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Abstract

The paper presents numerical results on the simulation of boundary value problems
for the Boltzmann equation in one and two dimensions. In the one—dimensional case,
we use prescribed fluxes at the left and diffusive conditions on the right end of a slab to
study the resulting steady state solution. Moreover, we compute the numerical density
function in velocity space and compare the result with the Chapman—Enskog distri-
bution obtained in the limit for continuous media. The aim of the two—dimensional
simulations is to investigate the possibility of a symmetry break in the numerical
solution.

1 Introduction

In the following we present the numerical part of a study on boundary value problems for the
Boltzmann equation; the theoretical investigation, which deals with existence results for various
types of boundary conditions, is the content of Ref. [7]. The question whether the existing solutions
are unique or not is still an open problem, even for one-dimensional slab geometry. One aim of
the numerical simulation is to investigate two—dimensional problems with spatial symmetry, and to
look for any kind of symmetry break in the numerical solution, which would indicate instability and
nonuniqueness. The results computed for one-dimensional slab geometry will explain how solutions
with completely diffusive boundary conditions are obtained using prescribed (Maxwellian) fluxes
at one end of the slab. Here, we directly follow the theoretical investigation given in [7]. Because
of the high resolution of the simulation results, we are able to compute the numerical density in
the velocity space and compare the result with the Chapman-Enskog distribution obtained by
considering the limit for continuous media.

In Section 2 we formulate boundary value problems for the Boltzmann equation and discuss
different kinds of boundary conditions. Section 3 deals with a particle method for the numerical
treatment of the Boltzmann equation. A detailed description can be found in Ref. [8] and we only
present the basic ideas of the scheme. The main part of the paper is given in Section 4, where we
present various numerical results for one— and two—dimensional boundary value problems.



2 Boundary Value Problems for the Boltzmann Equation
We are concerned with the steady Boltzmann equation given in the form
v-Vef=Q(f), z€Q, veER? (2.1)

on the one- or two—dimensional domain Q@ C R"”, n = 1,2 and various boundary conditions at
9. The right hand side of (2.1) is the collision operator, describing binary collisions between gas
particles, and is given in the form

QU =Q* () - LNHf

and
Q) = [ [ Bl mse) s dndu, (22)
L(f) = //B(|v—v*|,n)f('v*)dndv*. (2.3)

Here, Sy is the hemisphere corresponding to (v — vy, n) > 0 and the pair (v/,v,) is given by the

collision transformation
1 7
J:(v,n,v.) — (v, —n, vy)

with

v\ = v—n(v—uvn),

v, = v«et+n(v—ou.n).
A typical form for the collision kernel B is
B(lo = ], m) = o — v [*h(6),

where 6 is the polar angle of n relative to a polar axis in direction v — vy, e.g., k = 1 yields the
hard—sphere gas.

Equation (2.1) is complemented with some appropiate boundary conditions at Q. A typical
form of boundary conditions is to prescribe the ingoing distribution function, as used for example
in Ref. [1], where the authors proved the existence of a measure-valued solution for the one-
dimensional slab geometry. A second class — also known as gas—surface interaction laws [4] — are
reflective boundary conditions, where the ingoing flux is defined in terms of the outgoing flux
modified according to a given boundary kernel. This type of boundary condition is necessary, if
one wants to predict, e.g., the aerothermodynamic behaviour of a re—entry vehicle under rarefied
gas conditions.

The general type of (reflective) boundary conditions is given by

lv-n()|f(t, z,v) = / [ n(z)|R(t, z;v" — v)f(t, z,v")dv (2.4)
v'-n(z)<0

for v - n(x) > 0, where n(z) is the inner normal at € 9. The boundary kernel R should satisfy
the conditions

R(t,z;v" — v) >0, (2.5)



R(t,z;v" —v)dv =1 (2.6)
v-n(z)>0

Especially, Equation (2.6) guarantees mass conservation at the boundary 9Q. Examples for R
satisfying (2.5), (2.6) are specular reflection, i.e.

R(v = v,2) =6V —v+2n(n-v)), (2.7)

diffusive kernels

R(V — v,z) = @w cn(x)|e P (2.8)

where () is a given (inverse) temperature profile along 99, the Maxwell model, which is given
as a linear combination of (2.7) and (2.8), and the Cercignani-Lampis model which includes two
accomodation coefficients [4]. Due to the lack of information on appropiate accomodation coeffi-
cents, the diffusive kernels (2.8) are the most widely used (reflective) boundary conditions in real
applications.

3 Particle Schemes for the Boltzmann Equation

The particle method used to compute the solution of boundary value problems is the so—called
Finite-Pointset-Method (FPM) as described in Ref. [8]. We shortly recall the basic ideas behind
this numerical scheme.

We consider the instationary Boltzmann equation in the form

fi+v-Vof =Q(f) (3.1)

together with an appropiate initial condition at ¢ = 0 and boundary conditions like the one dis-
cussed in the previous section. The solution f(t,z,v) of (3.1) is interpreted as the density of the
corresponding time-dependent measure denoted by p;(,v) and . is approximated by a discrete

measure of the form
Sun(ty = D, ibpi(r), (3.2)

i=1,...,n

generated by a so—called finite pointset w, (t) = {(pi(¢), &) }i=1, . ». Here, p; = (2;,v;) denotes the
position resp. velocity of a particle and «; the corresponding weight, which may also be a function
of t. In the following we assume that the weights are independent of ¢.

For a fixed time ¢ > 0 a sequence {6, (:)}nen should form a convergent approximation in the

sense of weak-* convergence of measures denoted in the following by 8, (%) 2y, e

/ ®(x,v)ddy,, (1) = O(z,v)dy, (3.3)
QxRS QxR3
where (3.3) should hold for all bounded and continuous functions ® on Q x R3.
The dynamic behaviour of the particles defined by the discrete measure in (3.2) is derived using

a splitting method over a small time intervall [t,t 4+ A] to separate the left hand side of (3.1) from
the collision operator, yielding the two equations

fi+v-Vof=0, (3.4)



which describes the free flow of particles and

ft :Q(f)a (35)

which describes the collision between particles.
Equation (3.4) is solved over a small time increment [t,# + A] simply by moving each z-
coordinate in (3.2) to the new position z; + Atv;, i.e.

3.4
Y il = D b4 at(n)vi) -

i=1,...,n i=1,...,n

If the trajectory {a;(t) + 7v;(t) : 7 € [0, At]} hits the boundary of spatial domain, one has to
incorporate the corresponding boundary condition.

The numerical simulation of equation (3.5) is much more complicated. Introducing a explicit
discretization in (3.5) yields (for t = 0)

F(At z,v) = f(0,z,v) + AtQ(f)(0,z,v). (3.6)

The main difficulty in equation (3.6) is, that @ is a local operator in space and one has to introduce
a mollifier with respect to z € Q. Hence, instead of the discrete measure given by (3.2), we use a
discrete measure in the form

6¢Dn(t) = Z aiBAx(r: xz(t))év,(t) )

i=1,...,n

to approximate the solution of (3.6), where 32%(z,z;(t)) denotes some spatial mollifier for the
point measure located at z;(t). The standard way of doing this is to use a subdivision of the

spatial domain into small cells ¢;, such that |J ¢ =€, and to use the mollifier

i=1,...m

X, ()X
fney = Y Ol (37)
i=1,....m
which corresponds to the assumption that the density function f(¢, z,v) is spatially homogeneous
in each cell ¢;. The advantage of using (3.7) is that Equation (3.6) reduces to a system of homo-
geneous Boltzmann equations, i.e. one has to solve in each cell ¢; the (time-discretized) spatially
homogeneous Boltzmann equation, which will be discussed in the following.

Because we want to approximate the solution by a discrete measure, it is convenient to switch
to the measure formulation of the problem, i.e. we consider the x—independent measure equation

patr = po + AtQ(po) (3.8)

Now, using the decomposition of the collision operator @ into the gain and loss term, i.e. Q(uo) =
Q7 (o) — poL(po), yields
par = (1 — AtL(uo)) po + AtQ* (uo) (3.9)

With the collision transformation J, Equations (2.2), (2.3) and assuming that ||uo||1 = 1, Equation
(3.9) reads

/<I>('U)d,um = / {AtB(|v — vi|,n)®(v') + (1 — AtB(Jv — v, n))®(v)} dndpodpo ,
R3 R3



which should hold for all ® € C;(R3). Introducing s € [0, 1] and the transformation T defined by

v s S AtB(|v — v, n)
v else

T(v,ve,m,8) = { , (3.10)
we finally obtain the form
par = (fo X pg X w x/\)oT_l. (3.11)

Here, w(n) denotes the measure of the collision parameter and A(s) the uniform measure on the
intervall [0, 1].
The crucial part in (3.11) is the generation of the product po x po: the measure pg is just

known in the form of a discrete approximation by &, v po. whereas the two measures w and A
are given and continuous. On the other hand, if {6, }nen is a sequence which converges weak—x
to pog X po X w X A, then, applying the transformation 7', yields a weak—% convergent sequence for
the unknown measure paq, because 7 is a.e. continuous.

It is beyond the scope of the paper to discuss the existing algorithms, how to calculate ap-
proximations of the product measure pg X po, if po is given only as an approximation by discrete
measures. We refer the reader to Refs. [4] and [8].

Due to the explicit time discretization in (3.6), the size of the time step At has to be small
enough to ensure positivity of the function f(At, z,v) and, moreover, the collision kernel has to be
truncated. E.g., for a hard—sphere gas, the kernel is proportional to |v—v,| and therefore obviously
unbounded. Particle schemes, which use an implicit discretization, can be found in Refs. [2] and
[11]. Using partial explicit/implicit discretization techniques, it is futhermore possible to construct
even second order discretization schemes [12].

Recently it was shown how to derive particle schemes directly for the stationary equation (with
Maxwellian molecules) [2], [3]. The scheme is quite similar to the one presented above, except, that
each particle is equipped with an own time step for the free flow and that all particles undergo a
collision in each time step.

4 Numerical Results

In the following two subsections we present some typical results obtained by a numerical simulation
method for boundary value problems of the Boltzmann equation. Subsection 4.1 deals with one-
dimensional slab geometry as discussed in [1] and recently in [7]. Some results for two—dimensional
geometry are given in Subsection 4.2.

4.1 One—Dimensional Slab Geometry

We consider the (time-dependent) Boltzmann equation on the slab 0 < 2 < 1,

af of
o TEa, =R, (4.1)
with boundary conditions
ft,0,v) = j mg(v), £€>0 (4.2)
ft,1v) = — / %R(v' —v)f(t,1,v)dv, £<0 (4.3)
§'>0



for all t > 0. Here, j~ is some positive constant and mg(v) a normalized Maxwellian,

2

mo(v) = 220 =por?
T
o

Equation (4.1) is completed by the initial condition f(0,z,v) =f (z,v). In [7] the boundary
conditions (4.2),(4.3) were used to prove the existence of a measure—valued solution for the cor-
responding steady state problem with purely diffusive boundary conditions. The simulation of
the time-dependent problem (4.1) is expected to produce a stationary solution which satisfies in
addition the condition

tli}rg)/|£|f(t,0,v)dv: /fj_mo('v)dv:j_ (4.4)

£<0 £>0

Relation (4.4) follows from mass conservation (see (2.6)) and the one-dimensional geometry: inte-
grating the (steady) Boltzmann equation with respect to v yields

dj

— =0 4.5

i (4.5)
for the mass flux j(z) = [vf(z,v)dv. Because of (2.6) and (4.3), it follows that j(1) = 0 and

J(z) =0 for all 0 < z < 1. Hence, for every solution f = f(x,v) of the time-independent version
of (4.1) with boundary conditions (4.2), (4.3) it holds that

/ I€£(0, v)dv = j-

£<0

For the following numerical result we use a diffusive boundary condition at z = 1, i.e. R(v' —

v) = &my(v), &€ < 0 where

ﬁe—ﬁlvz
T

(4.6)

my(v) =

To simulate the instationary problem (4.1) the interval [0, 1] is divided into M subintervals
ci = [%, ﬁ) of length Az = 1/M and the density f(¢, z, v) is assumed to be spatially homogeneous
in each cell, i.e. we use the mollifier f(z,y) = M Y X.,(x)X.,(y) (see Section 2).

The collision process is reduced to a set of homogeneous Boltzmann equations based on the
given cells ¢;. Generalized Halton—sequences [10] are used to generate the pointsets, which approx-
imate the initial condition as well as the boundary condition at = 0.

Boundary condition (4.3) is incorporated into the free movement of the particles: if a particle
hits the right boundary of the slab, it is reflected according to the given Maxwellian distribution
given by (4.6).

The boundary condition (4.2) is realized by simulating an additional cell ¢g of size §z at the
left side of the slab geometry. In every time step ¢ is filled with a particle ensemble according to
the mass flux j~ and a Maxwellian distribution with temperature 8y. During the free movement
some particles will enter the slab geometry at £ = 0. All other particles are deleted at the end of
a time step.

The interval is divided into 20 subintervalls (cells). In each cell Ng = 1000 particles are used to
approximate the initial condition. The mean free path A is equal to 0.1 which results in a Knudsen
number of 0.1. The temperature at « = 1 is fixed at a value of 2. The time step At is chosen

such that <o> /At = 1, where <> denotes the averaged velocity in positive z—direction of the



Maxwellian initial condition at temperature 1. The temperature of the Maxwellian mg(v) is equal
to 0.1. Moreover, we use 20 independent samples to reduce the fluctuations in the instationary
numerical results and 200 time steps in each sample to average the values in the stationary state.

The ingoing mass flux j~, which enters the problem as a free parameter, is realized using [Ny,
l € Ry, particles to approximate the Maxwellian distribution in the artificial boundary cell ¢p.

Figure 1 shows the instationary behaviour of the (normalized) total particle number N]‘t/["—’(t) for
different values of I. After about 500 time steps this quantity reaches a stationary state, which
means that the outgoing mass flux at « = 0 balances the ingoing mass flux.

1 r r r r

Total Particle Nunber

0.8} ]

0.6} R
| =2

0.4+ i
| =1

0.2} | = 1/2 |

200 200 500 800 1000

Time Step
Fig. 1. Instationary Total Particle Number.

This effect is shown in Fig. 2 where the in— and outgoing mass flux is plotted versus the first
500 time steps. The quantities shown are the corresponding amount of particles which leave and
enter the slab at # = 0 (normalized by Ny). The (time-independent) horizontal curves are the
ingoing fluxes (upper line for { = 2, lower line for [ = 1/2), the two time-dependent curves in Fig.
2 are the outgoing fluxes for [ = 2 (upper curve) and [ = 1/2 (lower curve).
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Fig. 2. In— and Outgoing Mass Flux.

The local minima which appear after about 25 time steps seem to be no artificial effect. A
simulation with a larger number of particles produces the same result (see Fig. 3 with Ny = 4000).

0.35 T r

0.3

0.25

0. 15

0 _. 200 300
Tinme Step

Fig. 3. Outgoing Mass Flux ({ = 2) with Ny = 4000.

This effect even increases with decreasing Knudsen number. Figure 4 shows the in— and
outgoing mass flux at a Knudsen number of 0.05 (and M = 40).
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Fig. 4. In— and Outgoing Mass Flux (/ = 2).

Typical density and temperature profiles in the stationary state are plotted in Fig. 5.
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Fig. 5. Density (D) and Temperature (T) Profiles.

The various profiles are in agreement with the behaviour of the total particle number as shown
in Fig. 1. The steady state value decreases with decreasing [, i.e. the gas becomes more rarefied.
On the other hand, if the gas becomes more rarefied the slope of the temperature curves should
decrease. For the density curves it is obvious that the maximal value is reached at # = 0 because
f1 < By and the maximal density increases with increasing .

Moreover, the stationary profiles shown in Fig. 4 are identical with the standard heat transfer
profiles between two parallel plates at different temperatures taking a Knudsen number of 0.1¢
with

¢ = lim .
t—00 Ntot(t)



The high resolution of the simulation results allows the calculation of the (numerical) density
function in the velocity space. Figure 6 shows the distribution of each velocity component for a
spatial cell close to the mid point of the slab geometry (A = 0.1 and | = 2). Here, the density
function is scaled, such that the macroscopic density is equal to one.

0.8}

0.6}

0.2}

Fig. 6. Numerical Density Functions (A = 0.1).

The distribution of the z—velocities represents a strong nonequilibrium: the maximal value is
shifted to the right, because the temperature of the ingoing flux at # = 0 is much less than the
temperature for the diffusive boundary condition at # = 1 and, due to the rarefied condition, the
number of collisions is not large enough to produce a distribution close to a local equilibrium.
Because of the one-dimensional geometry, the velocities in the y and z—direction are (numerically)
almost identically distributed, but not in a local equilibrium (see also Fig. 9).

0.8}

0.6}

Fig. 7. Numerical Density Functions (A = 0..05).
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Decreasing the mean free path A by a factor of 2 (A = 0.05, M = 40) and 4 (A = 0.025, M = 80)

gives the density functions shown in Fig. 7 and 8.

| ' ' " x-velocjty —

08| i ER e
0.6} ]
0.4¢ i
0.2¢ _
°3 34

Fig. 8. Numerical Density Functions (A = 0.025).

It is well-known, that, if A — 0, the one-dimensional heat transfer reaches the limit for
continuous media, where the macroscopic density p and the temperature 7' satisfy the Navier—
Stokes equations [5]

d(pT)
dx =0

4 (AT
dmﬁdm_

Here, k is the temperature dependent heat conduction coefficient, e.g., for a hard-sphere gas
K = O(\/T) Moreover, the density function f can be substituted by the so—called Chapman—
Enskog distribution [5]. Because the mean velocity is equal to zero and because of the one-
dimensional geometry, the general form of the Chapman-Enskog distribution reduces to (assuming

p=T=1)
1 2 d )
CE _ e _ . ar 2_ 2
o (x,v) = —72¢ <1 K Ve <|v| 2)) . (4.7)

Integrating (4.7) with respect to v, € R shows, that the distribution of the y and z-velocities tend
to a local Maxwellian as A — 0.

In Fig. 9, the solid lines shows the local Maxwellian using the numerical value of the macro-
scopic temperature in the corresponding cell (see Fig. 5), the points show the numerical density
function for the y—velocities for A = 0.1 (compare with Fig. 6).

11
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Fig. 9. Numerical Density Function (A = 0.1) and Maxwellian.

The overshoot at v, = 0 indicates, as mentioned above, that the gas ensembles is still in nonequi-
librium. Decreasing the mean free path to A = 0.025 gives a result as shown in Fig. 10.

0.6 r

0.3}

L Gr——— R

Fig. 10. Numerical Density Function (A = 0.025) and Maxwellian.

Here, the numerical density function is already close to a local Maxwellian, indicating, that the
gas ensemble is close to the continuum limit.

Remark 1
The computations were performed on a HP 9000/735 workstation at the Department of Mathe-
matics and Statistics, University of Victoria, Canada, and required a CPU—-time between 46 min

for | = %, about 2 h for [ = 2 (both for A = 0.1, M = 20) and up to 20 h for [ = 2, A = 0.025 and

2

M = 80.
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4.2 Two—Dimensional Problems

The two-dimensional simulations are motivated by the following consideration: the existence re-
sults for boundary value problems for the Boltzmann equation on arbitrary domains do not answer
the question whether the solution is unique or stable. In the case of discrete—velocity models, one
can easily show, that boundary value problems may have more than one solution [6]. The idea is
now to use a particle method as an experimental tool to investigate the uniqueness and stability
of solutions.

Consider, for example, the one-dimensional slab geometry as presented in the previous sub-
section, where the y—coordinate is now included in the simulation. We consider, e.g., the spatial
domain [0, 1]?, together with the periodic boundary conditions

flz,0,v) = f(z,1,v) if v, >0,
flz,1,v) = f(z,0,v) if v, <0.

We compute numerical solutions of this problem and compare them with the one-dimensional pro-
files from the previous section, looking for symmetry breaks, bifurcations and possible nonunique-
ness.

A typical two—dimensional result is shown in Fig. 11, where the boundary condition at = 0
and z = 1 are the same as for the result given in Fig. 5 with [ = 2. Here, we divided the unit square
[0, 1]% into 400 cells, i.e. 20 cells per spatial direction, which yields the same spatial resolution as
for the one—dimensional simulation. The number of particles per cell is reduced from 1000 for the
one—dimensional simulation down to 200 particles — due to the larger number of spatial cells — and
the number of independent samples is reduced from 20 to 10, such that the CPU-times remains
within a reasonable limit.

Fig. 11. Density Profile for [ = 2.

The two—dimensional (numerical) solution is obviously independent of the space coordinate y
and, moreover, for fixed y, (numerically) nearly identical with the one-dimensional solution (see

Fig. 12).

13
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Fig. 12. One— and Two—Dimensional Density Profile.
Remark 2

The small deviation is explained by the fact that the particle number for the one—dimensional
simulation is much larger than for the corresponding two—dimensional case.

A more complicated rarefied flow is investigated in the following example. Here, we use the
periodic boundary conditions (4.8), (4.8) together with the diffusive conditions

—£f0y,v) = JT(Wmay), £<0, 0<y<l
Lyv) = T Wmy), €>0, 0<y<l
where
pr f0<y<iori<y<?
W)= {ﬁo ifl<y<lor?<y<l
fo if0<y<gorg<y<jy
W= {& ifl<y<lor2<y<l

Bo = 2 and 1 = 0.1 are two given (inverse) temperatures and j~(y) (j*(y)) the y—dependent
outgoing mass flux at =0 (z = 1).

Figure 13 shows the two—dimensional density profile obtained in the stationary state, Fig. 14
the corresponding termperature profile.
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Fig. 13. Density Profile.

\
i
...........
W\
\ |

{

Fig. 14. Temperature Profile.

A more detailed picture on the symmetry of the solution is shown in Fig. 15 and 16, where

direction (for two fixed values of ).

the density and temperature profiles are given along the y-
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Fig. 15. Density Profiles in y—direction.
' Tenperature, X = Q.025 —
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Fig. 16. Temperature Profiles in y—direction.

Remark 3

The computations were performed on a HP 9000/735 workstation at the Department of Mathe-
matics and Statistics, University of Victoria, Canada, and required a CPU—time of 4 1/2 h for the
first and 8 h for the second testcase.
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Within the current investigation, a lot of different boundary conditions were implemented
in the simulation. Moreover, the size of the spatial domain, which might be important in two—
dimensional problem, was modified within a large range. None of the simulation results gives
any indication on a symmetry break of the numerical solution. This indicates that the solutions
are stable. Nevertheless, it remains a challenge to improve the existing existence and uniqueness
results.
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