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1. Introduction

Model uncertainty is a challenge that is inherent in many applications of mathematical models
in various areas, for instance in mathematical finance and stochastic control. Optimization
procedures in general take place under a particular model. This model, however, might be
misspecified due to statistical estimation errors, incomplete information, biases, and for vari-
ous other reasons. In that sense, any specified model must be understood as an approximation
of the unknown “true” model. Difficulties arise since a strategy which is optimal under the
approximating model might perform rather badly for the true model specifications.
To overcome these problems, it is crucial to improve the approximation of the true model

by including any available source of information. On the other hand, one needs to find robust
strategies, i.e. strategies that are less vulnerable to the specific choice of the model. A natural
way to achieve this goal is to consider worst-case optimization problems. Instead of working
with just one particular model, one specifies a range of possible models and tries to optimize
the objective, given that for any chosen strategy the worst of all possible models will occur.
Another way of looking at this problem is to see it as a two-player game in which one player
tries to maximize and the other player simultaneously tries to minimize a given objective.
The optimization problems that we consider in this thesis are utility maximization problems

in continuous-time financial markets. The most basic utility maximization problem in a
Black–Scholes market is the Merton problem of maximizing expected utility of terminal
wealth. It can be written in the form

V (x0) = sup
π∈A(x0)

E
[
U(Xπ

T )
]
,

where U : R+ → R is a utility function, Xπ
T denotes the terminal wealth achieved when using

the self-financing strategy π and A(x0) is the class of admissible strategies starting with
initial capital x0. An optimal strategy π∗ for this problem is one that satisfies

V (x0) = E
[
U(Xπ∗

T )
]
.

Merton [43] solves this problem for power and logarithmic utility functions and gives a cor-
responding optimal strategy. However, the setup of the problem assumes that an investor
knows the market parameters, in particular the constant drift µ of asset returns. This is a
rather unrealistic assumption since drift parameters are notoriously difficult to estimate from
historical asset prices. At the same time, a misspecification of the drift has a massive effect
on the optimal portfolio choice, see Chopra and Ziemba [10].

Model uncertainty (Part I)

To obtain strategies that are robust with respect to a possible misspecification of the drift
parameter we consider in Part I of this thesis the worst-case optimization problem

V (x0) = sup
π∈A(x0)

inf
µ∈K

Eµ
[
U(Xπ

T )
]
.

1



1. Introduction

Here, we write Eµ[·] for the expectation with respect to a measure Pµ under which the drift
of the asset returns is µ ∈ Rd, with d denoting the number of risky assets in the market. The
set K ⊆ Rd is called the uncertainty set or ambiguity set. An investor who faces uncertainty
about the true drift parameter can choose K based on historical observations or external
sources of information.
Our aim is to study the structure of optimal strategies for the robust utility maximiza-

tion problem above in a continuous-time Black–Scholes market, as well as their asymptotic
behavior as the degree of uncertainty increases, i.e. as the uncertainty set K becomes large.
Since for large uncertainty investors usually do not invest in the risky assets at all, we re-
strict the class of admissible strategies by imposing a constraint that prevents a pure bond
investment. Our focus is on ellipsoidal uncertainty sets K and on investigating what happens
when increasing the radius of the uncertainty ellipsoid.
The main result in the first part of this thesis is an explicit representation of the optimal

strategy and the worst-case drift parameter for the robust utility maximization problem with
constrained strategies and ellipsoidal uncertainty sets. Moreover, a minimax theorem of the
form

sup
π∈A(x0)

inf
µ∈K

Eµ
[
U(Xπ

T )
]

= inf
µ∈K

sup
π∈A(x0)

Eµ
[
U(Xπ

T )
]

is proven. The optimal strategy and worst-case drift parameter therefore constitute a saddle
point of the problem. Using the explicit representation of the solution enables us to also study
in detail the asymptotic behavior as uncertainty increases. We prove that the optimal strategy
converges to a generalized uniform diversification strategy. In that sense, our results help to
explain the popularity of uniform diversification strategies by the presence of uncertainty in
the model.

Model uncertainty, also called Knightian uncertainty in reference to the seminal book by
Knight [36], has been addressed in numerous papers. Gilboa and Schmeidler [28] and Schmei-
dler [59] formulate rigorous axioms on preference relations that account for risk aversion as
well as uncertainty aversion. A robust utility functional in their sense is a mapping

X 7→ inf
Q∈Q

EQ
[
U(X)

]
where U is a utility function andQ a convex set of probability measures. Chen and Epstein [9]
give a continuous-time extension of this multiple-priors utility. Optimal investment decisions
under such preferences are investigated in Quenez [50] and Schied [57], building up on results
by Kramkov and Schachermayer [37, 38]. An extension of those results by means of a duality
approach is given in Schied [58].
Papers addressing drift uncertainty in a financial market are Garlappi et al. [27] and Biagini

and Pınar [4], among others. The latter focuses on ellipsoidal uncertainty sets like in this
thesis. Uncertainty about both drift and volatility is investigated in a recent paper by Pham
et al. [48]. In comparison to the literature mentioned above, we include in our setting a
constraint on the admissible strategies that prevents investors from solely investing in the
bond. We then derive explicit solutions to our robust utility maximization problem.
In a discrete-time setting, robust control problems have been studied by Favero and Rung-

galdier [20]. They give bounds for the suboptimality of strategies within a given class of
models. In Dai Pra et al. [12] the authors consider a mixture of stochastic and robust opti-
mization in a discrete-time setup.

2



Expert opinions (Part II)

The uncertainty set K in the robust utility maximization problem described above can in
general be defined freely by the investor. To choose K in a reasonable way it makes sense
to estimate the drift of asset returns and build the uncertainty set centered around the
estimated value, with the shape and size of the set reflecting the reliability of the estimation.
The ability to choose good trading strategies depends on how well the unobserved drift
can be estimated. However, drift processes tend to fluctuate randomly over time and even
if they were constant, long time series would be needed to estimate this parameter from
asset returns with a satisfactory degree of precision. For these reasons, practitioners also
incorporate external sources of information such as news, company reports, ratings or their
own intuitive views when estimating the drift. These external sources of information are called
expert opinions. In the context of the classical one-period Markowitz model this leads to the
well-known Black–Litterman approach, where return predictions are improved by means of
views formulated by securities analysts, see Black and Litterman [6].
In Part II of this thesis we consider a Black–Scholes type financial market where returns

depend on an underlying drift process, which is unobservable due to additional noise coming
from a Brownian motion. Investors in the market typically observe the return process. An
additional source of information about the drift is provided by expert opinions, which we
model as unbiased estimates of the drift that arrive at discrete points in time. Investors who
have access to these expert opinions update their current drift estimates at each arrival time
of such an expert opinion.
If the information of an investor is described by the filtration (FHt )t∈[0,T ], then the so-called

filter is the conditional distribution of the drift µt given FHt . The best estimate for the hidden
drift process in a mean-squared sense is given by the conditional mean mH

t = E[µt | FHt ]. A
measure for the goodness of this estimator is its conditional covariance matrix

QHt := E
[
(µt −mH

t )(µt −mH
t )>

∣∣FHt ].
The aim in the second part of this thesis is to investigate in detail the influence that expert
opinions have on investors’ estimates of the drift process by analyzing the filter for different
investor filtrations.
For investors who observe only the return process, the filter is the classical Kalman filter,

see for example Liptser and Shiryaev [42] or Davis [13]. Observing in addition also discrete-
time expert opinions leads to updates of the filter at each information date. These updates
decrease the conditional covariance, hence they yield better estimates. This can be seen as a
continuous-time version of the above mentioned static Black–Litterman approach.
Our main results in this part are concerned with the asymptotic behavior of the filter as

the arrival frequency of expert opinions goes to infinity on a finite time horizon. If expert
opinions have some minimal level of accuracy, characterized by bounded experts’ covariances,
then the conditional covariance of the drift estimate goes to zero as the arrival frequency goes
to infinity. This implies that the conditional mean converges to the true drift process, i.e. in
the limit investors have full information about the drift.
We further study a situation in which a higher frequency of expert opinions is only available

at the cost of accuracy. In other words, as the frequency of expert opinions increases, their
variance becomes larger. For properly scaled variance of expert opinions we derive limit

3



1. Introduction

theorems which state that the information obtained from observing the discrete-time expert
opinions is asymptotically the same as that from observing a certain diffusion process, which
is why we speak of diffusion approximations. The limit process can be interpreted as a
continuous-time expert who permanently delivers noisy information about the drift.
The diffusion approximations that we obtain from our main results are useful since the

asymptotic filter is easy to compute whereas the updates for the discrete-time expert opinions
lead to a computationally involved filter. Numerical simulations show that the approximation
is very accurate even for a small number of expert opinions. Our convergence results for the
filter also carry over to convergence of the value function in a portfolio optimization problem
with logarithmic utility. This allows to find approximate solutions of utility maximization
problems by replacing the filter of an investor who observes the discrete-time expert opinions
by the asymptotic filter. This filter, corresponding to an investor who observes a continuous-
time expert, is much easier to handle numerically.

Without expert opinions, our utility maximization problem is a classical optimization prob-
lem under partial information. Under suitable integrability assumptions the existence of op-
timal trading strategies can be shown, see Björk et al. [5] and Lakner [40]. The computation
of optimal strategies is possible if the model allows for finite-dimensional filters. This is
the case if the drift process is an Ornstein–Uhlenbeck process or a continuous-time Markov
chain. In these two models, the solution of the utility maximization problem is known, see
Brendle [7], Lakner [41] and Putschögl and Sass [49], as well as Honda [31], Rieder and
Bäuerle [51] and Sass and Haussmann [54]. Fouque et al. [21, 22] also model the drift as an
Ornstein–Uhlenbeck process and analyze the loss of utility due to partial information.
Including unbiased expert opinions reduces the variance of the filter. The better estimate

then improves the expected utility. In a static model, the Black–Litterman approach combines
an estimate of the asset returns with expert opinions on the performance of the assets, see
Black and Litterman [6]. The idea of a continuous-time expert in this thesis is in line with
Davis and Lleo [14] where such an expert is introduced as an approximation of discrete-time
experts, allowing for more explicit solutions in portfolio optimization problems. Davis and
Lleo [14] term that approach “Black–Litterman in Continuous Time”. First papers addressing
this approach are Frey et al. [23, 24]. They consider a continuous-time Markov chain for the
drift and expert opinions arriving at the jump times of a Poisson process and study the
maximization of expected power utility of terminal wealth. An Ornstein–Uhlenbeck drift
process is considered in Gabih et al. [25] for a one-dimensional financial market. Part II of
this thesis builds up on the Master’s thesis Westphal [64], in which many results from Gabih
et al. [25] are carried over to a financial market with multivariate stock returns. Some results
from the Master’s thesis [64] are repeated in Part II to give a complete picture.
In the literature, diffusion approximations also appear in other contexts. They are well-

known in operations research and actuarial mathematics. The basic idea is to replace a
complicated stochastic process by an appropriate diffusion process which is more analytically
tractable than the original process. The approach is comparable with the normal approx-
imation of sums of random variables following from the Central Limit Theorem. For an
introduction to diffusion approximations based on the theory of weak convergence and appli-
cations to queueing systems in heavy traffic we refer to the survey article by Glynn [29]. In
risk theory the application of diffusion approximations for computing ruin probabilities goes
back to Iglehart [33]. We also refer to Grandell [30, Sec. 1.2], Schmidli [60, Sec. 5.10 and 6.5]
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and Asmussen and Albrecher [3, Sec. V.5], as well as the references therein. Convergence of
a discrete-time Kalman filter to the continuous-time equivalent has been addressed e.g. by
Salgado et al. [53] or Aalto [1] for the case of deterministic information dates.

Robust optimization with expert opinions (Part III)

In Part III we combine our results for the structure of the robust utility maximization problem
with the observations about how expert opinions improve drift estimates. The main idea
is that the uncertainty set K can be defined based on a drift estimate and hence a better
estimate due to the observation of expert opinions should be reflected in a smaller uncertainty
set.
To be able to capture a change in information about the drift over time we generalize our

financial market model to one with non-constant drift. We then carry over our results for
the robust utility maximization problem to the more general model where we also introduce
time-dependence in the uncertainty set. The computation of the optimal strategy carries
over when assuming in the worst-case problem that the drift process µt at time t can take
any value in an ellipsoid Kt, where Kt is known at time t.
We then show how the time-dependent uncertainty set (Kt)t∈[0,T ] can be defined based on

the filter E[µt | FHt ] for various investor filtrations (FHt )t∈[0,T ]. It becomes clear that expert
opinions decrease the size of the uncertainty set, reflecting the better estimations. We also
investigate which effect expert opinions have on the robust strategies and compare them with
the non-robust strategies that rely on the drift estimation only.

For detailed outlines we refer to the beginning of each of the three parts, see pp. 9, 77
and 145. Appendix A provides some auxiliary results needed for proving our main theorems
in Chapter 8. In Appendix B we extend the well-known result from Merton [43] by showing
that for a power utility maximization problem we obtain the same structure of the optimal
strategy if the risk-free interest rate as well as drift and volatility of the stocks are not
necessarily constant but independent of the driving Brownian motions.

5





Part I.

Model Uncertainty
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Outline and Notation

In this part of the thesis we investigate optimal trading strategies for a robust utility maxi-
mization problem in a continuous-time Black–Scholes type financial market under a constraint
that prevents a pure bond investment. We deduce a minimax theorem for our robust opti-
mization problem and show that, as the degree of model uncertainty increases, a generalized
uniform portfolio diversification strategy outperforms more sophisticated strategies.
This part of the thesis is organized as follows. In Chapter 2 we state our financial market

model and introduce the robust utility maximization problem. Chapter 3 addresses a special
case of that problem for uncertainty sets that are balls in Rd and investors with logarithmic
utility. In this setting, we can carry over the approach from a one-period risk minimization
problem by Pflug et al. [47] to our continuous-time setting.
The main results of this part are given in Chapter 4. Here we use a duality approach to

solve our robust utility maximization problem for ellipsoidal uncertainty sets and power or
logarithmic utility. The main idea is to solve the dual problem explicitly and show that the
solution forms a saddle point of the problem. We give representations of the optimal strategy
and the worst-case drift parameter and provide a minimax theorem.
In Chapter 5 we study the asymptotic behavior of the optimal strategy and the worst-case

parameter as the degree of uncertainty goes to infinity. We show that the optimal strategy
converges to a generalized uniform diversification strategy, where by uniform diversification
we mean the equal weight or 1/d strategy for the investment in the risky assets. Furthermore,
we analyze the influence of the investor’s risk aversion on the speed of convergence and
investigate measures for the performance of the optimal robust strategies.

Notation. Throughout this part, we use the notation Id for the identity matrix in Rd×d
as well as ei, i = 1, . . . , d, for the i-th standard unit vector in Rd, and 1d for the vector
in Rd containing a one in every component. For a vector x ∈ Rd we denote with diag(x)
the diagonal matrix A = (aij) ∈ Rd×d with aii = xi for all i = 1, . . . , d, aij = 0 if i 6= j.
We shortly write R+ = (0,∞). By 〈·, ·〉 we denote the scalar product on Rd × Rd with
〈x, y〉 = x>y for x, y ∈ Rd.
If x ∈ Rd, then for any p ∈ [1,∞] we write ‖x‖p for the p-norm of x on Rd. When using

the duality 1
p + 1

q = 1 we stick to the convention that 1
∞ = 0. Unless stated otherwise,

whenever x ∈ Rd is a vector, ‖x‖ denotes the Euclidean norm of x, whenever A is a matrix,
‖A‖ denotes the spectral norm of A.
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2. A Robust Utility Maximization Problem

2.1. Financial market model

We consider a continuous-time financial market with one risk-free and various risky assets.
By T > 0 we denote some finite investment horizon. Let (Ω,F ,F,P) be a filtered probability
space where the filtration F = (Ft)t∈[0,T ] satisfies the usual conditions. All processes are
assumed to be F-adapted.

The dynamics of the risk-free asset S0 are given by

dS0
t = S0

t r dt, S0
0 = 1,

where r ∈ R is the deterministic risk-free interest rate. Note that we can write S0
t in explicit

form as S0
t = ert, t ∈ [0, T ]. Aside from the risk-free asset, investors can also invest in d ≥ 2

risky assets S1, . . . , Sd where the dynamics of S = (S1, . . . , Sd)> are given by

dSt = diag(St)
(
µdt+ σ dWt

)
, S0 = s0.

Here, W = (Wt)t∈[0,T ] is an m-dimensional Brownian motion with m ≥ d. Further, µ ∈ Rd

and σ ∈ Rd×m, where we assume that σ has full rank equal to d. The vector s0 ∈ Rd of
initial asset prices is assumed to have strictly positive entries. In explicit form, Si can be
written as

Sit = si0 exp

((
µi − 1

2

m∑
j=1

σ2
ij

)
t+

m∑
j=1

σijW
j
t

)
, i = 1, . . . , d.

Rather than working directly with the price process S = (S1, . . . , Sd)> we consider the return
process R = (R1, . . . , Rd)>, defined by

dRt = µ dt+ σ dWt, R0 = 0.

Note that we can write

Rit = log(Sit)− log(si0) +
1

2

m∑
j=1

σ2
ijt

for i = 1, . . . , d, which implies that the filtration generated by the stock price process is the
same as the filtration generated by the return process. Therefore, we assume in the following
that investors observe stock returns directly.
An investor’s trading decisions in this market are described by a self-financing trading

strategy (πt)t∈[0,T ] with values in Rd. The entry πit, i = 1, . . . , d, is the proportion of wealth
that is invested in asset i at time t. Consequently, the proportion 1− 1>d πt is invested in the
risk-free asset. The corresponding wealth process (Xπ

t )t∈[0,T ] can then be described by the
stochastic differential equation

dXπ
t = Xπ

t

(
r dt+ π>t (µ− r1d) dt+ π>t σ dWt

)
, Xπ

0 = x0.

11



2. A Robust Utility Maximization Problem

Here, x0 > 0 denotes the initial wealth of an investor. The solution to this SDE can be
written as

Xπ
t = x0 exp

(∫ t

0

(
r + π>s (µ− r1d)−

1

2
‖σ>πs‖2

)
ds+

∫ t

0
π>s σ dWs

)
.

We assume that investors do not observe the Brownian motion (Wt)t∈[0,T ] but the returns
(Rt)t∈[0,T ], and that any trading strategy has to be based on the current information of an
investor. We therefore require trading strategies to be FR-adapted, where FR = (FRt )t∈[0,T ]

for FRt = σ((Rs)s∈[0,t]). Hence, the class of admissible trading strategies has the form

A(x0) =

{
π = (πt)t∈[0,T ]

∣∣∣∣ π is FR-adapted, Xπ
0 = x0, E

[∫ T

0
‖σ>πt‖2 dt

]
<∞

}
.

To start with, we consider an investor who seeks to maximize expected utility of terminal
wealth. The value function of that investor is given by

V (x0) = sup
π∈A(x0)

E
[
U(Xπ

T )
]
, (2.1)

where U : R+ → R is a utility function, i.e. a strictly concave and continuously differentiable
function satisfying the so-called Inada conditions

lim
x↓0

U ′(x) =∞ and lim
x→∞

U ′(x) = 0.

It is well known from the paper by Merton [43] that for logarithmic utility U = log, the
optimal strategy for this portfolio optimization problem is (π∗t )t∈[0,T ] with

π∗t = (σσ>)−1(µ− r1d),

and that for power utility U(x) = xγ

γ with γ ∈ (−∞, 1), γ 6= 0, one obtains

π∗t =
1

1− γ (σσ>)−1(µ− r1d).

Hence, the portfolio optimization problem (2.1) can be solved explicitly for both logarithmic
and power utility. However, the above setting has a serious drawback. It relies on the
assumption that the parameters µ and σ of the stock price dynamics are known to the
investor. This assumption is, at least for the drift, rather unrealistic since drift parameters
are notoriously difficult to estimate from historical asset return data. For investors to be
able to estimate µ with a reasonable degree of precision, they would need to observe very
long time series. For this reason, we introduce in the following a robust version of the above
portfolio optimization problem in which there is uncertainty about the drift parameter µ.

2.2. Introducing model uncertainty

We take the model from the preceding section as a starting point, but now assume that the
true drift of the stocks is only known to be an element of some set K ⊆ Rd and that investors
want to maximize their worst-case expected utility

inf
{
E
[
U(Xπ

T )
] ∣∣∣ drift of the stocks is µ ∈ K

}

12



2.3. Constraint on the admissible strategies

for some utility function U : R+ → R. We formalize this in the following by means of a
change of measure. Let us fix some element ν ∈ K as a reference parameter and say that,
under P, the drift of the stock returns is equal to ν, i.e.

dRt = ν dt+ σ dWt, R0 = 0.

The value ν can be thought of as an estimate for the drift that was obtained by observing
the historical stock prices or by external sources of information. Changing the drift from ν
to some µ ∈ K can then be expressed by a change of measure. For this purpose, define the
process (Zµt )t∈[0,T ] by

Zµt = exp
(
θ(µ)>Wt −

1

2
‖θ(µ)‖2t

)
,

where θ(µ) = σ>(σσ>)−1(µ− ν). We can then define a new measure Pµ by setting

dPµ

dP
= ZµT .

Note that since θ(µ) is a constant, the process (Zµt )t∈[0,T ] is a strictly positive martingale.
Therefore, Pµ is a probability measure that is equivalent to P and we obtain from Girsanov’s
Theorem that the process (Wµ

t )t∈[0,T ], defined by

Wµ
t = Wt − θ(µ)t,

is a Brownian motion under Pµ. We can thus rewrite the return dynamics as

dRt = ν dt+ σ dWt = ν dt+ σ
(
dWµ

t + θ(µ) dt
)

= µdt+ σ dWµ
t ,

and see that a change of measure from P to Pµ corresponds to changing the drift in the return
dynamics from ν to µ. We thus shortly write Eµ[·] for the expectation under measure Pµ and
E[·] = Eν [·] for the expectation under our reference measure P = Pν .
For a trading strategy (πt)t∈[0,T ] we require admissibility under any of the measures Pµ for

µ ∈ K. We thus modify our notion of admissibility and let

A(x0) =

{
(πt)t∈[0,T ]

∣∣∣∣ π is FR-adapted, Xπ
0 = x0, Eµ

[∫ T

0
‖σ>πt‖2 dt

]
<∞ for all µ ∈ K

}
.

Then admissibility in the robust context means admissibility under any of the measures
Pµ for µ ∈ K and our robust portfolio optimization problem for a generic utility function
U : R+ → R can be formulated as

V (x0) = sup
π∈A(x0)

inf
µ∈K

Eµ
[
U(Xπ

T )
]
. (2.2)

2.3. Constraint on the admissible strategies

In the next chapters, we investigate the robust utility maximization problem (2.2) for power
and logarithmic utility. We use the notation Uγ : R+ → R for γ ∈ (−∞, 1), where Uγ(x) = xγ

γ
for γ 6= 0 denotes power utility and U0(x) = log(x) is the logarithmic utility function.
First, we make the observation that for a large degree of model uncertainty the trivial

strategy π ≡ 0 becomes optimal both for logarithmic and for power utility.

13



2. A Robust Utility Maximization Problem

Proposition 2.1. Let γ ∈ (−∞, 1) and K ⊆ Rd. If r1d ∈ K, then the strategy (πt)t∈[0,T ]

with πt = 0 for all t ∈ [0, T ] is optimal for the optimization problem

sup
π∈A(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
. (2.3)

Proof. Recall that under Pµ, the drift of the stock returns is the vector µ, and that the wealth
process corresponding to a self-financing trading strategy π ∈ A(x0) thus satisfies

Xπ
t = x0 exp

(∫ t

0

(
r + π>s (µ− r1d)−

1

2
‖σ>πs‖2

)
ds+

∫ t

0
π>s σ dWµ

s

)
,

where Wµ is a Brownian motion under Pµ. We consider the case γ = 0 first. When applying
the logarithm U0 = log to terminal wealth Xπ

T , we obtain

log(Xπ
T ) = log(x0) +

∫ T

0

(
r + π>t (µ− r1d)−

1

2
‖σ>πt‖2

)
dt+

∫ T

0
π>t σ dWµ

t .

For any admissible π, the stochastic integral in the above equation is a martingale under Pµ,
hence it vanishes in expectation. The expected logarithmic utility of terminal wealth under
measure Pµ is then

Eµ
[
log(Xπ

T )
]

= log(x0) + Eµ
[∫ T

0

(
r + π>t (µ− r1d)−

1

2
‖σ>πt‖2

)
dt

]
.

Now since the vector r1d is an element of the set K of possible drift parameters, we imme-
diately see that

inf
µ∈K

Eµ
[
log(Xπ

T )
]
≤ Er1d

[
log(Xπ

T )
]
≤ log(x0) + rT,

so we can deduce that the trivial strategy π ≡ 0 is optimal for (2.3), since π ≡ 0 leads to
expected utility of terminal wealth log(x0) + rT under each of the measures Pµ.
For power utility, i.e. γ 6= 0, the argumentation is similar. Since r1d ∈ K, we have

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
≤ xγ0

γ
eγrT Er1d

[
exp

(
−γ

2

∫ T

0
‖σ>πt‖2 dt+ γ

∫ T

0
π>t σ dW r1d

t

)]
and we can rewrite

Er1d

[
exp

(
−γ

2

∫ T

0
‖σ>πt‖2 dt+ γ

∫ T

0
π>t σ dW r1d

t

)]
= Er1d

[
exp

(
γ

∫ T

0
π>t σ dW r1d

t − 1

2
γ2

∫ T

0
‖σ>πt‖2 dt

)
exp

(
−1

2
γ(1− γ)

∫ T

0
‖σ>πt‖2 dt

)]
.

Note that the term

exp

(
−1

2
γ(1− γ)

∫ T

0
‖σ>πt‖2 dt

)
is less or equal than one if γ > 0 and greater or equal than one if γ < 0. Thus, in both cases,

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
≤ xγ0

γ
eγrT Er1d

[
exp

(
γ

∫ T

0
π>t σ dW r1d

t − 1

2
γ2

∫ T

0
‖σ>πt‖2 dt

)]
.
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2.3. Constraint on the admissible strategies

But the exponential local martingale in the expression above has expectation less or equal
than one, so

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
≤ xγ0

γ
eγrT .

So again, as for logarithmic utility, the trivial strategy π ≡ 0 is optimal for (2.3) if r1d ∈ K,
since the zero strategy leads exactly to expected power utility xγ0

γ eγrT .

The observations above imply that when we take K to be for example some ball with
respect to a norm on Rd, say centered around our reference parameter ν, then as the radius
of that ball and thus the level of uncertainty about the true drift parameter exceeds a certain
threshold, it will be optimal for investors, both with logarithmic and with power utility, to
not invest anything in the stocks and everything in the risk-free asset.

Remark 2.2. The result from Proposition 2.1 is in line with a result in Biagini and Pı-
nar [4] where the authors also consider an increasing degree of uncertainty. In Øksendal and
Sulem [44, 45] the authors obtain a similar result for optimality of π ≡ 0. They consider a
jump diffusion model with a worst-case approach where the market chooses a scenario from
a fixed but very comprehensive set of probability measures. In contrast, it is shown in Zaw-
isza [67] that, if the model allows for stochastic interest rate r, the previous result does not
hold in general. In particular, the author shows that the optimal investment strategy in a
model with stochastic interest rate r does not invest exclusively in the bond.

Investing everything in the risk-free asset is, of course, a very extreme reaction to model
uncertainty. We are interested in finding less conservative strategies that still take into
account the increasing risk coming with a higher degree of model uncertainty. For that
purpose, we introduce another constraint on our strategies that prevents investors from solely
investing in the bond. Consider therefore the admissibility set

Ah(x0) =
{
π ∈ A(x0)

∣∣ 〈πt,1d〉 = h for all t ∈ [0, T ]
}
,

where h > 0. Taking h = 1 would imply that investors are not allowed to invest anything in
the risk-free asset. They must then distribute all of their wealth so as to invest everything in
the risky assets. Any value h > 1 forces investors to have a negative position in the risk-free
asset. For instance, a constraint of the form 〈πt,1d〉 = h > 0 typically applies for some
mutual funds when investors are required to invest a certain amount in risky assets.

Remark 2.3. The admissibility set Ah(x0) might seem unnecessarily restrictive at first
glance. Instead of fixing 〈πt,1d〉 = h for any t one might also want to consider utility
maximization among the larger class of strategies π with 〈πt,1d〉 ≥ h. However, we are mainly
interested in the asymptotic behavior of the optimal strategies as the level of uncertainty
increases. From that point of view it is intuitively clear that, when uncertainty is large,
investors seek to invest as little as possible in the risky assets. Therefore, enlarging the
class of admissible strategies asymptotically does not change the value of the optimization
problem, which is why we consider optimization among strategies in Ah(x0). Our results can
then be used to show that one obtains the same value asymptotically when allowing for a
larger range of strategies, see Section 5.2 for the exact statements.
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2. A Robust Utility Maximization Problem

In the following chapters we solve the optimization problem

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

for specific uncertainty sets K and analyze the asymptotic behavior of the optimal strategy
as the degree of uncertainty goes to infinity.
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3. Robust Optimization in Uncertainty
Balls

In this chapter we consider our continuous-time utility maximization problem

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

for γ = 0, i.e. logarithmic utility, and for uncertainty sets K which are balls in some p-norm.
For solving the problem it turns out that one can carry over results from a discrete-time risk
minimization problem as introduced in Pflug et al. [47]. In the following, we first repeat the
approach and results obtained in the aforementioned paper.

3.1. Risk minimization in a one-period model

Pflug et al. [47] fix a probability space (Ω,F , P ) and consider for 1 ≤ p < ∞ random
variables X ∈ Lp(Ω,F , P ) representing random future losses. For measuring the riskiness
of such losses, they apply risk measures R : Lp(Ω,F , P ) → R. The authors analyze the
optimization problem for an investor who wants to invest a fixed amount of money in a
combination of d ≥ 2 risky assets for one period of time. The investment decision is modelled
as a vector w ∈ Rd of portfolio weights.
Now let X : Ω → Rd be a random variable representing future losses of d risky assets.

If an investor was sure about the correct distribution of the future losses, then her risk
minimization problem could be defined as

inf
w∈Rd

R(〈X,w〉)

s.t. 〈w,1d〉 = 1.
(3.1)

However, in many situations investors face uncertainty about the true distribution of the
losses. For Q any Borel measure on Rd we denote by XQ an Rd-valued random variable with
image measure Q. Let us denote by Q̂ one specific Borel measure on Rd that can be thought
of as an estimation for the true distribution of the losses. To account for model uncertainty
it is reasonable to define a set of possible loss distributions centered around the reference
measure Q̂. This set is called ambiguity set in Pflug et al. [47] and defined as

Bκ(Q̂) =
{
Q ∈ P(Rd)

∣∣ dp(Q̂,Q) ≤ κ
}

for some κ > 0. Here, P(Rd) denotes the space of all Borel probability measures on Rd and
dp is the Wasserstein metric with parameter p ∈ [1,∞), i.e. dp : P(Rd) × P(Rd) → [0,∞)
with

dp(Q̂,Q) = inf
η∈H(Q̂,Q)

(∫
Rd×Rd

‖x− y‖pp dη(x, y)

)1/p

,
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3. Robust Optimization in Uncertainty Balls

where H(Q̂,Q) is the set of all measures on Rd × Rd for which the marginal distribution of
the first d components is Q̂ and the marginal distribution of the last d components is Q. Note
that κ is the radius of the ambiguity set, hence an increase in κ corresponds to a higher level
of uncertainty about the true distribution. A robust version of (3.1) can then be formulated
as

inf
w∈Rd

sup
Q∈Bκ(Q̂)

R(〈XQ, w〉)

s.t. 〈w,1d〉 = 1.

(3.2)

This is a worst-case approach where the investor wants to minimize the risk of her investment
under the worst possible probability measure Q ∈ Bκ(Q̂). A resulting optimal strategy will
therefore be robust with respect to the model uncertainty.
We now recap the main results in Pflug et al. [47]. Assume thatR is a convex, law invariant

risk measure on Lp(Ω,F , P ), 1 ≤ p <∞, which admits a dual characterization of the form

R(X) = max
Z∈Lq

{
E[XZ]− α(Z)

}
,

where q is such that 1
p + 1

q = 1 and α : Lq(Ω,F , P ) → R is convex. The key observation is
that, under suitable assumptions on the risk measure R, there exists a constant C > 0 such
that

sup
Q∈Bκ(Q̂)

R(〈XQ, w〉) = R(〈XQ̂, w〉) + Cκ‖w‖q (3.3)

for all κ > 0 and w ∈ Rd. Equation (3.3) shows that the investor’s objective in the robust
problem (3.2) can be decomposed into two components. On the one hand it is beneficial to
minimize the risk R(〈XQ̂, w〉) under the reference measure Q̂. On the other hand, investors
also seek to minimize ‖w‖q among the admissible weights w ∈ Rd. These two effects are
antithetic and from (3.3) we see that for large levels of uncertainty κ, the latter will dominate.
This is an intuitive explanation for why uniform diversification wu = (1

d , . . . ,
1
d)> will be

optimal for large levels of uncertainty, since wu minimizes ‖w‖q subject to the constraint
〈w,1d〉 = 1. This result is formalized in Pflug et al. [47, Prop. 3] which we repeat in the
following.

Proposition 3.1. Let p ∈ [1,∞) and q ∈ (1,∞] such that 1
p + 1

q = 1, and let R be a convex
risk measure on Lp(Ω,F , P ). Then, under some additional assumptions on R, it holds:
(i) For any ε > 0 there exists a κε such that for all κ > κε the optimal solution w∗ for (3.2)

satisfies ‖w∗ − wu‖q < ε.

(ii) If p = 1, then wu is optimal for (3.2) for κ > κ∗, where the threshold κ∗ can be stated
explicitly contingent on the first moment of ‖XQ̂‖1.

(iii) If p = 2, then the κε from (i) can be stated explicitly contingent on the second moment
of ‖XQ̂‖2.

The authors give two examples of risk measures R that satisfy the assumptions of Proposi-
tion 3.1. For p = 1 one example is the Conditional Value-at-Risk, defined for some γ ∈ (0, 1)
as

CVaRγ(X) =
1

1− γ

∫ 1

γ
F−1
X (t) dt.
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3.2. Logarithmic utility maximization

The second example is for the case p = 2 the Markowitz functional

Mγ(X) = E[X] + γ
√

var(X),

where γ > 0. Hence, in both cases the optimal solution to the robust problem (3.2) will
converge to a uniform diversification strategy as the level of uncertainty κ goes to infinity.

3.2. Logarithmic utility maximization

We now want to carry over the methods from Pflug et al. [47], presented in the preceding
section, to our continuous-time utility maximization problem for logarithmic utility. To
be able to do so we restrict our class of admissible trading strategies to those that are
deterministic and define for h > 0 the class

Ãh(x0) =
{
π ∈ Ah(x0)

∣∣πt is deterministic for all t ∈ [0, T ]
}
.

Here, we only investigate our optimization problem among these deterministic strategies, i.e.
we solve the problem

sup
π∈Ãh(x0)

inf
µ∈K

Eµ
[
log(Xπ

T )
]
, (3.4)

where we also assume a specific form of the uncertainty set K. However, in Chapter 4 we
follow another approach to solve the same robust optimization problem both for power and
logarithmic utility without imposing this preliminary restriction to deterministic strategies.
It will turn out that the overall optimal strategy is actually an element of Ãh(x0). Hence,
our restriction here is one that will not change the value of our optimization problem.
To begin with, we show that within the class of strategies Ãh(x0) we can restrict attention

to those strategies that are constant in time.

Lemma 3.2. For any strategy π ∈ Ãh(x0) there exists a strategy π̃ ∈ Ãh(x0) that is constant
in time, defined by

π̃t = π̃0 =
1

T

∫ T

0
πs ds

for all t ∈ [0, T ], such that

inf
µ∈K

Eµ
[
log(Xπ

T )
]
≤ inf

µ∈K
Eµ
[
log(X π̃

T )
]
.

Proof. Let π ∈ Ãh(x0) be arbitrary. Define (π̃t)t∈[0,T ] by

π̃t = π̃0 =
1

T

∫ T

0
πs ds

for all t ∈ [0, T ]. Then π̃ is by definition constant in time. Since π ∈ Ãh(x0) we also obtain

d∑
i=1

π̃it =
d∑
i=1

1

T

∫ T

0
πis ds =

1

T

∫ T

0

d∑
i=1

πis ds =
1

T

∫ T

0
hds = h,
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3. Robust Optimization in Uncertainty Balls

hence π̃ ∈ Ãh(x0). We now show that in our worst-case context π̃ leads to an objective value
that is at least as good as that from using strategy π. Note that∫ T

0
π̃t dt = T π̃0 =

∫ T

0
πt dt. (3.5)

Also, due to Jensen’s inequality we have∫ T

0
‖σ>πt‖2 dt = T

1

T

∫ T

0
‖σ>πt‖2 dt ≥ T

∥∥∥∥ 1

T

∫ T

0
σ>πt dt

∥∥∥∥2

=
1

T

∥∥∥∥∫ T

0
σ>πt dt

∥∥∥∥2

,

which yields∫ T

0
‖σ>π̃t‖2 dt = T‖σ>π̃0‖2 = T

∥∥∥∥σ> 1

T

∫ T

0
πt dt

∥∥∥∥2

=
1

T

∥∥∥∥∫ T

0
σ>πt dt

∥∥∥∥2

≤
∫ T

0
‖σ>πt‖2 dt.

By combining the above inequality and (3.5) we thus obtain∫ T

0

(
π>t (µ− r1d)−

1

2
‖σ>πt‖2

)
dt ≤

∫ T

0

(
π̃>t (µ− r1d)−

1

2
‖σ>π̃t‖2

)
dt

for any µ ∈ K and therefore

inf
µ∈K

Eµ
[
log(Xπ

T )
]
≤ inf

µ∈K
Eµ
[
log(X π̃

T )
]
.

Hence, the constant strategy π̃ is at least as good as the strategy π for the worst-case
optimization problem.

The preceding lemma ensures that the optimal strategy for the worst-case optimization
problem in (3.4) will be one that is constant in time. For these strategies, we prove a useful
representation of the influence that model uncertainty has on the objective when considering
a specific uncertainty set K. From now on let

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖p ≤ κ}
for some κ > 0 and some p ∈ [1,∞]. Here, ‖·‖p denotes the p-norm on Rd. The set K
is simply a ball with radius κ around our reference parameter ν. One can think of ν as
an estimation for the drift that might for example be obtained from historical data. By
increasing κ we model a higher degree of uncertainty about the true drift. A small value of
κ corresponds to high accuracy of our drift estimate.

Proposition 3.3. Let p ∈ [1,∞] and

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖p ≤ κ}.
For any strategy π ∈ Ãh(x0) that is constant in time, i.e. with πt = π0 for all t ∈ [0, T ], it
holds

inf
µ∈K

Eµ
[
log(Xπ

T )
]

= Eν
[
log(Xπ

T )
]
− κT‖π0‖q,

where q ∈ [1,∞] is such that 1
p + 1

q = 1.
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3.2. Logarithmic utility maximization

Proof. Let µ ∈ K and recall that

Eµ
[
log(Xπ

T )
]

= log(x0) + Eµ
[∫ T

0

(
r + π>t (µ− r1d)−

1

2
‖σ>πt‖2

)
dt

]
.

Since π ∈ Ãh(x0) is deterministic and assumed to be constant in time,

Eµ
[
log(Xπ

T )
]
− Eν

[
log(Xπ

T )
]

= Tπ>0 (µ− ν).

From Hölder’s inequality we know that

∣∣π>0 (µ− ν)
∣∣ =

∣∣∣∣ d∑
i=1

πi0(µi − νi)
∣∣∣∣ ≤ d∑

i=1

∣∣πi0(µi − νi)
∣∣ ≤ ‖π0‖q‖µ− ν‖p ≤ κ‖π0‖q, (3.6)

where 1
p + 1

q = 1. We can construct a parameter µ ∈ K such that the inequality in (3.6)
becomes an equality. In the case p ∈ (1,∞) let therefore

β = − κ

‖π0‖q/pq
.

Note that the norm of π0 is strictly positive since π0 = 0 is not admissible. Then define

µi =

{
νi + β(πi0)q/p , if πi0 ≥ 0,

νi − β(−πi0)q/p , if πi0 < 0.

Now we easily calculate

π>0 (µ− ν) =

d∑
i=1

πi0(µi − νi) =

d∑
i=1

|πi0|β|πi0|q/p

= β
d∑
i=1

|πi0|1+q/p = β
d∑
i=1

|πi0|q = β‖π0‖qq = −κ‖π0‖q.

If p = 1, let j ∈ {1, . . . , d} denote an index with

|πj0| = max
i=1,...,d

|πi0|

and define

µi =

{
νj − κ sgn(πj0) , i = j,

νi , i 6= j.

Then also

π>0 (µ− ν) =
d∑
i=1

πi0(µi − νi) = −κ sgn(πj0)πj0 = −κ max
i=1,...,d

|πi0| = −κ‖π0‖∞.

In the case p =∞ define µ ∈ K by

µi = νi − κ sgn(πi0)
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3. Robust Optimization in Uncertainty Balls

for all i = 1, . . . , d. Then

π>0 (µ− ν) =
d∑
i=1

πi0(µi − νi) = −κ
d∑
i=1

|πi0| = −κ‖π0‖1.

In conclusion, there always exists a parameter µ ∈ K such that the inequality in (3.6) becomes
an equality. Therefore, it follows that

inf
µ∈K

Eµ
[
log(Xπ

T )
]

= Eν
[
log(Xπ

T )
]

+ T inf
µ∈K

π>0 (µ− ν) = Eν
[
log(Xπ

T )
]
− κT‖π0‖q,

and the claim is proven.

The preceding proposition gives a useful characterization of the worst-case objective. Recall
that an investor wants to maximize

inf
µ∈K

Eµ
[
log(Xπ

T )
]

over admissible strategies π. Proposition 3.3 shows that this objective can be split into
two antithetic components. The first summand is the expected utility under the reference
parameter ν. The second summand is a negative multiple of ‖π0‖q. So on the one hand,
there is a natural incentive to maximize expected utility under the reference parameter that
we think of as an estimation for the true drift. On the other hand, it is beneficial to keep
‖π0‖q as small as possible which suggests to use diversified strategies. What we also see is
that the larger κ is, the more important this latter intention becomes. The vector u ∈ Rd
that minimizes ‖u‖q subject to 〈u,1d〉 = h is u = h

d1d. This observation suggests that a
uniform diversification strategy of the form πu = (πut )t∈[0,T ] with

πut =
h

d
1d

for all t ∈ [0, T ] might be a good choice for an investor who faces a high degree of model
uncertainty. This conjecture is in line with the results in Pflug et al. [47] for a one-period
setting and with the work by DeMiguel et al. [17] who show that the uniform diversification
strategy as a benchmark outperforms other more involved strategies in terms of various per-
formance criteria. In the following we analyze the performance of the uniform diversification
strategy πu in our continuous-time setting. From now on, let p ∈ [1,∞) and q ∈ (1,∞] such
that 1

p + 1
q = 1.

Theorem 3.4. For any κ > 0 let π∗(κ) denote an optimal strategy for the constrained worst-
case optimization problem (3.4) with K = {µ ∈ Rd | ‖µ − ν‖p ≤ κ}. Then for every ε > 0
there exists a κ0 > 0 such that for all κ ≥ κ0 the strategy π∗(κ) satisfies∥∥∥∥ 1

T

∫ T

0

(
π∗s(κ)− πu0

)
ds

∥∥∥∥
q

< ε.

In particular, if an optimal strategy exists, then there is an optimal strategy that is constant
in time and any such strategy satisfies

‖π∗0(κ)− πu0‖q < ε

for all κ ≥ κ0.
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3.2. Logarithmic utility maximization

Proof. The proof goes along the lines of the proof in Pflug et al. [47, Prop. 3]. We define for
each n ∈ N the set

An :=
{
π ∈ Rd

∣∣∣ 〈π,1d〉 = h and Eν
[
log(Xπu

T )
]
− nT‖πu0‖q ≤ Eν

[
log(Xπ

T )
]
− nT‖π‖q

}
.

By Xπ
T we here mean terminal wealth when using the strategy (πt)t∈[0,T ] with πt = π for

all t ∈ [0, T ]. This constant strategy is then admissible in the sense of Ãh(x0). Since
‖πu0‖q ≤ ‖π‖q for each π ∈ Rd with 〈π,1d〉 = h it is easy to see that An+1 ⊆ An for each
n ∈ N. Also, it follows that

∞⋂
n=1

An = {πu0}

since ‖πu0‖q < ‖π‖q for q ∈ (1,∞] if π 6= πu0 . Furthermore, the sets An are bounded since for
each π ∈ An it holds

nT‖π‖q ≤ Eν
[
log(Xπ

T )
]
− Eν

[
log(Xπu

T )
]

+ nT‖πu0‖q,

and the term Eν [log(Xπ
T )] is bounded from above by the finite value that is attained in the

corresponding unconstrained portfolio optimization problem. Due to continuity of

Eν
[
log(Xπ

T )
]
− nT‖π‖q

in π, the sets An are also closed. Hence, as subsets of Rd, they are compact.
Now let ε > 0. Then the sets

Bε
n := An \

{
π ∈ Rd

∣∣ ‖π − πu0‖q < ε
}

are also compact with Bε
n+1 ⊆ Bε

n for each n ∈ N and

∞⋂
n=1

Bε
n = ∅.

Hence, there exists an Mε ∈ N such that

Mε⋂
n=1

Bε
n = ∅.

On the other hand, however,

Mε⋂
n=1

Bε
n =

Mε⋂
n=1

An \
{
π ∈ Rd

∣∣ ‖π − πu0‖q < ε
}

= AMε \
{
π ∈ Rd

∣∣ ‖π − πu0‖q < ε
}
.

So it follows that
AMε ⊆

{
π ∈ Rd

∣∣ ‖π − πu0‖q < ε
}
.

Now let κ ≥Mε. Then, if ‖π−πu0‖q ≥ ε for some π ∈ Rd with 〈π,1d〉 = h, we know π /∈ AMε ,
hence in particular

Eν
[
log(Xπu

T )
]
− κT‖πu0‖q > Eν

[
log(Xπ

T )
]
− κT‖π‖q.
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3. Robust Optimization in Uncertainty Balls

But then it follows from Proposition 3.3 that the strategy (πt)t∈[0,T ] with πt = π for all
t ∈ [0, T ] leads to a worse expected utility than the uniform investment strategy πu and
cannot be optimal.
Now let (πt)t∈[0,T ] ∈ Ãh(x0) be an arbitrary strategy. From Lemma 3.2 we know that the

constant strategy (π̃t)t∈[0,T ] with

π̃t = π̃0 =
1

T

∫ T

0
πs ds

for all t ∈ [0, T ] satisfies

inf
µ∈K

Eµ
[
log(Xπ

T )
]
≤ inf

µ∈K
Eµ
[
log(X π̃

T )
]
.

By Proposition 3.3, the right-hand side is equal to

Eν
[
log(X π̃

T )
]
− κT‖π̃0‖q.

We have shown above that this expression is strictly smaller than

Eν
[
log(Xπu

T )
]
− κT‖πu0‖q = inf

µ∈K
Eµ
[
log(Xπu

T )
]

for all κ ≥Mε if ‖π̃0 − πu0‖q ≥ ε. So, in that case, the strategy (πt)t∈[0,T ] cannot be optimal.
Therefore, if π∗(κ) denotes an optimal strategy for the optimization problem with degree of
uncertainty κ we must have∥∥∥∥ 1

T

∫ T

0

(
π∗s(κ)− πu0

)
ds

∥∥∥∥
q

=

∥∥∥∥ 1

T

∫ T

0
π∗s(κ) ds− πu0

∥∥∥∥
q

< ε

for κ ≥Mε.

The previous theorem shows that any optimal strategy for the constrained worst-case
optimization problem (3.4) with K = {µ ∈ Rd | ‖µ − ν‖p ≤ κ} for p ∈ [1,∞) converges, as
model uncertainty increases, to the uniform diversification strategy πu = (πut )t∈[0,T ] with

πut =
h

d
1d.

This implies that, as uncertainty about the true drift parameter goes to infinity, investors who
are forced to invest by the constraint 〈πt,1d〉 = h for all t ∈ [0, T ] will split the proportion
h of their money more and more evenly among all risky assets. This uniform diversification
is hence a robust response to model uncertainty. The above convergence result holds for all
p ∈ [1,∞). For p = 1 and p = 2 we can show even stronger results. This is done in the
following subsections. Both for p = 1 and p = 2 we need the following lemma that gives an
estimation for the influence that the choice of strategy has on the objective, given that one
optimizes under the reference measure P = Pν .

Lemma 3.5. There exists a constant Cp > 0 such that

Eν
[
log(Xπ

T )− log(Xπu

T )
]
≤ Cp‖π0 − πu0‖q

for all strategies π ∈ Ãh(x0) that are constant in time.
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3.2. Logarithmic utility maximization

Proof. Observe that since both π and πu are deterministic and constant in time we can
rewrite

Eν
[
log(Xπ

T )− log(Xπu

T )
]

= T
(
π>0 (ν − r1d)−

1

2
‖σ>π0‖2

)
− T

(
(πu0 )>(ν − r1d)−

1

2
‖σ>πu0‖2

)
= T (π0 − πu0 )>(ν − r1d)−

T

2

(
‖σ>π0‖2 − ‖σ>πu0‖2

)
= T (π0 − πu0 )>(ν − r1d)−

T

2

(
‖σ>π0‖+ ‖σ>πu0‖

)(
‖σ>π0‖ − ‖σ>πu0‖

)
.

If π is such that ‖σ>π0‖ ≥ ‖σ>πu0‖, then clearly the right-hand side of the above equation is
bounded by

T (π0 − πu0 )>(ν − r1d) ≤ T‖π0 − πu0‖q‖ν − r1d‖p (3.7)

by Hölder’s inequality. If on the other hand ‖σ>π0‖ < ‖σ>πu0‖, then∣∣∣T
2

(
‖σ>π0‖+ ‖σ>πu0‖

)(
‖σ>π0‖ − ‖σ>πu0‖

)∣∣∣ ≤ T‖σ>πu0‖ ∣∣‖σ>π0‖ − ‖σ>πu0‖
∣∣

≤ T‖σ>πu0‖ ‖σ>(π0 − πu0 )‖.
(3.8)

In the second step we have used the reverse triangle inequality. Using submultiplicativity of
the spectral norm we get

‖σ>(π0 − πu0 )‖ ≤ ‖σ‖ ‖π0 − πu0‖.
Due to the equivalence of the Euclidean norm and the q-norm there exists a constant C2,q > 0
such that

‖π0 − πu0‖ ≤ C2,q‖π0 − πu0‖q.
Plugging these estimations back into (3.8) yields∣∣∣T

2

(
‖σ>π0‖+ ‖σ>πu0‖

)(
‖σ>π0‖ − ‖σ>πu0‖

)∣∣∣ ≤ T‖σ>πu0‖ ‖σ‖C2,q‖π0 − πu0‖q.

Hence,

Eν
[
log(Xπ

T )− log(Xπu

T )
]
≤ T (π0 − πu0 )>(ν − r1d) + T‖σ>πu0‖ ‖σ‖C2,q‖π0 − πu0‖q
≤ T‖π0 − πu0‖q‖ν − r1d‖p + T‖σ>πu0‖ ‖σ‖C2,q‖π0 − πu0‖q
= T

(
‖ν − r1d‖p + C2,q‖σ‖ ‖σ>πu0‖

)
‖π0 − πu0‖q.

When comparing this upper bound with the one in (3.7) we see that for all π ∈ Ãh(x0) that
are constant in time we obtain

Eν
[
log(Xπ

T )− log(Xπu

T )
]
≤ Cp‖π0 − πu0‖q,

where
Cp = T

(
‖ν − r1d‖p + C2,q‖σ‖ ‖σ>πu0‖

)
is a positive constant that does not depend on π.
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3. Robust Optimization in Uncertainty Balls

3.2.1. Special case: uncertainty ball in 1-norm

With the help of Lemma 3.5 we now prove a result for the special case where

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖1 ≤ κ},
i.e. for p = 1. We show below that there exists some threshold κ∗ such that πu will be optimal
for the optimization problem (3.4) if κ ≥ κ∗. The proof relies on the following relation.

Lemma 3.6. Let u ∈ Rd be some vector with 〈u,1d〉 = h and v = h
d1d. Then

‖u− v‖∞ ≤ (d− 1)
(
‖u‖∞ − ‖v‖∞

)
.

Proof. The statement is already proven in Pflug et al. [47, Prop. 3]. We repeat the proof
here for completeness.
Note that

‖u− v‖∞ = max
i=1,...,d

∣∣∣ui − h

d

∣∣∣ =
∣∣∣uj − h

d

∣∣∣
for some j ∈ {1, . . . , d}. If uj ≥ h

d , then u
j = maxi=1,...,d|ui| = ‖u‖∞ and

‖u− v‖∞ = uj − h

d
= ‖u‖∞ − ‖v‖∞ ≤ (d− 1)

(
‖u‖∞ − ‖v‖∞

)
.

If uj < h
d , then u

j = mini=1,...,d u
i and

(d− 1) max
i=1,...,d

ui + uj ≥
d∑
i=1

ui = h,

hence

max
i=1,...,d

ui − h

d
≥ h− uj

d− 1
− h

d
=
dh− duj − (d− 1)h

d(d− 1)
=

h
d − uj
d− 1

.

It follows that

‖u− v‖∞ =
h

d
− uj ≤ (d− 1)

(
max
i=1,...,d

ui − h

d

)
≤ (d− 1)

(
‖u‖∞ − ‖v‖∞

)
.

Hence, in both cases the claim is proven.

Now we can show optimality of πu for high degree of model uncertainty κ.

Proposition 3.7. Let p = 1, i.e.

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖1 ≤ κ}.
Then πu = (πut )t∈[0,T ] is optimal for the optimization problem (3.4) if κ ≥ κ∗, where

κ∗ =
C1

T
(d− 1)

and C1 > 0 is the constant from Lemma 3.5 for p = 1.
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3.2. Logarithmic utility maximization

Proof. By combining the results from Lemma 3.5 for p = 1, q =∞ and from Lemma 3.6 we
deduce that for any strategy π ∈ Ãh(x0) that is constant in time it holds

Eν
[
log(Xπ

T )− log(Xπu

T )
]
≤ C1‖π0 − πu0‖∞ ≤ C1(d− 1)

(
‖π0‖∞ − ‖πu0‖∞

)
.

So if κ ≥ κ∗ = C1
T (d− 1) then

Eν
[
log(Xπ

T )− log(Xπu

T )
]
≤ κT

(
‖π0‖∞ − ‖πu0‖∞

)
,

hence by Proposition 3.3 it holds

inf
µ∈K

Eµ
[
log(Xπ

T )
]

= Eν
[
log(Xπ

T )
]
− κT‖π0‖∞

≤ Eν
[
log(Xπu

T )
]
− κT‖πu0‖∞ = inf

µ∈K
Eµ
[
log(Xπu

T )
]
.

We can conclude that πu is at least as good as the strategy π. Since this holds for any
π ∈ Ãh(x0) that is constant in time, it follows from Lemma 3.2 that πu is optimal among all
strategies in Ãh(x0).

The preceding proposition shows that in the case p = 1, i.e. for an uncertainty ball of the
form

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖1 ≤ κ},
we do not only have convergence of the optimal solution to πu, as shown in Theorem 3.4.
The strategy πu is even optimal as soon as the degree of uncertainty κ exceeds a certain
threshold. As can be seen from the proof of Lemma 3.5, this threshold κ∗ can be computed
explicitly, given that all model parameters are known.

3.2.2. Special case: uncertainty ball in 2-norm

Another special case is an uncertainty ball of the form

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖2 ≤ κ},
i.e. p = 2. In terms of the interpretation of the uncertainty set this is perhaps the most
natural model for uncertainty about the drift parameter. In this case as well we can prove a
stronger result than that in Theorem 3.4. Firstly, we state the following technical lemma.

Lemma 3.8. Let v = h
d1d and u ∈ Rd, u 6= v, some vector with 〈u,1d〉 = h. Then

‖u− v‖2
‖u‖2 − ‖v‖2

=

(
h2

d‖u− v‖22
+ 1

)1/2

+
h√

d‖u− v‖2
.

Proof. The proof goes along the lines of Pflug et al. [47, Prop. 3]. Firstly, observe that if
〈u,1d〉 = h and u 6= v then ‖u‖2 > ‖v‖2. Let v1 = v and extend to an orthogonal basis
(v1, v2, . . . , vd) of Rd where ‖vi‖2 = 1 for all i = 2, . . . , d. Then we can write u as

u = v +
d∑
i=2

civi
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3. Robust Optimization in Uncertainty Balls

for some c2, . . . , cd ∈ R, where we have used 〈u,1d〉 = h. Hence,

‖u− v‖2
‖u‖2 − ‖v‖2

=
‖u− v‖2(

h2

d +
∑d

i=2 c
2
i

)1/2 − h√
d

=
‖u− v‖2(

h2

d + ‖u− v‖22
)1/2 − h√

d

.

When using the third binomial formula we see that this expression is equal to

‖u− v‖2
((

h2

d + ‖u− v‖22
)1/2

+ h√
d

)
h2

d + ‖u− v‖22 − h2

d

=

(
h2

d‖u− v‖22
+ 1

)1/2

+
h√

d‖u− v‖2
,

which proves the claim.

This lemma can be used to show that for the case p = 2 the optimal strategy gets arbitrarily
close to the uniform diversification strategy for a high degree of model uncertainty. In addition
to the general convergence result of Theorem 3.4 we also gain insights into the threshold value
κ∗ for the uncertainty radius.

Proposition 3.9. Let p = 2, i.e. K = {µ ∈ Rd | ‖µ − ν‖2 ≤ κ}. Then for any ε > 0 an
optimal solution π∗(κ) to the optimization problem (3.4) satisfies∥∥∥∥ 1

T

∫ T

0

(
π∗s(κ)− πu0

)
ds

∥∥∥∥
2

< ε

if κ > κ∗, where

κ∗ =
C2

T

(( h2

dε2
+ 1
)1/2

+
h√
dε

)
,

and where C2 > 0 is the constant from Lemma 3.5 for p = 2. In particular, if an optimal
strategy exists, then there is an optimal strategy that is constant in time and any such strategy
satisfies

‖π∗0(κ)− πu0‖2 < ε

for all κ > κ∗.

Proof. Let ε > 0. Let v = h
d1d and u ∈ Rd with 〈u,1d〉 = h and ‖u − v‖2 ≥ ε. Then it

follows from Lemma 3.8 that

‖u− v‖2 ≤
(( h2

dε2
+ 1
)1/2

+
h√
dε

)(
‖u‖2 − ‖v‖2

)
. (3.9)

Now let π ∈ Ãh(x0) be an arbitrary admissible strategy. From Lemma 3.2 we know that the
constant strategy (π̃t)t∈[0,T ] ∈ Ãh(x0), defined by

π̃t = π̃0 =
1

T

∫ T

0
πs ds

for all t ∈ [0, T ], satisfies

inf
µ∈K

Eµ
[
log(Xπ

T )
]
≤ inf

µ∈K
Eµ
[
log(X π̃

T )
]
.
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3.2. Logarithmic utility maximization

Since π̃ is constant, we can conclude from Lemma 3.5 for p = q = 2 together with (3.9) that
if ‖π̃0 − πu0‖2 ≥ ε, then

Eν
[
log(X π̃

T )− log(Xπu

T )
]
≤ C2‖π̃0 − πu0‖2 ≤ C2

(( h2

dε2
+ 1
)1/2

+
h√
dε

)(
‖π̃0‖2 − ‖πu0‖2

)
.

So if κ > κ∗, where

κ∗ =
C2

T

(( h2

dε2
+ 1
)1/2

+
h√
dε

)
,

then
Eν
[
log(X π̃

T )− log(Xπu

T )
]
< κT

(
‖π̃0‖2 − ‖πu0‖2

)
.

Then by Proposition 3.3 it follows that

inf
µ∈K

Eµ
[
log(X π̃

T )
]

= Eν
[
log(X π̃

T )
]
−κT‖π̃0‖2 < Eν [log(Xπu

T )]−κT‖πu0‖2 = inf
µ∈K

Eµ
[
log(Xπu

T )
]
.

Therefore, neither π itself nor π̃ are optimal if κ > κ∗. Consequently, any optimal strategy
π∗(κ) must fulfill ∥∥∥∥ 1

T

∫ T

0

(
π∗s(κ)− πu0

)
ds

∥∥∥∥
2

=

∥∥∥∥ 1

T

∫ T

0
π∗s(κ) ds− πu0

∥∥∥∥
2

< ε

if κ > κ∗.

The preceding proposition shows convergence of the optimal strategy to the uniform di-
versification strategy (πut )t∈[0,T ] for the uncertainty set K = {µ ∈ Rd | ‖µ − ν‖2 ≤ κ}. This
result is already stated in Theorem 3.4 in a more general form. The additional benefit in
Proposition 3.9 over Theorem 3.4 lies in the explicit form of the threshold value κ∗. Vice
versa, if a certain level of uncertainty is assumed for the model, investors can investigate how
far from the optimum they will end up when using the uniform diversification strategy πu.
The larger the value for κ, the closer the optimal strategy will be to the uniform one.
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4. A Duality Approach

In the preceding chapter we have seen how methods from a one-period risk minimization
problem can be carried over to our continuous-time robust utility maximization problem.
However, this approach has several drawbacks. Firstly, it is restricted to logarithmic utility
and to uncertainty sets K that are balls in some p-norm. Already when using power utility
functions one is confronted with various problems that make it more difficult to carry over
the results immediately. Secondly, we have seen that we have to restrict to the class of
deterministic strategies to be able to use the methods from Pflug et al. [47]. However, it is
by no means clear in the first place that an optimal strategy to our worst-case optimization
problem should be a deterministic one. In fact, in many worst-case optimization problems
it is even beneficial to use randomized strategies, see for example Delage et al. [15]. And
lastly, the results in general do not yield the solution to the robust optimization problems
in explicit form. They only give asymptotic results for large levels of uncertainty, but for a
fixed level κ it is not clear what a good strategy for the optimization problem looks like. To
overcome these problems we follow here a different approach that works for both power and
logarithmic utility and that results in an explicit solution of the optimization problem.
Throughout this chapter, we denote with Uγ : R+ → R, γ ∈ (−∞, 1), the power utility

function Uγ(x) = xγ

γ if γ 6= 0, and the logarithmic utility function U0(x) = log(x) if γ = 0.

4.1. Ellipsoidal uncertainty sets

Recall that our robust constrained utility maximization problem reads

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
, (4.1)

where the admissibility set is given by

Ah(x0) =
{
π ∈ A(x0)

∣∣ 〈πt,1d〉 = h for all t ∈ [0, T ]
}

for some h > 0. In this section we study the case where the uncertainty set K is an ellipsoid
in Rd that is centered around some reference parameter. We therefore consider

K =
{
µ ∈ Rd

∣∣ (µ− ν)>Γ−1(µ− ν) ≤ κ2
}
.

Here, κ > 0, ν ∈ Rd and Γ ∈ Rd×d is symmetric and positive definite. Hence, K is centered
around ν and shaped by Γ. For Γ = Id we simply get a ball in Euclidean norm that has
radius κ and center ν. By means of Γ, however, we can model that some (linear combinations
of) drifts are known at a higher degree of accuracy than others. One interesting special case
that is discussed in the literature is Γ = σσ>, see for example Biagini and Pınar [4]. The
value of κ determines the size of the ellipsoid. Higher values of κ correspond to a higher
degree of uncertainty about the true drift parameter.
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4. A Duality Approach

4.1.1. Solution of the non-robust problem

To solve the optimization problem in (4.1) we first address the non-robust constrained utility
maximization problem under a fixed parameter µ ∈ Rd. We repeatedly make use of a specific
matrix that we introduce in the following lemma.

Lemma 4.1. Define the matrix D ∈ R(d−1)×d as

D =

1 0 −1
. . .

...
0 1 −1

 ∈ R(d−1)×d.

Then, given that σ ∈ Rd×m has rank d, Dσ has rank d− 1.

Proof. Since d ≤ m and σ ∈ Rd×m has rank d, the rows of σ are independent vectors in Rm.
Now Dσ ∈ R(d−1)×m and due to the specific form of D, the i-th row of Dσ is σi,· − σd,·,
i = 1, . . . , d− 1. Here, σi,· denotes the i-th row of matrix σ. Now from the independence of
σ1,·, . . . , σd,· it follows for any a1, . . . , ad−1 ∈ R that if

0 =

d−1∑
i=1

ai(σi,· − σd,·) =

d−1∑
i=1

aiσi,· −
d−1∑
i=1

aiσd,·,

then a1 = · · · = ad−1 = 0. Hence, the rows of Dσ are independent, and therefore it holds
rank(Dσ) = d− 1.

The matrix D defined in the lemma above comes up naturally in the following calculations
when using the constraint 〈πt,1d〉 = h in the form

πdt = h−
d−1∑
i=1

πit.

This can be seen as a reduction of the problem from d dimensions to d − 1 dimensions. Of
course, one could just as well write any other component of πt as a function of the remaining
components. In the calculations below, certain matrix-vector products permanently appear.
For the sake of better readability it makes sense to introduce the following notation.

Definition 4.2. We define the matrix A ∈ Rd×d and the vector c ∈ Rd by

A = D>(Dσσ>D>)−1D,

c = ed −D>(Dσσ>D>)−1Dσσ>ed = (Id −Aσσ>)ed,

where D ∈ R(d−1)×d is the matrix from Lemma 4.1 and ed is the d-th standard unit vector
in Rd.

Note that we assume σ ∈ Rd×m to have full rank, hence by the previous lemma we know
thatDσ has full rank, in particularDσσ>D> = Dσ(Dσ)> is nonsingular. Using this notation
we now give the optimal strategy for the non-robust constrained optimization problem, i.e.
given a fixed drift µ.
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4.1. Ellipsoidal uncertainty sets

Proposition 4.3. Let µ ∈ Rd. Then the optimal strategy for the optimization problem

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

is the strategy (πt)t∈[0,T ] with

πt =
1

1− γAµ+ hc

for all t ∈ [0, T ], with A and c as in Definition 4.2.

Proof. Let (πt)t∈[0,T ] ∈ Ah(x0) be an arbitrary strategy. Then πdt = h −∑d−1
i=1 π

i
t for all

t ∈ [0, T ]. Recall that the terminal wealth under strategy π can be written as

Xπ
T = x0 exp

(
rT +

∫ T

0

(
π>t (µ− r1d)−

1

2
‖σ>πt‖2

)
dt+

∫ T

0
π>t σ dWµ

t

)
.

Now note that

π>t (µ− r1d) =

d−1∑
i=1

πit(µ
i − r) +

(
h−

d−1∑
i=1

πit

)
(µd − r)

= h(µd − r) +
d−1∑
i=1

πit(µ
i − µd) = h(e>d µ− r) + π̃>t Dµ,

(4.2)

where π̃t := π1:d−1
t for all t ∈ [0, T ]. With the same notation we can also rewrite

π>t σ =
d−1∑
i=1

πitσi,· +

(
h−

d−1∑
i=1

πit

)
σd,· = hσd,· +

d−1∑
i=1

πit(σi,· − σd,·) = he>d σ + π̃>t Dσ, (4.3)

where σi,· denotes the i-th row of matrix σ.
In the case γ 6= 0 we now apply the power function to terminal wealth and get

Eµ
[
(Xπ

T )γ
]

= xγ0eγrT Eµ
[
exp

(
γ

∫ T

0

(
π>t (µ−r1d)−

1

2
‖σ>πt‖2

)
dt+γ

∫ T

0
π>t σ dWµ

t

)]
. (4.4)

Here, we can plug in (4.3) in the stochastic integral. The integral then splits up into∫ T

0
γπ>t σ dWµ

t =

∫ T

0
γhe>d σ dWµ

t +

∫ T

0
γπ̃>t Dσ dWµ

t .

We then perform a change of measure

dP̃
dPµ

= ZT = exp

(∫ T

0
γhe>d σ dWµ

t −
1

2

∫ T

0
‖γhσ>ed‖2 dt

)
.

With all these considerations, (4.4) becomes

Eµ
[
(Xπ

T )γ
]

= xγ0eγrT Eµ
[
exp

(
γ

∫ T

0

(
π>t (µ− r1d)−

1

2
‖σ>πt‖2

)
dt+ γ

∫ T

0
π>t σ dWµ

t

)]
= xγ0eγrT Ẽ

[
exp

(
γ

∫ T

0

(
π>t (µ− r1d)−

1

2
‖σ>πt‖2 +

1

2
γ‖hσ>ed‖2

)
dt+

∫ T

0
γπ̃>t Dσ dWµ

t

)]
.
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Note that, under P̃, the process (W̃µ
t )t∈[0,T ] with

W̃µ
t = Wµ

t −
∫ t

0
γhσ>ed ds

is a Brownian motion by Girsanov’s Theorem. Hence, we substitute∫ T

0
γπ̃>t Dσ dWµ

t =

∫ T

0
γπ̃>t Dσ dW̃µ

t +

∫ T

0
γ2hπ̃>t Dσσ

>ed dt

and rearrange to obtain

γ

∫ T

0

(
π>t (µ− r1d)−

1

2
‖σ>πt‖2 +

1

2
γ‖hσ>ed‖2

)
dt+

∫ T

0
γπ̃>t Dσ dWµ

t

= γ

∫ T

0

(
π>t (µ− r1d)−

1

2
‖σ>πt‖2 +

1

2
γ‖hσ>ed‖2 + γhπ̃>t Dσσ

>ed

)
dt+

∫ T

0
γπ̃>t Dσ dW̃µ

t .

By using (4.2) and (4.3) the integrand in the Lebesgue integral above can be written as

he>d µ− hr + π̃>t Dµ−
1

2
‖hσ>ed + (Dσ)>π̃t‖2 +

1

2
γ‖hσ>ed‖2 + γhπ̃>t Dσσ

>ed

= he>d µ− hr + π̃>t
(
Dµ+ γhDσσ>ed

)
− 1

2
(1− γ)‖hσ>ed‖2 − hπ̃>t Dσσ>ed −

1

2
‖(Dσ)>π̃t‖2

= π̃>t
(
Dµ− h(1− γ)Dσσ>ed

)
− 1

2
‖(Dσ)>π̃t‖2 + he>d µ− hr −

1

2
(1− γ)‖hσ>ed‖2.

If we now substitute

σ̃ = Dσ,

r̃ = (1− h)r + he>d µ−
1

2
(1− γ)‖hσ>ed‖2,

µ̃ = Dµ− h(1− γ)Dσσ>ed + r̃1d−1,

(4.5)

then the expected utility of terminal wealth is given by

Eµ
[
Uγ(Xπ

T )
]

=
xγ0
γ
Ẽ
[
exp

(
γ

∫ T

0

(
r̃ + π̃>t (µ̃− r̃1d−1)− 1

2
‖σ̃>π̃t‖2

)
dt+ γ

∫ T

0
π̃>t σ̃ dW̃t

)]
.

(4.6)

In the case γ = 0 we apply the logarithm to terminal wealth and get

Eµ
[
log(Xπ

T )
]

= log(x0) + rT + Eµ
[∫ T

0

(
π>t (µ− r1d)−

1

2
‖σ>πt‖2

)
dt

]
.

Like in the case for power utility, we see that we can rewrite this expression as

Eµ
[
log(Xπ

T )
]

= log(x0) + r̃ T + E
[∫ T

0

(
π̃>t
(
µ̃− r̃1d−1

)
− 1

2
‖σ̃>π̃t‖2

)
dt

]
, (4.7)

where we use the same substitution with r̃, µ̃ and σ̃ as in (4.5) for γ = 0.
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4.1. Ellipsoidal uncertainty sets

In both cases γ 6= 0 and γ = 0 we realize that the expressions in (4.6) and (4.7) are again the
expected utility of terminal wealth in a financial market with d−1 risky assets where the risk-
free interest rate is r̃, the drift of the d−1 risky assets is given by µ̃ ∈ Rd−1, and the volatility
matrix is σ̃ ∈ R(d−1)×m. Note that σ̃ = Dσ has full row rank equal to d− 1 by Lemma 4.1,
in particular σ̃σ̃> is nonsingular. So we have reduced the d-dimensional constrained problem
to a (d − 1)-dimensional unconstrained problem. When trying to maximize the right-hand
side of (4.6), respectively (4.7), over all admissible strategies π̃ with values in Rd−1, we know
that the optimal strategy is constant in time and has the form

π̃t =
1

1− γ (σ̃σ̃>)−1(µ̃− r̃1d−1) =
1

1− γ (Dσσ>D>)−1
(
Dµ− h(1− γ)Dσσ>ed

)
. (4.8)

Now note that

πt =

d∑
i=1

πitei =

d−1∑
i=1

πitei +

(
h−

d−1∑
i=1

πit

)
ed =

d−1∑
i=1

πit(ei − ed) + hed = D>π̃t + hed.

Plugging in the optimal π̃t from (4.8) then yields

πt = D>
1

1− γ (Dσσ>D>)−1
(
Dµ− h(1− γ)Dσσ>ed

)
+ hed

=
1

1− γD
>(Dσσ>D>)−1Dµ+ h

(
Id −D>(Dσσ>D>)−1Dσσ>

)
ed

=
1

1− γAµ+ hc

for all t ∈ [0, T ].

In the preceding proposition we have calculated the optimal strategy when maximizing
utility under the constraint that 〈πt,1d〉 = h for all t ∈ [0, T ], given that the drift parameter
µ ∈ Rd is known. In the proof we have seen that the d-dimensional constrained problem
could be reduced to a (d − 1)-dimensional unconstrained problem. This is also useful for
determining the optimal expected utility from terminal wealth.

Corollary 4.4. Let µ ∈ Rd. Then the optimal expected utility from terminal wealth is

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

=


xγ0
γ

exp
(
γT
(
r̃ +

1

2(1− γ)

(
µ̃− r̃1d−1

)>
(σ̃σ̃>)−1

(
µ̃− r̃1d−1

)))
, γ 6= 0,

log(x0) +
(
r̃ +

1

2

(
µ̃− r̃1d−1

)>
(σ̃σ̃>)−1

(
µ̃− r̃1d−1

))
T, γ = 0,

where
σ̃ = Dσ,

r̃ = (1− h)r + he>d µ−
1

2
(1− γ)‖hσ>ed‖2,

µ̃ = Dµ− h(1− γ)Dσσ>ed + r̃1d−1.

(4.9)
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Proof. In the proof of Proposition 4.3 we have seen that for any admissible strategy π we
can write Eµ[Uγ(Xπ

T )] as the expected utility of terminal wealth in a market with d− 1 risky
assets where the constraint on the strategies vanishes and the parameters of the market are
given as in (4.9). We have also seen that the optimal strategy in this (d − 1)-dimensional
market fulfills

π̃t =
1

1− γ (σ̃σ̃>)−1(µ̃− r̃1d−1).

Plugging this optimal strategy in yields the expression from the corollary.

The previous results give a representation of the optimal strategy and the optimal expected
utility of terminal wealth under the constraint 〈πt,1d〉 = h for all t ∈ [0, T ], given that the
drift parameter µ is known. Of course, both the strategy and the terminal wealth then
depend on µ. However, we aim at solving the robust utility maximization problem

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
,

where investors maximize their worst-case expected utility among all µ ∈ K. For that pur-
pose, we address in a next step the question what the worst possible parameter µ would be
for the investor, given that she reacts optimally, i.e. by applying the strategy from Proposi-
tion 4.3. This corresponds to solving the dual problem

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

where, in comparison to our problem, the infimum and supremum are interchanged. Note
here that we do not know yet whether the equality

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

= inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

holds. So, in general the solution of the dual problem may not be of great help as long as we
cannot show equality. In the following we will first derive the solution to the dual problem
and then prove a minimax theorem that establishes the equality above. This will ensure that
the solution to the dual problem also solves our original problem.

4.1.2. The worst-case parameter

From Corollary 4.4 we have a representation of the optimal expected utility of terminal
wealth, depending on the transformed parameters r̃, µ̃ and σ̃. Note that due to the represen-
tation from the corollary, for any γ ∈ (−∞, 1), minimizing this expression in µ is equivalent
to minimizing

r̃ +
1

2(1− γ)

(
µ̃− r̃1d−1

)>
(σ̃σ̃>)−1

(
µ̃− r̃1d−1

)
.

We now plug in the representations of r̃, µ̃ and σ̃ from the corollary and obtain

(1− h)r + he>d µ−
1

2
(1− γ)‖hσ>ed‖2

+
1

2(1− γ)

(
Dµ− h(1− γ)Dσσ>ed

)>
(Dσσ>D>)−1

(
Dµ− h(1− γ)Dσσ>ed

)
.
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4.1. Ellipsoidal uncertainty sets

Our aim is to minimize the above expression in µ. We see that many terms do not depend
on µ. The minimization is therefore equivalent to the minimization of

he>d µ+
1

2(1− γ)

(
µ>D>(Dσσ>D>)−1Dµ− 2h(1− γ)(Dσσ>ed)

>(Dσσ>D>)−1Dµ
)

=
1

2(1− γ)
µ>D>(Dσσ>D>)−1Dµ+ h

(
e>d µ− (Dσσ>ed)

>(Dσσ>D>)−1Dµ
)

=
1

2(1− γ)
µ>Aµ+ hc>µ,

(4.10)

where A and c were introduced in Definition 4.2. Recall that the domain on which we have
to minimize (4.10) is

K =
{
µ ∈ Rd

∣∣ (µ− ν)>Γ−1(µ− ν) ≤ κ2
}
.

To make this minimization problem easier to handle, we apply an easy transformation to the
elements µ ∈ K. For that purpose, note that since Γ ∈ Rd×d is assumed to be symmetric
and positive definite, there exists a decomposition of the form Γ = ττ> where τ ∈ Rd×d is
nonsingular. Then we can rewrite the constraint (µ− ν)>Γ−1(µ− ν) ≤ κ2 as

κ2 ≥ (µ− ν)>(ττ>)−1(µ− ν) = (µ− ν)>(τ>)−1τ−1(µ− ν) =
(
τ−1(µ− ν)

)>(
τ−1(µ− ν)

)
.

Hence, for an arbitrary µ ∈ K we define ρ := τ−1(µ − ν) so that µ = ν + τρ and ‖ρ‖ ≤ κ.
We can then rewrite (4.10) as

1

2(1− γ)
µ>Aµ+ hc>µ =

1

2(1− γ)

(
(τρ)>Aτρ+ 2ν>Aτρ+ ν>Aν

)
+ hc>τρ+ hc>ν

=
1

2(1− γ)
ρ>τ>Aτρ+

( 1

1− γAν + hc
)>
τρ+

1

2(1− γ)
ν>Aν + hc>ν.

Minimizing (4.10) in µ ∈ K is therefore equivalent to minimizing g : Bκ(0)→ R with

g(ρ) =
1

2(1− γ)
ρ>τ>Aτρ+

(
hc+

1

1− γAν
)>
τρ

in ρ and then setting µ = ν + τρ.
The behavior of the function g is, especially for large values of κ, determined to a large

extent by the matrix A. We collect some useful results about D and A in the following
lemmas.

Lemma 4.5. For the matrix D from Lemma 4.1 it holds

(i) ker(D) = span({1d});

(ii) ker(D>) = {0}.

Proof. (i) For any x ∈ Rd we have that Dx ∈ Rd−1 where the i-th component of Dx is
xi − xd, i = 1, . . . , d− 1. Hence, Dx = 0 if and only if x1 = · · · = xd.

(ii) From Lemma 4.1 we know that D has rank d− 1, hence ker(D>) = {0}.
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4. A Duality Approach

Lemma 4.6. The matrix A from Definition 4.2 is symmetric and positive semidefinite with
ker(A) = span({1d}).

Proof. Note that Dσσ>D> is symmetric. Hence, the same is true for its inverse and thus
for D>(Dσσ>D>)−1D. Also, Dσσ>D> = (Dσ)(Dσ)> is positive definite since σ ∈ Rd×m
has rank d and therefore by Lemma 4.1, Dσ has full row rank d− 1. It follows that also the
inverse (Dσσ>D>)−1 is positive definite. So since

x>Ax = x>D>(Dσσ>D>)−1Dx = (Dx)>(Dσσ>D>)−1(Dx) ≥ 0

for any x ∈ Rd, the matrix A is positive semidefinite. From Lemma 4.5 it follows that

Ax = D>(Dσσ>D>)−1Dx = 0

if and only if (Dσσ>D>)−1Dx = 0, which is equivalent to Dx = 0. Hence we can deduce
ker(A) = ker(D) = span({1d}).

From Lemma 4.6 we can immediately deduce that also the matrix τ>Aτ ∈ Rd×d is sym-
metric and positive semidefinite with

ker(τ>Aτ) = span({τ−11d}).

Having collected these properties of the matrix A and of τ>Aτ enables us to find the param-
eter ρ that minimizes

g(ρ) =
1

2(1− γ)
ρ>τ>Aτρ+

(
hc+

1

1− γAν
)>
τρ

on the set Bκ(0) = {ρ ∈ Rd | ‖ρ‖ ≤ κ}. The following lemma identifies the minimizer.

Lemma 4.7. Let 0 = λ1 < λ2 ≤ · · · ≤ λd denote the eigenvalues of τ>Aτ , and let

v1 =
1

‖τ−11d‖
τ−11d, v2, . . . , vd ∈ Rd

denote the respective orthogonal eigenvectors with ‖vi‖ = 1 for all i = 1, . . . , d. Then the
minimum of the function g : Bκ(0)→ R with

g(ρ) =
1

2(1− γ)
ρ>τ>Aτρ+

(
hc+

1

1− γAν
)>
τρ

on the domain Bκ(0) = {ρ ∈ Rd | ‖ρ‖ ≤ κ} is attained by the vector

ρ∗ = −
d∑
i=1

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi,

where ψ(κ) ∈ (0, κ] is uniquely determined by ‖ρ∗‖ = κ.
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Proof. Recall that τ>Aτ has eigenvalue λ1 = 0 with a corresponding normed eigenvector of
the form v1 = 1

‖τ−11d‖
τ−11d. Also, the other eigenvalues of τ>Aτ are positive, and due to

the symmetry of the matrix we can assume that v1, . . . , vd are orthogonal and form a basis
of Rd.

Firstly, we show that the minimum of g is attained on the boundary of Bκ(0). For that
purpose, we observe that the gradient of g is

∇g(ρ) =
1

2(1− γ)
2τ>Aτρ+ τ>

(
hc+

1

1− γAν
)

=
1

1− γ τ
>Aτρ+ hτ>(Id −Aσσ>)ed +

1

1− γ τ
>Aν

= τ>
(
A
( 1

1− γ (τρ+ ν)− hσσ>ed
)

+ hed

)
= τ>

(
D>(Dσσ>D>)−1D

( 1

1− γ (τρ+ ν)− hσσ>ed
)

+ hed

)
.

From the last representation of the gradient it becomes apparent that there is no ρ ∈ Bκ(0)
with ∇g(ρ) = 0, since τ> is nonsingular and the vector hed is not in the range of D>. Hence,
there is no critical point of the function g. The minimum of the function on the bounded,
closed set Bκ(0) is therefore attained on the boundary. In the following, we compute that
minimizer.
Let ρ ∈ Bκ(0) be arbitrary. Since v1, . . . , vd form a basis of Rd, we can write

ρ =
d∑
i=1

aivi,

where a1, . . . , ad ∈ R are uniquely determined. The minimization of g in ρ is then equivalent
to a minimization in the coefficients a1, . . . , ad. Since we know that a minimizer of the
function g must lie on the boundary of Bκ(0) and therefore have norm ‖ρ‖ = κ, we obtain
the constraint

κ2 = ‖ρ‖2 =

d∑
i=1

a2
i (4.11)

on the coefficients. Before doing the minimization, we first notice that for our minimizer, the
coefficient a1 will be less or equal than zero. This is because

g

( d∑
i=1

aivi

)
=

1

2(1− γ)

( d∑
i=1

aivi

)>
τ>Aτ

( d∑
i=1

aivi

)
+
(
hc+

1

1− γAν
)>
τ

( d∑
i=1

aivi

)

=
1

2(1− γ)

d∑
i=1

d∑
j=1

aiajv
>
i τ
>Aτvj +

d∑
i=1

aihc
>τvi +

1

1− γ
d∑
i=1

ai(Aν)>τvi

=
1

2(1− γ)

d∑
i=1

a2
iλi +

d∑
i=1

aihc
>τvi +

1

1− γ
d∑
i=1

aiν
>λi(τ

>)−1vi

=
1

2(1− γ)

d∑
i=2

a2
iλi +

d∑
i=2

ai

(
hc+

λi
1− γΓ−1ν

)>
τvi + a1hc

>τv1.
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For the third equality we have used that vi is an eigenvector of τ>Aτ to eigenvalue λi and
that v1, . . . , vd are orthogonal. In the last step we have used λ1 = 0. Next, one easily sees
that

c>τv1 = e>d (Id −Aσσ>)>τ
1

‖τ−11d‖
τ−11d =

1

‖τ−11d‖
e>d (1d − σσ>A1d) =

1

‖τ−11d‖
, (4.12)

since A1d = 0 by Lemma 4.6. By plugging in this representation we deduce that, when
looking for the minimizer of g, we can restrict to the parameters ρ with coefficient a1 ≤ 0.
Hence, we can rewrite the constraint (4.11) as

a1 = −

√√√√κ2 −
d∑
i=2

a2
i .

We plug this representation of a1, as well as (4.12), back in to obtain

g̃(a2, . . . , ad) := g

( d∑
i=1

aivi

)

=
1

2(1− γ)

d∑
i=2

a2
iλi +

d∑
i=2

ai

(
hc+

λi
1− γΓ−1ν

)>
τvi −

h

‖τ−11d‖

√√√√κ2 −
d∑
i=2

a2
i ,

and minimize this expression in a2, . . . , ad. Note that the domain of g̃ is {x ∈ Rd−1 | ‖x‖ ≤ κ}.
In the interior of this domain, the partial derivative of g̃ with respect to ak, k = 2, . . . , d, is
given by

∂g̃

∂ak
(a2, . . . , ad) =

2akλk
2(1− γ)

+
(
hc+

λk
1− γΓ−1ν

)>
τvk −

h

2‖τ−11d‖
√
κ2 −∑d

i=2 a
2
i

(−2ak)

=

(
λk

1− γ +
h

‖τ−11d‖
√
κ2 −∑d

i=2 a
2
i

)
ak +

(
hc+

λk
1− γΓ−1ν

)>
τvk.

When setting this expression equal to zero, we obtain

ak = −
(

λk
1− γ +

h

‖τ−11d‖
√
κ2 −∑d

i=2 a
2
i

)−1(
hc+

λk
1− γΓ−1ν

)>
τvk

= −
(

λk
1− γ −

h

‖τ−11d‖a1

)−1〈
hτ>c+

λk
1− γ τ

−1ν, vk

〉
.

(4.13)

Note that this representation does not provide the coefficients ak explicitly since a1 here is a
function of (a2, . . . , ad). However, the function

[−κ, 0) 3 a1 7→ a2
1 +

d∑
i=2

(
λi

1− γ −
h

‖τ−11d‖a1

)−2〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉2
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has the derivative

2a1 +

d∑
i=2

(−2)

(
λi

1− γ −
h

‖τ−11d‖a1

)−3(
− h

‖τ−11d‖
)(
− 1

a2
1

)〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉2

= 2a1 −
2h

‖τ−11d‖a2
1

d∑
i=2

(
λi

1− γ −
h

‖τ−11d‖a1

)−3〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉2

,

which is strictly negative on [−κ, 0). For a1 = −κ, the value of the function is greater or
equal κ2, for a1 tending to zero from below it converges to zero, hence there is a unique value
of a1 ∈ [−κ, 0) where the function has value κ2. So (4.13) together with (4.11) uniquely
determines a1, . . . , ad.
Moreover, the second partial derivatives of g̃ have the form

∂2g̃

∂a2
k

(a2, . . . , ad) =
λk

1− γ +
h

‖τ−11d‖
√
κ2 −∑d

i=2 a
2
i

− ak
h

2‖τ−11d‖
(
κ2 −∑d

i=2 a
2
i

)3/2 (−2ak)

=
λk

1− γ +
h

‖τ−11d‖
√
κ2 −∑d

i=2 a
2
i

+
ha2

k

‖τ−11d‖
(
κ2 −∑d

i=2 a
2
i

)3/2
for k = 2, . . . , d, and for k, l = 1, . . . , d with k 6= l we obtain

∂2g̃

∂al∂ak
(a2, . . . , ad) = − hak

2‖τ−11d‖
(
κ2 −∑d

i=2 a
2
i

)3/2 (−2al) =
hakal

‖τ−11d‖
(
κ2 −∑d

i=2 a
2
i

)3/2 .
Hence, the Hessian of g̃ is of the form

Hg̃(a2, . . . , ad) =
1

1− γ Λ̃ +
h

‖τ−11d‖
√
κ2 −∑d

i=2 a
2
i

Id−1

+
h

‖τ−11d‖
(
κ2 −∑d

i=2 a
2
i

)3/2 (a2, . . . , ad)
>(a2, . . . , ad),

where Λ̃ ∈ R(d−1)×(d−1) is a diagonal matrix with diagonal entries λ2, . . . , λd > 0. Obvi-
ously, the first two summands on the right-hand side are positive-definite matrices. The last
summand is positive semidefinite. So we conclude that Hg̃ is positive definite on the whole
interior of the domain of g̃. In particular, in the point (a2, . . . , ad) defined via (4.13) together
with (4.11), there is a global minimum of the function g̃.
To conclude with, the minimum of the function g on Bκ(0) is attained by the vector

ρ∗ =

d∑
i=1

aivi,

where

ai = −
(

λi
1− γ +

h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
(4.14)

for i = 1, . . . , d, and where ψ(κ) = −a1 ∈ (0, κ] is uniquely determined by ‖ρ∗‖ = κ. Note
that (4.14) also holds for i = 1 since λ1 = 0 and c>τv1 = 1

‖τ−11d‖
by (4.12).
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The previous lemma now yields the solution of the dual problem

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

to our original optimization problem.

Theorem 4.8. Let 0 = λ1 < λ2 ≤ · · · ≤ λd denote the eigenvalues of τ>Aτ , and let

v1 =
1

‖τ−11d‖
τ−11d, v2, . . . , vd ∈ Rd

denote the respective orthogonal eigenvectors with ‖vi‖ = 1 for all i = 1, . . . , d. Then

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

= Eµ∗
[
Uγ(Xπ∗

T )
]
,

where

µ∗ = ν − τ
d∑
i=1

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi

for ψ(κ) ∈ (0, κ] that is uniquely determined by ‖τ−1(µ∗ − ν)‖ = κ, and where (π∗t )t∈[0,T ] is
defined by

π∗t =
1

1− γAµ
∗ + hc

for all t ∈ [0, T ].

Proof. For any fixed parameter µ ∈ Rd, Proposition 4.3 gives the optimal strategy for the
optimization problem

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]
.

With the help of Corollary 4.4 we have seen that minimizing the above expression in µ on
the set K =

{
µ ∈ Rd

∣∣ (µ − ν)>Γ−1(µ − ν) ≤ κ2
}
is equivalent to minimizing the function

g : Bκ(0)→ R with

g(ρ) =
1

2(1− γ)
ρ>τ>Aτρ+

(
hc+

1

1− γAν
)>
τρ

in ρ and then setting µ = ν + τρ. The claim now follows from Lemma 4.7 together with the
representation in Proposition 4.3.

The preceding theorem solves the problem

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]
, (4.15)

where K =
{
µ ∈ Rd

∣∣ (µ− ν)>Γ−1(µ− ν) ≤ κ2
}
. This is the corresponding dual problem to

our original optimization problem

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
, (4.16)
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4.1. Ellipsoidal uncertainty sets

but in general the values of these two problems do not coincide since the supremum and the
infimum do not interchange. There are, of course, special cases in which the supremum and
the infimum do interchange. Those results are called minimax theorems in the literature. In
the context of our portfolio optimization problem, a minimax theorem has been shown in
Quenez [50], building up on the theory by Kramkov and Schachermayer [37]. However, the
setting in Quenez [50] does not include any additional constraints on the trading strategies.
Due to our constraint 〈πt,1d〉 = h for all t ∈ [0, T ] we cannot carry over these results directly.
In the following, we will however use our knowledge about the optimal strategy for (4.15) to
show that it indeed also solves (4.16) and that in this case, the supremum and the infimum
can be interchanged.

4.1.3. A minimax theorem

The following representation of π∗ is useful for establishing duality and proving our minimax
theorem.

Lemma 4.9. The strategy π∗ from Theorem 4.8 satisfies

π∗t = − h

ψ(κ)‖τ−11d‖
Γ−1(µ∗ − ν)

for all t ∈ [0, T ].

Proof. Throughout the proof, let

ai = −
(

λi
1− γ +

h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
for i = 1, . . . , d, so that

τ−1(µ∗ − ν) =
d∑
i=1

aivi.

Due to the form of the ai we can write

d∑
i=1

( λi
1− γ +

h

ψ(κ)‖τ−11d‖
)
aivi = −

d∑
i=1

〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi.

Since the vectors v1, . . . , vd form an orthonormal basis of Rd and are eigenvectors to the
eigenvalues λ1, . . . , λd of the symmetric matrix τ>Aτ , the right-hand side equals

−hτ>c− 1

1− γ
d∑
i=1

〈τ−1ν, λivi〉vi = −hτ>c− 1

1− γ
d∑
i=1

〈τ−1ν, τ>Aτvi〉vi

= −hτ>c− 1

1− γ
d∑
i=1

〈τ>Aν, vi〉vi

= −hτ>c− 1

1− γ τ
>Aν.
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4. A Duality Approach

On the other hand, we get

d∑
i=1

( λi
1− γ +

h

ψ(κ)‖τ−11d‖
)
aivi =

1

1− γ
d∑
i=1

aiλivi +
h

ψ(κ)‖τ−11d‖
d∑
i=1

aivi

=
1

1− γ
d∑
i=1

aiτ
>Aτvi +

h

ψ(κ)‖τ−11d‖
τ−1(µ∗ − ν)

=
1

1− γ τ
>A(µ∗ − ν) +

h

ψ(κ)‖τ−11d‖
τ−1(µ∗ − ν).

We have used here that vi is an eigenvector of τ>Aτ to the eigenvalue λi for each i = 1, . . . , d.
In conclusion,

1

1− γ τ
>Aµ∗ = − h

ψ(κ)‖τ−11d‖
τ−1(µ∗ − ν)− hτ>c.

Hence, by using the representation of π∗ from Theorem 4.8 we obtain

π∗t =
1

1− γAµ
∗ + hc = (τ>)−1

( 1

1− γ τ
>Aµ∗ + hτ>c

)
= − h

ψ(κ)‖τ−11d‖
(ττ>)−1(µ∗ − ν)

= − h

ψ(κ)‖τ−11d‖
Γ−1(µ∗ − ν)

for all t ∈ [0, T ].

The preceding lemma characterizes the strategy π∗ that is optimal for the parameter µ∗.
In the following we show that, vice versa, µ∗ is also the worst possible drift parameter, given
that an investor applies strategy π∗. It then follows that the point (π∗, µ∗) is a saddle point
of our problem, i.e. it holds

Eµ∗
[
Uγ(Xπ

T )
]
≤ Eµ∗

[
Uγ(Xπ∗

T )
]
≤ Eµ

[
Uγ(Xπ∗

T )
]

for all µ ∈ K and π ∈ Ah(x0). This property of (π∗, µ∗) is essential for proving that the
value of our original optimization problem

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

(4.17)

equals the value of the corresponding dual problem

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]
, (4.18)

i.e. that the supremum and the infimum interchange. Note that the inequality

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
≤ inf

µ∈K
sup

π∈Ah(x0)
Eµ
[
Uγ(Xπ

T )
]

always holds when interchanging supremum and infimum, see for example Ekeland and
Temam [18, Ch. VI, Prop. 1.1]. For the reverse inequality the saddle point property is
needed.
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4.1. Ellipsoidal uncertainty sets

Proposition 4.10. The parameter µ that attains the minimum in

inf
µ∈K

Eµ
[
Uγ(Xπ∗

T )
]

is µ∗, i.e. µ∗ is the worst possible parameter, given that an investor chooses strategy π∗.

Proof. Since π∗ is a strategy that is constant in time and deterministic, we can rewrite the
expected utility of terminal wealth in the case γ 6= 0 as

Eµ
[
Uγ(Xπ∗

T )
]

=
xγ0
γ

Eµ
[
exp

(
γrT + γT

(
(π∗0)>(µ− r1d)−

1

2
‖σ>π∗0‖2

)
+ γ(π∗0)>σWT

)]
=
xγ0
γ

exp

(
γrT + γT

(
(π∗0)>(µ− r1d)−

1

2
‖σ>π∗0‖2

)
+

1

2
γ2T‖σ>π∗0‖2

)
.

In the case γ = 0 we have

Eµ
[
log(Xπ∗

T )
]

= log(x0) + rT + T
(

(π∗0)>(µ− r1d)−
1

2
‖σ>π∗0‖2

)
.

Obviously, for any γ ∈ (−∞, 1) the parameter µ ∈ K that minimizes the expressions above
is the parameter that minimizes the term (π∗0)>µ.
For an arbitrary θ ∈ Rd, θ 6= 0, it holds that the parameter µ ∈ Rd that minimizes θ>µ

such that (µ− ν)>Γ−1(µ− ν) ≤ κ2 has the form

µ̃ = ν − κ√
θ>Γθ

Γθ. (4.19)

To verify this, note that for any µ with ‖τ−1(µ− ν)‖ ≤ κ we can rewrite

θ>µ = θ>ν + θ>ττ−1(µ− ν),

so that Hölder’s inequality implies

θ>µ ≥ θ>ν − ‖τ>θ‖ ‖τ−1(µ− ν)‖ ≥ θ>ν − κ‖τ>θ‖ = θ>ν − κ
√
θ>Γθ. (4.20)

For the parameter µ̃ from (4.19) we obtain

θ>µ̃ = θ>ν − κ√
θ>Γθ

θ>Γθ = θ>ν − κ
√
θ>Γθ,

so that the lower bound in (4.20) is attained. Now it is sufficient to show that the parameter
µ∗ is equal to µ̃ from (4.19) for θ = π∗0.
From Lemma 4.9 we recall

π∗t = − h

ψ(κ)‖τ−11d‖
Γ−1(µ∗ − ν). (4.21)

Hence,

(π∗0)>Γπ∗0 =
h2

ψ(κ)2‖τ−11d‖2
(µ∗ − ν)>Γ−1(µ∗ − ν) =

h2κ2

ψ(κ)2‖τ−11d‖2
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4. A Duality Approach

and √
(π∗0)>Γπ∗0 =

hκ

ψ(κ)‖τ−11d‖
. (4.22)

When rearranging (4.21) for µ∗ and plugging in (4.22) we obtain

µ∗ = ν − ψ(κ)‖τ−11d‖
h

Γπ∗0 = ν − κ√
(π∗0)>Γπ∗0

Γπ∗0.

Comparing with µ̃ in (4.19) we conclude that µ∗ is the parameter that minimizes (π∗0)>µ
over all µ ∈ K, and is therefore also the parameter that attains the minimum in

inf
µ∈K

Eµ
[
Uγ(Xπ∗

T )
]
.

We conclude that µ∗ is the worst possible parameter for the strategy π∗.

The above proposition establishes an equilibrium result and a direct connection between
the optimization problems (4.17) and (4.18). The strategy π∗ is the best strategy that an
investor can choose when the drift of stocks is known to be µ∗. On the other hand, µ∗ is
also the parameter the market has to choose to minimize the investor’s expected utility of
terminal wealth, given that the investor applies strategy π∗. This can also be seen in the
context of a two-player game where player one (the investor) tries to maximize Eµ[Uγ(Xπ

T )]
over strategies π and player two (the market) tries to minimize the same expression over
parameters µ. In general, it makes a difference which player is the first one to make a choice
in such a two-player game. The point (π∗, µ∗) however constitutes a saddle point, which
enables us to show that in our setting the solution to both optimization problems (4.17)
and (4.18) is the same. Put differently, if both players behave optimally, it does not make
any difference whether player one or player two is the first one to make a choice.

Theorem 4.11. Let K = {µ ∈ Rd | (µ− ν)>Γ−1(µ− ν) ≤ κ2}. Then

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

= Eµ∗
[
Uγ(Xπ∗

T )
]

= inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]
,

where µ∗ and π∗ are defined as in Theorem 4.8.

Proof. For an arbitrary parameter µ ∈ K, let π(µ) = (πt(µ))t∈[0,T ] denote the strategy from
Ah(x0) that is optimal, given that the drift parameter is µ. Recall that we have found a
representation for π(µ) in Proposition 4.3. Then we know from Theorem 4.8 that

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

= inf
µ∈K

Eµ
[
Uγ(X

π(µ)
T )

]
= Eµ∗

[
Uγ(Xπ∗

T )
]
. (4.23)

On the other hand, Proposition 4.10 yields

Eµ∗
[
Uγ(Xπ∗

T )
]

= inf
µ∈K

Eµ
[
Uγ(Xπ∗

T )
]
≤ sup

π∈Ah(x0)
inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
. (4.24)

Furthermore, we also have

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
≤ inf

µ∈K
sup

π∈Ah(x0)
Eµ
[
Uγ(Xπ

T )
]
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4.2. Alternative uncertainty sets

since the inequality always holds when interchanging supremum and infimum, see for example
Ekeland and Temam [18, Ch. VI, Prop. 1.1]. Hence, combining (4.23) and (4.24) yields

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

= Eµ∗
[
Uγ(Xπ∗

T )
]

≤ sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
≤ inf

µ∈K
sup

π∈Ah(x0)
Eµ
[
Uγ(Xπ

T )
]
.

(4.25)

Consequently, all inequalities in (4.25) are equalities and the claim follows.

The previous theorem establishes duality between our original robust utility maximization
problem (4.17) and the dual problem (4.18) where supremum and infimum are interchanged.
Additionally, we now also know the solution to our original problem since the theorem states

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

= Eµ∗
[
Uγ(Xπ∗

T )
]
,

where both µ∗ and π∗ are given in Theorem 4.8. This gives the optimal solution to our
constrained robust utility maximization problem in a nearly explicit way. Note that the
parameter µ∗ in Theorem 4.8 is not given explicitly since the parameter ψ(κ) is defined in
an implicit way. However, finding ψ(κ) numerically can be done in a straightforward way
by a numerical root search of a monotone function. For this reason, determining µ∗ and π∗

numerically does not pose any problems.
From the representation of π∗ in Theorem 4.8 we immediately see that the optimal strategy

is deterministic and constant in time. It is therefore optimal for investors to hold a certain
constant fraction of wealth in every asset. The degree of uncertainty κ only appears in
the parameter ψ(κ). In Chapter 5 we study the asymptotic behavior of the strategy as
uncertainty becomes large.

4.2. Alternative uncertainty sets

In the preceding section we have modelled K as an ellipsoid with some arbitrary radius κ.
A special case of such an ellipsoid is an uncertainty ball. Of course, one can think of other
reasonable sets for modelling uncertainty about the drift parameter µ. In this section we
want to apply our duality approach to the optimization problem

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
, (4.26)

where again
Ah(x0) =

{
π ∈ A(x0)

∣∣ 〈πt,1d〉 = h for all t ∈ [0, T ]
}

for some h > 0 but with an alternative form of K. We now instead define

K =
{
µ ∈ Rd

∣∣1>d µ = b
}

for some b ∈ R. The motivation for this uncertainty set is that one has an estimate for the
performance of a stock index, and therefore for the overall average performance of the stocks,
but not for the single stocks themselves. Note that, in contrast to the ellipsoidal uncertainty
set, this set K is unbounded and we do not have any radius or level of uncertainty.
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Recall that Proposition 4.3 gives the optimal strategy for an investor who knows the true
drift parameter µ. Further, we have seen that minimizing

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

in µ is equivalent to minimizing g : K → R with

g(µ) =
1

2(1− γ)
µ>Aµ+ hc>µ.

The following theorem gives an explicit representation of the minimizer µ∗ on the set K
defined above.

Theorem 4.12. Let 0 = λ1 < λ2 ≤ · · · ≤ λd denote the eigenvalues of the matrix A,
and let v1, . . . , vd ∈ Rd denote the respective orthogonal eigenvectors with ‖vi‖ = 1 for all
i = 1, . . . , d. Then

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

= Eµ∗
[
Uγ(Xπ∗

T )
]
,

where

µ∗ =
b

d
1d − h(1− γ)

d∑
i=2

λ−1
i 〈c, vi〉 vi,

and where (π∗t )t∈[0,T ] is defined by π∗t = h
d1d for all t ∈ [0, T ].

Proof. Let µ ∈ K. We know that we can take v1 = 1√
d
1d. Then we can write µ =

∑d
i=1 aivi

for some a1, . . . , ad ∈ R. Due to our assumption µ ∈ K we have

b = 1>d µ = 1>d

d∑
i=1

aivi =
d∑
i=1

ai1
>
d vi = a11

>
d v1 = a1

√
d.

The second but last equality follows from orthogonality of the vi. For any µ ∈ K we must
therefore have a1 = b√

d
. Now we plug in the representation of µ into g and obtain

g(µ) =
1

2(1− γ)

( d∑
i=1

aivi

)>
A

( d∑
i=1

aivi

)
+ hc>

d∑
i=1

aivi

=
1

2(1− γ)

d∑
i=1

a2
iλi + h

d∑
i=1

aic
>vi

=
1

2(1− γ)

d∑
i=2

a2
iλi + h

d∑
i=2

aic
>vi + ha1c

>v1

=
1

2(1− γ)

d∑
i=2

a2
iλi + h

d∑
i=2

aic
>vi + h

b

d
.

(4.27)

In the last step we have used that a1 = b√
d
and

c>v1 =
1√
d
e>d (Id − σσ>A)1d =

1√
d
e>d 1d =

1√
d
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4.2. Alternative uncertainty sets

due to A1d = 0. The expression in (4.27) is now just a function of the parameters a2, . . . , ad.
So we define g̃ : Rd−1 → R by

g̃(a2, . . . , ad) =
1

2(1− γ)

d∑
i=2

a2
iλi + h

d∑
i=2

aic
>vi + h

b

d

and perform a minimization of g̃ in a2, . . . , ad. Note that

∂g̃

∂ak
(a2, . . . , ad) =

λk
1− γ ak + hc>vk

for any k = 2, . . . , d. The first-order condition thus yields ak = −1−γ
λk
hc>vk, k = 2, . . . , d, as

a candidate. The second derivatives are

∂2g̃

∂a2
k

=
λk

1− γ > 0 and
∂2g̃

∂al∂ak
= 0

for all k, l = 2, . . . , d with k 6= l. Hence, our candidate is really a minimizer of the function
g̃. It follows that the minimum of

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

over µ ∈ K is attained by

µ∗ =
d∑
i=1

aivi =
b√
d
v1 − h(1− γ)

d∑
i=2

1

λi
c>vivi =

b

d
1d − h(1− γ)

d∑
i=2

λ−1
i 〈c, vi〉 vi.

From Proposition 4.3 we know that the optimal strategy given parameter µ∗ is (π∗t )t∈[0,T ]

with
π∗t =

1

1− γAµ
∗ + hc

for all t ∈ [0, T ]. Now note that

d∑
i=1

λiaivi = −h(1− γ)
d∑
i=2

〈c, vi〉vi = −h(1− γ)(c−〈c, v1〉v1) = −h(1− γ)
(
c− 1

d
1d

)
. (4.28)

On the other hand
d∑
i=1

λiaivi =

d∑
i=1

aiAvi = A

d∑
i=1

aivi = Aµ∗. (4.29)

Combining (4.28) and (4.29) yields

Aµ∗ = −h(1− γ)
(
c− 1

d
1d

)
.

This implies for the optimal strategy that

π∗t = −h
(
c− 1

d
1d

)
+ hc =

h

d
1d

for any t ∈ [0, T ].
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The above theorem gives the solution to the problem

inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]

(4.30)

for our index-based uncertainty set K. Note that the representation of µ∗ is explicit given
the eigenvalues and eigenvectors of the matrix A. The strategy π∗ is constant in time and
equal to

π∗t =
h

d
1d

for any t ∈ [0, T ]. Due to our constraint 〈πt,1d〉 = h we realize that the optimal strategy
is just a uniform diversification strategy taking the constraint on the bond investment into
account. What is left to show to establish duality between (4.30) and our original optimization
problem (4.26) is that µ∗ is the worst possible parameter in K, given that an investor chooses
strategy π∗. The parameter µ that minimizes Eµ[Uγ(Xπ∗

T )] is, as we have seen before, the
one that minimizes (π∗0)>µ. But

(π∗0)>µ =
h

d
1>d µ =

h

d
b

for any µ ∈ K. Thus, any µ ∈ K is a minimizer. In particular, we can deduce the following.

Corollary 4.13. Let K = {µ ∈ Rd |1>d µ = b}. Then

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

= Eµ∗
[
Uγ(Xπ∗

T )
]

= inf
µ∈K

sup
π∈Ah(x0)

Eµ
[
Uγ(Xπ

T )
]
,

where µ∗ and π∗ are defined as in Theorem 4.12.

Together with our previous considerations, the proof of the above corollary is analogous to
the one of Theorem 4.11.
In conclusion, we have shown that our duality approach and the corresponding minimax

theorem are not restricted to ellipsoidal uncertainty sets. In this section our approach has
been applied to an uncertainty set of the form

K =
{
µ ∈ Rd

∣∣1>d µ = b
}

for some b ∈ R, i.e. where the drift of the single assets is unknown, but one has knowledge
about the overall performance of the collection of assets via the sum of the single drifts. Here
we get an explicit representation of the worst-case parameter and obtain that the optimal
robust strategy is the uniform diversification strategy. We will see in Chapter 5 how this
fits into the framework of our results for ellipsoidal uncertainty sets when we let the degree
of uncertainty κ, i.e. the radius of the uncertainty ellipsoid, go to infinity. Furthermore, in
Corollary 4.13 we have also established duality between our original optimization problem
and the dual one with supremum and infimum interchanged.

50



5. Asymptotic Behavior as Uncertainty
Increases

In this chapter we consider once more the setting from Section 4.1 with ellipsoidal uncertainty
sets and investigate what happens as the degree of uncertainty increases. Recall that we
consider power or logarithmic utility Uγ : R+ → R, γ ∈ (−∞, 1), with Uγ(x) = xγ

γ if γ 6= 0
and U0(x) = log(x). Our robust utility maximization problem has the form

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
, (5.1)

where
Ah(x0) =

{
π ∈ A(x0)

∣∣ 〈πt,1d〉 = h for all t ∈ [0, T ]
}

for some h > 0 and where we set

K =
{
µ ∈ Rd

∣∣ (µ− ν)>Γ−1(µ− ν) ≤ κ2
}

for some κ > 0, ν ∈ Rd and Γ = ττ> ∈ Rd×d a symmetric and positive-definite matrix. The
set K is an ellipsoid with radius κ. By increasing κ we increase the degree of uncertainty
about the true drift parameter.

5.1. Limit of worst-case parameter and optimal strategy

In the following, we analyze the optimal strategy π∗ for problem (5.1) and the corresponding
worst-case parameter µ∗ in more detail and investigate their behavior as the degree of uncer-
tainty about the drift parameter grows, i.e. when increasing the value κ in the uncertainty
ellipsoid K = {µ ∈ Rd | (µ − ν)>Γ−1(µ − ν) ≤ κ2}. In Theorem 4.8 we have stated repre-
sentations of both µ∗ and π∗. Theorem 4.11 then ensures that they really form a solution
to (5.1). We use the notation from Section 4.1 again, in particular the matrix A ∈ Rd×d and
the vector c ∈ Rd are given as in Definition 4.2. Recall that for µ∗ we have the representation

µ∗ = ν − τ
d∑
i=1

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi, (5.2)

where λ1 = 0, λ2, . . . , λd are eigenvalues to τ>Aτ and v1, . . . , vd are corresponding orthogonal
eigenvectors. The value ψ(κ) ∈ (0, κ] is such that ‖τ−1(µ∗−ν)‖ = κ. For the optimal strategy
π∗ we have shown that

π∗t =
1

1− γAµ
∗ + hc

for all t ∈ [0, T ].
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5. Asymptotic Behavior as Uncertainty Increases

Neither the matrix τ>Aτ nor the vector c depend on κ. The only quantity in represen-
tation (5.2) of the parameter µ∗ that does depend on κ is the value ψ(κ). To underline the
dependence of the worst-case parameter and the optimal strategy on κ, we write µ∗ = µ∗(κ)
and π∗ = π∗(κ) in the following. The next lemma characterizes the asymptotic behavior of
ψ(κ) as κ goes to infinity.

Lemma 5.1. It holds
lim
κ→∞

ψ(κ)

κ
= 1.

Proof. As before, by acknowledging the dependence on κ, we write

ai(κ) = −
(

λi
1− γ +

h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
for i = 1, . . . , d, so that

τ−1
(
µ∗(κ)− ν

)
=

d∑
i=1

ai(κ)vi.

We have already seen in the proof of Lemma 4.7 that a1(κ) = −ψ(κ). Hence, the constraint
‖τ−1(µ∗ − ν)‖ = κ implies

κ2 = ‖τ−1(µ∗ − ν)‖2 =

d∑
i=1

ai(κ)2 = ψ(κ)2 +

d∑
i=2

ai(κ)2 (5.3)

due to orthonormality of the vectors v1, . . . , vd. We rewrite (5.3) as

(ψ(κ)

κ

)2
= 1−

d∑
i=2

(ai(κ)

κ

)2
. (5.4)

In the following, we show that the sum in the expression above goes to zero as κ goes to
infinity. To prove this, take some i ∈ {2, . . . , d}. We know that

(ai(κ)

κ

)2
=

1

κ2

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−2〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉2

,

where the expression in the inner product does not depend on κ. For the other factor, recall
that ψ(κ) > 0 and λi > 0. Hence,

λi
1− γ +

h

ψ(κ)‖τ−11d‖
>

λi
1− γ > 0

and therefore
1

κ2

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−2

≤ 1

κ2

(
λi

1− γ

)−2

,

where the upper bound goes to zero as κ goes to infinity. Now we can deduce that

lim
κ→∞

(ai(κ)

κ

)2
= 0,
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5.1. Limit of worst-case parameter and optimal strategy

which together with (5.4) implies

lim
κ→∞

(ψ(κ)

κ

)2
= 1.

The claim now follows from the fact that ψ(κ) is positive for each κ.

From the preceding lemma we gain insights into the asymptotic behavior of the parameter
µ∗(κ), too. For big values of κ, one sees that µ∗(κ)− ν is essentially a multiple of τv1 where
v1 is an eigenvector to eigenvalue zero of τ>Aτ . The contribution of the other eigenvectors
v2, . . . , vd becomes negligible. This observation is formalized in the following proposition.

Proposition 5.2. It holds

lim
κ→∞

1

κ
τ−1

(
µ∗(κ)− ν

)
= −v1 = − 1

‖τ−11d‖
τ−11d

and
lim
κ→∞

1

κ
µ∗(κ) = −τv1 = − 1

‖τ−11d‖
1d.

Proof. As in the previous proof, let

ai(κ) = −
(

λi
1− γ +

h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
for i = 1, . . . , d, so that

τ−1
(
µ∗(κ)− ν

)
=

d∑
i=1

ai(κ)vi.

Like in the previous proof, and using the result from the previous lemma, we can now deduce
that

1

κ
τ−1

(
µ∗(κ)− ν

)
=
a1(κ)

κ
v1 +

d∑
i=2

ai(κ)

κ
vi = −ψ(κ)

κ
v1 +

d∑
i=2

ai(κ)

κ
vi

goes to −v1 as κ goes to infinity. Now we easily see

lim
κ→∞

1

κ
µ∗(κ) = lim

κ→∞

1

κ
ττ−1

(
µ∗(κ)− ν

)
= −τv1,

which proves the second claim.

We have seen before that the worst possible parameter µ∗(κ) always lies on the boundary
of the domain K = {µ ∈ Rd | (µ − ν)>Γ−1(µ − ν) ≤ κ2}, i.e. ‖τ−1(µ∗(κ) − ν)‖ = κ. In the
above proposition we have seen that 1

κµ
∗(κ) tends to

− 1

‖τ−11d‖
1d.

So, asymptotically the direction of the worst-case parameter is simply −1d. That means that
as κ tends to infinity, the worst drift that the market can choose for an investor who applies
the optimal strategy π∗, is a drift vector where all entries are the same and negative. Since
the constraint 〈πt,1d〉 = h for all t ∈ [0, T ] forces the investor to have a positive position in
at least some of the stocks it is intuitive that the market chooses negative drift in response
to that. We have the following result for the asymptotic behavior of the investor’s optimal
strategy.
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5. Asymptotic Behavior as Uncertainty Increases

Corollary 5.3. For any t ∈ [0, T ] it holds

lim
κ→∞

π∗t (κ) =
h

1>d Γ−11d
Γ−11d.

Proof. Recall that by Lemma 4.9 we can write

π∗t (κ) = − h

ψ(κ)‖τ−11d‖
Γ−1

(
µ∗(κ)− ν

)
= − h

‖τ−11d‖
κ

ψ(κ)

1

κ
Γ−1

(
µ∗(κ)− ν

)
for any t ∈ [0, T ]. We then obtain

lim
κ→∞

π∗t (κ) =
h

‖τ−11d‖
(τ>)−1v1 =

h

‖τ−11d‖2
(ττ>)−11d =

h

1>d Γ−11d
Γ−11d

by combining the results from Lemma 5.1 and Proposition 5.2.

The above corollary shows that for an investor who wants to maximize

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

over all strategies π ∈ Ah(x0), the optimal strategy π∗(κ) tends to a strategy that is de-
terministic and constant in time as the degree of uncertainty κ goes to infinity. This limit
strategy consists in investing a certain constant fraction in the assets at any point in time.
Note that the constraint 〈πt,1d〉 = h for all t ∈ [0, T ] is fulfilled by the limit strategy since〈

h

1>d Γ−11d
Γ−11d,1d

〉
=

h

1>d Γ−11d
1>d Γ−11d = h.

Interestingly, the above strategy does not depend on the volatility matrix σ. So for a suf-
ficiently high degree of uncertainty, the influence of the volatility matrix σ is negligible for
the optimal strategy as it is dominated by the uncertainty present in the model. For any
fixed degree of uncertainty κ, the volatility matrix σ still enters the optimal strategy via the
matrix A = D>(Dσσ>D>)−1D.

5.2. Relaxing the investment constraint

The above results about the asymptotic behavior of the worst-case parameter and the op-
timal strategy can also be used to show that, as uncertainty κ goes to infinity, our robust
optimization problem yields the same optimal value as a slightly different optimization prob-
lem with a more general class of admissible strategies. Recall that we have so far considered
for h > 0 the set

Ah(x0) =
{
π ∈ A(x0)

∣∣ 〈πt,1d〉 = h for all t ∈ [0, T ]
}

as the class of admissible strategies. Requiring 〈πt,1d〉 ≥ h instead of 〈πt,1d〉 = h obviously
enlarges this set. In the following, we show for logarithmic utility that maximizing the worst-
case expected utility among bounded strategies in this larger set asymptotically leads to the
same value as our original problem. We write K = K(κ) for the uncertainty ellipsoid with
radius κ to underline the dependence on κ.
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5.2. Relaxing the investment constraint

Proposition 5.4. Define for h > 0 the admissibility set

A′h(x0) =
{
π ∈ A(x0)

∣∣ 〈πt,1d〉 ≥ h for all t ∈ [0, T ]
}

and let M > 0. Then there exists a κM > 0 such that for all κ ≥ κM it holds

sup
π∈A′h(x0)
‖π‖≤M

inf
µ∈K(κ)

Eµ
[
log(Xπ

T )
]
≤ sup

π∈Ah(x0)
inf

µ∈K(κ)
Eµ
[
log(Xπ

T )
]
.

Here we use ‖π‖ ≤M as a short notation for ‖πt‖ ≤M for all t ∈ [0, T ].

Proof. Let π′ ∈ A′h(x0) with ‖π′‖ ≤M . Then π′ can be decomposed as

π′t = πt + εt1d

for all t ∈ [0, T ], where π = (πt)t∈[0,T ] ∈ Ah(x0) and εt ≥ 0 for all t ∈ [0, T ]. For any fixed
µ ∈ K(κ) we rewrite the expected logarithmic utility given strategy π′ as

Eµ
[
log(Xπ′

T )
]

= log(x0) + rT + Eµ
[∫ T

0

(
(π′t)

>(µ− r1d)−
1

2
‖σ>π′t‖2

)
dt

]
= Eµ

[
log(Xπ

T )
]

+ Eµ
[∫ T

0
εt

(
1>d (µ− r1d)−

1

2
εt‖σ>1d‖2 − 1>d σσ

>πt

)
dt

]
.

In particular, we have

inf
µ∈K(κ)

Eµ
[
log(Xπ′

T )
]
≤ Eµ∗

[
log(Xπ′

T )
]

= Eµ∗
[
log(Xπ

T )
]

+ Eµ∗
[∫ T

0
εt

(
1>d
(
µ∗(κ)− r1d

)
− 1

2
εt‖σ>1d‖2 − 1>d σσ

>πt

)
dt

]
,

(5.5)

where µ∗ = µ∗(κ) is the worst-case parameter from Theorem 4.8. Our assumption ‖π′‖ ≤M
implies that also ‖πt‖ is bounded for every t ∈ [0, T ], and so is 1>d σσ

>πt. Hence the second
summand in (5.5) becomes non-positive when κ is big enough (depending on M). That is
because εt ≥ 0 for all t ∈ [0, T ] and

lim
κ→∞

1>d µ
∗(κ) = 1>d ν − lim

κ→∞
ψ(κ)1>d τv1 = 1>d ν − lim

κ→∞
ψ(κ)

d

‖τ−11d‖
= −∞.

So there exists a κM > 0 such that

inf
µ∈K(κ)

Eµ
[
log(Xπ′

T )
]
≤ Eµ∗

[
log(Xπ

T )
]

for all κ ≥ κM . Since κM depends only onM but not on the strategy π′ or its decomposition,
we can further deduce

sup
π∈A′h(x0)
‖π‖≤M

inf
µ∈K(κ)

Eµ
[
log(Xπ

T )
]
≤ sup

π∈Ah(x0)
Eµ∗
[
log(Xπ

T )
]

= sup
π∈Ah(x0)

inf
µ∈K(κ)

Eµ
[
log(Xπ

T )
]

for all κ ≥ κM , which completes the proof.
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5. Asymptotic Behavior as Uncertainty Increases

For power utility, the result is slightly weaker. We first give a lemma that states some
useful equalities concerning the matrix A and vector c. These will be useful later as well.

Lemma 5.5. For the matrix A and the vector c we have

Aσσ>A = A, c>σσ>A = 0 and c>1d = 1.

Proof. Using the definition of A in Definition 4.2 we see that

Aσσ>A = D>(Dσσ>D>)−1Dσσ>D>(Dσσ>D>)−1D = D>(Dσσ>D>)−1D = A,

and hence in particular

c>σσ>A = e>d (Id − σσ>A)σσ>A = e>d (σσ>A− σσ>A) = 0.

Further, we also have
c>1d = e>d (Id − σσ>A)1d = e>d 1d = 1

due to A1d = 0.

The next proposition gives a result similar to that in Proposition 5.4 for power utility.
We define a different enlarged admissibility set Ah(x0) in this case. The reason is that, in
contrast to the logarithmic utility case, we cannot ensure that we can restrict to deterministic
strategies in A′h(x0).

Proposition 5.6. Let γ 6= 0 and h > 0 and define the admissibility set

Ah(x0) =
⋃
h′≥h
Ah′(x0).

Then there exists a κ′ > 0 such that for all κ ≥ κ′ it holds

sup
π∈Ah(x0)

inf
µ∈K(κ)

Eµ
[
Uγ(Xπ

T )
]

= sup
π∈Ah(x0)

inf
µ∈K(κ)

Eµ
[
Uγ(Xπ

T )
]
.

Proof. Take an arbitrary strategy π ∈ Ah(x0). Then there exists some h′ ≥ h such that
π ∈ Ah′(x0) and we know that

inf
µ∈K(κ)

Eµ
[
Uγ(Xπ

T )
]
≤ inf

µ∈K(κ)
Eµ
[
Uγ(Xπ′

T )
]

= Eµ′
[
Uγ(Xπ′

T )
]
,

where µ′ = µ′(κ) is the minimizer of the function

µ 7→ 1

2(1− γ)
µ>Aµ+ h′c>µ

on the uncertainty set K(κ) and π′ = π′(κ) ≡ 1
1−γAµ

′ + h′c. In the following we show that
for sufficiently large level of uncertainty

Eµ′
[
Uγ(Xπ′

T )
]
≤ Eµ∗

[
Uγ(Xπ∗

T )
]

(5.6)
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5.2. Relaxing the investment constraint

where µ∗ = µ∗(κ) and π∗ = π∗(κ) are the worst-case parameter and the optimal strategy
for the utility maximization among strategies in Ah(x0). Note that for strategies π that are
deterministic and constant in time we can write

Eµ
[
Uγ(Xπ

T )
]

=
xγ0
γ

exp

(
γT
(
r + π>0 (µ− r1d)−

1− γ
2
‖σ>π0‖2

))
for any µ ∈ K(κ), hence for showing (5.6) it is sufficient to prove

(π′0)>(µ′ − r1d)−
1− γ

2
‖σ>π′0‖2 ≤ (π∗0)>(µ∗ − r1d)−

1− γ
2
‖σ>π∗0‖2. (5.7)

Using the representation of π′ we obtain

(π′0)>(µ′ − r1d)−
1− γ

2
‖σ>π′0‖2

=
1

1− γ (µ′)>Aµ′ + h′c>(µ′ − r1d)−
1

2(1− γ)
(µ′)>Aµ′ − 1− γ

2
(h′)2c>σσ>c

=
1

2(1− γ)
(µ′)>Aµ′ + h′c>µ′ − h′r − 1− γ

2
(h′)2c>σσ>c.

In the first step we have used A1d = 0, Aσσ>A = A and c>σσ>A = 0, in the second step
c>1d = 1, see Lemma 5.5. An analogous computation can be done for π∗ and µ∗. We then
see that, since µ′ minimizes

µ 7→ 1

2(1− γ)
µ>Aµ+ h′c>µ

on K(κ), in particular it holds

1

2(1− γ)
(µ′)>Aµ′ + h′c>µ′ ≤ 1

2(1− γ)
(µ∗)>Aµ∗ + h′c>µ∗

=
1

2(1− γ)
(µ∗)>Aµ∗ + hc>µ∗ + (h′ − h)c>µ∗.

Using again c>1d = 1 it is easy to show that c>µ∗ = c>µ∗(κ) goes to minus infinity as κ goes
to infinity. Hence we can choose κ′ > 0 such that c>µ∗ ≤ 0 for all κ ≥ κ′. Note that κ′ does
not depend on π′. For all κ ≥ κ′ we then have

(π′0)>(µ′ − r1d)−
1− γ

2
‖σ>π′0‖2

≤ 1

2(1− γ)
(µ∗)>Aµ∗ + hc>µ∗ + (h′ − h)c>µ∗ − h′r − 1− γ

2
(h′)2c>σσ>c

≤ 1

2(1− γ)
(µ∗)>Aµ∗ + hc>µ∗ − hr − 1− γ

2
h2c>σσ>c

= (π∗0)>(µ∗ − r1d)−
1− γ

2
‖σ>π∗0‖2,

which proves (5.7) and hence (5.6). Since κ′ was chosen independent of h′ or π′, we deduce
in particular

sup
π∈Ah(x0)

inf
µ∈K(κ)

Eµ
[
Uγ(Xπ

T )
]
≤ Eµ∗

[
Uγ(Xπ∗

T )
]

= sup
π∈Ah(x0)

inf
µ∈K(κ)

Eµ
[
Uγ(Xπ

T )
]

for all κ ≥ κ′. The reverse inequality holds trivially.
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5. Asymptotic Behavior as Uncertainty Increases

The previous propositions show that as uncertainty increases it is reasonable for investors
to choose strategies π with 〈πt,1d〉 as small as possible. Even if the class of admissible
strategies is enlarged, the optimal value will for large uncertainty be attained by a strategy
from Ah(x0). This is in line with the intuition from Proposition 2.1, where we have seen
that as uncertainty exceeds a certain threshold, investors prefer to not invest anything into
the risky assets. Here we have seen that when the level of uncertainty κ exceeds a threshold,
investors seek to invest as little as possible in the risky assets, meaning that 〈πt,1d〉 is chosen
as small as possible in a given class of admissible strategies.

5.3. Special case: uncertainty ball

We now take again

Ah(x0) =
{
π ∈ A(x0)

∣∣ 〈πt,1d〉 = h for all t ∈ [0, T ]
}

for some h > 0 as the class of admissible strategies. So far, for the asymptotic analysis we
have considered general uncertainty ellipsoids for the drift parameter µ , i.e. sets of the form

K =
{
µ ∈ Rd

∣∣ (µ− ν)>Γ−1(µ− ν) ≤ κ2
}

for some ν ∈ Rd and a matrix Γ ∈ Rd×d that is symmetric and positive definite. The set K
is thus an ellipsoid where the shape is determined by the matrix Γ. An interesting special
case is Γ = Id. In that case, the uncertainty set is simply a ball

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖ ≤ κ}.
Hence, the degree of uncertainty is the same for any component of the drift parameter µ.
Every parameter within Euclidean distance κ of the center ν is deemed possible.

Corollary 5.7. If the uncertainty set is of the form

K =
{
µ ∈ Rd

∣∣ ‖µ− ν‖ ≤ κ},
then the parameter µ∗(κ) fulfills

lim
κ→∞

1

κ

(
µ∗(κ)− ν

)
= − 1√

d
1d

and the optimal strategy fulfills

lim
κ→∞

π∗t (κ) =
h

d
1d

for any t ∈ [0, T ].

Proof. When noting that τ = Id for the given set K and ‖1d‖ =
√
d, the claims follow

directly from Proposition 5.2, respectively from Corollary 5.3.

The above corollary implies that if the uncertainty set for the drift parameter µ is a ball
with radius κ, then the optimal strategy converges to a uniform diversification strategy, given
by h

d1d at each point in time. Hence, when forced to invest a total fraction of h > 0 in the
risky assets, then in the limit for κ going to infinity investors will diversify their portfolio
uniformly, thus investing a constant fraction of h

d in each risky asset. We illustrate this
convergence to a uniform diversification strategy by an example.
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5.3. Special case: uncertainty ball

Example 5.8. We consider a market with d = 8 risky assets. The volatility matrix is

σ =



0.3 0 0 0 0 0 0 0
0.2 0.3 0 0 0 0 0 0
0 0.2 0.3 0 0 0 0 0
0.3 0.2 0 0.4 0 0 0 0
0.2 0.3 0 0.1 0.3 0 0 0
0.1 0.1 0.1 0.1 0.2 0.2 0 0
0.2 0.1 0.2 0.1 0.2 0.2 0.4 0
0.1 0 0 0.2 0.1 0.1 0.2 0.4


.

Investors use strategies from Ah(x0) with h = 1, i.e. strategies π with 〈πt,1d〉 = 1 for all
t ∈ [0, T ]. The coefficient in the utility function Uγ is chosen to be γ = 1

2 . We take Γ = Id
and ν = 3

101d. We then compute the optimal strategy π∗(κ) that is given in Theorem 4.8 as

π∗(κ) ≡ 1

1− γAµ
∗(κ) + hc,

where

µ∗(κ) = ν − τ
d∑
i=1

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi

for ψ(κ) ∈ (0, κ] that is uniquely determined by ‖τ−1(µ∗−ν)‖ = κ. We calculate the resulting
constant optimal composition for all κ ∈ (0, 0.5) and plot the result in Figure 5.1 against κ.
For any fixed level of uncertainty κ, the optimal composition π∗(κ) is plotted as a stacked
plot where every color corresponds to one stock. For small values of κ, the optimal π∗ is
negative in some components. This leads to an overall investment larger than one on the
positive side. For κ > 0.05 the strategy π∗(κ) has only positive entries. As κ becomes larger,
the composition gets closer and closer to the uniform diversification vector.
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Figure 5.1.: The optimal portfolio composition π∗ plotted against uncertainty radius κ for a market
with d = 8 risky assets with parameters given in Example 5.8. The portfolio composi-
tion approaches a uniform diversification strategy for large values of κ.
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5. Asymptotic Behavior as Uncertainty Increases

5.4. Risk aversion and speed of convergence

We have seen in Section 5.1 that the optimal strategy π∗(κ) for the robust optimization
problem

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]

with ellipsoidal uncertainty sets

K =
{
µ ∈ Rd

∣∣ (µ− ν)>Γ−1(µ− ν) ≤ κ2
}

converges as the level of uncertainty κ goes to infinity. Recall from Corollary 5.3 that

lim
κ→∞

π∗t (κ) =
h

1>d Γ−11d
Γ−11d

for any t ∈ [0, T ]. If the uncertainty set K is a ball around ν, meaning that the matrix
Γ ∈ Rd×d is the identity matrix, then the above expression for the limit simplifies to h

d1d. So
in the limit, the optimal strategy is a uniform diversification strategy.
In the following, we investigate which influence the risk aversion parameter γ has on the

speed of the convergence. Recall that we consider the utility function Uγ : R+ → R with
Uγ(x) = xγ

γ if γ 6= 0 and U0(x) = log(x). For this class of utility functions, the value 1 − γ
is equal to the Arrow–Pratt measure of relative risk aversion. Note that for positive γ, the
function Uγ is non-negative whereas it takes only negative values and is unbounded from
below if γ is negative. These observations help to illustrate that the smaller γ is the more
risk-averse is the investor.
In Figure 5.2 we plot the constant optimal portfolio composition π∗(κ) against κ for various

values of γ. For this purpose, we consider a market with d = 8 risky assets. As model
parameters we take those from Example 5.8. In particular, we assume Γ = Id, hence our
convergence results ensure that π∗(κ) will converge to a uniform diversification strategy.
The figure illustrates the convergence against the uniform diversification strategy. For

each fixed value of γ one sees that for small values of κ the strategy is quite different from a
uniform one. In particular, some entries of π∗(κ) are negative. This changes for increasing
value of κ.
When comparing the different subplots one sees that the value of γ seems to have a direct

influence on the speed of convergence to the uniform strategy. Interestingly, the convergence
is faster for higher values of γ, i.e. for less risk-averse investors. This might be surprising at
first glance since one expects a more risk-averse investor to choose a “safer” strategy sooner
than a less risk-averse investor does. However, the effect becomes more intuitive when keeping
in mind that we address a robust optimization problem where an investor is confronted with
the worst possible drift parameter in the uncertainty set. An investor with a high, positive
value of γ would, in the non-robust problem, invest in the assets with the allegedly highest
drift. In the worst-case market this undiversified strategy would allow the market to choose a
very extreme drift parameter with high absolute values for exactly these assets. This implies
that a less risk-averse investor is much more prone to the market’s choice of a drift parameter.
To make up for this, the optimal robust strategy converges very fast, so that even for small
values of uncertainty κ, the investor is already driven into the diversified uniform strategy.
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Figure 5.2.: Optimal portfolio composition π∗ plotted against κ for different values of γ. The model
parameters are those from Example 5.8. For any γ, we observe convergence against
a uniform diversification strategy. For larger values of γ, convergence appears to take
place faster than for smaller values of γ.
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5. Asymptotic Behavior as Uncertainty Increases

Remark 5.9. To see how the speed of convergence is influenced by γ, recall that the optimal
strategy of an investor has the form

π∗t (κ) =
1

1− γAµ
∗(κ) + hc

for all t ∈ [0, T ], where the worst-case parameter µ∗(κ) is given by

µ∗(κ) = ν + τ
d∑
i=1

ai(κ)vi

with

ai(κ) = −
(

λi
1− γ +

h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
for i = 1, . . . , d. It follows that

π∗t (κ) =
1

1− γAν + hc+
1

1− γAτ
d∑
i=1

ai(κ)vi =
1

1− γAν + hc+
1

1− γAτ
d∑
i=2

ai(κ)vi,

where we have used that Aτv1 = 0. Note that only the last term in the above expression
depends on κ. When rewriting it we obtain

1

1− γAτ
d∑
i=2

ai(κ)vi = − 1

1− γAτ
d∑
i=2

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi

= −Aτ
d∑
i=2

(
λi +

h(1− γ)

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi.

Recall that the coefficients all converge due to λi > 0 and

lim
κ→∞

ψ(κ)

κ
= 1.

From the above representation we see that convergence takes place faster if 1 − γ is small,
hence convergence is faster for large values of γ. This is in line with our observations from
Figure 5.2.

5.5. Measures of robustness performance

We have seen in the previous sections that introducing uncertainty in our utility maximization
problem leads to more diversified strategies. The question naturally arises what an investor
gains from this robust behavior. On the other hand, one may also be interested in the
loss in utility coming from behaving in a robust way in situations where it would not be
necessary. These two antithetic effects can be measured by the performance measures cost
of ambiguity and reward for distributional robustness that have already been studied in a
different context in Analui [2, Sec. 3.4] for multistage stochastic optimization problems. We
adapt these definitions to our setting.
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5.5. Measures of robustness performance

Recall that our maximization problem is

sup
π∈Ah(x0)

inf
µ∈K

Eµ
[
Uγ(Xπ

T )
]
, (5.8)

where the uncertainty set is an ellipsoid of the form

K =
{
µ ∈ Rd

∣∣ (µ− ν)>Γ−1(µ− ν) ≤ κ2
}
.

The vector ν as the center of the uncertainty ellipsoid can be seen as an estimation for the
true drift of the stocks. If there was no uncertainty present in the model and an investor was
sure that the estimation ν was correct, then she would simply maximize Eν [Uγ(Xπ

T )] over the
admissible strategies, which corresponds to solving the problem

sup
π∈Ah(x0)

Eν
[
Uγ(Xπ

T )
]
.

From Proposition 4.3 we know that the optimal strategy is then of the form (π̂t)t∈[0,T ] with

π̂t =
1

1− γAν + hc (5.9)

for all t ∈ [0, T ]. In the presence of uncertainty, the solution to (5.8) is given by the strategy
(π∗t )t∈[0,T ] with

π∗t =
1

1− γAµ
∗ + hc (5.10)

for all t ∈ [0, T ], see Theorem 4.11. We have an implicit representation of the parameter µ∗ in
Theorem 4.8. Recall that µ∗, and hence also π∗, depends on the radius κ of the uncertainty
set and that µ∗ is the worst parameter in K, given that an investor chooses strategy π∗. We
are now able to define the following measures for robustness performance.

Definition 5.10. We define the cost of ambiguity as

COA = Eν
[
Uγ(X π̂

T )
]
− Eν

[
Uγ(Xπ∗

T )
]

and the reward for distributional robustness as

RDR = Eµ∗
[
Uγ(Xπ∗

T )
]
− Eµ∗

[
Uγ(X π̂

T )
]
.

The cost of ambiguity captures how big the loss in utility is when using the robust strategy
π∗, given that the estimation ν for the drift was actually correct. Note that π̂ is the best
strategy given drift ν, hence COA is always non-negative. In the reward for distributional
robustness on the other hand, it is reflected how much an investor is rewarded when using
the robust strategy π∗ compared to the “naive” strategy π̂, assuming that indeed the worst
possible drift parameter µ∗ is the true one. We see that also RDR is non-negative since π∗

maximizes expected utility given the parameter µ∗.
In the following we investigate the qualitative behavior of the performance measures COA

and RDR. In particular, we analyze the influence of the risk aversion parameter γ and of the
level of uncertainty κ.
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Figure 5.3.: The behavior of COA and RDR plotted against uncertainty radius κ for different values
of the risk aversion coefficient γ. The parameters are those from Example 5.8.

In Figure 5.3 we plot COA and RDR against κ for different values of the risk aversion
parameter γ to give a first impression. The model parameters are the same as in Example 5.8,
in particular the number of stocks is d = 8. Note that the scaling is different among the
single subplots and that the absolute values of both COA and RDR become smaller with an
increasing value of γ.
We see a qualitative difference between COA and RDR. Whereas COA is in our example

always increasing in κ, the monotonicity behavior of RDR seems to depend on γ. For negative
values of γ we observe that RDR is increasing in κ. For positive values of γ, however, RDR
is increasing for small values of κ and decreasing for bigger values of κ. What also changes
with γ is the relation between COA and RDR. Note that for γ = 0, corresponding to the
logarithmic utility case, the cost of ambiguity seems to equal the reward for distributional
robustness for any level of uncertainty κ. For γ < 0 we observe COA ≤ RDR, for γ > 0 on
the other hand COA ≥ RDR. In the following, we verify these conjectures. It is helpful to
write COA and RDR in a more explicit way.

Lemma 5.11. If γ = 0, then

COA =
T

2
(µ∗ − ν)>A(µ∗ − ν) = RDR .

If γ 6= 0, then

COA =
M(γ)

γ
L(γ, κ) exp

(
γT
(
hc>ν +

1

2(1− γ)
ν>Aν

))
and

RDR =
M(γ)

γ
L(γ, κ) exp

(
γT
(
hc>µ∗ +

1

2(1− γ)
(µ∗)>Aµ∗

))
,
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5.5. Measures of robustness performance

where
M(γ) = xγ0 exp

(
γT
(

(1− h)r − 1− γ
2

h2c>σσ>c
))

and
L(γ, κ) = 1− exp

(
− γT

2(1− γ)
(µ∗ − ν)>A(µ∗ − ν)

)
.

Proof. We address the case γ = 0 first. Note that both π̂ and π∗ are constant in time
and deterministic. Therefore, the expected logarithmic utility of terminal wealth can be
calculated explicitly for both strategies and we get

COA = Eν
[
log(X π̂

T )
]
− Eν

[
log(Xπ∗

T )
]

= T
(
π̂>0 (ν − r1d)−

1

2
‖σ>π̂0‖2

)
− T

(
(π∗0)>(ν − r1d)−

1

2
‖σ>π∗0‖2

)
= T

(
(π̂0 − π∗0)>(ν − r1d)−

1

2

(
‖σ>π̂0‖2 − ‖σ>π∗0‖2

))
.

Next, we plug in the representations for π̂ and π∗ from (5.9) and (5.10) and obtain

COA = T
(

(ν − µ∗)>A(ν − r1d)−
1

2
‖σ>Aν + hσ>c‖2 +

1

2
‖σ>Aµ∗ + hσ>c‖2

)
= T

(
ν>Aν − (µ∗)>Aν − 1

2

(
ν>Aσσ>Aν + 2hc>σσ>Aν + h2c>σσ>c

)
+

1

2

(
(µ∗)>Aσσ>Aµ∗ + 2hc>σσ>Aµ∗ + h2c>σσ>c

))
= T

(
ν>Aν − (µ∗)>Aν − 1

2
ν>Aν +

1

2
(µ∗)>Aµ∗

)
=
T

2
(µ∗ − ν)>A(µ∗ − ν).

(5.11)

In the second step we have used that A1d = 0 and in the third step the properties Aσσ>A = A
and c>σσ>A = 0 from Lemma 5.5. The calculation of RDR is very similar. We first see

RDR = Eµ∗
[
log(Xπ∗

T )
]
−Eµ∗

[
log(X π̂

T )
]

= T
(

(π∗0− π̂0)>(µ∗−r1d)−
1

2

(
‖σ>π∗0‖2−‖σ>π̂0‖2

))
.

Plugging in the representations of π̂ and π∗ and using A1d = 0 then yields

RDR = T
(

(µ∗ − ν)>Aµ∗ − 1

2
‖σ>Aµ∗ + hσ>c‖2 +

1

2
‖σ>Aν + hσ>c‖2

)
.

Now, in analogy to (5.11) we make use of Aσσ>A = A and c>σσ>A = 0 and finally get

RDR = T
(

(µ∗)>Aµ∗ − ν>Aµ∗ − 1

2
(µ∗)>Aµ∗ +

1

2
ν>Aν

)
=
T

2
(µ∗ − ν)>A(µ∗ − ν) = COA .

Next, we assume γ 6= 0. Again, we can make use of the fact that π̂ and π∗ are deterministic
strategies and constant in time. We thus get

COA = Eν
[
Uγ(X π̂

T )
]
− Eν

[
Uγ(Xπ∗

T )
]

=
xγ0
γ

exp
(
γT
(
r + π̂>0 (ν − r1d)−

1− γ
2
‖σ>π̂0‖2

))
− xγ0

γ
exp
(
γT
(
r + (π∗0)>(ν − r1d)−

1− γ
2
‖σ>π∗0‖2

))
.
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5. Asymptotic Behavior as Uncertainty Increases

Next, we plug in (5.9) and (5.10) and obtain

COA =
xγ0eγrT

γ

(
exp
(
γT
( 1

1− γ ν
>Aν + hc>(ν − r1d)−

1− γ
2

∥∥∥ 1

1− γ σ
>Aν + hσ>c

∥∥∥2))
− exp

(
γT
( 1

1− γ (µ∗)>Aν + hc>(ν − r1d)−
1− γ

2

∥∥∥ 1

1− γ σ
>Aµ∗ + hσ>c

∥∥∥2)))
.

In the next step, just like for γ = 0, we split the terms with the squared Euclidean norm into
summands. We use again Aσσ>A = A and c>σσ>A = 0 to cancel some terms. Additionally,
we recall that c>1d = 1 due to Lemma 5.5. Then, by using the notation given in the lemma
and completing the square, the above expression becomes

COA =
M(γ)

γ

(
exp
(
γT
( 1

1− γ ν
>Aν + hc>ν − 1

2(1− γ)
ν>Aν

))
− exp

(
γT
( 1

1− γ (µ∗)>Aν + hc>ν − 1

2(1− γ)
(µ∗)>Aµ∗

)))
=
M(γ)

γ
exp

(
γT
(
hc>ν +

1

2(1− γ)
ν>Aν

))(
1− exp

(
− γT

2(1− γ)
(µ∗ − ν)>A(µ∗ − ν)

))
=
M(γ)

γ
L(γ, κ) exp

(
γT
(
hc>ν +

1

2(1− γ)
ν>Aν

))
.

For the reward of distributional robustness the procedure is again similar. Firstly, we see

RDR = Eµ∗
[
Uγ(Xπ∗

T )
]
− Eµ∗

[
Uγ(X π̂

T )
]

=
xγ0
γ

exp
(
γT
(
r + (π∗0)>(µ∗ − r1d)−

1− γ
2
‖σ>π∗0‖2

))
− xγ0

γ
exp
(
γT
(
r + π̂>0 (µ∗ − r1d)−

1− γ
2
‖σ>π̂0‖2

))
.

Plugging in the representations from (5.9) and (5.10) and simplifying with the same tools as
before then gives

RDR =
M(γ)

γ

(
exp
(
γT
( 1

1− γ (µ∗)>Aµ∗ + hc>µ∗ − 1

2(1− γ)
(µ∗)>Aµ∗

))
− exp

(
γT
( 1

1− γ ν
>Aµ∗ + hc>µ∗ − 1

2(1− γ)
ν>Aν

)))
=
M(γ)

γ
L(γ, κ) exp

(
γT
(
hc>µ∗ +

1

2(1− γ)
(µ∗)>Aµ∗

))
.

This gives the representations in the lemma for γ 6= 0.

Lemma 5.11 gives COA and RDR as explicit functions of the parameters ν and µ∗. Note
that the expression M(γ) appearing in the case γ 6= 0 is strictly positive for any γ. Further,
it does not depend on µ∗ and hence not on the degree of uncertainty κ.
The lemma already gives a relation between cost of ambiguity and reward for distributional

robustness. For γ = 0, i.e. logarithmic utility, the two measures are equal, independent of the
degree of model uncertainty. Recall that we already noted this in our numerical example from
Figure 5.3. That figure also suggests that COA ≥ RDR if γ is positive and COA ≤ RDR if
γ is negative. We prove this statement in the following proposition.
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5.5. Measures of robustness performance

Proposition 5.12. The following relation holds between cost of ambiguity and reward for
distributional robustness:

(i) COA ≥ RDR if γ > 0;

(ii) COA = RDR if γ = 0;

(iii) COA ≤ RDR if γ < 0.

Proof. Note that the equality in the case γ = 0 is already proven in Lemma 5.11. Now take
γ 6= 0. By using the explicit representation of cost of ambiguity and reward for distributional
robustness from Lemma 5.11 we obtain

COA

RDR
= exp

(
γT
(
hc>ν +

1

2(1− γ)
ν>Aν − hc>µ∗ − 1

2(1− γ)
(µ∗)>Aµ∗

))
. (5.12)

When reconsidering our method to find the worst-case parameter in Section 4.1.2 we recall
that µ∗ ∈ K is the parameter that minimizes the function

K 3 µ 7→ 1

2(1− γ)
µ>Aµ+ hc>µ.

Since ν ∈ K, it follows in particular that

1

2(1− γ)
(µ∗)>Aµ∗ + hc>µ∗ ≤ 1

2(1− γ)
ν>Aν + hc>ν.

Therefore, we obtain

hc>ν +
1

2(1− γ)
ν>Aν − hc>µ∗ − 1

2(1− γ)
(µ∗)>Aµ∗ ≥ 0. (5.13)

Combining (5.13) and (5.12) implies

COA

RDR
≥ 1 if γ > 0,

COA

RDR
≤ 1 if γ < 0,

which proves our claim.

The previous proposition contains information about the relation between cost of ambiguity
and reward for distributional robustness. It turns out that the risk aversion parameter γ in
the investor’s utility function plays a crucial role here. For positive γ the cost of ambiguity is
larger than the reward for distributional robustness, for negative γ the relation is the other
way around. Logarithmic utility is the boundary case where the two measures of robustness
performance are equal.
Figure 5.3 suggests that the parameter γ also has an effect on the monotonicity behavior of

RDR in dependence on κ. Our next result helps to verify this by investigating the asymptotic
behavior of cost of ambiguity and reward for distributional robustness as the level of uncer-
tainty tends to infinity. Since we want to study the influence of the level of uncertainty on
COA and RDR we write COA(κ) and RDR(κ) in the following to emphasize the dependence
on the parameter κ.
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5. Asymptotic Behavior as Uncertainty Increases

Proposition 5.13. (i) If hτ>c + 1
1−γAτ

−1ν ∈ span({v1}), then COA(κ) = 0 = RDR(κ)
for any κ > 0.

(ii) If hτ>c+ 1
1−γAτ

−1ν /∈ span({v1}), then COA(κ) converges for κ to infinity to a positive
real value and

lim
κ→∞

RDR(κ) =


0, γ > 0,

C, γ = 0,

∞ γ < 0,

where C = T
2

∑d
i=2

1
λi
〈hτ>c+ λiτ

−1ν, vi〉2 > 0.

Proof. Firstly, note that from Theorem 4.8 we know that the worst-case parameter µ∗ has
the form

µ∗(κ) = ν + τ

d∑
i=1

ai(κ)vi,

where

ai(κ) = −
(

λi
1− γ +

h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
for i = 1, . . . , d. Recall from Lemma 5.1 that

lim
κ→∞

ψ(κ)

κ
= 1.

Since v1, . . . , vd form an orthogonal basis of Rd, it holds hτ>c + 1
1−γAτ

−1ν ∈ span({v1}) if
and only if 〈

hτ>c+
λi

1− γ τ
−1ν, vi

〉
=
〈
hτ>c+

1

1− γAτ
−1ν, vi

〉
= 0

for all i = 2, . . . , d, which implies that a2(κ) = · · · = ad(κ) = 0. Therefore, we see that
hτ>c+ 1

1−γAτ
−1ν ∈ span({v1}) is equivalent to µ∗ = ν + a1(κ)τv1 = ν −κτv1. In that case,

we immediately see

π∗t (κ) =
1

1− γAµ
∗(κ) + hc =

1

1− γA(ν − κτv1) + hc =
1

1− γAν + hc = π̂t

for all t ∈ [0, T ] and κ > 0. It follows that COA(κ) = RDR(κ) = 0 for all κ > 0.
Now suppose that hτ>c + 1

1−γAτ
−1ν /∈ span({v1}). Then there exists an i ∈ {2, . . . , d}

such that ai(κ) 6= 0 for all κ > 0. We can rewrite

(µ∗(κ)− ν)>A(µ∗(κ)− ν) =

( d∑
i=1

ai(κ)vi

)>
τ>Aτ

( d∑
i=1

ai(κ)vi

)

=
d∑

i,j=1

ai(κ)aj(κ)v>i τ
>Aτvj =

d∑
i=2

ai(κ)2λi,

using firstly that vi is an eigenvector to eigenvalue λi of the matrix τ>Aτ and secondly that
the vi are orthonormal and λ1 = 0. For any i = 2, . . . , d it holds

lim
κ→∞

ai(κ) = − lim
κ→∞

(
λi

1− γ +
h

ψ(κ)‖τ−11d‖

)−1〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
= −1− γ

λi

〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉 (5.14)
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and our assumption ensures that there is at least one index in {2, . . . , d} such that the limit
is not equal to zero. Consequently,

lim
κ→∞

(µ∗(κ)− ν)>A(µ∗(κ)− ν) =

d∑
i=2

(1− γ)2

λi

〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉2
> 0. (5.15)

For γ = 0 we have shown in Lemma 5.11 that

COA(κ) = RDR(κ) =
T

2
(µ∗(κ)− ν)>A(µ∗(κ)− ν),

so from (5.15) it follows that

lim
κ→∞

COA(κ) = lim
κ→∞

RDR(κ) =
T

2

d∑
i=2

1

λi

〈
hτ>c+ λiτ

−1ν, vi
〉2

= C > 0.

If γ 6= 0, then

COA(κ) =
M(γ)

γ
L(γ, κ) exp

(
γT
(
hc>ν +

1

2(1− γ)
ν>Aν

))
.

Using (5.15) together with the representation

L(γ, κ) = 1− exp
(
− γT

2(1− γ)
(µ∗ − ν)>A(µ∗ − ν)

)
,

as well as the fact thatM(γ) > 0, it is easy to see that COA(κ) converges as κ goes to infinity
and that the limit is a positive real value. For the reward for distributional robustness we
have the representation

RDR(κ) =
M(γ)

γ
L(γ, κ) exp

(
γT
(
hc>µ∗(κ) +

1

2(1− γ)
(µ∗(κ))>Aµ∗(κ)

))
.

Note that, again by (5.15), the term

M(γ)

γ
L(γ, κ)

converges to a positive limit as κ goes to infinity. It remains to study the asymptotic behavior
of the exponential term. For that purpose we rewrite

hc>µ∗(κ) +
1

2(1− γ)
(µ∗(κ))>Aµ∗(κ)

= hc>
(
ν + τ

d∑
i=1

ai(κ)vi

)
+

1

2(1− γ)

(
ν + τ

d∑
i=1

ai(κ)vi

)>
A

(
ν + τ

d∑
i=1

ai(κ)vi

)

= hc>ν + hc>τ
d∑
i=2

ai(κ)vi + hc>τa1(κ)v1

+
1

2(1− γ)

(
ν>Aν + 2ν>Aτ

d∑
i=2

ai(κ)vi + (µ∗(κ)− ν)>A(µ∗(κ)− ν)

)
.
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Here, due to (5.14) we have

lim
κ→∞

d∑
i=2

ai(κ)vi = −
d∑
i=2

1− γ
λi

〈
hτ>c+

λi
1− γ τ

−1ν, vi

〉
vi

and the expression (µ∗(κ)− ν)>A(µ∗(κ)− ν) converges due to (5.15). However,

hc>τa1(κ)v1 = −ψ(κ)
h

‖τ−11d‖

goes to minus infinity as κ goes to infinity. Putting these results together, we obtain that

hc>µ∗(κ) +
1

2(1− γ)
(µ∗(κ))>Aµ∗(κ)

goes to minus infinity and in conclusion

lim
κ→∞

RDR(κ) =

{
0, γ > 0,

∞, γ < 0.

Putting the various cases together proves the claim of the proposition.

The preceding proposition analyzes the asymptotic behavior of COA(κ) and RDR(κ) as
κ goes to infinity. The first case is a special case corresponding to such a combination of
model parameters that makes the optimal robust strategy π∗(κ) equal to π̂ for any κ. In this
special case the increase of model uncertainty affects the robust and the non-robust investor
in the same way.
Apart from this special situation the measure COA(κ) converges to a positive value as

κ goes to infinity. In particular, the cost of ambiguity is bounded and for high levels of
uncertainty, the influence of an increase in κ is neglectable. For the reward for distributional
robustness, the situation is different. Here, the asymptotic behavior is determined by the
parameter γ of the investor’s risk aversion. For logarithmic utility, i.e. γ = 0, we know
already from Lemma 5.11 that reward for distributional robustness equals cost of ambiguity.
Hence, in this case RDR(κ) converges as well and the limit is a positive value. For negative
γ, RDR(κ) goes to infinity whereas for positive γ, RDR(κ) converges to zero.
This qualitative difference is due to the essential difference between the utility functions Uγ

for either positive or negative γ. For positive γ, the function Uγ is non-negative on R+, hence
expected utility is bounded from below by zero. That implies that the worst-case expected
utility corresponding to κ going to infinity will go to zero independently of the strategy that
an investor uses. This explains the convergence of RDR(κ) to zero in the case γ > 0. In
contrast, for negative γ, the function Uγ is unbounded from below, leading to arbitrarily high
rewards for distributional robustness.
The above observations suggest to use a different measure for the reward for distributional

robustness that is less affected by the specific form of the investor’s utility function. To reach
this goal one might not want to consider the difference in expected utility but the difference
in the corresponding certainty equivalents, for example. As the certainty equivalent of the
random terminal wealth Xπ

T we denote the deterministic amount of money that leads to a
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utility value equal to the expected utility of Xπ
T . Since our utility function Uγ is in any case

invertible we can compute the certainty equivalent of a terminal wealth Xπ
T as

U−1
γ

(
E
[
Uγ(Xπ

T )
])
.

The inverse of the utility function is given by

U−1
γ (y) =

{
exp(y), γ = 0,

(γy)1/γ , γ 6= 0.

Note that the domain of U−1
γ is R if γ = 0, R+ for γ > 0 and R− for γ < 0. We now define

a modification of COA and RDR as follows.

Definition 5.14. We define the certainty-equivalent-based cost of ambiguity as

COA = U−1
γ

(
Eν
[
Uγ(X π̂

T )
])
− U−1

γ

(
Eν
[
Uγ(Xπ∗

T )
])

and the certainty-equivalent-based reward for distributional robustness as

RDR = U−1
γ

(
Eµ∗
[
Uγ(Xπ∗

T )
])
− U−1

γ

(
Eµ∗
[
Uγ(X π̂

T )
])
.

Note that since U−1
γ is a strictly increasing function, the non-negativity COA ≥ 0 and

RDR ≥ 0 persists. Further, it always holds COA ≥ RDR which we show in the following
proposition.

Proposition 5.15. Independently of γ ∈ (−∞, 1) it always holds COA ≥ RDR.

Proof. Recall that we can write

Eµ
[
Uγ(Xπ

T )
]

=


log(x0) + rT + T

(
π>0 (µ− r1d)−

1

2
‖σ>π0‖2

)
, γ = 0,

xγ0
γ

exp
(
γT
(
r + π>0 (µ− r1d)−

1− γ
2
‖σ>π0‖2

))
, γ 6= 0,

if (πt)t∈[0,T ] is constant in time and deterministic. Hence for γ 6= 0 we have

COA = x0erT
(

exp
(
T
(

(π̂0)>(ν − r1d)−
1− γ

2
‖σ>π̂0‖2

))
− exp

(
T
(

(π∗0)>(ν − r1d)−
1− γ

2
‖σ>π∗0‖2

))) (5.16)

and
RDR = x0erT

(
exp
(
T
(

(π∗0)>(µ∗ − r1d)−
1− γ

2
‖σ>π∗0‖2

))
− exp

(
T
(

(π̂0)>(µ∗ − r1d)−
1− γ

2
‖σ>π̂0‖2

)))
.

(5.17)

For γ = 0 we obtain

COA = x0erT
(

exp
(
T
(
(π̂0)>(ν−r1d)− 1

2‖σ>π̂0‖2
))
−exp

(
T
(
(π∗0)>(ν−r1d)− 1

2‖σ>π∗0‖2
)))
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and

RDR = x0erT
(

exp
(
T
(
(π∗0)>(µ∗−r1d)−1

2‖σ>π∗0‖2
))
−exp

(
T
(
(π̂0)>(µ∗−r1d)−1

2‖σ>π̂0‖2
)))

which are the same representations as in (5.16) and (5.17) with γ = 0. We now plug in
the representations from (5.9), respectively (5.10) of the strategies π∗ and π̂ and use the
properties A1d = 0, c>σσ>A = 0 and Aσσ>A = A, see Lemma 5.5. We obtain

COA

x0erT
= exp

(
T
(
hc>(ν − r1d) +

1

1− γ ν
>Aν − 1− γ

2
h2c>σσ>c− 1

2(1− γ)
ν>Aν

))
− exp

(
T
(
hc>(ν − r1d) +

1

1− γ (µ∗)>Aν − 1− γ
2

h2c>σσ>c− 1

2(1− γ)
(µ∗)>Aµ∗

))
= L(γ, κ) exp

(
T
(
−hr − 1− γ

2
h2c>σσ>c+ hc>ν +

1

2(1− γ)
ν>Aν

))
,

where
L(γ, κ) = 1− exp

(
− T

2(1− γ)
(µ∗ − ν)>A(µ∗ − ν)

)
.

Analogously we get

RDR

x0erT
= L(γ, κ) exp

(
T
(
−hr − 1− γ

2
h2c>σσ>c+ hc>µ∗ +

1

2(1− γ)
(µ∗)>Aµ∗

))
.

Hence, we can deduce in particular that

COA

RDR
=

exp
(
T
(

1
2(1−γ)ν

>Aν + hc>ν
))

exp
(
T
(

1
2(1−γ)(µ∗)>Aµ∗ + hc>µ∗

)) ≥ 1,

since µ∗ minimizes the function

µ 7→ 1

2(1− γ)
µ>Aµ+ hc>µ

on the set K.

Additionally, the certainty-equivalent-based definitions of cost of ambiguity and reward for
distributional robustness show an asymptotic behavior that is independent of the investor’s
risk aversion. We write COA(κ) and RDR(κ) to emphasize the underlying dependence on
the degree of uncertainty.

Proposition 5.16. As κ goes to infinity, COA(κ) converges to a non-negative limit and
RDR(κ) goes to zero.

Proof. Firstly, note that by the same reasoning as in the proof of Proposition 4.10 we have

(π̂0)>µ∗ ≤ (π∗0)>µ∗ = (π∗0)>ν − κ
√

(π∗0)>Γπ∗0,
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and that the right-hand side goes to −∞ as κ goes to infinity. It follows that

lim
κ→∞

Eµ∗
[
Uγ(X π̂

T )
]

= lim
κ→∞

Eµ∗
[
Uγ(Xπ∗

T )
]

=

{
−∞, γ ≤ 0,

0, γ > 0,

and therefore limκ→∞RDR(κ) = 0.
For COA we observe that Eν [Uγ(Xπ∗

T )] converges to a finite value as κ goes to infinity,
with that limit being different from zero if γ 6= 0. It follows that U−1

γ (Eν [Uγ(Xπ∗
T )]) also

converges. We thus deduce convergence of COA(κ). Since COA(κ) ≥ 0 for any κ, we know
that the limit is non-negative.

In Figure 5.4 we illustrate the behavior of COA and RDR in dependence on the level of
uncertainty κ and on the risk aversion coefficient γ. We consider a market with d = 8 stocks,
where the underlying market parameters are again those from Example 5.8. The figure shows
COA and RDR plotted against κ for different values of γ. Note that the scaling in the second
row of subfigures is different from the scaling in the first row. The absolute values of COA
and RDR become smaller as γ increases.

We observe that the qualitative behavior of COA and RDR is the same for any value of
the risk aversion coefficient γ. For any fixed γ and κ, the value of the certainty-equivalent-
based reward for distributional robustness is always less than the value of the certainty-
equivalent-based cost of ambiguity, a property that we have proven in Proposition 5.15. As
κ increases, COA goes to a finite positive limit, whereas RDR tends to zero. This is due to
Proposition 5.16.
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Figure 5.4.: The behavior of COA and RDR plotted against uncertainty radius κ for different values
of the risk aversion coefficient γ. The parameters are those from Example 5.8.
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Part II.

Expert Opinions
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Outline and Notation

In this part of the thesis we consider a financial market in which returns are driven by an
unobservable Gaussian drift process. We assume that investors observe the return process
and additionally expert opinions that arrive at discrete time points and that are modelled
as unbiased estimates of the drift at that time point. The aim is to analyze the influence of
expert opinions on the filter for different investor filtrations. In particular, we focus on the
asymptotic behavior of the filter as the frequency of expert opinions goes to infinity.
In detail, we proceed as follows. In Chapter 6 we introduce the model for our financial

market including expert opinions and define different information regimes for investors with
different sources of information. For each of those information regimes, we state the dynamics
of the corresponding conditional mean and conditional covariance matrix of the filter.
Chapter 7 analyzes the asymptotic behavior of the conditional covariance matrices on an

infinite time horizon with regularly arriving expert opinions. We show convergence for the
situation where an investor observes the return process only. For investors who also have
access to the expert opinions we provide convergence results under assumptions on the model
parameters.
Our main results are given in Chapter 8 and focus on the asymptotic behavior of the filter as

the arrival frequency of expert opinions goes to infinity on a finite time horizon. Section 8.1
addresses the situation where experts’ covariance matrices are bounded, corresponding to
some minimal level of reliability. In that case, we show that in the limit investors have full
information about the drift process. In Section 8.2 we study a setting where the experts’
covariance matrices are not bounded but grow linearly in the frequency of expert opinions.
For an investor observing returns and discrete-time expert opinions we show convergence of
the corresponding conditional mean and conditional covariance matrix to those of an investor
observing the returns and a continuous-time expert. We consider two different situations,
one with deterministic equidistant information dates and one with information dates that
arrive randomly as the jump times of a Poisson process, i.e. with exponentially distributed
waiting times between information dates.
Chapter 9 provides an application of the convergence results to a utility maximization

problem. For investors who maximize expected logarithmic utility of terminal wealth the
optimal trading strategy depends on the conditional mean of the drift, and the corresponding
optimal terminal wealth is a functional of the conditional covariance matrices. That is why
the convergence results from Chapter 8 carry over to convergence of the corresponding value
functions. We also provide simulations and numerical calculations to illustrate our theoretical
results.

This part of the thesis builds up on Gabih et al. [25] and on the Master’s thesis West-
phal [64] in which results from Gabih et al. [25] are carried over from a one-dimensional to
a multivariate financial market. Parts of the Master’s thesis [64] are repeated in this thesis
for completeness. The financial market model given in Chapter 6 and the filtering equations
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are already given in the Master’s thesis, with the exception of the D-investor. Large parts of
Chapter 7 can be found in the Master’s thesis already and are repeated since they are needed
for later conclusions. The asymptotic results from Theorem 7.8 and Proposition 7.9 are a
new contribution, however. Whereas Theorem 8.1 was already proven in Westphal [64], the
whole Section 8.2 containing our main results is new. Parts of this work and the Master’s
thesis are published in Sass et al. [55], the follow-up paper [56] contains the new part on
diffusion approximations.

Notation. Throughout this part, we use the notation Id for the identity matrix in Rd×d and
0d for the matrix in Rd×d containing only zeros. For a symmetric and positive-semidefinite
matrix A ∈ Rd×d we call a symmetric and positive-semidefinite matrix B ∈ Rd×d the square
root of A if B2 = A. The square root is unique and will be denoted by A1/2.
For a matrix A we denote with ‖A‖ the spectral norm of A. If A is a symmetric matrix,

we write λmin(A) and λmax(A) for the minimal and maximal eigenvalue of A, respectively.
Furthermore, since ‖A‖ is the square root of the maximal eigenvalue of A>A, note that for
symmetric positive-semidefinite matrices A it holds ‖A‖ = λmax(A).
We also use a partial ordering of symmetric matrices. For symmetric matrices A,B ∈ Rd×d

we write A � B if B − A is positive semidefinite. Note that A � B in particular implies
‖A‖ ≤ ‖B‖.
If F and G are σ-algebras, we write F ∨ G for the smallest σ-algebra containing F ∪ G.
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6. Market Model and Filtering

6.1. Financial market model

We consider a financial market with one risk-free and various risky assets. The basic model
is the same as in the Master’s thesis [64], respectively in the papers by Sass et al. [55, 56]. In
the following, we use the notation T for the time interval and assume that either T = [0,∞)
or T = [0, T ] for some finite T > 0. We fix a filtered probability space (Ω,F ,F,P) where
the filtration F = (Ft)t∈T satisfies the usual conditions. All processes are assumed to be F-
adapted. The market consists of one risk-free bond with constant deterministic interest rate
r ∈ R and d risky assets such that the d-dimensional return process follows the stochastic
differential equation

dRt = µt dt+ σR dWR
t .

Here, WR = (WR
t )t∈T is an m-dimensional Brownian motion with m ≥ d and we assume

that σR ∈ Rd×m has full rank. The drift µ is an Ornstein–Uhlenbeck process and follows the
dynamics

dµt = α(δ − µt) dt+ β dBt,

where α and β ∈ Rd×d, δ ∈ Rd, and where B = (Bt)t∈T is a d-dimensional Brownian motion
independent ofWR. We assume that α and ββ> are symmetric and positive-definite matrices.
The initial drift µ0 is multivariate normally distributed, µ0 ∼ N (m0,Σ0), for some m0 ∈ Rd
and some Σ0 ∈ Rd×d which is symmetric and positive semidefinite. We assume that µ0 is
independent of B and WR, so also µ is independent of WR. The drift process µ can then be
written in explicit form as

µt = δ + e−αt
(
µ0 − δ +

∫ t

0
eαsβ dBs

)
.

We further denote mt := E[µt] and Σt := cov(µt). It holds

mt = δ + e−αt(m0 − δ),

Σt = e−αt
(

Σ0 +

∫ t

0
eαsββ>eαs ds

)
e−αt.

Investors in this market are able to observe the return process R. They neither observe the
underlying drift process µ nor the Brownian motion WR. However, information about µ can
be drawn from observing R. Additionally, we include expert opinions in our model. These
expert opinions arrive at discrete time points and give an unbiased estimate of the state of
the drift at that time point. Let (Tk)k∈I be an increasing sequence with values in T \ {0},
where we allow for index sets I = N or I = {1, . . . , N} for some N ∈ N. The Tk, k ∈ I, are
the time points at which expert opinions arrive. For the sake of convenience we also write
T0 = 0 although there is no expert opinion arriving at time zero.

79



6. Market Model and Filtering

The expert view at time Tk is modelled as an Rd-valued random vector

Zk = µTk + (Γk)
1/2εk,

where the matrix Γk ∈ Rd×d is symmetric and positive definite and εk is multivariateN (0, Id)-
distributed. We assume that the sequence (εk)k∈I is independent and also that it is indepen-
dent of both µ0 and the Brownian motions B and WR. Given µTk , the expert opinion Zk is
multivariate N (µTk ,Γk)-distributed. That means that the expert view at time Tk gives an
unbiased estimate of the state of the drift at that time. The matrix Γk reflects the reliability
of the expert.
Note that the time points Tk do not need to be deterministic. However, we impose the

additional assumption that the sequence (Tk)k∈I is independent of the (εk)k∈I and also of
the Brownian motions in the market and of µ0. This essentially says that the timing of infor-
mation dates carries no additional information about the drift µ. Nevertheless, information
on the sequence (Tk)k∈I may be important for optimal portfolio decisions. In Chapter 8 we
consider on the one hand the situation with deterministic information dates and on the other
hand a case where information dates are the jump times of a Poisson process.
It is possible to allow relative expert views in the sense that an expert may give an estimate

for the difference in drift of two stocks instead of absolute views. See Schöttle et al. [61] for
how to switch between these two models for expert opinions by means of a pick matrix.
Our main results in Chapter 8 address the question how to obtain rigorous convergence

results when the number of information dates increases. If experts have a minimal level of
reliability, one obtains full information in the limit. For other sequences of expert opinions,
where the expert’s variance grows linearly in the number of expert opinions, the information
drawn from these expert opinions is asymptotically the same as the information one gets
from observing yet another diffusion process. This diffusion process can then be interpreted
as an expert who gives a continuous-time estimation about the state of the drift. Let this
estimate be given by the diffusion process

dJt = µt dt+ σJ dW J
t , (6.1)

where W J is an l-dimensional Brownian motion with l ≥ d that is independent of all other
Brownian motions in the model, of µ0 and of the information dates Tk. The matrix σJ ∈ Rd×l
has full rank equal to d.

6.2. Filtering for different information regimes

For an investor in the financial market defined above, the ability to choose good trading
strategies is based heavily on which information is available about the unknown drift process
µ. To be able to assess the value of information coming from observing expert opinions, we
consider various types of investors with different sources of information. This follows the
approach in Gabih et al. [25] and in Sass et al. [55]. The information available to an investor
can be described by the investor filtration FH = (FHt )t∈T where H serves as a placeholder
for the various information regimes. We work with filtrations that are augmented by NP, the
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set of null sets under measure P. We consider the cases

FR = (FRt )t∈T where FRt = σ((Rs)s∈[0,t]) ∨ σ(NP),

FE = (FEt )t∈T where FEt = σ((Tk, Zk)Tk≤t) ∨ σ(NP),

FC = (FCt )t∈T where FCt = σ((Rs)s∈[0,t]) ∨ σ((Tk, Zk)Tk≤t) ∨ σ(NP),

FD = (FDt )t∈T where FDt = σ((Rs)s∈[0,t]) ∨ σ((Js)s∈[0,t]) ∨ σ(NP),

FF = (FFt )t∈T where FFt = σ((Rs)s∈[0,t]) ∨ σ((µs)s∈[0,t]) ∨ σ(NP).

When speaking of theH-investor we mean the investor with investor filtration FH = (FHt )t∈T,
H ∈ {R,E,C,D, F}. Note that the R-investor observes only the return process, the E-
investor only the incoming expert opinions at information dates. The C-investor can combine
the information from observing both the return process and the expert opinions and the
D-investor combines return observations with continuous-time expert opinions, i.e. the D-
investor observes the two diffusion processes R and J . The F -investor has full information
about the drift in the sense that she can observe the drift process directly. This case is
included as a benchmark.
As already mentioned, the investors in our financial market make trading decisions based

on available information about the drift process µ. Only the F -investor can observe the drift,
the other investors have to estimate it. The conditional distribution of the drift under partial
information is called the filter. In the mean-squared sense, an optimal estimator for the drift
at time t given the available information is then the conditional mean mH

t := E[µt | FHt ].
How close this estimator is to the true state of the drift can be assessed by looking at the
corresponding conditional covariance matrix

QHt := E
[
(µt −mH

t )(µt −mH
t )>

∣∣FHt ].
Note that since we deal with Gaussian distributions here, the conditional mean and condi-
tional covariance matrix completely characterize the filter since the filter is also Gaussian.
We state in the following the dynamics of the filters for the various investors defined above.
With the exception of the D-investor and with a restriction to deterministic information
dates Tk, the following results have been derived in the Master’s thesis Westphal [64] already.
For the R-investor, we are in the setting of the well-known Kalman filter.

Lemma 6.1. The filter of the R-investor is Gaussian. The conditional mean mR follows the
dynamics

dmR
t = α(δ −mR

t ) dt+QRt (σRσ
>
R)−1(dRt −mR

t dt),

where QR is the solution of the ordinary Riccati differential equation

d

dt
QRt = −αQRt −QRt α+ ββ> −QRt (σRσ

>
R)−1QRt .

The initial values are mR
0 = m0 and QR0 = Σ0.

This lemma follows directly from the Kalman filter theory, see for example Liptser and
Shiryaev [42, Thm. 10.3]. Note that QRt follows an ordinary differential equation, called
Riccati equation, and is hence deterministic.
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Next, we consider the D-investor. Recall that this investor observes both the diffusion
processes R and J . These observations can be written in a combined 2d-dimensional process

dDt =

(
dRt
dJt

)
=

(
Id
Id

)
µt dt+

(
σR 0
0 σJ

)
dWD

t ,

where

WD =

(
WR

W J

)
is an (m+ l)-dimensional Brownian motion. Now we can easily deduce the dynamics of mD

and QD.

Lemma 6.2. The filter of the D-investor is Gaussian. The conditional mean mD follows the
dynamics

dmD
t = α(δ −mD

t ) dt+QDt

(
(σRσ

>
R)−1

(σJσ
>
J )−1

)> (
dDt −

(
mD
t

mD
t

)
dt
)
,

where QD is the solution of the ordinary Riccati differential equation

d

dt
QDt = −αQDt −QDt α+ ββ> −QDt (σDσ

>
D)−1QDt (6.2)

with (σDσ
>
D)−1 = (σRσ

>
R)−1 + (σJσ

>
J )−1. The initial values are mD

0 = m0 and QD0 = Σ0.

Proof. Firstly, note that the matrix (σRσ
>
R)−1 + (σJσ

>
J )−1 ∈ Rd×d is symmetric and positive

definite, and hence nonsingular. Let σD ∈ Rd×d denote the unique symmetric and positive-
definite square root of the inverse. Then it holds (σDσ

>
D)−1 = (σRσ

>
R)−1 + (σJσ

>
J )−1. The

distribution of the filter as well as the dynamics of mD and QD then follow immediately from
the Kalman filter theory, see again Liptser and Shiryaev [42, Thm. 10.3].

Note that, just like in the case for the R-investor, the conditional covariance matrix is
deterministic. Next, we address the E-investor who observes the expert opinions Zk at the
(possibly random) information dates Tk. The dynamics of conditional mean and conditional
covariance matrix are given in the following lemma.

Lemma 6.3. Given a sequence of information dates Tk, the filter of the E-investor is Gaus-
sian. The dynamics of the conditional mean and conditional covariance matrix are given as
follows:

(i) Between the information dates Tk−1 and Tk, k ∈ I, it holds

mE
t = e−α(t−Tk−1)mE

Tk−1
+
(
Id − e−α(t−Tk−1)

)
δ,

QEt = e−α(t−Tk−1)

(
QETk−1

+

∫ t

Tk−1

eα(s−Tk−1)ββ>eα(s−Tk−1) ds

)
e−α(t−Tk−1)

for t ∈ [Tk−1, Tk). It holds mE
0 = m0 and QE0 = Σ0.
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(ii) The update formulas at information dates Tk, k ∈ I, are
mE
Tk

= ρk(Q
E
Tk−)mE

Tk− +
(
Id − ρk(QETk−)

)
Zk

= mE
Tk− +

(
Id − ρk(QETk−)

)(
Zk −mE

Tk−
)

and
QETk = ρk(Q

E
Tk−)QETk−

= QETk− +
(
ρk(Q

E
Tk−)− Id

)
QETk−,

where ρk(Q) = Γk(Q + Γk)
−1.

Proof. We give a proof for deterministic time points Tk first.

(i) Note that we can write the drift µt at time t as

µt = δ + e−α(t−Tk−1)

(
µTk−1

− δ +

∫ t

Tk−1

eα(s−Tk−1)β dBs

)
.

Also, there is no incoming information between Tk−1 and t, so FEt = FETk−1
. Hence,

mE
t = E

[
µt|FEt

]
= E

[
µt|FETk−1

]
= δ + e−α(t−Tk−1)

(
mE
Tk−1

− δ + E
[∫ t

Tk−1

eα(s−Tk−1)β dBs

])
= e−α(t−Tk−1)mE

Tk−1
+
(
Id − e−α(t−Tk−1)

)
δ,

(6.3)

where we have used that the stochastic integral is independent of FETk−1
and that it has

expectation zero. For the conditional covariance matrix we get

QEt = E
[
(µt −mE

t )(µt −mE
t )>

∣∣FEt ]
= E

[(
δ + e−α(t−Tk−1)

(
µTk−1

− δ +

∫ t

Tk−1

eα(s−Tk−1)β dBs

)
−mE

t

)

·
(
δ + e−α(t−Tk−1)

(
µTk−1

− δ +

∫ t

Tk−1

eα(s−Tk−1)β dBs

)
−mE

t

)> ∣∣∣∣∣ FEt
]
.

When inserting (6.3) into the above representation, the terms involving δ cancel. The
remaining conditional expectation can then be written as

e−α(t−Tk−1) E
[(
µTk−1

−mE
Tk−1

+

∫ t

Tk−1

eα(s−Tk−1)β dBs

)
·
(
µTk−1

−mE
Tk−1

+

∫ t

Tk−1

eα(s−Tk−1)β dBs

)> ∣∣∣∣ FEt ]e−α(t−Tk−1).

An expansion of the product inside the conditional expectation gives

QETk−1
+ E

[(∫ t

Tk−1

eα(s−Tk−1)β dBs

)(∫ t

Tk−1

eα(s−Tk−1)β dBs

)>]
= QETk−1

+

∫ t

Tk−1

eα(s−Tk−1)ββ>eα(s−Tk−1) ds,

where the mixed terms cancel because of independence.
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6. Market Model and Filtering

(ii) For the update formulas at information dates we interpret the situation as a degenerate
discrete-time Kalman filter with time points Tk− and Tk. From Elliott et al. [19,
Eq. (5.12) and (5.13)] we get for the conditional expectation

mE
Tk

= mE
Tk− +QETk−(QETk− + Γk)

−1(Zk −mE
Tk−)

=
(
Id −QETk−(QETk− + Γk)

−1
)
mE
Tk− +QETk−(QETk− + Γk)

−1Zk

= ρk(Q
E
Tk−)mE

Tk− +
(
Id − ρk(QETk−)

)
Zk,

where ρk(Q) = Γk(Q + Γk)
−1, and for the conditional covariance matrix

QETk = E
[
(µTk −mE

Tk
)(µTk −mE

Tk
)>
∣∣FETk]

= QETk− −Q
E
Tk−(QETk− + Γk)

−1QETk−

=
(
Id −QETk−(QETk− + Γk)

−1
)
QETk−

= ρk(Q
E
Tk−)QETk−.

These are the update formulas for the filter at information dates. Alternatively, we can
also compute the estimator mE

Tk
and its conditional covariance matrix as a Bayesian

update of mE
Tk− given the N (µTk ,Γk)-distributed expert opinion Zk, see for example

Shiryaev [62, Thm. II.8.2].

For the more general case where the Tk do not need to be deterministic, recall that we have
made the assumption that the sequence (Tk)k∈I is independent of the other random variables
in the market. In particular, (Tk)k∈I and the drift process µ are independent. Because of
that, the dynamics of the conditional mean and conditional covariance matrix are the same as
for deterministic information dates and we get the same update formulas, the only difference
being that the update times might now be non-deterministic.
The Gaussian distribution of the filter between information dates follows as in the previous

lemmas from the Kalman filter theory. Since the updates at information dates can be seen
as a degenerate discrete-time Kalman filter the distribution of the filter at information dates
remains Gaussian after the Bayesian update.

From the second part of the lemma we see that the conditional mean mE
Tk

at information
date Tk is a weighted mean of the conditional mean mE

Tk− before the update and the expert
opinion Zk. The corresponding weights depend on the reliability of the expert at time Tk,
more precisely on the covariance matrix Γk of the expert’s view. The more reliable the
expert is, i.e. the smaller Γk, the more weight is put on the expert’s view. For the conditional
covariance matrices we have a similar update formula.
If we have non-deterministic information dates Tk, then in contrast to both the R-investor

and the D-investor, the conditional covariance matrices QEt of the E-investor for fixed t are
random matrices since updates take place at random times. However, the timing of the
updates is the only randomness in the conditional covariance matrices. Given a sequence of
information dates (Tk)k∈I , the dynamics of QE are deterministic.
Let us now come to the C-investor. Recall that this investor observes the return process

R continuously in time and at (possibly random) information dates Tk the expert opinions
Zk. We state the dynamics of mC and QC in the following lemma.
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6.2. Filtering for different information regimes

Lemma 6.4. Given a sequence of information dates Tk, the filter of the C-investor is Gaus-
sian. The dynamics of the conditional mean and conditional covariance matrix are given as
follows:

(i) Between the information dates Tk−1 and Tk, k ∈ I, it holds

dmC
t = α(δ −mC

t ) dt+QCt (σRσ
>
R)−1(dRt −mC

t dt)

for t ∈ [Tk−1, Tk), where QC follows the ordinary Riccati differential equation

d

dt
QCt = −αQCt −QCt α+ ββ> −QCt (σRσ

>
R)−1QCt

for t ∈ [Tk−1, Tk). The initial values are mC
Tk−1

and QCTk−1
, respectively, with mC

0 = m0

and QC0 = Σ0.

(ii) The update formulas at information dates Tk, k ∈ I, are

mC
Tk

= ρk(Q
C
Tk−)mC

Tk− +
(
Id − ρk(QCTk−)

)
Zk

= mC
Tk− +

(
Id − ρk(QCTk−)

)(
Zk −mC

Tk−
)

and
QCTk = ρk(Q

C
Tk−)QCTk−

= QCTk− +
(
ρk(Q

C
Tk−)− Id

)
QCTk−,

where ρk(Q) = Γk(Q + Γk)
−1.

Proof. Note that between two subsequent information dates, no additional expert opinions
arrive. Therefore, only return observations contribute to the filtration which implies that
FCt = FCTk−1

∨ σ(Rs |Tk−1 < s ≤ t). Hence, in [Tk−1, Tk) we are in the standard situation of
the Kalman filter. The dynamics then follow as in Lemma 6.1.
At the information dates Tk we use, as in the proof of Lemma 6.3, the degenerate discrete-

time Kalman filter or a Bayesian update formula.

Note that the dynamics of mC and QC between information dates are the same as for
the R-investor, see Lemma 6.1. The update formulas at information dates Tk, on the other
hand, are the same as for the E-investor. If we have non-deterministic information dates
Tk, then also the conditional covariance matrices QC of the C-investor are non-deterministic
since updates take place at random times. Again, the timing of the information dates is the
only source of randomness in the dynamics of QC .
For the sake of completeness we address as a last case the situation of full information,

i.e. where the investor filtration is FF . This case corresponds to an investor who is able to
observe the drift process directly. We consider it as a reference case to compare it to the
other settings of information. It is clear that in this situation mF

t = E[µt | FFt ] = µt and
QFt = E[(µt −mF

t )(µt −mF
t )> | FFt ] = 0d for all t ∈ T.
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6. Market Model and Filtering

6.3. Properties of the conditional covariance matrix

In the preceding section we have stated the filtering equations for the various investors. We
now deduce some properties of the conditional covariance matrices. Firstly, it is straightfor-
ward to show that an update caused by an incoming expert opinion decreases the conditional
covariance matrices QE and QC of the E- and C-investor. In this respect, it is useful to
consider the partial ordering � of symmetric matrices. Recall that for symmetric matrices
A,B ∈ Rd×d we write A � B if B − A is positive semidefinite and that A � B in particular
implies ‖A‖ ≤ ‖B‖.

Proposition 6.5. It holds QETk � Q
E
Tk− and QETk � Γk as well as QCTk � Q

C
Tk− and QCTk � Γk

for any k ∈ I.

Proof. Let k ∈ I. From the update formula in Lemma 6.3 we know that

QETk = QETk− +
(
ρk(Q

E
Tk−)− Id

)
QETk−,

where ρk(Q) = Γk(Q + Γk)
−1. Hence, we can rewrite

QETk− −Q
E
Tk

= −
(
ρk(Q

E
Tk−)− Id

)
QETk−

=
(
Id − Γk(Q

E
Tk− + Γk)

−1
)
QETk−

= QETk−(QETk− + Γk)
−1QETk−.

Since the matrix QETk− + Γk is symmetric and positive definite, so is its inverse and hence
also the matrix

QETk−(QETk− + Γk)
−1QETk− = QETk−(QETk− + Γk)

−1(QETk−)>

by symmetry of QETk−. It follows that Q
E
Tk
� QETk−.

For the second assertion, we use

QETk = ρk(Q
E
Tk−)QETk− = Γk(Q

E
Tk− + Γk)

−1QETk− = Γk − Γk(Q
E
Tk− + Γk)

−1Γk.

Again, due to QETk− being symmetric and positive semidefinite and Γk being symmetric
and positive definite, we can deduce that Γk(Q

E
Tk− + Γk)

−1Γk is symmetric and positive
semidefinite. Hence, QETk � Γk. For the C-investor, the proof is completely analogous.

The previous proposition shows that for the E- and C-investor, the information from an
incoming expert opinion decreases the conditional covariance. Also, the covariance matrix of
the expert’s view, Γk, forms an upper bound for the investors’ covariance matrix after the
update.
The partial ordering introduced above also proves useful for comparing the different in-

vestors among each other. Recall that the conditional covariance matrix is a means of measur-
ing the goodness of the filter. With that interpretation, we show in the following proposition
that the additional information that both the C-investor and the D-investor have in compar-
ison to the R-investor results in a more precise estimate of the drift. Also, the conditional
covariance matrix of the C-investor is smaller than that of the E-investor.
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6.3. Properties of the conditional covariance matrix

Proposition 6.6. For any sequence (Tk, Zk)k∈I we have QCt � QRt and QDt � QRt as well
as QCt � QEt for all t ∈ T.

Proof. Let (Tk, Zk)k∈I be any sequence of expert opinions and (QCt )t∈T the conditional co-
variance matrices of the corresponding filter for the C-investor. Every update decreases the
covariance in the sense that

QCTk � Q
C
Tk−,

see Proposition 6.5. Furthermore, if (Pt)t∈T and (P̃t)t∈T are solutions of the same Riccati
differential equation, where the initial values fulfill P0 � P̃0, then Pt � P̃t for all t ∈ T, see
for example Kuc̆era [39, Thm. 10]. Inductively, we can deduce that in our setting QCt � QRt
for all t ∈ T.
To compare the conditional covariance matrices of the D-investor and of the R-investor,

we use the fact that for any random variable X and σ-algebra G the conditional expectation
E[X | G] is the best mean-square estimate for X, meaning that

E
[
(X − E[X | G])2

]
≤ E

[
(X − Y )2

]
(6.4)

for all G-measurable random variables Y . Now, take an arbitrary x ∈ Rd and t ∈ T. Then
we can write

x>QDt x = E
[
x>(µt −mD

t )(µt −mD
t )>x

∣∣FDt ]
= E

[(
x>(µt −mD

t )
)2 ∣∣FDt ]

= E
[(
x>µt − E[x>µt | FDt ]

)2 ∣∣FDt ].
Since FRt ⊆ FDt for all t ∈ T, it follows from (6.4) that

E[x>QDt x] = E
[(
x>µt − E[x>µt | FDt ]

)2] ≤ E
[(
x>µt − E[x>µt | FRt ]

)2]
= E[x>QRt x].

We already know that QRt and QDt are deterministic, so the above inequality simplifies to

x>QDt x ≤ x>QRt x.

Since x ∈ Rd was arbitrary, it follows that QDt � QRt .
The comparison of QCt and QEt also works inductively. Note that QC0 = QE0 = Σ0. Given

that QCTk−1
� QETk−1

for some k ∈ I, we have QCt � QEt for all t ∈ [Tk−1, Tk) due to the
additional information as when comparing the D- and R-investor. In particular, we deduce
QCTk− � Q

E
Tk− and hence the matrix

QETk −Q
C
Tk

= Γk − Γk(Q
E
Tk− + Γk)

−1Γk − Γk + Γk(Q
C
Tk− + Γk)

−1Γk

= Γk
(
(QCTk− + Γk)

−1 − (QETk− + Γk)
−1
)
Γk

is also positive semidefinite. So QCTk � QETk . Inductively, it follows that QCt � QEt for all
t ∈ T.

The preceding proposition gives a relation between the conditional covariance matrices of
the different investors in terms of the partial ordering of symmetric matrices. Recall that
QFt = 0d for all t ∈ T. Therefore, in addition to the results from the proposition, it also
trivially holds QFt � QHt for all H ∈ {R,E,C,D}.
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6. Market Model and Filtering

Figure 6.1 illustrates how the various conditional covariances QH behave in the course of
time. For illustration purposes we consider a market with d = 1 stock and choose T = [0, T ]
for a time horizon T = 1. We assume that there are n = 10 equidistant information dates
Tk = tk = k

n , k = 1, . . . , n, on [0, T ] and that the expert’s variance Γ is the same at each
information date.
When looking at QRt and QDt we observe that they are smooth and decreasing functions

in time and seem to converge, as t increases, to some finite value. One can also see that
QDt ≤ QRt for any t ∈ T, which has been proven in Proposition 6.6. For the E-investor,
the conditional variance decreases at each information date, which is due to Proposition 6.5.
It is also striking that QEtk and QEtk− seem to converge to some finite value for large values
of k. The conditional variance of the C-investor always lies below the minimum of QRt and
QEt , again due to Proposition 6.6. As in the case with expert opinions only, the conditional
variance decreases at information dates and QCtk and QCtk− seem to converge.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

t

QR

QE

QC

QD

Figure 6.1.: An example for the behavior of the conditional variances in a market with d = 1 stock,
time horizon T = 1 and n = 10 equidistant information dates. Further parameters are
α = 3, β = 1, σR = σJ = 0.15, Γ = 0.15, Σ0 = 0.2.

The figure illustrates the properties of the conditional covariance matrices that we have
shown in this section. It also reveals an interesting asymptotic behavior of the conditional
covariance matrices as t increases. The aim of the next chapter will be to analyze this
asymptotic behavior in more detail and to investigate which of the properties that we have
observed in the one-dimensional example hold in general in multivariate financial markets.
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7. Asymptotic Behavior on an Infinite
Time Horizon

In this chapter we consider an infinite time horizon, i.e. T = [0,∞). Our aim is to derive
convergence results for the conditional covariance matrices QHt , H ∈ {R,D,E,C}, as t goes
to infinity. Many results from this chapter, aside from Proposition 7.7(ii), Theorem 7.8 and
Proposition 7.9, are already proven in the Master’s thesis Westphal [64] and repeated here
for completeness and since they are needed for later computations.

7.1. Observation of diffusions only

We first consider the conditional covariance matrix of the R-investor. The following definition
can be found for example in Wonham [65] and Kuc̆era [39] and proves to be useful for
analyzing the asymptotic behavior of QRt as t goes to infinity.

Definition 7.1. A quadratic matrix is called stable if all its eigenvalues have negative real
parts. A pair (A,B) of matrices A,B ∈ Rn×n is called stabilizable if there exists some matrix
L ∈ Rn×n such that A + BL is stable. It is called detectable if there exists some matrix
F ∈ Rn×n such that FA+B is stable.

With the help of the above definition we now prove that, as t tends to infinity, QRt converges.
We provide a proof that makes use of results from Kuc̆era [39].

Theorem 7.2. Starting with any initial covariance matrix Σ0 it holds

lim
t→∞

QRt = QR∞

for a positive-semidefinite matrix QR∞. Furthermore, QR∞ is the unique positive-semidefinite
solution of the algebraic Riccati equation

−αQ −Qα+ ββ> −Q(σRσ
>
R)−1Q = 0d.

Proof. We make use of the results in the review paper on matrix Riccati equations by
Kuc̆era [39]. After applying a simple time reversion to the differential equation considered in
that paper, Theorem 17 therein states that the solution P of the differential equation

d

dt
P (t) = −P (t)BB>P (t) + P (t)A+A>P (t) + C>C, P (t0) = P0, (7.1)

satisfies
lim
t→∞

P (t) = P∞

89



7. Asymptotic Behavior on an Infinite Time Horizon

under the assumption that (A,B) is stabilizable and (C,A) is detectable. Theorem 5 in
the aforementioned paper ensures that P∞ is the unique positive-semidefinite solution of the
quadratic algebraic Riccati equation

−PBB>P + PA+A>P + C>C = 0d. (7.2)

In our model, QRt follows the dynamics

d

dt
QRt = −αQRt −QRt α+ ββ> −QRt (σRσ

>
R)−1QRt , QR0 = Σ0.

Let τ denote the symmetric positive-definite root of (σRσ
>
R)−1, i.e. τ2 = (σRσ

>
R)−1. Com-

paring with (7.1) and (7.2), it is sufficient to show that (−α, τ) is stabilizable and (β>,−α)
is detectable. Note that (−α) + τ(−Id) = −(α + τ) is symmetric which implies that all its
eigenvalues are real. Now

λmax

(
−(α+ τ)

)
= −λmin(α+ τ) ≤ −

(
λmin(α) + λmin(τ)

)
< 0,

where we have used Weyl’s inequality, see Horn and Johnson [32, Thm. 4.3.1], and the fact
that both α and τ are positive definite. Hence, the pair (−α, τ) is stabilizable. Furthermore,
the matrix (−β)β> + (−α) = −(ββ> + α) is also symmetric and

λmax

(
−(ββ> + α)

)
= −λmin(ββ> + α) ≤ −

(
λmin(ββ>) + λmin(α)

)
< 0,

where we have used positive definiteness of α and ββ>. Hence, (β>,−α) is detectable.

In a one-dimensional market, we even obtain an explicit formula for the matrix QR∞, see
Gabih et al. [25, Prop. 4.6]. In the multivariate case, one has to calculate QR∞ numerically.
The above asymptotic result is also helpful because it ensures boundedness of the condi-

tional covariance matrices of not only the R-investor but also the C- and D-investor. For
proving our results in the subsequent chapter we need to find upper bounds for various ex-
pressions that involve the conditional covariance matrices QD and QC . The following lemma
states the required boundedness.

Lemma 7.3. There exists a constant CQ > 0 such that

‖QRt ‖ ≤ CQ , ‖QCt ‖ ≤ CQ and ‖QDt ‖ ≤ CQ

for all t ∈ T.

Proof. From Proposition 6.6 we know that QCt � QRt and QDt � QRt for any t ∈ T. In
particular, it follows that

‖QCt ‖ ≤ ‖QRt ‖ and ‖QDt ‖ ≤ ‖QRt ‖.

Therefore, it is enough to show boundedness of QRt . By Theorem 7.2 there exists a positive-
semidefinite matrix QR∞ such that

lim
t→∞

QRt = QR∞.

Hence, ‖QRt ‖ is for all t ∈ T bounded by some constant CQ > 0.
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7.2. Observation of discrete expert opinions

For the D-investor we recall the dynamics of the filter, in particular the matrix Riccati
differential equation for QDt , from Lemma 6.2. We can prove convergence of QDt as t goes to
infinity as in the situation with return observations only.

Theorem 7.4. Starting with any initial covariance matrix Σ0 it holds

lim
t→∞

QDt = QD∞

for a positive-semidefinite matrix QD∞. Furthermore, QD∞ is the unique positive-semidefinite
solution of the algebraic Riccati equation

−αQ −Qα+ ββ> −Q(σDσ
>
D)−1Q = 0d.

Proof. The proof is analogous to the proof of Theorem 7.2.

7.2. Observation of discrete expert opinions

After having analyzed in the preceding section the asymptotic behavior of QRt and QDt as t
goes to infinity we now address the E- and C-investor. We assume throughout this section
that the expert opinions arrive at deterministic equidistant time points tk = k∆, k ∈ N, for
some ∆ > 0, and that Γk = Γ is some constant positive-definite matrix. Our goal is to estab-
lish conditions that ensure convergence of (QHtk)k∈N where H ∈ {E,C}. The following lemma
identifies conditions under which these sequences are monotone in the positive-semidefinite
ordering.

Lemma 7.5. Let H ∈ {E,C}. If Σ0 � QHt1 , then the sequences

(QHtk)k∈N and (QHtk−)k∈N

are monotonically non-decreasing. If Σ0 � QHt1 , then they are monotonically non-increasing.

Proof. We consider first H = E and show the claim by induction. Suppose for some k ≥ 1
that QEtk−1

� QEtk . Then by Lemma 6.3 we can write

QEtk+1− −Q
E
tk− =

(
e−α∆QEtke−α∆ +

∫ tk+1

tk

e−α(tk+1−s)ββ>e−α(tk+1−s) ds
)

−
(

e−α∆QEtk−1
e−α∆ +

∫ tk

tk−1

e−α(tk−s)ββ>e−α(tk−s) ds
)

= e−α∆(QEtk −Q
E
tk−1

)e−α∆ +

∫ ∆

0
eαsββ>eαs ds−

∫ ∆

0
eαsββ>eαs ds

= e−α∆(QEtk −Q
E
tk−1

)e−α∆,

which is positive semidefinite by assumption. It follows that QEtk− � QEtk+1−. But then also
QEtk− + Γ � QEtk+1− + Γ and hence (QEtk− + Γ)−1 � (QEtk+1− + Γ)−1. So we can deduce that

QEtk+1
−QEtk = Γ(QEtk+1− + Γ)−1QEtk+1− − Γ(QEtk− + Γ)−1QEtk−

=
(
Γ− Γ(QEtk+1− + Γ)−1Γ

)
−
(
Γ− Γ(QEtk− + Γ)−1Γ

)
= Γ

(
(QEtk− + Γ)−1 − (QEtk+1− + Γ)−1

)
Γ
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7. Asymptotic Behavior on an Infinite Time Horizon

is positive semidefinite which yields QEtk � QEtk+1
. Inductively, the claim follows. In case that

Σ0 � QEt1 one simply has to interchange � and � throughout the proof.
Secondly, we consider the case H = C and assume again for some k ≥ 1 that QCtk−1

� QCtk .
In Lemma 6.4 we have seen that between two information dates QCt follows the dynamics

d

dt
QCt = −αQCt −QCt α+ ββ> −QCt (σRσ

>
R)−1QCt . (7.3)

We consider the intervals [tk−1, tk) and [tk, tk+1). In both intervals, QCt evolves with the same
dynamics, but for the initial values we have QCtk−1

� QCtk . Since the differential equation (7.3)
is a Riccati equation, it follows from Kuc̆era [39, Thm. 10] that QCtk−1+h � QCtk+h for any
h ∈ [0,∆), and in particular QCtk− � QCtk+1−. As above for the E-investor, it follows from the
update formula that also QCtk � QCtk+1

. Inductively, the claim has been shown. The proof in
the other case is again completely analogous.

If either of the inequalities in the assumption of the lemma holds, we can deduce conver-
gence of the sequences

(QHtk)k∈N and (QHtk−)k∈N

as k goes to infinity. This is shown in the next proposition.

Proposition 7.6. Let H ∈ {E,C} and assume that either Σ0 � QHt1 or Σ0 � QHt1 . Then
there exist symmetric positive-semidefinite matrices LH and UH ∈ Rd×d such that

lim
k→∞

QHtk = LH and lim
k→∞

QHtk− = UH .

Proof. By Lemma 7.5 the sequences

(QHtk)k∈N and (QHtk−)k∈N

are monotone. Next, we show that they are bounded. For the C-investor, recall from
Lemma 7.3 that QCt is bounded. For the E-investor, note from Lemma 6.3 that we are
able to rewrite the dynamics of QEt between two information dates tk−1 and tk in the form

d

dt
QEt = −αe−α(t−tk−1)

(
QEtk−1

+

∫ t

tk−1

eα(s−tk−1)ββ>eα(s−tk−1) ds

)
e−α(t−tk−1)

− e−α(t−tk−1)

(
QEtk−1

+

∫ t

tk−1

eα(s−tk−1)ββ>eα(s−tk−1) ds

)
e−α(t−tk−1)α

+ e−α(t−tk−1)eα(t−tk−1)ββ>eα(t−tk−1)e−α(t−tk−1)

= −αQEt −QEt α+ ββ>.

This is a degenerate Riccati differential equation in which the quadratic term vanishes. From
Definition 7.1 it follows immediately that (−α,0d) is stabilizable. By Kuc̆era [39, Thm. 11]
the solution of this differential equation is bounded. Since at each information date tk
Proposition 6.5 ensures QEtk � QEtk−, and by applying again Kuc̆era [39, Thm. 10], we can
conclude that there is some M ∈ Rd×d such that x>QEt x ≤ x>Mx for all x ∈ Rd and t ≥ 0.
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7.2. Observation of discrete expert opinions

Hence, for H ∈ {E,C}, the sequences (QHtk)k∈N and (QHtk−)k∈N are monotone and bounded
sequences of symmetric matrices. It follows that the limits

lim
k→∞

QHtk = LH and lim
k→∞

QHtk− = UH

exist for real-valued matrices LH and UH ∈ Rd×d, see Wonham [65, Lem. 3.1] for instance.

The condition Σ0 � QHt1 is always fulfilled if Σ0 = 0d, i.e. if we assume that the initial drift
µ0 is known. In that case, we obtain from Lemma 7.5 and Proposition 7.6 that (QHtk)k∈N and
(QHtk−)k∈N are monotonically increasing and converge to LH , respectively UH . Note however
that the relation � is not a total order on the space of symmetric matrices. Therefore it
might be the case that neither Σ0 � QHt1 nor Σ0 � QHt1 . In the following proposition we
identify conditions on the set of model parameters that nevertheless guarantee convergence.

Proposition 7.7. (i) Suppose that the model parameters α and Γ and the interval size ∆
are chosen in such a way that

λmax(Γ)

λmin(Γ)
< eλmin(α)∆.

Then there exist symmetric positive-semidefinite matrices LE and UE ∈ Rd×d such that

lim
k→∞

QEtk = LE and lim
k→∞

QEtk− = UE ,

and LE and UE are independent of the choice of Σ0.

(ii) There exists a ∆0 > 0 such that if ∆ ≥ ∆0 then there exist symmetric positive-
semidefinite matrices LC and UC ∈ Rd×d such that

lim
k→∞

QCtk = LC and lim
k→∞

QCtk− = UC ,

and LC and UC are independent of the choice of Σ0.

Proof. (i) For the proof we denote with QE the conditional covariance matrices of the E-
investor starting in QE0 = Σ0 and with QE,0 the conditional covariance matrices when
starting with initial covariance QE,00 = 0d. In the following, we show that∥∥QEtk −QE,0tk

∥∥ ≤ q∥∥QEtk−1
−QE,0tk−1

∥∥ (7.4)

for all k ≥ 1 and some q < 1. From (7.4) it then follows that∥∥QEtk −QE,0tk

∥∥
goes to zero as k goes to infinity. Since (QE,0tk

)k∈N converges to some matrix LE by
Proposition 7.6, we then deduce that (QEtk)k∈N converges to the same limit.

Let k ≥ 1. A calculation similar to the one in the proof of Lemma 7.5 yields

QEtk −Q
E,0
tk

= Γ
(
(QE,0tk− + Γ)−1 − (QEtk− + Γ)−1

)
Γ

= Γ(QE,0tk− + Γ)−1(QEtk− −Q
E,0
tk−)(QEtk− + Γ)−1Γ.

(7.5)
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7. Asymptotic Behavior on an Infinite Time Horizon

Here we have used that

A−1 −B−1 = A−1(B −A)B−1

for quadratic, nonsingular matrices A and B of the same size. Further, we calculate
again similarly to the proof of Lemma 7.5 that

QEtk− −Q
E,0
tk− = e−α∆(QEtk−1

−QE,0tk−1
)e−α∆. (7.6)

Plugging this representation into (7.5) yields

QEtk −Q
E,0
tk

= Γ(QE,0tk− + Γ)−1e−α∆(QEtk−1
−QE,0tk−1

)e−α∆(QEtk− + Γ)−1Γ.

We now apply the spectral norm and use submultiplicativity to obtain∥∥QEtk −QE,0tk

∥∥ ≤ ∥∥Γ(QE,0tk− + Γ)−1e−α∆
∥∥∥∥QEtk−1

−QE,0tk−1

∥∥∥∥e−α∆(QEtk− + Γ)−1Γ
∥∥. (7.7)

We then derive the upper bound∥∥Γ(QE,0tk− + Γ)−1e−α∆
∥∥ ≤ ‖Γ‖ ‖(QE,0tk− + Γ)−1‖ ‖e−α∆‖

=
λmax(Γ)

λmin(QE,0tk− + Γ)
e−λmin(α)∆ ≤ λmax(Γ)

λmin(Γ)
e−λmin(α)∆,

and the same upper bound holds for the last factor in (7.7). Putting these results
together results in ∥∥QEtk −QE,0tk

∥∥ ≤ q∥∥QEtk−1
−QE,0tk−1

∥∥,
where

q =

(
λmax(Γ)

λmin(Γ)
e−λmin(α)∆

)2

< 1

due to our assumptions on the parameters. This proves (7.4) and hence convergence of
(QEtk)k∈N to LE . Convergence of (QEtk−)k∈N to UE then follows immediately from (7.6).

(ii) Here we follow the same idea as in (i) for the E-investor. Denote with QC the con-
ditional covariance matrices of the C-investor with initial value QC0 = Σ0 and with
QC,0 those with initial value QC,00 = 0d. By Proposition 7.6 the sequence (QC,0tk

)k∈N
converges to a symmetric positive-semidefinite matrix LC ∈ Rd×d.
For any k ≥ 1 we have, as in (i), the update step

QCtk −Q
C,0
tk

= Γ(QC,0tk− + Γ)−1(QCtk− −Q
C,0
tk−)(QCtk− + Γ)−1Γ. (7.8)

Furthermore, Bucy and Joseph [8, Thm. 5.4], see also Zabczyk [66], state that solutions
to Riccati differential equations are exponentially stable. In particular, there exist
constants C > 0 and γ > 0 such that∥∥QCtk− −QC,0tk−

∥∥ ≤ C∥∥QCtk−1
−QC,0tk−1

∥∥ e−2γ∆ (7.9)

for all k ≥ 1. Plugging (7.9) into (7.8) and using the same estimations as in (i) yields

∥∥QCtk −QC,0tk

∥∥ ≤ C(λmax(Γ)

λmin(Γ)
e−γ∆

)2∥∥QCtk−1
−QC,0tk−1

∥∥.
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7.2. Observation of discrete expert opinions

Hence, there exists ∆0 > 0 such that if ∆ ≥ ∆0 we have

C

(
λmax(Γ)

λmin(Γ)
e−γ∆

)2

< 1.

In that case, we can deduce that the sequence (QCtk)k∈N converges to LC . Convergence
of (QCtk−)k∈N to the matrix UC then follows immediately from (7.9).

The preceding proposition imposes conditions on the model parameters that ensure con-
vergence of the sequences

(QHtk)k∈N and (QHtk−)k∈N

for H ∈ {E,C}. Note that convergence holds given that the interval size ∆ between the
arrivals of expert opinions is sufficiently large. For the E-investor we have an explicit relation
between ∆ on the one hand and α and Γ on the other hand that yields a sufficient condition for
convergence. It can also be seen from part (i) of the preceding proposition that convergence
always holds for the E-investor if Γ is a multiple of the identity matrix. For the C-investor we
only have existence of a threshold ∆0, but no explicit representation. The result in part (ii)
of the proposition is a new extension to the results in the Master’s thesis [64], and the same
is true for the subsequent results in this chapter.
Given that the limits of the sequences (QEtk)k∈N and (QEtk−)k∈N exist for the E-investor we

can show that they yield asymptotic upper and lower bounds for the trace of QEt .

Theorem 7.8. Consider the case with expert opinions only and assume that the limits LE

and UE of the sequences (QEtk)k∈N, respectively (QEtk−)k∈N exist. Then

lim inf
t→∞

tr(QEt ) = tr(LE) and lim sup
t→∞

tr(QEt ) = tr(UE).

Proof. Throughout this proof, let (Qt)t≥0 be the solution of

d

dt
Qt = −αQt −Qtα+ ββ>, Q0 = Σ0.

Note that Qt follows the same dynamics as QEt , but no updates take place. This corresponds
to an investor who observes neither expert opinions nor the return diffusion. In particular,
it holds QEt � Qt for all t ≥ 0. As in Theorem 7.2 it follows that limt→∞Qt = Q∞ where
Q∞ ∈ Rd×d is a symmetric positive-semidefinite matrix solving

−αQ∞ −Q∞α+ ββ> = 0d,

in particular
−2 tr(αQ∞) + tr(ββ>) = 0. (7.10)

In the following, we prove an asymptotic bound for the minimal eigenvalue of Q∞−QEtk+h

where h ∈ [0,∆). For that purpose, define

Gh = e−αh
(
LE +

∫ h

0
eαsββ>eαs ds

)
e−αh
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7. Asymptotic Behavior on an Infinite Time Horizon

for any h ∈ [0,∆) and note that∥∥Gh −QEtk+h

∥∥ =
∥∥e−αh

(
LE −QEtk

)
e−αh

∥∥ ≤ ∥∥LE −QEtk∥∥,
in particular the sequences (Gh − QEtk+h)k∈N converge uniformly to zero. Using Weyl’s in-
equality, see Horn and Johnson [32, Thm. 4.3.1], we get

inf
h∈[0,∆)

λmin(Q∞ −QEtk+h) = inf
h∈[0,∆)

λmin(Q∞ −Gh +Gh −QEtk+h)

≥ inf
h∈[0,∆)

{
λmin(Q∞ −Gh) + λmin(Gh −QEtk+h)

}
≥ inf

h∈[0,∆)
λmin(Q∞ −Gh) + inf

h∈[0,∆)
λmin(Gh −QEtk+h)

(7.11)

for any k ∈ N. Here for any h ∈ [0,∆) it holds that

Q∞ −Gh = lim
t→∞

Qt − lim
k→∞

QEtk+h = lim
k→∞

(
Qtk+h −QEtk+h

)
is positive semidefinite since QEt � Qt for any t ≥ 0. This implies

inf
h∈[0,∆)

λmin(Q∞ −Gh) ≥ 0. (7.12)

The uniform convergence of (Gh −QEtk+h)k∈N implies

lim
k→∞

inf
h∈[0,∆)

λmin(Gh −QEtk+h) = 0. (7.13)

Plugging (7.12) and (7.13) into (7.11) yields

lim
k→∞

inf
h∈[0,∆)

λmin(Q∞ −QEtk+h) ≥ 0.

By applying a trace inequality from Wang et al. [63, Lem. 1] we now conclude

lim
k→∞

inf
h∈[0,∆)

tr
(
α(Q∞ −QEtk+h)

)
≥ lim

k→∞
inf

h∈[0,∆)
tr(α)λmin(Q∞ −QEtk+h) ≥ 0,

and therefore
lim
k→∞

sup
h∈[0,∆)

tr(αQEtk+h) ≤ tr(αQ∞) =
1

2
tr(ββ>), (7.14)

where we have used (7.10).
For the remainder of the proof, suppose there exists some ε > 0 and 0 < h1 < h2 < ∆

such that
tr(QEtkn+h2) < tr(QEtkn+h1)− ε

for an increasing sequence (kn)n∈N. Define the functions gn : (0,∆) → R, h 7→ tr(QEtkn+h)

and note that due to linearity the trace of QEt is between information dates differentiable
with

d

dt
tr(QEt ) = tr

( d

dt
QEt

)
= tr(−αQEt −QEt α+ ββ>) = −2 tr(αQEt ) + tr(ββ>).
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7.2. Observation of discrete expert opinions

Hence, for all n ∈ N we have

−ε > tr(QEtkn+h2)− tr(QEtkn+h1) = gn(h2)− gn(h1) = g′n(h∗n)(h2 − h1)

=
(
−2 tr(αQEtkn+h∗n

) + tr(ββ>)
)
(h2 − h1)

for some h∗n ∈ (h1, h2), so

−2 tr(αQEtkn+h∗n
) + tr(ββ>) < − ε

h2 − h1

for all n ∈ N. But this is a contradiction to (7.14). Hence, the assumption was wrong. In
particular, we can conclude that

lim inf
t→∞

tr(QEt ) = lim
k→∞

tr(QEtk) = tr(LE) and lim sup
t→∞

tr(QEt ) = lim
k→∞

tr(QEtk−) = tr(UE),

which finishes the proof.

It can be shown that the statement of the previous theorem is not true when considering the
C-investor instead of the E-investor, i.e. when there are additionally also return observations.
When imposing the constraint that σRσ>R is a multiple of the identity matrix, however, the
result carries over. This is shown in the following proposition.

Proposition 7.9. Consider the case with expert opinions and return observations. Under the
assumption that σRσ>R = sId for some s > 0 and that the limits LC and UC of the sequences
(QCtk)k∈N, respectively (QCtk−)k∈N exist it holds

lim inf
t→∞

tr(QCt ) = tr(LC) and lim sup
t→∞

tr(QCt ) = tr(UC).

Proof. Firstly, we note that between information dates the trace of QCt is differentiable with

d

dt
tr(QCt ) = tr

( d

dt
QCt

)
= tr(−αQCt −QCt α+ ββ> −QCt (σRσ

>
R)−1QCt )

= −2 tr(αQCt ) + tr(ββ>)− tr(QCt (σRσ
>
R)−1QCt ).

Hence, it holds d
dt tr(QCt ) ≥ 0 if and only if

2 tr(αQCt ) + tr(QCt (σRσ
>
R)−1QCt ) ≤ tr(ββ>).

Further, we have shown in Theorem 7.2 that limt→∞Q
R
t = QR∞ where

−αQR∞ −QR∞α+ ββ> −QR∞(σRσ
>
R)−1QR∞ = 0d,

in particular
2 tr(αQR∞) + tr(QR∞(σRσ

>
R)−1QR∞) = tr(ββ>). (7.15)

From Proposition 6.6 we additionally know that QCt � QRt for all t ≥ 0.
For finding an asymptotic bound for the minimal eigenvalue of QR∞ − QCtk+h, h ∈ [0,∆),

we first define (GCh )h∈[0,∆) by

d

dh
GCh = −αGCh −GCh α+ ββ> −GCh (σRσ

>
R)−1GCh , GC0 = LC ,
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7. Asymptotic Behavior on an Infinite Time Horizon

i.e. the dynamics of GCh only differ from those of QCt in the starting value. In Bucy and
Joseph [8, Thm. 5.4], see also Zabczyk [66], the authors show exponential stability of the
solution to Riccati differential equations. In particular, it follows that there exist constants
C > 0 and γ > 0 such that∥∥GCh −QCtk+h

∥∥ ≤ C∥∥LC −QCtk∥∥ e−2γh ≤ C
∥∥LC −QCtk∥∥

for any h ∈ [0,∆) and k ∈ N. Since the right-hand side goes to zero as k goes to infinity, we
deduce in particular that the sequences (GCh −QCtk+h)k∈N converge uniformly to zero.
Like in the proof of the previous theorem we now deduce with Weyl’s inequality

inf
h∈[0,∆)

λmin(QR∞ −QCtk+h) = inf
h∈[0,∆)

λmin(QR∞ −GCh +GCh −QCtk+h)

≥ inf
h∈[0,∆)

{
λmin(QR∞ −GCh ) + λmin(GCh −QCtk+h)

}
≥ inf

h∈[0,∆)
λmin(QR∞ −GCh ) + inf

h∈[0,∆)
λmin(GCh −QCtk+h)

(7.16)

for any k ∈ N. Here for any h ∈ [0,∆) it holds that

QR∞ −GCh = lim
t→∞

QRt − lim
k→∞

QCtk+h = lim
k→∞

(
QRtk+h −QCtk+h

)
is positive semidefinite since QCt � QRt for any t ≥ 0. This implies

inf
h∈[0,∆)

λmin(QR∞ −GCh ) ≥ 0. (7.17)

The uniform convergence of (GCh −QCtk+h)k∈N implies

lim
k→∞

inf
h∈[0,∆)

λmin(GCh −QCtk+h) = 0. (7.18)

We plug (7.17) and (7.18) into (7.16) and obtain

lim
k→∞

inf
h∈[0,∆)

λmin(QR∞ −QCtk+h) ≥ 0. (7.19)

In order to prove the claim of the proposition we need to show that

lim
k→∞

sup
h∈[0,∆)

2 tr(αQCtk+h) + tr(QCtk+h(σRσ
>
R)−1QCtk+h) ≤ tr(ββ>),

where the right-hand side is equal to 2 tr(αQR∞) + tr(QR∞(σRσ
>
R)−1QR∞) by (7.15). Using

cyclicity of the trace we see that the inequality above is equivalent to

lim
k→∞

inf
h∈[0,∆)

2 tr
(
α(QR∞ −QCtk+h)

)
+ tr

(
(σRσ

>
R)−1((QR∞)2 − (QCtk+h)2)

)
≥ 0. (7.20)

For the first summand, it follows from Wang et al. [63, Lem. 1] that

lim
k→∞

inf
h∈[0,∆)

2 tr
(
α(QR∞ −QCtk+h)

)
≥ lim

k→∞
inf

h∈[0,∆)
2 tr(α)λmin(QR∞ −QCtk+h) ≥ 0
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by (7.19). For the second summand, we need our assumption σRσ
>
R = sId. Under this

assumption we obtain

tr
(
(σRσ

>
R)−1((QR∞)2 − (QCtk+h)2)

)
=

1

s
tr
(
(QR∞)2 − (QCtk+h)2

)
.

Similarly to above, we write

inf
h∈[0,∆)

tr
(
(QR∞)2 − (QCtk+h)2

)
= inf

h∈[0,∆)
tr
(
(QR∞)2 − (GCh )2

)
+ inf
h∈[0,∆)

tr
(
(GCh )2 − (QCtk+h)2

)
.

Due to uniform convergence, the second summand above goes to zero as k goes to infinity.
For the first summand, we recall GCh � QR∞ which implies

tr
(
(GCh )2

)
≤ tr

(
(QR∞)2

)
.

Plugging these results together we obtain

lim
k→∞

inf
h∈[0,∆)

tr
(
(σRσ

>
R)−1((QR∞)2 − (QCtk+h)2)

)
≥ 0.

Now, the inequality in (7.20) has been shown and the proof is complete.
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8. Asymptotic Behavior for an Increasing
Number of Expert Opinions

We now address the question what happens when the number of dates at which expert
opinions arrive goes to infinity on a finite time horizon. For that purpose, we fix T = [0, T ]
throughout this chapter, where T > 0 is some finite time horizon.

In the following, we deduce convergence results for both the conditional means and the
conditional covariance matrices of an investor who observes discrete-time expert opinions that
arrive more and more frequently on a finite time horizon. Note that convergence of discrete-
time filters is addressed e.g. by Salgado et al. [53] or Aalto [1]. In those works the authors
show convergence of the discrete-time Kalman filter to the continuous-time equivalent. In
Aalto [1] the discrete-time filter is based on discrete-time observations of the continuous-
time observation process whereas in Salgado et al. [53] the authors approximate both the
continuous-time signal and observation by discrete-time processes. Neither of these assump-
tions match our model for the discrete-time expert opinions which is why we need to prove
convergence in the following.

8.1. Experts with bounded covariance matrices

It seems likely that when increasing the number of expert opinions such that the time between
any two information dates goes to zero and such that there is some minimal level of reliability
of the experts, we should get an arbitrarily accurate estimate of the drift process µ. The
corresponding statement in a financial market with one stock is proven in Gabih et al. [25,
Prop. 4.3]. The result in a market with d stocks is formalized in the following theorem that
is already proven in the Master’s thesis Westphal [64].

Theorem 8.1. Let 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n−1 < t

(n)
n = T be a sequence of deterministic

partitions of the interval [0, T ]. Assume that for the mesh size

∆n = max
k=1,...,n

(
t
(n)
k − t

(n)
k−1

)
we have limn→∞∆n = 0. Denote by Γ

(n)
k , k = 1, . . . , n, the covariance matrices of the expert

opinions at time t(n)
k , and assume that there exists some C > 0 such that for all n ∈ N,

k = 1, . . . , n, it holds ‖Γ(n)
k ‖ ≤ C.

Then for all u ∈ (0, T ] the conditional covariance matrices QE,nu and QC,nu that correspond
to these n expert opinions fulfill

lim
n→∞

QE,nu = lim
n→∞

QC,nu = 0d.
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Proof. Firstly, we note that by Proposition 6.6 it holds ‖QC,nu ‖ ≤ ‖QE,nu ‖ for any u ∈ [0, T ].
Therefore, and by the equivalence of norms, it suffices to show that the spectral norm of
QE,nu goes to zero. To shorten notation we write Qnu for QE,nu in the following. We also write
tk for time points t(n)

k , keeping the dependency on n in mind.
Let n ∈ N and k ∈ {0, . . . , n− 1}. For any t ∈ [tk, tk+1) we have shown in Lemma 6.3 that

Qnt = e−α(t−tk)Qntke−α(t−tk) +

∫ t

tk

e−α(t−s)ββ>e−α(t−s) ds. (8.1)

At the information dates the update is given by

Qntk = ρ
(n)
k (Qntk−)Qntk−, where ρ

(n)
k (Q) = Γ

(n)
k (Q+ Γ

(n)
k )−1.

The spectral norm of the first summand in (8.1) fulfills due to submultiplicativity∥∥e−α(t−tk)Qntke−α(t−tk)
∥∥ ≤ ∥∥e−α(t−tk)

∥∥∥∥Qntk∥∥∥∥e−α(t−tk)
∥∥. (8.2)

Now since α is symmetric positive definite, and for the spectrum of a matrix exponential it
holds σ(eα) = {eλ | λ ∈ σ(α)}, we can conclude that eα is also symmetric positive definite.
Hence, ∥∥e−α(t−tk)

∥∥ =
1

λmin(eα(t−tk))
=

1

minλ∈σ(α) eλ(t−tk)
=

1

eλmin(α)(t−tk)
≤ 1. (8.3)

Combining (8.3) with (8.2) yields∥∥e−α(t−tk)Qntke−α(t−tk)
∥∥ ≤ ∥∥Qntk∥∥. (8.4)

By the same argument, we can conclude for the norm of the second summand in (8.1) that∥∥∥∥∫ t

tk

e−α(t−s)ββ>e−α(t−s) ds

∥∥∥∥ ≤ ∫ t

tk

∥∥e−α(t−s)∥∥∥∥ββ>∥∥∥∥e−α(t−s)∥∥ds

≤
∥∥ββ>∥∥(t− tk) ≤

∥∥ββ>∥∥∆n.

This, together with (8.4), yields for any t ∈ (0, T ] with t ∈ [tk, tk+1) that∥∥Qnt ∥∥ ≤ ∥∥Qntk∥∥+ ∆n

∥∥ββ>∥∥. (8.5)

By our assumption on the mesh size we can conclude for any t ∈ (0, T ] that t ≥ t1 = t
(n)
1 for

all n large enough. Note that since ββ> is positive definite the matrices Qntk− are nonsingular
for all k ≥ 1. The first summand in (8.5) can then be written as∥∥ρ(n)

k (Qntk−)Qntk−
∥∥ =

∥∥∥Γ
(n)
k (Qntk− + Γ

(n)
k )−1Qntk−

∥∥∥ =
∥∥∥Γ

(n)
k

(
Id + (Qntk−)−1Γ

(n)
k

)−1
∥∥∥

=
∥∥∥((Γ(n)

k )−1 + (Qntk−)−1
)−1
∥∥∥ =

(
λmin

(
(Γ

(n)
k )−1 + (Qntk−)−1

))−1
.

Weyl’s theorem, see for example Horn and Johnson [32, Thm 4.3.1], implies that(
λmin

(
(Γ

(n)
k )−1 + (Qntk−)−1

))−1
≤
(
λmin

(
(Γ

(n)
k )−1

)
+ λmin

(
(Qntk−)−1

))−1

=

(
1

‖Γ(n)
k ‖

+
1

‖Qntk−‖

)−1

=

∥∥Γ
(n)
k

∥∥∥∥Qntk−∥∥∥∥Γ
(n)
k

∥∥+
∥∥Qntk−∥∥

≤
(

C

C +
∥∥Qntk−∥∥

)∥∥Qntk−∥∥,
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where we have used that ‖Γ(n)
k ‖ ≤ C. Inserting this into (8.5), we get∥∥Qnt ∥∥ ≤ ( C

C +
∥∥Qntk−∥∥

)∥∥Qntk−∥∥+ ∆n

∥∥ββ>∥∥. (8.6)

Next, we iterate (8.6) to obtain

∥∥Qnt ∥∥ ≤ k∏
j=1

(
C

C +
∥∥Qntj−∥∥

)
‖Σ0‖+ ∆n

∥∥ββ>∥∥ k∑
j=0

j∏
l=1

(
C

C +
∥∥Qntk+1−l−

∥∥
)
.

By setting

Lnk = max
j=1,...,k

(
C

C + ‖Qntj−‖

)
we can conclude ∥∥Qnt ∥∥ ≤ (Lnk)k‖Σ0‖+ ∆n

∥∥ββ>∥∥ k∑
j=0

(Lnk)j . (8.7)

Now let u ∈ (0, T ] and ε > 0. For all n ∈ N let kn denote the index for which u ∈ [tkn , tkn+1),
or, in the case u = T , let kn = n. Suppose that for all n0 ∈ N there is some n ≥ n0 such that∥∥Qnt1−∥∥, . . . ,∥∥Qntkn−∥∥ ≥ ε/2.
Then for all j = 1, . . . , kn it holds

C

C +
∥∥Qntj−∥∥ ≤ C

C + ε/2
, hence Lnkn ≤

C

C + ε/2
.

Now, equation (8.7) implies

∥∥Qntkn−∥∥ ≤
(

C

C + ε/2

)kn−1

‖Σ0‖+ ∆n

∥∥ββ>∥∥ kn−1∑
j=0

(
C

C + ε/2

)j
≤
(

C

C + ε/2

)kn−1

‖Σ0‖+ ∆n

∥∥ββ>∥∥2C + ε

ε
.

(8.8)

Since our assumption on the mesh size implies limn→∞ kn =∞, the right-hand side of (8.8)
goes to zero as n tends to infinity. So there is some n0 ∈ N such that for all n ≥ n0 it holds
‖Qntkn−‖ < ε/2. This is a contradiction to our assumption. Hence, there is some n0 ∈ N such
that for all n ≥ n0 there exists some index 1 ≤ ln ≤ kn with ‖Qntln−‖ < ε/2. We denote by
ln the maximal index less or equal kn with that property. If ln = kn, then∥∥Qnu∥∥ ≤ ∥∥ρ(n)

kn
(Qntkn−)Qntkn−

∥∥+ ∆n

∥∥ββ>∥∥ ≤ ∥∥Qntkn−∥∥+ ∆n

∥∥ββ>∥∥ < ε/2 + ∆n

∥∥ββ>∥∥.
If ln < kn, then for j = ln + 1, . . . , kn it holds ‖Qntj−‖ ≥ ε/2. As above, one gets

∥∥Qnu∥∥ ≤ ( C

C + ε/2

)kn−ln∥∥ρ(n)
ln

(Qntln−)Qntln−
∥∥+ ∆n

∥∥ββ>∥∥2C + ε

ε

≤
∥∥Qntln−∥∥+ ∆n

∥∥ββ>∥∥2C + ε

ε
< ε/2 + ∆n

∥∥ββ>∥∥2C + ε

ε
.

We can choose n1 ≥ n0 such that ∆n‖ββ>‖2C+ε
ε < ε/2 for all n ≥ n1. Then ‖Qnu‖ < ε for

all n ≥ n1.
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

Recalling that QFt = 0d for all t ∈ [0, T ], the above theorem shows that the covariance
matrices QE,nt and QC,nt converge to the covariance matrix in the case of full information
as the number of expert opinions on [0, T ] tends to infinity. Since the covariance matrices
contain information about the quality of the drift estimators, this means that we get an
arbitrarily good estimator by increasing the number of expert opinions.

Corollary 8.2. Under the assumptions of Theorem 8.1 it holds

lim
n→∞

E
[∥∥mE,n

t − µt
∥∥2
]

= lim
n→∞

E
[∥∥mC,n

t − µt
∥∥2
]

= 0

for any t ∈ (0, T ].

Proof. For the E-investor, due to∥∥mE,n
t − µt

∥∥2
= (mE,n

t − µt)>(mE,n
t − µt) = tr

(
(mE,n

t − µt)(mE,n
t − µt)>

)
and linearity of the trace we can deduce that

E
[∥∥mE,n

t − µt
∥∥2
]

= tr
(
E
[
(mE,n

t − µt)(mE,n
t − µt)>

])
= tr

(
E
[
QE,nt

])
.

The claim now follows directly from the preceding theorem since QE,nt is deterministic for
every t ∈ (0, T ]. For the C-investor the proof is analogous.

Hence, the investor with access to expert opinions essentially approximates the fully in-
formed F -investor. In this context it does not matter whether we have an investor who
observes stock returns as well as expert opinions or an investor whose only source of infor-
mation are the expert opinions.
This result can be seen as follows: The law of large numbers for the increasing number

of expert opinions dominates the uncertainty (worsening the filters) between the arrivals of
expert opinions. Note that the assumption ‖Γ(n)

k ‖ ≤ C for all n ∈ N and k = 0, . . . , n − 1
is a way of ensuring that the experts’ estimates of the drift do not become arbitrarily bad.
Instead one assumes some minimal level of reliability of the experts.
In the following, we illustrate the convergence results by a numerical example. For illustra-

tion purposes, we consider a one-dimensional financial market. We list the model parameters
in Table 8.1. These parameters will also be used for later simulations.

investment horizon T = 1
interest rate r = 0
mean reversion speed of drift process α = 3
volatility of drift process β = 1
mean reversion level of drift process δ = 0.05
initial mean of drift process m0 = 0.05
initial variance of drift process Σ0 = 0.2
volatility of returns σR = 0.25

Table 8.1.: Model parameters for numerical examples.
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8.1. Experts with bounded covariance matrices

Example 8.3. Figure 8.1 illustrates the above convergence results for the C-investor. We
consider here a financial market with d = 1 stock on an investment horizon of one year. The
parameters of our model are as given in Table 8.1. We have equidistant information dates
and choose the expert’s variance Γ = 0.05 as a constant. We consider the cases n = 10, 100,
1000. In the upper subplot we see the conditional variances QR and QC,n as well as QF = 0
plotted against time. The lower subplot shows a realization of the conditional means for the
same parameters. Recall that mF

t = µt for all t ∈ [0, T ].
We observe that for any time t ∈ (0, T ] the values of QC,nt are decreasing in n and get

closer and closer to zero. This illustrates our convergence result from Theorem 8.1. The lower
subplot shows that the conditional mean mR

t is rather far away from the true drift process
µt = mF

t . When expert opinions are included, one can see the jumps of the conditional mean
at information times when an update takes place. By increasing the number n of equidistant
expert opinions the conditional mean of the C-investor gets closer and closer to the true drift
process. For n = 1000 expert opinions the estimate is most of the time very close to the true
drift.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Conditional Variances
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F
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Figure 8.1.: A simulation of the filters for deterministic equidistant information dates and constant
expert variance Γ. The upper subplot shows the conditional variances of the R-, F -
and C-investor for various values of n, the lower subplot shows a realization of the
corresponding conditional means. The dashed black line is the mean reversion level δ
of the drift.
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

8.2. Diffusion approximations of filters

In this section we investigate the asymptotic behavior of the filters for a C-investor when the
frequency of expert opinion arrivals goes to infinity but the expert’s covariance matrices are
not bounded. These results are the main ones in this second part of the thesis and have not
been an element of the Master’s thesis [64].

8.2.1. Deterministic information dates

We consider first the case for deterministic and equidistant information dates. For that
purpose, let n ∈ N and ∆n = T

n . Now assume that Tk = tk for every k = 1, . . . , n, where
(tk)k=1,...,n is the sequence of deterministic time points tk = k∆n. So there are n expert opin-
ions that arrive equidistantly in the time interval [0, T ], the distance between two information
dates being equal to ∆n. We use an additional superscript n to underline dependence on the
number of expert opinions, writing for example (QC,nt )t∈[0,T ] for the conditional covariance
matrix of the filter corresponding to these n expert opinions.
In the previous section we have stated a convergence result for the case where the expert’s

covariance matrices Γ
(n)
k are bounded. In that case, QC,nt converges to the zero matrix.

This result heavily relies on the boundedness of the expert’s covariance matrices, meaning
that the expert’s views possess some minimal level of reliability. Here, we study a different
situation where more frequent expert opinions are only available at the cost of accuracy. In
other words, we assume that, as ∆n goes to zero, the variance of the expert opinions Z(n)

k

increases. This is done for the purpose of approximating mC,n and QC,n for large n ∈ N and
large Γ

(n)
k .

In the following we assume for the sake of simplicity that Γ
(n)
k = Γ(n) is not time-dependent.

We then show that for properly scaled Γ(n) which grows linearly in n, the information obtained
from observing the discrete-time expert opinions is asymptotically the same as that from
observing another diffusion process. This will be the diffusion process J that we have defined
in (6.1).

Assumption 8.4. Let (T
(n)
k )k=1,...,n = (t

(n)
k )k=1,...,n, where t

(n)
k = k∆n for k = 1, . . . , n, and

let the experts’ covariance matrices be given by

Γ
(n)
k = Γ(n) =

1

∆n
σJσ

>
J

for k = 1, . . . , n. Further, we assume that the expert opinions are given as

Z
(n)
k = µ

t
(n)
k

+
1

∆n
σJ

∫ t
(n)
k+1

t
(n)
k

dW J
s (8.9)

for k = 1, . . . , n.

Recall that the matrix σJ ∈ Rd×l is exactly the volatility of the diffusion process J , where
J was defined via the dynamics

dJt = µt dt+ σJ dW J
t ,
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8.2. Diffusion approximations of filters

and that σJ has full rank. With Z(n)
k as defined above the discrete-time expert opinions and

the continuous-time expert J are obviously correlated. In fact, it holds

Z
(n)
k ≈ 1

∆n

∫ t
(n)
k+1

t
(n)
k

dJs =
1

∆n

(
J
t
(n)
k+1

− J
t
(n)
k

)
.

One can easily show by applying Donsker’s Theorem that the piecewise constant process
(J̃t)t∈[0,T ], defined by

J̃t := ∆n

bt/∆nc∑
k=1

Z
(n)
k

for all t ∈ [0, T ], converges in distribution to Jt as n goes to infinity. For our main convergence
results we however require stronger notions of convergence. The following theorem states
uniform convergence of QC,nt to QDt on [0, T ] as n goes to infinity.

Theorem 8.5. Under Assumption 8.4 there exists a constant K1 > 0 such that∥∥QC,nt −QDt
∥∥ ≤ K1∆n

for all t ∈ [0, T ]. In particular,

lim
n→∞

sup
t∈[0,T ]

∥∥QC,nt −QDt
∥∥ = 0.

For the sake of better readability the proof of Theorem 8.5 is given in Section 8.3. It
makes use of a discrete version of Gronwall’s Lemma for error accumulation, see Lemma A.1
in Appendix A.
Using the uniform convergence of the conditional covariance matrices QC,n to QD we can

also deduce convergence of the corresponding conditional mean mC,n to mD in an L2-sense.

Theorem 8.6. Under Assumption 8.4 there exists a constant K2 > 0 such that

E
[∥∥mC,n

t −mD
t

∥∥2
]
≤ K2∆n

for all t ∈ [0, T ]. In particular,

lim
n→∞

sup
t∈[0,T ]

E
[∥∥mC,n

t −mD
t

∥∥2
]

= 0.

The proof of Theorem 8.6 can also be found in Section 8.3. The previous two theorems
state that in the setting of Assumption 8.4 the filter of a C-investor who observes n equidis-
tant expert opinions on [0, T ] converges to the filter of the D-investor. Recalling that the
D-investor observes the diffusion processes R and J , this implies that the information ob-
tained from observing the discrete-time expert opinions is for large n arbitrarily close to the
information that comes with observing the continuous-time diffusion-type expert J .

This diffusion approximation of the discrete expert opinions is useful since the filter of the
D-investor is much easier to compute than the filter of the C-investor observing n expert
opinions, since no updates take place for the D-investor. We will see in Chapter 9 that
the convergence carries over to convergence of the value function in a portfolio optimization
problem.

107



8. Asymptotic Behavior for an Increasing Number of Expert Opinions

Remark 8.7. Note that for the convergence of the conditional covariance matrices QC,n to
QD in Theorem 8.5 we do not need the assumption that the expert opinions are given as

Z
(n)
k = µ

t
(n)
k

+
1

∆n
σJ

∫ t
(n)
k+1

t
(n)
k

dW J
s

as in (8.9). This is because the conditional covariance matrices QC,nt do not depend on the
actual form of the expert opinions, see Lemma 6.4. Hence, it would be sufficient to assume
that the experts’ covariance matrices are given by

Γ
(n)
k = Γ(n) =

1

∆n
σJσ

>
J .

The assumption on the form of Z(n)
k is only needed in Theorem 8.6 where the conditional

mean mC,n
t is considered.

Remark 8.8. Theorem 8.6 states L2-convergence of the conditional mean mC,n
t to mD

t for
any t ∈ [0, T ]. The joint distribution of the conditional means is Gaussian. A classical
result, see for example Rosiński and Suchanecki [52, Lem. 2.1], hence yields that in this case
L2-convergence implies Lp-convergence for any 1 ≤ p <∞.

The convergence results from the previous theorems are illustrated in the following by a
numerical example.

Example 8.9. We consider as in Example 8.3 a financial market with investment horizon
T = 1 and with d = 1 stock. As model parameters, we take again those from Table 8.1,
additionally specifying the volatility of the continuous expert as σJ = 0.2. In Figure 8.2 we
plot the filters of the R-, D- and C-investor against time. For the C-investor we consider
the cases n = 10, 20, 100. In the upper plot one sees the conditional variances QR and QD

as well as QC,n plotted against time. The lower plot shows a realization of the conditional
means mR, mD and mC,n for the same parameters.
Recall that QR and QD as well as QC,n for any n ∈ N are deterministic. In the upper plot

of Figure 8.2 one sees that for any fixed t ∈ [0, T ], the value of QDt as well as the value of
QC,nt for any n is less or equal than the value of QRt , as has been shown in Proposition 6.6.
For the C-investors one sees that the updates at information dates lead to a decrease in the
conditional variance. As the number n increases, the conditional variances QC,nt approach
QDt for any t ∈ [0, T ]. This is due to what has been shown in Theorem 8.5.
Note that for t going to infinity, QRt and QDt approach a finite value which follows from

Theorem 7.2, respectively Theorem 7.4. For (QC,nt )t≥0 we observe a periodic behavior with
asymptotic upper and lower bounds in the limit. This has been studied in Section 7.2 and
in more detail in Sass et al. [55, Sec. 4.2].
In the lower subplot we show a realization of the various conditional means. For mC,n the

updating steps at information dates are visible. In general, we observe that when increasing
the value of n, the distance between the paths of mD and mC,n becomes smaller, as shown
in Theorem 8.6.
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Figure 8.2.: A simulation of the filters for deterministic equidistant information dates and experts’
variances growing linearly in the number of expert opinions. The upper subplot shows
the conditional variances of the R-, D- and C-investor for various values of n, the lower
subplot shows a realization of the corresponding conditional means. The dashed black
line is the mean reversion level δ of the drift.

8.2.2. Random information dates

In this section we consider the situation where the experts’ opinions do not arrive at deter-
ministic time points but at random information dates Tk, where the waiting times Tk+1−Tk
between information dates are independent and exponentially distributed with rate λ > 0.
Recall that we have set T0 = 0 for ease of notation. The information dates can therefore be
seen as the jump times of a standard Poisson process with intensity λ.
In this situation, the total number of expert opinions arriving in [0, T ] is no longer deter-

ministic. However, as the intensity λ increases, expert opinions will arrive more and more
frequently. So the question we address in this subsection is, in analogy to sending n to infinity
in the preceding subsection, what happens when λ goes to infinity. We use a superscript λ
to underline the dependence on the intensity. The expert opinions are of the form

Z
(λ)
k = µ

T
(λ)
k

+ (Γ
(λ)
k )1/2ε

(λ)
k .

For constant variances Γ
(λ)
k = Γ, i.e. when there is some constant level of the expert’s relia-
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

bility which does not depend on the arrival intensity λ, one can derive a similar result for the
convergence to full information as in Theorem 8.1 for the case of deterministic information
dates. This result implies that for large λ the C-investor approximates the fully informed
investor. More precisely, it holds

lim
λ→∞

E
[
QC,λt

]
= 0d and lim

λ→∞
E
[∥∥mC,λ

t − µt
∥∥2
]

= 0

for all t ∈ (0, T ], see Gabih et al. [26]. In contrast to that, we now again assume that, as the
frequency of expert opinions increases, the variance of the expert opinions Z(λ)

k also increases.
As in Section 8.2.1 it will turn out that letting Γ

(λ)
k grow linearly in λ is the proper scaling

for deriving diffusion limits.

Assumption 8.10. Let (N
(λ)
t )t∈[0,T ] be a standard Poisson process with intensity λ > 0

that is independent of the Brownian motions in the model. Define the information dates
(T

(λ)
k )

k=0,...,N
(λ)
T

as the jump times of that process. Furthermore, let the experts’ covariance
matrices be given as

Γ
(λ)
k = Γ(λ) = λσJσ

>
J

for k = 1, . . . , N
(λ)
T . Further, we assume that

Z
(λ)
k = µ

T
(λ)
k

+ λσJ

∫ k
λ

k−1
λ

dW J
s (8.10)

is the expert opinion at information date T (λ)
k . Note that for defining the Z(λ)

k , the Brownian
motion W J has to be extended to a Brownian motion on [0,∞).

Given a realization of the drift process at the random information date T (λ)
k , the only

randomness in the expert opinion comes from the Brownian motion W J between the deter-
ministic times k−1

λ and k
λ . Recall thatW

J is the Brownian motion that drives the diffusion J
which we interpret as our continuous-time expert. Hence there is a direct connection between
the discrete expert opinions Z(λ)

k and the continuous expert.
In the following, we will omit the superscript λ at the time points T (λ)

k for better readability,
keeping the dependence on the intensity in mind.

Remark 8.11. At first glance, it seems more intuitive to construct the expert opinions as

Z̃
(λ)
k = µTk +

√
λσJ

1√
Tk − Tk−1

∫ Tk

Tk−1

dW J
s

rather than in (8.10). However, we later want to prove convergence of mC,λ
t to mD

t in L2,
which requires to look at the difference of a weighted sum of 1

λ(Z
(λ)
k − µTk) and

∫ t
0 Q

D
s dW J

s .
It turns out that when replacing Z(λ)

k with Z̃(λ)
k , this leads to an integral where the integrand

is defined piecewisely as (
1√

λ(Tk − Tk−1)
− 1

)
QDs .
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However, the term in brackets does not have a finite variance. This carries over to the
weighted sum mentioned above. The core result here is that for X ∼ Exp(λ), the expectation
of 1

X is not finite. When considering Z
(λ)
k instead, the difference that appears has finite

variance since the additional randomness from the information dates is missing. Intuitively,
the problem with the Z̃(λ)

k is that the expert opinions of this form put different weight on the
paths of the Brownian motion W J in different intervals. This is in contrast to the continuous
expert whose information comes from observing the diffusion J , driven by the Brownian
motion W J , continuously in time. Therefore, in terms of information about the Brownian
motion W J , the Z(λ)

k modelled as in (8.10) are closer to the continuous expert than the Z̃(λ)
k .

Hence, we work with expert opinions defined via Z(λ)
k as above.

The aim of this section is to determine the behavior of the conditional covariance matrix
QC,λ and of the conditional mean mC,λ under Assumption 8.10 when λ goes to infinity, i.e.
when expert opinions arrive more and more frequently, becoming at the same time less and
less reliable. Here, it is useful to express the dynamics of QC,λ and mC,λ in a way that
comprises both the behavior between information dates and the jumps at times Tk. For this
purpose, we work with a representation using a Poisson random measure as given in Cont
and Tankov [11, Sec. 2.6].

Definition 8.12. Let (Ω0,A,Q) be a probability space and let ν be a measure on some
measurable space (E, E). A Poisson random measure with intensity measure ν is a function
N : Ω0 × E → N0 such that:

1. For each ω ∈ Ω0, N(ω, ·) is a measure on (E, E).

2. For every B ∈ E , N(·, B) is a Poisson random variable with parameter ν(B).

3. For disjoint E1, . . . , Ep ∈ E , the random variables N(·, E1), . . . , N(·, Ep) are indepen-
dent.

For a Poisson random measure N , the compensated measure Ñ is defined by Ñ : Ω0×E → R
with Ñ(ω,B) = N(ω,B)− ν(B).

The following proposition states the results we will need in the following. For a proof, see
Cont and Tankov [11, Sec. 2.6.3].

Proposition 8.13. Let E = [0, T ]×Rd. Let (Tk)k≥1 be the jump times of a Poisson process
with intensity λ > 0 and let Uk, k = 1, 2, . . . , be a sequence of independent multivariate
standard Gaussian random variables on Rd. For any I ∈ B([0, T ]) and B ∈ B(Rd) let

N(I ×B) =
∑

k : Tk∈I
1{Uk∈B}

denote the number of jump times in I where Uk takes a value in B. Then N defines a Poisson
random measure and it holds:

(i) The corresponding intensity measure ν satisfies

ν([t1, t2]×B) =

∫
[t1,t2]

λdt

∫
B
ϕ(u) du

for 0 ≤ t1 ≤ t2 ≤ T , where ϕ is the multivariate standard normal density on Rd.

111



8. Asymptotic Behavior for an Increasing Number of Expert Opinions

(ii) For Borel-measurable functions g defined on Rd it holds∑
k : Tk∈[0,t]

g(Uk) =

∫
[0,t]

∫
Rd
g(u)N(ds, du).

Now we can use the Poisson random measure for reformulating the dynamics of QC,λ.

Proposition 8.14. Let L : Rd×d → Rd×d denote the function with

L(Q) = −αQ −Qα+ ββ> −Q(σRσ
>
R)−1Q.

Then under Assumption 8.10 we can write

QDt = Σ0 +

∫ t

0

(
L(QDs )−QDs (σJσ

>
J )−1QDs

)
ds

and

QC,λt = Σ0 +

∫ t

0

(
L(QC,λs )− λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs−

)
ds

−
∫ t

0

∫
Rd
QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− Ñ(ds, du)

for any t ∈ [0, T ].

Proof. From Lemma 6.2 one directly obtains

d

dt
QDt = L(QDt )−QDt (σJσ

>
J )−1QDt ,

and the representation of QDt follows immediately. From Lemma 6.4 recall that between
information dates the matrix differential equation for QC,λ reads

d

dt
QC,λt = L(QC,λt ).

Now we can use Proposition 8.13 to include the updates of QC,λ at information dates and
write

dQC,λt = L(QC,λt ) dt+

∫
Rd

(
ρ(λ)(QC,λt− )− Id

)
QC,λt− N(dt,du) (8.11)

for ρ(λ)(Q) = Γ(λ)(Q + Γ(λ))−1. Note that the integrand is matrix-valued and the integral is
defined componentwise. By (8.11) we can write

QC,λt = Σ0 +

∫ t

0
L(QC,λs ) ds+

∫ t

0

∫
Rd

(
ρ(λ)(QC,λs− )− Id

)
QC,λs− N(ds, du)

= Σ0 +

∫ t

0
L(QC,λs ) ds+

∫ t

0

∫
Rd

(
ρ(λ)(QC,λs− )− Id

)
QC,λs− Ñ(ds, du)

+

∫ t

0

∫
Rd

(
ρ(λ)(QC,λs− )− Id

)
QC,λs− ν(ds, du).

(8.12)
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8.2. Diffusion approximations of filters

We see that(
ρ(λ)(Q)− Id

)
Q =

(
Γ(λ)(Q + Γ(λ))−1 − Id

)
Q = −Q(Q + Γ(λ))−1Q = −Q(Q + λσJσ

>
J )−1Q.

Therefore, the last integral in (8.12) can be written as∫ t

0

∫
Rd

(
ρ(λ)(QC,λs− )− Id

)
QC,λs− ν(ds, du) = −

∫ t

0

∫
Rd
QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− ν(ds, du)

= −
∫ t

0

∫
Rd
QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− ϕ(u)λ duds

= −
∫ t

0
λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− ds,

where the second equality follows from Proposition 8.13 and the last equality is due to ϕ
being a probability density. Plugging back in into (8.12) yields

QC,λt = Σ0 +

∫ t

0

(
L(QC,λs )− λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs−

)
ds

−
∫ t

0

∫
Rd
QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− Ñ(ds, du),

and the representation of QC,λt is also proven.

The following theorem now states uniform convergence of QC,λ to QD on [0, T ] as λ goes
to infinity.

Theorem 8.15. Under Assumption 8.10 there exists a constant K3 > 0 and a λ0 > 0 such
that

E
[

sup
t∈[0,T ]

∥∥QC,λt −QDt
∥∥2
]
≤ K3

λ

for all λ ≥ λ0. In particular,

lim
λ→∞

E
[

sup
t∈[0,T ]

∥∥QC,λt −QDt
∥∥2
]

= 0.

For better readability, also the proof of Theorem 8.15 is given in Section 8.3. It is based on
applying Gronwall’s Lemma in integral form which we recall in Lemma A.5. As in the situa-
tion with deterministic time points we can now also prove L2-convergence of the conditional
mean for the setting with random information dates Tk.

Theorem 8.16. Under Assumption 8.10 there exists a constant K4 > 0 and a λ̃0 > 0 such
that

E
[∥∥mC,λ

t −mD
t

∥∥2
]
≤ K4√

λ

for all t ∈ [0, T ] and λ ≥ λ̃0. In particular,

lim
λ→∞

sup
t∈[0,T ]

E
[∥∥mC,λ

t −mD
t

∥∥2
]

= 0.
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

The proof of Theorem 8.16 can also be found in Section 8.3. The previous two theorems
show that under Assumption 8.10, the filter of the C-investor converges to the filter of the
D-investor. These are the analogous results to those in Section 8.2.1 where we have assumed
deterministic and equidistant information dates. Here, we see that the convergence result
also holds for non-deterministic information dates Tk being defined as the jump times of
a standard Poisson process, i.e. where the time between information dates is exponentially
distributed with parameter λ > 0. When sending λ to infinity, the frequency of expert
opinions goes to infinity.
As for the case with deterministic information dates, the assumption that Z(λ)

k is given as
in (8.10) is only needed for the proof of Theorem 8.16. For Theorem 8.15 it is sufficient to
assume that the experts’ covariance matrices are of the form Γ

(λ)
k = Γ(λ) = λσJσ

>
J .

Remark 8.17. When comparing the convergence results from Theorems 8.5 and 8.15 for
the conditional covariance matrices, respectively those from Theorems 8.6 and 8.16 for the
conditional means, there is a difference in the speed of convergence that we have shown. For
deterministic equidistant information dates, the speed of convergence of∥∥QC,nt −QDt

∥∥2

to zero is of the order 1
n2 . For random information dates, however, we only get a speed of 1

λ
for the convergence of

E
[

sup
t∈[0,T ]

∥∥QC,λt −QDt
∥∥2
]

to zero. This can be explained by the additional randomness coming from the Poisson process
that determines the information dates Tk in this situation.

Example 8.18. The analogous simulation as in Example 8.9 can be done for random infor-
mation dates Tk that are defined as the jump times of a Poisson process. We again suppose
that the model parameters are as given in Table 8.1, additionally specifying the volatility of
the continuous expert as σJ = 0.2.
Figure 8.3 shows, in addition to the filters of the R- and D-investor, the filters of the

C-investor for different intensities λ. Note that the conditional variances of the filter in
the case of the C-investor behave qualitatively much like in the situation with deterministic
information dates. The time at which the expert opinions arrive is now random, however. The
waiting times between two information dates are exponentially distributed with parameter
λ. As a consequence, the updates for the C-investor do not take place as regularly as in
Figure 8.2.
The upper subplot of Figure 8.3 shows realizations for λ = 10, 100, 1000. In general,

by increasing the value of λ, one can increase the frequency of information dates, causing
convergence of QC,λt to QDt for any t ∈ [0, T ], as shown in Theorem 8.15. In the lower subplot,
we see the corresponding realizations ofmC,λ, in addition tomR andmD. Again, the updates
in the conditional mean of the C-investor are visible.
What is also striking is that, when we consider the C-investor with intensity λ = 10, there

are times where the distance between two subsequent information dates is rather big. During
those times, the conditional mean of the C-investor comes closer to the conditional mean of
the R-investor who does not observe any expert opinion. When the intensity λ is increased,
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8.2. Diffusion approximations of filters

however, the conditional mean of the C-investor approaches the conditional mean of the D-
investor. For λ = 1000, the conditional means mC,λ and mD already behave quite similarly.
Note, however, that for fixed information dates mC,n is rather close to mD for n = 100
already. The difference in the speed of convergence when comparing the situation with
equidistant information dates to the situation with random information dates is discussed in
the preceding remark.
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Conditional Means

Figure 8.3.: A simulation of the filters for random information dates coming as jump times of a
Poisson process and experts’ variances growing linearly in the intensity of the Poisson
process. The upper subplot shows the conditional variances of the R- and D-investor
as well as realizations of QC,λ for various intensities λ, the lower subplot shows a
realization of the corresponding conditional means. The dashed black line is the mean
reversion level δ of the drift.

We will see in the next chapter that the convergence results of this chapter carry over to
convergence of the value function in a portfolio optimization problem for an investor with
logarithmic utility. In that respect, the above theorems provide a useful diffusion approxi-
mation since for large intensity λ one can work with the filters of the D-investor instead of
the C-investor. This is a big advantage from a numerical point of view since the filter of the
D-investor is much easier to compute than the filter of the C-investor. For the conditional
covariance matrices QC one needs to update the value at each information date. In contrast,
for computing QD it suffices to solve just one matrix Riccati differential equation.
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

8.3. Proofs of main results

For better readability we give the proofs of our main results from Section 8.2 for the diffusion
approximations with deterministic or random information dates in this separate section.

Proof of Theorem 8.5

Throughout the proof, we omit the superscript n at information dates t(n)
k for the sake of

better readability, keeping the dependence on n in mind. The proof is based on finding a
recursive formula for the distance between QC,ntk− and QDtk where we make use of an Euler
approximation of QD.

Euler scheme approximation of QD. Recall the dynamics of QD from Lemma 6.2. To
shorten notation, let G : Rd×d → Rd×d with

G(Q) = −αQ −Qα+ ββ> −Q(σDσ
>
D)−1Q

denote the right-hand side of the differential equation (6.2). Then (6.2) reads as
d

dt
QDt = G(QDt ).

The first step is to approximate QD by an Euler scheme. Therefore, define QD,n by setting

QD,nt := QDtk +G(QDtk)(t− tk) (8.13)

for all t ∈ [tk, tk+1). From a Taylor expansion we get that

QDt = QDtk +G(QDtk)(t− tk) + ξt(t− tk)2

where ξ is a matrix-valued function involving the second derivative of QDt . Since QD and
its derivatives are bounded on [0, T ], see Lemma 7.3, the matrices ξt are bounded, hence the
local truncation error is proportional to ∆2

n. In other words, there exists some CEuler > 0
such that ∥∥QDt −QD,nt

∥∥ ≤ CEuler∆
2
n (8.14)

for all t ∈ [0, T ].

Estimation of the error in G. Let Ce, CQ > 0 and let ε ∈ Rd×d with ‖ε‖ ≤ Ce, Q ∈ Rd×d
with ‖Q‖ ≤ CQ . Then

G(Q + ε) = −α(Q + ε)− (Q + ε)α+ ββ> − (Q + ε)(σDσ
>
D)−1(Q + ε)

= (−αQ −Qα+ ββ> −Q(σDσ
>
D)−1Q)− αε− εα

− ε(σDσ>D)−1Q −Q(σDσ
>
D)−1ε− ε(σDσ>D)−1ε

= G(Q)− ε
(
α+ (σDσ

>
D)−1Q + (σDσ

>
D)−1ε

)
−
(
α+Q(σDσ

>
D)−1

)
ε.

Hence,

‖G(Q + ε)−G(Q)‖ ≤ ‖ε‖
(
2‖α‖+ 2‖(σDσ>D)−1‖‖Q‖+ ‖(σDσ>D)−1‖‖ε‖

)
.

This implies that there exists a constant CG > 0 such that for all ε, Q ∈ Rd×d with ‖ε‖ ≤ Ce
and ‖Q‖ ≤ CQ it holds

‖G(Q + ε)−G(Q)‖ ≤ CG‖ε‖. (8.15)
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8.3. Proofs of main results

Dynamics of QC,n. Next, we take a look at the dynamics of QC,n, i.e. of the covariance
matrix corresponding to the investor who observes the stock returns and the opinions of the
discrete expert. We know that at information dates tk, k = 1, . . . , n, we have the update
formula

QC,ntk
= Γ(n)

(
QC,ntk− + Γ(n)

)−1
QC,ntk−.

Observe that

Γ(n)
(
QC,ntk− + Γ(n)

)−1
=
(
Id +QC,ntk−(Γ(n))−1

)−1
=
(
Id + ∆nQ

C,n
tk−(σJσ

>
J )−1

)−1

which can be written as the Neumann series
∞∑
i=0

(
−∆nQ

C,n
tk−(σJσ

>
J )−1

)i
= Id −∆nQ

C,n
tk−(σJσ

>
J )−1 +

∞∑
i=2

(
−∆nQ

C,n
tk−(σJσ

>
J )−1

)i
.

It follows that
QC,ntk

= QC,ntk− −∆nQ
C,n
tk−(σJσ

>
J )−1QC,ntk− + R̄n (8.16)

where ‖R̄n‖ ≤ r∆2
n, since Q

C,n
tk− is bounded. Between information dates, the matrix QC,n

follows the dynamics

d

dt
QC,nt = −αQC,nt −QC,nt α+ ββ> −QC,nt (σRσ

>
R)−1QC,nt

for t ∈ [tk, tk+1).

One time step for QC,n. In the following, we construct a formula that connects QC,ntk+1−

with QC,ntk−. Firstly, by making a Taylor expansion we see that

QC,ntk+1− = QC,ntk
+
(
−αQC,ntk

−QC,ntk
α+ ββ> −QC,ntk

(σRσ
>
R)−1QC,ntk

)
∆n + Ln,

where ‖Ln‖ ≤ CL∆2
n. Now, when inserting the representation of QC,ntk

from (8.16) and
rearranging terms we can conclude that

QC,ntk+1− = QC,ntk− + ∆nG(QC,ntk−) +Rn, (8.17)

where Rn is a matrix with ‖Rn‖ ≤ CTaylor∆
2
n for CTaylor > 0.

Recursive formula for estimation error. For k = 0, . . . , n, define Ak = QC,ntk− − QDtk and
ak = ‖Ak‖. Our aim is to find a recursive formula that yields an upper bound for these
estimation errors. Let k ≥ 0. Then we have by (8.17) that

ak+1 = ‖Ak+1‖ = ‖QC,ntk+1− −Q
D
tk+1
‖ = ‖QC,ntk− + ∆nG(QC,ntk−) +Rn −QDtk+1

‖.

Thus, by definition of Ak and QD,n as given in (8.13),

ak+1 = ‖(QDtk +Ak) + ∆nG(QDtk +Ak) +Rn −QDtk+1
‖

= ‖QDtk + ∆n

(
G(QDtk) +G(QDtk +Ak)−G(QDtk)

)
+Ak +Rn −QDtk+1

‖
= ‖QD,ntk+1− + ∆n

(
G(QDtk +Ak)−G(QDtk)

)
+Ak +Rn −QDtk+1

‖.
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

Now, the estimations from (8.14), (8.15) and (8.17) yield

ak+1 ≤ CEuler∆
2
n + ∆nCG‖Ak‖+ ‖Ak‖+CTaylor∆

2
n = (1 + ∆nCG)ak + (CEuler +CTaylor)∆

2
n.

By a discrete version of Gronwall’s Lemma, see Lemma A.1 in the appendix, this implies

ak ≤
eCGk∆n − 1

CG
(CEuler + CTaylor)∆n ≤

eCGT − 1

CG
(CEuler + CTaylor)∆n =: C̃∆n.

Therefore, for all k = 0, . . . , n we have

‖QC,ntk− −Q
D
tk
‖ ≤ C̃∆n. (8.18)

Difference of QC,n
t and QD

t for arbitrary t. We now show that there exists some K1 > 0

such that ‖QC,nt −QDt ‖ ≤ K1∆n for all t ∈ [0, T ]. Let t ∈ [0, T ] with t ∈ [tk, tk+1). We can
write

QC,nt −QDt = (QC,nt −QC,ntk−) + (QC,ntk− −Q
D
tk

) + (QDtk −Q
D
t ),

and hence

‖QC,nt −QDt ‖ ≤ ‖QC,nt −QC,ntk−‖+ ‖QC,ntk− −Q
D
tk
‖+ ‖QDtk −Q

D
t ‖.

By (8.18), the second summand is bounded by C̃∆n. We now take a look at the other two
summands. By definition of QD,n we can write the third summand as

‖QDtk −Q
D
t ‖ = ‖QD,nt −G(QDtk)(t− tk)−QDt ‖
≤ ‖QD,nt −QDt ‖+ ∆n‖G(QDtk)‖
≤ CEuler∆

2
n + ∆n‖G(QDtk)‖

where the second inequality is due to (8.14). Since G and QD are continuous, the function
t 7→ ‖G(QDt )‖ is bounded by some C̃G on [0, T ]. Hence,

‖QDtk −Q
D
t ‖ ≤ CEuler∆

2
n + C̃G∆n.

For the first summand we observe that, like in (8.17), we get the representation

‖QC,nt −QC,ntk−‖ = ‖(t− tk)G(QC,ntk−) +Rn‖

for some matrix Rn with ‖Rn‖ ≤ CTaylor(t − tk)2. Then the right-hand side is bounded by
∆n‖G(QC,ntk−)‖+ CTaylor∆

2
n. Also, we have

‖G(QC,ntk−)‖ = ‖G(QDtk +QC,ntk− −Q
D
tk

)‖ ≤ ‖G(QDtk)‖+ CG‖QC,ntk− −Q
D
tk
‖

by (8.15). Again by continuity, ‖G(QDtk)‖ ≤ C̃G, and ‖QC,ntk− −QDtk‖ ≤ C̃∆n by (8.18).
Putting these results together we obtain that there exists a constant K1 > 0 such that

‖QC,nt −QDt ‖ ≤ K1∆n

for all t ∈ [0, T ].
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Proof of Theorem 8.6

We omit the superscript n at information dates t(n)
k for the sake of better readability. The

idea of the proof is to find a recursion for

E
[∥∥mC,n

tk− −m
D
tk

∥∥2
]

and to apply the discrete version of Gronwall’s Lemma from Lemma A.1 to derive an appro-
priate upper bound.
For the proof we introduce the notation

L
(n)
k := QC,ntk−

(
QC,ntk− + Γ(n)

)−1
Γ(n)

for k = 1, . . . , n. Then Lemma A.4 in particular implies that

‖QC,ntk− − L
(n)
k ‖ ≤ C̄∆n

for some constant C̄ > 0.

Recursive formulas for mD and mC,n. The representation of mD via the stochastic dif-
ferential equation in Lemma 6.2 yields the recursion

mD
tk+1

= e−α∆nmD
tk

+ (Id − e−α∆n)δ +

∫ tk+1

tk

e−α(tk+1−s)QDs (σRσ
>
R)−1σR dV D,1

s

+

∫ tk+1

tk

e−α(tk+1−s)QDs (σJσ
>
J )−1σJ dV D,2

s ,

(8.19)

where
σR dV D,1

t = dRt −mD
t dt,

σJ dV D,2
t = dJt −mD

t dt,

and V D = (V D,1, V D,2)>, the innovation process corresponding to the investor filtration FD,
is an (m + l)-dimensional FD-Brownian motion. Similarly, we get for the conditional mean
mC,n the recursion

mC,n
tk+1− = e−α∆nmC,n

tk
+ (Id − e−α∆n)δ +

∫ tk+1

tk

e−α(tk+1−s)QC,ns (σRσ
>
R)−1σR dV R

s , (8.20)

where
σR dV R

t = dRt −mC,n
t dt,

and V R, the innovation process corresponding to investor filtration FC,n, is anm-dimensional
FC,n-Brownian motion. Furthermore, the update formula for mC,n yields

mC,n
tk

= mC,n
tk− +

(
Id − Γ(n)

(
QC,ntk− + Γ(n)

)−1)(
Z

(n)
k −mC,n

tk−
)

= mC,n
tk− +QC,ntk−

(
QC,ntk− + Γ(n)

)−1
(
µtk +

1

∆n
σJ

∫ tk+1

tk

dW J
s −mC,n

tk−

)
= mC,n

tk− + ∆nL
(n)
k (σJσ

>
J )−1

(
µtk +

1

∆n
σJ

∫ tk+1

tk

dW J
s −mC,n

tk−

)
.

(8.21)

When looking at the difference between mD and mC,n it is convenient to work with repre-
sentations that use the same Brownian motions.
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

Relation between the innovation processes. Note that

σR dV D,1
t = dRt −mD

t dt = σR dV R
t + (mC,n

t −mD
t ) dt

and
σJ dV D,2

t = dJt −mD
t dt = σJ dW J

t + (µt −mD
t ) dt.

Using this connection between the innovation processes, we obtain from (8.19) that

mD
tk+1

= e−α∆nmD
tk

+ (Id − e−α∆n)δ +

∫ tk+1

tk

e−α(tk+1−s)QDs (σRσ
>
R)−1σR dV R

s

+

∫ tk+1

tk

e−α(tk+1−s)QDs (σRσ
>
R)−1(mC,n

s −mD
s ) ds

+

∫ tk+1

tk

e−α(tk+1−s)QDs (σJσ
>
J )−1σJ dW J

s

+

∫ tk+1

tk

e−α(tk+1−s)QDs (σJσ
>
J )−1(µs −mD

s ) ds.

(8.22)

Also, plugging (8.21) into (8.20) yields

mC,n
tk+1− = e−α∆nmC,n

tk− + (Id − e−α∆n)δ +

∫ tk+1

tk

e−α(tk+1−s)QC,ns (σRσ
>
R)−1σR dV R

s

+ e−α∆nL
(n)
k (σJσ

>
J )−1σJ

∫ tk+1

tk

dW J
s + e−α∆n∆nL

(n)
k (σJσ

>
J )−1(µtk −mC,n

tk−).

Splitting the difference of mD and mC,n into summands. Combining (8.22) with the
above representation of mC,n

tk+1− yields after a slight rearrangement of terms

mD
tk+1
−mC,n

tk+1− = An +Bn + Cn +Dn + En + Fn,

where

An = e−α∆n(mD
tk
−mC,n

tk−),

Bn =

∫ tk+1

tk

e−α(tk+1−s)(QDs −QC,ns )(σRσ
>
R)−1σR dV R

s ,

Cn =

∫ tk+1

tk

e−α(tk+1−s)QDs (σRσ
>
R)−1(mC,n

s −mD
s ) ds,

Dn =

∫ tk+1

tk

(
e−α(tk+1−s)QDs (σJσ

>
J )−1 − e−α∆nL

(n)
k (σJσ

>
J )−1

)
σJ dW J

s ,

En =

∫ tk+1

tk

e−α(tk+1−s)QDs (σJσ
>
J )−1µs ds− e−α∆n∆nL

(n)
k (σJσ

>
J )−1µtk ,

Fn = e−α∆n∆nL
(n)
k (σJσ

>
J )−1mC,n

tk− −
∫ tk+1

tk

e−α(tk+1−s)QDs (σJσ
>
J )−1mD

s ds.
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Application of the discrete Gronwall Lemma. The idea is now to apply the discrete Gron-
wall Lemma from Lemma A.1 to the estimation

E
[∥∥mD

tk+1
−mC,n

tk+1−
∥∥2
]

= E
[∥∥An +Bn + Cn +Dn + En + Fn

∥∥2
]

≤ E
[∥∥An∥∥2

]
+ 5E

[∥∥Bn
∥∥2

+
∥∥Cn∥∥2

+
∥∥Dn

∥∥2
+
∥∥En∥∥2

+
∥∥Fn∥∥2

]
+ 2E

[
(An)>(En + Fn)

]
.

(8.23)

In the inequality we have used that (a1 + · · · + ap)
2 ≤ p(a2

1 + · · · + a2
p), and the fact that

Bn+Cn+Dn can be written as a sum of stochastic integrals over Brownian motions between
tk and tk+1. Since An = e−α∆n(mD

tk
−mC,n

tk−) is independent of these stochastic integrals, the
term E[(An)>(Bn + Cn +Dn)] vanishes.

Finding upper estimates for the single summands. We now show how to find upper
estimates for the single summands in the decomposition above. First of all,

E
[∥∥An∥∥2

]
= E

[∥∥e−α∆n(mD
tk
−mC,n

tk−)
∥∥2
]
≤ E

[∥∥mD
tk
−mC,n

tk−
∥∥2
]

by properties of the spectral norm and positive definiteness of α. By using the multidimen-
sional Itô isometry from Lemma A.3 we deduce

E
[∥∥Bn

∥∥2
]
≤ Cnorm E

[∫ tk+1

tk

‖e−α(tk+1−s)(QDs −QC,ns )(σRσ
>
R)−1σR‖2 ds

]
≤ Cnorm‖(σRσ>R)−1σR‖2

∫ tk+1

tk

‖QDs −QC,ns ‖2 ds

≤ Cnorm‖(σRσ>R)−1σR‖2
∫ tk+1

tk

(K1∆n)2 ds =: CB∆3
n.

Note that ‖QDs −QC,ns ‖ ≤ K1∆n by Theorem 8.5. Now for the term Cn we use the Cauchy–
Schwarz inequality from Lemma A.2 to see that

E
[∥∥Cn∥∥2

]
= E

[∥∥∥∫ tk+1

tk

e−α(tk+1−s)QDs (σRσ
>
R)−1(mC,n

s −mD
s ) ds

∥∥∥2
]

≤ ∆n

∫ tk+1

tk

E
[∥∥e−α(tk+1−s)QDs (σRσ

>
R)−1(mC,n

s −mD
s )
∥∥2
]

ds

≤ ∆nC
2
Q‖(σRσ>R)−1‖2

∫ tk+1

tk

E
[∥∥mC,n

s −mD
s

∥∥2
]

ds.

We then apply the mean value theorem for estimating the integral to see that∫ tk+1

tk

E
[∥∥mC,n

s −mD
s

∥∥2
]

ds ≤ ∆n E
[∥∥mC,n

tk
−mD

tk

∥∥2
]

+ Cmvt∆
2
n

≤ ∆n

(
2E
[∥∥mC,n

tk− −m
D
tk

∥∥2
]

+ 2E
[∥∥mC,n

tk
−mC,n

tk−
∥∥2
])

+ Cmvt∆
2
n.
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The jump size of mC,n at an information date is bounded, hence all in all we obtain

E
[∥∥Cn∥∥2

]
≤ CC,1∆2

n E
[∥∥mC,n

tk− −m
D
tk

∥∥2
]

+ CC,2∆2
n

for constants CC,1, CC,2 > 0.
For the term Dn we use again the multidimensional Itô isometry from Lemma A.3 and get

E
[∥∥Dn

∥∥2
]
≤ Cnorm E

[∫ tk+1

tk

∥∥(e−α(tk+1−s)QDs − e−α∆nL
(n)
k

)
(σJσ

>
J )−1σJ

∥∥2
ds

]
≤ Cnorm‖(σJσ>J )−1σJ‖2

∫ tk+1

tk

∥∥e−α(tk+1−s)QDs − e−α∆nL
(n)
k

∥∥2
ds.

For the integral above we first use a mean value theorem argument and then Lemma A.4 for
the estimation of ‖QDtk − L

(n)
k ‖2 to obtain∫ tk+1

tk

∥∥e−α(tk+1−s)QDs − e−α∆nL
(n)
k

∥∥2
ds ≤ ∆n

∥∥e−α∆nQDtk − e−α∆nL
(n)
k

∥∥2
+ Cmvt∆

2
n

≤ ∆n‖QDtk − L
(n)
k ‖2 + Cmvt∆

2
n ≤ 2∆n

(
‖QDtk −Q

C,n
tk−‖

2 + C̄2∆2
n

)
+ Cmvt∆

2
n.

Putting these estimations together yields the existence of a constant CD > 0 such that

E
[∥∥Dn

∥∥2
]
≤ CD∆2

n.

By writing the next summand En as one integral, we can again apply the Cauchy–Schwarz
inequality from Lemma A.2 and get

E
[∥∥En∥∥2

]
= E

[∥∥∥∥∫ tk+1

tk

(
e−α(tk+1−s)QDs (σJσ

>
J )−1µs − e−α∆nL

(n)
k (σJσ

>
J )−1µtk

)
ds

∥∥∥∥2]
≤ ∆n

∫ tk+1

tk

E
[∥∥∥e−α(tk+1−s)QDs (σJσ

>
J )−1µs − e−α∆nL

(n)
k (σJσ

>
J )−1µtk

∥∥∥2]
ds.

When using again the mean value theorem and the same argumentation as before we see that
the integral is bounded by

∆n E
[∥∥∥e−α∆n

(
QDtk − L

(n)
k

)
(σJσ

>
J )−1µtk

∥∥∥2]
+ Cmvt∆

2
n

≤ ∆n

∥∥QDtk − L(n)
k

∥∥2‖(σJσ>J )−1‖2 E[‖µtk‖2] + Cmvt∆
2
n

≤ ∆nCµ‖(σJσ>J )−1‖2
(

2‖QDtk −Q
C,n
tk−‖

2 + 2C̄2∆2
n

)
+ Cmvt∆

2
n.

In conclusion, we have a constant CE > 0 with

E
[∥∥En∥∥2

]
≤ CE∆3

n.

In a similar way, Fn can be treated. By first writing Fn as a single integral and applying
the Cauchy–Schwarz inequality from Lemma A.2 as well as the mean value theorem we get

E
[∥∥Fn∥∥2

]
= E

[∥∥∥∥∫ tk+1

tk

(
e−α∆nL

(n)
k (σJσ

>
J )−1mC,n

tk− − e−α(tk+1−s)QDs (σJσ
>
J )−1mD

s

)
ds

∥∥∥∥2]
≤ ∆n

∫ tk+1

tk

E
[∥∥∥e−α∆nL

(n)
k (σJσ

>
J )−1mC,n

tk− − e−α(tk+1−s)QDs (σJσ
>
J )−1mD

s

∥∥∥2]
ds

≤ ∆2
n E
[∥∥∥e−α∆n

(
L

(n)
k (σJσ

>
J )−1mC,n

tk− −Q
D
tk

(σJσ
>
J )−1mD

tk

)∥∥∥2]
+ Cmvt∆

3
n.
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The expectation above is bounded by

2E
[∥∥(L(n)

k −QDtk
)
(σJσ

>
J )−1mC,n

tk−
∥∥2]

+ 2E
[∥∥QDtk(σJσ

>
J )−1

(
mC,n
tk− −m

D
tk

)∥∥2]
≤ 2‖(σJσ>J )−1‖2 E

[
‖mC,n

tk−‖
2
]∥∥L(n)

k −QDtk
∥∥2

+ 2C2
Q‖(σJσ>J )−1‖2 E

[
‖mC,n

tk− −m
D
tk
‖2
]
.

By the same reasons as in the calculations above we obtain all in all that there exist constants
CF,1 and CF,2 > 0 such that

E
[∥∥Fn∥∥2

]
≤ CF,1∆2

n E
[
‖mC,n

tk− −m
D
tk
‖2
]

+ CF,2∆3
n.

We have now found upper bounds for all quadratic terms in (8.23). Only the mixed terms
(An)>En and (An)>Fn remain to be considered. Firstly, we again rewrite En as one integral

En =

∫ tk+1

tk

(
e−α(tk+1−s)QDs (σJσ

>
J )−1µs − e−α∆nL

(n)
k (σJσ

>
J )−1µtk

)
ds.

We see that

E
[
(An)>En

]
=

∫ tk+1

tk

E
[
(mD

tk
−mC,n

tk−)>e−α∆n
(
e−α(tk+1−s)QDs (σJσ

>
J )−1µs − e−α∆nL

(n)
k (σJσ

>
J )−1µtk

)]
ds

=

∫ tk+1

tk

E
[
(mD

tk
−mC,n

tk−)>e−α∆ne−α(tk+1−s)QDs (σJσ
>
J )−1µs

]
ds

− E
[
(mD

tk
−mC,n

tk−)>e−2α∆n∆nL
(n)
k (σJσ

>
J )−1µtk

]
.

By using the mean value theorem and sublinearity of the spectral norm we obtain∣∣E[(An)>En
]∣∣ ≤ ∣∣∣∆n E

[
(mD

tk
−mC,n

tk−)>e−2α∆nQDtk(σJσ
>
J )−1µtk

]
− E

[
(mD

tk
−mC,n

tk−)>e−2α∆n∆nL
(n)
k (σJσ

>
J )−1µtk

]∣∣∣+ Cmvt∆
2
n

= ∆n

∣∣∣E[(mD
tk
−mC,n

tk−)>e−2α∆n
(
QDtk − L

(n)
k

)
(σJσ

>
J )−1µtk

]∣∣∣+ Cmvt∆
2
n

≤ ∆n

∥∥(σJσ
>
J )−1

∥∥∥∥QDtk − L(n)
k

∥∥E[∥∥mD
tk
−mC,n

tk−
∥∥∥∥µtk∥∥]+ Cmvt∆

2
n

≤ CA,E∆2
n.

The last inequality is due to boundedness of E[‖mD
tk
− mC,n

tk−‖‖µtk‖] together with the fact
that ‖QDtk − L

(n)
k ‖ is bounded by a constant times ∆n, see Lemma A.4.

The mixed term (An)>Fn can be handled in a similar way. It holds that

(An)>Fn = (mD
tk
−mC,n

tk−)>e−2α∆n∆nL
(n)
k (σJσ

>
J )−1mC,n

tk−

−
∫ tk+1

tk

(mD
tk
−mC,n

tk−)>e−α∆ne−α(tk+1−s)QDs (σJσ
>
J )−1mD

s ds
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and hence by another application of the mean value theorem∣∣E[(An)>Fn
]∣∣

≤
∣∣∣∣E[(mD

tk
−mC,n

tk−)>e−2α∆n∆nL
(n)
k (σJσ

>
J )−1mC,n

tk−

]
−∆n E

[
(mD

tk
−mC,n

tk−)>e−2α∆nQDtk(σJσ
>
J )−1mD

tk

]∣∣∣∣+ Cmvt∆
2
n

= ∆n

∣∣∣∣E[(mD
tk
−mC,n

tk−)>e−2α∆n

(
L

(n)
k (σJσ

>
J )−1mC,n

tk− −Q
D
tk

(σJσ
>
J )−1mD

tk

)]∣∣∣∣+ Cmvt∆
2
n.

The absolute value of the expectation is split into two summands as∣∣∣E[(mD
tk
−mC,n

tk−)>e−2α∆n

(
L

(n)
k (σJσ

>
J )−1mC,n

tk− −Q
D
tk

(σJσ
>
J )−1mD

tk

)]∣∣∣
≤
∣∣∣E[(mD

tk
−mC,n

tk−)>e−2α∆n
(
L

(n)
k −QDtk

)
(σJσ

>
J )−1mC,n

tk−

]∣∣∣
+
∣∣∣E[(mD

tk
−mC,n

tk−)>e−2α∆nQDtk(σJσ
>
J )−1

(
mC,n
tk− −m

D
tk

)]∣∣∣
≤
∥∥(σJσ

>
J )−1

∥∥(E[∥∥mD
tk
−mC,n

tk−
∥∥∥∥mC,n

tk−
∥∥]∥∥L(n)

k −QDtk
∥∥+ CQ E

[∥∥mD
tk
−mC,n

tk−
∥∥2
])
.

From the same argumentations as above we deduce that there exist constants CA,F,1 and
CA,F,2 > 0 with ∣∣E[(An)>Fn

]∣∣ ≤ CA,F,1∆n E
[∥∥mD

tk
−mC,n

tk−
∥∥2]

+ CA,F,2∆2
n.

Conclusion with discrete Gronwall Lemma. Now we plug all these upper bounds into (8.23)
and obtain that there exist constants L1, L2 > 0 such that

E
[∥∥mD

tk+1
−mC,n

tk+1−
∥∥2
]
≤
(
1 + L1∆n

)
E
[∥∥mD

tk
−mC,n

tk−
∥∥2
]

+ L2∆2
n.

Setting ak := E
[∥∥mD

tk
−mC,n

tk−
∥∥2
]
in the discrete version of Gronwall’s Lemma, see Lemma A.1,

we can conclude that

E
[∥∥mD

tk
−mC,n

tk−
∥∥2
]
≤ eL1T − 1

L1
L2∆n =: C̃∆n

which proves the claim for t = tk. To find an upper bound that is valid for arbitrary time
t ∈ [0, T ] with t ∈ [tk, tk+1), we observe that

E
[∥∥mD

t −mC,n
t

∥∥2
]

= E
[∥∥mD

t −mD
tk

+mD
tk
−mC,n

tk− +mC,n
tk− −m

C,n
t

∥∥2
]

≤ 3
(
E
[∥∥mD

t −mD
tk

∥∥2
]

+ E
[∥∥mD

tk
−mC,n

tk−
∥∥2
]

+ E
[∥∥mC,n

tk− −m
C,n
t

∥∥2
])
.

The first summand is bounded by a constant times ∆n which can be seen from the represen-
tation in Lemma 6.2. From (8.21) we can deduce the same for the third summand. Hence,
all in all there exists a constant K2 > 0 such that

E
[∥∥mC,n

t −mD
t

∥∥2
]
≤ K2∆n

which proves the claim of the theorem.
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Proof of Theorem 8.15

First of all, we use the representations from Proposition 8.14 to see that

QC,λt −QDt =

∫ t

0

(
L(QC,λs )− L(QDs )− λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− +QDs (σJσ

>
J )−1QDs

)
ds

+

∫ t

0

∫
Rd
−QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− Ñ(ds, du).

Denote the first integral by Aλt and the one with respect to the compensated measure by Xλ
t .

Now for r ∈ [0, T ] let

uλr := E
[
sup
t≤r
‖QC,λt −QDt ‖2

]
= E

[
sup
t≤r
‖Aλt +Xλ

t ‖2
]
.

In this notation we want to show that uλT ≤ K3
λ for some constant K3 > 0. It holds that

uλr ≤ 2E
[
sup
t≤r
‖Aλt ‖2

]
+ 2E

[
sup
t≤r
‖Xλ

t ‖2
]
. (8.24)

In the following, we find upper bounds for both summands.

Estimate for the martingale term Xλ. Firstly, note that every component of the matrix-
valued process (Xλ

t )t≥0 is a martingale since we integrate with respect to the compensated
measure Ñ . For being able to use Lemma A.6 we replace the spectral norm with the Frobenius
norm. By equivalence of norms there is a constant Cnorm > 0 such that

E
[
sup
t≤r
‖Xλ

t ‖2
]
≤ Cnorm E

[
sup
t≤r
‖Xλ

t ‖2F
]

= Cnorm E
[
sup
t≤r

d∑
i,j=1

(Xλ
t (i, j))2

]

≤ Cnorm

d∑
i,j=1

E
[
sup
t≤r

(Xλ
t (i, j))2

]
≤ Cnorm

d∑
i,j=1

4E
[
(Xλ

r (i, j))2
]
.

(8.25)

The last inequality follows from Doob’s inequality for martingales. Next, we can apply
Lemma A.6 to the definition of Xλ and get

E
[
(Xλ

r (i, j))2
]

= E
[∫ r

0

∫
Rd

((
−QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs−

)
(i, j)

)2
λϕ(u) duds

]
= λE

[∫ r

0

((
−QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs−

)
(i, j)

)2
ds

]
,

since the integrand does not depend on u, and ϕ is a density. Plugging back into (8.25), we
get

E
[
sup
t≤r
‖Xλ

t ‖2
]
≤ 4Cnormλ

∫ r

0
E
[
‖−QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− ‖2F

]
ds

≤ 4C2
normλ

∫ r

0
E
[
‖−QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− ‖2

]
ds,

(8.26)
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again by equivalence of norms. We now take a closer look at the remaining expectation
term in the integral. Since the spectral norm of the matrices QC,λ is bounded by CQ , see
Lemma 7.3, we obtain

E
[
‖−QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− ‖2

]
≤ C4

Q E
[
‖(QC,λs− + λσJσ

>
J )−1‖2

]
= C4

Q E
[(
λmin(QC,λs− + λσJσ

>
J )
)−2
]
≤ C4

Q E
[(
λmin(λσJσ

>
J )
)−2
]

=
C4
Q

λ2
‖(σJσ>J )−1‖2.

(8.27)

When reinserting this upper bound into (8.26), we can conclude that

E
[
sup
t≤r
‖Xλ

t ‖2
]
≤

4C2
normC

4
Q‖(σJσ>J )−1‖2r
λ

≤
4C2

normC
4
Q‖(σJσ>J )−1‖2T

λ
. (8.28)

Estimate for the finite variation term Aλ. Next, we address the other summand in (8.24).
Note that when shortly writing g for the integrand of Aλt we get

sup
t≤r
‖Aλt ‖2 = sup

t≤r

∥∥∥∥∫ t

0
g(s) ds

∥∥∥∥2

≤ sup
t≤r

t

∫ t

0
‖g(s)‖2 ds ≤ r

∫ r

0
‖g(s)‖2 ds (8.29)

by the Cauchy–Schwarz inequality in Lemma A.2. We now address the integrand of Aλ. We
can write
g(s) = −α(QC,λs −QDs )− (QC,λs −QDs )α−QC,λs (σRσ

>
R)−1(QC,λs −QDs )

− (QC,λs −QDs )(σRσ
>
R)−1QDs − λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− +QDs (σJσ

>
J )−1QDs

and hence
‖g(s)‖ ≤ ‖QC,λs −QDs ‖

(
2‖α‖+ 2CQ‖(σRσ>R)−1‖

)
+ ‖λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− −QDs (σJσ

>
J )−1QDs ‖.

So by (8.29) we obtain

E
[
sup
t≤r
‖Aλt ‖2

]
≤ r

∫ r

0
2
(
2‖α‖+ 2CQ‖(σRσ>R)−1‖

)2 E[‖QC,λs −QDs ‖2
]

ds

+ r

∫ r

0
2E
[
‖λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− −QDs (σJσ

>
J )−1QDs ‖2

]
ds

≤ 2T
(
2‖α‖+ 2CQ‖(σRσ>R)−1‖

)2 ∫ r

0
uλs ds

+ 2T

∫ r

0
E
[
‖λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− −QDs (σJσ

>
J )−1QDs ‖2

]
ds.

The first term is equal to
∫ r

0 u
λ
s ds, multiplied by a constant. We analyze the second summand

in more detail. For that purpose, we decompose

λQC,λs− (QC,λs− + λσJσ
>
J )−1QC,λs− −QDs (σJσ

>
J )−1QDs

= λQC,λs− (QC,λs− + λσJσ
>
J )−1QC,λs− −QC,λs− (σJσ

>
J )−1QC,λs−

+QC,λs− (σJσ
>
J )−1QC,λs− −QC,λs (σJσ

>
J )−1QC,λs

+QC,λs (σJσ
>
J )−1QC,λs −QDs (σJσ

>
J )−1QDs

(8.30)
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and find upper bounds for the three summands. For the third summand we observe that

E
[
‖QC,λs (σJσ

>
J )−1QC,λs −QDs (σJσ

>
J )−1QDs ‖2

]
= E

[
‖QC,λs (σJσ

>
J )−1(QC,λs −QDs ) + (QC,λs −QDs )(σJσ

>
J )−1QDs ‖2

]
≤
(
2CQ‖(σJσ>J )−1‖

)2 E[‖QC,λs −QDs ‖2
]
≤
(
2CQ‖(σJσ>J )−1‖

)2
uλs .

(8.31)

We find an upper bound for the second summand in (8.30) by

E
[
‖QC,λs− (σJσ

>
J )−1QC,λs− −QC,λs (σJσ

>
J )−1QC,λs ‖2

]
= E

[
‖QC,λs− (σJσ

>
J )−1(QC,λs− −QC,λs ) + (QC,λs− −QC,λs )(σJσ

>
J )−1QC,λs ‖2

]
≤
(
2CQ‖(σJσ>J )−1‖

)2 E[‖QC,λs− −QC,λs ‖2
]

≤
(
2CQ‖(σJσ>J )−1‖

)2 E[‖QC,λs− (QC,λs− + λσJσ
>
J )−1QC,λs− ‖2

]
≤
(
2CQ‖(σJσ>J )−1‖

)2C4
Q

λ2
‖(σJσ>J )−1‖2 =

4C6
Q‖(σJσ>J )−1‖4

λ2

(8.32)

as in (8.27). The first summand in (8.30) can be bounded by

E
[
‖λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− −QC,λs− (σJσ

>
J )−1QC,λs− ‖2

]
= E

[
‖λQC,λs−

(
(QC,λs− + λσJσ

>
J )−1 − (λσJσ

>
J )−1

)
QC,λs− ‖2

]
= E

[
‖λQC,λs−

(
(QC,λs− + λσJσ

>
J )−1(λσJσ

>
J )− Id

)
(λσJσ

>
J )−1QC,λs− ‖2

]
= E

[
‖QC,λs−

(
(QC,λs− + λσJσ

>
J )−1(λσJσ

>
J −QC,λs− − λσJσ>J )

)
(σJσ

>
J )−1QC,λs− ‖2

]
= E

[
‖−QC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− (σJσ

>
J )−1QC,λs− ‖2

]
≤ C2

Q‖(σJσ>J )−1‖2
C4
Q

λ2
‖(σJσ>J )−1‖2 =

C6
Q‖(σJσ>J )−1‖4

λ2
,

(8.33)

again as in (8.27). We now use (8.31), (8.32) and (8.33) as well as (8.30) and obtain

E
[
‖λQC,λs− (QC,λs− + λσJσ

>
J )−1QC,λs− −QDs (σJσ

>
J )−1QDs ‖2

]
≤ 3

C6
Q‖(σJσ>J )−1‖4

λ2
+ 3

4C6
Q‖(σJσ>J )−1‖4

λ2
+ 3
(
2CQ‖(σJσ>J )−1‖

)2
uλs

=
15C6

Q‖(σJσ>J )−1‖4
λ2

+ 12
(
CQ‖(σJσ>J )−1‖

)2
uλs .

Hence we can write

E
[
sup
t≤r
‖Aλt ‖2

]
≤ 2T

(
2‖α‖+ 2CQ‖(σRσ>R)−1‖

)2 ∫ r

0
uλs ds

+ 2T

∫ r

0

(15C6
Q‖(σJσ>J )−1‖4

λ2
+ 12

(
CQ‖(σJσ>J )−1‖

)2
uλs

)
ds

≤ 2T
((

2‖α‖+ 2CQ‖(σRσ>R)−1‖
)2

+ 12
(
CQ‖(σJσ>J )−1‖

)2)∫ r

0
uλs ds

+ 2T 2
15C6

Q‖(σJσ>J )−1‖4
λ2

.

(8.34)
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Conclusion with Gronwall’s Lemma. We have found upper bounds for

E
[
sup
t≤r
‖Xλ

t ‖2
]

and E
[
sup
t≤r
‖Aλt ‖2

]
in (8.28) and (8.34), respectively. Plugging into (8.24) yields

uλr ≤ 4T
((

2‖α‖+ 2CQ‖(σRσ>R)−1‖
)2

+ 12
(
CQ‖(σJσ>J )−1‖

)2)∫ r

0
uλs ds

+ 4T 2
15C6

Q‖(σJσ>J )−1‖4
λ2

+
8C2

normC
4
Q‖(σJσ>J )−1‖2T

λ

≤ C1

λ
+ C2

∫ r

0
uλs ds

for all λ ≥ λ0 for some λ0 > 0 and constants C1, C2 > 0. By Gronwall’s Lemma, see
Lemma A.5, it follows

uλr ≤
C1

λ
eC2r,

and in particular

E
[
sup
t≤T
‖QC,λt −QDt ‖2

]
= uλT ≤

C1

λ
eC2T =

K3

λ

where K3 = C1eC2T > 0.

Proof of Theorem 8.16

Throughout the proof, we omit the superscript λ at time points T (λ)
k and at the Poisson pro-

cess (N
(λ)
t )t≥0 for better readability. The proof uses again Gronwall’s Lemma, see Lemma A.5.

For this purpose, define
vλt := E

[∥∥mC,λ
t −mD

t

∥∥2
]

for t ∈ [0, T ]. The filtering equations from Lemma 6.4 yield that we can write the conditional
mean mC,λ as

mC,λ
t =

∫ t

0
α(δ −mC,λ

s ) ds+

∫ t

0
QC,λs (σRσ

>
R)−1σR dV R

s +

Nt∑
k=1

1

λ
P λk
(
Z

(λ)
k −mC,λ

Tk−
)
, (8.35)

where dRs−mC,λ
s ds = σR dV R

s defines the innovations process V R which is anm-dimensional
FC,λ-Brownian motion, and where

P λk = λ
(
Id − ρ(λ)(QC,λTk−)

)
= λQC,λTk−(QC,λTk− + λσJσ

>
J )−1.

Note that P λk is bounded since

‖λQC,λTk−(QC,λTk− + λσJσ
>
J )−1‖ = ‖QC,λTk−(QC,λTk− + λσJσ

>
J )−1λσJσ

>
J (σJσ

>
J )−1‖

≤ CQ‖(σJσ>J )−1‖ =: CP .
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The conditional mean mD can be written as

mD
t =

∫ t

0
α(δ −mD

s ) ds+

∫ t

0
QDs (σRσ

>
R)−1(dRs −mD

s ds)

+

∫ t

0
QDs (σJσ

>
J )−1(dJs −mD

s ds).

(8.36)

Note that
dRs −mD

s ds = σR dV R
s + (mC,λ

t −mD
s ) ds

and
dJs −mD

s ds = σJ dW J
s + (µs −mD

s ) ds.

Plugging this into (8.36) and combining with (8.35) yields that the difference of the condi-
tional means equals

mC,λ
t −mD

t = −α
∫ t

0
(mC,λ

s −mD
s )ds+

∫ t

0
(QC,λs −QDs )(σRσ

>
R)−1σR dV R

s

−
∫ t

0
QDs (σRσ

>
R)−1(mC,λ

s −mD
s )ds+

Nt∑
k=1

1

λ
P λk (Z

(λ)
k −mC,λ

Tk−)

−
∫ t

0
QDs (σJσ

>
J )−1σJ dW J

s −
∫ t

0
QDs (σJσ

>
J )−1(µs −mD

s ) ds

= Aλt +Bλ
t + Cλt +Dλ

t + Eλt + F λt ,

where

Aλt = −α
∫ t

0
(mC,λ

s −mD
s ) ds,

Bλ
t =

∫ t

0
(QC,λs −QDs )(σRσ

>
R)−1σR dV R

s ,

Cλt =

∫ t

0
QDs (σRσ

>
R)−1(mD

s −mC,λ
s ) ds,

Dλ
t =

Nt∑
k=1

P λk σJ

∫ k
λ

k−1
λ

dW J
s −

∫ t

0
QDs (σJσ

>
J )−1σJ dW J

s ,

Eλt =

Nt∑
k=1

1

λ
P λk µTk −

∫ t

0
QDs (σJσ

>
J )−1µs ds,

F λt =

∫ t

0
QDs (σJσ

>
J )−1mD

s ds−
Nt∑
k=1

1

λ
P λkm

C,λ
Tk−.

Hence
vλt = E

[∥∥Aλt +Bλ
t + Cλt +Dλ

t + Eλt + F λt
∥∥2
]

≤ 6E
[∥∥Aλt ∥∥2

+
∥∥Bλ

t

∥∥2
+
∥∥Cλt ∥∥2

+
∥∥Dλ

t

∥∥2
+
∥∥Eλt ∥∥2

+
∥∥F λt ∥∥2

]
.

(8.37)

For the various summands on the right-hand side of (8.37) we derive suitable upper bounds
in the following.
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8. Asymptotic Behavior for an Increasing Number of Expert Opinions

Estimate for Aλ. Firstly, by using the Cauchy–Schwarz inequality from Lemma A.2 we
have

E
[∥∥Aλt ∥∥2

]
= E

[∥∥∥−α ∫ t

0
(mC,λ

s −mD
s ) ds

∥∥∥2
]

≤ ‖α‖2t
∫ t

0
E
[
‖mC,λ

s −mD
s ‖2

]
ds ≤ ‖α‖2T

∫ t

0
vλs ds =: CA

∫ t

0
vλs ds.

(8.38)

Estimate for Bλ. For the summand Bλ
t we use the multivariate version of Itô’s isometry

from Lemma A.3 and get

E
[∥∥Bλ

t

∥∥2
]

= E
[∥∥∥∫ t

0
(QC,λs −QDs )(σRσ

>
R)−1σR dV R

s

∥∥∥2
]

≤ Cnorm

∫ t

0
E
[
‖(QC,λs −QDs )(σRσ

>
R)−1σR‖2

]
ds

≤ Cnorm‖(σRσ>R)−1σR‖2
∫ t

0
E
[
‖QC,λs −QDs ‖2

]
ds

≤ Cnorm‖(σRσ>R)−1σR‖2T
K3

λ
=:

CB
λ
.

(8.39)

The last inequality is due to Theorem 8.15.

Estimate for Cλ. For the summand Cλt we can argue similarly as for Aλt and get

E
[∥∥Cλt ∥∥2

]
= E

[∥∥∥∫ t

0
QDs (σRσ

>
R)−1(mD

s −mC,λ
s ) ds

∥∥∥2
]

≤ t
∫ t

0
E
[
‖QDs (σRσ

>
R)−1(mC,λ

s −mD
s )‖2

]
ds

≤ t
∫ t

0
‖QDs (σRσ

>
R)−1‖2 E

[
‖mC,λ

s −mD
s ‖2

]
ds

≤ C2
Q‖(σRσ>R)−1‖2T

∫ t

0
vλs ds =: CC

∫ t

0
vλs ds.

(8.40)

Estimate for Dλ. The estimation of the terms containing Dλ
t , Eλt and F λt is more involved.

Recall that

Dλ
t =

Nt∑
k=1

P λk σJ

∫ k
λ

k−1
λ

dW J
s −

∫ t

0
QDs (σJσ

>
J )−1σJ dW J

s .

The main difficulty in estimating this expression arises from the fact that the integrals∫ k
λ

k−1
λ

dW J
s

in the sum do not align well with the integral over W J from 0 to t. Since Nt is a random
variable that can be smaller or larger than λt, it is necessary to distinguish various cases.
Therefore, we define the integer-valued random variable nt := min{Nt, bλtc}. Note also that
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8.3. Proofs of main results

Nt > bλtc if and only if Nt > λt, since Nt is integer-valued. This leads to the representation
of Dλ

t as
D1,λ
t +D2,λ

t +D3,λ
t +D4,λ

t ,

where

D1,λ
t =

nt∑
k=1

P λk σJ

∫ k
λ

k−1
λ

dW J
s −

∫ nt
λ

0
QDs (σJσ

>
J )−1σJ dW J

s ,

D2,λ
t = 1{Nt>λt}

Nt∑
k=bλtc+1

P λk σJ

∫ k
λ

k−1
λ

dW J
s ,

D3,λ
t = −1{Nt>λt}

∫ t

bλtc
λ

QDs (σJσ
>
J )−1σJ dW J

s ,

D4,λ
t = −1{Nt≤λt}

∫ t

Nt
λ

QDs (σJσ
>
J )−1σJ dW J

s .

Here, D1,λ
t can be written as

D1,λ
t =

∫ nt
λ

0

(
Hλ
s −QDs (σJσ

>
J )−1

)
σJ dW J

s ,

where Hλ
s = P λk for s ∈ [k−1

λ , kλ). Therefore,

E
[∥∥D1,λ

t

∥∥2
]

= E
[∥∥∥∫ nt

λ

0

(
Hλ
s −QDs (σJσ

>
J )−1

)
σJ dW J

s

∥∥∥2
]

= E
[∥∥∥∫ t

0
1{s≤nt

λ
}
(
Hλ
s −QDs (σJσ

>
J )−1

)
σJ dW J

s

∥∥∥2
]

≤ Cnorm E
[∫ t

0

∥∥1{s≤nt
λ
}
(
Hλ
s −QDs (σJσ

>
J )−1

)
σJ
∥∥2

ds

]
= Cnorm

∥∥σJ∥∥2 E
[∫ nt

λ

0

∥∥Hλ
s −QDs (σJσ

>
J )−1

∥∥2
ds

]
.

(8.41)

We take a closer look at the integrand inside the expectation in (8.41). Let k ≤ nt and
s ∈ [k−1

λ , kλ). Then

Hλ
s −QDs (σJσ

>
J )−1 = P λk −QDs (σJσ

>
J )−1

= λQC,λTk−(QC,λTk− + λσJσ
>
J )−1 −QDs (σJσ

>
J )−1

=
(
QC,λTk−(QC,λTk− + λσJσ

>
J )−1λσJσ

>
J −QDs

)
(σJσ

>
J )−1.

Hence, we can deduce that∥∥Hλ
s −QDs (σJσ

>
J )−1

∥∥2 ≤
∥∥(σJσ

>
J )−1

∥∥2∥∥QC,λTk−(QC,λTk− + λσJσ
>
J )−1λσJσ

>
J −QDs

∥∥2

≤
∥∥(σJσ

>
J )−1

∥∥2
(

2‖QDs −QC,λTk−‖
2 +

2C̄2

λ2

)
≤ 2
∥∥(σJσ

>
J )−1

∥∥2
(

2‖QDs −QDTk‖
2 + 2‖QDTk −Q

C,λ
Tk−‖

2 +
C̄2

λ2

)
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by means of Lemma A.4. Since QDs is differentiable in s with bounded derivative we can
deduce that

‖QDs −QDTk‖
2 ≤ C̃2

Q(Tk − s)2.

By means of Theorem 8.15 and plugging back into (8.41) this implies that

E
[∥∥D1,λ

t

∥∥2
]
≤ 2TCnorm

∥∥σJ∥∥2∥∥(σJσ
>
J )−1

∥∥2
(

2
C̃2
Q

λ
+

2K3

λ
+
C̄2

λ2

)
≤ CD,1

λ
(8.42)

for all λ ≥ λ̃0 and some λ̃0 > 0 and where CD,1 > 0 is a suitable constant. Next, we consider
D2,λ
t . Note that

E
[∥∥D2,λ

t

∥∥2
]

= E
[
1{Nt>λt}

∥∥∥∥ Nt∑
k=bλtc+1

P λk σJ

∫ k
λ

k−1
λ

dW J
s

∥∥∥∥2]

= E
[
1{Nt>λt}

d∑
i=1

( ∞∑
k=bλtc+1

1{Nt≥k}

(
P λk σJ

∫ k
λ

k−1
λ

dW J
s

)i)2]

=

d∑
i=1

∞∑
k,n=bλtc+1

E
[
1{Nt≥k,n}

(
P λk σJ

∫ k
λ

k−1
λ

dW J
s

)i(
P λnσJ

∫ n
λ

n−1
λ

dW J
s

)i]
.

Since W J is independent of Nt and of the matrices P λ, this expression equals

d∑
i=1

∞∑
k=bλtc+1

E
[
1{Nt≥k}

((
P λk σJ

∫ k
λ

k−1
λ

dW J
s

)i)2]

=
∞∑

k=bλtc+1

E
[
1{Nt≥k}

∥∥∥P λk σJ ∫ k
λ

k−1
λ

dW J
s

∥∥∥2]

≤ C2
P ‖σJ‖2

∞∑
k=bλtc+1

E
[
1{Nt≥k}

∥∥∥∫ k
λ

k−1
λ

dW J
s

∥∥∥2]
,

where

∞∑
k=bλtc+1

E
[
1{Nt≥k}

∥∥∥∫ k
λ

k−1
λ

dW J
s

∥∥∥2]
=

∞∑
k=bλtc+1

E
[
1{Nt≥k}

]
E
[∥∥∥∫ k

λ

k−1
λ

dW J
s

∥∥∥2]

≤ Cnorm
1

λ

∞∑
k=bλtc+1

E
[
1{Nt≥k}

]
≤ Cnorm

1

λ
CN
√
λ

due to Lemma A.7. All in all, we therefore find a constant CD,2 > 0 with

E
[∥∥D2,λ

t

∥∥2
]
≤ CD,2√

λ
. (8.43)
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For D3,λ
t and D4,λ

t the estimations lead to similar expressions. For D3,λ
t we get, again using

the Itô isometry from Lemma A.3,

E
[∥∥D3,λ

t

∥∥2
]

= E
[∥∥∥∫ t

bλtc
λ

1{Nt>λt}Q
D
s (σJσ

>
J )−1σJ dW J

s

∥∥∥2
]

≤ Cnorm

∫ t

bλtc
λ

E
[∥∥1{Nt>λt}QDs (σJσ

>
J )−1σJ

∥∥2]
ds

≤ CnormC
2
Q

∥∥(σJσ
>
J )−1σJ

∥∥2
(
t− bλtc

λ

)
and observe that

t− bλtc
λ

=
(
λt− bλtc

) 1

λ
≤ 1

λ
.

In conclusion, we have a constant CD,3 > 0 with

E
[∥∥D3,λ

t

∥∥2
]
≤ CD,3

λ
. (8.44)

For D4,λ
t we get by the Itô isometry from Lemma A.3 that

E
[∥∥D4,λ

t

∥∥2
]

= E
[∥∥∥1{Nt≤λt} ∫ t

Nt
λ

QDs (σJσ
>
J )−1σJ dW J

s

∥∥∥2
]

≤ Cnorm E
[∫ t

Nt
λ

1{Nt≤λt}
∥∥QDs (σJσ

>
J )−1σJ

∥∥2
ds

]
≤ CnormC

2
Q

∥∥(σJσ
>
J )−1σJ

∥∥2 E
[
1{Nt≤λt}

(
t− Nt

λ

)]
.

Here, we see that

E
[
1{Nt≤λt}

(
t− Nt

λ

)]
≤ 1

λ
E
[
(λt−Nt)

+
]
≤ CN√

λ

due to Lemma A.7. Hence, it holds

E
[∥∥D4,λ

t

∥∥2
]
≤ CnormC

2
Q

∥∥(σJσ
>
J )−1σJ

∥∥2CN√
λ

=:
CD,4√
λ
. (8.45)

Now, combining the estimations from (8.42), (8.43), (8.44) and (8.45), we obtain

E
[∥∥Dλ

t

∥∥2
]

= E
[∥∥D1,λ

t +D2,λ
t +D3,λ

t +D4,λ
t

∥∥2
]

≤ 4
(
E
[∥∥D1,λ

t

∥∥2
]

+ E
[∥∥D2,λ

t

∥∥2
]

+ E
[∥∥D3,λ

t

∥∥2
]

+ E
[∥∥D4,λ

t

∥∥2
])

≤ 4
(CD,1

λ
+
CD,2√
λ

+
CD,3
λ

+
CD,4√
λ

)
≤ 4(CD,1 + CD,2 + CD,3 + CD,4)

1√
λ

=:
CD√
λ

(8.46)

for all λ ≥ 1.
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Estimates for Eλ and F λ. Finding upper bounds for the terms E[‖Eλt ‖2] and E[‖F λt ‖2]
works by the same approach as for E[‖Dλ

t ‖2], i.e. by splitting up into different parts by means
of the random variable nt = min{Nt, bλtc}. The result is that there exist constants CE and
CF > 0 such that

E
[∥∥Eλt ∥∥2

]
≤ CE√

λ
and E

[∥∥F λt ∥∥2
]
≤ CF√

λ
.

Conclusion with Gronwall’s Lemma. These upper bounds, as well as those in (8.38), (8.39),
(8.40) and (8.46) can now be used in (8.37) to obtain

vλt ≤ 6E
[∥∥Aλt ∥∥2

+
∥∥Bλ

t

∥∥2
+
∥∥Cλt ∥∥2

+
∥∥Dλ

t

∥∥2
+
∥∥Eλt ∥∥2

+
∥∥F λt ∥∥2

]
≤ 6(CA + CC)

∫ t

0
vλs ds+

6CB
λ

+
6(CD + CE + CF )√

λ

≤ 6(CA + CC)

∫ t

0
vλs ds+

6(CB + CD + CE + CF )√
λ

for all λ ≥ 1. Now Gronwall’s Lemma, see Lemma A.5, implies

vλt ≤
6(CB + CD + CE + CF )√

λ
exp
(
6(CA + CC)t

)
≤ 6(CB + CD + CE + CF ) exp

(
6(CA + CC)T

) 1√
λ

=:
K4√
λ
.

This concludes the proof.
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9. Application to Utility Maximization

As an application of the convergence results from Chapter 8 we now consider a portfolio
optimization problem in our financial market. We take again T = [0, T ] where T > 0 is some
finite investment horizon. For convenience, we assume here that the interest rate r of the
risk-free asset is equal to zero. However, the results below can easily be extended to a market
model with r 6= 0.

9.1. Optimal strategy and value function

An investor’s trading in the market can be described by a self-financing trading strategy
(πt)t∈[0,T ] with values in Rd. Here, πit, i = 1, . . . , d, is the proportion of wealth that is
invested in asset i at time t. The corresponding wealth process (Xπ

t )t∈[0,T ] then follows the
stochastic differential equation

dXπ
t = Xπ

t π
>
t

(
µt dt+ σR dWR

t

)
with initial capital Xπ

0 = x0 > 0. An investor’s trading strategy has to be adapted to
her investor filtration. To ensure strictly positive wealth, we also impose some integrability
constraint on the trading strategies. Then we denote by

AH(x0) =

{
π = (πt)t∈[0,T ]

∣∣∣∣ π is FH -adapted, Xπ
0 = x0, E

[∫ T

0
‖σ>Rπt‖2 dt

]
<∞

}
the class of admissible trading strategies for the H-investor. The optimization problem
we address is a utility maximization problem where investors want to maximize expected
logarithmic utility of terminal wealth. Hence,

V H(x0) = sup
{
E
[
log(Xπ

T )
] ∣∣∣ π ∈ AH(x0)

}
(9.1)

is the value function of our optimization problem. This utility maximization problem under
partial information has been solved in Brendle [7] for the case of power utility. Karatzas and
Zhao [35] address also the case with logarithmic utility. In the Master’s thesis Westphal [64]
the optimization problem has been solved for a general H-investor in the context of the
different information regimes addressed in this thesis. We recall the result in the proposition
below.

Proposition 9.1. The optimal strategy for the optimization problem (9.1) is (πH,∗t )t∈[0,T ]

with πH,∗t = (σRσ
>
R)−1mH

t , and the optimal value is

V H(x0) = log(x0) +
1

2

∫ T

0
tr
(

(σRσ
>
R)−1 E

[
mH
t (mH

t )>
])

dt

= log(x0) +
1

2

∫ T

0
tr
(

(σRσ
>
R)−1

(
Σt +mtm

>
t − E

[
QHt
]))

dt.
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9. Application to Utility Maximization

Proof. As a preliminary result, note that

QHt = E
[
(µt −mH

t )(µt −mH
t )>

∣∣FHt ]
= E

[
µtµ
>
t −mH

t µ
>
t − µt(mH

t )> +mH
t (mH

t )>
∣∣FHt ]

= E
[
µtµ
>
t

∣∣FHt ]−mH
t (mH

t )>.

Therefore, by taking expectation on both sides,

E
[
mH
t (mH

t )>
]

= E
[
µtµ
>
t

]
− E

[
QHt
]

= Σt +mtm
>
t − E

[
QHt
]
. (9.2)

From the dynamics of the wealth process we get for any π ∈ AH(x0) that

log(Xπ
T ) = log(x0) +

∫ T

0

(
π>t µt −

1

2
‖σ>Rπt‖2

)
dt+

∫ T

0
π>t σR dWR

t .

By using that the stochastic integral has expectation zero and applying Fubini we deduce

E
[
log(Xπ

T )
]

= log(x0) +

∫ T

0
E
[
π>t µt −

1

2
‖σ>Rπt‖2

]
dt

= log(x0) +

∫ T

0
E
[
E
[
π>t µt −

1

2
‖σ>Rπt‖2

∣∣∣ FHt ]]dt
= log(x0) +

∫ T

0
E
[
π>t m

H
t −

1

2
‖σ>Rπt‖2

]
dt.

(9.3)

Now we fix some t ∈ [0, T ]. Following a pointwise maximization, we formally take the
derivative of the expression inside the expectation with respect to πt. Using the first-order
condition, we set the derivative equal to zero, which means setting mH

t − σRσ
>
Rπt equal

to the zero vector. Since we have assumed σRσ
>
R to be positive definite, this implies that

πH,∗t = (σRσ
>
R)−1mH

t maximizes the above integrand pointwise. It remains to check that
(πH,∗t )t∈[0,T ] is indeed admissible. Firstly, we note that∫ T

0
‖σ>RπH,∗t ‖2 dt =

∫ T

0

∥∥σ>R(σRσ
>
R)−1mH

t

∥∥2
dt =

∫ T

0
(mH

t )>(σRσ
>
R)−1mH

t dt. (9.4)

Taking the expectation in (9.4) and applying Fubini we get

E
[∫ T

0
‖σ>RπH,∗t ‖2 dt

]
=

∫ T

0
E
[
(mH

t )>(σRσ
>
R)−1mH

t

]
dt

=

∫ T

0
tr
(

(σRσ
>
R)−1 E

[
mH
t (mH

t )>
])

dt,

where the second equality follows from cyclicity of the trace. Additionally, by (9.2) we have
E[mH

t (mH
t )>] = Σt +mtm

>
t − E[QHt ], so

E
[∫ T

0
‖σ>RπH,∗t ‖2 dt

]
=

∫ T

0

(
tr
(
(σRσ

>
R)−1(Σt +mtm

>
t )
)
− tr

(
(σRσ

>
R)−1 E

[
QHt
]))

dt.
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Recall that (σRσ
>
R)−1 is symmetric positive definite and QHt is symmetric positive semidefi-

nite. By Wang et al. [63, Lem. 1] the product (σRσ
>
R)−1QHt has a non-negative trace, hence

E
[∫ T

0
‖σ>RπH,∗t ‖2 dt

]
≤
∫ T

0
tr
(
(σRσ

>
R)−1(Σt +mtm

>
t )
)

dt <∞,

where finiteness follows from continuity. It follows that (πH,∗t )t∈[0,T ] is an admissible strategy.
As in (9.3) we then get for the value function

V H(x0) = log(x0) +

∫ T

0
E
[
(πH,∗t )>mH

t −
1

2
‖σ>RπH,∗t ‖2

]
dt

= log(x0) +

∫ T

0
E
[
(mH

t )>(σRσ
>
R)−1mH

t −
1

2

∥∥(mH
t )>(σRσ

>
R)−1σR

∥∥2
]
dt

= log(x0) +

∫ T

0
E
[1

2
(mH

t )>(σRσ
>
R)−1mH

t

]
dt

= log(x0) +
1

2

∫ T

0
tr
(

(σRσ
>
R)−1 E

[
mH
t (mH

t )>
])

dt,

again by cyclicity of the trace. The second representation of the value function then follows
directly from (9.2).

Note that under full information the optimal strategy is (σRσ
>
R)−1µt. This implies that

for our portfolio optimization problem under partial information, the certainty equivalence
principle holds, meaning that the drift µt in the optimal strategy is replaced by the conditional
mean mH

t .

9.2. Properties of the value function

The value function of theH-investor is an integral functional of the expectation of (QHt )t∈[0,T ].
This makes it possible to deduce properties of the value function from properties of the
conditional covariance matrices. Firstly, we prove the following intuitive relation between
the value functions of different investors.

Corollary 9.2. For any x0 > 0 it holds

max
{
V R(x0), V E(x0)

}
≤ V C(x0) ≤ V F (x0) and V R(x0) ≤ V D(x0) ≤ V F (x0).

Proof. By Proposition 6.6 we know that QCt � QRt for any t ∈ [0, T ]. By assumption,
(σRσ

>
R)−1 is positive definite. Hence,

tr((σRσ
>
R)−1(QRt −QCt )) ≥ 0

and therefore
tr
(
(σRσ

>
R)−1 E

[
QRt
])
≥ tr

(
(σRσ

>
R)−1 E

[
QCt
])
,

which implies by the previous proposition that V C(x0) ≥ V R(x0). The same holds for H = E
instead of R or H = D instead of C. Since QFt = 0d we also have V F (x0) ≥ V C(x0) and
V F (x0) ≥ V D(x0).
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9. Application to Utility Maximization

From Theorem 8.1 we immediately deduce the following result about the asymptotic be-
havior of the value function when the number of expert opinions goes to infinity and the
covariance matrices of the expert are bounded.

Corollary 9.3. Let the assumptions of Theorem 8.1 be fulfilled. Denote the value functions
corresponding to the n expert opinions by V E,n(x0) and V C,n(x0). Then

lim
n→∞

V E,n(x0) = lim
n→∞

V C,n(x0) = V F (x0).

Proof. Recall from Theorem 8.1 that

lim
n→∞

QE,nu = lim
n→∞

QC,nu = 0d (9.5)

and that QFu = 0d for all u ∈ (0, T ]. We observe for H ∈ {E,C} that

tr
(
(σRσ

>
R)−1(Σt +mtm

>
t −QHt )

)
≤ tr

(
(σRσ

>
R)−1(Σt +mtm

>
t )
)

since both (σRσ
>
R)−1 and QHt are positive semidefinite. By using dominated convergence

and (9.5) we conclude from the representation of the value function in Proposition 9.1 that
V E,n(x0) and V C,n(x0) converge to V F (x0) when n goes to infinity.

The convergence results of Theorems 8.5 and 8.15 also carry over to convergence results
for the respective value functions. Firstly, we address the situation with deterministic in-
formation dates tk from Section 8.2.1 where we have shown uniform convergence of QC,n to
QD.

Corollary 9.4. Under Assumption 8.4 there exists a constant K5 > 0 such that∣∣V C,n(x0)− V D(x0)
∣∣ ≤ K5∆n

for any initial wealth x0 > 0. In particular, limn→∞ V
C,n(x0) = V D(x0).

Proof. From Proposition 9.1 we deduce

∣∣V C,n(x0)− V D(x0)
∣∣ =

∣∣∣∣12
∫ T

0
tr
(
(σRσ

>
R)−1(QDt −QC,nt )

)
dt

∣∣∣∣
≤ 1

2

∫ T

0

∣∣tr((σRσ>R)−1(QDt −QC,nt )
)∣∣ dt, (9.6)

noting that QC,nt and QDt are deterministic for every t ∈ [0, T ]. Since (σRσ
>
R)−1 is symmetric

and positive definite, and QDt −QC,nt is symmetric, it follows from Wang et al. [63, Lem. 1]
that ∣∣tr((σRσ>R)−1(QDt −QC,nt )

)∣∣ ≤ tr
(
(σRσ

>
R)−1

)∥∥QDt −QC,nt

∥∥.
Inserting this into (9.6) we then get from Theorem 8.5 that∣∣V C,n(x0)− V D(x0)

∣∣ ≤ 1

2
T tr

(
(σRσ

>
R)−1

)
K1∆n

which proves the claim when setting K5 = 1
2K1T tr((σRσ

>
R)−1).
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9.2. Properties of the value function

The analogous result also holds in the setting of Section 8.2.2 where information dates Tk
are the jump times of a Poisson process. Recall that in Theorem 8.15 we have shown uniform
convergence of QC,λ to QD.

Corollary 9.5. Under Assumption 8.10 there exists a constant K6 > 0 and a λ0 > 0 such
that ∣∣V C,λ(x0)− V D(x0)

∣∣ ≤ K6√
λ

for any initial wealth x0 > 0 and all λ ≥ λ0. In particular, limλ→∞ V
C,λ(x0) = V D(x0).

Proof. As in the proof of Corollary 9.4 we first use Proposition 9.1 to obtain

∣∣V C,λ(x0)− V D(x0)
∣∣ =

∣∣∣∣12
∫ T

0
tr
(

(σRσ
>
R)−1

(
QDt − E

[
QC,λt

]))
dt

∣∣∣∣
≤ 1

2

∫ T

0
E
[∣∣tr((σRσ>R)−1(QDt −QC,λt )

)∣∣]dt.
Since (σRσ

>
R)−1 is symmetric and positive definite, and QDt − QC,λt is symmetric, it follows

from Wang et al. [63, Lem. 1] that∣∣tr((σRσ>R)−1(QDt −QC,λt )
)∣∣ ≤ tr

(
(σRσ

>
R)−1

)∥∥QDt −QC,λt

∥∥.
Consequently, by applying the Lyapunov inequality E[|X|] ≤

√
E[X2] and Theorem 8.15 we

get ∣∣V C,λ(x0)− V D(x0)
∣∣ ≤ 1

2

∫ T

0
E
[
tr
(
(σRσ

>
R)−1

)∥∥QDt −QC,λt

∥∥]dt
≤ 1

2

∫ T

0
tr
(
(σRσ

>
R)−1

)√
E
[∥∥QDt −QC,λt

∥∥2]
dt

≤ 1

2
T tr

(
(σRσ

>
R)−1

)√K3

λ
,

for all λ ≥ λ0, which completes the proof when setting K6 = 1
2

√
K3T tr((σRσ

>
R)−1).

Corollaries 9.4 and 9.5 show that for both settings, with deterministic information dates
as in Assumption 8.4 and with random information dates being the jump times of a Poisson
process as in Assumption 8.10, the value function of the C-investor converges to the value
function of the D-investor as the frequency of information dates goes to infinity.
The following proposition shows that not only does the value function of the C-investor

converge to the value function of the D-investor, but also the absolute difference of the utility
attained by πC,∗, respectively πD,∗, goes to zero when increasing the number or the frequency
of discrete-time expert opinions. This implies that the utility of the C-investor observing the
discrete-time expert opinions also pathwise becomes arbitrarily close to the utility of the D-
investor when the number of discrete-time expert opinions becomes large. For this result, we
need the strong L2-convergence of the conditional expectations, convergence in distribution
would not be enough here.
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9. Application to Utility Maximization

Proposition 9.6. Under Assumption 8.4 it holds

lim
n→∞

E
[∣∣log(XπC,n,∗

T )− log(XπD,∗
T )

∣∣] = 0,

under Assumption 8.10 it holds

lim
λ→∞

E
[∣∣log(XπC,λ,∗

T )− log(XπD,∗
T )

∣∣] = 0.

Proof. Consider the setting of Assumption 8.4. Note that

log(XπC,n,∗
T )− log(XπD,∗

T )

=

∫ T

0

(
(πC,n,∗t − πD,∗t )>µt − 1

2

(
‖σ>RπC,n,∗t ‖2 − ‖σ>RπD,∗t ‖2

))
dt+

∫ T

0
(πC,n,∗t − πD,∗t )>σR dWR

t

=

∫ T

0

(
(mC,n

t −mD
t )>(σRσ

>
R)−1µt − 1

2

(
(mC,n

t )>(σRσ
>
R)−1mC,n

t − (mD
t )>(σRσ

>
R)−1mD

t

))
dt

+

∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1σR dWR

t

= 1
2

∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1(2µt −mC,n

t −mD
t ) dt+

∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1σR dWR

t

where we have used the representation of the optimal strategies given in Proposition 9.1.
After applying the absolute value and the expectation to the expression above, and by using
the triangle inequality, we obtain

E
[∣∣log(XπC,n,∗

T )− log(XπD,∗
T )

∣∣] ≤ 1

2
E
[∣∣∣∣∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1(µt −mC,n

t ) dt

∣∣∣∣]
+

1

2
E
[∣∣∣∣∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1(µt −mD

t ) dt

∣∣∣∣]
+ E

[∣∣∣∣∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1σR dWR

t

∣∣∣∣].
(9.7)

For the first summand in (9.7) we have, due to the Cauchy–Schwarz inequality,

E
[∣∣∣∣∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1(µt −mC,n

t ) dt

∣∣∣∣]
≤ E

[∫ T

0

∣∣(mC,n
t −mD

t )>(σRσ
>
R)−1(µt −mC,n

t )
∣∣ dt]

≤ ‖(σRσ>R)−1‖E
[∫ T

0
‖mC,n

t −mD
t ‖ ‖µt −mC,n

t ‖dt

]
≤ ‖(σRσ>R)−1‖E

[∫ T

0
‖mC,n

t −mD
t ‖2 dt

]1/2

E
[∫ T

0
‖µ−mC,n

t ‖2 dt

]1/2

.

The right-hand side of this expression goes to zero when n goes to infinity by Theorem 8.6
and by boundedness of QC,n, see Lemma 7.3. The second summand in (9.7) goes to zero by
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9.2. Properties of the value function

an analogous argumentation. For the third summand in (9.7), note that

E
[∣∣∣∣∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1σR dWR

t

∣∣∣∣]
≤ E

[(∫ T

0
(mC,n

t −mD
t )>(σRσ

>
R)−1σR dWR

t

)2]1/2

= E
[∫ T

0
‖σ>R(σRσ

>
R)−1(mC,n

t −mD
t )‖2 dt

]1/2

≤ ‖σ>R(σRσ
>
R)−1‖E

[∫ T

0
‖mC,n

t −mD
t ‖2 dt

]1/2

.

In the second step we have used the Itô isometry. Again, the right-hand side of the above
inequality goes to zero as n goes to infinity by Theorem 8.6. Putting these results together
shows

lim
n→∞

E
[∣∣log(XπC,n,∗

T )− log(XπD,∗
T )

∣∣] = 0.

The proof for the convergence under Assumption 8.10 is completely analogous.

Note that the convergence of the value functions could also be deduced directly from the
previous proposition. However, the proofs that we have given in Corollaries 9.4 and 9.5
using the convergence of the conditional covariance matrices are more direct and thus yield
a sharper bound for the order of convergence than what we would get from the previous
proposition.

Remark 9.7. Portfolio problems that consider maximization of expected power utility in-
stead of logarithmic utility are typically more demanding and the above methods cannot be
applied directly.
We have seen that for logarithmic utility the value function is given in terms of an integral

functional of the expected conditional variance of the filter. The resulting optimal portfolio
strategy is myopic and depends on the current drift estimate only. For power utility, the
value function can be expressed as the expectation of the exponential of a quite involved
integral functional of the conditional mean. It depends on the complete filter distribution
and not only on its second-order moments. Further, the optimal strategies do not depend on
the current drift estimate only but contain correction terms depending on the distribution of
the future drift estimates.
In the portfolio problem one can use the dynamic programming approach for solving the

associated stochastic optimal control problem. A solution can usually only be determined
numerically. Diffusion approximations for the filter and the value function thus allow to
find approximate solutions which can be given in closed form or at least derived with less
numerical effort by solving a simplified control problem.

In the following example, we illustrate the convergence results from Corollary 9.4 and
Corollary 9.5 by a numerical example. For that purpose, we compare the value function of
the D-investor with the value function of the C-investor for various numbers of information
dates.
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9. Application to Utility Maximization

Example 9.8. In Table 9.1a we list the value functions of the R-investor and of the D-
investor as well as the value function of the C-investor in the setting with n equidistant
information dates for different values of n. We assume that investors have initial capital
x0 = 1 and that the model parameters are those from Table 8.1, specifying additionally the
volatility of the continuous expert as σJ = 0.2. We see that the value functions V C,n(1) are
increasing in n and approach the value V D(1) for large values of n.
Calculating the value function of the C-investor in the situation with non-deterministic

information dates is a little more involved. This is because the conditional covariance ma-
trices (QC,λt )t∈[0,T ] are then also non-deterministic. The value function, see Proposition 9.1,
depends on the expectation of QC,λt for t ∈ [0, T ]. This value cannot be calculated easily. To
determine the value function numerically we therefore perform for each value of λ a Monte
Carlo simulation with 10 000 iterations. In each iteration, we generate a sequence of informa-
tion dates as jump times of a Poisson process with intensity λ and calculate the corresponding
conditional variances (QC,λt )t∈[0,T ]. By taking an average of all simulations this leads to a
good approximation of V C,λ(1). Table 9.1b shows the resulting estimations for V C,λ(1) and
in brackets the corresponding 95% confidence intervals.
The values V C,λ(1) lie between V R(1) and V D(1), they are increasing in the intensity λ and

for large values of λ they approach the value V D(1). This is in line with Corollary 9.5. We
also observe that V C,λ(1) ≤ V C,n(1) when setting the intensity λ equal to the deterministic
number n. Recall that an intensity λ = n means that there are on average n information
dates in the time interval [0, 1]. The randomness coming from the Poisson process however
leads to a lower value function, compared to V C,n(1). This difference is negligible for large
intensities.

H n V H,n(1)

R 0.3410
C 10 0.5245
C 100 0.5511
C 1000 0.5531
C 10 000 0.5533
D 0.5533

(a) Equidistant information dates

H λ V H,λ(1)

R 0.3410
C 10 0.5221 (0.5211, 0.5230)
C 100 0.5499 (0.5496, 0.5502)
C 1000 0.5530 (0.5529, 0.5531)
C 10 000 0.5533 (0.5533, 0.5533)
D 0.5533

(b) Random information dates

Table 9.1.: Value function for different investors.

This example shows that, when the number of discrete-time expert opinions is large, the
value function of the C-investor can be approximated well by the value function of the
D-investor. We see that it does not make a big difference whether the information dates
are deterministic and equidistant or random as the jump times of a Poisson process. This
approximation is useful since calculating the value function of the C-investor is numerically
involved due to the updates at information dates. It becomes especially challenging if the
information dates are non-deterministic. The value function of the D-investor, on the other
hand, can be calculated much easier. Since it can be written as a functional of (QDt )t∈[0,T ], the
essential part in the calculation is to solve one ordinary matrix Riccati differential equation.
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Part III.

Robust Optimization with Expert
Opinions
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Outline and Notation

In this last part of the thesis we combine our results from the previous parts and show how
uncertainty sets K for the robust utility maximization problem in Part I can be defined based
on filters for the different investor filtrations that we have considered in Part II. The aim is to
investigate the effect of expert opinions on robust strategies for the investors in the market.
The structure of this part is as follows. In Chapter 10 we generalize the financial market

model from Part I to one with non-constant drift. We also allow for time-dependent uncer-
tainty sets (Kt)t∈[0,T ] then. If the sets Kt are adapted to the investor’s filtration and have
the form of ellipsoids, we can carry over the results from Chapter 4 and determine optimal
trading strategies and worst-case drift processes.
Chapter 11 then explains how one can use filters to set up time-dependent uncertainty sets,

motivated by confidence regions. In particular, the various investor filtrations from Part II
are addressed. We show how expert opinions decrease the size of the uncertainty sets and
investigate their effect on the corresponding robust strategies, compared to strategies that
only rely on the respective drift estimation. A short conclusion of our results is given in
Chapter 12.

Notation. For this part we adhere to the notation from the previous two parts. In particular,
we write Id for the identity matrix in Rd×d as well as ei, i = 1, . . . , d, for the i-th standard
unit vector in Rd and 1d for the vector in Rd containing a one in every component. By 〈·, ·〉
we denote the scalar product on Rd × Rd with 〈x, y〉 = x>y for x, y ∈ Rd. Whenever x ∈ Rd
is a vector, ‖x‖ denotes the Euclidean norm of x.

For a symmetric and positive-semidefinite matrix A ∈ Rd×d we write A1/2 for the square
root of A.
If F and G are σ-algebras, we write F ∨ G for the smallest σ-algebra containing F ∪ G.
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10. Generalized Duality Approach for
Non-Constant Drift

In this chapter we generalize the approach from Chapter 4 to a financial market model where
the drift is a stochastic process instead of a constant. To account for a change in information
about the drift we also introduce time-dependence in the uncertainty set. The basic idea
is that the available information in the market, for instance the observed asset returns and
expert opinions as in Part II, are used to estimate the true drift based on filtering techniques
and to set up a corresponding uncertainty set Kt at any time t ∈ [0, T ]. Given Kt, investors
then take model uncertainty into account by assuming that in the future the worst possible
drift process (µ

(t)
s )s∈[t,T ] with values in Kt will be realized. In our continuous-time setting

the decision about the uncertainty set will be revised as soon as the information about the
true drift changes, so in the extreme case continuously in time.
Before stating our generalized financial market, we make an observation that justifies the

setup of the model. Suppose that the “true” dynamics of the d-dimensional return process R
are given by

dRt = µt dt+ σ dWt, R0 = 0,

for some stochastic drift process (µt)t∈[0,T ], an m-dimensional Brownian motion (Wt)t∈[0,T ],
m ≥ d, and some σ ∈ Rd×m with full rank. Assume further that the information of an
investor is given by the investor filtration FH = (FHt )t∈[0,T ]. The investor’s best estimator
for µ is then the conditional mean µ̂t := E[µt | FHt ] and one can rewrite the dynamics of the
return process as

dRt = µ̂t dt+ σ dVt,

where the so-called innovations process (Vt)t∈[0,T ] is an FH -adapted Brownian motion. For
instance, in the setting of Part II with H = R, the process (µ̂t)t∈[0,T ] would be the Kalman
filter.
In the following, we set up our continuous-time financial market model working directly

with the innovations process and therefore assuming an FH -adapted drift process. The sep-
aration principle that we use here by filtering first and then performing the optimization is
a common approach for dealing with partial information.

10.1. Generalized financial market model

We fix an investment horizon T > 0 and some filtered probability space (Ω,F ,F,P) where
the filtration F = (Ft)t∈[0,T ] satisfies the usual conditions. All processes are assumed to be
F-adapted. We assume that an investor’s information is described by the investor filtration
FH = (FHt )t∈[0,T ] with FHt ⊆ Ft for all t ∈ [0, T ]. We consider, as before, a financial market
with one risk-free and d ≥ 2 risky assets. The risk-free asset S0 evolves as

dS0
t = S0

t r dt, S0
0 = 1,
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where r > 0 is the deterministic risk-free interest rate. The returns R1, . . . , Rd of the risky
assets follow the dynamics

dRt = νt dt+ σ dWt, R0 = 0, (10.1)

where R = (R1, . . . , Rd)>. Here, (Wt)t∈[0,T ] is an m-dimensional Brownian motion under P,
m ≥ d. Note that the volatility matrix σ ∈ Rd×m in (10.1) is constant. Further, we assume
that σ has full rank equal to d. In contrast to the volatility, the drift might change in the
course of time. We assume that (νt)t∈[0,T ] is an Rd-valued FH -adapted stochastic process and
think of (νt)t∈[0,T ] as an estimation for the true drift process given all available information.
We speak of (νt)t∈[0,T ] as the reference drift.
As before, we are concerned with investors who are uncertain about the true drift. They

are aware that (νt)t∈[0,T ] in (10.1) might not be the true drift process. In utility maximization
problems they want to maximize their worst-case expected utility, given that the true drift
process is in a way “close” to ν. To model the uncertainty about the drift we specify the
ellipsoidal sets

Kt =
{
µ ∈ Rd

∣∣ (µ− νt)>Γ−1
t (µ− νt) ≤ κ2

t

}
, t ∈ [0, T ],

where (Γt)t∈[0,T ] is an FH -adapted stochastic process of symmetric and positive-definite ma-
trices Γt ∈ Rd×d and (κt)t∈[0,T ] is FH -adapted with κt > 0 for each t ∈ [0, T ]. The set
Kt is determined at time t ∈ [0, T ] by taking the available information about the true drift
process into account, for example based on filtering techniques. The process (Kt)t∈[0,T ] is
an FH -adapted set-valued process, therefore the investor knows the realization of Kt at time
t ∈ [0, T ].
Given this Kt, investors then take model uncertainty into account by assuming that in the

future the worst possible drift process having values in Kt will be realized. We denote this
worst-case future drift by (µ

(t),∗
s )s∈[t,T ]. This allows for some deterministic dynamics given

Kt, i.e. the µ
(t),∗
s for any s ∈ [t, T ] are FHt -measurable. The worst-case optimization problem

then leads to an optimal strategy (π
(t),∗
s )s∈[t,T ], determined at time t. In our continuous-time

setting this decision will be revised as soon as Kt changes, possibly continuously in time. The
realized worst-case drift process (µ∗t )t∈[0,T ] and optimal strategy (π∗t )t∈[0,T ] are then given by

µ∗t = µ
(t),∗
t , π∗t = π

(t),∗
t

for any t ∈ [0, T ]. If µ∗ and π∗ are uniquely determined, then they are by construction
FH -adapted.
This is not so much a game setting but rather a way how the investor determines the worst

case. It is a mixture of using estimation methods as in Part II and taking model uncertainty
as in Part I into account.
The optimization problem can be derived only locally for each t ∈ [0, T ]. In detail, the

setup looks as follows. At time t ∈ [0, T ] investors assume that the future drift process will
be the worst one within the class

K(t) =
{
µ(t) = (µ(t)

s )s∈[t,T ]

∣∣µ(t)
s ∈ Kt and µ(t)

s is FHt -measurable for each s ∈ [t, T ]
}
.
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10.1. Generalized financial market model

For each µ = µ(t) ∈ K(t) we can construct a new measure by defining the Rm-valued process
(θs(µ))s∈[0,T ] with

θs(µ) =

{
0, s < t,

σ>(σσ>)−1(µs − νs), s ≥ t,
and

Zµs = exp

(∫ s

0
θu(µ)> dWu −

1

2

∫ s

0
‖θu(µ)‖2 du

)
for s ∈ [0, T ]. We then define the new probability measure Pµ by

dPµ

dP
= ZµT

and note that, under Pµ, the process (Wµ
s )s∈[0,T ] with

Wµ
s = Ws −

∫ s

0
θu(µ) du

for s ∈ [0, T ] is a Brownian motion by Girsanov’s Theorem. Note that due to boundedness of
Kt the process θ(µ) is bounded and therefore (Zµs )s∈[0,T ] is a true martingale. The change of
measure causes a change in the drift on the interval [t, T ] only. For our optimization problems
this is the only relevant time interval since we condition on FHt . For s ∈ [t, T ] we can rewrite
the dynamics of the asset returns as

dRs = νs ds+ σ dWs = µs ds+ σ dWµ
s ,

which means that under Pµ the future drift of the stocks is given by (µs)s∈[t,T ]. We write
Eµ[·] = Eµ(t) [·] for expectation under the measure Pµ.
An investor’s behavior in the time interval [t, T ] is described by a self-financing trading

strategy π(t) = (π
(t)
s )s∈[t,T ]. The class of admissible trading strategies, given that the investor

has wealth x > 0 at time t, is

A(t, x) =

{
π(t) = (π(t)

s )s∈[t,T ]

∣∣∣∣ π(t) is FH -adapted, Xπ
t = x,

Eµ(t)
[∫ T

t
‖σ>π(t)

s ‖2 ds

]
<∞ for all µ(t) ∈ K(t)

}
.

We will restrict these strategies by imposing, as before, a constraint that prevents a pure
bond investment. For any h > 0 we define the set

Ah(t, x) =
{
π(t) ∈ A(t, x)

∣∣ 〈π(t)
s ,1d〉 = h for all s ∈ [t, T ]

}
.

For an investor choosing strategy π = π(t) ∈ A(t,Xπ
t ) the terminal wealth can be written as

Xπ
T = Xπ

t exp

(∫ T

t

(
r + π>s (µs − r1d)−

1

2
‖σ>πs‖2

)
ds+

∫ T

t
π>s σ dWµ

s

)
.

We are now able to state our utility maximization problem. At time t the local optimization
problem reads

sup
π(t)∈Ah(t,Xπ

t )

inf
µ(t)∈K(t)

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ]. (10.2)
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Here, Uγ with γ ∈ (−∞, 1) again denotes the power utility function Uγ(x) = xγ

γ if γ 6= 0,
and logarithmic utility U0(x) = log(x) if γ = 0.

Remark 10.1. In the case where Kt = {µ ∈ Rd | (µ− ν)>Γ−1(µ− ν) ≤ κ2} for all t ∈ [0, T ],
i.e. where our reference drift is simply a constant ν, and also the matrix Γt = Γ as well as
the radius κt = κ are constant in time, we obtain the setting from Part I as a special case.

10.2. Solution of the non-robust problem

As a first step towards solving (10.2) we compute the optimal strategy for an investor given
a particular future drift µ(t) ∈ K(t).

Proposition 10.2. Let t ∈ [0, T ] and µ(t) ∈ K(t). Then the optimal strategy for the opti-
mization problem

sup
π(t)∈Ah(t,Xπ

t )

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ]
is the strategy (π

(t)
s )s∈[t,T ] with

π(t)
s =

1

1− γAµ
(t)
s + hc

for all s ∈ [t, T ], where A ∈ Rd×d and c ∈ Rd are as introduced in Definition 4.2.

Proof. The proof works along the lines of the proof of Proposition 4.3. We take an arbitrary
strategy π = π(t) ∈ Ah(t,Xπ

t ) and recall that we can write the terminal wealth under strategy
π as

Xπ
T = Xπ

t exp

(∫ T

t

(
r + π>s (µ(t)

s − r1d)−
1

2
‖σ>πs‖2

)
ds+

∫ T

t
π>s σ dWµ

s

)
.

We now proceed exactly as in the proof of Proposition 4.3, replacing the constant µ by the
FHt -measurable (µ

(t)
s )s∈[t,T ], and perform the same transformation to a (d − 1)-dimensional

unconstrained financial market.
We can deduce that Eµ(t) [Uγ(Xπ

T ) | FHt ] equals the expected utility of terminal wealth,
conditional on FHt , in an unconstrained financial market with d − 1 risky assets, where the
future drift process is (µ̃s)s∈[t,T ], the risk-free interest rate is (r̃s)s∈[t,T ] and the volatility
matrix is σ̃ ∈ R(d−1)×m. These transformed market parameters have the form

σ̃ = Dσ,

r̃s = (1− h)r + he>d µ
(t)
s −

1

2
(1− γ)‖hσ>ed‖2,

µ̃s = Dµ(t)
s − h(1− γ)Dσσ>ed + r̃s1d−1.

Note that since the (µ
(t)
s )s∈[t,T ] are FHt -measurable, so are (r̃s)s∈[t,T ] and (µ̃s)s∈[t,T ], in par-

ticular the market parameters in the transformed market can be observed by the investor. In
this (d − 1)-dimensional unconstrained financial market we know that the optimal strategy
is of the form

π̃s =
1

1− γ (σ̃σ̃>)−1(µ̃s − r̃s1d−1) =
1

1− γ (Dσσ>D>)−1
(
Dµ(t)

s − h(1− γ)Dσσ>ed
)
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for every s ∈ [t, T ]. For the logarithmic utility case, this is immediate, for power utility see
Appendix B. Now we can return to our original market and obtain that the optimal strategy
fulfills

π(t)
s = D>π̃s + hed

= D>
1

1− γ (Dσσ>D>)−1
(
Dµ(t)

s − h(1− γ)Dσσ>ed
)

+ hed

=
1

1− γD
>(Dσσ>D>)−1Dµ(t)

s + h
(
Id −D>(Dσσ>D>)−1Dσσ>

)
ed

=
1

1− γAµ
(t)
s + hc

for all s ∈ [t, T ], where we have used the notation for A and c from Definition 4.2. Note that
(π

(t)
s )s∈[t,T ] is indeed admissible due to boundedness of Kt.

The preceding proposition states the form of the investor’s optimal strategy under the
assumption that a specific future drift process (µ

(t)
s )s∈[t,T ] is given. The explicit form can be

used to compute also the expected utility obtained when applying the optimal strategy.

Corollary 10.3. Let t ∈ [0, T ] and µ(t) ∈ K(t). Then the optimal expected utility from
terminal wealth is

sup
π(t)∈Ah(t,Xπ

t )

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ]

=


(Xπ

t )γ

γ
exp

(
γ

∫ T

t

(
r̃s +

1

2(1− γ)

(
µ̃s − r̃s1d−1

)>
(σ̃σ̃>)−1

(
µ̃s − r̃s1d−1

))
ds

)
, γ 6= 0,

log(Xπ
t ) +

∫ T

t

(
r̃s +

1

2

(
µ̃s − r̃s1d−1

)>
(σ̃σ̃>)−1

(
µ̃s − r̃s1d−1

))
ds, γ = 0,

where
σ̃ = Dσ,

r̃s = (1− h)r + he>d µ
(t)
s −

1

2
(1− γ)‖hσ>ed‖2,

µ̃s = Dµ(t)
s − h(1− γ)Dσσ>ed + r̃s1d−1.

Proof. The representation in the corollary follows, just like in the proof of Corollary 4.4, by
the fact that we have reduced our constrained utility maximization problem to a (d − 1)-
dimensional unconstrained problem where the parameters of our transformed financial market
are exactly those that are listed in the corollary. We have seen that the optimal strategy in
this (d− 1)-dimensional market fulfills

π̃s =
1

1− γ (σ̃σ̃>)−1(µ̃s − r̃s1d−1)

for all s ∈ [t, T ]. Plugging this optimal strategy in yields the expression from the corollary.
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10.3. The worst-case drift process

In the following, we compute the worst-case future drift process that is determined at time
t ∈ [0, T ], i.e. the drift process µ(t) ∈ K(t) for which

sup
π(t)∈Ah(t,Xπ

t )

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ]
is minimized. Due to the previous corollary we see that this is equivalent to the minimization
of the integral ∫ T

t

(
r̃s +

1

2

(
µ̃s − r̃s1d−1

)>
(σ̃σ̃>)−1

(
µ̃s − r̃s1d−1

))
ds. (10.3)

When plugging the representations for µ̃, r̃ and σ̃ back in, we obtain an expression that
depends on (µ

(t)
s )s∈[t,T ] again. By the same calculations as in the setting with constant drift

we deduce that minimizing (10.3) is equivalent to minimizing∫ T

t

( 1

2(1− γ)
(µ(t)
s )>Aµ(t)

s + hc>µ(t)
s

)
ds.

But the minimization of this integral is equivalent to a pointwise minimization of

Kt 3 µ 7→
1

2(1− γ)
µ>Aµ+ hc>µ.

Now it is straightforward to see that we can use our results from Section 4.1 to obtain
the worst-case drift process (µ

(t),∗
s )s∈[t,T ]. Here, µ(t),∗

s is for any s ∈ [t, T ] obtained as the
minimizer of the above function on Kt. Recall that the uncertainty set is an ellipsoid of the
form Kt = {µ ∈ Rd | (µ − νt)>Γ−1

t (µ − νt) ≤ κ2
t }. We have assumed that Γt is a symmetric

positive-definite matrix in Rd×d. In the following we use the representation Γt = τtτ
>
t where

τt ∈ Rd×d is a nonsingular matrix.

Corollary 10.4. We fix some t ∈ [0, T ] and let 0 = λt,1 < λt,2 ≤ · · · ≤ λt,d denote the
eigenvalues of τ>t Aτt, and

vt,1 =
1

‖τ−1
t 1d‖

τ−1
t 1d, vt,2, . . . , vt,d ∈ Rd

the respective orthogonal eigenvectors with ‖vt,i‖ = 1 for all i = 1, . . . , d. Then

inf
µ(t)∈K(t)

sup
π(t)∈Ah(t,Xπ

t )

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ] = Eµ(t),∗
[
Uγ
(
Xπ(t),∗
T

) ∣∣∣FHt ],
where

µ(t),∗
s = νt − τt

d∑
i=1

(
λt,i

1− γ +
h

ψt(κt)‖τ−1
t 1d‖

)−1〈
hτ>t c+

λt,i
1− γ τ

−1
t νt, vt,i

〉
vt,i

for all s ∈ [t, T ], and where ψt(κt) ∈ (0, κt] is uniquely determined by ‖τ−1
t (µ

(t),∗
s − νt)‖ = κt.

The strategy (π
(t),∗
s )s∈[t,T ] has the form

π(t),∗
s =

1

1− γAµ
(t),∗
s + hc

for all s ∈ [t, T ].
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Proof. We have seen that the worst-case drift process (µ
(t),∗
s )s∈[t,T ] is the one where µ(t),∗

s is
for any s ∈ [t, T ] equal to the minimizer of the function

µ 7→ 1

2(1− γ)
µ>Aµ+ hc>µ

over all µ ∈ Kt. So we can do the minimization as in Section 4.1. We know that the matrix
τ>t Aτt ∈ Rd×d is symmetric and positive definite with

ker(τ>t Aτt) = span({τ−1
t 1d}).

Now the representation of µ(t),∗
s follows as in Theorem 4.8 with Lemma 4.7. The form of the

optimal strategy π(t),∗ then follows from Proposition 10.2.

The preceding corollary shows that the problem

inf
µ(t)∈K(t)

sup
π(t)∈Ah(t,Xπ

t )

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ]
is solved by drift process (µ

(t),∗
s )s∈[t,T ] and strategy (π

(t),∗
s )s∈[t,T ]. Note that both the worst-

case drift process and the optimal strategy are constant on [t, T ] and FHt -measurable. This
is due to the setup of the model in which investors assume that the future drift process will
take values in the ellipsoid Kt only.

The problem above is the dual to our original problem

sup
π(t)∈Ah(t,Xπ

t )

inf
µ(t)∈K(t)

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ].
To ensure that µ(t),∗ and π(t),∗ are also a solution to this problem we have to show that µ(t),∗

is the worst drift process in the set K(t), given that an investor chooses trading strategy π(t),∗.
In that case, the infimum and the supremum interchange and we can deduce that π(t),∗ and
µ(t),∗ also establish a solution to our original robust optimization problem.

10.4. A minimax theorem

We proceed as in Section 4.1 and note that the strategy π(t),∗ from the previous corollary
satisfies

π(t),∗
s = − h

ψt(κt)‖τ−1
t 1d‖

Γ−1
t

(
µ(t),∗
s − νt

)
for all s ∈ [t, T ]. This can be proven by analogy with Lemma 4.9. This observation helps to
prove the following proposition.

Proposition 10.5. The drift process (µ
(t)
s )s∈[t,T ] that attains the minimum in

inf
µ(t)∈K(t)

Eµ(t)
[
Uγ
(
Xπ(t),∗
T

) ∣∣∣FHt ]
is (µ

(t),∗
s )s∈[t,T ], i.e. µ(t),∗ is the worst possible drift process, given that an investor chooses

the strategy π(t),∗.
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Proof. We take an arbitrary µ = µ(t) ∈ K(t). Note that in case γ 6= 0 we can write

Eµ
[
Uγ
(
Xπ(t),∗
T

) ∣∣∣FHt ]
=

(Xπ
t )γ

γ
eγr(T−t) Eµ

[
exp

(
γ

∫ T

t

(
(π(t),∗
s )>(µs − r1d)−

1

2
‖σ>π(t),∗

s ‖2
)

ds+γ

∫ T

t
(π(t),∗
s )>σ dWµ

s

)]
=

(Xπ
t )γ

γ
eγr(T−t) exp

(
γ

∫ T

t

(
(π(t),∗
s )>(µs − r1d)−

1− γ
2
‖σ>π(t),∗

s ‖2
)

ds

)
.

In case γ = 0 we have

Eµ
[
log
(
Xπ(t),∗
T

) ∣∣∣FHt ] = log(Xπ
t ) + r(T − t) +

∫ T

t

(
(π(t),∗
s )>(µs − r1d)−

1

2
‖σ>π(t),∗

s ‖2
)

ds.

In both cases, the drift process (µs)s∈[t,T ] ∈ K(t) that minimizes this expression is the one
that minimizes ∫ T

t
(π(t),∗
s )>µs ds.

Since (π
(t),∗
s )s∈[t,T ] is constant, we find the minimizer as the minimizer of (π

(t),∗
s )>µs. Recall

that
π(t),∗
s = − h

ψt(κt)‖τ−1
t 1d‖

Γ−1
t

(
µ(t),∗
s − νt

)
.

It follows that

(π(t),∗
s )>Γtπ

(t),∗
s =

h2

ψt(κt)2‖τ−1
t 1d‖2

(
µ(t),∗
s − νt

)>
Γ−1
t

(
µ(t),∗
s − νt

)
=

h2κ2
t

ψt(κt)2‖τ−1
t 1d‖2

.

Knowing that ψt(κt) > 0 we can deduce√
(π

(t),∗
s )>Γtπ

(t),∗
s =

hκt

ψt(κt)‖τ−1
t 1d‖

.

The drift process µ(t),∗
s at time s can thus be rewritten in the form

µ(t),∗
s = νt −

ψt(κt)‖τ−1
t 1d‖

h
Γtπ

(t),∗
s = νt −

κt√
(π

(t),∗
s )>Γtπ

(t),∗
s

Γtπ
(t),∗
s .

This is exactly the vector that minimizes (π
(t),∗
s )>µ over all µ ∈ Kt, see the proof of Propo-

sition 4.10. Hence, µ(t),∗ is the drift process that minimizes the expected utility of terminal
wealth for an investor who chooses strategy π(t),∗.

The previous proposition establishes an equilibrium result. By definition, the strategy
π(t),∗ is optimal for the drift µ(t),∗. Due to the proposition, it also holds that µ(t),∗ is the
worst drift given that an investor chooses strategy π(t),∗. Hence, we see that (π(t),∗, µ(t),∗) is
a saddle point of the optimization problem

sup
π(t)∈Ah(t,Xπ

t )

inf
µ(t)∈K(t)

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ].
In particular, the supremum and infimum can be interchanged. We obtain the following
minimax theorem.
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Theorem 10.6. Let t ∈ [0, T ]. Then

sup
π(t)∈Ah(t,Xπ

t )

inf
µ(t)∈K(t)

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ] = Eµ(t),∗
[
Uγ
(
Xπ(t),∗
T

) ∣∣∣FHt ]
= inf

µ(t)∈K(t)

sup
π(t)∈Ah(t,Xπ

t )

Eµ(t),∗
[
Uγ
(
Xπ(t),∗
T

) ∣∣∣FHt ],
where µ(t),∗ and π(t),∗ are defined as in Corollary 10.4.

Proof. The proof is analogous to the proof of Theorem 4.11.

The previous theorem solves our original local optimization problem (10.2) for a fixed time
t ∈ [0, T ]. It shows that the best strategy for an investor in this robust optimization problem
is the strategy (π

(t),∗
s )s∈[t,T ] with

π(t),∗
s =

1

1− γAµ
(t),∗
s + hc

for all s ∈ [t, T ], where (µ
(t),∗
s )s∈[t,T ] is defined as in Corollary 10.4. The process (µ

(t),∗
s )s∈[t,T ]

can be interpreted as the worst possible realization of the future drift process from the
investor’s point of view at time t. The worst-case drift and optimal strategy in this setting
are constant on [t, T ]. This is due to the assumption of the investor that the future drift
will take values in the set Kt only, where Kt is determined at time t using all available
information, i.e. Kt is FHt -measurable.
In our continuous-time setting it is likely that the information about the unobservable

true drift process changes continuously, therefore also the uncertainty set Kt will be updated
continuously in time. At each time t ∈ [0, T ], the investor will revise both the uncertainty
set and the optimization problem

sup
π(t)∈Ah(t,Xπ

t )

inf
µ(t)∈K(t)

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ].
The strategy that is realized by the investor can then be found as (π∗t )t∈[0,T ] with

π∗t = π
(t),∗
t

for any t ∈ [0, T ]. It has the form

π∗t =
1

1− γAµ
∗
t + hc

where (µ∗t )t∈[0,T ] is constructed via
µ∗t = µ

(t),∗
t

for all t ∈ [0, T ]. Note that the processes (µ∗t )t∈[0,T ] and (π∗t )t∈[0,T ] are uniquely determined,
FH -adapted and in general non-constant. In the special case where Kt = K0 for all t ∈ [0, T ],
i.e. where our reference drift is simply a constant ν, and also the matrix Γt = Γ as well as
the radius κt = κ are constant in time, also (µ∗t )t∈[0,T ] and (π∗t )t∈[0,T ] are constant in time.
The constant values are the ones that we also get in the setting with constant drift and
uncertainty set in Theorem 4.8.
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11. Construction of Uncertainty Sets via
Filters

11.1. Confidence regions as uncertainty sets

In the preceding chapter we have seen how the duality approach from Chapter 4 carries over
to a financial market where the drift is not necessarily constant. The generalized model
allows for local uncertainty sets of the form

Kt =
{
µ ∈ Rd

∣∣ (µ− νt)>Γ−1
t (µ− νt) ≤ κ2

t

}
, t ∈ [0, T ].

We have fixed an investor filtration FH = (FHt )t∈[0,T ] describing the investor’s information in
the course of time. Our model then assumes that the processes ν = (νt)t∈[0,T ], Γ = (Γt)t∈[0,T ]

and κ = (κt)t∈[0,T ] are FH -adapted. Recall that ν takes values in Rd, Γ in the set of symmetric
and positive-definite matrices in Rd×d and κ on the positive real line.

We motivated the reference drift ν as an estimation for the true drift, based on the in-
formation available to the investor. Here we want to make this more specific by consider-
ing the filter. Recall that the filter is the conditional distribution of µ given the available
information FH . We take ν to be the conditional expectation of the drift given FH , i.e.
νt = mH

t = E[µt | FHt ] for every t ∈ [0, T ]. The conditional covariance matrix

QHt = E
[
(µt −mH

t )(µt −mH
t )>

∣∣FHt ]
measures how close the estimator mH

t is to the true drift. Note that by construction both
mH and QH are FH -adapted processes. The key idea for constructing uncertainty sets based
on the filter is to create confidence regions centered around mH

t , shaped by QHt for every
t ∈ [0, T ].
Let us assume that the drift process and the investor filtration are such that the filter is

normally distributed, more precisely

µt | FHt ∼ N (mH
t , Q

H
t ).

By applying a simple transformation we deduce that

(µt −mH
t )>(QHt )−1(µt −mH

t )

given FHt is χ2-distributed with d degrees of freedom. We fix some η ∈ (0, 1) and observe
that a (1− η)-confidence region can be obtained from

1− η = P
(

(µt −mH
t )>(QHt )−1(µt −mH

t ) ≤ χ2
d,1−η

∣∣∣FHt ).
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11. Construction of Uncertainty Sets via Filters

Here, χ2
d,1−η denotes the (1 − η)-quantile of the χ2-distribution with d degrees of freedom.

This motivates the choice of

Kt =
{
µ ∈ Rd

∣∣ (µ−mH
t )>(QHt )−1(µ−mH

t ) ≤ χ2
d,1−η

}
, t ∈ [0, T ],

i.e. taking νt = mH
t , Γt = QHt and κt =

√
χ2
d,1−η for every t ∈ [0, T ].

If indeed µt given FHt is normally distributed, we additionally know that at any fixed time
t ∈ [0, T ] the probability that µt ∈ Kt, conditional on FHt , is equal to 1− η. Note that Kt is
still a reasonable uncertainty set for µt in the case where the assumption about the normal
distribution of the filter is not fulfilled.

11.2. Uncertainty sets based on expert opinions

The preceding section explains how time-dependent uncertainty sets can be created based
on filters. We now apply this to the various investor filtrations that we have considered in
Part II for a model with an unobservable Ornstein–Uhlenbeck drift process and unbiased,
normally distributed expert opinions arriving at discrete points in time. Recall that returns
in this setting are modelled as

dRt = µt dt+ σR dWR
t ,

where WR = (WR
t )t∈[0,T ] is an m-dimensional Brownian motion with m ≥ d and where

we assume that σR ∈ Rd×m has full rank. The drift process µ is defined by the Ornstein–
Uhlenbeck dynamics

dµt = α(δ − µt) dt+ β dBt,

where α and β ∈ Rd×d, δ ∈ Rd and B = (Bt)t∈[0,T ] is a d-dimensional Brownian motion that
is independent of WR. The matrices α and ββ> are assumed to be symmetric and positive
definite. We further make the assumption that µ0 ∼ N (m0,Σ0) for some m0 ∈ Rd and some
symmetric and positive-semidefinite matrix Σ0 ∈ Rd×d, and that µ0 is independent of the
Brownian motions WR and B, i.e. µ is independent of WR.
Recall that the discrete-time expert opinions arrive at the information dates (Tk)k∈I and

that an expert opinion at time Tk is of the form

Zk = µTk + (Γk)
1/2εk,

where the matrices Γk ∈ Rd×d are symmetric and positive definite and the εk are multi-
variate N (0, Id)-distributed and independent of the Brownian motions in the market and
of µ0. The sequence of information dates (Tk)k∈I is also independent of the (εk)k∈I and the
Brownian motions as well as of µ0. In particular, given µTk the expert opinion is multivariate
N (µTk ,Γk)-distributed.
In Section 8.2 we have proven that the information from observing a suitable sequence

of increasingly frequent expert opinions converges to the information an investor gets from
observing a certain diffusion process, interpreted as a continuous-time expert. Recall that
this diffusion is of the form

dJt = µt dt+ σJ dW J
t ,
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11.2. Uncertainty sets based on expert opinions

where W J is an l-dimensional Brownian motion with l ≥ d that is independent of all other
Brownian motions in the model, of µ0 and of the information dates Tk, and where the matrix
σJ ∈ Rd×l has full rank equal to d. We also include this diffusion here and consider the
corresponding investor filtration as a limit case.
The model then gives rise to various investor filtrations FH = (FHt )t∈[0,T ] where H serves

as a placeholder for the various information regimes. We consider as before the cases

FR = (FRt )t∈T where FRt = σ((Rs)s∈[0,t]) ∨ σ(NP),

FE = (FEt )t∈T where FEt = σ((Tk, Zk)Tk≤t) ∨ σ(NP),

FC = (FCt )t∈T where FCt = σ((Rs)s∈[0,t]) ∨ σ((Tk, Zk)Tk≤t) ∨ σ(NP),

FD = (FDt )t∈T where FDt = σ((Rs)s∈[0,t]) ∨ σ((Js)s∈[0,t]) ∨ σ(NP),

FF = (FFt )t∈T where FFt = σ((Rs)s∈[0,t]) ∨ σ((µs)s∈[0,t]) ∨ σ(NP)

for the investor filtrations. Recall that we write NP for the set of null sets under P, i.e. we
work with the filtrations that are augmented by null sets.
Based on one realization of the model’s stochastic processes, fixing one information setting

H ∈ {R,E,C,D, F}, we obtain one realization of the filter, leading to a time-dependent
uncertainty set KH . In Figure 11.1 various such filters with the resulting uncertainty sets
are plotted. For illustration purposes we take a market with d = 1 stock here. The market
parameters are the same as for our earlier numerical example, given in Table 8.1, together
with σJ = 0.2 for the volatility of the continuous-time expert, and we choose η = 0.1 to
construct the confidence regions.
The various subplots are all based on the same realization of the drift process µ, returns R

and expert opinions Zk. As a first case we consider in Figure 11.1a the degenerate information
setting H = E with n = 0 expert opinions, corresponding to an investor who observes
neither the diffusion processes nor the discrete-time expert opinions. The only knowledge
the investor has about the model are the model parameters. With our choice of m0 = δ it
follows immediately from Lemma 6.3 that the conditional mean is in this case constantly
equal to δ. The resulting uncertainty set converges very fast to a fixed interval centered
around δ.
For H = R, the uncertainty set moves up and down along with the conditional mean as can

be seen in Figure 11.1b. In Figures 11.1c and 11.1d we have n = 10 equidistant information
dates with expert opinions. The corresponding uncertainty set jumps at information dates
along with the conditional mean, due to the updates caused by an incoming expert opinion. It
also becomes apparent from the plots that the conditional variance decreases at information
dates, leading to a shrinking uncertainty set. The case H = D is depicted in Figure 11.1e.
We observe that the uncertainty set is at any fixed point in time smaller than the one for
H = R which can be explained by the smaller conditional variance of the filter due to the
additional information from observing the diffusion J .
Overall, the uncertainty set of the D-investor seems to be the one that follows the true

drift process best in this example. However, neither of the information filtrations leads to a
perfect uncertainty set in the sense that the true drift stays in that uncertainty set at any
point in time. By the setup of the uncertainty set there is always a positive probability that
the true drift process moves out of the uncertainty set at some point in time.
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conditional mean mH
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Figure 11.1.: Uncertainty sets based on filters for various investor filtrations FH . Each subplot is
based on the same realization of the drift and return process and expert opinions.
Based on this realization, the filter of the H-investor can be computed. The uncer-
tainty set KH is then determined according to the filter realization.
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11.3. Comparison of expected utility for different investors

Lastly, we give a numerical example to illustrate the effect that the worst-case optimization
among uncertainty sets created from filters has for the various investor filtrations considered
before. Like in the preceding section we create for a fixed realization of the drift process,
of the diffusions R and J and the expert opinions Zk a time-dependent uncertainty set for
each of the corresponding filters. The aim is to compare the robust strategies that take
into account model uncertainty with the “naive” strategies that rely on the respective drift
estimates, only.
We want to apply our worst-case utility maximization problem, in particular also imposing

the constraint 〈πt,1d〉 = h on the investor’s strategies. For that purpose we take a market
with d = 2 stocks here. We fix an investment horizon of T = 1 and take h = 1. Moreover,
we assume that investors start with an initial wealth of x0 = 1, use power utility functions
Uγ with γ = 0.5 and a confidence level η = 0.1 to create their uncertainty sets. Further
parameters of the market are given in Table 11.1.

mean reversion speed of drift process α =

(
3 0
0 2

)
volatility of drift process β =

(
0.50 0.25
0.25 0.50

)
mean reversion level of drift process δ =

(
0.02
0.03

)
initial mean of drift process m0 =

(
0.02
0.03

)
initial variance of drift process Σ0 =

(
0.01 0

0 0.01

)
volatility of returns σR =

(
0.10 0.05
0.05 0.01

)
volatility of continuous expert σJ =

(
0.10 0.05
0.05 0.01

)
Table 11.1.: Market parameters for numerical example.

For the given model parameters we simulate a drift process, the diffusion processes R
and J and n = 10 discrete-time expert opinions arriving at deterministic and equidistant
information dates on [0, T ]. We then obtain a realization of the filters (mH , QH) for any of
the information settings H from the preceding section. As before, this leads to one time-
dependent uncertainty set for each of the investors.
We can then determine the worst-case drift process (µ∗t )t∈[0,T ] and the optimal strategy

(π∗t )t∈[0,T ] that is realized by the investor who solves at each time point the local optimization
problem

sup
π(t)∈Ah(t,Xπ

t )

inf
µ(t)∈K(t)

Eµ(t)
[
Uγ
(
Xπ(t)

T

) ∣∣∣FHt ].
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11. Construction of Uncertainty Sets via Filters

Recall that (µ∗t )t∈[0,T ] and (π∗t )t∈[0,T ] are calculated from the solutions of the local optimiza-
tion problems via

π∗t = π
(t),∗
t , µ∗t = µ

(t),∗
t

for all t ∈ [0, T ]. The value of each investor’s worst-case optimization is then equal to

Eµ∗
[
Uγ(Xπ∗

T )
]
. (11.1)

The quantity in (11.1) is the worst-case expected utility from the H-investor’s point of view
when using the robust strategy π∗. For comparison, we also compute

Eµ∗
[
Uγ(X π̂

T )
]
, Eν

[
Uγ(Xπ∗

T )
]

and Eν
[
Uγ(X π̂

T )
]
,

where ν = mH is the conditional mean of the H-investor’s filter and π̂ is the corresponding
optimal strategy given that the drift equals mH , i.e.

π̂t =
1

1− γAm
H
t + hc.

We repeat this simulation 10 000 times where in each iteration a new drift process, a new
return process and new expert opinions are simulated based on the parameters given above.
Table 11.2 gives the sample mean of the various expected utilities over all simulations and in
brackets the corresponding sample standard deviation.

H n Eµ∗
[
Uγ(Xπ∗

T )
]

Eµ∗
[
Uγ(X π̂

T )
]

Eν
[
Uγ(Xπ∗

T )
]

Eν
[
Uγ(X π̂

T )
]

E 0 1.6179 (0.0000) 1.5996 (0.0000) 2.0196 (0.0000) 2.0426 (0.0000)
R 1.7086 (0.1057) 0.7754 (0.3737) 2.2362 (2.4692) 25.9029 (732.4104)
E 10 1.7055 (0.1117) 0.8170 (0.3870) 2.2393 (3.4208) 21.1610 (530.6829)
C 10 1.7854 (0.4027) 0.6891 (0.3752) 4.5313 (134.5858) 264.0838 (19 288.2826)
D 1.7888 (0.4320) 0.6711 (0.3692) 4.6831 (141.2865) 267.4413 (18 827.1094)

Table 11.2.: Comparison of utility for different investors.

When comparing the worst-case expected utility Eµ∗ [Uγ(Xπ∗
T )] among the investors we see

that the information setting H = E, n = 0, which corresponds to only knowing the model
parameters, gives the lowest value. The observation of returns or of n = 10 expert opinions
increases this value. The combination of return observation and discrete-time expert opinions
yields a considerably larger worst-case expected utility. We also see that the value for H = D
is quite close to the value we get for the C-investor with n = 10 expert opinions.
In the next column, Eµ∗ [Uγ(X π̂

T )] measures the expected utility when using the strategy π̂,
given that the true drift is actually the worst-case drift µ∗. The values are in any case smaller
than the corresponding expected utility when using the robust strategy π∗. What is striking is
that the information setting H = E with n = 0, i.e. only knowledge of the model parameters,
gives the best expected utility here. Adding more information, from return observations or
expert opinions, and using the optimal strategy based on the filter leads to a smaller worst-
case expected utility. This shows that for the worst-case optimization problem it is dangerous
for investors to rely on their estimates of the drift, i.e. the conditional mean of the filter, only.
They need to robustify their strategy by taking into account model uncertainty to be able to
profit from any additional information.
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11.3. Comparison of expected utility for different investors

The last two columns show the expected utility when using strategy π∗, respectively π̂,
given that the true drift was actually the conditional mean ν = mH . Of course, when
compared to the expected utility given the worst-case drift µ∗, the expected utility given ν
is much higher. Not surprisingly, the performance of π̂ given drift ν is on average extremely
good. However, we also notice the very large sample standard deviation. In comparison to
that, we see that the robust strategies π∗ perform reasonably well given drift ν, even though
they are tailored for the worst-case drift in the respective uncertainty set. At the same time,
the sample standard deviation is much smaller than for strategy π̂.
In conclusion, we see that a surplus of information, either from return observations or expert

opinions, results in better strategies in general. However, investors do need to account for
model uncertainty by choosing a robustified strategy π∗ instead of relying on the respective
filter only. The naive strategy π̂ performs extremely well if the true drift coincides with the
conditional mean mH , but it is much more vulnerable to model misspecifications than the
robust strategy π∗.
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12. Conclusion

In this thesis we investigated utility maximization problems in Black–Scholes type finan-
cial markets with incomplete information about market parameters. To account for model
uncertainty due to statistical estimation errors we considered in Part I robust optimization
problems where investors maximize their worst-case expected utility, given that the drift of
risky assets can take values in a prespecified uncertainty set. As the degree of uncertainty
becomes large, investors usually do not invest in risky assets at all. Therefore, we imposed a
constraint that prevents a pure bond investment.
In the logarithmic utility case and with uncertainty sets that are balls in some p-norm we

carried over the approach from Pflug et al. [47] for a one-period risk minimization problem
to our model. The key result here is that, as the level of uncertainty about the drift goes to
infinity, the optimal trading strategy converges to a uniform diversification strategy. How-
ever, to be able to apply the methods from Pflug et al. [47] we had to restrict to deterministic
strategies in Chapter 3. Also, while we obtain asymptotic results for large levels of uncer-
tainty, this approach does not yield an explicit form of the optimal trading strategy for the
problem with a fixed degree of uncertainty.
For these reasons, we came up with a different approach in Chapter 4 that solves our robust

utility maximization problem for both power and logarithmic utility without restricting to
deterministic strategies and for more general ellipsoidal uncertainty sets. The main idea
is to solve the corresponding dual problem explicitly and to prove a minimax theorem to
ensure that the solution to the dual also solves our original problem. We used the explicit
structure of our solution to derive the asymptotic behavior for large levels of uncertainty.
In the limit, as uncertainty goes to infinity, the optimal strategy converges to a generalized
uniform diversification strategy.
To come up with a reasonable uncertainty set, it makes sense for investors to estimate the

drift of asset returns based on the information that is available in the market. This typically
comprises return observations but also external sources of information that are called expert
opinions in our context. In Part II of this thesis we dealt with a Black–Scholes type financial
market with an underlying Gaussian drift process where investors find estimates about the
unobservable drift based on filtering techniques.
We saw that discrete-time expert opinions lead to updates of the filter that decrease the

conditional variance, therefore giving better estimates. The conditional covariance matrices
of the filter serve for assessing the goodness of the filter. We derived properties of the
conditional covariance matrices and studied their asymptotic behavior on an infinite time
horizon.
Our focus was on the asymptotic behavior of the filter as the arrival frequency of expert

opinions goes to infinity on a finite time horizon. In Chapter 8 we distinguished two cases.
If the variance of expert opinions is bounded, then in the limit an investor who observes
the discrete-time expert opinions has full information about the drift. In contrast, if the
expert’s variance grows linearly in the arrival frequency, then the information obtained from
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observing the discrete-time expert opinions is asymptotically the same as that from observing
another diffusion process which we interpret as a continuous-time expert. We showed this by
proving convergence of the conditional covariance matrices and the conditional means of the
corresponding filters.
Since our convergence results carry over to convergence of the value function in a portfolio

optimization problem with logarithmic utility, it is possible to find approximate solutions
of utility maximization problems by replacing an investor’s filter with the corresponding
asymptotic filter which is much easier to handle numerically.
In Part III of this thesis we used our observations about how expert opinions improve drift

estimates for the robust utility maximization problem from the first part. We generalized
our financial market model from Part I to one with non-constant drift and also allowed for
time-dependence in the uncertainty set. The duality approach for finding the optimal trading
strategy then carries over from the situation with constant drift.
Finally, we showed how a time-dependent uncertainty set can be defined based on a generic

filter. We applied this to the various investor filtrations from Part II to illustrate how
expert opinions decrease the size of uncertainty sets and how this surplus of information in
general results in better strategies. However, by means of a numerical simulation we also
demonstrated that investors need to account for model uncertainty by choosing a robust
strategy instead of relying only on the respective drift estimation.

166



Appendices

167





A. Auxiliary Results for Diffusion
Approximations

Here we collect some auxiliary results that are used in the proofs of our main results from
Section 8.2. The following lemma can be interpreted as a discrete version of Gronwall’s
Lemma for error accumulation. A statement very similar to Lemma A.1 can be found in
Demailly [16, Sec. 8.2.4].

Lemma A.1. Let (aj)j=0,...,n, (hj)j=0,...,n be real-valued sequences with aj ≥ 0, hj > 0, and
let L > 0, b ≥ 0 be real numbers such that

aj+1 ≤ (1 + hjL)aj + hjb, j = 0, 1, . . . , n− 1.

Then for all j = 0, 1, . . . , n it holds

aj ≤
eLtj − 1

L
b+ eLtja0,

where tj =
∑j−1

i=0 hi.

Proof. The proof can be done by induction. For j = 0 the claim is obvious. For the induction
step we observe that 1 + x ≤ ex for all x ∈ R and hence

aj+1 ≤ (1 + hjL)aj + hjb ≤ ehjLaj + hjb.

Due to the induction hypothesis we therefore have

aj+1 ≤ ehjL
(eLtj − 1

L
b+ eLtja0

)
+ hjb

=
(eL(tj+hj) − eLhj + hjL

L

)
b+ eL(tj+hj)a0

≤ eLtj+1 − 1

L
b+ eLtj+1a0,

which completes the proof.

The next lemmas are used in the proof of Theorem 8.6. Firstly, the following lemma is a
Cauchy–Schwarz inequality for multidimensional integrals.

Lemma A.2. Let (Xs)s∈[0,t] be an Rd-valued stochastic process. Then

E
[∥∥∥∥∫ t

0
Xs ds

∥∥∥∥2]
≤ t

∫ t

0
E
[
‖Xs‖2

]
ds.
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Proof. Firstly, pulling the norm into the integral increases the expression on the left-hand
side, so

E
[∥∥∥∥∫ t

0
Xs ds

∥∥∥∥2]
≤ E

[(∫ t

0
‖Xs‖ ds

)2]
.

Now we can apply the usual Cauchy–Schwarz inequality to the one-dimensional integral and
get

E
[(∫ t

0
‖Xs‖ ds

)2]
≤ E

[
t

∫ t

0
‖Xs‖2 ds

]
= t

∫ t

0
E
[
‖Xs‖2

]
ds.

The last step is due to Fubini.

A key tool for estimations involving stochastic integrals is the Itô isometry. The following
lemma uses the isometry to obtain an estimation for multivariate integrals.

Lemma A.3. Let W = (Ws)s∈[0,t] be an m-dimensional Brownian motion. Let (Hs)s∈[0,t] be
an Rd×m-valued stochastic process that is independent of W , and τ a stopping time that is
bounded by t and also independent of W . Then

E
[∥∥∥∥∫ τ

0
Hs dWs

∥∥∥∥2]
= E

[∫ τ

0
‖Hs‖2F ds

]
≤ Cnorm E

[∫ τ

0
‖Hs‖2 ds

]
,

where ‖·‖F denotes the Frobenius norm and Cnorm > 0 only depends on the dimension d×m
of the integrand H.

Proof. Note that for fixed, deterministic t, the integral
∫ t

0 Hs dWs is a random variable with
values in Rd. The i-th entry is

m∑
j=1

∫ t

0
H ij
s dW j

s .

Hence, ∥∥∥∥∫ t

0
Hs dWs

∥∥∥∥2

=

d∑
i=1

( m∑
j=1

∫ t

0
H ij
s dW j

s

)2

.

When applying the expectation, we get due to independence

E
[∥∥∥∥∫ t

0
Hs dWs

∥∥∥∥2]
=

d∑
i=1

m∑
j,k=1

E
[∫ t

0
H ij
s dW j

s

∫ t

0
H ik
s dW k

s

]

=
d∑
i=1

m∑
j=1

E
[(∫ t

0
H ij
s dW j

s

)2]
.

(A.1)

Note that we can consider the filtration (Gs)s∈[0,t] where Gs = σ(Wu, u ≤ s)∨σ(Hu, u ∈ [0, t]).
Since H andW are independent,W is a Brownian motion with respect to (Gs)s∈[0,t]. Also, H
is obviously adapted with respect to (Gs)s∈[0,t]. Hence, we can apply the usual Itô isometry
and obtain that the right-hand side of (A.1) equals

d∑
i=1

m∑
j=1

E
[∫ t

0
(H ij

s )2 ds

]
= E

[∫ t

0
‖Hs‖2F ds

]
.
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Now when taking into account the stopping time τ , we can write

E
[∥∥∥∥∫ τ

0
Hs dWs

∥∥∥∥2]
= E

[∥∥∥∥∫ t

0
1{s≤τ}Hs dWs

∥∥∥∥2]
.

Since τ is independent of W we can deduce from the previous part of the proof that

E
[∥∥∥∥∫ t

0
1{s≤τ}Hs dWs

∥∥∥∥2]
= E

[∫ t

0
‖1{s≤τ}Hs‖2F ds

]
= E

[∫ τ

0
‖Hs‖2F ds

]
.

Equivalence of norms implies the existence of the constant Cnorm > 0 with the property that

E
[∫ τ

0
‖Hs‖2F ds

]
≤ Cnorm E

[∫ τ

0
‖Hs‖2 ds

]
,

which concludes the proof.

Another estimate that is useful in the convergence proofs is given in the following lemma.

Lemma A.4. Let κ > 0 and let Qκ be a symmetric and positive-definite matrix in Rd×d with
‖Qκ‖ ≤ CQ for all κ. Then there exists a constant C̄ > 0 such that

∥∥∥Qκ −Qκ(Qκ + κσJσ
>
J

)−1
κσJσ

>
J

∥∥∥ ≤ C̄

κ
.

Proof. For abbreviation let A := Qκ, B := σJσ
>
J . Then we can write

A−A(A+ κB)−1κB = A(A+ κB)−1(A+ κB − κB) = A(A+ κB)−1A

=
(
A−1(A+ κB)A−1

)−1
=
(
A−1 + κA−1BA−1

)−1
,

and therefore∥∥A−A(A+ κB)−1κB
∥∥ =

∥∥(A−1 + κA−1BA−1
)−1∥∥ =

(
λmin(A−1 + κA−1BA−1)

)−1

≤
(
λmin(A−1) + λmin(κA−1BA−1)

)−1
≤
(
λmin(κA−1BA−1)

)−1

=
1

κ
‖AB−1A‖.

Hence, we obtain

∥∥∥Qκ −Qκ(Qκ + κσJσ
>
J

)−1
κσJσ

>
J

∥∥∥ ≤ C2
Q‖(σJσ>J )−1‖

κ
=
C̄

κ
,

where C̄ = C2
Q‖(σJσ>J )−1‖.

The next lemma states Gronwall’s Lemma in integral form which we use in the proofs of
Theorems 8.15 and 8.16. A proof can be found for example in Pachpatte [46, Sec. 1.3].
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A. Auxiliary Results for Diffusion Approximations

Lemma A.5 (Gronwall). Let I = [a, b] be an interval and let u, α and β : I → [0,∞) be
continuous functions with

u(t) ≤ α(t) +

∫ t

a
β(s)u(s) ds

for all t ∈ I. Then
u(t) ≤ α(t) +

∫ t

a
α(s)β(s)e

∫ t
s β(r) dr ds

for all t ∈ I.
In Section 8.2.2 we work with a Poisson random measure. An important property of the

compensated Poisson measure that we use for the proof of Theorem 8.15 is given in the
following lemma, see Cont and Tankov [11, Prop. 2.16].

Lemma A.6. For an integrable real-valued function f : [0, T ]×Rd → R, the process (Xt)t≥0

with

Xt =

∫ t

0

∫
Rd
f(s, u) Ñ(ds, du)

is a martingale with E[Xt] = 0 and

var(Xt) = E
[
X2
t

]
= E

[∫ t

0

∫
Rd
f2(s, u)λϕ(u) duds

]
.

Because of the additional randomness from the Poisson process (N
(λ)
t )t∈[0,T ] in the situation

with random information dates, we also need the estimation from the following lemma in the
proof of Theorem 8.16.

Lemma A.7. Let (Nt)t∈[0,T ] be a standard Poisson process with intensity λ > 0. Then there
exists a constant CN > 0 such that

∞∑
k=bλtc+1

E
[
1{Nt≥k}

]
= E

[(
Nt − bλtc

)+] ≤ CN√λ
for all λ ≥ 1.

Proof. The first equality holds since

E

[ ∞∑
k=bλtc+1

1{Nt≥k}

]
= E

[
1{Nt≥bλtc+1}(Nt − bλtc)

]
= E

[(
Nt − bλtc

)+]
.

Since X+ ≤ |X| and E[|X|] ≤
√
E[X2] by the Lyapunov inequality, we find that

E
[(
Nt − λt

)+] ≤ E
[∣∣Nt − λt

∣∣] ≤√E
[(
Nt − λt

)2]
=
√

var(Nt) =
√
λt ≤

√
T
√
λ,

since E[Nt] = var(Nt) = λt. But then also

E
[(
Nt − bλtc

)+] ≤ E
[(
Nt − λt

)+]
+ 1 ≤

√
T
√
λ+ 1 ≤ CN

√
λ

for CN :=
√
T + 1 and λ ≥ 1.
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B. Utility Maximization in a Market with
Non-Constant Parameters

It is well known since Merton [43] that in a Black–Scholes market with constant parameters
the optimal strategy for an investor maximizing expected power utility of terminal wealth
has the form

π∗t =
1

1− γ (σσ>)−1(µ− r1d).

In this appendix we slightly extend this result to a market where the risk-free interest rate
as well as drift and volatility of the stocks are not necessarily constant parameters. However,
they are still assumed to be observable by the investor. A similar result has been proven
in Karatzas et al. [34] for complete markets with deterministic market coefficients and for
incomplete markets with totally unhedgeable market coefficients.
Let T > 0 be a finite time horizon and (Ω,F ,F,P) a filtered probability space where

the filtration F = (Ft)t∈[0,T ] satisfies the usual conditions. All processes are assumed to be
F-adapted. We assume that the risk-free asset S0 follows the dynamics

dS0
t = S0

t rt dt, S0
0 = 1,

and that the risky assets S = (S1, . . . , Sd)> ∈ Rd are defined by

dSt = diag(St)
(
µt dt+ σt dWt

)
, S0 = s0.

Here, (Wt)t∈[0,T ] is an m-dimensional Brownian motion, m ≥ d. The processes r = (rt)t∈[0,T ],
µ = (µt)t∈[0,T ] and σ = (σt)t∈[0,T ] take values in R, Rd and Rd×m, respectively, and are
assumed to be independent of the Brownian motion (Wt)t∈[0,T ]. We also assume that for any
t ∈ [0, T ], the matrix σt has full rank. The vector s0 ∈ Rd is assumed to have strictly positive
entries.
Now let θt = σ>t (σtσ

>
t )−1(µt − rt1d) for any t ∈ [0, T ] and define the process (Zt)t∈[0,T ] by

dZt = −Ztθ>t dWt.

We assume that θ is such that Z is a true martingale. Further, we use the notation

βt =
S0

0

S0
t

= exp

(
−
∫ t

0
rs ds

)
,

as well as

Ht = βtZt = exp

(
−
∫ t

0
rs ds− 1

2

∫ t

0
‖θs‖2 ds−

∫ t

0
θ>s dWs

)
.

Then the wealth process for an investor starting with initial wealth x0 and following the
self-financing trading strategy π = (πt)t∈[0,T ] has the form

Xπ
T = x0 exp

(∫ T

0
rs ds+

∫ T

0

(
π>s (µs − rs1d)−

1

2
‖σ>s πs‖2

)
ds+

∫ T

0
π>s σs dWs

)
.
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B. Utility Maximization in a Market with Non-Constant Parameters

The admissible strategies are the elements of

A(x0) =

{
π = (πt)t∈[0,T ]

∣∣∣∣ π is FS,r,µ,σ-adapted, Xπ
0 = x0, E

[∫ T

0
‖σ>t πt‖2 dt

]
<∞

}
.

Here, FS,r,µ,σ is the filtration generated by the processes S, r, µ and σ, augmented by the
null sets. These strategies correspond to an investor who is able to observe the price process
S as well as r, µ and σ.
As in the setting with constant parameters one can now follow the martingale method

and separate the problem into the static problem of finding the optimal terminal wealth and
the representation problem of finding a corresponding optimal strategy. We let U : R+ → R
denote an arbitrary utility function, i.e. a strictly concave and continuously differentiable
function satisfying

lim
x↓0

U ′(x) =∞ and lim
x→∞

U ′(x) = 0,

and use the notation I = (U ′)−1. The following result then characterizes the optimal terminal
wealth.

Proposition B.1. If an admissible trading strategy π∗ exists such that Xπ∗
T = I(λHT ) for a

stricty positive random variable λ and

E
[
λHTX

π
T

]
≤ E

[
λHT I(λHT )

]
<∞

for all admissible π, then π∗ is optimal, i.e.

E
[
U(Xπ∗

T )
]
≥ E

[
U(Xπ

T )
]

for all admissible π.

Proof. By concavity of U we have

U(x)− xy ≤ U(I(y))− yI(y)

for all x, y ∈ R+. For any admissible π we obtain by taking x = Xπ
T and y = λHT that

E
[
U(Xπ

T )
]
≤ E

[
U(I(λHT ))

]
−E
[
λHT I(λHT )

]
+E
[
λHTX

π
T

]
≤ E

[
U(I(λHT ))

]
= E

[
U(Xπ∗

T )
]
.

This shows optimality of π∗.

The result can be applied to the utility maximization problem with power utility. Let
Uγ : R+ → R, Uγ(x) = xγ

γ for γ ∈ (−∞, 1), γ 6= 0.

Theorem B.2. The strategy (π∗t )t∈[0,T ] with

π∗t =
1

1− γ (σtσ
>
t )−1(µt − rt1d)

is optimal for the problem
sup

π∈A(x0)
E
[
Uγ(Xπ

T )
]
.
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Proof. We first rewrite the terminal wealth when using strategy π∗ as

Xπ∗
T = x0 exp

(∫ T

0
rs ds+

∫ T

0

( 1

1− γ −
1

2(1− γ)2

)
θ>s θs ds+

1

1− γ

∫ T

0
θ>s dWs

)
= x0 exp

(∫ T

0
rs ds+

1

2

∫ T

0

1− 2γ

(1− γ)2
‖θs‖2 ds+

1

1− γ

∫ T

0
θ>s dWs

) (B.1)

and note that

HT = exp

(
−
∫ T

0
rs ds− 1

2

∫ T

0
‖θs‖2 ds−

∫ T

0
θ>s dWs

)
. (B.2)

Since U ′(x) = xγ−1 and I(y) = y
− 1

1−γ we obtain for an arbitrary random variable λ that
I(λHT ) = I(λ)I(HT ) where

I(HT ) = exp

(
1

1− γ

∫ T

0
rs ds+

1

2(1− γ)

∫ T

0
‖θs‖2 ds+

1

1− γ

∫ T

0
θ>s dWs

)
.

We also obtain

Xπ∗
T

I(HT )
= x0 exp

((
1− 1

1− γ
)∫ T

0
rs ds+

1

2(1− γ)

(1− 2γ

1− γ − 1
)∫ T

0
‖θs‖2 ds

)
= x0 exp

(
− γ

1− γ

∫ T

0
rs ds− γ

2(1− γ)2

∫ T

0
‖θs‖2 ds

)
.

Hence we have Xπ∗
T = I(λHT ) for the strictly positive random variable

λ := x
−(1−γ)
0 exp

(
γ

∫ T

0
rs ds+

γ

2(1− γ)

∫ T

0
‖θs‖2 ds

)
.

Next, we check the condition from Proposition B.1. From (B.1) and (B.2) we deduce

HT I(λHT ) = HTX
π∗
T = x0 exp

(
1

2

( 1− 2γ

(1− γ)2
− 1
)∫ T

0
‖θs‖2 ds+

( 1

1− γ − 1
)∫ T

0
θ>s dWs

)
= x0 exp

(
−1

2

( γ

1− γ
)2
∫ T

0
‖θs‖2 ds+

γ

1− γ

∫ T

0
θ>s dWs

)
,

hence

E
[
λHT I(λHT )

]
= E

[
λE
[
HT I(λHT ) | Fr,µ,σT

]]
= E

[
λx0 E

[
exp

(
−1

2

( γ

1− γ
)2
∫ T

0
‖θs‖2 ds+

γ

1− γ

∫ T

0
θ>s dWs

) ∣∣∣∣Fr,µ,σT

]]
= x0 E[λ].

Here, (Fr,µ,σt )t∈[0,T ] is the filtration generated by r, µ and σ, augmented by null sets, and we
have used that these processes are independent of the Brownian motion (Wt)t∈[0,T ] for the
fact that the conditional expectation in the expression above is equal to one.
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B. Utility Maximization in a Market with Non-Constant Parameters

On the other hand, for any admissible strategy π we have

HTX
π
T = x0 exp

(∫ T

0

(
π>s (µs − rs1d)−

1

2
‖σ>s πs‖2 −

1

2
‖θs‖2

)
ds+

∫ T

0
(π>s σs − θ>s ) dWs

)
= x0 exp

(
−1

2

∫ T

0
‖σ>s πs − θs‖2 ds+

∫ T

0
(σ>s πs − θs)> dWs

)
,

and therefore

E
[
λHTX

π
T

]
= E

[
λE
[
HTX

π
T | Fr,µ,σT

]]
= E

[
λx0 E

[
exp

(
−1

2

∫ T

0
‖σ>s πs − θs‖2 ds+

∫ T

0
(σ>s πs − θs)> dWs

) ∣∣∣∣Fr,µ,σT

]]
≤ x0 E[λ].

The last inequality follows from the fact that the expression inside the conditional expecta-
tion is a positive local martingale, hence a supermartingale, and therefore the conditional
expectation is less or equal than one. In conclusion, we have

E
[
λHT I(λHT )

]
= x0 E[λ] ≥ E

[
λHTX

π
T

]
.

Since π was arbitrary, it follows from Proposition B.1 that π∗ is optimal.
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