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Abstract

In the present paper a review on particle methods and their applica-
tions to evolution equations is given. In particular, particle methods for
Euler- and Boltzmann equations are considered.

0 Introduction

Particle methods offer a long history, originated by the famous article of
Metropolis and Ulam “The Monte Carlo Method” [MU] published in 1949.
Afterwards, several scientists used Monte Carlo methods in various fields: at
the beginning of the 50’s, Monte Carlo methods were used in neutron transport
problems to simulate the behaviour of nuclear reactors. Later on, Particle in
Cell methods (PIC) were introduced by Harlow [Har] to compute compress-
ible fluids, and in plasma physics for the Vlasov equation. In 1968, Bird [Bi]
proposed the so—called DSMC-method to compute rarefied gas flows. In the
seventies, Chorin [C] introduced vortex methods for incompressible fluids and
Lucy [L] and Gingold/Monaghan [GM] the SPH-scheme (Smoothed Particle
Hydrodynamics) for compressible flows, which is very well suited for free sur-
face problems. Finally, Monte Carlo methods for Boltzmann type equations
in semiconductor device simulation were established by Fischetti-Laux [FL] in
the DAMOKLES software package. The aim of the paper is to present some
general features of particle schemes. Later in the discussion, we will focuse on
particle methods for the Euler and the Boltzmann equation.

1 General Features of Particle Methods

Particle methods are applied to evolution equations for densities f(P), P €
V', of particle number, mass, charge, momentum, vorticity or even velicity in
the phase space V', which often is the position or position—velocity space. In
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other words, particle methods are applied to appropriate conservation laws
for quantities given by the measure p describing particle number, mass etc.,
defined by the relation

w4 = [ sar,
A

where A denotes a measurable set in V. One important feature is the additivity
condition given by

W(A O B) = u(A) + u(B)
for all A, B C V measurable. Especially, conservation laws are evolution equa-
tions for measures, which are a—posteriori transformed into (partial) differential
equations for the corresponding densities f.
The idea of a particle method to simulate evolution equations is to approximate
the corresponding measures by the most simple measures available, i.e. by
discrete measures of the form

N
6‘*’N = E aj(SPJ
Jj=1

or, in an equivalent formulation, finite sets of “weighted” points. In comparison
to Finite Difference or Finite Element methods the notion “Finite Pointset
Methods” seems to be appropriate.

1.1 Convergence of Particle Approximations

Introducing a measure-valued formulation of evolution equations, the conver-

gence of &, to the measure p is given by the weak—+ convergence, i.e. 4.,

converges weak—x to u, if

N
/cpdéwN = Zajcp(Pj) — /god,u
7=1

as N tends to infinity for all ¢ € C®. It should be noted, that the weak—x
convergence of ¢, is equivalent to

16wy = #llr-» — 0
as long as s > %, where d is the dimension of V.

To obtain a fast weak—* convergence of é,, to u, one may play either with the
weights a; or with the positions P;, as it is explained by the following example.
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Example 1
Let p be a measure on [0,1]% given by the density f(z,y) = 4zy. Then the
equally weighted, but not equally spaced pointset

1

N
2 Z 6(“%) (1'1)

1,5=1

4

with ¢; = (]i,__ll)% converges to i as N tends to infinity, as well as the equally

spaced but not equally weighted set
N
Z ;0 (s; 50 (1.2)
1,5=1
with the regular grid points s; and the weights o; = 2s;,0=1,..., N.

Both discrete measures are illustrated in the following figure.
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Fig. 1. Particle sets for (1.1) (left) and (1.2) (right).
If u is absolutely continuous with density f with respect to the Lebesgue mea-

sure on V', the weights may be choosen as a; = w; f(P;). The convergence of
0.y to g can then be written in the following way:

N .
> wif(P)p(P;) — / [edP
7=1
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This classical numerical integration formula for fo € W, , was used as the
basis for the investigation of particle methods by Raviart et al. [R].

One important aspect of particle methods is to introduce an appropriate dis-
tance between a measure p and its approximation é,, —in order to determine
the approximation quality. As mentioned above, the H ~*-norm is equivalent
to the weak—* convergence of measures as long as s > %, but this norm is too
complicated to handle.

A norm appropriate for theoretical investigations is the so—called bounded
Lipschitz distance dr,(u,v) between two measures p and v defined as

/ ed(p—v)

dp(p,v) = sup
@€Lipy

?

where Lip; denotes the set of Lipschitz—continuous functions on V' with Lipschitz—
constant equal to 1. The discrepancy betweeen two measures p and v, defined
as

D(p,v) = sup lu(R) —v(R)[ (1.3)

where R denotes an axeparallel rectangle in V, turns out to be practically
useful, because of its connection to the uniform distribution mod 1 [HN]. But,
the convergence of the discrepancy to 0 is equivalent to weak— convergence
only if the limit measure has a density. This restriction is however of minor
importance in applications.

1.2 Construction of Good Approximations

Given the measure g with density f and an appropriate distance between
measures, an important question is how to construct é,,,, such that the distance
between p and d,, is as small as possible, if N — the number of particles — is

fixed.

If g is the uniform measure on [0,1]%, i.e. [ = X[0,1]¢, Where X denotes the
characteristic function, and if the distance is the discrepancy as defined in
(1.3), the answer is trivial for dimension d = 1: the finite pointset z; = 2;-]_\,1 ,1 =
1,..., N, has the minimal discrepancy D = ﬁ, if the weights are equal to .
If one uses general weights, the solution is not as obvious as above. Taking for
example equal weights ﬁ and the points z; = 2=L i = 1,...,N yields a

INFI
discrepancy D = 2Nlﬁ [WS].

|~
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For dimensions d > 1, generating uniform distributed sequences is no longer el-
ementary [HN]. One may introduce quasi-random numbers with equal weights,

the Hammersley—sequence [H]: Let p be an arbitrary prime and n

o0 .
> n;p’ the p-adic representation of an integer n € IN. Define

i=0

0 .
)= Z np~~!
J=0
then the Hammersley—sequence is given by

1(7);-

J o,

PN R

J

» ®pa,(7)

where pq, ...
Hammersley—sequence is estimated by

D((SWNHU“) S Ck N

7j:17

,pd—1 denotes the first (d — 1) primes.

(In V)

bl

? j\77
The discrepancy of the

-1

which, in the same way, defines the (expected) optimal order of convergence in

dimension d > 1.
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Fig. 2. Hammersley—Points for N = 2000.
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Several other uniform distributed sequences can be found in the literature, we

refer the reader to references [HN], [F], [SO] and [JS1].

If 4 is an arbitrary measure on IR? with density f, one starts with the above
approximation of the uniform measure and transforms the points in such a way

that an approximation of p is obtained. Especially, one of the transformation
procedures described below may be used:

1.

Let
1 X
N Z op,
=1

be an appoximation for the Lebesgue measure and let p be defined by

dp = fdP, then

N .
Z f(]\l/v)])épj
j=1

approximates p, if + € C’. One may equalize the weigths to %, counting
each point [f(P;)](+1) times [JS].

Let
1 N
— Z a;ép
N st J

be an appoximation for the uniform measure in [0,1]% and let 7 : R? —
[0,1]¢ be regular with Jacobian JT = f, then

N
D 2=
7=1

approximates u, see, e.g., Hlawka and Miick [HM].

In the following figure transformed Hammersley-Points are shown. We used the
method described in point 2 with the density function f(z,y),(z,y) € [0,1]?

given by f(z,y) = (—z*+ z)(=y* + y).
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Fig. 3. Transformed Hammersley-Points for N = 2000.

2 The Evolution Equation

Particle motions approximate the evolution of measures given by an evolution
equation, as illustrated in the following diagram

Initial distribution

[0}
o 80

Evolution | Particle “motion”
[ dwn(t)

Convergence of the method
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Hence, the derivation of convergent particle schemes requires a correct formu-
lation of the particle motion, i.e., if &, () = Eévzl @;(t)ép, (1) denotes the ap-

proximation of the measure py, then, if §o AIOL, it should hold that é,,, ;) — p
WN

for ¢ > 0. Again, particle positions as well as particle weights may evolve in
time.

The general type of an evolution equation is given by

O g awe(s Vi) = QU] (2.1)

where f = f(t, P), V[f] = V[fI(t, P) and Q[f] = Q[f](¢, P). Examples are
e the continuity equation

% +div(p-u) =0, (2.2)
for the density p = p(t,2) and the velocity v = u(t,z), where u is a
vector field,

e the (isentropic) Euler equation, i.e. the continuity equation (2.2) together
with the momentum equation
d(pus)

—ar + div(pu; - u) = —

dp
ox;

where p = p(p) is the pressure,

e the vortex equation

Jw .
n + div(w - ufw]) =0,

for the vorticity w, where

ulul(ta) = [ Glo,yhe(t, y)dy

For example for a whole space problem, G denotes the fundamental so-
lution of the Poisson equation.

e the Boltzmann equation

of B
%+vaf_Q[f7f]a
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for the (Boltzmann) density function f = f(¢,x,v), where Q[f, f] denotes
the collision operator given by

Q= / /k(|v_w|7 n) [f(tvxvvl)f(tvwv wl) - f(t,z, U)f(tvwvw)] dw(n)dw

3 g2
IRS+

with
v'=Tyw(n)=v—(v—w,n) n.

e the semiconductor equation

0
O ok Vel ~ LBV = QUL ),

for the number density function of the electrons f = f(¢,z,k), where
Q[f, f] denotes here the collision operator given by

Q= / [s(z, k' k) f(z, K, O)[1 = f(z,k, )] — s(z, k, k') f(z,k, t)[1 = f(z,k 1)] dE'
B

To simulate evolution equations of the form (2.1) by particle methods, one uses
the following general idea:

Substitute in V[f] and @[f] the density f by the discrete approximation 6, (1),

N
6wN(t) = Z; aj(t)épj(t) .
]:

Then, move particles with the phase velocity V, i.e.

N
P=Vv [Z OékﬁPk] (P;)
k=1

and treat () either by changing the weights,

N
a; =@ [Z aképk]
k=1

or by an additional change of the velocity V. But, in general, the operators
V[u] and/or Q[u] are not defined or not smooth enough, if u is a discrete
measure. Hence, one has to use a smoothed ps instead of p.
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Classical applications for particle methods are, as mentioned in section 1,
plasma physics, stellardynamics, neutron transport and radiation. They are
also used to solve kinetic semiconductor equations like the semiclassical Boltz-
mann equation, see [FL], or the Wigner equation, see [AN].

In the following two sections we will focus on particle methods for Euler equa-
tions and Boltzmann type equations.

3 Particle Methods for Euler Equations
Counsider the system of (isentropic) Euler equations

dp .
F + div(pu) =0 (3.1)
d(pu;) _Op

ot ow;

+ div(puu) =

(3.2)

Here, p = p(t,2) (u = u(t,z)) denotes the density (stream velocity) of a fluid
and the equation of state, p = p(p), relates the pressure p(¢, z) with the density

p-
The general idea of a particle method to simulate the system (3.1), (3.2) is to
approximate the density p(¢,z) by a finite pointset 0wy (), 1-€.

N
bty = D (1)1
Jj=1
and to move the particles with velocity w,
Tj = U(t, xj)

Different techniques how to get u lead to different particle schemes. Three
different approaches are discussed in the following in more detail.

3.1 Particle in Cell (PIC) Methods

PIC is only partially a particle method. The idea used in these methods is to
solve the momentum equation for u by a standard method and then to use u in
the way described above to compute the positions z;(¢) of the particles. Many
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improved techniques like in EPIC, FLIP, GAP or MAC have been introduced
and a variety of different physical situations have been investigated.

Roughly, the general procedure is as follows:
Introduce a grid and define values for p,p etc. at the knots.

e Solve the momentum equation by a standard method (finite differences
in classical PIC) on the grid to obtain u.

e Interpolate the velocity u from the mesh back to the particle positions.
(In FLIP the acceleration Cfl—z; instead of u is interpolated to the particles).

e Move the particles according to

ij = u(l,z;)

e Regenerate the data p, p etc. on the grid. This is achieved by projecting
the particle data onto the grid points by accumulating a weighted sum
of particle contributions at each grid point.

An obvious disadvantage compared to the method described in the next section
is the necessity of the grid.

It should be noted that there are very little theoretical investigations of the
PIC methods despite of the fact, that the schemes have numerous practical
applications.

3.2 Smoothed Particle Hydrodynamics

SPH is a real particle method without the use of a grid.

One starts with the following approximation procedure for any physical quan-
tity A:

At,2) = / At,2)8(z — o')da!

where § denotes the Dirac Delta function.

Replacing the Delta function by a mollifying kernel W* approximating it, we
obtain
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Aty z) = / Aty 2 YW (2 — o')da!

The kernel W*¢ may be interpreted as an interaction potential, and its shape
and width — represented by the parameter ¢ — are crucial for the behaviour of
the scheme.

Approximating this by a summation interpolant over particles at the points
z;(t),j=1,...,N we get

a;

N .
Al z) = ZAj(t)pj(t)Wa(r — (1))

where a; may be viewed as the mass of the particle at z;.

The density p is in this way approximated by

20

pe(t ) = pi(OW*(z = 2;(1)),

-

o
Il
—

In particular p® is differentiable with respect to  and may be used in p = p(p°).
The mean flux is approximated by

N

(pu)(ta) ="

= pilt)

a;

pi(1)o(OW*(z — (1))

Each particle with position z;(¢) is now moved with velocity v;(¢). The
'weights’ v;(t) are changed in such a way that the momentum equation (3.2)
is approximated.

To obtain an equation for the v; one has to get an approximation for
Vp
p

at each point z;. This is achieved by writing

N .
P 0) = 3 i (W (2 (1)
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with
p; = p(p;)
Since
p p p
—)=V(=)+ 5Vp
(p) (p) p
one writes for k=1 N
(Vp) p i
~ (V(=)) () + Vo) (g
2L a1y 2 (V) (o) + ()
al a;p Pk
oY LEVWE(a —a;) + =5 Y o VW (ay, — ;)
=1 PiPj Pk j=1

Introducing this into the momentum equation (3.2) gives an equation for the
velocities vy of the particles

Vp N
v = —(— - a; VWE(,L;C — ;)

j=1 J pk
Theoretical foundations have been given by Oelschlaeger[O] for the most simple
case p = 2,02 then we get

T = v
N
’[)k = —ZOL]VI/VE(CU]C—CU])

i=1

This is the Newton equation for an N-particle system with an interaction given
by We. Coupling ¢ with N (writing ey ) and using a mollifier scaled in the
following way

WeN (2) = NPW(N )

where d is the dimension and 0 < 8 < 1, Oelschlaeger could prove weak con-
vergence of the particle approximations E —1 @b, (1) and E =1 00 (1)8;; () to
the solution p and pu of Eulers equations. We remark that the above scaling
corresponds to a long range interaction.

A convergence proof for the SPH method for scalar nonlinear conservation laws
based on previous work of Mas—Gallic and Raviart [MR] has been announced
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by J.P. Vila [V]. Practical applications are considered by J. Monaghan and
coworkers, see [M], who considered a variety of different physical situations
as in astrophysical problems, free surface flows (e.g., drops), gravity currents,
impactanalysis, multiphase flow and magneto-hydrodynamics. SPH proved to
be very flexible and adaptable to many physical situations.

3.3 Particle Schemes based on “Kinetic Schemes”

The fundamental ideas of kinetic schemes can be found in the papers of Desh-
pande [D] and Kaniel [K]: Lift the problem in the “kinetic” position—velocity

( ppu ) (t,z) = /( 1 ) f(t,z,v)do

and find a (simple) evolution for the density f, such that this evolution approx-
imates the Euler evolution for p and pu. This evolution consists of 2 phases:

space, i.e. write

(a) a simple kinetic flow between ¢(*) and ((*+1) e,

of _
E‘f"vvxf—oy

(b) a “projection” onto an equilibrium class, defined by some G[p, pu](v)
through f — (p,pu) — G|p, pul(v) at t = 1(n41),

The class of equilibrium functions G is chosen such that an approximation of
the Fuler evolution is guaranteed: the class may be defined by Maxwellian
densities or so—called Kaniel functions [K].

N
The corresponding particle evolution of &, (1) = >0 @;jé(z,(1),0,(t)) for the steps
J=1

(a) and (b) described above, can be easily formulated:

(a) perform a free flow in () <t< t(n+1)7

(b) compute the density p*(¢,z) and the mass flux (pu)® using the solution of
step (a), determine the corresponding equilibrium density G[p°, (pu)](v)
in the velocity space and generate a new particle distribution with respect

to G[p*, (pu)?].
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A detailed description can be found in reference [WS].

Kinetic schemes are theoretical well founded and there exist many variations,
especially by Perthame [BP], (see also Backer—DreBler [BD], Backer [MB]). On
the other hand, not much practical experience is available.

3.4 New Ideas

A new approach for particle methods for Euler equations has been developed
by Buttke, see [Bu], based on the work of Osedelets. There the Hamiltonian
structure of the flow is described in terms of a variable called velicity. The
velicity M and the velocity u are equivalent up to a gradient

.LM = U ‘I‘ qu,

where ¢ is a scalar function. This means, that « is the divergence free part of
the Helmholtz decomposition of M. The velicity satisfies an equation similar
to the vorticity equation. Based on the velicity formulation Buttke has built
a numerical method for incompressible flow conserving the invariants impulse,
kinetic energy and angular momentum. The method works with so called velic-
ity blobs evolving according to a Hamiltonian equation.

Another approach was taken by Yserentant [Y]. He considered particles, that
are “relatively big” mass packets with a finite extension, rather than mass
points. The forces between the particles are not as usual potential forces, but
derived from the force laws of continuum mechanics. The equation of motion
of these particles are given by the equations of motion of a rigid body.

4 Particle Methods for Boltzmann Equations

As mentioned in Section 2, we discuss in the following particle methods for the
Boltzmann equation
of

0V = Q) (4.1
The right hand side of equation (4.1) is quite easy to handle by particle meth-
ods: suppose we try to simulate the equation

of

9y v, f = 4.2

g T0Vef=0 (4.2)
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by particles, i.e. the density f (or the corresponding measure p) should be

approximated by a discrete measure 6., , where

WN
N

Bune = D (10 ()0, (1)) -
7=1

(2
If the initial condition for equation (4.2) is f(0,z,v) =f (#,v) and approxi-

. . 5N 5. 4
mated by some %N =2 i1 @ 6(%@), 651\] K, then 6, 1)

N
bunin) = Z @ 6(§j+t5g‘751)

7=1
is a convergent approximation for p;.

The full equation (4.1)is much more difficult to handle by particle methods and
the main problem results from the nonlinearity of the collision operator Q[f, f],
which consists of products of the form f(¢,z,v)f(t,z,v). Moreover, Q[f, f] is
a local operator in space and time. Hence, it is necessary to introduce a spatial
mollifier, e.g., at each time ¢ > 0, the density f(¢,z,v)is substituted by f.(¢,v)

for z € ¢, where
1 ,
1) = iy [ vy,

Now, introducing fractional steps, one solves at first equation (4.2) over the
time intervall 0 < ¢ < At, using the particle scheme described above and, in a
second step, the homogeneous Boltzmann equations of the form
of. _
ot

QU0 1. (4.3)

Let us discuss shortly, how to simulate equation (4.3) by particle methods.
Introducing an explicit Euler step, equation (4.3) may be written in the dis-
cretized form

fc(At) = fc(o) + AtQ[fc(O)7 fC(O)] : (44)

Because we are interested in measure-valued solutions, equation (4.4) should
be considered in weak formulation, i.e.

Jewdua = [ [ [ 18000+ (1= M) ()] deo(m)dpi(0)dus(o)
R? R? S? (45)
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where (4.5) should hold for all ® € Cb(]RS).

The main feature of equation (4.5) is, that we need an approximation of the

product measure wg2 ® 1§ ® g by some Zé\le a}é( , given only an ap-

ny,v5,w;)

proximation Zé\le @;jby; of ug.

If the discrete product z;\fﬂ ag-é(nj,vj,wj) is determined, there are two ways
to compute 6, (ar).- The first possibility is to consider the factors Ak and
1 — Atk., as weight changes to derive the measure

N N
duy(at) = E Atk(|v; — w;], nj)ag-éij’wj (n;) Z (1 = Atkso(lv; — wjl)) a;évj )

i=1 i=1

For this realization, a colliding particle survives with its old velocity, but looses
weight. It is obvious, that the number of particles is doubled within one simu-
lation step and some procedures have to be introduced in order to reduce the
particle number. We refer to Illner, Rjasanow and Wagner, see [TW,IR].

A second possibility is to interprete the factor 1 — Atk as probability for a
dummy collision, keeping the old velocities, and Atk as probability for a “real”

collision, changing v; — v; = Ty, w,(n;) ([HB,BI], [JS]).

Let us return to the central question, how to construct an approximation of a
product p ® p from an approximation Ej\le a;é,, of p. The first solution is to
consider the direct discrete product defined as

N
E Q0G0 ) 5 (4.6)

,5=1

which certainly gives a convergent approximation of u®@u as long as Z;\le by, —
. But the discrete product measure (4.6) contains N? particles instead of N
and is not usable in practice. The questions, how to determine an approxi-
mation consisting of exactly N particles, may be formulated as the following
minimization problem: find appropriated weights 3;,7 = 1,..., N and a func-

tion C' : {1,..., N} — {1,..., N}, such that

N N
D (Z az‘%%,m’Zﬁﬁ(vwvcm)) = min .
7=1

,5=1

Not only this minimization is unsolved, but also the problem to determine the
weights 3;,7 = 1,..., N and the function C, such that, at least, D — 0 with
N — oo.
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Two algorithms constructing a discrete product measure using random num-
bers can be found in [JS], but the algorithms can not guarantee deterministic
convergence. On the other hand, using random numbers might not be as criti-
cal as expected. The theory of “information based complexity” [TW] give some
hints, why to introduce some randomness in this problem. Moreover, from a
practical point of view, deterministic choices have the risk of systematic erros.

An important point is to care for the conservation of mass, momentum and
energy in the simulation of collisions, see Greengard-Reyna [GR]. This leads
in particular to problems, if particles with different weights are considered, see
Steiner [KS].

Finishing this chapter, we give a short list of authors considering alternative
methods to solve the Boltzmann equation: Nordsieck and Hicks [NH], Aristow—
Tscheremissine [AT], Rogier—Schneider [RS], Inamuro—Sturtevant [IS], Buet
[B].

5 Hybrid Codes

A major challenge in the development of numerical codes is the simultane-
ous use of kinetic and hydrodynamic equations in a single code. For example
for gas dynamics a hierachy of equations including the Liouville equation, the
Boltzmann equation and fluid dynamic equations like Euler or Navier Stokes
equations is considered. Each of these equations describes the gas flow on a dif-
ferent level, ranging from the description of single particles and the description
via distribution functions up to a continuum description of the gas flow. The
Liouville equation is the most general equation valid in all situations, however
it is computationally so complex, that, usually, it cannot be solved numerically
for real life situations. The Boltzmann equation has a large range of applica-
tions and is computationally tractable, however more expensive than the fluid
dynamic equations. The continuum equations are the most restricted equations
concerning their range of validity, but in turn, they are the computationally
cheapest equations and there are many well developed numerical codes.

In a variety of situations one finds, that in certain regions of the computational
domain a hydrodynamic description is valid and that the detailed description
by the more complex kinetic equation is only needed in certain small regions
of the domain, for example in shock- or boundary layers and in low density
regions. Therefore in general one can proceed in the following way: Use the
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simpler fluid dynamic equation when and where it is possible and use the more
complicated kinetic equation when and where it is necessary.

The key problems in the development of hybrid codes are the "Where’ and the
"How’ problem:

First we have to detect the regions, where the continuum approach is valid, then
we have to match the codes. Concerning the matching of the codes the following
two main points have to be discussed: What are the appropriate transition
boundary conditions at the interface between the two types of equations? What
are the appropriate codes?

The same questions appear in the modelling of semiconductors. In this case
the hierachy of equations include the Quantum Liouville equation replacing
the standard Liouville equation, since quantum effects play a major role in the
semiconductor case, the semiclassical Boltzmann equation and hydrodynamic
semiconductor equations or drift diffusion models.

For the case of the Boltzmann equation coupled with fluid dynamic equations
the above questions are considered e.g. in [BTTQ], [K1,K2], [S], [LNS].

6 Applications

Applications, where particle methods can be used, appear everywhere. The
actual projects of our group in this area are

o Space flight computations: Simulation of pressure probes in space flight
experiments. Chemistry effects in rarefied gas flows during the reentry
phase of space vehicles.

e Traffic flow: Traffic flow simulation models used for the implementation
in traffic guidance systems on highways.

o Glass: Investigations on the influence of radiation on the glass melting
process.

o Other projects include basic technologics used for oil separation, semi-
conductor simulations and granular flow.
We give a slightly more detailed description of the traffic flow example:

Traffic flow simulations can be done using the same levels of description as
in gas dynamics. Microscopic models describing the behaviour of single cars,
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mesoscopic (kinetic) models and macroscopic (fluid dynamic) models are used.
Kinetic models have up to now however mainly been used to give better jus-
tifications of the macroscopic models and to investigate homogeneous traffic
flow situations. In [WK] a new kinetic equation was developed based on the
microscopic behaviour of the cars. Homogeneous and inhomogeneous traffic
flow situations are well described by the model. For example simulations of
the kinetic equation for a motorway with three lanes, which are reduced to two
lanes at a certain point (e.g., due to roadworks ) have lead to the results shown
below.

In the following figures a highway with cars, coming in at = 0, is seen. The
development of a traffic jam due to the reduction of the lanes at 2 = 300
is shown. Starting with an "empty” highway the space-velocity distribution
function of the cars is shown for different times in Figures 4-6. Figure 7 shows
the time development of the density of cars.
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Fig. 4. x-v-Distribution Function at t = 600.
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Fig. 5. x-v-Distribution Function at t = 1500.

i
.

Fig. 6. x-v-Distribution Function at t = 2700.
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rho(x,t)
Fig. 7. Time Evolution of the Density
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