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Abstract. In this paper we consider a certain class of geodetic linear inverse problems A} = G
in a reproducing kernel Hilbert space setting to obtain a bounded generalized inverse operator
At. For a numerical realization we assume (' to be given at a finite number of discrete points
to which we employ a spherical spline interpolation method adapted to the Hilbert spaces. By
applying AT to the obtained spline interpolant we get an approximation of the solution F'. Finally
our main task is to show some properties of the approximated solution and to prove convergence
results if the data set increases.

1 Introduction

Until the fifties the essentia
restrial observations. In 19
Since that time the mathematical techniques of gravitational potential determination had to
be adapted to the new situation. The arising problem was to determine the potential on and

I part of gravitational potential determination was obtained by ter-
5 A
57 the situation changed completely with the first satellite mission.

outside the surface of the earth from discretely given measurements at satellite altitude which, in
addition, could be of different type depending on the mission (e.g. satellite-to-satellite tracking
(SST) or gradiometry. cf. Rummel(1979) and Rummel(1986)). This so called downward con-
tinuation process is formulated as an inverse problem in terms of an integral operator equation
which is severely ill conditioned. Therefore several approaches of regularization methods are in
discussion. Thalhammer(1995) proposes a discretization of the (linear) operator using projection
methods for regularization and the minimization of a Tikhonov functional, while Schreiner(1994)
considers a locally supported spline approximation of the given data and a regularization by a
truncated series expansion of the genecralized operator. Stochastic methods are discussed e.g.

in Rummel(1979) and a boundarv valne approach is given in Keller and Hirsch(1994). Our
1
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solution is situated in a reproducing kernel Hilbert space setting (see Nashed and Wahba(1974)
and Wahba(1973)) using a spherical spline interpolation method (see Freeden(1990)), where the
regularization of the inverse problem is done by refinement of the topologies. In the first part
of our work we assume spherical shape for all surfaces but the main results of this paper can be
found in Section 6, where the attention is directed to the fact that the satellite orbit as well as
the earth’s surface do not underly severe geometrical restrictions. In what follows, we summarize
briefly the outline of this paper.

In Section 2 we give an overview of the notation, definitions and mathematical structures we
need. Section 3 deals with the formulation of the type of inverse problems (in a spherical context)
we discuss. Moreover, the connection to certain satellite missions is demonstrated. After that
we deal with regularization which leads to the introduction of the reproducing kernel Hilbert
spaces adapted to the inverse problem in Section 4. Then we proceed with the definition of
spherical spline interpolation in Section 5. Here we assume the data to be error free and develop
some minimal properties of the solution and convergence statements. After that we consider
error affected data and formulate a combined interpolation and smoothing method. Finally, in
Section 6 we generalize the whole problem to non-spherical structures in the following sense. The
satellite orbit is no longer assumed to be spherical as well as the surface of the earth. Then we
calculate an approximation of the gravitational potential on the surface of the earth rom given
data on the satellite orbit. At last we show again some minimal properties of the approximation
and a convergence result if the measurements at the orbit increase.

2  Preliminaries

For any @ = (21,29, 23)7 € IR* different from the origin we may write 2 = r£, where [z| = r and
£eQy = {2 ¢c R 2| =1} (unit sphere). To be consistent we define Qr = {z € R?| [z] = R} to
be the sphere with radius R > 0 (centered at the origin). The canonical basis of R is denoted
by {e',¢%.¢%}. As usual, A7 denotes the Beltrami operator. It is well known that the only
eigenfunctions of Af are the spherical harmonics Y, ; : @1 — R, A7Y, ; = —n{n + DY, n=
0,1,...,7=1,...,2n+ 1, where 2n + 1 is the number of linearly independent elements of order
n. The Legendre polynomials P, : [~1.1] — IR are the only everywhere on [—1,1] infinitely

dt
P,(1) = 1. If we consider P,(¢3-): Q; — IR one can show (cf. Miiller(1966)) that P,(¢3:) is
the only spherical harmonic that is invariant under orthogonal transformations which leave g3
fixed. The connection between P,(¢?+) and an £%({2)-orthonormalized set of spherical harmonics
{Ymi}: J = 1l.....2n+ 1 (from now on always assumed) is stated in the addition theorem (cf.
Miiller(1966) and Freeden(1979))

~ . . . N 2 . .
often differentiable eigenfunctions of the Legendre operator (1 —1?) <i> -2t (%) which satisfy

2n+1 R
X 2n 4 1
> V(Y (n) = - Pu(&n).

J=1

For the following considerations we need some Fourier analysis on £?-spaces. Therefore we
define as usual

LHQR) = {F:Q — R | F measurable, || F]

2
22y < 20}




with

,2 :
y)l dw‘R(!/)) :

The class of functions on Qp which are k-times continuously differentiable is denoted by C*(Q2r),
where CYQp) = C(Qpr) and

1Pl =

i

1l = sup [F(y)l
vEQR
As it is well known that {¥, ;}:n =0,1.....j = 1,...,2n+ 1 forms a complete and closed
system in £2(€2)) we can represent any F € £4(€2;) in terms of spherical harmonics

oo 2n4l

F(f) = Z Z [n.)srnj(‘f)

n==0 j=1

with ‘
Fog = [ FIOYL (€ dw(€)
i

being the Fourier coefficients of F. To translate this concept to L£2({2r) we introduce

v L (l>: - Qp 1
()= ) vES (1)

such that {3”]"] cn=00100 007 = 100204 1 forms a complete and closed system in £2(Q2g)

which is orthonormal in the (-.-)s2(q,-sense. Consequently any function I’ € L*(QR) can be
represented as
o 2nekl

=23 FIvim
n=0 ;=1
with
FR = A F(y)Y,E (y) dorly).

As we shall see later the theorv of reproducing kernel Hilbert structure in Sobolev spaces is
essential for spherical spline interpolation (¢f. Freeden(1990)). For that purpose we want to give a
short introduction here which is deepened in Section 4. Let {An‘j}: n=0,1....70=1,...,2n+1,

denote a s*equence of real numbers, where {4, }: n = 0.1,...1s understood to be equivalent to
{A,, ;} with 4, ;= A,: j=1.....2n + 1. Considering the space
I 1
AR ~ z 2 .
£ { L,} ““““ {F e ™| L n[ (F] ) ~\,:x} (2)
nz=0 j=1

we are able to define an inner product

G Al
(l G ;1 {4,185 L Z ]}‘ (l',];]: (3)
nz=l} gl
FoG e S0, ) and the associated norm
/ L
g = (I F )H({:zn}.s“zm> i (4)



Feé&({4,})on& {An}) Then the Sobolev space H({A4,},Qr) is the completion of £({A,})
under the norm (4) ({ At QR) equlpped with the inner product (3) is a Hilbert space. If
we consider A, = (n + 3)° we define H,( H({A,},Qr). In particular, Ho(Qg) = L2(QR)
and H(Qr) C Ht(QR) f01 t < s with HF“HC(QR <[ Flln.ap)- If we furthermore introduce the

*

Beltrami operator A" “of the sphere g, given by A} = I%ZAry_T we have

p * ] Y
1 Fll3.ap) = N=R*ATH + D ez g

and

(- RZA*R+ Y Flloan) = 1Flpe0n)

»sl>—

for all F € H (QR).

Now we are in a position to turn over to the last part of this section. In order to classify
the type of inverse problems we deal with, it is nescessary to introduce spherical pseudodiffer-
ential operators (SPDO) (ef. Eskin(1981), Svensson(1983)). Following Cui and Freeden(1995)

we consider a sequence of real numbers {A"(n)}; n = 0,1,... satisfying
1A% ()]
lim T = const £ 0

n—roC (n + E)

for some t € IR. Then the operator A : Hy(Qpr) = Hset(Qpr) defined by

o 2nl
AF =3 S A FRYE . FeM,(Qp)
n=0 ]‘—‘1

is called SPDO of order t, where {A”(n)} is called (spherical) symbol of A and the convergence
of the series is understood in the H_¢(2r) topology. Moreover, if

lim A ()]

=0
n=co (n 4 £t

for all t € R then the operator A : H(Qp) = C>(QR) is called SPDO of order —co. If in
addition

X
) LRy VN

n=0 4m

we define

o 2nl R

[\‘ A (,/ l/ Z Z /\/\ 7], J ) n/ ]( )
n=0 )=1
to be the kernel of A such that
A= A Ka(y)F(y) dwp(y).
R

Some properties of A and ANn) are simply verified: (A"4+ A"V n) = (A)Y(n) + (A (n),
(MAMn) = (A (n)A)Mn) for all n = 0,1,... and AV = AN)Y 0 = 0,1,
J=1,....2n+ 1.



3 The Inverse Problem

Let {A(n)} with A®(n) > 0 forall n = 0.1,...denote the symbol of a SPDO of order ¢ € [0, 0),
Le. for any G € H,(,) we have

N dnd

(AGH )= D" 3 AN Y ) € Hon(82).

n=0 ;=1
Furthermore.

oo 2n41 n
Az => Z( ) YooYy

n=0 ;=1

x=rfy= Ry, R <r defines the kernel of a SPDO AR LHOR) = C(0,),

> 2nkl
(,;_gzi'mv):/ Fly)Ante.y)dorly =53 <—> FEYT (2)

VR n=0 =1

of arder —~c. Combining both SPDQ’s we obtain:

AR LHQR) = C(9,) given by

N o 2nl
(\ﬁ[)(” = / ]‘“/)]\\ }g( (/“’1 l/ Z Z (“") )I"‘f})%](,.) (5)
r JQgR B .

n=0 ;=21

is an injective SPDO of order —~c with svmbol {(ﬁ)’ AMn)} having the kernel

o 21
Knglr =3 % ( A e (6)

n=0 ;=1

€ Q.. y € Qp. This operator defines the class of inverse problems we want to discuss. Given
a function (¢ € £2(9,) we are interested in solving the inverse problem

AeF =G FelYQp). (7)
Ar as defined in (5) with kernel Ky, defined in (6). Inverse problems of type (7) are known
as Fredholm integral equations of the first kind. The generalized inverse of the SPDO A g de-
noted by *\Tﬁ Is an operator \1 : ‘P(.\TE) C L) — LAQR) G o V\T» (i = F, where I is
uniquely defined by \;J = P Al \H) defines the domain of A\TR and P?’TKM{’ denotes

the orthogonal projection of any fm tion (¢ € L£2(Q,.) onto the closed range of An (where we
used the same notation as in Louis(198931). Due to the fact that in our case /\1_( represents

a compact operator on L£4(Qp) {as Ny 5 < C(Q, x Qp)) with infinitely. dimensional range in
L£2(§2,) the generalized inverse operator \;( is not bounded (cf. Nashed and Wahba(1974)). The

kind of ill-posedness is easy to see by <al(u|atmo the singular svstem of (7). as ;\ﬁ)’lﬁ =0, Y7
RN n,7



n e N -
and A* wY) = (Tn}nRi with ¢, = <§> AMn) (ie. o7t = (£)"An)™! and § > 1), where
A% o L ('Q,.) — C™(Qp) denotes the adjoint operatcr. With this it follows immediately that the
inverse problem (7) is expornentially ill-posed (cf. Louis(1989)) and the regularization technique
we want to apply is presented in Section 4. Finally, we would like to emphasize the importance

of equation (7) in many problems of satellite geodesy:

Assuming the spherical shape of the earth and the satellite orbit (what we do no longer re-
quire in Section 6), equation (7) enables us to recover the following satellite problems. If we
define R: radius of the earth, H: satellite altitude, r = R+ H and F: gravitational potential

on the surface of the earth, we have:

1. The Linearized SST-Problem
AMn) = i}'—l (i negative radial derivative of the gravitational potential at the satellite orbit

2. The Gradiometry Problem
ANn) = @i.l%éﬁfl) (G 2nd radial derivative of the gravitational potential at the satellite orbit

4 The Regularization

Following the ideas of Nashed and Wahba(1974) we consider the inverse problem (7) in Hilbert-
type subspaces of £4(Qr) and L£*(Q,), respectively, in order to obtain a bounded general-
ized inverse operator which is known as regularization by refinement of the topologies (cf. e.g.
Louis(1989)). Therefore it is necessary to extend the knowledge about the theory of Sobolev
spaces already introduced in Section 2.

According to Freeden(1990) we call a sequence {4, } of real numbers summable if

1. A, #0; n=0,1,...

Z —“L’i < x.
n=0

Starting with a summable sequence {A, }, the Sobolev space

o6 2n4-1 H'H’H({An},QR)

H{A Qr) = (FeC™(Qp) | Y Y A <}

n=0 ;=1

is a separable Hilbert space (with Hilbert basis {3~ L -, RA) and inner product defined in (3)

n,J
possessing the reproducing kernel

> 2n+1

[X}-{{‘” Szlf Z Z ‘1 ‘2 77,>] 7)31211)]( )*,

n=0 ;=1

7,y € Qr (cf. Freeden(1990) and Aronszajn(1950)). i.e
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1. for fixed € Qp + K H({An}OR) (g.-)isof class 'H { ln} Qr)

2. ([\"}-(({7,1”}‘QR)(]}. R ]:‘)'H({-“n}-n}?) = I'(§) forall I & ‘H({f&”,}. Qr).

As we want to work in the inverse problem context we have to choose those sequences such
that we obtain a reproducing kernel Hilbert-tvpe subspace of £2(Qp) as well as a Hilbert-type
subspace of L£2(9,) and moreover that the generalized inverse operator is bounded on the latter
one. Firstly. we prove

Lemma 1 Let f: RT — RT be a function such that the sequence {( (o)) (7%)2”> } with

/ n g 9 L
o, = (B> AN n) is summable. Furthermore, we define the sequences {Aff} = {(f(on)o;; ARy

{BI} = {(flo,)) } and {4,} = { (f(rr, oot R) ~5}. Then { ARV {B7} and {A,,} are summable.
Proof:
S 2n 41 41, o= 2n / > J—
— n i e n \ T <:
NZM—:O 47}' (l'lf \)"Z %) ‘17‘_ /((T )(772 g »LT[' f (T ([{ ( (71)) XD

because of the requirements on f and the fact that A is a SPDO of order ¢ > 0. Thus, {AR} is
summable. The summability of {B7} and {A,} follows immediately as lim,_.. o, = 0. O

Hence, we immedeatelv obtain

it

Theorem 1 If the corresponding Hilbert spaces are denoted by HE = H({AR}, QR),
H{BL}. Q) and H = H({A,}. Qp) with reproducing kernels Kyr(-.-), Kpr(-,+) and [xH( -,
respectively, the following statements are valid:

(A\;_;Afl;l(_z). Ny = Kgeleoxe): 96 Qpar € Qn with g = K. &=, 1) € Oy

\;(HRM H™ and \ HY CH.

. s 2n-+1 N dnqtl
/&Z (Z PRI ) (}_‘j > ~f (oo V5 )Y,ff;(;z/)) dwp(y)

n=0 ;=1



ad 2)

An immediate consequence of Lemma 1 is the fact that HF ¢ C(Qr), HC C(Qr)yand H" C C(&,)
(cf. Freeden(1990)). If we consider a set X1 = {ni} of pairwisely distinct elements n, €
such that X1 is dense in Q; (with respect to the Euclidean topology) it is clear that Xk =
{yx}, yx = Rng is dense in Qp. Then it is well known (cf. Meschkowski(1962)) that { Ky/r(yk, )}
forms a complete and closed system in H® (with respect to || - [lyyr). Thus, we only have to
show that AgK‘Hn(y, -y € H" and A?_ Ky, e " which can be done by an easy calculation. O

Now we are in a position to reformulate the inverse problem (7) in refined topologies. Given a
function G € H™ C C(Q,) C L£2(£),.) we search for a solution of the problem

ApF =G: FeHrE (8)

In order to show the well-posedness of (8) we prove

Theorem 2 Let X2 = {y,}, y» = Rny denote a dense subset of Qg (of pairwisely distinct ele-
il
} HE

ments). Furthermore, we define V = { K z(x, . Using the same notation as in Theorem 1

we have

LoHCHR
A
20 Vol llgr) == (K", || - [|1r) is tsometrically isomorphic
3.V =HA
I\ﬁ

4o (HE | 1) == (K| - Hlwr) is isometrically isomorphic
Proof:
ad 1)

As before it is easy to show that Kj(-,-) € HE,

ad 2)
In Theorem 1 we have already shown that (Ar K 5(y,-))(x) = Kyr(@,2). Using 1) we consider
the closure of {K ~(yk.-)} in HE with respect to || - ||lyr (denoted by V). Moreover, we obtain
oo 2n+1 )
IFEr = 32 3 (floa) ont i)
n=0 ;=1
a0 ‘2n+1 o 2n41 2
= HL2 2 e T Y ()
n=0 j:] n=0 ;=1 £2(Q,)
= 1\’]_‘2 1;1 :;.{r.

Then it is not difficult to see that



. H" — V is bounded as the image of V is

Thus. the generalized inverse operator ‘\TE.(H*‘,‘H”) :

closed in K", where A}, (e Ry 19 understood to be the restriction of the generalized inverse

operator \T& onto H". So there is a one-to-one correspondence between a function £ € V and a

function ¢ € H" via \B/ = ( and I' = '\Tffil"}f"l}‘f“)(;'

ad 3)

As V € HE we can decompose H into HIT = V& VL (L in the HB-sense). Then we know
that H" = Ax(V) C Ar(H™) C H". Thus. Ar(V) = Ar(H™) and V' is the nullspace of the

operator A x in K™ which is always {0} for the class of operators under consideration.

ad 4)
This is trivial by applying 2) and 3). g

The quality of the well-posedness we obtained through the refinement of the topologies can
be quantified by calculating the pseudoconditionnumber (cf. Nashed and Wahba(1974)) of the
inverse problem (8). Here we have

A i J( -y
- H\El H'Hr !i\’l v KR (*'H'H”»
l,w(4\gf}fth"") = SUp et SUP ol { \ ) -l
' et }l HH; e H(l‘;’Hr
e R0

i.e. optimality. Now we have built up the theoretical background for a solution of the inverse
problem (8). So in the next section we can proceed with a numerical realization in terms of
spherical spline interpolation.

5 Spherical Spline Interpolation

In this section we turn over to the problem of calculating a solution of the inverse problem (8)
from a function ¢ & M’ given at discrete points xy.....xx € 82,

Definition 1 Lel X§ = {o...oon) CQ be a set of N distinel points. Any function § € 'H”
of the form

N
S{r) = Z a; Wy (o)
=1

;€ R, v £ O, s called a spherical spline in H"™ relative to Xv. The class of all spherical
1€

splines is denoted by Spline({B]}. X'\

The algorithm we want to implement is now as follows:

1. step:
Given ¥ values Gle) =Gy =100V of a function (v € H™.



Determine S(’\' € Spline({B]}. X}) from ,S'g(a:i) =Gy i=1... N,

2. step:
Define S = AT R (1 HR)Sg as an approximation of I = A o H’?) 7 (the desired solution of
(8)).

For our further investigations we need some basic results of spherical spline interpolation (cf.
Freeden(1990)).

1. Uniqueness:

As BT > 0; n = 0.1,..., the interpolation constraints lead to a system of linear equations with
positive definite matrix. Thus, there exists a unique solution S& € Spline({B}}, X}) of the
interpolation problem in H" (1. step).

2. Minimum Norm Properties:
Due to the reproducing property of Kpr(-, ), 5”(\;[ satisfies

seinf STl = 1155 e o

and
sespiin Moy ap, 19~ Gllre = 156 = Glaer (10)

with

IN(G)={HeH| Hz;)=G;; 1i=1,....N}
The next question to be examined is the following: To what extend can these properties be

transferred to SN ?

Uniqueness is trivial as Ar : HE — " defines an isomorphism. Due to the isometry of
A r we additionally have

SN g LS |1er _2.) Gl 2 || F | (11)

and
\Wﬁ»meﬁwwg—Gmf?Ws~m»’”Mnﬁmmms Flle (12)
for all § € Spline({ B}, X%). (11) shows the minimal norm character also of the approximation

,5 . whereas (12) has to be exa.mmed more precisely. Let us assume for a moment that F'is
known on \{3 ={y1s.. . yN} C Qri Yyt = ?;z:k for k= 1.....N (i.e. the projection of X} onto
QRr). Then we solve the interpolation problem

SN(Z/I):F(y.,'): =1, N
in (H.||- 7). Similarly to (10) we have
ISY - Fil; < 1S - Fllg (13)

10



forall § ¢ Spline {1,7} \1\‘)) Using the fact that Ix'ﬁ(yk. )= J\TB_ (e ,HR)I\"W(:):A., -) we -obtain

S'pli‘n,ff‘({,:in}. \1\’) = \ﬂ e _HR)(,S'pline({BZ’}.)\" S Thus. 5,3 as well as the interpolant SN

minimize the “distance™ to the function F in the same set of trial functions but with respect to
different norms. As limye.~ o, = 0 for all considered SPDQO’s \z\ we always have H C HE (df.

Theorem 2} and in addition [ - lyr < cll- |l (c = const > 0). For the s pecial case that \R is a

i
SPDO with A n) =1 forall n = 0.1.... (cf. Section 2) we even obtain
0o o eN )
1SF = Fllwr < {ISE = Fllg

Finally, we want to show convergence which we formulate in

Theorem 3 Given the inverse problem (8) with ("O‘zzkl,mur)u..s‘ly knouwn righthand side G € H',

f Xy =A{ocooonv Qo = b= 1o N denotes a set of pairwisely distinct
elements such that X = limy_ XY 18 dense in QT. Glr;) = Giido = 1,..., N 1is given for

any N € IN. Then ﬂlﬂt exists for all ¢ > 0 an N = N(¢) € IN and an interpolating spline
SN e Spline({B"}. X-) such that

1]’5,\‘ ~ I “'HR - H\j(hyhl) \ (HT HR]( HHR < e

Proof:
As Ar - HT — H is an isometry we only have to show: For any ¢ > 0 there exists an N € IV
such that

186 = Pl = 55 = Glr <«
As H" C C(9Q,) the set { Ky (2. -)} is complete and closed in H”, i.e. for all € > 0 there exists
an N = N(e) & IN and coeflicients ay.....ayx € I such that

v
;(:w‘ Wy Wogr (2, )| < e (14)

nz]
Now we consider the spline S\ Spline({B]}..XY) satisfving
S’\(u) Gag) k=100

Dueto (10) we have

150 = Gl <15 = Gliwer (15)

forall S € Spline({B]}. X). As S( has the representation
N
SHESE D DL SR (16)
with by... .. by being the solution of the linear system of equations due to the interpolation
constraints we obtain
v s N
Ny (18) . o g : o O
1S = Gl = ] Z by Wogr (o) = Gl <l Z ty Wgr (o) = Gllyr <€

B =]

O

An immediate consequence is



Corollary 1 Under the same conditions as in Theorem 3 we have

sup [S¥(y) — Fly)] == 0.
VESIR
Proof:
We use Theorem 3 together with
ISF() = Fyl = (SF = F Kyr(y, )pnl
cs N ]
<Y = Flln [Fea(y: pen

2n+ 1 1
RZZ 47 JAfﬂ?'

Al

it

LG

The last result shows the main outcome of the considered algorithm:

We need a certain amount of information only at the satellite orbit to obtain an accurate
approximation of the potential on the surface of the spherical earth. This approximation can
be determined by the solution of a system of linear equations with positive definite matrix for
which powerful solvers are available {e.g. Cholesky decomposition}).

So far we considered only inverse problems with error free righthand side. In the following
we omit this assumtion and turn over to the solution of inverse problems with noisy input. We
consider again the inverse problem (8) but in this case with error affected righthand side G* € H"

Apl* =G4 Fe HE.

With strict interpolation (following the previous method) we obtain an interpolant Sgc of the
noisy data on satellite altitude and an approximation 9}35 of the disturbed solution F*. Instead
of doing so we turn over to combined interpolation and smoothing (cf. Freeden and Witte(1982)).

~rg

Given the set X5 = {xi.....an} C Q,. the values G*(z;) = G%; ¢ = 1,..., N and prescribed
positive weights &, v2,....v%. such that the matrix

(Ror(io2;) + 87718 ) _—

1. N

is regular. Then

S'}\,A Ea KNyr(z;.2)

=1

with coefficients ay.....ax uniquely determined by

S"“( ri) 4 i, = G

-3
=

12



satisfies

N ~8y S .
S ;:;(J',j) - (,1'5 Ty )~ (7] AN
I R R St + dlIG 1

1= it

for all ¢ € H". The first part of this functional controls the distance of the spline to the
given function at the points rq.....oy. while the second part controls the smoothness of f the

o,

spline. Now we examine again to \\Im extend the approximation 51< = AT (Hr MR S}w satisfies

adequate minimizing conditions. By applyving Theorem 2 the following resul(. is easily verified

Theorem 4 Let S° XY satisfy (17). Then SF‘ defined by

SE ) = (A g s 960)(0)

satisfies

<\

LS <

N oS . N
Z ( »SF,' - 1 6. [\ (.I'Z\ ) )‘H}i‘

j o

S(F - FOR ()

Z o : + <‘5HF 2 R

for all I € HE and

2n--1

L ST flener Y@y ).

n=0 ;=1

This functional also consists of two parts. Here. the first part controls the distance between a
function of class H® and the disturbed solution of the inverse problem in a (-, - )yr-inner product
sense, while the second part controls again the smoothness of the function. The choice of the
parameters ~; and & is the critical point in this approach. It sounds reasonable to adapt them to
the standart deviations of the measured values. while in the special case that y; = V'N we refer
to Wahba(1990), where the methods of ordinary and generalized cross validation are presented

to obtain good values for ¢ from the given data (.

Until now we always assumed the spherical shape of the orbit as well as the spherical shape
of the surface of the earth. In the next section we turn over to more general geometries. With

this we are able to deal with realistic satellite missions.



6 The Generalization to Non-Spherical Structures

6.1 The New Geometries and the Corresponding Hilbert Spaces

Figure 1

According to the real world conditions we consider the following geometry, where Ly denotes
the surface of the earth and T a compact surface situated in the exterior of a sphere €, i.e.
t < infgyex, |z|, where the data is measured. Yg has the properties that it divides IR? into
the bounded region Y (containing the origin) and the unbounded region L%* and that any
radius starting from the origin intersects ©s only once. For Yz we only require that it is a
compact surface contained in the exterior of a Bjerhammar sphere Qp, i.e. R has to satisfy
R < infyes, |z| < t. Finally. the sphere Q, is defined by 7 = sup ¢y 2] (see Figure 1).

Firstly, we want to mention that Qg and €, do not denote the spherical earth and the spherical
satellite orbit as in the previous sections. Here they denote an inscribing sphere of the earth
and a covering sphere of the orbit. Nevertheless we use the same notation as we want to work
with the same spaces already introduced in Section -I.

Let HE ¢ C(R) be defined as in Theorem 1. Then for all F € HE,
Fior= [ A lp ) denty) (18)
- R -

|z] > R with

Ar (y. :) = Z\j 2§l <£>n Y]{(y)}r|:|(:)
2 VAR

n=0 ;=1 :
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represents the solution of the first houndary value problem of potential theory (exterior Dirichlet
problem) with respect to the sphere Qg (ef. e.g. Kellogg(1967)). Thus, the functions

~o 2] n 2]
2‘* 2 PRy L
(v > 7, ]}n..j(‘)
n=0 ;=1 1=

form a linear space denoted bv ‘Hg (B=Below). On Hp we define an inner product (-, )y, as
follows. Let Fy. F5 be of class Hy. Then we set

(FroFodmp = (B Fy)yr, (19)
where Fy and F, denote the functions of class H such that

Filz) = / Aiﬁy(?}'s3)1:‘}'(1/)dw’l?(!/) =12
On =z

|z} > R. The inner product is well defined as the linear operator A » : HE — Hpy I s Fis
[=1

isomorphic. Then the corresponding norm is defined as usual by

= ((F F i)t

Hence, Hp equipped with the inner product (19) is a separable Hilbert space of “harmonic
continuations”™ from functions in K to Q3" = {v € B*| lv| > R}. Therefore we immediately
obtain Hp C C™ Q%" ).

Lemma 2

R o 2kl , H NS
Ryp(22)=5 S ( ~~~~~ > <> floo v iyl

n=0 ;=1 i

z|y 12l > R is the reproducing kernel in Hp.

Proof:
Straightforward using (19). o

As we are lateron interested in the solution of our problem at the surface of the earth ¥g
we define the restriction operator Px . by

Poy ot Hg = Heyp o Foe PoplF) = Flu, = Fuy,
which is the restriction of & € Hg onto the surface Yp.

He, = {Fo, | Fopo=Po (Fr FeHpl COVEE)
denotes the space of all restrictions. In a similar way we equip He . with the inner product
(. )y, defined by

(‘;I:I‘E_: {“ ‘7F“.'
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and the corresponding norm

1Fspllms, :<(F§:E"FEE)HEE>2~

As Y is a compact surface in Q5 any function F € ‘Hp is uniquely determined by its restriction
onto Hy,. Thus, Py, defines as well an isometric isomorphism between ‘Hp and Hy,. By
equivalent means we define now the spaces at satellite altitude (A = Above).

Ha={G] Ge)= [ A (o w)Gluo)dadw): G eH').
Ja, Tl

o1
|z| > t, where H* = H({CL},) and Cf = (f(orn) (%)2”) . Due to the conditions on f (see
Theorem 1) it can be easily calculated that {C't} is summable and thus H* C C(£2;) defines a
reproducing kernel Hilbert space. On H,4 we define the inner product

(G1,G2)1, = (G, Ga)ye

and the associated norm

[y

HG1 1, = ((G1.G1)m )

where Gy, G, are defined by

G(z) = /Q A (a,w)G(w)dw(w) 1 = 1.2,

x

lz] > t. Thus, (Ha, (-, )»,) forms a separable Hilbert space and H4 C Coo(Qesh,

Lemma 3

o 2n4l n n n
ERENIEDDDY <~%) ( |) flo Yl @Y,

n=0 j3=1

||, |Z] > t is the reproducing kernel in Ha.

Proof:
In analogy to Lemma 2. O

Furthermore we obtain

Lemma 4 Let G"(x) = G(2)||y=, denole the restriction of G € Ha onto Q.. Then
NG I = 16|74

Proof:
Let G be of class Hy. Thus.



|z| > t. Then

n=0 ;=1
Moreover. we have
. 2nql N
TR v BT
(1’(_1\)::2 Z ("‘) (,77?]}”,(.1,).
n=0 ;=1 ’

o] = r and

T N A
67 = 30 3 Ut () (60)

n=0. ;=1

In the same way as before we define Py . by
Po. i Hy— He. .o G Py (G) = Gly. = Us.

and

Hyo={Gsv.| Ge.=Po (@) G€HsP CCT(2s).

Hence. Hy . equipped with the inner product (-.-)x,, defined by

(GrseGasadng, = (U1 o)y, = (G .Galy

is a reproducing kernel Hilbert space.

S
Now we have finished the preparations we need to proceed with the inverse problem (8) with
respect to more general geometric settings.

6.2 The Generalization of the Inverse Problem

Let us assume for a moment that we are given the following inverse problems

(ArF)(e) = G"(x). (20)
= wforall £ < < pwith By e MO (8 1 = MU 0. C = (Jla) (D)™)  and
. ~\ 2yl } ‘
(A b)a) = / Z N < \ AN Y ey | ) denly)
Jop \ T \___1

ie. the righthand side is given for any sphere 2, between Qp and Q.. Next we consider an
arbitrary but fixed w € (t.r). As w0 HY — K" defined by

o dnebl

(.-1%(,'”)(,1‘ ) = / Z X QZW Y,;;"‘J-(.z‘ﬂ,l ) GO dewy (W)
: WA /

N
e rmel) ]
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[#] = r denotes an isometric isomorphism between H" and H" (see Lemma 4), the unique
solution of (20) is given by

ITU(!/) = (‘\TB‘(H"HR)(Al%(}'“))(y) )

For uw = r we simply have

oot AT [

Foly) = (‘\%,(HT"HR)(’ Hy) -
If we define G%(2) = Q’(;z:)],_,,.l:“. G € Hy for all t < u < r we consequently have F, = F; for
all w € (t,r] as all restrictions G lead to the same function G". Under these assumptions we
consider the inverse problem

(1’\3};,SSFSF)(:L‘):gES(‘r); (21)

r € Xg, Ux, € Hy, and Fg, € Hy,, where Ay, v is defined by

P

(AcpreFopia) = (A r F(z)
i - 51
and I € ‘HF given by (18). The operator is well defined because of the requirements on Y.
Due to the isometric isomorphism between Hy_ and H” (via Py, and Lemma 4), Gy . defines a

unique function G" € ‘H™ and the unique solution of {21) is given by
Feolz) = Pogl [ Ay 2)F(y) deonly) (22)
" R =
with

F(!/) = (/\TR (Hy‘HR)C;”)(y) .

P

Finally, Figure 2 shows the different steps of the solution of (21)

Figure 2
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6.3 H, - Spline Interpolation

-

In this section we generalize the spherical spline interpolation of Section 5 with respect to the
inverse problem (21). Given a function ¢ € H 4 at discrete points ry,....2n € Ns C R? with
o< fay] < e ford o= Lo V we look for an approximation of the unique solution Fv,(z)
given by (22). In contrast to the ordinary spherical spline interpolation we have to require

regularity for the matrix in the linear system of equations due to the interpolation constraints
(cf. Freeden(1981) and Freeden(1987)).

Definition 2 The set Xnv = {aq.....xx} C (Q50 0 QY is called 'H g -fundamental system if -

the N x N-matriz

[\HA(‘PI*'P‘I) e ]"H,\(:BIWIJN)

I=1: :
Ky (enory) o0 KNy (eyvoay)

is reqular.
This enables us to define a 'H q-spline.

Definition 3 Let Xv be a Hy-fundamental system. Then any function 5 € H 4 of the form

N
S(r) = Z a; Ny lag )

=1

a; € Rt < x| < ris called a H y-spline relative to Xn. The class of all H 4-splines is denoted
by Spline(H 4, Xn).

If Xy € Ss we can also define a Hy -spline. As Py (Ha) = He. and Py (Kn, (2:,)) =
KHSS(.I‘I-. ) we define Py (8) = Sy, forany 5 € Spline(H 4. Xn) and
P (Spline(H 4. Xv)) = Spline(Hs .. Xv).
The algorithm we want to implement can now be described as follows:
1. step:

. ) . oYL - . ; .

Given a H-fundamental svstem Y37 = {r.. . ..avt © Vg and discrete values G{a;) =
{ R N 1

ge e =g =1.0..N of afunction § € Hy.

Determine Sé«;\‘ € Spline(H 4. X \(\} from Sé;\j(.z';) =G = 1o V.
2. step: »
C"onsider ,S'L‘;\"”(.z‘) = CS ()= and define .S',.\(y) = (Af S'S'r)(y): y € Qp. Then

?,(‘H".H“]A

Sriz) = / Agly, SN () dwr(y)
RAYE =



denotes an approximation of

fm:/ An(y2) F(y) dwrly) .
JQp 15

where F' = AR (MR

G7. Finally, S}YSE = ’PEE(SJJX) is an approximation of the solution of the
inverse p10blem (21). In analogy to the ordinary spherical spline interpolation we have

1. Uniqueness:

A unique H 4-spline interpolant Sg is guaranteed by the requirements on X;;S while the unique-

ness of S%¥, S¥ and S}'SE is obtained by the algorithm.

2. Minimum Norm Properties
As in the ordinary spherical spline interpolation case we have

o [18es = 1S3 e, (23)
and
inf S =Gl = 1185~ Gl (24)
SeSpline(H .4, X7 )
with

IN@G)={G € Hal Glz)) =Gy i=1,....N}
Next we examine the minimal norm properties of S'N S“j}] and br . Tespectively.

t

gN ' N A%-('HTYHR) o A [mmma 4 'vN
185, 1#s, = ISF 145 = (157 I = 15 " lwer 156 14
(Qi;) - Lemmad () ~p A_Iriisom -
<G, =T NG e = W llr = 11 F g = [ Fepling, (25)
Furthermore, we obtain
*N ~N (2 4)
ISF, | = Feplirs, = ISF = Fling = I15F = Fllyn = 85 = Glin, <
~ - N, kA N —
I8 = Gy = 157 = e = I\ gy 5™ Fllgn =
/ Y. )/ t SN y)—J =
I A 00 gy 5™V ) = Pl
1Pea( ] Ar(y A% s SV dor(9)) = Fepline, (26)
JQg H
with
o 2n4l AN
s Zb > Z (Z) Flon)Y, 5 (2)Y) (2):
=1 n=0 ‘: 1
oyl = wps 1o= 1o, V oand arbitrary by..... by € IR. (25) shows again the minimal norm
character of the a‘pproximaLions Sy and S;XSE with respect to ||+ |lx, and || -[[3 . respectively.

Calculating

S=)=() Axly)Ah SN () dwrly)

7-{7 'HR
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we obtain

N
§(:) = Zb;]\’(.r,x 3]
=1

with f;( i) € Hy defined by

o 24l P R " I2|
T~ P “'1 “z ~
[ Z Z ( > <A\ jl("n } (Ir)}n,'(V)
Uy =1/ N
n=0 ;=1
Thus. inequality (26) points out the minimization of the "distance” between the approximation
b}- and the unknown function F in the reference set {Ix (TS N Kz, )} € Hp. Finally,
we have to show convergence which we state in

Theorem 5 Given the inverse problem (21) with righthand side Gy, € Hs, which is assumed
y . N Y '\:1’;’ ! - ‘ . ) . = vy e

to be continuously known on Sg. Le. If X377 = {rg oo an) © Nsor = . ‘I]g € Qy fori=
: ‘ RIS .

L,..., N denotes a Hy-fundamental system such that imy... X7 is dense in Ug, Gy fxg) =
Gioi=1.....N is guen for any N € IN. The n fm all € > 0 there exists an N = N(¢) € IN and

an interpolating spline Sg\; € Spline(Hy .. X ¥ ,\' ) such that

Proof:

HS.%: E - FL E H.H\f}\ = HSF\' - -F”Hp H S 'FH'HR

Moo = ISes ~ G ol

Yy

NLr >N i o "y
= 1557 = GMllw = 1185 = Gllw, = 155, — U5

/

I~ - . , FYe . o Ty o e .y oty P ERT:
for all Sv. € Spline(Hy., X57). As Hs,. C C(Ss) we have with similar argumentation as in
Theorem 3

oV oo
ngE - JLLEgg}-():F < €.
]

In other words: If the data at satellite altitude becomes denser the approximation of the de-
sired solution Fx, converges at the surface of the earth to the unknown potential. Again we
immediately obtain

Corollary 2 Under the same conditions as in Theorem 5 we have

sup 58;,}{ (z) —~ Fe,

g E \_. I

But here we can also show that S converges to £ in the whole exterior of the earth.

Theorem 6 [ nder the same conditions-as in Theorem 5 we have

Sup ISR () = Fla)] 0




Proof:
Let z € S%‘”. Then

SF(2) = F(2)] = (ST = FKnplz )

< HSQ = Fllrg [[Krplz, H‘HB

N ¥ zn+1 I A
= S, ~ Falbes, o X e ()

E 2]* = 2]

N 1 2n+1 -

< ISE, ~ Fuslls, 5 Z (oo
<€ pe
independent of z. 0

Finally, we want to mention that also in this case a combined interpolation and smoothing
result similarly to the spherical approach can be obtained.

6.4 Explicit Sequences

2

The critical point in our approach is the choice of the function f such that <f(0‘n) (lﬁ)zn) is

summable (see Theorem 1). Candidates may be found among the regularizing filters (cf. e.g.
Louis(1989)). Examples are the iterated filters of Tikhonov regularization
o .
.f(Un):““““—“‘fT ¥>0,k2>3.
(02 +v?)2

Thus,

[Sb

i 2n+1 oy ( r >2”' N Z 2n + 1 (?)M AN ( r )2”
A S E\R - 5 A\ R
= ? \R n=0 (((’B ) > +72> R

It
2n+l ( )k - 77))k
Z
EER(ORS n> )

<G

¥

as A is a SPDO of order + < ~. Another admissible choice is f(o,) =

(B)" M),

Moreover, it

W= oy

. N oy 2 -
0 < |s| < 1 which leads obviously to a summable sequence (f(m,,) (%) ”)
is possible to represent all occuring reproducing kernels as elementary functions for any permit-
ted A™Nn).
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6.5 Numerical Example

In this section we calcnlate the solution of

for the following input

(NypxoFe ) = Goo(a)

(long measure: thm):

1. The orbit is assumed to be contained in the surface of the ellipsoid

with ; = Qgs54 and Q, = Qgsma-

2. The earth is assumed to be approximated by

with Qp = Qg3s5 (1.0

As righthandside gy

) 9 3
ry €5 s
= j& ”{3 f - — 3 - |
= e R st e s = U
. ) T 23 2
}_,L;" = {.IT & [117\[ ! + 'ZU b 3 S ]}

63782 63782 63567

the mean altitnde of the orbit is about 200 km).

we take the artificial function visualized in Figure 3

s
r”.‘

» .s‘\\

7 ’,’ ~\:
7
'." =X
s\
S

Figure 3

which is assumed to be given at 2011 points on Y.




4. We choose the sequence f(o,,) as
R 2n
flan) = & (]> AN

with s = 0.9 and A™(n) = 1. Using the fact that
- |
Z Sn'f)n(t) = . 1
n=0 (1+ 52 — 2st)2
(cf. e.g. Miller(1966)), we obtain
sR? 2
. . 1 RNEE
A/HA("L‘*;I) = erfILlﬂ- 2(| (] - %
o sRL )T _ g sBL & L
<1 + () -2 Irl)
INCER
_ ! - () |
_-|:H€|47T slz V2 oslel = 3 %
(1 + () -2 |_|"F"|>

and

[ A (02U gy B (22 (3 o)
. QR [E r !

Finally, Figure 4 shows the approximation S of the solution Fy,, on Y and the absolute
» = _/E
,Tira0) C g, is illustrated in Figure 5.

error QSQ‘EE(:L') — Fep(a)l], for z € {zy,

50
404
204 e
BN 227
\\\ ¥ \\\\\)‘;4'1""". “\\\
RN TLP Ty
N SOy .z m
X SN N
7 % RS
=

S
NS
RPN

404
wha

theta

Figure 4
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