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Abstract: IoT systems consist of Hardware/Software systems (e.g., sensors) that are embedded in
a physical world, networked and that interact with complex software platforms. The validation of
such systems is a challenge and currently mostly done by prototypes. This paper presents the virtual
environment for simulation, emulation and validation of an IoT platform and its semantic model in
real life scenarios. It is based on a decentralized, bottom up approach that offers interoperability of
IoT devices and the value-added services they want to use across different domains. The framework
is demonstrated by a comprehensive case study. The example consists of the complete IoT “Smart
Energy” use case with focus on data privacy by homomorphic encryption. The performance of the
network is compared while using partially homomorphic encryption, fully homomorphic encryption
and no encryption at all.As a major result, we found that our framework is capable of simulating big
IoT networks and the overhead introduced by homomorphic encryption is feasible for VICINITY.
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1. Introduction

Nowadays, the number of applications in which IoT networks are deployed grows rapidly. These
infrastructures operate in different domains such as smart cities, energy, eHealth, and transportation
and behave as isolated islands in the global IoT ecosystem [1]. Their secure interconnection is a big
challenge that still needs to be resolved. One promising approach towards interoperability of IoT
networks across different domains is proposed by the VICINITY project. The project is supported by
European Union Horizon 2020 program with the duration of four years (January 2016–December 2019)
and the consortium of 15 partners from seven different countries. In this paper, we present a simulation
framework to validate the security of a smart energy use case, which is enabled by using homomorphic
encryption. The performance of the overall IoT ecosystem is evaluated with and without using the
additional homomorphic encryption layer. The real micro-service for the encryption is integrated into
the simulation as hardware in the loop with the approach presented in [2].

1.1. The VICINITY Project

The goal of the VICINITY project is to develop a platform that connects isolated IoT infrastructures
into one global ecosystem called virtual neighborhood where users can select to which other systems
their smart objects should be connected in a peer-to-peer network. The platform automatically supports
interoperability from technical up to semantic level. The semantic interoperability of smart objects
coming from different operators and using different standards is enabled with the semantic model
integrated into the VICINITY platform [3].
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The VICINITY architecture offering interoperability “as a service” is shown in Figure 1. It is based
on a decentralized, bottom-up and cross-domain approach that resembles a social network, where
users can configure their setups, integrate standards according to the services they want to use and
fully control their desired level of privacy in a P2P (peer-to-peer) network.
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Executive	Summary	
	

This	 document,	 referred	 as	 “D1.6	 VICINITY	 Architectural	 design”,	 is	 a	 deliverable	 of	 the	 VICINITY	
project,	 funded	by	the	European	Commission	(EC)	Directorate-General	 for	Research	and	Innovation	
(DG	RTD),	under	its	Horizon	2020	Research	and	Innovation	Programme	(H2020).	VICINITY	is	building	
a	device	and	standard	independent	platform	for	IoT	infrastructures	that	offers	„Interoperability	as	a	
Service“.	 They	 aim	 of	 the	 VICINITY	 is	 to	 solve	 the	 interoperability	 problem	 with	 a	 virtual	
neighbourhood	concept	which	is	a	decentralized,	user-centric	approach	that	allows transparency	and	
full	control	over	exchanged	data. 
This	deliverable	directly	addresses	the	Objective	2.4	“VICINITY	Technical	 requirements	and	solution	
architecture	 specified“,	 in	 terms	 of	 describing	 architectural	 decisions	 which	 shape	 the	 VICINITY	
interoperability	 platform.	 The	 selected	 architectural	 options	 and	decisions	 are	based	on	 functional	
and	 quality	 requirements	 extracted	 from	 D1.5	 VICINITY	 Technical	 requirement	 specification	
document	and	can	be	summarized	in	the	following	Figure	1.	

	

Figure 1 High-level logical VICINITY architecture 
The	VICINITY	architecture	is	divided	into	the	following	principal	components:	

• VICINITY	Cloud	providing	set	of	services	to	setup	peer-to-peer	 interoperability	between	 IoT	
environments	(further	referred	as	virtual	neighbourhoods),	that	are	including:	

o access	control	to	the	VICINITY-connected	IoT	objects,		
o services	for	device	discovery	and	registration,		
o deployment	 of	 value	 added	 services	 over	 VICINITY-connected	 IoT	 objects	 and	

environments,	
o and	setting	up	connection	to	VICINITY	(e.g.	getting	integrated	to	VICINITY);	

• VICINITY	 Node,	 integrating	 IoT	 infrastructures	 and	 value-added	 services	 to	 the	 VICINITY	
interoperability	network.	The	VICINITY	Node	includes:	

Figure 1. High-level VICINITY architecture [4].

At the end of the project, VICINITY’s approach will be demonstrated on four pilot sites coming
from the following different domains: energy, building automation, health, and transport. VICINITY’s
potential to create new, cross-domain services will be demonstrated by value added services, such
as micro-trading of demand-side management capabilities, AI-driven optimization of smart urban
districts and business intelligence over IoT.

The focus of the work presented in this paper is to build a virtual environment for simulation and
validation of IoT infrastructures and their use cases in real life scenarios before their real deployment.
Here, a smart energy use case at one of the VICINITY pilot sites, located in Tromsø, Norway, is used
for demonstration.

1.2. Homomorphic Encryption

VICINITY’s architecture offers privacy built-in by design, as only metadata on the connected
devices is stored in a central cloud. Sensitive information, e.g., sensor readings, are transmitted
peer-to-peer only from the data producer to its intended consumer. Additionally, this needs to be
approved by the data owner in advance and on an individual basis. However, once the data owner
has given his consent, his data are given out and will be available to potentially malicious third parties,
which may seem trustworthy at first glance. As Value-Added Services (VAS) are the key to making
the whole IoT “smart”, a user may be tempted to share his data with such a service, even though he
would rather not give out his information. An even better approach would be to never give away
any sensitive data (in clear text), yet still allowing the VAS to work. What may sound contradicting
is exactly what is possible with the use of homomorphic encryption (HE) Schemes. Homomorphic
encryption enables certain calculations, or, in the case of fully homomorphic encryption, any arbitrary
function to be executed on encrypted ciphertexts without the need to decrypt this data first. Partially
homomorphic encryption has been subject to research for quite some time, only enabling a limited



Future Internet 2019, 11, 218 3 of 24

number of operations to be executed. With the introduction of a fully homomorphic encryption Scheme
by Craig Gentry in 2009 [5,6], any arbitrary computation is now possible on ciphertexts with no need
to decrypt and giving out any cleartext information at all. However, fully homomorphic encryption is
more expensive in terms of computational demand, so people need to decide on a trade-off between
performance and versatility. As we demonstrate in Section 5.5, using our Framework enables us to
evaluate different options in a realistic but controlled environment.

2. State of the Art

2.1. Overview of IoT Simulators

The size of the IoT market today is growing at enormous speed and will continue to do so.
The number of connected devices has already exceeded the worlds human population [7]. In such
complex IoT networks, simulation plays an important role for the early-phase validation before their
deployments in the real-life world.

2.1.1. S3 and OMNeT++

In [8], Feretti and D’Angelo proposed the concept of Smart Shires and stated the importance
of simulation during development, in particular as means to validate the architecture before the
deployment of a prototype. As requirements for their simulation tool of choice, they determined
scalability and (almost) real-time capabilities. Furthermore, they stated that a multi-level simulation is
required in most cases, since running the whole model on highest degree of detail would prove itself
infeasible. Instead, they favored the approach of combining different simulators together, each one
specializing on the domain to be simulated. More specifically, for the concrete case of simulating their
smart shire concept, they aimed to combine a discrete event simulation engine with an agent based
model. Subsequently, Feretti and D’Angelo developed the Smart Shire Simulator (S3), based on the
GAIA/ARTÌS middleware. ARTÌS is a framework, designed to enable seamless sequential, parallel,
and distributed execution of large-scale simulations with a collection of different communication
algorithms, such as TCP/IP, MPI or shared memory. It provides synchronization algorithms for
pessimistic or optimistic approaches. The GAIA (Generic Adaptive Interaction Architecture) (http:
//pads.cs.unibo.it/doku.php?id=pads:gaia) framework is used to simplify the simulation of scenarios
in a parallel and distributed fashion by a high-level application programming interface, thereby
reducing simulation time through strategies based on adaptive partitioning of the model.

Subsequently, they subjected S3 to a performance evaluation in order to verify their
aforementioned claims. The exact hardware setup for the tests can be inspected in [8]. The tests
took place in a bidimensional toroidal space without any obstacles. The simulation space contains
a given number of simulated entities, of which some follow the random way point mobility model,
while others remain static. For their experiments, the number of simulated entities was in the range of
1000–32,000, of which 50% were mobile nodes. The speed of the random way point was uniform in the
range of 1–14 space units/time step and the sleep time was set to zero. The interaction range between
the simulated entities was set to 250 space units and the forwarding range to a value greater than 200
space units, while the density of nodes was set to one node every 10,000 space units2. The simulations
were run for 900 time units, where one time unit equals one time step within the simulation. The
time to live (TTL) of messages was set to four hops and the dissemination probability to 0.6. In a first
test with only one CPU core and the Wall clock time as measure, the approach based on a sequential
simulator proved itself as not adequate due to scalability constraints. The next tests focused on a
parallel setup. In the range of moderate load (1000–8000 SEs), no speedup could be gained with only
two cores, due to communication overhead. Within the range of heavy load, more cores could increase
the speedup, but the performance gain was not as high as expected by the authors. They assume
the reason for that is is the nature of the used model itself with only small amounts of computation
per simulated entity, but a large number of communications between the simulated entities. The last
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experiments were conducted to evaluate a possible performance gain in the parallel setup with enabled
adaptive partitioning. It showed that there was always a speedup compared to the static partitioned
model.

In [9], D’Angelo, Feretti and Ghini expanded their approach of simulating sole “Smart Shires”
to the simulation of the Internet Of Things (i.e., the combination of one or several Smart Shires with
the surrounding urban areas). For the purpose of simulating “Smart Shires” in conjunction with
neighboring smart cities, they propose a more elaborated version of a multi-level simulation. Their
general approach is a multi-level simulation in which a coarse detailed top-level simulation engine
coordinates a set of domain specific simulators.

A special point of interest for them is the interoperability between these different simulators and,
of course, the inter-model operations. Subsequently, such a simulation is built for the use case of
simulating a smart shire: The implementation comprises two levels. The top level is a time stepped
agent based simulator. This Level 0 simulator describes the whole smart territory at a basic level
where different entities produce wares, publish or subscribe to a multitude of different services, and
move freely through the environment. Some of those entities are static while others follow specific
mobility models. To ensure adequate parallel and distributed simulation capabilities, the authors used
the S3 again. All the aforementioned entities are equipped with wireless devices. The interaction
between them is based on the Priority-based Broadcast (PbB) Protocol. To decrease computational
effort, the message forwarding is based on a minimum distance between the corresponding entities.
Additionally, message caching is implemented. The level below is implemented using OMNeT++ in
version 4.4.1 with the INET extension in version 2.3.0.

The OMNeT++ models are realized as grids of fixed nodes as market sellers in the context of the
smart shire scenario. Additionally, there exist N mobile nodes, which are injected into the model by
the Level 0 simulator. These mobile nodes represent pedestrians that are equipped with WiFi and
move with walking speed. The two simulation levels communicate through a TCP/IP connection that
is created during the time; the lower level simulation runs. Through this connection, the top level
simulator can send its continue simulation and end simulation messages while the parameters and
results for the respective simulation are exchanged through a directory system on a hard drive. Since
the Level 0 simulator is time stepped and OMNeT++ is a discrete event simulator, communication
between the levels can only occur at the end of a Level 0 time step. Generally, D’Angelo, Feretti and
Ghini stated that, in the case of all simulators being time stepped, synchronization between the levels
is eased when the top level time step is simply a multitude of lower level time steps. If none of the
employed simulators were time stepped, special synchronization points would have to be introduced.

To evaluate the efficiency of their proposed approach, the authors conducted a series of
experiments. First, they examined the two simulators individually in terms of scalability. The hardware
setup for the experiments was the same as in [8]. In addition, the parameters for the experiments with
S3 remained the same as in [8], with the addition that message caching had been introduced. Generally,
the test results also remained the same as in [8]. However, it turned out that the newly introduced
message caching had no positive effect on performance gain, but the opposite. Additionally, D’Angelo,
Feretti and Ghini took a look at the peak virtual memory usage and the peak resident set size. However,
they state clearly, that S3 was designed with focus on execution speed and not on effective memory
usage. As a result, the authors found the memory usage to be acceptable. Finally, they conducted a
series of experiments on the simulators dynamic partitioning capabilities and concluded that, with
this technique, there was always a speedup to measure in comparison to static partitioning. However,
this speedup was dependent on properly partitioning the model. Next, they evaluated the performance
of OMNeT++. Each simulation run was the length of a single time step of the Level 0 simulation.
The results indicated that increasing the number of simulated entities significantly increased the
memory usage and the wall clock execution time of the simulator. From this, the authors concluded
that OMNeT++ was adequate for small scale experiments, but not for large scale Internet of Things
scenarios. Finally, they examined the multi-level approach. First, a sequential S3 simulation run on
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Level 0 was considered. The simulation contained 1000 simulated entities and comprised one logical
process. From there, one single simulated entity was transferred to Level 1 and managed by OMNeT++
for the period of one Level 1 time step. This experiment showed that the wall clock time increased
linearly with the number of lower level simulators created. However, the costs added by spawning
new OMNeT++ instances lay within the range that was expected by the authors and according to
them, the overhead caused by the coordination between simulators, had proven as negligible. On the
other hand, it also showed that a higher number of simulated entities in the higher level reduced the
wall clock time overhead, which occurred from creating lower level simulations. This is due to the
fact that the upper level has to wait for the lower level to finish. With more simulated entities in the
upper level, the upper level can simulate them while waiting for the lower level simulation to finish.
As a consequence, the lower level simulators proved themselves as bottleneck for the multi-level
simulation that the upper level had to wait for. Secondly, the authors conducted experiments with
more than one logical process within the Level 0 simulation. These tests showed that, within the Level
0 simulation, the logical processes that spawned lower level simulations became the bottleneck of the
system. However, the so generated coordination overhead is dependent on the number of simulated
entities in such a logical process. Lastly, the authors stated that their experiments showed that multiple
spawns of lower level simulators could consume huge amounts of memory; therefore, they suggested
that a distributed architecture is advantageous.

In [10], D’Angelo, Feretti and Ghini extended their approach to focus a Parallel and Distributed
Simulation (PADS) to achieve performance gain. To this end, they chose a hybrid simulation approach
coupled with PADS since they found out conventional monolithic simulators are not scalable enough.
This approach should circumvent the problems arising with the number of entities in a large scale
IoT simulation which had proven itself as a bottleneck. It is of importance that, in this approach,
the use of a hybrid simulator does not change the total number of simulated nodes in contrast to
the approach presented in this paper. As stated in [9], the design of inter-model interactions and
the interoperability between the simulators within a multi-level approach have to be done carefully.
In addition, the transfer of objects and data between the involved simulators can turn out to be a
hard task. Furthermore, the authors stated that it is of course in the realm of possibility that the
hybrid simulation introduces additional approximation error in analysis. Before presenting their
implementation of a case study, they specified the following general problems arising in parallel and
distributed computing [10]:

• The need of methodologies and tools to define of conceptual models
• The availability of simulation paradigms that are easy to use
• Well-defined interfaces for the interoperability among simulations
• nNw approaches for the composability of simulators and the automatic mechanisms for the

deployment and management of simulators on distributed infrastructure

The aforementioned case study is a so-called Smart Market scenario, again in the vicinity of a smart
territory. The hybrid simulation approach to this is an extension of the multi-level simulation from [9]:
The top level simulator that advances the simulation as a whole is again implemented by S3, this time
with a more refined broadcasting approach, called geoPbB. Level 1 is realized by two simulators this
time, which work in succession. The first of the two is an ADVISOR (ADvanced VehIcle SimulatOR)
based simulator. ADVISOR in turn, is based on Matlab/Simulink and developed for the analysis of
performance and fuel economy of vehicles [11]. The simulator uses a component based approach
in which the components are modeled by equations and quasi steady approximations. It is utilized
by the upper level in batch mode to simulate vehicles arriving at the neighborhood of the market
place and the parking activity of these customers and reports the emissions back to it. The results
of this simulation are then used to provide the second simulator on this level with the number of
novel customers entering the market place. This second simulator on the level is again OMNeT++
in the same configuration as in [9]. The different simulators were employed on different operating
systems: The top level simulator S3, as well as the lower level simulator OMNeT++ were executed in a
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Linux environment while the ADVISOR based simulator was executed on Windows. Communication
between the levels again was message based, implemented through TCP socket connections. Since
both simulators on Level 1 run consecutively, both are encapsulated in a wrapper that executes them
successively and handles the synchronization with Level 0.

After a series of experiments focused on the individual performance of the simulators S3 and
OMNeT++ on the same hardware setup as in [8] before, the authors conducted a series of tests with
only S3 and OMNeT++ on a single Linux host. It proved the assumption: if more than one logical
process in Level 0 creates multiple Level 1 instances, the memory consumption can increase vastly.
The authors recommended the partition of Level 1 in multiple interconnected hosts. Subsequently,
D’Angelo, Feretti and Ghini continued testing with a parallel and distributed approach. While Level
0 (S3) and Level 1b (OMNeT++) reside on a Linux host as described above, Level 1a (ADVISOR) is
created on a windows host whose detailed specifications can be reviewed in [10]. The two hosts are
interconnected by fast ethernet LAN. When the number of simulated entities, which were transferred
to Level 1, was limited to one, experiments showed relevant costs arising due to the sequential
execution of Level 1a and Level 1b. This could possibly be balanced through a parallel setup for Level
0. However, a possible speedup would be rather low, due to the nature of the used model, which lacks
embarrassingly parallel problems. Finally, tests regarding the partition of simulated entities in more
and more logical processes showed a linear increase of overhead and the addition of logical processes
would only cause memory thrashing.

The three thus far presented works used multi-level simulation to model rough movements and
services on the top-level by agent-based modeling and finer grained movement and communication on
the lower levels by discrete event simulation and other simulation approaches. This stands in contrast
to this work that only uses discrete event simulation techniques. In addition, the approach proposed
in this work does not necessarily rely on single domain-specific simulators for specific levels, since in
every level multiple simulators can manage their respective models.

2.1.2. ACOSO and OMNeT++

Another hybrid simulation approach was proposed by Fortino et al. [12–14]. The basic concept
throughout all three works is to concentrate on the thing aspect of the Internet of Things, which in
turn means focusing on the Smart Objects that constitute the Internet of Things. This focus on a smart
object based IoT comprehension enabled the authors to apply principles of the agent-based computing
paradigm to the problem of simulating complex IoT systems. By tightly coupling smart objects with
agents, the IoT ecosystem can be treated as a multi agent system. Consequently, agents running in
different cooperating smart objects form a decentralized multi agent system and this way maximize the
interoperability among the heterogeneous subsystems and distributed resources [13]. This facilitates
the system modeling and development, increases the scalability and robustness, and, at the same time,
reduces the design time and time to market [13]. Exploiting this modeling technique, Fortino et al.
used the agent based simulator ACOSO (Agent-Based COoperating Smart Object) to model the smart
objects involved in a specific scenario. Subsequently, they used OMNeT++ in conjunction with INET
to simulate the communication between these smart objects. In the following experiments, the authors
focused on general observations of character of communication between smart objects in different
sized deployment scenarios, rather than performance of the proposed approach to IoT simulation.

Again, this approach uses agent-based modeling in contrast to the approach in this paper.
However, it is worth mentioning that OMNeT++ is used in a similar fashion as in this work to
model the detailed communication between simulated entities.

2.1.3. MAMMotH

While the majority of related work thus far focused on simulation, in [15], Öooga, Ou, Deng and
Ylö-Jääski instead aimed to emulate massive scale Internet of Things scenarios. The reason for their
focus on emulation instead of simulation is justified by the lack of simplification, which simulation
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scenarios resort to, and the fact that the correct timing ensured by network simulators may leave
problems of message timing uncovered. First, they did a survey of 15 different Internet of Things
simulators and emulators NS2 [16], NS3 [17], PDNS [18], GTNetS [19], J-Sim [20], Jist [21], COOJA
[22], TOSSIM [23], DSSimulator [24], GlomoSIM [25], OMNeT++ [26], SensorSIM [27], SENSE [28],
EMULAB [29] and ATEMU [30]. According to the authors, the survey showed that, at that time,
current solutions were mostly appropriate for small- and medium-scale emulation of Internet of Things
scenarios but not feasible for large-scale testing with millions of nodes. Again, the scalability seemed
to be the main problem for the evaluated simulators and emulators. As a solution, they proposed
MAMMotH (A massive-scale emulation platform for internet of things), a large-scale IoT emulator.
Their goal was to emulate tens of thousands of nodes in a single VM, with a future goal of up to
20 million nodes. In addition, it was aimed to achieve nearly linear scalability with this emulator
approach. The architecture of this approach presumed three scenarios: mobile devices connected by
GPRS in a star topology to a base station, a wireless sensor network connected by GPRS to a base
station, and a number of constrained devices connected to proxies, which in turn are connected to a
backend.

To achieve link emulation, the authors figured out that traffic between nodes on either a proxy or
a base station had to fit either GPRS or 802.15.4 profile. To simulate TCP or UDP traffic, the planned to
reuse models from NS2 coupled with a netfilter-type traffic scheduler. Gateway emulation should be
achieved by either using EMULAB or using a Linux Virtual Machine with OpenWRT (https://openwrt.
org/). Lastly, node emulation was achieved by using existing software, that supports the Constrained
Application Protocol (CoAP) (http://tools.ietf.org/html/draft-ietf-core-coap). They used a proprietary
Java-based node emulator together with libcoap (http://sourceforge.net/projects/libcoap/), which
had to be modified to use instances of threads to circumvent the kernel limit for number of processes.
This way, they realized 10,000 nodes per VM and were only limited by the maximum number of
threads allowed per kernel and free UDP ports. As a possible drawback of their proposed approach
for MAMMotH, the authors stated the huge amount of data which the emulator would produce.

2.1.4. DEUS, COOJA and NS3

A Java-based general-purpose hybrid simulation platform was proposed by Brambilla et al. [31].
To simulate interconnected IoT devices, they used the concept of IoT Nodes, which represent generic
Smart Objects, characterized by a mobility model, possible multiple communication models and an
energy model.

The top layer describes the application to be tested, while the Adaption layer is tasked with the
coordination between the IoT Nodes. Below, there is the layer containing the three aforementioned
models and, thereunder, the Java-based general-purpose discrete event simulator DEUS is in charge
of advancing the simulation. DEUS is directly used by the IoT Nodes’ mobility model, which is
implemented by OSMobility, a DEUS based simulation environment to simulate motion. The energy
model and network models are realized with COOJA and NS3 simulators, respectively. According to
the authors, DEUS they chosen mainly due to scalability and versatility reasons.

To verify their expectations, they conducted six different experiments within an urban smart
parking scenario. The exact details of the use case, as well as the exact hardware configuration for the
experiments, can be seen in [31]. In each of the experiments, Brambilla et al. increased the number of
employed nodes, so that there were 4508, 9016, 22,540, 45,080, 112,700 and 225,400 nodes, respectively.
Subsequently, they counted the number of events that arose during the simulation runs and obtained
for the aforementioned number of nodes 2.7× 106, 5.6× 106, 1.4× 107, 2.7× 107, 6.3× 107 and 1.2× 108

events per run, respectively.

2.1.5. Comparison

In comparison with the aforementioned simulators (excluding MAMMotH, which aims at
emulating, not simulating), the here proposed simulator pursues an approach to tightly interconnect
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different simulation levels by wrapping domain-specific simulators into models of the different
simulation levels and evolving the simulation in a single event-loop. As a consequence, the boundaries
between the levels of hierarchy are not as sharp as in the combined approach with S3 and OMNeT++.
This approach also allows recreating models as proposed by the approaches with ACOSO, OMNeT++,
DEUS, COOJA and NS3, since the domain specific simulators are contained in the models and so the
Smart Object approach can be contained in a special model. The proposed approach of dynamically
interchange of models (which possibly contain wrapped domain-specific simulators) for finer grained
time-steps also allows for the use of continuous-time approximating techniques (as mentioned in the
following sections) without complicated synchronization processes, so that different kinds of models
all can work together.

The different approaches to the topic of simulating or emulating large-scale IoT scenarios are
overall too diverse, to draw a meaningful comparison between the approaches discussed.

2.2. Homomorphic Encryption Schemes

Soon after the idea of public key cryptosystems was introduced by Whitfield Diffie and Martin
Hellman (see [32]) in 1975, the first implementation of such a system was given by Ronald Rivest, Adi
Shamir and Leonard Adleman in 1977. This system, which was—after its inventors—called RSA [33],
already showed homomorphic properties in multiplication: With the RSA public key modulus being
m and the exponent e, the encryption ε of message x is given as:

ε(x) = xe mod m

For the multiplication of two plain texts x and y, it hence follows:

ε(x · y) = (x · y)e mod m = xe · ye mod m = ε(x) · ε(y)

Generally speaking, this means that multiplication of two cipher texts c1 and c2 can be
done without decrypting them first. Ultimately, this means that this operation can even be
performed by some third-party not in possession of the private key for decryption. This useful
and convenient property encouraged researchers to further pursue and find more encryption schemes
with homomorphic properties.

In [34], the author introduced yet another encryption scheme with homomorphic properties,
which allows much broader applications such as the calculation of the sum over all input data. It has a
very useful application for privacy and anonymization, as we show in Section 5.5.

It took another decade until Craig Gentry published his work on a fully homomorphic encryption
scheme in 2009 (see [5,6]). In contrast do the semi- or partially homomorphic schemes known before,
fully homomorphic encryption allows any arbitrary computation on cipher texts with no need to
decrypt and giving out any cleartext information at all. Unfortunately, fully homomorphic encryption
is more expensive in terms of computational demand, thus people need to decide on a trade-off
between performance and versatility. We utilize the simulation framework presented in this paper to
further analyze this trade-off and present our results in Section 6.

3. Simulation of IoT Networks

As powerful as it is, the discrete-event network simulation framework Omnet++ has its fair share
of problems, when tasked to simulate the entirety of a smart city. One of these is the performance loss
when simulating the work of and communication between the number of models that are necessary
for the simulation of an entire city. However, with the possibility to simulate such a smart city, not
only single applications but the entirety of the complex interactions between them could be simulated
and used to further facilitate concepts of smart cities and the Internet of Things.

Therefore, this work aims to integrate the powerful Omnet++ framework for its capabilities of
simulating network traffic and more important as a base for INET to simulate the Internet, with a
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lightweight custom Simulation framework, to reduce performance problems of Omnet++. To achieve
this goal, the possibilities of the hierarchical modeling of Discrete-event Systems (DEVS) models are
used, to define a “time hierarchy” within the simulation. The idea here is to dynamically switch
between models that simplify significant portions of the simulated city (e.g., a quarter or district of the
city) with fairly rough-grained time resolution, and coupled networks of models that model smaller
parts of the aforementioned models with increasingly finer grained time resolution. This allows us to
reduce unimportant parts of a simulated city to resource saving rougher abstractions and dynamically
observe important details, where they are of interest.

This paper brings the following novelties over state of the art: The proposed simulation framework
supports multi-level simulation using only one simulation technique based on discrete-event
simulation. The framework allows dynamic switching between models at different levels of abstraction
that simplify significant portions of a simulated IoT network with fairly rough-grained time resolution.
This further allows us to dynamically observe details that are relevant and filter ones that are not of
interest for a particular simulation scenario.

3.1. Concept

As stated in Section 1, the aim of this paper is to create a general purpose DEVS simulator with
hybrid simulation capabilities for large scale IoT and smart city simulations within the VICINITY use
cases. Based on the requirements for general IoT simulations as well as requirements unique to the
VICINITY project, which are presented in Section 3.2, an approach to the problem is devised in the
following sections.

3.2. Requirements

From the various works on the subject presented in Section 2, the most prevailing requirements
for a simulator of the IoT have been gathered. Additionally, some requirements have arisen from
the involvement of the Chair Design of Cyber-physical Systems with the VICINITY project. Those
requirements are examined in the following:

• The possibility to simulate thousands of interconnected devices [8]: Depending on the scenario,
it can be necessary to simulate thousands of entities that partake in the IoT. While for example
in the simulation of a smart home, there are only a relatively small few devices that need to be
simulated, during the simulation of a new area wide service, the number of simulated entities has
to rise rather quickly, to provide useful data.

• The ability to run in (almost) real-time for proactive approaches: While high detailed simulation
runs can provide insight into the fine-grained processes within the interplay of different devices
and technologies, with the sheer size of Internet of Things scenarios in the context of a smart city,
these simulation runs tend to be too slow in order to enable proactive approaches. The framework
under development should provide some techniques to enable these approaches.

• Hardware in the loop capabilities: To analyze the behavior of prototypes, it would be most
beneficial if the developed simulation framework would provide hardware in the loop simulation
capabilities or provide the interfaces to enable simple integration of already existing approaches.

• Figh scalability of scenarios: Somehow connected to the first two requirements is the high
scalability of scenarios. The simulation framework’s real-time capabilities should not be lost,
when thousands of entities that communicate with each other need to be simulated on a large
scale.

• The possibility to employ parallel and distributed simulations: Based on the observations in
[10], the developed framework should provide either out of the box parallel and distributed
capabilities, or at least be built in a way that facilitates later adaption of these principles to further
support the aforementioned requirements.
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• Fast model development for fast employment in use cases: To be employed in the VICINITY
project, the developed framework should offer possibilities that support rapid model development
and possibly even the use of functional mock-up interfaces.

• The possibility to unify multiple heterogeneous technologies on all levels of IoT: The simulator
should support modeling the prevalent technologies of the respective domain and enable the
interplay between them.

• The possibility to integrate further domain specific simulators into the framework: This last
requirement pretty much speaks for itself. If during the deployment of the developed simulation
framework the necessity of integrating further domain specific simulators arises, it should be
doable with little effort.

4. Approach

Discrete event systems have been topic of research for over 40 years now, thus techniques
for parallel and distributed simulation are well-known and there exist multiple extensions to the
original specification for various problems and fields of application, such as PDEVS, DynDEVS (which
enables dynamically changing connections within DEVS [35]) and many more. In addition, modeling
techniques for discrete event simulations are well known. Due to their relationship to finite state
automata, they are easy to grasp for unexperienced developers. For that reason, this approach uses the
DEVS specification as foundation.

The majority of the examined related work identified the scalability as crucial for large-scale
simulations. Thus, the main focus of this work is to introduce a simulation framework for large-scale
IoT simulations together with a modeling technique to enable rapid modeling of large-scale use cases.

Rather than combining different domain specific simulators to a multi-level simulation that
invokes different simulators at different points in time during the simulation, this approach aims at
dynamically altering the advancement of time and the models’ level of detail during the simulation.
This means that, to allow high scalability even in large scale scenarios, the proposed framework
simulates areas that are of no interest for the user with far less detail and bigger steps in time
advancement. Specifically, the framework uses multiple models with different degrees of detail
and time advancement for the same simulated entity and changes between them during the simulation,
depending on the interest of the modeler. A real-world comparison could be imagined as a magnifying
glass that shows its focal point in great detail, while the everything else stays the same. This enables
simulations of large-scale scenarios such as the introduction of a new service in the area of a whole
smart city, for example, where at the same time one can study the relationships between simulated
entities all over the area, as well as detailed processes in single simulated entities or hardware in the
loop.

Similar to the multi-level simulations discussed in Section 2, this approach uses multiple levels
of detail to simulate the desired scenarios. However, rather than implementing the different levels
through different domain-specific simulators, here, the levels in the hierarchy of the simulation are
defined by the degree of time advancement and detail in the used models. This means of course
additional costs in terms of modeling, since different models with varying degree of detail for the same
system have to be developed, but through the re-usability of the used models; this is a one time cost.

In practice, the use and substitution of models during simulation runs is achieved by a switch
between a low detail atomic DEVS model and a whole network DEVS model, that models the atomic
model in more detail with finer grained time advance steps, and thus creating a new level of simulation.
Hence, a good balance between models of areas that are of special interest and models that provide only
the necessary background should efficiently lower the amount of produced events by the simulation.
Besides, when the coarse and finer grained models are placed inside partitions together, already
well-used PADS techniques for discrete event simulators can be applied. Of course, such lower levels
could be represented through domain specific simulators as in the approaches shown in Section 2. For
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that reason, in this framework, OMNeT++ with its INET expansion is used to implement the more
detailed lower level models of smart things and their interplay.

4.1. Level Hierarchy and Structure

Expanding DEVS

To define the proposed approach in terms of the DEVS specification, a new kind of model is
introduced. Hereafter, it is called Hierarchical Atomic. It is a combination of an atomic and a network
DEVS model that additionally provides functions to transfer one model’s state into another and to
select, which one should be the currently active:

hatomic ≡ 〈atomic, network, {transport}, select〉, (1)

where atomic and network are the contained atomic and network DEVS model, respectively. {transport}
is the set of transport functions that transfer the models’ state and select is the function that chooses
the currently active model. In more detail, the new type of model—in the following called Hierarchical
Atomic—is defined:

hatomic ≡ 〈SA, XA, XN , YA, YN ,

D, {MN}, {IN}, {ZN}, δint, δext, δcon,

λ, ta, select, {transport}〉,
(2)

where A and N denote if the component belongs to the atomic or the network part of the combined
model, respectively. The transport functions

transportA→N : SA → S ⊂ ∪iSi ∈ D, f orSi ∈ Di (3)

and

transportN→A : S ⊂ ∪iSi ∈ D → SA, f orSi ∈ Di (4)

denote the functions that are necessary to transport the states of the contained models between each
other, when a new level in the simulation is opened or closed. Note that neither of the functions
has to be an isomorphism, since the contained network should be of course more expressive than
the contained atomic. As a consequence, only a subset of possible states of the network models’
components is used.

In more detail, the different contained models define the boundaries of the levels of a multi-level
simulation: The encapsulated atomic DEVS model is on the same level as the new defined model,
while the encapsulated network DEVS model belongs to the simulation level below. This way, the
transport functions mark the transition between levels. Emanating from the top-level model in the
simulation, all networks that are the same amount of encapsulation away from this root belong to the
same level. This should be taken into account when developing models for a given scenario: When the
different network models that define a level differ too much in terms of their step size in time advance,
the use of that level for performance gain can degrade. That is, when one of the network models that
belong to that level would advance in time in much smaller steps than the rest, it would impact their
efficiency as well.

4.2. Model Reuse and the Model Tree

The organization in atomic and network DEVS models and the closure under coupling
characteristic of DEVS allow for easy (re-)arrangement of model building blocks to more advanced and
complex models in a tree-like structure. This procedure is supported by the here proposed approach.
As can be seen in Figure 2, the here introduced model that contains parts of the level architecture can
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easily be treated just as plain atomic DEVS model that is part of a network model in all positions in
the tree structure. Moreover, the atomic models that belong to the contained network model can be
exchanged with the new model as well, thus forming the different levels of hierarchy within the level
of detail and time advancement of the simulation.

Figure 2. The model tree and organization of hierarchy levels.

The consequences of this also tree-like organization of the simulation’s levels are of importance
for the general approach to modeling with the proposed simulator and influence the possible
parallelization of the sequential approach.

First, regarding the approach to modeling, a bottom-up procedure is recommended, where the
deepest and most detailed level is designed in its whole and then partitioned into smaller leaves of the
tree. As the performance gain of the dynamic exchange between models with varying level of detail
is dependent on the specific scenario, it is possible that more efficient partitions of models along the
tree are only eventually evaluated under simulation. The bottom-up construction here ensures that
the main part of the scenario has to be developed only once and then merely has to be partitioned
accordingly. In addition, if the models that are to be exchanged are the kind of whole protocol-stacks
or space-divided parts of the environment, they in turn can be heavily be reused. If the capabilities of
exchanging models with more or less elaborated representations of the system under simulation are
used efficiently, in this way, the environment of smart home scenarios could be simulated following a
user of a service through his way through a smart city, exchanging models on the fly, as soon as they
are needed. In the implementation of the proposed approach, it is of importance where in this tree the
integrated domain specific simulators are placed. Obviously, a placement along the nodes of the tree
as well as a simple hierarchy of one domain specific simulation kernel per level is conceivable.

Second, regarding possible partitioning techniques that could be used in a parallelized
employment, it has to be taken into consideration how the different networks are placed. A high density
of encapsulated networks in unluckily partitioned models could negatively affect the simulations
performance. Therefore, modeling for a parallel scenario could be prolongated in comparison to other
approaches.

During the implementation of the here proposed simulator, it was decided to place multiple
instances of a simulator across the tree. The placement of simulators inside the introduced hierarchical
atomics allowed them a more flexible implementation of their functionality. At the same time, it is
ensured that the simulator that advances a specific model and the model itself remains separated.
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Furthermore, as this approach is meant to exchange models on various levels of the tree at the same
time, a placement of a single instance of a domain specific per level would prove impractical since
several models along the whole simulation would be thwarted through a bottleneck.

4.3. Synchronization

Whenever an atomic model gets interchanged with a network model and vice versa,
synchronization errors can occur. This is the result of already scheduled autonomous events, that now
may become invalid. Looking at the mode of operation of the implemented abstract simulator, one
can see that subsequently to an autonomous event the imminent model gets rescheduled with its time
advance function. This little detail can be used to save complicated synchronization procedures: if
the exchange of models can only occur during events, the subsequent rescheduling of the containing
model will minimize the chance of falsely scheduled models.

However, depending on the concrete implementation of the Future Event Schedule (FES), perhaps
there are still internal events scheduled that are now too early or too late. For example, when the
simulator switches from a detailed, slower advancing network model to the respective atomic one, it
can happen that internal events of one of the network’s faster advancing components are still inside the
FES. The easiest solution to this is of course a future event schedule, which keeps at most one event of
every atomic model inside itself. Through the encapsulation of the network model inside what appears
to be an atomic DEVS model and the immediate rescheduling after execution of the internal event,
the model would be scheduled correctly. However, in practise, this is not always that easy. Different
areas of application can demand for different scheduling strategies and the possibility exists that not
all of them can respect the requirements of this approach. OMNeT++ already is designed with several
possible scheduling classes. To maintain maximal flexibility of the proposed approach, it is therefore
necessary to answer the problem directly. Thus, the proposed new kind of model has to keep track
of its own schedule on its own and decide on how to react to a falsely scheduled autonomous event
independently. While models can keep track of their own model time through their time advance
function and the fact that they get informed about the elapsed time since the last internal event (which
supposedly followed a correct time advance of the model), when the occurrence of internal events
loses reliability, this is no longer sufficient. Hence, the model needs the ability to acquire the global
simulation time. This can be achieved by, for example, allowing the single models to access the
simulation environment or the simulation kernel, as OMNeT++ does, or it can be accomplished by
providing the global simulation time to the model with every function call to one of the state transition
functions or the output function.

4.4. HiL Interface

In many cases, interaction with objects outside the simulation (e.g., the real VICINITY network)
is necessary, whether for direct interaction with real objects or just to control objects inside the
simulation. For this situation, VICINITY provides a good communication platform because of its
device and standard agnostic nature. To integrate a particular infrastructure into VICINITY, an
adapter that provides the REST-API to communicate with the VICINITY agent is required. In the
case of an infrastructure simulated by our simulation framework, a way to communicate with the
VICINITY Agent outside the simulation is necessary. We implemented a socket based approach to
communicate with the VICINITY Agent. With this approach, a full network simulation is not necessary
to communicate with the VICINITY Agent.

4.4.1. OMNeT++ Socket Server

To communicate with the VICINITY Agent, a socket server has to be integrated into the OMNeT++
simulation. The purpose of this server is to accept API-Calls of the VICINITY Agent, exchange the
appropriate data to the OMNeT++ simulation, and then to send a response.



Future Internet 2019, 11, 218 14 of 24

The main difficulty for this task is to properly synchronize the socket requests with the discrete
event scheduler of OMNeT++. First, the simulation has to be executed in real-time. This can be
achieved by synchronizing event-time with wall-clock time, i.e., delaying the execution of events in
the scheduler. The time between two events could then be utilized by the scheduler to listen and
process socket data and, if necessary, inject new events into the event-queue to process received
data. In this work, however, a separate socket server-thread is used to preprocess all incoming, and
postprocess all outgoing data on the socket. By this way, the processing-impact on the simulation is
minimized, since only relevant data are exchanged with the simulation thread. All other processing
steps, e.g., communication and protocol overhead, are then transparently handled by the server-thread
without impact on the simulation. The simulation-scheduler has then to wait for notifications of the
server-thread instead of socket requests. This is achieved with promise and future objects from the C++
standard library. Figure 3 shows the basic concept of synchronization between the socket server-thread
and the simulation thread.

Figure 3. Simulation- and server-thread synchronization.

4.4.2. OMNeT++ VICINITY Adapter

To allow communication between VICINITY and simulated objects, independent of the network
used inside the simulation, a simulated access-point is used. This access-point acts as a router
between VICINITY and the simulation, i.e., relaying and protocol-conversion of requests and responses.
The access point module VicinityAccesspoint communicates with VicinityAdapter, a subclass of
SocketServer, which runs the socket server thread to handle requests from VICINITY. As for the
concept of synchronization, as shown in Figure 3, VicinityAdapter has the role of the socket server,
while VicinityAccesspoint is the handler module. In the following the functionality of the two modules
is shown:

• VicinityAdapter: The VicinityAdapter is initialized with a port to listen on. When started by
calling startAdapter(), a future-object is returned. As soon as a request is received, an object of
type RequestStruct is made available, which holds all relevant data of the request. Additionally,
promise-object is passed, which is used to set a ResponseStruct. In this struct, all data relevant for
the response is transmitted, together with a new promise-object for the next incoming request.
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• VicinityAccesspoint: The VicinityAccesspoint module is responsible for routing adapter-requests
into the simulation. Additionally, VicinityAccesspoint has to provide object-discovery data when
requested by the adapter. To collect all necessary data for object-discovery, the access-point
broadcasts a message of type ObjectDiscoveryPkt (see Figure 4) with isRequest=true to all
connected modules. Every module which shall be accessible via VICINITY then responds
with an ObjectDiscoveryPkt message with isRequest=false and its own object-data JSON in
objectJson. The access-point then composes a JSON object with all collected ObjectDiscoveryPkt
responses and serves it when requested by the adapter. When a request to set/read a property
or action is incoming, the access-point forwards it to the corresponding module with a VnetPkt
message. The receiving module then processes the request and responds back to the access-point
with another VnetPkt message. After the message is processed, the access-point generates
a response for the adapter and the request is completed. If an addressed module does not
respond in a given time, a timeout occurs and the access-point responds to the adapter with
VININITY_RESPONSE_NOT_FOUND, which finishes the request with an error-code.

Figure 4. Class diagram of messages used inside the simulation.

4.5. Simulation Scheduler

As previously explained in Section 4.4.1, the OMNeT++ scheduler has to be adjusted to integrate
the adapter. The original SocketRTScheduler was created to actively listen on a single socket in the
time between simulation events. In our framework, however, the sockets are not managed by the
scheduler, but by their own thread. This circumstance actually eases the task of the scheduler, because
only a single future-object has to be monitored and, on change, the handler module (access-point)
has to be notified. When the simulation is started, the access-point module ( VicinityAccesspoint)
registers a notification-message and a pointer, which always points to the latest future-object of the
adapter-thread, with the scheduler. Since the scheduler is a real-time scheduler, it has to wait until
the time of the next event (handled in cSocketRTScheduler::takeNextEvent()). During this wait time,
the scheduler waits for the future-object to be ready. When the future-object is ready, the simulation
time gets updated to match the actual time (to account for the time blocked on the future), and the
notification-message of VicinityAccesspoint is scheduled to be delivered to VicinityAccesspoint at
the current time (instantly). After receiving the notification-message, the access-point accepts and
processes the data from the future-object. Additionally, the access-point has to update the future-object,
which is pointed to by the scheduler, so the scheduler can wait for the next request. If the future-object
is not valid, the scheduler simply sleeps until timeout (or next event).
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5. Case Study: Smart Energy Use Case

To illustrate the applicability and performance of the developed multi-level simulator, we modeled
and simulated a smart energy use case with applied homomorphic encryption. This use case is an
integration of the use cases of Kölsch et al. [36] and Kölsch et al. [37]. This particular use case describes
a smart energy scenario within a city. The city has a photovoltaic system and a windmill as power
suppliers and a parking lot and a couple of houses as consumers. Electric vehicles can move inside
the city and the parking lot. By using a smart parking service through a mobile APP, users of the
system can request to reserve their parking slot of choice within the participating parking facilities.
The availability of the parking slots is then displayed through the mobile APP as well as through the
optical indicators located on the respective parking slots for random people who do not participate in
the smart parking service.

The described scenario was modeled and simulated using the proposed approach at three distinct
levels of abstraction: The first two higher levels were implemented only using classes provided
by the implemented core simulator. The third (lowest) level was implemented with OMNeT++
5.4.1 (https://www.omnetpp.org/21-articles/3752-omnet-5-4-1-released) and its INET extension 4.0
(https://inet.omnetpp.org/2018-06-28-INET-4.0.0-released.html).

5.1. The Highest Abstraction Level–Level 0

The highest level of abstraction models abstract processes that are needed to provide basic
information for the following lower levels of the simulation scenario. Furthermore, the power
generating entities are modeled on this high and abstract level. This is shown in Figure 5.

Figure 5. Smart energy use case: Level 0.

The CarGenerator atomic model acts as a source to the rest of the modules and provides the
information needed to simulate users and random cars at the lower abstraction levels. This information
is then passed to the CarProcessor.

The CarProcessor then determines if the received information is used to simulate a scenario with a
random visitor of the parking facility or with a user of the smart parking mobile APP. In the latter case,
information about the desired parking slot is generated and used in an attempt to make a reservation

https://www.omnetpp.org/21-articles/3752-omnet-5-4-1-released
https://inet.omnetpp.org/2018-06-28-INET-4.0.0-released.html
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via the model of the smart parking APP. If this reservation fails, the information of the APP user is
treated as information about a random visitor of the facility and sent further to the ParkingFacility.

Once entering the ParkingFacility model, the received information is used to model the abstract
behavior of both random visitors and smart parking service users competing for available parking
slots, parking and subsequently leaving the facility again.

Users of the APP that succeed with a reservation will directly target their desired parking slots
while random arrivals and users that failed to reserve their desired slot will choose the first free
available parking slot. When arriving at the slot, it will be determined if it is still free or in the
meantime has already been reserved by a user or taken by another random car that arrived first. If
it has already been taken, they will head for the first free parking opportunity again. If they do not
succeed in finding one, the car will leave the parking facility. If the parking process succeeds, the car
will occupy the chosen parking slot for a while and then subsequently leave the parking facility again.

5.2. The Middle Abstraction Level–Level 1

The following level of abstraction was used to further detail the processes inside the
ParkingFacility. It is shown in Figure 6. It divides the raw ParkingFacility into three different parking
decks that internally mimic the behavior of the parking facility in Tromsø.

The information about car arrivals will be forwarded to the different parking decks in sequence.
When entering the facility, the parking decks have to be traversed until the desired parking spot is
reached. When a car leaves the ParkingFacility, the decks have to be traversed again in order to reach
the exit. Additionally, the ParkingDeckControl is used to send information from and to the model of
the APP.

Figure 6. Smart energy use case: Level 1—the parking facility.

5.3. The Lowest Abstraction Level–Level 2

The lowest level of the simulation scenario was modeled with OMNeT++ 5.4.1 and INET 4.0. Here,
the information produced by the higher levels described above was used to dynamically instantiate
simulated entities and to represent the communication between sensors, actuators, and the APP with
the advanced capabilities of INET.

At this level, the parking facility was modeled as an OMNeT++ compound module and the single
parking decks as submodules of it. Although the different submodules can interact with each other
across submodule boundaries, only those associated with the respective active higher level parts of the
simulation will actually be active.

If the higher level parking deck model switches to the respective part of the OMNeT++ module at
Level 2, cars will be created as mobile nodes with specific characteristics. The characteristics depend on
the information generated at the levels above and the cars behavior is determined by the corresponding
states at Level 1. Depending on if a car is now in the phase of searching for a parking slot or if it is
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already parked or even leaving the parking deck, the wireless node will be created and its goals will
be set accordingly. One such parking deck modeled in OMNeT++ can be found in Figure 7.

Every Car has a battery, that is discharging as long as the car is moving inside the environment.
When a car is parked inside the parking facility, its accumulator is charged. When it is fully charged, it
stops charging and the car is ready to drive away.

Figure 7. Smart energy use case: Omnet++ model of parking deck at Level 2.

5.4. VICINITY Bridge

To also demonstrate the functionality of the hardware-in-the-loop interface to the real VICINITY
network, the use case was extended with a VICINITY bridge on the lowest abstraction level. As
discussed in Section 1.1, VICINITY offers an infrastructure for connecting otherwise isolated islands
in the IoT landscape. Naturally, our simulated network can be seen as such an island. As outlined
in Section 4.4.2, we can integrate VICINITY and our simulation seamlessly by introducing a VICINITY
adapter to the Omnet++ simulation. To VICINITY and all its connected devices and value-added
services, all simulated devices that exist only virtually within our simulated network will appear as
any other ordinary device. To our value-added service, they look and behave the same way as any
physical device would, which enables us to:

• rapidly prototype any given scenario or use case and test it without first deploying devices in the
field; and

• scale any existing use case up and test how it will behave with more attached devices

As installing and deploying new sensors on our parking deck outline in Figure 6 is costly and
time consuming, this gives us a much quicker way to start and continue implementing our front-end
application, while this deployment takes place in the real world. Furthermore, we can utilize this virtual
setup to evaluate different approaches for our enhanced privacy modules based on homomorphic
encryption. In the following, we utilize this setup to measure the impact of different homomorphic
encryption schemes on the overall runtime behavior in a real, online test scenario.

5.5. Integration of the Homomorphic Encryption Micro-Service

As briefly discussed in Section 1.2, homomorphic encryption is particularly useful, when data
are supposed to be processed by a third party, which cannot fully be trusted. One example could be a
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value-added service by someone else. If a user is expecting some particular benefits or is even forced
into using it, keeping his sensitive data private is a major concern. Missing trust can potentially even
be a showstopper for the whole Internet of Things.

Homomorphic encryption can help us with the above mentioned privacy concerns. However,
this privacy comes at the price of increased computational effort for encryption, decryption and also
functions evaluated on cipher texts are more costly in terms of computational demand. Currently,
the VICINITY project (see Section 1.1) is investigating the use of homomorphic encryption for these
scenarios. To evaluate its practical feasibility, the computational overhead introduced by the use of
homomorphic encryption needs to be analyzed. As there are numerous potential encryption schemes
that offer homomorphic properties, it is also important to evaluate them. In particular, we want to
compare partially and fully homomorphic encryption to evaluate the overhead introduced by the
latter and also compare both to the same scenario executed without any encryption and hence without
ensuring privacy at the VAS. To this end, we simulated one of VICINITYs use cases with partially
(additive) homomorphic, fully homomorphic and without encryption as to calculate the overhead
this introduces under Lab conditions. Our lab setup utilizes hardware-in-the-loop simulations of the
VICINITY infrastructure and can be adjusted way quicker and cheaper than an actual re-deployment
on site. Figures 8 and 9 visualize the two simulated use cases.

Figure 8. Use case integrated into the VICINITY network. Private data are available to value-added
service in clear text.

Figure 9. Homomorphic encryption micro-service applied to use case.

As shown in Figure 8, energy consumption data of the simulated cars are gathered and transmitted
to the operators’ value-added service. The operator is only interested in the overall energy consumption
of its whole fleet and so it calculates the sum over all inputs first. As the energy consumption allows to
draw some conclusion about the owners behavior, we consider these data as private data and also
wish to keep this data private and not share it with any third-party.
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As neither the operator nor the users themselves have any particular interest in sharing their
individual, private data, we introduce the homomorphic encryption micro-service. It is integrated into
the VICINITY dataflow as shown in Figure 9 and can be compared to the setup in Figure 8: Input data
(e.g., the Energy Consumption of each car) are encrypted using a homomorphic encryption scheme. In
the case of partially homomorphic encryption, we used a simple Paillier encryption (see [34]), which
allows addition of cipher texts. To calculate the overall energy consumption of the whole fleet, this
is sufficient. As this concept will be applied to other use cases as well, addition might not suffice in
all cases. Hence, we further simulated this scenario using the Brakerski–Gentry–Vaikuntanathan
(BGV) scheme (see [38]), which is a fully homomorphic encryption scheme. In both cases, the
encrypted payload is then transmitted through the VICINITY peer-to-peer network and to the operators
value-added service again. The homomorphic encryption micro-service performs the addition on the
encrypted inputs, followed by a decentralized decryption on the aggregated data. This way, only the
anonymized, aggregated data are visible and handed over to the value-added service in the first place.
All measurements are compared to the use case shown in Figure 8, which serves as a baseline.

6. Evaluation

To evaluate the overhead introduced into the dataflow, due to the homomorphic encryption, we
evaluated three scenarios: without homomorphic encryption, with partially homomorphic encryption
and with fully homomorphic encryption in order to compare their runtimes. Currently, the encryption
service utilized open source libraries, providing wrapper interfaces to their low-level functions and
integrating the encryption seamlessly into the VICINITY architecture. For the fully homomorphic
encryption, we utilized the HElib Library [39]. The implemented encryption scheme of HElib is based
on the Brakerski–Gentry–Vaikuntanathan (BGV) scheme, yet implementing numerous optimizations
for a more efficient runtime behavior. For the partially homomorphic encryption, we integrated
the libhcs [40] library into our encryption service. This library implements “a number of partially
homomorphic encryption schemes” [40], yet we focused on the implementation of the Paillier
encryption scheme for additive homomorphic encryption, which is necessary for our given use
case. Finally, a simple Python script based on the Python Flask framework [41] was implemented to
mimic the endpoints of the encryption service, yet operating on plain text input data. However, the
simulation framework presented in this paper is not limited to either the given encryption service or
any of the given encryption schemes. In further research, more encryption schemes will be tested and
evaluated.

6.1. Experimental Setup

The simulations were performed within an Arch Linux virtual machine—that is at the time the
development environment of the simulator—on a Mac Pro with a 3.5 GHz 6-Core Intel Xeon E5 CPU, 16
GB 1866 MHz DDR3 RAM, AMD FirePro D500 3072 MB GPU on MacOS Mojave. The virtual machine
used 6 cores and 8192 MB RAM. The encryption service as well as the plain text aggregation resided on
an external server, so that differences in the overall topology can be neglected in the comparison. It was
run on a single 2.7 GHz Intel Xeon E5 Core. The simulation and the encryption service communicated
through ethernet. This setup with separated simulation and encryption service also ensured that there
is no computation power for the simulation lost to the encryption service.

6.2. Results

As can be seen in Figure 10, the runtime results of different simulation runs increase with an
increasing number of cars which participated in the described VAS. This can be explained by the
rising computational cost of simulating the necessary communications between the VAS participants.
The increase of runtime of the simulation scenarios which use homomorphic encryption compared
to the scenario without it stems from two separate causes: first, the pure computational cost on the
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service side for the encryption; and, second, the time necessary to send the huge (in comparison to
unencrypted data) response ciphers into the simulated network and over real ethernet.

Figure 10. Runtime of the simulation with and without (fully, partial) homomorphic encryption.

This is probably due to the limits of the used realtime scheduler used for the hardware in the
loop. With too many communications into the real network or too big payloads (e.g., huge numbers of
ciphers), the used scheduler has to drop some in- or outgoing communications in order to keep its
realtime capabilities. Apart from network performance and congestion on our lab/office network,
which apparently has the biggest impact on the overall performance, we utilized one of the most
recent and still actively developed implementations for fully homomorphic encryption (see [39]).
The library itself implements the BGV encryption scheme, which already takes advantage of newly
found improvements and performance tweaks to homomorphic operations. This does not hold for the
library used in our partially homomorphic implementation. We used libhcs (see [40]), which offers
implementations for the Paillier, El-Gamal and Damgard–Jurik cryptosystems. While all of these are
well known, they are no longer actively worked on, since the dawn of practical fully homomorphic
encryptions. Hence, they cannot take advantage of newly found improvements and performance
tweaks and thus on some scenarios even perform worse than fully homomorphic encryption.

7. Conclusions

One major and very important result of the experiment is that the overhead introduced by using
homomorphic encryption (either partially or fully homomorphic) only makes up for a fraction of the
overall runtime, compared to the runtime of our plain text simulation. As can be seen with, e.g., our
runtime comparison for 10 cars, fully homomorphic encryption and plain text are merely identical. For
30 cars, fully homomorphic encryption performs worst of all three approaches. However, the overhead
is only 1.2%, thus, given the benefits this offers, it can be neglected for our application.

For our future applications, these results are very valuable. For practical applications of
homomorphic encryption in the context of the VICINITY project, the number or simulated cars
are realistic and feasible. Hence, we expect no penalties in terms of runtime, due to the use of
homomorphic encryption. However, this new approach will greatly improve privacy of the car owners
and thus greatly boost the acceptance of VICINITY to them.
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Another result of the experiment is that we proved the applicability of hardware-in-the-loop- and
software-in-the-loop-simulation within the proposed simulation framework. While the used realtime
scheduler for the simulation definitely had an impact on the overall simulation runtime (which has
obviously to be expected, since it needs to communicate with real hardware and has to slow down
simulation time), it fits perfectly in the approach of dynamically interchangeable models at runtime,
which can contain wrapped simulators and depict simulation time in finer grained and therefore more
detailed steps.

8. Future Work

As stated in [36] already, in its current state, the prototype supports the usage of continuous-time
models through hybrid models. However, continuous interaction between such models can still
pose some problems regarding the discrete-time architecture of the simulator. A solution to this
was proposed in the generalized DEVS specification [42]. It uses polynomial events to approximate
continuous output.

Large-scale IoT scenarios can massively profit from parallel and distributed simulation techniques.
Through the integration of MPI, OMNeT++ supports parallel and distributed execution. Future
work should use this provided architecture and enable the developed simulator to make full use of
OMNeT++ capabilities.

The proposed simulation framework can be used to evaluate other software or hardware especially
designed for the internet of things. For example, the approach in [43] can be evaluated for performance
and design.

The importance of the functional mock-up interface (FMI) for the simulation of cyber-physical
systems (CPS) is quite obvious. For the integration of more domain-specific languages and simulators
at the lowest level, FMI needs to be integrated into OMNeT++. We already integrated SystemC models
into the simulation without using FMI. However, the need for more exact simulation results can greatly
benefit from the integration of FMI and languages such as Modelica.

Finally, the runtime evaluations showed that homomorphic encryption is indeed feasible for
practical implementations. In future work, we will integrate a fully homomorphic micro-service (see
Figure 9) into the VICINITY architecture. Our results have shown that this implementation introduces
a negligible runtime overhead, yet offers a great added benefit in terms of privacy (compared to
the plain text scenario) and versatility (compared to the partially homomorphic encryption). Using
the VICINITY Bridge Feature (see Section 5.4), we can further test this approach in a simulated
environment and without the risk of affecting real world applications.
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