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‘Small minds are concerned with the extraordinary, great minds with the ordinary.”
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Abstract

Activity recognition has continued to be a large field in computer science over the last two decades. Re-
search questions from 15 years ago have led to solutions that today support our daily lives. Specifically,
the success of smartphones or more recent developments of other smart devices (e.g., smart-watches) is
rooted in applications that leverage on activity analysis and location tracking (fitness applications and
maps). Today we can track our physical health and fitness and support our physical needs by merely
owning (and using) a smart-phone. Still, the quality of our lives does not solely rely on fitness and phys-
ical health but also more increasingly on our mental well-being. Since we have learned how practical
and easy it is to have a lot of functions, including health support on just one device, it would be specifi-
cally helpful if we could also use the smart-phone to support our mental and cognitive health if need be.

The ultimate goal of this work is to use sensor-assisted location and motion analysis to support
various aspects of medically valid cognitive assessments. In this regard, this thesis builds on Hypothe-
sis 3: Sensors in our ubiquitous environment can collect information about our cognitive state, and it
is possible to extract that information. In addition, these data can be used to derive complex cognitive
states and to predict possible pathological changes in humans. After all, not only is it possible to
determine the cognitive state through sensors but also to assist people in difficult situations through
these sensors.

Thus, in the first part, this thesis focuses on the detection of mental state and state changes. The
primary purpose is to evaluate possible starting points for sensor systems in order to enable a clinically
accurate assessment of mental states. These assessments must work on the condition that a developed
system must be able to function within the given limits of a real clinical environment. Despite the
limitations and challenges of real-life deployments, it was possible to develop methods for determining
the cognitive state and well-being of the residents. The analysis of the location data provides a correct
classification of cognitive state with an average accuracy of 70% to 90%. Methods to determine the
state of bipolar patients provide an accuracy of 70-80% for the detection of different cognitive states
(total seven classes) using single sensors and 76% for merging data from different sensors. Methods for
detecting the occurrence of state changes, a highlight of this work, even achieved a precision and recall
of 95%. The comparison of these results with currently used standard methods in psychiatric care even
shows a clear advantage of the sensor-based method. The accuracy of the sensor-based analysis is 60%
higher than the accuracy of the currently used methods.

The second part of this thesis introduces methods to support people’s actions in stressful situa-
tions on the one hand and analyzes the interaction between people during high-pressure activities on
the other. A simple, acceleration based, smartwatch instant feedback application was used to help
laypeople to learn to perform CPR (cardiopulmonary resuscitation) in an emergency on the fly. The
evaluation of this application in a study with 43 laypersons showed an instant improvement in the CPR
performance of 50%. An investigation of whether training with such an instant feedback device can
support improved learning and lead to more permanent effects for gaining skills was able to confirm
this theory. Last but not least, with the main interest shifting from the individual to a group of people
at the end of this work, the question: how can we determine the interaction between individuals within
a group of people? was answered by developing a methodology to detect un-voiced collaboration in
random ad-hoc groups. An evaluation with data retrieved from video footage provides an accuracy of
up to more than 95%, and even with artificially introduced errors rates of 20%, still an accuracy of 70%
precision, and 90% recall can be achieved.

All scenarios in this thesis address different practical issues of today’s health care. The methods
developed are based on real-life datasets and real-world studies.
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Zusammenfassung
Die automatische Erkennung von Aktivitäten stellte in den letzten zwei Jahrzehnten ein großes Feld in der
Informatik dar. Forschungsfragen von vor 15 Jahren haben zu Lösungen geführt, die heute unser tägliches Leben
unterstützen. Insbesondere der Erfolg von Smartphones oder anderer intelligenter Geräte (z. B. Smartwatches)
beruht auf Anwendungen, die Aktivitätsanalysen und Standortverfolgung nutzen (Fitnessanwendungen und
Karten). Heute können wir unsere körperliche Gesundheit und Fitness nachverfolgen und unsere körperlichen
Bedürfnisse unterstützen, indem wir lediglich ein Smartphone besitzen (und verwenden). Die Qualität unseres
Lebens hängt jedoch nicht nur von Fitness und körperlicher Gesundheit ab, sondern zunehmend auch von
unserem geistigen Wohlbefinden. Da wir gelernt haben, wie praktisch und einfach es ist, viele Funktionen,
einschließlich der Gesundheitsunterstützung, auf nur einem Gerät zu haben, wäre es besonders hilfreich, wenn
wir bei Bedarf auch das Smartphone zur Unterstützung unserer geistigen und kognitiven Gesundheit verwenden
könnten.

Das ultimative Ziel dieser Arbeit ist es, sensorgestützte Standort- und Bewegungsanalysen zu verwenden,
um verschiedene Aspekte medizinisch valider kognitiver Beurteilungen zu unterstützen. In dieser Hinsicht baut
diese These auf der Hypothese 3 auf: Sensoren in unserer allgegenwärtigen Umgebung können Informationen
über unseren kognitiven Zustand sammeln, und es ist möglich, diese Informationen zu extrahieren. Darüber
hinaus können diese Daten verwendet werden, um komplexe kognitive Zustände abzuleiten und mögliche
pathologische Veränderungen beim Menschen vorherzusagen. Schließlich ist es nicht nur möglich, den kogni-
tiven Zustand durch Sensoren zu bestimmen, sondern auch Menschen in schwierigen Situationen durch diese
Sensoren zu unterstützen.

Im ersten Teil der Arbeit geht es darum, mentale Zustände und Zustandsänderungen zu erkennen. Hauptzweck
ist es, mögliche ertse Ansatzpunkte für Sensorsysteme zu evaluieren, um eine klinisch genaue Beurteilung der
mentalen Zustände zu ermöglichen. Diese Bewertungen müssen unter der Voraussetzung funktionieren, dass
ein entwickeltes System in der Lage sein muss, innerhalb der vorgegebenen Grenzen einer realen klinischen
Umgebung zu funktionieren. Trotz der Einschränkungen und Herausforderungen realer Einsätze war es möglich,
Methoden zur Bestimmung des kognitiven Zustands und des Wohlbefindens der Bewohner zu entwickeln. Die
Analyse der Daten liefert eine korrekte Klassifizierung des kognitiven Zustands mit einer durchschnittlichen
Genauigkeit von 70-90%. Methoden zur Bestimmung des Zustands von bipolaren Patienten liefern eine
Genauigkeit von 70-80% für die Erkennung verschiedener kognitiver Zustände (insgesamt sieben Klassen) unter
Verwendung einzelner Sensoren und 76% für die Zusammenführung von Daten von verschiedenen Sensoren.
Methoden zur Erkennung des Auftretens von Zustandsänderungen, ein Highlight dieser Arbeit, erreichten sogar
eine Genauigkeit und Recall von 95%. Der Vergleich dieser Ergebnisse mit gängigen Standardmethoden in der
Psychiatrie zeigt sogar einen klaren Vorteil der sensorgestützten Methode. Die Genauigkeit der sensorgestützten
Analyse ist 60 Prozentpunkte höher als die Genauigkeit der derzeit verwendeten Methoden.

Der zweite Teil dieser Arbeit stellt Methoden vor, um das Handeln von Menschen in Stresssituationen zu
unterstützen, und die Interaktion zwischen Menschen bei Hochdruckaktivitäten zu analyisieren. Mithilfe
einer einfachen, beschleunigungsbasierten Smartwatch-Anwendung mit sofortigem Feedback konnten Laien
lernen, wie sie im Notfall im Handumdrehen HLW (Herz-Lungen-Wiederbelebung) durchführen können. Die
Bewertung dieser Anwendung in einer Studie mit 43 Laien ergab eine sofortige Verbesserung der HLW-Leistung
von 50%. Eine Untersuchung, ob das Training mit einem solchen Sofort-Feedback-Gerät ein verbessertes
Lernen unterstützen und zu dauerhafteren Effekten für den Erwerb von Fähigkeiten führen kann, konnte
diese Theorie bestätigen. Da sich das Hauptinteresse am Ende dieser Arbeit von einem Individuum zu einer
Gruppe von Menschen verlagert, stellt sich die Frage: Wie können wir die Interaktion zwischen Individuen
innerhalb einer Gruppe von Menschen bestimmen?, wurde durch die Entwicklung einer Methode zur Erken-
nung der nichtverbalen Zusammenarbeit in zufälligen Ad-hoc-Gruppen beantwortet. Eine Auswertung mit
Daten, die aus Videomaterial abgerufen wurden, liefert eine Genauigkeit von mehr als 95%, und selbst bei kün-
stlich eingeführten Fehlerraten von 20% kann eine Genauigkeit von 70% und ein Recall von 90% erreicht werden.

Alle Szenarien in dieser Arbeit befassen sich mit verschiedenen praktischen Fragen der heutigen Gesund-
heitsversorgung. Die entwickelten Methoden basieren auf realen Datensätzen und realen Studien.
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1

Recognizing Cognitive State

Supporting Activities in Cognitively

Stressfull Situations

Over the last decades, life in our society has become rather hectic. Competition and pressure in our
work environment have increased dramatically. At the same time, more and more people are suffering
from “burnout" or other mental affective disorders like depression. Whiteford et al. [1] have estimated
that by 2030 affective disorders will contribute to the highest disease burden in the developed world.
According to the World Health Organization, in 2018, more than 300 million people worldwide
suffered from depression-like disorders [2]. Further, a study by Oelseon et al. [3, 4] projected in 2010,
the total cost of brain disorders (mental and neurological) in Europe to be €798 billion. 40% of these
costs were determined to be indirect costs. Which means they are not costs for medical treatment, but
costs of incapacity and loss of workforce, suicides, unemployment, and others.

These numbers listed above, which were published by official bodies, public organizations, and health
insurances, call for action. Nevertheless, the question is, where to start. Illnesses such as burnout or
depression hardly come overnight. Most manifestations are the result of ever-increasing pressure in
the work environment, but they can also be the result of mental stress and pressure in our society. To
combat this issues, applications that, on the one hand, would be able to help to monitor and to measure
our mental burden or track and assess our cognitive and psychological states, which are undoubtedly
complex and thus tricky to self-assess, would be a significant support to prevent crises. On the other
hand, once a crisis (e.g., burnout) occurs, there is a specific need for additional support to keep the
adverse effects minimal and moreover prevent such crises from happening ever again.

A similar pattern of issues arises in elderly care. Significant developments in medicine contribute to
the fact that our life expectancy is steadily increasing. With people living longer though, age-related
diseases like dementia are on the rise. At the same time, our family structures are changing. Today
older people tend to live alone or in small communities instead of within larger families where, in the
case of dementia, they could get the necessary care. Understandably, of course, people who have lived
all their lives independently, want to stay this way as long as they possibly can. Thus, applications
that would allow determining the well-being of dementia patients would help to assure an extended
independent life.

A third example, highlighting why the assessment of cognitive state is becoming more relevant today,
again regards our work society. In general, in many professions the developments go in the direction
of more control and liability. This issue has become imminent in recent years after some incidents
(reported in the news). These have stirred public discussions in some areas about how to make sure that
teachers are fit to teach young adolescents and handle potentially tricky situations.
The same is true for nursing schools. Teachers are trying to figure out how they could objectively judge
whether a trainee nurse is ready to care for real patients [5]. For both groups, it is essential to ask
these questions, as failure can have severe consequences. Thus, research is challenged to find methods
to objectively but also emphatically monitor and analyze the way young trainee nurses or soon to be
teachers or other young groups act and interact in their professions.

1
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1.1 Motivation
These three examples are practical cases, taken from

our society. Though they might seem random at first,
they do have essential aspects in common. All three ex-
amples display situations that currently have to rely on
the experience of experts and their subjective perception
of whether something is happening or not. E.g., whether
someone is ready to act, or someone is depressed, etc.
Thus, all three cases miss the opportunity of objective
and independent assessments. To gain such objectivity
would require methodologies and devices that were able
to assess complex cognitive states and understand behav-
ior on a long-term basis.

Of course, there is EEG (electroencephalogram), the
typical way to measure brain wave patterns. Mobile ver-
sions of EEGs are already available [6, 7]. Nevertheless,
EEG is not practical in the long-run and everyday life.
Regarding the three examples provided above it would
require many people, in the range of hundreds or thou-
sands, to wear EEGs all day long for extended periods.
An everyday situation where lots of people are walking
around wearing electrodes on their heads would seem
odd, like a scene from a bad SciFi movie. More impor-
tantly, though, the visible presence of such devices can
be traced back to a mental or cognitive disability very
easily. This would significantly violate a person’s privacy
and a person’s right to decide about their health. Thus,
there has to be another way to empower people to man-
age their cognitive states. Today, 2019, there is research
ongoing to make EEG less obtrusive, as in Kosmyna et al.
[8], for example, who inserted the relevant technology
into smart-glasses. However, these experiments are still
in a developmental stage. In addition, various studies
have shown that patient compliance is highly influenced
by the need to use additional equipment. Thus, the use
of smart glasses can only be guaranteed by people who
need glasses.
Research in the field of long-term cognitive assessments
is challenged to find sensor solutions that can be inte-
grated into people’s lives unobtrusively and invisibly!

Ideally, such sensors would fit smoothly into the user’s
life, and even “vanish” from the user’s perception. Thus
the behavior of the user would not be influenced or bi-
ased by the sensors. Moreover, these sensor set-ups
would have to be able to work on a long-term basis, but
all the same, only require minimal maintenance, since
increased required effort notoriously goes together with
reduced compliance.

Glancing over into activity recognition reveals that re-
search in the past few decades already has achieved for
our physical health, what we now require for our cogni-
tive well-being. Twenty years ago researchers started to
attach single IMUs to the leg or foot of a person. A direct
outcome of these endeavors are conveniences like step-
counters. Today, these conveniences are default appli-
cations on smartphones or smart-watches. Particularly,
smart-phones or more recently other smart devices owe
their success to applications that leverage activity recog-
nition (various fitness applications) and location tracking
(maps, outdoor fitness). It is safe to say, today we can
track our fitness and support our physical health indi-
vidually. All we need is to own (and of course use) a .
Very recent research, even started using low-cost motion
sensors to provide opportunistic heart-rate assessments
from ballistocardiographic signals during restful periods
of daily life (see Hernandez et al. [9]).
Precisely such functionalities were and are still missing
for our mental and cognitive health. As hinted above,
never before mental disorders and cognitive stress have
had such a defining role with such effects as in our so-
ciety. Nevertheless, for many reasons, mental health has
not yet been promoted in research and our society the
way physical well-being has. As of now, we have learned
from activity recognition how practical and easy it is to
have many functions, including health support on just
one device. Thus it would be specifically helpful if we
could also use our smart-phone or at least devices that
already exist to support our mental and cognitive health.

1.2 The Overall Thesis Objectives
Given the increasing need to address pressure and its

impact on our lives, this dissertation aims to find sensor-
based solutions that help people manage their cognitive
health.
More specifically, our everyday life has already been
equipped with a variety of sensors and smart devices.
These sensors will not disappear soon. So all these “om-
nipresent” sensors could be used to gather information
about our cognitive states and (possibly unhealthy) state
changes when we need them.

In addition, the sensors in our environment are becom-
ing smaller and more pervasive. Often, we no longer per-
ceive them as sensors, which in turn means that we nat-

urally act in their vicinity. Natural action is an essential
criterion for this work! When people believe they are be-
ing monitored (by someone or something), they tend to
act more consciously and less naturally. However, to an-
alyze cognitive behavior, it is important to analyze un-
biased behavioral patterns. To ensure a natural behav-
ior, sensor systems should be used that have established
a broad availability in our lives. If such sensors are not
available, the sensors to be used should at least be inte-
grable into our lives.

Following these preconditions, the work of this disser-
tation is based on three main hypotheses:
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• Hypothesis 1: Devices in our pervasive environment
can collect information about our cognitive state. Fur-
thermore, it is possible to extract this information
from these sensors.

• Hypothesis 2: Given that the first hypothesis is cor-
rect, it is also possible to infer complex cognitive
states and possibly predict or detect pathological
changes from information extracted from pervasive
sensors.

• Hypothesis 3: Again, assuming a positive result of
hypothesis one and two, not only can the cognitive
state be determined by given sensor systems, but also
sensors (or suitable devices including such sensors)
can be used to assist people in difficult situations.

After formulating these hypotheses, the goals of this
thesis details as follows:

1. Identify scenarios where cognitive state assessment

could bring real benefits. Determine appropriate
sensor systems that promise to hold information, rel-
evant to these scenarios.

2. Qualitatively analyze the information extracted from
the sensor systems determined above. Evaluate what
information retrieved from these sensor systems can
contribute to cognitive state assessments.

3. Based on sensor systems and information identified,
develop and evaluate clinically valid methods to in-
fer cognitive state and state change.

4. Identify scenarios where people in stress situations
could benefit from direct support from sensor sys-
tems. Other potentially interesting scenarios are
those in which sensor use could provide new relevant
insights into a situation or a specific scenario.

5. Identify sensor systems suitable for helping humans
in the scenarios identified above, and develop and
evaluate appropriate methods.

1.3 State of Research
At the beginning of the research, from which this

dissertation would ultimately emerge, many related re-
search areas were in the process of being formed. Most of
them, however, were only in very early stages of develop-
ment. Parallel to the efforts in this dissertation, these re-
search fields developed in the following years to become
extensive research areas.
This section on the state of research attempts to give an
idea of what the initial situation in the research looked
like when certain parts of this work began. This sec-
tion is less about how the field looks today. Please note,
therefore, that this section should provide a better under-
standing of why the topic of this dissertation was formed
and what, moreover, specifies its work and its relevance.
This section also attempts to focus on the overall picture
and therefore does not address the individual parts and
topics of this thesis. Detailed related work on each spe-
cific topic is provided in each chapter.

1.3.1 Activity Recognition

During the last 10-15 years, activity and location track-
ing has been at its height. Liao et al. [10] provide
one of many approaches regarding location-based activ-
ity recognition. Their approach takes high-level context
into account to detect significant locations of a person’s
day. From them, they infer low-level activities. On the
front of human activity recognition with sensors, Lara et
al. [11] provide a more recent survey. It compares 28
respective systems qualitatively by a number of essential
design issues as response time, learning approach, obtru-
siveness, accuracy, and others. Work in this field, how-
ever, started much earlier, in the early 2000s. In 2001
for example, Mantyjariv et al. [12] introduced initial ex-
periments with acceleration sensors for recognizing hu-
man activities. Then, in the first decade of the 21st cen-

tury, groups were still using self-made sensors, e.g., as
in Choudhury et al. [13]. Today, these kinds of sensors
come as a “side-effect” with all smart-phones.

Activity recognition over the years has been evaluated
in various states of complexity and various settings. If
activity recognition is deployed for real-life applications,
then simple sensor setups are more suitable, most of
the work thus focuses on recognizing basic motions like
“walking”, “sitting”, “standing” or “running” (Biever et
al. [14]) or fitness and gym-machine exercises (e.g.,
Muehlbauer et al. [15] or Seeger et al. [16]).
To recognize more complex activities, e.g., in mainte-
nance work, often a more significant number of sensors
is required to get satisfactory results (see Ogris et al. [17]
and Zinnen et al. [18]). In an even more complex en-
vironment, sensor information alone is not enough and
requires additional sources of information. Thus meth-
ods become necessary to combine different sources of in-
formation. Examples here are, hidden Markov models
(HMMs) [19], conditional random fields (CRFs - Hue et
al. [20]) or probabilistic plan recognition (Geib et al.
[21]). These use the model-based information to sup-
port the process. Other methods from more recent years
transfer the knowledge learned from one application to
another (Blanke et al. [22]).

1.3.2 Activity Recognition in Health Care

Activity recognition and the use of pervasive technol-
ogy in healthcare also have become a wide field. A variety
of publications has tried to provide an overview of poten-
tial applications of activity recognition in healthcare.
These include Lukowicz [23] or Orwat [24], for exam-
ple. In healthcare specifically, pervasive computing and
context recognition generally includes context-aware sys-
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tems, which intend to provide information, e.g., for care
documentation. For example, Agarwal et al. [25] de-
scribe a prototype context-aware information system to
capture and interpret data in an operating room of the fu-
ture. In [26], Cheng et al. introduce a study about a nurs-
ing support system in a series of laboratory experiments
under simulated conditions. Naya et al. [27] describe a
sensor network system for supporting context-awareness
of nursing activities in hospitals.

1.3.3 Assisting An Aging Population

Within the middle of the first decade of the third mil-
lennium, work towards assisting the aging population
with cognitive impairment appeared. Pollack [28] for ex-
ample summarizes the, by 2005, existing technologies for
supporting the elderly. These include assurance as well
as guidance and assessment systems, and also manage-
ment schedules. From this time onwards, most research
in this area of intelligent technology for the elderly was
mainly going in the direction of smart-home based ap-
proaches. Earlier work in the late 2000s starts with Hayes
et al. [29], over Kaye et al. [30] to the more recent publi-
cations of Dawadi et al. [31] in 2013.

1.3.4 Cognitive State, Emotion and Stress

Scanning through literature with key-words like “as-
sessing cognitive state and behavior" reveals different
kinds of publications. First of all, there are many some-
what older (clearly before 2010) publications about mea-
suring cognitive workloads and states. In this regard
Burken et al. [32] and Marshall et al. [33] are work
from the early 2000s on measuring cognitive work loads.
While Marshall’s work[33] uses a pupil dilation measure-
ment technique, Brunken et al. [32] discuss different
methods of assessing cognitive load with visual monitor-
ing. Still, both have in common that neither is mobile or
fitting for long-term everyday use.
Even earlier, in 1997, Picard [34] hinted that computers
might soon be given the ability to have emotions. Today,
20 years later this has not yet been fully achieved. Nev-
ertheless, many research groups have worked on affec-
tive computing and recognizing stress and emotions. So
for example, Kort et al. [35] introduce work on a digital
learning platform that is supposed to track the affective
state of the learner and respond correspondingly. In [36],
Picard et al. argue for the importance that machine intel-
ligence should incorporate emotional skills and be able
to recognize human emotions and emotional communi-
cation between humans. They also admit though, that
one of the main difficulties in this field is gathering data
that would represent real human emotions (not “faked”
emotions by hired actors). Thus in [36] they also try to
provide different factors that could help in this process.
Picard et al. go on analyzing different aspects of emotions
and also presenting a classification of emotions based on
physiological data. To evaluate these results, they used
several weeks of sensor data from one person collected
by a number of physiological sensors: electromyogram,

facial muscle tension, photoplethysmograph, blood vol-
ume pressure, skin conductance, and electrodermal ac-
tivity.

Following the work on recognizing human emotions
Healey et al. [37] have collected different physiological
parameters of car drivers (ECG, EMG, skin conductance
and respiration) during real-life car drives in order to de-
termine their stress level with very high accuracy.
A further system in this line, which is supposed to be
both, capable of long-term monitoring and also being
mobile, is the Physiological Sensor Suite introduced by
Matthews et al. [38]. This platform intends to measure
physiological and cognitive states by providing "wear-
able" sensor platforms incorporating ECG, EMG, EOG
and EEG sensor. Despite being small enough to be wear-
able and usable in a mobile manner, this platform is still
an external sensor-system, that does not necessarily fit
into a person’s life. Russo et al. [39] state that decision
making and situation awareness are critical mental abil-
ities for cognitive performance. In this line, they intro-
duce an approach, based on physiological parameters, to
examine cognitive states and predict operator fatigue. In
more recent work, Setz et al. [40] measure and distin-
guish stress from cognitive load based on electrodermal
activity (EDA).

A field towards emotion recognition that started
around the middle 2000s has set as its goal to determine
emotion from motion. One example is Barry et al. [41]
and [42] who inferred emotions from Butoh Dance per-
formances. Butoh Dance is a form of dancing that in-
tends to express emotions via the entire body. Barry et
al. used acceleration and magnetic field sensors, placed
at the arms and legs of Butoh dancers and recorded their
performances. Using HMMs, they were then successfully
able to determine the particular emotion that was ex-
pressed by the dancer.
Another group around Crane et al. [43] has shown in a
laboratory setting that basic emotion can be determined
by movements and that body movement are affected by
the emotion the person feels. This work is based on
video and motion capture data that was collected from
many test subjects. The videos were shown to other test-
subjects (that had not been part of the emotion-walk
recording), who had to determine the emotion (pick one
out of ten) that the presumed to have seen in each of the
videos. In [44] McDonnell at al. analyze the emotional
content of motions with real and virtual replicas of an
actor exhibiting six basic emotions. In addition to the ac-
tual actor, the actions were applied to five virtual body
shapes. From participants asked to rate the emotions ex-
pressed, it showed that the perception of emotional is in-
dependent of the character’s body type.

An interesting, quite recent (2017) take to influence
cognitive performance, comes from Amores et al. [45].
This paper discusses the role of smell to affect one’s mood
and cognitive performance while being asleep or awake
and introduces a first pervasive device to manually or au-
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tomatically to release subtle bursts of scent. However,
this work is at its very beginning and is not yet in the
stage to be integrated into a persons live-style.
Also a relatively recent approach on the cognitive “quan-
tified self” has been introduced by Kunze et al. [46].
With focus on reading habits, a prototype cognitive activ-
ity recognition system was developed that monitors what
and how much users read, as well as how much they un-
derstand. They also hypothesize that such systems could
revolutionize teaching, learning, and assessment both in-
side and outside the classroom.

1.3.5 Face Expression Recognition

Research on automatically detecting face and facial ex-
pression already started in the early 90’s. Samal et al.
[47] provides a survey of early algorithms. These early
works though, generally focus on recognizing faces out
of images. Later in the decade and the early 2000’s work
in face recognition progressed to recognizing emotions in
facial expressions. Pantic et al. [48] for example compare
different, in the early 2000 ongoing approaches of facial
expression detection and classification in static images
and image sequences. In further research, face expres-
sion recognition progressed from a simple static image
to moved image face recognition. Busso et al. [49] for ex-
ample, compare emotion recognition with marker-based
motion capture to simultaneous speech recordings. The
results show that facial expressions have a better perfor-
mance. They also evaluate the performance of emotion
recognition by combining both modalities, leading to im-

proved robustness for emotion recognition.

All the above systems are more or less systems that
analyze physiological parameters to determine cognitive
states. When it comes to reviewing the literature on the
analysis of cognitive state in the sense of analyzing how
a person feels or behaves, there is significantly less work
available. Today, 18 years into the 21st century, indeed
more research can be identified in this field then five
years ago, but still, most of them have just started. One
example is introduced by Masai et al. [50] and [51], who
present a novel smart eyewear that recognizes a wearer’s
facial expressions with the still distant goal to detect fa-
cial expressions related to cognitive loads such as atten-
tion, interest, fatigue, and concentration.

Figure 1.1: Available research and its location in regards of
flexibility, unobtrusivenes and mobility at the beginning of this
work.

1.4 Thesis Contribution
Despite the diverse research touching the field of cog-

nitive state assessments, none of the applications and
papers described in the State of Research above match
the exact goals and purposes of this dissertation. The
main drawback of the applications described above is
that none of them is designed to fulfill all the essential
requirements of this thesis. See Figure /reffig:relwork to
get a picture where research was located in terms of flex-
ibility, mobility, and unobtrusiveness.

Different methods of monitoring cognitive state or as-
sessing emotions are stationary, like the face recognition
or emotion recognition via camera. Thus they cannot
accompany a person throughout their day. Other sys-
tems, like measuring physiological parameters are in the-
ory wearable or apt for real-life, e.g., while driving a car
or when using wearable ECG. Nevertheless, in practical
terms, they are just not applicable in the long run and
everyday life, at least not in the state as they are in now.
On the other hand, systems designed for long-term use,
like support systems for the elderly, are not intended as
monitoring systems. Hence, they can support a person’s
ability to handle activities of daily living but do not ad-
dress the monitoring of cognitive state.

However, the aim of the present work is to develop

methods for the long-term support of cognitive state
management, which in turn would also fit the actual
lifestyle of a person. In this dissertation, especially in the
chapters where the mobility of the sensor system is less
critical, some of the above applications will be consid-
ered. Nevertheless, all work done must meet the user’s
life requirements. The sensor systems to be used must,
therefore, be flexible, mobile, and unobtrusive.

Following these requirements and following extensive
literature analyzes, it was decided to use location and
activity tracking in particular. Both are already part of
our lives because of their availability in our smartphones.
They are also mobile, unobtrusive, and flexible. All the
work in this dissertation will be built up step by step. It
begins with coarse detection of dementia conditions with
an indoor location sensor system and within a limited
area. The detection of state and state changes of affec-
tive disorder patients follows with more complex sensor
systems. In the second part, this thesis goes as far as as-
sisting people in emergencies. The main contributions of
this work thus can be summarized as follows:

• A large part of this thesis deals with extracting med-
ically relevant information from commercially avail-
able sensor systems. These sensor systems, however,
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have not been designed for the use in medical envi-
ronments but everyday life. Hence, there is no guar-
antee that they will work as intended.
In addition, many scenarios from health-care and
mental-care can hardly be simulated. For example,
it is a great challenge even for actors to reliably por-
tray a cognitively impaired person. Therefore, labora-
tory simulations in such medical environments can-
not provide the required data quality. Moreover, a
psychiatrist will hardly trust a system that was devel-
oped using data of people pretending to be manic or
depressed. Thus, most parts of this thesis require data
acquisitions in real-life from actual patients. Such
real-life studies and real-world data recordings, how-
ever, especially in sensitive and stressful environ-
ments as health and mental health care, represent
a critical number of challenges that need to be ad-
dressed. Hence, one specific contribution of this the-
sis is to demonstrate how to manage real-life data
study deployments and more importantly, how to
overcome their restrictions and limitations.
Further challenges of real-life data collection studies
in health care include that recorded data will be in-
complete. In real-life data recordings with real pa-
tients, it is not possible to monitor whether the sen-
sor systems will be operated correctly. Moreover, it
is not allowed to force patients to use sensors in the
desired frequency and manner. Therefore, another
specific contribution of this dissertation is to demon-
strate how to deal with gaps in the database and how
to perform statistic analyses on data that is only
sporadically available or largely missing.

• Most of this work especially chapters 2 through 4, ad-
dress actual medical needs. However, research in the
medical field requires an experimental and empiri-
cal strategy. On the one hand, this is a requirement
in this field in order to obtain the necessary licenses
for medical studies. On the other hand, at the be-
ginning of this dissertation, there was mainly just an
idea of what might be possible, and the assumption
that a particular type of sensor data might contain the
required information. However, this had to be con-
firmed. Therefore, first, it was necessary to evaluate
the possible information content of available sensor
data empirically.
In this regard, another specific contribution of this
paper is to demonstrate how to analyze sensor data
empirically and to identify whatever relevant infor-

mation is enclosed therein. In particular, this con-
cerns sensor data that has been recorded in fuzzy or
disruptive and error-prone environments. The eval-
uation following the empirical analysis then shows
how to extract the required information and pro-
vide a reliable evaluation that confirms the initial
assumptions.

• After the initial empirical approach, this thesis, step
by step, provides and evaluates solutions on how to
map the extracted data onto a variety of cognitive
states and disease patterns and further draw to con-
clusions from them. This includes data from differ-
ent sensory modalities and in various states of com-
plexity and granularity. To provide a concrete exam-
ple: this thesis starts, in chapter 2, with evaluating
movement patterns of persons, grouped on one or bi-
weekly scales, within a spatially restricted, flat like
environment. It then continues in chapter 3 to ex-
tend the settings and to evaluate movement patterns
of persons on a daily scale without any spatial restric-
tion. Another example: chapter 3 will confirm that
activity data, when daily recorded over weeks on a
patient’s, can be used to determine the mental state
of a bipolar patient. However, activity data also can
be used on the spot to determine if a person explicitly
performs emergency heart compressions correctly.

• Chapter 4 provides a comparison of the sensor-based
methodologies for determining the cognitive state of
patients and the current medical standard of self-
assessment. This comparison successfully demon-
strates that the sensor-based method to determine
the mental state of a patient is more accurate than
the currently used self-assessments. A further high-
light is that, for the first time, a particular subjec-
tive observation made by doctors over the years but
never seriously evaluated, is objectively confirmed.

• Additionally, this thesis does not only show how to
map sensors onto cognitive patterns but also intro-
duces an example of how to use sensors to sup-
port the skills of people to act in an emergency.
For example, work in Chapter 5, the CPR scenario,
shows that persons without any medical training can
perform heart compressions correctly when using a
smart-watch feedback assistant. Interviews also re-
vealed that these persons felt more confident and
were eager to act when using the assistance system.

1.5 Outline and Structure of this Thesis
The outline of this dissertation splits into two major

parts. Chapters 2-4 form the first part. They address the
question of whether it is possible to extract information
regarding the cognitive state of a person from location
and activity data. The second part in Chapters 5-6 evalu-
ates whether it is possible to leverage devices to support
the action of persons in stressful situations.

In Chapter 2, the cognitive state and well-being of de-
mentia patients are assessed. This work is based on one
sensor system, Indoor Location Tracking, within a lim-
ited space. The main question in this chapter is whether
it is possible to evaluate a complex construct such as the
cognitive state of a person with simple sensor setups. The
proposed study is able to draw from a one-year indoor lo-

6



1.5. OUTLINE AND STRUCTURE OF THIS THESIS

cation data set of 6 persons, who live in an apartment-like
ward of a nursing home. Being a long-term deployment
of sensors in real life, collecting sufficient ground-truths
poses a specific difficulty. Thus, this chapter also deals
with the challenge of dealing with the limited availabil-
ity of ground-truths in real-life studies. Despite some
limitations, methods for deriving the cognitive state of
residents are developed. The evaluation of the collected
data provides a correct classification of the cognitive state
with an average accuracy of 70% to 90%, thus indicating
that a stationary sensor modality could suffice to monitor
the well-being of dementia patients.

Building on a successful outcome of Chapter 2, specif-
ically on the lessons learned, in Chapter 3, the aim is to
determine the state of patients with disorders that affect
the cognitive state. This scenario comprises more com-
plexity in the set-up as affective disorders are more com-
plex than dementia. The sensor-setup to be used has to be
mobile and must not be limited to rooms. Furthermore,
location alone is not sufficient as affective disorder is not
a one-directed disorder (like dementia) but includes fre-
quent state changes. Therefore the challenge of this par-
ticular scenario is to determine in which mental state a
patient is in at present, but also to detect when the state
starts to change.
Thus, methods to recognize the state of people who live
with bipolar disorder (manic-depressive disorder) on the
one hand and to detect the onset of changes in the con-
dition of these patients, on the other, should be devel-
oped. While the the previous chapter of this thesis works
with only one sensor system within a restricted area, this
chapter has to extend the number of sensors used and
also to reduce the limitations in space. As a suitable sen-
sor modality the internal sensors of the are determined.
In order to achieve the goals despite the increasing com-
plexity, tasks in this chapter evolve step by step. The ef-
forts in this section start with a feasibility analysis that
aims at evaluating the correlation of sensor traces of 6
bipolar patients with their self-assessment (the standard
technique in psychiatry). In addition, various features
and trends in the sensor data are empirically analyzed
and related to their actual diagnosis.
Based on the findings of this do-ability study, a more ex-
tensive data collection study is conducted afterward, for
ten bipolar patients and over several months. Methods,
developed to determine the mental health of patients us-
ing the acquired sensor data (activity, location, and social
interaction), provide a classification accuracy of 70-80%
(7 classes in total) when using single sensor-traces. The
classification of fused sensor-data leads to an accuracy of
76%. Methods for detecting state changes, a highlight of
this work, achieve precision and recall of about 95%.

Chapter 4, is an extension of Chapter 3. The work
on recognizing mental state of bipolar patients, and in
particular the detection of the onset of state-changes,
is of practical relevance in psychiatric care. Thus, the
question arises as to whether sensor-based detection can
keep up with current psychiatric standards for monitor-

ing state and condition changes. For this purpose, sim-
ilarity analysis of the two methods (sensor-based, self-
assessments) is carried out, each in comparison with the
actual diagnosis. The result of this analysis indicates a
clear superiority of the sensor-assisted state analysis. The
accuracy of the sensor-based method is 60% higher than
of the self-assessment.

Chapter 5 of this dissertation leaves the field of basic
recognition of the cognitive state. In the following, this
work deals with the question of how sensors or portable
devices can support people in stressful situations. CPR
(cardiopulmonary resuscitation) performed by a layper-
son is such a stressful situation. A study with laypeople
using a simple acceleration based smart-watch feedback
application shows that even people without any prior ex-
perience or training are able to perform CPR effectively.
At the same time, the users of the smart-watch applica-
tion are feeling more confident in performing CPR.
The evaluation of the effect of this instant feedback de-
vice on gaining immediate skills in resuscitation has im-
pressive results. More than 50% of the laypersons were
able to gain enough skills while using the watch-assistant
to perform effective CPR for more than 50% of the time.
This results lead to a second question: when people can
learn on the fly when using the feedback-assistance, can
they also learn to perform CPR permanently. Meaning,
does training with the CPR-watch stick? Thus, in a sec-
ond study, it is evaluated whether people would be able
to train CPR more effectively when receiving instant-
feedback form a wearable device in comparison to tra-
ditional human teaching classes.

Chapter 6 changes the perspective. After recogniz-
ing the cognitive state of individual people with varying
degrees of complexity, and supporting confidence and
skills, the final chapter deals with how to determine how
people interact in groups to perform a task in a high-
pressure situation. In particular, this section is about an
ad hoc group of people who need to come together by
chance to solve a problem without first assigning roles
and responsibilities. Trainee nurses in an emergency sim-
ulation are an example of such a scenario.
The chapters of this work, so far, have shown that it is
possible to determine the cognitive state of individuals
using sensor traces. Therefore, this part deliberately does
not focus on recognizing the behavior of the individuals
in the group but evaluates the larger image to see when
people interact or work together to achieve a goal. The
method for determining collaboration is based on a hier-
archical tree model. It is being evaluated with an increas-
ing error in the underlying detection of basic actions. The
results of detecting collaboration between persons are in
the range of 70-90% depending on the recognition error
of the basic per person actions (up to 20% error).

This dissertation closes with a general discussion of the
results of this thesis in the context of pervasive comput-
ing and practical application in our society and will also
provide an outlook on how this work should and will be
pursued.
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CHAPTER 1. INTRODUCTION

1.6 Overview of Selected Publications per Chapter

The following table lists my most important publications on which each chapter builds. For a complete overview of
relevant publications, consolidate each chapter individually:

Chapter 2 Indoor-Location based Tracking of Cognitive State of Dementia Patients

• Gruenerbl A. et al. (2011), Using Indoor Location to Assess the State of Dementia Patients: Results and
Experience Report from a Long Term, Real World Study. In Proc. of the 7th International Conference on
Intelligent Environments, Nottingham 2011.

• Gruenerbl A. et al. (2013). UWB indoor location for monitoring dementia patients: The challenges and
perception of a real-life deployment. International Journal of Ambient Computing and Intelligence (IJACI).

Chapter 3 Smartphones based Detection of State and State Changes of Psychiatric Patients

• Gruenerbl A. et al. "Towards smart phone based monitoring of bipolar disorder." Proc. of the Second ACM
Workshop on Mobile Systems, Applications, and Services for HealthCare. ACM, 2012.

• Gruenerbl A. et al., Smart-phone Based Recognition of States and State Changes in Bipolar Disorder Pa-
tients, IEEE Journal of Biomedical and Health Informatics (J-BHI), 19, 140-148 (2014)

• Gruenerbl A. et al. "Using smart phone mobility traces for the diagnosis of depressive and manic episodes
in bipolar patients." Proceedings of the 5th Augmented Human International Conference (AH 2014). ACM,
2014. - Honorable Mention Award

Chapter 4 Smart phone based Objective Sensing or Subjective Self-Assessment

• Gruenerbl A. et al. “Sensor vs. Human: Comparing Sensor Based State Monitoring with Questionnaire
Based Self-Assessment in Bipolar Disorder Patients”. In: Proceedings of the 18th International Symposium
on Wearable Computers. IEEE International Symposium on Wearable Computers (ISWC-2014), September
13-17, Seattle, Washington, USA, ACM, 9/2014.

• Gruenerbl A. et al. “Assessing Delayed Self-Perception in Bipolar Disorder Patients.” (to be submitted)
International journal of bipolar disorders, Springer Heidelberg, 2018.

Chapter 5 Shaping Emergency Behavior using Smart-Watches

• Gruenerbl A. et al. "Smart-watch Life Saver: Smart-watch Interactive-feedback System for Improving By-
stander CPR". In: Proceedings of the 2015 ACM International Symposium on Wearable Computers. IEEE
International Symposium on Wearable Computers (ISWC), September 9-11, Osaka, Japan, Pages 19-26,
ISWC ’15, ISBN 978-1-4503-3578-2, ACM, 2015. - Best Paper Award

• Gruenerbl A. et al. "Training CPR with a Wearable Real Time Feedback System". submitted at: Proceedings
of the 2018 ACM International Symposium on Wearable Computers. IEEE International Symposium on
Wearable Computers (ISWC), October 8-12, Singapore, ISWC ’18, ACM, 2018.

Chapter 6 Detecting Collaboration in Emergency Care with Activity Data

• Gruenerbl A. et al. "Detecting spontaneous collaboration in dynamic group activities from noisy individual
activity data". In Pervasive Computing and Communications Workshops (PerCom Workshops), 2017 IEEE
International Conference on. IEEE, 279-284.

• Bahle G., Gruenerbl A. et al. "From Individual Activity Recognition to Unscripted Collaboration Anal-
ysis". submitted at: IMWUT Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2019.
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2

Tracking Cognitive State:
Detection of Cognitive State

and Well-Being in Dementia Patients
with Indoor-Location Assessment

In no century our world has changed like in the last hundred years. So has health care. Achievements
in electro-technology, image processing, and tele-medicine allow to detect many illnesses in their
onset, and thus today many diseases can be cured, or their progress substantially slowed. Due to these
exciting developments, the life expectancy of our western civilization increases steadily. People are
living longer, and in many cases, people can even live a relatively healthy life after retirement. With
people living longer than ever, though, age-related diseases have more and more impact on health
and elderly care. The number is increasing, especially for diseases that are not necessarily due to the
lifestyle, but rather to genetic aspects that progress over the years as a person ages, such as dementia or
Parkinson’s.

As has been pointed out before, the way our social system has developed, people live alone or in
small communities (families of 2-3 people). In contrast to large families of previous decades where
the grandparents helped to raise the children and in turn received care when they got sick, today’s
preferred lifestyle attempts to live an autonomous and self-determined life (at home) and keep this
lifestyle as long as it is possible.
Especially for people showing first signs of dementia, though, this self-determined life comes with two
significant issues. Dementia, in general, is mainly expressed by the patient’s progressing disability to
deal with everyday situations. Thus, the primary way to determine its progression is to monitor how
affected people behave in their daily lives. First of all, a self-determined life for a dementia patient can
only be accomplished if it is possible to monitor this person close enough to prevent accidents (that
will progressively increase) from happening and to determine their state and the progression of their
illness continuously. On the other hand, lacking the family-care network large families could offer, it is
difficult to guarantee this essential monitoring. In turn, this means that many dementia patients have
to give up their self-determined life.

The following chapter proposes a new way to achieve continuous and non-intrusive monitoring
of dementia patients. The proposed method is designed to work in the patient’s home or home-like
environments. It should allow monitoring the progress of the disease and well-being of the patients.
However, at the same time, it should not affect their lives and more importantly, not violate their
privacy. Furthermore, the method only uses a rather simple real-time indoor location system that
requires minimal maintenance or interaction.
The work of this chapter relies on an indoor location record of 6 residents living in a home-like ward in
a retirement home. For this dataset, residents’ locations within the ward were recorded daily for over a
year. Despite many challenges and the minimal availability of sufficient ground-truth, it was possible
to develop methods for determining the cognitive state and well-being of the residents.

The analysis of the location data provides a correct classification of cognitive state with an aver-
age accuracy of 70% to 90% and thus indicates that a stationary sensor-modality could be sufficient to
monitor the well-being of dementia patients.

11



The author of this thesis has published this work and most contents, all pictures, most tables, and also partially text
of this Chapter in the following publications. The author of this dissertation has written all the text included in this
chapter herself, specifically text-passages taken from these publications. For more details about these publications
please also refer to the entries in the literature list:

• Gruenerbl A. et al. (2011), Using Indoor Location to Assess the State of Dementia Patients: Results and Experience
Report from a Long Term, Real World Study. In Proceedings of the 7th International Conference on Intelligent
Environments, Nottingham 2011. [52]

• Gruenerbl A. et al. (2013). Uwb indoor location for monitoring dementia patients: The challenges and perception
of a real-life deployment. International Journal of Ambient Computing and Intelligence (IJACI), 5(4), 45-59. [53]

• Gruenerbl A. et al. (2014) Ubiquitous Context-Aware Monitoring Systems in Psychiatric and Mental Care: Chal-
lenges and Issues of Real Life Deployments. ICCASA 2014 Conference Proceedings, (ELLCAMA-2014 Workshop),
October 15-16, Dubai, UAE, ACM Digital Library. [54]

12



2.1. MOTIVATION

2.1 Motivation
The term ”Dementia” summarizes a set of mostly

neuro-de-generative diseases, which progressively lead
to a loss of cognitive abilities, and in the course of it, to
the loss of the capacity to deal with basic everyday situa-
tions. Currently, different types of dementia are known.
The most common type is Alzheimer’s disease, which is
primary neuro-de-generative dementia. Memory deficits
are indicated by cognitive handicaps (e.g., reduction of
the ability to judge, the ability for scheduling or pro-
cessing of information) and by changes in behavior and
the affective-spectrum/emotional area (emotional insta-
bility, excitability, apathy). The cause of Alzheimer’s is
known to be Plaques in the brain and/or changes in nerve
cells (neuro-fibrillae, [55], and [56]). Vascular dementia,
again, is primary and neuro-degenerative, but here hand-
icaps are caused by disturbed blood flow. De-generative
dementias proceed progressively, which means it is pos-
sible to observe different stadiums of worsening. In par-
ticular, some increasing behavioral disorders such as Sun
Downing [57], daytime fatigue or disorientation indicate
the involvement of hormonal processes and potentially
affected circadian rhythms, which can be traced backed
to insufficient exposure to light [56].
In 2013, Hurt et al. [58] estimated the total annual cost
of dementia to the U.S. economy in the population older
than 70 years of age to be $109 billion (for care purchased
in the market). They further estimated a doubling of the
charges by 2040 due to the aging of the population.
To judge the progress of dementia today is to monitor
how a person deals with activities of daily living (ADLs).
So far, this has been the motivation for a significant
amount of research in the field of ADL recognition (e.g.,
[59, 60, 61, 62, 63]). Reliable ADL detection would, ob-
viously, be a great advantage for many assisted living ap-

plications. However, continuous monitoring of demen-
tia patients has been associated with great effort and has
been very intrusive for patients and their privacy. There-
fore, a system that could enable observations of the pro-
gression of dementia, invisibly, and unobtrusively would
be desirable. This would undoubtedly be beneficial to
the healthcare system and caretakers, but also for rela-
tives and the patients themselves.

Unfortunately, most recognition systems require intri-
cate sensor designs with limited recognition reliability.
However, for useful state assessments, it is not enough
to recognize activities, but it is also necessary to be
able to judge how well these activities are carried out.
Also, it is necessary to map such a judgment to a men-
tal state. From a medical point of view, however, many
common symptoms of dementia (e.g., disorientation, un-
predictable behavior, diminished social interactions, etc.)
are directly related to how a person moves and how much
time they spend in certain places [57].
Therefore, this chapter proposes and evaluates an ap-
proach, developed when looking for ways to deploy a
state assessment system over a long period (about a year)
in a real nursing home. The idea of this approach is to
map features extracted from residents’ movement pat-
terns in areas (e.g., amount of movement, time spent in
particular places, etc.) to changes in the mental state
of the residents. In this context, and from the point of
view of sensor-based recording, tracking of a person in
rough areas with available non-obtrusive sensors can be
achieved sufficiently. Examples of such systems are [64]
and [65]. So far, there is little experience with the prac-
tical implementation of such systems for monitoring de-
mentia, however. The following chapter will change this.

2.2 Related Work
Even though the research field of pervasive health is

still relatively novel, a reasonable amount of work has
been done already in this field. 1 A glance at the poten-
tial of pervasive computing in health-care from its early
days is presented by, e.g., Lukowicz et al. [23], Teng et
al. [66], Bonato et al. [67] or Orwat [24]. For perva-
sive computing, particularly in mental health, examples
as approaches to assist older adults with cognitive im-
pairment are presented by [68] and [69]. A distinctive
part of pervasive computing in mental health is the mon-
itoring of patients who have dementia via video footage.
Megret et al. [70] describe their work of monitoring de-
mentia patients using wearable video cameras, including
a video-browsing interface so that dementia-specialists
can give continuous feedback. König et al. [71] present
more recent work on validating an automatic video mon-
itoring system for the detection of instrumental activi-

ties of daily living in dementia patients. Possible tech-
niques and set-ups needed to develop assessments for
monitoring and intervention systems are presented by
[72] Rebenitsch et al. where the feasibility of different
approaches are analyzed, and a sample environment es-
tablished in a lab is introduced.
Still, rather little work has yet been done in monitoring
dementia patients using any kind of wearable sensors.
The main reason for this is that problems have to ex-
pected if sensors are not hidden from the patients ([73]
Alline et al.). Chen et al. [74] provide an example for
deploying pervasive systems in nursing homes for ana-
lyzing dementia patients in their daily life. Their work
introduces detecting of social interaction events in hall-
ways of nursing homes by video and audio recordings.

Research with some parallels to the endeavors intro-

1Parts of the text of the Related Work have originate in following publications of the author of this thesis. Any text-passages taken from these
papers have been written solely by the author of this thesis:
Gruenerbl A. et al. (2011), [52] and Gruenerbl A. et al. (2013), [53], please refer to the respective entries in the literature list.
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CHAPTER 2. TRACKING COGNITIVE STATE

duced in this chapter is described by Lin et al. [75]
who propose an assessment and safety monitoring sys-
tem. The goal of this system is to guard dementia pa-
tients both, indoors and outdoors (especially when trying
to leave safe areas or come close to hazardous regions)
by installing an RFID based alert system for caregivers
and an algorithm to assess the state of dementia. How-
ever, unlike the work in this chapter, the assessment of
dementia by Lin et al. [75] is performed with question-
naires, implementing standard screening procedures in a
flexible XML based questioning system instead of deriv-
ing it from the sensor data.

Developments in pervasive computing have gone in the
direction of smart homes and smart living space. One
aspect of this research field is smart homes with protec-
tive functionalities for the elderly. Lotfi et al. [76], for
example, introduce a smart home for supporting inde-
pendent living by equipping homes with simple sensor-
networks to monitor older people’s behavior. This system
includes standard sensors like motion sensors and door
entry point sensors. The authors even go as far as using
recurrent neural networks to predict the future values of
the activities for each sensor to inform the caregiver if
necessary.

2.3 Objectives and Contribution
The primary objective of this chapter is to investigate

the potential of pervasive sensing technologies to mon-
itor and assess the progress of dementia. In particular,
this work should focus on the assessment of the feasi-
bility of a suitable sensor system in a real environment.
However, it should also test the usability of this sensor
system when deployed over a long period. Furthermore,
based on the collected data, it should be confirmed that
it is possible to determine an overall state-value for peo-
ple with dementia only based on this sensor data. In line
with these objectives, the main contributions are:

This chapter begins with an analysis of the usability
of various possible detection modalities in terms of the
requirements and constraints that are relevant to the
planned system and its use. In addition, all the con-
straint that a nursing home imposes on such a study, but
also those that have emerged through observations in the
home and discussions with employees, are taken into ac-
count. (Section §2.4). The system that best meets the
requirements was then installed for one year on a ward
in a nursing home with dementia patients. (Section §2.5).

A collection of practical problems that occurred dur-
ing the study is presented and discussed below. This part
has a definite meaning, as future work could benefit from
these findings. (Section §2.6).
Next is a description of the extensive dataset, which rep-
resents one year of the everyday life of the nursing home.
It includes a quality analysis and a discussion on how
to transform standard care documentation into quanti-

tative state assessments. These should then serve as the
basis for evaluating automatic state classification. (Sec-
tion §2.7).

The analysis of this sensor data demonstrates the po-
tential of the deployed system for a reliable state as-
sessment. The introduced method is evaluated on over
120 weeks of data, collected from 6 residents in differ-
ent stages of dementia (including advanced dementia).
When averaging the residents’ mental state over periods
of two weeks in positive or negative well-being, it is pos-
sible to achieve a recognition rate of 92%. Three of the
residents even reach 100% accuracy. When introducing
the possibility of a neutral state without exceedingly pos-
itive or adverse events, meaning three possible states, the
recognition accuracy is 80% with one resident reaching
100%. The analysis concludes with a detailed discussion
of the influence of various factors, such as feature selec-
tion, time granularity of recognition, user dependency
in the amount of data used to train, and system perfor-
mance. (Sections §2.10 and §2.11).

In addition to the quantitative results, some additional
qualitative results are presented. Including occurrences
of certain events, e.g., interactions among the residents
or even aggressive behavior, which show up very clearly
in the sensor data.(Section §2.9)
Finally, the analysis of the nurse’s perception provides a
way to understand the factors that are recommended to
being considered in practice for a successful use of per-
vasive technology. (Section §2.12).

2.4 Choosing an Appropriate and Fitting Sensor System
Deploying a study in a real-life environment means in-

truding into people’s lives. Therefore, a real-life study
has to be carried out with special care and sensitiveness,
specifically in dealing with mentally affected people. Fol-
lowing regulations, the study had to be approved by the
relevant hospital bodies, agreed to by all the involved
nurses and by the residents and, because of dementia
issues, their relatives or legal representatives. All these
groups of people involved (actively or passively) stated

their constraints or conditions. The fundamental prereq-
uisite was that the burden of performing additional tasks
was not to be put on residents and nursing staff. Key con-
cerns were:

• Asking the residents to wear simple sensors was pos-
sible, but there was no guarantee that they would al-
ways do so in a pre-defined way; thus it had to be ex-
pected that residents would spontaneously refuse to
wear the sensors. Also, the staff immediately stated
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that they would not always be able to check whether
the sensors were worn.

• Any infrastructure to be installed in the home had not
to disrupt the day to day operations (the staff worried
that ”out of the ordinary” looking sensors might have
a negative influence on the residents).

• The nurses were not expected to put any effort into
this study, except to make sure that the residents put
on the sensor in the morning. E.g., battery changes or
additional documentation was not possible.

• The study staff was allowed to conduct observations,
but with the condition that the residents were not or
did not feel disturbed, and the procedures at the ward
should not be interrupted. Video recordings were not
allowed at all.

• Also, the staff had concerns about privacy and that
the sensor records would allow judging their work.
As a result, the study refrained from equipping
nurses with sensors. This, in turn, had a negative im-
pact on the study, as interaction with the nurses could
have been a major factor in assessing the residents.

• Finally, all equipment or other devices used in the
nursing home had to be registered products with cor-
responding official certifications.

2.4.1 Preconditions and Considerations

Following the discussions and constraints imposed by
the situation and the home’s authorities the question of
“what kind of technology was fitting for the study, and
was acceptable for the care professionals?” had to be met
by a number of preconditions:

• Any technology had not to influence or disturb the
care concept. In fact, any technology had to be invisi-
ble or at least be perceivable.

• Any technology had to be able to assess the quality of
life of the residents. Quality of life in this context was
defined as social interactions as well as physical and,
indirectly, social activity.

• Concerns (subjective or not) about technology-based
health issues (e.g., “radiation of Bluetooth” etc.)
needed to be considered and handled sensitively.

• Any technology had to require no or only minimal
maintenance over several weeks or months.

• Any technology had not to increase the workload of
the health-care professionals. This included any in-
teraction with the system going beyond checking if
residents were wearing the sensor equipment.

All considerations and preconditions could be summa-
rized in the following system requirements:

1. The system had to be able to quantitatively capture
parameters that are suitable to evaluate the quality of
life of people living in a nursing home ward, entirely
or at least partially.

2. Such a system had furthermore to be able to cover
most parts of the ward (living space of the residents)
while being able to run over a long period and also
had to be able to run autonomously. Essentially, this
means that the system of choice had to be either able
to run with not attendance over months or had to
start automatically every day.

3. Essentially, the system had not to impede with the
daily life at the ward, hence had to be integrated into
the wards’ structure, and yet had to be removable
completely after the end of the study.

2.4.2 Available Technologies

When the study was deployed (in the late 2000s) only
a minimal number of potentially possible location tech-
nologies were available. Please note that the following
list describes the situation in the late 2000s and not the
situation of today (2019). The following technologies
were evaluated 1:

• RFID: RFID is a well-known system combining small
wearable transponders and static readers. Depending
on the modality, the range of a tag is between a few
centimeters and a few meters. Using RFID technology
as a location tracking system would require a large
number of readers. Even though RFID technology
already was used for coarse location tracking within
buildings (like [77] an example relevant in 2008), by
the time this study was being conducted, this kind
of technology was not suitable for high-resolution lo-
cation tracking within rooms. Note, after this study
finished other research with RFID location tracking
were performed in the context of smart-home for the
elderly, see [78] as an example.

• Ultra-Sound: Available ultrasound systems consist
of movable transponders and static receivers. The
receiver recognizes if a transponder is in its vicin-
ity. Thus, tracking of objects or movements works
nicely with ultrasound in small areas [79]. Position-
calculations within rooms, though, are only possible
by using a sufficient number of decently placed re-
ceivers. Due to the constraint of ”technology should
be invisible and not disturbing nurses’ work,” the
number of required receivers ruled this option out.

• Camera monitoring: Monitoring with cameras has a
big potential ([80]). Nevertheless, camera monitoring
was ruled out instantly by the given constraints. Any
kind of video monitoring would violate the privacy
of the residents, the nurses, and visitors. Therefore,
camera monitoring was not allowed.

• UWB Localization: By the time the study was de-
ployed, UWB (ultra-wide-band) radio-location was
very innovative and newly released. It works with
small wearable transponders (tags) and a couple of

1 The description of available technologies origins in the following paper. All texts taken from this paper have been written by the author of
this thesis: * Grünerbl A. et al. (2013). [53] please refer to corresponding entries in the literature list or beginning of this chapter
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static receiver sensors and calculates the location
based on the principle of time-of-flight in real-time.
Depending on the complexity of a room, only a few
receivers can be sufficient to cover large areas ([65]).
In contrast to RFID and ultra-sound, UWB performs
actual 3D real-time in-door location.

2.4.3 System Decision

The above-listed systems are a very limited variety of
possible methods. Due to the imposed constraints and
considerations most of them had to be ruled out. Con-
sidering the further requirements and precondition, after
some initial tests, the UBISENSE UWB Indoor Location
System turned out to be the only satisfactory solution,
because it is designed to run on a long-term basis with
only little maintenance necessary.

The Ubisense UWB System is a real-time location sys-

tem ([65]) that comprises an array of a few (typically 3 -
10) ultra-wide-band (UWB) radio receivers. These calcu-
late the location of small UWB-signal transmitters (tags).
The proposed accuracy of the system (15-30cm) allows
determining interaction patterns between people, with
only relying on small (about 8x4x1cm) tags, which can
be carried anywhere on the body.
The sole maintenance that is required by the system is
to check batteries of the tags and frequently supervise
whether systems were running, which can be done re-
motely. Besides, to guarantee the functionality of the sys-
tem itself, only tags are needed to be worn.

Checking whether the residents would be wearing
them was considered to be a doable task for the nurses.
It should be possible to integrate this into the morning
routines as the nurses were supposed to help the patients
with morning hygiene and dressing in any way. This task
was no additional burden on the nurses.

2.5 Deploying a Long Term Data Collection Study in Elderly Care
The data used in this chapter originates from a system

deployment ([81]) as part of the ”Lichtprojekt” (www.k-
licht.at) in 2008. This project’s goal was to enhance the
quality of life of older adults with dementia through an
elaborate indoor lighting system. The critical issue in the
project was to evaluate the influence of different light-
ing setting on the residents in various stages of demen-
tia. The goals of this project stated that only a long-term
real-life installation of the enhanced lighting would al-
low getting the required results. Thus, a home for the
elderly, the ”Home St. Katharina” in Vienna was part of
the project consortium.

2.5.1 Study Background and Set-Up:

During a complete restoration of the St. Katharina
home for elderly, one ward was remodeled into a residen-
tial ward for dementia patients according to a new care
concept called Maieutics. [82].

Facility and Care Concept: Next to eight single and
two double rooms, the remodeled ward itself consists of
a big living area including a kitchen, an area for eating,
and a living room. (Figures §2.1 (left) and §2.7). The
re-design of this ward aimed to create a family-like envi-
ronment needed for the Maieutics nursing concept. ([82],
[83], [84]). 1 The rooms and the living area were fur-
nished in a style fitting the resident’s customs.
According to the care concept, the residents had to re-
ceive as much freedom as their state allowed to define
their daily routines. Equally, the residents were encour-
aged to socialize and engage in a broad range of activ-
ities. In the morning, they would get up at the time
they preferred and either dress themselves or get help
with putting on clothes. Afterward, they would go to the

kitchen area, where they would get breakfast. Some res-
idents preferred to take the meals in their rooms. Be-
tween breakfast and lunch, the nursing staff would clean
the rooms and provides drinks. At around eleven o’clock,
lunch would be served in the kitchen/living area. After-
ward, most left for an afternoon nap. During the after-
noon, the nursing staff again would provide coffee and
snacks. From time to time, also depending on the staff
present, nurses would offer activities like playing ball,
painting, or doing handicrafts. Around five o’clock, din-
ner was served. After dinner, most residents retreated to
their rooms. Others stayed watching TV together.

Residents - Study Participants: Overall, 13 different
residents lived in the ward during the study period (11
female, two male, the average age was 88.6 years at
project start, and 87.4 years at projects end). At the
beginning of the study, every patient received an MMS
(Mini-Mental Status) score. According to this score, all
residents were classified as dementia patients. The de-
gree of dementia, however, varied from mild to very ad-
vanced with severely constrained cognitive abilities. The
mini-mental status examination is a frequently used cog-
nitive screening measure to identify dementia. Folstein
and McHugh introduced it first in 1975 [85].
Common additional illnesses were Parkinson’s disease,
Diabetes Mellitus, and high blood pressure. Psychotropic
drugs were prescribed for ten residents and soporifics for
six (see Appendix for a detailed description of the rele-
vant subjects).

Nursing Staff: During the study, a total of 10 nurses
worked at the ward with some personal fluctuations at
the beginning of the study. In the second half, staff com-
position remained stable. Based on the Maieutic care

1Note that the Maieutics care concept is a regionally implemented method in Germany/Austria and the Netherlands and therefore, only refer-
ences are available in the German language.
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concept, the nursing personnel was supposed to support
the resident’s abilities by playing games, cooking easy
meals, doing simple housework, and more. Due to dis-
agreements among the nursing personnel, Maieutic ac-
tivities were not promoted very well. However, generally
during the morning shift, 4-5 nurses were present and
helped the residents getting ready for the day.

2.5.2 System Installation

As a matter of respecting the privacy of the residents,
it was decided not to install sensors in the bedrooms
but only cover the common areas with the Ubisense Sys-
tem. Anyway, most interactions and activities relevant
to state-assessment will take place in the common areas
(communication, movement, etc.). With sensors covering
parts of the hallway, it should be possible to infer when
the subjects were in their bedrooms.

For the Ubisense System, the number of sensors needed
to cover an area depends on the size and structure of
this area, but also on how many larger structural and/or
metal items are placed within the area to cover. In an
empty rectangular space, four sensors can be enough to
cover several hundred sqm. If the area includes rein-
forced walls or for example have a kitchen block some-
where within the area, probably significantly more sen-
sors will be needed. For the study presented in this the-
sis, six sensors mounted on the walls or in the corners of
the living space, as shown in Figure §2.1(left) did suffice
to cover the common area and parts of the hallway (see
Figure §2.7). After some pre-tests and several discussions
with the nurses and home authorities, it was decided to
attach the tags in the form of a necklace around the pa-
tient’s necks (see Figure §2.1 (right).

2.6 Challenges and Issues of Deploying Sensors in a Home of the Elderly
Numerous groups work on integrating technical sys-

tems into everyday life. Most groups like [86] prefer to
work in laboratory-like settings where different parame-
ters can be influenced. Certainly, this has a reason. De-
ploying technology in real-life is difficult, as, in the real
world, various issues can complicate the work. In real
life, studies have to be executed without or with as little
interference with the regular work/life of the study sub-
jects as possible.
Furthermore, in real life, every study has to deal with fac-
tors, which can influence the success of the study. Often
those factors are not expected or even possible to con-
sider beforehand. However, by careful preparation and
consideration of potential challenges, real-life deploy-
ments indeed can be successful. In the following section,
issues and challenges that had to be dealt with are dis-
cussed. Furthermore, it is shown how it was possible to
overcome these issues. Even though some of them might
seem to be obvious from an outside perspective, in the
planning phase of the study, however, the most obvious
aspects are easily forgotten. 1

2.6.1 Technical Issues

Many technical issues can be eliminated beforehand by
carefully testing everything. Still, not all potential tech-
nical problems can be considered in advance. In the nurs-
ing home in Vienna, specifically in the beginning phase
of the deployment, four technical issues arose:

Using newly released Technology: At the time the
study started, the first certified version of the Ubisense
System was only newly released. Regarding the project,
it was required to use this newly certified version, which,
contrary to the previously un-certified releases required
additional timing-wires. As the necessity of these addi-

tional wires was not anticipated (specifics were not avail-
able, and for previous versions, timing wires were not es-
sential) those extra wires were not included in the struc-
tural changes of the ward. Therefore, the cables had to be
laid provisionally after installing the sensors, see Figure
§2.1. In fact, such “visible and potentially disturbing in-
stallations” were opposing to the requirement of ”sensor-
systems not to disturb visibly, but fortunately was ac-
cepted by the staff.

Missing Network Connection: Long-term operat-
ing systems, especially new edge technology like the
Ubisense System, have to be supervised and maintained
frequently. Since it was not possible to visit the ward
daily, a remote supervision system was necessary. Even
though the nursing home authorities had promised In-
ternet connection, due to some ongoing house-internal
shifting of powers, no Internet connection was available.
To solve this issue without losing time (while waiting for
the internal disagreements to be settled), a UMTS-router
(with static IP-address including a DynDNS service), was
installed and all sensor systems were connected to this
router.

Instabilities in power network: During the opera-
tional tests in the first weeks of the deployment, in-
stabilities in the power network of the nursing home
were revealed. Those instabilities were due to frequently
power-ups/downs of high power consuming devices in
the nearby hospital sharing the power network with
the nursing home. These instabilities caused signifi-
cant crashes for the sensor systems, and it took some
weeks at the beginning of the study to find the cause of
these crashes. Eventually, the instabilities in the power
network were only discovered by chance as there was
no way for us to gather knowledge about the power-

1 Vast areas of the description of the particular challenges and issues faced during the study have been taken from the following papers. All
texts taken from these papers have been written by the author of this thesis:
* Grünerbl A. et al. (2013). [53] and Grünerbl A. et al. (2014) [54], please refer to respective entries in the literature list.
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(a) Sensor installment in the living room. Provisional additional wires be-
tween the Ubisense Sensor Beacon were needed.

(b) Resident wearing a tag

Figure 2.1: Installed UBISENSE Location System

infrastructure to which the nursing home is connected.
In fact, we would have never anticipated power fluctua-
tions in the network of such extent. Once the problem
was determined, the issue was solved by installing a UPS
(uninterruptible power supply) for all critical systems. In
addition to the UPS, a timer switch was set to frequently
shut down and restart critical parts of the system in the
very early morning (at a time it could be assumed that all
residents were sleeping in their bedrooms). This restart
was done to guarantee a working system as soon as the
first residents showed up every day.

When Sensors do not work as expected Initially, the
study included the measurement of sleeping quality [81].
Following the idea that restless sleep would be expressed
by much movement during sleep, the plan was to use
inertial sensors (accelerometer and gyroscopes) and at-
tach them to the slatted frame of the resident’s beds.
These sensors were meant to detect any movement in
bed, and the tests at the researcher’s homes worked well.
In the home for the elderly, though, some of the resident’s
beds were of particular orthopedic design, partially with
solid metal panels instead of a slatted frame, which sup-
pressed the forwarding of any movement to the sensor.
Other patients received a rather high dosage of sleeping
medication and were, therefore, hardly moving at all. For
these reasons, the sleep monitoring with simple inertial
sensors failed and was discarded from the study.

2.6.2 Handling Mentally Affected People

It is a fact, that technical issues, as just described, have
a considerable influence on the success of a study. Never-
theless, dealing with human beings is a yet even more un-
controllable factor. It becomes even more critical when
a study has to rely on mentally affected study partici-
pants. Generally, the success of the study presented here
depended on residents - suffering from dementia - ac-
cepting and wearing a sensor-tag every day for about a
year. To guarantee this, it took some effort on the nurses.
Specifically, convincing the study participants day by day
to put the tags on was an effort for them. Regardless, it
was entirely clear that it was not allowed to force resi-
dents to participate. The willingness of these mentally
affected people to cooperate in the study had a direct in-
fluence on the amount of data that could be collected.

Res. 1010 1032 1031 1041 1060 1090 Per. Avg.

Nov. 0 12 13 6 0 8 4 9.8
Dec. 0 7 7 0 0 0 2 7
Jan. 15 16 10 12 7 14 5 12.3
Feb. 21 19 20 20 18 1 6 16.5
Mar. 23 26 30 18 19 12 6 21.3
Apr. 18 20 18 1 0 0 4 14.3
May 19 9 19 0 0 9 4 14
June 8 0 0 0 0 9 2 8.5
July 20 24 11 7 18 14 6 15.7
Aug. 15 14 0 13 10 5 5 11.4
Sept. 7 12 0 0 0 0 2 9.5

Mon. 9 10 8 6 5 5 6 7.17
Days 149 159 128 77 72 56 6 106.8

Table 2.1: # of days with available data per resident per month
and for how many persons data is available. Some months show
more data gaps than others.

Eventually, some residents refused the tag. In total,
only six out of 13 residents would wear tags often enough
to provide a sufficient amount of sensor data. In the be-
ginning, all 13 residents started to wear them, but some
quickly refused to continue. Moreover, three of the res-
idents died during the study year, and another resident
got hurt in an early phase of the study and was bed-
ridden afterward. An interesting side effect (of the light-
projects) was that the different lighting-phases seemed
to influence the willingness of residents to wear tags. In
some light-phases, most residents wore their tags, and in
others, most did not.
Further reasons for the decimation of data was that some
residents partially refused the tags for some weeks, very
likely due to their mental states, and later started to wear
the tags again. Thus, in total, for six residents out of 13
a sufficient amount of data was collected. Within these
six residents, the amount of available data ranges vastly
between five and ten months.

Table §2.1 shows the amount of available data-sets per
resident per month. It also provides an overview of
which phases tags mostly were worn. For example, dur-
ing July only one person provided data, while throughout
January nine residents wore the tag. The absolute num-
ber of data-points per patients lies between 6 and 159.
It was decided to use only data of patients with a mini-
mum of 50 days of data or more and a distribution over at
least 4-5 months (which should include several changes
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in state). Thus, in summary, data of only six residents
was used (marked bold in Table §2.1).

2.6.3 Limitations of the Ground Truth

One disadvantage of the study, partially a direct effect
of the nurse’s struggle, was the fact that it was not pos-
sible to repeat the MMS test regularly. Moreover, at the
time of the study, the keeping of health records in homes
for the elderly was not regulated clearly, which means
that no systematic health record was kept. Contrary to
standardized health record of hospitals, the “resident’s
health documentation” contained reports of events and
observations that the nurses considered noteworthy.

These records and observations were put down fre-
quently, but not daily, and were in style and tone unique
to the respective nurse in charge of the day. This way

of record-keeping was a typical documentation style in
Austrian nursing homes back then (refer to [87]). Fur-
thermore, the written observations and reports of events
were not expressed in a numerical score or some stan-
dardized, fixed scheme, and, as already mentioned, dif-
fered significantly in quality and quantity of informa-
tion.
Moreover, detailed human observations on a larger
scale (throughout the entire study) were not possible or
doable. Note, using of cameras and video recording was
not allowed. Thus, the health records were essential for
this study’s requirement to get ground-truth. Neverthe-
less, the way they were kept proved to be an additional
and specific challenge in this study. The health records of
the nursing home, no matter how detailed or not detailed
they were, had to suffice as the only possible source for
ground-truth!

2.7 Data Collection Study and Data Quality Assessment
From November 2007 until September 2008, the

Ubisense System was running 24/7 and gathering data
from those tags being worn. The Ubisense system,
though accurate up to 15 cm (in 3 dimensions) in a per-
fect environment, can easily be disturbed by corners,
niches and larger metal constructs in the furniture.
To assess the influence of the home environment onto the
sensor system, and the reliability of the data gathered,
an observation lasting a few days was performed in the
ward. Since video-recordings were not allowed, a human
observer spent several days at the ward documenting ev-
erything that happened, including every single location
change of each resident.

2.7.1 Qualitative Data Quality

Figure §2.2 (left and right) shows the data gathered
by the sensor system in comparison to the observation.
Specifically in Figure §2.2 (left) both agree very well. Ir-
regularities were mainly caused by the impossibility to
fully synchronize the computer with the human observer,
as the human observer was not able to document activi-
ties of more subjects at once to the split second, and in
the evening a tag was laid aside by its resident, which
went unnoticed.
In Figure §2.2 (right) coarser errors appear to be visible.
However, these faults can also be explained and can be
assigned to known error sources. Therefore, these in-
accuracies are not indicative of malfunctions of the lo-
calization system. As an example: resident 1090b (data
shown in Figure §2.2 (right)) arrives in the living room
in the morning but does not carry the tag with them
(which could not be observed by the human observer as
the tags were worn mostly beneath clothing). This situ-
ation explains the deviations between observation (blue)
and measurement (red). Resident 1090b picks up the tag
around noon and sits in region 2 (at the small table) just
at the border to regions 3 and 4 (see also figure §2.7 for a
better understanding). Movements in the chair, and slid-

ing around with the chair (a habit of this particular per-
son, that was heightened during some phases), caused the
system to partially allocate the resident to regions 3 and
4 (which, regarding hard borders would be correct). The
observer, on the other hand, also correctly, did not deter-
mine any change in location. It must be added that the
sensor system naturally loses its accuracy due to metal
components in furniture, which in this case could have
increased the described effect.

A further interesting example of data irregularities was
given by one resident who had to use a walking aid and
was moving very little but, during the first days, seemed
to be among the most active subjects in the data-set. It
turned out that the nurses were attaching the tag to the
metal walking aid, which caused the system to provide
highly unstable data.
After the tag was placed on the body of the resident, the
problem disappeared. Additionally, effects as the bounc-
ing between different areas were filtered out as far as pos-
sible for further evaluation in order not to allow such ef-
fects to be included in the calculation of motion. The
observations themselves also revealed (not surprisingly)
some limitations of a human observer in comparison to
what a sensor system can do. The following aspects are
comprehensive sources of errors in the comparison of hu-
man observation and sensor readings:

1. For a human person, it is impossible to monitor 13
people every second as precisely as a sensor system.
As a result, observation will always deviate, and sen-
sor measurements only can be synchronized with the
human observations to a limited extent. E.g., the hu-
man observer was focusing on documenting move-
ments of persons A and B in one corner and thus,
missing person C moving in the opposite corner. The
location change of C was documented as soon as no-
ticed.

2. For the human observer, it was only possible to esti-
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(a) Occurrence of tag laid aside unnoticed in the evening. (b) Jumping of sensor values between 3 regions.

Figure 2.2: Data gathered by the sensor system (red) in comparison to the human observation (blue) over one day for two residents.
Both sensor and observation match for most parts of the day, but also show explainable differences.

mate the coarse ranges and borders of the areas and
locations, while the sensor system obviously can cal-
culate them precisely. Thus, inaccuracies and errors
in the allocation of locations for persons, particularly
at the junctions between areas, are very likely.

3. Since some residents wore their tags beneath their
clothes, it was not always possible to ascertain
whether the residents did carry their tags or not or
had put them aside for a short time. Therefore, some-
times laid aside tags would go unnoticed and thus
could also lead to differences between the localiza-
tion data and the observer’s recordings.

2.7.2 Quantitative Quality Assessment

Table §2.2 shows the quantitative results of the human
observations. During an average time of 29.3 hours per
patient, the sensor data correlates with the observation

by 95.7% on average. Most error rates over 5% were ex-
plainable by the error sources listed above. Differences
in the amount of time every single person could be ob-
served were resulting from patients’ habits to lay the tag
aside or to forget to wear the tag which then had to be
handed to the resident later. During the observation, a
total of 69 events (= changing location between regions)
were documented. Of those, 55 events could also be ex-
tracted from the sensor data.

DS 1060 1032 1090 1010 1031 1041 mean

match % 87.4 98.9 94.8 97.8 96.7 98.6 95.7
error % 12.6 1.1 5.2 2.2 3.4 1.4 4.3

time in h 48 30.7 34.3 24 24 14.7 29.3

lost - 3x 1x - - - 4x
handed - 1x 3x - - - 4x

Table 2.2: Data Quality: Sensor-data and human observation
match by 95%.

2.8 Handling Ground Truth with Limited Availability
In the year the data collection study took place, the

care laws for the elderly and regulations were about to
change. Thus some provisions valid for hospitals were
not yet implemented in homes for the elderly. One of
these regulations was the health documentation. On the
contrary to hospital patient records, the standard doc-
umentation practice for residents of nursing homes (as
described e.g., in [87] which was the recognized nursing
handbook in Austria) was in the form of qualitative anal-
ysis through observations and documented events, done
frequently but not necessarily daily.
Furthermore, the entries were not expressed in numeri-
cal or fixed schemes, but more in the way the nurse in
charge presumed to fit. Thus those records included in-
formation about visual appearance and (seldom) screen-
ing tests. These entries were the primary basis for deter-
mining ground-truth about state and state changes (e.g.,
to determine a patient’s medication needs). The kind
of documentation in nursing homes back then was pre-
sumed to be sufficient for experienced doctors and nurses
who would be able to look at a set of entries and put them
in relation to what they knew about the patient. This way,
they would be able to come up with a subtly, differenti-

ated metal state assessment.

For the meanings of this study we had neither the pos-
sibility of having such an analysis done and particularly
not for each resident, and throughout the entire year of
data recording. Nor were we actually interested in such
a detailed and subtle diagnosis. This apparently would
have been beyond what could be expected to be derived
from a simple location tracking system. Instead, we were
interested in broader classes of well-being, whether the
resident’s state was either positive or negative. There-
fore, the challenge and at the same an important goal was
to find a way to relate such classes to what was written in
the records. To do so, again, the only available sources for
a coarse ground-truth were these loosely kept resident’s
documentation records.
A close study and thorough review of these records re-
vealed that most entries could be classified into four dif-
ferent categories:

• Positive or negative entries about the resident’s phys-
ical state. These entries included phrasings like ”res-
ident was tired all day” or ”resident was restless” or
”resident was quite fit today.”
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• Positive or negative entries about the resident’s men-
tal state, which included statements like ”resident
seemed to be happy” or ”resident was really aggres-
sive and tried to hit others.”

• And either positive or negative entries about social
abilities, like ”resident was unwilling to attend the
joint games” or ”enjoyed talking to others.”

• Any signs of other illnesses and issues.

2.8.1 Ground-Truth Metric

All these entries were extracted from the records, based
on the Behavioral and Psychological Symptoms of De-
mentia Educational Pack and its description of the as-
sessment of quality-of-life [88]. Further, discussions with
nursing staff and nursing faculty professionals helped to
enclose it to the best fitting set of entries.
All entries of the health records were extracted one by
one and assigned to one of the four categories. About
80% of the extracted entries could be classified this way.
Not all of them were explicitly positive or negative, in
any case. A statement like ”the resident was funny” (in
context of the language used) could either mean that the
resident made jokes - an apparently positive entry, or that
the resident acted strangely - a somewhat negative entry.
Months or weeks after the entry was made, it was impos-
sible to determine which meaning was intended. Thus,
unclear entries were not considered for ground-truth to
avoid biasing by subjective interpretation.

2.8.2 Ground-Truth Resolution

After extracting all relevant entries from the records
and classifying them accordingly, the next step was to
quantify the resident’s well-being over the study year.
Unfortunately, as has been described, the health records
would not standardly include entries for every single day.
A closer look revealed that not every entry could actually
be assigned to a specific day, and sometimes entries were
delectably made on a wrong day. For example, one en-
try about a person said on one day: ”Resident fell and
hurt their hip,” but the fall-report (by the ambulance)
had the date of the day before. As such misalignments of
days and entries could be detected, this also meant that

other such misalignments likely remained undetected.
Hence day-specific labeling of ground-truth would have
been problematic. Furthermore, all entries were rather
patient-specific, and thus, the extraction of the resident’s
state parameters had to be done uniquely for each resi-
dent. In order to find suitable ways to extract sufficient
ground-truth, nursing professionals were consulted.

After various discussions and different ideas, we set-
tled on grouping the total number of positive and neg-
ative entries for the areas of physicality, mentality, and
sociability by a period of two weeks. This way of group-
ing would lead to a negative value for this particular
two-week period if negative entries did come in higher
number or to a positive value respectively. Eventually,
to avoid dealing with negative numbers, the per 14-day
entry sum was normalized (between the maximum num-
ber and the minimum number of entry sums). The re-
sulting value for each fortnight, a value between 0 and
1, therefore was ranging between the patients worst and
best state, respectively. This approach was acceptable
inasmuch, as both physical behavior and health record
entries are patient specific and not combine-able in-
between patients. Thus, a certain number of entries or
a particular value could have an entirely different mean-
ing for different patients, always according to a patient’s
character. Therefore, the state-index is patient specific
and had to be calculated for each patient uniquely. Re-
garding the classification (see in the following sections),
for each day (or each week depending on the granularity
of the recognition system) a label was assigned, derived
from the corresponding fortnight-period.

Regarding the resident’s state, two different modalities
for rating the states were pursued. To recap, the state val-
ues range between the worst and best state of each resi-
dent. Therefore, the first modality to rate the state values
were in two classes: positive state (0.5-1) and negative
state (0-0.49). As this modality ignores the possibility of
a normal/neutral state of well-being, the second modal-
ity should include this normal state. Hence, this second
modality opted for using following three classes: nega-
tive state (0 - 0.33), neutral state (0.33 - 0.65) and positive
state (0.66 - 1).

2.9 Qualitative Analysis of Cognitive State
Before starting a systematic quantitative analysis,

first, a qualitative evaluation should reveal whether the
recorded sensor data would include information that
could be mapped onto disease relevant observations from
the health records. Social interactions are an essential as-
pect of assessing the state of dementia patients. The term
“social interaction” has a broad meaning, because even
looking at each other could mean to interact on a social
level. In order to limit what is possible to infer with loca-
tion data, social interaction was defined as “staying in the
vicinity” of other persons. This is reasonable, as a person
that stays in the vicinity of other people broadcasts the

desire to interact on a social level, even be it in the form
of enjoying other peoples company.
Figures §2.3 (next page) show the raw data-points of
three residents for one day. On the left picture, the data
is displayed in 2D. However, even here, it is clear that
resident 3 does not co-locate with any other person and
is only present for a brief period. On the other hand, res-
idents 1 and 2 spread over the entire area and are often
co-located. Looking at the 3D plot that has time added
as the third dimension, this impression of co-location of
residents one and two are confirmed mostly. Residents 1
and 2 are often co-located both location and time wise,
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Figure 2.3: Social interaction: co-location with possible interaction, showing residents staying in the same area at the same time

but at one point resident 2 stays alone. Resident 3 is con-
firmed to be alone the entire time.

Even though the health records would not provide suf-
ficient information about detailed social interaction and
only coarse information about sociableness, there were
particular aspects stated in the health record that seemed
worth to evaluate them in a qualitative manner. For these
qualitative evaluations, the location data was used to cal-
culate the co-location of persons, meaning different res-
idents staying in the same area for a certain amount of
time. Following social aspects, retrieved from the health
records could be analyzed qualitatively:

Periods of Aggressive behavior The health records
indicated that resident 1041, who was profoundly de-
mented, acted in a slightly aggressive manner during
some periods, but did not during others. This can be
seen in the amount of time that resident was co-located
with others. Figure §2.4 (left) shows the periods of non-
aggressiveness where resident 1041 spends time in the
vicinity of others, while during aggressive periods no
other resident is co-located (right picture).

Figure 2.5: Personal relationship - co-location with possible in-
teraction residents 1010 and 1031, 1031 and 1060 who report-
edly liked each other’s company.

Personal Relationships The health record of resident

1010 indicates in several entries that resident 1010 enjoys
the company of resident 1031. This observation can also
be detected in the sensor data. Figure §2.5 left, summa-
rizes the time the different residents stay in each other’s
proximity over one week. While 1031 spends time to-
gether with different other residents, 1010 mainly spends
time along with 1031. Still, the color indicated that they
did spend a lot of time together.

Figure 2.6: Daily habits - presence in the social areas reflects
known habits. 1031 and 1032 stay the social area, 1090 and
1110 leave for a midday nap.

-

Daily Habits The Maeiutics care concept of the ward
encouraged the residents to design their day according
to their preferences and the way they were used to spend
the day. Thus the daily habits of the different residents
and their presence in the social area differ in-between
residents. While some of the residents, especially 1031
and 1032, did spend the better part of a day in the social
area, other residents, like 1010 or 1090, commonly were
present in the social areas only when taking the meals.
Figure §2.6 provides the distribution of the daily pres-
ence of all residents accumulated over one week per per-
son. Light colors in the figure indicate higher values than
darker colors.

The residents 1031 and 1032 show light color in this
plot during almost the entire day, just with some darker
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(a) co-location in normal periods (b) not co-location in aggressive periods

Figure 2.4: Social interaction (co-location) and behavior (light colors mean higher values than dark colors).

color during lunch break (probably with an occasional
midday nap). Other residents like 1090 and 1010 mainly
have a lighter color in the plot during breakfast, lunch,
and the afternoon coffee/early dinner time but return to
their rooms in-between.
Resident 1110 (got ill soon after the study started and

was excluded from the study), initially took only the din-
ner with the other residents in the ward’s social area.
All other meals were consumed by 1110 in the nursing
home’s Mensa. This agrees with Figure §2.6 where resi-
dent 1110 is only visible in the evening.

2.10 Quantitatively Measuring the State of Dementia Patients
The primary objective of this endeavor was to recognize

the state of well-being of the residents living in the ward,
only by analyzing their location data. In this regard, it
should be evaluated if and to what extent the states ex-
tracted from the health records could also be acquired by
performing classification of these location data-traces.
As is done in most standard classification processes, first
adequate features had to be determined and extracted.
These features then had to be evaluated to make sure they
sufficiently incorporated all essential and relevant infor-
mation. In the following step, parts of the features were
then used to train and test a machine learning classifier.

2.10.1 Feature Computation

Some different features and parameters were first eval-
uated. These tested features included frequency of move-
ment and time of stay in the overall common area. Even-
tually, however, it proved to work best, not to see the
monitored area as a whole but divide it into different
meaningful sections and analyze movement within and
in-between these areas.

Data Pre-Processing: In this regard, the first pre-
processing step for extracting the adequate features was
to divide the monitored area into a total of ten meaning-
ful sections. These were (see also figure §2.7):

• big table

• small table

• kitchen

• walk-ways

• entrance

• table

• couch

• balcony door

• setee

The raw data from the Ubisense system is presented
in the form of x, y, and z coordinates. Thus, these co-
ordinates were mapped onto the areas, meaning a fea-

ture space reduction of the raw data, resulting in areas
assigned to the patient in one-second intervals.

1
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Figure 2.7: Area covered by sensors and its division into 10 se-
mantic regions

As described in the data quality assessment §2.7.1,
fluctuations of the sensor signals would occur if patients
were staying at a border between areas or when stay-
ing in the vicinity of disturbances. Thus the sensor-data
was smoothed further. This smoothing was done by ba-
sically ignoring fluctuations (changes between areas) if
they were smaller than 10 seconds. By considering the
somewhat impaired physical conditions of the residents,
in combination with the size of the area itself, this strat-
egy of smoothing the data was not found to distort the
data, as it could be assumed that the residents were not
able to actively move between areas within less than 10
seconds. An additional aspect of using semantic regions,
besides the reduction of the amount of data, was to mea-
sure general movement.
Regarding looking at a location as semantic regions,
changing between regions can be considered as a move-
ment (e.g., switch from table to kitchen). As the regions
were defined according to a clear semantic and practi-
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cal meaning, staying in one region should not be consid-
ered as a movement. For example, if a person was stay-
ing in the area “kitchen” for washing dishes, it would be
very likely that this person would change their position
within the kitchen area. Meaning, the person would put
the spoons into the cutlery’s drawer, and afterward step
back to the sink, which in itself is not being considered
as movement!

Calculation State Parameters: Once the data was pre-
processed, relevant parameters were calculated. These
parameters were determined to be: 1:

• Total daily duration of stay in the social areas: Stay-
ing in the social areas generally indicates the willing-
ness of the resident to be in the vicinity of others and
to get in contact with them. Therefore, the daily du-
ration of stay in the social area, and specifically its
progress/changes over the weeks is a valuable param-
eter in regards to (mental) well-being. This param-
eter itself was calculated as the sum of seconds the
tag, which was carried by the respective resident, was
visible by the Ubisense sensors.

• Total daily number of changes between regions: A
further indication of (physical) well-being is the mo-
bility or the amount of movement of a person. Re-
garding the location system, mobility could be mea-
sured by the number of changes between the semantic
regions. This parameter was determined by counting
the times a subject crossed the border between two
semantic regions! For example, if the respective resi-
dent walked from the ”big table” to the ”kitchen” and
back two border crossings would be counted.

• Index for movement: “Duration of stay” and
“changes between regions” in combination provide
more in-depth and more detailed information about
the value of both parameters. E.g., three residents
have a total number of changes between regions of
10. However, while person 1 had ten changes within
5 hours, person 2 had ten changes within one hour.
Person 3 stayed in the social area all day long. This
means that person 3 was rather calm, while person 2
was somewhat unsettled. Therefore, the movement-
index should give an insight into the ratio between
stay and changes. It was calculated by dividing the
number of changes between areas by the total sum of
seconds the resident stayed in the social area.

• Distribution over areas: This parameter provides
the information in which areas the subjects remained
during the day. It was calculated by counting how
often a respective resident entered each of the ten
regions during each day. This parameter implicitly
includes information about the number of changes.
Nevertheless, it does neither include information

about the amount of time spent in each specific area
or the amount of time spent in the social area in total.

2.10.2 State Recognition Methodology

With mapping the raw sensor data onto semantic re-
gions, the amount of data was already reduced from three
dimensions to one. By extracting different relevant fea-
tures and thus increasing the feature space, the amount
of data for the classification process to handle was again
raised. A commonly used method to, once again, reduc-
ing the feature space is the linear discriminant analy-
sis (LDA [89]). This method was performed in the fea-
ture space, and the data-set was transformed accord-
ingly. Subsequently, different standard classification al-
gorithms were investigated. All steps of the classification
processes were performed with WEKA [90]. The tested
classifiers were the following:

1. a Bayesian classifier,

2. a k-nearest neighbors classifier (kNN,k = 3),

3. a decision tree classifier (J.48)

4. a conjunctive rule learner

The evaluation of these possible classifiers showed that
both the KNN and the Bayesian classifier perform equally
very well with more than 90% accuracy. The Bayesian
classifier was slightly 2% worse than the KNN on average
but still performed very well. All other tested classifiers,
the decision tree, and the conjunctive ruler learner pro-
duced far worse results. Details about these results can
be found in Table §2.3.
Since the KNN-classifier performed best, the KNN-
classifier was used for all further evaluations. The clas-
sification itself was done in a ten times cross-validation
with a 66/33 percentage split strategy, meaning 66% of
the data-sets were used to train the classifier and 33%
were then used to test.

Resid. knn bayes j48 tree conJR

1060 100 100 73.33 90
1032 100 100 91.67 100
1090 100 86.67 33.33 40
1010 88 86 90 78
1031 80 84 84 64
1041 92.5 92.5 70 67.5

Mean 93.42 91.53 73.72 73.25

Table 2.3: Performance of different classifiers. Knn and
Bayesian Classifier perform equally well.

2.10.3 Evaluation Methodology

Regarding the scenario and available data-sets, three
different factors seem to influence the possible recogni-

1 The features and relevant state parameters have been described in publications of the authors of this thesis. The text in the following listing
is taken in parts from this publication. All texts taken from this publication have been written by the author of this thesis in the first place:
* Grünerbl A. et al. (2011), [52], please refer to corresponding entries in the literature list or beginning of this chapter
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tion accuracy: (1) the feature set, (2) the temporal gran-
ularity of recognition and (3) the number of recognized
states. These three factors were varied and evaluated:

Feature Sets: The different features, as described
above (subsection §2.10.1), and the classification was per-
formed with different combinations of them. This pro-
vides detailed information on the location-related behav-
iors of the respective resident, relevant for recognizing
the state of well-being.

Temporal Scale: As described earlier, to eliminate
bias by wrongly dated entries in the health records, the
ground-truth was extracted on a 14-day basis. Thus it
would make sense, to also evaluate the classification on
a 14-day block-set. Nevertheless, the classification evalu-
ated on different temporal granularity:

1. 14-day periods, aligned with the health records and
the available label-sets (note in a 14-day period sen-
sor data was not necessarily available for each day):
for the classification, results of each day were aver-
aged over these 14-day periods.

2. periods of one week (7 days): labels for each week
were derived from the available 14-day label-sets;
again classification results were averaged over the
seven day periods according to their availability;

3. on a single day granularity: again the labels were de-

rived from the available 14-day label-sets (note, in
this granularity the label-data, have the lowest accu-
racy as daily fluctuations cannot be pictured in this
form of ground-truth);

Number of States: Also, as described before, during
the extraction of ground-truth, two different sets of la-
bels were generated. One for two possible states (positive
or negative) label-set, and another three-state (positive,
negative, or neutral) label-set. In this regard, both op-
tions were used for the classification. Therefore, for each
resident, the classification was performed in the light of
two and of three possible states. Specifically considering
the basis for ground-truth - the health documentation,
would not have allowed going for a finer subdivision. As
a reminder, the two different state sets were defined as
follows (please note that ground truth was normalized
between 0 and 1 - see also §2.8,):

• Two State Label Set: the state-indices where split at
0.5 into ”positive state” for values 0.5 − 1 and ”nega-
tive state” for values 0− 0.49.

• Three State Label Set: the state-indices where split
into thirds. Class ”positive state” for values 0.66 − 1,
”normal state” for values 0.33 − 0.65 and ”negative
state” for values 0− 0.32.

2.11 Results of State Recognition of the Residents
After the qualitative analysis of the sensor data has

shown clearly distinguishable effects of the residents’
cognitive state or well-being in the sensor data, a quanti-
tative evaluation should confirm this.

2.11.1 Effect of Different Features

Out of the tested features, the “normalized distribu-
tion” of the ten different areas per day together with the
“sum of entering areas” over the day worked well for
all patients. In term of normalized distribution, nor-
malization is meant as dividing the raw values for each
area by the sum over all areas. The other features (ex-
cept “change between areas”, as this is already implicitly
included in the ”distribution over areas”) did work for
some residents but did not for others:
For example, “Duration of stay” improves the classi-
fication result by 8.2 percentage points (pp) for three
residents, but for all others, the classification accuracy
drops by 26.1% (average -8.9%). The same way, the “in-
dex for movement” enhances the classification for three
residents by 9.1pp, yet has either no impact (on two
other residents) or actively worsens the classification by
16.67% for the sixth resident. If the features “duration of
stay” or “movement index” are used uniquely or together
(not in combination with “normalized distribution” or
“sum of entering areas”) the classification results are ter-
rible (average 35.22 %, 44.5 % and 36.7%).

Performing classification with all available features to-
gether enhances the result for three residents by 8.78%
on the one side, but do worsen the outcomes significantly
for the other three residents by 27pp. As a consequence
to the results of the evaluation of different features and
combinations of them, any further analysis was based on
the combination of the normalized location distribution
over the different semantic areas and the number of vis-
ited areas.

2.11.2 Two States Analysis

In the two-state analysis, the overall state of the re-
spective resident was determined as either positive or
negative. Respectively, the classification was performed
with data-sets grouped in 14-days, 7-days, and single day
scales. The recognition of two general states is summa-
rized in Table §2.4. For the 14-days periods’ analysis, in
3 out of 6 residents, 100% of the states were recognized
correctly. In total, the accuracy of the two-state 14-day
scale is a high 93.4% (worst accuracy at 80%) with a low
standard deviation.
The accuracy drops to 84.1% in the one-week scale analy-
sis. This would not be overly surprising, considering the
granularity of the ground-truth. With the ground-truth
being only available on a two-week scale, a one-week
analysis would likely include outliers not covered by the
ground-truth. Nevertheless, interesting to consider here
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is that the recognition is near to failure for one subject
(1031) with a 54% recognition rate, just above random.
Looking into this resident’s details, revealed that their
dementia status was severe with an urge to walk, and
the behavior of this resident would vary daily. Excluding
this resident from the data-set shows an average recogni-
tion accuracy for the other five residents at a high 90.1%
(standard deviation 11.3), thus being only less accurate
than the 14-day scale results. Still impressive is the fact
that one of the residents (1090) remains at 100%. Ad-
ditionally, it is also noteworthy that one resident (1041)
even performed better, and another (1010) almost equal
(2pp less) than in the 14-day analysis.

A day by day analysis provides a decrease in recogni-
tion accuracy to 70.9% (standard deviation 12.1). This
result is not surprising. The assumption, a 14 day period
label could be applied to 14 individual days would re-
quire a very stable behavior, which is not very likely for
most people. Even a generally stable person will likely
have a not so good day within two weeks. Such outliers
will have affected the results of this daily basis analysis.
This also means that the recognition result of an average
of 70.9% is the worst case result, and with more detailed
ground-truth values might be better. Also, in the daily
analysis, again, the recognition for resident 1031 fails at
52.95$. The same argument, as explained above, is valid
here. A test subject with a severe state of dementia and
the urge to move with many variances is challenging to
evaluate.
Hence, the classification on a daily basis, but based on
labels that were derived from 14-days period values, will
very likely be influenced. Excluding this resident from
the analysis draws a slightly better picture with a recog-
nition accuracy in the worst case at 75% (standard de-
viation 9.3). Likewise, though, a resident with a some-
what stable condition would perform still well, even with
fuzzy labels. Resident 1060 is such an example, even
daily recognition providing an accuracy of 83.95%.

residents single weekly 14-days

# 2 # 2 # 2
DS classes DS classes DS classes

1060 67 83.91 16 93.33 8 100
1032 159 69.82 34 72.5 17 100
1090 40 78.57 12 100 6 100
1010 120 60.73 28 86 14 88
1031 128 52.95 26 54.44 13 80
1041 73 79.6 20 98.57 10 92.5

average 98.8 70.9 22.7 84.1 11.3 93.4
std dev. 44.8 12.1 8.2 17.7 4.1 8.2

Table 2.4: Results of classification of state with 2 possible state
classes (positive state or negative state) for all six residents, with
different granularity and respective number of available data-
sets (DS)

2.11.3 Three State Analysis

The results of the tree-state analysis with respect to the
different time scales are summarized in table §2.5. The
average recognition rate of the 14-day periods is 80.94%

(standard deviation 11.1). This result is less accurate
than the two-state analysis. Still, with three classes an ac-
curacy of 80% is respectable and far above random, with
no resident performing worse than 70%. A noteworthy
aspect of this analysis, is provided by resident 1032, who
performed worst in the two-state case (only 80% accu-
racy in the 14-day analysis), improves to an impressive
100% correct recognition in the 14-days periods. This is
insofar remarkable, as this resident basically failed in the
two-state analysis for any other than the two-week case
(see also section 5.5 on this).
Looking at the one-week period analysis, the results on
average are equal to the 14-day periods. With an accu-
racy of 78.4% (standard deviation equal to 11.4), it is only
approximately 2pp less accurate given the fuzziness in
the ground-truth.

Another interesting aspect in the 3 class weekly anal-
ysis is the fact that two residents (1060, 1010) perform
equally concerning the 14-day analysis and two residents
(1090, 1041) perform even better than in the 14-day anal-
ysis. These are more or less the same residents that also
performed equal or better in the 2 class analysis.
In the daily analysis, the accuracy clearly drops to 55.4%.
Still better than just random on average, the results of
two residents (1031, 1010) are close to average anyway.
Remarkable though, resident 1090 manages to keep the
accuracy of 71%, which is slightly better than the 14-day
result of this resident.

residents single weekly 14-days

# 3 # 3 # 3
DS classes DS classes DS classes

1060 67 56.52 16 88.33 8 88.33
1032 159 64 34 67.5 17 76.67
1090 40 71.43 12 84 6 70
1010 120 40 28 76 14 76
1031 128 38.18 26 63.33 13 100
1041 73 68 20 91.43 10 75

average 98 55.4 23 78.4 11 80.94
std dev. 44.8 114.3 8.2 11.4 4.1 11.1

Table 2.5: Results of state classification with 3 possible state
classes (positive state, normal state or negative state) for all
six residents in different granularity and respective number of
available data-sets (DS)

2.11.4 Influencing Factors

Looking at the best performing case, the two states in
a 14 days classification, two additional factors, which in
general are essential for practical system usability, were
investigated: the user dependence of the classifiers and
the required training set size.

User Dependence From the observations in the nurs-
ing home and a general understanding of dementia, it
became clear that symptoms of dementia and worsened
well-being can be expected to vary from person to person
significantly. The results of user-independent classifica-
tion confirm this. When trained on sets of 5 residents and
tested on the sixth, the average recognition rate was just
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vaguely above random at 54%. Two groups of residents,
however, can be distinguished: In the user-independent
classification, three residents show results above random
with 1031 even reaching 77% accuracy, while the other
three were below 50%. This indicates that some resi-
dents/dementia patients exhibit symptoms that are more
“general” and applicable to other patients. For these res-
idents, user-independent training might be possible.

tested training set #DS corr. class. % total #DS

1 1060 2,3,4,5,6 7 43.8 16
2 1032 1,3,4,5,6 18 52.9 34
3 1090 1,2,4,5,6 7 58.3 12
4 1010 1,2,3,5,6 13 46.4 28
5 1031 1,2,3,4,6 20 76.9 26
6 1041 1,2,3,4,5 9 45.0 20

Mean 53.9

Table 2.6: Inter Subject Classification, trained with 5 subjects,
tested with the remaining dataset

Figure 2.8: Classification accuracy with an increasing numbers
of training sets, saturation at 5 training sets.

Required Amount of Training Data Given the results
of the user-independent training, it is not possible to de-
velop a plug and play pre-trained system for any new
user. Thus a further crucial question to understand is

the required amount of training data that is needed to
train the system for a particular individual user. Fig-
ure §2.8 investigates this question. The figure shows
the recognition accuracy for each of the participants as
a function of the number of training samples. As can
be seen, the “elbow” of the curve (the point where the
curves level off) lies at four samples (of 14 days periods)
for most participants, and most are reaching saturation
after five samples. This indicates that running the sys-
tem for approximately two months while documenting
the state of the users (residents) for every 14-day periods
would be enough to reach a sufficient classification accu-
racy in most cases. This seems like a reasonable effort.

2.11.5 Discussion of Classification Results

Overall the results indicate that the analysis of location
traces is well suited for

1. assessment of the state of dementia patients with a
limited number of coarse states,

2. on a user-specific basis, and
3. over periods of several days.

Although the 2-states-classification seems to perform
better than the 3-state-classification, the available data
does not allow to conclusively answer the question,
whether 2 or 3 states are more fitting to the resident’s
actual well-being.

Anyway, this might be a matter of the personality of
the respective patient/resident. Some of them will likely
have a more two-state behavior (either good or bad)
others might also and mainly act neutrally (neither in-
credibly good or bad but just average). Especially the
fact, though, that the performance-decrease is less pro-
nounced for the weekly accumulation of data (where
there is more training data) seems to indicate that the
problem may not be as dependent on the number of
states but the amount of available training data.

2.12 Nurses Reception of a Real-life Study in Health Care:
Despite the challenges a long-term study will imposes

to the technology, it also specifically affects the life and
work of the people who have to deal with the study to a
very distinctive level. In the nursing home, the affected
persons were not only the residents but especially the
nursing personnel. As already mentioned earlier, at the
beginning of the study year, the nursing personnel was
not only skeptical about the reasonableness of the study
but also were even a bit afraid of the technology. Sen-
tences like “will this technology be able to monitor us?”
or ”isn’t radiation like Bluetooth or UWB harmful?” or
“oh these sensors and wires do not look nice,” could be
heard rather frequently during the first weeks.

Nevertheless, the nursing staff had to learn to deal with

the study, and for nearly one year these nurses handled
residents refusing to wear tags, and searched for tags that
were laid aside, and more. So at the end of the study year,
the nurses had collected experience in dealing with tech-
nology in a way researchers typically will not be able to.
This experience can mean valuable insight into handling
long-term studies with patients being monitored and in-
teracting with patients who have to deal with wearing
technology.

Thus, it was reasonable to give the nursing personnel
the possibility to share their experiences. This way, we
would hopefully learn some valuable lessons and draw
some conclusions for any future deployments.
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2.12.1 Questionnaire
So, to assess the nurses’ view on technology and its po-

tential in health-care and nursing, we designed a sim-
ple questionnaire. This questionnaire covered topics like:
“amount of additional work for them personally”, “dis-
turbance by visible parts of sensor installation”, “effect
of having project personnel around frequently”, “impact
of wearing a Tag for the residents”, “personal view about
sensor technology and its benefits in health care and the
project itself.”

Modality The questionnaire itself was close-ended for
the most parts, in ordinal-polygamous (partially dichoto-
mous) form, but it also included some open-ended ques-
tions to provide the nurses an option to give their per-
sonal feedback. In terms of the close-ended questions,
four (for some distinct questions two) ordered options
were provided. These were: yes, a little/possible, hardly,
and absolutely not. A neutral option was intentionally
left out as the nurses should be made to deliberately give
either a more positive or a more negative answer and
avoid central tendencies. The questions themselves were
all formulated neutrally to avoid tendencies.

Contents The details in the questionnaire and each
question can be inspected in the Appendix §7.3. The
questions covered following topics:

• Additional workload caused by the study.

• Visible sensor installations.

• Impact of sensors/technology on involved persons
(patients, nurses).

• Impact of the need to “wear” sensors, e.g., convincing
residents to wear them.

• Potential of the study and the study’s topic for nurs-
ing and health-care.

• General potential of supporting technologies for
nursing and health-care.

• Communication policies of study and authorities.

• Dealing with not medical study personnel.

• Personal opinion about different aspects.

2.12.2 The Nurse’s Perception - Response to
the Questionnaire

Over the entire study period, in total, 14 nurses were
involved. In the first months of the study, the nurses
changed frequently. During the second half of the study
year, the nursing personnel remained stable. Four of the
14 nurses had left the home during the first months and
thus could not be reached for filling in the questionnaire.
Thus the questionnaire was handed to ten nurses. Out

of those ten nurses, 9 filled it in and returned the ques-
tionnaires, meaning a high return rate of 90%. This high
response shows that the involved nurses were eager to
pass on their experiences. 1

The first part of the questionnaire accumulates ques-
tions about the deployment of the study and its impact
on the nurse’s work and the way the residents were able
to deal with the study and its implementation. Overall
the responses were somewhat more positive than nega-
tive. Negative replies primarily were related to the fre-
quent necessity of having to look for laid aside tags and
problems in convincing the residents to wear the tags.
This was explicitly stated for the beginning of the study.
Details about questions and explicit responses can be
found in Table §1 in the Appendix.

Additional Burden: On average, the nurses stated that
it took them approximately 15 minutes of extra work per
day to make sure the residents were wearing their tag,
or search for them. Nevertheless, two third (66%) of the
responses stated that they did not or barely experience
the extra work (explicitly stated was the supervision of
wearing the tags) as an additional burden. Only 22% ex-
pressed that it actually was an additional burden for their
work, which shows that small amounts of extra work do
not seem to bother the affected people very much.

Visual Installations: About the visual and partially
provisional installation, 62.5% of the respondents stated
that it actually did disturb them in the beginning. Any-
way, all nurses (replies were: 78% yes, 22% mostly) got
accustomed to it, because the installations (wall mounted
sensor, wires) themselves did not or just hardly affected
their actual work. An effect this study could profit from
is the fact that humans tend to get accustomed to things
they see frequently. This means that luckily, the provi-
sional placement of additional wires, in the beginning,
had no adverse effect on the actual success of the study.

Influence on the Patients: In regards to the influence
the study had on the residents, 50% stated that the sensor
tags, in fact, had some impact on the residents (some re-
fused to wear tags) and 60% said that this influence was
long term but not equal for all residents (75%). Addition-
ally, 89% expressed that there were problems to convince
the residents to wear tags in the beginning, but 78% ad-
mitted that the residents got used to it. This was the most
critical part of the study since the success of the study
did entirely depend on wearing the tags. Fortunately, the
residents got used to it. Thus, the initial resentments
(specifically of the nurses) only partially influenced the
outcome of the study. The statements of the nurses, in
general, reflect the situation we could find in the amount
of recorded data.

Influence on the Nurses: The question, how the study
influenced the nurses in a personal way, was replied by

1 Most texts in the following section and subsection about the Nurse’s Perception have been taken in part from the following paper. All texts
taken from this paper have been written by the author of this thesis:
* Grünerbl A. et al. (2013), [53] please refer to respective entries in the literature list or beginning of this chapter
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75% as having some impact on their very own work
(again the frequent searches for laid aside tags were men-
tioned) but just 56% felt that it had some influence on
them personally (mood, burden). Furthermore, 89%
stated that neither the residents nor the nursing staffs
were much disturbed by the technical study personnel
that had to maintain the sensors and technical installa-
tions frequently. The second part of the questionnaire
focused on the nurses’ personal opinion about technol-
ogy in general and the potential of technology to assist
them in their everyday nursing work.

Personal opinion: In parts surprisingly, after experi-
encing this one-year study with all the ups and downs,
the nurses mostly had a positive attitude towards tech-
nology in health care. 93.75% of the respondents consid-
ered the topic of the project capable of enhancing the life-
quality of the elderly. All (100%) considered it somehow
possible to draw useful conclusions from sensor data,
and 78% expect to get a benefit for their work if such a

system would be installed permanently. These three last
statements show that the nursing staff is open-minded
for new developments and the usage of technology to as-
sist their work. It furthermore shows that, despite the ad-
ditional burden, they were able to see the benefit of such
studies, even though they personally did not benefit.

Additional readings stressed once more that the signif-
icant effort for the nursing staff was to convince the res-
idents to wear the tags and to search for tags laid aside
which, as expressed before, was feasible for them in the
amount the study required. One hopeful message of the
answers provided by the nurses was the positive overall
perception of the involved people. Even expected issues
and concerns from our side, e.g., searching for laid aside
tags, turned out to be acceptable for the nurses. Fur-
thermore, the general unexpected positive attitude of the
nurses towards technology in health care encourages to
proceed this way.

2.13 Discussion and Future Suggestions
This thesis chapter has introduced a long-term, real-

life deployment of a pervasive indoor-location monitor-
ing system for the assessment of dementia patients. De-
spite the challenges imposed by the real-life deployment,
the results strongly support the notion that such technol-
ogy can be deployed successfully on a large scale. Obvi-
ously, this would be a precondition if such a system was
to be installed professionally for monitoring the state of
dementia patients. Thus, the results provided by this the-
sis have a strong indication that such systems are possi-
ble. The major strength of the study includes the realistic
and real-life setting, a set of study subjects with different
symptoms and severity of dementia and the extended pe-
riod of observation.
The Maieutics care concept (several residents living in an
apartment like a joint family), implemented in the ward
is not only becoming more popular but also resembles a
somewhat home-like environment. Thus, it is reasonable
to defer from the results of this study, that such a sys-
tem would also work in the private home of a dementia
patient.

The main limitation of the study, though is the ground
truth. Only basing any analysis on coarse entries of
health records kept at the ward leaves a fuzziness to the
results. Despite, as explained before, based on nurs-
ing literature and discussion with several nursing profes-
sionals, I am convinced that within the type of analysis
that has been performed (two or three states, averaging
over 14 days) the ground truth can be trusted. More-
over, even though the impossibility of additional daily
observations over the long study period, seemed to be a
disadvantage in the first place, it still allows a further
interpretation. Because, as the outcome of the analysis
provide excellent results based on the record entries, this
also means that the sensor system is equally good as the

health records, or at least do not stand behind the current
method of documentation (where the most diagnoses of
the doctors will be based on).

However, having a much more detailed ground truth
(preferably systematic assessment for each day) would
have provided more options to understand the system
performance and potential better, and would have al-
lowed going into more details in the analysis. Thus, if
this work were to be seized further, it would be interest-
ing to know whether and how the system could be used
for a daily rather than weekly or bi-weekly state analy-
sis. Also, it would be interesting, whether it was possible
to detect changes in well-being within a day (as much as
many mental disorders have a morning/evening behav-
ior expression).

In general, the feedback from the nurses regarding the
deployment of a study in the daily life of a home for the
elderly has been very positive. Even though there were
various issues during the starting phase of the study and
some extra work and additional burden for the nurses,
the overall perception was positive. This feedback should
definitely encourage further study deployments in real-
life health care.

2.13.1 Suggestions and Lessons Learned

A hospital or nursing-home ward is a bustling environ-
ment. In recent years experience has shown, that espe-
cially in health-care settings, people likely have encoun-
tered technical studies or have experienced the introduc-
tion of a new technological system, which intended to
make their lives easier. Unfortunately, most of the clini-
cal personnel will have experienced such studies and/or
systems negatively. Many will have perceived such sys-
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tems as additional workloads, or as systems not fitting to
their specific needs. Many nurses have experienced the
use of parallel-systems. Because, after implementing a
new system, many wards will eventually go back to use
the old system because it was more suitable for the ward’s
needs. Subsequently, the nurses working in the wards
will have to ”suffer” the new system as redundancy in
parallel (because they have to). In this regard, nursing
stuff will most likely react critically or at best reserved
towards a new technical system. Nevertheless, in clinical
environments, the success of a study highly depends on
positive interaction with the nursing personnel. There-
fore, some aspects have to be considered (ideally in ad-
vance) to maximize the success of a clinical deployment:

• Autonomous System Design: Nursing staff usually
do not have extra time to operate the sensor systems.
If a system requires any kind of additional work for
the nurses, it might limit the success of it, because
in times of emergencies or on hectic days, even small
tasks like checking batteries might be forgotten. It
is therefore essential to use sensor systems that are
easy to control remotely and operate on main power
supply or batteries which do not need to be changed
or provide the workforce to perform any additional
maintenance.

• Communication of purpose to all who might be af-
fected: Managing to communicate the purpose of the
study to those who will be affected by it, is a main
factor of success. In the presented study, the nurs-

ing personnel was not actually part of the study. Still,
they were greatly affected by it. Without the nursing
staff frequently checking whether the residents would
wear the tags, the study would have suffered.

• Acceptance of System and Study Personnel: One
aspect, that most technicians tend to ignore, is that
the nursing staff has to accept both the technical sys-
tem and the study personnel. Specifically in clinical
settings, the access can be restricted and never is just
simply free (because in a ward there will always be
someone working, even at night).

The above can be summarized as:

an essential factor in the success of a real-life deployment is
that the main actors in the study understand why the study

makes sense and can see the potential benefit of it.

Then they will be willing to invest some time and effort to
make the study a success. If not, researchers will have to
spend much effort to keep the study running. Sensor sys-
tems should be robust and operate stably. Using cutting-
edge technology may be risky. Researcher-nursing staff
relation should be excellent, and the nursing staff (or any
party that is affected by the study) should be informed
frequently and thoroughly during the study. Additional
work should be honored (maybe financially). Technical
systems have to be accepted by the nursing staff - one
fact that most technicians simply ignore.
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3

Assessing Cognitive State Change:
Monitoring State Progression of

Psychiatric Patients With
Motion and Location Traces

There are different theories why! Even at cracker barrels, this question has been discussed frequently.
Still, it is a fact that the number of people suffering from mood disorders continually increases.
Estimates say that by 2030 affective mood disorders will contribute to the highest disease burden in the
developed world [1]. However, already today in European countries mental disorders are the unlucky
number one in newly diagnosed illnesses each year. Despite all theories about why that is so, or why
these numbers are rising so quickly, and despite all efforts to eliminate the causes, mental disorders are
a lingering issue in our society.

In this regard, a still not sufficiently answered question is the “how to treat people with such
disorders effectively”. As has been pointed out, today’s healthcare is advancing year by year and
prevention mechanisms for physical illnesses as heart attacks are giving much thought. So why is it
that care and prevention of affective mental disorders do not seem to improve?
Generally, the success of today’s health care highly relies on the availability of devices that enable
healthcare professionals to measure various physiological parameter objectively. These can be simple
procedures like measuring temperature or blood pressure, but there is also a variety of increasingly
complex image processing machines requiring high computational power. Thus, technology has found
its way into any kind of health care, with one exception: psychiatry and mental care.

In psychiatric care, almost any aspect still relies on non-technical tools. As such, a psychiatrist’s
or psychologist’s primary tools are interviews with patients and patients’ self-assessments. Reasons for
this kind of “staying in the stone ages” simply is that mental affection happens in the mind/brain of
a person, and as of now, there has no technology been developed that would make it possible to look
into the mind of a person and, with high certainty, could determine that “this particular mind pattern
is bipolar”. On the other side, most mental illnesses are manifested in behavior, meaning the way a
person behaves and the extent of how this behavior change carries indications about mental states.
However, until recently devices to measure behavior had not been developed.
With the development of wearable devices and their broad availability in our lives, this is now chang-
ing. The following chapter of this dissertation introduces all steps from an idea and the availability
of smartphones to the development of a new methodology to monitor affection-related behavior and
detection of mental state changes.

This chapter is split into two parts. The first part attempts to evaluate whether based sensor
recordings carry enough information about the user’s mental state to determine disease relevant
features and patterns. This first part relies on a small study with six bipolar patients over the course
of 6 weeks. The second part, proceeding from the results of the first part, will introduce methods to
determine the state of bipolar patients, only by using objective sensor-data, recorded with the patients’
smart-phones. Furthermore, a method to determine the point in time when a state of a patient starts
to change will be introduced. This second part draws upon a real-life data-set of 10 patients, recorded
over a period of 12 weeks (in total over 800 days of data tracing 17 state changes) by four different
sensing modalities.
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3.1. MOTIVATION

3.1 Motivation
Affective mood disorders are the most common brain-

related diseases, accounting for 55.1% of mental illnesses
and the number of affected people has been growing
steadily for the last 30 years (an increase of 37% world-
wide between 1990 and 2010 ). Cost-effective interven-
tions exist, but less than 1% of mental health budgets are
spent on measures to prevent crises. Besides the high
economic burden, the human suffering associated with
them is immense. Bipolar Disorders [95] are a common
and severe form of the affective mood disorders. Peo-
ple who are suffering from this disorder experience more
or less regular successions of periods of manic, normal
and depressive state. The current standard for determin-
ing the severity of an episode uses subjective clinical rat-
ing scales based on self-reporting that were developed in
the early 1960s (e.g., HAMD, BRAMS scales) or more re-
cent variations (e.g., BSDS). While the efficacy of these
scales has been proven, they still are a potential source of
subjectivity and additionally require the attendance of a
trained professional.

The main treatment currently offered is a life of phar-
macotherapy, which has to be modified according to a
patient’s state. Additional substances may have to be
prescribed to increase the prophylactic effect of the ther-
apy. Even so, the effectiveness of treatment strongly de-
pends on the timing. Thus, therapeutic measures can
be very effective if administered at the beginning of a
patient’s transition into a different state (e.g., from nor-
mal to depressive). They may be a lot less useful if se-
vere symptoms have persisted for a significant time. As a
consequence, a promising form of intervention is teach-
ing patients to recognize and manage early warning signs
(EWS). A systematic review of this approach found that
11 randomized controlled trials (RCTs) involving 1324
patients show the efficacy of interventions that include
EWS self-recognition [96]. However, this involves a very
significant training effort (which is difficult to finance)
and strongly depends on the patients’ compliance and
discipline. Thus, in some cases it can be impractical or
even impossible and therefore its usage has limitations.

Cognitive, mental and emotional disorders are an ap-
parent application field for activity recognition. As
the symptoms of such diseases manifest themselves in
changes of behavior [97], activity-aware systems could
be used as core instruments for assisting diagnosis and
treatment. Even more, the fact that psychiatrists cur-
rently have few objective and reliable alternatives would
amplify the value of such a system. Ever since X-rays
have become available, it is much easier to see exactly
how extensive a fracture of a broken limb is and how
best to attend it. On the contrary, most of the time psy-
chiatrists have to rely on a patient’s subjective recollec-
tion of their behavior. The closest thing to a “measure-
ment” is self-assessment questionnaires that can be time-
consuming and rely on subjective recollections and the
patients’ self-perception only. As consequence patients
often end up visiting the doctor very late, which makes
treatment more difficult and often leads to the necessity
of severe measures and prolonged hospitalization. On
the one hand, this can have a dramatic impact on the pa-
tient’s life (long sick-leaves), and is of costly relevance to
the health system.

While the benefit of a more “objective” measurement
based on activity recognition is clear, developing and im-
plementing such a system is difficult for many reasons.
First, having people (who have a mental disorder) wear
multiple sensors on a daily basis is often not practica-
ble. Second, since there are no reliable automatic di-
agnostic instruments, getting enough ground truth for
training and testing involves a considerable effort regard-
ing long-running trials involving repeated appointments
with professionals. Finally, the fact that behavior can
vary strongly on a daily basis, independently of illness-
based effects, makes recognition difficult. As a conse-
quence, very little work exists on diagnostic work using
pervasive sensors in real-world environments.
By overcoming such difficulties, this chapter demon-
strates how smart-phone usage patterns and sensor data
can be used as an objective “measurement device” for
aiding psychiatric care.

3.2 Related Work
Even though the research field of pervasive health-care

and more so mental-health-care is still relatively novel, a
reasonable amount of work has been done already. Please
note that this related work in general paints a picture of
the state of work at the time the work in this chapter was
done. 1

Overviews of the usage of wearable and pervasive tech-
nology in healthcare are given by [23], [67], [66], [24] and
[98]. Specific examples range from assisting older people

with cognitive impairment [99], to monitoring children’s
developmental progress using augmented toys and activ-
ity recognition [100].

In the area of mental health, the majority of systems
deployed focus on supporting self-monitoring. Systems
that provide patient feedback through questionnaires or
text messages are analyzed in [101], [102], and [103].
Simpson et al. [104] apply interactive voice response
self-monitoring for alcohol abuse disorder patients. Nev-

1 Major parts of the Related Work and Text in the related work have been taken from following papers of the author of this thesis. Any text
taken from these papers has been written by the author of this thesis:
Gruenerbl A. et al., 2015 [91], Gruenerbl A. et al., 2014 [92], Gruenerbl A. et al., 2012 [93], and Gruenerbl A. et al., 2014 [54], please refer to
respective entries in the literature list or beginning of this chapter
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CHAPTER 3. ASSESSING COGNITIVE STATE CHANGE

ertheless, despite the usability of self-assessments and
questionnaires it is far more intriguing to perform diag-
nostics itself via a wearable technology [105]

3.2.1 Self-assessment with mobile-phones

Smartphones are playing an increasingly important
role in gauging mental health. For instance, there are
apps designed for self-assessment that can help patients
to estimate and monitor symptoms specific to their ail-
ment, which can then be shared with psychiatrists. For
example, the eMoods Bipolar Mood Tracker app [106]
provides a system that allows users to input subjective
mood ratings daily and monitor them via an electronic
journal. The app can also keep track of hours of sleep,
anxiety levels, and medication use, which are all self-
reported, and can be shared with a family member, care-
giver, or clinician.
A number of other approaches have looked at incorporat-
ing Ecological Momentary Assessments (EMA) in order
to gather patient state at opportune times [107] specifi-
cally for anxiety and eating disorders [108] and also pro-
vide Ecological Momentary Interventions (EMI). In this
study, authors stress the use of external context clues,
based on sensor data such as location and social inter-
action, to deliver effective interventions. Another set of
studies that relied on self-monitoring of patients with se-
vere mental illness (SMI), specifically bipolar disorder
and schizophrenia are presented in [109] and [110]. Au-
thors report evidence of short-term adherence to and ac-
ceptability of mobile devices while emphasizing that it
is likely impractical for patients to respond to daily sur-
veys, stressing that context-awareness of mobile devices
and sensor sampling can provide feedback relevant to de-
tected patterns of behavior.
Similarly, a randomized controlled trial [111] revealed
that while self-reporting and self-assessment of patient
state has a positive effect in increasing emotional self-
awareness (ESA) in patients suffering from depression,
anxiety and stress, the mental health outcomes did not
improve significantly. As such, considering the impracti-
cality of this method for long-term monitoring [109] and
patients’ reluctance to log information [112], there is a
clear need to infer patients’ states autonomously. Recent
trends in this area have been pointing towards using sen-
sors on smart-phones for collecting objective data.

3.2.2 Objective Monitoring

Objective monitoring consists of smart-phone sen-
sors passively collecting data that can be used to in-
fer patient state. Matthews et al. [113] outline dif-
ferent aspects in balancing sensing and patient’s need
and describe MoodRhythm, a system for tracking daily
rhythms. There is far less work in automatically infer-
ring patient state in comparison to self-reported informa-
tion. One possible approach is to develop systems that

predict patient state by using predefined algorithms that
are initialized based on evidence from scientific or clin-
ical knowledge [114, 115]. This has been the typical ap-
proach of systems that recognize patient activities, where
algorithms make inferences regarding the patient’s status
by plugging in sensor data.

3.2.3 Automatic Recognition of State

Regarding automatic recognition of mental state much
less work exists, in particular, work involving real-
world studies and off the shelf devices like smart-phones.
Massey et al. [116] describe an experimental analysis of
a mobile health system for mood disorders where they
introduce different possible sensors for mood detection,
yet focus on technical aspects like the line of sight and
reception rate, optimal coverage and optimal placement
of on-body sensors.

Paradiso et al.[117] introduce a personalized monitor-
ing system based on sensing physiological and biochem-
ical signals. Burns et al. [118] introduce a application
which tries to predict a patient’s mood (of depressive pa-
tients) using machine learning models, yet (contrary to
our approach) requiring constant interaction (5+ times a
day) with the test patients and with no psychological as-
sessment available.
In [119] LiKamWa et al. present an i-phone approach to
infer a user’s mood - yet again requiring constant mood
input from the user - and present the results of a field
study with 25 random test subjects. Furthermore, “True-
Colours” [120] and the “Optimism App” [121] were de-
veloped to log self-reported mood, activities and quality
of sleep in order to monitor depression and state changes.
Two publications with similarities to the here published
work are the research done by a group from Denmark
[122] and the previously mentioned [118] that intro-
duces a mobile phone application which employs ma-
chine learning models to try to predict patients’ mood (of
depressive patients). Here however, the ground-truth is
fully self-rated, no objective psychological or psychiatric
assessment is performed.

In [122], Frost et al. use a self-developed application to
record subjective and objective data from patients who
have bipolar disorder. Even though their main focus
lies on self-reported information, they also utilize coarse
objective sensor data (acceleration fragments and phone
call statistics) and try to estimate future shifts in a pa-
tient’s mental state. These predictions are then compared
to forecasts derived from the self-reporting data. By con-
trast, our work goes into far more depth in the area of
state classification, also uses location sensors and sound
in addition to acceleration and instead of social interac-
tion sensing compares the results to an objective, diag-
nostic ground-truth on a day to day basis.
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3.3. OBJECTIVES AND CONTRIBUTION

3.3 Objectives and Contribution
The objective of this chapter can briefly be summarized

as: find a way to objectively determine the cognitive state
of patients with affective mood disorder during their ev-
eryday life, only by relying on a smart-phone. This would
undoubtedly increase the complexity of the work in com-
parison to the work in the previous chapter. Thus the
method in this chapter was to go step by step. First, a do-
ability evaluation should evaluate whether the objectives
of this chapter can be successful at all. With a positive
outcome of the do-ability evaluation, a second and more
extensive study should allow developing algorithms to
determine bipolar states and predict transitions.

First of all two aspects were relevant to know: since
such a system has to operate in the patient’s everyday
life, it was essential to understand whether a technical
application would be accepted by bipolar patients and
further what kind of data such a technical system should
be based on? Discussions with patients revealed that
smart-phones were an acceptable technology, as patients
themselves were using them. Therefore the first phase
of the development should comprise a real-life study
where data of a small group of bipolar patients should
be gathered and, in the course of this data measurement,
it should be evaluated whether the test subjects were able
to deal with the measuring device and would be willing
to accept it. The data gathered in this first phase should
suffice to detect patterns which can be correlated to the
patient’s mental condition and possible transitions into
other bipolar episodes. See section §3.4
In this regard the main question to be answered is: do the
sensors contained in a suffice to record disease-relevant
information? On a second level, it should be evaluated
whether it would be possible to extract enough relevant
parameters, from these sensors’ data. For this first part,
an initial mainly qualitative study was conducted with
ten patients over the course of 6 weeks per participant.

The study was conducted under the supervision of psy-
chiatrists and medical psychologists treating the patients
and with the approval of the University of Innsbruck
ethics board.

By drawing conclusions from the first part, and after
leading various discussions with psychiatrists and other
health care providers, the next step could be designed.
This second part sets its goal of developing an applica-
tion based on smart-phone behavior and activity moni-
toring that would be usable as an “objective” measure-
ment device, which would help to determine state and
detect state changes. To be more precise, the application
should only and exclusively rely on objective sensor data
and should work without any input or feedback from the
user/patient. In order to achieve these goals, a second
and larger data collection study was implemented, which
would cover the entire package. See section §3.5. For ten
months, a total of 10-15 patients collected 24/7 sensor-
data on their smart-phones. At the same time, all pa-
tients filled-in a daily self-assessment questionnaire and
were frequently checked (with the standardized meth-
ods used in psychiatry) by psychiatrists and medical psy-
chologists. Next, the pre-processing and methodology to
extract appropriate features is described in section §3.7.
With the necessary features at hand state classification
algorithms were applied on single sensor modalities and
also an algorithm to fuse different sensor modalities was
evaluated. See section §3.8. Since determining when pa-
tients changes their mental state is more important than
which state a patient is in, a change detection algorithm
was developed an analyzed. See section §3.9.

This chapter closes with a report on challenges that
had to be faced in this particularly sensitive area (Sec-
tion §3.10) and an extensive discussion of the results and
possible future outlooks (Section §3.11).

3.4 Do-ability Evaluation
At the beginning of the development, quite some

thoughts were invested into how such a system should
look like and which steps had to be taken to realize the
development of a final system. Thus, in the first step in
order to understand whether the aimed at goal was pos-
sible to reach and if yes, what information was essential
to collect, a do-ability evaluation data collection was per-
formed. In this sense, a small real-life study was set up
to collect the needed data and information.
The general idea was to gather real-life data from real pa-
tients, take this data and analyze it towards finding and
extracting features that would resemble the patient’s re-
spective state. Still, as already mentioned the main ques-
tion to this evaluation was: do the sensors contained in a
smart-phone suffice to record disease-relevant informa-
tion? Thus a smart-phone, used by bipolar patients dur-
ing their everyday lives, should collect all data that is rel-

evant to analyze the patients’ behavior and draw conclu-
sions about the patients’ states. So first it had to be un-
derstood what this kind of relevant information would
be and how to retrieve it.

3.4.1 Relevant Information

Before sitting down to create an application for record-
ing sensor data, and deciding on an appropriate plat-
form, a number of constructive discussions with psy-
chiatrists were lead to get a picture of the most critical
and meaningful features in the behavior of bipolar pa-
tients. These should provide information about the pa-
tient’s mental condition or would indicate the transition
point between episodes. The following three behavioral
patterns were identified as likely being disease-relevant
or indicative of an impending change in the episode were
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identified: 1

Location and Movement: It is commonly known, that
depressive people tend to withdraw to their homes while
for manic people the world cannot be large enough.
Therefore, the way a patient moves around in their sur-
roundings along with places visited throughout the day
indoors and outdoors are an essential factor in determin-
ing the state and state changes of a bipolar patient. It can
display a picture of the movement patterns of a person
over a day and on a more extended scale the changes of
these patterns over weeks.

Level of Activity: Another indication for changes in
bipolar episodes is the amount and intensity of physical
activity. While depressive people often find it difficult
to motivate themselves to do anything or concentrate on
simple everyday tasks, manic people feel like they cannot
perform enough activities.

Social Interaction: Social interaction or the possible
willingness to get in contact with other people is a third
indicator of a likely change in state. A manic person has
a heightened urge to interact with others and possibly a
reduced sense of personal boundaries, while a depressive
person suffers reduced social abilities. Depending on the
type of the episode (manic, depressive or balanced) and
the severity of it, a person will try to interact more or
less with others. At the beginning stages of a depressive
episode, e.g., a patient might feel an urge to talk about
their problems, but a severely depressed patient might
not even be able to pick up the phone.

3.4.2 Monitoring System

After identifying the main requirements that should be
covered by the sensor data, a smart-phone application
had to be implemented that would allow recording just
these relevant information. 1

This application was Android-based (see fig.3.1(a)). It
would work automatically on device boot and would run
almost invisible to the users in the smart phone’s back-
ground. Further, it did not require any user interaction.
On-demand though, it provided the possibility to turn
the measurement off or on. In regards to privacy and the
patient’s sovereignty of their data, this was an important
aspect. Mentally disordered patients, but not only they,
might feel the need to be in charge of the things hap-
pening around them (including the data recording). To
cover the three main relevant indicators as described be-
fore (movement, activity and social interaction) follow-
ing smart-phone sensor system were used to record data:

Location and Movement: Regarding recording
changes in the test subject’s position three different sen-
sors could be used: GPS location: GPS was used for loca-
tion tracing outdoors. To guarantee the patient’s privacy

all GPS sensor readings were anonymized (transformed
into a neutral coordinate system) before further process-
ing. WiFi Network: WiFi cell information and signal
strength should be used to get a kind of indoor location
tracking 3G Network: the 3G network could be used in-
doors and outdoors, primarily to assist GPS and WiFi
positioning.

Level of Activity: In order to determine the amount of
activity, mainly two sensor readings were to be used: Ac-
celeration Data: Acceleration data could be used to de-
termine motion and unmoved time-periods and might
enable the recognition of specific activities. Magnetic
Field Data (Compass): orientation of the magnetic field
of the three axes including a time stamp should provide
the heading of the movement.

Social Interaction Within social interaction in a mod-
ern world, the cell-phone itself plays an important role.
Here the number of phone calls or text messages and
specifically the outgoing ones give an overview of the
person’s desire to communicate. On the other hand
an increasing number of incoming messages/phone-calls
(while decreasing outgoing connections) could indicate
the concern of the circle of friends or acquaintances to-
wards the patient’s state!

For security reasons, all recorded data was encrypted
(AES 128bit software side encryption). The recorded data
was stored on an SD card and was transferred to the
study data storage during the patient’s appointment at
the hospital. Within typical everyday usage (including
phone calls and limited web usage) the battery would last
up to 10-15 hour. This did require to charge the smart-
phone each night, yet still was sufficient for the usage
throughout the day. See figure 3.1(a)

3.4.3 Ground-Truth Acquisition

This study took place not only in a real-world-like set-
ting but actually in the every day real-lives of the partici-
pating patients. In this regard, there was no possibility to
collect a ground-truth in the way a lab-study would pro-
duce. Meaning there was not even a way to document the
activities the participants would perform daily, or which
kind of places they would visit. In fact, the possibilities
for ground-truth were minimal, even more, limited than
in the previous chapter. On the other hand, as this was
the goal, the study was dealing with a new way of us-
ing and interpreting sensor readings, with only limited
knowledge to rely on. Therefore an elaborate ground-
truth actually would have been crucial for the success.
In case of this study, ground-truth did not only mean to
record the reality of what kind of motion and location
were happening but also to understand in which mental
state the participant was in.

During this study, we had to accept that real ground-
1The following listing and description of the relevant parameters have been introduced in the following publications:

Grünerbl A. et al., 2012 [93], and Grünerbl A. et al., 2014 [92], please refer to respective entries in the literature list or beginning of this chapter
1The logging app was implemented in course of the Monarca EU FP7 project by Jens Weppner and Amir Muaremi.
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(a) data recording appli-
cation

/
(b) Daily questionnaire

Figure 3.1: The smart phone application for data recording runs autonomously in the back ground and triggers the daily ques-
tionnaire in the evening.

truth was not available. Generally, in order to gather
some baseline information about the participant’s actual
bipolar state (diagnosis) and episode changes, two ways
were possible.

Daily Self-Assessment: First, to collect a basic picture
of the participant’s day, a short, daily questionnaire for
the participants to fill-in, was developed. This question-
naire was integrated into the smart-phone application
and was triggered to appear automatically at a particular
time in the evening and would only require 5-10 minutes
per day. Within approximately ten questions, the partic-
ipants were asked to provide information about their ac-
tivities of daily living (ADL). These questions were taken
out of the following topics: Which meals were taken and
when; what general activities were performed (indoors,
outdoors, extracurricular, etc.) and when; how much
time was spent on repeated activities; how many hours
of sleep were taken; which common places were visited?
In addition to these questions, three self-rating questions
about the psychological state, the physical state and the
amount of activity were included and could be answered
by assigning 1 star (bad) to 5 stars (good). Note that the
assignment of stars to the questions was handled in a
reverse-school grade way, as this was more intuitive for
the patients, rather than assigning a complex psychiatric
scale. Figure 3.1(b) displays two examples of this ques-
tionnaire (in German, as the study was conducted in a
Austria).

Periodic Professional Examinations: Since self-
assessments are subjective, a second more objective
ground-truth should be collected in the form of psychi-
atric assessments and psychological scale tests. Both are
part of clinical standards. Thus it was necessary for
the participants to come to the hospital for these as-
sessments. The psychiatric assessment was performed
by psychiatric professionals at the psychiatric hospital.
They mainly focused on analyzing changes in the men-
tal state and the respective behavior of the residents, in
comparison to the previous assessment.
In a second assessment, to get a profound psychologi-
cal idea of a participant’s current mental health, stan-

dardized psychological scale tests were applied. Note
that these scale tests are currently the main way to
rate the mental state of a person somewhat objectively.
Still, even though specially trained psychologists per-
form these scale tests, the results have a subjective qual-
ity to them. Since the answers are given by a person, even
though as highly trained to be as objective as possible,
still, there is no way to guarantee an equally objective
attitude throughout the study. Following widely recog-
nized scale tests were performed:

• Hamilton Depression Scale (HAMD): standard scale
for determining the degree of depression. Performed
by trained clinical psychologists.

• The Common Depression Scale (ADS): self-rating scale
for depression. A self-assessment performed under
the supervision of trained clinical psychologists.

• The Mania Self-rating Scale (MSS): self-rating scale for
mania. A self-assessment performed under the super-
vision of trained clinical psychologists.

The assessment and the scale tests were performed at
least three times during the study period, once at the be-
ginning, once at the end and one after three weeks. In
case the study period had to take longer than six weeks
for any reason an assessment was performed latest every
three weeks. Initially, the plan was to schedule assess-
ments at least once a week, to cover the study as tightly as
possible. Psychologists advised against such a high fre-
quent scale testing. Since these tests are standardized,
they include a specific set of questions that have to be
asked in a specific order and in a specific way. Repeating
these scales very frequently, would have caused a mem-
ory effect and thus biasing the outcome significantly.

3.4.4 Study Execution

This first do-ability study included a total of 10 pa-
tients 8 of them female, two male, in the age range of
33 to 48. Eight of the study participants were recruited
during an in-patient stay in the participating psychi-
atric hospital. The majority of the patients (six) was dis-
charged within two weeks after they were included in the
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study. Only two remained in the hospital during the en-
tire study period.
The recruiting was done solely by the wards psychia-
trists, who determined which patients would be both
mentally and physically fit to deal with the requirements
of the study. The primary requirement for the partici-
pants was a diagnosis of affective mood disorder accord-
ing to the ICD-10. All participants were residing in ru-
ral areas or small towns. For each patient, the trial’s du-
ration was a minimum of six and a maximum of eight
weeks. During the study, the application was recording
24 hours a day, seven days a week without stop.
The short self-assessment questionnaire was set to ap-
pear automatically every day at 8 pm, and the partici-
pants were asked to fill them in as frequently as possible.
Frequent check-up appointments (every 2-3 weeks) were
used to transfer the collected data to the study server.

3.4.5 Data and Participant Overview

In the following section, an overview of the recorded
sensor data and the study participants is given. One
of the patients was really motivated to participate, yet
quickly realized that the study turned out to be too chal-
lenging. Thus this patient drops out after a few weeks.
Another resident had to be excluded due to smart-phone
failure, that led to massive data losses. A third patient
did not improve their state during the study and even-
tually stopped to contact the hospital. Thus the data
available until the point of drop out, was not sufficient
for a reliable analysis. As the time resources of the psy-
chiatric hospital and the time available for deploying the
study were limited, the loss of data could not be compen-
sated by including more patients. Nevertheless, and even
though data gaps could not entirely be avoided for all pa-
tients, out of 10 patients, the data-sets of 6 patients (P5-
P10) were sufficient and were included in the analyses
described in the following parts. All of the participants
that could be included in the analysis had clear changes
in their episodes during the study. Figure §3.2 graphi-
cally shows the state-progress of each patient during the
study period. However, the degree of changes, as well as
the amount of data that was collected varies greatly:

Four out of the six participants (P5-P8) started the
study in a more or less severe depressive episode (see fig-
ure §3.2). All of them show improvement in the state
during the study and were eventually be tested as not
depressive at the end of their participation. Patient P6
alone is partially an exception of this, as their state wors-
ened during the first half, yet eventually also showed
progression up to only slight depression at the study-
end. Two patients (P9 and P10) started in a more or
less severe manic episode (see figure §3.2). At the end
of the study, both were tested normal within the capa-
bilities of the scale tests. Still, P9 already showed some
tendencies towards depression, while P10’s appointment
assessment discussions with the psychiatrist hinted some
mood swings in-between. Those nevertheless were could
not be covered by the scale tests. The data of a seventh

participant (P3) was almost complete. Still, P3 started
in a mixed state. This means the behavior of the patient
was showing both depressive and manic characteristics
at the same time. This cluster of symptoms is an exciting
case of course. However, this patient was the only par-
ticipants with this form of symptoms. Thus more data
of similar subjects would have been needed to draw re-
liable conclusions. Hence this seventh patient was also
excluded from the analysis.

Figure 3.2: The Progression of patients (P3-P10) from depres-
sion (-3 .. -1) or mania (+3 .. +1) or mixed phase (- and +) to
normal (0).

3.4.6 Evaluation and Initial Results

The aim of the do-ability analysis was mainly to un-
derstand whether sensor data collected by a patient’s
smart-phone would comprise disease-relevant informa-
tion. Since such evaluations have not been done before,
at the beginning of this evaluation, it was not clear which
kind of information the sensor data would provide. Thus
three evaluations were performed stepwise:

1. A qualitative analysis of visible patterns.
2. Then, a quantitative analysis of trends in the data in

relation to the diagnosis.
3. Finally, a correlation analysis of sensor data and self-

assessment was performed.

Qualitative Analysis

Note that this evaluation was intended to understand
whether sensor data was a sufficient way to analyze af-
fective disorders. Thus this evaluation does not intend to
be extensive or complete. Also, the amount of collected
data and the kind of sensor-platform used would enable
a variety of possible features. Still, as the main aim was
to get a first overview of the data’s potential and thus the
analysis and features are meant to focus on only one as-
pect for each of the disease-relevant behavioral patterns:

Location - Map of Movement: One outcome that the
psychiatrists participating in the study were keen on was
the possibility of getting a good visual overview of the pa-
tients’ life, specifically during the weeks since their last
appointment. An example of visual illustration they ac-
tively suggested was, what they called "a map of move-
ment." This map should visibly show the patients’ paths
over some days or weeks. Figure §3.3 provides an exam-
ple of such a map of movement. Please note, for privacy
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reasons, GPS data was anonymized before processing!
The left part of Figure §3.3 displays the paths of move-
ment for the first few days of a participant in a severely
depressed state. It apparently only provides movement
around the home location (0,0). The right part, in con-
trast, shows the paths of the same resident for one week
after the state had improved. The distances, this partici-
pant has covered in a day, is undoubtedly longer.

Social Interaction - Phone Calls: An interesting and,
at first even for the psychiatrists, surprising effect was
that most patients had an increase in the length of phone
calls and the number of calls when they were in a mildly
depressive episode. This was even true in both directions.
No matter if a patient was severely depressed before and
increasing, which seems to be comprehensible, but also
when a patient was neutral and moving towards depres-
sion. For both situations, the length of phone calls in-
creased. On a second thought though, this effect seems
to confirm the theory outlined above that mildly depres-
sive people exhibit an increased desire to talk about their
feelings. Additionally, friends and relatives could real-
ize that a change was happening and thus be expressing
their concerns by contacting the patient more often.

‚
Figure 3.4: Number (blue) and average length (red) of phone
calls and state profile (bar at top -3..0) of two Patients

Even though Figure §3.4 shows this trend as an exam-
ple only for two patients this effect could be observed
within 66% of the study participants. Both plots show
an increase in the average length of phone calls with the
improvement towards a mild depression. However, with
further improvement into a none depressive condition,
the phone call length levels off and stabilizes at a lower
length. The leveled duration of phone calls in a normal
state appears to be higher than in a more severely de-
pressed state. During the normal phases, the average
length remains constant. This evaluation might in a later
state be the basis of the targeted diagnosis and episode
prediction of depression and mania.

Trends in Relation to Diagnosis

Since the qualitative and visual analysis had revealed
obvious correlations between the diagnosed state and
pattern in the data, these trends in relation to the diag-
nosis should be evaluated. This analysis is of a qualita-
tive nature because of both, the number of examinations
per patient and the number of patients is not sufficient
for statistical analysis. Nevertheless, this analysis is in-
tended to shed light on the extent to which the effects
of the patient’s condition on the sensor data can be mea-
sured.

Activity - Motion Ratio: The level of activity is ex-
pressed mainly in the amount of movement. Therefore a
simple and prominent feature is to calculate the ratio of
time spent moving vs. time spent resting, based on accel-
eration. Table §3.1 shows the change in motion ratio for
depressive (P5-P8) and manic (P9-P10) patients.
Comparing the values for the patients during a depres-
sive and an increased state shows that the motion ratio
increases from an average of 11.3% motion in a depressed
state to 13.71% motion in an increases state. This is an in-
crease of 21.3% for the improved state for all patients, ex-
cept for P7. Even-though the effect in P7 seems to be re-
verse to the others, a discussion with the psychiatrists ex-
plains this effect: P7 was severely depressed at the begin-
ning of the study, and thus, being rather young, was in-
clined to use the new trendy smart-phone as a quite wel-
come distraction. Therefore, P7 played with their new
phone a lot during the first weeks of the study. Later in
the study, when the state of P7 improved, the amount of
phone usage leveled off to a typical amount. Removing
P7 from this evaluation would increase the improvement
of motion among depressive patients to 36.2%.

Not surprisingly for the manic patients, the trend is re-
versed. The amount of motion decreases with the pro-
gression from manic to a normal state. While on average
the manic patients have a motion ration of 6% during
mania, they move 4% of their day in a normal episode,
a decrease of over 33%. An average amount of motion of
11% during a depressive state in comparison to an aver-
age amount of motion of 6% during a manic phase seems
somewhat odd and surprising. Nevertheless, this effect
has two different explanations. First, all patients were al-
ready under psychiatric treatment. This means, manic
patients were told to actively try to reduce their drive
to move, while depressive patients were told to increase
their movement actively.
Secondly, this effect merely confirms the statement from
before, saying that the characteristic of each feature is,
in general, person dependent and possibly even unique.
For example, the increase in depressed patients varies be-
tween 8.9% for P8 and 64.9% for P6. This means that
P6 very likely express their state more through physi-
cal activity than P8. Still, even though the effects be-
tween patients vary quite a lot, there is measurable (and
in trend for most patients similar) difference in the per-
centage of movement between bad and good state. This
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Figure 3.3: Map of movement: left - first days, severe depressed (-3), only movement around home: right - after improvement of
state (-1), movement around home and first visit to friends

trend clearly indicates that the sensor data can depict ef-
fects on behavior. More precisely, within the limits of
the available data, this output confirms that, with im-
proving condition manic patients become quieter while
depressed patients become more active.

Patient depressive state improved state increase

P5 (scale) 13.04% (-1) 20.19% (0) 54.8%
P6 (scale) 7.32% (-1) 12.07% (-0.5) 64.9%
P7 (scale) 8.21% (-3) 4.48% (0) -45.5%
P8 (scale) 16.62% (-2) 18.12% (0) 8.9%

mean 11.30% 13.71% 21.3%

Patient manic state improved state decrease

P9 (scale) 3.38% (+2) 2.07% (0) 38.6%
P10 (scale) 8.71% (+1) 5.95% (0) 31.7%

mean 6.05% 4.01% 33.7%

Table 3.1: Increase/decrease of the percentage movement from
depressive (scale: -3 to -1) or manic (scale: +2 to +1) state to
improved state (scale: 0)

Location - Outdoor Ratio Depressive people are in-
clined to withdraw to their homes and stay inside. Thus,
a first aspect of analyzing location data is the ratio of time
spent indoors and outdoors. This outdoor ratio was cal-
culated based on the amount of GPS data recorded dur-
ing the day. For calculating this ratio, it was assumed
that GPS only would be visible to the smart-phone sen-
sor if the patient were outdoors. Given this assumption,
the ratio can be measured easily by calculating the time
the GPS signal was visible. Invisibility of GPS of more
than 10 minutes was presumed not to be outdoors. For
the evaluation of the outdoor rate, the daily outdoor rate
was averaged over the course of approximately ten days
within a particular state and over ten days within the en-
hanced condition.

Please, note that some patients had occasionally
switched of GPS measurement off. Also not every pa-
tient provided data of 10 or more days within a specific
state (some changed more rapidly). Thus, not for every
patient the amount of data available was the same. All
four patients that provided sufficient GPS data were de-
pressed. For those patients, the time spent outside av-
erages at 4.12% in a depressive episode but enhanced to

an average of 12.88% in a normal state. This means an
increase of 200% (between 35% and over 2700%). The
range in the increase, of course, is partially due to the
amount of improvement of state (e.g., severe depression
“-3” to normal “0” in comparison to slightly depressed “-
1” to almost normal “-0.5”) but also highlights the indi-
viduality and patient-specificity of the numbers. See also
Table §3.2 for details. Nevertheless, despite all individu-
ality, this analysis could once more confirm the usability
of a smart-phone to observe a change in state for affective
mood disorder patients.

Patient start (depress.) end (improved) increase

P5 (scale) 5.09% (-1) 12.30% (0) 140.5%
P6 (scale) 7.61% (-1) 10.32% (-0.5) 35.5%
P7 (scale) 0.698% (-3) 19.94% (0) 2759.3%
P8 (scale) 3.75% (-2) 8.98% (0) 138.9%

mean 4.29% 12.88% 200%

Table 3.2: Increase of time spend outside from start in depres-
sive state (scale: -3...-1) to end in improved state (scale: 0)

3.4.7 Correlation of Sensor Readings and
Self-Assessment

As has been reported before, the self-assessment of the
participant, was filled-in on a daily basis, which was not
possible for any form of objective assessment. Thus, the
self-assessment was providing a sufficient amount of data
points for statistical analysis. Still, self-rating is not ob-
jective and tends to be influenced by various factors and
thus being biased and noisy. To reduced the bias ef-
fect a 7-day sliding window was applied onto the self-
assessment to smooth and average the values. With the-
ses smoothed numbers, the correlation (linear regression)
of the features extracted from the sensor data (see pre-
vious sections) and smoothed self-assessment as ground
truth was calculated. To verify the statistical significance
of the resulting correlation a t-test of the regression was
performed.

Table §3.3 lists the results of this correlation and the
t-test evaluation. For all three behavioral aspects and all
patients (if data of a specific aspect is available) the t-
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Activity weekly Location weekly PhoneCalls weekly
Patient T-Value Correlation DoF T-Value Correlation DoF T-Value Correlation DoF

P5 2.3918 0.36 40 2.6754 0.47 27 -7.0983 -0.82 42
P6 2.2119 0.43 24 -1.7837 -0.39 20 2.0608 0.32 20
P7 2.1273 0.35 35 2.4808 0.55 16 -0.0694 -0.02 36
P8 -8.1330 -0.87 23 -3.2647 -0.78 9 3.3761 0.62 32
P9 -0.9237 -0.2 21 - - 4.1455 0.55 37

P10 -2.4512 -4.48 13 - - 6.0665 0.66 41

90% C |t| > 1.79 |t| > 1.73 |t| > 1.79

Table 3.3: t-Value, correlation and degree of freedom (DoF) of the three features with the self-assessment

value, the correlation value and the degree of freedom
(number of data instances) are listed.
In the bottom line, the table states for each feature, for
the smallest degree of freedom.1, the critical value for T
to be still within the 90% confidence interval. Both t-
value and correlation value show a correlation of the ac-
tivity feature for all patients except for P9, who seems
not to express their well-being via activity. For all other
patients, the correlation is within the 90% (C) confidence
level. The movement feature (location ratio) correlates
for all patients within the 90%. Note, P9 and P10 did not
provide enough GPS points for a statistically valid analy-
sis, so they were left out in this analysis. The phone calls
feature correlates for all but P7.

3.4.8 Discussion, Insights and Further Rec-
ommendations

This evaluation has introduced a study which served
as the first analysis towards the development of a smart-
phone based support system for bipolar disorder pa-
tients. The study included the collection of behavioral
data from ten bipolar patients, using a commonly avail-
able smart-phone. Additionally, despite being a real-life
deployment, an elaborate ground-truth by psychiatrists
and psychologists was collected. The sample size of this
first study is small, mainly due to due to the exploratory
nature of it, as the general goal of this study was to eval-
uate whether such sensor data would include disease-
relevant information.
Despite the small sample size, it was possible to perform
a step-wise analysis including quantitative and qualita-
tive analysis and a statistically significant evaluation of
correlation. Summarizing the results of this do-ability
evaluation, it is safe to say that it is possible to statisti-
cally prove a correlation between the reported state and
the recorded sensor data. Of course, not all features work
entirely or equally for all patients. This is not surprising,
since humans are individuals and will deal with situa-
tions and states in their unique ways.

For example, not every person starts to make long
phone calls when they feel sad. Also, everyone has their
own unique level of activity. So the same value could
mean manic for one person and depressive for another.

In the same line of argumentation, a notable increase in
a number cannot be mapped onto a fixed improvement-
scheme for everybody. Moreover, it is very likely still,
that such an increase cannot even be mapped onto the
same person without further evaluation. Nevertheless,
this evaluation very clearly provides an answer to the
question stated at the beginning of this analysis, that sen-
sor data indeed carry information that can be directly
correlated with the patient’s state.
As being a successful first evaluation, further work will
continue and improve this work on a multitude of as-
pects: Based on this results, a follow-up study will be
performed. This study will not only include an improved
application but will also be deployed on a long-term, at
least twice as long. All the same, the second study aims
to include the double amount of patients.

An aspect, not explicitly evaluated in this section, but
none the less affecting the options for evaluation was
the longtime distance between objective ground-truth
points. Psychiatric assessments and psychological scale
tests should not be scheduled more often than every three
weeks to avoid learning effects. If possible, the second
study should include more ground-truth points. A possi-
ble way to achieving this could be in the form of frequent
short phone calls by the psychiatrists in-between the ,on-
site assessment appointments. This way the amount of
available ground truth could be doubled. Also, the self-
assessment can be improved. The analysis has shown that
questions like “at what places have you been today” is in-
teresting for the treating psychiatrist, yet in the way, the
data can be evaluated this information is too coarse to
suffice as ground-truth. Thus the questions in the self-
assessment should focus more on evaluating the patient’s
(self-rated) state. E.g., the daily questionnaire could be
comprised of randomly selected questions out of the ma-
nia and depression catalog.
The last recommendation for future studies and analy-
sis is to enlarge the feature set. Not only to evaluate
which features work best for most patients but also to
evaluate the individuality of features. The individuality
of features means, to evaluate whether there are features
that work for every person, or features that only work for
some. Most importantly if for each person features can
be extracted that work.

1Please note that this means, for a higher degree of freedom the t-value may be higher than the value listed in the bottom line of table §3.3 to
be still within the 90 % confidence interval
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3.5 The Vision - Activity Recognition Assisting Mental Care
The previous section has confirmed that smart-phone

internal sensors can record disease-relevant features of
affective mood disorders. In this second phase, the anal-
ysis goes more in-depth. Based on the insights of the do-
ability analysis a practical and utilizable collaboration of
activity recognition and mental care should be designed.
The main aim of this collaboration should be to develop
a smart-phone application that can monitor the behavior
and activity of mentally ill persons objectively!
To specify objective monitoring: the application should
be able to determine the state of an affective mood dis-
order patient but even more importantly should specifi-
cally detect changes in the patient’s state. This, on a long
run, should further enable the users and their doctors
and therapists, to provide timely treatment. Addition-
ally, as was hinted with the word “objective,” the appli-
cation should be able to rely only on sensor data and not
on any user input or feedback, which in any form is sub-
jective and often biased. Furthermore, the requirement
of providing frequent input to a system can have nega-
tive impact on the compliance of a user. Thus, some as-
pects for the envisioned system should first be taken into
considerations:

1. The system does not aim for automatically trigger-
ing any responses that could mean to detour a doctor,
like suggesting to adapt the medication, which could
have a potentially harmful outcome, but generally
providing information in time and at the right time.
Thus, the accuracy of the envisioned system and nec-
essary algorithms can lie within a normal range.

2. Within affective mood disorders a condition called
“rapid rapid cycler”, which describes patients whose
state will change within hours (oscillating between
manic and depressive within one day) exists. Such a
manifestation is not included in the targeted popu-
lation of users. On the contrary, the major popula-
tion of affective mood disorder patients experiences
episode changes of 4 or less per year. This means that
the reaction time for the envisioned system would be
on a scale of a few days not hours.

These considerations generally mean that the system
is not envisioned to substitute for a doctor or thera-
pist, which would require very high and robust accu-
racy and would raise extensive ethical discussions. For
the envisioned usage, the recognition should be accurate
enough to be able to provide daily updates and long-term
overviews to the doctors and the patients. These updates
and overviews should, in turn, enable doctors and pa-
tients to interpret the current situation better. The re-
quired scale can be anything from a few days to weeks or
months. Specifically essential and hence mainly desired
by doctors will be trend-overviews in between appoint-
ments and the possibility to detect changes in state at on-
set, meaning within very few days. In context of the work
in this chapter, this generally means:

1. that a robust change detection is more important
than the recognition of a particular state. The sys-
tem is not required to provide a detailed and correct
diagnosis, but to show a trend. The diagnosis will
be made by the doctor anyways, which is not only an
ethical but mainly a liability question.

2. This also means that a sufficient recognition accuracy
does not have to be perfect but can lie in standard
ranges of 70-80% to still be useful.

3. Moreover, more important than perfect recognition
results is the usability of the system and the ability
to obtain fair results in the context of a realistic real-
world application. This, in turn, points out that the
system has to be able to deal with common effects
like losing data due to empty batteries and still pro-
vide useful results.

4. Last but certainly not least, the system has to work
with genuine patients, that are neither tech-savvy
nor able to handle complex technical requirements.
Ideally the system should be plug-and-play without
requiring interaction other than typical for apps.

3.6 Long-Term Data Acquisition with Bipolar Patients
As has been mentioned, to develop a system as outlined

above, data recorded under laboratory conditions would
not suffice. Thus a real-life study with bipolar patients
was set up as a medical trial in a psychiatric hospital with
the approval of the local ethics board of the Innsbruck
University Hospital. The trial was an uncontrolled (no
control group), not randomized (no control-group thus
no randomization), observational study with an aim at
recruiting between 10 and 15 patients for a minimum
of a 12-week participation per person. Equal to the do-
ability evaluation, the resources of the hospital limited

the number of possible participants: Not only the partic-
ipating psychiatrists had to provide the time to assess a
number of patients additionally to their everyday work,
but also the resources for performing the scale test, which
required certified programs were limited and had to be
shared with the regular hospital operations.

3.6.1 Monitoring System

Similar to the do-ability study the used system for col-
lecting data was an Android based smart-phone applica-
tion 2. The app started automatically on device boot and

2implemented by Jens Weppner and Amir Muaremi within the Monarca EU FP7 project
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ran almost invisible to the users and requiring almost no
interaction in the smart phone’s background. To guar-
antee privacy and the patient’s sovereignty about their
data it was possible to switch off sensors. Again like in
the do-ability study the main relevant indicators for af-
fective mood disorders should be covered. Location and
movement were once again covered by anonymized lo-
cation tracking. Activity was recorded in the form of
three-axis acceleration. To assess the social state, again
in-going and outgoing phone calls were monitored. To
put more focus on the way the patients were interact-
ing, anonymized voice analysis was added during phone
calls. Again all recorded data was encrypted (AES 128bit
software side encryption), was stored on an SD card, and
was transferred to the study data storage during the pa-
tient’s checks at the hospital.

3.6.2 Study Participants

In line of requirements by the ethics board the inclu-
sion criteria were as follows:

• age between 18 and 65, generally meaning no under-
age persons, with a flexible upper border.

• ability and willingness to deal with smart-phones.
• being "contractually capable," so no person was in-

cluded that by law was not capable of deciding for
themselves.

• and already having received a diagnosis of bipolar
disorder categorized by ICD-10, F31 (by the Inter-
national Classification of Diseases), with frequently
changing episodes.

Of course, the participation in the study was voluntary
and neither participating nor quitting would be allowed
to affect the therapy. A total of 12 patients could be
recruited in the period from November 2012 to August
2013. 11 participants were female, and only 1 was male.
They ranged between the age of 25 and 65. Like in the do-
ability evaluation also here the majority of participants
was female. This does not necessarily mean that more
female persons have a mental disorder, but that women
more readily accept the fact that they need help. Similar
to in the do-ability evaluation, the selection of patients
was entirely up to the ward’s psychiatrists and their per-
ception of which patient was capable of dealing with the
study requirements.

Two patients dropped out early (p0202 and p0602),
two patients (p0502 and p0802) even extended the trial
length due to different reasons. The majority of the par-
ticipants started the study in a more or less severe de-
pressive episode. Five of them were in a very severe de-
pressive state and thus had to be handled with specific
sensitivity. Three of the participants started during a
manic phase, each one in a different state of mania.
All of the study participants (except for p0202 and
p0402) underwent one or more clear changes in their
mental state during the study. Changes per patients were
between one an three. Most of them were progressions

from one of the seven possible states (-3 severe depres-
sion, -2 depression, - 1 slight depression, 0 neutral, +1
slight mania, +2 mania, + 3 severe mania) to an adja-
cent state. This means a change was considered to be
happening if a severe depressed (-3) patient progressed
to depressed (-2). Thus overall 25 state changes were
recorded. Figure §3.5 provides an overview of the pro-
gression of each patient. Note, since patients p0202 and
p0402 did not show any changes in state during the en-
tire study, both were excluded from the data-set.

Figure 3.5: The Progression from depression (-3 .. -1)/mania
(+3 .. +1)/mixed phase (- and +) to normal (0).

3.6.3 Study Implementation

Each patient was given a new Android-based smart-
phone running the data-logging application. The rea-
son to give out new phones was that numerous Android-
based phones already existed and it could not be guaran-
teed that the application would work for all of them. Us-
ing a phone version that was tested with the application
should limit issues. Of course, this required the patients
to adjust to a new phone, which was possible to handle
by offering the participants extensive one on one time to
transfer contacts and set up the new phone according to
the participants’ liking’s.
The data recording application was designed to record all
required sensor data fully automatically in the phone’s
background. It did not require any interaction or main-
tenance by the user. Due to privacy reasons, the appli-
cations even allowed the participant to refuse the usage
of data for this particular day; otherwise the data was
stored on the SD card. If the patient did not agree to store
data of a particular day, all data collected during that day
would be deleted. This protocol was implemented to ful-
fill a precondition for the approval of the ethics board.
Anyway, during the entire trial, there was no case of a
patient asking to delete data. Still, the mere option to
do so was appreciated as a mechanism to feel in control.
Nevertheless, most stated that, as they had agreed to par-
ticipate in a study, they would not withdraw from partic-
ipating on a “bad day”.

The data stored on the phones SD card was transferred
to the study server only during the periodic examina-
tions. In the context of this real-live data collection study,
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the option via SD card and physical data transfer al-
lowed to reduce the amount of necessary security that
any wireless data transfer would have imposed. Thus,
this method was sufficient and more effective than a wire-
less transfer with extended security requirements. All
data was anonymized before processing in order to hide
the patients’ identity. In order to guarantee a smooth ex-
ecution the trial proceeded as follows for each patient:

1. Each patient was recruited during stationary treat-
ment at the clinic. The recruitment was done by
a ward-psychiatrist, but once the patients generally
agreed to have a look at the study, a person of the
study personnel was introduced to the patient. Note,
that stationary treatment is not equal to “lock up”
treatment. Patients were not included as long as they
had to stay in restricted areas. Study patients would
stay in the hospital overnight (specifically during the
beginning of the study) and attend various hospital
therapy sessions. However, otherwise they were free
to move around in the hospital compound and also
in the town close by.

2. The trial started with an initial examination, once the
patient had signed the informed consent. After this
examination, the smart-phone was given to patients,
and the collection began.

3. Each Patient was released when it was medically ad-
visable (again, the study itself would not affect the
treatment). Most participants were discharged one
or two weeks after the start of the study. Still, once
left, they would come back to the hospital for outpa-
tient examination every three weeks.

4. At the end of the study, meaning after 12 weeks or
later, a final examination was performed.

3.6.4 Ground-Truth:

Also similar to the do-ability evaluation the ground-
truth was a collection in a detailed subjective and a coarse
but objective method. As a measure of objective ground-
truth, psychological state examinations (psychological
standard scale tests) were performed. These were com-
prised of 4 standardized scale-tests, two foreign-rated
and two self-rated. All of them were performed under
the supervision of trained psychologists. Thus, even the
self-rating scale tests can be presumed to be somewhat
objective. The psychological state examination included:

• The Hamilton Depression Scale (HAMD)
• The Common Depression Scale (ADS)
• The Young Mania Rating Scale (YRMS)
• The Mania Self-Rating Scale (MSS)

Even though each scale examination has its rating
scheme, in order to make them comparable to any other
assessment, the psychologists were asked to transfer the

results of the scale tests into the 7 part -3 (heavily de-
pressed) to + 3 (heavily manic) scheme, as used be-
fore. Intermediate steps were: depressed (-2), slightly de-
pressed (-1), normal (0), slightly manic (+1), and manic
(+2). If it was better suited to describe the actual state
of the patient, half grades were also allowed. Again, the
likely memory effect prevented a more frequent execu-
tion than ever 3 weeks. Nevertheless, as suggested af-
ter the do-ability analysis, in order to shorten the time-
span between measurements, specially trained psychol-
ogists agreed to talk to the patients over the phone and
afterward rate their state according to the scheme. The
same way as in the do-ability evaluation, the patients
were asked to fill in a short questionnaire on their phone
every evening as a subjective ground-truth backup.

3.6.5 Data-Set and Data-Quality

With 12 patients and 12+ weeks of 24/7 data collec-
tion, in theory, there should be more than 1000 days of
data available. This seems to be a sufficient amount of
data. Unfortunately, in the reality of a real-life study,
many factors would influence the data collection and the
amount of data at hand. Such factors were:

1. First and foremost the patient adherence: The
study was conducted in uncontrolled conditions dur-
ing the participants’ normal lives. Hence, there was
practically no way to guarantee the desired usage.
Even when participants were explicitly asked to pay
attention to charge the phone and carry it at any
time, this was not happening all the time. Addition-
ally, some patients grew a habit of switching off some
sensors at certain occasions, partially to save power
partially due to a heightened sensitivity to potential
surveillance. After all, one goal of this work is to de-
velop a system that would be applicable for ever day
use and thus has to be able to handle such actions.
Hence, the participants were told to use the phone as
they would use it outside of the study.

2. The evolution of the patient’s state: As a matter
of fact, it is more likely to find patients during a de-
pressive episode in the psychiatric hospital than in
a manic episode. This is because a depression op-
presses a higher factor of suffering, while during ma-
nia patients do not necessarily feel that something is
wrong, on the contrary. Thus in our data (since par-
ticipants were recruited during in-ward stay), there
are many more depressive episodes covered. Addi-
tionally, it was not possible to predict in which in-
dividual direction states would progress. So some
of the participants starting in a manic phase would
move into depression while being in the study, but
none of the initially depressive patients was manic at
any point during the study.

3. Availability of ground-truth: Collecting sufficient
ground-truth is one of the significant issues in a
health-care real-life deployment. Objective ground-
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truth, as already mentioned, only was available
around the examination days. In order to extend
these days, after consulting the participating psychi-
atrists, it was decided to additionally include a few
days before the examination and a few days after, and
assign them the ground-truth assessed during the ex-
amination.
In addition to the anyways limited amount of data
with objective ground-truth, for a few patients, this
number of available days had to be shortened even
more, as partially unstable self-assessment did not
allow trusting these days.
Not enough a third factor limited the amount of use-
ful day. This factor is the availability of sensor data.
For example, if examination based ground-truth was
available and the self-assessment did not indicate
any instabilities, but the GPS was turned off, this day
was not usable.

These three factors: adherence, evolution of state, and
availability of ground-truth had a limiting effect on the
amount of useful sensor data. Table §3.4 provides details
about the amount of useful data-points per patient. The

amount days with data available can be seen in column
two and ranges between 53 and 131 days. These numbers
come close to the actual anticipated amount of data (84
days within 12 weeks).

The two following columns list the number of days of
available GPS and Acceleration data. However, to get
a picture of the usable data, the last six columns are of
most interest. These last six columns depict the number
of days where GPS data plus ground-truth (GT), Acceler-
ation data plus GT, Phone behavior data plus GT, Sound
data plus GT, and GT plus either one of GPS OR Acceler-
ation or GT plus both GPS AND Acceleration were avail-
able. While the amount of usable Acceleration data is fair
and above 40, and up to 70 (except for P0206. since this
patient dropped out early), the available usable data for
GPS drops to below 40 for most with an extreme of 19
for one patient and a highlight of 51 for one single par-
ticipant. Table §3.4 also provides the distribution of the
available data-points onto the different classes (in brack-
ets) in the last six columns. A few of them only comprise
7 or fewer days of data, which is likely not enough. Still,
for most cases the available data is reasonable for using
standard techniques to evaluate them.

atients # of Ground
Truth Days (GT) GPS +GT ACC + GT PHONE + GT SOUND + GT GT + ACC

OR GPS
GT + ACC
AND GPS

p0101 84 26 (3/20/3) 71 (32/27/12) - - 71 (32/27/12) 23 (3/20/3)
p0201 47 36 (10/26) 38 (12/26) 38 (12/26) 38 (12/26) 38 (12/26) 36 (10/26)
p0102 52 34 (21/13) 46 (33/13) 46 (33/13) 46 (33/13) 46 (33/13) 34 (21/13)
p0302 70 51 (11/40) 60 (18/42) 61 (19/42) 61 (19/42) 60 (18/42) 51 (11/40)
p0502 63 28 (5/23) 58 (14/14/30) - - 58 (14/14/30) 23 (0/23)
p0602 41 31 (12/19) 21 (11/10) 35 (13/22) 35 (13/22) 35 (13/22) 17 (10/7)
p0702 53 31 (24/7) 42 (34/8) 47 (35/12) 47 (35/12) 42 (34/8) 31 (24/(7)
p0802 71 37 (7/30) 62 (16/46) - - 62 (16/46) 37 (7/30)
p0902 48 41 (26/15) 41 (26/15) 41 (26/15) 41 (26/15) 41 (26/15) 41 (26/15)
p1002 47 19 (11/9) 40 (29/11) 42 (31/11) 42 (31/11) 40 (29/11) 19 (11/9)

average 57.6 33.2 47.4 44.3 44.3 49.4 31.8
StD 13.76 8.76 14.72 8.48 8.48 12.36 19.73

Table 3.4: The amount of sensor data (in days) and Ground Truth days (GT) per patient (in brackets: distribution over classes).

3.7 Data Pre-Processing and Feature Extraction
The do-ability assessment has already provided im-

portant insights into the types of data and features that
would probably work best. As a reminder, talking with
psychiatric staff before the do-ability evaluation lead
to defining three main aspects of patient behavior that
should provide the essential and desired information.
These main aspects were:

1. Physical motion: Patients with depression have a re-
duces drive and thus tend to move less, slower, and
with reduced force, and vice versa for manic persons.

2. Travel patterns: Depending on profession and per-
sonal preferences, still most people have a pattern
in their daily life during weekdays. Some places are
dominant, like the home, the workplace, the gro-
cery store, the gym maybe, and so on. In a normal
state, these patterns will, with some divergences, be
re-accruing. For both manic and depressive state,
this pattern will change, e.g., become less frequent

or more erratic.

3. Social interaction: How a person acts in the vicin-
ity of other persons, and how a person interacts with
other people is to some extent unique to everyone.
However, as person specific social interaction might
be, what every person has in common is reduced de-
sire and reduced ability to interact with others (again
in a person-specific extend) in a depressive phase and
heightened in a manic phase.

It should be highlighted once again that the actual ex-
pression of these behavioral aspects is very person de-
pended. During the study, one psychiatrist said:

If I have hundred bipolar patients, I will have to deal with a
hundred unique forms of bipolar disorder!

This means that a particular value of a parameter can
mean depression for one person and mania for another.

45



CHAPTER 3. ASSESSING COGNITIVE STATE CHANGE

3.7.1 Acceleration Features

Before further processing, the raw 3-axial acceleration
data had to be re-sampled to a fixed sampling frequency.
This was necessary due to effects caused by the Android
operating system. Since the orientation of acceleration
is unknown, dependencies were removed by calculating
the magnitude of the three data-streams. Any further
calculation was performed on this magnitude signal.
As a next step, all parts of the magnitude stream that
were around the gravitational force (9.81) were removed.
This is feasible since the magnitude of a three-axis ac-
celerometer is equal to the gravitation (9.81) when not
moved, and thus all data-points in the magnitude stream
close to the gravitation depicted that the phone is worn
not on the body of the patient, but lying on a flat un-
moved surface. After pre-processing was done, the fol-
lowing features were calculated and then used for classi-
fication on a daily basis:

• RMS

• RMS mean

• freq. centroid (fc)

• fc mean

• freq. fluctuation (ff)

• ff mean

3.7.2 Location Features

One pre-condition for the approval of the ethic’s board
was that the GPS traces recorded by the phone were
to be anonymized. This way it should not be possible
to map GPS coordinates onto meaningful locations and
thus identify a particular person. For fulfilling this pre-
condition, GPS coordinates were translated into a differ-
ent coordinate system with the zero-point (0.0) assigned
to the pair of coordinates that occurred most often. This
zero-point was defined as “home”. Since this way no se-
mantic evaluation of the GPS traces was possible, only
abstract features were calculated:

1. The number of locations visited (defined as a cloud
of GPS points within 500m meters)

2. The number of how many hours per day the patient
was outdoors (meaning during which hours GPS was
visible at least once)

3. The average time a patient spends outdoors per hour

4. Distribution of being outdoors per day (averaging
the subset of hours spent outside - e.g., in the morn-
ing or afternoon).

5. The variance of the times spent outdoors

6. The number of single stays outdoors (a stays out-
doors = a consecutive number of GPS data points
with no pause in between of 15 minutes or more.
Timestamps of more than 15 minutes difference were
marked a new stay.)

7. Ratio of time outside in 24 hours (the sum of the du-
ration of all connected stays, divided by 24 hours.)

8. The distance traveled (sum of all distances traveled
on any particular day.)

3.7.3 Sound and PhoneCall Features

To some extend the usage of a smart-phone by its na-
ture can already be characterized as an intention for
social interaction. For example, the traditional mobile
phone activities as making a phone call or send text mes-
sages have all an apparent social component. A second
option to leverage the phone is to analyze sound. Voice
recognition itself is of course not an option due to pri-
vacy, but analyzing the frequency of voice, changes in
pitch, or talking speed could provide valuable insight.

Phone Call Features:
Many Phone-Call-behavior features were extracted

from the usage of the phone. These include the length of
phone calls, whether phone-calls were incoming or out-
going and which caller ID numbers were involved (due
to privacy, the numbers were anonymized, and only the
last four digits were stored). Eventually, the following
features were extracted:

• Number of phone calls

• Total length of calls (sum of call-length per day)

• Average length of phone calls

• Standard deviation of the length of phone calls

• Number of unique numbers

Sound Features
The sound features 3 were extracted by Muaremi [123]

and [124]. Since these extracted sound features were
used in this work to perform classification on them, for
a better understanding the following paragraphs should
summarize the work done by Muaremi. The following
text (marked italic) was written by Muaremi and is taken
from [123]: We divide the sound features into speech fea-
tures which describe the phone call interaction and voice fea-
tures which are usually used to detect the emotions from the
voice.

Speech Features: The aim is to understand the dyadic
communication of the patient with the other person on the
line. Starting from the voice activity detection (voiced speech
vs. unvoiced speech), the speaking segments are created.
Using these segments we can differentiate between turns,
short turns, and non-speaking segments. Short turns or ut-
terances are feedback words while someone else is talking,
such as “okay", “hm”, “right", etc. Non-speaking segments
are either pauses or turns of the counterpart (see [125] for
more details). The following speech features were then calcu-
lated on a daily basis:

3Sound Features have been published in * Muaremi. A. (2014), Wearable Sensing of Mental Health and Human Behavior (Doctoral disserta-
tion). * Muaremi A. et al. “Assessing bipolar episodes using speech cues derived from phone calls”. Pervasive Computing Paradigms for Mental
Health, Springer International Publishing, 2014, 103-114
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• Average speaking length and speaking turn duration

• Average number of speaker turns and short turns/-
utterances

• Standard deviation of speaking turn duration

• Speaker turns per length in minutes and short turns/-
utterances per length in minutes

• % of speaking from the total conversation

Voice Features: The open-source “openSmile" toolbox
[126] was used to extract the acoustic features. For each
frame of the speech signal, (frame length: 25 ms. step size:
10 ms) different low-level descriptors are calculated: rms
frame energy, mel-frequency cepstral coefficients (MFCC) 1-

12, pitch frequency F0, the harmonic-to-noise ratio (HNR),
zero-crossing rate (ZCR). Then, functional like mean, stan-
dard deviation, extreme values, kurtosis and more were ap-
plied on all frames for each descriptor. The resulting fea-
ture vector was reduced by using the filter feature selection
method. Finally, we end up with the following voice features:

• kurtosis energy

• mean 2nd and mean 3rd MFCC

• mean 4th delta MFCC

• max ZCR and mean HNR

• std and range F0

3.8 Recognizing the State of Bipolar Disorder Patients
After evaluating the do-ability and collecting a large

amount of data, the ultimate goal of this chapter was fi-
nally pursued. The analysis in the following chapter is
structured step-wise. First, not unlike in the first chap-
ter, the recognition of the state is done with a classifica-
tion for each sensor modality individually. Second, sen-
sor modalities will be fused to provide an overarching
classification.

3.8.1 Single Modality Classification

Based on the possible state-scheme resulting from the
diagnosis and assessments during the data recording, up
to seven classes would, in theory, be possible. See also
§3.6. These possible classes are:

• severely depressive

• depressive

• slight depressive

• normal

• slight manic

• manic

• severely manic

The analysis was calculated using the Weka [90] Data
Mining Software. For the classification, first, a linear
discriminant analysis [89] was applied onto the features
to reach the first reduction in dimension. According to
conventional practice in supervised learning, a randomly
performed 66/33 training/test-data percentage split was
applied onto the data-set.
To ensure that the classes were represented equally in
both sets, the test-set was re-sampled As a classifier, the
Naïve Bayes was utilized to train with the training-set
and estimate the classes of the test set. Other possible
classifiers were tested, including the k-nearest neighbor,
the j48 search tree, and the conjunctive rule learner, but
they achieved similar results as the Naïve Bayes. Thus
all of them could have been used. Since the Naïve Bayes
provides a probability distribution as output, which was
supposed to be used for analyses in the next step anyway,
as a matter of efficiency, only the Bayesian classifier was
used eventually.

All steps of the classification were repeated 500 times in
cross-validation, each time randomly splitting the entire
data-set into the test/training set. This was done to elimi-
nate artifacts and “unlucky” or specifically “lucky” selec-
tions. At this stage, the classification was performed on
a per patient basis, meaning training and testing on the
same patient. At a later stage, the person-independence
was evaluated (meaning, training with one patient and
testing on another), but showed that with the given
amount of data is not reliably achievable.

Acceleration Location

Patients total Recall Precision total Recall Precision

p0101 75% 75.7% 76.3% 77% 87.0% 87.0%
p0102 76% 59.0% 61.7% 82% 72.3% 72.3%
p0201 68% 69.3% 70.3% 77% 81.3% 81.3%
p0302 66% 55.6% 57.3% 92% 81.8% 95.5%
p0502 72% 65.7% 68.1% 85% 83.5% 76.2%
p0602 66% 65.9% 67.9% 71% 68.6% 69.3%
p0702 73% 50.4% 50.5% 77% 100% 77.4%
p0802 77% 66.4% 70.2% 89% 76.9% 85.3%
p0902 70% 67.1% 68.3% 85% 85.6% 84.1%
p1002 71% 53.9% 57.1% 79% 79.4% 80.1%

Average 72% 62.9% 64.8% 82% 81.7% 80.9%

Table 3.5: Precision and recall of state recognition of Accelera-
tion and Location

3.8.2 Single Modality Results:

The accuracy of the classification for the individual pa-
tients ranges between 66% and 92%, which, given the
real-life application, is quite reasonable. The average for
all patients shows reasonably good recognition of 81%
for location, 75% for acceleration, 70% for sound anal-
ysis, and 66% for phone usage. The best results for the
classifier are achieved by location and acceleration only.
Especially promising are the results of location. It does
not only work best in general, but also no patient has a
worse accuracy than 71% (p0602) and the best individual
accuracy reaching 92% (p0302).
In the acceleration analysis, even seven out of the ten par-
ticipants have an accuracy of 70% or higher. Location
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and acceleration also provide good recall of above 80%,
with a precision of above 60%. See Table §3.5. In the Ap-
pendix A §7.3, in the section of this chapter §7.3, Table
§2 provides a very detailed analysis of recall an precision
of location and acceleration for every single patient and
the distribution of results over the single classes per pa-
tients. Please refer to this table in the Appendix for a
detailed look.

This analysis also shows that for all recognition results
a low number of data instances for these specific classes
is available. Thus lousy performing classes are not neces-
sarily performing bad but may lack sufficient amount of
data to provide reliable results. In general, phone usage
and sound do not work as well as location or acceleration,
but especially phone usage works worst in recognition.
With single plain classification only, phone-call behavior
provides recognition rates of only 66% accuracy.
The voice-features (sound) work better regarding single
modality classification (70%), but still, they do not come
close to the results of location for example. Note, even-
though, at the beginning of the study, the patients were
assisted in transferring contacts and all relevant informa-
tion to the study-phone, four participants did not use the
study-phone to make phone calls. Therefore, for these
patients, phone usage and sound could not be analyzed.

Of course, it has been pointed out earlier that, in the
given context, classification rates are not required to be
perfect to be useful. Still, location analysis shows that
accuracy of around 80% is possible. Nevertheless, the
low classification results of phone usage and sound do
not mean that these modalities are useless, but as a sin-
gle classification modality, they do not suffice.

Phone Sound

Patients total Recall Precision total Recall Precision

p0102 62% 52.5% 53.2% 68% 60.8% 62.0%
p0201 75% 64.4% 70.1% 66% 51.2% 50.0%
p0302 71% 62.0% 63.6% 74% 64.5% 52.0%
p0602 36% 33.9% 50.0% 76% 68.5% 78.7%
p0702 72% 89.7% 78.8% - - -
p0902 68% 63.7% 65.4% 71% 68.5% 68.5%
p1002 65% 59.3% 58.8% 65% 54.0% 61.2%

Average 64% 60.8% 62.9% 70% 61.3% 62.0%

Table 3.6: Precision, and recall of state recognition of Phone
usage and Sound. (Note, p0101, p0502,and p0802 did not use
the phone for calls)

3.8.3 Sensor Fusion

One of the limitations of the single modality classifi-
cation for some patients and some sensor modalities in
some classes is the limited amount of available data. This
is precisely true for the location data, as some patients re-
peatedly switched off location tracking on their phones.
Furthermore, some of the modalities did not perform
well in a single modality analysis. In this regard, a next

step towards optimizing the results is to fuse the sensory
modalities. As for the single modality classification the
Naive Bayes classifier was used, a list of probabilities for
all possible classes, for each day and each modality (for
all four modalities acceleration, location, phone usage,
and sound) was available. These modalities should now
be combined, both to improve accuracy and also to widen
the range of days considered (different modalities would
probably provide data for different potentially overlap-
ping sets of days) 4.
In supervised learning, it is a fact that a sufficient amount
of training data is essential. Therefore, it makes sense to
trust a classifier applied on a larger data-set more than
one applied on a smaller data-set. Thus, the fusion al-
gorithm includes penalties for the size of respective the
data-set. The fusing algorithm works as follows:

• For every day with only one modality available, the
most probable class of the respective class probabil-
ity list is chosen.

• For any other day with more than one data modality
available, the class estimates were fused using this al-
gorithm:

– For each class, the ratio of available training data
of all available modalities was compared to all
training data.

– A further penalization considers the amount of
training data to down-weight modalities with
small numbers. For this the coefficients (of the
previous step) are input into a sigmoid weighting
function.

– The weighted coefficients are then multiplied with
the estimated class probabilities for each modality.

– In the last step, all resulting vectors of class esti-
mates are summed, and the highest rated class is
chosen as the winner.

Performing the fusion resulted in a final classification
for each day data was available. These steps were per-
formed in different combinations. Since location and
acceleration worked best in a single analysis, these two
were fused first. Afterward, as phone usage and sound
were extracted in parallel, these two were also fused in
a second step. Finally, the fusion was calculated over all
four sensor modalities.

Acceleration and Location Fusion

As has been stated before, the recognition on location
data alone works best with an average of over 80%, in
overall accuracy and precision and recall. Acceleration
alone performs less than location, yet yields an overall
accuracy of around 72% with precision and recall above
60%. Still, as has also been pointed out already, accelera-
tion provides distinctly more data than location (on aver-
age ACC has 47 data points vs. LOC has 33 data points).

4The work in this subsection was joined work with my colleague Gernot Bahle. In hindsight it is not entirely possible to separate again who
has done which part of the work. Mr. Bahle has particularly supported my work in this subsection by implementing the sensor-fusion algorithm
and running some analysis.
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This means that the results of the acceleration data are
more trustworthy than of the location data. Hence, if ac-
celeration and location are fused, the average number of
data points increases to 49.
This is reflected in the results. Table §3.7 provides the
corresponding numbers. Even though the accuracy re-
sults of the fused data is with 76% (and precision and
recall of above 70%) not as high as for location only, it is
still considerably better than for acceleration only. Since
the results of the fusion base on a larger data-set than ei-
ther one of the single modality results, the fusion is in
any case also more trustworthy than any of the single
modalities classification.

Phone Usage and Sound Fusion

Similar to the result of the single modality classifica-
tion, the result of the fusion of sound and phone usage
is not overly satisfying. Even a fusion of both modalities
does not really enhance the results. Indeed, the fusion
accuracy is better than the accuracy of the phone usage
alone, but not better than sound. To this extent, the ef-
fect is similar to the location acceleration fusion, where
also the fusion is better than one of the modalities but not
the other. Still, results below 70% are not a satisfying re-
sult. One tiny positive effect though is that the precision
is better for the fusion than in any of the single modality
classification and recall is not worse. Nevertheless, for
phone usage and sound, not event the fusion improves
the results enough to be useful.

All Sensor Fusion

In the previous sections, the single sensor modality par-
tially showed good results for location and acceleration
and not so good results for phone usage and sound. The
fusion of two sensor modalities could make acceleration
and location results more reliable, yet sound and phone
classification was not improved. Results have shown that
location and acceleration work far better than sound or
phone usage. The same is valid for fusing location and
acceleration compared to fusing sound and phone usage.
Even though the results of location and acceleration are
reasonably good, location and acceleration cover only the
aspects of movement and activity, but they do not include
social behavior. As has been elaborated before, in psychi-
atric treatment all three aspects are crucial. They are not
equally relevant for all patients, as the expression of the
state varies within patients, but none of them should be
excluded.

Phone usage and Sound, the available sensor streams
for the social behavior, do not perform well in single
classification or when fused together. This does not nec-
essarily mean that these sensor streams are not useful.
In psychology, the social behavior alone also does not
necessarily express a mental condition. Social behavior
about other aspects though can provide a picture of the
actual mental state. The same might be true for the sen-
sor streams. Thus, the question remains, whether phone
usage and sound would be able to contribute to the whole
picture. Therefore, phone usage and sound were not dis-
carded but added to an all-in fusion of all sensory modal-
ities. Table §3.7 summarizes the result of the all-in fu-
sion. For a better comparison, this table also includes a
summary of the single modality results and the two sen-
sor modality fusions.
Even-though it is small still, the table reveals that the all-
in fusion accuracy is better than any of the two modality
fusions. The all-in fusion even is slightly better than the
location and acceleration fusion. The overall accuracy
of the all-in fusion is 1.3 percentage points better than
Loc&Acc fusion (which is the better performing fusion
of the two-modality fusions), and the precision is 0.7 per-
centage points better than for Location and Acceleration
fusion.

Both are considerably better than their equivalents in
the Phone&Sound fusion. Specifically recall is also im-
proved in comparison to both two-modality fusions. Re-
garding the all-in fusion, this actually means that the re-
sults are more stable. This indicates the correctness of
the assumption that the combination of all three disease
relevant aspects social behavior, movement, and activity,
would optimize the state detection and thus provide bet-
ter results than either single sensors classification or two-
modality fusions.

(av. # instances) Recall (std) Precision (std) total(std)

ACC (48) 66.7% (7.9) 67.8% (7.8) 71.7% (3.8)
LOC (33) 81.7% (8.6) 80.9% (7.6) 81.7% (6.5)

FUSION A + L (49) 70.6% (8.9) 75.3% (8.6) 75.1% (6.1)

PHONE (43) 60.8% (16) 62.9% (1) 64.2% (13)
SOUND (43) 61.3% (7.3) 62.0% (1.1) 69.8% (4.5)

FUSION P + S (43) 60.9% (4.3) 68.2% (7.4) 68.0% (5.5)

All Sensor FUSION (49) 73.8% (11.3) 76.0% (4.9) 76.4% (4.1)

Table 3.7: Comparison of recognition of different modalities
and fusion of different modalities and of all-in fusion

3.9 Detecting Changes in the Mental State
In the previous section, it was demonstrated how to de-

termine states of bipolar patients based on sensor data.
Practically speaking though, determining when the state
of a bipolar patient is changing would be much more rel-
evant than only determining the state. To recall, bipolar
disorder is defined by frequently changing state episodes
of mania and depression. Phases without episodes (nor-

mal states) pause the episodes. The goal of any treatment
is to keep these normal phases as long as possible and
episodes, if inevitable, as mild and short as possible.
One factor that makes treatment so tricky and intensive
is the fact that the earlier a change towards an episode
is recognized, and thus the earlier medication can be ap-
plied or adapted, the better the episode can be handled.
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If an episode has already manifested, the treatment is
long-term and associated with heavy medication. Unfor-
tunately, determining the onset of an episode is difficult
even for an experienced patient. In this line of thought,
the detection of state changes out of sensor data has a
higher relevance than the actual recognition of a specific
state. A few considerations regarding state change detec-
tion should be taken to heart, before going further:

1. Considering the application of state change detec-
tion, it means to promote a timely visit to the doctor
as a key functionality. The patient should be enabled
to understand that a change is starting and thus go
to the doctor. The application cannot intend to di-
agnose the patient’s state, as from an ethical point of
view, the diagnosis will be made by the doctor only.

2. If possible, the state change detection should not re-
quire a specific state to start with. It might limit the
usability if a patient has to be in a defined state be-
fore being able to use the state change detection. In
this regard, it should not be necessary to understand
in which state a patient is in at the moment for a
change detection to work. On the contrary, it should
be working from any given start-state5.

Keeping these considerations above in mind, the fol-
lowing relatively simple and almost intuitive method
was developed to determine the onset of change:

1. First, built a model of the given state out of the avail-
able sensor data recorded with the phone.

2. Then, once this model is stable (app. after 1-2
weeks), compare each new data point to the model.

3. Data-points within a certain threshold will be clas-
sified as “same state” and be used to enhance the
model.

4. All other points falling outside of the defined thresh-
old are classified as “change”.

3.9.1 Single Modality Change Detection

Following the procedure of the state classification, the
state change detection method first should be evaluated
on single sensor modalities. Since in the state recogni-
tion, location and acceleration worked distinctively bet-
ter than phone-usage or sound, this evaluation is only ap-
plied for location and acceleration data. The evaluation
process is as follows:

1. Building the baseline model: Since this evaluation
is not done online but with an entire data-set avail-
able and labeled, different classes could be tested as
a baseline. In order to build the respective model,
66% of the data (from evenly distributed classes) was

used as a training set to build a multivariate Gaussian
distribution model. The remaining 33% of data was
then used to test.

2. Determine distance and appropriate thresholds:
To measure the distance of data points to the model
the Mahalanobis distance was chosen. To train the
model, the distances of each training points were cal-
culated and normalized. If the normalized distance
of a sample was within a given threshold it was clas-
sified as “no change”, otherwise it was marked as
“change”. Different threshold values were tested (see
the effects of the different thresholds in figure §3.10)

3. Model evaluation: All data that had not been used
for training was used to test. This was done again by
normalizing each test-sample’s distance to the model
distribution and then evaluating whether the value
was within or outside of the thresholds. Based on
these estimates precision and recall were calculated.

4. Optimize: To eliminate outliers, the evaluation -
steps (1)-(3) - was repeated in 1000x cross validation
with different randomly picked test/training splits.

ACC only LOC only
Patient Recall Precision Recall Precision

P0101 78.0% 89.1% 83.8% 62.6%
P0102 70.1% 72.3% 93.7% 77.3%
P0201 90.0% 75.6% 97.5% 76.6%
P0302 60.5% 72.8% 100.0% 68.5%
P0502 83.8% 88.9% 72.4% 65.0%
P0602 98.5% 76.0% 100.0% 74.5%
P0702 77.9% 70.8% 91.4% 73.7%
P0802 66.9% 72.8% 94.1% 72.0%
P0902 74.5% 78.4% 100.0% 74.5%
P1002 76.4% 74.7% 100.0% 73.1%

Average 77.7% 77.1% 93.3% 71.8%

depressive 83.8% 80.4% 99.2% 84.0%
sever depr. 71.5% 70.0% 82.9% 58.6%

medium depr. 78.2% 75.7% 100.0% 76.9%
slightly depr. 98.5% 86.5% 100.0% 85.7%

normal 69.2% 73.2% 90.1% 65.8%
slightly manic 73.3% 86.8% 83.8% 49.3%
medium manic 100.0% 94.4% - -

Average 82.1% 81.0% 92.7% 70.1%

Table 3.8: Results of change detection for the single modali-
ties acceleration and location for each patient (top) and sum-
marized for each class (bottom)

The upper part of Table §3.8 provides the results of
the state change detection for the two single modalities
acceleration and location. The second part divides the
result of each sensor modality into precision and recall
over each possible class. For the acceleration, the results
of precision and recall per patient are around 77%. Sum-
marized over the classes, precision and recall of the ac-
celeration based state change detection are even above

5Similar to the Sensor Fusion, the work in this subsection was joined work with my colleague Gernot Bahle. Due to time constraints in the
underlying project, Mr. Bahle has supported my work in various different aspect, which in hindsight cannot be separated entirely. But I want to
state in particular that Mr. Bahle has implemented the change detection and fusion algorithms and ran the evaluation of the change detection
with the pre-processed and classified sensor data.
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80%. Within location evaluation recall for both (per pa-
tient and classes) is at a very high above 90%. Precision
results are, again for both, around at 70%. This means
for the location-based change detection, more than 90%
of changes were detected correctly, but also quite a num-
ber of false positives were determined.

3.9.2 Fusion of Sensor Modalities

The results of the single modality change detection
evaluation are far from being bad. Still, since it has been
highlighted that the detection of change has a critical
value in real-life treatment, even better results would be
desired Thus, not unlike in the state recognition, the next
step towards improving the results is by fusing the sen-
sor modalities.
Again, the fusion intends both, to improve the accuracy
of the change detection and to extend the number of suit-
able sensor data-sets the change detection is based on.
The state change detection does not use a method that
was already implemented in a data mining library, but a
unique probability density functions (PDFs) for the de-
fault state (start-state) was built and fitted to the specific
requirements of the goal. Thus, it is now also possible to
leverage this PDF to evaluate various strategies for fusing
the modalities:

Different Fusion Variants
First of all, before the actual fusion could be per-

formed, the change detection of each single sensor
modality was evaluated according to the algorithm in-
troduced above individually. Subsequently, the results of
the individual modalities were fused. Note, like in the
fusion for the state recognition, if data was available for
only one modality, this modality was used. When data
from two or more modalities was at hand, three different
fusion modalities were applied and tested:

1. Logical AND fusion: only when all currently uti-
lized modalities detected a change, a change was as-
sumed.

2. Logical OR fusion: if any of the modalities detected
a change, a change was assumed.

3. Weighted fusion: using the normalized distance for
all modalities, they were summed up according to
the sigmoid weighting function form the state recog-
nition. Thresholds were also combined accordingly,
and the fused distance was evaluated for either being
smaller or larger than the new threshold.

Results of Fusion Modalities
The precision/recall-graphs in Figure §3.10 provide a

first impression of the results of the fusion. These graphs
display the different fusion approaches and variants in
sweeping over various thresholds. It is obvious that the
weighted fusion approach is by far the best, reaching in
its best combination a recall of above 95% and also a pre-
cision of far beyond 90%. For more detail, Table §3.9

provides precision and recall values of the different fu-
sion approaches. The values in Table §3.9 are calculated
using the optimal average threshold point.

Fused AND Fused OR Fus. WEIGHTED
Patient Recall / Precision Recall / Precision Recall / Precision
P0101 96.1% / 82.1% 81.9% / 79.6% 91.1% / 93.4%
P0102 96.8% / 90.5% 94.2% / 90.6% 86.2% / 96.8%
P0201 98.3% / 79.8% 94.2% / 78.7% 97.3% / 92.9%
P0302 100.0% / 82.0% 100.0% / 81.9% 100.0% / 93.8%
P0502 98.8% / 91.5% 95.7% / 91.3% 97.8% / 97.6%
P0602 100.0% / 69.7% 99.4% / 70.3% 100.0% / 87.4%
P0702 97.9% / 89.7% 94.6% / 88.1% 96.8% / 97.1%
P0802 98.0% / 83.9% 86.4% / 83.0% 95.6% / 95.2%
P0902 100.0% / 89.1% 100.0% / 89.0% 100.0% / 97.1%
P1002 100.0% / 76.3% 90.2% / 76.9% 100.0% / 91.2%

Average 98.6% / 83.5% 93.7% /82.9% 96.5% / 94.2%

Table 3.9: Results of the different fusion modalities (fusing ac-
celeration and location) per patient (upper table) and over dif-
ferent classes (lower table)

Again the weighted fusion approach performs best.
Moreover, even though inferior to the weighted fusion,
in comparison to the single modality evaluation the re-
sults of both logic fusion approaches are better. Here,
specifically the precision is explicitly better, all fair above
80%, than in the single modality evaluation, and also the
recall is improved to more than 90% on average. Still,
a closer look at single patients reveals that some indi-
vidual results are clearly below 80%. Not so regarding
the weighted fusion. Here not even one individual re-
sult drops below 85% (precision and recall). On the con-
trary, in terms of recall except for P0102, the weighted
fusion of all is above 90% with even four out of ten pa-
tients reaching 100% recall. Meaning almost no change
is missed.

The results for precision are equally high. Only pa-
tient P0602 has a precision of below 90% (87.7%). All
other patients have a precision of more than 90%. Av-
eraging over all, patients the average precision for the
weighted fusion is at a high 94.5% and the average recall
even at a high 96.4%. The fact that primarily the self-
built approach performed best is not surprising, as opti-
mal weighting is an essential aspect of successful classi-
fier fusion.

Table 3.10: Prec./Recall graphs for ACC and LOC only, fused
AND, fused OR, and fused WEIGHTED modality.
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3.10 Challenges and Issues of the Real-Life Deployment in Mental Care
When deploying a real-life study in healthcare and es-

pecially when doing so in a psychiatric (hospital) envi-
ronment, a number of challenges have to be faced. Mostly
these challenges are of technical but even more promi-
nently of human nature. The following part summarizes
the most challenging problems that were encountered
and introduces which strategies could be used to over-
come these problems.1

3.10.1 Ethics Board Approval

Specifically, in deploying technology in health care,
the ethics board (concerning including patients) or the
works council (concerning including clinic personnel)
plays and often underestimated but crucial role. Typ-
ically, the ethics board is comprised of professionals
from health-care and natural science and furthermore in-
cludes a few members of other scientific areas. Therefore,
when it comes to deploying a technology-based study in
health-care, it is essential to present all information in a
way that professionals from other disciplines can under-
stand. Otherwise, if the proposal is rejected or even if
there is the request to re-apply in a modified form, it can
postpone the deployment.

A possible way to limit the risks of being rejected is
to involve people from relevant other professions, in the
process of creating the ethics board proposal, and to take
all concerns, even though they might seem unimportant
to a technician, very seriously. In our study, the ethics
board application and hearing was done by a joint group
of psychiatric professionals and computer scientists. The
application was approved by the ethics board instantly,
but not without restrictions: The most important and
crucial of them was the constraint that all sensor read-
ings had to be anonymized in a way it was not possible to
defer information about the particular person. The pri-
vacy of the participant had to be guaranteed. While this
was not an issue for the acceleration data, GPS coordi-
nates had to be transferred into a neutral coordination
system before processing them.
Furthermore, in order to perform frequency-analysis on
voice during phone calls, algorithms had to be developed
which scrambled the sound the way that it was not pos-
sible to restore, yet would still keep the frequency of
the voice intact. This method has been introduced by
Muaremi et al. [124]. This way the speech of a person
is not understood any longer, while at the same time the
performance of the acoustic analysis of the speech is not
degraded.

3.10.2 Technical Challenges:

Next to the constraints imposed by the ethics board a
number of technical aspects had to be dealt with:

Data Transmission: The original set-up of data trans-
mission was designed to transmit the collected data au-
tomatically. All data would have been transmitted to a
secure server belonging to the psychiatric hospital facil-
ities via a secure connection. However, even though the
infrastructure was already set up, this plans had to be
discarded before the study started as it turned out that
most of the possible participants neither owned an ap-
propriate wireless Internet connection at home (at the
time of the study) nor could full 3G Network and DSL
coverage be guaranteed. Hence, the set-up was changed
to storing all sensor readings on an internal SD card and
transmitting them by hand every 2-3 weeks during the
check-up appointment of the patients at the psychiatric
hospital facilities.

Constraints by the Smart-phone OS: Another techni-
cal issue, at least at the time the study was conducted,
was to find an appropriate android operating system.
One of the significant advantages of the Android system
is that it is not limited to one specific smart-phone brand
but is available for various cell-phone types from various
producers. This aspect, unfortunately, is one of the sig-
nificant limitations that had to be dealing with, because
the Android OS was partially adapted for different pro-
ducers. The main issue that was encountered was to find
an Android-based smart-phone with an OS that allowed
to access the sensors in the background, even when the
display was turned off. Not all android based operat-
ing system in the market permitted this in 2012. Later
updates of the Android operating systems included this
feature per default an thereby this issue was eliminated
for later use.

Performance and Battery Life: First real test-
deployments of the running smart-phone application re-
vealed that the smart-phones had a tendency to get rather
hot. In the beginning, the reason for this was not appar-
ent, as this never happened during tests in the laboratory.
Eventually, it turned out that, as some of the participants
were living in rural areas where most of the time no WiFi
was available, the app triggered the WiFi port, by default
of the OS, to increase the scan-frequency. Moreover, next
to increasing the temperature it decreased the battery-
life tremendously.
As in numerous other technical applications, the central
critical part in using a smart-phone for data recording is
the phone’s battery life. Constant operating of all sen-
sors in a high resolution reduces the battery life to a cou-
ple of hours (even with using an extended battery pack)
what would make this application unusable in real-life.
To overcome the issues of performance and battery life,
the design of the system was optimized. The accelera-
tion sensor was used to trigger most other sensors. This

1 In part, entire paragraphs describing the particular challenges and issues faced during the study have been taken from the following publi-
cation. All texts taken from this papers have been written solely by the author of this thesis:
Grünerbl A. et al. (2014) [54] and Mayora O., Grünerbl A. et al. (2014) [127] and (2016) [128], please refer to respective entries in the literature
list or beginning of this chapter
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is feasible for example, as an unmoved cell-phone will
not change its position. Therefore GPS/WiFi sensing can
be reduced to a minimum while the cell-phone is not
moved. Furthermore, as long as a person stays inside of
a building GPS is of little use and indoors WiFi might
be used to navigate. Therefore, the usage of GPS, which
itself is highly power-consuming, was turned off while
WiFi was available (and vice versa)!

3.10.3 Practical Issues:

Humans dealing with Technology: Conducting a real-
life study means having humans, more precisely people
who have a mental illness, and were not explicitly trained
in using technology, to deal with a sophisticated sensor
system. This will raise issues of human nature. Us-
ing a cell-phone based sensor platform could eliminate
the majority of these issues, e.g., dealing with a sensor-
system that people were not familiar with. Cell-phones
have grown into our society in the last 20 years and are
accepted as part of our lives. Nearly everybody, includ-
ing older people, owns a cell phone and therefore people
usually are not afraid to get in touch with them. Nev-
ertheless, a particular fondness of test-subjects and pa-
tients about modern technology turned out to be a pre-
condition for a successful deployment of this study. We
came across this issue with the first patient during the
do-ability evaluation, who, even though was very eager to
participate in the study, eventually was overwhelmed by

the various unfamiliar functionalities the smart-phone
provided and therefore dropped out.

Privacy: To our general surprise, most patients were
not particularly concerned about privacy as long as a sen-
sitive and anonymized treatment of their data was guar-
anteed. Bi-polar patient, especially when they start to re-
alize and accept their disorder, are aware that they need
help because they do not want to experience extreme
episodes anymore. Therefore, a lot of them were will-
ing to try new ways. It was primarily so if those ways
provided an outlook to help them to reduce the number
of anti-depressants or mood stabilizing medicines, since
these medications usually go with side effects. Thus,
when they were asked to participate in a study that might
help them in the future to deal with their disorder, a suf-
ficient number of patients was willing to participate. In
this regard, of course with the help of the psychiatrist
who had to establish the contact with the patients, the re-
cruitment of the patients was less difficult than expected.

Benefits: While conducting this study, it turned out
that an appropriate beneficiary/compensation system for
the participants enhances the prospects of success. Pre-
cisely so in studies where the pool of possible test sub-
jects is limited. In the studies conducted in this chap-
ter, the practice of letting the test subject keep the smart-
phone afterward proved to be an additional motivation
for some of the participants.

3.11 Discussion and Conclusion
This chapter introduced, step by step, work starting

at the assumption that patients with affective mood dis-
orders express the state of their disorder in a way that
is possible to grasp with common location and activity
sensors. Thus, it was assumed that smart-phone inter-
nal sensors would be able to record particular aspects of
the disorder. These data-traces would allow recognizing
the mental state of these patients, and further detecting
the onset of state change. The initial do-ability evalu-
ation confirmed the fundamental correctness of this as-
sumptions by showing linear correlations between vari-
ous sensor-based features and the patient’s self-assessed
state within and above the 90% confidence interval.

Nevertheless, this do-ability evaluation also showed
that there are no absolute features and values fitting all
patients. Meaning that the correlation analysis showed
that some of the features extracted from the sensor data
work for some patients but not for others. For some pa-
tients many different features correlated, for others only
a few did. This though, generally reflects the patterns
of bipolar disorder. In this disorder there are basic di-
rection like “depressive people move less” but the ex-
act expression of how much less, or what “less” actually
means is, to some extent, unique for each patient. More-
over, different patients have different focus points. Some
patients express their state mainly through movement,

other through activities or social behavior, again others
through a combination of different aspects. Some psy-
chiatrists say that there are as many expressions of the
disorder as there are patients.

However, the analysis of the sensor data shows that,
for every patient, features in all relevant aspects exist,
which correlate with the patient’s state. This alone is an
exciting result, as it confirms that objective sensor data
from a smart-phone can be used to determine the current
state of a patient. This opens up various further options
like a working state recognition. Hence, proceeding from
this point, the next step certainly was to understand how
methods for state recognition could look like. More im-
portantly though, this state recognition and afterwards
state change detection had to be developed to be robust
enough to work even when not every feature used would
be able to contribute.

Successfully, the developed methods for state recog-
nition can provide accuracy of up to 70-80 % in single
sensor classification and sensor fusion. The detection of
state changes goes even beyond precision and recall of
95%. Thus meaning that even features, which alone do
not sufficiently reflect the patient’s state, can contribute
to a stable detection of change onset.
All results presented in this chapter, however, must be

53



CHAPTER 3. ASSESSING COGNITIVE STATE CHANGE

seen in the light of a noisy ground-truth and the fact
that a patient’s behavior cannot be expected to be entirely
consistent on a daily basis. Even a severely ill person can
have a good day, and a highly manic person might not al-
ways be on 150. Also, the change detection alone (which
performs very well, with a precision/recall of around
95%) is enough in most cases since the definitive diagno-
sis has to be done by the doctor and for several ethnic and
liability reasons has always been intended to be done by
the doctor and not by a “smart-phone”. Thus, a correct
recognition of state (over seven possible classes) of 70-
80% can be presumed to be a reasonably strong result.

Indeed, when discussing the value of the results pre-
sented in this chapter, it has to be considered that for
some patients the amount of available labeled data and
the number of state-classes was small. So, it is difficult
to say whether in a larger-scale trial the same 95% ac-
curacy for change detection would be reached for these
patients. However, as outlined before, above 95% ac-
curacy is not even required, and a significantly smaller
accuracy would be sufficient for practical applications.
Once again, the diagnosis is made by the doctor, and oc-
casional and false positive alarms would at most result
in an unneeded appointment with a psychiatrist. Thus
false positives could even be helpful to remind the pa-
tient of being alert about their state but are less harmful
than false negatives.

On the other hand, as described in section §3.5, the use
case of a state change recognition possibly triggering a
reaction after the persistent occurrence of change does
not necessarily require unusually high accuracy. More
significant than a few percentage points either way re-
garding performance is the fact that the data was col-
lected under conditions that correspond precisely to the

way a system would be used in real life! The most valu-
able achievement of this work is that the introduced sys-
tem has been derived from and validated by a large, real-
world data-set (more than 800 days of sensor recordings)
that was recorded during the every-day lives of real pa-
tients. Further, these real patients mainly lived in a ru-
ral environment, meaning they were not necessarily tech-
savvy or were owning fully developed technical infras-
tructures. The patients were given off-the-shelf devices
with no other supervision than a visit to a doctor ev-
ery three weeks. Additionally, the results with the lim-
itations of the data recording mean that the system can
handle irregular availability of data while still provid-
ing sufficient results. In my opinion, this is a significant
improvement over artificial lab settings and qualitative
studies.

Furthermore, the real-world application of the state
change detection algorithm is almost plug-and-play. It
only requires data of the current state to work, not data
of all possible states as a state recognition would require.
Therefore, it would be possible to utilize the change de-
tection without excessive and time consuming training
and labeling phases. Generally speaking, the system
could aid psychologists from the patient’s first visit on-
wards. To the best of my knowledge such a system like
the introduced change detection, which is able to detect
early changes in the state of a bipolar disorder patient
and moreover, a system that works under the constraints
of every-day life and does not require long periods of
training and calibration, does not yet (2015) exist. For
this reason, I believe that the work presented here could
become a potent tool in supporting the treatment of bipo-
lar disorder. In this context I consider the results of this
chapter to be inspiring and relevant for potential future
applications in mental care.
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4

Evaluating Cognitive State Detection:
Smart phone based Objective Sensing

compared with Standards of
Subjective Self-Assessment

Daily self-assessments using standard psychological questionnaires are an established technique. Cur-
rently, they are the standard for determining the progression of affective mood disorders in psychiatric
care. However, in addition to the effort it requires, which causes adherence issues, self-assessments
have the widely recognized drawback of being subjective! Subjectivity, in this context, means that
self-assessments are easily biased. For example, the situation or emotions of the patient at the point they
are performing a self-assessment will be reflected in their answers. Furthermore, many patients lack
sufficient self-awareness to be able to report on their conditions correctly. Therefore, self-assessments
often are inaccurate. Some psychiatrists go as far as to predict that many patients have deferral in
self-awareness by up to 7 days. Thus, in reality, only experienced and self-aware patients can use
self-assessment as a useful tool.

While many experts suggested that an automated sensor-based system, being objective by its nature,
would be able to overcome the problem of subjectivity, to date this claim could not be supported, as
there is too little evidence available. Providing the required evidence is the objective of this chapter.
Thus following part will compare automatic activity and location-based state recognition (the outcome
of the previous chapter) and patient’s self-assessments, directly to psychological state assessments
(actual diagnosis). This comparison will be made with the same 12-week real-life data-set that had
been introduced in the previous chapter.
Both the automatic sensor evaluation state curves and the self-assessment state-progression curves
were evaluated against state progression curves generated from an objective psychiatric examination
(psychiatrist diagnosis, ground truth). The comparison of the curves was calculated by using the
dynamic time warping (DTW) technique and the DTW similarity metric as a quantitative quality
indication. The results of this analysis highlight the three different aspects of this topic:

1. The doctor’s perception that the patients’ self-assessments are often biased and shifted for several
days can be confirmed.

2. A comparison of (such a shifted) self-assessment and the sensor based automatic state recognition
shows that still both, sensor data and self-assessment, correlate and thus primarily express the same
information.

3. The DTW analysis comparing the similarity of curves, thus indicating which of both modalities
comes closer to the actual diagnosis, explicitly favors the sensor based state recognition.

By taking the cumulative distance between the respective curves into account, it is demonstrated that
the error in the sensor based state recognition‚ is considerably smaller (by an average of 62 percentage
points) than the error in the self-assessment.
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4.1. MOTIVATION:

4.1 Motivation:
Modern medicine can draw upon a variety of techno-

logical applications. Different imaging modalities like X-
ray, CAT scans, or MRI already are standard tools for the
diagnosis of numerous diseases. Even further, many ill-
nesses can be healed today because they can be detected
early enough due to medical image analysis. On a kind of
macro level, surgeons nowadays can use robots and endo-
scopic cameras to reduce the invasive-ness of treatments.
Via tele-systems, it is possible to connect with specialists
all over the world, even during surgery. Thus it can be
stated that technology has changed and enhanced physi-
cal medicine during the last 30 years to a vast extent.
In contrast, until now, psychiatric care can barely rely on
technology, neither for diagnosis nor treatment. In bipo-
lar disorders treatment, doctors find it still to be a chal-
lenge to provide the optimal medication and treatment to
their patients. One of the main issues here is the fact that
the effectiveness of medication treatment highly depends
on the time when it is administered. Ideally, the medica-
tion should start (or be adapted) as early as possible, at
the point, a change towards an episode starts to manifest.
However, to determine this point is rather difficult. For
one, this is because, with 100 bipolar patients, the doc-
tors have to deal with 100 unique expressions of the dis-
order. Thus, psychiatrists and therapists need to develop
an understanding and a kind of "6th sense" to diagnose
a mental disorder correctly. Besides experience and ob-
servation, the primary source of information, and so far,
"standardized" diagnosis tool is and are various forms of
self-ratings, self-rating-tests, and reports of relatives.

Unfortunately, self-ratings are prone to bias and are
dependent on the subjects’ mental state and therefore,
have been criticized in the past. For example, in a de-
pressive state, a patient has only a limited recollection
of the manic days a week ago and vice versa. Austin et
al. [130] highlight different phenomena in the response
sets of self-reports with their correlation to different per-
sonality and cognitive disorders. These are acquiescence
(or yea-saying - meaning people tend to agree with ev-
erything), socially desirable responding (responding the
way the respondent believes the person asking would
want to) and extreme responding (meaning either yes

or no without reflecting options in-between). Moreover,
psychologists have warned that human memory is falli-
ble (Schacter, [131]), and people often "remember" events
that never happened. Thus the reliability of self-reported
data has to be considered tenuous. Therefore, to inter-
pret the state of a patient correctly, and thus to get the
diagnosis and the treatment right, requires a great deal
of experience from the psychiatrist.

For the second primary source of diagnosis, besides in-
terpreting the self-assessment, psychiatrist mainly try to
capture the way the patients behave during the limited
time at an appointment when the psychiatrist, in fact,
sees the patient. Also, in various personal discussions,
psychiatrists repeatedly stated that in their experience,
many patients have a deferred awareness of the change of
their unique mental condition. Some psychiatrists even
got as far as to estimate a deferral to recognize a change
in their state of approximately one week.
Still, so far, this is only an observation that has never been
evaluated professionally so far. Ten years ago, a study by
Elgie and Morselli [132] addressed the question whether
self-reports could be valid at all, in the light of known
problems with attention, concentration, and memory, re-
ported by bipolar patients. Its results suggested that
most bipolar patients demonstrate outward signs of cog-
nitive impairment, but they are unable to report them
accurately. At least by using available self-report inven-
tories, the patients were unable to express impairments
sufficiently. Even though this study backs the observa-
tion of deferred perception of emotion to some extent,
despite a thorough evaluation no research could be found
that actually conducted an extensive evaluation measur-
ing if and how much self-perception of bipolar patients
can be delayed.

Given these circumstances and considering the
achievements of pervasive computing in various fields,
including health-care, activity recognition recommends
itself as an application for mental care. However, due
to difficulties in performing daily monitoring and due
to skepticism within the mental care field, which limits
support from mental care professionals, very little work
has been done yet.

4.2 Related Work:
In the area of mental health-care, the majority of

systems deployed to date focus on supporting self-
monitoring. Bopp et al. [102] and Yun et al.[103] describe
systems that require patient feedback through frequent
questionnaires or text messages.

Other systems, like those introduced by Burns et
al.[118], Likamwa et al. [119], and the Optimism plat-
form [121] similarly rely on self-reporting, in these case
implemented on smartphones. They certainly are suit-

able for aiding the patients in logging self-reported
mood, activities, and quality of sleep to monitor affective
mood disorders. However, these systems often require
constant interaction and feedback from the patient. Re-
garding automatic recognition of the mental state, much
less work exists, in particular, work involving real-world
studies and off the shelf devices like smartphones.

Massey et al. [116] describe an experimental analysis
of a mobile health system for mood disorders where they
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introduce a list of possible sensors for mood detection,
yet focus on technical aspects like the line of sight and
reception rate, optimal coverage and optimal placement
of on-body sensors.

In [122], Frost et al. use a self-developed application to
record subjective and objective data from patients who

have bipolar disorder. Even though their main focus lies
on self-reported information, in passing, they also utilize
coarse objective sensor data (acceleration fragments and
phone call statistics) to try to estimate future shifts of a
patient’s mental state. These predictions are compared to
forecasts derived from the self-reporting data.

4.3 Objectives and Contributions
The work in the previous Chapter (Chapter §3) has in-

troduced a sensor based and thus objective way to eval-
uate the state of patients suffering from affective disor-
ders with reasonable accuracy. In psychiatric care, self-
assessments, the standards currently used to evaluate
the state of disorder have the known drawback of be-
ing inaccurate. Since there are no better alternatives
yet, self-assessments are used. With the promising re-
sults introduced in Chapter §3, the question naturally
arises, whether this relatively objective method might
be able to compete with the standard method used in
psychiatry,(subjective) self-assessment, or maybe would
outperform the self-assessment? In this regard, the pri-
mary objective of this chapter is to compare results of the
-based activity recognition application to the patient’s
self-assessment.

After providing a quick recap of available data-sets (see
section §4.4), the chapter starts with analyzing a simple
smart-phone-based daily self-assessment. Its weaknesses

and limitations will be depicted, and its inaccuracy eval-
uated. See section §4.5. In the course of this analysis,
also the deferral of change awareness and self-perception
of the patients, as mentioned by a psychiatrist, is evalu-
ated objectively, which has not been achieved in psychi-
atry before. Results of this comparison reveal an actual
deferral of state change awareness of more than four days
in two third of the patients.

Subsequently, this work evaluates how smart-phone-
based objective sensor data qualify better to reflect the
patient’s actual state than the current standard. Both
the sensor based classification of state curves and the pa-
tient’s self-assessment curves are evaluated with the dy-
namic time warping technique towards the ground-truth
of frequent examinations. This evaluation shows more
than 60% less error for the sensor-based method than the
self-assessment. See section §4.6. After analyzing the
feedback provided by doctors and patients in section §4.7
this chapter closes with a discussion (see section §4.8)

4.4 Collection of Different Data Sources
The work in this chapter, as has been pointed out, is an

extension of the previous chapter (Chapter §3). Hence,
the sensor data-set used for this analysis is the same and
has been introduced. The following section thus only
provides a summary of the available sensor/data sources
and only goes into more detail if it is necessary for com-
prehension. For more information, please refer to respec-
tive sections in the previous chapter.

4.4.1 Sensor Data
The objective sensor data-sets were recorded with the

patients’ smart-phones and included three-axial acceler-
ation, GPS-traces, phone-call behavior, and (scrambled)
sound (during phone calls). In total data was recorded
from 10 patients, including a total of more than 800
days of sensor recordings (average of 600 days of traces
per sensing modality), documenting a total of 17 state
changes across all patients (e.g., depressive to normal,
etc. ). See also the previous chapter for more detail.

4.4.2 Available Ground-Truth
The available ground-truth has been introduced in part

in the previous chapter. Please refer for more detail.

Psychological and Psychiatric Assessment: Spe-
cially trained psychologists performed psychological

state examinations (psychological standard scale tests
performed with the patient) to validate the sensor data
and to provide ground-truth. These scale tests in-
cluded two foreign-rated and two self-rated tests de-
signed for depression and mania and were carried out
every three weeks. Please note that more frequent ex-
aminations could have resulted in a so-called “learning
effect,” meaning the patients might remember questions,
criteria, and what they replied last time. Thus too many
scale test would have biased outcomes. See also subsec-
tion §3.6.4 in the previous chapter.
The examinations resulted in a grade for each measure-
ment on a 7-point scale between -3 for severe depres-
sion and +3 for severe mania with intermediate steps
of depression, slight depression, normal (0) slight ma-
nia and mania. If necessary to express the state cor-
rectly, half grades were possible. To provide additional
ground-truth for the time in-between the scale tests, spe-
cially trained psychologists talked to the patients over
the phone and recorded their impressions.

Simple Self-Assessment: During the study, the pa-
tients were asked to fill in a simple daily question-
naire. Note that quite some work is being done currently
in developing -based patient-self-assessment tools. As
stated in [122], for example, it is essential to keep a self-
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assessment simple. Otherwise, the patients will quickly
fatigue and stop to comply. Any other, the best interval of
self-assessment entries have yet to be found. Asking the
patient to give feedback every hour or several times a day
is not feasible, the patient will start to forget to provide
feedback or will get overwhelmed or stressed out soon.
On the other hand, asking a patient to report weekly will
very likely lead to mix-ups, and a blurred recollection of
things and most importantly will likely miss many inci-
dents. Therefore, in this study, it was decided to opt for a
daily self-assessment, which would pop-up on the screen
in the evening, at a time where people most likely would
sit in front of the TV or spending time with other relax-
ing actives, but early enough so it would not wake the
patients up.
The questionnaire was designed to take no more than 5-
10 minutes per day. Next, to a few questions about time
spent at specific locations (at home, outdoors, at work,
and more) and about daily activities performed, the self-
assessment mainly included (similar to [122]) self-ratings
of mood, individual level of activity and subjective phys-

ical and mental state. After consultations with the partic-
ipating psychiatrists, the self-rating was not done on the
diagnostic Likert scale [133] (which some patients may
have had problems with), but on a “how do you perceive
your state” scale of 1 (very bad), through bad, ok, good
to 5 (very good). This 1-5 scale is similar to an inverse
school-grade scale (Austria) and therefore was easy to un-
derstand by the patients.
Furthermore, most people have a good perception of
feeling inadequate or very bad, ok, good or very good,
on the contrary to using a 7-point scale, where the pa-
tients would have been required to rate whether they felt
slightly manic or manic or very depressed or slightly de-
pressed. Such a specific self-rating would require expe-
rienced patients who can understand how it feels like to
be "slightly manic." For later analysis, though, this proce-
dure urged to develop a mechanism to bring the different
scales together to ensure the comparability. Nevertheless,
it helped the patients to rate themselves, and therefore,
this procedure was used.

4.5 Quantifying the Limitations of Self-Assessment
Despite the outcome of the study by Elgie and More-

selli 2007 and the various sources questioning the relia-
bility of self-report (as mentioned before), in the area of
mental health care the majority of systems deployed to
date still focus on supporting self-monitoring. Systems
that require patient feedback through questionnaires or
text messages are described in Bopp et al. [102] or Yun et
al.[103]. Other systems, like those of Burns et al. [118]
or LiKamWa et al. [119], for example, are suitable for
aiding the patients in logging self-reported mood, activ-
ities, and quality of sleep to monitor affective disorders
on their smartphones.
The main objective of the first analysis in this chapter was
to evaluate whether the deferral in state change aware-
ness, as mentioned above, is objectively measurable. This
evaluation hypothesizes that the delay exceeds more than
two days and thus actually might have a negative influ-
ence on the patient’s self-assessment.

4.5.1 Delayed Self-Perception

As mentioned in the introduction, psychiatrists report
that patients’ perceptions of their condition may be de-
layed by several days. In private conversations, psychia-
trists have mentioned that, in their experience, they be-
lieve that this shift can take up to seven days. The evalua-
tion of this observation was initially not a primary objec-
tive of this work. However, the self-assessment analysis
found that the experimental set-up (with frequent scale
scores and self-assessments over several months for mul-
tiple patients) would easily allow us to take a first action
in confirming this observation.

The first step in determining whether self-perception
of the study patients actually was delayed, was to find a

measure for calculating the similarity between the self-
assessment and its so-called ground-truth (the actual di-
agnosed state based on the clinical score tests). Since
both were present in numeric and curve form, the dy-
namic time warping (DTW) technique presented the op-
timal method. DTW is a well-known methodology to
find the optimal alignment between two time-dependent
data sequences, particularly when they vary in speed or
are shifted in time. Briefly summarized the DTW finds
the optimal alignment between two curves and afterward
calculates the cumulated distance (plane) between the
optimally aligned curves. Müller 2007 [134] provides a
good overview of this technique. Using the DTW tech-
nique, the similarity between the self-assessment and the
ground-truth was calculated.

In a second step, the similarity between the two se-
quences was re-evaluated, but this time in order to find
the most optimal alignment between them by shifting the
self-assessment along the ground-truth. This means the
self-assessment was shifted day by day in respect to the
ground-truth (imitating a delayed self-perception) from
one to seven days and after each shift, the similarity to
the ground-truth was calculated.

4.5.2 Results of Delayed Self-Perception

The results of this evaluation is summarized in Table
§4.1. This table shows the cumulative distance (of the
DTW) between the diagnosed state curves (ground truth)
and the shifted self-assessment (shifted by 1-7 days) for
all nine patients. For most patients, the cumulative dis-
tance is lowest and therefore, the similarity best, with a
shift of approximately five days (median 5, average 4.3,
mode 6!).
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The result-table shows that the shift varies quite a bit in-
between patients. For 2/3 (six out of these nine) patients,
the cumulative distance is lowest with a shift of more
than four days. Only 1/3 has a good self-perception,
meaning the similarity is best with a shift of fewer than
three days. However, for all patients, a shift of four days
is definitely not best at all! Thus, for these circumstances,
neither the mean nor the median is the best modality to
express this result, but the most frequent value (mode).
Looking at table §4.1 it becomes clear quickly that only
1/3 have a deferral of less than the average (4.3) and 2/3
show a deferral of more than the average. Moreover, only
two of the patients have a deferral that comes close to the
average, but 2/3 of the patients have a deferral close to
the median of 6.

shift 1 2 3 4 5 6 7 Best

P0201 2.3 1.4 4.65 2.98 1.28 3.24 1.52 5
P0102 0.03 0.31 1.98 1.5 2.04 0 0 1
P0302 0.59 0.17 2.43 1.21 3.78 0.9 2.11 2
P0502 0.03 1.21 5.43 0.99 3.11 2.5 2.43 1
P0602 5.11 6.47 3.92 4.45 5.0 0.45 5.71 6
P0702 0.61 2.81 1.09 1.2 0.43 0.09 0.1 6
P0802 3.88 8.97 4.17 6.14 2.93 2.6 3.22 6
P0902 0.77 0.96 0.68 3.63 0.1 0.37 0.21 5
P1002 2.81 7.45 10.52 1.37 7.62 5.75 0.6 7

Average 4.3
Median 5
Mode 6

Table 4.1: DTW: cumulative distance between psychiatric
scores and self-assessment (shifted by 1-7), distance is minimal
with a shift of (mean) 4 days

These results support the psychiatrist’s subjective ob-
servation that a shift in change-perception is measur-
able, and its deferral exceeds more than two days, and
thus the hypothesis of this evaluation can be accepted.
Nevertheless, this analysis also shows the uniqueness of
the perception delay for each person. Therefore, regard-
ing “enhancing the quality of self-reports,” it would not
be feasible to apply merely a 4-day shift onto the self-
assessment. Moreover, systems trying to provide accu-
rate self-assessment would either need a much more de-
tailed and sophisticated (and therefore time-consuming)
self-assessment or would need to spend significant effort
in evaluating the individual shift of each patient’s per-
ception and a likely change of it within different states
and over time. In summary, for most patients, the per-

ception of state and hence the self-assessment is uniquely
delayed and biased. Therefore, the results of the analy-
sis above strongly suggest using other more reliable mea-
sures for monitoring the state of bipolar patients.

4.5.3 Discussion

The presented analysis was a first attempt to objec-
tively evaluate the deferral in the perception of patients
with bipolar disorder, generally affecting their ability to
self-report, as has been reported by psychiatrists. The re-
sults of this analysis support this observation. Two third
of the test subjects display a shift in their self-perception
of five or more days. Only one-third of the test sub-
ject has an optimal alignment of self-reporting and self-
assessment within two or fewer days.

Indeed, as the underlying study initially was not de-
signed for this analysis, this work shows some limita-
tions. Even though the study lasted for 12 weeks per
study participant, the sample itself is small (9 test sub-
jects) and therefore statistically not entirely representa-
tive. Furthermore, the study sample includes a high fe-
male rate (8 out of 9). Therefore, to strengthen the re-
ported outcomes, this evaluation should be done with a
more extensive set of test subjects. Besides, the current
analysis provides no information on whether the shift is
constant for each patient or might change with time or
changes in the patient’s condition. It is a reasonable hy-
pothesis that patients in a neutral state might have a bet-
ter perception of their condition than in a manic state.
This aspect is also worth further investigation.

Nevertheless, with 66% of the test subjects showing a
substantial shift in their self-perception, this work pro-
vides a first objective evaluation of the deferral of self-
perception for bipolar patients. Thus this work calls out
to psychiatry and psychotherapy to rethink the way the
state of bipolar patients are assessed and work on more
efficient and objective methods. Despite calling for better
ways to assess the patient’s state, the results of this work
also come with a chance for therapists. More precisely,
the knowledge about the likelihood of delays in the self-
perception will help therapists and psychiatrists to un-
derstand their patients better and more efficiently inter-
pret current self-assessment based measures for deter-
mining state and state changes and hence provide timely
treatment.

4.6 Established Methods or New Sensors-Assessments?
Sensor-based analysis as such is, by definition, objec-

tive as they measure what is there to be measured. Of
course, there are ways to influence the measured results,
e.g., regarding a smart-phone as a sensor platform, sen-
sors can be switched off, or the smart-phone could be for-
gotten (intentional or unintentional). Nevertheless, sen-
sors are not influenced or biased by “daily well-being" or
mood, and thus, sensor readings are deemed to be more
reliable than subjective self-assessment. So the funda-

mental question is whether this can be confirmed in a
real application like the state recognition of actual bipo-
lar patients by a . Can smart-phone sensor based state
recognition actually draw a better and more reliable pic-
ture of the patient’s state and progression than the self-
assessment? To answer this question is the objective of
this section.

The envisioned use of state recognition is different:
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Most of the time, the psychiatrist will not see the pa-
tient for weeks, except during acute treatment. Specif-
ically, during a normal state phase, but also while going
through an episode, the state recognition could provide
frequent and valuable overviews to doctor about the pa-
tient’s progress or state, and therefore offer the possibility
to react, even in-between treatment appointments. More-
over, these overviews could, in retrospect, enable the psy-
chiatrist as well as the patients to analyze the patient’s
behavior and progression to gain better insight into the
patient’s specific case.
The main advantages here are that -based sensor data is
available daily without the requirement for interaction
with the patients and the data. Thus the features and re-
sults are based on objective data, which is not shifted and
not biased. Still, the question remains: can smart-phone
sensor based state recognition actually draw a better and
more reliable picture of the patient’s state and progres-
sion than the self-assessment? The following part intends
to provide an answer.

4.6.1 Sensor based State Recognition

Using the smart-phone sensor based data-set described
earlier, and in the previous chapter, it was possible
to successfully implement detection of patients’ state
changes and recognition of the mental state. (see also
chapter §3) To briefly recall: With the acceleration and
location features recorded by the patients’ smartphones,
supervised learning standard pattern recognition tech-
niques were applied to the data to identify which state
a patient had been in at a particular point in time. A
randomly performed standard 33/66 percentage split
was used to divide data into training and test samples.
The actual classes for the classification were defined ac-
cording to the diagnosis provided by psychologists (de-
pressive, normal, manic with different degrees - up to
7 classes possible). As a classifier, the Naive Bayes in-
cluded in Weka was used to estimate classes for the test-
set. Other classifiers (e.g., KNN) were tested but achieved
very similar results. The entire process was repeated 500
times in a cross-validation approach with random test/-
training splits to eliminate artifacts. With this approach,
it was possible to determine the state of the patient (up
to 7 different degrees of mania or depression) with an ac-
curacy of 70-80%.

More importantly, though, it was possible to confirm
that sensor data can provide enough information to de-
tect the necessary changes of state. Instead of a clas-
sifier that incorporates a model for each state relevant
to the patient, the state change detection approach only
has to build a model of one single “default state”. All
data-points falling outside this model are classified as a
“change”. In order to determine the border (threshold)
between "in the model" and "outside the model," a set of
values was tested, finally resulting in a precision/recall
of more than 97%. The main application of a state change
detection, obviously, is detecting the changes in behav-
ior. The utilization of a sensor system to recognize/diag-

nose the patient’s particular state, on the contrary, might
be controversial. Patients are human beings, and there-
fore, they will not entirely behave according to a defined
scheme, which could cause miss-diagnostics very easily.

The envisioned use of state recognition is different:
Typically the psychiatrist will not meet the patient in per-
son for weeks, precisely as long as a patient is in a neutral
phase. Of course, this would be different during acute
treatment. Regardless, during a healthy state, but also
while being in an episode, the state recognition system
would provide frequent overviews of the patient’s behav-
ior and progress of state to the doctor. Thus, it would
provide a possibility to act and react even in-between
treatment appointments. Of course, these overviews
could, in retrospect, also enable the psychiatrist as well
as the patients to analyze the patient’s specific form of be-
havior and progression to gain a better understanding of
the patient’s particular case. The advantages here are that
sensor data is available daily without requiring much in-
teraction, and more importantly, the data is objective, not
shifted, and not biased.

4.6.2 Correlation of Sensor and Self-Rating

Going back to the do-ability evaluation in the previous
chapter (see chapter §3) a linear regression analysis on
a small initial data-set showed that various features ex-
tracted from the sensor data correlates with the patient’s
self-assessment. In order to confirm the same effect with
the new and larger data-collection, this linear regression
was performed again, this time with even more features
derived from more sensor-modalities than was done in
the initial calculations.
The reason why this correlation was repeated with the
new data-set is two-fold. First of all, the main reason
was not to confirm the results but to analyze the effect
of different features. As stated before, patients do not
always concur with their behavior. Thus not every pa-
tient expresses their state in the same way. This way, it
should be evaluated which features actually allow a fair
comparison to the self-assessment. The second reason for
performing the linear regression and T-test with the new
data set was to confirm that both data sources carry the
same inherent information about the patient’s condition.
If very few features correlated with low confidence, the
question would be whether both modalities are actually
comparable.

The performed correlation (linear regression) between
sensor-data and the self-assessment shows values fair
above 0 and therefore indicate a correlation between sen-
sor data and self-assessment. In order to verify the statis-
tical significance of the correlation again, a T-test of the
regression was performed and proofed the correlation to
be within the 90% confidence interval. For most patients
and most features, the correlation even lies with the 99%
confidence interval. Table §4.2 shows the correlation re-
sults (correlation and t-value) for all patients and for a
number of different features. Note that Table §4.2 only
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Location Acceleration

Features distances traveled % of stay outdoors movement/no movement frequency variance

Patients N correlation t-value correlation t-val. N correlation t-value correlation t-value

p0201 28 0.061 0.312 0.505 2.987 28 0.496 2.609 0.554 7.291
p0102 24 0.737 5.118 0.887 9.003 25 0.428 2.341 0.248 -2.268
p0302 41 -0.339 -2.247 0.412 2.820 45 0.272 2.006 0.349 1.675
p0502 22 0.599 3.349 -0.187 -0.852 31 -0.732 -7.198 0.131 -0.129
p0602 22 0.602 3.369 -0.259 -1.199 14 -0.923 -7.147 -0.850 -5.046
p0702 14 -0.505 -2.026 -0.748 -3.898 21 -0.215 -0.692 0.764 3.586
p0802 26 -0.662 -4.324 -0.354 -1.852 47 0.249 1.792 0.260 -4.917
p0902 32 0.123 0.679 -0.545 -3.558 28 0.468 2.778 0.307 2.830
p1002 5 -0.821 -2.492 0.117 0.203 15 -0.126 -0.891 -0.805 -6.337

90% C N >=14 ->|t| >= 1.76 ( N=5 ->|t| >= 2.02)

99% C N >=14 ->|t| >= 2.98 ( N=5 ->|t| >= 4.02)

Table 4.2: Correlation and t-test results for different selected acceleration and location features to the self-assessment

includes a few representative features. These are the dis-
tance traveled, percentage of stay outdoors, the relation
of movement to no movement, and frequency variance.
More features and their correlation values are listed in
Appendix A in the table in section §7.3.
The t-value indicates that not all features correlate with
the self-assessment for all patients within the 90% con-
fidence interval, yet for all patients, features exist that
do. This analysis, with its results, is significant as it con-
firms that the sensor-based analysis and the patient’s self-
assessment do indeed include the same information and
thus are comparable. Regarding the evaluation of which
of the data sources (sensor based or self-assessment), that
is more accurate, which comes in the next section, this
information is essential.

Table 4.3: Comparison of self-assessment (dots), recognition re-
sults (asterisks) and diagnosed psychological scores (dashed di-
amonds)

4.6.3 Sensors vs. Self-Assessment

As a first step towards evaluating which of the modes
would be most accurate, self-assessment and sensor-
based state recognition for each patient were compared
visually with the ground truth (diagnosed psychological
scores). See figure §4.3. Even without a trained eye, it is
very clearly visible that the similarity between the sensor
based recognition results (magenta asterisks) and the di-
agnosed state (cyan dashed diamonds) is much closer for

most patients than the similarity of the self-assessment
(black dots) and the diagnosed state! Specifically, for pa-
tients with weak self-perception (e.g., p4, p6, or p8), the
sensor traces provide a much more accurate representa-
tion of the patient’s state.

While analyzing the similarity between diagnosed psy-
chological scores and either self-assessment or recogni-
tion results, one needs to keep in mind, that the diag-
nosed scores have been taken every three weeks with
weekly intermediate telephone interviews (which, in
turn, were aligned with the ground-truth scores scheme).
Therefore, the ground-truth does not cover fluctuations
by a few days. In light of this, neither self-assessment nor
recognition results will match perfectly with the ground
truth. Thus, the main interest in this evaluation lies in
analyzing the similarity (shape and course) of respective
curves and not in comparing day by day values.

For evaluating the similarity of the different curves
to the ground-truth, once again the DTW technique
[135] was used. This technique, particularly well fit-
ting when time-depended data sequences vary in speed
or are shifted in time. Note, in order to keep the com-
parison fair (self-assessment values are not necessarily
in the same value range as the sensor values) all three
curves were normalized between 1 and 0 before calculat-
ing the minimal distance between them. The resulting
minimal cumulative distances for each patient, and each
data source are listed in Table §4.4. It does not only in-
clude the minimal distance of the sensor data and the
self-assessment but also a calculation of the minimal dis-
tance of the self-assessment shifted to the optimal align-
ment (shifted according to the evaluation of the previous
section).

Except for p0102 (p3), the minimal distance of the
sensor data to the ground-truth is considerably smaller
(average of 62%) than the distance of the actual self-
assessment to the ground-truth. Only for p0702 (p7),
both curves are equally similar. Even in comparison to
the optimally shifted self-assessment (shifted to reduce
the deferral of self-perception, see also the previous sec-
tion), the distance of the sensor data is still 57 percent-
age points smaller than of the shifted self-assessment.
When excluding p0102 and p0702 (since for both the
sensor-data and self-assessment perform equally good or
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minimal cumulative distance to ground-truth difference of distance to ground-truth in number and %

Patients actual SA SA shifted (by days) Sensors SA / Sensor % shifted SA / Sensor %

p0201 0.33 0.24 (5) 0.05 -0.3 -83.9 -0.2 -78
p0102 0.29 0.29 (1) 0.62 0.3 109.5 0.3 112.7
p0302 8.69 8.63 (2) 0.29 -8.4 -96.6 -8.3 -96.6
p0502 21.6 21.0 (1) 0.6 -21 -97.2 -20.4 -97.1
p0602 6.27 3.28 (6) 0.54 -5.7 -91.4 -2.7 -83.6
p0702 5.1 3.98 (6) 5.09 0 -0.2 1.1 27.8
p0802 12.76 8.29 (6) 0.02 -12.7 -99.9 -8.3 -99.8
p0902 2.48 1.12 (5) 0.01 -2.5 -99.5 -1.1 -98.9
p1002 0.62 0.79 (7) 0.01 -0.6 -98.4 -0.8 -98.7

mean 6.46 5.29 0.8 -5.66 -61.95 -4.49 -56.9
w/o 0102+0702 7.5 6.2 0.2 -7.3 -95.3 -6 -932

Table 4.4: DTW Comparison of results: cumulative distance between diagnosed psychological scores and self-assessment (actu-
alSA), shifted self-assessment (shiftedSA) and recognition results (sensors)

bad) the average cumulative distance of the sensor based
recognition is more than 95 percentage points smaller
than the average cumulative distances of the actual self-

assessment. These results provide strong evidence that
the sensor-based results are far more accurate and reli-
able than the self-assessment.

4.7 Participant’s Perception
As has been pointed out in Chapter 2, a real-live de-

ployment depends significantly on the participant’s com-
pliance and their understanding of why a study is de-
ployed. Thus, during the study deployment, close con-
tact with patients and psychiatrists, partially even rela-
tives of the bipolar patients was established, and any of
the participant’s feedback was taken seriously.

4.7.1 Patient’s Feedback:

Throughout the study most patients provided feed-
back. So we learned, that too much of detailed technical
information was repelling for them because it confused
them. Patients were mainly eager to know what the fi-
nal goals of the system were and what their input would
have to be. Most of them were not interested in what
kind of sensors the application is logging. The few pa-
tients who were interested indicated their interest, and
all the others were satisfied by the knowledge that sen-
sors readings where logged. For most patients, it was
much more important to be guided through the first days
of using the new smart-phone and to get help in transfer-
ring all necessary data from their old cell-phone to the
new one, than actually knowing what the system was do-
ing. Therefore, after handing the to the patient and after
transferring contacts to it, we offered them to visit the pa-
tients at the ward daily until they felt comfortable with
the new device. Almost all patients have repeatedly used
it.

Even though the patients could prohibit the usage of

their data on specific days, no patient ever used this pos-
sibility. On the contrary, they did not see the need for
such a feature. Now and then some journals had been
forgotten to be filled in, yet the patients stated afterward,
that they just forgot to deal with it and it was not about
them not wanting to provide information.

4.7.2 Psychiatrist’s Feedback:

The psychiatrists overall were more skeptical. This
profession naturally seems to be very critical regarding
using technology when it comes to their topics. Never-
theless, as one psychiatrist stated: "all other physicians
have the possibility to look inside of their patients, and I
would highly welcome the possibility to get a picture of
my patient’s mental state."

The potential of a system, as is described here, could
offer was appreciated by most psychiatrists. Most of
them found the topic fascinating, and to some degree,
they stated that thay would most likely use a system that
would assist them in gathering a picture of the patient’s
state. They encouraged us to provide them an under-
standable illustration of the patient’s behavior (drawn
from the sensor data collected). For example, they liked
to get a plot of the paths of a patient (gathered by GP-
S/WiFi) or an overview of the patient’s activity level over
a couple of days or weeks. Mainly parameters that would
picture changes in the behavior nicely would be of use
for them. Next to this, psychiatrists are not interested
in getting feedback or any suggestions from a technical
system.

4.8 Discussion and Conclusion
The work presented in the previous chapter has intro-

duced a smart-phone sensor-based system dedicated to
facilitating the life of bipolar disorder patients and sup-
porting their treatment. It incorporates sensor modalities
covering (different) disease-relevant aspects of human
behavior, but does not rely on self-assessment, thus hav-

ing the potential of providing a less biased and more ob-
jective additional information source to health care pro-
fessionals. This present chapter now had the intention to
evaluate the results of this system in comparison to the
actual current standards in psychiatric care, namely the
self-assessment.

63



CHAPTER 4. EVALUATING COGNITIVE STATE DETECTION

In the analysis, it was possible to prove, with statistical
measures, that deferrals in the patients’ self-perception
(on average the deferral is 4 or more days) limit the ac-
curacy of the self-assessment. Furthermore, a compari-
son of the self-assessment to the result of automatic state
recognition was performed. This comparison demon-
strated that sensor-based state recognition is not only an
objective measurement but also substantially more accu-
rate in displaying the patient’s actual state. DTW showed
that except for two patients, the cumulative distance be-
tween the recognized state and actual state is approxi-
mately 95 percentage points smaller than the cumulative
distance between self-assessment and actual state.

A closer look at the patients, which undoubtedly pro-
vided less accuracy for the sensor data, still can reveal
some interesting aspects but also some limitations of
this work. Patient 0102 is the only patient whose self-
assessment seems to be closer to the actual state then the
recognition results. On the one hand, there are of course
patients whose self-perception will be accurate. Such pa-
tients are those that have dealt with their illness for sev-
eral years and have gathered much experience in under-
standing their minds’ signals. On the other hand, the ab-
solute values of the cumulative distances show that the
difference between self-assessment and recognition re-
sults is relatively small. With a distance of 0.29 and 0.62,
respectively (difference -0.33) in comparison to patient
0803 for example (a distance of 12.5 ), both sensor and
self-assessment are very similar to the diagnosed state.

Moreover, a closer visual examination of the curves of
p0102 exposes the limitation of only having a ground-

truth value every three or slightly fewer weeks. When
focusing on the peak around day 15, the curves show
that the recognition detects the decline of the state a few
days earlier than the self-assessment. It is hard to tell
which one of the curves is the correct one, as the psychi-
atric score curve does not include a scores during these
specific days. Concerning the evaluation of the shift in
the patients’ perception and the results of the similarity
analysis in the previous chapter, the interpretation that
the recognition is likely to be more accurate even for this
patient than the self-assessment is valid. However, the
available data does not allow to confirm this interpreta-
tion.

However, even though this work provides strong em-
pirical evidence that sensor-based self-assessment is, on
average, a more reliable and objective way of monitoring
mental state and mood than patient’s self-assessment, as
was to be expected, some patients will likely be better in
assessing their state than others.

At the end of this discussion, it should be highlighted
again that the state recognition and self-assessment anal-
ysis is based on an extensive real-life data set. Thus,
the results presented here are valid in a real-life set-
ting, which emphasizes the value and relevance of these
results. Therefore, I am confident that with these dis-
tinct results a basis can be set for further co-operation
of pervasive computing and mental health care and fur-
thermore establishing objective sensor-based monitoring
support for the treatment of patients suffering from af-
fective mood disorders.
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Interlude

At this point, this thesis cuts across the topic. The previous three chapters analyzed the potential of
location and activity recognition in terms of their ability to determine the well-being or mental state
of individuals. In this context, two areas were identified that address issues that affect the lives of
many people. Both are areas that would also benefit from sensor-assisted support in assessing cognitive
states. They are dementia, an incurable cognitive disorder of older people, and on the other hand
bipolar (affective) disorder, an equally incurable mood disorder that affects 2-10% of the population
from adolescence or young adulthood onward.

In line with the objectives of this work, both scenarios were assessed progressively with varying
degrees of complexity. Both began with an assumption and idea of how the specific requirements
of each scenario could be met. Again, appropriate data collection studies were performed for both
scenarios. An empirical evaluation of the collected data then helped to understand what kind of
information, based on the original assumption, is actually contained in the data. Finally, a quantitative
analysis of the algorithms developed to identify the mental states of the individuals involved in
the different scenarios demonstrated the potential of these methods. In the second scenario, even a
comparison with the current medical standards for the assessment of the course of the disorder could
be carried out. The results of this comparison emphasize, in particular, the potential for the use of
sensor-based detection methods in psychiatric practice.

In summary, chapters 2-4 have confirmed that, by using pervasive sensors, it is possible to col-
lect enough relevant information to assess the cognitive state and well-being of a person without
invasive or overly complex sensor systems. A next step could be, for example, to further increase
the complexity or to go into detail, and thus, to perfect the already excellent results. However, this
is more of a topic for potential business applications, and research-wise does not contain interesting
scientific questions. Another idea might be to find other, even more increasingly complex scenarios,
or to evaluate how far the detection of a condition can go, or how complex a scenario must be so that
the condition detection no longer works! These questions are legitimate, but research-wise, there are
much more interesting questions. For example, is it possible to actively support people in a stressful
situation? Positively influencing behavior is one of the newer research fields.

In recent years moreover, in the field of pervasive computing, the question of how to analyze the
behavior of a group of people has become increasingly relevant. So far, people were, in contrast, always
analyzed individually. Particular questions are, “how can systems be trained to determine the cognitive
status of a group”, or “how can subtle interactions between people be recognized?” These questions
include the analysis of collaboration between individuals as well as the question of how the behavior of
a group of people, for example, in a high-pressure situation, can be assessed.
In this next part, in chapters 5 and 6, this work leaves the analysis of individual cognitive behavior and
addresses precisely these questions.
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5

Supporting Emergency Behavior:
An Acceleration based

Smart-Watch Instant Feedback
CPR-Assistant

A health related emergency can happen to every person and many people will come across an emer-
gency during their lives. Numerous articles in magazines, however, have addressed the issue that
many people do not dare to perform cardiopulmonary resuscitation (CPR), the required emergency
measurement in case of heart failure, in an emergency because they are afraid of doing harm. Expressly
shocking are the figures in the German-speaking countries, where a First-Aid course is actually required
to get a driver’s license, and therefore many people should know what to do in an emergency. Yet, only
20% of the population would dare to resuscitate people with cardiac arrest!

An urgent emergency scenario is not only an ideal but also a relevant scenario. Positive support
for people’s behavior and self-confidence in emergency care can mean no less than saving lives.
Therefore, the following chapter introduces an immediate feedback CPR support application based
on smartwatch activity sensors. It is designed to increase confidence in performing resuscitation
and provide the ability to acquire immediate skills for laypeople. Evaluations provide impressive
numbers with laypeople being able to perform effective CPR for more than 50% of the time, which is
an improvement of up to 160%.
This chapter will further assesses whether it is possible to positively support the behavior of people in
an emergency and therefore addresses how people in a medical emergency scenario can be encouraged
to do the right thing. Thus a particular side focus will be laid on evaluating whether such a system can
help the users to be more confident in their actions.

In the following, based on the positive results of the first deployment of the CPR-watch with
laypeople, the second part of this chapter goes even a step further. It will assess whether such an
instant CPR feedback, which the smartwatch app can provide, also could influence the way medical
professionals learn to perform CPR and to speed up the process of acquiring muscle memory for
sufficient CPR. The effect of the support of the smartwatch app in a short training session was
compared to standard human teacher CPR lessons. Improvements in the skills of 24% when using the
watch a training-support versus 7.6% improvement during a human teaching lesson clearly display the
potential of a smart-device for supporting the training of skills.

In summary, the following chapter asks certain questions in regards of sensor-devices supporting
people in stressful situations. First, is an activity-based smart-watch app sufficient to support layperson
confidence in performing resuscitation? Second, can such a smart-watch app help people gain the
immediate skills they need in an urgent medical emergency? Furthermore, could such a smart-watch
App even go as far as to help people learn to perform emergency procedures effectively?

The author of this thesis has published this work and most contents, all pictures, most tables and also partially text
of this Chapter in the following publications. The author of this dissertation has written all the text in this chapter
herself, specifically text-passages taken from these publications. For more details about these publications please
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also refer to the entries in the literature list:

• Gruenerbl A. et al. Smart-watch Life Saver: Smart-watch Interactive-feedback System for Improving Bystander
CPR. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers. IEEE International
Symposium on Wearable Computers (ISWC), September 9-11, Osaka, Japan, Pages 19-26, ISWC ’15, ISBN 978-1-
4503-3578-2, ACM, 2015. [136]

• Gruenerbl A. et al. Training CPR with a Wearable Real-Time Feedback System. In: Proceedings of the 2018
ACM International Symposium on Wearable Computers. IEEE International Symposium on Wearable Computers
(ISWC), Oktober 8-12, Singapore, ISWC’18, ACM, 2018. [137]
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5.1 An Emergency Care Motivation
One of the leading causes of death in the western world

is the “Out of Hospital Cardiac Arrest” (OHCA). In the
United States every 90 seconds a person dies due to
OHCA. This means more than 350,000 deaths per year.
In Europe, approximately 40% of deaths in adults not
older than 75 years are caused by OHCA. When suffering
an OHCA, the chances of survival decrease by up to 7-
10% per minute without measures to keep the brain oxy-
genated [138]. This means, eventually more than 95%
of those suffering an OHCA die, as there are, for what
reasons ever, no such measures performed. Measures to
keep the brain oxygenated are called cardiopulmonary
resuscitation (CPR), also known as chest compressions
and mouth to mouth breaths, if possible in public spaces
in combination with operating a publicly available au-
tomatic electronic defibrillator (AED). While operating
and AED is easy and, in general, only means following
instructions of the device, adequate and effective CPR by
bystanders is essential for surviving an OHCA. Neverthe-
less, numbers regarding bystander CPR in real emergen-
cies are quite shocking.

Throughout Europe, the number of people actually
trusting themselves with performing First Aid and CPR
varies quite a lot depending on the country. The average
lies at 66%. In Denmark for example, as Wissenberg et
al. [139] have ascertained, the rate of bystander CPR has
increased from 21.1% in 2001 to 44.9% in 2010. Lay by-
stander resuscitation was attempted in total for 19,468
patients. Explicitly alarming though, are the numbers in
the German-speaking countries, where according to the
Red Cross and ADAC, only 15-20% of people would ac-
tually dare to perform CPR. People state that they would
be insecure what to do and therefore were being afraid
to do damage! Despite the fact that heart failure is al-
ready the worst case and no damage could make things
worse, this reluctance to perform CPR is especially sur-
prising, since like most EU countries German-speaking
courtiers require obligatory First-Aid lessons for obtain-

ing a driver’s license and thus the majority of people has
at least once in their life performed CPR on a training
manikin.

A more detailed look by Grasner et al. [140] reveals
that between 2004 and 2011 (n=11,788) in Germany by-
stander CPR was performed most often on young pa-
tients between 18 and 20 years of age (total 25%), and
least often in those over 80 years (12%). Also, bystander
CPR was performed significantly less often when OHCA
happened in private homes, compared to OHCA in pub-
lic areas! These observations are interesting. The actual
reason has never been evaluated, but it seems to be fea-
sible to conjecture that in private homes the shock of a
relative or friend going into cardiac arrest could lead to
a paralyzing behavior. On the other hand being in pub-
lic and acting on an emergency of a stranger might be
more comfortable and less emotionally stressful. More-
over, being in a public space might add to the expectancy
to act by others (peer pressure), but also that the support
by the peer (bystanders) might be encouraging.

Additionally, the availability of public AEDs (Auto-
matic Electronic Defibrillator) that, in fact, can guide a
person through First-Aid measurements might give a by-
stander the confidence and safety-net needed to dare to
act (someone telling me what to do, so I have less respon-
sibility). This theory seems to have been confirmed in
another part of the world. In Japan, Sasaki et al. ([141]
recorded the incidence of OHCA in Osaka. There, it
was possible to measure that the increasing availability
of AEDs in public places also increased the rate of by-
stander CPR. According to this study in 2004, the by-
stander CPR rate was at a total of 0%. By 2008, in four
years, it had already improved up to 11%. In regards
to the topic of this chapter, the fact of increasing by-
stander CPR with increasing availability of AEDs allows
surmising that the availability of technical supporting
devices can influence the willingness and possibly the
self-confidence to act.

5.2 Related Work
The area of developing (whatever kind of) devices for

supporting or assisting the act of performing CPR is still
not very far stretched. Even-though emergency care is
a very relevant topic and layperson CPR is an essential
factor for surviving OHCAs, until today CPR supporting
devices rather belong to the field of commercial prod-
ucts for paramedics (which are really not meant for by-
standers) or in some cases to a kind of CPR training-tool
for home-use, rather than actual scientific research in-
tended to support and enhance bystander CPR. 1

5.2.1 CPR Assistance Devices

A number of studies have shown that using CPR feed-
back devices can indeed help to enhance the quality of
CPR. A few of these devices are commercially available.
One of the most common is the CPR-meter (Laerdal,
Philips, etc.), used in this work. Yeung et al. [142] pro-
vide a systematic review of the literature. Their find-
ings, first and foremost, support the use of CPR feedback
or prompt devices for improving skills during training.
Studies by Buleon et al. [143] show significant improve-
ments in CPR when people are using such CPR feedback

1 Major parts of the text in this Related Work have been taken from the following paper by the author of this thesis. Any text taken from
published papers has been written solely by the author of this thesis:
Gruenerbl et al., 2015 [136], and Gruenerbl et al., 2018 [137], please refer to respective entries in the literature list or beginning of this chapter.
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devices. Other groups like Gonzales et al. [144] intro-
duce alternative devices like photoelectric distance sen-
sors that also manage to improve performance. All of
these devices, however, are either expensive (several hun-
dred Euros) and meant for laboratory and medical train-
ing environments, but not for being carried around in the
hand bag of a by layperson during daily life, or are still
in an experimental state.

5.2.2 CPR with Smart-Phone Apps

A look into Apple’s Appstore in 2013 (time of the im-
plementation of the CPR assistant) did not provide any
iPhone-app assisting in CPR, by 2019 apps have arrived
in the AppStore that are meant to guide people through
emergencies. The Google Play Store (also 2013) listed
some apps that were intended to assist in CPR, but these
mainly gave information about First-Aid and how to per-
form CPR. Only “Metronome apps” provides live in-
struction (emitting sound in the proper frequency), yet
lack a live feedback component.
On the research side, some papers dealing with smart-
phone-apps for CPR measurement are published. For in-
stance, [145] Song et al. were using the trajectories de-
rived by double integration of the acceleration of a smart-
phone for measuring compression depth. Their evalua-
tion of the system shows only a minimal error range of
1.43 mm with a standard deviation of 1mm. Chan et al.
[146] evaluate a CPR Feedback application for iPhones in
a controlled study, with the results indicating the iPhone
group reaching better compression depth than the con-
trol group (without iPhone app).

5.2.3 CPR support with Smart-Watches

The idea of using a smart-watch for assisting in CPR
is not entirely new. The Philadelphia Business Jour-
nal reported in January 2015 on “Lifesaver”, a smart-
watch app, developed during the PennApps weekend

hackathon [147]. To the best of my knowledge, however,
this app has never been officially published in an App-
Store, nor have any studies been performed with it. Also
a look into the App Stores only provides a list of smart-
watch extension apps to the existing support apps.

5.2.4 Assisting Devices in Teaching

An overview of various approaches of real-time feed-
back in motoring training can be found in [148]. This
includes in particular augmented/virtual reality and dif-
ferent “classical” modalities such as screens and audio.
In the wearable domain in specific tactile feedback (e.g.,
for music teaching) has been investigated [149]. Assist-
ing devices in physics teaching have shown interesting
results [150, 151] Recently, EMS muscle stimulation has
also generated significant interest [152].

Concerning specifically CPR training, different ap-
proaches have been tried [142]. In the traditional ap-
proach, a professional instructor leads through the CPR
steps, while in self-directed learning, an assisting device
is used to teach the CPR procedure. Rasmussen et al.
[153] show that participants with the assistance of a new
dispatcher protocol performed CPR with a higher qual-
ity and higher motivation.
Some well-known self-learning methods for resuscitation
are computer-based video training and application based
methods conducted for smart-phones [154, 155, 156].
Alonso et al. [157] demonstrates improved success rates
in CPR, using telematics support by an expert through
head mounted displays. Wang et al. [158] introduce a
feedback system using optical sensing that enhanced the
chest compression quality in the paramedic’s training.
In more recent years, newly developed augmented real-
ity devices opened up research in regards of augment-
ing emergency training, as for example, the Microsoft
HoloLens has been used for training of applying defib-
rillators [159].

5.3 Objectives and Contributions
Following the objectives of this thesis and considering

the present situation in bystander CPR and the little re-
search in this field, this chapter has set its goals to devel-
oping an easy to use smart-device application to support
and promote bystander CPR for people with no or mini-
mal knowledge about performing CPR. More concretely,
this chapter aims to:

1. Determining an appropriate device, fitting into the
daily life of people, serving as a platform for the CPR
application, and developing a respective, easy to use,
CPR support application for this device.

2. Evaluating the effect, this application has on the abil-
ity of laypeople to perform CPR and promote the
user’s confidence to perform CPR in emergency sit-
uations.

3. Evaluating the potential of the developed CPR ap-
plication for settings that go beyond serving as a di-

rect CPR assistant (e.g., for teaching CPR). Further,
comparing the effect of the respective device beyond
serving as direct CPR assistant to methods currently
being used (e.g., in teaching CPR)

Following the objectives of this chapter, the specific
contributions of this chapter are:

• Benefiting from the fact that a watch is not only worn
most of the time but is also placed at the location
where CPR is performed, at the wrist, a smart-watch
is identified as optimal platform. In the following,
an easy to use CPR feedback application (CPR-watch)
for a smart-watch is developed. The applications is al-
ways at hand, in the right place, without requiring ad-
ditional equipment. The CPR-watch application can
allow untrained people to perform CPR according to
the guidelines. (See Section §5.5)
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• The CPR-watch application is then evaluated with 41
random untrained testers in three modalities. (See
Section §5.6)
The evaluation of the tests shows a distinct improve-
ment in the effectiveness of the performed CPR when
using the CPR-watch, compared to CPR without assis-
tance. With watch assistance, around 50% of test sub-
jects managed to stay within the recommended ranges
at least for 50% of the time. Without support only
just barely 20% of the participants were able to per-
form sufficient CPR at least for 50% of the time, even

after receiving detailed explanations about effective
CPR performance. (See Section §5.7)

• Additionally, the CPR watch application is evaluated
for serving as an instant feedback training device for
teaching CPR to nurse students. In a controlled ran-
domized trial with 50 people, the effect of training
with the feedback device is evaluated against the ef-
fect of standard human CPR teaching. The results
confirm the impact of the CPR application as a train-
ing assistant, helping to improve CPR performance by
more than 20%. (See Section §5.9)

5.4 Basics and Essentials of Cardiopulmonary Resuscitation
Cardiopulmonary Resuscitation (CPR) has been intro-

duced first in 1960 [160], but parts of this concept al-
ready have been documented years earlier. The first doc-
umented chest compression in humans was performed
by Dr. Friedrich Maass in 1891. In 1903, the first suc-
cessful use of external chest compressions in human re-
suscitation was reported by Dr. George Crile, and in
1954, James Elam proved that expired air was sufficient
to maintain adequate oxygenation.

Ever since the official introduction of CPR, its effec-
tiveness and factors that are influencing the effective-
ness of CPR have been researched scientifically. With
gathering more evidence, the suggestions on CPR tech-
niques, thus, have changed over the years. In 2005,
both the European Resuscitation Council (ERC) and the
American Heart Association (AHA) officially published
the still stringent evidence-based guidelines for resusci-
tation. These guidelines suggest effective CPR as follows:

• perform compressions in a frequency of at least
100/min but not exceeding 120/min [161].

• perform compressions with a depth of at least two
inches/5 cm [162] but not exceeding 6 cm (suggested
by ERC, AHA does not specify a maximum depth)

• AHA and ERC recommend a 30:2 CPR rhythm
(30 compressions, 2 breaths) - this suggestion is
being changed to perform compressions without
stop,specifically for OHCA and bystander CPR. For
hospitals suggestions are still including breaths, but
also allow to perform CPR with no breaths).

• In 2010 recommendations for compression depth was
adapted from 40 mm to more than 50mm.

Even though there does not seem to exist evidence
that deeper compression depth is related to damage from
chest compression, the ERC recommends not to exceed
60 mm of compression depth even in large adults [163].
From the suggestions of the respective bodies, it can be
inferred that two factors specifically influence the effec-
tiveness of CPR. These are compression depth and com-
pression frequency. Since publishing these suggestions,
further research has confirmed the validity of these sug-
gested values.

Idris [164] evaluated in 2012 that CPR is, in fact, most
effective at a frequency of around 120 CPM (compres-
sions per minute), but blood-flow and hence survival-
rate decline with faster rates than 120 CPM. Idris also
indicates that the probability of a return of spontaneous
circulation is highest with 125 CPM but rapidly declines
with higher compression rates. Furthermore, it also was
demonstrated that with higher compression rates the
compression depth suffers.
Further research indicates that compression depth of 40
mm or less depth results in fewer survivals than com-
pressions of 50 mm and beyond. [165, 166]. Edelson
[166] indicates that patients with OHCA who received
CPR with a compression depth of 50 mm and deeper 30
seconds before operating an AED have a higher survival
chance than those without. Stiell at al. [167] tried to eval-
uate the optimal compression depth and could confirm
that survival rates increase with increased compression
depths. Nevertheless, they could not provide clear ev-
idence to back the 2010 adaptation of the compression
depth recommendations. In 2014, Stiell at all. [168] de-
termined the maximum survival within a compression
depth interval of 40.3 to 55.3 mm (peak at 45.6 mm).

5.5 The smart-watch Instant Feedback Concept
Scanning literature, different options for possible

smart-devices that promise to suffice as a platform for a
CPR support application were considered. Nevertheless,
these devices or sensor platforms have to meet a number
of preconditions essential for such an application. These
preconditions limit the number of possible devices. Fol-
lowing have been identified:

• The device has to be able to record the motion of per-
forming CPR, meaning a device including a 3-axial
accelerometer. Performing CPR has a very distinct
signature and, performing it correctly, includes the
entire body of the CPR giver, thus the location of the
sensor is less important.

73



CHAPTER 5. SUPPORTING EMERGENCY BEHAVIOR

• The device has to be widely available for laypersons
to be used; thus professional CPR devices like CPR-
meters for paramedics had to be ruled out, since, as
of now, they are not publicly distributed.

• The application has to be started easily, its usage must
not disrupt the process of CPR and has to work on the
fly without calibrations necessary.

• The device has to be able to provide instant feedback,
thus needs a screen or the ability to produce sound.

With these preconditions, a number of possible devices
seemed to work, still most of them had to be ruled out
eventually:

• Smart-Phone: a smart-phone comes with all nec-
essary functions. It can measure acceleration, can
provide feedback (both visual and sound), is widely
available, and apps can be started quickly. Never-
theless, using a smart-phone does raise the question
of how to handle it or where to place it. Having the
smart-phone in a pocket of one’s clothes is easy to use,
but strongly limits the options for feedback.
Placed next to the patient hinders to measure the mo-
tion of CPR. Placed on the chest of the patient or in
one hand of the CPR giver might either disrupt the
process of performing CPR effectively or would re-
quire the smart-phone based app to be able to deal
with a very uncertain situation. Thus, a smart-phone
is not an optimal platform

• Head-mounted devices (e.g., Google Glass): as long
as the devices would include the ability to mea-
sure acceleration and include a screen, such a device
would work. Nevertheless, head-mounted devices are
not widely available. Thus, Google Glass was down-
graded in the list of ideal devices.

• Smart-Watch: Smart-watches are widely available.
Most of them include acceleration sensors and of
course they include a screen for providing feedback.
Moreover, a smart-watch already is located exactly
at the place where CPR is supposed to happen - the
wrist of the CPR giver. Thus, a smart-watch seems to
be the optimal device for incorporating a CPR sup-
port application.

Following these considerations and preconditions, an
easy to understand and easy to use CPR feedback appli-
cation was implemented by the research group of Em-
bedded Intelligence at the DFKI 1. For first tests, the
application was installed on LG G Watch R with An-
droid Wear OS, but any other Android-based smart-
watch works as well provided it includes an accelerome-
ter. The application has three main functionalities:

• Provide Correct Compression Frequency: At app
start, the watch begins to vibrate with 110 bpm (beats
per minute). 110 bpm was chosen, as it is the average
frequency of the ideal compression rate of 100-120
CPM (compressions per minute).
After the first tests showed that the vibration is a
helpful feature to feel the rhythm when starting com-
pressions, it also transpired that during performing
CPR many persons stop feeling the vibrations. Thus
adding to the vibration, a visual “metronome” was
added in the form of a blinking screen (background
of the application blinks black/blue in the respective
frequency - see Figure §5.1 A/B). Due to the lack of
a loudspeaker in older smart-watch versions, audio
feedback was not implemented at this point.

• Compression Depth Feedback: The application pro-
vides color feedback in regards to the compression
depth. In the center of the display a square is col-
ored with either green (for correct compression depth
of 50-60 mm), yellow if the compression depth goes
beyond 60 mm, and red if the compression depth is
less than 50 mm. See Figure §5.1 C-E.
The compressions are detected by applying a peak de-
tector to the accelerometer signal of the watch (see
figure §5.2). By retrieving each peaks minimum and
maximum and calculating their time difference, they
are used to estimate the compression depth. The val-
ues and depth of compression were calibrated using a
professional CPR-Meter.

• Backwards Counting of Compressions: Since both
ERC and AHA still suggest a 30/2 compression/res-
cue breath alternation the application includes the
ability to count compressions backward, starting by
30 and stopping once 30 effective consecutive com-
pressions have been registered. As compressions
smaller than 50 mm were considered not efficient, all
compressions with red feedback are not counted.

Figure 5.2: CPR shows very distinct peaks in the acceleration
signal

1The first version of the smart-watch CPR app was implemented by my colleague Gerald Pirkl
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Figure 5.1: CPR smart-watch App: vibration and a blue/black (A, B) blinking with 110 cpm; color feedback about detected
compression depth display center (green (C) - good, yellow (D) - beyond recommendation, red (E) - not sufficient)

5.6 CPR on the Fly - Gaining Instant Skills with CPR-Watch
The goal of using the CPR-watch was to evaluate

whether this instant-feedback app would be able to help
laypersons to perform CPR correctly. Nevertheless, to
evaluate the effectiveness of the developed smart-watch
feedback app, contrary to the work in the previous chap-
ters, an actual real-life study was not applicable. A
study intending to measure how people would perform
in a real cardiac arrest emergency, would be challeng-
ing and tedious to set up, but also ethically hard to de-
fend. Even paramedics do not train on real people but
use specifically developed training manikin. Thus, for
the evaluation of the smart-watch CPR-feedback appli-
cation, a manikin, “Little Ann”(www.laerdal.com), like
those nurses and paramedics training with, was used (see
Figure §5.4).

5.6.1 Study Design

The CPR-watch was supposed to evaluate the effective-
ness of the CPR with random people from the street. The
only exclusion criterion was people physically not capa-
ble (either too young and small to perform CPR accu-
rately or with medical conditions where performing ex-
hausting tasks was not recommended), or persons with
specific medical/resuscitation background, as nurses/-
paramedics, police/firefighters and people with special
and frequent First-Aid training (like First-Aid commis-
sioners of companies).
In total 41 people were recruited. 24 of them male, 17 fe-
male and aged between 24-70 (average age 37, std 13). In
the beginning, all study participants where asked when
their last or only First-Aid course was. Most actually
replied “during the courses to gain the driver’s license,”
which was generally something between 5-35 years ago
(average 16 years). Only 5 out of 41 had refreshed their
First-Aid course at least once (2-25 years ago).

To record the actual performance, a professional CPR-
meter (QCPR1) was used. CPR-meter are rather expen-
sive devices that are designed for paramedic use during
real CPR to provide instant feedback about the quality
of the performed CPR (compression depth, frequency,
ideal zones, release pressure, etc.), to the performer. Dur-
ing the data recording, the QCPR was one-way blinded.
Meaning, the QCPR recorded the quality of the per-
formed CPR, essentially the compression depth and the
compression frequency, but the feedback display was

covered not allowing the participants to see the feedback.

5.6.2 Study Implementation

The study was deployed in three steps. For each step
every study participant was asked to perform CPR in a
different modality (see also Figure §5.3):

1. Step One: perform CPR without any additional in-
formation: In the first step, each participant was
asked to take a few minutes to think about their
First-Aid course (in case they participated in one dur-
ing their life) and how they remembered CPR would
work, or (if they had never participated in a First-
Aid course) think about what they have seen about
CPR during movies, or how it was explained to them.
Once the participant were ready, they were asked to
perform CPR on the test manikin.

2. Step Two: perform CPR with the assistance of the
watch: In the second step, the basics of CPR and
its current regulations, and the functionality of the
watch were explained to the participants. Afterward,
the participants signaled they had understood and
had made some try smart-watch “air CPR” attempts,
they were again asked to perform the CPR, but this
time with the assistance of the CPR-watch.

3. Step Three: perform CPR with prior explanations:
First observations of the performance of the study
participants showed an apparent effect of the watch
and an improvement of the quality of CPR per-
formed in the second step (with watch assistance).
These effects though could have been influenced
merely by the fact that in the second step, by us-
age of the watch, the basics of CPR were explained
to the participants. Thus, it would be no surprise
that the participants performed better in the second
run. In order to understand what influence actually
came from the CPR-watch and what just came from
the explanation, the third round of data recordings
were performed with the same participants, mostly a
few days after the first two runs. In the third run, the
participants performed CPR again without the assis-
tance of the CPR-watch, but after a thorough intro-
duction to CPR with explicit explanations .

Figure §5.4 shows a study participant while trying to
recall how CPR works without any assistance. Figure
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Figure 5.3: Study Implementation. Sketches by Hamraz Javaheri

§5.5 shows the CPR watch in action telling the user that
the compression depth is not sufficient. In both pictures,
the QCPR can (hardly) be seen peeking out beneath the
hands of the CPR performer.

5.6.3 Data Set

Performing CPR is quite exhausting, one reason why
professionals are tempted to switch frequently when per-
forming CPR. Thus, to keep the exhaustion of the partic-
ipants at a bearable level, but at the same have a kind
of fluent CPR recording, within each run every partici-
pant performed five sets 30/2 (30 compressions, 2 res-
cue breaths - the rescue breaths were skipped actually,
the participants were asked to make a short break in-
between the sets). So in total, every participant per-
formed approximately 150 compressions in each run,
450 per participant in total. Overall, during the study,
about 18.000 compressions were recorded by the QCPR.
These are split into:

• 6000 compressions of CPR without any additional in-
formation (200 recordings of 30/2 CPR sets collected
in the first run). Note, there is one data-set missing in
the first step (performing CPR without any informa-
tion), since one participant forgot to start the QCPR.

• More than 6200 compressions where recorded with
the assistance of the CPR-watch (205 recordings of
30/2 CPR sets). The total numbers of actually per-
formed compressions in this run was higher, since the

CPR-watch app does not count ineffective compres-
sions. Some of the participants needed a few com-
pressions to get a feeling for the correct depths, and
so performing more compressions than 30 per set.

• 5250 compressions with prior refreshing the infor-
mation on how CPR should be performed according
to the current standards and regulation (175 record-
ings of 30/2 CPR sets were collected). Unfortunately,
not all of the 41 initial participants could be reached
again. Thus only 35 persons were recorded.

Figure 5.4: Person trying to recall how CPR is done correctly.

Figure 5.5: Person trying to recall how CPR is done correctly.

5.7 Results of Gaining Instant Skills in CPR
The evaluation of the recorded CPR sessions, provides

clear results in favor of the CPR-assistance system. The
study above shows that, when ordinary untrained peo-
ple use the assistance of the CPR-watch, they perform
considerably better in both essential factors (compres-
sion depth together with compression speed) than with-
out device. Essentially, with the assistance of the watch
most participants where able to gain instant skills and
perform CPR effectively.

It is not explicitly surprising that most participants
had problems to perform CPR correctly when simply
being asked to recall from their First-Aid courses or
from movies how CPR was supposed to work. The per-
formance of several participants does increase visibly

with refreshing the knowledge about the regulations and
proper performances. This too, is not surprising. Never-
theless, the assistance of the watch significantly improves
the performance and allows laypersons to perform CPR
in a way it becomes actually effective. Detailed analyses
will be provided in the following sections.

5.7.1 Person Based Analysis

Table §5.1 list how many persons deviate from the sug-
gested intervals over of the five runs of each modality
(w/o any information, with prior explanations, with the
watch) and for each factor (frequency, depth). Regard-
ing compression depth, more than 50% of the partici-
pants did not manage to get the depth right at all. With
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Depth N run 1 run 2 run 3 run 4 run 5 mean

number (percentage) of Persons with deviation from ideal depth

w/o information 40 25 (63%) 20 (50%) 19 (48%) 18 (45%) 21 (53%) 21 (52%)
prior explanation 35 18 (51%) 17 (49%) 16 (48%) 15 (43%) 16 (46%) 16 (47%)

with watch 41 16 (39%) 19 (46%) 16 (39%) 11 (27%) 11 (27%) 15 (36%)

average deviation (mm)
w/o information 40 4.23 4.41 4.97 4.35 4.14 4.42
prior explanation 35 3.77 3.88 3.38 3.91 4.21 3.83

with watch 41 5.77 3.54 3.39 3.97 3.36 4.06

Frequency N run 1 run 2 run 3 run 4 run 5 mean

number (percentage) of Persons with deviation from ideal frequency

w/o information 40 29 (73%) 28 (70%) 28 (70%) 25 (63%) 25 (63%) 27 (68%)
prior explanation 35 14 (40%) 14 (40%) 14 (40%) 15 (43%) 13 (37%) 14 (40%)

with watch 41 8 (20%) 9 (22%) 10 (24%) 8 (20%) 6 (15%) 8 (20%)

average deviation (cpm)

w/o information 40 11.76 12.76 13.07 12.43 12.79 12.562
prior explanation 35 10.56 10.38 8.62 9.45 9.4 9.682

with watch 41 9.12 3.86 7.87 5.58 5.61 6.408

Table 5.1: Persons deviating from the suggested intervals in each of the five runs of each different modality (w/o any information.
with prior explanations. with watch assistance) and for each factor (depth and frequency)

prior explanation still, 47% lack the feeling for the cor-
rect depth. With the assistance of the watch, only 36% of
the test-persons fail to reach the correct depth. Looking
at the actual value of deviation, it becomes clear that per-
sons deviate, regardless of what modality, only around
4 mm. Here actually an effect transpires, showing that
with practice the feeling for depth gets better, as the av-
erage deviation in mm is highest in the first performed
modality and lowest in the last performed modality).

While the effects of the watch are decent concerning
the compression depth, regarding the correct frequency,
the effect is much more significant. Without any infor-
mation, almost 70% of the test-persons do not manage to
find the correct frequency, not even once.
After using the watch and with an additional explana-
tion (like “remember 120 CPM, that means app. 2 com-
pressions per second”), still, 40% do not manage to hit
that frequency once. This is a definite increase in com-
parison to the first modality. Please note though, that
for this improvement the experience of performing CPR
with a correct frequency in the second modality could
have had a positive impact on the performance in this
third modality. Nevertheless, the watch-assistance ex-
plicitly enhances the ability of 48% of the test-subjects
(in comparison to without information) to perform the
compression frequency correctly. Only 20% of the test-
persons are not able to find the correct frequency even
with the assistance of the watch.

5.7.2 Learning Curve

Analyzing the five repetitions of each modality reveals
some interesting aspects. Regarding the compression
depth, neither CPR without information nor CPR with
prior explanation show a clear trend with each further
repetition but a slight hint that the test-persons might be
getting tired at the end. See figure §5.6 (left). In both
modalities, the least number of persons deviates com-
pletely form ideal depth at the fourth repetition, but at
the fifth again more do. The trend for the modality of
using the watch is different. Here, in the last two repe-

titions, distinctly fewer persons deviate than in the first
three repetitions. Even though there are not enough rep-
etitions to speak of a learning curve in using the watch,
nevertheless, these trends hint at people getting better in
their performance while using the watch.

Regarding the compression frequency, it seems as if
some of the test-persons, during the modality without
any information, got a natural feeling for the correct
rhythm. In figure §5.6 (right), this trend shows. Nev-
ertheless, this trend is not repeated in the modality with
prior information. Also for the modality with the watch
assistant, a trend is only vaguely noticeable.

5.7.3 Temporal Analysis

In analyzing the CPR performance of laypeople, obvi-
ously, it is not only interesting to evaluate how many peo-
ple can benefit from a watch assistant. It is also interest-
ing to know how much percentage of the time those that
are able to perform CPR correctly occasionally, actually
perform CPR correctly. Table §5.2 provides these results
in detail:
In the first modality, CPR without having any further in-
formation, on average the test-subjects were able to keep
the ideal frequency only 19.78 % of the time (std. 33.7).
When using the watch assistant, the time performing in
ideal frequency increases to 61.3% which is an increase of
more than 200%! The ideal depth even without any in-
formation is better than the frequency results, with a cor-
rect depth in 48.7 % of the time (std. 25.8), but with less
than 50% not sufficient enough. Using the smart-watch
for assistance, results in an increasing ideal compression
depth by more than 30-65% of the time.

The third modality, which is also the third time the test
persons performed CPR and the second time they per-
formed CPR without help but with extensive prior infor-
mation about correct CPR, does only slightly improve the
result. On average the test-subjects performed an ideal
compression depth 45% of the time, and at an ideal fre-
quency at 44% of the time. To recall, performance with-
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Figure 5.6: Number of persons deviating from the ideal depth (left) or ideal frequency (right) in course of the 5 repetitions. In
compression depth “with watch” a learning curve seams tangible.

out explanation was 48% (depth) and 20% (frequency).
Thus, for compression depth, the test-persons even per-
formed slightly better without information. This effect
could be due to remembering from First-Aid courses that
“you have to push hard”, while 5 cm do not seem to be
so much depth. This analysis also shows that even exten-
sive prior explanations and, not to forget, the experience
of performing CPR in two previous sessions (with and
without watch) cannot substitute the effect the watch-
assistance can provide. The last three columns in Ta-
ble §5.2 detail these improvements between the different
modalities.

Figure 5.8: The percentage of how much time spent in ideal
frequency (100-120 cpm) for the three modalities.

5.7.4 Ideal Depth or Ideal Frequency

All results indicate that correct compression depth is
easier to achieve than correct frequency. Generally, it
seems that people tend to compress too hard rather than
compress too little. Even without help people have a ba-
sic understanding that chest compressions are “hard” to
achieve and thus try to put some effort in compressing
the chest effectively. Figure §5.7 (right) shows the com-
pression depth the participants reach in the three differ-
ent modalities. More than 50% of participants can reach
a depth of 50-60 mm for more than 50% of the time even
without receiving information about how deep to com-
press. Still, the usage of the CPR-watch even can improve
this performance. With watch assistance, more than 70%
of the test-subjects manage ideal depth for more than
50% of the time (with 50% of the test-subjects reaching
effective depth for 75% of the time).

The effectiveness of the compression frequency seems
to be more influenced by the watch. Thus it is worth dig-
ging into the frequency more deeply. Figure §5.7 (left)
provides a detailed overview when CPR worked for how
many persons. Without assistance, most test-subjects are
either too slow or too fast. 75% of them are not able
to stay at the ideal frequency of 100-120 CPM for more
than 10% of the time. This changes explicitly with the
assistance of the watch to approximately 80% of the test-
persons being able to keep the rhythm and stay in the
ideal frequency for more than 50% of the time. This is an
improvement of 60 percentage points. More than 50% or
the test-persons even manage to keep an ideal frequency
for more than 75% of the time!

An even closer look at the best frequency performances
(see Figure §5.8) for the three modalities actually reveals
that without help people are either very bad in finding
the correct frequency (more than 70%) or very good (app.
15%). Only a few persons hit the correct frequency some-
times. Additional verbal information explained before
the third run shifts this to some extent, meaning that
fewer people are terrible and some more are very good,
but there is still no real middle field. In this regard, both
modalities show a kind of inverted Gaus curve.

The watch on the other hand can help those specifi-
cally, who are bad at keeping a suitable frequency. In
Figure §5.7 (left) the performance for those who were
bad before, is moved beyond the center, which is a real
improvement of more than 50%. Furthermore, it can be
seen that more than 80% of all participants are able to
maintain a correct frequency for at least (or more than)
50% of the time.

5.7.5 Effective CPR

Effective CPR does not only mean to get one of the main
factors right, but both have to be performed correctly at
the same time in order to be effective (effective perfor-
mance). Thus, this effective performance should be an-
alyzed for all participants for all of the different modal-
ities. In table §5.2 the last two rows summarize the av-
erage of how many people manage to provide adequate
performance (last row) and how much time they can keep
the effective performance going (second last row).
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Figure 5.7: The percentage of time spent in compression depth (right) or frequency (left) for the three modalities.

N = 40 N=35 N= 41 Improvement

w/o any prior watch w/o anything -> prior explanation -> w/o anything ->
info explanation watch watch prior explanation

average depth
in numbers 60.49 61.66 59.76

ideal depth
50-60mm 48.31% 45.15% 65.01% 34.56% 43.98% -6.54%

too shallow < 50 mm 21.99% 12.46% 17.16% 28.15% -27.41% -43.35%

too deep > 60 mm 32.56% 42.74% 20.32% 60.22% 110.34% 31.28%

average frequency
in numbers 102.12 107.05 104.40

ideal frequency
100-120cpm 19.78% 43.91% 61.31% 209.96% 39.63% 121.98%

too slow < 100 cpm 51.70% 31.62% 32.13% 60.91% -1.58% -38,83%

too fast > 120 cpm 29.92% 26.10% 9.32% 221.03% 180.08% -12.76%

ideal (depth+freq)
50-60mm + 100-120cpm 20.14% 29% 52.14% 160.4% 80.8% 44.0%

persons in ideal
% out of total 57.5% 80% 95.1% 65.4% 18.9% 39.1%

Table 5.2: Total time participants were (in)correctly performing compression depth or frequency individually, CPR effectively, and
how many participants were actually able to achieve this (columns 3-5). Improvement of total time participants were (in)correctly
performing CPR in the three modalities, for compression depth and frequency individually and combined (columns 7-9).

Figure 5.9: Percentage of correct CPR (frequency and depth)
for the three modalities.

Without having any additional information available,
which is basically like any emergency scenario, where
it cannot be expected to have explanations at hand, let
alone time to browse the Internet for “how to act in an
emergency”, only an average of 57% of all test-subjects
managed to perform CPR effectively at least for a short
time. However, still, even those 57% who did, could
keep it up for only 20% of the time or less! Interest-

ingly though, after getting additional information (and
two CPR sessions to gain experience) certainly more peo-
ple (23.5 % more) manage to reach a sufficient perfor-
mance. Still, they do not manage to keep it up for much
longer (only 29% of the time) than during the first at-
tempts (20%).

A glance at the data of using the watch assistant shows
that it helps to increase the overall performance (see also
Figure §5.9). With watch-assistance, less than 5% did not
manage to find an effective rhythm and depth, and those
95% who did, could keep it going for more than 50% of
the time. This is a very distinct improvement in regards
to both of the other modalities.
A detailed look reveals some interesting further details.
Without any additional information, more than 70% of
all test-subjects were not even able to reach the effective
range for at least 10% (see Figure §5.9). 48% of the par-
ticipants were not even able to find the ideal range at all,
not even for a few compressions. Moreover, only barely
5% were able to keep staying in the ideal effective range
for at least 50% of the time!
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Getting an introduction on how CPR has to be per-
formed did improve the values slightly. Still, almost
50% of the test-subjects perform poorly (time in the ideal
range for less than 10% of the time) and still, 30% did
not manage at all. 14% were able to stay in the ideal
range for most of the time, which is almost three times
as many. Again, the assistance of the CPR watch has a
much more significant impact. Only 15% (6 out of 41)

of the test-subjects failed entirely in reaching the ideal
range (compared to 48% and 30% respectively). Also,
more than 50% of all test-persons could keep a sufficient
performance going for more than 50% of the time. 29%
even achieved effective performance for more than 75%
of the time. In total an improvement of more than 45
percentage points (pp)!

positive neutral negative
Questions absolutely yes avg. neutral no not at all avg.

Is the topic of the study (bystander CPR) relevant? 75.0% 25.0% 100% 0.0% 0.0% 0.0% 0.0%
Could a Live-Feedback System help saving lives? 32.1% 60.7% 92.8% 7.2% 0.0% 0.0% 0.0%
Could such a system help to reduce fear of doing damage? 35.7% 53.6% 89.3% 3.6% 7.1% 0.0% 7.1%

very secure secure neutral insecure very insecure
How secure were you about CPR before the study? 3.6% 32.1% 35.7% 25.0% 35.7% 3.6% 39.3%
Did the watch help you to feel more secure? 35.7% 53.6% 89.%3 7.1% 3.6% 0.0% 3.6%
Did the watch help you to perform CPR better? 46.4% 46.4% 92.8% 7.1% 0.0% 0.0% 0.0%
Did the watch irritate you while performing CPR 0.0% 3.6% 3.6% 7.1% 39.3% 50.0% 89.3%
Would you install this App if you had a smart-watch? 35.7% 39.3% 75% 10.7% 14.3% 0.0% 14.3%

Table 5.3: Participants’ Feedback. The relevance of the topic is clear to all, and in most questions the replies are quite in unison
as most favor using the watch for assistance.

5.8 Shaping Confidence
One of the explicitly stated goal of this chapter was to

promote more self-confidence in acting in an a medical
emergency. In this regard, since self-confidence is a sub-
jective feeling, the effect of the CPR-assistant devices on
the self-confidence of the participants could not be cap-
tured with the sensor readings. Thus, to evaluate how the
CPR-watch would influence the confidence of the users, a
questionnaire was handed to the study participants after
they had finished the third run. 1

In total 30 questionnaires were handed out. For differ-
ent reasons it was not possible to hand the questionnaire
to all 42 participants. Out of these 30, 28 were filled-in
and returned. Which is a return rate 93%. The question-
naire included questions about the participants’ (subjec-
tive) self-rating of their ability to perform CPR at the
beginning of the study and how they improved. Other
questions included were also about the participants’ con-
fidence in performing CPR without assistance and how
they perceived the watch to influence it. See Table §5.3
for all questions.

100% of study-participants rated the topic of the study
to be positive (either very important or important), with
75% presuming it to be very important. Also the vast
majority was certain that a live-feedback system like the
watch-app could help to save more lives (93% positive
rating). Only 7% were neutral in this question, no one
actually doubted the potential of the CPR-watch to sup-
port saving lives.

Only 7% doubted that a system like the CPR-watch
would help to lift the fear of doing damage in performing

CPR and promote more confidence in laypersons. 89%
were confident that the watch would give them more con-
fidence in doing CPR correctly.
Being asked about their self-perception of knowing how
to perform CPR correctly, the replies were more diver-
gent. 35% were actually quite sure how to perform CPR
at the beginning of the study. 39% were not secure about
CPR, and 25% had not idea if they were or were not
sure (likely had never really thought about CPR in recent
years). Despite the initial perception, almost 90% stated
that the watch did give them more confidence in per-
forming CPR. Only 4% did not believe the watch helped
them to feel more secure.

All of the participants rated using the CPR-watch as
CPR assistant positively (93%) or neutral (7%), none
of the participants had a negative attitude towards the
usage of such an app. A small minority (4%) of the
test-subjects (namely those who generally do not wear
watches on a daily basis) stated that the usage of the
watch was kind of unfamiliar. However, the vast majority
(89%) were explicitly positive about using a watch. In re-
gards of the practical deployment of a smart-watch app
as a CPR support, three third of all participants would
immediately install such an app on their smart-watch
(provided they would own a smart-watch).

The feedback of the study participants in general backs
the initial assumption of this chapter that appropriate
sensor based feedback devices would be able to influence
cognitive well-being in a positive way.

1Parts of the text of this section have been taken from following publications of the author of this thesis. Any text-passages taken from these
papers have been written solely by the author of this thesis:
Gruenerbl A. et al. (2015), [136], please refer to the respective entries in the literature list or at the beginning of this chapter
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5.9 Support Effective Learning - Training CPR
After the positive outcome of the bystander evaluation,

a second question to be answered was: since people can
perform CPR correctly with the help of an assistance de-
vice, does this instant-feedback, such a device can offer,
sticks? Thus, in a second study, it should be evaluated
whether people would be able to train CPR effectively
when receiving instant-feedback in comparison to tradi-
tional training classes.
This part of the chapter compares the effect of the tradi-
tional teaching of CPR (in the following called teaching)
with the effect of training with different wearable instant
feedback devices, like the CPR-watch introduced above
(called training). A study with 50 test persons (23 nurse
students, 27 novices) was conducted where both, the or-
der of training or teaching first and the device (smart-
watch or smart-glass) to be used was randomly selected.
The results, indicating the clear superiority of the device
training, are evaluated with an ANOVA analysis.

5.9.1 Background

A typical standard CPR classroom teaching session,
like in First-Aid training lessons or in the way nurse stu-
dents will have to attend repetitively over the course of
their education, looks as follows: First, a teacher will pro-
vide the theory about CPR to a group of 10-15 students.
This will include why and when to apply CPR, what CPR
means, which effects CPR has, etc. After the theory part,
the teacher will give some practical demonstrations with
the help of dedicated training manikins.
After this, the students will, either individually or in
small groups, (attempt to) perform CPR themselves on
the training manikins. Meanwhile, the teacher will ob-
serve. In case necessary, the teacher will provide input
to the students and give hints and feedback. Maybe, the
training sessions even will be videotaped and analyzed
afterward.

Another possible teaching scenario is that each student
gets a time-slot to perform CPR while the rest of the
group is watching. This way, the “instant” feedback the
teacher will give during these attempts, can be a benefit
to all students. In a way, this modality comes close to a
kind instant feedback. Nevertheless, the feedback a hu-
man can provide always is vague. It can be in the manner
of saying “you have to go deeper!” or “slow down, you
are too fast!” However, without the help of a devices,
a teacher will not be able to say “you are five compres-
sions per minute slow!” or “you are now slightly beyond
60mm!” Devices that are sophisticated enough to give
such detailed feedback, are not yet widely available.

5.9.2 CPR Assistant Devices

In the course of and subsequent to the first study, some
potential future users of a smart-watch instant CPR feed-
back application were asked to test the smart-watch CPR

app. Instantly it transpired that, though many people
loved the watch and its natural and intuitive way of us-
age, some persons had problems to use it. A few peo-
ple particularly had issues in grasping the different col-
ors combined with the blinking display. Others stated
to have problems feeling the vibration of the watch and
could not connect to the blinking of the display.
Since feedback showed that the main issues with the
watch-application were the visual aspects of it (different
color, blinking), it was decided to add an alternative sys-
tem, implemented on a smart-glass (Google Glass). Other
feedback hinted that the backward counting feature was
more distracting than helping and real frequency feed-
back (not only a metronome) would be desirable. Thus
the watch-app was adjusted accordingly. Both devices
are intuitive and straightforward to use. Short explana-
tions about the meaning of color for the CPR-watch and
meaning of numbers for the Glass suffice for a user to
be able to use them effectively. The two applications for
instant feedback were 2:

Figure 5.10: CPR Glass Assistant is providing instant feedback
on compression depth (force) and speed while performing CPR

• Smart-Glass Instant Feedback Application The
feedback application of the smart-glass combines au-
dio output (metronome) and visual feedback (see also
Figure §5.10). When the app on the Google Glass
is started the Glass begins to click with 120 clicks
per minute, which denotes the upper border of the
recommended compression rate of 100-120 compres-
sions per minute. While performing CPR, the dis-
play of the Glass provides the current compression
frequency (based on 3-axial acceleration), and (if nec-
essary) prompts the user to slow down or speed up
with upwards or downwards pointing arrows next to
the compression frequency. The current depth is also
shown in the display.

• smart-watch Instant Feedback Application The in-
stant feedback application combines, like the initial
version (see above) haptic information and visual cues

2Both app, the watch app and the Glass app were initially implemented by Gerald Pirkl, but for this particular study were adapted by the
author of this thesis
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(see also Figure §5.11). When the app is started the
watch begins to vibrate and blink (black/blue) with
110 CPM, which denote the average frequency of the
recommended compression rate of 100-120 compres-
sions per minute. While performing CPR, the watch
displays the actual compression frequency in the cen-
ter of the display. (This is the main change to the ver-
sion used in the first study)
The compression depth feedback is provided in color
like in the first version. The center square in the dis-
play is green for good compression depth (50-60 mm),
turns yellow if the compression depth is beyond 60
mm and turns red if the compression depth is not
deep enough.

Figure 5.11: CPR Watch Assistant is providing frequency
instructions and instant feedback on compression depth
and speed while performing CPR!

5.9.3 Evaluation

The influence of training with instant feedback devices
should be evaluated in a randomized, prospective simu-
lation study. This study was designed to assess the CPR
performance of nurse candidates and novices alike by
comparing the effect of CPR teaching in the standard way
versus the impact of training CPR with an instant feed-
back device.

Study Group: A total of 50 volunteers participated. 23
of them were chosen among first-year nurse students who
already had a basic understanding of what CPR means,
but had not yet trained CPR intensively. The nurse stu-
dents were recruited at the Health Department at the
University of Southampton. The other 27 participants
were laypeople, who had absolutely no medical back-
ground or experience in CPR (except for possible First-
Aid courses during gaining the driver’s license, as oblig-
atory in many European countries). They were mainly
students recruited in the Technical University of KL and
the German Research Center for Artificial Intelligence.

Study Implementation; In the course of the study, the
participants were randomly distributed into two groups.
The first group would get a CPR teaching session first
and afterward would train with one of the devices. The
second group would first train with one of the devices
and would receive a thorough CPR lesson afterward. Fig-
ure §5.12 graphically explains the study procedure. For
both groups, it was also randomly decided which partic-
ipant would use which device. To obtain even and fair
groups, randomization was promoted to distribute nurse

students and not medicals as evenly as possible between
both groups (teaching or training first) and between
both devices. To capture the CPR performance of each
participant and their improvement (or worsening) after
teaching and training, baseline recordings (measurement
points) were done in the beginning, after each session
and at the end of study (see figure §5.12). The mea-
surement points were obtained by using a standard CPR
training manikin, which was equipped with a pressure
sensor beneath the “chest skin” of the manikin’s chest
(not visible from the outside). The pressure recorded on
the manikin was calibrated and aligned with one of the
aforementioned professional CPR recording devices.

Figure 5.12: Study design: after first baseline recording it is
randomly decided if teaching or training comes first. For train-
ing it is also randomly decided which device is used. After
teaching or training another baseline is recorded (without as-
sistance) and the modality is switched. At the end of the study,
the third baseline is recorded. Drawing by Hamraz Javaheri

Data Set: During each data recording (each mea-
surement point) every participant was asked to perform
three cycles of 30 compressions with a short few seconds
break in-between. The 30 compressions cycle rhythm
was chosen since current regulations of performing CPR
for nurses still teach to perform a 30/2 (30 compressions,
two breaths) rhythm. Therefore, in total, we recorded a
data-set with 90 compressions per person per measure-
ment point (8100 compressions were recorded in total).
Thus evaluations of teaching vs. training first, as well as
Watch vs. Glass are based on 2700 compressions in each
group. The evaluation of the general impact of training
and teaching is based on a data-set of 5400 recorded com-
pression in each group.

5.9.4 Results

The comparison of the overall effect (regardless of
which was applied first) of a teaching lesson onto the per-
formance of effective CPR (depth + frequency correct)
versus device training is shown in table §5.4. Improve-
ment of teaching is less than nine percentage points (pp),
while the improvement of training is almost 25pp, which
is clearly in favor of device training.

The only aspect, teaching overall has an improving im-
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before after improvement p-value f-value f-crit
average stand. dev. average stand. dev. average

TEACHING N = 50 95%

% effective CPR 34.95 34.3 42.59 32.7 7.64 0.26 1.30
% correct depth 54.03 42.7 68.00 36.3 13.97 0.08 3.10 3.94
% correct speed 52.94 38.3 62.83 33.0 9.35 0.19 1.71

TRAINING N = 50

% effective CPR 30.43 28.2 55.37 36.1 24.94 0.00 14.85
% correct depth 58.30 39.5 74.90 36.2 16.60 0.03 4.80 3.94
% correct speed 47.81 34.3 71.37 33.9 23.57 0.00 11.93

comparison of baseline Teaching Training difference 95%

% effective CPR 33.94 34.5 30.43 28.2 -3.51 0.58 0.31 3.94

Table 5.4: A comparison of the overall effect of a teaching lesson and of a training session with any device on the CPR performance.
Results show clear superiority of the training with feedback devices.

pact of more than 10pp it the compression depth. In all
other aspects, specifically frequency, but also the effec-
tiveness of CPR, the training has a far more significant
impact (around 24pp). To evaluate the quality of the
improvement, a single-factor ANOVA was performed on
each before and after the data-set of teaching and train-
ing. The results of the ANOVA clearly show that the ef-
fect of training is significant, while the effect of teaching
does not reach the 95% confidence.

Teaching First vs. Training First
However, the above analysis compares the overall ef-

fect of teaching versus train regardless of which learn-
ing method was applied first. In order to better under-
stand whether the order of teaching/training has an im-
pact, each group was also analyzed individually. See ta-
ble §5.5. For this analysis, the results were split accord-
ing to whether traditional teaching or training with the
device was done first, as it influences the start condition.
Table §5.5 also separates between the results of the nurse
students and the novices.
It can be seen that device-training improves the perfor-
mance of effective CPR significantly of approximately
20pp or even more (with an advantage when adminis-
tered after the teaching lesson). A teaching lesson, on
the other hand, can only influence the performance posi-
tively when it comes first. When teaching comes after the
device-training, it has little to no impact.

A glance at the performance at the end of the day
though, clearly shows that a teaching lesson that pro-
vides all relevant information, boosts the effect of the fol-
lowing training (total improvement of teaching + train-
ing is 44.5pp!), while after training teaching has no ef-
fect (total improvement of training + teaching is 24.4pp).
This effect makes sense in the way that both devices can-
not explain how to perform CPR correctly (e.g.,correct
posture, where to apply the pressure, etc.) which is done
in the teaching session. On the other hand, a teaching
lesson after the user has gained some muscle memory in
training prompts the trainee to over-think the new infor-
mation instead of trusting the skill achieved.
Figure §5.13 additionally shows how many persons in
particular improved their skills. This figure compares
how many persons manage to improve or worsen their

skills by at least 5% or more, with teaching versus device
training. Again, this analysis is in favor of the devices,
and confirms that more persons were able to improve
their skills with the help of the device training. 30% im-
proved with training, only 23% improved with teaching.
5% worsened during training, while 11% did with teach-
ing.

Figure 5.13: The effects of training and teaching on the im-
provement of performing CPR.

Watch or Glass
Finally, the question remains, which of the devices

would have a more substantial impact on the CPR per-
formance. Direct feedback from students during initial
earlier tests, did not favor one of them (a reason why both
devices were used).
Table §5.6) summarizes the most important aspects. The
results of the evaluation also do not clearly favor one
of the devices. In total numbers, the group using the
Google-Glass sightly performs better after training (ap-
proximately 2.5pp), nevertheless is less effective in re-
gards of compression depth. The watch group shows
a higher improvement in terms of compression depth
(10pp). Glass again is very slightly better in terms of fre-
quency (1.5pp). Essentially the question Glass or Watch
is a matter of preference. Nevertheless, during the study
an interesting fact revealed in discussions after the study.
Some test persons stated that they did not really like the
device. However, evaluations of the performance high-
lighted that even people with a device they were not very
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TEACHING first

nurses novices total

effective CPR avgerage % stand. dev. avgerage % stand. dev. avgerage % stand. dev. p-value f-value f-crit (95%C)

Base 32.54 29.20 19.47 22.59 23.14 25.55

after Teaching 37.94 28.54 38.47 27.12 37.76 27.94
improvement by teaching 5.40 19.01 14.62 0.065 3.579 4.043

after Training 63.95 42.70 68.24 26.42 65.21 30.36
improvement by training 26.01 29.77 27.45 0.002 10.625 4.043

base - end of day
imporovment 31.42 48.78 42.07 0.000 27.673 4.043

TRAINING First

nurses novices total

effective CPR avgerage % stand. dev. avgerage % stand. dev. avgerage % stand. dev. p-value f-value f-crit (95%C)

base 32.42 26.38 14.50 26.43 23.82 26.86

after Training 51.75 35.60 38.11 41.48 45.20 37.58
improvement by training 19.33 23.61 21.38 0.028 5.144 4.043

after Teaching 58.21 38.21 37.34 32.87 48.19 35.84
improvement by teaching 6.46 -0.77 2.99 0.783 0.077 4.043

base - end of day
imporovment 25.79 22.84 24.37 0.011 7.062 4.043

Table 5.5: Effects of teaching first (top) vs training first (lower half) on CPR performance, before and after teaching and/or train-
ing, and the overall improvement at end of the day.

before after improvement p-value f-value f-crit
average stand. dev. average stand. dev. average

WATCH N = 24 95%

% effective CPR 27.14 27.2 53.12 36.4 25.98 0.01 7.84
% correct depth 42.33 42.0 70.57 36.4 28.24 0.02 6.17 4.05
% correct speed 40.86 30.1 64.32 34.5 23.46 0.02 6.30

GLASS N = 26

% effective CPR 32.53 31.0 60.65 35.1 28.12 0.00 9.38
% correct depth 47.53 40.5 65.63 40.0 18.10 0.11 2.63 4.03
% correct speed 58.44 35.4 83.44 25.4 25.00 0.01 8.57

Table 5.6: Watch vs. Glass. The comparison of the effect between the Glass and the Watch group shows an advantage of the watch
regarding compression depth.

comfortable with did improve in their ability to perform
effective CPR!

5.9.5 Discussion of Results

It is not particularly surprising that one short teaching
session of a, in its nature, rather complex motion as per-
forming CPR correctly, fails to lead to immediate signifi-
cant improvement, in effective CPR. In reality, nurse stu-
dents and other medical and paramedical professionals
will follow such a training session with repeated exten-
sive practice and further teaching sessions, followed by
more practice. On the other hand, even a short individ-
ual training session with a real-time wearable feedback
device can brag with significant results. This is a very
clear indication of the potential such a tool can bring to
teaching and practicing of CPR.

In analyzing the results it becomes clear that there is
a mismatch between the effect of traditional teaching on
individual aspects like compression depth where teach-
ing could help to improve to some extent, and on the
overall effectiveness where teaching could not help very
much. A possible explanation is that the motor coordi-
nation of the CPR task is complex and requires two dif-
ferent aspects to be aligned perfectly. It is much easier

to manage to get one of both aspect right, e.g., maintain-
ing the appropriate speed (particularly for persons with
a good feeling for rhythm) OR the required depth. Either
one of them individually can be reached via concentra-
tion and focusing on the particular motion. Coordinat-
ing both in the way they are supposed to be performed
is much more complex and more difficult to do, specifi-
cally without someone or something telling us if they are
right. Thus getting both right requires an understand-
ing of how “getting both right” feels, which means this
requires a kind of muscle memory or proper real-time
feedback.

Nevertheless, the results, specifically the comparison
of traditional teaching first or device-training first also
shows that the training devices work optimally as an ad-
dition to human teaching. Trainees using the device for
training after a teaching lesson improved their overall
performance by almost 45% in comparison to trainees
who trained first and later received teaching. Those only
improved overall by 24% (basically due to device train-
ing). In all honesty, this again is not really surprising.
This effect makes sense since both devices (Watch and
Glass) lack the ability to explain how to perform CPR
correctly (correct posture, where to apply the pressure,
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etc.). Without this information trainees could, in the-
ory, do it wrong (e.g., apply compression to the abdomen)
even though depth and frequency were correct, or when
the body posture is not optimal, CPR is extensively more
exhausting and when getting tired even the support of
the devices has its limits.

Even though a single teaching lesson might not have
a very lingering effect on the CPR performance, still it
is able to provide the relevant information, which, in
turn, will give the following training with assistance de-
vice an optimal foundation. Insofar, this effect, discussed
above, naturally suggests to use both methods in correct

order. Start with a human teaching lesson to provide the
nurses-to-be with all relevant information and afterward
let training with device take over. Another option that
comes to mind when considering that the so far tested
feedback devices are coming short in providing essen-
tial information, is to use a device that actually is able to
do so. Since recent developments have brought a num-
ber of augmented reality device to the market (e.g., the
Microsoft HoloLens) such devices could in fact combine
both requirements, to provide information (e.g., in form
of a virtual teacher) while at the same being able to pro-
vide instant feedback.

5.10 Conclusion and Outlook
This chapter mainly introduced a smart-watch based

instant feedback system that should allow laypersons to
perform heart chest compressions correctly without ad-
vanced training. The basic idea of the system is to pro-
vide instant and live feedback to the attempt to perform
CPR and thus allow the user to adapt immediately and
improve the performance within minutes to point where
CPR is effective. In this line of thought, the system is
meant to shape the skills in performing CPR of any per-
son on the fly, and thus, boost confidence, while at the
same allow to learn instantly.

The system itself is rather simple and is comprised
mainly of a metronome and acceleration based estima-
tion of compression. Further, the measuring of compres-
sion depth is solely based on the magnitude of the three-
axial acceleration data and a simple algorithm that was
calibrated in comparison to a professional CPR device.
The actual correctness and precision of the CPR feedback
was not evaluated in detail and since the feedback was
only relying on acceleration, the smart-watch CPR app,
as it was used, would not suffice to measure the exact
compression depth.
Nevertheless, the aim of this chapter explicitly was not to
measure how well yet another device works, but to eval-
uate whether a device (as coarse as the values might be)
was able to support skill training and promote more con-
fidence. Given the potential imprecision of the device,
the results in this regard speak for themselves.
In every analyzed aspect, the assistance of the Watch (or
Glass) lead to a far better performance than even a de-
tailed instruction could. As was evaluated in the second
study, the assistant devices even outmaneuvered a pro-
fessional teaching session. Specifically Figure §5.9 and
Table §5.4 display the impressive results of using the as-
sistant devices. Figure §5.9 highlights the positive im-
pact of the watch in comparison to performing CPR as
might be recalled from courses years ago, or even to per-
forming CPR after having received a detailed explana-
tion on how to. Some of the study participants of the
instant skill study (first study) had never had any contact
with CPR other than what they saw in movies. Still, even
these persons managed to improve significantly with the

help of the Watch.

The results of the instant skill study can be summa-
rized as: more than 50% of the participants were able
to provide effective CPR for more than 50% of the
time (in comparison to: less than 5% were able to pro-
vide effective CPR without any information and only
25% were able to turn detailed instructions into actu-
ally effective CPR). Concerning the instant feedback de-
vice training versus a standard CPR teaching lesson, even
nurse students who have a basic understanding of CPR
could improve significantly better by using a feedback
device rather than in a teaching session. Tables §5.4 and
§5.5 demonstrate these results. Summarized, in a teach-
ing lesson the candidates improved the effectiveness
of their CPR performance on average around 8% while
in a training session with one of the feedback devices,
the candidates improved their effectiveness in CPR by
around 25%!

On the positive side, it also can be added that these re-
sults generally show that effective tools do not need to be
highly complex or sophisticated, but oftentimes a sim-
ple (and maybe imprecise) system can suffice to provide
adequate support. It also shows that such simple sys-
tems can have a tremendous impact on the way people
perform or can perform. Moreover, as the feedback pro-
vided in the questionnaires has stated, systems like the
CPR-watch app can influence the confidence of people.
Practically, such a system would be worth to be brought
to the actual user. Nevertheless, in reality for such sys-
tems, potential liability issues have to be taken seriously.
Therefore, future efforts should be put in bringing this
app into the App Stores.

5.10.1 Outlook

In terms of future research though, one of the main
questions that remain is, whether personalized and more
elaborate functionalities (e.g., feedback on the compres-
sion frequency, information about performance, and
more) would strengthen the usability. Further ques-
tions like: “could such a system also be leveraged for
health professionals? Could nurses benefit from a CPR-
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assistant?”, alternatively, “How could the public bene-
fit from such systems” should be examined in the fu-
ture. The work described in this chapter only depicts the
start of various possible applications, and I hope that this
work has been able to lay the basis for a new generation of
possible resuscitation support apps for both health-care
professionals and laypeople.
Furthermore, in the future, research should also focus on
long-term effects. The presented studies have not evalu-
ated how long the learning effect actually lasts (both in
teaching and in training)? Moreover, what are the opti-
mal numbers of training sessions to have a long-lasting
effect. Also, it might be worth looking into improving
the feedback delivery. Since there has not been a clear
winner between Watch and Glass (some people visually
preferred the one or the other) better and individual-
ized representation could probably combine the partic-
ular aspects of each device that users preferred in their
favorite, into one device that fits the needs of the major-
ity of people. Certainly, looking into possible HoloLens
adaptations of the CPR-feedback assistants as has been
suggested in the discussion should be a future endeavor.

During several studies and various discussions with
health care professionals new ideas were developed. One
of them is to combine the CPR-watch with other medi-
cally used devices. A particular devise, which is being
used publicly and that would benefit from an interac-
tion with the CPR-watch is the automatic public defibril-
lator (AED). AEDs are very sophisticated and can guide
inexperienced laypersons through all necessary steps in
an emergency. Nevertheless, even AEDs are lacking the
ability to detect if CPR is performed, and if so, whether
CPR is performed effectively, while the AED is charging.
Charging commonly takes about 2 minutes in which ef-
fective chest-compressions are essential for the patients
survival. If an AED was connected to a device like the
CPR-watch, it could detect that CPR is performed and
performed effectively and if necessary give appropriate
instructions.

In the medical field, the CPR-feedback devices have re-
ceived substantial praise. Many nurse-students, nurses,
doctors, but also representatives of regulatory bodies
(e.g., ERC members) have expressed their interest in the
CPR-watch.
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6

Evaluating Group Behavior:
Detecting Collaboration in
unscripted Ad-hoc Groups

during Emergency Care Situations

So far, work in this thesis has focused on recognizing an individual’s cognitive state or helping individ-
uals in stressful situations. However, stress or cognitive health do not just depend on a single person
or affect only individuals. Often, people in a group need to work together on cognitively strenuous
activities or in an emotionally pressurized situation. An example may be an accident on the street,
calling a random group of strangers to save the life of one or more persons. Studies [140] have shown,
as mentioned in the previous chapters, that emergencies at home are the most often cause of death, as
persons who face emergencies of their loved ones are often unable to act. At the same time, random
people in public areas are most successful in implementing emergency measures. In this context, it is of
particular interest to understand what constitutes such group dynamics. How do these random groups
interact naturally and what can be done to help people in these groups reach the goal most effectively.

As in this dissertation, general activity and context recognition research has focused solely on
identifying what individuals are doing and how they interact with their environment but not with
each other (e.g., physical activity, device interaction, etc). Lara et al. [11] provide an overview of
state of the art in detecting human activity with portable sensors. In addition, so far, the presence of
multiple users could have a negative impact on activity detection of a single person. As Gordon et al.
[169] elaborate, this was often viewed as an annoying disruption. The “Multiple occupancy problem”
[170] is one of these examples. Now, as the work in this chapter aims to understand the interactions
of people in a group, it has to go in a different direction. It will follow a recent trend in pervasive
computing and seek to move from the classic “single-user single-system” view to a more comprehensive
“system-ensemble-user-collective view”.

Based on a real-world emergency care scenario, this chapter examines how multiple users’ pres-
ence can be used to support rather than disrupt individual activity recognition through novel
collaborative approaches. The main focus of this work is on multiple people who perform various,
mainly physical, activities in smart environments. Moreover, not only do these people work in the same
environment, but some of them may work together as a group, while others work individually or some
interact within certain activities while others do not. The central assumption of this application is that
there is no a-priori knowledge about which people belong to (a) collaborating group(s) and what the
structure and role distribution within the group might look like. Also, the structure and role allocation
can change dynamically and evolve with time. Besides, groups may have complex hierarchies, as is the
case with naturally-growing groups, and it is possible for individuals to contribute to different groups
at the same time. It is also possible that people intentionally try to avoid collaboration or interaction.

This chapter will present a new method for detecting collaboration in dynamic groups by map-
ping sequences of low-level atomic actions, performed by individual persons, onto collaboration
patterns concerning high-level compound activities. The method is evaluated with observations
extracted from video footage of real emergency care training sessions of soon-to-be nurses and reaches
collaboration recognition of up to 95% accuracy.
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6.1. A REAL LIFE MOTIVATION

6.1 A Real Life Motivation
In the training of future emergency nurses it is highly

essential to make sure the nurses are confident in their
work, know the procedures defined explicitly for han-
dling every situation, and most importantly can act
accordingly. Therefore, training schools put a focus
on real-life like simulated training, where students in
all semesters are confronted with carrying out nursing
sessions with simulated patients, or with sophisticated
training dummies in small groups of 3-5 students. The
huge challenge for trainers during these sessions is to
monitor the ongoing scenario and understand which stu-
dents are ready to proceed and who still needs additional
training/courses/lectures.
Questions such as “is there someone in the group of the
nurses taking the lead?”, “do the nurses interact effi-
ciently, do they interact at all?”, “are they doing what
they actually are supposed to?”, “is there someone not
ready to handle this situation? e.g., by occupying them-
selves during emergency sequences with trivial tasks?”
etc. have to be answered in order to provide adequate
measures. Such training sessions currently are time con-
suming, and trainers spent hours over hours repeatedly
watching video taps taken from the training sessions to
evaluate them and answer the above questions. Specifi-
cally, during emergency sequences where procedures are
fast, and everything happens at the same time, it is al-
most impossible for a single person to capture all details.

6.1.1 Recognizing Team Dynamics

The recognition of activities performed by a person has
been a core research topic of ubiquitous computing over
many years. Examples here range from industrial assem-
bly and maintenance through elderly care to sports and
wellness. As has been pointed out, most works on activ-
ity and context recognition concentrated on recognizing
the activities of an individual and how they interact with
their environment and handle objects.
In scenarios like the emergency care training though,
monitoring of an individual, or individually monitoring
every person will fail to grasp the entirety of what is go-
ing on. Since a single person monitoring the scenario is
unable to judge and evaluate what is happening, also it
is not enough to follow only one person with sensors to
display the entire picture. Moreover, it will often limit
the accuracy of any activity recognition, since, in many
human activities, several actions require more than one
person to be carried out. The list of possible examples is
endless.

The emergency care scenario or a surgery scenario, of
course, are examples, where nurses and doctors and other
professionals will have to interact and work together to
save the life of a patient. In nursing, a clear focus has
been set in the early to late 2000s to highlight the im-
portance of the “competence of collaboration” in nurs-
ing practice and education [172], [173]. A study has
revealed that experienced nurses spend approximately
45% of the time in collaboration with other health-care

professionals (40% with other nurses, 3.5% with doctors
and 1.5% with pharmacists) and only work alone about
40% of their time [174]. The numbers for young nurses
are even more leaning towards more collaboration with
others and less working alone.
Other examples can be construction work, moving from
one apartment to another, or generally assembly of
things, where a number of people might be necessary to
carry a large component from a truck/transporter to the
construction site/apartment. Here it will be possible as
well that different groups carry components in parallel.
The list goes on. Analyzing a variety of multi-player
sports is another example. How well has the football
team interacted during the match? Which players are
able to play in the team, who is a lonely wolf not being
able to adapt to the team and thus either slowing the en-
tire team down or just being not helpful? Specifically, in
team sports, it is well known that ensembles of brilliant
individual players can lose against an average team, just
because the average team works together and is a very
motivated collective, while in the team of brilliant play-
ers everyone wants to “shine” individually.

Nevertheless, recognizing what is going on in such sce-
narios not only requires detecting which person is per-
forming which activity at the moment, but it is even
more critical to detect who is interacting and collaborat-
ing with whom. Essentially, this means that we need to
be able to understand and analyze group dynamics. As
in team sports so in all situations where teams have to
act together, even well interacting teams can “fall apart”
when dramatic incidents happen (receive an unexpected
goal; an altogether healthy patient with a simple bro-
ken arm goes into cardiac arrest without any warning
signs; etc.). Vice versa, a poorly performing team can be
energized through appropriate coaching and/or positive
events. These effects can be found in all situations where
teams have to act in environments where quick and dy-
namic reactions to (often unforeseeable) events, stress,
and high physical/and or cognitive loads are needed.
The answer to the question, how well a team performs
depends on a variety of factors. One of them is how
well and flexible the individuals in a team can foresee the
needs and adapt to the actions of others and to synchro-
nize individual activities. Meaning to perform precisely
the activity that is needed right now. Furthermore, emo-
tional factors such as motivation and mood, which can
also develop and evolve in the group dynamically, have a
significant influence on the performance of a team.

The long-term vision in this regard is to be able to build
multi-agent systems that can leverage context and activ-
ity recognition to analyze and understand such group
dynamics. However, just like traditional context-aware
support applications can influence the activity of an in-
dividual, for example, by automatically recommending
the next trains when being at a train station, the goal of
these multi-agent systems will be to influence the factors
that make a group act well together to reach a particular
goal and thus improve the overall group performance.
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6.2 Related Work
Plan and goal oriented recognition has a long history in

computer science and has been existing for over 40 years.
Thus in plan recognition a variety of different fields and
applications have developed, ranging from simple recog-
nition of single-agent plans (both very early and more re-
cent work) and probabilistic plan recognition, to multi-
agent, team-plan, and teamwork recognition. 1

6.2.1 Plan Recognition

From early on Plan recognition has been a necessary
component of many applications, such as software help-
systems [176], story understanding [177], psychological
modeling [178], and natural language dialog [179]. In
general, all work in plan or goal recognition can be split
into two aspects: determining agent’s plans/intends/-
goals for coordination and collaboration in Human Ac-
tivities and steering (and partially understanding) Robot
activities. In early plan recognition, only goal-oriented
agents existed who’s activities were consistent with its
knowledge base, and which formed a single plan, e.g.,
[180]. During the last 10-15 years, more complex and less
restricted methods were developed for plan-recognition.
These include attempts for recognition with only par-
tially available plans, probabilistic plan-recognition and
also multi-agent or team plan-recognition:

6.2.2 Plan Recognition with Noisy Input or
Partially Observed Team Traces

Some systems like the work by Sadilek and Kautz
([181], [182]) are capable of recognizing multi-agent
plans from noisy observations. By using noisy real-world
GPS data, they try to solve the problem of modeling and
recognizing activities that involve multiple game-related
individuals while playing a variety of roles. Their model
though, incorporates explicit team rules and dynamics
imposed by the games’ geometry and a player’s motion
model with probability and logical functions.
Zhou et al. [183] in their 2011 publication focus on meth-
ods of plan recognition that allow team traces that were
only partially observed. To solve the underlying multi-
agent plan recognition problem, they introduce a method
for building candidate occurrences followed by soft and
hard constraints to encode the correctness property of the
team plans and eliminate the false candidates. In 2012
then Zhou et al. [184] went further to allow online rec-
ognizing of plans from incomplete observations. Online
in this case means that a plan library is not required be-
forehand. The work is based on the availability of a set of
action models.

6.2.3 Probabilistic Plan Recognition:

Saria et all [185] have developed a theoretical frame-
work for online probabilistic plan-recognition in cooper-

ative multi-agent systems, which is based on a hierarchi-
cal dynamic Bayes Network. This work intends to pro-
vide a framework for analyzing interaction among mul-
tiple cooperating agents. In their approach, they even al-
low the specification of hierarchy-levels where individu-
als are coordinated. Below this specified level though, all
plans are executed independently (without interaction).
In this regard, interaction is determined by agents fin-
ishing their individual plans. The work of Saria et al. is
an extension of Bui’s [186] multi-agent plan recognition.
Even though this approach can handle uncertainty and
can be trained, it cannot deal with structured relational
data represented in first-order predicate logic.

6.2.4 Multi-Agent Plan Recognition:

While the above-described systems all focus on plan
recognition of a single agent, multi-agent plan recogni-
tion searches an explanation of observed team-activity
traces. Within these, multi-agent plan recognitions aims
to identify the team structures and behavior of agents
within a team (or changing teams) [187] Multi-agent plan
recognition is no new field. In the past 10-15 years, differ-
ent approaches have introduced techniques to recognize
team plans automatically. E.g., Banerjee et al. [188] for-
malized multi-agent plan recognition in a model, whose
key feature is the use of partitioning as a hypothesis
pruning mechanism in order to eliminate observations
that cannot coexist. A pre-requirement for this method
to work is that fully observed team traces and a library of
full team plans are available.
Most prior multi-agent teamwork research requires ex-
plicit coordination protocols or communication proto-
cols and Generalized Partial Global Planning (GPGP)
[188]). Each of these protocols works well as long as
all agents know and follow their protocol. Some work
in multi-agent teams even requires their agents to work
with their teammates in predefined ways such as locker-
room agreements [189].

Interaction of Teams with Multi-Agent:

Works in the past introduced models of hierarchical re-
lationships between agents that can recognize team plans
and involve multiple agents. E.g. Intille and Bobick [190]
rely on coordination constraints among football players
to recognize team-tactics. Similarly to work in this chap-
ter, they focus on the interactions between agents. How-
ever, the entire domain they are addressing relies on spe-
cific team-interaction activities and multi-agent specific
plans. In contrast, our work has no specific team-plans
available but instead tries to determine the interaction
between multi-agents pursuing single-agent plans. Infer-
ring team’s states from a team member’s routine commu-
nications. They provide an efficient probabilistic algo-

1 Major parts of the Related Work and Text in the related work have been taken from following papers of the author of this thesis. Any text
taken from these papers has been written solely by the author of this thesis:
mainly form Gruenerbl A. et al., 2017 [171], and partially from Bahle et al. 2018 [175], please refer to respective entries in the literature list or
beginning of this chapter
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rithm for plan-recognition designed explicitly for mon-
itoring communications. The plan library used in this
work includes information about the average duration of
plan steps, which is used to calculate the likelihood of an
agent terminating one step and selecting another without
being observed to do so. Even though this work would be
suitable for our purpose if we would be aiming for de-
tecting communication-interaction.
Zilberbrand et al. [191] introduce the initial steps to-
wards a method for tracking groups and changes in these
groups (e.g., merging and splitting) by saving informa-
tion on the typical plan that each group executes. This
work, in contrary to most other work in multi-agent
recognition, does not use previously available static so-
cial structure or rule-based information. Instead, they
use the plan library to identify dynamically changing
structures of the groups. For example, a group of pas-
sengers in the airport, in one situation like the security
check form one group while afterward split into various
groups and thus change organizational structure. In this
regard, they try to identify agents that behave differently
from other agents in the same group and further try to
gain a better understanding of the agents by saving the
history of the differently behaving agent. The primary
method to pursue this goal is to use Dynamic Hierarchi-
cal Group Model that indicates the connection between
agents. So generally spoken, this work implies an interac-
tion between multi-agent groups by determining strange
and group-unlike behavior. Even though our work also
strictly speaking implies interaction, but our work ad-
dresses an entirely different kind of interaction.

6.2.5 Ad Hoc Team Plan Recognition:

Summarized, all of these works focused on specific so-
cial structures/team-game-rules, enabling agents to form
teams based on a-priori agreements using specific plans.
Therefore, to recognize team plans, the monitoring agent
must first know which plans are ideal.
So far lesser explored is the approach to apply plan-
recognition for ad-hoc teamwork. It has only arisen in
the last years as a necessity in industrial or military set-
tings ([192]). In contrary to common multi-agent team-
work, ad-hoc teamwork cannot take the availability for
any protocols for granted. Ad-hoc teamwork is a setting
in which teammates must work together reach a common
goal without any prior agreement regarding how to work
together without knowing each other.

Jones et al. perform an empirical study of dynami-
cally formed teams of heterogeneous robots in a multi-
robot treasure hunt domain [193]. They assume that all
the robots know they are working as a team and that all
the robots can communicate with one another, whereas
in our work. This approach cannot be fully applied to
the nurse scenario, as though we can assume that nurses
can talk to each other, we also have to assume a subtle
non-verbal communication that does not follow any com-
munication protocol! Genter [194] presents a role-based
approach for ad-hoc teamwork, in which each teammate

has a specialized role that shows a specific behavior or
performs a particular task, depending on their capabil-
ities but also on the roles been assigned to other team
members. This paper highlights the importance of agents
being aware of the role they take over.

Bowling and McCracken explore the concept of “pick-
up” teams in simulated robot soccer [195]. They intro-
duce coordination techniques designed for a single agent
that wants to join a previously unknown team of existing
agents. They provide the single agent with a play-book
from which it selects the player most similar to the cur-
rent behaviors of its teammates. The agent then selects a
role to perform in the presumed current play.

Ad-Hoc Autonomous Teams, Teamwork without Pre-
Coordination

Until this decade, systems were designed to adjust and
tune the agents’ behaviors to enable them to interact well
with one another. Since recently the field progresses to-
ward settings that require on the fly interactions with
other unknown agents. In most emergency cases differ-
ent agents will come together, have no prior information
about the other’s abilities and qualifications, but still,
they have to act and interact quickly. To illustrate it we
use the same example used by Stone10 et al. [196] to
challenge the community to develop ad-hoc autonomous
agents, and which is also relevant to our work. Given a
person collapses, be it on the street, anywhere in public,
or in a hospital, people currently present are urged to re-
act immediately and perform different tasks, like check-
ing the persons’ condition, call for emergency assistance,
secure the area (if it happens in the street). In this sce-
nario, the present agents have to interact quickly to fig-
ure out how is most capable of performing which task.
In regards of team recognition, agents in ad hoc team set-
tings are not all programmed by the same people (con-
cerning robots) or have not the same background (for
humans), and may not all have the same communica-
tion protocols or world models or do not speak the same
language. Moreover, the capabilities of the other (e.g.,
in our example “is one of the others a doctor?”) may
not be fully known to one another. Therefore, the ad-
hoc team recognition algorithms described above are not
applicable, as a-priori team strategies are not available.
In this field only very little work has been done so far.
As already mentioned, in [196] by Stone et al. call for
developing theory and implement ad-hoc team agents
that can interact without pre-coordination with team-
mates unknown to them and also with team-mate of an
older school (robots that a not flexible to adapt to tasks).
They specify potential ways to evaluate such approaches
and also provide some theoretical analysis of parts of
this problem and illustrate an empirical approach using
robot-soccer. Stone et al. in [197] also consider agents
that can adapt to an environment and the actions of the
other agents in ad-hoc teamwork. They studied the op-
timal strategy to lead a teammate with limited memory
and given finite action set and formulated a sequential
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decision-making problem in ad hoc settings of 2-agent
teams (A and B) in a k-armed bandit formulation.
STABR an algorithm introduced by Sukthankar et al.
[198] is a Team Assignment and Behavior Recogni-
tion Model. It intends to recovering agent-to-team as-
signments where the mapping of agents into teams,
changes over time. This paper addresses the problem
of behavior recognition for teams with dynamic team-
composition, yet it is based on matching agent positions
to pre-specified geometric formation templates. So de-

spite recognition a kind of interaction within multi-agent
teams, this work has no real similarity to ours.

6.2.6 Detecting Interaction in Nurse Emer-
gency Scenarios

To my best knowledge after a thorough literature re-
view, so far no work has been done in detecting the in-
teraction between nurses neither in emergency scenarios
nor nurse training scenarios.

6.3 Objectives and Contribution:
The work described in this chapter, can only address

the first steps on the way towards building systems that
are able to provide context-aware support not just for
individuals, but for groups of interacting individuals.
Based on a real-world scenario, emergency training of
nurse students, the primary goal of this work is to de-
velop mechanisms to detect interactions and collabora-
tions between the multiple agents (nurse students) in a
random and ad-hoc team without pre-assigned roles or
tasks and without prior knowledge about the actual ac-
tivities that each agent will carry out. Note, of course
there will be knowledge about the domain available and
which activities might be or are supposed to be carried
out. However, there is no a-priory knowledge what will
actually happen in the scenario and which agent will
carry out which task.

This chapter presents a method for mapping sequences
of low-level actions performed by individuals onto col-
laboration patterns concerning high-level compound ac-
tivities. It will do this by first defining the problem and
analyzing the requirements (see section §6.4). In the fol-
lowing, a method will be introduced to turn existing “di-
rectives of action” into a library of plans, namely into an
initial hierarchical domain model (see section §6.5).
For this first simple the domain model an algorithm
for detecting collaboration under the use of the domain
model will be introduced and evaluated with observa-
tions extracted from video recordings of a real training
session (see section §6.5.3). Using video traces and thus,

assuming the availability of “recognized actions” instead
of using actions inferred from actual sensor readings,
will allow to explore the impact of different recognition
accuracy on the performance of the proposed method. At
the same it will allow focusing on the core of this method,
the detection of collaboration. The recognition of similar
basic actions has been extensively studied, although cer-
tainly not entirely solved, and thus is not really a promi-
nent problem of this chapter. Bahle et al. [199] have
shown that it is possible to recognize nurse care activi-
ties from smart-phone sensor traces. Thus it is feasible in
this work, to assume that such recognized activities are
available.

The evaluation of the initial domain model reveals
some requirements to enhance the model. These en-
hancements are done to form the 5 layer hierarchical
logic goal oriented semantic tree plan model (see section
§6.7). Equally, the collaboration detection algorithm is
adapted to serve the requirements of the enhanced model
and is tested and evaluated within the nurse emergency
domain, again by using data derived from video footage.

Since, the method was explicitly developed with
the nurse emergency case in mind, scale-ability and
generalize-ablity might be an issue for the proposed
method to be useful. Therefore, the model was trans-
ferred to two other domains (see Section §6.8). With
these additional domains the collaboration algorithms
were evaluated as well.

6.4 Problem Definition and why Common Techniques do not Apply:
Building such a group “aware system” will require the

ability to identify group level activities and collabora-
tion patterns between various agents. Thus, the first
step in this chapter deals with the question of how to go
from the recognition of individual actions (“classical ac-
tivity recognition”) to identifying collaboration patterns
in groups of people. The method proposed in this chap-
ter, in general, follows approaches from plan recogni-
tion. Compound activities are represented in a logical
tree based plan library that incorporates the lowest level
of “basic” atomic actions as leafs. A method for detect-
ing collaboration is introduced as, within the boundaries

given by the logical constraints, when “leaf actions of a
specific semantic activity have been performed by a num-
ber of different agents”. If the respective leaf actions were
all performed by a single person, then there was no col-
laboration. If different leaf-actions were performed by
different agents, then those agents are considered to have
collaborated on this particular compound activity.

Figure §6.1 intends to make the idea behind this ap-
proach clearer. With the number of possible atomic ac-
tions (A1, .., An), the possible different compound activi-
ties known (CA1, .., CAm), and provided it is possible to
recognize (with reasonable probability) which agent per-
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forms which atomic action at what time, then the ques-
tion is to determine which of the compound activities
have been executed collaboratively and by which (sub)
groups of people. In this regard, we are looking for a

method to map individual actions, executed by individ-
ual users, to specific action nodes as instances of the com-
pound activity models.

Figure 6.1: Illustration of the problem addressed in this chapter: The starting points are n types of possible relevant individual
atomic actions (A1- An black box). Out of these atomic actions m different compound activities CA1-CAm are defined (blue box).
Then, there are k agents (red box) performing a sequence of atomic actions, some of them likely together, in an ad-hoc manner, to
complete some or all of the compound activities, some of them alone.

Previous research on collaboration recognition in ubiq-
uitous computing has generally dealt, for example, with
the analysis of a meeting [200] or with the analysis of
explicit social interaction [201]. In contrast to these re-
searches, the work in this chapter focus primarily on col-
laboration in physical activities. Taking the nurse emer-
gency scenario into account, activities of this domain can
be divided into different hierarchical structures and can
be characterized by the following properties:

1. They are hierarchically compound, meaning that a
number of simple actions together form a specific se-
mantic activity, and a number of semantic activities
together are necessary to reach a specific goal. For
example on the lowest level of “assessing the circu-
lation of a patient” are the primitive actions “pick
up blood pressure cuff” and “attach the cuff to arm
of patient”, which both are part of “measuring blood
pressure” which is part of “assessing the vital signs”.

2. Despite the hierarchical structure, which by itself
imposes boundary conditions, the scenario requires
a lot of freedom in the way how the overall activ-
ities can be performed. The agents in the scenario
may jump between different higher level activities,
by their preference or as is required by the circum-
stances. In the nurse training scenario, for example,
a change in the state of a patient (e.g., a sudden car-
diac arrest) will cause the group to instantly change
their course of action, no matter what each person
was about to be doing at that time.

3. A lot of the activities can be performed either indi-
vidually or collaboratively by a different number of

people. For example, one nurse can measure blood
pressure on her own, or one nurse can apply the pres-
sure cuff, and another nurse will take over and mea-
sure the blood pressure.

4. There is also no predefined role-structure. The col-
laboration will evolve and changes dynamically and
probably differently in each separate training sce-
nario. For example, when the patient goes into car-
diac arrest, there is no plan saying that nurse A is
responsible for pressing the alarm-button and nurse
B has to start chest compression. Such activities will
be carried out by the person that, in the specific case
feels responsible, is closest (to the alarm button),
has their hands free (to perform chest compression).
Thus the ability of the group to self-organize is a cru-
cial training goal.

As elaborated in Related Work, to my knowledge, no
existing work in related areas such as traditional ubiqui-
tous activity recognition, plan recognition or multi-agent
systems addresses this problem for the settings outlined
above. Moreover, a main and not yet solved issue in Ar-
tificial Intelligence (AI) is how to lead a machine to learn
and to understand what is going on in the real world?
How can we teach a computer semantics and thus, bridge
the semantic gap ([202]).
The generally accepted approach is to build a model of
the real world and feed it to the computer. In combining
observed probabilistic low-level activities (e.g., derived
from sensors and common activity recognition methods)
with the model, the machine should be able to derive
high-level meaning. So far, AI has developed a variety
of algorithms and concepts in both, deriving models of

93



CHAPTER 6. EVALUATING GROUP BEHAVIOR

the real world called “planning” and automatically rec-
ognizing activities on different levels, e.g., “plan or goal
recognition.” Still, all these approaches have their lim-
its, specifically when it comes to recognizing and under-
standing quite complex and possibly random scenarios
like the nurse training.

6.4.1 The Nurse Emergency Scenario

In the nurse training scenario, we deal with a, in real-
life, well defined and established scenario. It is, in gen-
eral, not necessary to define or derive a plan, like in “hos-
tile plan recognition” or in “assessing team sports,” be-
cause the plans or plan like constructs (algorithms, qual-
ity management, directives for nursing) already exist. For
example, the process of how a nurse, step by step should
figure out what is wrong with a patient or how to react
to a dysfunction in the patient’s body, already has been
established in health care.
Furthermore, these directives, like “the A2E” algorithm,
are well described in the literature ([203], [161]) and
taught to nurse-students all around the globe. Therefore,
these directives are well known (or in regards of nurse
students should be well known) to its actors.
The A2E algorithm (A2E or also known as ABDCE Al-
gorithm stands for - Airways, Breathing, Circulation,
Disability, and Exposure) applies to every human emer-
gency. It includes general instructions on which bodily
functions to assess during the examination in which or-
der and what actions to take (treatments to apply) for
each particular dysfunction, specifically in the case of
emergency. Mainly, it is defined for single actors (a sin-
gle nurse has to be able to examine a patient, and in the
emergency, a single nurse has to be able to “keep a pa-
tient alive” until help arrives). Nevertheless, in reality
(concretely in the nurse-training scenario), the examina-
tion is commonly performed by a set of 3-5 nurses. These
are not only very likely randomly put together, but also
have no pre-defined roles or assigned tasks.

6.4.2 Data Collection

The nurse emergency scenarios, we were able to video
tape, are part of the nurse’s higher education at the
nursing department of the University of Southampton
in the UK. A group of 3-5 nurses are presented with a
highly sophisticated patient dummy that simulates a pa-
tient that, for example has “just been admitted” to the
emergency ward, or “just came back from surgery”. The
dummy, called “SimMan,” has a heartbeat, can breathe,
and talk/react (remotely controlled), vital signs can be
measured, injection administrated, and CPR and vari-
ous other procedures can be applied. Besides remotely
controlled talking and reacting, all “bodily functions” of
SimMan can be modified at any time. Meaning, SimMan
can go into cardiac arrest, breathing can stop, and essen-
tially SimMan can “die”.
The task assigned to the nurses (nurse students) is to di-
agnose the problem (e.g., why SimMan “feels pain in his
chest”), and initiate a solution (namely by following the
A2E algorithm). In most cases, the “patient’s state” will

change (deteriorate) during the procedure and the group
has to react to these changes. A vital aspect of the simu-
lated training is that the agents (nurse-students) require
the ability to work together and interact, but as an ad-hoc
group they get not specific instructions, there are no pre-
defined roles and, most often, the team has never worked
together before.

The scenario is interesting in itself, as it contains a mix-
ture of strict structure (first assess Airways, then Breath-
ing, then Circulation, etc.) paired with very dynamic im-
provisation. Some individual procedures have to be fol-
lowed by the book. For example, CPR (cardiopulmonary
resuscitation) has to be administered precisely, otherwise
it would not be effective. Alternatively, if a patient is un-
conscious, it is essential to make sure the airways are free,
the patient is breathing, and the heart is beating, before
the state of the skin can be examined. On the other hand,
the nurses are free (have to be free) to collaborate in any
way they want. Thus CPR may be performed alone (al-
ternating between the chest compressions and breathing
steps, or even skipping breaths for a certain amount of
time), but with two or more people around, the nurses
will alternate in doing specific actions (taking turns in
chest compressions, since applying them is physically ex-
hausting). Furthermore, specifically in emergency situa-
tions, protocols might be thrown overboard and the task
at hand will be done regardless of what regulations say.

In total four training sessions, as described above, were
recorded on videotape. Each of these sessions included
three randomly chosen nurse trainees in their second
year. None of the trainees had information about de-
tails of the scenario (except that they had to care for a
“patient” and make sure the “patient” gets better) also,
no roles were assigned beforehand. Each training ses-
sion lasted between 20 and 25 minutes. On average each
dataset included approximately 800 unique data-points.
Figure §6.2 shows a scene of one of these sessions.

6.4.3 Challenges of the Nurse Scenario

It is a common understanding that the A2E algorithm
should be followed, but despite thorough training, there
is no guarantee that the activities performed by the
nurses, will strictly follow this protocol. Even though
it is designed to help the nurse (agent) to reach a goal,
namely, figure out what is wrong with a patient and treat
all eventual illnesses and handle emergencies, the agents
might use experience or intuition to reach the goal in dif-
ferent ways and thus not following the algorithm to its
letter. For example, the nurses might take shortcuts like,
when the patient speaks clearly and normal, and is con-
scientious, there is no need to assess the Airways or Dis-
ability. Moreover, agents might mix plans, perform plans
in parallel at the same time, interrupt plans, skip steps
or repeat parts of the plan.

Is this scenario carried out during a nurse-training ses-
sion, it might even go further. The “plan” can be “frozen”
at any time for a trainer to explain something. Alterna-
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Figure 6.2: Nurse Trainees collaborating in attending a patient-dummy in an emergency

tively, nurse-students might discuss what to do in the
middle of a plan or might ask the teachers around for
help (which is not part of the general plan).
Regarding plan recognition, this scenario reveals the lim-
itations of commonly established algorithms, as neither
plan recognition techniques for single agents nor univer-
sal plan recognition for multi-agents can be fully applied.
Even though “the plan” is designed for a single agent,
it has to be assumed that it is carried out by multiple
agents. Therefore, pruning-mechanisms for eliminating
false observations, (e.g., in regards to the time) do not
apply. For example, in a multi-agent scenario, the single-
agent-time-assumption does not fit that “a nurse cannot
attach equipment before she has fetched it in the storage
room,” as it is possible that another nurse has brought
it and placed it next to our nurse. Most multi-agent ap-
proaches will not work either, as we have no team plans
available (as required for most multi-agent approaches,
e.g., in [190]) nor are agents assigned explicitly to only
one team at a time (as required in [204]) moreover, the
plan library does not include any team rules (as in [188]).
Furthermore, there is no guarantee that any plan or any
part of a plan will be performed only once or at least only

once).
In recent years works about “ad-hoc,” multi-agent plan
recognition have been published. Unfortunately, these
works, generally require the knowledge of roles of team
members within the team, or respectively that each team
member knows its role within the team even if the team
members do not know each other. Specifically, Genter et
al. [194] highlights the importance of role knowledge for
ad-hoc multi-agent plan recognition to work.
To sum up: a nurse-(training)-examination-emergency-
session is a particular scenario which, in regards to plan
recognition, includes some constraints and limitations on
the one hand, but has to assume a lot of freedom and free
actions on the other:

• single agent plans carried out by multiple agents

• no knowledge about the team, no specific team rules,
no pre-defined roles within the team, agents can be
part of various teams at the same time

• plans might not be followed strictly: skipped steps
are possible, actions can be performed parallelly, spe-
cial events might not be captured in the plan

6.5 From a “Directive of Actions” to the Plan Library
The background of health-care comes with the big ad-

vantage that many processes are well defined, as the
above mentioned A2E algorithm shows. It was designed
for nurses or paramedics to be followed step by step in
order to understand what is wrong with a patient and re-
act to it as efficiently and effectively as humanly possible.
These processes are well known to all professional play-
ers in the field of a hospital. Despite the availability of
these processes, specifically in examination/emergency
treatment, modeling of these as workflows has been lim-
ited to particular activities or very coarse models. As an
example, basic flow-models of performing resuscitation
exist and are used to teach the underlying process, but
the entire flow of how to deal with a not-well patient has
never been modeled in detail in a professional modeling
notation. In the practice of nurse-teaching such “flows”
often are provided descriptively (e.g., see [203]). The goal
of this section is to provide a way to capture the entire
A2E Algorithms in detail.

6.5.1 Modeling the Process Flow

So far, to my best knowledge the full hospital exami-
nation/emergency flow has never been modeled. There-

fore, the first step in developing an appropriate model
for the nurse emergency training was to put the sce-
nario as it should be performed down into a work-flow
model. Even-though this scenario exist between well-
defined borders, it is still quite complicated. In order
to keep the model perceivable, it was broken down into
different hierarchical steps of detail. The flow models are
modeled in a simplified BPMN (Figures §6.4 and §6.3).
The flow model in Figure §6.4 already shows that ev-
ery branch of the A2E, namely Airways, Breathing, Cir-
culation, Disability, Exposure includes two main blocks,
“check” and “react” (which is either treatment, emer-
gency treatment or nothing). All five branches including
both blocks were modeled in further detail, see the flow-
model for Circulation in Figure §6.3) as an example.

6.5.2 Flow-Model of the A2E Algorithm.

The BPMN provides the main advantage that both, the
location activities take place in and the dependencies be-
tween activities can be modeled. Location in this model
is expressed in the form of swimming lanes. Dependen-
cies can be followed through logic gateways.
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Figure 6.3: The section “Circulation” modeled in detail.

Graph based Recognition of Interaction?
In order to determine interaction the first idea that

comes to mind seeing this flow model is to use simple
graph techniques. For example, follow each nurse’s path
in the graph using real-world traces. Then determine,
how many nurses are necessary for the graph to be cov-
ered thoroughly.

Figure 6.4: A high level view on the A2E algorithm.

Very High-level interaction: If the path of one nurse
does not cover the entire process, it is very likely that
traces of other nurses will be found in this graph. There-
fore, we can define: Find the traces of all nurses necessary
to cover the graph. It is feasible then to assume that these
nurses interacted in dealing with the patient.

High-level interaction: Find all nurses necessary to
cover parts of the graph. Then define: for all nurse traces
necessary to cover a part of the graph we can assume that
these nurses interacted in a specific high-level part.

Low-level interaction: Find all nurse-traces in a spe-
cific task or sequence of tasks, and then we can define:
for all nurse traces in this specific task we can assume
that these nurses interacted on this low level.

The significant disadvantage of this model notation can
be found in the lack of order. The availability of depen-
dencies in a graph, self-imply the lack of clear order. To
be more precise, in this graphs at any given point in time

and without any other information, it is impossible to tell
which nodes had been visited before or which path was
taken to reach the present node. Therefore, this kind of
model (graph) requires explicitly storing of each node. In
decision trees on the contrary, by its nature, at any given
point in time, at any possible node in the tree, the path
to reach this node is unique. In this regard, the challenge
to improve the model was to turn it into a decision tree
based model on the one hand but keeping the benefits of
including dependencies.

6.5.3 The 3-Layer-Model (3l-HGOST)

Based on the available flow graphs a first simple tree
model was derived. See Figure §6.6 as an example. This
model consists of three basic hierarchical layers:

World Context Layer (WCL): The first layer incorpo-
rates, implements, and structures general high-level hu-
man knowledge or high-level regulations about a do-
main. More specifically, for the nurse emergency sce-
nario, it is based on the A2E algorithm and consists of the
WCL-nodes “Airways”, “Breathing”, “Circulation”, “Dis-
ability”, “Exposure.” See Figure §6.5.

Semantic Activity Layer (SAL): The SAL is a child-
level to the WCL. It details the higher-level WCL nodes
into concrete semantic activities (SAs). The SAL de-
scribes each specific SA to be done within each WCL
node. Every SA is a child to one WCL parent. (See green
nodes in Figure §6.6 )

Atomic Action Layer (AAL): Each semantic activity
(SA) is comprised of a sequence of ordered basic atomic
actions (AA). Therefore, a sequence of AAs details the
higher-level SA. AAs are leaves of the tree and do not
have any children. Furthermore, SAs can either be start
actions, stop actions, or sequence actions. Regarding
the Nurse-Emergency-Scenario, most SAs like “measur-
ing blood pressure” are comprised of “fetch” (if the mea-
surement device is not available at the bedside), “pick up
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Figure 6.6: A part of the Model specifying the WCL Node “Airways” (blue) and its SAL (green) and AAL children (orange)

a device,” maybe “arrange/prepare/check a device,” “at-
tach a device,” “measure,” and maybe “monitor screen.”

Figure 6.5: 7 Nodes of the the A-to-E Algorithm in the World
Context Level.

A2E Model Details

The 3l-GHOST model of the A-to-E Algorithm incorpo-
rates 7 unique WCL Nodes (Approach, Airways, Breath-
ing, Circulation, Disability, Exposure, Other). Each of
these has 1 - 29 children (SAL Nodes) out of a pool of

46 unique compound SAs. Note that any given SA can
be child to different WCL nodes. E.g. ’give oxygen’ can
be part of either “Airways” or “Breathing”, ’Intubation’
can be an emergency treatment of either “Airways” or
“Breathing” or “Circulation” or “Disability”. Each SAL
node has 1 - 10 children (AA leaves) which are out of a
pool of 73 unique AA (atomic action). Again, note that
any AA can be child to several SAL nodes. E.g. ’fetch’ is
a possible AA for 36 different SAs,

WCL (nodes)
# SAL (nodes)
per WCL node

# AAL (leaves)
per SAL node

Approach/Other 1 / 7 2
Airways/Breathing 15 / 14 2 – 10

Circulation 29 1 – 10
Disability/Exposure 21 / 16 1 – 10

unique total 46 73

Table 6.1: Number of Nodes in each Level

6.6 Detecting Collaboration with the 3lGHOSTModel
In general, in this Chapter, collaboration is considered

if an instance of a compound activity exists, in which two
or more people have executed at least one basic atomic
action. Interaction or collaboration can happen at each
of the higher levels (WCL and SAL). For example, two
nurses can both perform a task which in some way be-
longs to Circulation (e.g., one counts pulse, the other at-
taches the IV) - in this case, both interact on the WCL
of “Circulation.” However, going one degree of granular-
ity down in the tree to the SAL, these two nurses do not
collaborate, because one nurse works on the SAL “check
patient” while the other nurse works on the SAL “treat
patient.” In this sense, interaction/collaboration can hap-
pen on each of the layers in the tree model, and thus col-
laboration has to be defined.

6.6.1 Definition of Interaction

People interact when they are working together to ful-
fill a task. Regarding the nurse scenario, interactions
can happen on different levels (e.g., “assess Circulation”
highest level, “check blood pressure” meta-level, “inflate
cuff” atomic level. Interaction can happen in different
ways:

• parallel: a sequence of atomic actions of the same SA
(e.g., measure Pulse -> “grab wrist/touch neck/touch

leg,” “count pulse” (atomic level)) can be performed
by several nurses at the same time.

• sequential: several nurses can perform the atomic ac-
tion of a SA in alternating manner (e.g., one performs
compressions, another one operates the venti. bag)

• together: several nurses can perform different atomic
actions of the same SA at the same time (e.g., one
nurse can attach the ventilation hoses at the oxygen
plug while the other nurse attaches the mask)

• with time difference: one nurse can start a SA, but
perform only some of the corresponding atomic ac-
tions and another nurse could finish the missing ac-
tions with a time difference (e.g., one nurse could go
to the storage to pick up a measurement device and
bring it to the patient’s bed. However, instead of us-
ing it the nurse could be called off to help with an-
other activity. Later another nurse picks up where the
first nurse left and finishes.)

Figure §6.7 is an illustration of some key problems in-
volved in mapping sequences of individual atomic ac-
tions onto team executions of compound activities: Both
figures (left and right) start with the same sequence of
recognized individual atomic actions P1 to Pk and the
same plans (models of compound activities) CA1-CAm.
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Figure 6.7: An illustration of some key problems of mapping sequences of individual atomic actions onto team executions of
compound activities.

In this example, we center our attention on the individ-
ual atomic actions A1 and A9. A1 represents a standard
action like screw driving in an assembly scenario and is
performed four times by three of the different agents.
Moreover, it is part of two of the compound activities
CA1 and CAm. The atomic action A9 is performed only
by two users and is part of CAm only. Both the pictures
in Figure §6.7 (left and right) are examples of valid as-
signments of actions A1 and A9 (of which more exist). In
the left picture the sequential constraint between A1 and
A9 imply that A9 performed by Pk−1 is the only option for
CAm. In the right picture though, the possibility of two
agents contributing to the same individual action within
a CA is displayed (e.g., when one starts putting in a screw
then leaves and the second one finishes the job).

6.6.2 High-Level Collaboration

The first step in determining collaboration is to tra-
verse “fill” the tree with atomic activity data of various
agents participating in the scenario. Once the tree is de-
ployed with data of several agents, collaboration can be
detected.

Traverse the Tree
At each point i in time T , for the current newly recog-

nized atomic action AAi :

1. assign probabilities: find all possible locations P L of
AAi in the tree (leaves = atomic action) and calculate
the probability for each of the P Lz:

pAAi|P Lz = 100/#P L (6.1)

2. backtrack: evaluate the probability of the siblings
SB of AAi (SBx |AAi) in each P L (=probability of sib-
lings if available, gained in the iterations Ti−10−Ti−1)
weight pAAi |P Lz according to the probability of its
siblings pSB1..x |pAAi |P Lz.

3. backtrack siblings: adapt probability of sibling ac-
cordingly

4. upwards probability: calculate probability of higher
level SA based on probability of its atomic actions

pSAi = (pAA1|SAi
+pAA2|SAi

+ ...+pAAx |SAi
)/x (6.2)

5. backtrack on higher levels

Each of the steps described above is conducted for
each data point (a data point = primitive atomic action
recorded in 5 seconds or fewer intervals)

Detect Collaboration
In order to detect collaboration, the tree has to be tra-

versed for each participating agent individually. After-
ward, the tree is traversed again with joint data of two
or more nurses. Collaboration is detected when both or
all nurses contribute to one SA (semantic activity), which
means that one nurse does some atomic actions (compris-
ing SA) and the rest is done by the other nurse(s). Collab-
oration is calculated as follows:

1. traverse tree for each nurse individually

2. traverse tree with joint data of two or more nurses
(N1+2,N1+3,N2+3, N1+2+3)

3. detect collaboration as: for each semantic activity
SA at time i (SAi): if the joint probability of both (or
all three) nurses is greater than the probability of the
individual nurse.

6.6.3 Evaluation

Drawing on more than ten years of activity recognition
research and its progress in reliably detecting various ac-
tivities with sensors, we can safely assume, and actually
have shown before [199] that sufficiently correct recog-
nition of nurse activities is possible, even with unobtru-
sively worn smart-phones.

Thus, for the evaluation of our model and the algo-
rithm for determining collaboration, we use label-data,
derived from video footage of real training-sessions (see
Figure §6.2). This data set includes a total of 975 atomic
actions performed by 3 agents and includes a total of
530 atomic level collaborations. In terms of collabora-
tion, each collaboration was calculated for all combina-
tions of agents N1+2,N1+3,N2+3, N1+2+3 and the results
were validated with the ground-truth (actual collabora-
tion extracted from the video footage). Table §6.2 shows
the precision and recall of this evaluation for the different
combinations of collaboration and for each activity. Note
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Collaboration N1,2,3 Collaboration N1,2 Collaboration N1,3 Collaboration N2,3 Mean

prec / rec prec / rec prec / rec prec / rec prec / rec

Approach 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 0.91 1.00 / 0.98
Breathing 0.82 / 1.00 0.72 / 1.00 0.82 / 1.00 0.95 / 0.96 0.83 / 0.99

Circulation 0.98 / 0.92 0.99 / 0.95 0.94 / 0.94 1.00 / 0.92 0.98 / 0.93
Disability 1.00 / 0.90 1.00 / 0.90
Exposure 1.00 / 1.00 0.95 / 1.00 1.00 / 1.00 1.00 / 1.00 0.99 / 1.00

Other 0.98 / 0.99 0.99 / 0.99 0.99 / 1.00 1.00 / 0.99 0.99 / 0.99

Mean 0.96 / 0.98 0.94 / 0.97 0.95 / 0.99 0.99 / 0.96 0.96 / 0.96

Table 6.2: Precision and Recall of Detecting Collaboration (Nurse 1 + 2 + 3, Nurse 1 + 2, Nurse 1 + 3, Nurse 2 + 3 )

that empty spaces for “Disability” mean that no collabo-
ration happened for this activity except between nurse 1
and nurse 2. The evaluation result of the model is rela-
tively high, with an average precision and recall of above
90% for most activities and combinations.

Evaluation with Recognition Errors
Using label data implies a 100% correct recognition

rate of atomic activities, which is not realistic even for
highly accurate system. Thus, this must be assumed to
be one of the reasons for the very high accuracy in the
evaluation. Therefore, to provide a more realistic eval-
uation, uncertainty was added to the label data. This
was done by randomly picking an atomic activity (out of
the 73 possible AA) instead of the correct label, XX% of
the time. In order to validate the stability of the model,
for detecting collaboration, the algorithm was evaluated
with 5%, 10%, 15%, 20%, 35%, 50%, 60% and 75% added
recognition error.

Figure 6.8: Precision and recall of detecting collaboration in
relation to recognition error.

Figure §6.8 provides an overview of the accuracy of this
evaluation. It clearly shows the stability of the model
even with added recognition error of up to 20% (with
a precision of 70% and recall of 90%). With more than
35 % of recognition error the model, of course, starts to
worsen (recall still at 78%) and breaks down with 50%

and more recognition error, as was expected. These re-
sults show that the model can handle a fair amount of
recognition errors and still performs well.

6.6.4 Discussion

To summarize, the 3-layer model is a hierarchical way
to structure information describing a domain. It groups
single basic or atomic actions into semantic compound
activities. The semantic activities in the respective layer
are further grouped into a very high-level meaningful
(world) context.

The results of detecting collaboration on the high level
of WCL nodes with this 3-layer model works very well, as
has been demonstrated above. The 3-layer model though
is rather coarse and does not include much structure
and only limited dependencies. In other words, SAs like
“measure pulse” and “perform CPR” have a time-orderly
dependency to each other. First, by checking the pulse, it
has to be determined that the heart has stopped and CPR
is necessary! Therefore, “measure pulse” has to come be-
fore “perform CPR”. This clearly calls for the introduc-
tion of time-wise dependencies into the model.

On the other hand, “measure pulse” is an examination
while “perform CPR” is a reaction or treatment to the re-
sult of the examination. The general goal of the 3-layer
model was to provide a way to determine collaboration
on a very high level - on the level of the world context.

Real life applications, however, will likely require de-
tection of collaboration on a lower level (e.g., whether
two nurses perform CPR together, or whether specific
heavy pieces are being carried by at least two persons,
etc). In this regard, the natural availability of more de-
tailed grouping - like in the measure pulse/CPR example
above - SAs can, for example, be grouped into “examina-
tion SAs” and “reaction/treatment SAs”. These groups
also indicate a time-wise dependency, as (to repeat the
above) the examination task(s) will always come before
the reaction/treatment tasks.
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Errorrate 0% 5% 10% 15% 20% 35% 50% 75% Inst

prec rec prec rec prec rec prec rec prec rec prec rec prec rec prec rec

Approach 1.00 0.98 1.00 0.96 1.00 0.94 1.00 0.92 0.70 0.90 0.65 0.79 0.51 0.39 0.10 0.10 6
Breathing 0.83 0.99 0.79 0.98 0.75 0.98 0.71 0.96 0.55 0.95 0.36 0.85 0.23 0.58 0.03 0.26 5

Circul. 0.98 0.93 0.96 0.92 0.93 0.90 0.90 0.86 0.71 0.86 0.59 0.75 0.58 0.62 0.35 0.51 83
Disability 1.00 0.90 0.93 0.90 0.89 0.89 0.87 0.91 0.80 0.86 0.50 0.77 0.09 0.29 0.02 0.09 3
Exposure 0.99 1.00 0.99 0.98 0.98 0.95 0.98 0.93 0.76 0.91 0.64 0.77 0.42 0.50 0.08 0.18 5

Other 0.99 0.99 0.98 0.97 0.97 0.94 0.96 0.90 0.80 0.87 0.71 0.73 0.60 0.55 0.38 0.28 60

Mean 0.96 0.96 0.94 0.96 0.93 0.94 0.91 0.91 0.70 0.90 0.56 0.78 0.43 0.52 0.21 0.26

Table 6.3: Accuracy (Precision and Recall) of Detecting Collaboration with increasing added recognition error 0 - 75%, and aver-
age number of instances available for each activity.

6.7 The Extended 5-layer HLGSTPModel

To accommodate these main considerations/require-
ments from the discussion above, two more layers were
introduced into the model. First of all, to provide a
method for including the required dependencies between
the layers and also between different nodes, a logic meta
layer was defined (see details below).
Furthermore, with the introduction of the Semantic Or-
der Layer (SOL), a layer between the WCL and SAL was
created which groups SAL-Nodes within a WCL area into
semantically ordered groups. In this way, the original
3-layer model (3l-GHOST) was enhanced and extended
to become the 5-Layer-Hierarchical Logic Goal Oriented
Semantic-Tree-Plan (5l-HLGSTP):

Figure 6.9: The LCL logic connection layer provides different
logic connections between leaves.

Logic Connection Layer (LCL): The LCL is a verti-
cal meta layer (spanning all four other layers) connecting
both, all of the above layers with each other and also ev-
ery single node with logic operators. These include the
logic AND, the logic XOR, ANY (meaning, at least one or
several with no specific order) and Sequential (meaning,
AND but with specific order). Furthermore, this level
includes information about activities that might not hap-
pen “maybe” or might be repeated “maybe repeat”. See
Figure §6.9

Figure 6.10: The WCL world context layer, structures high level
human knowledge/regulations about a domain

World Context Layer (WCL): The highest level layer
is basically the same as in the 3l-HGOST and represents

and structures general high-level human knowledge or
high-level regulations about a domain. Mainly, the WCL
of the 5l-HLGSTP differentiates from the 3l-HGOST as
the WCL-Nodes are structured by logic meta nodes (from
the LCL). Compare Figure §6.5 of the 3l-HGOST and Fig-
ure §6.10. For the nurse emergency scenario, this layer
also includes the same A2E classes as nodes.

In the 5l-HLGSTP model, the WCL are logically struc-
tured to explain that initially, the nurse approaches the
patient and checks the patient’s general medical state.
Afterward, all the other classes “Airways”, “Breathing”,
“Circulation”, “Disability” and finally “Exposure” have
to be visited, ideally but not necessarily in the order A to
E. This is the general order of the assessments, yet de-
pending on the first one (approaching the patient and
getting a brief picture of the patient’s state) the order of
the other assessments may change. E.g., if the patient is
conscious and speaks normally and does not seem to be
short of breath, the priority to check the airways is re-
duced.

Semantic Order Layer (SOL): The SOL is a child layer
of the WCL and provides a semantic order to its chil-
dren, the semantic activities (SA). In itself, the SOL is still
rather high-level but divides the WCL into more struc-
ture and detail. The SOL in the nurse emergency sce-
nario, for example, divides all the possible nodes (as-
sessments) of the WCL into either “check” or “react”.
Whereas “react” could either be “do nothing or finish
doing the current action”, “a treatment”, “an emergency
treatment” or “repeat the check action”. See Figure §6.11.

Figure 6.11: The SOL semantic order layer provides a coarse se-
mantic and time dependence structure (dark green) for a WCL
node (blue)

Semantic Activity Layer (SAL): The SAL is a child
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layer of the SOL. It details the higher-level SOL node
into concrete Semantic Activities (SA). Therefore, e.g. in
the nursing scenario, all “assessment-SAs” are children
of “SOL-check”, explicit treatment-SAs are children of
“SOL-Treatment”, explicit emergency-treatment-SAs are
children of the “SOL-Emergency-Treatment”, see Figure
§6.12.

Figure 6.12: The SAL semantic (compound) activity layer is a
collection of semantic compound activities (light green) belong-
ing to its SOL parent (dark green)

Atomic Action Layer (AAL): Each Semantic Activity
(SA) is comprised of a sequence of ordered single atomic
actions (SAA). Therefore, a sequence of AAs comprises
the higher-level SA. AAs are leaves of the tree and do not
have any children. Furthermore, AAs can either be start
actions, stop actions, or sequence actions. In terms of
the Nurse-Emergency-Scenario, most SAs, like “measur-
ing blood pressure” are comprised of “fetch” (if the mea-
surement device is not available at the bedside) or “pick
up device”, maybe “arrange/prepare/check device”, “at-
tach a device”, “measure” and maybe “monitor screen”.
See Figure §6.13.

Figure 6.13: The AAL atomic action layer specifies the single
atomic actions (orange), which together form a semantic com-
pound activity (light green)

Regarding plan recognition, this model could be sum-
marized as “logical tree-based collection of semantic
plans.” It includes four semantic layers hierarchically in-
corporating plans, organized in various structured se-
mantic levels (layer 1-3). Atomic action sequences com-
prise each of the plans (SA nodes) from layer 4. Addi-
tionally, logic operators are connecting each node of ev-
ery plan within the plan, and each plan to its semantic
structure (layer 5). To get a better understanding how the
five layers are connected, Figure §6.14 explanatory shows
an excerpt of the nurse emergency care 5lHLGSTP model

with some selected nodes and leaves. The complete 5l-
HLGSTP model of the emergency training domain, taken
down into various parts, can be found in the Appendix
§7.3.

6.7.1 The Emergency Training 5l-HLGSTP

The 5l-HLGSTP model of the A2E algorithm, like the
3l-HGOST consists of seven unique WCL Nodes (Ap-
proach, Airways, Breathing, Circulation, Disability, Ex-
posure, Other). Each of these WCL nodes has 2-8 chil-
dren (SOL nodes) structuring the lower levels. These SOL
nodes are generally either of the kind “check” or “react”.
Every SOL node has 1 - 29 children (SAL nodes) out of a
pool of 46 unique compound SA (semantic activities).

Note that any given SA can be a child of different WCL-
SOL nodes. E.g. “give oxygen” can be part of a SOL-
treatment of either “Airways” or “Breathing”, “Intuba-
tion” can be a SOL emergency treatment of either “Air-
ways” or “Breathing” or “Circulation” or “Disability”.
Each SAL Node has 1 - 10 children (AA leaves) which
are out of a pool of 73 unique AA (basic atomic action).
Again, note that any AA can be a child to several different
SAL nodes. E.g., “fetch” is a possible AA for 36 different
SAs. A summary of nodes in the different levels is sum-
marized in Table §6.5.

6.7.2 Detecting Low-Level Collaboration

To evaluate the 5l-HLGSTP emergency model, a cus-
tom framework for parsing the tree(s) and feeding atomic
activity information into the tree for detecting collabora-
tion was developed and implemented by Gernot Bahle
and published in [175]. In course of this thesis, less in-
terest lies on the theoretical details of the detection al-
gorithm, but on the practical prove of concept. Thus, in
the following, the collaboration detection algorithm will
be summarized only briefly, but the interested reader can
get more details from Bahle et al. [175].

The collaboration algorithms has similarities with the
collaboration detection algorithm of the 3-layer model
above, but is more sophisticated. Besides, dealing with
more depth in the model, it also includes handling the
logic connections between knots and time constraints.
Nevertheless, the basic detection of collaboration, like in
the 3-layer model, is defined as: if different actors ful-
fill various atomic actions of a particular semantic com-
pound activity, or different compound activities belong-
ing to the same semantic order knot, these actors collab-
orate on the respective layer.

Collaboration Detection Results: Table §6.4 summa-
rizes the results of recognizing collaborations between
the nurses of 2 person collaboration and 3 person col-
laboration. Note that recognizing collaboration does not
merely mean, collaboration is detected in general, but
also collaboration is correctly detected in the correct class
(within a total of 7 WCL level classes). It averages the dif-
ferent collaboration combinations of two and three per-
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Figure 6.14: The 5-Layer Hierarchical Logic Goal Oriented Semantic-Tree-Plan Model with exemplary nodes taken from the nurse
model.

sons (e.g. collaboration of nurse 1 and nurse 2 = N12; or
nurse 1, nurse 2 and nurse 3 = N123) overall data-sets in
relation to the error of recognizing the atomic activities.

Specifically, the 3-person collaboration shows a high
precision of almost 90% with correct recognized atomic
activities and also shows a quite robust behavior even
with increasing recognition error. At the same time, the
recall is around 60%. Meaning that the detection of col-
laboration misses some collaborations but the ones that
are detected are detected correctly. Precision of 2-person
collaboration is less accurate than precision of 3-person
collaboration. This effect can be explained by the fact
that 3-person collaboration has twice as many instances
than 2-person collaboration.

2 Persons 3 Persons
Errorrate Recal Precision Recal Precision

0.0% 70.0% 65.5% 58.5% 87.7%
5.0% 64.5% 60.9% 52.5% 85.5%

10.0% 59.8% 56.8% 47.2% 83.2%
15.0% 55.0% 52.7% 41.7% 80.4%
20.0% 50.8% 49.0% 37.6% 77.9%
25.0% 47.1% 45.8% 33.5% 74.9%
30.0% 43.4% 42.8% 30.0% 72.3%
35.0% 40.7% 40.2% 27.5% 69.8%
50.0% 33.8% 34.2% 21.8% 62.7%

# instances 51 100

Table 6.4: Recall and Precision of 2- and 3-Person collaboration
summarized over all 4 data sets with increasing recognition er-
ror. (Source: Gernot Bahle in [175])

6.8 Transferring the 5l-HLGSTPModel into other Domains

Although the method introduced above was designed
and evaluated for the nurse emergency training scenario,
it is not necessarily scenario specific and it should be pos-
sible to re-use this method for various other domains.
The following section attempts to prove that the method
of modeling a domain in the 5l-HLGSTP is transferable to
other domains, with different complexities and different
preconditions for inter-person interactions. To evaluate
this transfer-ability, two other domains were selected:

• Assembling of furniture and

• Constructing of a video wall

A reason for choosing these domains is that both have
the four factors described in the contributions (hierar-
chical compound activities, a high degree of freedom in
the actual performance of activities, activities can mostly

be performed individually or collaboratively, and there
is no predefined role-structure) as a common denomina-
tor. Equal as for the nurse emergency training, for both
additional scenarios following data was available:

1. Video footage of the entire experiment was recorded.
Three cameras were placed at relevant corners of the
“field of action” to record all activities done by the
participants.

2. For each experiment, a description of the task was
available (e.g., IKEA manual) that could be bro-
ken down into hierarchical compound activities and
eventually basic actions. For the video wall model,
some activities as taking the monitors out of stor-
age and carrying them to the assembly area had to
be added manually.
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6.8.1 Assembling Furniture

The first additional scenario chosen is assembling a
piece of IKEA furniture. This scenario is clearly much
more straightforward than the nurse emergency scenario
and allows the subjects to take as much time as needed
to figure out what to do and how to collaborate. How-
ever, as anyone who has tried to assemble an IKEA cup-
board before knows, this is not a trivial task. It involves
a broad framework of what needs to be done when in-
cluding many sequential constraints. At the same time,
it leaves much freedom for the actual execution. There
is no prescribed collaboration as most furniture can be
built alone as well as in a team.

The Assembly Model Not surprisingly, the furniture
assembly model is simpler and smaller in size in com-
parison to the nurse emergency model. It is comprised
of 4 WCL nodes (“Unpack and Check Content”, “Assem-
ble Frame”, “Assemble Compartments”, “Other”). Each
of the WCL nodes has 2-4 SOL children who themselves
branch into 1-3 SAL nodes. Each SAL Node is a parent
of 8-100 AAL leaf-children. All nodes were connected
with logic nodes, explicitly ordering the AAL nodes. The
specific challenge in this scenario is that there is much
flexibility in the order of assembly. For example, first ap-
ply pegs to every board and then put them together; or
apply pegs to one board, then attach it to the frame; and
so on. Therefore, up to 100 AAL leaves were necessary to
describe a task with, only 10 actual atomic actions. For
this second scenario, two persons were filmed while as-
sembling an IKEA bookshelf (see Figure §6.15). The en-
tire scenario lasted approximately 25 minutes in which
both persons first worked individually and later started
to collaborate.

Scenarios WCL Ns
# SOL Ns
/WCL N

# SAL Ns
/SOL N

# AAL Ls
/SAL N

Nurse Scenario 7 3-12 1-29 1-10
Furniture 4 2-4 1-3 8-100
VideoWall 7 2-5 1-3 2-16

Table 6.5: Model Overview: Number of nodes (Ns) or leafs (Ls)
= children per node (N) = parent in each level for different do-
mains.

6.8.2 Constructing a Video-wall

The second additional scenario describes building a
large video wall. This video-wall consists of a total of 9
Monitors (3x3) that are attached to each other in the man-
ner of a tower of three monitors on top of each other on
the right side, in the middle and on the left (see [205] and
[206] for a more detailed description). This essentially
means a repetition of very similar tasks for each tower
with slight differences in many steps. Moreover, even if
this scenario seems to be straightforward, with some very

strict sequences of activities (e.g., the base has to be in-
stalled first; otherwise the monitors cannot be mounted),
there are still many options for flexibility (e.g., first in-
stall all floor parts then all retainers, etc, or install left
tower first then ..., or install a bit here, then a bit there,
and so on ). The most significant difference to both other
scenarios is that for many steps of this scenario two or
more people are required, as the monitors are too heavy
and bulky for one person to lift or carry.

Video-wall Model Like the nurse training model, the
Video Wall Model incorporates 7 WCL nodes (“Transport
Items”, “Assemble Left Base”, “Assemble Left Monitor
Tower”, “Assemble Right Base”, “Assemble Right Moni-
tor Tower”, “Assemble Middle Base”, “Assemble Middle
Monitor Tower”). Each WCL node has 2-5 SOL children,
which in turn have 1-3 SAL children. Every SAL node is a
parent of 2-16 AAL leaf-children. For this scenario, two
sessions were recorded on videotape (see Figure §6.16).
All sessions included four persons, two male, and two
female. The subjects were given general instructions on
how the wall needs to be put together, where the parts
and tools are stored, and where to put the wall up. All
execution details were left to the subjects. No roles or
collaboration instructions were given.

6.8.3 Evaluation of Scenarios

The same way as in the evaluation of the 3-layer model,
the evaluation of the 5-layer model started with the base-
line of a perfect recognition rate of 100% for each atomic
level activity, with labels derived from video footage. To
simulate the behavior during real-world activity recog-
nition, which is always prone to noise and errors, the
model and algorithm were evaluated with increasingly
erroneous data (in the same way as for the nurse emer-
gency scenario).
Since this work focuses on the recognition of collabora-
tion, a uniform distribution of substitution errors could
be assumed. In practice, this may make results worse
than they would be otherwise since, in real-world activ-
ity recognition, similar activities tend to get confused a
lot more than dissimilar ones. Similar ones, however, are
often close to one another in the model, lessening the im-
pact an erroneous recognition has. Since the simulation
of errors is no longer deterministic, we performed 500
runs per error rate. For the error rate, we simulated a
range of 5% to 75%, increasing in 5% steps.

6.8.4 Results

The following section provides a summary of the re-
sults of the evaluation of applying the 5-layer model onto
the different domains. Since the evaluation of this part
has been performed in collaboration with other persons,
the results are briefly summarized, and picture and table

1Equally to the evaluation of the 5l-HLGSTP model of the nurse emergency scenario, the development, and design of the 5l-HLGSTP model of
the furniture assembly and the 5l-HLGSTP model of the video wall construction was done by the author of this Dissertation. The evaluation of
both 5l-HLGSTP models was done in collaboration with the first author of [175] thus the evaluation results again only are summarized briefly and
meant to show that the method is transferable to other domains, which not necessarily have the same restrictions as the nurse emergency scenario,
and still provides reasonable results.
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Figure 6.15: Two people assembling a shelf-board, not collaborating and collaborating

Figure 6.16: Four people building a video wall. At some points they work alone, for some tasks they have to collaborate.

sources are stated in the respective captions. 1

Assembling Furniture

The analysis of the furniture data-set shows an average
accuracy of 77% with precision of approximately 70%
and a recall of 80% for correctly recognized atomic ac-
tivities. See Figure §6.17. With these numbers, the furni-
ture assembling scenario is roughly in the range of the 2-
Person collaboration results of the nurse emergency sce-
nario. Different to the other scenarios and because of the
limited tasks to perform on this scenario, only two people
were recorded assembling the shelf. Thus only collabo-
ration of a maximum of two people could be calculated.
As has been pointed out, with the nature of IKEA shelfs
being relatively easy to built, initially both actors worked
alone and only started to collaborate in the second half
of the built. This obviously limits the amount of collabo-
ration incidents.

Figure 6.17: Assembling Furniture: Recall and Precision of de-
tecting collaboration (7 possible classes) in relation to recogni-
tion error

Again, similar to precision of the nurse dataset, the re-
sults of the furniture dataset also shows robust behav-

ior with only slowly decreasing accuracy with increasing
recognition error. Overall, these results mirror the re-
sults of the nurse emergency scenario and thus strongly
indicate that the proposed method works for at least one
other domain.

Video-Wall

The analysis of the video-wall data-sets also provides
similar results. Precision is highest for multi-person col-
laboration or collaboration with a higher number of data
instances. In total as many as 9 combinations of inter-
actions were possible (e.g. person 1 and person 2 and
person 3 = P123, ..). Nevertheless, only 5 combinations
happened often enough to produce a sufficient amount
of data instances (combinations with less than 25 data
instances were ignored). Meaning for example in the 25
Minutes of building the video wall and within 7 possi-
ble classes, person 2 and person 3 collaborated less than
125 seconds, which just does not provide enough data to
reliably detect collaboration.

Figure §6.18 displays the 2-Person, 3-Person, and 4-
Person collaboration average results. Different to the
other scenarios, the video-wall construction was done by
4 persons, thus providing instances of 4-Person collabo-
rations. These 4-Person collaborations provide explicitly
well results with an average of both Precision and Recall
of over 85% for correctly recognized atomic actions. This
once more confirms the validity of the proposed method
to be used in other domains than the one it was initially
developed for. Like in both other scenarios, Precision
also only decreases slowly with increasing recognition er-
ror, which indicates a robust detection algorithm.
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Figure 6.18: Building a video-wall: recall and precision of detecting collaboration (7 classes) in relation to recognition error.

6.9 Discussion, Outlook, Conclusion

The work presented in this chapter should introduce a
new mindset in plan recognition, and as mentioned ear-
lier, only a few initial steps should really be addressed. In
this regard, the work in this chapter has some limitations
that are bound to be resolved in the future.

6.9.1 Limitations

Model Creation: The main limitation of the method
proposed lies, at first sight, in the necessity to “hand-
craft” the model. Nevertheless, as has been described
earlier, the initial baseline model was derived from (par-
tially existing) work-flows. Meaning, that if (a) work-
flow(s) of a domain is/are available, this new method
shows how to turn work-flows into semantic trees. Trees
themselves though are a common form of representa-
tion of information. For plans, they often can be gen-
erated from a variety of semi-formal descriptions, which
includes texts. Moreover, in the text-parsing, trees are a
common target structure. In this regard, the proposed
method introduces a way to generate trees out of work-
flows semi-automatically. In the future, a (semi) auto-
matic generation of models from, for example, textual
descriptions of procedures should be possible. Some cur-
rent student thesis works are addressing this problem
right now ([207]). However, the work presented in this
chapter, as was stated in the beginning, has to be seen
as the groundwork, the first necessary steps towards re-
search on automatically generated models. Models can
only be generated automatically when it is known how
these models are supposed to look like and which form
of model suites to the intended purpose.

Leveraging Ground Truth: An issue that needs to be
considered is the ambiguity of the ground truth in some
situations. As an example: during building the video
wall p1 is doing “install right base” (part of SOL “build
right video wall”) while p2 is doing “install left monitor”
(part of SOL “build left video wall”). Thus, no collab-
oration happens between p1 and p2 regarding the defi-
nition of collaboration (collaboration within the seman-
tic activity level - SAL). Then p1 stops the activity and
starts talking to p2 (who continues working on their task
in SOL “build left video wall,” while talking to p1). Af-
ter a short time, they stop talking, and p1 starts with

“install right monitor” (part of SOL “build right video
wall”). The main question in this sequence is, whether
“p1 talking to p2” is a collaboration (they are doing the
same activity “talking,” yet does this imply they are col-
laborating on a task that is part of assembling the video
wall)?
Furthermore, if this action is to be considered as a col-
laboration, which class should it be assigned to (p2 still
doing a task, p1 was in between tasks and thus not con-
tributing to the task p2 was working on). This example
mostly shows the problems of putting complex real-life
settings into formal models. In the evaluation, such cases
were ignored and not counted as collaboration. Given
their character as an exception, not a regular occurrence,
this does not significantly impact the results.

Model Scale-Ability: In terms of scale-ability, the
tree-based method comes to its limitations, as it is to
some extend scale-able only on a high level. This tree-
based method provides a mechanism to depict a scenario
or a restricted domain to its very detail. Even-though it is
generally possible to model more substantial and grow-
ing domains, due to the attention to detail, specifically in
the lower layers (AAL, SAL), such models would quickly
become very complex, requiring exponential space and
time to process. However, the tree-based methodology it-
self was first developed with regards to the training sce-
nario for nurses, and later transferred to the video wall
and furniture scenarios. This shows that, despite scale-
ability limitations, this method is generalize-able to do-
mains of any size.
Apparently, the complexity of the approach increases
exponentially with the number of people participating.
However, this is only a limitation if the number of per-
sons that really work together on atomic level activi-
ties becomes too large. The number of trees for a given
number of persons n is 2n-1, so 7 or 8 participants are
still tractable. If multiple groups collaborate both intra-
and intergroup, then a hierarchical approach can be em-
ployed to avoid a combinatorial explosion. Thus, this
chapter has developed a new way of “organizing plans”
in a way flexible enough to be able to detect collabora-
tion of multiple random agents in unstructured ad-hoc
groups. Despite the limitation of the need to handcraft
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the respective models yet, limited scale-ability and the
evaluation via video retrieved labels, it could be proven
that it is possible to detect collaboration in such ad-hoc
groups with reasonable accuracy. This was the goal of
this chapter! Mission accomplished!

6.9.2 Outlook

Nevertheless, research will never be done and finished.
Thus, there is plenty of things that can be enhanced,
adapted, improved in order to optimize the proposed
methods in the future. For a starter, working with a pa-
tient (e.g., measuring blood pressure) does not necessar-
ily mean that another nurse also measuring blood pres-
sure collaborates with the first nurse if the other nurse
measures blood pressure for another patient! The current
model, as enhanced as it is, lacks the possibility to model
specific devices or to point at specific persons. The same
is true for location. The construction site for worker A
does not necessarily mean the same construction site as
of worker B. Furthermore, regarding detecting and un-
derstanding what a person is doing or thinking, the tar-
get of gaze can have a very distinct meaning, even when
the person is not even close.
All these aspects - location, used devices, and specific
persons and also the target of view of a person - could all
be included in the model in the future. A possible way
to do this could be in form of leave-attributes. For ex-
ample, leaves or other nodes could specify which atomic
action, or even entire semantic compound activities, have
to take place at which specific location.(e.g., CPR has to
be performed at the patient). This could even go as far
as introducing a third dimension into the model to pro-
vide a measure to detail that particular actions have to
be performed in the same location (e.g., chest compres-
sions and operating AED have to be performed at the
same patient). Figure §6.19 shows how this could po-
tentially look like. Any kind of AAL-node could include
a number of attributes, like location, view target, body
posture. These in turn, can be organized with logic con-

nections (from the logic meta layer). The manner of be-
ing an attribute to an AAL-leave and not leave on its own
is indicated via the dash-dotted line between AAL-leave
and attribute. These attributes, if it makes sense, can be
linked together as a third dimension layer spanning all
the other semantic activities.

6.9.3 Conclusion

This chapter has introduced a hierarchical tree plan
based method to detect collaboration in random ad-hoc
groups with a basic low-level action of compound activi-
ties that can be identified from noisy recognition of indi-
vidual actions.

The results of the “postmortem” analysis of the pro-
posed method using video footage, provide detection of
collaboration on a high-level (world context level) in a
range of 70-90% precision and recall with up to 20%
possible error in recognized activities. On a lower level
(semantic compound activities), results still are in the
70-80% range of precision and recall, with up to 15%
possible error in recognition of the individual low-level
actions. Deriving low-level atomic actions from video
footage instead of real sensor-data and introducing ran-
domly distributed errors is a limitation of this work.
However, evaluating the proposed method goes beyond
the boundaries of this dissertation and thus will be a part
of future work.

Nevertheless, despite any limitations (discussed
above), the results of this chapter are a strong indication
that the proposed methods of modeling and detecting
collaboration, are a practical approach for determining
unscripted dynamic collaboration in complex tasks. The
work in this chapter was meant to kick-off a shift and
further developments in research from today’s standard
of context-aware assistive systems that support individ-
uals, to a new generation of “group aware” computing
that supports groups of people working together more
efficiently.
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Figure 6.19: Possible adaptations to tree model
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Conclusion and Outlook
What has been Achieved in this Work

What still Goes Beyond

Between the “Lightproject” from which the data sets for the detection of the condition and well-being of
dementia patients were derived, and “iGroups” and “SmartNurse,” the sponsor projects of the CPR-watch
and the recognition of cooperation within groups almost a decade has passed. In this decade a lot has
changed in the world of pervasive computing, and many devices have been developed. Things that
seemed impossible ten years ago, such as equipping patients in a psychiatric clinic with motion sensors,
suddenly became possible with the development of smart devices. Especially with psychiatric patients,
the development of smart-phones has radically changed the situation.
The idea of analyzing movement patterns of bipolar patients with sensors to determine their condition
is more than 10 years old. The idea itself was already well received at that time. Back then, however,
nobody wanted to burden psychiatric patients with carrying a self-made sensor. With the introduction of
the smart-phone, which already contains the necessary sensors, this was no longer a problem, since most
patients would already own a smart-phone anyway.

However, since the beginning of the development of smart-phones and other smart-devices, new is-
sues have formed. Even before “Snowden,” many people argued that owning a smart-phone would
make us “monitorable” and smartphones would allow respective bodies to spy on us. This direction
is a disadvantage of recent developments that actually should simplify the needs of our "mobile life".
Certainly, there is the possibility of being monitored without knowing it, particularly for those who do not
understand the mechanisms of said technologies. Ensuring people’s privacy though requires policymakers
and legislation to impose appropriate and modest mobile communication rules.
This is beyond question. But it also lies in the responsibility of the researcher who follows new ideas and
has an urge to develop new methods, to understand how these new methods could be abused and how
this abuse could be prevented. Thus, while I was working on several studies with pervasive sensors, I was
always aware that much of my work could be seen in the light of “espionage of humans” rather than an
opportunity to gain “valuable insight.” Therefore, at all stages of my work and in all the studies I have
done in the health sector, I have, if possible, always tried to eliminate those aspects that could be abused
(e.g., by anonymizing sensor readings) and to make people aware of why particular sensor readings were
recorded and for what reason they were necessary. In addition, I have always tried to explain to the
participants what measures have been taken to ensure that sensitive data is protected and handled with
care. Nevertheless, it cannot be stressed enough that politics have to find a balance between guaranteeing
their people’s privacy and protection, while at the same time not by over-regulating, restrict and limit the
potential, all these new devices could bring with them.

Modern smart-devices though, were not developed to spy on people in the first place, but to make
our lives easier. The smart-phone (and all other pervasive smart-device) with its features of being “worn”
on our body or really close to it, and of being connected to the world of the Internet, brings endless features
that can make our lives more comfortable. To go back to the example this thesis started with; it has never
been so easy to track our fitness! Moreover, it has never been so easy to learn or retrieve information and
check if statements of people were correct. And this is due to our smart-phone.
Furthermore, it has never been so easy to change bad habits as smart-devices can prompt us based on
context to get up and move (like fitness-tracker or equivalent apps on the smart-watches do), or provide
the safety net we need to feel comfortable enough to perform CPR even though we have never done it
before. The list of examples can go on an on.
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Thus, researching in these days and particularly in this
field is immensely exciting. Nearly every year, with new
devices and new functionalities, new possibilities open
up, which allow addressing new and old requirements
and questions of our lives. Many of these technologi-
cal developments mentioned above happened over the
last decade. Even though there have been Palms and

Handhelds in the early 2000s, the success-story of smart-
devices started with the development of the iPhone and
Google’s decision to jump in on this trend. With the pos-
sibilities, these new technologies brought with them, also
this dissertation evolved over the years with the new aris-
ing opportunities and with new gadget the overall pic-
ture of this thesis was shaped.

7.1 What has been Achieved - Discussion
This dissertation aimed to develop methods for using

sensor systems to support cognitive status assessments
and to support people in psychologically stressful situa-
tions. The underlying research in this dissertation, there-
fore, began by asking whether sensor data from our ubiq-
uitous environment would contain relevant information
about our cognitive state and behavior.

Therefore, the work began by analyzing the indoor lo-
cation data of dementia patients and retrieving infor-
mation from those data-sets to derive the patient’s con-
dition. In this way, methods for monitoring the general
well-being and progression of dementia could be devel-
oped, which relies solely on simple, unobtrusive indoor
location sensors. The accuracy achieved was over 90%
correct classifications. In the following chapters, this
work aimed to derive the mental state in patients with
bipolar disorder (70-80% accuracy) and determine the
onset of state changes (95% accuracy) by only evaluat-
ing the readings from smart-phone sensors. This analy-
sis went so far that the results of this newly developed
condition assessment based on sensors could be com-
pared with the standards currently used in mental health
care. Besides, this analysis could verify known but
never-evaluated deficiencies of the standard method
currently used in mental care. Furthermore, it was pos-
sible to demonstrate the clear superiority of the newly
developed () sensor-based method.

In the further course of this work, methods for teaching
skills and supporting cognitive learning were presented
and evaluated. Two studies demonstrated that people
with the right instant assistants can acquire instant
skills - the first study showed improved effective CPR
performance by more than 50% when using instant feed-
back devices. In the second study, people could achieve
significant improvements in the same way with the use
of appropriate assistant devices in the training of CPR.
On average, when training with the assistant device, the
ability to correctly perform CPR without the aid was im-
proved by more than 20%.

The final part of this work then focused on recogniz-
ing human interaction on an invisible level. In addi-
tion, a new method was introduced that can be used to
deduce when people work together in different ad-hoc
environments, without resorting to well-known interac-
tion mechanisms (eg, talking, etc.). This type of research
is just at its beginning, and the corresponding chapter

in this thesis gives only a first glimpse of what possibly
is there to come. The "post-mortem" evaluation of the
first and simplest method using data extracted from real-
world video footage showed high accuracy (over 90%
precision and recall) for various combinations of col-
laboration, and yet, with an introduced recognition error
of up to 20 % a recognition inaccuracy of the collabora-
tion recognition still works (with precision of 70 % and
90% recall).

This summary overview makes clear that even though
this thesis started with an initial research-question, the
work over the years increased in the complexity of its ob-
jectives from chapter to chapter. Furthermore, also the
underlying fundamental research question evolved with
the progression of this work.

7.1.1 Level of Complexity

In the context of the presented work, the first and old-
est chapter proposes the most simple complexity, by also
using the most simple sensor system throughout the the-
sis. Only by using one stationary sensor-system deployed
in a static and well-defined space, state of (dementia)
patients has been determined. Thus, the general strong
point and the particular value of this first chapter neither
can be found in its complex set-up or even in the sur-
prisingly high recognition accuracy. The actual strong
point is the real-live data set collected in a long-term
(almost one year long) daily data recording and the
strategies developed to leverage minimally available
ground-truth, which both are difficult to obtain.

In comparison to the first chapter, the second chap-
ter means a notable increase in the complexity of sen-
sors used and the study set-up in general. It deals not
only with a variety of sensor-modalities, but it also was
deployed in an open area in the everyday life of people.
Thus, it, even more, comes with minimal possibilities to
gather ground-truth. In this regard, the general strong
point and the particular value of the work in this chap-
ter are to have been able to achieve reasonable results
with an application deployed in the real everyday life
of mentally ill people, regardless of all possible chal-
lenges, drawbacks, and data losses imposed by the real-
life deployment.
However, the particular highlight of this work is that,
despite all these complexities, it has been possible to
develop a high-performance algorithm to detect actual
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changes in mental states of patients, while meeting the
limitations and challenges of real-world set-up. This, in
general means that the change detection for bipolar pa-
tients is actually suitable for everyday use and thus goes
beyond mere research!

From chapters 2 until 4, the complexity of this work
increased regarding sensor-setups and space. In chapter
5, on the other hand, the complexity of the topic mor-
phed its angle. It changed from retrieving information
from (a varying number of) sensors into using sensors
(or the respective smart-device) for providing informa-
tion. The specific complexity here was, and this might
sound contradictory at first, to keep it simple. Because
an assistant system that can work anytime and instantly,
ideally has to rely only on one sensor (device) that is
present unobtrusively at all times. Furthermore, since
the goal was to provide an instant CPR assistant, the way
information is provided, has to be tangible at one glance
without long learning periods. Even though the studies
with the dementia patients and the bipolar patients were
more complex regarding time and effort to gather the re-
quired data, the sensors-systems to collect the data them-
selves were straightforward. For the CPR-application ex-
tensively more thoughts had to go into the design and
the way a rather complex motion as performing CPR
with all its relevant parameters (a correct combination
of speed and depth) including instructions could be dis-
played on one small screen (watch) in a way the user has
a chance to grasp it instantly.

In chapter 6, the complexity once again changed its di-
rection. As until then, the goal was to detect the cognitive
state of or support one person, in chapter 6 the goal be-
came to understand the cognitive behavior of a group of
people and not of a single person. Thus the complexity
is more subtle. After a series of successful attempts to
understand what a single person does, it seemed much
more interesting to investigate what a group of people
is doing. Building on the results of all previous chapters,
it was feasible to assume that this is possible. The real
challenge in this chapter was to develop methods, rely-
ing on the assumption to know what every single person
is doing, to understand when and how multiple persons
interact and collaborate, meaning working together to
reach a common goal and do this without relying on the
standard interaction cues. Moreover, the base scenario
predetermined that the group of people was ad-hoc with-
out having anything pre-defined. Thus the question here
was: "How can we, by knowing what every single person
is doing, determine if multiple persons are working to-
gether as a group or if single persons are working alone?"
In comparison to all other chapters before, this means
going a step further and turn the angle, because first and
foremost it was essential to understand and define how
collaboration of two or more persons looks like while
they are performing a task. At this point, it is not about
to know what a person is doing (which has been dealt
with in the previous chapters) but to use the informa-

tion of what a person is doing to determine which parts
of this person’s activities exactly are parts of a joint-
collaboration. Of course, this is not a trivial question,
and the answer is not simple or such that it could be sat-
isfactorily addressed in a single chapter of a paper. On
the contrary, this thesis should mark a starting point in
this regard, which in the future will stimulate compre-
hensive developments.

7.1.2 Research Question

In the course of this doctoral thesis, not only the com-
plexity of the work has increased and developed, but in
particular, the research question. As mentioned earlier,
the fact that the research question could evolve was pri-
marily due to the results achieved, especially at the be-
ginning of this work. However, also the development of
penetrating devices in the last years had a distinct effect
on what was ultimately possible:
Particularly at the beginning and over the first half of this
work, the initial research question remained whether it
would be possible to retrieve information about rele-
vant aspects of our cognitive state from everyday activ-
ity sensor data. This question in itself, but especially in
the period in which I tried to answer it, could have filled
a whole dissertation. In today’s society, this question is
of particular relevance. Once the necessary steps were
taken to evaluate these aspects, the hypothesis on this
question (Hypothesis 1 of this dissertation) could be
confirmed.

Based on the positive outcome of this first question, the
second hypothesis went so far as to state that it is even
possible to derive complex cognitive states and to pre-
dict or recognize pathological cognitive changes from in-
formation extracted from pervasive sensor data. Again,
several chapters of this work have shown that this hy-
pothesis (Hypothesis 2) can be approved.
However, the development of new devices (e.g., smart-
watches) and the confirmation of Hypotheses 1 and 2
have further fueled the research question. Thus, the third
hypothesis changes the point of view on this topic and
raises the question of whether given sensor systems can
determine not only the cognitive state but also whether
sensors (or suitable devices including such sensors)
are capable of being a positive support for cognitive
behavior.

A study by Lally et al. [208] has shown that it takes be-
tween 18 and 254 days (avg. 66 days) to form or change
a habit. This casts a light on how difficult it can be
to change bad habits. Thus the possibilities that have
opened with the usage of smart-devices that accompany
us every day, to help to influence our cognitive behavior
to the better is promising, and it was possible to show
that smart-devices actually can have a positive influence.
Thus, at the end of this dissertation, also its third hy-
pothesis could be affirmed.
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7.2 What is Missing, What will Come Next - Limitations and Outlook
The beauty of our world is that it should change and

evolve. Likewise, research will never be over. As long as
we live, there will always be something to improve, there
will always be a new research question, and a disserta-
tion will never be able to fully and satisfactorily exploit
a research topic. So, where does this thesis have limita-
tions in terms of our cognitive state and our mental well-
being, what could not be addressed, and what will - what
should - come next?

The theme of this work is not self-contained. On the
contrary, it covers a wide range of cognitive aspects and
sometimes only scratches the surface. All the different
parts (chapters) of this dissertation form an independent
topic in their own right and could fill their own disser-
tation with further work. Thus it would be possible in
all chapters to go deeper and to answer further ques-
tions. Many of these have been listed in the “Discus-
sion” or “Outlook” section of the corresponding chapters.
To summarize this dissertation nevertheless, an overview
should provide where the limits of this dissertation are
and what can be expected in the future.

In the indoor-location based assessment of the well-
being of dementia, the main limitation of the study was
the rough level of available ground-truth. Therefore, in
terms of what would be possible with a more detailed
ground-truth, there are still some questions left. For ex-
ample, with a more sufficient ground-truth would it be
possible to determine state and progress on a daily ba-
sis and develop algorithms that would allow us to deter-
mine when the condition of a dementia patient is about
to begin to change? In addition, the on-ward approach to
maieutic care is becoming increasingly popular. It’s liv-
ing conditions resemble a typical family home in which
an older person would live with relatives. Therefore,
the results of the study are expected to be transferable
to private living environments. This means that such
systems could already be installed in private homes of
(early state) dementia patients, leaving them relatively
independent and able to remain in their familiar envi-
ronment. However, this still needs to be confirmed.

Concerning the patients with affective disorders, meth-
ods were developed and evaluated in this work to ex-
tract information relevant for the determination of the
condition and the change of state. The results of the
"postmortem" assessment of state change detection are
impressive. Thus the very plausible theory is that early
detection of a state change could help treat affective
disorders and keep (negative and sometimes devastat-
ing) effects in check. However, this theory has not yet
been evaluated, since this dissertation could only provide
a postmortem evaluation of data. Such an assessment
would require a multi-year, blinded, controlled study
that clearly goes beyond the limits of any chapter in a
dissertation. Since the topic of affective disorders (de-
pression is part of affective disorder) is of particular im-

portance in our society, such studies will be conducted in
one way or another in the near future.

Although Chapters 2 to 4 contain relatively lengthy
studies to collect the data sets, all these topics gener-
ally lack long-term studies spanning several years. Such
long-term studies would probably be able to provide
more comprehensive cognitive knowledge about disor-
ders. Nevertheless, after the ground-work of these chap-
ters (mainly Chapters 3 and 4) had been completed and
published, research into depression and mood disorders
began in various parts of the world. This is reflected by
the number of citations work in this chapters have re-
ceived to-date [91] (181 and counting - 05/25/19), [92]
(78 - 05/25/19), [209] (115 - 05/25/19). Thus, even after
completing this dissertation, many open research ques-
tions will be dealt with in these working groups.

In the same way as the application to detect the early
onset of state change, the CPR-assistant application has
practical relevance and has the potential of becoming a
real-world product in a variety of settings. Possible uses
are ranging from a training-assistant to an actual CPR-
support device for any paramedic unity. These, of course,
are more business related applications. Research-wise,
the CPR-assistant offers umpteen other options. Two of
them quickly come to mind.
First of all, there is “training-support systems”. In this
dissertation, it was demonstrated that the CPR-assistant
could help to quick and effective learning. The ques-
tion remaining is, how long the effects last, or how many
training sessions with the assistant would be required to
make the training effect permanent. This dissertation
could only evaluate the immediate effect of training with
the assistant-devices in comparison to standard teaching
but did not evaluate how long the effects would last. This
limitation does not take away from the value of the re-
sults, because it entails information that actually is re-
quired to understand how these assistant devices could
be deployed in the future.

Furthermore, even leaving the area around CPR, many
other scenarios would benefit from instant feedback as-
sistants. In the future, teaching/training assistants will
become a whole branch of research dealing with ques-
tions such as: which scenarios could benefit from instant
training assistants? In which areas could smart devices
help people learn more effectively? What should train-
ing assistants look like? These questions are already be-
ing worked on by different researchers (e.g., [150, 151],
etc).
Additionally, as was mentioned in Chapter 5, the fact
that the CPR-watch app can provide people with in-
stant skills should be exploited. A possible applica-
tion that comes to mind is the co-operation with other
emergency devices. For example, together with the pub-
licly available AED devices, an emergency system for
inexperienced people could be developed. Such a sys-
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tem could leverage the ability of the CPR-watch to un-
derstand whether CPR is performed effectively, together
with the AED’s ability to understand if the patient lives.
This would contribute to making sure all necessary emer-
gency activities are being performed as they should. Even
though again this seems to be a professional product,
even for such a combined CPR-Watch/AED system, re-
search would be challenged to understand how such sys-
tems would need to be built, in order to be effective and
how such a system could change the emergency behavior
of laypeople. Very positively, this could seriously con-
tribute to many more survivors of OHCA in the future.

The outcome of the final chapter could be summarized
as a new way of “organizing plans” flexible enough to be
able to detect collaboration of multiple random agents
in unstructured ad-hoc groups. As has been pointed out
often enough, this work was the first step, and there is
plenty of room for improvement. The limitations of the
proposed method are discussed in detail in Chapter 6.
In addition, the requirement to hand-craft the model for
each domain or the limited scale-ability should be con-
sidered. Since the results of the method are promising
enough, it seems to be worth to invest some time to de-
velop mechanisms that will allow crafting the model au-
tomatically, or in a first step at least semi-automatically.
For example, this could be done by extracting and logi-
cally structuring relevant text passages or sentences out
of domain descriptions. The other major limitation, how-

ever, is that the method has not yet been evaluated with
sensor data, but with data retrieved from video material.
Since various chapters in this dissertation have demon-
strated (and in many other activity recognition publica-
tions [199], [59], [210], [22], just to name a few) that data
based on atomic actions can be expected to be available in
one way or another, the focus has been on the evaluation
of the model and the respective algorithms for the recog-
nition of the collaboration itself, irrespective of where the
data used would come from.
Another step towards systems that can assess the subtle
aspects of human cognitive participation in group activ-
ities and cognitive collaboration among individuals is to
achieve similar results using basic atomic-action-data ob-
tained from real-world sensor readings. However, this
implies another aspect, since the activity detection (even
if it works) is continually looking for ways to increase
the recognition accuracy. Here, the tree-based model of
a domain might come into play, since from a detected
action, the model could tell the classifier which actions
would be the most likely next actions to take. Thus, this
model would help to increase the recognition accuracy.
However, if such collaboration of the model and recog-
nition classifier is to work in a loop of sensor data rather
than video captions, the model itself must be further im-
proved. For example, the use of object identifiers, loca-
tion information, voice interaction information, and/or
posture data that are essential to specific atomic actions
could be included.

7.3 On a Final Note
Pervasive and Wearable Computing in health care is a

vivid and exciting field. The opportunities, technolog-
ical developments bring us today (2019), will allow us
to develop many more applications in the future that
will help people to manage their health and allow per-
sonalized health care. Particular, in the last five years,
the deployment of wearables has even reached mental
health. This research will open up new unprecedented
opportunities in mental care and management of cogni-
tive health. With this dissertation, in particular topics,
I hope I have contributed to lay a foundation for much
future research.

Nevertheless, as has been mentioned earlier, with
all these new opportunities and developments, as re-
searchers, we have also a responsibility. Today we are not
only living in a world filled with technology but also in a
world where people feel uneasy because they are unable
to keep track of developments and what they might mean
for them personally. Science and research are called to
take these fears seriously. In all excitement to follow a
new idea and to develop a new application, we must not
forget that all technology is supposed to serve humanity
and not vice versa. We should not allow respective bod-
ies to abuse our developments for espionage on people or
allow to misinterpret our findings for lying to people. On

the other hand, we are supposed to help people learn how
to understand science and interpret statistics. Because,
since many people lack the understanding of what sci-
ence and statistics really mean, they often are either very
skeptical or blindly following. Science or research, never-
theless, are neither the enemies nor the holy grail. Essen-
tially, science paired with prudence and responsibility is,
what it is - an opportunity for humanity to evolve!

In this regard, I have done some groundwork for devel-
oping systems that should help people with dementia
to lead an autonomous life as long as they possibly can.
This is an issue that engages many people.

With the help of colleagues and partners from men-
tal care and the trust of psychiatric patients, I developed
methods for mentally affected people to understand if
and when their conditions change for the worse and
thus provided them with the possibility to act in time.
With the rise of mental disorders, this denotes an essen-
tial and required support.

Thanks to the invaluable support of nurse teachers and
nursing students, I was able to develop mechanisms that
will allow untrained laypeople in the future to provide
adequate emergency support and thus save lives. More-
over, these mechanisms will help emergency care stu-
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dents to gain the necessary skills faster and more straight
forward. Emergency care and the lack of skills in many
laypeople have always been a relevant topic.

Eventually, I was also able, in this dissertation, to kick
off a new direction of work in analyzing group behavior.
Developing this initial methodology based on an emer-
gency care training scenario was not a random pick. Par-
ticularly in emergency training but also in other training
environments, teachers are called to understand which of
their students can proceed and who needs more support.
Thus, nurse teachers have often told us that they would
love to have objective support in evaluating how and if

the students collaborate and interact during a training
session. The method to detect unscripted collaboration
in ad-hoc groups is the very first step on the road, which
eventually should help trainers to understand better
their students’ needs.

The variety of projects covered in this dissertation
shows that supporting cognitive state and behavioral
analysis today is a wide field of many needs. I hope
that in this dissertation I have never lost sight of the goal
of serving humanity and improving our lives, but that I
have also helped to solve many of the problems that still
complicate health and especially mental care.
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Appendix

Appendix to Chapter II - Indoor-Location:

Patient description

• 1010: Inhabitant is female with an MMS value of 12 (maxi-
mum 30). The overall performance differs. Inhabitant often
seems to be tired. Gets up rather late. Walking abilities are
slower than normal but existent. This inhabitant normally
goes directly from her room to a table in the kitchen area,
sits there and goes straight back to the room again when she
wants. Zone in which she moves is small. In some phases
she likes to sit in the company of inhabitant 1031. It is not
clear if this preference is returned by 1031. Partially partic-
ipates in activities.

• 1031: Female inhabitant with an MMS value of 15.5. 1031
is handicapped in her walking abilities and uses a walking
frame. Inhabitant has very steady habits. Sits the whole
day at the same place in the kitchen area (or on the terrace
in summer). The movement zone is very small. Does not
want to return back to room before going to bed. Partially
participates in activities (especially painting and handicraft
work) but normally prefers to sit and watch independent
of personal state. Sometimes inhabitant seems to sleep but
normally responds immediately. Does not express state by
activity and movement.

• 1032: Female with an MMS value of 0, high degree of de-
mentia. Inhabitant likes to walk around and talk but nor-
mally without sense or coherence. Her movement zone is
the whole ward, including the rooms of the other inhabi-
tants. Likes to sing and participate in activities. Inhabitant
is very curious and disassembles things. Seems to express
state by activity and movement.

• 1041: Female. The MMS value is 11. Normally feels the
necessity to wander around and touch things but does not
want to be touched or held. Often lays Tag aside. Often

seems to be helpless like a little child. It is not clearly dis-
tinguishable whether she expresses her state by movement.
State seems to be best when she is comparatively quiet and
does not feel the necessity to walk around.

• 1060: Female with an MMS value of 16.5. Seems to be par-
tially insecure and seems to realize her disabilities. Inhabi-
tant seems to notice her surroundings and is oriented. Uses
a walking stick but is mobile. Inhabitant undergoes phases
where she withdraws to her room (which seem to be con-
nected to her realization of her disabilities). In other phases
she is social and participates in activities. It is hard to dis-
tinguish whether there is a connection of movement and
state, except for time of stay in the social areas like living
room and kitchen.

• 1090: Male inhabitant with an MMS value of 13. Often dis-
oriented without sense of time. Likes to eat. The inhabitant
is mobile and walks without aids. His performance is alter-
nating. On some days he likes to stay in his room. On other
days he remains in the social areas. Partially wears Tag and
partially opposed to.

Questionnaire

The following table summarizes the questions ask to the
nurses at the end of the one year study, and provides the sum-
marized averages for all possible reply-categories and the pos-
itive and negative replies. The values in this table are in % ex-
cept for questions where explicitly was asked to state concrete
numbers, which are averaged in the Mean column. Note that
the questions listed are in abbreviated form to save space.

Possible Answer: No Hardly Sum A little/ Yes Sum
Questions: % % negative % mostly % % positive % Mean

About the study deployment

Additional burden for the work/extra work

Was there any? 22 44 66 11 22 33

Min/day 15

Visible installations (wires, wall-mounted sensors, . . . )

Annoying? 12.5 25 37.5 25 37.5 62.5

Got used to it? 0 0 0 22 78 100

Disturbed work? 22 78 100 0 0 0

Sensor tags
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Had impact on residents? 12.5 37.5 50 50 0 50

Initially or long-term (Initially) 40 (Long-term) 60

Equally for all? 62.5 12.5 75 25 0 25

Had impact on personnel? 12.5 12.5 25 62.5 12.5 75

Impact personally? 22 22 44 22 33 56

Convincing residents to wear a sensor tag
Problems to convince? 11 0 11 78 11 89

Did they get used to it? 0 22 22 33 55 78
How may did wear tags? 9.38

How may did not wear? 2.2

Did sensor maintaining personnel

Disturb your work? 33 56 89 11 0 11

Disturb the residents? 44.5 44.5 89 0 11 11

Which mode was more annoying additional observations (1) or sensors (2)?

Personally? Observation 57 Sensors 43

For residents Observation 0 Sensors 100

For visitors? Observation 100 Sensors 0

About Using Technology and study in general

Is it possible that the study contributes to enhance quality of life of dementia patients?

0 6.25 6.25 93.75 0 93.75

Do you think, it is possible to draw useful conclusions out of sensor-based monitoring

0 0 0 78 22 100

Is it possible that deployment of technology can relieve your work?

11 11 22 67 11 78

Possible Answer: No Hardly Sum A little/ Yes Sum
Questions: % % negative % mostly % % positive % Mean

Table 1: Questionnaire handed out to the nurses working in the ward during the study period

Appendix to Chapter II - Bipolar Patients:

Study Participants

Overall a total of 12 bipolar patients participated in the
data collection trial over the period from November 2012
to August 2013. Some patients dropped out early (p0202
and p0602), some (p0502 and p0802) even extended the
trial. The evolution of the state of the individual patients
during the trial is shown in figure §3.5 in the respective
chapter. Note though, that patients p0202 and p0402
show no change of state during the entire trial period
(with patient 0202 dropping out of the data trial early).
As a consequence they were not considered in the evalu-
ations. Thus eventually only 10 participants are consid-
ered in this study. Key information about state and pro-
gression of condition of these 10 patients is summarized
below:

• P0101: the patient is female, age around 50 and was
diagnosed as manic in different degrees almost until
the end of the study. Despite, the patient herself be-
lieved to be either depressive.

• P0201: the patient is female, age around 40 and
was diagnosed slightly depressive, changed to nor-
mal state during the first third of the study. The pa-
tient stayed in normal state until the last month and
dropped to very severely depressive at the end of the
study.

• P0102: the patient is female with age around 40.
She was diagnosed depressive at the beginning of
the study, improved to normal state during the first
month, yet dropped back to severely depressive after
a few weeks.

• P0302: the patient, again female, age around 50 was
diagnosed with very severe depression at the begin-
ning of the study. Over the course of 1.5 months this
patient improved step-wise to depression, slight de-
pression and eventually to normal state at the end
of the first half of the study. The patient stayed in
normal state throughout the entire second half of the
study.

• P0502: The patient is female with age around 45.
The patient entered the study, almost normal, right
after a longer closed-ward stay due to mania. The pa-
tient was discharged 2 weeks after the beginning of
the study and, being back home after a several-month
stay at the hospital, dropped instantly to a very severe
depressive state. This made it impossible to perform
the t2-measurement-point, as the patient was unable
to come to the hospital. During the second half of
the study the patient stepwise improved to depres-
sive, slight depressive and finally normal state at the
end of the study.

• P0602: The patient was female at an age around 55.
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She was diagnosed almost normal (very slight depres-
sive) at the beginning, worsened slightly after two
weeks, yet improved to normal state at the end of the
first half of the study, where the patient quited her
participation.

• P0702: the patient was female at an age around
25. Mainly, the patient was diagnosed with very se-
vere depression, yet the scale tests show partially
manic drive in her behavior. During the study the
patient underwent changes mainly within the depres-
sive state, almost reaching normal state at the middle
of the study, yet dropping back again to depression.

• P0802: This patient was the only male participant.
He was at an age around 45 and was diagnosed with
very severe depression. Within the first 3 weeks the
patient improved to slight depressive state and even-
tually normal state right after. He stayed in normal
state until the end of the study.

• P0902: Another female patient, at an age around 30.
When this patient entered the study she was already
in normal state where she stayed throughout the first
third of the study, then dropped to depressive, im-

proved again to slight depression and bounced back
to depressive at the end of the study.

• P1002: this patient was female, age around 25. She
was diagnosed manic at the beginning of the study,
yet dropped to slight depression and further to de-
pression at the end of the study.

Classification Results

The following table provides precision and recall re-
sults for each patient within each class for Location, Ac-
celeration and the Fusion of both. A close look at the
individual precision/recall values in reveals the reason
why location performs best (see also results in respective
chapter). Since there is not enough data the location clas-
sifier does not consider medium depression for patient
p0502 for example, which is very poorly recognized by
the other classifiers. Overall the fused approach has the
advantage of considering more data points than either ac-
celeration or location alone since, it considers data points
covered by either modality.

Patient Recall Precision
(N per state) Fusion Location Acceler. Fusion Location Acceler.

p0101 % %
normal (32/3/32) 84 2 74 75 1 88

slightly manic (23/20/27) 55 80 75 65 90 59
med.manic (12/3/12) 67 67 80 67 63 79

p0102 % %
depressive (12/10/12) 94 84 81 86 86 83

normal (26/26/26) 62 77 55 80 73 51

p0201 % %
depressive (33/21/33) 25 75 40 50 48 41

normal (13/13/13) 89 81 76 72 86 75

p0302 % %
depressive (18/11/18) 39 94 42 100 64 32

normal (42/40/42) 100 92 73 80 99 80

p0502 % %
sever depressive (14/5/14) 50 50 55 58 74 62

depressive (14/0/14) 35 0 56 71 0 39
normal (30/23/30) 69 82 81 85 57 87

p0602 % %
slightly depressive (13/12/11) 85 58 57 65 63 69

normal (22/19/10) 73 78 61 89 74 47

p0702 % %
sever depressive (34/24/24) 91 82 82 80 94 85
slightly depressive (8/7/8 0 21 22 0 7 18

p0802 % %
depressive (16/7/16) 44 70 58 64 57 49
normal (46/30/46) 91 93 84 82 96 88

p0902 % %
depressive (26/26/26) 92 83 73 83 82 76

normal (15/15/15) 67 70 57 83 71 53

p1002 % %
depressive (29/11/29) 86 68 75 74 91 83

slightly manic (11/9/11) 18 87 32 33 57 22

Table 2: Precision / recall values for the different states. Most patients experienced 2, some 3 different states during the trials.

Appendix to Chapter IV - SensorVSSelf:
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Correlation of Features

In Chapter 5 only an overview of features was given. The following table shows more features for Location, Accler-
ation, and Phone-calls with correlation and t-value for each patient.

Location Acceleration Phonecalls

patients correlation t-value doF correlation t-value doF correlation t-value doF

Feature distance traveled High/low number of phone calls

p0101 -0.604 -2.393 12 -0.05 -0.26 12 - - -
p0201 0.061 0.312 28 0.496 2.609 28 0.012 -0.164 27
p0102 0.737 5.118 24 0.428 2.341 25 0.367 1.978 32
p0302 -0.339 -2.247 41 0.272 2.006 45 0.248 1.642 47
p0502 0.599 3.349 22 -0.732 -7.198 31 - - -
p0602 0.602 3.369 22 -0.923 -7.147 14 -0.717 -5.034 25
p0702 -0.505 -2.026 14 -0.215 -0.692 21 -0.505 -2.05 21
p0802 -0.662 -4.324 26 0.249 1.792 47 - - -
p0902 0.123 0.679 32 0.468 2.778 28 -0.423 -2.202 29
p1002 -0.821 -2.492 5 -0.126 -0.891 15 0.765 3.353 14

Feature number of clusters frequency variance number of unique numbers

p0101 0.778 3.912 12 0.308 -3.075 12 - - -
p0201 0.662 4.509 28 0.554 7.291 28 0.106 0.408 27
p0102 0.878 8.6 24 0.248 -2.268 25 0.476 2.815 32
p0302 0.289 1.887 41 0.349 1.675 45 0.561 4.431 47
p0502 -0.201 -0.919 22 0.131 -0.129 31 - - -
p0602 0.145 0.653 22 -0.85 -5.046 14 -0.635 -4.342 25
p0702 -0.802 -4.656 14 0.764 3.586 21 -0.282 -0.708 21
p0802 0.338 1.761 26 0.26 -4.917 47 - - -
p0902 -0.227 -1.274 32 0.307 2.83 28 -0.362 -1.666 29
p1002 -0.913 -3.864 5 -0.805 -6.337 15 0.754 3.179 14

Feature percentage of stay outdoors rms variance average length

p0101 -0.579 -2.248 12 -0.302 -1.744 12 - - -
p0201 0.505 2.987 28 0.534 2.817 28 -0.375 -1.347 27
p0102 0.887 9.003 24 -0.848 -7.083 25 -0.47 -2.694 32
p0302 0.412 2.82 41 -0.721 -6.089 45 -0.102 -0.186 47
p0502 -0.187 -0.852 22 0.668 5.469 31 - - -
p0602 -0.259 -1.199 22 -0.374 -1.097 14 -0.442 -2.572 25
p0702 -0.748 -3.898 14 -0.068 -0.483 21 0.687 3.998 21
p0802 -0.354 -1.852 26 -0.755 -7.483 47 - - -
p0902 -0.545 -3.558 32 0.073 0.34 28 0.225 0.993 29
p1002 0.117 0.203 5 0.416 1.754 15 0.672 3.482 14

90% C |t| >= 1.782 |t| >= 1.782 |t| >= 1.76

Table 3: Correlation results for different features per participant.

Appendix to Chapter V - CPR Training:

The following two tables summarize the performance of each participant (student, novice) at the beginning, after
training/teaching and at the end after teaching/training.

teaching first training first
start after teaching after training start after training after teaching

average average average average average average
N 29.7 29 27 28.7 29 29

depth 981.7 932.3 532.1 883 977.1 944.2
speed 126 cpm 125.4 cpm 101.7 cpm 135.3 cpm 142.2 cpm 134.8 cpm

too shallow 2.2 % 48.3 % 90.7 % 65.5 % 3.4 % 64.4 %
too fast 61.5 % 55.2 % 2.7 % 100 % 100 % 100 %
too slow 3.4 % 0 % 54.8 % 0 % 0 % 0 %

ideal 32.9 % 12.1 % 8 % 0 % 0 % 0 %
N 28.7 29.3 29.3 24.7 27.7 30.3

depth 737.2 555.2 975.2 971 960.9 970.1
speed 114 cpm 94.5 cpm 107.7 cpm 133.4 cpm 143.7 cpm 133.4 cpm

too shallow 100 % 100 % 0 % 11.8 % 32.9 % 6.6 %
too fast 17.6 % 0 % 0 % 97.7 % 100 % 96.7 %
too slow 2.3 % 75.9 % 1.2 % 2.3 % 0 % 0 %

ideal 0 % 0 % 98.8 % 0 % 0 % 2.2 %
N 25 29 29 30 28.7 27.7

depth 953.1 981.9 986 332.4 934.3 953.3
speed 124.5 cpm 120.9 cpm 118.6 cpm 120.7 cpm 104.5 cpm 110.3 cpm

too shallow 3.4 % 0 % 0 % 100 % 54 % 27.7 %
too fast 52.2 % 47.1 % 20.7 % 12.3 % 0 % 0 %
too slow 2.8 % 0 % 0 % 86.7 % 0 % 3.6 %

ideal 43.9 % 52.9 % 79.3 % 0 % 46 % 68.6 %
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N 28.3 28.3 21 29.3 29.3 29.3
depth 965.3 750.4 646 967.3 978.2 974.8
speed 96.1 cpm 113.9 cpm 102.3 cpm 126.4 cpm 128.6 cpm 113.4 cpm

too shallow 19 % 100 % 100 % 1.1 % 0 % 0 %
too fast 0 % 23.1 % 0 % 65.6 % 81.6 % 3.2 %
too slow 66.3 % 10.9 % 19.4 % 1.1 % 1.1 % 1.1 %

ideal 33.7 % 0 % 0 % 31 % 17.2 % 95.7 %
N 27.7 27.7 30 29 28.7 29.3

depth 943.8 971.5 976.3 960.2 951 928.1
speed 140.1 cpm 136.5 cpm 120.6 cpm 124.3 cpm 110.6 cpm 102.1 cpm

too shallow 66.7 % 0 % 1.6 % 0 % 0 % 76.7 %
too fast 96.4 % 100 % 1.1 % 64.4 % 1.2 % 0 %
too slow 3.6 % 0 % 2.2 % 1.1 % 0 % 13.3 %

ideal 0 % 0 % 96.7 % 34.5 % 98.8 % 21.1 %
N 29.3 30 28.7 27.3 29 30

depth 958.5 978.9 957.4 942 984.8 967.3
speed 122.7 cpm 124 cpm 127.5 cpm 128.2 cpm 122.7 cpm 115.1 cpm

too shallow 6.9 % 13.3 % 10.3 % 46.7 % 0 % 0 %
too fast 30.7 % 50 % 73.3 % 90.5 % 67.8 % 2.2 %
too slow 0 % 0 % 0 % 0 % 0 % 1.2 %

ideal 64.7 % 42.2 % 22.1 % 3.4 % 32.2 % 96.6 %
N 30.7 30.3 30.7 30.3 29 29

depth 969.3 954.4 972.1 970.3 977 971.5
speed 121.2 cpm 107.5 cpm 103.3 cpm 126.1 cpm 117.4 cpm 107.7 cpm

too shallow 0 % 29.3 % 0 % 0 % 0 % 0 %
too fast 14.4 % 0 % 0 % 64.3 % 8 % 1.1 %
too slow 1.1 % 2.2 % 5.4 % 1 % 0 % 1.2 %

ideal 83.5 % 68.5 % 94.6 % 34.6 % 92 % 97.7 %
N 29 29 27.7 29.3 28.7 28

depth 938.9 979.2 950.8 959.5 964.4 946
speed 114.5 cpm 125.8 cpm 110.6 cpm 108 cpm 115.6 cpm 123.3 cpm

too shallow 41.4 % 0 % 13.2 % 29.5 % 1.1 % 69.4 %
too fast 3.4 % 46.8 % 1.2 % 8.9 % 4.7 % 67.2 %
too slow 2.3 % 0 % 1.2 % 2.2 % 0 % 1.3 %

ideal 52.9 % 53.2 % 84.4 % 60.5 % 94.2 % 7 %
N 29 29.3 55.3 28 28.3 30.7

depth 711.4 950.3 935.6 912.8 936.9 967.1
speed 129 cpm 105.5 cpm 106.4 cpm 112.5 cpm 103 cpm 101.7 cpm

too shallow 100 % 1.1 % 17.2 % 66.7 % 42 % 8.6 %
too fast 57.5 % 1.1 % 0 % 2.4 % 0 % 2.2 %
too slow 0 % 19.4 % 4.6 % 2.4 % 12.8 % 18.6 %

ideal 0 % 79.5 % 79.3 % 32.1 % 55.6 % 73.9 %
N 29 29.7 29.3 28.7 28.3 28.3

depth 1001.1 998.7 984.1 979.9 987.8 989
speed 89.3 cpm 124.2 cpm 121.7 cpm 114.3 cpm 117 cpm 113.7 cpm

too shallow 46 % 14.1 % 0 % 0 % 2.3 % 1.1 %
too fast 0 % 15.9 % 23.7 % 23.4 % 24.7 % 8.5 %
too slow 85.1 % 0 % 0 % 3.4 % 0 % 0 %

ideal 13.8 % 71.1 % 76.3 % 73.2 % 73 % 90.4 %
N 29 27.7 29.3

depth 985.4 989.9 986.8
speed 125 cpm 125.4 cpm 126.5 cpm

too shallow 4.6 % 1.1 % 0 %
too fast 54 % 49.7 % 52 %
too slow 0 % 0 % 0 %

ideal 42.5 % 49.2 % 48 %
N 29 28.7 29.7

depth 963.2 962.6 950.8
speed 102 cpm 106.6 cpm 106.5 cpm

too shallow 2.3 % 1.2 % 31.1 %
too fast 0 % 1.2 % 1.1 %
too slow 23 % 8.1 % 7.8 %

ideal 74.7 % 89.5 % 65.6 %
N 28.3 29.7 56.3

depth 954 993.9 991.4
speed 100.3 cpm 130.2 cpm 112.6 cpm

too shallow 58 % 0 % 8.9 %
too fast 1.1 % 75 % 3.8 %
too slow 44.8 % 0 % 6 %

ideal 34.8 % 25 % 90 %

Table 4: Results of nurse students in the two groups teaching first and training first

teaching first training first
start after teaching after training start after training after teaching

average average average average average average
N 30.3 27.3 29 29 29 29

depth 813 973.4 992.3 979.8 984.4 971.6
speed 121.1 cpm 98.9 cpm 104.4 cpm 117 cpm 113 cpm 113.8 cpm

too shallow 67 % 0 % 0 % 4.6 % 23 % 0 %
too fast 16.3 % 0 % 0 % 12.6 % 0 % 0 %
too slow 12.2 % 40.1 % 4.6 % 0 % 0 % 1.1 %

ideal 28.8 % 58.7 % 95.4 % 82.8 % 100 % 98.9 %
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N 27 28 28.7 30 27.7 30
depth 301.6 945.4 948.5 990.7 992.7 990.8
speed 127.1 cpm 80.2 cpm 100.6 cpm 124 cpm 110.2 cpm 105.9 cpm

too shallow 100 % 50 % 12.9 % 27 % 0 % 49.8 %
too fast 74.1 % 0 % 0 % 43.4 % 0 % 0 %
too slow 5.6 % 98.8 % 20.7 % 0 % 1.2 % 1.1 %

ideal 0 % 0 % 66.4 % 44.8 % 98.8 % 50.2 %
N 28.3 28.7 28.7 28 29.3 29

depth 837.9 971.3 977.4 553.7 408.8 907.6
speed 120.1 cpm 124.8 cpm 131.9 cpm 127.1 cpm 171 cpm 112.2 cpm

too shallow 98.9 % 1.1 % 0 % 100 % 100 % 98.8 %
too fast 28.7 % 72.1 % 96.6 % 12.2 % 31.8 % 10.8 %
too slow 2.5 % 0 % 0 % 82.9 % 2.5 % 0 %

ideal 1.1 % 27.9 % 3.4 % 0 % 0 % 1.2 %
N 26.3 29 29.3 28.7 28.7 28.7

depth 871.5 926.8 932.1 926.3 913.7 971.3
speed 94.5 cpm 108.8 cpm 108.2 cpm 125.3 cpm 107.2 cpm 124.8 cpm

too shallow 100 % 74.7 % 63.3 % 66.7 % 83.4 % 0 %
too fast 0 % 0 % 0 % 46.8 % 0 % 51.3 %
too slow 76.3 % 0 % 0 % 0 % 1.1 % 0 %

ideal 0 % 25.3 % 36.7 % 8.3 % 16.6 % 48.7 %
N 28.7 28.7 27 25 28.3 25.3

depth 858.7 925.6 933.7 916.3 919.8 925.8
speed 76.9 cpm 106.1 cpm 105.6 cpm 108.7 cpm 108.9 cpm 118.1 cpm

too shallow 100 % 68.8 % 33.3 % 97.6 % 95.3 % 95.2 %
too fast 0 % 0 % 0 % 11.1 % 0 % 2.3 %
too slow 100 % 2.3 % 3.8 % 10.2 % 0 % 1.2 %

ideal 0 % 31.2 % 64.2 % 2.4 % 4.7 % 4.8 %
N 26.7 29 28 27.7 30.3 29.7

depth 891.6 908.8 931.4 527.5 883.3 918.5
speed 103.8 cpm 111.2 cpm 109.8 cpm 47.1 cpm 107.3 cpm 102.7 cpm

too shallow 64.6 % 98.9 % 59.5 % 100 % 71 % 24.3 %
too fast 2.5 % 1.1 % 0 % 0 % 2.2 % 0 %
too slow 13.9 % 2.3 % 0 % 100 % 2.2 % 11.7 %

ideal 29.1 % 1.1 % 40.5 % 0 % 29 % 72.6 %
N 29 29 30 30 30.3 25

depth 853 961 968.4 861.6 940 988.3
speed 117.4 cpm 115.9 cpm 101.8 cpm 84.7 cpm 93.8 cpm 94.6 cpm

too shallow 77.6 % 1.1 % 0 % 77.3 % 0 % 0 %
too fast 25.3 % 18.1 % 0 % 1.1 % 0 % 0 %
too slow 5.6 % 0 % 4.5 % 87.7 % 47.6 % 30 %

ideal 9 % 80.7 % 95.5 % 0 % 52.4 % 64.9 %
N 22.3 32.3 31 25.7 26.3 27.7

depth 172.4 940.6 997.3 980.1 991 941.2
speed 108 cpm 118.3 cpm 104.8 cpm 94.9 cpm 104.3 cpm 92.2 cpm

too shallow 100 % 5.4 % 0 % 44.9 % 0 % 14.9 %
too fast 35.4 % 34 % 2.3 % 0 % 0 % 0 %
too slow 63.6 % 6.1 % 12.5 % 55.6 % 5.1 % 71.2 %

ideal 0 % 58.8 % 85.2 % 35.7 % 94.9 % 25.3 %
N 27.3 30 32.7 31.3 29.3 29

depth 555.3 895.3 950.5 617.7 945 957.1
speed 151 cpm 126.7 cpm 113.6 cpm 134.3 cpm 123 cpm 132.6 cpm

too shallow 100 % 64.4 % 3.3 % 100 % 11.1 % 0 %
too fast 95 % 76.9 % 26.6 % 88.4 % 37.8 % 74.7 %
too slow 5 % 1 % 4.6 % 0 % 0 % 0 %

ideal 0 % 4.6 % 68.8 % 0 % 61 % 25.3 %
N 29.3 31.7 27.3 23 26.7 30

depth 972.4 964.6 986.8 335.3 542.3 814.7
speed 102.3 cpm 128.7 cpm 105.4 cpm 52.1 cpm 80.2 cpm 94.5 cpm

too shallow 0 % 2.1 % 0 % 100 % 100 % 100 %
too fast 1.1 % 69.1 % 0 % 0 % 0 % 0 %
too slow 34.5 % 0 % 8.6 % 100 % 98.9 % 55.8 %

ideal 64.4 % 29.8 % 91.4 % 0 % 0 % 0 %
N 28.3 28 27.3 29 28.3 29.3

depth 906.4 963.7 958.6 853.1 778.4 927
speed 107.6 cpm 121.1 cpm 123.4 cpm 83.3 cpm 70.2 cpm 105.1 cpm

too shallow 70.2 % 0 % 0 % 100 % 100 % 41.5 %
too fast 0 % 22.1 % 31.7 % 0 % 2.5 % 0 %
too slow 7 % 0 % 0 % 96.6 % 98.8 % 3.4 %

ideal 29.8 % 77.9 % 68.3 % 0 % 0 % 56.2 %
N 26.7 29 28.7 27 29 28.7

depth 979 943.1 938.5 510.4 801.6 663.7
speed 123.3 cpm 115.4 cpm 108.9 cpm 87.7 cpm 80.1 cpm 78.2 cpm

too shallow 0 % 38.1 % 23.9 % 100 % 100 % 100 %
too fast 37.7 % 5.5 % 0 % 0 % 0 % 0 %
too slow 1.3 % 2.3 % 6 % 96.3 % 100 % 100 %

ideal 61.1 % 55.3 % 72.6 % 0 % 0 % 0 %
N 29 28 28.3

depth 962.4 983.1 967.8
speed 93.7 cpm 94.8 cpm 118.6 cpm

too shallow 13.8 % 0 % 0 %
too fast 0 % 0 % 1.2 %
too slow 58.6 % 51.4 % 0 %

ideal 29.9 % 48.6 % 98.8 %
N 27 28.7 28.3

depth 788.7 948.8 963.3
speed 82.8 cpm 98.2 cpm 95.3 cpm

too shallow 89.7 % 12.8 % 3.6 %
too fast 1.4 % 0 % 0 %
too slow 96 % 32.7 % 41.3 %

ideal 0 % 57.1 % 57.6 %

Table 5: Results of novices in the two groups teaching first and training first
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Appendix to Chapter VI - Collaboration:

Nurse Emergency 5l-HGSTP Model

The following pages show the entire 5l-HGSTP Model of the nurse A2E algorithm and parts of the Video-Wall
model. Due to readability the model is divided into parts. Note that the different parts are connected via the blue
WCL nodes as in Figure §1.

Figure 1: WCL-level of A2E algorithms

Figure 2: other modeled in the 5l HGSTP

Figure 3: WCL of the furniture model
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Figure 4: Airways modeled in the 5l HGSTP
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Figure 5: Breathing modeled in the 5l HGSTP
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Figure 6: Circulation modeled in the 5l HGSTP part 1
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Figure 7: Circulation modeled in the 5l HGSTP part 2
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Figure 8: Disability modeled in the 5l HGSTP
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Figure 9: Exposure modeled in the 5l HGSTP
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Figure 10: Exploratory for the furniture model: assemble compartments
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