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CHAPTER I

Introduction

I.1. Introduction

In this thesis we study a variant of the quadrature problem for stochastic differential equa-
tions (SDEs), namely the approximation of expectations E(f(X)), where X = (X(t))t∈[0,1]

is the solution of an SDE and f : C([0, 1],Rr) → R is a functional, mapping each realiza-
tion of X into the real numbers. The distinctive feature in this work is that we consider
randomized (Monte Carlo) algorithms with random bits as their only source of randomness,
whereas the algorithms commonly studied in the literature are allowed to sample from the
uniform distribution on the unit interval, i.e., they do have access to random numbers from
[0, 1]. By assumption, all other operations like, e.g., arithmetic operations, evaluations of
elementary functions, and oracle calls to evaluate f are considered within the real number
model of computation, i.e., they are carried out exactly. We will refer to algorithms of this
type as restricted randomized or restricted Monte Carlo algorithms, and the approximation
of expectations by algorithms of this type will be called random bit quadrature.

In the following, we provide a detailed description of the quadrature problem, namely we
are interested in the approximation of

S(f) = E(f(X))

for X being the r-dimensional solution of an autonomous SDE of the form

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), t ∈ [0, 1],(1)

with deterministic initial value

X(0) = x0 ∈ Rr,

and driven by a d-dimensional standard Brownian motion W . Furthermore, the drift coef-
ficient a : Rr → Rr and the diffusion coefficient b : Rr → Rr×d are assumed to be globally
Lipschitz continuous. These conditions on the SDE are also referred to as standard assump-
tions and it is well-known that they have a (up to indistinguishability) unique pathwise
time-continuous square-integrable solution. Moreover, we are interested in functionals

f : C([0, 1],Rr)→ R

that are assumed to be Lipschitz continuous with respect to either the supremum norm or
the Lp-norm, for 1 ≤ p <∞, on C([0, 1],Rr), with a respective Lipschitz constant of at most
1. That is, we are interested in the function classes

F∞ =
{
f : C([0, 1],Rr)→ R : |f(x)− f(y)| ≤ ‖x− y‖sup

}
and

Fp =
{
f : C([0, 1],Rr)→ R : |f(x)− f(y)| ≤ ‖x− y‖Lp([0,1])

}
for 1 ≤ p <∞.

1



2 I. INTRODUCTION

Such quadrature problems arise, e.g., in financial mathematics, more precisely, in compu-
tational finance. Here, SDEs of the form (1), for instance geometric Brownian motions, are
used to model stock prizes, and the functional f can be viewed as a pay-off function, e.g.,
in the context of European options. Note that our setting covers the case of path-dependent
options like, e.g., Asian options, which means that we are in particular considering infinite-
dimensional quadrature problems. Moreover, SDEs of the form (1) are used in the context of
currency exchange rates and interest rates. Popular models, especially for the latter, involve
the Ornstein-Uhlenbeck process, which is, e.g., used in the Vasicek model for interest rates,
as well as the Cox-Ingersoll-Ross (CIR) process. The CIR process is the solution to a non-
standard SDE, that has been introduced in Cox et al. [11] as a model for short-term interest
rates, and is nowadays used to model the volatility process in the well-known Heston model,
cf. Heston [37], which is used for option pricing.

One main problem concerning the quadrature problem is that the solution process X =
(X(t))t∈[0,1] is in general not known explicitly, since X is only given implicitly via the SDE.
As a consequence X can not be simulated directly and approximation methods need to be
applied. The two most popular approximation methods for strong, i.e., pathwise approxima-
tion of X, are the Euler-Maruyama and the Milstein approximation scheme, which we will
consider both.

A standard procedure for the approximation of E(f(X)), based on weak approximations
of X, is the method of direct simulation, which is also known as the classical Monte Carlo
method, and works as follows. Let Xm be the Euler-Maruyama approximate solution of
X, see Section II.2.1, based on m equidistant time steps. Furthermore, for N ∈ N, let
Xm,1, . . . , Xm,N denote N independent copies of Xm. Then

Am,N(f) =
1

N
·
N∑
i=1

f(Xm,i)(2)

serves as a suitable approximation of E(f(X)). We are actually interested in the relation
between the approximation error, error(A, f), of an algorithm A applied to a functional f ,
e.g., the classical Monte Carlo algorithm from above, and the computational cost, cost(A, f),
of A applied to f . As the error criterion we consider the worst case root-mean-squared error
of A on a whole class F of functions, i.e.,

error(A,F ) = sup
f∈F

(
E |S(f)− A(f)|2

)1/2
.

To define the cost of A applied to f , recall that as the model of computation we choose the
real number model. That is, we assume arithmetic operations, comparisons, and evaluations
of elementary functions to be carried out at unit cost. The same is assumed for any point
evaluation of either the drift or the diffusion coefficient a and b, respectively. Moreover,
the cost to evaluate any functional f applied to a piecewise linear function (e.g. the linear
interpolation of an Euler-Maruyama approximation) is given by the number of breakpoints of
the latter. Finally, we suppose that each call to a random generator (either random numbers
from [0, 1] or random bits from {0, 1}) has also cost one. The cost of A applied to f is now
given by the sum of all operations that are carried out when running A. Since this is in
general a random quantity, we again consider the worst case of the expected cost on the
whole class F , i.e.,

cost(A,F ) = sup
f∈F

E(cost(A, f)).
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Different algorithms can now be compared in terms of their error-cost-relation. To answer
the question to what extent restricted Monte Carlo algorithms are inferior to arbitrary Monte
Carlo algorithms, we have to compare their ε-complexity. For ε > 0, the ε-complexity of
Monte Carlo algorithms, defined via

comp(ε, F ) = inf{cost(A,F ) : A is a Monte Carlo algorithm, error(A,F ) ≤ ε},
is the least cost for any Monte Carlo algorithm to have an error of at most ε. The ε-complexity
compres(ε, F ) of the subclass consisting of all restricted Monte Carlo algorithms is defined
analogously. As an example, for F = Fp, the classical Monte Carlo algorithm based on the
Euler-Maruyama approximation schemes yields the upper bound comp(ε, F ) ≤ c · ε−4 for
some positive constant c.

The squared error of a Monte Carlo algorithm can be decomposed into

(error(Am,N , f))2 =
1

N
· Var(f(Xm)) + Bias(Am,N(f))2,

with Bias(Am,N(f)) = E(Am,N(f)) − S(f) denoting the bias of the algorithm. Clearly, the
bias of Am,N(f) only depends on the choice of the approximation scheme Xm, whereas the
variance of Am,N(f) depends on the replication number N , too. Hence it stands to reason
to try to improve the algorithm by means of variance reduction techniques. The particular
variance reduction technique we are interested in is the multilevel Monte Carlo method, which
can be interpreted as an iterative control variate method (described in Section IV.2.1), and
which has become a standard technique during the last few years. In the context of SDEs,
the multilevel Monte Carlo method has been introduced in Giles [24], and is similar to the
multilevel Monte Carlo method introduced in Heinrich [33, 34] and Heinrich and Sindambiwe
[35] in the context of parametric integration. A broad introduction to multilevel Monte Carlo
algorithms is, e.g., given in the overview article by Giles [25], which also provides several
examples from different fields of stochastics, where variants of the classical multilevel Monte
Carlo algorithm are applied. A multilevel Monte Carlo method based on the Milstein scheme
instead of the Euler-Maruyama scheme, leading to an improved order of convergence of the
variance of the multilevel Monte Carlo method, is presented in Giles et al. [23].

The multilevel Monte Carlo method for the quadrature of SDEs, i.e., for the approx-
imation of E(f(X)) operates as follows. First of all, we need a hierarchy Y0, Y1, Y2, . . . of
approximation schemes, converging to X in a suitable way (e.g. in mean-square), e.g.,
Ym = X2m being the sequence of Euler-Maruyama approximation schemes based on 2m

equidistant time steps. For a given L ∈ N, the idea of the method is to split the approxima-
tion E(f(YL)), exploiting the linearity of the expectation, into a telescoping sum, where the
schemes Y0, . . . , YL−1 serve as iterative control variates, i.e.,

E(f(YL)) = E(f(Y0)) +
L∑
`=1

E
(
f(Y`)− f(Y`−1)

)
.(3)

Now, each expectation on the right hand side is independently approximated by means of
a classical Monte Carlo algorithm, cf. (2). The squared error of this method can, again, be
decomposed into its squared bias and variance, where the bias depends on the highest level
L only (actually we do have the same bias as for the classical Monte Carlo algorithm using
the approximation scheme X2L) and the variance is due to Bienaymé given as the sum of
the variances of each classical Monte Carlo approximation, i.e., the sum of the variances
Var(f(Y`) − f(Y`−1)) respective Var(f(Y0)) divided by their replication number each. Cou-
pling the consecutive approximations Y` and Y`−1 on each level ` = 1, . . . , L in a suitable way,
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e.g., as presented in Section IV.3.1, we can assure that Var(f(Y`)− f(Y`−1)) is decreasing in
` while the computational cost clearly increases in `. Hence the overall cost of the algorithm
can be minimized with respect to a given error bound ε > 0 by balancing these two effects,
see Section IV.3.2 for details.

We take a closer look at the Euler-Maruyama method. Actually, randomness only comes
into play on account of the realization of the increments of the driving Brownian motion.
Thinking of the inverse CDF method each realization of a Brownian increment corresponds
to drawing one random number. Hence, considering random bits instead of random numbers
naturally leads to the question how to approximate random variables uniformly distributed
on the unit interval, by means of random bits, in order to obtain suitable (random) bit
approximations of the involved Brownian increments, and in particular how many random
bits should be used for each approximation. A natural ansatz is to consider the binary
expansion of u ∈ [0, 1], which reads as

u =
∞∑
i=1

bi · 2−i

with (bi)i∈N ∈ {0, 1}N, and to cut it off after finitely many terms. For technical reasons this
will lead us to uniform distributions on the sets

D(p) =

{
p∑
i=1

bi · 2−i + 2−(p+1) : bi ∈ {0, 1} for i = 1, . . . , p

}
of dyadic numbers from [0, 1[ based on p ∈ N bits and shifted by 2−(p+1), cf. Section III.2.
Moreover, it is reasonable to question whether one should use the same number of random
bits for, e.g., the Euler approximation X21 based on 2 equidistant time steps and the Euler
approximation X210 based on 210 equidistant time steps, since the approximation error of
X21 is way larger than the corresponding quantity for X210 , anyway. This actually leads to
adding a further dimension of discretization to the multilevel Monte Carlo method, i.e., we
wish to consider time discretization and the number of bits used on each level simultaneously.
An idea similar to multi-index Monte Carlo, as introduced in Haji-Ali et al. [31]. To analyze
multilevel Monte Carlo algorithms based on random bits, at first, we need an analysis of
the impact of random bits, as the only source of randomness, on the approximation of the
increments of the driving Brownian motion W . Here, it is desirable to have approximations
of the involved Brownian increments that are

1.) independent,
2.) based on finitely many random bits, and
3.) allow a coupling such that the telescoping sum (3) is fulfilled.

Observe that 1.) is a technical assumption for the analysis of the resulting random bit
Euler-Maruyama scheme, while 3.) is a technical assumption in the analysis of the classical
multilevel Monte Carlo algorithm. Actually, we present different (random bit) approxima-
tions of Brownian increments, each satisfying 1.) – 3.) only partially. An algorithm providing
all three properties is given in Belomestny and Nagapetyan [3]. This algorithm follows a
different approach concerning the analysis of the variances leading to rather complicated
distributions on the coarser levels.

The approach of taking into account random bits, as a second dimension of discretization
has, e.g., become practically feasible due to the availability of reconfigurable hardware archi-
tectures, like Field Programmable Gate Arrays (FPGAs). Such devices allow a user-specified



I.1. INTRODUCTION 5

precision for each individual operation on a bit level, i.e., for each operation the number of
bits used for the representation of each involved quantity can be individually specified by the
user. Furthermore, a generator for random bits is provided, as well. Clearly, in this context an
error analysis in the real number model of computation is no longer reasonable, since round-
off errors have to be considered. A round-off error analysis of the Euler-Maruyama scheme,
under the assumption of availability of random bit approximations of Brownian increments
satisfying 1.) – 3.) is provided in Omland [56]. For the construction and for extensive tests
of a finite precision multilevel algorithm for FPGAs, with applications in computational
finance, we refer to Brugger et al. [7] and Omland et al. [57].

Moreover, the consideration of different bit numbers as a second dimension of discretiza-
tion seems to become more interesting in the context of Graphics Processing Units (GPUs),
since state-of-the-art GPUs do allow three different standard precisions, i.e., three choices
of bit numbers that are supported by the GPU, namely, the standard double (64 bit) and
single (32 bit) precision, and on top of that, actually motivated by machine learning, the
half (16 bit) precision. This naturally corresponds to a three level (multilevel) Monte Carlo
algorithm.

A further motivation for studying restricted Monte Carlo algorithms for the quadrature
of SDEs stems from the finite-dimensional counterpart, i.e., the finite-dimensional quadra-
ture problem, which aims at the approximation of

∫
[0,1]d

f(x) dx, and which is studied in, e.g.,

Gao et al. [22], Heinrich et al. [36], Novak [50, 51, 53], Traub and Woźniakowski [64], Ye and
Hu [68]. See Novak and Pfeiffer [54] for a related approach to integral equations. Actually,
in Heinrich et al. [36], random bit quadrature with respect to the uniform distribution on
[0, 1]d and Sobolev spaces and Hölder classes of functionals f : [0, 1]d → R have been con-
sidered. It is shown, that in this context, restricted Monte Carlo algorithms are as powerful
as unrestricted Monte Carlo algorithms, and a very small number of random bits suffices to
achieve asymptotic optimality. The proofs of these results are based on a reduction of the
quadrature problem to a summation problem and on Bakhvalov’s trick.

The main analytical contribution of this thesis concerning the quadrature of SDEs based
on random bits is the construction and analysis of a random bit multilevel Euler(-Maruyama)

algorithm Aq,Bak
ε,F that is almost optimal, and which relies on approximations of the involved

Brownian increments satisfying 1.) and 2.), while 3.) is violated. This leads to an additional
error term in the bias, compared to the analysis of the standard multilevel Monte Carlo
algorithm, which itself relies on the telescoping sum property (3). Indeed, commonly, this
telescoping sum property is fulfilled and to the best of the author’s knowledge the only
other analyzed algorithm violating this condition is given in Müller et al. [47]. However, this
additional error can be controlled due to its dependence on the number of random bits used
for each single random bit approximation of a Brownian increment. First of all, we have the
following upper bound: For F ∈ {Fp, F∞} there exists a positive constant c such that

error
(
Aq,Bak
ε,F , F

)
≤ c · ε(4)

and

cost
(
Aq,Bak
ε,F , F

)
≤ c · ε−2 ·

{
(ln(ε−1))2, if F = Fp,

(ln(ε−1))3, if F = F∞,
(5)

for every ε ∈ ]0, 1/2[, see Theorem 12. Observe that these upper bounds on the error and the
cost do imply a weak asymptotic upper bound on the ε-complexity compres(ε, F ) that does
coincide with the best known upper bound on the corresponding quantity for (arbitrary)
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Monte Carlo algorithms, which is actually achieved by the (classical) multilevel Monte Carlo
Euler algorithm, cf. Theorem 9 and Corollary 4.

An important ingredient for the construction of Aq,Bak
ε,F is Bakhvalov’s trick: A small

number of independent random variables, each uniformly distributed on {1, . . . , 2q}, yields
a significantly larger number of pairwise independent random variables, each with the same
uniform distribution. The number of random bits used by the algorithm Aq,Bak

ε,F is of the order

ε−2 · (ln(ε−1)5/2, see the proof of Theorem 8 in Giles et al. [28], and it can be reduced further
to ε−2 · (ln(ε−1))2 · ln(ln(ε−1)), as outlined in Remark 9 in Giles et al. [28].

Furthermore, the algorithm Aq,Bak
ε,F is optimal, up to logarithmic factors. Indeed, under a

slightly stronger smoothness assumption on the coefficients of the SDE under consideration
as well as a non-degeneracy assumption on the SDE, particularly excluding pathological cases
yielding a deterministic solution X, the following is known to hold true: For F ∈ {Fp, F∞}
there exist positive constants c and ε0 such that

c · ε−2 ≤ cost
(
A,F )

for every restricted Monte Carlo algorithm A and for every ε ∈ ]0, ε0] with

error
(
A,F

)
≤ ε.

Actually, there are two variants of this result, both of which hold true for a much broader
class of algorithms. In the first variant, the evaluation of f is allowed at arbitrary points
of x ∈ C([0, 1],Rr) at unit cost, while the number of random bits is taken into account in
the same way as described above, see Giles et al. [28, Theorem 15]. In the second variant,
which is due to Creutzig et al. [12, Theorem 11], roughly speaking, any kind of randomness is
allowed for free, but the cost model with evaluations of f only at piecewise linear functionals
is kept. We do not know whether random bits are as powerful as random numbers for the
quadrature problem under investigation, but the upper and lower bounds imply that random
bits are at least almost as powerful as random numbers.

Besides its asymptotic optimality in the sense of establishing the same asymptotic upper
bounds for the ε-complexity as the classical multilevel Monte Carlo algorithm, denoted by
Aε,F , at least for the function classes Fp and F∞, the random bit algorithm Aq,Bak

ε,F lacks
two things. One drawback is that we do have no knowledge about the constant c in (4)
and (5). Hence we do not know whether we are inferior to Aε,F by a big (constant) factor.

Consequently, we would like to compare Aq,Bak
ε,F and Aε,F numerically. Since Aq,Bak

ε,F has been
developed and analyzed quite recently, no numerical results are available, so far. Therefore,
we consider a variant Aqε,F of Aq,Bak

ε,F , which has the same error as Aq,Bak
ε,F , but does not rely

on the Bakhvalov trick, leading to a by one logarithmic order worse upper bound on its
computational cost, see Theorem 11 and Corollary 5. It turns out that for the examples
under consideration, namely the Brownian motion and geometric Brownian motion with
f being the maximum, and the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross SDEs with f
evaluating at the final time instance, the positive constants c in the upper bounds on the
error and cost of Aqε,F respective Aε,F , cf. Theorem 11 and Theorem 9, only differ by a small
factor, less than 10.

The second drawback of Aq,Bak
ε,F respective Aqε,F is that there is no natural straightforward

extension to a, desirable, adaptive random bit multilevel algorithm, as first introduced in
Giles [24] for functionals from the class Fp, cf. also Section IV.3.3 for a description of the

adaptive multilevel algorithm, due to the choice of the numbers of random bits used by Aq,Bak
ε,F

respective Aqε,F for the (random) bit approximation of the involved Brownian increments.
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Such an adaptive multilevel Monte Carlo algorithm has several advantages, discussed in
Section IV.3.3, over the non-adaptive algorithms Aq,Bak

ε,F respective Aqε,F , since the latter are,
e.g., based on the upper bound on the convergence of the Euler-Maruyama approximation
scheme, while the classical adaptive multilevel Monte Carlo algorithm, in the following de-
noted by Aadp

ε,F , estimates this rate of convergence depending on the particular SDE as well as
on the employed functional f . This can yield an essential improvement of the performance of
the algorithm. For example, for SDEs with additive noise, Aadp

ε,F will see the Milstein rate of

convergence, i.e., twice the rate employed by the non-adaptive algorithms Aq,Bak
ε,F and Aqε,F .

Following this reasoning, we present a second restricted multilevel Monte Carlo algo-
rithm, denoted by A†ε,F , which allows an adaptive extension, in line with Aadp

ε,F , denoted by

A†,adp
ε,F . Furthermore, we present and discuss a natural generalization of the adaptive multi-

level Monte Carlo algorithms (both the classical and the random bit algorithm) to the class

F∞, since the standard algorithm is fitted to the class Fp. The algorithm A†ε,F and hence also

A†,adp
ε,F , relies heavily on the Brownian bridge construction and uses a somehow optimized

choice of the numbers of random bits depending on the support of the Schauder functions
used in the Brownian bridge construction, see Section II.1. Indeed the algorithm A†,adp

ε,F can
not only exploit the adaptivity, but also turns out to be superior to the non-adaptive ran-
dom bit algorithm Aqε,F , at least for the above mentioned examples, suggesting its general

superiority. We stress that we do only investigate A†,adp
ε,F numerically, since we neither have

analytical results for A†ε,F nor for A†,adp
ε,F , so far. This is a consequence of the random bit

approximation of the involved Brownian increments by means of the Brownian bridge con-
struction, leading to approximations that satisfy properties 2.) and 3.), whilst property 1.)
is violated. That is, we do not have independent approximations of the Brownian incre-
ments and hence no standard technique can be applied to analyze the error of the associated
random bit Euler-Maruyama approximation schemes.

Furthermore, comparing A†,adp
ε,F to its classical counterpart Aadp

ε,F we observe the same
weak asymptotics in the relation between their error and cost in terms of ε, respectively, and
almost the same strong asymptotics, too. That is, the adaptive random bit algorithm A†,adp

ε,F

is almost as powerful as its classical counterpart Aadp
ε,F , at least for all considered examples.

Recall, that as a key problem in the analysis of random bit quadrature problems we
have identified the random bit approximation of the involved Brownian increments. This
actually leads to the following variant of the quantization problem for probability measures,
namely, the optimal approximation of probability measures µ by uniform distributions ν on
2p support points. Our notion of random bit approximations of probability measures stems
from the fact that p random bits suffice to sample any such ν. Let d denote the Wasserstein
distance of order two on the set M(H) of all probability measures on a separable Hilbert
space H, and let U(H, p) ⊆ M(H) denote the set of all uniform distributions on H with a
support of size 2p. Given µ ∈M(H) we study the distance

rbit(µ, p) = inf
{
d(µ, ν) : ν ∈ U(H, p)

}
between µ and U(H,P ). In the one-dimensional case H = R this approximation problem
has recently been introduced and thoroughly studied for Wasserstein distances of any order
p ≥ 1 in Xu and Berger [67], Berger and Xu [4], and some of the results from Xu and Berger
[67] have been generalized to the Banach space Rd, equipped with the maximum norm, for
any d ∈ N, in Chevallier [9].
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Random bit approximation is closely related to quantization, which has been studied
intensively for finite-dimensional and infinite-dimensional Banach spaces H. More precisely,
let F(H, p) denote the set of all Borel probability measures on H with a support of size at
most 2p. Obviously, the quantization number

quant(µ, p) = inf
{
d(µ, ν) : ν ∈ F(H, p)

}
serves as a lower bound for rbit(µ, p), i.e.,

quant(µ, p) ≤ rbit(µ, p)

for every µ ∈M(H) and every p ∈ N. A partial list of references on quantization of proba-
bility measures includes the monograph Graf and Luschgy [29] and the survey Dereich [16]
as well as Creutzig et al. [12], Dereich [13, 14, 15], Dereich and Scheutzow [17], Dereich et al.
[18], Luschgy and Pagès [41, 42], Luschgy and Pagès [43]. We stress that the strong asymp-
totics of quant(µ, p) is studied most of the time in the literature, while we only consider
the weak asymptotics of rbit(µ, p) in p. Observe, however, that we do lose control of the
asymptotic constants in the analysis of the random bit quadrature problem, anyway.

For the one-dimensional standard normal distribution µ we derive

rbit(µ, p) � 2−p/2 · p−1/2,

see Theorem 4, while quant(µ, p) � 2−p according to a known general result for quantization.
We stress that this random bit approximation result is actually the basis for our analysis,
and in that way also for the construction, of our random bit quadrature algorithms, i.e., our
random bit multilevel Monte Carlo algorithms. LetX be a centered Gaussian random element
with values in a separable Hilbert space and distribution µ with infinite-dimensional support.
Assuming the variances λi of the random coefficients in the Karhunen-Loève expansion of
X to satisfy

lim
i→∞

λi · iβ · (ln(i))α ∈ ]0,∞[,

where β > 1 and α ∈ R, we establish

rbit(µ, p) � p−(β−1)/2 · (ln(p))−α/2,

see Theorem 7 and Corollary 3. For the distribution µ of the standard one-dimensional
Brownian bridge on L2([0, 1]) we, separately, show that

rbit(µ, p) � p−1/2,

see Theorem 5 and Corollary 1. Moreover, for scalar autonomous SDEs we consider the
distribution µ of the solution on L2([0, 1]), and under mild assumptions on the drift and
diffusion coefficients we establish

rbit(µ, p) � p−1/2,

see Theorem 6 and Corollary 2. In the latter three cases we only need to establish the upper
bound for rbit(µ, p), since the matching lower bounds even hold for quant(µ, p), according
to known results for quantization.

This thesis is organized as follows. In Chapter II we present basic concepts from probabil-
ity theory that are fundamental throughout the main part of the thesis. Namely, we recall the
standard one-dimensional Brownian motion and its Lévy-Ciesielski construction, also known
as the Brownian bridge construction. Furthermore, we briefly give the notion of a strong
solution to an SDE as well as a sufficient criterion for existence and uniqueness of a strong
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solution. Finally, we present the two most popular schemes for the pathwise approximation
of a solution, namely the Euler-Maruyama and Milstein approximation schemes.

In Chapter III, more precisely in Section III.1, we first introduce the quantization prob-
lem, providing depictive interpretations of the problem, and we present well-known results
for (the four) particular quantization problems stated above. Thereafter, in Section III.2,
we formulate and study the random bit approximation problem for probability measures.
This comes along with four sections that are devoted to the analysis of random bit ap-
proximations with respect to the above mentioned probability measures, starting with the
one-dimensional standard normal distribution. Here, we also derive some asymptotic prop-
erties of the distribution function of the standard normal distribution and its inverse. The
random bit approximation of the one-dimensional standard normal distribution will then
serve as our building basis for the construction and analysis of the random bit approxima-
tion of the distribution of the standard one-dimensional Brownian bridge, the distribution of
the solution of a scalar SDE, and Gaussian measures, following this ordering. This chapter
is then closed presenting the link of quantization and hence of random bit approximation of
probability measures to Kolmogorov widths in Section III.3.

In Chapter IV we formulate the computational problem of random bit quadrature of
SDEs. To this end, in Section IV.1, we give meaning to the terminology of an algorithm
and we define our error and our cost criterion. In Section IV.2 we then present the method
of direct simulation respective the classical Monte Carlo algorithm, as well as, variance
reduction by means of the control variate method, leading to the classical Euler-Maruyama
based multilevel Monte Carlo algorithm, laid in Section IV.3. Here, we also discuss how to
estimate (and hence improve the upper bound on) the convergence of the Euler-Maruyama
scheme (for a mesh-size tending to zero) in dependence on the SDE under consideration.
This will take us to the adaptive multilevel Monte Carlo Euler-Maruyama algorithm fitted
to functionals f from the class Fp, and as a new thing we will introduce a natural extension
to the class F∞. Section IV.4 is then devoted to the construction of the two random bit Euler-
Maruyama schemes to be employed in the random bit quadrature of SDEs later, as well as,
the strong error analysis of the scheme leading to the random bit multilevel Monte Carlo
algorithm, which we will show, in Section IV.5, to have the same (in this sense optimal)
weak asymptotic upper bound on the ε-complexity as its classical random number based
counterpart.

Finally, Chapter V is devoted to numerical experiments. Here we proceed as follows.
We first present and discuss, in Section V.1, our results for the standard one-dimensional
Brownian motion in a very detailed manner. We then proceed with the geometric Brownian
motion, the Ornstein-Uhlenbeck process, and finally the Cox-Ingersoll-Ross process, in this
ordering throughout Sections V.2 to V.4. For each example we present numerical results for
the non-adaptive but analyzed random bit algorithm Aqε,F and for A†,adp

ε,F , comparing each
algorithm to its classical (random number based) counterpart, and finally comparing the two
algorithms themselves. For each example we also present known analytical results that are
used to estimate the empirical errors of the algorithms.

The results in Chapter III and Chapter IV are mainly based on Giles et al. [27] and Giles
et al. [28], respectively.

I.2. Notations

As long as not stated differently, we denote by |·| the Euclidean norm on Rd. Furthermore,
we use the following non-standard notations: For functions f, g : M → [0,∞] on any set M ,
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we frequently use the notation f(m) 4 g(m), if there exists a positive constant c such
that f(m) ≤ c · g(m) for every m ∈ M . Moreover, f(m) < g(m) means g(m) 4 f(m)
and f(m) � g(m) means f(m) 4 g(m) and g(m) 4 f(m). In order to mention the set M
explicitly, we sometimes say that the corresponding relation holds uniformly in m ∈M .

Moreover, we write f(x) ≈ g(x) as x tends to infinity for two functions f, g : ]a,∞[ →
R \ {0} if

lim
x→∞

f(x)/g(x) = 1.

Analogously, we define f(x) ≈ g(x) as x tends to 0 from above and x tending to 1 from
below, respectively.



CHAPTER II

Basic Facts

In this chapter we present some well-known elementary results that are fundamental
for this thesis. First of all, we give the definition of the standard Brownian motion and
its relation to the standard Brownian bridge. Furthermore, we describe the Lévy-Ciesielski
construction, also known as Brownian bridge construction, of the Brownian motion respective
of the Brownian bridge, which we will use to approximate the standard Brownian bridge
respective the standard Brownian motion in Section III.2.2 and Section IV.4.2, respectively.

Moreover, we introduce the notion of strong approximation of the solution of a stochas-
tic differential equation. In this context, we first give a sufficient condition for existence and
uniqueness of a solution. Finally, we introduce the well-known Euler-Maruyama and Mil-
stein approximation schemes for the pathwise approximation of the solution of a stochastic
differential equation. We also state results on their respective rate of convergence to the
solution.

II.1. Brownian Motion and Brownian Bridge Construction

Due to the importance of the Brownian motion throughout this thesis, we recall its defini-
tion, and briefly introduce the Lévy-Ciesielski representation of the Brownian motion, which
will be used for the approximation of Brownian paths in Section III.2.2 and Section IV.4.2.
Let W = (W (t))t∈[0,1] denote a stochastic process on a probability space (Ω,A, P ) with state
space (Rd,Bd). Here, Bd denotes the Borel-σ-algebra on Rd. Then W is called a (standard)
d-dimensional Brownian motion or Wiener process if

(i) W has continuous paths,
(ii) W (0) = 0 P -almost surely,
(iii) the increments W (t)−W (s) with 0 ≤ s < t ≤ 1 are independent from the filtration

FWs generated by W up to time s, and normally distributed with zero expectation
and variance (t− s) · Ed with Ed denoting the d-dimensional identity matrix.

In particular, the d-dimensional Brownian motion is a vector of d independent one-dimensional
Brownian motions. For existence of Brownian motion we refer to Karatzas and Shreve [39,
Section 2.2].

Remark 1. Later on, when we consider solutions of stochastic differential equations, it
is in general necessary to have a Brownian motion with respect to a strictly larger filtration
than (FWt )t∈[0,1]. Namely, we need a filtration (Ft)t∈[0,1] that satisfies the usual conditions,
i.e., (Ft)t is right-continuous and F0 contains all P -null-sets. The latter means that the set
{A ⊆ Ω: there exists B ∈ A : A ⊆ B and P (B) = 0} is contained in F0.

For the construction of such a (augmented) filtration (Ft)t from (FWt )t we refer to Karatzas
and Shreve [39, Definition II.7.2, Theorem II.7.9].

Remark 2. We present the Lévy-Ciesielski construction or Brownian bridge construction
of the Brownian motion, cf. Karatzas and Shreve [39, Section II.3]. Let us start with a
one-dimensional Brownian motion. The idea is to construct a so-called Schauder basis of

11
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the space of continuous functions over the unit interval vanishing at 0, C0([0, 1]) = {f ∈
C([0, 1]) : f(0) = 0}, and to construct a Brownian motion as an infinite linear combination
of the basis elements.

To this end, we first introduce the so-called Haar wavelets, see Haar [30], which define
a Schauder basis in Lp([0, 1]), 1 ≤ p < ∞, even an orthogonal basis for p = 2. We define
h0,1 = 1 and

hi,j = 2(i−1)/2 ·
(
1Ii,j − 1Ji,j

)
for i ∈ N and j = 1, . . . , 2i−1, where

Ii,j =
[
(j − 1)/2i−1, (j − 1/2)/2i−1

[
and

Ji,j =
[
(j − 1/2)/2i−1, j/2i−1

[
.

Next, we need to transform the Haar wavelets into continuous functions in order to obtain
a Schauder basis of C0([0, 1]). This is achieved by the Schauder functions

si,j(t) =

∫ t

0

hi,j(u) du, t ∈ [0, 1],(6)

where i = 0 and j = 1 or i ∈ N and j = 1, . . . , 2i−1. Note, that s0,1 is a linear function on
the unit interval and the remaining Schauder functions are hat functions on the respective
subintervals [(j − 1)/2i−1, j/2i−1[ and constantly zero everywhere else. Hence, they can be
interpreted as a local refinement on the corresponding subintervals. We point out that this
system of Schauder functions can also be interpreted as a rescaled Faber-Schauder system.

Finally, let (Yi,j)i,j with i = 0 and j = 1 or i ∈ N and j = 1, . . . , 2i−1 be an indepen-
dent family of standard normally distributed random variables. Then the Lévy-Ciesielski
representation states that

W`(t) = W`(t, ω) =
∑̀
i=0

2max(i−1,0)∑
j=1

si,j(t) · Yi,j(ω)(7)

converges to a Brownian motion as ` → ∞ with uniform convergence for almost every
ω ∈ Ω, see Karatzas and Shreve [39, Lemma II.3.1, Theorem II.3.2]. In particular, we have
convergence with respect to the L2-norm. Since each Brownian motion W can be represented
in that way, we will use the notation

W (t) =
∞∑
i=0

2max(i−1,0)∑
j=1

si,j(t) · Yi,j.

To obtain the analogous result for the d-dimensional Brownian motion, it suffices to
replace the independent family Y0,1, Y1,1, . . . of standard normally distributed random vari-
ables by independent d-dimensional random vectors, each of which is standard normally
distributed.

Though the notation of the Lévy-Ciesielski representation as an iterated sum might
seem unnecessary complicated, it will turn out to be a natural notation when we talk about
approximations of the Brownian motion W , see Section III.2.2 and Section IV.4.2.
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Remark 3. Let us consider the relation of the (standard) one-dimensional Brownian
motion W and the (standard) one-dimensional Brownian bridge, denoted by B. The main
difference between the two stochastic processes is that the Brownian bridge B has to be zero
at the final time instance, here B(1) = 0. Formally, the Brownian bridge B can be derived
from the Brownian motion W by setting

B(t) = W (t)− t ·W (1), t ∈ [0, 1],

see, e.g., Kallenberg [38, p.203]. In particular the process B is independent from W (1)
and W (1) is standard normally distributed. This relation can be incorporated in the Lévy-
Ciesielski representation of W , see (7), to obtain an analogous representation for B. Since
the first summand s0,1 · Y0,1 is the linear interpolation of a standard normally distributed
random variable on the interval [0, 1], we have

B(t) = W (t)− t ·W (1)
d
= W (t)− s0,1(t) · Y0,1 =

∞∑
i=1

2i−1∑
j=1

si,j(t) · Yi,j(8)

with the same mode of convergence as for W (t), cf. (7). The right hand side is also called
Lévy-Ciesielski representation of the (standard) Brownian bridge.

Remark 4. Let us briefly comment on the terminology Brownian bridge construction.
Let B denote a standard Brownian bridge on the unit interval. The starting knowledge for the
construction is B(0) = B(1). This approximation of B can be extended to the unit interval
by linear interpolation, yielding the function that is constantly zero on [0, 1]. In the first step,
which corresponds to i = 1 in (8) we assure to hit the right distribution at the midpoint
1/2, which we know to be N(0, 1/2), and we assure to have a continuous approximation of
B on [0, 1]. Both is given by s1,1 · Y1,1, where s1,1 provides a linear interpolation on [0, 1/2]
and [1/2, 1], respectively. Therefore, the Schauder functions are sometimes also called hat
functions, and from a geometrical point of view s1,1 ·Y1,1 can be interpreted as a bridge from
0 to 0 with its peak at t = 1/2. In the second step, which corresponds to i = 2 in (8), the
analogous construction is (separately) applied to the subintervals [0, 1/2] and [1/2, 1] with
the difference that the value in the boundary point 1/2 is no longer zero but N(0, 1/2)-
distributed. From a geometrical point of view this can again be interpreted as two local
bridges. Likewise in the i-th step, we add bridges on the subintervals [(k−1) ·2−i+1, k ·2−i+1]
with k = 1, . . . , 2i+1.

Finally, we present a well-known result for the standard Brownian bridge that we will
need in the analysis in Section III.2.3.

Lemma 1. Let B be a standard Brownian bridge on [0, 1]. Then we have

E ‖B‖2
L2([0,1]) <∞.

Proof. By Remark 3, B can be expressed in terms of a standard Brownian motion W

B(t) = W (t)− t ·W (1)

and B is independent from W (1). Hence, using Jensen’s inequality and Fubini’s rule we have

1/2 · E ‖B‖2
L2([0,1]) ≤

∫ 1

0

E(W (t))2 dt+ E(W (1))2 ·
∫ 1

0

t2 dt = 1/2 + 1/3 = 5/6. �



14 II. BASIC FACTS

II.2. Strong Approximation of SDEs

Let r, d ∈ N. Let (Ω,A, P ) be a complete probability space and let F = (Ft)t∈[0,1] be
a filtration on (Ω,A, P ) that satisfies the usual conditions, cf. Remark 1. Furthermore, let
W be a d-dimensional Brownian motion with respect to the filtration F. We consider an
autonomous system

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), t ∈ [0, 1](9)

of SDEs with deterministic initial value

X(0) = x0 ∈ Rr

and driving Brownian motion W , as well as, drift coefficient a : Rr → Rr and diffusion
coefficient b : Rr → Rr×d.

Theorem 1. Existence and uniqueness of the solution. Let a and b be globally Lipschitz
functionals, i.e., there exists a constant c > 0 such that

|a(x)− a(y)| ≤ c · |x− y| ∧ |b(x)− b(y)| ≤ c · |x− y|(10)

for all x, y ∈ Rr. Then there exists a (up to indistinguishability) unique t-continuous strong
solution X(t),i.e., a solution with continuous sample paths, which is adapted to the filtration

F, and that satisfies E(
∫ 1

0
|X(t)|2 dt) <∞.

For a proof, see, e.g., Øksendal [55, Theorem 5.2.1] or Mao [44, Theorem 2.3.1]. Note,
that the latter only shows that the solution X(t) is in L2([0, 1],Rd).

Remark 5. Theorem 1 can easily be generalized in the following ways.

(i) In the case of autonomous SDEs, the global Lipschitz condition on the coefficients
a and b of the SDE is often replaced by the corresponding local Lipschitz condition
in combination with the linear growth condition, i.e., there exists a constant c > 0

such that for all x ∈ Rr there exist neighborhoods Ux, Ũx ⊆ Rr such that

|a(x)− a(y)| ≤ c · |x− y| ∧ |b(x)− b(ỹ)| ≤ c · |x− ỹ|

for all y ∈ Ux and for all ỹ ∈ Ũx, respectively. Furthermore,

|a(x)|2 ≤ c · (1 + |x|2) ∧ |b(x)|2 ≤ c · (1 + |x|2)

for all x ∈ Rr.
Obviously, the linear growth condition is implied by global Lipschitz continuity.

For f = a and f = b we have

|f(x)| ≤ 2 · |f(x)− f(0)|+ 2 · |f(0)|.
(ii) The results for the compact interval [0, 1] carry over to general compact intervals

[T0, T1].

Having conditions for existence and uniqueness of the solution to equation (9), we need to
address the question of computing this solution. Unfortunately, in general, no explicit formula
of the solution is known. Therefore, the solution is usually only approximated. However, in
some cases the solution is known explicitly, e.g. in the linear case, for which we refer to Mao
[44, Chapter 3]. Note, that when we talk about approximating the solution of an SDE, we
always think of strong approximation, i.e., pathwise approximation.

In the following we will briefly introduce and discuss the well-known Euler-Maruyama
scheme for the approximation of the solution of a system of SDEs, as well as, the Milstein
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scheme for the approximation of the solution of a scalar SDE, i.e., r = d = 1. Let us mention
that it is also possible to define the Milstein scheme for a system of SDEs, but that would
lead to Lévy areas and their approximation, what is not in the scope of this work.

II.2.1. Euler-Maruyama Scheme. We will only consider the deterministic equidis-
tant Euler-Maruyama scheme, i.e., with à priori determined breakpoints

tk = tk,m = k/m,

where m ∈ N and k = 0, . . . ,m. The corresponding approximation scheme is given by

Xm(t0,m) = x0,

Xm(tk,m) = Xm(tk−1,m) +m−1 · a
(
Xm(tk−1,m)

)
+ b
(
Xm(tk−1,m)

)
· Vk,m

for k = 1, . . . ,m, with Brownian increments

Vk = Vk,m = W (tk,m)−W (tk−1,m).

In order to approximate the solutionX at any point t ∈ [0, 1], we extendXm(t0), . . . , Xm(tm)
by linear interpolation onto the subintervals ]tk−1, tk[ for k = 1, . . . ,m.

The following result is well-known, see, e.g., Creutzig et al. [12, p. 419], cf. also Mao [44,
Theorem 2.7.3] for a similar result.

Theorem 2. Assuming that the global Lipschitz condition (10) from Theorem 1 is sat-
isfied, the Euler-Maruyama approximate solutions Xm of X satisfy(

E
(

sup
0≤t≤1

|Xm(t)−X(t)|2
))1/2

4 m−1/2 · (log(m+ 1))1/2,

as well as, (
E ‖Xm −X‖2

Lp([0,1])

)1/2

4 m−1/2.

For more details on the constants, see, e.g., Mao [44, Theorem 2.7.3]. The constants
depend on the considered norm, the time interval [0, 1], the initial value x0 of the SDE (9)
and the Lipschitz constants of the coefficients a and b.

Regarding the convergence rate in Theorem 2 one may as for ordinary differential equa-
tions (ODEs) take a look at higher order approximation schemes.

II.2.2. Milstein Scheme. In this section, we assume r = d = 1, i.e., equation (9)
is a scalar SDE, as well as, differentiability of the diffusion coefficient b. As for the Euler-
Maruyama scheme, we will only consider the deterministic Milstein scheme with equidistant
breakpoints

tk = tk,m = k/m, k = 0, . . . ,m,

where m ∈ N. Denoting the associated Brownian increments by

Vk = Vk,m = W (tk,m)−W (tk−1,m),

the corresponding approximation scheme reads as

X̂m(t0,m) = x0,

X̂m(tk,m) = X̂m(tk−1,m) +m−1 · a
(
X̂m(tk−1,m)

)
+ b
(
X̂m(tk−1,m)

)
· Vk,m

+ 1
2
· (b · b′)

(
X̂m(tk−1,m)

)
·m−1

(
(m1/2 · Vk,m)2 − 1

)
for k = 1, . . . ,m.
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Again, we extend X̂m(t0), . . . , X̂m(tm) by linear interpolation onto the subintervals ]tk−1, tk[
for k = 1, . . . ,m.

The following result is well-known, see, e.g., Milstein and Tretyakov [45, Theorem 1.2.4].

Theorem 3. Assuming that the global Lipschitz condition (10) from Theorem 1 is sat-
isfied as well as the diffusion coefficient b having a bounded Lipschitz continuous derivative,

there exists a positive constant c such that the Milstein approximate solutions X̂m of X satisfy(
E
(

max
0≤k≤m

∣∣X̂m(tk)−X(tk)
∣∣2))1/2

≤ c ·m−1.

Remark 6. Note, that for additive noise, i.e., the diffusion coefficient b is independent
from X, the derivative of b is constantly zero. Therefore, in this case, the Milstein approx-

imate solutions X̂m and the Euler-Maruyama approximate solutions Xm do coincide for all
m ∈ N.

Moreover, in Lemma 11, we will observe that the Milstein scheme interpolated with
suitable rescaled Brownian bridges has convergence rate 1 not only in the breakpoints tk but
on the whole interval [0, 1]. For additive noise, this upper bound on the convergence rate
carries over to a correspondingly modified Euler-Maruyama scheme.



CHAPTER III

Approximation of Probability Distributions

Random bit approximation of probability distributions is very closely related to the thor-
oughly studied quantization of probability distributions. Actually, we will see that we exploit
some results, especially lower bounds, from the quantization problem for our random bit ap-
proximation problem. Therefore, we will first introduce the quantization problem and state
some well-established results from quantization theory.

The chapter is outlined as follows. In Section III.1 we introduce and discuss the quanti-
zation of probability distributions. We start with the finite dimensional case, namely with
the space of real numbers R and some generalizations to the d-dimensional space Rd. This
will allow us to give some vivid interpretation of the quantization problem. In particular
we present the relations to the n-centers problem and to Voronoi partitions. Thereafter,
we present results for the standard normal distribution followed by results for the standard
Brownian motion and the standard Brownian bridge, as well as for scalar SDEs.

In Section III.2 we introduce our notion of random bit approximations of probability
distributions and we discuss the relation to the quantization problem. Actually, we will see
that random bit approximations can be interpreted as a restriction of the quantization prob-
lem to a subclass of probability measures with a finite support size. Here, we proceed in
the following way. At first, in Section III.2.1, we present, analyze and discuss a random
bit approximation of the standard normal distribution. Moreover, we relate our results to
recent results in Xu and Berger [67]. Thereafter, in Section III.2.2 we analyze a random
bit approximation of the distribution of the one-dimensional standard Brownian bridge in
L2([0, 1]) based on the random bit approximation of the standard normal distribution from
Section III.2.1, implicitly covering the random bit approximation of the finite-dimensional
Brownian bridge via componentwise application of the described one-dimensional approxi-
mation method. Moreover, in Section III.2.3 we analyze a random bit approximation of the
distribution of a scalar SDE under a standard global Lipschitz assumption on the drift coef-
ficient as well as a global Lipschitz assumption on the derivative of the diffusion coefficient.
Again the approximation will be based on the random bit approximation of the standard
normal distribution from Section III.2.1. We restrict ourselves to the scalar case since we
will need to employ the Milstein approximation scheme, cf. Section II.2.2, in order to get the
same rate of convergence as for the corresponding quantization problem. In the last section,
namely Section III.2.4 we discuss the quantization and random bit approximation of Gauss-
ian random elements. The latter will once more be based on the random bit approximation
of the standard normal distribution from Section III.2.1. Gaussian random elements are dis-
cussed separately since, in contrast to the afore discussed random bit approximations, they
rely on the Karhunen-Loève expansion of the Gaussian random elements. Furthermore, they
are not in the main scope of this thesis. In particular they will neither be treated numerically
nor will we introduce any quadrature method based on the Karhunen-Loève expansion.

Finally, in Section III.3 we give the relation of quantization and random bit approximation
of probability distributions to Kolmogorov widths.

17
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The results on the random bit approximations discussed in Section III.2 are published in
Giles et al. [27].

III.1. Quantization

The terminology quantization stems from the theory of signal processing, more precisely,
from the context of pulse-code modulation, where analog sound signals are translated into a
digital representation. The digitalization of the analog data requires to quantize the signal on
an appropriate grid of time points (i.e., it can be considered as the division of a quantity into
a discrete number of small parts) such that the original signal can either be reconstructed
perfectly or at least with a, in some sense, small error.

Likewise, as a mathematical problem, quantization of probability distributions addresses
the approximation of a d-dimensional probability distribution µ by a d-dimensional proba-
bility distribution µ̂ with finite support, i.e., a probability distribution based on only finitely
many supporting points. In terms of a d-dimensional random element X, which is often
only described implicitly by means of a probability distribution, one is looking for a suitable

discrete approximation X̂, i.e., taking only finitely many values from the image space of X,
that can actually be simulated.

In the following, we will introduce some basic concepts of quantization for distributions
on R, the link to the n-centers problem (for n a natural number), which allows a convenient
geometrical interpretation, and results for the weak asymptotics of particular probability
distributions as n tends to infinity. In particular for the one-dimensional standard normal
distribution. Note, that the results carry over to Rd in a straightforward way. As a main refer-
ence we use Graf and Luschgy [29], in particular the first chapter therein. Thereafter we will
consider the more general infinite-dimensional Hilbert space L2([0, 1]) and the quantization
of the distribution of a Brownian bridge on this space. As a reference we will use Luschgy
and Pagès [41]. Finally we deal with the quantization of the distribution of the solution of a
scalar SDE on L2([0, 1]), cf. (9) with r = d = 1. Here, Müller-Gronbach and Ritter [48] will
serve as a reference. We stress, that the quantization of the standard normal distribution is
the most crucial part. That is because it is the only probability distribution needed for the
Brownian bridge construction, as described in Section II.1. Moreover, Brownian increments
are the only source of randomness in the class of (scalar) SDEs that we are going to consider,
cf. (9).

The first thing we need to do is to quantify the quality of an approximation of a prob-
ability distribution. As mentioned before, we start with the space of real numbers R, and
we equip it with the Euclidean norm. We point out, that due to norm-equivalences this
is no severe restriction when considering weak approximations. Furthermore, we denote by
M(R) the set of all Borel probability measures on R, which have a finite second moment.
The distance between two probability measures µ1 and µ2 from M(R) is measured by the
Wasserstein distance of order two, i.e.,

d(µ1, µ2) = inf
{(

E |X1 −X2|2
)1/2

: PX1 = µ1, PX2 = µ2

}
.(11)

We stress that X1 and X2 need to be defined on a common probability space. Moreover,
both take values in R and PX1 and PX2 denote the distributions of X1 and X2, respectively.
Sometimes, in particular in Graf and Luschgy [29], d is called the Wasserstein-Kantorovitch
L2-metric. (In fact the metric axioms are a consequence of the separability of the underlying
space R.) We mention that, more general, one can consider Wasserstein distances of order
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r with 1 ≤ r < ∞, assuming the corresponding finite r-th moment of the involved proba-
bility measures. For the discussion and result that the Wasserstein distance is appropriate
for studying the quantization problem, we refer to Pollard [58], and especially Pollard [58,
Theorem III.3].

Now, for n ∈ N we can define the n-th (minimal) quantization error of a given probability
measure µ ∈M(R). Let

Fn(R) =
{
ν ∈M(R) : there exist x1, . . . , xn : ν({x1, . . . , xn}) = 1

}
.

Then Fn(R) is the set of all probability measures on R with a support of size at most n. The
n-th quantization error of µ is defined by

quantn(µ) = inf
{
d(µ, ν) : ν ∈ Fn(R)

}
.(12)

One can also find the following definition of the n-th quantization error in terms of a
random variable X with distribution µ,

quantn(X) = inf
{(

E |X − f(X)|2
)1/2

: f : R→ R measurable, |f(R)| ≤ n
}
.(13)

The mappings f in (13) are often referred to as n-quantizers. An n-quantizer for which the
infimum in (13) is attained, is called an n-optimal quantizer.

The equivalence of (12) and (13) is covered by Graf and Luschgy [29, Lemma 3.4]. Later,
in particular in Section III.2, we will stick to the first definition, (12), nevertheless the second
definition, (13), is helpful in the upcoming comparison to the n-centers problem and Voronoi
partitions of R.

Let X be a random variable, taking values in R, with probability distribution µ ∈M(R).
The n-centers problem of order two is given by

centersn(X) = inf
{(

E
(

min
a∈α
|X − a|2

))1/2

: α ⊆ R, |α| ≤ n
}
.(14)

A set α ⊆ R for which the infimum in (14) is attained, is called an n-optimal set of centers
for µ.

To understand why this is called n-centers problem, let us take a look to Voronoi parti-
tions of R. Let α ⊆ R be countable and closed. Then {V (a|α) : a ∈ α} with

V (a|α) =
{
x ∈ R : |x− a| = min

b∈α
|x− b|

}
(15)

is called Voronoi diagram of α, where V (a|α) is the set of all points x ∈ R having a as a
nearest point in α. Next, we consider a Borel measurable partition {Aa : a ∈ α} of R. If there
exists a Borel probability measure µ ∈M(R) such that

Aa ⊆ V (a|α) µ-almost-surely

for every a ∈ α, then {Aa : a ∈ α} is called a Voronoi partition of R with respect to α.
The existence of Voronoi partitions with respect to α ⊆ R is a consequence of Graf and
Luschgy [29, Proposition 1.1]. One advantage of Voronoi partitions is that they allow the
following geometric interpretation. The elements from a Voronoi partition of R are closed
intervals, and for Voronoi partitions of Rd, to which the definitions and results from the
one-dimensional case carry over, see Graf and Luschgy [29, Section I.1], the elements of a
Voronoi partition with respect to α are star shaped with respect to the respective a ∈ α, see
Graf and Luschgy [29, Proposition 1.2].

We take a look at the link between Voronoi partitions of R and the n-centers problem.
Indeed a set of n centers α ⊆ R generates a Voronoi partition of R with respect to some
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µ ∈ M(R). The elements from α are the centers of this Voronoi partition in the sense of
(15). Conversely, a Voronoi partition of R with respect to µ, consisting of up to n elements,
yields a set of n-centers α ⊆ R.

Now, that we have this geometric interpretation of the n-centers problem at hand, we
need to establish the connection to the n-quantization problem. In fact, for a random variable
X with distribution µ ∈M(R), Graf and Luschgy [29, Lemma 3.1] yields

quantn(µ) = centersn(X)(16)

for all n ∈ N. Here, we actually see the advantage of the reformulation (13) of the n-
quantization problem in terms of a random variable. Indeed, comparing (13) and (14), the
proof essentially reduces to the following two constructions. For α ⊆ R with |α| ≤ n we
choose a Voronoi partition {Aa : a ∈ α} and set f =

∑
a∈α a · 1Aa in (13). Conversely, for

a given function f taking at most n different values in R, we define α as the image of f in
(14).

This completes our characterization of the n-th quantization error quantn(µ) of Borel
probability measures µ ∈M(R), and we turn to the asymptotic behaviour of quantn(µ), as
n tends to infinity.

Example 1. As an elementary example we first consider µ being the uniform distribu-
tion on the unit interval. For n ∈ N, an n-optimal set of centers is given by αn = {2i−1

2n
: i =

1, . . . , n}, see Graf and Luschgy [29, Example 4.17]. Let X be a random variable with dis-
tribution µ. An elementary computation shows

E
(

min
a∈αn
|X − a|2

)
=

n∑
i=1

∫
[

2i−2
2n

,
2i
2n

](x− 2i−1
2n

)2
= (4 · 3)−1 · n−1.

By the characterization (16) of the n-th quantization error, we obtain

quantn(µ) = (2 ·
√

3)−1 · n−1

for all n ∈ N.

The following result, concerning the quantization of the standard normal distribution,
is due to Bucklew and Wise [8, Theorem 2]. It is also covered by Graf and Luschgy [29,
Theorem 6.2]. For sake of completeness let us mention that also strong asymptotic results
are available, see, e.g., Graf and Luschgy [29, p.124] for the quantization coefficient for the
standard normal distribution. Furthermore, the result on the weak asymptotics holds in
general for d-dimensional probability measures, that are absolutely continuous with respect
to the d-dimensional Lebesgue measure, and which have a finite 2 + ε moment for some
ε > 0.

Proposition 1. Let µ be the standard normal distribution. Then we have

quantn(µ) � n−1.

The construction of a sequence of n-quantizers for the standard normal distribution µ,
in terms of a random variable X with PX = µ, is, e.g., given in Müller-Gronbach and Ritter
[48, Section 3.1].

Remark 7. We give yet another depictly interpretation of the n-quantization problem,
see (12) and (13), which in particular applies for the standard normal distribution. Let X
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be a random variable with distribution µ ∈ M(R) and cumulative distribution function F .
By F−1 we denote the inverse distribution function defined by

F−1(u) = inf{x ∈ R : F (x) ≥ u}, u ∈ [0, 1],

which may formally be set to ±∞ in the boundary points. It is well-known that for U
uniformly distributed on the unit interval, F−1(U) has the same distribution as X, i.e.,
F−1(U) is distributed according to µ, see Proposition 6 in the Appendix. Consequently,
taking into account (16) and its discussion, the n-quantization problem of µ respective X
(taking up to n values from the image of X) corresponds to the determination of up to n
points α from [0, 1] such that the set F−1(α) solves the n-centers problem, see (14), i.e.,
F−1(α) is an n-optimal set for µ. In this sense, we are looking for an optimal knot selection
for a piecewise constant approximation of the function F−1 on the unit interval.

With Proposition 1 at hand, we turn to the quantization in the infinite-dimensional
Hilbert space L2([0, 1]) equipped with the standard L2([0, 1])-norm. At first, we fix the no-
tation. Actually, the definitions (11) and (12) immediately carry over to L2([0, 1]), i.e., the
Wasserstein distance of order two is defined by

d(µ1, µ2) = inf
{(

E ‖X1 −X2‖2
L2([0,1])

)1/2
: PX1 = µ1, PX2 = µ2

}
(17)

for Borel probability measures µ1, µ2 ∈M(L2([0, 1])), as well as, the n-th quantization error
of µ ∈M(L2([0, 1])) is defined by

quantn(µ) = inf
{
d(µ, ν) : ν ∈ Fn(L2([0, 1]))

}
,(18)

where

Fn(L2([0, 1])) =
{
νf ∈M(L([0, 1])) : f : {1, . . . , n} → L2([0, 1]) measurable

}
is the set of all probability measures on L2([0, 1]) with a support size of at most n.

We first consider the Wiener measure on L2([0, 1]). For the following result, see, e.g.,
Dereich et al. [18, Example 5.1].

Proposition 2. For the Wiener measure µ ∈M(L2([0, 1])) it holds

quantn(µ) � (log(n))−1/2,

i.e., the quantization error converges only with a logarithmic rate, in contrast to the polyno-
mial rate we have for the standard normal distribution, cf. Proposition 1.

Actually, Dereich et al. [18, Example 5.1] even provides tight bounds for the quantization
coefficient

lim
n→∞

(log(n))1/2 · quantn(µ) ∈
[
1/
√

8, 1
]
.

This result is also valid for Wasserstein distances of order r with 1 ≤ r < ∞. For the
Wasserstein distance of oder two, it has been shown (in an information theoretical setting)
in Binia et al. [6, Example 1], that the lower bound can be improved to

√
2/π, which is

slightly better. For the general setting of the space Lp([0, 1]) we refer to Dereich et al. [18,
Example 5.1].

For sake of completeness, let us mention that there is a similar result if the space L2([0, 1])
is replaced by the space of continuous functions C([0, 1]), equipped with the supremum norm.
Here, the Wiener measure µ satisfies

lim
n→∞

(log(n))1/2 · quantn(µ) ∈
[
π/
√

8, π
]
.
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Note that the definitions of the Wasserstein distance (17) and the quantization error (18)
carry over immediately by replacing L2([0, 1]) by C([0, 1]).

The following result, which can, e.g., be found in Luschgy and Pagès [41, Section 5.4,
p.527], handles the (standard) Brownian bridge in the setting of Proposition 2.

Proposition 3. Let µ be the distribution of the (standard) Brownian bridge in L2([0, 1]).
Then we have

quantn(µ) � (log(n))−1/2,

i.e., we have the same (weak) order of convergence as for the Wiener measure on L2([0, 1]).

Note, that the result above can also be derived from Proposition 2 due to the close
relation of the Brownian motion and the Brownian bridge, as discussed in Section II.1.
Hence, also tight bounds on the quantization coefficient can be derived from those for the
Wiener measure.

Finally, we consider the distribution of the solution of a scalar autonomous SDE

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), t ∈ [0, 1](19)

with deterministic initial value x0 ∈ R and a scalar driving Brownian motion, cf. (9) with
r = d = 1. Here, we use some stronger assumptions on the drift and diffusion coefficients, a
and b, than in Section II.2. Namely, we suppose that a and b are differentiable with bounded
and Lipschitz continuous derivatives. Obviously, this implies the global Lipschitz property
of these coefficients. Consequently, the existence and uniqueness theorem for the solution of
an autonomous SDE, namely Theorem 1, applies to the current setting. Furthermore, we
assume that b(x0) 6= 0 to exclude the case of a deterministic (ordinary differential) equation.
This is essential when considering lower bounds for the quantization error.

The following result is proven in Dereich [14, Theorem 1.1].

Proposition 4. Let µ be the distribution of the scalar SDE (19). Then the quantization
error, see (18), satisfies

quantn(µ) � (log(n))1/2.

The same result for the asymptotic behaviour of the quantization error is obtained in
Creutzig et al. [12, Proposition 3] and Luschgy and Pagès [42, Section 3.1, Theorem 1]. Here,
(slightly) stronger assumptions on the coefficients of the SDE, see (19), have been used. Note
that, as for the Wiener measure, the result carries over to the space C([0, 1]) equipped with
the supremum norm.

III.2. Random Bit Approximation

The main aim in this section is to derive analogous results to Proposition 1, Proposition 2,
and Proposition 4, as well as similar results for the distribution of centered Gaussian random
elements in a separable Hilbert space, in the random bit approximation setting, as we will call
it. Recall, that a random bit is a Bernoulli random variable on {0, 1} with 1/2 probability
of success. Indeed, it will turn out that the random bit approximation problem is a severe
restriction of the quantization problem in Section III.1, i.e., at least for some probability
distributions, the bit approximation problem is harder than the quantization problem, that
means it achieves a worse (weak) asymptotic rate of convergence.

Moreover, we will discuss recent result form Xu and Berger [67] for Borel probability
measures over R, and relate them to our results.
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In difference to our proceeding in Section III.1, we will immediately give the definitions
involved in the random bit approximation problem in a separable Banach space (V, ‖ · ‖V ),
instead of generalizing them from (R, |·|), which was convenient for the quantization problem,
due to discussing, e.g., geometrical interpretations of the quantization problem in the special
case of the space R.

Let (V, ‖ · ‖) be a separable Banach space and M(V ) the set of all Borel probability
measures on V with a finite second moment. As in Section III.1 we equip M(V ) with the
Wasserstein distance d of order two

d(µ1, µ2) = inf
{(

E ‖X1 −X2‖2
V

)1/2

: PX1 = µ1, PX2 = µ2

}
for µ1, µ2 ∈M(V ), cf. (11) and (17). In contrast to Section III.1, as approximations of a given
Borel probability measure µ ∈M(V ) we will only consider discrete probability measures on
V with a support size of at most 2p and with probability weights being integer multiples of
2−p. For p ∈ N let ν(p) denote the uniform distribution on {0, 1}p, then the corresponding
set of discrete Borel probability measures is denoted by

R(V, p) =
{
ν

(p)
f ∈M(V ) : f : {0, 1}p → V measurable

}
,

where ν
(p)
f denotes the distribution of f with respect to ν(p). Since p random bits obviously

yield a uniform distribution on {0, 1}p, clearly, p random bits suffice to sample from any
ν(p) ∈ R(V, p).

Definition 1. Given µ ∈ M(V ) we define the p random bit approximation error of µ
or simply p-bit approximation error of µ, as the distance

rbit(µ, p) = inf
{
d(µ, ν) : ν ∈ R(V, p)

}
between µ and R(V, p). Cf. the definition of the n-th quantization error in (12). In this
context, we will also use the notion of a p (random) bit approximation problem of µ or simply
a (random) bit approximation of µ. We use the same terminology for a random variable X
with distribution µ.

Our aim is to determine the asymptotic behaviour of rbit(µ, p) as p tends to infinity, and
to construct probability measures µ(p) ∈ R(V, p) such that d(µ1, µ2) is ‘close’ to rbit(µ, p).
Specifically, we are interested in separable Hilbert spaces (H, ‖ · ‖H) as in Proposition 1,
Proposition 2, and Proposition 4. That is, µ being the one-dimensional standard normal
distribution on H = R, the distribution of a Brownian bridge on H = L2([0, 1]), and finally
the distribution of the solution of the scalar SDE (19) on H = L2([0, 1]). Moreover, we
consider centered Gaussian random elements in a separable Hilbert space, having an infinite-
dimensional support.

Remark 8. Since, clearly, R(V, p) ⊆ R(V, p+ 1) for every p ∈ N, we also have

rbit(µ, p+ 1) ≤ rbit(µ, p)

for every µ ∈M(V ) and every p ∈ N.

Remark 9. Sometimes we will be interested in a particular subset of R(V, p). Namely,
the set of all discrete probability measures µ(p) on V with a support of size (exactly) 2p and
uniform probability weights 2−p. We denote this set by

U(V, p) =
{
ν

(p)
f ∈ R(V, p) : f : {0, 1}p → V is injective

}
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for all p ∈ N. Note that this is no hard restriction for the p-bit approximation problem of
µ ∈M(V ), in the sense, that we have

rbit(µ, p) = inf
{
d(µ, ν) : ν ∈ U(V, p)

}
for all p ∈ N. This is an immediate consequence of the fact that there exists a dense embed-
ding of U(V, p) in R(V, p) with respect to the Wasserstein distance d for all p ∈ N.

Remark 10. We discuss the relation between random bit approximation and quantiza-
tion of probability measures for finite and infinite-dimensional spaces V , see Section III.1 for
quantization and quantization results. The difference between both notions is that n quan-
tization for n ∈ N allows all Borel probability measures M(V ) with a finite support of size
at most n, while p-random bit approximations with p ∈ N only allow uniform distributions
on a support of size 2p, or probability weights that are integer multiples of 2p on a support
with a size of at most 2p. Consequently, using the notation

quant(µ, p) = quant2p(µ),

see (12), we have

rbit(µ, p) ≥ quant(µ, p)

for all µ ∈ M(V ) and for all p ∈ N. In particular, the quantization problem yields lower
bounds on the (weak) rate of convergence for the random bit approximation problem, as p
tends to infinity.

Before we start with the analysis and construction of random bit approximations of
particular probability distributions µ ∈M(V ), as already mentioned in the introduction to
the current section, we discuss some results from Xu and Berger [67] for the one-dimensional
case V = R. Here, the authors have thoroughly studied the case V = R in a more general
setting. Especially, given p ∈ N and probability weights a1, . . . , a2p , their objective is to
minimize the Wasserstein distance of order r with 1 ≤ r < ∞, between a Borel probability
measure µ on R, having a finite moment of order r, and ν =

∑2p

k=1 ak · δxk with Dirac
measures δxk at any point xk. In Xu and Berger [67] this problem is called finite constrained
approximation problem with prescribed weights ak. A generalization of some of the results
from Xu and Berger [67] to the d-dimensional Banach space Rd, for any d ∈ N , equipped
with the maximum norm, is given in Chevallier [9].

Remark 11. Let Ψ−1 denote the inverse of the distribution function of some µ ∈M(V ).
According to Xu and Berger [67, Remark 5.6(ii)] the unique best approximation ν ∈ U(R, p)
with respect to the Wasserstein distance d is determined by the points

x∗k = 2p ·
∫ k·2−p

(k−1)·2−p
Ψ−1(t) dt, k = 1, . . . , 2p.(20)

We briefly discuss the idea of this result. Actually, it is a consequence of Xu and Berger [67,
Theorem 5.5]. Here, it is in particular shown that for uniform probability weights 2−p and

Dirac measures δx1 , . . . , δx2p , the approximation ν =
∑2p

k=1 2−p · δxk is optimal if and only
if xk is chosen from the interval [Ψ−1((k − 1) · 2−p),Ψ−1(k · 2−p)], formally excluding the
boundary points Ψ−1(0) and Ψ−1(1). This result heavily relies on the (strict) monotonicity
of Ψ−1 and analogously holds for arbitrary probability weights a1, . . . , a2p , and in the context
of Wasserstein distances of order r with 1 ≤ r < ∞. With this result at hand, one can (for
our setting) exploit a special, easily verified, property for the L2-norm. Namely, the local
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expectation x∗k minimizes E ‖Ψ−1(·)−xk‖L2 on the interval [(k−1) ·2−p, k ·2−p] with respect
to xk.

We now assume that the measure corresponding to Ψ−1 is absolutely continuous with
respect to the Lebesgue measure on the unit interval. Then in Xu and Berger [67, Theorem
5.15] a constant c ∈ ]0,∞[ ∪ {∞} is given explicitly such that

lim
p→∞

2p · rbit(µ, p) = c.(21)

This in particular gives a lower bound on the convergence rate of rbit(µ, p), which is sharp if
and only if c is finite. As an elementary example we consider µ being the uniform distribution
on the unit interval. Then, we have c = (2 ·

√
3)−1, cf. also Example 1.

Next, we assume that all moments of µ are finite. Then, due to Xu and Berger [67,
Theorem 5.20], we have

rbit(µ, p) 4 (2p)−1/2+ε(22)

for all ε > 0. That is, roughly speaking, an upper bound on the weak rate of convergence of
2−p/2.

Remark 12. For the proofs of upper bounds for rbit(µ, p) we will sometimes use the

following simple observation. Let (Ṽ , ‖ · ‖Ṽ ) denote a separable Banach space different to

(V, ‖ · ‖V ) and let µ(p) ∈ R(Ṽ , p), i.e., a discrete Borel probability measure over Ṽ with

support of size at most 2p. For a measurable mapping f : Ṽ → V we have µ
(p)
f ∈ R(V, p),

where ν
(p)
f denotes the distribution of f with respect to µ(p).

III.2.1. Standard Normal Distribution. Here, we consider V = R. At first we fix
some notations. For p ∈ N let

D(p) =
{ p∑
i=1

bi · 2−i + 2−(p+1) : bi ∈ {0, 1} for i = 1, . . . , p
}

=
{
k · 2−p − 2−(p+1) : k = 1, . . . , 2p

}
denote the set of dyadic numbers from [0, 1[ based on p bits, shifted by 2−(p+1), so that the
set D(p) is symmetric with respect to 1/2. Furthermore, we define the truncation operator
T (p) via

T (p) : [0, 1[→ D(p), x 7→ b2
p · xc
2p

+ 2−(p+1),(23)

i.e., the application of T (p) means rounding to a nearest element from D(p). From a geomet-
rical point of view, that is, the interval [(k − 1) · 2−p, k · 2−p[ is projected onto its midpoint
k · 2−p − 2−(p+1). Indeed, the operator T (p) is a metric projection of [0, 1[ equipped with the
metric induced by the Euclidean norm, onto the closed subset D(p), see Definition 10 in the
Appendix for the definition of a metric projection.

In the sequel, let Y denote a standard normally distributed random variable and let
Φ denote the corresponding distribution function with inverse distribution function Φ−1.
Observe that U = Φ(Y ) is uniformly distributed on [0, 1], see Proposition 6 in the Appendix,
so that T (p) is uniformly distributed on D(p). Consequently, the distribution of

Y (p) = Φ−1 ◦ T (p) ◦ Φ(Y )(24)

belongs to U(R, p), i.e., the distribution of Y (p) serves as a p-bit approximation of the standard
normal distribution.
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Theorem 4. Let µ denote the standard normal distribution. Then we have

rbit(µ, p) � 2−p/2 · p−1/2.(25)

Furthermore, let Y (p) be the p-bit approximation of Y as in (24). Then(
E
∣∣Y − Y (p)

∣∣2)1/2

� rbit(µ, p),(26)

i.e., the sequence (Y (p))p∈N yields the optimal (weak) rate of convergence for the random bit
approximation problem of µ. Moreover,

E
(
Y (p)

)
= 0,(27)

i.e., Y (p) is a centered random variable for all p ∈ N, and

sup
p∈N

E
(∣∣Y (p)

∣∣r) <∞(28)

for all r ≥ 1.

Before we turn to the proof of Theorem 4, we gather some preparing technical results
regarding some asymptotic properties of the distribution function Φ and the inverse distri-
bution function Φ−1 of the standard normal distribution.

Let ϕ denote the density function of the standard normal distribution. Concerning the
(strong) asymptotics of Φ, we make use of

1− Φ(x) ≈ x−1 · ϕ(x)(29)

as x tends to infinity, which is well known and follows, e.g., immediately from L’Hôpital’s
Rule.

Lemma 2. For the (strong) asymptotics of the the inverse distribution function Φ−1 of
the standard normal distribution close to 1 we have

Φ−1
(
1− 2−p

)
≈ (ln(4))1/2 · p1/2

as p tends to infinity.

Proof. First we rewrite the claimed property of Φ−1. Let c = (ln(4))1/2 and x = 1−2−p,
i.e., p = − log2(1− x). Then the claim is equivalent to

Φ−1(x) ≈ c ·
(
− log2(1− x)

)1/2

as x tends to 1 (from below). Setting x = Φ(y) this can equivalently be expressed in terms
of Φ by

y ≈ c ·
(
− log2

(
1− Φ(y)

))1/2

as y tends to infinity. Using (29), the (strict) monotonicity of the logarithmic function, and
locally the of x 7→ x2, and L’Hôpital’s Rule, we obtain in fact

− log2(1− Φ(y)) ≈ − log2

(
y · ϕ(y)

)
≈ − log2

(
exp(−y2/2)

)
= (2 · ln(2))−1 · y2 = c−2 · y2

as y tends to infinity. �
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Lemma 3. Let the function h : ]0,∞[→ R be defined via

h(x) =

∫ x

0

exp(y2/2) dy.

Then we have

2−p · p · h
(
Φ−1(1− 2−p)

)
≈
(√

2π · ln(4)
)−1

as p tends to infinity.

Proof. Let x = Φ−1(1− 2−p). By L’Hôpital’s Rule, or integration by parts, one verifies,
similar to (29), that

h(x) ≈ x−1 · exp(x2/2)(30)

as x tends to infinity. Moreover, Lemma 2 yields

p ≈ x2 · (ln(4))−1(31)

as p tends to infinity, and by definition of x we have

2−p = 1− Φ(x).(32)

Finally, (30) – (32) together with (29) combine to

2−p · p · h(x) ≈
(
1− Φ(x)

)
· x2 · (ln(4))−1 · x−1 · exp(x2/2)

(29)
≈ x−1 · ϕ(x) · exp(x2/2) · x · (ln(4))−1

=
(√

2π · ln(4)
)−1

as p tends to infinity. �

Lemma 4. Let the function g : ]0,∞[→ R be defined via

g(x) =

∫
[x,∞[

(y − x)2 · ϕ(y) dy.

Then we have

g
(
Φ−1

(
1− 2−(p+1)

))
≈ 2−p · p−1 · (ln(4))−1

as p tends to infinity.

Proof. Set x = Φ−1(1− 2−(p+1)). We are going to show

g(x) ≈ 2 ·
(
1− Φ(x)

)
· x−2(33)

as x tends to infinity. Then plugging in the definition of x in Φ(x) we obtain

g(x) ≈ 2−p · x−2

as x (and therefore also p) tends to infinity. It remains to apply Lemma 2 to x−2 and we
immediately get the claim

g(x) ≈ 2−p · p−1 · (ln(4))−1

as x (and therefore also p) tends to infinity, finishing the proof. So, let us turn to (33). By
(29) the relation (33) is equivalent to

g(x) ≈ 2 · ϕ(x) · x−3(34)
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as x tends to infinity. To show this, we will iteratively use L’Hôpital’s Rule. Therefore, we
compute the first three derivatives of g with respect to x

g′(x) = −2 ·
∫

[x,∞[

(y − x) · ϕ(y) dy,

g′′(x) = 2 ·
∫

[x,∞[

ϕ(y) dy,

g′′′(x) = −2 · ϕ(x),

as well as, for the right hand side of (34)

d

dx

(
ϕ(x) · x−3

)
= −ϕ(x) · x−2 − 3 · ϕ(x) · x−4,

d

dx

(
−2 · ϕ(x) · x−2

)
= 2 · ϕ(x) · x−1 + 4 · ϕ(x) · x−3,

d

dx

(
2 · ϕ(x) · x−1

)
= −2 · ϕ(x)− 2 · ϕ(x) · x−2.

Using three times L’Hôpital’s Rule yields

lim
x→∞

g(x)

2 · ϕ(x) · x−3
= lim

x→∞

g′(x)

−2 · ϕ(x) · x−2

= lim
x→∞

g′′(x)

2 · ϕ(x) · x−1

= lim
x→∞

g′′′(x)

−2 · ϕ(x)
= 1,

i.e., (33) is verified. �

Lemma 5. For 0 < x < 1 we define the real valued functions

u(x) = ϕ
(
Φ−1(1− x)

)
and

v(x) = x ·
(
ln(x−1)

)1/2
.

Then we have

u(x) ≈
√

2 · v(x)

as x tends to zero (from above).

Proof. At first, we show an auxiliary result for ũ(x) = u(x)2 and ṽ(x) = v(x)2 with
derivatives

ũ′(x) = 2 · ϕ
(
Φ−1(1− x)

)
· Φ−1(1− x),

ũ′′(x) = 2 ·
(
Φ−1(1− x)

)2 − 2,

as well as,

ṽ′(x) = −2 · x · ln(x)− x,
ṽ′′(x) = −2 · ln(x)− 3.
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Consequently, two consecutive applications of L’Hôpital’s Rule yield

lim
x→0

ṽ(x)

ũ(x)
= lim

x→0

−2 · ln(x)− 3

2 ·
(
Φ−1(1− x)

)2 − 2
= lim

x→0

ln
(
x−1
)(

Φ−1(1− x)
)2 .(35)

Due to the local monotonicity of x 7→ x2 we can apply Lemma 2 with x = 2−p to the last
quotient, in order to obtain(

Φ−1(1− x)
)2 ≈ ln(4) ·

(
− log2(x)

)
= 2 · ln

(
x−1
)

as x tends to zero (from above). Together with (35) that is

ṽ(x) ≈ ũ(x)/2

as x tends to zero (from above). The local monotonicity of x 7→ x1/2 yields the claim. �

Lemma 6. We have

Φ−1(x1)− Φ−1(x0) < (x1 − x0) · (1− x0)−1 ·
(
− ln(1− x0)

)−1/2

uniformly in 1/2 < x0 < x1 < 1.

Proof. At first, we note that the derivative of Φ−1 at some point x ∈]0, 1[ is given by(
ϕ
(
Φ−1(x)

))−1
with ϕ the standard normal density function. Then the mean value theorem

yields the existence of ξ ∈ ]x0, x1[ such that

Φ−1(x1)− Φ−1(x0) = (x1 − x0) ·
(
Φ−1

)′
(ξ) ≥ (x1 − x0) ·

(
ϕ
(
Φ−1(x0)

))−1
,

where the inequality is due to
(
ϕ
(
Φ−1(x)

))−1
monotonically decreasing for decreasing x in

]1/2, 1[. The statement is now an immediate consequence of Lemma 5 with 1− x = x0 and
x0 tending to 1 (from below). �

Proof. (of Theorem 4) By Definition 1 of the p-bit approximation error of µ together
with Y (p) ∈ U(R, p), we have

rbit(µ, p) ≤
(

E
∣∣Y − Y (p)

∣∣2)1/2

.(36)

Hence we show that the sequence (Y (p))p∈N satisfies(
E
∣∣Y − Y (p)

∣∣2)1/2

4 2−p/2 · p−1/2.(37)

To this end, let U be uniformly distributed on the unit interval. Due to Proposition 6 in the
Appendix we have

E
∣∣Y − Y (p)

∣∣2 = E
∣∣Φ−1(U)− Φ−1 ◦ T (p)(U)

∣∣2.(38)

Furthermore, let zk = k ·2−p for k = 2p−1, . . . , 2p, and let ϕ denote the density of the standard
normal distribution. Using (38) and the point symmetry of Φ−1 respective Φ−1 ◦ T (p) at the
point 1/2, we obtain

E
∣∣Y − Y (p)

∣∣2 = 2 ·
2p∑

k=2p−1+1

Ak,

where

Ak =

∫
[zk−1,zk[

∣∣Φ−1(u)− xk
∣∣2 du

with xk = Φ−1
(
zk − 2−(p+1)

)
∈ D(p).
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We consider different cases, starting with 2p−1 + 1 ≤ k ≤ 2p − 2. Observe that the
derivative of Φ−1 is given by ϕ◦Φ−1. For the integrand in Ak, the mean value theorem yields
for every u ∈ [zk−1, zk[ existence of ξ ∈ [zk−1, zk[ such that∣∣Φ−1(u)− xk

∣∣ =
∣∣Φ−1(u)− Φ−1(zk − 2−(p+1))

∣∣ ≤ ∣∣u− (zk − 2−(p+1))
∣∣ · (ϕ(Φ−1(ξ)

))−1
.

Since ϕ ◦ Φ−1 is monotonically decreasing for increasing argument in [1/2, 1[, we obtain∣∣Φ−1(u)− xk
∣∣ ≤ ∣∣u− (zk − 2−(p+1))

∣∣
ϕ
(
Φ−1(zk)

) .

Plugging in this estimate in the definition of Ak, a simple computation shows

Ak ≤
2−3p

12 ·
(
ϕ
(
Φ−1(zk)

))2 .

Consequently, using integration by substitution, we get

2p · p ·
2p−2∑

k=2p−1+1

Ak ≤
2−p · p

12
· 2−p

2p−2∑
k=2p−1+1

(
ϕ
(
Φ−1(zk)

))−2

≤ 2−p · p
12

·
∫ 1−2−p

1/2

(
ϕ
(
Φ−1(u)

))−2
du

=
2−p · p

12
·
∫ Φ−1(1−2−p)

Φ−1(1/2)

(
ϕ
(
Φ−1(x)

))−1
dx

=
2−p · p ·

√
2π

12
· h
(
Φ−1

(
1− 2−p

))
,

where

h(x) =

∫ x

0

exp(y2/2) dy

for x > 0. By Lemma 3, we have

h
(
Φ−1

(
1− 2−p

))
≈ 2p · p−1 ·

(√
2π · ln(4)

)−1

as p tends to infinity. Together with the above estimate we obtain

lim sup
p→∞

2p · p ·
2p−2∑

k=2p−1+1

Ak ≤
1

12 · ln(4)
.

It remains to estimate Ak for k = 2p − 1 and k = 2p. Due to the convexity of Φ−1 on
[1/2, 1[ we have (using integration by substitution) for every 2p−1 + 1 ≤ k ≤ 2p

Ak ≤ 2 ·
∫

[zk−1+2−(p+1),zk[

∣∣Φ−1(u)− xk
∣∣2 du = 2 ·

∫
[xk,Φ−1(zk)[

(x− xk)2 · ϕ(x) dx.(39)

Furthermore, the convexity of Φ−1 on [1/2, 1[ implies that this upper bound is monotonically
increasing in k. Therefore, the case k = 2p also covers k = 2p − 1. Put

g(x) =

∫
[x,∞[

(x− y)2 · ϕ(y) dy(40)

for x > 0. By Lemma 4 we have

g
(
Φ−1

(
1− 2−(p+1)

))
≈ 2−p · p−1 · (ln(4))−1
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as p tends to infinity. Together with (39) we obtain

A2p 4 2−p · p−1 · 2 · (ln(4))−1.

Altogether we have

lim sup
p→∞

2p · p · E
∣∣Y − Y (p)

∣∣2 ≤ 1

12 · ln(4)
+ 2 · 2

ln(4)
=

49

12 · ln(4)
.

This completes the proof of the upper bound (37).
Next, we show the lower bound

2−(p/2) · p−1/2 4 rbit(µ, p).(41)

To this end, we consider an (arbitrary) discrete random variable Ŷ (p) with distribution in
R(R, p), which is defined on the same probability space as Y . By x̂ we denote the essential

supremum of Ŷ (p). We are going to consider two cases, at first we assume

x̂ ≤ Φ−1
(
1− 2−(p+1)

)
.

We observe that for u from [1− 2−(p+1), 1[ the monotonicity of Φ−1 yields∣∣Φ−1(u)− Ŷ (p)
∣∣ =

∣∣Φ−1(u)− x̂
∣∣ ≥ ∣∣Φ−1(u)− Φ−1

(
1− 2−(p+1)

)∣∣.
Consequently, for U being uniformly distributed on the unit interval, we have

E
(
Y − Ŷ (p)

)2 ≥ E
((

Φ−1(U)− Ŷ (p)
)2 · 1{U≥1−2−(p+1)}

)
≥ E

((
Φ−1(U)− Φ−1

(
1− 2−(p+1)

))2 · 1{U≥1−2−(p+1)}

)
= g
(
Φ−1

(
1− 2−(p+1)

))
,

where g as in (40). Lemma 4 implies

g
(
Φ−1

(
1− 2−(p+1)

))
< 2−p · p−1,

i.e., the claim (41) for the current case. For the second case, i.e.,

x̂ > Φ−1
(
1− 2−(p+1)

)
we use Lemma 6 with x = 1− 3 · 2−(p+2) and y = 1− 2−(p+1) to conclude that

Φ−1(y)− Φ−1(x) < p−1/2.

Together with the monotonicity of Φ−1 this leads to

E
(
Y − Ŷ (p)

)2 ≥E
((

Φ−1(U)− x̂
)2 · 1{Ŷ (p)=x̂} · 1{U≤x}

)
≥ E

((
Φ−1(x)− Φ−1(y)

)2 · 1{Ŷ (p)=x̂} · 1{U≤x}
)

< p−1 · P
({
Ŷ (p) = x̂

}
∩ {U ≤ x}

)
≥ p−1 ·

(
P
({
Ŷ (p) = x̂

})
− P ({U > x})

)
≥ p−1 ·

(
2−p − P ({U > x})

)
= p−1 · 2−(p+2),
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where U is uniformly distributed on the unit interval. This completes the proof of the lower
bound (41). Combining (36), (37) and (41) we obtain

2−p/2 · p−1/2 4 rbit(µ, p) ≤
(
E
∣∣Y − Y (p)

∣∣2)1/2
4 2−p/2 · p−1/2,

i.e., the claimed bit approximation rate (25), as well as, the claimed particular bit approxi-
mation rate (26) for (Y (p))p∈N, see (24).

For the proof of (27), i.e., Y (p) is a centered random variable for all p ∈ N, we observe
that T (p)(U) is uniformly distributed on D(p). Since Φ−1 is point symmetric with respect to
1/2, i.e., Φ−1(1− x) = Φ−1(x) for all x ∈ ]0, 1[, we get (27) for symmetry reasons.

Finally, we show (28). Observe that Φ−1 is a convex function on [1/2, 1[, and for r ≥ 1,
x 7→ xr is convex and monotonically increasing on [0,∞[. Therefore, Lemma 18 from the
Appendix yields convexity of x 7→

(
Φ−1(x)

)r
on [1/2, 1[. Consequently, for k = 2p−1 +

1, . . . , 2p, we have

2−p ·
∣∣Φ−1

(
k · 2p − 2−(p+1)

)∣∣r ≤ ∫ k·2p

(k−1)·2p

∣∣Φ−1(u)
∣∣r du,

which implies due to symmetry of Y and Y (p)

E
∣∣Y (p)

∣∣r ≤ E
∣∣Y ∣∣r

for all p ∈ N. In that sense, E
∣∣Y (p)

∣∣r can be regarded as a midpoint rule for the approximation
of E |Y |r. For (28) it remains to observe that all absolute moments of the standard normal
distribution are bounded, see Winkelbauer [66]. �

Remark 13. We compare our results from Theorem 4 with those from Xu and Berger
[67], as discussed in Remark 11, for the standard normal distribution µ.

We first note that the measure corresponding to Φ−1 is absolutely continuous with respect
to the Lebesgue measure on the unit interval. Due to (25), that is, rbit(µ, p) � 2−p/2 ·
p−1/2, we have c = ∞ in (21). Moreover, note that µ has finite moments of any order, see,
e.g., Winkelbauer [66]. As a consequence (22) in particular applies to µ, i.e., the order of
convergence of rbit(µ, p) is only slightly better than the upper bound from (22), which holds
indeed for every µ ∈M(R) that has finite moments of any order.

Next, we discuss the selection of the support points xk with k = 1, . . . , 2p for Y (p), as in
(24). Recall that we use the values of Φ−1 applied to the midpoints of a uniform partition of
[0, 1], namely xk(p) = Φ−1(k · 2−p − 2−(p+1)). Indeed this selection is not optimal, since (20)
with Ψ−1 = Φ−1 yields as the (unique) optimal selection x∗k(p) the local average of Φ−1 on
the subinterval [(k − 1) · 2p, k · 2p[. Nevertheless, the lower bound in (25) together with (26)
implies that our bit approximation Y (p) is optimal in the sense that no other construction,

in particular the one based on x∗k, which we will denote by Y
(p)
∗ , can yield a better order of

convergence for the bit approximation error than Y (p).

Finally, let us discuss whether the optimal bit approximation Y
(p)
∗ would help in Theo-

rem 4 in proofing the lower bound (41). First of all, instead of an arbitrary discrete random

variable Ŷ (p) with distribution in R(R, p) we consider the particular choice Y
(p)
∗ . The con-

vexity of Φ−1 on [1/2, 1[ implies that the essential supremum x∗ of Y
(p)
∗ is given by x∗2p and

satisfies

x∗ > Φ−1
(
1− 2−(p+1)

)
,

i.e., we no longer need a case distinction. In the proof of the remaining case, the more

involved one, the only difference is, that the set {Ŷ (p) = x̂} ∩ {U ≤ 1 − 3 · 2−(p+2)} is now
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explicitly known as the interval [1− 2−p, 1− 3 · 2−(p+2)[. We conclude, the optimal selection
of support points x∗k is of minor help for our proof of the lower bound (41).

Remark 14. We compare Theorem 4 with the corresponding result for the quantization
problem of the standard normal distribution µ, as stated in Proposition 1. We recall,

quant(µ, p) � 2−p.

I.e., the quantization error converges to zero much faster than the corresponding random bit
approximation error rbit(µ, p). We add that this is in general not the case, since, e.g., for
the uniform distribution on [0, 1] both quantities are of the same order 2−p, see Example 1
for the quantization result and Remark 11 in particular the example for (21) for the random
bit approximation result.

III.2.2. Brownian Bridge. Let B denote a standard Brownian bridge on [0, 1], which
may be considered as a centered Gaussian element that takes values in H = L2 = L2([0, 1]).
For convenience of the reader we briefly recall the main facts of the Lévy-Ciesielski construc-
tion of a Brownian motion as presented in Remark 3.

Let (Yi,j)i,j with i ∈ N and j = 1, . . . 2i−1 be an independent family of standard normally
distributed random variables and (si,j)i,j the family of Schauder functions given by (6). For
a one-dimensional standard Brownian bridge B we have

B(t) =
∞∑
i=1

2i−1∑
j=1

si,j(t) · Yi,j(42)

with convergence with respect to the L2-norm, see (8).
There are two natural dimensions of discretization for B. One is to cut off the infinite

sum in (42) after finitely many summands and the second dimension is the approximation
of the involved (independent) standard normal distributions Yi,j by means of random bits.

Concerning the first dimension of discretization, we define

B(`)(t) =
∑̀
i=1

2i−1∑
j=1

si,j(t) · Yi,j

for ` ∈ N, i.e., B(`) is the piecewise linear interpolation of B at the points k · 2−` with
k = 0, . . . , 2`. Observe that B(`) has 2`−1 summands, i.e., employs (the first) 2`−1 Schauder
functions.

Remark 15. This approximation is natural in the following sense. In the transition from
`−1 to ` exactly those Schauder functions s`,1, . . . , s`,2`−1 with a support size 2−`+1 are taken

into account. This corresponds to a ‘consistent’ local refinement of the approximation B(`−1)

on all subintervals [(k − 1) · 2−`+1, k · 2−`+1[ for k = 1, . . . , 2`−1. Since the local behaviour of
a Brownian bridge is independent from the considered time interval, cf. Markov property of
Brownian motion, see, e.g., Kallenberg [38, Theorem 11.11], there is (at least in our setting)
no reason for a different local refinement of the approximation on particular subintervals.
Hence we either consider the whole set {s`,k : k = 1, . . . , 2`−1} of Schauder functions or none
of them.

The following result for the (weak) order of convergence of the L2-error of B(`) is well
known, see, e.g., Ritter [59, Sect II.3] for references and remarks.
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Lemma 7. We have (
E
∣∣|B −B(`)

∥∥2

L2

)1/2

� 2−`/2.

For the second dimension of discretization, which we use on top of the first on, we consider
for fixed ` ∈ N a vector

p = (pi,j) ∈ N2`−1

with i = 1, . . . , ` and j = 1, . . . , 2i−1, of bit numbers. We define

B(`,p)(t) =
∑̀
i=1

2i−1∑
j=1

si,j(t) · Y
(pi,j)
i,j ,(43)

where Y
(pi,j)
i,j is the bit approximation of Yi,j according to (24). Note that the distribution of

B(`,p) belongs to U
(
L2, |p|

)
with

|p| =
∑̀
i=1

2i−1∑
j=1

pi,j.

This approach, which is appropriate for the construction of multilevel Monte Carlo algo-
rithms, as we will see in Section IV.5, has been suggested in Giles [25, p. 320]. At first, we
show a preparing lemma.

Lemma 8. The family of Schauder functions (si,j)i,j with i = 0 and j = 1 or i ∈ N and
j = 1, . . . , 2i−1, as defined in (6) satisfies

‖si,j‖2
L2([0,1]) = 3−1 · 2−2·i.

Proof. For i ≥ 1 we have, using integration by substitution,

‖si,j‖2
L2([0,1]) =

∫
Ii,j∪Ji,j

(si,j(t))
2 dt = 2 ·

∫
Ii,j

(si,j(t))
2 dt

= 2 ·
∫ 2−i

0

(
2(i−1)/2 · t

)2
dt = 2i ·

∫ 2−i

0

t2 dt = 3−1 · 2−2·i. �

Now, we can analyze the |p|-bit approximation B(`,p) of B(`) for large |p|.

Lemma 9. We have(
E
∥∥B(`) −B(`,p)

∥∥2

L2

)1/2

�
(∑̀
i=1

2i−1∑
j=1

2−pi,j · p−1
i,j · 2−2·i

)1/2

uniformly in ` ∈ N and p ∈ N2`−1.

Proof. Using Fubini’s theorem, Bienaymé’s formula, results from Theorem 4 for the

particular bit approximations Y
(pi,j)
i,j of Yi,j, and ‖si,j‖2

L2
� 2−2·i, which is due to Lemma 8,

we obtain

E
∥∥B(`) −B(`,p)

∥∥2

L2
=

∫ 1

0

E

(∑̀
i=1

2i−1∑
j=1

(
Y

(pi,j)
i,j − Yi,j

)
· si,j(t)

)2

dt

=

∫ 1

0

Var

(∑̀
i=1

2i−1∑
j=1

(
Y

(pi,j)
i,j − Yi,j

)
· si,j(t)

)
dt
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=

∫ 1

0

∑̀
i=1

2i−1∑
j=1

Var
((
Y

(pi,j)
i,j − Yi,j

)
· si,j(t)

)
dt

=
∑̀
i=1

2−i∑
j=1

E
(
Y

(pi,j)
i,j − Yi,j

)2

·
∫ 1

0

(si,j(t))
2 dt

�
∑̀
i=1

2i−1∑
j=1

2−pi,j · p−1
i,j · 2−2·i. �

With this auxiliary result we can establish a constructive upper bound on the random
bit approximation error rbit(µ, p) for the distribution µ of the Brownian bridge B on L2 by
means of the construction B(`,p).

Theorem 5. Let µ be the distribution of the standard Brownian bridge B on L2. Define
p(`) ∈ N2`−1 for ` ∈ N by

pi,j(`) = 2 · (`− i+ 1)(44)

for i = 1, . . . , ` and j = 1, . . . , 2i−1. Then we have

rbit(µ, |p(`)|) ≤
(

E
∥∥B −B(`,p(`))

∥∥2

L2

)1/2

4 |p(`)|−1/2(45)

and

|p(`)| = 2`+2 − 2 · `− 4 � 2`.

Proof. We write p and pi,j instead of p(`) and pi,j(`), respectively, to simplify the
notation. Due to B(`,p) ∈ U(L2, |p|), by definition

rbit(µ, |p|) ≤
(

E
∥∥B −B(`,p)

∥∥2

L2

)1/2

.

Hence we show that (
E
∥∥B −B(`,p)

∥∥2

L2

)1/2

4 |p|−1/2.

Since ∑̀
i=1

2i−1∑
j=1

2−pi,j · p−1
i,j · 2−2·i ≤

∑̀
i=1

2i−1∑
j=1

2−pi,j · 2−2·i = 2−2 · (2` − 1) · 2−2·` ≤ 2−`(46)

for the specific choice of the bit numbers pi,j, Lemmata 7 and 9 immediately yield(
E
∥∥B −B(`,p)

∥∥2

L2

)1/2

4
(

E
∥∥B −B`

∥∥2

L2

)1/2

+
(

E
∥∥B(`) −B(`,p)

∥∥2

L2

)1/2

4 2−`/2.

The explicit formula for |p| is easily verified by induction. Obviously, the claim holds true
for ` = 1. We show the induction step from ` to `+ 1

|p(`+ 1)| =
`+1∑
i=1

2i−1∑
j=1

2 · (`+ 1− i+ 1)

= 2` · 2 +
∑̀
i=1

2i−1∑
j=1

(
pi,j(`) + 2

)
= 2`+3 − 2 · (`+ 1)− 4.

The explicit formula for |p| implies clearly the weak asymptotic estimate |p| � 2`. �
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Corollary 1. Let µ be the distribution of the (standard) Brownian bridge on L2. Then
we have

rbit(µ, p) � quant(µ, p) � p−1/2.

In particular this (weak) order of convergence is achieved by B(`,p(`)), as defined in Theorem 5,
i.e., (

E
∥∥B −B(`,p(`))

∥∥2

L2

)1/2

� rbit(µ, |p(`)|).

Proof. By Proposition 3 we have the lower bound

p−1/2 4 quant(µ, p).

Moreover, by definition, cf. also Remark 10, we have

quant(µ, p) ≤ rbit(µ, p).

Finally, Theorem 5, in particular (45), yields the upper bound

rbit(µ, p) 4 p−1/2.

The statement for B(`,p(`)) is now an immediate consequence of (45). �

Remark 16. We gather some interesting facts on B(`,p(`)).

(i) Since the Schauder functions si,j have support of size 2−i+1, the bit approximation
B(`,p(`)) involves all Schauder functions with a support size between 1 and 2−`+1.
Moreover, the number of random bits that is associated to si,j, see (44), only depends
on the size of the support, see Remark 15 for the discussion why this is natural.
Furthermore, this number varies linearly between 2 · l and 2 in ascending index i.

(ii) Observe that in our construction of B(`,p(`)) the total number of bits |p(`)| coincides,
up to a multiplicative constant, with the number of terms in B(`,p(`)) and B(`). Since
each term needs to be approximated with at least one bit, |p(`)| is optimal up to
a multiplicative constant. That means, in particular, that the bit numbers given by
(44) approximately minimize |p| subject to the constraint (46).

(iii) Though the partial sum B(`) formally corresponds to pi,j = ∞ for i = 1, . . . , `
and j = 1, . . . , 2i−1, we still have the same order 2−`/2 for the convergence of the
approximation error of B(`) and B(`,p(`)), see Lemma 7 and Corollary 1.

Remark 17. As mentioned in Remark 16 (ii), the bit numbers given by (44) depend on
the index i and they approximately minimize |p|, subject to the constraint (46). This raises
the question whether the dependency on i is really necessary. To answer this question, we
consider constant bit numbers

p = pi,j for i = 1, . . . , ` and j = 1, . . . , 2i−1.(47)

Then, for p ∈ N, we have

∑̀
i=1

2i−1∑
j=1

2−p · p−1 · 2−2·i = 2−p · p−1 · (1− 2−`)/2 ≤ 2−p · p−1 ≤ 2−p/2,(48)
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where the last inequality is due to p ≤ 2p/2 for all p ∈ N. Hence for (46) to hold true we need
to have 2−p/2 ≤ 2−`, i.e., p ≥ `/2. On the other hand, p = ` immediately yields (46), cf. (48)∑̀

i=1

2i−1∑
j=1

2−` · `−1 · 2−2·i = 2−` · `−1 · (1− 2−`)/2 ≤ 2−`.

Therefore, the minimum of |p| = (2`−1) · p � 2` · p, subject to (46) and (47), is only of the
order 2` · `, and not of the order 2` as for B(`,p(`)), see Theorem 5.

III.2.3. Scalar SDEs. We consider a scalar autonomous SDE, cf. Section II.2, equation
(9) with r = d = 1, i.e.,

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), t ∈ [0, 1],

with deterministic initial value x0 ∈ R and driving (standard) Brownian motion W . We
consider the same setting as for the associated quantization problem, see Section III.1, i.e.,
we assume that the drift coefficient a : R → R and the diffusion coefficient b : R → R are
differentiable with bounded and Lipschitz continuous derivatives. This yields, in particular,

E sup
t∈[0,1]

|X(t)|2 <∞.(49)

In comparison, global Lipschitz continuous coefficients only yield square integrability of the
solution process X, see Theorem 1. Furthermore, we assume that b(x0) 6= 0 in order to
exclude the case of a deterministic equation.

At first, we consider the random bit approximation of marginal distributions ofX, linearly
interpolated to random bit approximations of the distribution µ of X. To this end, we
consider the deterministic equidistant Milstein scheme, as introduced in Section II.2.2. For
convenience of the reader we restate the approximation scheme in a slightly different notation,
which will indeed ease up the notation in the proofs of this section. For m ∈ N and tk =
tk,m = k/m the scheme reads as

Xm(t0) = x0,

Xm(tk) = Xm(tk−1) + a
(
Xm(tk−1)

)
·m−1 + b

(
Xm(tk−1)

)
·m−1/2 · Yk

+ 1
2
(b · b′)

(
Xm(tk−1)

)
·m−1 ·

(
Y 2
k − 1

)
where k = 1, . . . ,m, and with normalized Brownian increments

Yk = Yk,m = m1/2 ·
(
W (tk)−W (tk−1)

)
.

Observe that the only source of randomness in this scheme (as in X) are the normalized
Brownian increments Yk. For q ∈ N we consider the q-bit approximations

Y
(q)
k = Y

(q)
k,m = Φ−1 ◦ T (q) · Φ(Yk),

as introduced in (24), which we know to have the optimal order of convergence 2−q/2 · q−1/2,
see Theorem 4. This leads to the random bit Milstein scheme

X(q)
m (t0) = x0,

X(q)
m (tk) = X(q)

m (tk−1) + a
(
X(q)
m (tk−1)

)
·m−1 + b

(
X(q)
m (tk−1)

)
·m−1/2 · Y (q)

k

+ 1
2
(b · b′)

(
X(q)
m (tk−1)

)
·m−1 ·

((
Y

(q)
k

)2 − 1
)

for k = 1, . . . ,m.
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Our procedure of proofing bit approximation results for µ closely follows Müller-Gronbach
and Ritter [48], which deals with the corresponding quantization problem for µ. In the latter

setting, approximations Ỹ
(q)
k of Yk with distributions in F2q(R) and quantization error of

order 2−q are available, see Proposition 1. In fact, in Müller-Gronbach and Ritter [48] the

following assumptions on the approximation Ỹ (q) of a standard normally distributed random
variable Y have to be fulfilled, see Müller-Gronbach and Ritter [48, p. 1008]

(A1) E
(
Ỹ (q)

)
= 0 for every q ∈ N,

(A2) sup
q∈N

E
∣∣Ỹ (q)

∣∣r <∞ for every r ≥ 1,

(A3)
(
E
∣∣Y − Ỹ (q)

∣∣2)1/2
4 2−q for every q ∈ N.

In our present setting, (A1) and (A2) are fulfilled due to (27) and (28) from Theorem 4,
respectively, and (A3) is replaced by

(A3’)
(
E
∣∣Y − Ỹ (q)

∣∣2)1/2
4 2−q/2 · q−1/2 for every q ∈ N,

which holds due to Theorem 4. Indeed it turns out that the order of convergence in (A3)
has no influence on the proofs in Müller-Gronbach and Ritter [48]. Only in the results this
order of convergence has to be replaced by the corresponding order of convergence in (A3’).

Following this discussion, particularly the method of proof for Müller-Gronbach and
Ritter [48, Lemma 3] is immediately applicable in the present setting of random bit approx-
imations.

Lemma 10 (Cf. Müller-Gronbach and Ritter [48, Lemma 3] with (A3’) instead of (A3)).
We have (

E
(

max
k=1,...,m

∣∣Xm(tk)−X(q)
m (tk)

∣∣2))1/2

4 m−1 · 2−q/2 · q−1/2

uniformly in m, q ∈ N.

Remark 18. We discuss the consequences of Lemma 10 for the present random bit

approximation problem. Let ν
(q)
m denote the joint distribution of X

(q)
m (t1), . . . , X

(q)
m (tm) and let

ν denote the corresponding marginal distribution of X. Moreover, we consider the supremum

norm on V = Rm. Clearly, the joint distribution of Y
(q)

1 , . . . , Y
(q)
m belongs to U(Rm,m · q),

and therefore, ν
(q)
m ∈ R(Rm,m · q). Hence Theorem 3 and Lemma 10 yield

rbit(ν,m · q) ≤
(

E
(

max
k=1,...,m

∣∣X(tk)−X(q)
m (tk)

∣∣2))1/2

4 m−1 + 2−q/2 · q−1/2.(50)

Now, we turn to the random bit approximation of the distribution of X on the space L2 =
L2([0, 1]). The idea is to employ a time continuous version of the random bit Milstein scheme

X
(q)
m , namely a linear interpolation, which is locally refined by random bit approximations of

Brownian bridges that are scaled with respect to the local diffusion. At first we will consider
the corresponding modifications of the Milstein scheme Xm, i.e., not in the random bit
setting. The scheme obtained in that way will serve as an auxiliary scheme in our analysis
of an upper bound of the random bit approximation error of µ, in the same way as Xm

did for the upper bound of the random bit approximation error for the particular marginal
distributions of X in Remark 18.

Observe that the linear interpolation of Xm(tk−1) and Xm(tk) on the subinterval [tk−1, tk]
is given by

Xm(t) = (t− tk−1) ·m ·Xm(tk)− (tk − t) ·m ·Xm(tk−1),
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with t ∈ [tk−1, tk] and for k = 1, . . . ,m. Moreover, for k = 1, . . . ,m

Bk(t) = Bk,m(t) = m1/2 ·
(
W
(
tk−1 + t ·m−1

)
−W (tk−1)

)
− t · Yk

with t ∈ [0, 1] defines a Brownian bridge from W (tk−1) to W (tk) on the unit interval, cf.
Remark 3. Hence we obtain a Brownian bridge on the subinterval [tk−1, tk] by rescaling
the Brownian bridge Bk with respect to the length of the subinterval. This leads to the
approximation scheme

Xm(t) = (t− tk−1) ·m ·Xm(tk) + (tk − t) ·m ·Xm(tk−1)

+ b
(
Xm(tk−1)

)
·m−1/2 ·Bk((t− tk−1) ·m),

where t ∈ [tk−1, tk] and k = 1, . . . ,m.

Lemma 11 (Müller-Gronbach and Ritter [48, Lemma 4]). We have

sup
t∈[0,1]

(
E
∣∣X(t)−Xm(t)

∣∣2)1/2

4 m−1.

Finally, we define a random bit approximation of Xm by means of X
(q)
m , and random bit

approximations of the Brownian bridges Bk, k = 1, . . . ,m. To this end, we choose p(`) ∈
N2`−1 according to (44), and we consider the bit approximations B

(`,p(`))
k = B

(`,p(`))
k,m , see (43).

Together with the random bit Milstein scheme X
(q)
m this leads to the scheme

Xq,`
m (t) = (t− tk−1) ·m ·X(q)

m (tk) + (tk − t) ·m ·X(q)
m (tk−1)

+ b
(
X(q)
m (tk−1)

)
·m−1/2 ·B(`,p(`))

k ((t− tk−1) ·m),

where t ∈ [tk−1, tk] and k = 1, . . . ,m. Observe that we only replaced Xm and Bk, in the

definition of Xm, by their random bit approximations X
(q)
m and B

(`,p(`))
k , respectively.

The distribution of B
(`,p(`))
k belongs to U(L2, |p(`)|) with |p(`)| = 2`+2 − 2 · ` − 4, see

Theorem 5. Therefore, the distribution of X
(q,`)
m belongs to R(L2, c(m, q, `)), where

c(m, q, `) = m ·
(
q + 2`+2 − 2 · `− 4

)
.(51)

Next, we need to determine how good the random bit approximation X
(q,`)
m is in terms

of q and ` and likewise how q and ` are related.

Lemma 12. We have(
E
∥∥X −X(q,`)

m

∥∥2

L2

)1/2

4 m−1 + 2−q/2 · q−1/2 +m−1/2 · 2−`/2

uniformly in m, q, ` ∈ N.

Proof. We closely follow the proof of Müller-Gronbach and Ritter [48, Lemma 5], and we
write p instead of p(`) to simplify the notation. Due to Lemma 11 it suffices to analyze Xm−
X

(q,`)
m . We will analyze this difference part by part. Actually, we treat the differences between

the linear interpolations of Xm and X
(q)
m on the subintervals [tk−1, tk] with k = 1, . . . ,m

separately from the corresponding differences of the diffusion scaled Brownian bridges Bk

and B
(`,p(`))
k . For the latter we will add zero in a clever way, such that it can, more or less, be

split up into the difference of the local diffusions and the differences between the Brownian
bridges themselves. In that sense, the difference is rewritten as

Xm −X(q,`)
m = U1 + U2 + U2,
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where

U1(t) = (t− tk−1) ·m ·
(
Xm(tk)−X(q)

m (tk)
)

+ (tk − t) ·m ·
(
Xm(tk−1)−X(q)

m (tk−1)
)
,

as well as,

U2(t) =
(
b
(
Xm(tk−1)

)
− b
(
X(q)
m (tk−1)

))
·m−1/2 ·Bk

(
(t− tk−1) ·m

)
,

and

U3(t) = b
(
X(q)
m (tk−1)

)
·m−1/2 ·

(
Bk

(
(t− tk−1) ·m

)
−B(`,p)

k

(
(1− tk−1) ·m

))
for t ∈ [tk−1, tk].

We put

∆ = ∆(q)
m = max

k=1,...,,m

∣∣Xm(tk)−X(q)
m (tk)

∣∣,
and observe that

E
(
∆2
)
4 m−2 + 2−1 · q−1,

see Lemma 10. Since
(
(t− tk−1)+(tk− t)

)
·m = 1, we clearly have |U1(t)| ≤ ∆, and therefore

E
∥∥U1

∥∥2

L2
4 E

(
∆2
)
.

For the second term, U2, the Lipschitz continuity of b yields∣∣U2(t)
∣∣ 4 ∆ ·m−1/2 ·Bk

(
(t− tk−1) ·m

)
for t ∈ [tk−1, tk] and k = 1, . . . ,m. Moreover,

E
∥∥Bk

(
(· − tk−1) ·m

)∥∥2

L2([tk−1,tk])
= E

∥∥m−1/2 ·Bk

∥∥2

L2([0,1])
� m−1,

see Lemma 1. We use the independence of ∆ and (B1, . . . , Bm) together with Fubini’s rule
to conclude that

E ‖U2‖2
L2([0,1]) =

m∑
k=1

E ‖U2‖L2([tk−1,tk])

4
m∑
k=1

E
(

∆2 ·m−1 ·
∥∥Bk

(
(· − tk−1) ·m

)∥∥2

L2([tk−1,tk])

)
= E

(
∆2
)
·m−1 ·

m∑
k=1

E
∥∥Bk

(
(· − tk−1) ·m

)∥∥2

L2([tk−1,tk])

� m−1 · E
(
∆2
)
.

Combining the estimates for U1 and U2 we have

E
∥∥U1 + U2

∥∥2

L2
4 m−2 + 2−q · q−1.

It remains to estimate the term U3. Clearly,

sup
m∈N,q∈N

E max
k=1,...,m

∣∣X(q)
m (tk)

∣∣2
4 sup

m∈N,q∈N
E
(

max
k=1,...,m

∣∣Xm(tk)−X(q)
m (tk)

∣∣2)+ E
(

max
k=1,...,m

∣∣Xm(tK)
∣∣2).

Estimating the first term with (50) and the second term by means of (49), we obtain

sup
m∈N,q∈N

E max
k=1,...,m

∣∣X(q)
m (tk)

∣∣2 <∞.(52)
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Since b is in particular globally Lipschitz continuous, it satisfies a linear growth condition,

see Remark 5, (52) carries over to
∣∣b(X(q)

m (tk)
)∣∣2. Moreover,

E
∥∥∥Bk

(
(· − tk−1) ·m

)
−B(`,p)

k

(
(· − tk−1) ·m

)∥∥∥2

L2([tk−1,tk])
= m−1 · E

∥∥∥Bk −B(`,p)
k

∥∥∥2

L2([0,1])

� m−1 · 2−`,

see Corollary 1. Together with the independence of maxk=1,...,m

∣∣X(q)
m (tk)| and (B1, . . . , Bm)

we obtain

E
∥∥U3

∥∥2

L2
4 m−1 · 2−`. �

Remark 19. Suppose that the Euler-Maruyama scheme, instead of the Milstein scheme,

would be employed in the definition of X
(q,`)
m . Then the first term in the upper bound from

Lemma 12 would change from m−1 to m−1/2, so that altogether(
E
∥∥X −X(q,`)

m

∥∥2

L2

)1/2

4 m−1/2 + 2−q/2 · q−1/2,

which does not suffice for our purposes.

With the result from Lemma 12 we can establish a constructive upper bound on the
random bit approximation error rbit(µ, p) for the distribution y of the solution process X of
the scalar SDE on L2.

Theorem 6. Let µ denote the distribution of X on L2. Furthermore, let

m(`) = 2`, q(`) = 2 · `,

and c(`) = c
(
m(`), q(`), `

)
. Then we have

rbit
(
µ, c(`)

)
4
(

E
∥∥X −X(q(`),`)

m(`)

∥∥2

L2

)1/2

4
(
c(`)

)−1/2
(53)

and

c(`) = 2`+2 ·
(
2` − 1

)
� 22·`.

Proof. We write m and q instead of m(`) and q(`), respectively, to simplify the notation.
By definition,

rbit
(
µ, c(`)

)
≤
(

E
∥∥X −X(q,`)

m

∥∥2

L2

)1/2

.

Hence we show that (
E
∥∥X −X(q,`)

m

∥∥2

L2

)1/2

4
(
c(`)

)−1/2
.(54)

By Lemma 12 we have(
E
∥∥X −X(q,`)

m

∥∥2

L2

)1/2

4 2−` + 2−` · (2 · `)−1/2 + 2−`/2 · 2−`/2 4 2−`.

The explicit formula for c(`) obviously holds true, see (51). This completes the proof for the
asymptotic upper bound (54). �

Corollary 2. Let µ denote the distribution of X on L2. Then we have

rbit(µ, p) � quant(µ, p) � p−1/2.
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In particular this (weak) order of convergence is achieved by X
(q(`),`)
m(`) , as defined in Theorem 6,

i.e., (
E
∥∥X −X(q(`),`)

m(`)

∥∥2

L2

)1/2

� rbit
(
µ, c(`)

)
.

Proof. By Proposition 4 we have the lower bound

p−1/2 4 quant(µ, p).

Moreover, by definition, cf. also Remark 10, we have

quant(µ, p) ≤ rbit(µ, p).

Finally, Theorem 6 yields the upper bound

rbit(µ, p) 4 p−1/2.

The statement for X
(q(`),`)
m(`) is now an immediate consequence of (53). �

III.2.4. Gaussian Random Elements. In this section, we consider a centered Gauss-
ian random element X that takes values in a separable Hilbert space (H, ‖ · ‖H) and that
has an infinite-dimensional support. Moreover, let 〈·, ·〉H denote the scalar product on H.

The quantization and the random bit approximation of X are considered in a separable
section, since Gaussian elements are not in the main scope of the thesis. Nevertheless, they
are closely related to the Brownian motion and the Brownian bridge. Indeed X being the
Brownian motion is a particular Gaussian process.

The random bit approximation result, i.e., Theorem 7, has been established in Giles et al.
[27], and the method of proof is the same as for the Brownian bridge in Section III.2.2. At
first we rewrite X in terms of its Karhunen-Loève expansion, which is known to be optimal
for the quantization of Gaussian measures, see Luschgy and Pagès [41, i.p. Theorem 3.1 and
Theorem 3.2], i.e.,

X =
∞∑
i=1

λ
1/2
i · Yi · ei

with convergence, e.g., in mean square with respect to the norm on H. Here, (ei)i∈N is an

orthonormal system in H and Yi = 〈X, ei〉/λ1/2
i , i ≥ 1, is a sequence of independent standard

normally distributed random variables. Furthermore, the variances λi are ordered such that
they form a non-increasing sequence of strictly positive numbers.

In the following we assume that

lim
i→∞

λi · iβ · (ln(i))α ∈ ]0,∞[,(55)

where β < 1 and α ∈ R. There are cases in which the asymptotic behaviour of λi is known.
We consider, e.g., X a fractional Brownian motion on [0, 1] with values in L2([0, 1]) and with
Hurst exponent h ∈ ]0, 1[, i.e., X has the covariance function

1
2
·
(
s2·h + t2·h − |s− t|2·h

)
,

for all s, t ∈ [0, 1]. Then β = 2 ·h+ 1 and α = −2 ·β, see Luschgy and Pagès [43, Proposition
3.2]. The particular case β = 2 and α = 0 corresponds to a Brownian motion as well as to a
Brownian bridge, see also Luschgy and Pagès [41, Example 2.3 (ii)-(iii)] for an explicit formula
of the λi’s. For a d-dimensional analogon, see, e.g., Luschgy and Pagès [43, Proposition 3.4].
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Proposition 5. Let µ denote the distribution of X on H and assume that (55) is
satisfied. Then

quant(µ, p) � p−(β−1)/2 · (ln(p+ 1))−α/2.

As for the random bit approximation of the distribution of the Brownian bridge in Sec-
tion III.2.2 we consider a two stage discretization. For m ∈ N we cut off the Karhunen-Loève
expansion of X after m terms, i.e.

X(m) =
m∑
i=1

λ
1/2
i · Yi · ei.(56)

Due to the ordering λ1 ≥ λ2 ≥ . . . these m terms are also called the first m principle
components of X. This approximation has the following asymptotic property.

Lemma 13. Let X be a centered Gaussian random element in a separable Hilbert space

H with Karhunen-Loève expansion X =
∑∞

i=1 λ
1/2
i · Yi · ei. Furthermore, let the variances

λi satisfy (55) and let X(m) =
∑m

i=1 λ
1/2
i · Yi · ei as in (56) denote the sum of the principle

components of X. Then

E
∥∥X −X(m)

∥∥2

H
4 m−(β−1) ·

(
ln(m+ 1)

)−α
.

Proof. Observe that

E
∥∥X −X(m)

∥∥2

H
=

∞∑
i=m+1

λi · E(Yi)
2 =

∞∑
i=m+1

λi.

Since λi 4 i−β · (ln(i))−α uniformly in i ∈ N, we have in particular

∞∑
i=m+1

λi 4
∞∑

i=m+1

i−β ·
(
ln(i)

)−α ≤ (ln(m+ 1)
)−α · ∞∑

i=m+1

i−β.

Using an integral estimate for
∑∞

i=m+1 i
−β, we get

E
∥∥X −X(m)

∥∥2

H
4
(
ln(m+ 1)

)−α · ∫ ∞
m

x−(β−1) dx =
(
ln(m+ 1)

)−α ·m−(β−1),

as claimed. �

On top of the approximation (56) we consider a vector

p = (p1, . . . , pm) ∈ Nm

of bit numbers, and we define

X(m,p) =
m∑
i=1

λ
1/2
i · Y

(pi)
i · ei,

where Y
(pi)
i is the bit approximation of Yi according to (24). Obviously, the distribution of

X(m,p) belongs to U(H, |p|) with

|p| =
m∑
i=1

pi.
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Theorem 7. Let µ denote the distribution of the Gaussian random element X on H,
and assume that (55) is satisfied. We define p(m) ∈ Nm for m ∈ N by

pi(m) = dmax(p̃i, 1)e

for i = 1, . . . ,m, with

p̃i = β · log2(m/i) + max(α, 0) · log2

(
log2(m+ 1)/ log2(i+ 1)

)
.

Then we have

rbit(µ, |p(m)|) ≤
(

E
∥∥X −X(m,p(m))

∥∥2

H

)1/2

4 |p(m)|−(β−1)/2 · (ln(|p(m)|+ 1)−α/2(57)

and

|p(m)| � m.

Proof. We write p, pi, and p̃i instead of p(m), pi(m), and p̃i(m), respectively, to simplify
the notation. We first show |p(m)| � m. Due to pi ≥ 1 for i = 1, . . . ,m, the lower bound
obviously holds true. For the upper bound we show

pi 4 1 + ln(m/i).(58)

By definition, pi ≤ 1 + p̃i, so we show p̃i 4 ln(m/i). Clearly, the statement is true for α ≤ 0.
It remains to show

log2

(
log2(m+ 1)/ log2(i+ 1)

)
≤ log2(m/i).

Since the statement is true for i = 1, this is equivalent to x ·
(
log2(x+ 1)

)−1
being monoton-

ically increasing, i.e., having a non-negative derivative, on ]2,∞[. Indeed, we have

d

dx

(
x ·
(
log2(x+ 1)

))−1
=

ln(2)(
ln(x+ 1)

)2 ·
(
ln(x+ 1)− x/x+ 1

)
such that ln(x+ 1) > 1 for x > 2 yields the monotonicity claim for x ·

(
log2(x+ 1)

)−1
.

Due to d
dx

(
x · ln(x)

)
= ln(x) + 1, and using an integral estimate for

∑m
i=1 ln(x) we obtain

from (58) that

|p| 4 m+m · ln(m)−
m∑
i=1

ln(i) 4 m+m · ln(m)−
∫ m

1

(
x · ln(x)− 1

)
dx = 2 ·m− 1,

and therefore |p| � m.
By definition,

rbit(µ, |p|) ≤
(

E
∥∥X −X(m,p)

∥∥2

H

)1/2

.

Hence we show that(
E
∥∥X −X(m,p)

∥∥2

H

)1/2

4 m−(β−1)/2 ·
(
ln(m+ 1)

)−α/2
.

First of all, we note that

E
∥∥X −X(m)

∥∥2

H
4 m−(β−1) ·

(
ln(m+ 1)

)−α
,

see Lemma 13. Furthermore, Theorem 4 yields together with (55)

E
∥∥X(m) −Xm,p(m))

∥∥2

H
=
∑
i=1

E
(
Yi − Y (pi)

i

)2 · λi �
m∑
i=1

2−pi · p−1
i · i−β ·

(
ln(i+ 1)

)−α
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uniformly in m ∈ N and p ∈ Nm. Since pi ≥ 1, we have

2−pi · p−1
i ≤ 2−pi ≤ (m/i)−β ·

(
ln(m+ 1)/ ln(i+ 1)

)−α
uniformly in m ∈ N and i = 1, . . . ,m, and therefore

E
∥∥X(m) −X(m,p)

∥∥2

H
4 m−(β−1) ·

(
ln(m+ 1)

)−α
. �

Corollary 3. Let µ denote the distribution of the Gaussian random element X on H,
as in Theorem 7. Then we have

rbit(µ, p) � quant(µ, p) � p−(β−1)/2 · (ln(p+ 1))−α/2.

In particular, this (weak) order of convergence is achieved by X(m,p(m)), as defined in Theo-
rem 7, i.e. (

E
∥∥X −X(m,p(m))

∥∥2

H

)1/2

� rbit(µ, |p(m)|).

Proof. By Proposition 5 we have the lower bound

p−(β−1)/2 ·
(
ln(p+ 1)

)−α/2
4 quant(µ, p).

Moreover, by definition, cf. also Remark 10, we have

quant(µ, p) ≤ rbit(µ, p).

Finally, Theorem 7 yields the upper bound

rbit(µ, p) 4 p−(β−1)/2 ·
(
ln(p+ 1)

)−α/2
.

The statement for X(m,p(m)) is now an immediate consequence of (57). �

III.3. Relation to Kolmogorov Widths

In this section we are going to compare the quantization problem, and therefore implicitly
the random bit approximation problem, for particular choices of V and µ ∈ M(V ), to a
closely related approximation problem, the average Kolmogorov widths. For a discussion of
average Kolmogorov widths we refer to Creutzig et al. [12]. While the quantization and the
random bit approximation problem are based on probability measures with a finite support,
here we consider probability measures supported on finite dimensional subspaces.

We motivate the average Kolmogorov widths as follows. We consider the space L2 =
L2([0, 1]) and the quantization problem for the Wiener measure µ on L2. An n-quantization
ν ∈ Fn(L2) corresponds to (up to) n fixed L2 functionals, which we are allowed to use for
the approximation of each Brownian path. Then it is somehow natural to ask whether the
approximation error d(µ, ν) can be reduced if one takes into account all linear combinations
of those (up to) n functionals.

Definition 2. As in Section III.1 let (V, ‖ · ‖V ) be a separable Banach space, let M(V )
the set of all Borel probability measures on V , and let d denote the Wasserstein distance of
order 2, as defined in (11). Recall for µ1, µ2 ∈M(V )

d(µ1, µ2) = inf
{(

E |X1 −X2|2
)1/2

: PX1 = µ1, PX2 = µ2

}
.

Then for µ ∈M(V ) the k-th average Kolmogorov width of order 2 is given by

kolk(µ) = inf
{
d(µ, ν) : dim(span(supp(ν))) ≤ k

}
.
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Remark 20. For particular approximation problems, we compare the asymptotic be-
haviour of average Kolmogorov widths to the corresponding results for quantization. We
consider V = L2 = L2([0, 1]).

(i) Let µ be the Wiener measure on L2. Then by Creutzig et al. [12, Proposition 2]

kolk(µ) � k−1/2,

while for the quantization problem, Proposition 2 yields

quant(n, µ) � (log(n))−1/2.

(ii) Let µ be the distribution of a scalar SDE with coefficients as in Section III.1. Then
by Creutzig et al. [12, Proposition 3]

kolk(µ) � k−1/2,

while for the quantization problem, Proposition 4 yields

quant(n, µ) � (log(n))−1/2.

Let us finally mention that the results for the average Kolmogorov widths of order 2 carry
over to average Kolmogorov widths of order r, i.e., in the definition of kolk(µ), the Wasserstein
distance of order 2 is replaced by the Wasserstein distance of order r.



CHAPTER IV

Quadrature of SDEs

In this section we study the quadrature problem for E(f(X)), where X is the solution
of an SDE and f a measurable mapping from the path space of X into the real numbers.
Namely, let d, r ∈ N, we consider, cf. Section II.2, SDEs of the form

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), t ∈ [0, 1],(59)

with deterministic initial value

X(0) = x0 ∈ Rr,

and with a d-dimensional driving Brownian motion W . Furthermore, the drift coefficient
a : Rr → Rr and the diffusion coefficient b : Rr → Rr×d are assumed to be globally Lipschitz
functionals. Observe that by Theorem 1 there exists a (up to indistinguishability) unique
pathwise time-continuous and square-integrable solution X = (X(t))t∈[0,1]. Moreover,

f : C([0, 1],Rr)→ R

is assumed to be Lipschitz continuous with respect to either the supremum-norm or the
(classical) Lp-norm on C([0, 1],Rr) with Lipschitz constant of at most 1. Indeed we consider
the corresponding classes

F∞ =
{
f : C([0, 1],Rr)→ R : |f(x)− f(y)| ≤ ‖x− y‖sup

}
and

Fp =
{
f : C([0, 1],Rr)→ R : |f(x)− f(y)| ≤ ‖x− y‖Lp

}
, 1 ≤ p <∞,

of such Lipschitzian functionals. Actually, it would suffice to assume that the Lipschitz
constant is bounded. But for convenience of the reader, and to ease up the notation, we
assume this bound to be 1. For example one can think of X being a geometric Brownian
motion modeling a stock price and f a payoff functional like, e.g., an Asian option.

In this setting we will construct two particular random bit algorithms for the quadrature
of E(f(X)). One algorithm that we can analyze analytically and one algorithm that is only
investigated numerically. Nevertheless, the latter algorithm is (at least in our opinion) the
intuitively ‘better’ algorithm, since it has a structure that immediately allows a desirable
adaptive multilevel approach, which will be introduced and discussed in Section IV.3.3,
and in contrast to the other algorithm it relies on the asymptotically optimal random bit
approximation of the Brownian bridge as derived in Section III.2.2.

Of course, we have to give meaning to the notion of a ‘better’ algorithm, i.e., we need
a framework in which we can, in particular, compare different algorithms. This framework
is set up in Section IV.1. Let A be a given algorithm. At first, we define, similar as for the
quantization and the random bit approximation problem, the stochastic-L2-approximation
error, error(A, f), of the algorithm A applied to f . Moreover, we define the cost, cost(A, f),
of the algorithm A in terms of the sum of all operations that have to be carried out. One
quantity of interest for A will then be the relation between error(A, f) and cost(A, f), more
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precisely, we want to determine cost(A, f) in dependence on error(A, f) Clearly, the cost
may not only depend on the solution X of the considered SDE but also on the functional
f ∈ F . Indeed we will use a worst case analysis on the classes F∞ and Fp, respectively.

Section IV.2 is devoted to the method of direct simulation leading to the classical Monte
Carlo Euler-Maruyama algorithm. Moreover, we introduce the control variate method, a
variance reduction technique, that will lead to multilevel Monte Carlo algorithms, which
will be discussed in Section IV.3. Here, more precisely in Section IV.3.1, we present the
(standard) multilevel Monte Carlo Euler-Maruyama method, as first introduced in Giles
[24]. The approach is similar to the one used in Heinrich [33] in the context of parametric
integration. In Section IV.3.2 we restrict ourselves to functionals f from the class Fp and
we address an efficiency problem of multilevel Monte Carlo algorithms in dependence on
f(x), i.e., in dependence on the solution X of the considered SDE. This will lead to an
adaptive multilevel Monte Carlo algorithm, as introduced in Giles [24, Section 5], which we
will discuss in Section IV.3.3. We will also discuss modifications of this algorithm, which
can, e.g., be found in Giles [25, p. 283], and which are supposed to lead to more (numerical)
stability of the algorithm. It will turn out that the adaptive algorithm is fitted to the class
of functionals Fp. Therefore, we will briefly discuss an intuitive adaption to the class F∞,
which may unfortunately lead to ‘instability’ of the algorithm, but helps to get a better
understanding of the problematic in the transition from Fp to F∞. For a general overview
on multilevel Monte Carlo algorithms we refer to Giles [25].

Having this whole machinery at hand, we turn to the construction of two particular
random bit multilevel Monte Carlo algorithms. To this end, at first we introduce the two
random bit Euler-Maruyama schemes these algorithms are based on. This we do in Sec-
tion IV.4, where we also analyze one of the two schemes, later on referred to as Scheme 1. In
Section IV.5 we finally define the random bit multilevel Monte Carlo algorithms themselves.
We also analyze the algorithm based on Scheme 1, denoted by Aqε,F . Furthermore, in Sec-
tion IV.5.1, we present a variant of Bakhvalov’s trick to reduce the number of random bits
used by Aqε,F , and we exploit this trick to improve the upper bound on the cost of Aqε,F in
terms of ε, which is derived earlier in Section IV.5, at least in terms of its weak asymptotics
for small ε. For the classical Bakhvalov trick see, e.g., Bakhvalov [2] and also Heinrich et al.
[36] and the references therein.

The results presented in Section IV.4 and Section IV.5 are published in Giles et al. [28].

IV.1. Algorithms, Error, and Cost

In this section we define what kind of algorithms are admissible for the approximation of

S(f) = E(f(X))

with X being the solution of an SDE of the form (59), and f ∈ F , with either F = F∞ or
F = Fp, being a Lipschitz continuous functional (with Lipschitz constant 1). Moreover, we
define the error criterion for the admissible algorithms as well as how we calculate the cost
of such an algorithm.

To implement an algorithm we are allowed to use the following operations:

• Input: finitely many (input) functionals f1, . . . , fk, k ∈ N from F as well as the drift

and diffusion coefficients a and b, and finitely many real numbers x1, . . . , xk̃, k̃ ∈ N.
• Arithmetic operations: addition, subtraction, multiplication, and division.
• Jumps depending on comparisons of real numbers, as e.g. x ≤ y for x, y ∈ R.
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• Elementary functions like exponential, logarithm, sine, cosine, or the floor and ceil-
ing function.
• Oracles that evaluate the coefficients a and b at each point x ∈ Rr.
• An oracle that provides evaluations of the input functionals f1, . . . , fk on a subset
G of C([0, 1],Rr), i.e., we assume that the oracle can calculate fi(g) for i = 1, . . . , k
and for all g ∈ G. Thinking of Euler-Maruyama approximation schemes, G could
be the set of all piecewise linear functions in C([0, 1],Rr).
• Output: A finite sequence of real numbers x∗1, . . . , x

∗
k, k ∈ N.

Furthermore, we are allowed to address memory indirectly on a countable number of registers.
Moreover, we have access to random numbers, here we distinguish between two cases:

1.) The algorithm has access to a random number generator that provides random
numbers according to the uniform distribution on [0, 1].

2.) The algorithm has access to a random bit generator that provides random bits
according to the uniform distribution on {0, 1}.

Definition 3. A Monte Carlo algorithm or randomized algorithm is a program that
uses a finite number of operations from the above list and finitely many calls to a random
number generator according to 1.). If the random number generator is replaced by a random
bit generator according to 2.), then we also use the notion of a random bit or restricted Monte
Carlo algorithm or simply random bit or restricted algorithm. The corresponding model of
computation is called real number model (with oracles), see, e.g., Novak [52].

To define the error of a (restricted) Monte Carlo algorithm A, we need to introduce some
more notations. By I we denote the set of all tuples of functions and real numbers that
can serve as an input for algorithm A. Furthermore, we denote by S the space of sequences
over [0, 1] respective {0, 1}. For technical reasons we assume that we have a sequence U

of independent random variables Ui, i ∈ N on a common probability space (Ω̃, Ã, P̃ ) each
of which is uniformly distributed on [0, 1] respective {0, 1}, i.e., one realization of one Ui
corresponds to one call to the random number respective random bit generator. The fact
that A can only finitely often call to such a generator (otherwise it would not terminate)
corresponds to A using only a finite segment from the sequence U . But there is in general
no bound on the length of this segment. Finally, we denote by

T ⊆ I×S

the set of all inputs for which the algorithm terminates, also called termination set of A, and

Â : T → R is the mapping that maps the input (I, s) on the output A(I) = A(I, s). Then
the algorithm A formally corresponds to the mapping

A : I× Ω̃→ R, A(I, ω̃) =

{
Â(I, U(ω̃)), if (I, U(ω̃)) ∈ T,

0, else.

In the following, we assume that A terminates with probability one, i.e., there exists a

set Ã ∈ Ã with P̃ (Ã) = 1 and (I, U(ω̃)) ∈ T for all ω̃ ∈ Ã. Moreover, the mapping

A(I, ·) : Ω̃ → R is supposed to be a random variable, i.e., A is a measurable mapping. For
notational convenience we will in general write A(I) instead of A(I, ·). This leads to the
following definition.
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Definition 4. Let f ∈ F and A(f) square-integrable. Then the error of the (restricted)
Monte Carlo algorithm A applied to input f for the approximation of S(f) is defined by

error(A, f) =
(
E(S(f)− A(f))2

)1/2
.

This error is due to its structure also known as the root-mean-squared error of A applied to
f . Accordingly, the worst case error of A on the class F is defined by

error(A,F ) = sup
f∈F

error(A, f).

Sometimes we may also write error(A,F,X) to stress that A is an algorithm for the approx-
imation of E(f(X)).

Remark 21. Observe that the squared error of A applied to f can be decomposed into
the squared bias and the variance of A

(error(A, f))2 =
(
Bias(A(f))

)2
+ Var(A(f)) =

(
S(f)− E(A(f))

)2
+ Var(A(f)).

Here, Bias(A(f)) = E
(
S(f)− A(f)

)
is typically an error that is induced by the underlying

approximation scheme for the approximation of the solution X of the SDE under consid-
eration, i.e., Bias(A(f)) can be interpreted as the least error we have using a particular
approximation scheme. The variance Var(A(f)) of the algorithm can be interpreted as an
additional statistical error due to A(f) being a random quantity (for the approximation of
an expectation).

Analogously to error(A, f) we use the notations

Bias(A(F )) = sup
f∈F

Bias(A(f)) and Var(A(F )) = sup
f∈F

Var(A(f)).

If Bias(A,F ) 6= 0, we call A a biased algorithm, and we call A unbiased if Bias(A,F ) = 0.
It remains to define the (computational) cost of a (restricted) Monte Carlo algorithm

A. Actually, the cost for a given input I can be measured counting all the operations that
are carried out by A. In this way, up to a multiplicative constant, the (computational) cost
represents the expected runtime of the algorithm on a computer. In this procedure we ignore
the cost associated to the input and output operations, as well as, the cost for simple copy
commands and for memory operations, like reading from and writing to memory. Note that
the later heavily depends on the employed hardware, anyway.

We assume that all non-algorithm specific and non-input depending operations, i.e.,
arithmetic operations, comparisons and jumps, and evaluations of elementary functions can
be carried out at unit cost, i.e., cost 1. Moreover, we suppose that each call to a random
number or random bit generator has unit cost, too. Furthermore, we assume that we have
oracles that can evaluate the coefficients a and b at a single point x ∈ Rr at unit cost,
respectively, as well as that for each functional f ∈ F there is an oracle such that f applied
to a continuous functional from C([0, 1],Rr), implicitly given by k ∈ N time points from
[0, 1], can be evaluated at cost k, by this oracle.

Observe that in the literature, see, e.g., Müller-Gronbach et al. [49, p. 19], the cost for the
evaluation of the coefficients a and b is often regarded as a constant c� r ≥ 1. This makes
sense because the evaluation needs the assignment of r coordinates of a sample point from Rr

and may require complicated computations or even physical measurements. Nevertheless, for
our purposes (where constants do not matter in the end) it is convenient to consider c = 1.
The same holds true for the evaluation of each functional f from F .
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Finally, we observe that in general the (computational) cost of A does not only depend
on the input f but also on the random numbers respective random bits that are used by the
algorithm. Hence the (computational) cost is a random quantity. Analogously to defining
the error of A applied to f , we assume that the (computational) cost of computing A for
input f is a random variable

cost(A, f, ·) : Ω̃→ N.

Definition 5. Let f ∈ F and let cost(A, f, ·) ∈ L1(Ω̃). The (computational) cost of
applying the (restricted) Monte Carlo algorithm A to input f is defined by

cost(A, f) = E
(
cost(A, f, ·)

)
.

The worst case (computational) cost of A on the class F is defined by

cost(A,F ) = sup
f∈F

E
(
cost(A, f)

)
.

Having the definitions of the error and the cost of an (Monte Carlo) algorithm at hand,
we can relate them in a way that allows us to compare classes of algorithms.

Definition 6. Let ε > 0. Then we call

comp(ε, F,X) = inf
{

cost(A,F ) : A is a Monte Carlo algorithm, error(A,F,X) ≤ ε
}

the ε-complexity for the approximation of S (on the class F ) by means of Monte Carlo
algorithms. Analogously, if we only consider restricted Monte Carlo algorithms, we use the
notation compres(ε, F,X) to denote the ε-complexity for the approximation of S (on the class
F ) by means of restricted Monte Carlo algorithms. If X is fixed, i.e., can not be mistaken,
then we may also write comp(ε, F ) and compres(ε, F ), respectively.

Observe that we have the relation

comp(ε, F,X) ≤ compres(ε, F,X).

To illustrate that random bits are in general indeed a severe restriction, we present a
computational problem being trivial when it comes to random numbers, but being unsolvable
if only random bits are available, cf. Giles et al. [28, Example 14].

Example 2. Let F denote the class of all functions f : [0, 1] → R that are constant
except for either finitely many or countably many points from the unit interval, or more
general except for a subset of [0, 1] having Lebesgue measure zero. The aim is to compute

S(f) =

∫
[0,1]

f(ω)λ(dω)

for f ∈ F . We consider the ε-complexity of this problem. Let ε > 0. Clearly, we have

compres(ε, F ) =∞,

since finitely many random bits do allow only algorithms with a fixed finite support. More
precisely, an algorithm using no more than p random bits can access at most 2p fixed points
from [0, 1] in order to solve the integration problem. Hence, for each restricted algorithm A we
can choose a function f that is equal to 0 in all its accessible support points, and strictly larger
than ε everywhere else. Clearly, we have A(f) = 0 while S(f) > ε. Therefore, each restricted
algorithm A violates the condition error(A,F ) ≤ ε in the definition of compres(ε, F ). Hence,
compres(ε, F ) is unbounded, as claimed.
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On the other hand, we have S(f) = f(ω) with probability one for ω ∈ [0, 1], and therefore

comp(ε, F ) = 1.

IV.2. Direct Simulation and Classical Monte Carlo

Before we turn to the concept of multilevel Monte Carlo algorithms for the approximation
of S(f) = E(f(X)), for a better understanding, we first consider the corresponding classical
Monte Carlo method, which is, in the context of multilevel algorithms, also known as the
concept of singlelevel Monte Carlo algorithms. Classical Monte Carlo algorithms rely on the
method of direct simulation, which is explained in the following.

Definition 7. Given c ∈ R, we consider a real-valued random variable Z with expec-
tation c. Here, Z is called a basic experiment for the approximation of c. Furthermore, let
(Zk)k∈N be an independent sequence of random variables defined on a common probability
space, and each sharing the same distribution as Z. The Zk’s are called (independent) copies
or (independent) replications of Z. Then

An =
1

n
·

n∑
k=1

Zi

serves as an approximation of c and An is called a direct simulation for the approximation
of c.

Observe that in the afore definition An indeed converges to c, as n tends to infinity, due
to the strong law of large numbers.

Now, we introduce the classical Monte Carlo method. We suppose to have a sequence
(Xk)k∈N of approximations with the following three properties:

• Realizations of Xk can be computed with a randomized algorithm, see Definition 3,
• Xk is square-integrable for every k ∈ N, and
• Xk converges to X, as k tends to infinity, in a suitable way, which we specify later.

Of each approximation Xk we take nk ∈ N independent copies Xk,1, . . . , Xk,nk , i.e., an i.i.d.
sequence with Xk,1 ∼ Xk.

Think, e.g., of Euler-Maruyama approximate solutions Xk based on k equidistant steps,
see Section II.2.1, in this context, we call Xk an approximation scheme and Xk,1, . . . , Xk,nk

are called (independent) realizations of Xk.
The direct simulation of f(Xk) for the approximation of S(f) is given by

Ak,nk(f) =
1

nk
·
nk∑
i=1

f(Xk,i),

which corresponds to the arithmetical mean of the (independent) copies Xk,1, . . . , Xk,nk . The
algorithm Ak,nk is called a classical Monte Carlo algorithm. Observe that E(Ak,nk(f)) =
E(f(Xk)). Assuming square-integrability of each Xk we have

(error(Ak,nk , f))2 =
(
Bias(Ak,nk(f))

)2
+ Var(Ak,nk)

= E
(
f(X)− f(Xk)

)2
+

1

nk
Var(f(Xk)),

see Remark 21. We make two main observations:

• Bias(Ak,nk(f)) is independent from the replication number nk for each k ∈ N, i.e.,
relies only on the approximation Xk itself, and
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• Var(Ak,nk(f)) converges to zero as nk tends to infinity, and Var(f(Xk)) can be
interpreted as a scaling factor.

Clearly, there are two parameters for adjusting the classical Monte Carlo algorithm Ak,nk(f).
One is the chosen approximation Xk and the other one is the associated replication num-
ber nk. As the bias of Ak,nk(f) is independent from nk and Xk only influences the variance
of Ak,nk(f) by a constant, the procedure is usually as follows. At first we choose an ap-
proximation Xk from the sequence (Xk)k∈N such that the bias is sufficiently small (for our
purposes) and then we choose the replication number nk such that the statistical error is
also sufficiently small (for our purposes).

Observe that working in a worst case setting one is aiming for approximations Xk that
lead to a small bias for all f ∈ F .

Definition 8. Given a sequence of approximation schemes (Xk)k∈N. For f ∈ F we say
that (Xk)k∈N converges to X (with respect to f) with weak order or weak rate α > 0 if∣∣E(f(X)− f(Xk)

)∣∣ 4 (E(cost(Xk, f)
))−α

uniformly in k. The weak order or weak rate of convergence with respect to the function
class F is again defined in the worst case setting, i.e., (Xk)k∈N converges to X (with respect
to F ) with weak order or weak rate α > 0 if

sup
f∈F

∣∣E(f(X)− f(Xk)
)∣∣ 4 sup

f∈F

(
E
(
cost(Xk, f)

))−α
uniformly in k.

Observe that cost(Xk, f) is defined by treating Xk as an algorithm, see Section IV.1.

Example 3. We compute the weak asymptotic relation between the error and the cost
of the algorithm Ak,nk on the class Fp for (Xk)k∈N being the sequence of Euler-Maruyama
approximate solutions Xk based on k equidistant time steps, see Section II.2.1. Observe
that the cost for one realization f(Xk,i) is, up to a multiplicative constant, given by k, and
therefore

cost(Ak,nk , Fp) 4 k · nk.(60)

For convenience and regarding Remark 6, concerning the improved Euler-Maruyama rate for
additive noise, we will denote the weak rate of convergence of Xk with respect to the Lp-norm
by α. Observe that due to Fp being the class of Lipschitz functionals with bounded Lipschitz
constant, the convergence rate carries over to the sequence (f(Xk))k∈N for all f ∈ Fp, i.e.,(

Bias(Ak,nk(Fp))
)2
4
(cost(Ak,nk(Fp))

nk

)−2·α

uniformly in k. Consequently, we have(
error(Ak,nk , Fp)

)2
4 k−2·α + n−1

k .(61)

To determine the parameters k and nk such that k−2·α and n−1
k obey the same weak

asymptotic law, we assume to have some weak asymptotic bound εk > 0 on the error of
Ak,nk . That means, we claim bias and variance both to be weak asymptotically equivalent
to εk. We obtain

n−1
k � ε2

k ⇔ nk � ε−2
k ,
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as well as,

k−2·α � ε2
k ⇔ k � ε

−1/α
k .

Note that we ignore that k and nk need to be natural numbers. This can, e.g., be achieved
using the ceiling function. Finally, we obtain for the cost of Ak,nk , see (60),

cost(Ak,nk , Fp) 4 k · nk � ε
−1/α
k · ε−2

k � ε
−(2+1/α)
k .(62)

By Theorem 2, we obtain the weak rate of convergence α = 1/2 for (f(Xk))k∈N for all
f ∈ Fp and therefore

cost(Ak,nk , Fp) 4
(
error(Ak,nk , Fp)

)−4
.(63)

For additive noise, an underlying one dimensional SDE with a one dimensional driving
Brownian motion, and a functional f that depends only on the breakpoints of the Euler-
Maruyama method, e.g. evaluation in the final time point, Remark 6 yields together with
Theorem 3 that we have α = 1 and therefore

cost(Ak,nk , f) 4
(
error(Ak,nk , f)

)−3
.

Remark 22. Note that the dependence between error and cost of the classical Monte
Carlo algorithm in Example 3 gets even worse (by a logarithmic term) if we replace Fp by
F∞, as the Euler-Maruyama scheme already has a worse weak rate of convergence on this
class of functions, see Theorem 2.

Remark 23. The estimate (62) does only depend on the weak rate of convergence α of
the sequence of estimators (f(Xk))k∈N. As we have seen, there are functionals f for which
the rate α increases if we employ a higher order approximation scheme. But we pay a price,
namely we need stronger assumptions on the class of functionals F and on the diffusion
coefficient b of the SDE under consideration, e.g., the Milstein scheme requires that b is
differentiable, and not only globally Lipschitz. For more higher order approximation schemes
the condition would get even more restrictive. Let us also mention that there arise (as already
for the Milstein scheme) further problems approximating the solution of a system of SDEs
driven by a multi-dimensional Brownian motion, in form of iterated integrals with respect
to (different) Brownian motions, keyword Lévy areas, which we will not discuss any further.
However, we will always have the exponent 2 + 1/α in (62), which is essentially bigger than
2, as long as we consider biased Monte Carlo algorithms, like Ak,nk .

Remark 23 raises the question, whether there is another way to improve the relation
between the error and the cost of a Monte Carlo algorithm Ak,nk . A classical approach is to
change the employed estimator f(Xk) in order to reduce the variance. For an overview on
common variance reduction techniques we refer to Müller-Gronbach et al. [49, Chapter 5]. It
will turn out later, that multilevel Monte Carlo algorithms can be interpreted as an iterated
application of a particular variance reduction technique, the control variate method, which
we will briefly describe in the following section. As a motivation, let us already mention that
there exists a multilevel Monte Carlo algorithm that either hits the exponent 2 in (62) or
misses it by some logarithmic factor, only, depending on some conditions that are specified
later.
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IV.2.1. Control Variate Method. We consider two square-integrable random vari-

ables Z and Z̃ defined on a common probability space. Furthermore, we assume that the

expectation of Z̃ is either known or can be computed easily, and our aim is the approximation
of E(Z). Since the expectation is linear, for every c ∈ R, clearly,

Z̃c = Z − c ·
(
Z̃ − E

(
Z̃
))

(64)

serves as a basic experiment for the approximation of E(Z). The corresponding direct sim-
ulation, cf. Definition 7 is given by

Ãn,c =
1

n
·

n∑
i=1

(
Zi − c ·

(
Z̃i − E

(
Z̃
)))

= c · E
(
Z̃
)

+
1

n
·

n∑
i=1

(
Zi − c · Z̃i

)
(65)

with
(
Z1, Z̃1

)
, . . . ,

(
Zn, Z̃n

)
being independent copies of

(
Z, Z̃

)
. The task within this setting

is to choose c and Z̃ such that the variance of (Z − c · Z̃) is (significantly) smaller than the

variance of Z. In that context, c · Z̃ is called a control variate for Z.

For an optimal choice of c given Z and Z̃, as well as, for a further discussion of the control
variate method, see, e.g., Müller-Gronbach et al. [49, Section 5.2].

Remark 24. There are two straightforward generalizations of the control variate method
that we want to discuss. Actually, these generalizations will turn out to be the basic concept
for the multilevel Monte Carlo method to be introduced in Section IV.3.

(i) So far we assumed that E
(
Z̃
)

is either known or can be computed easily. Now, we

assume it to be more complicated (but Z̃ still a reasonable control variate for Z).

In that case E
(
Z̃
)

may also be approximated via a direct simulation (with basic

experiment Z̃) which is independent from the direct simulation of the difference

(Z − c · Z̃). The corresponding enhanced direct simulation is given by

Ãñ,n,c =
c

ñ
·

ñ∑
k=1

Z̃(k) +
1

n
·

n∑
i=1

(
Zk − c · Z̃k

)
with

(
Z1, Z̃1

)
, . . . ,

(
Zn, Z̃n

)
as in (65), Z̃(1), . . . , Z̃(ñ) independent copies of Z̃, and(

Z̃(1), . . . , Z̃(ñ)
)

independent from
((
Z1, Z̃1

)
, . . . ,

(
Zn, Z̃n

))
. Observe that the expec-

tation can be written in terms of

E
(
Ãñ,n,c

)
= c · E

(
Z̃
)

+ E
(
Z − c · Z̃

)
. (66)

As an example, consider Z = f(X), where X is the solution of an SDE as
in (59) and f ∈ F . Moreover, for k ∈ N, let X2k denote the Euler-Maruyama

approximate solution of X based on 2k equidistant time steps, and let Z̃ = f(X2k)

be the control variate for Z. In this case, E
(
Z̃
)

is in general unknown, but can
(easily) be approximated by means of a direct simulation, cf. Example 3.

(ii) The second generalization is the iterative application of the control variate method.

Let Z̃ be a control variate for Z and c ∈ R as in (64). As in (i), we assume that E
(
Z̃
)

in not explicitly known and furthermore, we assume that a ‘good’ approximation

of E
(
Z̃
)

would require some complicated respective time demanding computation.

Nevertheless, we suppose that Z̃ is still a reasonable control variate for Z, in terms

of the variance reduction. It stands to reason to use a further control variate Ẑ for
Z̃ such that E

(
Ẑ
)

is at least easier to approximate then E
(
Z̃
)
. Of course, one might

ask why we do not use Ẑ as a control variate for Z from the beginning. Indeed the
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hope of this iterative method is a further reduction of the computational cost of the

approximation of E(Z). The direct simulation for E
(
Z̃
)

is given by

Ân̂,ĉ = ĉ · E
(
Ẑ
)

+
1

n̂
·

n̂∑
k=1

(
Z̃k − ĉ · Ẑk

)
.

For the approximation of E(Z) we obtain

Ân,n̂,c,ĉ = c · ĉ · E
(
Ẑ
)

+
c

n̂
·

n̂∑
k=1

(
Z̃k − ĉ · Ẑk

)
+

1

n
·

n∑
i=1

(
Zi − c · Z̃i

)
with

(
Z̃1, Ẑ1

)
, . . . ,

(
Z̃n̂, Ẑn̂

)
independent copies of

(
Z̃, Ẑ

)
and

(
Z1, Z̃1

)
, . . . ,

(
Zn, Z̃n

)
independent copies of

(
Z, Z̃

)
, as well as, independence of

((
Z̃1, Ẑ1

)
, . . . ,

(
Z̃n̂, Ẑn̂

))
and

((
Z1, Z̃1

)
, . . . ,

(
Zn, Z̃n

))
, i.e., we employ two independent direct simulations.

Observe that the expectation can be written in terms of

E
(
Ân,n̂,c,ĉ

)
= c · ĉ · E

(
Ẑ
)

+ c · E
(
Z̃ − ĉ · Ẑ

)
+ E

(
Z − c · Z̃

)
(67)

As an example, similar as in (i), we consider Euler-Maruyama approximate so-
lutions X2k and X2` based on 2k and 2` equidistant time steps, respectively. We set

Z = f(X), Z̃ = f(X2k), and Ẑ = f(X2`) with ` < k.

Finally, we observe that both generalizations can be combined, immediately.

Before we turn to multilevel Monte Carlo algorithms, we first introduce asymptotic con-
fidence intervals, which can be used to judge the reliability of empirical estimations, i.e., in
particular of the result of a direct simulation.

IV.2.2. Asymptotic Confidence Intervals. The advantage of asymptotic confidence
intervals is that they do not need any information on the basic experiment except for the
empirical expectation and variance. Also no boundedness assumptions on the basic experi-
ment are needed, as, e.g., in the Hoeffding inequality. For a discussion on confidence intervals
and for more details on the topic, see, e.g., Müller-Gronbach et al. [49, Section 3.5].

We introduce asymptotic confidence intervals in the general terminology of the direct
simulation, cf. Definition 7. Let Z be a square-integrable random variable with expectation
E(Z) to be approximated, and (Zk)k∈N a sequence of independent copies of Z. The empirical
expectation, which corresponds to the output of the direct simulation, is denoted by

En =
1

n
·

n∑
k=1

Zk

for n ∈ N, and for n ≥ 2 the (unbiased) empirical variance Vn of En is given by

Vn =
1

n− 1
·

n∑
k=1

(Zk − En)2.(68)

To obtain a symmetric confidence interval In = [En − ε, En + ε] with ε > 0 based on En and
Vn only, we can employ the central limit theorem stating that for sufficiently large n, the
distribution of En is approximately Gaussian, see, e.g., Billingsley [5, Section 27, Theorem
27.1].

The following result is well-known, see, e.g., Müller-Gronbach et al. [49, Theorem 3.18].
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Theorem 8. Let Z be a square-integrable non-trivial random variable, i.e., Var(Z) > 0,
and δ ∈ ]0, 1[. Moreover, let Φ−1 denote the inverse distribution function of the standard
normal distribution. Then Ln = Φ−1(1 − δ/2) · (Vn/n)1/2 defines an asymptotic confidence
interval

In = [En − Ln, En + Ln]

to the confidence level 1− δ for E(Z), i.e.,

lim
n→∞

P
({
E(Z) ∈ In

})
= 1− δ.

Remark 25. The value of Φ−1(1 − δ/2) can either be taken from a look-up table or it
can be computed by means of a numerical routine. The particular asymptotic confidence
interval with confidence level 0.95, i.e., δ = 0.05, as we will use it throughout Chapter V is
given by

In =
[
En − 1.96 · (Vn/n)1/2, En + 1.96 · (Vn/n)1/2

]
for n ≥ 2.

IV.3. Multilevel Monte Carlo (MLMC) Methods

For the multilevel Monte Carlo method we take into account a whole hierarchy of approx-
imation schemes (Xk)k∈N0 with weak convergence for all f ∈ F , i.e., there exists a positive
constant c such that

sup
f∈F

∣∣E(f(X)− f(Xk))
∣∣ ≤ c · sup

f∈F

∣∣E(f(X)− f(X`))
∣∣

for k ≥ `, and with monotonically increasing cost for the computation of a single copy of
Xk, in k, and consequently for f(Xk). For L ∈ N0, in terms of the expectation, Remark 24
specifically (66) and (67), clearly yield the particular approach

E
(
f(XL)

)
= E

(
f(X0)

)
+

L∑
`=1

E
(
f(X`)− f(X`−1)

)
(69)

where each expectation on the right hand side is independently approximated by means of a
direct simulation A`,n` using n` ∈ N independent copies (B`,i)i=1,...,n` of the basic experiments

B` =

{
f(X0), if ` = 0,

f(X`)− f(X`−1), if ` ≥ 1.

Note that for each control variate the constant c ∈ R in (64) is à priori chosen to be one.
Property (69) is also called telescoping sum property (of the expectation). The corresponding
multilevel algorithm reads as

AL,n(f) =
L∑
`=0

A`,n` =
L∑
`=0

1

n`
·
n∑̀
i=1

B`,i(70)

with n = (n0, . . . , nL). Concerning the error of AL,n(f), observe that due to the telescoping
sum property (69) we have

Bias
(
AL,n(f)

)
= E

(
f(X)− AL,n(f)

)
= E

(
f(X)− f(XL)

)
,(71)
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i.e., the bias of AL,n only depends on the most accurate approximation scheme under con-
sideration, and Bienaymé’s formula yields

Var(AL,n(f)) =
L∑
`=0

1

n`
· Var(B`).(72)

So, the crucial point for this algorithm is that in each direct simulation A`,n` with ` ≥ 1
the approximation schemes X` and X`−1 need to be coupled in a way that the variance
of
(
f(X`) − f(X`−1)

)
is sufficiently small, indeed it has to decrease uniformly in ` ∈ N.

How such a coupling, based on the underlying sample paths of the driving Brownian motion
W , can be achieved in the classical multilevel Monte Carlo setting is described in detail
in Section IV.3.1, and for the random bit approximation setting two coupling methods are
presented in Section IV.4.1 and Section IV.4.2.

For a better understanding of the necessity of an appropriate coupling, we suppose that
in each direct simulation A`,n` with ` ≥ 1, the realizations of f(X`) and f(X`−1) are inde-
pendent. Then the variances of the basic experiments B` satisfy

Var(B`) = Var(f(X`)) + Var(f(X`−1)),

and therefore the variance of the multilevel algorithm AL,n is given by

Var(AL,n) =
1

n0

·
n0∑
i=1

Var(f(X0)) +
L∑
`=1

1

n`
· Var(f(X`)) + Var(f(X`−1)).

As a consequence AL,n is inferior to the classical Monte Carlo algorithm

AL,ñL =
1

ñL
·
ñL∑
i=1

f(XL,i)

with XL,1, . . . , XL,ñL independent copies of XL. Indeed, let ñL = nL. Since E(AL,nL) =
E(AL,n) we have

Bias(AL,nL(F )) = Bias(AL,n(F )),

while

Var(AL,nL(F )) ≤ Var(AL,n(F )).

Altogether, this means

error(AL,nL , F ) ≤ error(AL,n, F ) with cost(AL,nL , F ) ≤ cost(AL,n, F ).

IV.3.1. MLMC Euler-Maruyama. From now on, we will investigate a particular
multilevel Monte Carlo method, namely the method based on a, later to be specified, par-
ticular subsequence of the Euler-Maruyama approximate solutions (Xm)m∈N with Xm using
m equidistant time steps, see Section II.2.1. This method is also called multilevel Monte
Carlo Euler-Maruyama method, and we use the shorthands MLMC Euler method as well as
multilevel Euler method. Observe that, by Theorem 2, we have the claimed weak convergence
of (Xm)m∈N0 to X as m tends to infinity, for all f from the Lipschitz classes F = Fp and
F = F∞, respectively.

As already mentioned the coupling of the different employed approximation schemes, here
of Euler-Maruyama approximate solutions based on a different number of equidistant time
steps, is essential for the reduction of the variance of the estimator. Hence, before we turn
to the construction of this particular multilevel method, we describe the standard coupling
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of different Euler-Maruyama approximate solutions, that will lead us to the subsequence
(X2k)k∈N0 of (Xm)m∈N. To this end, we recall the definition of the Euler-Maruyama scheme
with breakpoints tk = tk,m = k/m for k = 0, . . . ,m from Section II.2.1, namely

Xm(t0,m) = x0,

Xm(tk,m) = Xm(tk−1,m) +m−1 · a
(
Xm(tk−1,m)

)
+ b
(
Xm(tk−1,m)

)
· Vk,m

for k = 1, . . . ,m, with Brownian increments

Vk = Vk,m = W (tk)−W (tk−1).

Observe that this is a pathwise approximation where each realization relies on the increments
of a single sample path of the driving Brownian motion W . Since the randomness only enters
Xm via W , as the SDE itself, the coupling clearly has to rely on the sample paths of W . For
an even number m ∈ N of time steps we define the coupled Euler-Maruyama approximate

solution X̃m/2 via

X̃m/2(t0,m/2) = x0,

X̃m/2(tk,m/2) = X̃m/2(tk−1,m/2) + (m/2)−1 · a
(
X̃m/2(tk−1,m/2)

)
+ b
(
X̃m/2(tk−1,m/2)

)
· Ṽk,m/2

for k = 1, . . . ,m/2 and with Brownian increments

Ṽk = Ṽk,m/2 = V2·k,m + V2·k−1,m = W (tk,m/2)−W (tk−1,m/2).(73)

That is, for the coupling we always assume that the finer approximation uses exactly twice

as much time steps as the coupled coarser approximation. We stress that Ṽk,m/2 = Vk,m/2,

implying that X̃m/2 and Xm/2 share the same distribution, which is convenient in the anal-
ysis of multilevel algorithms, cf. the telescoping sum property (69). Recall that continuous

extensions of the two schemes Xm and X̃m/2 to the unit interval are obtained via piecewise

linear interpolation of Xm(t0,m), . . . , Xm(tm,m) and X̃m/2(t0,m/2), . . . , X̃m/2(tm/2,m/2) on the
subintervals ]tk−1,m, tk,m[ and ]tk−1,m/2, tk,m/2[, respectively, see Section II.2.1.

With the coupling at hand, we can give a general description of the multilevel Euler
algorithm, according to (70), that will also be applicable for the random bit multilevel
Euler algorithms in Section IV.5. Let L ∈ N be the maximum level that is used by the
multilevel Euler method, i.e., the algorithm involves at least two levels. On every level ` =

1, . . . , L the algorithm involves a fine approximation X2` and a coarse approximation X̃2`−1 ,
as defined above. On level ` = 0 we only consider the fine approximation X20 . Finally, let
N = (N0, . . . , NL) ∈ NL+1 be the vector of replication numbers on the levels ` = 0, . . . , L.

For notational convenience we set X̃2−1 = 0.
To define the multilevel method we consider an independent family of random elements(

X2`,i, X̃2`−1,i

)
with ` = 0, . . . , L and i = 1, . . . , N` such that(

X2`,i, X̃2`−1,i

) d
=
(
X2` , X̃2`−1

)
for all ` = 0, . . . , L and i = 1, . . . , N`. For f ∈ F , the multilevel method finally reads as

AL,N(f) =
1

N0

·
N0∑
i=1

f
(
X20,i

)
+

L∑
`=1

1

N`

·
N∑̀
i=1

(
f
(
X2`,i

)
− f

(
X̃2`−1,i

))
.(74)
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Observe that in terms of (70),
(
f
(
X2`,i

)
−f
(
X̃2`−1,i

))
i=1,...,N`

corresponds to N` independent

realizations of the basic experiment f
(
X2`
)
− f

(
X̃2`−1

)
.

Before we turn to the analysis of AL,N , we estimate the cost of AL,N . For that purpose

we consider the cost of one realization of f
(
X2`
)
− f

(
X̃2`−1

)
. At first we observe that the

number of arithmetic operations and evaluations of the coefficients (each having unit cost)
in the computation of one realization of X2` is, up to a multiplicative constant, bounded

by 2` and yields a natural bound for X̃2`−1 , as well. Furthermore, we recall that the cost

for the evaluation of f is linear in the number of breakpoints of X2` and X̃2`−1 , namely,
2` + 1 and 2`−1 + 1, respectively, i.e., we again have the cost bound 2`, up to a multiplicative
constant, which is independent from the particular choice of f ∈ F . Finally, one realization

of X2` and hence also the coupled realization of X̃2`−1 involves 2` Brownian increments. For
a d-dimensional driving Brownian motion this requires d · 2` calls to the random number

generator. Altogether, we conclude that the cost of one realization of f
(
X2`
)
− f

(
X̃2`−1

)
is,

up to a multiplicative constant, dominated by the number of calls to the random number
generator. For the whole multilevel algorithm AL,N this yields

cost
(
AL,N , f

)
4 d ·

L∑
`=0

N` · 2`

and since the constant hidden in 4 is independent from the choice of f ∈ F , we obtain

cost
(
AL,N , F

)
4 d ·

L∑
`=0

N` · 2`.(75)

For ε ∈ ]0, 1/2[ we consider the algorithm

Aε,F = AL(ε,F ),N(ε,F )

with maximal level

L = L(ε, F ) =

{⌈
log2(ε−2)

⌉
, if F = Fp,⌈

log2(ε−2) + log2

(
log2(ε−2)

)⌉
, if F = F∞

(76)

and with replication numbers

N` = N`(ε, F ) =

{⌈
(L+ 1) · 2−` · ε−2

⌉
, if F = Fp,⌈

(L+ 1) · 2−` ·max(`, 1) · ε−2
⌉
, if F = F∞

(77)

for ` = 0, . . . , L.
The following result is known, see, e.g., Creutzig et al. [12, Remark 8]. For convenience

of the reader and due to its importance in the random bit approximation to the multilevel
Euler method in Section IV.5 we present the proof.

Theorem 9. Let F = F∞ or F = Fp with 1 ≤ p < ∞. Then there exists a positive
constant c such that the multilevel Euler method Aε,F satisfies

error
(
Aε,F , F

)
≤ c · ε

and

cost
(
Aε,F , F

)
≤ c · ε−2 ·

{(
ln(ε−1)

)2
, if F = Fp,(

ln(ε−1)
)3
, if F = F∞

for every ε ∈ ]0, 1/2[.



IV.3. MULTILEVEL MONTE CARLO (MLMC) METHODS 61

Here, we do not use the notation 4 since it is more convenient to use constants in the
proof of Theorem 9, which is presented below.

Corollary 4. In terms of the ε-complexity comp(ε, F ), see Definition 6, Theorem 9
implies an upper bound that is of the same order as cost(Aε,F , F ), i.e., there exists a positive
constant c such that

comp
(
ε, F

)
≤ c · ε−2 ·

{(
ln(ε−1)

)2
, if F = Fp,(

ln(ε−1)
)3
, if F = F∞.

Remark 26. Before we turn to the proof of Theorem 9 we first discuss the results
therein, and in Corollary 4. Of course, one is interested in classifying the upper bound on
the ε-complexity in Corollary 4, i.e., one is interested in a lower bound on comp(ε, F ), too.
Hence, in the following, we present lower bounds derived in Creutzig et al. [12] under a
slightly stronger smoothness assumption as well as a non-degeneracy assumption on the
diffusion coefficient b of the SDE, see (59), which in particular excludes pathological cases
yielding a deterministic solution. In Creutzig et al. [12] the authors establish lower bounds for
Lp([0, 1]) as well as for C([0, 1]), i.e., for our function classes F = Fp and F = F∞, that are
only based on the number of evaluations of the functional f from F and the cost associated
to each evaluation. Hence, these lower bounds, in particular, serve as lower bounds for the
ε-complexity in our setting.

For sake of completeness and convenience of the reader, let us mention that in Creutzig
et al. [12] the authors do not consider the ε-complexity directly, but the n-th minimal error,
which is defined by

errorn(F,X) = inf
{

error(A,F,X) : A is a Monte Carlo algorithm, cost(A,F ) ≤ n
}
.

The relation to the ε-complexity is as follows, let α and β be positive constants, then

errorn(F,X) 4 n−α · ln(n)β

corresponds to

comp(ε, F,X) 4 ε−1/α ·
(
ln(ε−1)

)β/α
.

The analogous relations hold for < and �, respectively.
In Creutzig et al. [12] the authors actually consider three different cost models, two of

which are relevant to us. Namely, variable subspace sampling and fixed subspace sampling.
For the latter, f may be evaluated on a finite-dimensional subspace of C([0, 1]) or Lp([0, 1]),
respectively. This corresponds to the classical Monte Carlo Euler approach, where we consider
one fixed approximation scheme Xm based on m equidistant time steps, i.e., we consider
the finite-dimensional subspace consisting of piecewise linear functions with breakpoints
tk = k/m. Likewise, variable subspace sampling allows an increasing sequence of finite-
dimensional subspaces. Following the reasoning for fixed subspace sampling, this setting
corresponds to the multilevel Euler setting using the hierarchy of 2`-dimensional subspaces
consisting of piecewise linear functions with breakpoints tk = k/2`, for levels ` = 0, . . . , L,
respectively.

Finally, Theorem 11 and Theorem 12 from Creutzig et al. [12] yield the following lower
bounds. For fixed subspace sampling we have

ε−4 ·
(
ln(ε−1)

)3
4 comp(ε, F∞, X)
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and

lim
ε→0

comp(ε, Fp, X) · ε4 ·
(
ln(ε−1)

)−3
> 0.

As a consequence the upper bound on the ε-complexity of the classical Monte Carlo Euler
method implied by (63) is sharp, up to logarithmic factors.

For variable subspace sampling we have

ε−2 4 comp(ε, F,X)

for F = Fp and F = F∞. That is the upper bounds on the ε-complexity in Corollary 4 are
sharp, up to logarithmic factors.

Proof of Theorem 9. We present the proof for F = F∞. Regarding Remark 21, we
show that both, squared bias and variance of Aε,F are bounded by ε2, up to a multiplicative
constant.

By Theorem 2 there exists a constant c1 > 0 such that

E
∥∥X −X2`

∥∥2

sup
≤ c1 · 2−` ·max(`, 1).

for every ` ≥ 1 and E ‖X20‖2
sup ≤ c1. Hence we get using (71) and Jensen’s inequality(

Bias
(
AL,N(f)

))2
=
(
E
(
f(X)− f(X2L)

))2

≤
(
E ‖X −X2L‖sup

)2 ≤ E ‖X −X2L‖2
sup ≤ c1 · 2−L · L

for all L and N , and for every f ∈ F∞. For the particular choice L = L(ε, F ) we immediately
get (

Bias
(
Aε,F (F )

))2 ≤ 2 · c1 · ε2,

i.e., the claimed upper bound of order ε2. For the variance we get, using (72)

Var
(
AL,N(f)

)
≤

L∑
`=0

1

N`

E
∥∥f(X2`)− f(X̃2`−1)

∥∥2

sup
≤

L∑
`=0

1

N`

E
∥∥X2` − X̃2`−1

∥∥2

sup

≤ c1

N0

+ 2 ·
L∑
`=1

(
E
∥∥X2` −X

∥∥2

sup
+ E

∥∥X̃2`−1 −X
∥∥2

sup

)
≤ 6 · c1 ·

L∑
`=0

2−` ·max(`, 1) ·N−1
`

for all L and N and for every f ∈ F∞. For the particular choice N = N(ε, F ) we immediately
get

Var
(
AL,N(F )

)
≤ 6 · c1 · ε2,

i.e., the claimed upper bound of order ε2, too.
To derive the cost bound for Aε,F it remains to observe that there exists a constant c2 > 0

such that
L∑
`=0

N`(ε, F ) · 2` =
L∑
`=0

(L+ 1) ·max(`, 1) · ε−2

≤ c2 · ε−2 · L3 ≤ 2 · c2 · ε−2 ·
(
log2(ε−1)

)3

(78)

for all ε.
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The proof for F = Fp follows step by step the proof for F = F∞, using the corresponding
rate of convergence, with respect to the Lp-norm, from Theorem 2. �

Remark 27. Let us point to two weaknesses of the algorithm Aε,F . One weakness is
that the à priori choice of L(ε, F ) and N(ε, F ) is based on the upper bound on the order
of convergence of the Euler-Maruyama approximate solutions (Xk)k∈N with respect to the
norm associated to F . That choice is indeed suboptimal if the order of convergence of (Xk)k
is higher. Unfortunately, the order of convergence of (Xk)k is usually not known.

A further weakness of Aε,F is that in a practical application we would like to choose L
and N such that the error of Aε,F is smaller than a given error bound ε > 0. Indeed, we
want to minimize cost(Aε,F , f) subject to the constraint error(Aε,F , f) ≤ ε. Observe that this
minimization problem implicitly requires knowledge on the convergence of (Xk)k as well.

IV.3.2. Bias and Variance Estimation. In order to solve the minimization problem
from Remark 27 we recall that we have the decomposition of the squared stochastic L2-error
into the squared bias and the variance of Aε,F (f)

(error(Aε,F , f))2 = Bias(Aε,F (f))2 + Var(Aε,F (f)),

see Remark 21, i.e., error(Aε,F , f) is regulated by L = L(ε, F ) and N = N(ε, F ). Moreover,
cost(Aε,F , f) depends only on L and N , too, see (75). Hence, to solve the minimization
problem, i.e. an optimal choice of L and N , we do need to know the strong asymptotics

of the expectation and the variance of (f(X2`) − f(X̃2`−1))`∈N . Unfortunately the (strong)
asymptotics are in general not known and hence need to be estimated. Indeed we will use
bias and variance approximations on a small number of levels L′ based on which we esti-
mate the strong asymptotics, respectively. Here, we suppose a specific structure of the weak
asymptotics, which is based on the upper bound from Theorem 2 and fortified by the nu-
merical experiments in Chapter V. In that sense, our estimates of the strong asymptotics are
indeed estimates of an upper bound of the same, respectively. Note that, relying on upper
bounds we will rather overestimate than underestimate the bias and the variance on each
level, resulting in a, hopefully only, slightly higher computational cost on the one hand and
a smaller error of the multilevel Monte Carlo algorithm. Moreover, the adaptive randomized
algorithm which we are going to consider, see Section IV.3.3, is supposed to have an error
smaller than some given error bound. Hence overestimations of bias and variance are even
leading to a more reliable algorithm. Furthermore, the numerical experiments in Chapter V,
for which we will compare the input error bound to the error of the algorithm’s output,
indicate that there is no substantial overestimate of the bias and variance on the different
levels.

However, we have to refine the choices of L and N to the particular functional f , i.e.,
L = L(ε, f) and N = N(ε, f). The corresponding multilevel Euler algorithm will then, for
the moment, be denoted by Aε, to indicate that it does no longer depend on the upper
bounds for the convergence of the Euler-Maruyama scheme from Theorem 2, as does Aε,F .
Consequently, in the following we show how to estimate(

Bias`(f)
)
`∈N =

(
E
(
f(X2`)− f(X̃2`−1)

))
`∈N =

(
E
(
f(X2`)− f(X2`−1)

))
`∈N

and (
Var`(f)

)
`∈N =

(
Var
(
f(X2`)− f(X̃2`−1)

))
`∈N =

(
Var
(
f(X2`)− f(X2`−1)

))
`∈N
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based on approximations of the respective quantities for the first L′ ∈ N members of the
sequences, respectively.

In order to have good upper bounds on the strong asymptotics of (Bias`(f)) and (Var`(f))
we, clearly, need good approximations of (Bias`(f))`=1,...,L′ and (Var`(f))`=1,...,L′ , respectively.
These approximations will be based on direct simulations of the basic experiments (f(X2`)−
f(X2`−1))`=1,...,L′ , i.e., Bias`(f) is approximated by the empirical expectation and Var`(f)
by the empirical variance of the corresponding basic experiment. One way to determine
the quality and therefore the reliability of such approximations is to consider asymptotic
confidence intervals to some confidence level 1 − δ, with δ close to 0, as introduced in
Section IV.2.2.

For the moment we only consider the minimization problem for f ∈ Fp. We follow the
approach that is, e.g., used in Giles [25] in terms of an adaptive multilevel Euler algorithm,
see Section IV.3.3. We proceed in two stages. To this end, we decompose the upper bound
ε on the root-mean-squared error into ε2 = ε2

B + ε2
V , where εB denotes the maximal allowed

error for the bias, i.e., ∣∣Bias
(
Aε(f)

)∣∣2 =
(
E
(
f(X)− f(X2L)

))2 ≤ ε2
B,(79)

and ε2
V denotes the maximal allowed error for the variance, i.e.,

Var
(
Aε(f)

)
≤ ε2

V .

For the bias we observe that in practical applications f(X) is usually not known. Otherwise,
we could immediately sample from f(X) instead of approximating X first. Hence we need
to estimate Bias(Aε(f)). For notational convenience, we set Bias0(f) = E(f(X20)). Due to
the upper bound on the strong convergence of (X2`)`∈N from Theorem 2, and the Lipschitz
continuity of f we obtain weak convergence of (X2`)`∈N with respect to f and hence

E(f(X)) = lim
m→∞

E(f(X2m)) = lim
m→∞

m∑
`=0

Bias`(f) =
∞∑
`=0

Bias`(f),

and therefore by the telescoping sum property (69)

Bias
(
Aε(f)

)
=
∞∑
`=0

(
Bias`(f)

)
− E

(
f(X2L)

)
=

∞∑
`=L+1

Bias`(f).

Hypothesis 1. Motivated by the upper bound from Theorem 2, and suitable in the
numerical experiments in Chapter V, we suppose (Bias`(f))`∈N to have the law∣∣Bias`(f)

∣∣ ≤ cB ·
(
2−`
)α

= cB ·
(
2−α
)`

for some α > 0, i.e., the sequence (|Bias`(f)|)`∈N is bounded from above by a geometrical
sequence with initial value cB and quotient 2−α.

We add that the constant cB > 0 may actually depend on f ∈ Fp, and recall that, here,
we are interested in an upper bound on the strong asymptotic, i.e., constants do matter.
Moreover, note that, for the SDE under consideration, see (59), Theorem 2 ensures α ≥ 1/2.

In order to estimate Bias(Aε(f)) we observe that we have 2−α ∈ ]0, 1[. Hence the well-
known formula for the remainder of a geometric series is applicable and we get

Bias
(
Aε(f)

)
≤

∞∑
`=L+1

∣∣Bias`(f)
∣∣ ≤ cB ·

∞∑
L+1

(
2−α
)`

= cB ·
(2−α)L+1

1− 2−α
.
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Consequently, condition (79), for the choice of the highest level L, is implied by

cB ·
(
2−α
)L+1

1− 2−α
≤ εB.(80)

Solving the inequality for L yields

L ≥ log2−α

(
εB · (1− 2−α)

)
− log2−α(cB)− 1.

As L needs to be an integer it is natural to simply apply the ceiling function, i.e., we choose

L =

⌈
ln
(
εB · (1− 2−α)

)
− ln(cB)

ln(2−α)
− 1

⌉
.(81)

Remark 28. It remains to estimate the exponential decay α of (|Bias`(f)|)`∈N in terms
of the level ` as well as the constant cB. This can be done by means of a classical log-log-
linear-regression. To this end, for a given L′ ∈ N, we plot the logarithm of the (via direct
simulation) approximated values of |Bias`(f)|, ` = 1, . . . , L′, against the logarithm of the
cost associated to one realization of the corresponding basic experiment f(X2`)− f(X2`−1).
Recall that for Euler-Maruyama approximate solutions (X2`)`∈N the cost of f(X2`) is given
by 2`, up to a multiplicative constant. Hence it is convenient to choose the logarithm with
basis 2 and to assume the cost of (f(X2`) − f(X2`−1)) to be exactly 2`, i.e., we are aiming
for a log-linear regression of the approximations of the absolute values of Bias`(f) plotted
against the corresponding levels ` = 1, . . . , L′. Hypothesis 1 suggests that for sufficiently
good approximations of (|Bias`(f)|)`=1,...,L′ their logarithmic values should be bounded by
a straight line. The corresponding parameters are estimated by a linear least-square fit, as
described in Section A.2 in the Appendix, with (|Bias`(f)|)`=1,...,L′ as response variable and
with design matrix D = [D1, D2] where D1 = [1, . . . , , L′]T and D2 = [1, . . . , 1]T . Observe
that the decay rate α corresponds to the slope of this fit and cB to the exponential of the
intercept of the fit and the y-axis.

Having determined the highest level L we can turn to the numbers N` ∈ N of replications
on each level ` = 0, . . . , L. For notational convenience, analogously as for Bias`(f), we set
Var0(f) = Var(f(X20)). Moreover, we define

C` = C`(f) =

{
cost

(
f(X20)

)
, if ` = 0,

cost
(
f(X2`)− f(X2`−1)

)
, if ` ≥ 1

to be the cost associated to one realization of the right hand side, respectively. Then the
minimization problem from Remark 27 translates to minimizing

L∑
`=0

N` · C`,

i.e., the cost of Aε(f), neglecting all constants, with respect to N subject to

Var
(
Aε(f)

)
=

L∑
`=0

N−1
` · Var`(f) ≤ ε2

V .

Actually, we do not solve this minimization problem as an integer optimization problem, but
as a problem in RL+1

+ and we use the ceiling function to obtain integer values again. This
makes sense since Var(Aε(f)) is decreasing for increasing components of N and it assures
that N` ≥ 1 for all ` = 0, . . . , L.
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The optimization problem can be solved by means of Lagrange multipliers, i.e., we con-
sider the Lagrange function

L(λ,N) =
L∑
`=0

(N` · C`) + λ2 ·
(
Var
(
Aε(f)

)
− ε2

V

)
.

For ` = 0, . . . , L considering ∇N` L(λ,N) = 0 yields

N` = λ · (Var`(f)/C`)
1/2(82)

as a necessary condition for N being an extremal point. Inserting the N`’s in ∇λ L(λ,N) = 0
we obtain

λ = ε−2
V ·

L∑
`=0

(Var`(f) · C`)1/2.

Hence inserting λ in (82) and using the ceiling function we get

N` =

⌈
ε−2
V · (Var`(f)/C`)

1/2 ·
L∑
k=0

(Vark(f) · Ck)1/2

⌉
(83)

for ` = 0, . . . , L.
The question whether an extremal point yields a (local) maximum or a (local) minimum

of a Lagrangian function L leads in general to the bordered Hessian matrix associated to L.
For such a bordered Hessian matrix one usually has to consider the leading principle minors
and cannot argue via positive definiteness to get conditions for maxima or minima, see,
e.g., Simon and Blume [62, Section 19.3] for a discussion and results. Here, we give a rather
intuitive argument why N according to (83) yields actually a minimum of L(λ,N). Due to

the monotonicity of
∑L

`=0N` · C` in N and the constraint Var(Aε(f)) ≤ ε2
V obviously being

fulfilled for all components of N tending to infinity, simultaneously, the function
∑L

`=0 N` ·C`
is unbounded in N and hence can not have a local maximum.

Remark 29. It remains to approximate the values Var`(f) for ` = 0, . . . , L. This can,
once again, be done by means of direct simulations, and using the empirical variance, see
(68). Yet for large L it is clear that a direct simulation for VarL(f) might come along with a
time demanding computation. At least for a number of replications that is sufficiently large to
have a good approximation of VarL(f) in the sense of a relatively small asymptotic confidence
interval, see Section IV.2.2, compared to the absolute value of VarL(f). Therefore, we only
approximate (Var`(f))`=0,...,L′ with L′ � L and we then estimate Var`(f) for ` = L′+1, . . . , L
based on the approximations of (Var`(f))`=1,...,L′ . To do this, we proceed in the same way as
for the bias.

Hypothesis 2. With the same argument as in Hypothesis 1, we suppose that (Var`(f))`∈N
has the law

Var`(f) ≤ cV ·
(
2−`
)β

= cV ·
(
2−β
)`

for some β > 0, i.e., the sequence (Var`(f)) is bounded from above by a geometric sequence
with initial value cV , that may depend on f ∈ Fp, and quotient 2−β.

Note that, for the SDE under consideration, see (59), Theorem 2 yields β ≥ 1.
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Once we have the approximate values for (Var`(f))`=1,...,L′ we apply a log-linear-regression,
analogously to the one for (|Bias`(f)|)`=1,...,L′ , as described in detail in Remark 28, to es-
timate the parameters β and cV . It remains to compute the bounds for (Var`(f))`=L′+1,...,L

according to the law in Hypothesis 2.

Let us recapitulate. For a given error bound ε > 0 that is split into a bias and a variance
bound via ε2 = ε2

B +ε2
V , and a given functional f ∈ Fp, (81) and (83) yield an optimal choice

for the highest level L depending on εB, and the replication numbers N` on level ` = 0, . . . , L
depending on εV , in the sense that the computational cost for the error of the corresponding
f -depending multilevel Euler algorithm Aε applied to f , to fall below the error bound ε, is
minimized.

Remark 30. There are two problems. One is that we do not know the highest level L
in advance and hence we do not know what is a good choice for the number L′ of levels that
are involved in the linear-regressions for the estimation of our upper bound on the strong
asymptotic behaviour of (|Bias`(f)|)`∈N and (Var`(f))`∈N. The second point is the cost for
the estimations mentioned before. Actually, if the replication numbers on the levels up to
L′ used for the estimations of cB, α, cV , and β are less than the corresponding replication
numbers N` according to (83), then the samples from this estimation may be reused and
consequently the cost for the estimation is negligible compared to the overall cost of Aε(f).
But in general this might not be the case, especially for cost intensive levels ` close to L′,
since N` is decreasing in ` as Var`(f)/C` is decreasing in `, see (83).

These problems actually lead to the adaptive multilevel Euler algorithm as first intro-
duced in Giles [24], which we consider in Section IV.3.3. In this algorithm there will be no L′

to be chosen and no additional samples for the bias and variance estimation will be present,
i.e., the cost for these estimations will turn out to be negligible.

Remark 31. We compare the classical Monte Carlo Euler algorithm, introduced in Sec-
tion IV.2, to the multilevel Euler algorithm Aε.

As already mentioned in Remark 30, the computational cost associated to the choice
of the highest level L used by Aε is negligible, at least in terms of an adaptive multilevel
Euler algorithm. For the classical Monte Carlo Euler algorithm AL,ÑL , which uses the same
L as Aε, recall that the bias of Aε depends only on the highest level L, this is not the case,
since AL,ÑL does not take into account any samples on the levels ` = 0, . . . , L′. That is, the
whole cost for the estimation of L is additional, whereas on the contrary the cost for the
estimation of the variance of AL,ÑL is in general insignificant since the samples of a classical

direct simulation for the estimation of the variance of f(X2L) can be utilized by AL,ÑL .
Another advantage of the multilevel Euler algorithm lies in the penalty for choosing a

too large highest level L. This might indeed happen since one is rather careful in choosing
L, especially for the classical algorithm AL,ÑL , since the bias contribution to the error of
AL,ÑL is a fixed constant, so if L is too small we can not fall below the bias error bound
εB. Moreover, while the multilevel Euler algorithm allows to add further levels, the classical
Monte Carlo Euler algorithm requires a completely new simulation.

In the following, we consider the effect (on the cost) for choosing the highest level L+ 1
instead of L, which then easily generalizes to L + ` for ` ∈ N. At first we observe that (at
least for L being large) the variances of AL+1,ÑL+1

and AL,ÑL are of the same order. This is

due to the convergence of the variance of (f(X2`))`∈N to the variance of f(X), which is due
to Theorem 2. In terms of the law in Hypothesis 2, we have β ≥ 1 and can hence apply a
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geometric sequence estimation of the remainder of the series associated to (Var`(f))`∈N, as
we did for (|Bias`(f)|)`∈N, that gives us∣∣Var(f(X))− Var(f(X2L))

∣∣ ≤ cV ·
(
2−β
)L+1

1− 2−β
.

As a consequence the numbers of realizations ÑL+1 and ÑL of the basic experiments almost
coincide. Since the cost for one realization of f(X2L+1) is almost twice as much as for one
realization of f(X2L), we conclude that roughly

cost
(
AL+1,ÑL+1

)
= 2 · cost

(
AL,ÑL

)
.

We turn to the corresponding effect (on the cost) for the multilevel Euler algorithms AL,N(L)

and AL+1,N(L+1) using the replication numbers N
(L)
` given in (83) in terms of the variance

bound from Hypothesis 2 with β = 1, i.e.,

N
(L)
` =

⌈
ε−2
V ·

(
cV · 2−2·`)1/2 ·

L∑
`=0

(
cV · 2−` · 2`

)⌉
.

Hence we can assume N
(L)
` to be of the form

N
(L)
` = c · 2−` · (L+ 1)

for some positive constant c. That is, we have N
(L)
` · C` = L + 1, up to a multiplicative

constant, and therefore

cost
(
AL+1,N(L+1) , f

)
cost

(
AL,N(L) , f

) =

(∑L
`=0 N

(L+1)
` · C`

)
+N

(L+1)
L+1 · CL+1∑L

`=0N
(L)
` · C`

=
L+ 2

L+ 1
+

L+ 2

(L+ 1)2
,

which is approximately (L+3)/(L+1), i.e., the additional cost is (at least for large L) rather
small compared to the overall cost.

We summarize, over estimating L by L+1 increases the cost for the classical Monte Carlo
Euler algorithm by a factor of about 2 and by a much smaller factor of about (L+3)/(L+1)
for the multilevel Euler algorithm, for reasonable L. Likewise, choosing L + ` with ` ∈ N
instead of L yields the factors 2` and

∏`
k=1(L+ k+ 2)/(L+ k), respectively, and hence even

enlarges the difference between the two factors.

Before we introduce and discuss the adaptive multilevel Euler algorithm, we give a gen-
eral multilevel Euler result (in our setting) for known bias and variance decay α and β,
respectively, according to Giles [25, Theorem 1], which is a slight generalization of the orig-
inal result from Giles [24, Theorem 3.1]. For the proof we refer to Cliffe et al. [10, Theorem
1].

Theorem 10. Let f ∈ Fp and assume that there exist positive constants c1, c2, c3, α, and
β with α ≥ 1/2 and

(i) |Bias` | ≤ c1 ·
(
2−α
)`

,

(ii) Var` ≤ c2 ·
(
2−β
)`

,

(iii) C` ≤ c3 · 2`.
Then there exists a positive constant c4 such that for any ε < exp(−1) there are values of L
and N for which the multilevel Euler algorithm AL,N(f) satisfies

error
(
AL,N , f

)
≤ ε
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with computational complexity

cost
(
AL,N , f

)
≤ c4 ·


ε−2, if β > 1,

ε−2 · (log(ε)), if β = 1,

ε−2−(1−β)/α, if 0 < β < 1,

which, clearly, yields an upper bound for the ε-complexity of Fp, see Definition 6, i.e.,

comp(ε, Fp) ≤ cost(AL,N , Fp).

Remark 32. Condition (iii) in Theorem 10 corresponds toX2` being the Euler-Maruyama
approximate solution based on 2` steps. Actually, this condition can be generalized to differ-
ent approximation schemes via C` ≤ c3 · (2γ)` and α ≥ 1/2 ·min(β, γ) for a positive constant
γ. The only consequence is that the bound on the computational complexity changes to

c4 ·


ε−2, if β > γ,

ε−2 · (log(ε)), if β = γ,

ε−2−(γ−β)/α, if 0 < β < γ.

Observe that by our definition of the cost of an algorithm, in terms of a random variable,
Theorem 10 also covers the case, where adaptive approximation schemes for X are employed.

Remark 33. Theorem 10 only claims that there exists a choice for L and N . For an
explicit formula we refer to the proof of Theorem 3.1 in Giles [24]. Actually, this choice
depends on which of the three cases for β we are in. However, it will turn out that the
particular choice in (81) and (83) is suitable for the upcoming adaptive multilevel Euler
algorithm in Section IV.3.3. This algorithm does not know the decay β in advance and we
actually have to estimate it several times during one run of the algorithm. Hence β might,
e.g., oscillate around 1, i.e., switch cases for L and N in terms of Theorem 10.

IV.3.3. Adaptive MLMC Euler-Maruyama Algorithm. As mentioned before, we
turn to the adaptive multilevel Euler algorithm, as first introduced in Giles [24, Section 5],
which in particular solves the problems discussed in Remark 30. We proceed as follows. We
first describe the basic algorithm and then we discuss some slight modifications, as, e.g.,
described in Giles [25, Section 3.4] that are supposed to lead to a more stable algorithm.

Definition 9. Let f ∈ Fp. Then the basic adaptive multilevel Euler algorithm reads as
follows.

Input: Beside the SDE (drift coefficient, diffusion coefficient, and initial value) and the
functional f ∈ Fp, the algorithm needs

• error bound ε > 0 (accuracy) with squared-bias-variance-split ε2 = ε2
B + ε2

V ,

• least highest level L ≥ 2, maximum highest level Lmax ≥ L,

• least replication numbers Ñ = (Ñ0, . . . , ÑL) such that reliable approximations of
Var` for ` = 0, . . . , L are possible.

Step 1: For ` = 0, . . . , L evaluate the Ñ` realizations of f(X2`)− f(X̃2`−1) and approxi-
mate Var`(f) by means of the empirical variance based on these realizations.

Step 2: Compute optimal numbers of realizations N = (N0, . . . , NL) according to (83)
based on the approximations of Var0(f), . . . ,VarL(f).
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Step 3: Compute number of additional realizations dN = N − Ñ and set Ñ = N .
IF(|dN | > 0)
There are additional realizations needed to establish the variance bound ε2

V

→ GoTo Step 4
ELSE
No additional realizations are needed to establish the variance bound ε2

V

→ GoTo Step 5.

Step 4: For ` = 0, . . . , L evaluate extra number of realizations dN` and approximate
Var`(f) by means of the empirical variance based on the total number N of realiza-
tions.
→ GoTo Step 2.

Step 5: For ` = 0, . . . , L compute approximations of Bias`(f) by means of direct simu-
lations based on the total N realizations, and estimate the decay α as well as the
constant cB for the upper bound of |Bias`(f)| in terms of Hypothesis 1 by means
of a log-linear regression, see Remark 28.
Check for weak convergence:

IF ((80) is fulfilled)
Weak convergence bound εB is achieved
→ GoTo Output.

ELSE IF(L < Lmax)
Bias error still to large, hence add another level, i.e., set L = L+ 1.
Estimate VarL(f) based on the approximations of Var`(f) for ` = 0, . . . , L− 1,
according to Hypothesis 2, by means of a log-linear-regression, see Remark 29
→ GoTo Step 2.

ELSE
Give a Warning that the weak error bound εB could not be established
→ GoTo Output.

Output: Compute approximation of E(f(X)) based on the total number N of realiza-
tions, cf. (74).

In the following we will denote this algorithm by Aadp
ε,F .

Remark 34. Observe that the input-condition L ≥ 2 is necessary for the log-linear-
regressions of |Bias`(f)| and Var`(f), respectively. In each regression we want to fit two
parameters by means of a linear least-square fit. Hence we need at least two values and the
first value we can employ for each fit is the respective one from level ` = 1. The approxima-
tions of |Bias0(f)| and Var0(f) can not be used since they involve no coupled approximations
and may therefore distort the corresponding fits, respectively.

The upper bound Lmax on the highest level to be used by Aadp
ε,F is necessary to limit the

runtime of the algorithm.

Before we turn to the modifications of Aadp
ε,F let us point to the fact that we only have

approximations of (|Bias`(f)|)` and (Var`(f))`, and hence there is no guarantee that the
algorithm really satisfies

error
(
Aadp
ε,F , f

)
≤ ε,

as does the algorithm in Theorem 10.
The following two modifications can, e.g., be found in Giles [25, Section 3.4, p. 283].
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Remark 35. We consider a modification concerning the approximations of Var`(f) and
|Bias`(f)| for ` = 2, . . . , L. First of all, we notice that N` is typically decreasing for increasing
`, cf. Theorem 2. Hence the empirical approximations of |Bias`(f)| and Var`(f) are in general
getting less and less accurate for increasing `. Therefore, it is a reasonable idea to use the
more accurate approximations from the lower levels for the higher levels. This can be done
by iteratively reworking |Bias`(f)| and Var`(f) via

|Bias`(f)| = max
(
|Bias`(f)|, 1/2 · |Bias`−1(f)| · 2−α

)
and

Var`(f) = max
(
Var`(f), 1/2 · Var`−1(f) · 2−β

)
for ` = 2, . . . , L. Here α and β denote the estimates of the exponential decays of (|Bias`(f)|)`
and (Var`(f))` by means of least-square fits, respectively. This post-processing has the effect
that (|Bias`(f)|)` and (Var`(f))` are not allowed to decrease with more than a factor of
1/2 relative to the anticipated value. The factor 1/2 respects the fact that |Bias`−1(f)|
and Var`−1(f) may be over-estimated, respectively. This procedure is applied each time
(Var`(f))`=0,...,L is approximated, i.e., in Step 1 and Step 4, and each time (|Bias`(f)|)`=0....,L

is approximated, i.e., in Step 5.

Remark 36. We address a second modification concerning the estimation of the expo-
nential decays α and β of (|Bias`(f)|)`≥1 and (Var`(f))`≥1, respectively. By Theorem 2, we
know that α is at least 1/2 and β should at least be 1. However, we are more careful with β,
since it regulates the numbers of replications and therefore the accuracy of all estimations
of (|Bias`(f)|)` and (Var`(f))`. Hence we set

α = max(α, 1/2) and β = max(β, 1/2)

respectively, in Step 5.

Since throughout the rest of the thesis we will always include the modifications from
Remarks 35 and 36 in the adaptive multilevel Euler algorithm as introduced in Definition 9,
we will stick to the notation Aadp

ε,F .
So far, whenever a multilevel Euler algorithm involved knowledge on the f -dependent

exponential decay of the bias and the variance of the differences f(X2`)− f(X̃2`−1) we have
assumed that f is from Fp. We now consider the case f ∈ F∞, more precisely, the intuitive
adjustment concerning the upper bounds in Hypothesis 1 and 2, and the numerical problems
evolving from these adjustments.

Recall that due to the Lipschitz continuity of f ∈ Fp the upper bounds∣∣Bias`(f)
∣∣ ≤ cB ·

(
2−α
)`

and Var`(f) ≤ cV ·
(
2−β
)`

are motivated by the upper bound of the Euler-Maruyama approximate solutions(
E
∥∥X2` −X

∥∥2

Lp([0,1])

)1/2

4 2−`/2

from Theorem 2. Furthermore, Theorem 2 states that exchanging the Lp-norm by the supre-
mum norm worsens this upper bound by a logarithmic factor, namely(

E sup
0≤t≤1

∣∣X2`(t)−X(t)
∣∣2)1/2

4 2−`/2 · ` 1/2.



72 IV. QUADRATURE OF SDES

Consequently, for f ∈ F∞ it stands to reason to change the bias and variance bound to∣∣Bias`(f)
∣∣ ≤ cB ·

(
2−α1

)` · `α2(84)

and

Var`(f) ≤ cV ·
(
2−β1

)` · `β2(85)

for positive constants cB, α1, α2 and cV , β1, β2, respectively. Note that naturally it also stands
to reason to incorporate this change in the modification described in Remark 36, i.e., α2 and
β2 are bounded from below by the constant 1/2, too.

Observe that in the respective linear least-square fits involved in the adaptive multilevel
algorithm Aadp

ε,F we now have to fit three parameters, i.e., we also need at least three values for

each fit, and hence we have to choose an input highest level L ≥ 3 for Aadp
ε,F , cf. Remark 34.

Moreover, note that though the effect of the new upper bounds vanishes for large `, since
for all positive constants γ1, γ2 and δ there exists `δ = `δ(γ1, γ2) ∈ N such that(

2−γ1
)` · ` γ2 ≤ (2−γ1+δ

)`
(86)

for all ` ≥ `δ, the adaptive multilevel Euler algorithm Aadp
ε,F might choose a highest level

L such that the logarithmic factor still has a substantial contribution. Furthermore, the
algorithm Aadp

ε,F usually starts with L = 3 and then iteratively increases L by one. So in the
beginning the asymptotics of (86) definitely does not kick in, yet.

From now on we will use the notation Aadp
ε,F for the adaptive multilevel Euler algorithm

that supposes the asymptotic behaviours (84) and (85) for (|Bias`(f)|)`∈N and (Var`(f))`∈N,

respectively. Moreover, by Aadp?

ε,F we denote the adaptive multilevel Euler algorithm that
supposes the corresponding asymptotic behaviours from Hypothesis 1 and Hypothesis 2.

Remark 37. We present the major problem concerning the adjusted bias and variance
bounds (84) and (85), namely the linear least-square fits for the approximations of cB, α1, α2

and cV , β1, β2, respectively. To this end, note that the design matrix for the respective least-
square fits, see Section A.2 in the Appendix, is given by D = D(L) = [D1(L), D2(L), D3(L)]
with D1(L) = [1, . . . , L]T , D2(L) = [log2(1), . . . , log2(L)]T , and D3(L) = [1, . . . , 1]T for
L ≥ 3. Furthermore, recall that a main indicator for the reliability of a least-square fit is the
condition number κ(DTD) of DTD, see Remark 43. That is, if κ(DTD) is large then even a
small perturbation of the values (|Bias`(f)|)`=1,...,L respective (Var`(f))`=1,...,L can lead to a
relatively large deviation in the parameter vectors (cB, α1, α2) and (cV , β1, β2), respectively,
and these values of |Bias`(f)| and Var`(f) are (only) approximated by the corresponding
empirical estimates based on the N` realizations according to (83).

The rather large condition numbers κ(DTD) for reasonable L, in fact for L = 3, . . . , 30
are pictured in Figure 1. In comparison, in Figure 2, we also picture the considerably smaller
corresponding condition numbers for D = D(L) =

[
D1(L), D2(L)

]
with D1(L) = [1, . . . , L]T

and D2(L) = [1, . . . , 1]T , the design matrix for the least-square fits according to Hypothesis 1
and Hypothesis 2.

IV.4. Random Bit Euler-Maruyama Schemes

In this section we study multilevel Euler algorithms for which the underlying Euler-
Maruyama approximation schemes may only use random bits instead of random numbers
form [0, 1]. This in particular excludes the use of Brownian increments, and the coupling
of consecutive approximation schemes becomes a non-trivial issue. Actually, we study two
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Figure 1. Condition numbers κ(DTD), where D = D(L) is the design ma-
trix for the linear least-square fits used to approximate the parameter vectors
(cB, α1, α2) and (cV , β1, β2) describing the decay of the upper bound of (|Bias`(f)|)`
and (Var`(f))` in terms of (84) and (85), respectively.
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Figure 2. Condition numbers κ
(
D
T
D
)
, where D = D(L) is the design matrix for

the linear least-square fits used to approximate the parameter vectors (cB, α) and
(cV , β) describing the decay of the upper bound of (|Bias`(f)|)` and (Var`(f))` in
terms of Hypothesis 1 and 2, respectively.

different kinds of random bit Euler-Maruyama schemes and their associated multilevel cou-
plings. Both approximation schemes rely on the particular (random) bit approximation of
the standard normal distribution, as defined and analyzed in Section III.2.1. We briefly
recapitulate this bit approximation.

Let Φ denote the distribution function of the standard normal distribution with inverse
distribution function Φ−1, and let Y be standard normally distributed. At first we recall the
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truncation operator

T (q) : [0, 1[→ D(q), x 7→ b2
q · xc
2q

+ 2−(q+1),

where q ∈ N and D(q) =
{∑q

i=1 bi · 2−i + 2−(q+1) : bi ∈ {0, 1} for i = 1, . . . , q
}

, see (23). Then

Y (q) = Φ−1 ◦ T (q) ◦ Φ(Y )(87)

serves as a canonical approximation of Y , see (24). Moreover, recall that T (q) ◦Φ(Y ) is uni-
formly distributed on D(q) and hence q random bits suffice to simulate the distribution of
Y (q). For further properties, see Theorem 4. For a standard normally distributed random vec-
tor Y an approximation Y (q) is obtained by applying Φ−1◦T (q)◦Φ to each of the components
of Y separately.

IV.4.1. Independent Increments (Scheme 1). Here, we use the bit approximation
(87) in a straightforward way, i.e., we study a random bit Euler-Maruyama scheme, analo-
gously to the random bit Milstein scheme in Section III.2.3, for the Euler-Maruyama scheme
see Section II.2.1, with

Vk = Vk,m = m−1/2 ·
(
m1/2 ·

(
W (tk,m)−W (tk−1,m)

))(q)
(88)

for k = 1, . . . ,m. A suitable coupling is easily achieved by

Ṽk = Ṽk,m = V2·k−1,m + V2·k,m(89)

for k = 1, . . . ,m/2, cf. (73). To indicate the dependence of this coupled Euler-Maruyama

scheme on the bit number q we use the notations X
(q)
m and X̃

(q)
m/2, and likewise V

(q)
k,m and

Ṽ
(q)
k,m/2 for the bit approximations of the Brownian increments. For convenience of the reader

we present the random bit Euler-Maruyama scheme

X(q)
m (t0,m) = x0,

X(q)
m (tk,m) = X(q)

m (tk−1,m) + a
(
X(q)
m (tk−1,m)

)
·m−1 + b

(
X(q)
m (tk−1,m)

)
· V (q)

k,m

for k = 1, . . . ,m. This corresponds to the construction and also to the notation of the random
bit Milstein scheme in Section III.2.3, however, since the random bit Milstein scheme will
not be considered throughout this thesis again, we can allow ourselves this reuse of notation.

The coupled random bit Euler-Maruyama scheme X̃
(q)
m/2 reads as

X̃
(q)
m/2(t0,m/2) = x0,

X̃
(q)
m/2(tk,m/2) = X̃

(q)
m/2(tk−1,m/2) + (m/2)−1 · a

(
X̃

(q)
m/2(tk−1,m/2)

)
+ b
(
X̃

(q)
m/2(tk−1,m/2)

)
· Ṽ (q)

k,m/2

for k = 1, . . . ,m/2. In order to approximate X at any point in the unit interval, we extend

X
(q)
m (t0), . . . , X

(q)
m (tm) and X̃

(q)
m/2(t0), . . . , X̃

(q)
m/2(tm/2) by piecewise linear interpolation onto

the subintervals ]tk−1, tk[ for k = 1, . . . ,m, and k = 1, . . . ,m/2, respectively, as we did for
the classical Euler-Maruyama scheme in Section II.2.1. Proper relations of the bit number q
and the number m of Euler-Maruyama steps will be presented in Section IV.5.

Observe that the simulation of the joint distribution of X
(q)
m and X̃

(q)
m/2 requires d ·m · q

random bits. Clearly, the bit approximations V
(q)

1,m, . . . , V
(q)
m,m as well as Ṽ

(q)
1,m/2, . . . , Ṽ

(q)
m/2,m/2

of the Brownian increments are independent. We stress, however, that the distributions of
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Ṽ
(q)
k,m/2 and V

(q)
k,m/2 do not coincide, which introduces an additional bias term in the multilevel

analysis. We also say that the telescoping sum property (69) is violated.

IV.4.2. Matching Distributions (Scheme 2). For the second type of a random bit
Euler-Maruyama scheme we combine the bit approximation (87) of the standard normal
distribution with the Lévy-Ciesielski representation of the Brownian motion, as described in
Section II.1.

Recall that the Lévy-Ciesielski representation of the d-dimensional standard Brownian
motion W is given by

W (t) =
∞∑
i=0

2max(i−1,0)∑
j=1

si,j(t) · Yi,j

with convergence, e.g. in mean square with respect to the L2-norm, see Remark 2. Here
s0,1, s1,1, . . . is the sequence of Schauder functions, see (6), and Y0,1, Y1,1, . . . is an independent
sequence of d-dimensional random vectors, each of which has independent standard normally
distributed components. In particular, for

m = 2`, ` ∈ N0,

and k = 1, . . . ,m we have

W (tk,m) =
∑̀
i=0

2max(i−1,0)∑
j=1

si,j(t) · Yi,j

for tk,m = k/m. Analogously to approximating the distribution of the standard Brownian
bridge in L2([0, 1]) in Section III.2.2, for a discussion of the relation of the Lévy-Ciesielski
representation of a Brownian motion and a Brownian bridge see Remark 3, we apply the bit
approximation (87) to each of the random vectors Yi,j. Moreover, to respect Itô calculus we
normalize the variances. For this we put

v(q) = Var
(
Y (q)

)
,

where Y denotes a standard normally distributed random variable.
Theorem 5 suggests that we spend 2 · (` + 1 − i) random bits for the approximation of

each component of Yi,j, i.e., the number of random bits is chosen according to the size of
the support of the corresponding Schauder function si,j. In that sense the choice for Y0,1 is
a straightforward generalization of the choice in Theorem 5. The particular choice leads to

Vk = Vk,m =
∑̀
i=0

2max(i−1,0)∑
j=1

(
si,j(tk,m)− si,j(tk−1,m)

)
· v
(
2 · (`+ 1− i)

)−1/2 · Y (2·(`+1−i))
i,j

for k = 1, . . . ,m. We add that only `+ 1 out of the 2` summands in the definition of Vk are
different from zero. A suitable coupling is achieved via

Ṽk = Ṽk,m/2 =
`−1∑
i=0

2max(i−1,0)∑
j=1

(
si,j(tk,m/2)− si,j(tk−1,m/2)

)
· v
(
2 · (`− i)

)−1/2 · Y (2·(`−i))
i,j

for k = 1, . . . ,m/2. By definition of Y
(2·(`+1−i))
i,j and Y

(2·(`−i))
i,j we get

Y
(2·(`−i))
i,j = Φ−1 ◦ T (2·(`−i)) ◦ Φ

(
Y

(2·(`+1−i))
i,j

)
,
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i.e., Ṽk can be obtained from Vk by reducing all of the relevant bit numbers by two. The

corresponding random bit Euler-Maruyama schemes are denoted by X†m and X̃†m/2 with

approximations V †k,m and Ṽ †k,m/2 of the respective Brownian increments. We do not write

down the whole schemes X†m and X̃†m/2, since we have just stated the analogs for Scheme 1 in

the afore section. Like for Scheme 1 and for the classical Euler-Maruyama scheme, we obtain
continuous approximations on the unit interval via linear interpolation of the schemes X†m
and X̃†m/2 based on the respective breakpoints tk.

The simulation of the joint distribution of X†m and X̃†m/2 requires d · (2`+2 − 2) random

bits, cf. Theorem 5, and we have Ṽ †k,m/2 = V †k,m/2 by definition. Hence the telescoping sum

property (69) is satisfied, i.e., in comparison to Scheme 1 we have no additional bias term
for the error for the corresponding multilevel Monte Carlo algorithm. We stress, however,

that we do not have the independence of V †1,m, . . . , V
†
m,m or of Ṽ †1,m/2, . . . , Ṽ

†
m/2,m/2.

IV.4.3. Strong Error Analysis of Scheme 1. In this section we are interested in
estimates with respect to the supremum norm on the unit interval. In the following, we
denote the classical Euler-Maruyama scheme by X?

m with Brownian increments V ?
k,m for k =

1, . . . ,m. Analogously, we use the notations X̃?
m/2 and Ṽ ?

k,m/2 for the coupled approximation.
Furthermore, in this section we consider constants, i.e., we do not use the notations 4 and
�, respectively. In particular, we assume that the global Lipschitz bounds of the drift and
diffusion coefficients a and b of the SDE under consideration are bounded from above by
γ > 0.

Regarding the well-known upper bound on the error of the Euler-Maruyama approximate
solutions (X?

m)m∈N presented in Theorem 2, we will provide an upper bound for the difference

between the classical Euler Maruyama scheme X?
m and its random bit approximation X

(q)
m ,

that is independent from the number of Euler-Maruyama steps m.

Remark 38. We gather some properties of the scheme X
(q)
m .

(a) We have independence of V
(q)

1,m, . . . , V
(q)
m,m.

(b) By Theorem 4, concerning the random bit approximation of the standard normal
distribution, there exists a positive constant c such that(

E
∣∣V ?
k,m − V

(q)
k,m

∣∣2)1/2

≤ c ·m−1/2 · 2−q/2 · q−1/2

and

E
(
V

(q)
k,m

)
= 0

for all m ∈ N, k = 1, . . . ,m, and q ∈ N. Furthermore, we have

sup
m∈N

sup
k=1,...,m

sup
q∈N

(
m1/2 ·

(
E
∣∣V (q)
k,m

∣∣r)1/r
)
<∞

for all r ≥ 1.
(c) We have E

∥∥X(q)
m

∥∥2

sup
<∞ for every m ∈ N and q ∈ N.

Lemma 14. There exists a positive constant c such that for all m, q ∈ N we have

max
k=0,...,m

(
E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2)1/2

≤ c · 2−q/2 · q−1/2.
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Proof. This proof follows the standard analysis for the classical Euler-Maruyama scheme.
In a first step we separate the diffusion terms. For k = 0, . . . ,m− 1 we have

X?
m(tk+1)−X(q)

m (tk+1) = ξ + ζ,

where

ξ = X?
m(tk)−X(q)

m (tk) +m−1 ·
(
a
(
X?
m(tk)

)
− a
(
X(q)
m (tk)

))
and

ζ = b
(
X?
m(tk)

)
· V ?

k+1 − b
(
X(q)
m (tk)

)
· V (q)

k+1.

For any pair of components ξi and ζi of ξ and ζ, respectively, we have

E
(
ξi · ζi

)
= E(ξi) · E(ζi) = 0,

due to properties (a) – (c) from Remark 38. It follows that

E
∣∣X?

m(tk+1)−X(q)
m (tk+1)

∣∣2 = E
(
|ξ|2
)

+ E
(
|ζ|2
)
.

The Lipschitz continuity of a yields

E
(
|ξ|2
)1/2 ≤ (1 + γ/m) ·

(
E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2)1/2

.(90)

Moreover, adding zero in a smart way and an application of the Jensen-inequality yield

E
(
|ζ|2
)
≤ 2 ·

(
E
∣∣b(X?

m(tk)
)
·
(
V ?
k+1 − V

(q)
k+1

)∣∣2
+ E

∣∣(b(X?
m(tk)

)
− b
(
X(q)
m (tk)

))
· V (q)

k+1

∣∣2).(91)

For the first term property (a) from Remark 38 gives

E
∣∣b(X?

m(tk)
)
·
(
V ?
k+1 − V

(q)
k+1

)∣∣2 ≤ E
∣∣b(X?

m(tk)
)∣∣2 · E∣∣V ?

k+1 − V
(q)
k+1

∣∣2.
Using

E
∣∣b(X?

m(tk)
)∣∣2 ≤ 2 · γ2 · E

∣∣X?
m(tk)

∣∣2 + 2 · |b(0)|2

together with property (b) from Remark 38 we obtain existence of a positive constant c1

such that

E
∣∣b(X?

m(tk)
)
·
(
V ?
k+1 − V

(q)
k+1

)∣∣2 ≤ c1 ·m−1 · 2−q · q−1

for all m, q ∈ N and k = 0, . . . ,m − 1. For the second term in (91) property (a) from
Remark 38 also gives

E
∣∣(b(X?

m(tk)
)
− b
(
X(q)
m (tk)

))
· V (q)

k+1

∣∣2 ≤ E
∣∣b(X?

m(tk)
)
− b
(
X(q)
m (tk)

)∣∣2 · E∣∣V (q)
k+1

∣∣2.
Moreover, the Lipschitz continuity of b implies

E
∣∣b(X?

m(tk)
)
− b
(
X(q)
m (tk)

)∣∣2 ≤ γ2 · E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2,
which yields, together with property (b) from Remark 38, the existence of a positive constant
c2 such that

E
∣∣(b(X?

m(tk)
)
− b
(
X(q)
m (tk)

))
· V (q)

k+1

∣∣2 ≤ c2 ·m−1 · E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2
for all m, q ∈ N and k = 0, . . . ,m− 1. Altogether, it follows that

E
(
|ζ|2
)
≤ c3/m ·

(
2−q · q−1/2 + E

∣∣X?
m(tk) +X(q)

m (tk)
∣∣2)(92)
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with c3 = 2 ·max(c1, c2). Observe that

(1 + γ/m)2 = 1 + (2 · γ + γ2/m)/m ≤ 1 + (2 · γ + γ2)/m,

and set c = 2 · γ + γ2 + c3. Then combining the estimates for E(|ξ|2) and E(|ζ|2), i.e., (90)
and (92), we get

E
∣∣X?

m(tk+1)−X(q)
m (tk+1)

∣∣2 ≤ (1 + c/m) · E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2 + c/m · 2−q · q−1(93)

for all m, q ∈ N and k = 0, . . . ,m− 1.
A discrete Gronwall-inequality or a straightforward computation, namely k-times recur-

sively applying (93), yields

E
∣∣X?

m(tk+1)−X(q)
m (tk+1)

∣∣2
≤ (1 + c/m)k+1 · E

∣∣X?
m(t0)−X(q)

m (t0)
∣∣2 +

k∑
`=0

(1 + c/m)` · c/m · 2−q · q−1

≤ (k + 1) · (1 + c/m)m · c/m · 2−q · q−1

(94)

with c according to (93). The last inequality is due to X?
m(t0) = x0 = X

(q)
m (t0) and (1 +

c/m)k ≤ (1 + c/m)m for all k ≤ m. Since (1 + c/m)m converges to exp(c) as m tends to
infinity, we have existence of a positive constant c4 such that

(1 + c/m)m ≤ c4 · exp(c).

Hence for c5 = c4 · exp(c) · c, the Gronwall argument (94) gives

E
∣∣X?

m(tk+1)−X(q)
m (tk+1)

∣∣2 ≤ c5 · (k + 1)/m · 2−q · q−1

for all k = 0, . . . ,m− 1, and hereby the claim follows. �

Lemma 15. There exists a positive constant c such that for all m, q ∈ N we have(
E
∥∥X?

m −X(q)
m

∥∥2

sup

)1/2

≤ c · 2−q/2 · q−1/2.

Proof. This proof uses standard martingale arguments to exchange the maximum with
the expectation in the error bound of Lemma 14.

Since X?
m and X

(q)
m are piecewise linear, it suffices to consider the difference of X?

m and

X
(q)
m at their common breakpoints {tk = k/m : k = 0, . . . ,m}. Since the schemes do coincide

in t0, for k = 1, . . . ,m we have

X?
m(tk)−X(q)

m (tk) = m−1 ·
k∑
`=1

(
a
(
X?
m(t`−1)

)
− a(

(
X(q)
m (t`−1)

))
+

k∑
`=1

(
b
(
X?
m(t`−1)

)
· V ?

` − b
(
X(q)
m (t`−1)

)
· V (q)

`

)
,

(95)

and therefore we can use the Jensen-inequality to separate the drift terms from the diffusion
terms, i.e.,

E max
k=0,...,m

∣∣X?
m(tk)−X(q)

m (tk)
∣∣2 ≤ 2 · E max

k=1,...,m

∣∣Zk∣∣2 + 2 · max
k=1,...,m

∣∣Rk

∣∣2
with

Zk = m−1 ·
k∑
`=1

(
a
(
X?
m(t`−1)

)
− a
(
X(q)
m (t`−1)

))
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and

Rk =
k∑
`=1

(
b
(
X?
m(t`−1)

)
· V ?

` − b
(
X(q)
m (t`−1)

)
· V (q)

`

)
.

We treat the drift terms first. Due to the Jensen-inequality and exploiting the Lipschitz
continuity of the drift coefficient a, we get

E max
k=1,...,m

∣∣Zk∣∣2 ≤ E max
k=1,...,m

k

m2
·

k∑
`=1

∣∣a(X?
m(t`−1)

)
− a
(
X(q)
m (t`−1)

)∣∣2
≤ γ2

m
·
m∑
`=1

E
∣∣X?

m(t`−1)−X(q)
m (t`−1)

∣∣2
≤ γ2 · max

k=0,...,m
E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2.
(96)

For the diffusion terms, we note that (Rk)k=1,...,m is a martingale due to properties (b) and
(c) from Remark 38. Consequently, the Doob maximal inequality, see Karatzas and Shreve
[39, Theorem 1.3.8 (iv)] yields

E max
k=1,...,m

|Rk|2 ≤ 4 · E |Rm|2.

We use (95), the Jensen-inequality, and (96), in this order, to obtain

E
∣∣Rm

∣∣2 = E
∣∣X?

m(tm)−X(q)
m (tm)− Zm

∣∣2
≤ 2 · E

∣∣X?
m(tm)−X(q)

m (tm)
∣∣2 + 2 · E

∣∣Zm∣∣2
≤ 2 · (1 + γ2) · max

k=0,...,m
E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2.
Altogether, we get

E max
k=0,...,m

∣∣X?
m(tk)−X(q)

m (tk)
∣∣2 ≤ 18 · (1 + γ2) · max

k=0,...,m
E
∣∣X?

m(tk)−X(q)
m (tk)

∣∣2.
Apply Lemma 14 to establish the claim for X?

m −X
(q)
m . �

Remark 39. Before we continue with the strong error analysis of Scheme 1, we consider
the results from Lemma 15 in view of random bit approximations of probability distributions,

see Section III.2, particularly Section III.2.3. Recall that X
(q)
m is a random bit approximation

of X that is based on d ·m · q random bits, and hence can be utilized to establish an upper
but on rbit(µ, p), where µ denotes the distribution of the solution X of the SDE (59) on the
separable Banach space C([0, 1],Rr). Since rbit(µ, p) is based on the Wasserstein distance d
of order 2, combining Lemma 15 with Theorem 2 we get existence of a positive constant c
such that

rbit(µ, p) ≤ c · min
d·m·q≤p

(
m−1/2 · (ln(m+ 1))1/2 + 2−q/2 · q−1/2

)
.(97)

Actually, it can be shown that the right hand side of (97) is of order p−1/2 · ln(p). In the
scalar case, i.e., r = d = 1, and under a slightly stronger smoothness assumption on the
coefficients, namely a and b are assumed to be differentiable with bounded Lipschitz con-
tinuous derivatives, as well as a non-degeneracy assumption on the diffusion coefficient b,
which in particular excludes pathological cases yielding a deterministic solution, we have
shown in Theorem 6 and Corollary 2 that rbit(µ, p) is of the order p−1/2 for the separable
Banach space L2([0, 1]). Hence, at least in the scalar case, the upper bound obtained via
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(97) is sharp, up to logarithmic factors, but matching upper and lower bounds seem to be
unknown in this case.

Following the proof of Lemma 14 and Lemma 15, one may establish analogous results

for the difference X̃?
m/2 − X̃

(q)
m/2. We only formulate the analogue to Lemma 15.

Lemma 16. There exists a positive constant c such that for all q,m ∈ N we have(
E
∥∥X̃?

m/2 − X̃
(q)
m/2

∥∥2

sup

)1/2

≤ c · 2−q/2 · q−1/2.

IV.5. Random Bit MLMC Algorithms

The random bit multilevel Euler-Maruyama algorithms based on Scheme 1 and Scheme 2
are obtained from the classical multilevel Euler algorithmAL,N , as described in Section IV.3.1,
see in particular (74), and which is henceforth denoted byA?L,N with coupled Euler-Maruyama

schemes X?
2`

and X̃?
2`−1 , via replacing the approximations X?

2`
and X̃?

2`−1 by their random bit

approximations X
(q)

2`
and X̃

(q)

2`−1 or X†
2`

and X̃†
2`−1 , respectively. The corresponding random

bit multilevel algorithms are denoted by AqL,N and A†L,N , respectively. For convenience of the
reader we restate the general multilevel Euler algorithm AL,N , that might represent any of

the three algorithms A?L,N , A
q
L,N , and A†L,N , namely

AL,N(f) =
1

N0

·
N0∑
i=1

f
(
X20,i

)
+

L∑
`=1

1

N`

·
N∑̀
i=1

(
f
(
X2`,i

)
− f

(
X̃2`−1,i

))
for an independent family of random elements (X2`,i, X̃2`−1,i) with ` = 0, . . . , L and i =
1, . . . , N` such that (

X2`,i, X̃2`−1,i

) d
=
(
X2` , X̃2`−1

)
.

Note that the cost for one realization of f(X2`)−f(X̃2`−1), clearly, depends on the number
r` of calls to the random number respective random bit generator used by the respective
(random bit) Euler-Maruyama scheme, namely

r` = d ·


2`, for the classical Euler,

2` · q, for scheme 1,

2`+2 − 2, for scheme 2.

(98)

Hence the cost bound (75) for the multilevel Euler algorithm is generalized to

cost
(
AL,N , F

)
4

L∑
`=0

N` · r`.

In the following, we will analyze the particular random bit multilevel algorithm AqL,N .
The outline is to choose the same highest level L and the same replication numbers N as for
the classical multilevel algorithm A?L,N , see Section IV.3.1, and to choose the bit number q
on top. This way, we can bound the error of AqL,N from above by the error of A?L,N and the
stochastic L2-distance between the two schemes A?L,N and AqL,N .

This is, for ε ∈ ]0, 1/2[ we consider the algorithm

Aqε,F = A
q(ε,F )
L(ε,F ),N(ε,F )
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with maximal level L = L(ε, F ) given by (76), replication numbers N` = N`(ε, F ) for
` = 0, . . . , L given by (77), and the bit number

q = q(ε, F ) = L(ε, F ).(99)

Theorem 11. Let F = F∞ or F = Fp with 1 ≤ p < ∞. Then there exists a positive
constant c such that the random bit multilevel Euler algorithm Aqε,F satisfies

error
(
Aqε,F , F

)
≤ c · ε

and

cost
(
Aqε,F , F

)
≤ c · ε−2 ·

{(
ln(ε−1)

)3
, if F = Fp,(

ln(ε−1)
)4
, if F = F∞

for every ε ∈ ]0, 1/2[.

Corollary 5. In terms of the ε-complexity compres(ε, F ), see Definition 6, Theorem 11
implies an upper bound that is of the same order as cost(Aqε,F , F ), i.e., there exists a positive
constant c such that

compres
(
ε, F

)
≤ c · ε−2 ·

{(
ln(ε−1)

)3
, if F = Fp,(

ln(ε−1)
)4
, if F = F∞.

Proof of Theorem 11. As in the proof of Theorem 9, we only present the case F =
F∞. At first we establish the error bound. To this end, observe that

error
(
Aqε,F , F

)
≤ sup

f∈F

(
E
∣∣S(f)− Aε,F (f)

∣∣2)1/2

+ sup
f∈F

(
E
∣∣Aε,F (f)− Aqε,F (f)

∣∣2)1/2

.

Hence, due to Theorem 9, it suffices to show the existence of a positive constant c such that

sup
f∈F

(
E
∣∣Aε,F (f)− Aqε,F (f)

∣∣2)1/2

≤ c · ε

for every ε ∈ ]0, 1/2[. For each level ` = 0, . . . , L, the 4-inequality gives(
E
( 1

N`

·
N∑̀
i=1

f
(
X?

2`,i

)
− f

(
X

(q)

2`,i

)
−
(
f
(
X̃?

2`−1,i

)
−
(
X̃

(q)

2`−1,i

)))2)1/2

≤ 1

N`

·
N∑̀
i=1

(
E
(
f
(
X?

2`,i

)
− f

(
X

(q)

2`,i

)
−
(
f
(
X̃?

2`−1,i

)
−
(
X̃

(q)

2`−1,i

)))2)1/2

≤
(

E
∣∣f(X?

2`

)
− f

(
X

(q)

2`

)∣∣2)1/2

+
(

E
∣∣f(X̃?

2`−1

)
− f

(
X̃

(q)

2`−1

)∣∣2)1/2

.

Combining this estimate with the Lipschitz continuity of each f ∈ F we get(
E
∣∣A?L,N(f)− AqL,N(f)

∣∣2)1/2

≤
L∑
`=0

(
E
∥∥X?

2` −X
(q)

2`

∥∥2

sup

)1/2

+
L∑
`=1

(
E
∥∥X̃?

2`−1 − X̃(q)

2`−1

∥∥2

sup

)1/2

.

We apply Lemma 15 as well as Lemma 16 to obtain the existence of a positive constant c1

such that (
E
∣∣A?L,N(f)− AqL,N(f)

∣∣2)1/2

≤ c1 · L · 2−q/2 · q−1/2
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for all L, q, and N and every f ∈ F . With the particular choice (99) for q this upper bound
is of the order ε, as claimed.

To establish the cost bound it remains to observe, analogously to (78), that there exists
a positive constant c2 such that for the particular choice (99) of q we have

L∑
`=0

N`(ε, F ) · 2` · q ≤ c2 · ε−2 · L4 ≤ c2 · ε−2 ·
(
log2(ε−1)

)4

for all ε.
The proof for F = Fp follows step by step the proof for F = F∞, using the corresponding

results from Theorem 9. �

Remark 40. To classify the results form Theorem 11 and Corollary 5, recall that for a
slightly stronger smoothness assumption and a non-degeneracy assumption on the diffusion
coefficient b, we have the lower bound of order ε−2 for the ε-complexity for F = Fp and
F = F∞, see Remark 26. Moreover, comparing Corollary 5 to Corollary 4, we observe
that concerning the weak asymptotic upper bound on the ε-complexity, we only lose one
logarithmic factor in the transition from random numbers to random bits.

It is now a natural question whether we can improve the order of the cost bound in
Theorem 11 and hence the ε-complexity in Corollary 5 at least by this logarithmic factor.
To this end, observe that the computational bottleneck of Aqε,F is the number of calls to the
random bit generator. Hence we need to reduce the number of random bits used by Aqε,F , if
we want to lower the order of the cost of Aqε,F . This can actually be done using a Bakhvalov
trick, and will be discussed in Section IV.5.1.

We turn to the main problem of the random bit multilevel Euler algorithm Aqε,F , namely
the à priori choice of the bit number q, see (99). At first, recall that in Remark 27 we already
discussed the problem of the à priori choice of the highest level L, which has to be computed
in advance, as well as the problem of using the upper bound on the rate of convergence of the
Euler-Maruyama scheme, given in Theorem 2, for the classical multilevel Euler algorithm
A?ε,F . Those problems together with the problems for the numerical estimation of the bias

and the variance decay, see Remark 30, let to the adaptive multilevel Euler algorithm Aadp
ε,F ,

see Definition 9.
Consequently, we would like to use a random bit version of the adaptive multilevel Euler

algorithm Aadp
ε,F . The problem is that each random bit approximation of a Brownian increment

V
(q)

k,2`
with k = 1, . . . , 2` and ` = 0, . . . , L, see (89), involves the same number q = L of

random bits. Hence each time the adaptive random bit multilevel Euler algorithm increases
L to L + 1, in order to establish weak convergence of f(X2`) to f(X), we also increase the
bit number q by one. That means that the whole simulation up to this point can not be

reused, since the random bit Euler-Maruyama schemes X
(q+1)

2`
and X

(q)

2`
as well as X̃

(q+1)

2`−1

and X̃
(q)

2`−1 , respectively, do not share the same distribution. That actually makes the whole
idea of the adaptive multilevel Euler algorithm ridiculous, since the highest level always has
to be precomputed, implying additional cost for a practical application of the random bit
multilevel Euler algorithm Aqε,F .

Remark 41. The afore discussed problems lead us to the multilevel Euler algorithm

A†L,N . Here, the number of bits used on level ` = 0, . . . , L, i.e., used by X†
2`

and X̃†
2`−1 depends

only on the current level ` and is in particular independent from the choice of the highest
level L. Hence A†L,N can be modified to an adaptive random bit multilevel Euler algorithm,
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denoted by A†,adp
ε,F , in a straightforward way, namely we only exchange X2` and X̃2`−1 by X†

2`

and X̃†
2`−1 in Definition 9, i.e., in the definition of Aadp

ε,F , respectively. The algorithm A†,adp?

ε,F

is defined analogously.
Unfortunately, so far, there is no analysis for A†,adp

ε,F available. The problem lies in the

strong error analysis of Scheme 2, i.e., of X†m and X̃†m/2, respectively. More precisely, whilst

for Scheme 1 we could proceed similar to the analysis of the classical Euler-Maruyama
scheme, this is no longer possible, since we no longer have independence of the increments

V †1,m, . . . , V
†
m,m and Ṽ †1,m/2, Ṽ

†
m/2,m/2, respectively. This is actually a consequence of the Lévy-

Ciesielski construction involving bit approximations of the elements of the sequence of stan-
dard normally distributed random variables Y0,1, Y1,1, . . ., see Remark 2.

However, the consideration of A†L,N is justified via its extension to the adaptive multilevel

Euler algorithm A†,adp
ε,F on the on hand, and the fact that we use the asymptotically optimal

numbers of random bits for the random bit approximation of the distribution of a Brownian
bridge in L2([0, 1]), see Theorem 5 and Corollary 1 in Section III.2.2, on the other hand,

suggesting that at least on the level of constants, A†L,N might perform better than AqL,N . For

numerical studies of A†,adp
ε,F as well its numerical comparison to AqL,N see Chapter V.

IV.5.1. A Random Bit MLMC Algorithm Based on Bakhvalov’s Trick. In this
section we consider a variant of the random bit multilevel Euler algorithm AqL,N from Sec-
tion IV.5, which is based on Bakhvalov’s trick, see Bakhvalov [2] and also Heinrich et al.
[36] and the references therein. In our case this trick yields n2 pairwise independent random
variables, each of which is uniformly distributed on D(q), from 2 ·n independent random vari-
ables, each of which is uniformly distributed on D(q), itself. Recall that a uniform distribution
on D(q) can be simulated by q random bits, see Section III.2.1.

Lemma 17. Let q ∈ N be a bit number and let n ∈ N. Consider an independent family
(Gj)j=1,...,2·n of random variables that are uniformly distributed on the set of shifted dyadic
numbers D(q) =

{
k · 2−q + 2−(q+1) : k = 0, . . . , 2q − 1

}
. Then the family (Gj1 + Gj2+n +

2−(q+1) mod 1)j1,j2=1,...,n is pairwise independent, with each random variable being uniformly
distributed on D(q).

Proof. Let G be uniformly distributed on D(q), denoted by G ∼ unif(D(q)), i.e.,

P
({
G = k · 2−q + 2−(q+1)

})
= 2−q

for all k = 0, . . . , 2q − 1. Then for all z ∈ N(q) = {i · 2−q : i ∈ N} we have

z +G mod 1 ∼ unif
(
D(q)

)
,(100)

since for z = i · 2−q it holds

P
({
G+ z mod 1 = k · 2−q + 2−(q+1)

})
= P

({
G =

(
(k − i) · 2−q mod 1

)
+ 2−(q+1)

})
= 2−q

for all k = 0, . . . , 2q − 1. Furthermore,

G+ 2−(q+1) ∼ unif
(
D(q) + 2−(q+1)

)
with D(q) + 2−(q+1) = {k · 2−1 : k = 1, . . . , 2q} ⊆ N(q). Hence, we in particular have G +
2−(q+1) ∈ N(q), implying Gj2+n + 2−(q+1) ∈ N(q) and hence

Hj1,j2 =
(
Gj1 +Gj2+n + 2−(q+1) mod 1

)
∈ D(q)(101)
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for all j2 = 1, . . . , n.
For notational convenience we set

{Gj1(i, q)} =
{
Gj1 = i · 2−q + 2−(q+1)

}
(102)

for all i ∈ {0, . . . , 2q−1}. Due to the independence of Gj1 and Gj2+n we have for all k, i from
{0, . . . , 2q − 1}

P
({(

Hj1,j2

∣∣Gj1(i, q)
)

= k · 2−q + 2−(q+1)
})

=
P
({(

(i+ 1) · 2−q +Gj2+n mod 1
)

= k · 2−q + 2−(q+1)
}
∩
{
Gj1(i, q)

})
P
({
Gj1(i, q)

})
= P

({(
(i+ 1) · 2−q +Gj2+n mod 1

)
= k · 2−q + 2−(q+1)

})
= 2−q,

where the last equality is due to (100). Hence the random variable Hj1,j2 conditioned on Gj1

is uniformly distributed on D(q). As a consequence, using the law of total probability, we get

P
({
Hj1,j2 = k · 2−q + 2−(q+1)

})
=

2q−1∑
i=0

P
({(

Hj1,j2 = k · 2−q + 2−(q+1)
)∣∣Gj1(i, q)

}}
· P
({
Gj1(i, q)

})
= 2−q

for every k ∈ {0, . . . , 2q − 1}, i.e.,

Gj1 +Gj2+n + 2−(q+1) mod 1 ∼ unif
(
D(q)

)
.

Let l1, l2 ∈ {1, . . . , n}. It remains to show that Hl1,l2 and Hj1,j2 given by (101) are independent
for (l1, l2) 6= (j1, j2). The cases l1 6= j1 and l2 6= j2 are trivial, due to the independence of the
family (Gj)j=1,...,2·n. Therefore, we can assume without loss of generality that l1 = j1 and

l2 6= j2. For every choice of k, k̃ ∈ {0, . . . , 2q − 1} we have, using the notation (102),

P
({(

Hl1,l2

∣∣Gj1(i, q)
)

= k · 2−q + 2−(q+1)
}
∩
{(
Hj1,j2

∣∣Gj1(i, q)
)

= k̃ · 2−q + 2−(q+1)
})

= P
({
Gl2+n + 2−(q+1) = (k − i) · 2−q

}
∩
{
Gj2+n + 2−(q+1) = (k̃ − i) · 2−q

})
= P

({
Gl2+n + 2−(q+1) = (k − i) · 2−q

})
· P
({
Gj2+n + 2−(q+1) = (k̃ − i) · 2−q

})
= P

({(
Hl1,l2

∣∣Gj1(i, q)
)

= k · 2−q + 2−(q+1)
})
· P
({(

Hj1,j2

∣∣Gj1(i, q)
)

= k̃ · 2−q + 2−(q+1)
})

for all i ∈ {0, . . . , 2q − 1}. Again we can apply the law of total probability to obtain the
independence of Hl1,l2 and Hj1,j2 . �

Of course, the analogon to Lemma 17 is true for the d-dimensional case, with independent
components, i.e., with D(q) replaced by (D(q))d.

We construct a random bit multilevel Euler algorithm Aq,Bak
L,N that achieves the following

properties at a reduced number of random bits compared to AqL,N , described in Section IV.5:

(i) The family
(
X

(q),Bak

2`,i
, X̃

(q),Bak

2`−1,i

)
`=0,...,L, i=1,...,N`

of random bit Euler-Maruyama schemes

involved by Aq,Bak
L,N is pairwise independent.

(ii) On every level ` = 0, . . . , L we have(
X

(q),Bak

2`
, X̃

(q),Bak

2`−1

) d
=
(
X

(q)

2`
, X̃

(q)

2`−1

)
.
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Note that for a family (Zk)k=1,...,n of random variables the variance of the sum satisfies

Var
( n∑
k=1

Zk

)
=

n∑
k=1

(
E
(
Z2
k

)
− (E(Zk))

2
)

+ 2 ·
n∑
k=1

n∑
j=1,
j 6=k

(
E(Zk · Zj)− E(Zk) · E(Zj)

)
.

Due to this property and the linearity of the expectation, we conclude from (i) and (ii) that

the expectation and the variance of Aq,Bak
L,N (f) and AqL,N(f) do coincide for every f ∈ F .

Since the mean-squared error of any Monte Carlo algorithm can be decomposed into the
squared bias and the variance of this algorithm, see Remark 21, we obtain error(Aq,Bak

L,N , f) =
error(AqL,N , f) for every f ∈ F and hence

error
(
Aq,Bak
L,N , F

)
= error

(
AqL,N , F

)
.(103)

We describe the construction of Aq,Bak
L,N or, equivalently, the distribution of the family(

X
(q),Bak

2`,i
, X̃

(q),Bak

2`−1,i

)
`=0,...,L, i=1,...,N`

in detail. Let

n` =
⌈
N

1/2
`

⌉
for ` = 0, . . . , L. We consider an independent family

G =
(
(Gk,2`)j) =

(
Gk,2`,j

)
k=1,...,2`, `=0,...,L, j=1,...,2·n`

of random vectors Gk,2`,j that are uniformly distributed on (D(q))d, i.e., for fixed k and
` we have the d-dimensional counterpart to the family (Gj)j=1,...,2·n in Lemma 17. In the
following, let 1 ∈ Rd denote the vector with all components equal to 1. For ` = 0, . . . , L and
k = 1, . . . , 2` we construct via(

Uk,2`
)

(j1−1)·n`+j2
=
(
Gk,2`

)
j1

+
(
Gk,2`

)
j2+n`

+ 2−(q+1) · 1 mod 1,(104)

where j1, j2 = 1, . . . , n`, families (Uk,2`
)
i=1,...,n2

`

of n2
` pairwise independent random variables,

each of which is uniformly distributed on (D(q))d, cf. Lemma 17. Since in general n2
` =

dN1/2
` e2 > N`, we define for ` = 0, . . . , L the families

U` =
(
Uk,2`,i

)
k=1,...,2` i=1,...,N`

.

Before we continue with the construction ofAq,Bak
L,N , we gather some properties of (U`)`=0,...,L.

To this end, we define

U`,i =
(
Uk,2`,i

)
k=1,...,2`

for ` = 0, . . . , L and i = 1, . . . , N`, i.e., (U`,i)i=1,...,N` is the family of random variables
involved on level ` = 0, . . . , L. The following holds true:

(I) The family (U`)`=0,...,L is independent, which, as we will see, corresponds to the fact
that a multilevel Euler algorithm uses independent direct simulations on each level
` = 0, . . . , L, see Section IV.2.

(II) For all ` = 0, . . . , L and i = 1, . . . , N` the family (Uk,2`,i)k=1,...,2` is independent.
This property will lead to independent Brownian increments for each sample path
on level `.

(III) Recall that, by Lemma 17, for every level ` = 0, . . . , L the family (U`,i)i=1,...,N` is
pairwise independent. This will allow us to apply Bienaymé’s formula to each level
`.
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(IV) Recall that, by Lemma 17, for all k = 1, . . . , 2`, ` = 0, . . . , L and i = 1, . . . , N` the
random vector Uk,2`,i is uniformly distributed on (D(q))d.

We proceed with the construction of Aq,Bak
L,N , namely with the bit approximations of the

Brownian increments. For k = 1, . . . , 2`, ` = 0, . . . , L and i = 1, . . . , N` let

Vk,2`,i = 2−`/2 · Φ−1
(
Uk,2`,i

)
,

where the function Φ−1 is applied to each of the components of the d-dimensional random
vector Uk,2`,i, separately, cf. (88). The bit approximations of the increments of the coupled
coarse bit approximation of the Brownian paths on the levels ` = 1, . . . , L are obtained via

Ṽk,2`−1,i = V2·k−1,2`,i + V2·k,2`,i

for k = 1, . . . , 2`−1 and i = 1, . . . , N`, cf. (89). Observe that the independence properties (I)

– (III) carry over to the bit approximations Vk,2`,i and Ṽk,2`−1,i of the Brownian increments.

Finally, for ` = 0, . . . , L and i = 1, . . . , N` the bit approximation X
(q),Bak

2`,i
of the classical

Euler-Maruyama scheme X?
2`

, see Section II.2.1, is obtained via replacing the (classical)
Brownian increments (V ?

k,2`
)k=1,...,2` by the bit approximations (Vk,2`,i)k=1,...,2` . Likewise, for

` = 1, . . . , L and i = 1, . . . , N` the bit approximation X̃
(q),Bak

2`−1,i
of X̃?

2`−1 is obtained via

replacing (Ṽ ?
k,2`−1)k=1,...,2`−1 by (Ṽk,2`−1,i)k=1,...,2`−1 , and for ` = 0 and i = 1, . . . , N0 we set

X̃
(q),Bak

2`−1,i
= 0.

Observe that for ` = 0, . . . , L and i = 1, . . . , N` we have(
Vk,2`,i

)
k=1,...,2`

d
=
(
V

(q)

k,2`

)
k=1,...,2`

,

which follows from the independence of (Vk,2`,i)k=1,...,2` that is implied by (II), and due to

Vk,2`,i and V
(q)

k,2`
sharing the same distribution for each k = 1, . . . , 2`. The later is a consequence

of (IV) and V
(q)

k,2`
d
= 2−`/2 ·Φ−1(U) with U uniformly distributed on (D(q))d, see (87) and the

discussion thereafter. With the same argument we have(
Ṽk,2`−1,i

)
k=1,...,2`−1

d
=
(
Ṽ

(q)

k,2`−1

)
k=1,...,2`−1

for ` = 1, . . . , L and i = 1, . . . , N`. Since the Euler-Maruyama schemes, X2` for ` ∈ N0 and

X̃2`−1 for ` ∈ N, can be interpreted as deterministic functions applied to the sequences of 2`

respective 2`−1 Brownian increments or their respective approximations, we get(
X

(q),Bak

2`,i
, X̃

(q),Bak

2`−1,i

) d
=
(
X

(q)

2`
, X̃

(q)

2`−1

)
for ` = 0, . . . , L and i = 1, . . . , L, i.e., property (ii). For property (i) it remains to observe
that (I) implies the level-wise independence of the family(

X
(q),Bak

2`,i
, X̃

(q),Bak

2`−1,i

)
`=0,...,L i=1,...,N`

.

Moreover, property (III) implies for each level ` = 0, . . . , L the pairwise independence of the
realizations i = 1, . . . , N`.

The cost of Aq,Bak
L,N can be bounded similar as in Section IV.3.1 and Section IV.5. First

of all, we note that once we have the uniform distributions on D(q) at hand, the algorithms
A?L,N , A

q
L,N and Aq,Bak

L,N proceed in the same (deterministic) way. Hence from that point on
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the cost of Aq,Bak
L,N is bounded by

L∑
`=0

N` · 2`,

up to a multiplicative constant. Next, we observe that the uniform distributions on (D(q))d,
i.e., the family (U`)`=0,...,L can be computed by a separate routine. The number of random
bits needed to simulate N` paths on level ` = 0, . . . , L is given by 2 · n` · 2` · q · d and hence
the total number of calls to the random bit generator performed by Aq,Bak

L,N is given by

L∑
`=0

2 · n` · 2` · q · d.

In order to obtain a uniform distribution on D(q) from q random bits, we have to carry out
(2 · q + 1) arithmetic operations, cf. definition of D(q). Since we need to do this 2 · n` · 2` · d
times, we again have the cost bound

L∑
`=0

2 · n` · 2` · q · d,

up to a multiplicative constant. Finally, observe that the construction of (U`)`=0,...,L requires

L∑
`=0

N` · 2`

calls to (104), which has constant cost itself.
Altogether, we conclude that there exists a positive constant c such that

cost
(
Aq,Bak
L,N , F

)
≤ c ·

L∑
`=0

(
N` · 2` + n` · 2` · q

)
.

Like in the cases of A?L,N and AqL,N , for ε ∈ ]0, 1/2[ we consider the algorithm

Aq,Bak
ε,F = A

q(ε,F ),Bak
L(ε,F ),N(ε,F )

with maximal level L = L(ε, F ) given by (76), replication numbers N` = N`(ε, F ) for
` = 0, . . . , L given by (77), and the bit number q = q(ε, F ) given by (99).

Theorem 12. Let F = F∞ or F = Fp with 1 ≤ p < ∞. Then there exists a positive

constant c such that the random bit multilevel Euler algorithm Aq,Bak
ε,F satisfies

error
(
Aq,Bak
ε,F , F

)
≤ c · ε

and

cost
(
Aq,Bak
ε,F , F

)
≤ c · ε−2 ·

{(
ln(ε−1)

)2
, if F = Fp,(

ln(ε−1)
)3
, if F = F∞

for every ε ∈ ]0, 1/2[.

Proof. As in the proofs of Theorem 9 and Theorem 11, we only present the case F =
F∞.

The error bound is an immediate consequence of error(Aq,Bak
ε,F ) = error(Aqε,F ), which is

due to (103), and Theorem 11, where Aqε,F is analyzed.
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The cost bound follows from the bound on
∑L

`=0N` · 2` in (78) and the following obser-

vation. Let n` =
⌈
N

1/2
`

⌉
. Then there exist positive constants c, c1, c2, and c3 such that

L∑
`=0

n` · 2` · q ≤ c · L ·
L∑
`=0

N
1/2
` · 2` ≤ c1 · ε−1 · L3/2 ·

L∑
`=0

2L/2 ·max(`, 1)1/2

≤ c2 · ε−2 · L5/2 ·
(
ln(ε−1)

)1/2 ≤ c3 · ε−2 ·
(
ln(ε−1)

)3
.

The proof for F = Fp follows step by step the proof for F = F∞. �

We conclude that up to a multiplicative constant the error and the cost bounds for the
algorithm Aq,Bak

ε,F , which solely uses random bits, and the classical multilevel Euler algorithm
A?ε,F that has access to random numbers from [0, 1], do coincide. Hence, in particular, the
problems of Aqε,F , discussed in Remark 40 are settled.



CHAPTER V

Numerical Experiments for Random Bit Quadrature

In this section, we numerically investigate the approximation of E(f(X)) by means of the

random bit multilevel Euler algorithms Aqε,F and A†,adp
ε,F , for X being the solution of different

SDEs of the form

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), t ∈ [0, 1],

X(0) = x0,
(105)

and for different functionals f ∈ F .
The main purpose is to compare the two algorithms, for these particular examples, in

terms of their respective computational cost in dependence on ε to achieve an error below a
given error bound ε, respectively. Recall that we have no analysis for A†,adp

ε,F but, similarly as in
the random number setting, we expect that the algorithm performs better than Aqε,F , which

is analyzed in Section IV.5, cf. also Remark 41. Observe that A†,adp
ε,F has the clear advantage

of adaptivity, which in particular allows an optimized choice of the highest level L(ε, f) and
the replication numbers N(ε, f) in the case that the sequence (X2`)`∈N0 of Euler-Maruyama
schemes, and hence the sequence (f(X2`))`∈N0 , has a better order of convergence than the
upper bound given in Theorem 2, on which Aqε,F is based. Hence we consider examples for
which this effect is supposed to kick in as well as examples for which this should not be the
case.

However, before we compare the algorithms, we will take a closer look at each one sep-
arately, starting with Aqε,F . Here, we have two aims. One is to fortify the upper bound on
the order of the computational cost of Aqε,F given in Theorem 11. The other one is to nu-
merically analyze the upper bound on the ε-complexity compres(ε, F ) induced by Aqε,F (f)
for the particular choices of the SDE and the functional f . In this context, recall that The-
orem 11 yields only the asymptotic order of the computational cost of Aqε,F (f) and hence
solely an upper bound on the order of the ε-complexity and not the ε-complexity itself. In
particular, so far, we do not know how to choose the parameters L(ε, F ) and N(ε, F ), i.e.,
how to choose the input ε to obtain an error below a given error bound ε. Consequently, we
will illustrate the relation between the input ε and the error of Aqε,F (f) in a figure, where
we plot them against each other for a particular sequence of input parameters ε. Finally,
we illustrate the effect of the random bit number q on the approximations of |Bias`(f)|
and Var`(f) on the first few coupled levels ` = 1, . . . , L′. That is, we compare empirical
approximations of |Bias`(f)| and Var`(f) to the corresponding empirical approximations of

|Bias
(q)
` (f)| = |E(f(X

(q)

2`
)−f(X̃

(q)

2`−1))| and Var
(q)
` (f) = Var(f(X

(q)

2`
)−f(X̃

(q)

2`−1)), respectively,
for particular choices of q to be specified later.

For the second algorithm A†,adp
ε,F using an equal split of the bias and variance contribution

to the error, i.e., ε2
B = ε2

V = ε2/2, we proceed in a similar way. At first we compare the

error and the computational cost of A†,adp
ε,F , i.e., we numerically analyze the upper bound

on compres(ε, F ) implied by A†,adp
ε,F (f) for the particular SDEs and functionals f ∈ F . The

89



90 V. NUMERICAL EXPERIMENTS FOR RANDOM BIT QUADRATURE

next quantity of interest is the error of A†,adp
ε,F (f) in dependence on the input ε, which we

again compute for a particular sequence of input parameters ε, against which we plot the
corresponding errors for illustrational purposes. In this context, recall that the adaptive
multilevel Euler algorithm, denoted by A?,adp

ε,F , and consequently also A†,adp
ε,F is constructed

in a way such that it should have an error bounded by or at least close to the input ε.
That is, we should either have error(A†,adp

ε,F (f)) ≤ ε or the relative error (error(A†,adp
ε,F (f)) −

ε)/ε should be rather small. This is the reason why we will use the notion of an input
accuracy for the input ε. Furthermore, in Section IV.3.3, namely in Remark 37, we have
shown that for f ∈ F∞ the condition numbers κ(DTD) for the design matrix D in the
linear least square fits for the estimation of the parameters of the laws of (|Bias`(f)|)`∈N
and (Var`(f))`∈N, which are supposed to be of the form c · (2−γ1)` · `γ2 for positive constants
c, γ1 and γ2, see (84) and (85), are rather large, see Figure 1. Especially, they are way larger
than the corresponding condition numbers when supposing the law c · (2−γ)` for positive
constants c and γ, see Figure 2, and Remark 37 for the general discussion. Hence we also
compare A†,adp

ε,F (f) to the adaptive multilevel Euler algorithm A†,adp?

ε,F (f), which uses the split

ε2
B = ε2/4 and ε2

V = 3/4 · ε2 for the contribution of the bias and the variance to the error

of A†,adp?

ε,F , respectively. This split corresponds to the split used in programs provided at
Giles [26]. Finally, we again illustrate the effect of the random bit approximations on the
empirical estimates of |Bias`(f)| and Var`(f) on the first few levels ` = 1, . . . , L′. That
is, we compare empirical approximations of |Bias`(f)| and Var`(f) to the corresponding

empirical approximations of |Bias†`(f)| = |E(f(X†
2`

)−f(X̃†
2`−1))| and Var†`(f) = Var(f(X†

2`
)−

f(X̃†
2`−1)), respectively. Note that these approximations also show whether the upper bound

on the order of convergence of the Euler-Maruyama schemes in Theorem 2 yields a sharp
bound on the order of (|Bias`(f)|)`∈N and (Var`(f))`∈N, respectively, i.e., whether A†,adp

ε,F (f)
can exploit a higher order of convergence than Aqε,F (f).

For each numerical experiment we do present asymptotic confidence intervals to show
the reliability of the result. We will not discuss the underlying replication numbers each
time. In general all confidence intervals associated to MLMC algorithms do rely on 2 · 103 to
3 ·103 independent realizations. The numerical experiments concerning the bias and variance
decays do rely on 106 independent realizations on each level.

Let us finally mention that we do not compare the classical (singlelevel) Euler algorithm

to the random bit multilevel Euler algorithms Aqε,F (f) and A†,adp
ε,F (f). Instead we will solely

compare the random bit multilevel Euler algorithms to their counterparts using random
numbers from [0, 1]. These algorithms have been thoroughly studied and compared to the
classical Euler algorithm in the literature. For an overview on the subject see Giles [25] and
references therein.

The chapter is outlined as follows. We consider four different examples having one thing
in common, namely the solution E(f(X)) is known analytically. Hence the error of the
involved algorithms can easily be approximated empirically without the necessity of a master
computation. That would be a computation using a very accurate approximation scheme X2L̃

with L̃� L(ε, F ) and very high replication numbers, i.e., a in general very time demanding
computation. The first example will be discussed in a very detailed way, in particular the
figures will be explained in much detail. In the three further examples we will not explain
the figures in so much detail again, since we illustrate the same quantities, and also the
discussions will be kept way more briefly, as long as the results do not substantially differ
from those for the first example. To judge the reliability of any random quantity we will give
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asymptotic confidence intervals to the confidence level 0.05 for every random quantity, as
described in Section IV.2.2, see in particular Remark 25.

As a first elementary example, in Section V.1, we consider the standard one-dimensional
Brownian motion and as a functional f ∈ F∞ we take the maximum, i.e., f(x) = max0≤t≤1 x(t)
for x ∈ C([0, 1]). In the second example, presented in Section V.2, we take a closer look to a
geometric Brownian motion, again with the maximum as functional f . Geometric Brownian
motions, are, e.g., used to model stock prices in financial mathematics. The third example,
considered in Section V.3, deals with the Ornstein-Uhlenbeck process and uses the functional
f that evaluates at the final time point, i.e., f(x) = x(1). The Ornstein-Uhlenbeck process
is, e.g., used to model the dynamics in the Vasicek interest rate model, see, e.g., Shreve
[61, Example 4.4.10]. Last but not least, in Section V.4, we consider the Cox-Ingersoll-Ross
(CIR) process, again with the functional f that evaluates the process at the final time point.
The CIR process was first introduced for modeling interest rates, and is used to model the
instantaneous variance in the Heston model, a model from financial mathematics used to
describe the time-dependent price and volatility of an asset, see, e.g., Shreve [61, Example
4.4.11].

V.1. Standard Brownian Motion

We consider a one-dimensional standard Brownian motion. In terms of our stochastic
differential equation (105), that is, we choose the constant drift and diffusion coefficients
a = 0 and b = 1, as well as, the initial value x0 = 0, i.e.,

dX(t) = 1 · dW (t), t ∈ [0, 1],

X(0) = 0.

Moreover, we consider the functional f(x) = max0≤t≤1 x(t) for x ∈ C([0, 1]). Hence the
current setting is covered by our theoretical results in Section IV.5.

Before we turn to the numerical results, we first compute E(f(X)) analytically. To this
end observe that the reflection principle for Brownian motion gives

max
0≤t≤1

X(t)
d
= |X(1)|,(106)

see Mörters and Peres [46, Theorem 2.21]. That is, f(X) shares the same distribution as the
absolute value of a standard normally distributed random variable. Hence we have

E(f(X)) = 2 ·
∫ ∞

0

y · (2 π)−1/2 · exp(−y2/2) dy = (2/π)1/2 ·
∫ ∞

0

y · exp(−y2/2) dy

= (2/π)1/2 · [− exp(−y2/2)]
∞
0 = (2/π)1/2.

Observe that with this result at hand it is straightforward to empirically estimate the
error of a multilevel Euler (Monte Carlo) algorithm.

V.1.1. MLMC Quadrature Based on Scheme 1. In this section, we present numer-
ical results for the non-adaptive random bit multilevel algorithm Aqε,F (f). In the first figure,
Figure 1, we present the relation between the error and the cost of Aqε,F (f) as well as the
relation of the error and the cost of A?ε,F , in terms of the number of calls to the random bit
respective the random number generator. For simplicity we will use the general notions of
calls to the random generator and random generator calls. Moreover, we will use the notation
ε for the error of the algorithms under consideration. The error is measured on the x-axis,
decreasing from right to left and the number of random generator calls is measured on the
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y-axis. In this context, recall that the number of calls to the random generator dominates
the overall cost of each of the algorithms, respectively. Note that in this comparison the

algorithm A?ε,F has clearly a lesser cost than Aqε,F since each bit approximation V
(q)

k,2`
of a

Brownian increment V ?
k,2`

involves q random bits whilst the Brownian increment itself uses
only one random number, which formally corresponds to a whole sequence of random bits.
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Figure 1. Error-cost relation of the non-adaptive MLMC Euler algorithms (ran-
dom bits: blue, random numbers: red) with asymptotic confidence intervals to the
confidence level 0.95. The solid line shows the supposed asymptotic behavior of the
random bit algorithm.

One last thing to be mentioned before we discuss the figure is the estimation of the
asymptotic behaviour of the number of random generator calls. Similar to what we are
doing in the estimates of the asymptotic behaviour of (|Bias`(f)|)`∈N and (Var`(f))`∈N for
adaptive multilevel algorithms, see Remark 28 and Remark 29 as well as the discussion of
the modifications of the adaptive multilevel algorithm in Section IV.3.3, it stands to reason
to use linear least-square fits. Unfortunately, this turns out to be a too unstable method
in the sense that a slightly perturbation in the data leads to a substantial impact on the
exponent of the logarithmic factor, respectively. Recall that Theorem 11 suggests the law
c · ε−γ1 · (ln(ε−1))γ2 for positive constants c, γ1 and γ2. The problem is that working in a log-
log-setting, the logarithmic factor is almost linear in ε−1 on the interval of interest. Hence the
condition number κ(DTD) of the design matrix D is rather large and therefore, the solution
is too affective to small perturbations, see Remark 43. For example choosing 25 equidistant
points form 5 · 10−2 to 10−3 leads to the condition number 3, 26 · 104. Of course one could
ask, whether 10−3 is small enough and whether the condition number would significantly
decrease for smaller error bounds. The answer is no, taking again 25 equidistant points from
5 · 10−2 to 10−4 and from 5 · 10−2 to 10−6 we have the condition numbers 1.05 · 104 and
4, 3 · 103, respectively. For comparison see also Remark 37, where a similar effect for the bias
and variance estimations is discussed. If one really wants to decrease the condition numbers,
one has to consider significantly bigger values of ε. But then the algorithms will no longer
give reliable results, since the replication numbers get too small for good estimations of the
variance and also the asymptotic estimates used for the choice of the highest level L and
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the replication numbers N might no longer be valid. As a consequence we plot the function
c · ε−2 · (ln(ε−1))γ with a parameter choice for c and γ that seems to fit the empirical data.

We discuss Figure 1. First of all we observe that we have relatively small confidence
intervals. Hence we assume our numerical data, i.e., the empirical estimations of the error ε
of the algorithms under consideration, to be reliable. Furthermore, the number of generator
calls and hence the cost of Aqε,F (f) seems to obey the law c · ε−2 · (ln(ε−1))3, which is indeed
one logarithmic order better than the upper bound from Theorem 1. However, this suggests
that the upper bound from Theorem 1 is not sharp for the particular case of the standard
Brownian motion and its maximum. Moreover, the comparison to A?ε,F (f) shows that the
asymptotic behaviour of both the random bit and the random number algorithm seem to be
quite similar, up to a multiplicative constant. Regarding this constant, recall that the random
bit algorithm Aqε,F (f) is, as discussed earlier in this section, punished by the factor q =
q(ε, F ) = L(ε, F ). Indeed the factor between the random generator calls of both algorithms
is only slightly larger than q. This can be seen combining the definition of L(ε, F ), see (81),
and the relation between the input parameter ε and the corresponding error ε of A?ε,F (f),
given in Figure 2.

We consider Figure 2 in more detail. First of all, we again observe that the asymptotic
confidence intervals are sufficiently small to justify working with the empirical values for the
error ε of Aqε,F (f). The figure illustrates the relation between the input parameter ε, which
determines the whole algorithm Aqε,F (f), and the empirical error of Aqε,F (f). To improve the
readability of the figure it also contains the identity function Id: R→ R, x 7→ x.

10−2 10−1

10−3

10−2

10−1

input parameter ε

ro
ot

m
ea

n
sq

u
ar

ed
er

ro
r
ε

Aqε,F (f)
Id

Figure 2. Error of the non-adaptive random bit MLMC Euler algorithm for given
input parameter ε, with asymptotic confidence intervals to the confidence level 0.95.

This figure has two purposes. One is to relate the cost of Aqε,F (f) in terms of its random
generator calls, to the input parameter ε and the second, the main purpose is to give an
intuition on how to choose the input parameter ε such that Aqε,F (f) falls below a given error
bound ε.

Finally, we turn to Figure 3, which is dedicated to the effect of the bit approximations
on the empirical values of |Bias`(f)| and Var`(f) on the first few levels, starting with ` = 1,
since there is no coupling on level ` = 0. More precisely, we compare empirical estimates
of |Biasq`(f)| and Varq`(f) to those of |Bias`(f)| and Var`(f) for the particular bit numbers
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q = 3 and q = 6. The level is layed on the x-axis and the empirical estimates on the y-axis,
respectively.
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Figure 3. Empirical evolution of |Bias`(f)| and Var`(f) for different bit numbers
compared to random numbers. Here, • ∈ {q, ?} indicates the affiliation to the par-
ticular algorithm.

There are two main observations. We start with the discussion of |Biasq`(f)|. Using only
q = 3 bits we see that the estimated values of |Biasq`(f)| are already relatively close to
those of |Bias`(f)|, and for q = 6 bits, the two quantities do almost coincide. That is,
the effect of the bit approximations has a negligible impact on the mean of the differences

f(X2`) − f(X̃2`−1), especially since Aqε,F (f) already chooses the highest level L = 5 for the

input ε = 0.1, which corresponds to an error ε of the magnitude 10−2, see Figure 2. The
same holds true for the difference of the empirical estimates of Varq`(f) and Var`(f). The
second observation is that especially the law of the decay of (|Biasq`(f)|)`∈N clearly involves a
logarithmic factor, indicating that this factor should indeed be respected when estimating the
laws for the decays of (|Bias†`(f)|)`∈N and (Var†`(f))`∈N in the adaptive multilevel algorithm

A†,adp
ε,F (f), which is discussed in Section IV.3.3.

V.1.2. MLMC Quadrature Based on Scheme 2. In this section, we present nu-
merical results for the adaptive random bit multilevel algorithm A†,adp

ε,F (f). In the first figure,
Figure 4, we present, analogously to Figure 1, the relation between the error and the cost
of A†,adp

ε,F (f) and we compare it to the corresponding relation between the error and the

cost of the classical adaptive multilevel algorithm A?,adp
ε,F (f), in terms of the number of ran-

dom generator calls. In difference to the non-adaptive algorithms Aqε,F (f) and A?ε,F (f), here
the number of calls to the random generator is not deterministic in the input parameter
ε, instead it is a random quantity. Hence we present the empirical mean of the number of
random generator calls together with asymptotic confidence intervals to the confidence level
0.05. Again the error ε is measured on the x-axis, decreasing from right to left, and the num-
ber of generator calls is measured on the y-axis. As in Figure 1, in the current setting, the
random bit algorithm A†,adp

ε,F is punished by a factor of about 4 in the comparison with the
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classical random number algorithm A?,adp
ε,F , see (98). Moreover, with the same reasoning as

in Section V.1.1 we illustrate the supposable asymptotic behaviour of A†,adp
ε,F by the function

c · ε−2 · (ln(ε−1))γ with a parameter choice for c and γ that seems to fit the empirical data.
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Figure 4. Error-cost relation of the adaptive random bit MLMC Euler algorithm
(blue) and its random number counterpart (red) with asymptotic confidence intervals
to the confidence level 0.95 in both dimensions. The solid line shows the supposed
asymptotic behavior of the random bit algorithm.

We discuss Figure 4. The results are similar to those for Aqε,F (f) in Figure 1. In particular
we do have sufficiently small confidence intervals to stick to the empirical approximations
of the error ε and to the number of random generator calls of the algorithms under consid-
eration. The latter, the confidence intervals for the empirical estimation of the number of
random generator calls, printed in green, actually almost vanish. The asymptotic behaviour
of the random bit algorithm A†,adp

ε,F (f) seems to obey the law c · ε−2(ln(ε−1))1.15, which seems

to coincide with the law of the classical random number algorithm A?,adp
ε,F (f), up to a multi-

plicative constant that seems to be close to 5. As we have already noticed that estimating the
cost of the algorithms via counting their random generator calls leads to a factor of about
4 by which A†,adp

ε,F (f) is inferior to A?,adp
ε,F (f), we conclude that both algorithms seem to have

a very similar performance. That is, random bits seem to have an almost negligible effect
on the adaptive multilevel Euler algorithm in the case of the standard Brownian motion
and its maximum. The logarithmic exponent of 1.15 seems reasonable since Figure 6 shows
that the exponential decay of (Var†`(f))`∈N and (Var?`(f))`∈N is close to 1, cf. Theorem 10.
Finally, we consider the behaviour for errors ε in the range from 4·10−2 to 2 · 10−1. It is very
likely, that the replication numbers N † and N? used by the adaptive algorithms A†,adp

ε,F (f)

and A?,adp
ε,F (f), respectively, do simply not yield sufficiently good empirical approximations of

|Bias†`(f)| and Var†`(f) respective |Bias?`(f)| and Var?`(f) leading to a precipitate termination
of the respective algorithms, i.e., before the weak convergence is established, cf. Step 5 in
Definition 9 together with Remark 35. This speculation is fortified by the fact the A†,adp

ε,F (f)

seems to behave even more odd than A?,adp
ε,F , coinciding with the unusual behaviour, i.e., the

non-monotonicity, of |Bias†`(f)| on the levels ` = 1, . . . , 3, cf. Figure 6.
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Recall that one of the main motivations for the construction of adaptive multilevel algo-
rithms is that for a given input accuracy ε, the error ε of the algorithm should be slightly
smaller than and in no way substantially bigger than ε. Moreover, it should not be substan-
tially smaller than ε, too, to avoid immense computational overhead. Hence in Figure 5 we
illustrate the relation between the input accuracy ε, laid on the x-axis, and the empirical
error ε of A† adp

ε,F (f) measured on the y-axis. For convenience of the reader the figure also
contains the identity function Id: R→ R, x 7→ x.
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Figure 5. Error of the adaptive random bit MLMC Euler algorithm for given input
parameter ε, with asymptotic confidence intervals to the confidence level 0.95.
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Figure 6. Empirical evolution of |Bias`(f)| and Var`(f) for random bits (blue)
compared to random numbers (red).
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Figure 5 shows that as soon as the input accuracy is sufficiently small such that A†,adp
ε,F (f)

seems to perform properly, cf. the discussion of Figure 4, the error ε actually almost coincides
with the input accuracy ε. In that sense, A†,adp

ε,F (f) fulfills its purpose.
Like for the non-adaptive algorithm Aqε,F (f), we take a look at the effect of the bit

approximations on the empirical estimates of |Bias?`(f)| and Var?`(f) on the first few levels,

again starting with ` = 1. That is, we compare |Bias†`(f)| to |Bias?`(f)| and Var†`(f) to
Var?`(f), respectively. As in Figure 3, the level is laid on the x-axis and the empirical estimate
on the y-axis, respectively.

There are two main observations. The first one is that |Bias†`(f)| and |Bias?`(f)| as

well as Var†`(f) and Var?`(f) share almost the same asymptotic order of convergence and

differ only by an almost negligible small constant. The second observation is that |Bias†`(f)|
behaves somehow unexpected on the first level ` = 1, namely the monotonicity of |Bias?`(f)|
is violated. Probably a consequence of the bit approximations using only two bits on the
first level, because the confidence intervals suggest that is rather not a consequence of the
empirical estimation of |Bias†`(f)|.

Finally, we compare A†,adp
ε,F (f) to the adaptive random bit multilevel algorithm A†,adp?

ε,F (f),
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Figure 7. Error-cost relation of the adaptive random bit MLMC Euler algorithm
without (blue) and with (red) a modified bias and variance estimation, both with
asymptotic confidence intervals to the confidence level 0.95 in both dimensions. The
solid line shows the supposed asymptotic behavior of the algorithms.

that uses the coupled random bit Euler approximations (X†
2`
, X̃†

2`−1)`∈N0 and the construction
from Definition 9 together with the modifications described in Remark 35 and Remark 36, as
well as the split ε2

B = ε2/4 and ε2
V = 3/4·ε2, i.e., the random bit counterpart of the multilevel

Euler algorithm presented in Giles [25] for f ∈ Fp. As discussed in the introduction to the
current chapter, cf. also Remark 37, this algorithm involves way smaller condition numbers
associated to the design matrix D in the least-square fits for |Bias†`(f)| and Var†`(f). This

comparison has two purposes. One is to check whether A†,adp?

ε,F (f) performs better than

A†,adp
ε,F (f), and the second purpose is to get a better intuition on the observations for input

accuracies in the range [4 · 10−2, 2 · 10−1[. In the discussion of Figure 4 we already made
the guess that the curve shape in this range is due to too bad fits of the parameters in the
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estimation of |Bias†`(f)| and Var†`(f), respectively, leading to an overhasty termination of

A†,adp
ε,F (f). This interpretation is fortified by Figure 7, since A†,adp?

ε,F (f) seems to behave more

steady then A†,adp
ε,F (f) in combination with asymptotic confidence intervals sufficiently small

not to credit this effect to the empirical estimation of the error ε.

V.1.3. The Comparison. In this section, we compare Aqε,F (f) to A†,adp
ε,F (f). As men-

tioned several times throughout the thesis, we expect the adaptive algorithm A†,adp
ε,F (f) to

perform better than the non-adaptive algorithm Aqε,F (f).
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Figure 8. Error-cost relation of the non-adaptive (blue) and of the adaptive (red)
random bit MLMC Euler algorithm with asymptotic confidence intervals to the con-
fidence level 0.95 in both dimensions. The dashed line shows the supposed asymptotic
behavior of the algorithm, respectively.

We present the empirical number of random generator calls of each algorithm measured
on the y-axis plotted against their errors ε, measured on the x-axis. We add functions of
the type c · ε−2 · (ln(ε−1))γ with parameter choices for c and γ that seem to describe the
asymptotic laws of the algorithms in matching colors, respectively. Indeed it turns out that
A†,adp
ε,F (f) shows a better asymptotic order of the number of random generator calls by almost

two logarithmic orders. Furthermore, it suggests the superiority of the adaptive algorithm
A†,adp
ε,F (f) for errors ε less than 4 · 10−2.

V.2. Geometric Brownian Motion

In this section we consider a one-dimensional geometric Brownian motion, more precisely,
the solution process X = (X(t))t∈[0,1] to the SDE with drift coefficient a(x) = 0.02 · x and
diffusion coefficient b(x) = 0.2 · x as well as the initial value x0 = 1, i.e.,

dX(t) = 0.02 ·X(t) dt+ 0.2 ·X(t) dW (t), t ∈ [0, 1],

dX(0) = 1.

This choice of the coefficient b corresponds to the choice in Giles [24, Section 6.1] and the
coefficient a is chosen such that E(f(X)) can easily be computed analytically. As for the
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Brownian motion, we consider the maximum f(x) = max0≤t≤1 x(t) for x ∈ C([0, 1]). Conse-
quently, the current setting is, again, covered by our theoretical results from Section IV.5.

We proceed in the same way as for the Brownian motion in Section V.1. First of all,
we compute the reference solution E(f(X)) analytically. For this purpose, observe that the
solution X at time t ∈ [0, 1] of the above SDE is given by

X(t) = exp(0.2 ·W (t)),

see, e.g., Taylor and Karlin [63, Section VIII.4.2, i.p. equation (4.17)] or Wiersema [65,
Section 5.3]. Hence from (106) we get

f(X) = max
0≤t≤1

exp(0.2 ·W (t)) = exp
(
0.2 · max

0≤t≤1
W (t)

) d
= exp(0.2 · |W (1)|),

implying

E(f(X)) = 2 ·
∫ ∞

0

exp(0.2 · y) · (2 · π)−1/2 · exp(−y2/2) dy

= (2/π)1/2 ·
∫ ∞

0

exp(0.2 · y − y2/2) dy = 1.1819 . . . .

Hence, the empirical error estimations of the multilevel algorithms are again straightforward.
The numerical results are presented in three separate sections, following the outline in

Section V.1. Since the results are very similar to those for the Brownian motion, presented
in Section V.1, we will not explain and discuss all figures in detail. Instead we emphasize the
most important differences.

V.2.1. MLMC Quadrature Based on Scheme 1. In this section we present numeri-
cal results for the non-adaptive random bit multilevel algorithm Aqε,F (f). The main difference
to the results for the standard Brownian motion is located in the relation between the number
of random generator calls carried out by Aqε,F (f) and the empirical error ε of Aqε,F (f).
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Figure 9. Error-cost relation of the non-adaptive MLMC Euler algorithms (ran-
dom bits: blue, random numbers: red) with asymptotic confidence intervals to the
confidence level 0.95. The solid line shows the supposed asymptotic behavior of the
random bit algorithm.
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Actually, the number of random generator calls seems to obey the law c · ε−2 · (ln(ε−1))4

for some positive constant c. Recall that, in comparison, for the maximum of the standard
Brownian motion Figure 1 suggests the asymptotic law c1 · ε−2 · (ln(ε−1))3 for some positive
constant c1. However, this one logarithmic order we lose for the geometric Brownian motion
(X(t))t∈[0,1] is actually good news in the sense that it implies that the general upper bound
on the cost of Aqε,F (f) in Theorem 11 is sharp. At least for the construction of Aqε,F (f) not
having the Bakhvalov trick from Section IV.5.1 at its disposal.
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Figure 10. Error of the non-adaptive random bit MLMC Euler algorithm for given
input parameter ε, with asymptotic confidence intervals to the confidence level 0.95.
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Figure 11. Empirical evolution of |Bias`(f)| and Var`(f) for different bit num-
bers compared to random numbers. Here, • ∈ {q, ?} indicates the affiliation to the
particular algorithm.
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Figure 11 once again clearly indicates the presence of a logarithmic factor in the laws
of (|Bias•`(f)|)`∈N for • ∈ {q, ∗}, respectively. For the corresponding variances (Var•`(f))`∈N
this might also be the case but not as distinctive as implied by the empirical estimates of
|Bias•`(f)| in Figure 11.

V.2.2. MLMC Quadrature Based on Scheme 2. In this section, we present nu-
merical results for the adaptive random bit multilevel algorithm A†,adp

ε,F (f).
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Figure 12. Error-cost relation of the adaptive random bit MLMC Euler algorithm
(blue) and its random number counterpart (red) with asymptotic confidence intervals
to the confidence level 0.95 in both dimensions. The solid line shows the supposed
asymptotic behavior of the random bit algorithm.
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Figure 13. Error of the adaptive random bit MLMC Euler algorithm for given
input parameter ε, with asymptotic confidence intervals to the confidence level 0.95.

The main difference to the results for the standard Brownian motion lies, as for the non-
adaptive algorithm Aqε,F (f), in the relation between the number of random generator calls
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Figure 14. Empirical evolution of |Bias`(f)| and Var`(f) for random bits (blue)
compared to random numbers (red).

10−3 10−2

105

106

107

108

109

root mean squared error ε

m
ea

n
ra

n
d
om

ge
n
er

at
or

ca
ll
s

(ε
)

A†,adp
ε,F (f)

A†,adp?

ε,F (f)

c · ε−2 · (ln(ε−1))2

Figure 15. Error-cost relation of the adaptive random bit MLMC Euler algorithm
without (blue) and with (red) a modified bias and variance estimation, both with
asymptotic confidence intervals to the confidence level 0.95 in both dimensions. The
solid line shows the supposed asymptotic behavior of the algorithms.

and the empirical error ε of A†,adp
ε,F (f). Actually, this relation seems to have the asymptotic

law c · ε−2 · (ln(ε−1))2 for a positive constant c. Recall that in the case of the standard
Brownian motion we have observed the logarithmic factor 1.15, cf. Figure 4. That is we lose
almost one logarithmic order, which corresponds to the effect that we have observed for the
non-adaptive algorithm Aqε,F (f) in Section V.2.1. However, we stress that the logarithmic

exponent of 2 seems to also hold for the classical adaptive multilevel Euler algorithm A?,adp
ε,F (f)
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and corresponds to the (weak) asymptotic upper bound on its cost in dependence on the
input ε, that is presented in Theorem 10.

Finally, we observe that Figures 13, 14 and 15 fortify the interpretation of the observations
for the standard Brownian motion in Section V.1.2, hence referred to for their discussion.

V.2.3. The Comparison. In this section, we compare Aqε,F (f) to A†,adp
ε,F (f).
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Figure 16. Error-cost relation of the non-adaptive (blue) and of the adaptive (red)
random bit MLMC Euler algorithm with asymptotic confidence intervals to the con-
fidence level 0.95 in both dimensions. The dashed line shows the supposed asymptotic
behavior of the algorithm, respectively.

Similar as for the Brownian motion, see Section V.1.3, we observe that the adaptive algorithm
outruns the non-adaptive algorithm for small errors ε by two logarithmic orders. Actually,
Figure 16 suggests the superiority of A†,adp

ε,F (f) for errors ε less than 10−2, coinciding with the

error range for which A†,adp
ε,F (f) seems to become more stable regarding the involved linear

least-square fits for |Bias†`(f)| and Var†`(f), cf. the discussions of Figure 4 and Figure 7.

V.3. Ornstein-Uhlenbeck Process

We consider an Ornstein-Uhlenbeck process X = (X(t))t∈[0,1], i.e., the solution of a
stochastic differential equation of the form

dX(t) = (a1 − a2 ·X(t)) dt+ b1 dW (t), t ∈ [0, 1],

X(0) = x0

with positive constants a1, a2 and b1. More precisely, we are interested in the ad hoc parameter
choice a1 = 1, a2 = 1, and b1 = 1 as well as the initial value x0 = 1. In our notation, cf. (105),
this corresponds to the drift coefficient a(x) = 1 − x and the diffusion coefficient b(x) = 1,
i.e.,

dX(t) = (1−X(t)) dt+ dW (t), t ∈ [0, 1],

X(0) = 1.
(107)
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Observe that X can be interpreted as a, as we will call it, tamed Brownian motion, since
the Brownian motion is pushed back towards its initial value by the drift coefficient a.

In contrast to the first two examples, here we are interested in the functional f that
evaluates the process X at the final time point t = 1, i.e., f(x) = x(1) for x ∈ C([0, 1]).
Hence the current setting is, once again, covered by our theoretical results from Section IV.5.

We proceed in the same way as in Section V.1 and Section V.2. At first we compute
E(f(X)) analytically. From Shreve [61, Example 4.4.10] we obtain that X(t) is normally
distributed with expectation

E(X(t)) = exp(−a2 · t) ·X(0) + a1/a2 · (1− exp(−a2 · t))

for all t ∈ [0, 1]. Hence for our particular parameter choice, we have

E(f(X)) = exp(−1) + (1− exp(−1)) = 1.

For us, the most interesting aspect of the Ornstein-Uhlenbeck process is that X is the
solution process of an SDE with additive noise. Hence the Euler scheme coincides with the
Milstein scheme, cf. Remark 6. Since the functional f evaluates the solution of the SDE in
the final time point only, Theorem 3 yields that the Euler-Maruyama scheme has a weak rate
of convergence of at least 1 instead of 1/2. Consequently, the adaptive multilevel algorithm

A†,adp
ε,F (f) should be able to exploit this higher order of convergence in contrast to Aqε,F (f),

which is based on the upper bound on the order of convergence of the Euler-Maruyama
scheme from Theorem 2.

As in the previous examples we present the numerical results in three separate sections.
Again, we focus on differences to the results for the previous examples, mainly the standard
Brownian motion in Section V.1, and we do not discuss similarities in detail.

V.3.1. MLMC Quadrature Based on Scheme 1. We present numerical results for
the non-adaptive multilevel algorithm Aqε,F (f).
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Figure 17. Error-cost relation of the non-adaptive MLMC Euler algorithms (ran-
dom bits: blue, random numbers: red) with asymptotic confidence intervals to the
confidence level 0.95. The solid line shows the supposed asymptotic behavior of the
random bit algorithm.
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The first thing we notice is that the asymptotic relation between the error ε of Aqε,F (f) and
the number of random generator calls does almost coincide with the corresponding relation
observed for the standard Brownian motion, cf. Figure 1. In the estimated logarithmic order,
namely 2.9 vs 3, as well as on the level of constants. Actually, this is not really surprising,
due to our interpretation of X as a tamed Brownian motion, see (107) and the comment
thereafter, together with the fact that the maximum of a Brownian motion has the same
distribution as the absolute value in the final time point, see (106), at which the functional
f evaluates the process X in the current example.
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Figure 18. Error of the non-adaptive random bit MLMC Euler algorithm for given
input parameter ε, with asymptotic confidence intervals to the confidence level 0.95.
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Figure 19. Empirical evolution of |Bias`(f)| and Var`(f) for different bit num-
bers compared to random numbers. Here, • ∈ {q, ?} indicates the affiliation to the
particular algorithm.
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Since the input parameter ε completely determines Aqε,F (f), as a consequence of the
afore discussion, also the relation between the input parameter ε and the error ε of Aqε,F (f),
presented in Figure 18, is almost the same as for the standard Brownian motion, cf. Figure 2.

The first substantial difference to the numerical results for the standard Brownian motion
is in the exponential decay of the empirical estimates of (|Bias•`(f)|)`∈N and (Var•`(f))`∈N
with • ∈ {q, ?}. Though |Bias•`(f)| has very large confidence intervals and hence one can
not say that the results are very reliable, there is a clear tendency that (|Bias•`(f)|)`∈N
decreases with exponential order of about 1, which is close to the upper bound for the
Milstein scheme given in Theorem 3. Of course it might be that the replication numbers
chosen on each level ` = 1, . . . , 10 are to small, but we are already using 106 realizations of

f(X•
2`

)− f(X̃•
2`−1), i.e., the simulations are already time demanding, especially for the larger

choices of `. The explanation is probably to be found in the symmetry of the Brownian
motion, i.e., the same likelihood of being positive and negative. Therefore, in the empirical

estimation of |Bias•`(f)| the values for the realizations of f(X•
2`

) − f(X̃•
2`−1) are supposed

to cancel out in the mean, which coincides with the relatively small values of the empirical
estimates of |Bias•`(f)| observed on the first levels, starting with a value very likely less than
2−10 for ` = 1. In comparison the corresponding value for the standard Brownian motion is
estimated to be of the magnitude 2−3.5, cf. Figure 3. However, we will not go into detail of
this observation, since the results for Aqε,F (f) seem to be very reliable in the sense that the
confidence intervals for the empirical error ε are relatively small. Furthermore, the empirical
values for the relation between the error ε and the number of random generator calls, see
Figure 17, do almost coincide with c · ε−2 · (ln(ε−1))2.9 for some positive constant c. Moreover,
the confidence intervals for the empirical variances are almost negligible small and the values
for the bit approximations Varq`(f) do almost coincide with those for Var?`(f).

Finally, note that (Var?`(f))`∈N is decreasing with an exponential order of about 2. Hence
we can expect the asymptotic law c · ε−2, with some positive constant c, for the adaptive
random bit multilevel algorithm A†,adp

ε,F (f), that we consider in the next section.
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Figure 20. Error-cost relation of the adaptive random bit MLMC Euler algorithm
(blue) and its random number counterpart (red) with asymptotic confidence intervals
to the confidence level 0.95 in both dimensions. The solid line shows the supposed
asymptotic behavior of the random bit algorithm.
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V.3.2. MLMC Quadrature Based on Scheme 2. We present numerical results for
the adaptive random bit multilevel algorithm A†,adp

ε,F (f).
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Figure 21. Error of the adaptive random bit MLMC Euler algorithm for given
input parameter ε, with asymptotic confidence intervals to the confidence level 0.95.
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Figure 22. Empirical evolution of |Bias`(f)| and Var`(f) for random bits (blue)
compared to random numbers (red).

Here, we observe a distinctive difference to the results for the standard Brownian mo-
tion in Section V.1.2. Namely the relation between the error ε and the number of random
generator calls of A†,adp

ε,F (f) seems to obey the law c · ε−2 for some positive constant c. This

corresponds to the exponent we were hoping for, regarding the level-variances (Var†`(f))`∈N
decaying with an order of about 2, see Figure 22, which actually corresponds to the case
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β > 1 in Theorem 10. Observe that by Remark 26 the lower bound for any Monte Carlo
algorithm is of the form c1 · ε−2 for some positive constant c1.

The relation to the classical random number multilevel algorithm A?,adp
ε,F (f) is similar to

the relations for the Brownian motion thoroughly discussed in Section V.1.2.
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Figure 23. Error-cost relation of the adaptive random bit MLMC Euler algorithm
without (blue) and with (red) a modified bias and variance estimation, both with
asymptotic confidence intervals to the confidence level 0.95 in both dimensions. The
solid line shows the supposed asymptotic behavior of the algorithms.

Let us finally mention that in the current setting A†,adp
ε,F (f) achieves an error ε that is

strictly less than the input accuracy ε, see Figure 21.
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random bit MLMC Euler algorithm with asymptotic confidence intervals to the con-
fidence level 0.95 in both dimensions. The dashed line shows the supposed asymptotic
behavior of the algorithm, respectively.
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V.3.3. The Comparison. We compare the non-adaptive algorithm Aqε,F (f) to the

adaptive algorithm A†,adp
ε,F (f). In the previous examples we observed that the adaptive algo-

rithm outruns the non-adaptive algorithm for small errors ε, and they both showed a similar
performance for an error ε of the magnitude 10−2, at least in terms of their numbers of
random generator calls. In the current setting A†,adp

ε,F (f) has a way lower number of generator
calls than Aqε,F (f) on the whole interval under consideration, i.e., already for an error ε of

3 · 10−2, A†,adp
ε,F (f) performs by a factor > 10 better than Aqε,F (f). This clearly demonstrates

the superiority of the adaptive algorithm over the non-adaptive algorithm.

V.4. Cox-Ingersoll-Ross (CIR) Process

We consider the Cox-Ingersoll-Ross process X = (X(t))t∈[0,1], i.e., the solution of a sto-
chastic differential equation, which we call CIR SDE, of the form

dX(t) = (a1 − a2 ·X(t)) dt+ b1 ·
√
X(t) dW (t), t ∈ [0, 1],

X(0) = x0

for positive constants a1, a2 and b1. Existence and uniqueness of the solution are well-known
results, see, e.g., Ekström and Tysk [21]. We consider the particular parameter choice a1 = 3,
a2 = 1, and b1 = 2, as well as the initial value x0 = 1. In our notation, see (105), this
corresponds to the drift coefficient a(x) = 3 − x and the diffusion coefficient b(x) = 2 ·

√
x,

i.e.,

dX(t) = (3−X(t)) dt+ 2 ·
√
X(t) dW (t), t ∈ [0, 1],

X(0) = 1.

As for the Ornstein-Uhlenbeck process in Section V.3 we are interested in the functional
f(x) = x(1) for x ∈ C([0, 1]). Observe that the diffusion coefficient is not globally Lipschitz
continuous, as limx→0 b

′(x) =∞. Hence the current setting is not covered by our theoretical
results in Section IV.5. However, for our parameter choice the CIR SDE should behave
similar as if it would fulfill the global Lipschitz condition, since by Lamberton and Lapeyre
[40, Proposition 6.2.4] the naturally to the time interval [0,∞[ extended CIR process X
satisfies

2 · a1 ≥ b2
1 ⇒ P

(
inf{t ≥ 0: X(t) = 0} =∞

)
= 1.(108)

For the analytical computation of the reference solution E(f(X)), Shreve [61, Example
4.4.11] gives

E(X(t)) = exp(−a2 · t) ·X(0) + a1/a2 · (1− exp(−a2 · t))

for t ∈ [0, 1], i.e., the same expectation as for the Ornstein-Uhlenbeck process. Hence we
have

E(f(X)) = exp(−1) + 3 · (1− exp(−1)) = 2.2642 . . . .

for our particular choice of a1 and a2.
From a numerical point of view, the CIR SDE has the problem, that the square-root

in the diffusion coefficient b requires non-negativity. This is not warranted by the classical
Euler-Maruyama scheme and hence also not by its random bit approximations. Therefore,
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throughout the section, we use the modified Euler-Maruyama scheme that takes in each step
the absolute value, i.e.,

X?
m(t0,m) = x0,

X?
m(tk,m) =

∣∣X?
m(tk−1,m) +m−1 · a

(
X?
m(tk−1,m)

)
+ b
(
X?
m(tk−1,m)

)
· V ?

k,m

∣∣
for k = 1, . . . ,m, as suggested in Diop [20], and analogously for the coupled scheme X̃?

m/2.

Likewise we consider the modified random bit Euler-Maruyama schemes X
(q)
m and X̃

(q)
m/2 as

well as X†m and X̃†m/2. Since, in this section, we only consider the modified algorithms and

moreover only in this section, we do not introduce a new notation. Furthermore, we do not
discuss the modified schemes. A comparison on different modified Euler-Maruyama schemes
used to approximate CIR processes can, e.g., be found in Alfonsi [1]. For recent results, as
well as a general overview, on strong convergence rates for CIR processes, we do refer to
Hefter and Herzwurm [32]. In this article, polynomial rates of convergence are established
using a Milstein-type approximation scheme that is suitably truncated close to zero.

As in the previous examples, the numerical results are presented in three separate sec-
tions. Once again, we focus on differences to the results for the previous examples, mainly
on differences to the Brownian motion in Section V.1, which we discussed in detail, and on
differences to the Ornstein-Uhlenbeck process in Section V.3, which is closely related to the
CIR process.

V.4.1. MLMC Quadrature Based on Scheme 1. We present numerical results for
the non-adaptive random bit multilevel algorithm Aqε,F (f). Actually, the results are quite
similar to those for the standard Brownian motion in Section V.1.1 and to those for the
geometric Brownian motion in Section V.2.1. The relation between the error ε and the number
of random generator calls seems to obey the law c ·ε−2 ·(ln(ε−1))2.6 for some positive constant
c with asymptotic confidence intervals sufficiently small to trust the empirical estimations.
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Figure 25. Error-cost relation of the non-adaptive MLMC Euler algorithms (ran-
dom bits: blue, random numbers: red) with asymptotic confidence intervals to the
confidence level 0.95. The solid line shows the supposed asymptotic behavior of the
random bit algorithm.
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Figure 26. Error of the non-adaptive random bit MLMC Euler algorithm for given
input parameter ε, with asymptotic confidence intervals to the confidence level 0.95.

Indeed, here this is also the case for the empirical estimation of |Bias•`(f)| for • ∈ {q, ?},
in difference to what we observed for the Ornstein-Uhlenbeck process in Section V.3.1, where
we used the same functional f , cf. Figure 19. Following the discussion of Figure 19 this should
be a consequence of the strict positivity of X, see (108).

Let us finally mention that the input parameter ε and the error ε of Aqε,F (f) differ only
by a very small factor.
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Figure 27. Empirical evolution of |Bias`(f)| and Var`(f) for different bit num-
bers compared to random numbers. Here, • ∈ {q, ?} indicates the affiliation to the
particular algorithm.
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V.4.2. MLMC Quadrature Based on Scheme 2. We present numerical results for
the adaptive random bit multilevel algorithm A†,adp

ε,F (f). The results are similar to those in
the previous sections, in particular to those for the Brownian motion in Section V.1.2, where
we provided a detailed discussion. Hence, we solely mention that the asymptotic confidence
intervals give reason to trust the empirical estimations, and that the input parameter ε and
the error ε of A†,adp

ε,F (f) do almost coincide, which is desirable in the sense that there is
in particular no overestimation, which would lead to an unnecessarily long runtime of the
algorithm.
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Figure 28. Error-cost relation of the adaptive random bit MLMC Euler algorithm
(blue) and its random number counterpart (red) with asymptotic confidence intervals
to the confidence level 0.95 in both dimensions. The solid line shows the supposed
asymptotic behavior of the random bit algorithm.
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Figure 29. Error of the adaptive random bit MLMC Euler algorithm for given
input parameter ε, with asymptotic confidence intervals to the confidence level 0.95.
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Figure 30. Empirical evolution of |Bias`(f)| and Var`(f) for random bits (blue)
compared to random numbers (red).
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Figure 31. Error-cost relation of the adaptive random bit MLMC Euler algorithm
without (blue) and with (red) a modified bias and variance estimation, both with
asymptotic confidence intervals to the confidence level 0.95 in both dimensions. The
solid line shows the supposed asymptotic behavior of the algorithms.

V.4.3. The Comparison. We compare the non-adaptive to the adaptive multilevel
algorithm, i.e., Aqε,F (f) to A†,adp

ε,F (f). The observed relation is similar to the observations for
the Ornstein-Uhlenbeck process in Figure 24. Namely, the adaptive algorithm has a lower
cost, at least in terms of the number of random generator calls, for the whole error range
under consideration. Moreover, it has the better, i.e., slower growing, asymptotic logarithmic
exponent of about 1.5. That is, we once again see a clear superiority of the adaptive multilevel
algorithm.
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Figure 32. Error-cost relation of the non-adaptive (blue) and of the adaptive (red)
random bit MLMC Euler algorithm with asymptotic confidence intervals to the con-
fidence level 0.95 in both dimensions. The dashed line shows the supposed asymptotic
behavior of the algorithm, respectively.



Appendix

A.1. Basic Definition and Facts Infrequently Used in the Thesis

In this section we provide the definition of a metric projection. Moreover, we do recall
basic facts on the inverse of the cumulative distribution function and the composition of
convex functions.

Definition 10. Let (M,d) be a metric space and S a closed subset of M . For every
x ∈M we define the set

Sx =
{
y ∈ S : d(x, y) = inf{d(x, z) : z ∈ S}

}
of elements which yield the best approximation of x ∈ M among all elements from S. The
mapping PS : M → S, x 7→ PS(x) = Sx is called a metric projection of M onto S.

For a proof of the following well-known result, see, e.g., Devroye [19, Theorem 2.1].

Proposition 6. Let F be the cumulative distribution function of a probability measure
µ on R with inverse distribution function F−1 given by

F−1(u) = inf
{
x ∈ R : F (x) = u

}
,

for 0 < u < 1. Furthermore, let U be a random variable that is uniformly distributed on the
unit interval. Then we have

F−1(U) ∼ µ,

i.e., F−1(U) has distribution function F . Conversely, if a random variable X is distributed
according to µ, i.e., has distribution function F , than F (X) is uniformly distributed on [0, 1].

Lemma 18. Let f : I → R and g : R → R be convex functions. Moreover, let g|f(I) be
monotonically increasing. Then g ◦ f is a convex function on I.

Proof. Let a, b ∈ I with a < b. Then g(a) ≤ g(b) due to g monotonically increasing on
f(I). Consequently, for x, y ∈ I and λ ∈ [0, 1] the convexity of f yields

g
(
f(λ · x+ (1− λ) · y)

)
≤ g
(
λ · f(x) + (1− λ) · f(y)

)
.

The convexity of g finishes the proof. �
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A.2. Method of Linear Least-Squares and Stability

Due to the importance of linear regressions, i.e., fitting linear functions to data, for the
numerics of multilevel Monte Carlo algorithms, we present the method of linear least-square
approximations, following the approach in Schwarz and Köckler [60, Section 6.1]. Since in
practical applications, the data is often noisy we consider the connection of linear least-
square fits to the condition number of a matrix, see, e.g., Schwarz and Köckler [60, Section
2.2.2]. This number can be interpreted as an indicator for the stability of the solution of the
linear equation system involved in the linear least-square approximation.

Let L, n ∈ N with L > n. Let s ∈ RL be a vector of statistical data, i.e., the observed
values in a numerical experiment, s is often called regressand or response variable. Further-
more, let D ∈ RL×n be the design matrix consisting of n linearly independent columns, i.e.,
with full rank n, which are also called regressors. Our aim is to determine an n-dimensional
parameter vector x such that x minimizes the error equation

r = D · x− s,

where r ∈ RL is called residuum. In this context, looking for a least-square approximation
means to minimize the sum of the squares of the components ri of r, i.e., we minimize rT r.
To do this, we observe that xT DT s = sT Dx and hence

rT r = xT DT Dx− 2 ·
(
DT s

)
x+ sT s.

In order to minimize rT r (with respect to x) we consider the gradient ∇x(r
T r), which is

due to the symmetry of DT D given by

∇x(r
T r) = 2 ·

( n∑
k=1

(
DT D

)
1,k
· xk −

(
DT s

)
1
, . . . ,

n∑
k=1

(
DT D

)
L,k
· xk −

(
DT s

)
L

)T
.

This yields the necessary condition (
DT D

)
· x = DT s(109)

for x to be a minimizer of rT r. Since D has rank n we know that DT D is an invertible
matrix, and hence we obtain that

x =
(
DT D

)−1 ·
(
DT s

)
is an extremal point for rT r. To show that x is really a minimizer, it remains to observe that
the Hesse-matrix of rT r with respect to x, which is given by 2 · DT D, is positive definite.
Indeed we have for all x ∈ Rn

xT DT Dx =
(
Dx
)T (

Dx
)
≥ 0

and since D has full rank n, we also get Dx = 0 if and only if x = 0.

Remark 42. We mention that from a computational point of view it is not necessary to
invert DT D in order to compute x. Instead one can, e.g., use the Cholesky decomposition
LLT of DT D, recall DT D is positive definite. Then it remains to solve the linear equation
systems L · y = DT s and LT · x = y, which is quite easy due to the triangular structure of
L and LT , respectively.

As already mentioned in the beginning of this section, we would like to have some estimate
on the accuracy of the approximation of x based on the data s. For the following results we
refer to Schwarz and Köckler [60, Section 2.2.2]
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Definition 11. Let M be an invertible matrix and let ‖M‖ denote a matrix norm of
M . Then

κ(M) = ‖M‖ · ‖M−1‖,
which can be shown to be independent from the chosen matrix norm, is called the condition
number of M .

To use the notion of a condition number in the context of the linear equation system
D ·x = s, we recall that x can be computed as the solution to (DT D) ·x = (DT s), see (109).
For now, we assume x to be the (correct) solution we are interested in and we let x̃ denote
a linear least-square approximation of x with r̃ = DT D x̃−DT s. Then the relative error of
x̃ satisfies

‖x− x̃‖
‖x‖

≤ κ
(
DT D

)
· ‖r̃‖
‖DT s‖

for any to the matrix norm compatible vector norm, due to ‖DT s‖ ≤ ‖DT D‖ · ‖x‖ and
‖x− x̃‖ = ‖ − (DT D)−1 r̃‖ ≤ ‖(DT D)−1‖ · ‖r̃‖.

Remark 43. We conclude that a small residuum vector r only implies a small relative
error for x̃ if the condition number κ(DT D) is also small. Or in other words, if the condition
number κ(DT D) is large, then even a small perturbation in the data s and therefore in
DT s may lead to a large impact on x̃, i.e., a rather bad approximation x̃. In that sense, the
considered linear equation system is instable.
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