic leg, ankle angles
α, β and leg speed upsilon. Free view (left) and top view (right).

types with various α and υ combinations listed in Table
15. In some the combinations, the ball would fire to the
ceiling or out of the protected field at a speed of 100km/hr,
therefore the β angle, horizontal impact position of the ball,
and the orientation of the robotic leg’s platform are adjusted
to ensure that the trajectory would point towards the goal
direction like a realistic shot. With real players, the trajectory
is typically controlled by the combination of multiple factors
such as foot angle and body orientation of the players.

Fig. 78. Soccer shoe study: average pressure from each sensor patch
during a ball impact

The speed of the ball is measured with a combination of
a hawk-eye system and speed radar. The ball speeds range
from around 40km/hr at υ = 10m/s to over 100km/hr at
υ = 20m/s, and vary with different impact insertion angle
from the foot to the ball.

With multiple footballs, the ball is fired 10 times per class
and overall 170 shots are recorded. Before every shot, the
shoe is manually readjusted on the robot’s foot to introduce
some variance to the initial position. The ball speeds are
shown in Figure 79; to compare the variance and offer
a reference for further classification accuracy, the average
StandardDeviation/MeanV alue ratio of ball speeds is
5.74%.
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TABLE 15
Soccer Shoe Study: Class Definition

υ = 10 υ = 15 υ = 20

α = 50◦ C1 C2 C3
α = 40◦ C4 C5 C6
α = 20◦ C7 C8 C9
α = 0◦ C10 C11 C12
α = −20◦ C13 C14 C15

Fig. 79. Soccer shoe study: measured ball speed distribution

Fig. 80. Soccer shoe study: method 1 algorithm

5.2.4 Evaluation
The data retrieved from the sensors are a stream of 2-
dimensional matrices, including 3 submatrices {A,B,C}
representing each patch front-outside, front-inside, and
front-heel; with a time granularity of approximately 1.8ms.
As shown in Figure 87, the 3-D pressure mapping illustrates
the relative pressure as well as the impact distribution and
location. The fabrics are fixed onto the non-planer shoe
surface with some initial pressure. Thus there will always
be a minimal level of pressure present. A high-pass filter
with a cut-off frequency of 2 Hz is applied to remove this
offset. Then the frames are up-scaled by a factor of four on

Fig. 81. Soccer shoe study: method 2 algorithm

Fig. 82. Soccer shoe study: method 3 algorithm

x and y dimensions. Frame descriptors - mean w{A,B,C}(t),
centroid (x, y){A,B,C}(t) and maximum max{A,B,C}(t) for
each submatrix are calculated, denoting them as S(t). The
data recorded from the experiment are then segmented
based on the peak value of the mean w{A,B}(t) during each
impact. Each segment is one data sample i, corresponding
to a 90ms window centered at the peak, the time span is
named as time domain Ti. S(t) of each data sample is a
time-varying sequence Si(t), t ∈ Ti .

Fig. 88 shows that for an impact of the same class, S(t)
have repeatable patterns. Therefore, for every t ∈ Ti the
average of S(t) from all training data samples is used as a
template STemplate(t), t ∈ Ti for each specific class.

Combining (x, y){A,B,C}(t), and max{A,B,C}(t), the
track of the center of impact with its intensity can be
visualized as in Fig. 89, where the position of circles are
(x, y){A,B,C}(t) coordinates and the radius of circles are
scaled to max{A,B,C}(t). From these figures, we conclude
that, as the swing speed increases, the impact intensity
increases over the curve; and different α angles result in
distinct tracks of impact center. These figures also illustrate
that while the shoe rotates from α = 50◦ to α = −20◦ as in
Figure 77, the major impact area shifts from the heel part to
the front-inner, then front-outside sections of the shoe.
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Fig. 83. Soccer shoe study: example confusion matrix of F2(i)−NB −
2− Fold with 0.915 F-score

Fig. 84. Soccer shoe study: illustration of the impact center on the ball
with the view from the foot, and definition of Class {C5L,C5, C5R}
(α = 40◦ and υ = 15m/s)

5.2.5 Data Mining Methods
Next, to extract features that best represent the force map-
ping signature of different types of impact, three methods
are explored.

Method 1: Template Matching
For each iteration of the cross-validation, the templates
STemplate(t), t ∈ Ti are calculated anew from the training
samples, excluding testing samples, and each class has one
set of templates. Then calculate the mean of multiplication,
and the mean of subtraction between the templates and
each data sample i, are calculated, and the products are
used as features F1(i). Since each STemplate(t), t ∈ Ti has
12 members, and overall 15 classes, F1(i) has 180 members.

Method 2: Wavelet Analysis
In Method 1, when there is a new training sample, the
templates are recalculated and all the features will change
accordingly. For a more generic algorithm, wavelet analysis
is used with the LTFAT toolbox by [129]. The wavelet
features are similar to the method introduced in Chapter
8.

Fig. 85. Soccer shoe study: confusion matrix with F2 feature set and
LDA classifier, 10-fold of 17 classes including Class {C5L,C5R}

First Mallat’s fast wavelet transform (fwt) algorithm
[130] is performed on every Si(t), t ∈ Ti with 10 iterations
of the Daubechies-8 wavelet [131], producing produce a
scaleogram of fwt coefficients of 11 sub-bands as shown
in Fig. 81. For each sub-band, the mean of coefficients is
calculated; for sub-bands d9 − d1, we also calculate the
variance, standard deviation, skewness and kurtosis which
describe the distribution of the wavelet coefficients. For each
data sample, 47× 12 = 564 features are used as F2(i).

2-Dimensional Analysis
While in Method 1 and 2, (x, y){A,B,C}(t) and
max{A,B,C}(t) are beneficial from the pressure mapping
matrix in contrast against single-sensor FSR installments,
the information from the 2-dimensional mapping is not
fully used. For each data sample and the stream of 2D
pressure mapping PM(i,{A,B,C}), for each pixel, zero-phase
high-pass filtering is applied to remove DC. Then the
positive and negative values are isolated in the matrices as
PM+(i,{A,B,C}) and PM−(i,{A,B,C}), the mean value of
every pixel as PMmean(i,{A,B,C}) the frame at the time
when the sum of PM(i,{A,B,C})(t) is maximum within
the data sample, as PMmax(i,{A,B,C}). We calculate ten
image moments (first three central moments and Hu’s
seven moments) [82], as they are image descriptors that can
represent certain properties of the pixel density distribution.
Overall, 120 image moments are extracted for each data
sample as features, F3(i).

5.2.6 Cross-validation
Cross-validation is performed to evaluate if it is possible to
distinguish the α angle and leg speed combinations defined
during the experiment from the sensor data, with standard
classifiers: kNN, Naive Bayes, linear discriminant analysis
and decision tree to compare the performance of each. 10-
fold, 5-fold and 2-fold cross-validation are differentiated to
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Fig. 86. Soccer shoe study: F-scores of cross-validation on different feature sets F1(i), F2(i),F3(i) and F23(i)

Fig. 87. Soccer Shoe Study: Example of pressure mapping readings
during a ball impact, t corresponds to the data point in Figure 78;
Pressure axis has a static range across all subplots while colormaps
are adapted to individual matrix values

Fig. 88. Soccer shoe study: data samples of class α = 40◦, υ = 10,
thin solid lines are raw data Si(t) , and thick dash lines are template
STemplate(t)

Fig. 89. Soccer shoe study: combined visualization of impact center
((x, y){A,B,C}(t) and max{A,B,C}(t)) of all classes from {C1−C15}.
Bubbles’ radii are scaled to the same factor.

examine the influence of the size of the training data set
on the results. For each feature-classifier-fold combination
the algorithm is run for 20 iterations and calculate the F-
scores (2×(Precision×Recall)/(Precision+Recall)) from
the average value of the confusion matrices from the 20
iterations.

The resulting F-scores are summarized in Fig. 86. In 10-
fold, for F1(i) feature set, multiple classifiers (KNN, NB,
LDA) generate a similar classification result; with F2(i),
F3(i), LDA has higher F-score, but the other classifiers have
a poorer result; on average, combined F23(i) has slightly
better result than individual F2(i), F3(i). As the number
of folds decreases, there are less training data samples and
more testing data samples, and most of the classifiers’ f-
scores decrease; however, with F2(i) from wavelet analysis,
LDA classifier, the f-score are robust against such condition.

To show where the actual miss-classifications are located,
the confusion matrix from F2(i)−NB−2−Fold with 0.915
F-score is taken as an example in Fig. 83. It can be seen that
most miss-classifications happen between the same α angle
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with different leg speeds, as well as between adjacent α
angles. This shows that even if the data sample is classified
as a different type, the actual foot angle and swing speed
lies within the adjacent possibilities.

5.2.7 Shift of Kicking Center
As explained in Section Experiment Design, the impact
position on the ball is regulated to be at the vertical center
with a laser. To evaluate whether the sensor is capable to
distinguish the change of the kicking center, the ball center is
moved 30mm away from the vertical center to both the left
and right, at the combination of α = 40◦ and υ = 15m/s,
giving them the class index of C5L and C5R as shown in
Fig. 84. This is primarily to introduce spinning variance on
the ball.

With feature set F2(i) derived by wavelet analysis, and
linear discriminant analysis classifier, accuracy and F-score
both reach 100%. Yet it is possible that moving the center
of the ball might fall into the impact condition of other α
angles. Therefore {C5L,C5R} are combined with {C1 −
C15}, overall 17 classes. In a 10-fold cross-validation with
F2(i) features and LDA classifier, as shown in Fig. 85, the
change of the ball impact center is distinctly different from
other classes by the information from our sensor.

5.2.8 Conclusion
This application has showcased using TPM sensors to cover
a very irregular shaped object - the upper surface of soccer
shoes. While there have been sole pressure sensors, such
placement as in this application has not been observed
before. It also adds to the textile integration for it uses an
angled combination of the metallic stripes instead of the
standard 90 degrees and utilizes the virtual surface concept
to have several patches connected to a single sensing hard-
ware module.

The data can be visualized in several ways to help under-
stand what is happening on the shoe surface during soccer
shots up to professional impact intensities. After explor-
ing several algorithms and evaluating their performances,
wavelet analysis with a linear discriminant classifier has
shown near 100% accuracy with the overall 17 classes
defined.
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Chapter 6 Software Toolkit

The TPM framework implements a unified software toolkit which can be used across different design subspaces.
The software implementation needs to consider the flexibility during algorithm exploration, as well as the real-time

performance. The overall TPM software toolkit structure can be divided into:

• Tier 1 - Driver: Data receiving and logging, outputs raw data from the hardware.
• Tier 2 - Preprocessing: from raw data, performs necessary processing to parse it into the pressure mapping imagery,

and improve the quality of the representation of the pressure mapping imagery, segmentation.
• Tier 3 - Machine learning: feature calculation and classification.
• Tier 4 - Output and feedback: includes data visualization (temporal waveform and spatial pressure imagery), as

well as representation of the classifier results, (visual and audio) feedback based on classifier results.

The software implementation has eventually evolved into a heterogeneous implementation as in Fig. 90, that cross
different platforms, and programming languages. Efforts have been taken to make sure that the software has as little
dependencies as possible. They are mostly based on open-source platforms, but also licensed platforms such as Matlab.
However, an implementation of the software that is completely in open-source platforms is available.

A closed homogeneous application implemented only in C++ with open source libraries is also introduced.
This chapter explains all the design concerns of the software stack, including timing and data sharing, with the goal of

either a collection of heterogeneous programs or a single closed application that handles multiple tasks from the hardware
level data receiving, through data processing and classification, to visualization and user feedback in real-time.

Fig. 90. Software Stack and sub-module structure
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6.1 Real-time System
It is imperative to have a real-time data path to ensure the
validity of the sensor data for activity recognition. The real-
time goal in this part of the work is defined as:

1) Every input package (a frame) can be stored and/or
processed accordingly.

2) The software should not lose new input data while
processing previous packages or doing other tasks.

The hardware implementation guarantees fixed frame
rate, which gives a baseline for the software framework.
Yet since the software implementation is subjective to the
operating system’s scheduler, resources (memory size, core
count, availability) and for different actual data values,
the computational effort may vary, there are several key
points to be taken care of during the real-time software
implementation. It is possible that the computer cannot
handle the amount of data, causing buffer overflow; in such
occasions, the buffer should be cleared and warnings need
to be registered.

Building the software has a similar challenge as the
reverse of display synchronizations: the hardware is usu-
ally coded to generate pressure mapping at a fixed speed,
since it is typically driven by a hardware clock and the
sampling of every frame takes exactly the same clock cy-
cles/instructions. But the software on the computer is sub-
jective to the operating system’s scheduler, the efficiency of
the executing language, and sometimes the execution time
of different frames may also vary based on the actual data.

Therefore, proper pipelining and multithreading are
needed to guarantee the real-time performance during data
collection and methodology validation in the development
stage, as well as during long term evaluation and user
studies in the deployment stage.

Fig. 91. Simple abstraction of Software pipeline

Pipelining is realized through multiple layers of buffers.
Fig. 91 shows the naive timing scenario: assume each box
is the data of a frame, different colors represent different
frames, two boxes of the same color are the processing time
in two software layers of the same frame. THW is the time
between two frames, and TTier1−4 is the time needed to
process a frame in Tier 1-4 of the software stack.

However, this abstraction figure is not realistic: the hard-
ware buffer does not distinguish the frames. Instead the
hardware buffer only has a linear vector of input data.
Therefore Tier 1 needs to locate the frames by the frame
header bytes, and this process is not synchronized with the
frame sampling rate.

In Fig. 92, the software operates on a timer event with
the timer interval TTimer1, when a frame is located from
the read buffer, the following Tier 1-4 processing will con-
tinue, otherwise if the frame is not located, the buffer is

kept for the next execution of checking the read buffer.
Three examples of the read buffer at t = 3TTimer1,t =
4TTimer1,t = 7TTimer1 are shown at the bottom of Fig.
92. At t = 3TTimer1 and t = 4TTimer1, the read buffer
contains an entire frame and part of the next frame, and in
t = 7TTimer1 the read buffer does not contain a full frame,
therefore at that, instance the whole Tier 1-4 processing is
suspended and wait for the next callback.

Basic real-time performance requires

THW < TTier1−4

Otherwise, the software cannot process and display every
frame the hardware sends. In this case, the software will
accumulate the frames it received in the past until the
memory is filled. Yet this is the case if the operating system
has suddenly less resources for the software (for example,
other active applications or background tasks are using a
major part of the CPU resource); or hardware is sending
high data rate and the software runs on a relatively low
performing machine. This can be temporally fixed by setting
a fixed limit to the Read Buffer and cleanse it upon buffer
overflow, so the software stack will skip frames instead of
processing frames that it receives a long time ago.

A deeper look into the software stack, not all the layers
need to be operated at the same frequency as the hardware
input sampling rate. Typically, machine learning operates on
sliding windows, of which the window step is much longer
than THW . For example, in a gym exercise scenario from
Chapter 5.1, to detect which exercise the users are doing,
a few seconds granularity of the classification result can
already be considered fine-grained. Also for the data visual-
ization, typically 25 fps is sufficient for smooth animations
in the eyes of the viewers.

Therefore, different layers of the software stack shall
operate on different frequencies:

• Tier 1 Driver and Tier 2 Preprocessing should be
faster than the hardware input to be able to process
every frame;

• Tier 3 Machine Learning should run according to the
sliding window, or the desired temporal granularity
for the classification results;

• Tier 4 should follow the display output’s requirement
for real-time data visualization, or activity based
feedback that is related to the machine learning
results. (e.g., to display the classification result or
confidence scores)

Pipeline separates the different layers of the software
stack, so that layers can operate on different timer cycles,
and also changes the real-time requirement from THW <
TTier1−4 to

THW < max{TTier1, TTier2}

and
THW > max{TTimer1, TTimer2}

(assuming Tier 3 and Tier 4 do not necessarily synchronize
with hardware input).

An abstracted fully pipeline flow diagram of the soft-
ware stack is shown in Fig. 93. Different tiers can be
executed in different threads so that different processes
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Fig. 92. Simplified practical software pipeline.

Fig. 93. Multi-threaded software pipeline. In this example assume Tier 3 needs three frames at a time.

can run concurrently to take advantage of the multicore
processors in modern computers or smartphones. This way,
even when it takes longer to process a frame in Tier 1 to Tier
4 together than the hardware input, but if the time needed
for individual tiers is shorter than the hardware input, real-
time implementation is still possible.

6.2 Layer descriptions
In order to locate and parse a frame, Tier 1 has its own read
buffer, and the input buffer’s data keeps append to its end at
the beginning of its main execution routine. Then as soon as
the read buffer is longer than a complete frame, it locates the
frame headers and checks for the distance between the first
and second frame headers, if it equals the present length,
it is determined as a correctly received frame and moved
out of the read buffer. The leftover from the read buffer is
then kept for the next execution cycle. After Tier 1 locates
the raw data of a frame (1D vector of the 2D frame in hex),
it should save the raw hex vector into the hard-drive for
further offline analysis. It also stores the frame data in a
temperate variable, ready to be accessed by Tier 2.

Tier 2 transforms the 1D vector into 2D frames. Thus
it requires a piece of mapping information, which can be
a simple row-column combination or more specific virtual
surface (Chapter 7) descriptions. Then it may perform 2D
processing to the frame such as upscale, filter, crop, etc. It
may also perform time-domain operations, such as temporal

filtering, or removing offset from previous frames. Hence
Tier 2 should have a 3-dimensional buffer, essentially a first-
in-first-out time window of 2D frames.

Tier 3 calculates features from the window of processed
frames. Feature calculation will be discussed in the next
chapter. It also includes training classifiers and using them
to predict new data. Apart from features for machine learn-
ing, there are also interpretative parameters that can be used
for visualization.

Tier 4 need to visualize both the data input as videos,
and the features from the time domain as waveforms. De-
signed visualization such as geometry changing with the
interpretative parameters can also help build an interactive
user experience. Classification results can be displayed, but
also scripted event based on the classification results can be
triggered, such as a voice reminding the user to change their
posture if a ‘bad’ posture is detected [36].

6.3 Homogeneous All-in-One Application

C++ is relatively a low-level programming language com-
pared with Python, Matlab, and JavaScript; however, the
performance of software written in C++ is typically superior
to the other languages. Also, in the Qt environment, with the
help of QThread, multi-threading can be easily implemented
to make use of multi-core CPUs and realize the multi-
threading software pipeline in Fig. 93.
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Fig. 94. The Structure of the All-in-One Qt Application.

6.3.1 Data Structures
OpenCV uses native multi-dimensional data structures as
cv::Mat. However except for a 2-dimensional matrix, a frame
would also include other information such as the time
stamp. Temporal sequences of frame descriptors, for exam-
ple, may also be accompanied with time window size, anno-
tation, etc. Therefore three data structures are implemented
as C++ objects:

• data spatial is used to store and pass on frame data.
The actual data is stored inside as a 1-D QVector, with
the definition of the rows and columns, and methods
to access single pixels by the row and column index.

• data temporal is essentially a round buffer to store
a single temporal sequence. The round buffer then
behaves as a sliding window for continuous input
data.

• data obj can be used to store an event with all
information, including a temporal sequence of 2-D
frames and frame descriptors, and metadata such
as the time window size. It is also designed to be
suitable for storing a small part of the virtual surface
after segmentation. Thus it includes the coordinates
to locate the region of interest.

6.3.2 Process Objects
The main abstract structure of the all-in-one application’s
process flow is shown in Fig. 94. Every box is an object/class
except for QML UI, which is a user interface designed
in Qt Modeling Language (QML) for visualization. The
application also has a Qt GUI (graphical user interface) as
the control panel, which is also the main window thread.
Settings for the TPM such as data source mode, details on
the data source such as baud rate and port for the serial
mode, different package descriptions such as how many bits
every pixel has, dimension of the matrix, etc. can be selected
in the control panel GUI. The visualization GUI and control
panel GUI are separated for the concerns that:

1) the control panel can be minimized once a real-time
process has started;

2) QML UI has a dedicated rendering engine and
utilizes OpenGL, and thus it is more efficient with
handling graphics.

3) the control panel should have very close coupling
with the internal processes, which is a major differ-
ence between Qt GUI and QML GUI. The C++ code
can directly access assets in the Qt GUI, and the Qt
GUI can have widgets that execute call-back func-
tions from the C++ code; while the communication
between the C++ code and QML are executed with
special functions.

To start the process, first, a data source needs to be
chosen in the control panel. Upon start, the corresponding
receiver object (COMListener for serial port or Bluetooth,
FTListener for 254FIFO, FileReader for from a file) provides
a linear package that represents a frame at a time. This
package can be directly saved into a file for raw data
logging. Then the FrameParser converts the package to a
frame as a data spacial object based on the information
configured in the control panel.

CVProcessor contains all the processes using OpenCV. For
a data analysis developer, this can be the main playground
to change different algorithms without worrying much
about the rest of the program. It essentially takes a frame as
a data spacial object and converts it to a cv :: Mat. Inside,
multiple application-specific data processing algorithms can
be implemented such as filtering, segmentation, etc. The
detailed algorithms are described in Chapter 8.

In Chapter 8, features for classification are categorized
into spacial features and temporal features. Spacial features
are calculated from individual key frames. A key frame is
a single 2-D frame calculated from all the frames from a
time window. Temporal features are calculated from temporal
sequences of frame descriptors within a time window. For this
all-in-one application, Frame descriptors can be calculated in-
side this CVProcessor class. CVProcessor can also store a time
window of frames as either a vector of cv::Mat or a dataobj.
A vector of cv::Mat is easier to be put into different OpenCV
functions while dataobj is easier to be communicated with
the rest of the application, which does not have any trace
of OpenCV. The decision should be made by the developer
upon practical concerns. From this time window of frames,
CVProcessor can then calculate specific key frames. then spacial
features can directly be calculated from the key frames inside
CVProcessor.

Thus, the outputs of CVProcessor can be a vector of frame
descriptors, of a single sampling point, or a vector of spacial
features. The frame descriptor vector then need to be put inside
a rolling buffer as a sliding window, which is provided by
datatemporal. And TempAnalyser calculates temporal features
from the window of frame descriptors. Eventually, the fea-
tures can be directed to a Classifier. The Classifier first needs
to be able to read a training database or model from a file.
And then it generates the prediction based on the input
features.

During this process, the visualization is running in par-
allel with the data processing algorithms. The frame can
be sent to an object that generates a 2-D image based on
a colormap that can be changed by the developer. Then
the image is sent to the QML UI by the QMLAgent. A
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Fig. 95. The synchronous-to-asynchronous communication mechanism between C++ and Python

similar process is done to generate a time plot of frame
descriptors such as the average value of a frame. To do this,
ImageProvider plot has a rolling buffer as a datatemporal
object. It uses the QCustomPlot library to convert the vector
into a 2-axis plot that refreshes in real-time. Then this plot
is sent to the QML UI by the QMLAgent as well. Custom
functions can also be implemented to display different visu-
alization on the QML UI in the QMLAgent class, such as dis-
playing the performance specs, classifier prediction results,
or changing the UI properties such as the transparency or
position of a shape based on the average value of a frame.

6.3.3 Multi-Threading
Since C++ is a very efficient language, multi-threading in
this all-in-one application is only carried out to separate
the data source, visualization from the rest of the process.
That is to say, referring to Fig. 93, Tier 1 and Tier 4 are in
separated threads, and Tier 2 and Tier 3 are in one thread
(as the main thread). This ensures that Tier 1 can always
perform raw data logging regardless of the processing and
machine learning tasks. And also makes the visualization
more responsive to the sensor signal change.

6.4 Heterogeneous Software System

The entire software with 4 tiers can be implemented in
C++ language in a closed executable environment as above
explained, by the Qt environment, with openCV for ma-
trix operations and machine learning, and QML for data
visualization. OpenCV and C++ are very efficient and thus
benefits the deployment recompile for algorithm changes.
It is not convenient for exploring algorithms during the
development stage. Because debugging, compiling, etc., are
not as intuitive as other script-based, data analysis oriented
language platforms such as Python and Matlab. Moreover,
it requires specific dependencies, specific builds on different
operating systems for every deployment, i.e. an OpenCV
library compiled with the MinGW compiler will not work
with Qt using MSVC compilers. This may also make the

deployment stage more complex and raise the requirements
of the machine.

Therefore, to minimize the dependencies, the example
Software stack is shown as in Figure 90 as a heterogeneous
system.

6.4.1 Programming Language Selection

For Tier 1, the hardware communication library is im-
plemented in C++. While other programming languages
can handle Bluetooth or serial port, the 245 parallel FIFO
mentioned in Table 16 only has a library in C++, and it has
the highest bandwidth compared with other methods. It is
essentially the Data Source part of the all-in-one application,
removing the OpenCV, processing, machine learning, and
visualization. This allows the Tier 1 software to be compact
and efficient.

Tier 2 and Tier 3 are mostly implemented in Python or
Matlab. They are script-based, therefore it is easy to modify
the programs without compiling, a wide range of powerful
libraries are also available for numeric manipulation and
machine learning. Tier 4 is implemented in QML if the
software is a closed Qt program, or in HTML/Javascript
for the heterogeneous software environment. It can run in a
browser, or a webview in a mobile app.

Data communication between Qt and Python can be
done by two methods:

• Python Server websocket callback: the python code
can host a web server and handle HTTP requests.

• Qt command line: Qt can execute command line
functions with parameters, and the python code can
be wrapped to exchange input and output in this
manner.

6.4.2 Data Sharing

Web engineering is adopted to achieve connecting different
parts of the software seamlessly with minimal dependen-
cies.
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In this structure, the HTML/JavaScript UI or Python
back-end can be modified without interrupting the Qt pro-
gram that is handling the real-time hardware reception. This
setting is based on the considerations that: in real-world
development, it is more common that the UI in Tier 4 and
back-end algorithms in Tier 2 and Tier 3 need frequent
modification as soon as the hardware is sending stable data;
restarting Tier 1 would often need reconnecting the actual
hardware or selecting the port, with wireless connection
it is also possible the operating system loses the device
configuration after frequent reconnecting.

In the actual implementation, the C++ part operates on
a synchronous mechanism: from the receiver listener which
assembles data packages to the processing routines which
operate on every frame and the visualization, those methods
all operate on respective timers to ensure a fluent operation.
While in the Python part, functions are called on demand,
therefore an asynchronous option would be preferable.

6.5 Android Application
An Android application is developed for logging data,
which enables a range of mobile use case studies. The appli-
cation only has Tier 1, Tier 2 and Tier 4, without the machine
learning part from Tier 3. It supports both Bluetooth and
USB-OTG with an emulated serial port for data source,
while Bluetooth is the preferable choice of connection. Tier
2 calculates some basic frame descriptors such as the av-
erage value, and visualized in Tier 4. The visualization is
implemented either with the ‘Androidplot’ library, or with
a webview widget displaying an HTML/JavaScript based
visualization. With Androidplot, it is more efficient and
stable during runtime, but webview can essentially use the
same visualization code from one written for computer web
browsers, and is more flexible in terms of changing the
plotting.

In the future, it will be interesting to implement feature
calculation and classification on the Android application,
so that everything runs in the mobile phone applications
and services. This can be possible with the recently released
TensorFlow Lite library, which is a library supporting neural
networks optimized for mobile applications.
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Chapter 7 Hardware: Generic Architecture,
Design, and Implementations

This chapter discusses an unified hardware architecture and the design concerns in specific applications. The hardware
implementations are also described in details. Some implementations are used for the empirical studies in Chapter 3,

Chapter 4, and Chapter 5; some implementations are further improvements based on the lessons learnt from these studies.
Previously, Chapter 2 introduced the textile sensing principles and the types of materials that can be used. An overall

view of the design space was discussed regarding how they can be used to acquire information about user activities.
The electronics include all the functionality needed for implementing a TPM application except for heavy computation

which is done on computers or smartphones. The goal of the electronics is to generate pressure mapping imagery at
high refresh rates, which is similar to a camera. However, for decades of development, video systems benefit from a
mature range of dedicated, specialized ICs (integrated circuits) and data compression/transmission/encoding protocols to
accommodate the parallel computation needs; while there is none for TPM hardware.

A major part of the hardware of this work focuses on how to implement the system with off-the-shelf ICs and
components 11 in a compact footprint. An architecture is published in [172] to discuss the theoretical architecture designs;
however, many practical concerns are encountered during the actual implementation and development of two directions
of systems: large scale and ultra-portable. The large scale direction points towards table, floor carpet, sports mat, or
even room-sized applications. In this direction, power consumption is less of a concern, but parallelism and scalability
are given higher priority. The portable direction aims at promoting wearable garment and movable objects. Thus power
efficiency, wireless connectivity, and footprint are more important. Efforts have been taken in reaching both directions of
high performance that can detect normal human motions with > 20Hz, nominal 40Hz refresh rate of the whole sensing
area.

Fig. 96. General hardware architecture

Structure of this chapter:

• The unified top-down hardware architecture that supports on all the empirical studies’ apparatus and other
implementation from this work is described;

• Several key details of how the architecture can be versatile in various application settings are discussed;
• Actual implementations of the architecture for portable and large-scale applications are introduced with discussions

on various design concerns over the time span of this work.

11. The off-the-shelf components date from the year 2013, the start of this work.
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7.1 General Architecture

A unified general hardware architecture is described in
Figure 96 and in [172] to facilitate the two-stage scanning
process of the sensor matrix.

During the scanning of an entire frame, the Active Elec-
trodes are turned on one by one. And the voltage levels from
the Passive Electrodes of the voltage dividers are measured at
the ADCs & Measurement Circuit. Active Electrodes and Passive
Electrodes each represent one dimension of the pressure
mapping frame, and their cross-points are the correspond-
ing pixels. The Output Switches drive the Active Electrodes
and offer a fast and stable voltage level when it’s turned on,
and connect to ground or high impedance when it’s turned
off. The actual implementation may have an influence on
the imagery result, as an example shown in Section 7.2.1.
The number and volume resistance of sensitive points on
each Active Electrode will influence the absolute maximum
load of the Output Switches.

The ADC sampling rate is crucial to the final refresh rate,
therefore high speed ADCs are required. In this work, one
underlying principle is always a large amount of ADC chan-
nels; this can be achieved by either combining high speed
analog multiplexers with a single channel high speed ADC,
or ADCs with multiple input channels. Both approaches
have been attempted and evaluated in the following sub-
sections. In general, the combination of high speed analog
switch and high speed ADC offers higher sampling rates
than most multi-channel ADCs, at a cost of adjacent channel
cross-talk. If the analog switch and ADCs are not perfectly
synchronized, the voltage from the previous sample may be
partially included in the current sample . This may result in
a ‘shadow’ of the object on the imagery.

The Scan Control triggers turning on and off the Output
Switch arrays, and receives measurement data from the ADC
Control. It then streams out the data via Data Transmission to
the Receiver Device if immediate data out is programmed
in the firmware. Since the combination of multiple Passive
Electrodes and Active Electrodes forms an entire frame of the
pressure mapping imagery, the Scan Control also recon-
structs the complete frames in an internal Local Frame Buffer.
In some operation modes differentiated by the firmware, the
Data Transmission sends entire Local Frame Buffer as packets
instead of streaming transient ADC data.

General ADCs have a sample and hold (S/H) operation
cycle, where the input signal is captured by a buffer to a
capacitor, and then discharged during the analog-to-digital
conversion [173]. To have a consistent measurement across
all the sensitive points, the Scan Control needs to control
that the ADC has an identical sampling time. This is first
achieved by the parallel capability of the FPGA, where
the scanning logic is driven by a fixed clock and interface
with the rest of the logic through buffers, and additional
digital logic does not influence the scanning logic. On a
micro-controller with embedded ADCs, carefully designed
firmware with fixed software triggers and without using
interrupts can also achieve a constant sampling time; since
they run on sequential instructions, the digital processing,
and data transmission needs to be taken special care so that

they do not introduce noticeable variance of the number of
instructions between samples.

In a workflow of a novel application with TPM, typically
there are two stages that can be abstracted down to the
root: development and deployment. During development,
the raw data is sent to the Receiver Device for analyzing, for
offline evaluation through signal processing, segmentation,
feature extraction, and cross-validation. Then a complete
algorithm chain is formed from the development. Deploy-
ment is to test the system with the algorithm chain operating
online with real-life usage conditions or demonstrations.
The on-board Digital Processing in this case can take over
some of the primitive stages of the algorithm chain, such
as: removing pixel offset; pixel-wise oversampling-temporal
average filter for the entire frame; essential feature calcula-
tions including the center, average, and area of pressure.
This can help the deployment by means of:

• decreasing the workload of the Data Transmission
by reducing the packet size (e.g. sending features
instead of entire frame) or sending fewer packets
(e.g. after average filtering the over-sampled frames).

• decreasing the processing effort of the Receiver Device.
This can be especially important for mobile devices.

In some applications, all the data processing should be
on board. For example, as a Bluetooth textile touchpad
for controlling a PC, the operating system recognizes the
system as a Human Interface Device Profile (HID) and only
receives pointer movement and keystrokes; therefore, all the
pressure center tracking, gesture recognition, fault rejection
needs to be implemented onboard. As manufacturers con-
tinue to improve higher performance embedded processors,
some of the more sophisticated workloads may be possible
to be implemented on-board without impairing the timing
requirements of the Scan Control.

While it is a straight-forward and intuitive architecture,
it is essential that the architecture scales up well for larger
systems, and the implementation of each submodule can
also influence the performance and measurement results.
At first, FPGA driven systems are developed to ensure the
real-time performance. And high performance, 24-bit ADCs
are used, because first, we would like to see if there is any
advantage of using the highest possible analog resolution,
then after trimming the resolution inside the software and
no information loss is present, it would suggest that with
lower resolution ADCs, it would not compromise the useful
information. This helps the further development and opti-
mization of the hardware since lower resolution ADCs are
typically faster, and models with higher channel numbers
are available.

This architecture is also designed to be easily up-scaled.
The largest implementation has four parallel ADCs, each is
paired with a 32-channel multiplexer (Passive Electrodes),
the whole matrix has a maximum size of 128-by-128, with 40
fps scanning rate. In principle, FPGA based systems do not
have an upper limit of the number of parallel ADCs, unless
the frame is cached on the hardware before sending it to
the receiver computer. Therefore the said 128-by-128 system
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TABLE 16
Data Communication Methods

Method IC Compatible Host Receiver Speed

Normal UART FT232R1 uC2 or FPGA Computer (COM Port) / Android (USB OTG) ≤ 92KB/s
High baudrate UART FT232H3 FPGA Computer (COM Port) / Android (USB OTG) ≤ 800KB/s
Quad UART FT4232H3 FPGA Computer (COM Port) ≤ 3.2MB/s
245 parallel FIFO FT232H, FT2232H, FT4232H3 FPGA Computer (C++ driver) ≤ 40MB/s
Bluetooth Classic RN424 uC2 or FPGA Computer / Android ≤ 30KB/s
1 Serial-to-USB Cables
2 uC: Micro-Controller
3 On-board
4 SMD module

TABLE 17
Hardware Versions

Version Logic Processor ADC Stimuli pins Resolution 1 Refresh rate

F-1 Microchip + FPGA 24bit single channel + MUX input FPGA I/O 32x32 20
F-2 2x FPGA 24bit single channel + MUX input FPGA I/O 128x128 40
F-2.1 2x FPGA 24bit single channel + MUX input FPGA I/O 128x64 40
F-3 FPGA 2 x 24bit 16 channel ADC 32ch MUX 32x32 50
F-3.1 FPGA 2 x 24bit 16 channel ADC FPGA I/O 32x32 50
F-4 FPGA 2 x 24bit 16 channel ADC FPGA I/O 64x128 25
M-1 Microchip Integrated 12 bit 32 channel ADC Microchip I/O 32x32 40
M-1.1 Microchip Integrated 12 bit 32 channel ADC Microchip I/O 32x32 40
M-2 Microchip Integrated 12 bit 9 channel ADC Microchip I/O 20x9 40
1 The resolution is written as active electrodes x passive electrodes. Thus 128x64 and 64x128 are different.

can be further scaled up to N-by-128 (N is a multiple of 32)
without decreasing the scanning rate.

Data Transmission can be the bottleneck when the amount
of Active Electrodes and Passive Electrodes scales up. Since
they form a matrix, the increase is on the level of power
of two. While typical in computer science for sending sen-
sor prototype data to a computer usually use the simple
serial port, it does not have sufficient data bandwidth. In
this work, several data transmission methods have been
implemented and thoroughly tested, including: Bluetooth
Classic, multiple Bluetooth Classic to one Receiver Device,
quad serial ports through a single USB, 254FIFO over USB
highspeed.

7.2 Portable and Wireless Implementation
As mentioned in Section 1.2 and to the best of our knowl-
edge, there is no existing small form factor that is suitable
for hand-held (size of a smartphone or less) and completely
wireless electronic systems. To enable a wider range of wear-
able application that is suitable for high mobility (such as
sport exercise tracking) and mobile furniture (such as office
swivel chairs), a system for rapid application prototyping
needs to consider the following aspects:

• comprehensive power management with charging,
and battery protection

• stable, high-speed wireless data transmission
• sufficient Analog-to-Digital converter channels and

sampling rate
• sufficient fast switch output pins for offering stimuli

at the active pins.

Typically, the sensing area of on-body sensors ranges
from as small as 1-by-5 (e.g., one finger) to 16-by-8 (e.g.,

a stripe across big muscles such as chest or quadriceps) for
individual sensor patches, a patch that covers the back of
a jacket or a chair could also be 32-by-32. Therefore, after
several attempts, it has come to the conclusion that an ideal
solution is to build the system around a microprocessor
with embedded ADC, dsPIC33FJ256GP710A is chosen as the
center of the portable implementation.

7.2.1 Early prototpyes
The early wearable prototypes are implemented with small
FPGAs and dedicated 24 bit ADCs. This allows the best pos-
sible analog resolution to initially investigate how precise
is enough for the activity recognition goal. An example is
Version F-3 and F-3.1. F-3.1 is used in the Leg Band study in
Chapter 5, from which, a step was taken to truncate the
24-bit data to 12-bit, yielding similar recognition results.
This then further confirms that 12-bit ADC is sufficient for
wearable applications. As 12-bit ADCs are integrated into
many power efficient micro-controllers.

7.2.2 Milestone Version
The milestone version M-1.1 has a dsPIC33FJ256GP710A as
the logic controller and analog conversion. It is powered by
a Li-Po battery, with USB 5V charging and under voltage
(3V threshold) cut-off protection. An inertial measurement
unit IC MPU-9250 is added for possible sensor fusion,
connected to the micro-controller via I2C. The data from the
micro-controller can be transmitted via a UART-USB bridge
(FT232HL) (up to 92KB/s) or via Bluetooth Classic (RN42)
(up to 30KB/s). A microSD card reader is also implemented
on the board, driven directly by the micro-controller. To
prevent ESD damage to the hardware, ESD protection arrays
(TPD8S009DSMR) are designed to protect every IO pin. For
indicating the working status, there is an RGB LED, every
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channel is connected to a pulse-width modulation output
pin. Therefore any color can be instantly displayed on the
LED indicator. The firmware is written in C, applying the
firmware flowchart in Fig. 99.

There are 32 analog input pins (ANx), all of them can be
re-purposed as digital I/O; there are another 32 digital I/O
pins (DOx). Since the ANx pins can be changed to drive
active electrodes of the sensor matrix, this board can also
support very long matrix structure, for example, a matrix of
2 ANx and 62 DOx, which can be implemented on a belt or
seat belt.

Fig. 97. Hardware Version M-2.1 (front)

Fig. 98. Hardware Version M-2.1 (back)

7.3 Large-scale implementation
For the large-scale direction, the goal is to create a solution
that can be driving not only a single large piece (e.g.,
sports mat sized, carpet sized or bed sized) matrix, but also
possibly room-sized TPM matrix.

7.3.1 Early Prototypes
The first problem comes to drive a large number of active
electrodes and passive electrodes. At the early stages of
this work, active electrodes are driven by analog switches
as in Version F-2 Fig. 101. Every switch is controlled by
an FPGA Input/Output (I/O) port. It was soon concluded
that the raw FPGA I/O ports achieve a similar effect as
analog switches. Thus the use of costly analog switches was
dismissed in further versions.

For driving more active electrodes, another approach
was investigated to use bi-directional 1-to-N analog mul-
tiplexers (MUX), because to control which port the MUX is

routing takes much less digital I/O than N. In Version F-3,
a 32-to-1 channel MUX routes one single power output to
multiple external active electrodes. However, the resulting
hardware has a strong ghosting effect. Take the indexing
range from Fig. 12 for example, when two different pixels
G/26 and I/28 are being triggered, the pixels G/28 and I/26
will appear to be triggered even when they are not. This is
possibly because when the 32 channels in the MUX are not
selected, the circuit has a varying high impedance. However,
from the simulation, it is ideal that the un-powered active
electrodes to be pulled to ground. Therefore the Version F-
3 is modified to Version F-3.1, using an FPGA to power
the active electrode to avoid such ghosting effects. And it
is not recommended to use analog MUX for driving active
electrodes.

For driving a large number of passive electrodes, the
first solution candidate is to combine a 32-channel MUX
with a single channel ADC. Version F-2 and F-2.1 are imple-
mented with this solution. Since usually, ADC operates at a
faster sampling rate when it is set to automatic continuous
sampling, the MUX should switch the channels just at the
time when ADC finishes sampling. The firmware needs to
switch the MUX channel and then read the ADC sample-
conversion result. This allows one ADC-MUX pair to sample
multiple channels at a fast rate, in Version F-2 and F-2.1,
every pair samples 128-by-32 of the virtual surface at 40Hz,
which is essentially 163,840 samples per second (sps).

7.3.2 Milestone Version
However, the ADC-MUX combination has a problem that
the MUX usually is not switching at the exact time between
ADC samples. This will result in that the previous pixel’s
value will influence the next pixel. On the resulting map-
ping, this appears as a ‘shadow’ of the actual object. To solve
this, the alternative is using native multi-channel ADCs.
However, such ADCs normally have less sampling rate. In
Version F-3, F-3.1 and F-4, ADS1258 is used, which is one
of the fasted 16-channel ADC available. Yet the resulting
hardware scans a 32-by-16 area at 50Hz or 64-by-16 area
at 25Hz, which is 25,600 sps, much less than the 163,840
sps with the ADC-MUX combination. But since ADS1258
simplifies the implementation and, it communicates with
SPI, and thus requires less timing controlling and fewer pins
than the ADC-MUX combination, because the MUX requires
another bundle of pins to select the active channel. Therefore
ADS1258 has become the more favorable choice in the later
hardware versions.

7.3.3 Scaling
When designing even larger surface areas, the major limit-
ing technical factors are the ADC channels, sampling rate,
and the transmission data-bandwidth. The cost, refresh rate,
and power consumption is the trade-off factors that should
be considered. For example, the ADS1258’s limiting factor is
the 25,600 sps sampling rate. Thus to let the active electrode
dimension to increase from 64 in Version F-4, while keeping
the same 25Hz sampling rate, the simple solution can be
using only 8 channels instead of 16 channels for every ADC.
However, this will make the 8 ADCs in Version F-4 only
sample 64 passive electrodes instead of 128. Then to make
up for the loss of passive electrodes, 16 ADCs are needed
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Fig. 99. Simplified firmware flowchart

instead of 8. This would then double the cost, analog power
consumption, as well as the SPI lanes connected to the
controlling FPGA.

Another scaling direction is on the modular system level,
that multiple devices can be connected to a single computer
at once. This will then require considering the actual sensor
fabrication, especially the wires from the matrix to the
electronics, because the cannot be overlapping the sensing
area, which will block the pressure from going onto the
sensor. Take equipping an entire room or hall, for example,
for such occasions it is inevitable to have multiple systems,
each taking care of a small area of one or two square meters.
Fine spacial granularity may not be necessary when the
overall area is big, thus using a larger pitch is also a solution
to have one system covering more area. If it is not critical to
have a seamless sensing area, software interpolation can be
investigated to cover the gaps, such as predicting movement
trajectory when the objects or persons are out of the sensing
area. Normally those wires can be placed at one side of the
matrix on each direction, then four matrices can be placed
together, with the side without wires facing each other, to
form a larger system.

7.4 Virtual Surface
Up to now, the pressure sensing matrix is assumed as a two-
dimensional, rectangular shape. However, the principle can
be applied in more versatile ways. Hence here the concept of
the virtual surface is introduced. Fig. 106 shows an example
of the virtual surface configuration of a complex touch-
sensitive glove, with a dedicated sensor patch on every
finger and the palm. From the perspective of the hardware
board, there are only two types of pins connected to the
sensing fabric - Active Electrodes and Passive Electrodes. They
virtually form a two-dimensional matrix, every point on
the same row or column should be electrically connected

together. This virtual matrix is however only the possibilities
of how the sensing electronics can be connected with the
ECPC (electrically conducting polymer composites) physical
sensor construct; it is also possible that any arbitrary points
from the virtual matrix are connected to the physical sensor.
The framework in this dissertation treats every possible
virtual surface as a generic coordinate combination, instead
of a 2-D matrix.

One major advantage is the prevention of cross-talk in
designs where cross-talk between different sensing area is
ideally isolated. Take the glove, for example, every finger
is physically separated, joining only at the palm. As ex-
plained in [44], every sensing point in the matrix directly
influences the sensing points that are directly connected to
it in the same row and column. Therefore, if the fingers
share the rows and columns, touch on one finger can cause
a slight change in the adjacent fingers. When planning the
configuration of the virtual surface, different patches can
be separated to prevent such cross-talk caused by points
sharing the same row or column. In Fig. 106, assume the
columns (A, B, C, ect.) are connected to Active Electrodes and
the rows (1, 2, 3, etc.) to Passive Electrodes. For the green
finger A1-A4 and the blue finger B5-B9, Active Electrode A
drives four sensing elements while B drives five; while this
layout has a small scale, it shall apply to scaled-up sensor
designs.

In the separated fingers example, there is also a dif-
ference in choosing either use active electrodes or passive
electrode for the common wire and to each individual
sensing node on the same finger. Fig. 107 shows simulation
schematics and the voltage values of two cases from two
fingers (blue and green) from Fig. 106 using active electrodes
for the columns in one case (a and b), and for the rows
in another case (c and d). One finger has 4 (a and c) and
the other has 5 (b and d) sensing nodes. Fig. 107-a and
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Fig. 100. Firmware pipelining

Fig. 101. Hardware version F-2 PCB

Fig. 107-b together show that when the individual nodes
are separately connected to active electrodes, the change
of one sensing resistor does not influence the rest of the
sensor patch, and the unchanged sensing nodes have the
same voltage value as the default values. And the same
change in resistance returns the same change in voltage,
regardless of the one more sensing node in Fig. 107-b. While
in Fig. 107-c and Fig. 107-d, the unchanged resistors have
a different voltage value from the default value, caused by
the changed sensing resistor. Also even though in both Fig.
107-c and Fig. 107-d, the triggered sensing resistors changed

the same values, but have different voltage values.
We can measure the quality of the output by the follow-

ing formulas:
the normalized absolute contrast

Vsense − Vdefault
VCC

or the normalized relative contrast
Vsense − Vremain

VCC

Vsense is the voltage value of the sensing node which the
resistor is changed, and Vdefault is the voltage when no
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Fig. 102. Hardware version F-2.1 PCB: from left to right: digital module, analog module, side view.

Fig. 103. Hardware version F-3 PCB

Fig. 104. Hardware version F-3.1 PCB

node is changed. Vremain is the voltage of the sensing
nodes without change, when some other nodes are changed
(i.e. the background of a pressure profile). Both of these
two formulas should be accompanied with how much the
sensing node has been changed ∆RSense. Those normalized
contrast measures indicate how the end readout shows the
pressure mapping. The absolute is compared with when
there is nothing pressing the entire surface; and the relative
describes how the changed sensing points ’pop out’ com-
pared with the rest of the surface.

In the case of Fig. 107 ∆RSense = 0.5KΩ for node A1
and B5. In Fig. 107 a and b, both the normalized absolute
and relative contrast is 0.167. This means for the same

∆RSense both contrast measures are stable regardless of
the number of connected sensing nodes, when they are
connected to a single active electrode and have individual
passive electrodes. For c, the normalized absolute contrast
is 0.133 and normalized relative contrast is 0.167; for d, the
values are 0.119 and 0.143. This shows that the contrast
becomes unstable if there are multiple sensing nodes on
one passive electrode and multiple active electrodes, and the
contrast becomes smaller as the number of nodes increases.

This suggests that even with the same physical sensor
design, changing the passive electrodes and the active elec-
trodes will also have an influence on the signal quality.

7.5 Further Remarks
There have been a positive development in the open-source,
generic microcontroller market, mainly oriented at proto-
typing and hobbyists, such as the Arduino (arduino.cc)
and Mbed (mbed.com) platforms. These prototyping boards
can also be used to power smaller scale TPM sensors.
They usually have many built in features such as wireless
modules, power and battery management, indicator LEDs,
etc. They also have programming suites that are aimed at
fast and efficient coding. For example, an Arduino Feather
HUZZAH32 with its 21 GPIOs, out of which 13 can be
configured as analog inputs to its embedded 12-bit ADC,
can power TPM matrices up to a size of 13-by-8. The only
extra modifications needed are resistors for the sampling
voltage dividers.

However, one disadvantage should be noted that, when
using their simplified C programming environment, it is not
possible to implement firmware-level pipelining to improve
the data and sampling throughput such as the one shown in
Fig. 100.
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Fig. 105. Hardware version F-4 PCB

Fig. 106. Virtual surface of a smart glove

Fig. 107. Circuit model for swapping the active and passive electrodes
examples. PEx are terminals connected to passive electrodes, and the
colors match the virtual space configuration in Fig. 106; Ax, Bx match
the row and column indexes in Fig. 106. The simulated scenario is that
only A1 and B5 are changed equally to 0.5kΩ and the others remain
1kΩ. Default voltage means the voltage of scanning every sensitive
node when all the sensing resistors are equal to 1kΩ.
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Chapter 8 Universal TPM Data Mining Algo-
rithms

D ata processing and data mining algorithms of the pressure mapping data are discussed in this chapter. Since the
general data has a spatial-temporal format (a temporal sequence of the spatial pressure distribution), many data

processing methods are present in all applications. However, in different applications the data present diverse properties,
some special applications would require specific steps. For example, as in the studies of Table Cloth (Chapter 3.1) and Smart
Mat for gait analysis (Chapter 3.3), objects cast distinguishable shapes inside a larger area, thus spatial segmentation may
be required. While in the Leg Band study the shape makes less sense because all of the points are being pressed; but due to
possible sensor shifting, a region of interest is selected based on the most active points prior to feature calculation. At its
root, in the former case the sensing area is a planar surface bigger than, or matching the moving objects and people, and
the latter, the sensing area is smaller than the objects and body parts, as illustrated in Fig. 15.

This chapter will start with the generic algorithms that are shared across various empirical aspects and then go into
some specific algorithms dealing with special application tasks. Details of the empirical studies are already explained in
previous chapters. This chapter takes the datasets from the empirical studies for evaluation and discussion. This chapter, in
general, discuss the algorithms on a mathematical level as unified methods; as the implementation for the software toolkit
are chosen is already discussed in Chapter 6 .

Structure of this chapter:

• Introduction to the general format of the pressure mapping data and low level methods to improve the signal
quality.

• Discussion of spatial pattern recognition and temporal pattern recognition. As activity recognition through pressure
mapping is essentially a spatial-temporal domain problem. Information of both the spatial distribution at a specific
time and the temporal motion during a time period should be considered.

• A generic method, the TPM feature set, to extract information from the space and time domains is explained. It
offers a base set of spatial and temporal features.

• The spatial and temporal domains are discussed in depth to investigate which features are more important for
recognition.

In the TPM feature set, one of the space and time domains needs to be trimmed down in order to eventually calculate
features from the remaining domain. Depending on the eventual domain, the features are categorized as temporal features
and spacial features. Through feature selection method, neighborhood component analysis, and evaluation with datasets
from different applications, it is obvious that the relevant features are different based on the nature of the application.

When other developers and researchers are evaluating TPM technology in a novel application, they can directly use the
algorithms, including the data processing and the TPM feature set for initial validations. A crude optimization can also be
achieved by choosing the more relevant features with the methods described in this chapter.

Fig. 108. (1) Temporal and (2) spacial feature extraction process.
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8.1 TPM Data in the Spatial-Temporal Domains
TPM sensors generate a multi-channel, spatial-temporal
data format, which describes the localization of the pressure
distribution along time.

Every sensing point is defined as a pixel

p(x, y, t)

where x is the active electrode index, y is the passive
electrode index, and t is the specific time.

At any time t, the entire mapping M of the sensor is
defined as a Frame:

F (t) = {p(x, y, t) | (x, y) ∈ {M}}

A Frame may be a 2-D matrix, while it can also be
an arbitrary array of points from the Virtual Surface as
explained in section 7.4. A temporal sequence from a time
window T of Frames is defined as a data Stream.

ST = {F (t) | t ∈ {T}}

Individual sensing points have limited information
about the activity; therefore some descriptive features are
usually calculated as Frame Descriptors.

desi(t) = Funci(F (t))

Every desi has its own calculation function and it is usually
selected depending on the use-cases. Simple descriptors
can be standard statistical descriptions of individual values
of F (t), such as mean value, standard deviation, kurtosis,
skewness, etc. Since F (t) is a 2D imagery in many cases,
methods from image processing and computer vision can
also be used to derive Frame Descriptors by leveraging the 2D
nature of F (t). For example, coordinates and (average) pixel
value of points of interest or specific parts of the imagery can
express the change of objects and pressure points.

Another approach to abstract the stream from a time win-
dow is to perform per-pixel operations along the time axis,
resulting in individual frames that represent the stream. We
call these frames as Key Frames:

KFi(t) = Funci(ST ))

8.2 Pre-processing
Before further data mining, some pre-processing methods
can help improve the quality of data.

8.2.1 Row Offset
As mentioned in Chapter Chapter 2, Section 2.3.1, one
changed pixel may reduce the values of the pixels of the
entire row (including itself). The reduction is the same per
changed pixel, and the reduction value depends on the
changed pixel. In practical applications, it is common that
multiple points are pressed, and in theory, the reduction
should add up evenly. This phenomenon is more obvious
in some hardware versions such as F-1, F-2 and F-3 from
Table 17 and not observable in the other versions. If this
phenomenon is present, it can be removed by subtracting
the minimum value of every row from every pixel. This
also brings the background of the imagery to zero, thus
it can also be applied when the pixels-row phenomenon
is not observable. One possible problem is that when an

entire row is under pressure, the smallest pressure point
would be brought down to zero. It can be compensated
by conditions such as: whether the row minimum is not
significantly smaller than the higher values from the row, or
is significantly bigger than the other rows’ minimum values,
then it is possible that this is the case that the entire row is
sensing pressure.

Fig. 109. Up-scaling of the pressure imagery.

8.2.2 Up-scaling
Up-scaling or super-resolution is a common technique in
computer graphics and computer vision, by constructing a
higher resolution image from a lower resolution image in-
put. Since the TPM data per frame can be seen as an imagery
of the pressure mapping, up-scaling can also be applied.
For the observers, a higher resolution imagery can provide
better understanding of the pressing objects’ shape; for the
further algorithms, super-resolution imagery can also help
to increase the granularity. For example, when calculating
the angle of a line between two pixels, finding the contour
of a cluster of pixels, or for fitting eclipse algorithms, a
greater resolution can provide more refined locations and
angles. Through various studies, bicubic interpolation [174]
for up-scaling has proven to be appropriate, since the super-
resolution output expands the shape in all directions, in con-
trary to that nearest-neighbor interpolation only generates a
square and pixelated version of the input imagery and bi-
linear interpolation generates a start-like result.

8.2.3 Thresholding
One particular merit of pressure profiling is that the back-
ground of the imagery, where there is no pressure, is of small
value with minor fluctuations compared to the pressed parts
of the sensor, which can be caused by weak contact of
the fabric material or the weight of the covering material.
Thus a simple process is used for completely removing the
background. First, a threshold is defined, and the imagery
is passed through the threshold to form a binary map
Fbinary(t) that describes which pixel is above the threshold.
If in the case when a majority part of the surface is the
background, the threshold can be chosen by sorting the pixel
values of a frame into several bins to form a histogram, and
set the threshold depending on the upper limit of the bins
containing the most counts. Such a threshold is dynamic.
Alternatively, some initial trials can be made to decide a
static threshold empirically for separating when there is
an external force. The background can be removed by the
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Hadamard product of the original frame and the binary map
after thresholding Fbinary(t) ◦ F (t). The binary mapping
Fbinary(t) that represents the contours of the pressure map
is also useful in further algorithms.

8.2.4 Morphological Transformation
Sometimes one object may have several clusters of pressure
points, the clusters are very close to each other but not
connected. To connect those clusters, a simple morpholog-
ical transformation can be performed upon Fbinary(t), by
dilution followed by erosion with the same kernel size.
The kernel size is usually empirically defined based on the
application.

8.2.5 Sensor sliding and segmentation
To cope with sensor sliding, first of all, we can seek a specific
point from a time window T of the data stream, such as the
point with the most significant value or standard deviation
value. For example, in the study of detecting leg muscle
activity [61] such a point is located as it resembles the peak
location point of the muscle motions. Then a spatial window
ROI can be selected around this point, and then every
frame is cropped by the ROI :

F (t) | t ∈ T = {p(x, y, t) | (x, y) ∈ {ROI}}

To segment the target in an excessive coverage de-
sign, blob detection from the binary mapping generated
by thresholding can be used. to further remove small gaps
between blobs, the binary mapping can also go through
morphological transformation before blob detection. One
major problem here is that such blob detection is carried out
in a single time point t, thus for a time window T , the same
object may have different shapes and positions of blobs in
the stream.

8.2.6 Normalization and Colormap
TPM sensors are not particularly fit for measuring absolute
force values, but suitable for measuring the distribution and
the dynamic change of such pressure distribution. Thus nor-
malizing the frames is a common technique. Normalization
follows the simple equation:

Norm(F ) =
F − µ
σ

Normally µ is the average of F and σ is the standard
deviation of F . However, when there is no point triggered
and the sensor is occupied by the background noise, this
normalization will generate an exaggerated noisy frame.
Therefore it is necessary to empirically determine a thresh-
old of σ of a minimum standard deviation of F , when the
standard deviation of F is below this threshold, it is taken
as a noise filled background and this threshold is used as σ
for normalization.

For visualization, and many computer vision algorithm
implementations and neural network implementations take
a color or grey scale image, instead of a matrix of any
range of integer or float types, converting the frame to a
color image with a certain colormap is necessary in such
cases. However converting to a colormap may introduce
losses of data accuracy, since gray scale is normally 8 bit,

or 0-255 integers, and RGB colors are three 8-bit channels,
compared to 12 bit, 16 bit or 24 bit ADCs that are normally
used in this work. The usual strategy is to use an RGB
colormap with linearly increasing intensity for visualization,
and convert the RGB frame to grayscale for image process-
ing. Another possibility to improve the utilization of the
colormap space is to introduce a nonlinear colormap made
of two linear parts in combination with the thresholding
introduced above: from the background noise value to the
lower end of the threshold from thresholding, a wide range
of sensor values correspond to a small range of colors; from
above the threshold to the maximum of the frame, the sensor
values are given the remaining of the colormap space.

8.2.7 Fault Tolerance
During actual usage, TPM sensors can experience two types
of sensor failures: shorted pixel and open line. Shorted pixel
happens when the top and bottom electrode of a pixel pierce
through the middle ECPC layer. For the fine-mesh ECPC
CARBOTEX, this failure is temporary and can normally be
fixed by properly shaking and separating the layers; for
the polymer film based ECPC materials, this failure can
be permanent. Open line failure is because the electrical
connection from a line electrode to the electronics circuit
hardware is broken. It can be fixed by opening the wire
routing part of the hardware and securing the connection.

Temporary or not, such failures can be bypassed on
the software and ensure the operation for the rest of the
surface. Shorted pixel behaves as the faulty pixel always at
a saturated value and the other pixels on the same passive
electrode at very low values, similar to the simulation result
in Fig. 12. Open line behaves as either the disconnected
active or passive electrode line gives no change on external
pressure and the pixels of the line usually have values
close to zero. When failure occurs, the affected line cannot
be used to generate information anymore. A self-diagnosis
procedure such as the following can remove the affected
part of the matrix and continue normal operation:

1) accumulate several consecutive frames;
2) look for shorted pixels: a saturated point within a

almost zero passive line;
3) look for open lines: a passive line or active line

without any change and have almost zero values;
4) remove the faulty lines, replace the values with a

spacial filter with the kernel (assuming the line is
on the horizontal dimension):1 1 1

0 0 0

1 1 1

 or
1

0

1


After the faulty lines and pixels are located, step 4 of the
above procedure needs to be performed on every frame
during the sensor’s operation.

8.3 the TPM Feature Set
Fig. 108 shows the general workflow of calculating the
TPM feature set from the space and time domains. Tem-
poral features are extracted from sequences of simple frame
descriptors desi(t). Spatial features are calculated from 2-
dimensional key frames KFi(t). The initial version of the
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TPM feature set includes 663 (17 × 39) temporal features
and 80 (8× 10) spatial features.

8.3.1 Frame Descriptors
Temporal features are extracted from sequences of simple
frame descriptors desi(t). Treat F (t) as a set, the TPM
feature set calculates the following desi(t):

• average value

des1(t) = mean(F (t)) =
1

|M |

{M}∑
(x,y)

p(x, y, t)

• variance

des2(t) =
1

|M |

{M}∑
(x,y)

(p(x, y, t)−mean(F (t)))2

• range
des3(t) = pMAX(t)− pMIN (t)

• entropy

des4(t) = −
{M}∑
(x,y)

p(x, y, t) · log2 p(x, y, t)

• mean absolute deviation

des5(t) =
1

|M |

{M}∑
(x,y)

(p(x, y, t)−mean(F (t)))

• the center of mass (CoM) coordinate x and y
(weighted by pixel value) des6(t) and des7(t)

• the centroid coordinate (unweighted, only consid-
ering the contour after filtering the frame with a
threshold). des8(t) and des9(t). Here the threshold
is defined as

mean(F (t))− 0.25 · (mean(F (t))− pmin(t))

• area (the count of pixels that are above the threshold)
des10(t)

• des11(t) to des17(t) Hu’s seven image moments [82]

For a matrix of binary values, the CoM is identical to the
centroid; but for a matrix with multi-values that describes
a profile, the CoM shows how the pixel value density is
focused while the centroid shows only the geometric center.
des1(t), des6(t) and des7(t) are mathematically identical to
the first three central moments in the literature on image
moments.

8.3.2 Temporal Features
Any sequence of frame descriptors is denoted as desi(t) ∈
{des1(t), des2(t), ...}. Then from the temporal sequence
within a window of length T (sliding window or spotted
event), temporal features can be calculated:

• average

tfeat1 =
1

|T |

{T}∑
t

desi(t)

• variance

tfeat2 =
1

|T |

{T}∑
t

(desi(t)− tfeat1)2

• range
tfeat3 = desiMAX

− desiMIN

• skewness, that describes the asymmetry of the data

tfeat4 =

1

|T |
∑T

t (desi(t)− tfeat1)3(
1

|T |
∑T

t (desi(t)− tfeat1)2
)3/2

• kurtosis, that measures how outlier-prone the tem-
poral sequence’s distribution is

tfeat5 =

1

|T |
∑T

t (desi(t)− tfeat1)4(
1

|T |
∑T

t (desx(t)− tfeat1)2
)2

• waveform length [175] [176]

tfeat6 =
T∑
t

−1(desi(t+ 1)− desi(t))

• sum of values greater than mean

tfeat7 =
T∑
t

(desi(t) | desi(t) > tfeat1)

• the power spectrum density of desi is calculated with
fast Fourier transform as PSD(n), n ∈ N is the
frequency in the spectrum. Following features are
calculated from PSD(n): average magnitude

tfeat8 =
1

N

N∑
n

PSD(n)

• mean frequency

tfeat9 =

∑N
n n · PSD(n)∑N
n PSD(n)

• N is divided to 5 equal frequency bands, the average
values of each band is tfeat10, tfeat11, tfeat12, tfeat13,
tfeat14.

• A wavelet transform scalogram is calculated with the
LTFAT toolbox [129], with J = 4 filterbank iterations.
The coefficient vector of each filterbank is C(j), j ∈
[0, 4].

• tfeat15, tfeat20, tfeat25, tfeat30, tfeat35 are the mean
value of each coefficient vector;

• tfeat16, tfeat21, tfeat26, tfeat31, tfeat36 are the vari-
ance of each coefficient vector;

• tfeat17, tfeat22, tfeat27, tfeat32, tfeat37 are the range
of each coefficient vector;

• tfeat18, tfeat23, tfeat28, tfeat33, tfeat38 are the skew-
ness of each coefficient vector;

• tfeat19, tfeat24, tfeat29, tfeat34, tfeat39 are the kurto-
sis of each coefficient vector;

Even though frame descriptors and temporal features
may have apparently similar equations, they are different
concepts. The differences between temporal features and
frame descriptors are that:

1) Relationship: temporal features are calculated from
a temporal sequence of frame descriptors
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2) Scope: temporal features are in the scope of an entire
time window, while a frame descriptor is calculated
from a single frame.

3) Dimension: for one time window, one method to
calculate the feature of a single frame descriptor
desi(t), there is one value of temporal feature. In
a time window of size T , one frame descriptor is a
function of time t and is a 1-dimensional array of
length T .

8.3.3 Key Frames
Spatial features can be calculated from 2-dimensional
frames. Since classifiers and non-convolution neural net-
works take features from a time window, spatial features
need to be calculated from frames that are representative of
its time window. These frames are called key frames.

From a time window, a key frame can be one particular
frame that has special frame descriptor values such as the
maximum or minimum of desi(t). A key frame can also be
calculated from the stream of the window through pixel-
wise operations. 8 key frames are calculated in the TPM
feature set:

• per pixel average of all frames

KF1 =
1

|T |

{T}∑
t

F (t)

• sum of per pixel differences

KF2 =

{T−1}∑
t

(F (t+ 1)− F (t))

• sum of only the positive or negative values of per
pixel differences

KF3 =|
{T−1}∑

t

((F (t+ 1)− F (t)) > 0) |

KF4 =|
{T−1}∑

t

((F (t+ 1)− F (t)) < 0) |

• the frame which has the maximum mean pixel value
as KF5 and the frame with the minimum mean value
as KF6

• the frame with the maximum standard deviation
from the stream as KF7

• the per pixel average of the frames, whose pixel
value is greater than the frame pixel average

KF8 =
1

|T |

{T}∑
t

(Fp(t))

Fp(t) =

{
p(x, y, t) if p(x, y, t) ≥ mean(F (t))

0 if p(x, y, t) < mean(F (t))

8.3.4 Spatial Features
Various image processing techniques can then be used to
extract information from those key frames. Image moments
are proven to be a helpful shape descriptor for spatial
features. The commonly used ones are 3 central moments
plus Hu’s 7 invariant moments [82], which are rotation,
translation and scale invariant.

8.4 Feature Selection and Cross-Validations

In this section, an evaluation of how different combinations
of frame descriptors - temporal feature pairs, and key frame
- spatial feature pairs contribute to the machine learning
is performed. The datasets used are from various studies
in different setting scenarios. This chapter uses a top-down
perspective to investigate those datasets. For how different
datasets are gathered, and their processing uniqueness are
explained case-by-case in Chapter 3, Chapter 4 and Chapter
5.

8.4.1 General Approach

The evaluation process can be divided into four parts:
Part 1: convert the data stream into features. From the

time domain, first, temporal sequences of the 17 frame
descriptors desi(t) are calculated from every stream. Then
within every desi(t), a sliding window is performed. Every
window is denoted as n ∈ N . The data in the window
is multiplied with a Tukey window with r = 0.2, to
bring the start and end of the window to zero. Then for
every sliding window, 39 temporal features tfeatj(desi), j ∈
1, 2, ...39, i ∈ 1, 2, ...17 are calculated. In the spatial domain,
first the input data stream is cropped with the same window
size and window step as the sliding window for desi(t),
but the outputs are the smaller length of streams, and no
Tuken window is applied. Then within each window of
streams, 8 key frames KFi are calculated. Overall 10 spacial
features is calculated from every key frame sfeatj(KFi), j ∈
1, 2, ...10, i ∈ 1, 2, ...8.

Part 2: baseline cross-validation. To carry out balanced
training, all classes are trimmed to the same amount of
windows by random selecting. The amount of windows is
the class that has the least windows. K-fold cross-validation
is performed with multiple classifiers, and the accuracy is
used to compare different classifier’s results.

Part 3: feature selection. TThe feature weight evalua-
tion is performed using neighbourhood component analysis
(NCA) [177]. The method ranks the most relevant features
that contribute to the classification. Since the features are
calculated from two levels of information: temporal features
are calculated first by reducing the space domain to frame
descriptors, then to the time domain features; as spatial
features are calculated first by reducing the time domain
to key frames. Thus the feature weight result can either
be presented as a feature weight vector or as a feature weight
matrix for either the temporal or spacial feature methods.

Part 4: feature reduction. The top weighted features are
selected to perform the same cross-validation. For compar-
ison, the least weighted features are also evaluated sepa-
rately.

Principle component analysis (PCA) [178] is another
commonly used technique for reducing feature dimensions.
The method removes redundancy and outputs a set of
eigenvectors that best describes the variance of the dataset.
Each component is orthogonal to the preceding one so
that the eigenvectors are uncorrelated and thus without
redundancy. However, PCA itself does not take the class
label information, it only analyses the data distribution to
remove redundancy but not irrelevant features. Typically
PCA is used as a step after calculating the features, and
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Fig. 110. Feature weight distributions of different NCA division methods (table cloth dataset)

before feeding the information to classifiers. Therefore, we
use NCA instead of PCA to find the features that are more
contributive to distinguishing different classes.

8.4.2 Datasets
3 past studies are taken for comparison, they are code-
named as: table cloth [64], robot skin [62], and leg band [56].

In the table cloth study [64], a TPM fabric with a 30-
by-42 matrix is placed on a dining tablet to detect dining
related actions. A main dish plate, a salad bowl, and a glass
are placed on it. Participants eat various food of different
textures, that would require different actions for dining the
food with a knife and a fork. The force of the actions can
propagate through the cutlery and plates to the table cloth
surface. The 7 action classes are: stir, scoop, cut, poke, scoop,
collect and replace. The sliding window is chosen with 2
second period and 1 second window step. 10 participants
each took part in 8 recordings.

In the robot skin study [62], a TPM fabric with a 20-
by-20 matrix is used to detect 7 emotionally related touch
gestures onto a dummy arm or a surface, including grab,
poke, press, push, scratch, pinch and stroke. The gestures
are already segmented based on matrix activation, since
when there is no gesture, the matrix is not being pressed.
In total, 24 participants took part in 2 recordings. Each
recording includes 16 repetitions of every gesture.

In the leg band study [56], a TPM fabric with an 8-by-16
matrix is embedded in an elastic compression band that is
placed on the thigh as users take part in gym leg exercises.
The sensor detects the surface pressure of the leg muscles as
planar pressure mechanomyography. The 5 activity classes
are: working out with a cross trainer, leg press, seated leg

curl and leg extension, plus a class contains all non-workout
activities. Based on the activity’s characteristic, the sliding
window is chosen as 4 seconds wide, the window step is
20% of the window size. 6 participants have recorded 4
sessions each.

In this chapter, all the participants’ data are merged
together as one dataset per application (person dependent
- inclusive case). Leave-one-out is carried out separately
in the corresponding sections of Chapter 3, Chapter 4 and
Chapter 5. Every sliding window or gesture is one sample.
The table cloth dataset has 10815 samples, robot skin 5376
samples, and leg band 28425 samples.

8.4.3 Neighborhood Component Analysis (NCA)
The NCA method [177] assumes a feature weight vector
w as a variable for the features, and use an approximate
solver to find the optimal weight vector that maximizes the
correct classification probability (the objective function). (In
this subsection, the mathematical symbols are not related to
the rest of this thesis.)

For a d-dimensional dataset of N training points, all
the points from the training point are taken as a query
point once xi. For each query point, the other points can be
taken as its reference point as a probability pij derived from
their weighted distance enclosed in a kernel function. The
probability that this query point xi is correctly classified is
then defined as the probability summation of the reference
points that has the same class.

The objective function is then the average of all the
points’ correct classification probability. After unfolding the
relationship, the objective function can be written as a
differentiable function of the feature weight vector, with a
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Fig. 111. Accuracy with varying amount of selected features comparison of four NCA division methods (table cloth dataset)

tunable parameter λ which is multiplied with the weight
vector’s term in the objective function:

F (w) =
N∑
i=1

 N∑
j=1,j 6=i

Pijyij − λ
d∑

l=1

w2
l


where yij = 1 if the query point and the reference point
has the same class. Since F (w) is differentiable, its maxima
can be approximated with algorithms such as stochastic
gradient descent (SGD) [179], to find out the feature weight
vector w that maximizes the objective function F (w).

For a certain NCA model, the λ value is fixed. However,
a parametric sweep of λ can further improve the result by
finding the λ that minimizes the loss of the NCA model.
K-fold cross-validation splits the dataset into training to
approximate the NCA model and testing to calculated the
loss. The average loss value of all the K folds is the average
loss for a specific λ.

8.4.4 NCA division approaches on high dimensional fea-
tures

A problem of NCA is that when most of the features con-
tribute to the classification, the approximation may return
to only very few highly weighted features while the others
remain close to zero weight. This leaves the classification
result relatively low with selected high weighted features.
Our solution is to segment these features and perform
NCA on smaller batches, then combine the feature weights.
Therefore, in this work, four NCA approach is investigated:

• All-in-One: all the features are taken under NCA as
once.

• Space-time domain split: features are split into two
groups: spatial domain features and temporal do-
main features.

• Branched: features are more detailed separated into
branches. In the time domain, a branch is all the
temporal features from one frame descriptor; in the
space domain, a branch is all the spatial features from
one key frame.

• K-fold: all features are randomized and split into K
equal partitions. One NCA is performed for each
partition.

In the segmented feature groups, the resulting feature
weight vectors are normalized within each group before
being concatenated into one vector. The results of the three
different approaches on the smart table cloth data are shown
in Fig. 110. From the result, All-in-One and domain-split
NCA return similar weight for the time domain features.

The domain split NCA gives higher weight on the spa-
tial features as a result of normalization before merging,
but the feature indexes that are higher than approximate
zero are the same between the two approaches. In the
branched NCA, however, many more features are given
higher weight.

8.4.5 Feature Weight Criteria
To compare which approach is better, cross-validation with
the highest ranking features, in comparison with the lowest
ranking features can be used. A better approach should meet
the following criteria:

• Higher accuracy with the same number of top rank-
ing features compared to other approaches.

• Greater difference between highest accuracy and the
accuracy with the least ranking features, than the dif-
ference between highest accuracy and the accuracy
with the top ranking features.

• With the same amount of features, top ranking fea-
tures should in general result in higher accuracy than
least ranking features.

Fig. 112. Top ranking features of the 20 fold NCA on the table cloth
dataset to locate the optimal amount of features.

8.4.6 NCA Evaluation
Every time, an incremental number of either the top or
least ranking features are selected from the feature weights
for 5 fold cross-validation. The accuracy of different vali-
dations are plotted in Fig. 111. Comparing four different
approaches, all-in-one and domain-split NCA returns much
fewer features with significant weight than the branched or
20-Fold NCA, as most of the features are weighted close to
zero.
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To evaluate which approach yields better feature selec-
tion, cross-validation from the top or least ranking features
are performed. For performance reasons, top or least 2, 5,
10, 20, 40 and 80 features are chosen. The NCA algorithm
should have greater influence on the KNN classifiers since
the basic principle is similar (Euclidean distance to the train-
ing data samples). In this evaluation, a variety of classifiers
are chosen:

1) classification tree with 100 maximum splits and
Gini’s diversity index split criterion (Fine Tree)

2) linear discriminant analysis (LDA)
3) support vector machine with quadratic kernel func-

tion (Quadratic SVM)
4) support vector machine with cubic kernel function

(Cubic SVM)
5) K-nearest neighbor with equally weighted Eu-

clidean distance and K=10 (Fine KNN)
6) K-nearest neighbor with squared inversely

weighted Euclidean distance and K=10 (Weighted
KNN)

7) Ensemble of 30 decision tree learners (Bagged Trees)

The results are shown in Fig. 111. For many classifiers,
all-in-one and domain split NCA has a near symmetric
accuracy distribution centered at all features; sometimes
with the least ranking features, there are higher accuracy
points than the corresponding top ranking features. From
this, we concluded that the feature weights derived by
these two methods are no better than random selection.
Branched and 20 Fold NCA, on the other hand, in general,
meet the criteria listed above, and have a similar trend of
the accuracy values. The highest ranking features result in
higher accuracy values than the lowest ranking features.

The top 2 ranking features already result in over 80%
accuracy for Bagged Trees and the two KNN classifiers.
While for the other classifiers, Fine Tree, LDA and SVM, the
accuracy values are significantly lower. This may because
these classifiers work by separating the feature space with
modelled boundaries, while KNN and bagged trees do not
use such boundaries to distinguish different classes. The
data’s nature may not fit very well with the classifiers’ algo-
rithms, e.g., the data may not have clean-shaped boundaries,
or the same class may have several clusters. However, this
cannot be further investigated at this point due to the high
dimensionality.

The least 2 ranking features result in close to chance
level (14.3% for 7 classes) accuracy values, thus means the
NCA successfully identify the less relevant features. As the
number of features taken grows, the accuracy of both top
and least ranking features increase, but the top ranking
features give higher accuracy than the least ranking ones.

As branched NCA is not a generic approach, and K-Fold
NCA can be performed on any feature sets, this work will
continue with K-Fold NCA. Fig. 112 shows the top ranking
features but with more amount of taken features until all
of them are chosen. From it, the accuracy has come to a
stable level close to 90% between 10 to 160 features for most
classifiers except for LDA and Fine Tree; while from 240
features on, the accuracy has another increase that is on the
similar level with all the features. This shows that only the
top 10 features are sufficient for this dataset for moderately

high accuracy, and 240 features are adequate to explain all
the class discriminant as good as with all features.

TABLE 18
Accuracy Comparison of the Original Studies and the TPM Feature Set

Dataset Original Study TPM Feature Set

Table cloth 91.2% 91.4 %
Robot Skin 92.7% 94.7 %
Leg Band 81.7 % 98.2 %

8.4.7 Application Variance
To be displayed only as a linear vector of values as in Fig.
110 is not sufficient to tell which feature calculation method
is more relevant. Therefore, the feature weight vector is
reshaped into two 2-dimensional matrices according to the
frame descriptor - temporal feature combination or key
frame - spacial feature combination as a feature weight
matrix (FWM ). For the table cloth dataset, the temporal
feature weight matrix FWMt is shown in Fig. 115, and
the spacial feature weight matrix FWMs is in Fig. 113(1).
From FWMt, it can be seen that some temporal features
have no contribution such as skewness, kurtosis, including
the skewness and kurtosis for the wavelet transform. Some
frame descriptors are more important such as des2 variance,
des3 range, des5 mean absolute deviation. All the 7 Hu’s
moments des11 to des17 are less important. It is possibly
a result that in this dataset, the objects are all plates or
glasses, and their footprints are all circular. Hence the shape
descriptors are not contributing to the activity. From FWMs,
the key frames describe the static values such as KF1 and
KF2 are less contributive, while the key frames that describe
the dynamic changes all have greater feature weights.

Two other datasets are evaluated with the same process,
and the resulting plots of ‘number of features’ - accuracy
plots are in Fig. 114 and Fig. 118. (SVM classifiers are not
used for evaluation here due to performance constraints.)
Referring to the criteria of NCA evaluation, NCA has effec-
tively located relevant features in all of the datasets. Feature
weight matrix are shown in Fig. 116, Fig. 117, and Fig.
113(2)(3). Table 18 compares the accuracy of the original
studies with the TPM feature set. The top 20 features from
each dataset are further listed in Table 19.

Comparing the FWMt and FWMs of all datasets, im-
portant features are very different for different applications.
And there are only three features that are present in all
datasets’ top 40 features. For example, skewness and kur-
tosis have relatively high weight for the robot skin dataset,
and also have higher weights in some of the frame de-
scriptors for the leg band dataset. The FFT features have
almost no weight in the robot skin dataset, while these
features are significantly relevant in the table cloth and leg
band dataset. And when FFT features have more weight,
wavelet transform features also have more weight. In the
leg band dataset, Hu’s 7 moments as frame descriptors
have significantly higher weight than the other two dataset.
Spatial features on average have less weight in the table
cloth and robot skin datasets than in the leg band datasets.
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Fig. 113. Spatial feature weight matrices of the three datasets.

TABLE 19
Top Ranking Features

Table Cloth dataset

Ranking 1 2 3 4 5 6 7 8 9 10

Des/KF 5 2 2 3 2 1 3 2 5 3
Feature 17 10 37 37 17 17 36 3 22 17
Domain T T T T T T T T T T

Ranking 11 12 13 14 15 16 17 18 19 20

Des/KF 3 3 14 5 5 3 3 6 10 3
Feature 1 20 27 35 8 35 27 3 3 22
Domain T T T T T T T S T T

Robot Skin dataset

Ranking 1 2 3 4 5 6 7 8 9 10

Des/KF 3 3 4 4 4 3 4 6 3 4
Feature 21 16 34 8 1 31 15 7 1 22
Domain T T T S S T T S T T

Ranking 11 12 13 14 15 16 17 18 19 20

Des/KF 3 2 4 4 4 3 4 3 3 4
Feature 7 1 27 39 16 1 7 6 15 2
Domain T T T T T S S S T S

Leg Band dataset

Ranking 1 2 3 4 5 6 7 8 9 10

Des/KF 2 7 6 5 5 15 8 15 9 8
Feature 32 37 22 17 22 35 31 32 25 1
Domain T T T T T T T T T S

Ranking 11 12 13 14 15 16 17 18 19 20

Des/KF 8 9 3 15 12 15 8 4 8 6
Feature 15 35 31 3 17 22 16 3 17 32
Domain T T T T T T T T T T

Fig. 114. Feature number against accuracy for the Leg Band dataset.
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Fig. 115. Temporal feature weight - Smart Table Cloth dataset.
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Fig. 116. Temporal feature weight - Robot Skin dataset.

97



Chapter 8 Universal TPM Data Mining Algorithms

Fig. 117. Temporal feature weight - Leg Band dataset.
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8.5 Performance Benchmark
We evaluated the computational performance with a dataset
recording file (.mat format) of 286MB (Leg Band dataset
person 1 recording 1). The benchmark was carried out on
a 2018 MacBook Pro with a six-core 2.6GHz Intel Core i7
processor, and Matlab 2019a. The total frame descriptors
calculation took 43.87s and total key frames 2.47s. All the
temporal features from all frame descriptors took 350.05s
and the spatial features 0.765s. During the temporal feature
calculation, the most time consuming process is the fast
wavelet transform, which takes 281.35s out of the 350.05s.
The 20 fold NCA with all the recordings from the leg band
dataset took 926.83s.

However, since the TPM feature set is meant to help
explore the useful features for specific data set offline, the
computational requirement is less important. With the NCA
optimization method, developers can further reduce and
select the features to be computed based on their specific
requirements.

8.6 Conclusion
A generic algorithm, including data processing and the
TPM Feature Set, which is built upon various studies, can
be used to extract information from both the space and
time domains. Through our evaluation, our approach shows
superior accuracy compared to the original studies in which
the datasets were published with ad hoc algorithms. The key
conclusion is that, for different applications, the TPM sensor
data exhibit different natures. Not all features contribute
equally, and the feature weights vary with different appli-
cations. Neighborhood component analysis can be used to
locate those useful features and further optimise a system
by reducing feature calculation efforts.

Fig. 118. Feature number against accuracy for the Robot Skin dataset.
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Chapter 9 Conclusion

This dissertation has explored using textile pressure mapping (TPM) sensors in pervasive and wearable activity
recognition tasks. The work is carried out through an intertwined process between refining a general unified

framework and implementing, testing and validating the framework in novel empirical studies. For example, hardware
version F-3.1 with the Android application using USB-OTG as the data link, which is a wired yet portable version of the
system, has enabled the leg band study. The study has then inspired a fully wireless system that is suitable for sports
applications, hardware version M-1 with Bluetooth communication to Android applications. Then this wireless system
with a high 550Hz sampling rate made the soccer shoe study possible.

The contributions can be summarized into two folds:

1) A unified TPM framework that includes sensing hardware, software, and algorithms for ambient, object and
wearable activity recognition.

2) Various empirical studies that validate TPM’ capability in different activity recognition scenarios with cross-
validated results.

9.1 The Unified TPM Framwork

The initial goal of this work was set on exploring various application scenarios. This would require a versatile, low-cost,
open and easy-to-use method of deploying pressure sensing technology. However, a method that fits all those expectations
did not exist prior to this work. Thus this work started on building such a unified framework in order to carry out empirical
studies. Every application study has shined a new light on how the framework can be improved. And every improved
iteration of the framework would enable and inspire new applications. Through this iterative process, the TPM framework
thus ultimately becomes the backbone of this collection of work. It is both an abstract collection of design knowledge,
and solid implementations that future developers can make use of. The framework covers four scopes: the design space
(Chapter 2), the hardware architecture (Chapter 7), the software toolkit (Chapter 6), and the algorithms (Chapter 8).

Design Space
From observing the fundamental physical interactions, sensing principle of TPM technology and specific activity recog-
nition contexts, the design space points out two core dimensions: propagation and intention. For designing the practical
systems, the design space also includes three other dimensions: coverage, mobility, and sampling. The design space is also
divided into three subspaces based on the activity contexts: ambient, object and wearable. The design space requirements
in its five dimensions guide all further development of a TPM sensing system. The TPM framework is a generic framework
that can cover all design space dimension ranges and subspaces.

Hardware Architecture
A general hardware architecture is implemented into two major directions:

• Small and portable hardware that can power 32 × 32 or smaller matrix, which is less than half a square meter with
1.5 cm or 1 cm pitch. The focus is to enable wearable or movable object applications, prioritizing portability and
power consumption.

• Large scale hardware that powers 128 × 128, which is over 1 or 2 square meters with a similar above-mentioned
pitch. This direction aims at exercise mat, carpet, bed, or even room-sized applications. By its parallel hardware
nature, the large scale hardware can be further scaled up until the envelope set by the sampling design space
dimension in individual systems.

For both directions of hardware, the versatility is addressed with concepts such as profile reconfiguration and virtual
surface, that the physical sensor does not have to be a square matrix. Scaling of multiple systems is also possible by
connecting several pieces of hardware to a single computer via either wired or wireless protocols.

Software Toolkit
The software toolkit of the framework is consisted of four Tiers as in Fig. 90. They are called ‘Tiers’ instead of ‘layers’
is because every Tier is independent of each other, and they operate in parallel. It is designed this way to handle from
basic-level hardware operation, middle-level data processing, machine learning to high-level output and feedback. The
complete software stack from Fig. 90 is implemented in multiple programming environments including C++(Qt), Python
and HTML/CSS/JavaScript. On the other hand, the entire software can also be implemented in C++(Qt) with OpenCV
as a closed homogeneous application such as the demonstrator applications for the Smart-Mat. The software handles all
tasks in real-time, making use of multiple CPU cores and threads in either the heterogeneous software system or the closed
homogeneous C++(Qt) application.
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Algorithms and the TPM Feature Set
The algorithms part of the framework is an abstract collection of mathematical methods of extracting features from the
the TPM sensor data that has both the space domain and the time domain. First, one of the domains is reduced, reducing
space domain results in temporal sequences of Frame Descriptors, reducing time domain results in individual Key Frames.
Then temporal features are calculated from Frame Descriptors, and spacial features are calculated from Key Frames. Chapter
8 has given a base collection of 17 × 39 temporal features and 8 × 10 spatial features as examples. With datasets from
three applications, the features’ importance to the classification result is analyzed with NCA. The results strongly suggest
that for different applications, the useful features are very diverse. Some features may be irrelevant for some application
with zero feature weight, while has higher significance in other application. Features extracted by pre-trained deep neural
networks is also compared with the spatial and temporal feature subsets in Section 3.2.

The TPM framework can help either experts with knowledge of textile pressure mapping sensors or beginner developers
to implement activity recognition studies in every aspect: assembling the physical sensing material, implementing or
designing new electronics hardware, recording and analyzing data with a comprehensive set of algorithms and a
heterogeneous software environment.

9.2 Key Findings in Empirical Studies

Various applications have been evaluated to validate the potential of using TPM to detect activities. The empirical studies
are categorized according to the three design subspaces: ambient, object and wearable.

TABLE 20
Application Summary

Application Participants×Recordings Classes/Chance Level Accuracy(internal/external)1

Table Cloth 10 × 8 8 / 12.5% 94.6% / 77.7%
Leg Band 6 × 4 7 / 14.3% 81.7% / 74.9%
Seat Cover 16 × 2 10 / 10% 79.5% / -
Robot Skin 24 × 2 + 5 2 7 / 14.3% 88.8% / 89.1%
Soccer Shoe 1 robot leg 17 / 5.9% 98.8% / -
Smart Mat 7 × 2 10 / 10% 88.7% / 86.4%
Gait Analysis 13 × 12 13 / 7.7% 87.6% / -
1 internal refers to leave-recording-out cross-validation within all participants’ data pool; external

refers to leave-one-person-out unless otherwise stated.
2 the experiment consists of two mutually blinded groups.

The range of empirical studies in this dissertation covers very different sensing aspects and shall give insight for the
future development of how planar surface pressure signatures can be used to detect activities. For example, the Table Cloth
demonstrates the idea that by surface pressure we can detect indirect activities that are propagated through objects, in
this case, the force from the plates to the table cloth is related to different actions with the cutlery. The Leg Band and
other wearable garment shows that while we move our body, our body and the fabric we wear have an interactive force
which is distinct to different actions. Different activities cast distinct ‘body-print’ onto the supporting surface, such as the
application of the Seat Cover or the Smart Mat. Even with seemingly similar footprints, when the morphing footprints can
be examined in a fine time granularity, they can be used to identify people as shown in the Carpet application. With the
help of the virtual surface concept, TPM sensors can also be tailored to fit on irregular contour shapes such as the upper
surface of the Soccer Shoe to evaluate ball impact.

9.3 Limitations

Using surface planner pressure to detect activities has its own limitations. Some of them require multi-disciplinary
collaborations to solve including material, textile, and manufacturing engineering.

From the activity recognition field, the major limitation is that it is difficult to detect activities that are further away
from the sensing surface, i.e., when indirect propagation and direct propagation both exist in a scenario. For example, in
the Smart Mat application, exercise calf raise (Class 7) and squat (Class 8) are often miss-classified. Which may be caused
by that both activities have a foot shape with a repeating change of the average pressure.

As pointed out in Chapter 2 Section 2.2, flexible pressure sensors are not good at repetitively measuring the absolute
force, which is also tested by other research endeavors such as [53]. To measure precise force, rigid form sensors such as
force gauges should be used. However, the thinness and flexibility allow flexible pressure sensors to be implemented as
matrix forms to measure the distribution and dynamic change of the pressure.

As mentioned in Chapter 2 Section 2.3 Since stretch sensors are also made of carbonated materials and based on the
similar resistance change, how to isolate or whether it is needed to isolate pressure from elongation is an aspect that should
not be ignored.

A major practical problem is wiring the connections from the fabric to the electronics. In this work, most of the
connections are implemented with parallel ribbon cables, which are copper wires with PVC isolation. The reasoning
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behind is both the cost and ease of implementation. Obviously, a more fabric based connection solution is needed for the
transition from research prototypes to consumer usage. The connection solution should include three parts: how to easily
connect the wires to the fabric, how to embed the wires into the rest of the garment, and how to easily plug the wires to
the electronics. All of the three parts should consider a large number of connections (64 connections for a 32 × 32 matrix).

9.4 Outlook
From the various applications, it can be concluded that dynamic planar surface force distribution can be used as a
sensing modality. On a higher level argument, the force is normally the actual direct cause or consequence of activities or
interactions. To compare, the measurements from popular motion sensors such as inertial measurement units or proximity
sensors, and various vision methods such as plain cameras or the recently more popular depth cameras, are observations
of activities or interactions. Thus planar surface force can be on the same level, if not more fundamental, as the motion in
determining the type of activities. Hence it is possible to see TPM sensing as part of the future of pervasive and wearable
sensing.

The TPM framework is proposed as an enabler to push forward planar pressure sensing technology in the field of
ubiquitous and wearable computing. The framework is aimed to free other interested developers from the necessary and
non-trivial workloads needed to develop and evaluate TPM systems. Thus, the design space and empirical studies from
this work shall be seen as inspirations, not limiting boundaries.

Section 3.2 and 3.3.3 gave a peek into using deep neural networks to process the pressure imagery from the TPM
sensors. Using transfer learning, a neural network previously trained with a large image database can be used to perform
classification on TPM sensor imagery, to bypass the large dataset requirement. For the specific dataset, recurrent neural
network (RNN) offers significantly superior results. This may because that RNN models make predictions based on a
sequence of images, which takes consideration of the time order - this is the information that conventional features are
missing. In the collection of conventional features in Chapter 8, the kurtosis and the skewness of the frame descriptors
and their wavelet coefficients describe the time order only on a rough level. An outline of the future work in this aspect
is already written in the respective section. What is worth emphasizing is the vision of building a unified neural network
model that can determine the application from the data, and proceed on with application-specific classification models. A
generic ‘TPM AI’ consisting a hierarchical structure of these models can be an interesting research direction.

In the future, a software environment fully in a mobile operating system is especially relevant for portable applications.
For Android, applications are already developed with Bluetooth data streaming, recording and visualizing, and has been
used in some studies such as the Soccer Shoe. In those data recording applications, Tier 1 and Tier 4 are essentially
implemented. What are missing are the data processing and machine learning parts from Tier 2 and Tier 3. Previously
these processes were considered resource consuming and lacking library support. Recently with the release of Android
Neural Networks API (NNAPI) and TensorFlow Lite, and hardware accelerations in the mobile CPU, mobile applications
that encloses all four tiers may be possible and may benefit a wide range of user studies with portable TPM systems.
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