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SUMMARY 

 Biological clocks exist across all life forms and serve to coordinate organismal physiology with 

periodic environmental changes. The underlying mechanism of these clocks is predominantly based on 

cellular transcription-translation feedback loops in which clock proteins mediate the periodic expression of 

numerous genes. However, recent studies point to the existence of a conserved timekeeping mechanism 

independent of cellular transcription and translation, but based on cellular metabolism. These metabolic 

clocks were concluded based upon the observation of circadian and ultradian oscillations in the level of 

hyperoxidized peroxiredoxin proteins. Peroxiredoxins are enzymes found almost ubiquitously throughout 

life. Originally identified as H2O2 scavengers, recent studies show that peroxiredoxins can transfer 

oxidation to, and thereby regulate, a wide range of cellular proteins. Thus, it is conceivable that 

peroxiredoxins, using H2O2 as the primary signaling molecule, have the potential to integrate and coordinate 

much of cellular physiology and behavior with metabolic changes. Nonetheless, it remained unclear if 

peroxiredoxins are passive reporters of metabolic clock activity or active determinants of cellular 

timekeeping. Budding yeast possess an ultradian metabolic clock termed the Yeast Metabolic Cycle 

(YMC). The most obvious feature of the YMC is a high amplitude oscillation in oxygen consumption. Like 

circadian clocks, the YMC temporally compartmentalizes cellular processes (e.g. metabolism) and 

coordinates cellular programs such as gene expression and cell division. The YMC also exhibits oscillations 

in the level of hyperoxidized peroxiredoxin proteins. 

In this study, I used the YMC clock model to investigate the role of peroxiredoxins in cellular 

timekeeping, as well as the coordination of cell division with the metabolic clock. I observed that cytosolic 

2-Cys peroxiredoxins are essential for robust metabolic clock function. I provide direct evidence for 

oscillations in cytosolic H2O2 levels, as well as cyclical changes in oxidation state of a peroxiredoxin and a 

model peroxiredoxin target protein during the YMC. I noted two distinct metabolic states during the YMC: 

low oxygen consumption (LOC) and high oxygen consumption (HOC). I demonstrate that thiol-disulfide 

oxidation and reduction are necessary for switching between LOC and HOC. Specifically, a thiol reductant 

promotes switching to HOC, whilst a thiol oxidant prevents switching to HOC, forcing cells to remain in 

LOC. Transient peroxiredoxin inactivation triggered rapid and premature switching from LOC to HOC. 

Furthermore, I show that cell division is normally synchronized with the YMC and that deletion of typical 

2-Cys peroxiredoxins leads to complete uncoupling of cell division from metabolic cycling. Moreover, 

metabolic oscillations are crucial for regulating cell cycle entry and exit. Intriguingly, switching to HOC is 

crucial for initiating cell cycle entry whilst switching to LOC is crucial for cell cycle completion and exit. 

Consequently, forcing cells to remain in HOC by application of a thiol reductant leads to multiple rounds 

of cell cycle entry despite failure to complete the preceding cell cycle. On the other hand, forcing cells to 

remain in LOC by treating with a thiol oxidant prevents initiation of cell cycle entry. 

In conclusion, I propose that peroxiredoxins – by controlling metabolic cycles, which are in turn 

crucial for regulating the progression through cell cycle – play a central role in the coordination of cellular 
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metabolism with cell division. This proposition, thus, positions peroxiredoxins as active players in the 

cellular timekeeping mechanism. 
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ZUSAMMENFASSUNG 

In sämtlichen Lebensformen gibt es biologische Uhren, die die Physiologie des jeweiligen 

Organismus mit sich periodisch verändernden Umweltbedingungen koordinieren. Der molekulare 

Mechanismus dieser Uhren besteht zumeist aus zellulären Transkriptions-Translations-Feedback-Loops, in 

denen Zeitgeber-Proteine die periodische Expression zahlreicher Gene steuern. Jüngere Studien legen 

jedoch nahe, dass eine weitere konservierte Zeitgeberfunktion existiert, die unabhängig von Transkription 

und Translation ist, sondern auf dem zellulären Metabolismus beruht. Die Existenz solcher metabolischen 

Uhren wurde postuliert basierend auf der Beobachtung, dass die Level von hyperoxidierten Peroxiredoxin-

Proteinen circadianen und ultradianen Schwankungen unterliegen. Peroxiredoxine sind Enzyme, die es fast 

in sämtlichen lebenden Zellen gibt. Ursprünglich als Radikalfänger zur Entgiftung von Wasserstoffperoxid 

identifiziert, ist heute bekannt, dass Peroxiredoxine die Oxidation – und damit Regulation – einer großen 

Bandbreite von Proteinen bewerkstelligen. Es liegt daher nahe, dass Peroxiredoxine Wasserstoffperoxid als 

primäres Signalmolekül nutzen können, um einen Großteil der zellulären Physiologie und Verhalten mit 

metabolischen Veränderungen zu integrieren und koordinieren. Unklar blieb jedoch bislang, ob 

Peroxiredoxine lediglich passive Reporter für die Aktivität metabolischer Uhren sind, oder vielmehr aktive 

Zeitgeber darstellen. Auch die Bäckerhefe besitzt eine ultradiane metabolische Uhr, den Yeast Metabolic 

Cycle (YMC). Dessen offensichtlichste Eigenschaft ist die starke periodische Schwankung im zellulären 

Sauerstoff-Bedarf. Ähnlich den circadianen Uhren trennt der YMC zelluläre Prozesse (z.B. metabolische) 

zeitlich voneinander und koordiniert zelluläre Programme wie etwa Genexpression und Zellteilung. Auch 

im YMC zeigen zeigen sich Oszillationen in der Menge an hyperoxidierten Peroxiredoxinen. 

In der vorliegenden Arbeit habe ich den YMC als Modell genutzt, um die Rolle der Peroxiredoxine 

in der zellulären Zeitgebung und der Koordination der Zellteilung mit der metabolischen Uhr zu 

untersuchen. Ich habe cytosolische 2-Cys Peroxiredoxine als essentiell für eine robuste Funktion der 

metabolischen Uhr identifiziert. Auch konnte ich zyklische Schwankungen sowohl in der zellulären H2O2-

Menge als auch im oxidativen Status eines Peroxiredoxins und eines Modellsubstrates während des YMC 

messen. Dieser besitzt zwei verschiedene metabolische Phasen, eine mit geringem Sauerstoffverbrauch 

(LOC, low oxygen consumption) und eine mit hohem Sauerstoffverbrauch (HOX, high oxygen 

consumption). Ich konnte zeigen, dass Thiol-Disulfid-Oxidation und -Reduktion notwendig für das 

Umschalten zwischen LOC und HOC sind. Insbesondere triggert ein Thiol-Oxidans das Umschalten in die 

HOC-Phase, während umgekehrt Thiol-Reduktion dieses Umschalten verhindert und Zellen in der LOC-

Phase hält. Eine vorübergehende Inaktivierung von Peroxiredoxinen führte zu einem schnellen und 

vorzeitigen Switch von der LOC- in die HOC-Phase. Darüber hinaus zeigte ich, dass Zellteilung 

normalerweise mit dem YMC synchronisiert ist und die Deletion eines typischen 2-Cys Peroxiredoxins zu 

einer kompletten Entkopplung von Zellzyklus und metabolischer Uhr führt. Metabolische Oszillationen 

sind wichtig für die Regulation von Eintritt und Ende des Zellyzklus. Dabei ist das Umschalten in die HOC-

Phase entscheidend für die Initiation der Zellteilung, während Eintritt in die LOC-Phase wichtig ist für die 
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Vervollständigung und den Austritt aus dem Zellzyklus ist. Folgerichtig führt das Verweilen von Zellen in 

der HOC-Phase, erzwungen durch Zugabe von Thiol-Reduktantien, zu mehreren Runden von Zellzyklus-

Eintritt, obwohl der vorangegangene Zellzyklus nicht vollendet werden konnte. Umgekehrt verhindert das 

Arretieren von Zellen in der LOC-Phase den Eintritt in die Zellteilung. 

Basierend auf diesen Beobachtungen schlage ich vor, dass Peroxiredoxine eine zentrale Rolle in 

der Koordination von zellulärem Metabolismus und Zellzyklus spielen, indem sie metabolische Zyklen 

kontrollieren, die wiederum ausschlaggebend für die Progression durch den Zellzyklus sind. 

Peroxiredoxine spielen somit eine aktive Rolle in der zellulären Zeitgebung.. 
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1 INTRODUCTION 

All living species order their biological processes - at the molecular, cellular, tissue or organ levels. 

The timing of these biological processes is intrinsic and essential for coordination of periodic physiological 

and behavioral responses. This intrinsic timekeeping mechanism is called the biological clock, which 

enables living species to anticipate oscillatory environmental changes – day/night cycles, temperature 

rhythms, time of feeding etc. Underlying biological clocks are biological rhythms with periods of 

approximately 24 hours (termed Circadian) or less (termed Ultradian) or periods ranging from weeks to 

months and years (Fig. 1.0). Essential features of circadian clocks include: 

a) Free-running or self-sustained in nature – this means that the rhythms continue to exist even under 

constant conditions, such as constant darkness, without the influence of external signals. This 

distinguishes circadian rhythms from diurnal rhythms, which are influenced by external cues such 

as light. 

b) Rhythms are entrainable - this means that the rhythm is reset or synchronized by external time cues 

called Zeitgebers (German word meaning ‘time giver’). 

c) Rhythms are temperature-compensated – this means that the circadian period is not dictated by the 

prevailing environmental temperature [1]. 

 
 
Figure 1.0: Biological oscillations in living systems. Diverse species exhibit biological rhythms that span periods 

ranging from several seconds to hours and months. These oscillations optimize the species’ adaptability to its 
environment. Image modified from [2]. 

 

1.1 Historical perspectives of cellular timekeeping 

The term Circadian originates from the Latin words, circa – meaning ‘around’ and dies – meaning 

‘day’, coined by Franz Halberg (a Romanian chronobiologist) in 1959 [3]. This implied that physiological 

rhythms occur within periods of about 24 hours. The first documented description of an intrinsic circadian 

rhythm was the observation that leaves of Mimosa pudica plant opened and closed with a 24-hour period 
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when kept under constant darkness conditions (Fig. 1.1). This experiment was performed by the French 

Geophysicist Jean-Jacques d'Ortous de Mairan in 1729, and showed for the first time that circadian clocks 

were self-sustaining or free-running in nature, without the influence of external stimuli [4].  

 

Figure 1.1: The plant, M. pudica, possesses an 
internal biological clock. Leaves of mimosa plants 

open towards the sun during daytime and close at 
dusk. Jean Jacques d’Ortous de Mairan placed a 
mimosa plant in constant dark and found that the 
leaves continued to follow their daily rhythm for 
several days. This suggested that mimosa plants 
have a cell autonomous clock that can maintain the 
biological rhythm even under constant conditions. 
Image and legend adapted from @nobelprize.org. 

 

Michel Siffre, the French cave 

explorer, lived isolated in a cave in the French 

Alps for two months to investigate the body’s 

clock. His initial plan was to undertake a 

geological expedition to study underground 

glaciers for about fifteen days. However, he 

extended his stay in the cave to two months, 

with the idea to investigate how the natural 

rhythms of human life would be affected by living “beyond time”. To achieve this, he lived in the cave 

without access to clock, calendar or sun and slept and ate only when his body told him to. Additionally, he 

had a team at the entrance of the cave who took notice of his sleep-wake activity without him personally 

knowing what time it was on the outside. He called them only when he woke up, when he ate, and just 

before he went to sleep. During his wake times, he performed a psychological test by counting from 1 to 

120, at the rate of one digit per second. He also took record of his pulse and measured his body temperature, 

which got as low as 34 °C. After the experiment, Siffre noted that he had completely lost conscious 

perception of the passing of time. It took him five minutes to count to 120. He went into the cave on July 

16 and planned to finish the experiment on September 14. When he was notified that the date was due, he 

thought it was August 20, believing he still had another month to spend in the cave. Thus, his psychological 

time had compressed by a factor of two. Siffre’s experiment showed that humans, like lower mammals such 

as rat, possess an internal biological clock [5, 6]. In line with Siffre’s reports, the German physician, Jürgen 

Aschoff, observed in laboratory settings that the circadian clock controlled daily physiological and 

psychological parameters such as blood pressure, body temperature, plasma hormone levels and cognitive 

performance [7] (Fig. 1.2). 

These descriptions of biological timekeeping ignited interests in previously observed, but 

unexplained, rhythmic behavior. For instance, Antle and Silver described in their article, circadian rhythms 

in feeding times of bees as observed by Hugo Berthold von Buttel-Reepen and Auguste Forel in the early 

20th Century [8]. Observations by Hugo Berthold von ButtelReepen, a German zoologist, indicated that 

https://www.nobelprize.org/uploads/2018/06/advanced-medicineprize2017.pdf
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bees exhibited a time-sense for feeding, thus, visited a buckwheat field only in the morning while the 

flowers were open and secreting nectar. On the other hand, Auguste Forel, during his vacation in the Swiss 

Alps observed that bees came to feed on his marmalade while he ate breakfast outdoor. As the days went 

by, the number of bees which visited him increased until he was unable to eat outdoors anymore. He noted 

that the bees persistently arrived during breakfast time, although he and his marmalade were safely indoors, 

suggesting these insects appeared to have a time-memory for when breakfast was served [8]. Although 

these observations did not necessarily constitute evidence of clocks, they demonstrate how organismal 

behavior is timed with environmental changes. 

Subsequent studies have demonstrated that insects such as Drosophila sp. possessed an endogenous 

circadian clock [9, 10]. The discovery and functional annotation of the period (“per”) gene as a key 

determinant of Drosophila sp. circadian rhythmicity, birthed the transcription-translation feedback loop 

(TTFL) model of circadian timekeeping, for which the Noble Prize in Physiology and Medicine was 

awarded to Jeffrey Hall, Michael Roshbash and Michael Young in 2017. 

 

 
 
Figure 1.2: The circadian clock has an impact on many aspects of human physiology. This clock helps to regulate 

sleep patterns, feeding behavior, hormone release, blood pressure and body temperature. Image modified and legend 
adapted from @nobelprize.org. 

 

1.2 Circadian clocks: Molecular players and mechanisms 

Until the late 20th century, the prevailing evidence for biological timekeeping were based on 

organismal behavioral rhythmicity, such as ‘time-sense’ feeding of bees and closure and opening of plant 

leaves in response to day-night cycles. However, the basic mechanistic underpinnings for these rhythms 

were largely not understood. Subsequent discovery and characterization of several ‘clock genes’ in diverse 

organisms led to the hypothesis that the cellular clockwork must consist of a feedback system that is able 

to generate approximately 24-hour cycles in various cellular parameters (i.e. TTFL) [11]. 

https://www.nobelprize.org/uploads/2018/06/advanced-medicineprize2017.pdf
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Although the TTFL model of the clockwork is the prominent mechanistic basis for circadian 

behavior, ‘clock genes’ are not conserved across different species. Moreover, some ‘clock genes’ are non-

essential, without which circadian rhythms persist [12, 13]. These apparent ‘anomalies’ to the TTFL-based 

model therefore ignited interests in the search for alternative cellular timekeeping models that function 

independent of cellular transcription (ie. non-transcriptional clocks). I summarize below some key findings 

that contributed to postulations on transcription and non-transcription based clock models. 

 

1.2.1 Transcriptional clocks 

As recounted earlier, the identification of the per gene as a genetic determinant of circadian 

rhythmicity in Drosophila made way for the postulation of the TTFL-model as the underlying mechanism 

of circadian clocks [14]. To arrive at this hypothesis, Konopka and Benzer performed a genetic screen for 

abnormal eclosion rhythms in Drosophila flies. Eclosion is the process of transition from pupa into adult 

Drosophila. Before the genetic screen by Konopka and Benzer, Colin Pittendrigh had earlier observed that 

the eclosion process exhibited a circadian behavior and showed that temperature played an essential role in 

determining the period of eclosion rhythm, but not its rhythmicity [15]. Konopka and Benzer’s genetic 

screen revealed three mutations that traced to the same genomic locus. Of the three mutant alleles, one was 

arrhythmic; another had short-period rhythms of 19 hours, and the third had long-period rhythms of 28 

hours [14]. They called this genomic locus period (“per”). Subsequently, the labs of Ronald Konopka, 

Jeffrey Hall, Michael Roshbash and Michael Young isolated and characterized per and showed that both 

per mRNA and its protein were expressed in a circadian manner [11, 14, 16-18]. They further demonstrated 

that the per locus was the center of the circadian rhythm and that loss of per terminates circadian activity. 

They therefore proposed a model where PER protein, in cooperation with another protein called 

TIMELESS (TIM), auto-regulated its own expression [11, 19, 20] (Fig. 1.3A). Further studies led to the 

discovery of two transcriptional factors, CLOCK (CLK) and CYCLE (CYC), which were proposed to 

control the expression of tim and per to provide a closure to the feedback loop [21-23]. The expression of 

clock (“clk”) and cycle (“cyc”) were also shown to be auto-regulated by their own protein products (Fig. 

1.3B). 

The basic mechanism of the TTFL-model is dependent on a transcriptional activator that induce the 

transcription of a repressor. The repressor accumulate over time until it reaches levels enough to inhibit its 

own activation [2] (Fig. 1.4). This clock model has been described in a number of species that demonstrate 

circadian activity. The core clock components are not conserved across species, although the mechanisms 

remain similar [24]. 

In mammals, CLOCK (NPAS2) and BMAL1 are the central transcriptional machinery that activate 

expression of per and cryptochrome (“cry”) gene families. PER and CRY protein products accumulate over 

time in the cytoplasm and form complexes that repress CLOCK and BMAL1 transactivation upon 

translocation into the nucleus [25]. A second feedback loop also involves upregulation of REV-ERBα and 
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REV-ERBβ transcription by CLOCK and BMAL1, which in turn accumulate to repress Bmal1 transcription 

[26] (Fig. 1.4). 

In Drosophila, the central clock proteins, CLK and CYC, form the positive elements of the 

transcriptional loop whilst PER and TIM mediate the negative feedback. CLK and CYC form heterodimers 

that positively regulate transcription of per and tim by binding directly to E-box elements found in the per 

and tim promoters. PER and TIM self-antagonize their own expression by binding to the CLK/CYC 

complex to prevent binding to DNA. A second transcriptional feedback loop consists of the transcription 

factor VRILLE (VRI) whose repression alters tim expression as well as the rhythm [24, 27] (Fig. 1.4). 

In Neurospora crassa, the protein product of frequency (“frq”), FRQ, represses its own 

transcription. Protein products of the core clock oscillator, white collar (“wc”), WC1 and WC2, form 

heterodimers to activate expression of frq. FRQ accumulates and translocate into the nucleus to repress its 

own mRNA levels by binding to and interfering with WC1 and WC2 activity [28, 29] (Fig 1.4). 

 

 

 

Figure 1.3: A simplified illustration of the feedback regulation of the period gene. (A) Both period mRNA and 

PER protein oscillate, with PER protein accumulating several hours after the peak in period mRNA. PER protein 
localizes in the nucleus, and the period gene activity oscillates because of PER protein feedback inhibition of its own 
gene. TIM protein, encoded by the timeless gene also oscillates and interacts with PER protein. This interaction is 
critical for PER protein nuclear accumulation and repression of the period gene. (B) CLK and CYK, encoded by the 

clock and cycle genes, are two transcription factors that activate the period gene. Image and legend modified from 
@nobelprize.org. 

 

 

https://www.nobelprize.org/uploads/2018/06/advanced-medicineprize2017.pdf
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Figure 1.4: The TTFL model of cellular timekeeping. The architecture and basic principle (left) of transcription-based 

clocks seems to be conserved among species, although the core clock components differ. The core clock components 
for three different model organisms are shown (right). Image adapted from [2].  
 

1.2.2 Non-transcriptional clocks 

The notion that non-transcriptional processes might drive circadian clocks dates back to the year 

1960. Observations in the single nucleus unicellular alga Acetabularia sp. showed that the enucleated plant 

cell could retain viability over several weeks and exhibited intrinsic rhythms in photosynthesis and 

chloroplast shape in constant conditions [30, 31]. Furthermore, pharmacologically inhibiting cellular 

transcription in this plant did not affect the observed rhythms in the first fortnight of treatment, suggesting 

that transcription is dispensable for generating rhythmicity. Nonetheless, transcription was required to 

maintain the levels of key oscillator components [32]. 

The first intriguing evidence for an autonomous non-transcriptional oscillator came from studies in 

S. elongates by Kondo and colleagues. The core oscillator in this organism consists of three genes – kaiA, 

kaiB and kaiC – which, together with their protein products control the periodic transcription of other genes 

[33-35]. In this system, KaiC is the main oscillator with both auto-kinase and -phosphatase activities; KaiA 

activates the kinase and inhibits the phosphatase activities of KaiC, whilst KaiB antagonizes the activity of 

KaiA. The interactions between these proteins lead to 24-hour oscillations in KaiC phosphorylation state, 

which successively drives rhythmic changes in transcription of genes, including that of the kaiBC operon 

(Fig. 1.5). Subsequent experiments showed that the oscillations in KaiC phosphorylation state was not 

dictated by the rhythmic transcription of the kaiBC operon. A simple biochemical experiment reconstituting 
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the three Kai proteins in a test tube, supplemented with ATP as a source of phosphates showed that the 24-

hour rhythms in phosphorylation and de-phosphorylation of the KaiC protein could persist. This 

observation demonstrated the existence of an oscillator that functioned independent of transcription. 

Nonetheless, transcription was required to maintain the levels of Kai proteins in vivo. 

 Figure 1.5: The cyanobacterial circadian clock. 

The cyanobacterial clock demonstrated that 
phosphorylation of a substrate can exhibit 24-hour 
rhythms in vivo (even upon inhibition of transcription) 
and in vitro, providing the first mechanistic explanation 
for non-transcriptional rhythms. The core oscillator 
consists of three proteins (KaiA, KaiB, and KaiC), 
which via a feedback loop, regulate the expression of 
numerous genes including the kaiBC promoter. Image 

adapted from [36]. 

 

John O’Neil and colleagues showed 

evidence for the existence of a non-transcription 

based clock mechanism that functions together 

with the TTFL model in Ostreococcus tauri [37]. 

They demonstrated that after complete 

termination of transcription in constant darkness, 

O. tauri cultures could restore transcriptional 

rhythms once transferred to constant light. They 

concluded that a non-transcriptional mechanism 

ran in parallel to preserve the phase of the clock, 

since the transfer to light did not alter the phase 

of the oscillations [37]. The subsequent 

discovery of redox oscillations in the levels of hyperoxidized (or sulfinylated) peroxiredoxin proteins in 

human RBCs (which lack nucleus) and O. tauri (even during transcriptional arrest) showed that non-

transcriptional oscillators might not only be restricted to small organisms like cyanobacteria [37, 38]. Later 

on, peroxiredoxin hyperoxidation rhythms have been shown to be conserved across all domains of life [39]. 

These peroxiredoxin hyperoxidation ryhthms, together with oscillations in cellular metabolites such as 

NAD+/NADH, NADP+/NADH and ADP/ATP underlie cellular metabolic clocks [37, 38, 40]. Metabolic 

clocks can function independent of cellular transcription. 

Furthermore, oscillations in cellular biochemical parameters were described and proposed to 

complement the TTFL to explain circadian behavior. For instance, Cornelius and Rensing reported that 

Mg2+-dependent ATPase activity in the membranes of RBCs cultured in vitro was rhythmic [41]. Radha et 

al. showed that in vitro cultures of human platelets exhibited oscillations in the levels of glutathione [42]. 

Edmunds and colleagues described a non-transcriptional feedback loop model for observed rhythms in 

nicotine adenine dinucleotides, NAD+ and NADP+, in Euglena sp. [43]. More recently, circadian 

oscillations in magnesium (Mg2+) and potassium (K+) levels were also observed in cultured human cells 

and O. tauri (even during transcriptional arrest) under constant conditions [44]. 
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1.3 The Yeast Metabolic Cycle as a model metabolic clock 

In budding yeast, Saccharomyces cerevisiae, long period oscillations in oxygen consumption – 

termed Yeast Metabolic Cycle (YMC) – occur over several hours during continuous, glucose-limited 

growth [45-48]. S. cerevisiae, is a unicellular eukaryote that shares many protein homologs with other 

multicellular organisms. 

The most obvious feature of the YMC is high amplitude changes in oxygen consumption in a 

continuous culture system (Fig. 1.6). There exits two main phases of the YMC: a high oxygen consumption 

(HOC) phase where cells rapidly consume oxygen and a low oxygen consumption (LOC) phase where there 

is highest dissolved oxygen levels during the continuous culture (Fig. 1.7). Cyclical changes in the levels 

of more than 50 % of cellular genes also occur during the YMC. Additionally, the YMC appears to regulate 

entry into and exit from the cell division cycle. Strikingly, DNA replication and cell division are precisely 

gated to temporal windows when oxygen consumption decreases, in ways reminiscent of the circadian 

gating of cell division observed in cyanobacteria, mouse liver, and cultured fibroblasts [46, 49-55]. 

Moreover, genetic or chemical perturbation of cellular redox processes with H2O2 can strongly disrupt the 

YMC [47, 49, 56]. 

It is not entirely clear how the oscillations in the YMC are generated and sustained. However, it 

has been proposed that cells build and accumulate storage carbohydrates, such as trehalose and glycogen 

during LOC [51]. Upon accumulating enough of these carbohydrates, a proportion of the yeast population 

are thought to commit to HOC and liquidate their storage carbohydrates in the process, to generate energy 

for cellular biosynthetic processes via aerobic metabolism [57]. Through a mechanism termed, YMC-to-

YMC coupling, it is believed that this metabolically committed yeast sub-population produce and secrete 

metabolites such as ethanol, acetaldehyde and dihydrogen sulfide that serve to shift the YMC phase of other 

cells in order to achieve synchronous oxygen consumption [58-60]. It has also been shown that during the 

YMC, cyclical changes in cell metabolism is coordinated with cellular processes such as gene expression, 

respiration, mitochondria biogenesis, ribosome biogenesis, DNA replication, cell division, fatty acid 

oxidation, glycolysis and vacuole-mediated catabolism [47, 49, 50]. 

Figure 1.6: The Chemostat system for generation of the YMC. The 

bioreactor consists of a culture vessel connected via tubes to a system unit. 
The system unit is equipped with probes to measure pH and dissolved 
oxygen in the culture vessel. Peristaltic pumps are affixed to control media 
in-flow and out-flow. An additional unit serves as a cooing chamber to 
control the operating temperature. Image sourced from @Satorious GmbH. 

 

The YMC represents the yeast metabolic clock and shares 

several features that are conserved with circadian clocks in other 

organisms [40, 61]. These include (1) generation of temperature-

compensated rhythms, (2) exhibition of oscillations that are 

coupled with the cell division cycle, (3) oscillatory period that is 

determined by post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 
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1 (CK1) and glycogen synthase kinase ß (GSKß), and (4) rhythmic oscillations in the cellular redox state 

(eg. hyperoxidation of peroxiredoxin proteins) [40, 47]. On this basis, the YMC serves as a convenient 

model to investigate metabolic clock activity.  

 
 
Figure 1.7: The Yeast Metabolic Cycle. Representative oxygen trace showing the procedure for establishing YMC-

synchronized continuous cultures. Cells inoculated into the fermenter are allowed to grow in a batch phase to maximum 
density until dissolved oxygen is almost depleted. Following starvation for nearly 6 hours, fresh media is pumped into 
the culture vessel at a constant dilution rate of 0.05 h-1, which results in the generation of synchronized self-sustained 
oscillations between fermentative and respiratory metabolism with a period of nearly 5 hours. LOC – low oxygen 
consumption, HOC – high oxygen consumption. 

 
 

1.4 Hydrogen peroxide in redox signaling 

Hydrogen peroxide (H2O2) is a redox metabolite that functions as a secondary messenger in a 

variety of cell signaling events [62]. These include, but not limited to, antimicrobial defense, inflammation, 

cell migration, cell proliferation, angiogenesis and regulation of gene expression [63]. Within the cell, H2O2 

production is regulated, and mediated by enzymes such as superoxide dismutases (SODs), NADPH 

oxidases, as well as the mitochondrial electron transport chain (ETC). Under physiological conditions, 

steady-state cellular H2O2 concentration ranges between approximately 1 - 10 nM, and can rise to 

approximately 0.5 - 0.7 µM during oxidative events such as aerobic respiration and fatty acid ß-oxidation 

[64, 65].  

It is not entirely clear how H2O2 oxidizes protein thiols within cells. This is because most redox-

regulated proteins exist in low abundance within cells. Moreover, most thiol-containing redox-regulated 

proteins generally exhibit poor direct reactivity towards H2O2, with k ≈ 100–102 M-1s-1 [66]. Furthermore, 

peroxiredoxins – the most prominent group of thiol peroxidases –  exhibit the highest intrinsic reactivity of 

any protein towards H2O2, and are predicted to capture nearly all of the H2O2 generated inside cells [67]. In 

addition, peroxiredoxins are highly expressed proteins with overall cytosolic concentration 2 - 3 orders of 

magnitude higher than that of most redox-regulated proteins. Owing to their high abundance and high 
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reactivity, peroxiredoxins are effective competitors for H2O2 compared to all other protein thiols [68]. 

Glutathione peroxidases are also a group of thiol peroxidases that exhibit high reactivity towards H2O2. 

Although the mechanisms that ensure target specificity of H2O2-induced thiol oxidation events are 

not fully resolved, two contrasting but mutually non-exclusive schools of thought explain H2O2 signaling 

within cells: direct oxidation or ‘floodgate’ and facilitated oxidation or ‘relay’ hypotheses. 

  

1.4.1 Direct oxidation or ‘floodgate’ hypothesis  

The ‘floodgate’ hypothesis suggests that at sources of generation, H2O2 accumulates to high levels 

and directly mediates oxidation of protein thiols. Here, peroxiredoxins and other thiol peroxidases are 

viewed as competitors or scavengers of H2O2, thereby thwarting direct H2O2-mediated oxidation of protein 

thiols [63]. Therefore for direct thiol oxidation to occur, peroxiredoxins must be temporarily rendered 

inactivate by posttranslational modifications such as hyperoxidation or phosphorylation. Under such 

conditions, H2O2 locally accumulates to levels that allow for selective and direct oxidation of protein thiols 

with modest intrinsic H2O2 reactivity (Fig. 1.8). This hypothesis makes two predictions: (1) upon H2O2, 

cysteine sulfenic acid (Cys-SOH) should form directly on target protein thiols, and (2) upon deletion of 

peroxiredoxins, H2O2-induced protein thiol oxidation should increase. Evidence for direct H2O2-mediated 

thiol oxidation was described in A431 human epidermoid carcinoma cells. The Rhee lab showed that 

transient increase in the intracellular concentration of H2O2 either by exogenous addition or via epidermal 

growth factor (EGF) signaling caused inactivation of recombinant protein-tyrosine phosphatase 1B 

(PTP1B) in vitro by oxidizing its catalytic site cysteine, most likely to sulfenic acid [69]. Although the thiol 

state of peroxiredoxins was not analyzed in their study, it is plausible that peroxiredoxins were hyperoxized 

by the amounts of H2O2 used. In a related study, they also showed that localized inactivation of membrane-

associated PrxI by phosphorylation in response to EGF leads to local accumulation of H2O2 for cell 

signaling [70]. 

 
 
Figure 1.8: Floodgate hypothesis of H2O2 signaling. This model of signaling position peroxiredoxins as scavengers 

of H2O2, which frustrate thiol protein oxidation within cells. 

 

1.4.2 Facilitated oxidation or ‘relay’ hypothesis 

The ‘relay’ hypothesis suggests that the levels and exceptional intrinsic reactivity of thiol 

peroxidases to H2O2 position them as effective recipients and competitors for H2O2, above all other potential 

protein thiols [71]. These proteins must therefore receive oxidizing equivalents from H2O2 via the action of 

thiol peroxidases – which act as transmitters –, in order to become oxidized. Here, thiol peroxidases are 
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viewed as enablers of protein thiol oxidation, not as competitors. As such, inactivation by hyperoxidation 

or phosphorylation inhibits this ‘relay’ function and renders target protein thiols reduced (Fig. 1.9). In 

contrast to the ‘floodgate’ model, this hypothesis predicts that: (1) upon H2O2, Cys-SOH should not form 

directly on target protein thiols, as only thiol peroxidases are prone to react directly with H2O2, and (2) upon 

deletion of thiol peroxidases, H2O2-induced protein thiol oxidation should decrease.  

 
 
Figure 1.9: Relay hypothesis of H2O2 signaling. This model of signaling positions peroxiredoxins as facilitators or 
enablers of protein thiol oxidations, without which thiol protein oxidations barely occur within cells. (A) Peroxiredoxin-
mediated oxidation of protein thiol. (B) Protein thiol oxidation is inhibited upon peroxiredoxin hyperoxidation. 

 

Evidence for the ‘relay’ hypothesis has been demonstrated in yeast and mammalian cells. Recent 

studies by Stöcker and colleagues suggest that mammalian proteins such as ANXA2, ASK1 and CBS 

mostly depend on the relay function of PRDX1 and PRDX2 in order to facilitate their thiol oxidation [72]. 

It has also been shown that PRDX2 transfers oxidizing equivalents to the STAT3 transcription factor via a 

redox relay [73] (Fig 1.10). In S. cerevisiae, the thiol peroxidase Orp1 forms mixed disulfides with the 

Yap1 transcription factor, leading to the activation of Yap1 via an intramolecular disulfide [74]. In S. 

pombe, the 2-Cys peroxiredoxin, Tpx1, activates the p38/JNK homolog, Sty1, upon H2O2 [75]. 

 
 
Figure 1.10: Example of endogenous peroxiredoxin redox relay. Redox-regulated protein, STAT3, receive 

oxidizing equivalents from a peroxiredoxin, PRDX2. The oxidized STAT3 translocate into the nucleus to mediate 
transcription of genes involved in cell growth and apoptosis. The oxidized STAT3 can be reduced by thioredoxin. Image 
modified from [73] 
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1.5 Peroxiredoxins: structure, catalytic mechanism and 

function 

Budding yeast possesses eight thiol peroxidases, consisting of three cysteine-dependent glutathione 

peroxidases (Gpx1, Gpx2, Gpx3/Orp1) and five peroxiredoxins. Peroxiredoxins (Prxs) are a very large and 

highly conserved family of thiol peroxidases that are distributed across cellular compartments: three 

cytosolic (i.e. Tsa1, Tsa2 and Ahp1) one nuclear (i.e. Dot5) and one mitochondrial (i.e. Prx1). Of all thiol 

peroxidases, peroxiredoxins are the most reactive towards H2O2 with rate constants, k ≈ 107–109 M−1 s−1 

[76-79]. 

A highly conserved cysteine (Cys) residue called the ‘peroxidatic’ cysteine (CP) acts as the site of 

oxidation by peroxides and mediates catalytic activity of peroxiredoxins [80, 81]. During catalysis, the CP 

performs a nucleophilic attack on one of the oxygens in H2O2, which leads to the oxidation of the CP 

sulfhydryl (CP-SH) to a sulfenic acid (CP-SOH) intermediate. Depending on the number of Cys residues 

involved in the catalysis, peroxiredoxins can be classified into either 1-Cys or 2-Cys. In 2-Cys 

peroxiredoxins, the CP-SOH reacts with another Cys residue, called the ‘resolving’ cysteine (CR) to form a 

disulfide that is subsequently reduced by an appropriate electron donor such as thioredoxins (Trxs) to 

complete the catalytic cycle. One-Cys peroxiredoxins (e.g. Prx1) lack a CR and therefore the CP-SOH is 

reduced by small molecule antioxidants such as glutathione [82]. 

The location of the CR residue in 2-Cys peroxiredoxins further results in two subclasses: typical 2-

Cys and atypical 2-Cys peroxiredoxins [83, 84]. Typical 2-Cys peroxiredoxins (e.g. Tsa1, Tsa2) are 

catalytically active as homodimers with a CP and CR per monomer. The CP-SOH intermediate on one 

monomer is resolved by the CR from the other monomer to form an intermolecular disulfide (S-S) bond. In 

atypical 2-Cys Prxs (e.g. Ahp1), a CR from the same subunit resolves the CP-SOH intermediate to form an 

intramolecular disulfide bond. 

The CP-SOH intermediate of 2-Cys peroxiredoxins can undergo further oxidation to generate 

reversible sulfinic (CP-SO2H) and irreversible sulfonic (CP-SO3H) acid forms [85-87]. This phenomenon 

results in catalytic peroxiredoxin inactivation and is termed hyperoxidation. The CP-SO2H form can be 

reactivated by sulfiredoxin (Srx) through an ATP-dependent reduction reaction [88] (Fig. 1.11). 
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Figure 1.11: Catalytic mechanism of typical 2-Cys Peroxiredoxins. Upon encountering H2O2, the peroxidactic 

cysteine of peroxiredoxins undergo peroxidation to form sulfenic acid (CP-SOH), followed by disulfide bond (S–S) 
formation mediated by the resolving cysteine (CR). The peroxiredoxin is recycled via a step catalyzed by thioredoxin 
(Trx). However, upon further exposure to H2O2, the sulfenic acid intermediate can be oxidized to sulfinic and sulfonic 
acid forms (CP-SO2/3H). The overoxidized CP-SO2H can be recycled through ATP-dependent reduction by sulfiredoxin 
(Srx). The hyperoxidized CP-SO3H form is irreversible. 

 

 

1.6 Genetically encoded thiol peroxidase-based biosensors 

Taking advantage of naturally occurring redox relays and the extreme sensitivity of the CP-SH of 

thiol peroxidases towards H2O2, genetically encoded H2O2 fluorescent sensors have been developed by 

fusing a thiol peroxidase to redox sensitive green fluorescent protein (e.g. roGFP2) [89-91]. Typical 

examples of such biosensors include the roGFP2-Orp1, roGFP2-Tsa1, roGFP2-Tsa2, roGFP2-PRDX2 [90-

92]. RoGFP2 is based upon an enhanced GFP, modified to contain two cysteine residues capable of forming 

a disulfide bond. These biosensors work on the principle that upon encountering oxidizing equivalents, the 

thiol peroxidase gets oxidized and transfers its oxidation state via a multi-step process to the cysteine 

residues in roGFP2 (Fig. 1.12). RoGFP2 exhibits two excitation maxima at 405 nm and 488 nm when 

fluorescence emission is monitored at 510 nm [93]. The two excitation wavelengths permit ratiometric 

measurements, which renders the sensor readout independent of changes in sensor concentration. 

Together with my colleagues, we developed and applied a more sensitive (approximately 20-fold) 

variant of the roGFP2-Tsa2 sensor, roGFP2-Tsa2∆CR, in the measurement of ‘basal’ endogenous H2O2 

levels in yeast [90]. We fused the thiol specific antioxidant Tsa2, a typical 2-Cys peroxiredoxin from S. 

cerevisiae, deleted for its resolving cysteine (i.e. Tsa2∆CR), to roGFP2. We deleted the resolving cysteine 

of the Tsa2 moiety in order to limit the formation of Tsa2 disulfide and subsequent reduction by 

thioredoxins. This ensures direct transfer of oxidation from the peroxidatic cysteine of Tsa2∆CR to roGFP2 

and enhances the fluorescence signal (i.e. sensitivity). The roGFP2-Tsa2∆CR biosensor specifically 
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measures H2O2 levels and does not significantly contribute to cellular H2O2 scavenging. RoGFP2 itself 

exhibits poor direct reactivity towards H2O2; hence, any H2O2-driven oxidation of roGFP2 is mediated by 

the Tsa2∆CR moiety. However, roGFP2 reduction is mediated by cellular glutaredoxins (Grx) using 

glutathione (GSH).  

Functionally, roGFP2-thiol peroxidase fusion biosensors represent an artificial reconstitution of an 

entire thiol peroxidase redox relay. However, instead of a transcriptional response upon oxidation, as is the 

case with natural relays, a fluorescence response is elicited in the context of the biosensor. Excess or non-

physiological levels of H2O2 can hyperoxidize Tsa2∆CR. When the CP-SH of the Tsa2∆CR becomes 

hyperoxidized to the sulfinic or sulfonic acid, transfer of oxidizing equivalents to roGFP2 is prevented and 

the sensor ceases to function as an H2O2 sensor. Upon Tsa2∆CR inactivation, roGFP2 equilibrates with 

GSH/GSSG via the action of glutaredoxins. A reduced roGFP2 in this scenario does not represent an 

absence of, or low, H2O2 levels. 

I have relied on the capacity of the roGFP2-Tsa2∆CR sensor to make long-term, non-disruptive, 

real-time, fully dynamic H2O2 measurements in yeast, to answer the outstanding question of whether the 

peroxiredoxin hyperoxidation rhythms that underlie circadian and ultradian metabolic clocks have any 

functional relevance. I have re-engineered the sensor and expressed it from the genome of prototrophic 

yeast to measure cyclical H2O2 changes and evaluate peroxiredoxin activity during the YMC. 

 

 
 
Figure 1.12: Mechanism of the roGFP2-Tsa2∆CR sensor. Diagram to illustrate the mechanism of the roGFP2-

Tsa2ΔCR sensor, which is based on the principle of a thiol peroxidase-based redox relay. All cysteine residues of the 
sensor remain in a reduced thiolate state in the absence of H2O2. Upon encountering H2O2, the peroxidactic cysteine 
(CP-SH) of the Tsa2∆CR performs a nucleophilic attack to extract oxidizing equivalents from H2O2. The oxidizing 
equivalents are transferred via a two-step process resulting in the formation of an intramolecular roGFP2 disulfide bond. 
The oxidized roGFP2 can be reduced by glutaredoxins (Grx) using glutathione (GSH). 
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1.7 Crosstalk between the cellular redox state, metabolism, 

cell cycle and circadian/ultradian clocks 

 

1.7.1 Reciprocal regulation of clock mechanism by redox homeostasis 

Preliminary evidence for the existence of crosstalk between metabolism, redox homeostasis and 

circadian clocks was demonstrated using a non-physiological in vitro biochemical assay. In their studies, 

Rutter et al. showed that nuclear NAD+/NADH and NADP+/NADPH ratios influence the transcriptional 

activity of the CLOCK (NPAS2)/BMAL1 heterodimer [94]. It has also been shown that oscillations in 

NAD(P)+ and NAD(P)H cofactors accompany peroxiredoxin-sulfinylation rhythms that underlie metabolic 

clocks [37, 38]. 

Redox changes regulate expression of clock-related genes in multiple systems. In S. cerevisae, the 

glutathione peroxidase, Orp1, relays signals from H2O2 to the Yap1 transcription factor to elevate 

antioxidant response systems [74]. Yap1 shuttles in and out of the nucleus during the YMC [47]. In 

zebrafish, H2O2 generated from light regulates the expression of clock genes, cry1 and per2, via the action 

of catalase [95]. In N. crassa and cyanobacteria, H2O2 influences the daily expression pattern of clock and 

clock-controlled genes involved in coordinating photosynthesis [96-98]. Furthermore, the redox sensor, 

light-dependent period A (LdpA) modulates cyanobacterial circadian clock period length by controlling the 

levels of CikA and KaiA, in response to light [99, 100]. Oscillations in overexpressed mammalian PRDX2 

nuclear levels dampen oscillations in BMAL1 in HaCaT keratinocytes [101, 102]. Hyperoxidation of 

mitochondrial PRDX3 has also been shown to be essential for circadian rhythms in adrenal steroidogenesis 

[103]. 

Alternatively, clock genes can regulate the expression of multiple redox systems. For instance, 

wildtype Canton S flies exhibit oscillations in glutamate-cysteine ligase and glutathione S transferase D1 

transcript levels, which is abolished in mutants lacking the per and cyc clock genes [104]. D. melanogaster 

flies exhibit diurnal rhythms in susceptibility to H2O2, which are abolished in per gene mutants [105]. A. 

thaliana exhibits diurnal rhythms in the generation and scavenging of H2O2, which is perturbed in mutants 

of the core clock regulator, circadian clock-associated 1 (CCA1) [106]. Finally, it was shown that Bmal1-/- 

mice accumulate higher ROS levels compared to their wildtype counterparts, which impinges on aging 

pathologies [107]. 

Although abundance of evidence for reciprocal crosstalk between cellular metabolism, redox 

homeostasis and circadian/ultradian systems exist, the underlying mechanisms by which redox changes 

may govern circadian/ultradian rhythms are not fully understood. 
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1.7.2 Redox/metabolic state versus cell division cycle 

In order to grow, living organisms undergo cell division. During this highly ordered and regulated 

process, living cells give rise to either two (ie. somatic or mitotic division) or four (i.e. gametic or meiotic 

division) daughter cells. S. cerevisae undergoes mitotic cell division, which is ordered in four phases: G1 

(Gap1), S (Synthesis), G2 (Gap2) and M (Mitosis). In G1 the cell increases in size until it reaches the 

checkpoint at which critical decisions to undergo division, or not, is taken.  This ‘committed step’ is termed 

‘restriction point’ in mammals and ‘Start’ in budding yeast [108-111]. During the S phase, cellular DNA 

is duplicated and cells proceed to segregate this DNA into two daughter cells during the M phase. In S 

phase, the fidelity of DNA replication is controlled by checkpoint mechanisms that become activated to 

repair damaged DNA if replication forks stall [112]. Between the transition from S to M phase is a G2 that 

is less distinct in S. cerevisae [113].  

It has been suggested that the decision to undergo cell division is determined by the cellular 

metabolic state (or metabolic oscillator), and governed by the availability of macromolecules and energy 

to power cells through the process [114]. For instance, budding yeast cell cycle ‘Start’ is coordinated with 

the liquidation of storage carbohydrates and their daughter cells spend more time in G1, accumulating 

biomass until they have reached a critical size before committing to cell division [57, 115].  

Several reports indicate that the cellular redox state is a key regulator of the cell cycle, i.e. transient 

oxidative mechanisms control key cell cycle regulatory proteins possibly via thiol-disulfide exchanges at 

critical cysteine residues [116-119]. It is believed that low levels of cellular oxidation, possibly from 

superoxide (O2
.-) and H2O2, are required for proper mitogenic signaling [117, 120, 121]. In mammalian 

cells, this oxidative mechanism is thought to control the activities of cyclin-dependent kinases (Cdks) and 

the retinoblastoma protein at G1, to permit entry into S phase for DNA replication [122-124]. Thereafter, a 

more general reduction of the cellular environment is necessary to enable cells progress to the G2 and M 

phases [125]. Moreover, it has been suggested that the G1 phase is characterized by low cellular GSH, 

which levels must necessarily increase to facilitate cell cycle progression from G1 to S [126]. 

Although redox metabolism cannot be divorced from cell cycle regulation, the identification of 

redox-regulated proteins or thiol peroxidase relays relevant to each cell cycle phase remains an enormous 

challenge. 
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1.8 Aims of this thesis 

Circadian and ultradian peroxiredoxin hyperoxidation rhythms exist across the three domains of 

life, including during the yeast metabolic cycle (YMC), and have been proposed as the mechanistic basis 

for cellular metabolic clocks [37-40]. However, to date it has remained largely unclear if peroxiredoxins 

are involved in cellular timekeeping or are merely convenient reporters of metabolic oscillations. The aims 

of this thesis were to investigate (1) whether peroxiredoxins are active determinants of cellular timekeeping, 

using the yeast metabolic clock as a model, and (2) whether peroxiredoxins are important for the 

coordination between metabolic clocks and the cell division cycle. My specific objectives included the 

following: 

a) Establishment and characterization of YMC-synchronized cultures. 

b) Engineering prototrophic yeast strain capable of expressing the roGFP2-Tsa2∆CR biosensor from 

its genome. 

c) Interrogating whether H2O2 levels, peroxiredoxin oxidation, and the oxidation of peroxiredoxin 

target protein(s) oscillate during the YMC. 

d) Determining whether thiol disulfide changes influence or regulate metabolic clock function. 

e) Investigating if peroxiredoxins are crucial for YMC oscillation. 

f) Verifying whether cell division is synchronized with the YMC, and if metabolic oscillations are 

crucial for regulating cell cycle entry and exit. 

g) Examining whether loss or inactivation of peroxiredoxins affects coupling of cell metabolism to 

the cell division cycle.  
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2 RESULTS 

Circadian and ultradian oscillations in the level of hyperoxidized peroxiredoxin proteins underlie 

cellular metabolic clocks. However, whether peroxiredoxins are important components of the clock 

mechanism or just convenient markers of oscillatory redox metabolism remained enigmatic. In this study, 

I sought to investigate whether peroxiredoxins are active participants in cellular timekeeping, using the 

YMC clock model. For this purpose, I established YMC-synchronized cultures and interrogated the role of 

peroxiredoxins using genetic and biochemical approaches. 

 

2.1 Establishment of YMC-synchronized cultures 

When prototrophic yeast cells are grown under nutrient-limited conditions in continuous culture 

using chemostat, they exhibit high amplitude periodic changes in oxygen consumption. These self-sustained 

oscillations are termed the Yeast Metabolic Cycle (YMC) and display periods ranging from approximately 

40 minutes to over 10 hours, depending on the type of strain as well as growth conditions [46, 47, 52, 127, 

128]. The YMC is the yeast ultradian metabolic clock, which consists of oscillations in cell metabolism, 

levels of cellular transcripts and the cell division cycle [47, 49, 56]. I used the YMC model because it shares 

features that are conserved with circadian rhythms in mammalian cells. The YMC exhibits oscillations that 

are temperature-compensated and are coupled with the cell division cycle. It also displays rhythmic 

oscillations in the cellular redox state (e.g. hyperoxidation of peroxiredoxin proteins) [40, 47].  

 

2.1.1 The YMC consists of synchronized respiratory oscillations 

To use the YMC as the model metabolic clock for my study, I cultured yeast cells under the 

chemostat conditions described by Tu et al. [47] with slight modifications, as described in Materials and 

Methods. After growth in a batch phase, starvation for at least 6 hours and continuous feed-in of fresh media 

into the culture vessel at a dilution rate of 0.05 h-1, I observed self-synchronized oscillations in oxygen 

consumption by the yeast population. These oscillations consisted of long phases of low oxygen 

consumption (LOC) and short phases of high oxygen consumption (HOC), which persisted as long as media 

was available. The amplitude of each oscillation ranged between 60 – 80% of dissolved oxygen and the 

period of each wildtype YMC lasted approximately 5 hours (Fig. 1.7). Blocking respiratory activity with 

potassium cyanide (KCN) immediately halted oxygen consumption and returned YMC-synchronized cells 

to a ‘starvation mode’ that lasted until KCN was diluted out of the culture vessel (Fig. 2.1A). KCN inhibits 

complex IV of the mitochondrial electron transport chain. Addition of a bolus of respiratory substrate, 

ethanol, at the start of a LOC phase immediately triggered oxygen consumption that lasted for a longer 

period until the substrate was depleted (Fig. 2.1B). However, an inert solvent such as dimethyl sulfoxide 

(DMSO) had no observable effect on the YMC (Fig. 2.1C). Taken together, I have successfully established 
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the YMC for my study and shown that the oscillations in oxygen consumption observed during the YMC 

are largely respiratory in nature. 

 

 
 
Figure 2.1: The yeast metabolic cycle consists of respiratory oscillations. (A) Representative oxygen trace 

showing how inhibition of respiration with 0.5 mM KCN immediately stops dissolved oxygen consumption and 
terminates oscillatory YMC for a prolonged period. Oscillatory behavior returns only after KCN is diluted out of the 
vessel. (B) Representative oxygen trace showing how ethanol, a respiratory substrate, forces synchronized cells to 
switch from fermentative to respiratory metabolism thereby inducing rapid dissolved oxygen consumption. (C) 

Representative oxygen trace showing that the organic solvent, DMSO, has no observable effect on yeast respiratory 
oscillations. All experiments were repeated at least twice with completely independent YMC-synchronized cultures.  
 
 

2.1.2 Chemical inhibition of gene translation perturbs the YMC 

It has been suggested that during the YMC, metabolic processes are temporally compartmentalized 

into phases that are tightly coordinated with gene expression and cell division [47, 50]. Gene expression 

analysis by microarray showed that periodic changes in the levels of more than 50% of cellular transcripts 

occur during the YMC. These periodic genes were grouped into three clusters. Based on these gene clusters, 

the YMC was classified into three phases: reductive building (RB), reductive charging (RC) and oxidative 

(Ox) [47]. 

I asked whether interfering with gene translation would have any impact upon the YMC. To answer 

this question, I performed chemical inhibition of translation using cyclohexamide and chloramphenicol. 

Cyclohexamide interferes with whole cell protein synthesis by blocking translation elongation whilst 

chloramphenicol specifically inhibits mitochondrial protein synthesis. Addition of cyclohexamide at the 

start of LOC initially triggered transient oxygen consumption and steadily slowed down oxygen 

consumption until the cells assumed a ‘starvation mode’ (Fig. 2.2A). Similarly, addition of chloramphenicol 

at the start of LOC destabilized the YMC and led to loss of oscillations in oxygen consumption (Fig. 2.2B).  
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In summary, these observations indicate that interfering with gene translation affects the YMC. Thus, 

cellular transcription/translation cycles are essential components of the YMC. 

 

 

Figure 2.2: The YMC is coupled to cellular transcription/translation programs. (A) Representative oxygen trace 

showing that blocking cytosolic translation with 0.125 mg/ml cyclohexamide (dissolved in sterile milliQ-H2O) has a 
prolonged effect of inhibiting dissolved oxygen consumption and halting oscillatory YMC. (B) Representative oxygen 

trace showing that inhibition of mitochondrial translation with 0.5 mg/ml chloramphenicol (dissolved in 0.12% DMSO) 
destabilizes the YMC. All experiments were repeated at least twice with completely independent YMC-synchronized 
cultures. 
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2.2 The YMC is responsive to and modulated by chemical 

redox changes 

The YMC primarily exhibits rhythms in consumption of oxygen, an important redox molecule. The 

levels of several redox enzymes and metabolites also oscillate during the YMC. Moreover, genetic or 

chemical disruption of redox processes affects the YMC [49, 56]. These observations therefore position the 

YMC as a “redox clock”. Hence, I sought to ascertain how chemical perturbation of cellular redox processes 

would influence the YMC that I have established. In their study, Chen et al. showed that H2O2 and 

methionine advance the phase of the YMC of wildtype cells from RC to the Ox phase [49]. In this study, I 

applied the thiol reductant, dithiothreitol (DTT) and the thiol oxidant, N,N,N′,N′-

tetramethylazodicarboxamide (diamide) to wildtype YMC-synchronized cultures. 

Addition of DTT at the start of LOC shortened time spent in LOC and facilitated switch to HOC in 

a concentration dependent manner. With 5 mM DTT, cells were forced to stay in a HOC phase for more 

than 10 hours, suggesting that a thiol reductant favors high oxygen consumption (Fig. 2.3). 

 

 
 
Figure 2.3: Reduction facilitates switch to high oxygen consumption. Representative oxygen trace showing the 

response of the YMC to the addition of DTT at the start of LOC, in a concentration dependent manner. With 5 mM DTT, 
oxygen consumption was sustained for a prolonged period. All experiments were repeated at least twice with completely 
independent YMC-synchronized cultures. 

 

In contrast, addition of diamide at the start of LOC extended the duration of the LOC phase and 

delayed transition to HOC, in a concentration dependent manner (Fig. 2.4A-B). This suggests that a thiol 

oxidant promotes low oxygen consumption. Intriguingly, cells just about to initiate HOC could be forced 

to further stay longer in LOC for approximately 2 hours by addition of 2 mM diamide towards the end of 
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LOC (Fig. 2.4C). Taken together, these observations show that cellular respiratory rate, and thus the YMC, 

is responsive to and perhaps regulated by cellular redox changes. 

 

 
 
Figure 2.4: Oxidation delays switch to high oxygen consumption. (A) Representative oxygen trace showing the 
response of the YMC to the addition of diamide at the start of LOC, in a concentration dependent manner. (B) Table 

showing the period of a cycle of the YMC before and after addition of diamide at the indicated concentrations in (A). 
(C) Representative oxygen trace showing the response of the YMC to the addition of 2 mM diamide towards the end 

of LOC. Diamide delays switch to the HOC phase. All experiments were repeated at least twice with completely 
independent YMC-synchronized cultures. 
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2.3 Cyclical changes in cellular H2O2 occur during the YMC  

Hydrogen peroxide (H2O2) is an important cellular redox metabolite that functions as a second 

messenger in a variety of cell signaling pathways and can elicit large-scale transcriptional responses [129]. 

By exogenous addition to YMC-synchronized cultures, H2O2 has been suggested as a signal that advances 

YMC phase and controls the gate for cell cycle entry [49]. However, until recently, no study had reported 

whether oscillations in H2O2 existed in circadian and ultradian metabolic clocks, under physiological 

conditions. I hypothesized that as a “redox clock”, oscillations in cellular H2O2 levels could occur during 

the YMC. 

2.3.1 Integration of roGFP2-Tsa2∆CR biosensor into yeast genome 

To test the above hypothesis, I integrated the roGFP2-Tsa2∆CR biosensor into yeast genome (Fig. 

2.5A). This was done in part to circumvent the non-suitability of amino acid-based plasmid selection in the 

prototrophic CEN.PK yeast background. I specifically replaced the constitutive TEF promoter with a 

stronger expressing GPD promoter, coupled to a Kanamycin resistance marker gene (i.e. KanMX4) at its 

N-terminus for selection. This construct was re-constituted in a p415 plasmid and amplified by PCR using 

primer sequences that allowed integration into the intergenic region between hexose transporters HXT6 and 

HXT7, just upstream of the conserved promoter region for HXT7 [130]. This unusually long (~3kb) region 

was chosen in part because there are several other hexose transporters in the yeast genome, which render 

them functionally redundant in case of damage [131]. Moreover, this is the only region of the yeast genome 

that has been suggested to have no known function [47]. Successful construction and integration of the 

genomic sensor was confirmed by PCR and sequencing (Appendix A1). I could also confirm sensor 

expression and cytosolic localization by fluorescence microscopy (Fig. 2.5B). Additionally, the sensor 

exhibited an excitation spectra characteristic of roGFP2 with maxima at 405 (fully oxidized) and 488 nm 

(fully reduced), at an emission wavelength of 510 nm (Fig. 2.5C). The genomic sensor was also sensitive 

to changes in the cellular redox environment due to changing nutrient and oxygen availability (Fig. 2.5D). 

Furthermore, the sensor could respond to a wide range of redox chemicals including H2O2, the 

organic tert-butyl hydroperoxide (t-BOOH), the thiol oxidant diamide and thiol reductant DTT, in a 

concentration dependent manner (Fig. 2.6). To ascertain whether the sensor was functional during the 

YMC, I collected cells from different phases of a YMC-synchronized culture of the biosensor expressing 

cells and treated them with different concentrations of H2O2 in a plate reader format. The biosensor was 

oxidized upon H2O2 in a concentration dependent manner, suggesting that the biosensor was active under 

continuous culture conditions in the fermenter (Appendix A2). Taken together, these results show that the 

genomic expression of the roGFP2-Tsa2∆CR biosensor was successful. This sensor also afforded me the 

opportunity to study peroxiredoxin function in vivo since roGFP2 redox state was dependent upon a 

functional Tsa2∆CR. More so, changes in roGFP2 redox state could reflect changes in the redox state of 

endogenous peroxiredoxin relay(s). 
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Figure 2.5: Construction and characterization of a genomically integrated roGFP2-Tsa2∆CR sensor-expressing 
yeast strain. (A) Scheme illustrating the cloning strategy for generating CEN.PK113-1A strain with a genomically 
integrated construct for roGFP2-Tsa2ΔCR biosensor expression. (B) Fluorescence microscopy to show cytosolic 
localization of roGFP2-Tsa2ΔCR biosensor. (C) Fluorescence excitation spectra of CEN.PK cells expressing roGFP2-

Tsa2ΔCR. Fully oxidized and fully reduced spectra were obtained by treating the cells with 20 mM diamide and 100 mM 
DTT respectively. (D) Sensor oxidation changes with cell density in glucose media. The degree of roGFP2 oxidation 

(OxD) was measured from YPD culture of the sensor-expressing strain every 2 hours. Data represent mean of three 
independent repeats, whilst error bars represent standard deviation. Note: (i) to (iv) in (A) represent primers P1 to P4 
in Materials and Methods. 
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Figure 2.6: Genomically integrated roGFP2-Tsa2∆CR sensor is sensitive to a variety of redox chemicals. 
Response of the roGFP2-Tsa2ΔCR biosensor, expressed in CEN.PK cells, to the addition of (A) H2O2, (B) t-BOOH, (C) 
diamide, and (D) DTT, at the indicated concentrations. All experiments were performed in triplicates. 

 

2.3.2 Cyclical H2O2 changes are synchronized to YMC phase 

To ascertain whether basal levels of H2O2 changed during the YMC, I cultured the sensor-

expressing yeast strain under conditions for metabolic cycling. To monitor sensor fluorescence in real-time, 

I developed a system in-house, consisting of a flow cell placed in the chamber of a spectrofluorimeter and 

connected via tubes to the fermenter culture vessel (Fig. 2.7A). With the aid of a peristaltic pump, I drove 

cells from the culture vessel through the flow cell and back into the vessel. I measured the fluorescent 

intensity of cells at 425 nm and 488 nm excitation and 510 nm emission at 30 s intervals. By computing the 

ratio between fluorescent intensities at 425 nm and 488 nm, I could qualitatively monitor oxidation of the 

biosensor during the YMC. By overlaying biosensor fluorescence ratios and oxygen saturation curves from 

three metabolic cycles, I observed that oscillations in roGFP2 oxidation state accompanied the YMC. 

RoGFP2 oxidation peaked at the entry into LOC, whilst a reduction of roGFP2 correlated with the switch 

from LOC to HOC (Fig. 2.7B). 

However, the signal to noise ratio from the real-time fluorescence measurements was high. As such, 

it was plausible that the observed oscillations in roGFP2 redox state was an artifact. To verify these 

oscillations in roGFP2 oxidation state, I collected samples from specific points of the YMC and analyzed 

their roGFP2 redox state via an N-Ethylmaleimide (NEM)-based trapping technique (Fig. 2.7C), as 
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described in Materials and Methods. NEM irreversibly alkylates cysteine residues to protect the redox state 

of protein thiols. By repeating this experiment for three independent metabolic cycles, calculating degree 

of sensor oxidation (OxD) and superimposing the results over one representative YMC, I could recapitulate 

the observations made with the flow-cell based real-time measurements (Fig. 2.7D). Taken together, these 

data demonstrate that oscillations in basal H2O2 levels occur during the YMC. Moreover, the redox state of 

peroxiredoxins as well as peroxiredoxin target protein(s) during the YMC is rhythmic. 

 
 
Figure 2.7: Oscillations in basal H2O2 levels during the YMC. (A) Setup of an automated system to monitor 
fluorescence of sensor-expressing cells during the YMC. (B) Representative trace of dissolved oxygen levels and 
roGFP2 fluorescence excitation ratio over three complete YMC cycles. (C) Experimental workflow for measuring 
steady-state roGFP2 oxidation by NEM-trapping, in a plate reader format. (D) The degree of roGFP2-Tsa2ΔCR 

oxidation measured from YMC-synchronized culture samples at the indicated time points, based on the NEM-trapping 
technique in (C). Data points represent average of three independent experiments while error bars represent standard 
deviation. Data points of percent oxygen saturation represent phase of YMC at which cell samples were taken. 
 
 

2.3.3 H2O2 is not important for population synchrony 

A model for signaling events during the YMC posits that liquidation of storage carbohydrates by a 

fraction of cells in HOC leads to the secretion of metabolites that trigger other cells to synchronously 

consume oxygen. These metabolites include ethanol, acetaldehyde and dihydrogen sulfide [58, 59, 115]. 

Having observed that H2O2 oscillates during the YMC, I asked whether it was secreted by cells into the 

medium to serve as a trigger for other cells to synchronously consume oxygen. To do this, I injected 

12.5µg/ml of catalase into the culture vessel. Surprisingly, the YMC remained unperturbed for the entire 

course of fermenter run (Fig. 2.8). This suggests that H2O2, even if exogenously secreted by cells into the 

surrounding medium, is not important for YMC synchronization. 
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Figure 2.8: Effect of exogenous catalase on the YMC. Catalase solution at a final concentration of 12.5 µg/ml was 

added into the culture vessel at the start of a LOC phase as indicated, for exogenous H2O2 scavenging. 

 

2.4 A signaling role for H2O2 and peroxiredoxins during the 

YMC 

Having ruled out an inter-cellular communication function for H2O2, I asked whether H2O2 served 

an endogenous function during the YMC. If so, could peroxiredoxins act as mediators in such signaling 

event? 

 

2.4.1 High exogenous H2O2 induces metabolic switch to HOC 

To ascertain an endogenous role during the YMC, I added boli of H2O2 at different concentrations 

to the start of LOC of wildtype YMC-synchronized cultures. While 0.5 and 1 mM had no significant effect 

on the YMC, 5 mM H2O2 rapidly and transiently induced HOC, which lasted nearly 2 h before return to the 

LOC phase (Fig. 2.9A). However, addition of H2O2 to the culture vessel resulted in molecular oxygen 

production due to endogenous catalase activity, which could be detected by the dissolved oxygen (DO) 

probe, and thus interfered with my measurements. To circumvent this “side-effect”, I applied the organic 

hydroperoxide t-BOOH. Unlike H2O2, t-BOOH cannot be catabolized by catalase. Interestingly, I observed 

that 0.1 and 0.5 mM t-BOOH had no significant effect on the YMC, whilst 1 mM t-BOOH rapidly induced 

premature switch to HOC similar to 5 mM H2O2 (Fig. 2.9B). In sum, these observations indicate that 

peroxides can induce premature LOC-to-HOC transition when applied to YMC-synchronized cultures at 

high non-physiological concentrations. 

 

2.4.2 High peroxide-induced switch to HOC during YMC is phase-

independent 

Having observed the induction of LOC-to-HOC transition upon high peroxide addition at the start 

of LOC of the YMC, I asked whether this response was phase-specific or could occur at any point of the 

YMC. To address this, I added either 5 mM H2O2 or 1 mM t-BOOH to different points of the YMC. 

Surprisingly, HOC could be induced independent of the phase of peroxide addition (Fig. 2.10).  
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Figure 2.9: Effect of peroxides on the YMC. (A) Representative responses of YMC-synchronized culture of wildtype 
cells to the addition of H2O2 at the indicated concentrations. (B) Representative responses of YMC-synchronized 

cultures of wild-type cells to the addition of t-BOOH at the indicated concentrations. 
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Figure 2.10: High amounts of peroxide can induce switch to HOC at any phase of the YMC. (A) Points on the 

YMC at which treatments were carried out. (B) Representative responses of YMC-synchronized cultures of wildtype 
cells to the addition of 5 mM H2O2. (C) Representative responses of YMC-synchronized cultures of wildtype cells to the 
addition of 1 mM t-BOOH. 
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2.4.3 Peroxiredoxin inactivation upon high peroxide mediates 

metabolic switch to HOC 

Living cells respond to H2O2 via regulation of protein function leading to increased production of 

antioxidant enzymes and cofactors. The regulated proteins generally include kinases, phosphatases and 

transcription factors that mediate a variety of cellular processes such as transcription, growth, nutrient 

sensing and mitochondria biogenesis [132]. It has been suggested that the oxidation of most redox-regulated 

proteins by H2O2 is almost completely dependent on peroxiredoxins [72]. Accordingly, I sought to ascertain 

whether the premature LOC-to-HOC transition upon high peroxide could be mediated by peroxiredoxins. 

To do this, I cultured the sensor-expressing cells under YMC conditions and monitored sensor fluorescence 

in real-time before and upon addition of the different concentrations of t-BOOH previously used. At boli 

concentrations of 0.1 and 0.5 mM t-BOOH, I observed roGFP2 oxidization, which gradually reduced to 

‘normal’ levels before the switch to HOC. Counter-intuitively, upon 1 mM t-BOOH, roGFP2 oxidized 

transiently and reduced in a manner that correlated with increased oxygen consumption (i.e. LOC-to-HOC 

transition) (Fig. 2.11A-C(i)). Interestingly, roGFP2 appeared to have reduced to levels below the initial 

oxidation state (Fig. 2.11C(i)). This observation was indicative of hyperoxidation-based inactivation of the 

Tsa2ΔCR moiety of the roGFP2-Tsa2ΔCR sensor. This phenomenon is conceivable because upon excess 

peroxide, the CP of the Tsa2ΔCR moiety becomes hyperoxidized and inactivated. Consequently, the 

transduction of oxidizing equivalents from peroxide to roGFP2 is inhibited. The redox state of roGFP2 thus 

depends on equilibration with the cellular glutathione pool (Fig. 2.12). 

To verify whether the observed reduction of roGFP2 redox state upon high peroxide was due to 

hyperoxidation and inactivation of Tsa2ΔCR, I collected YMC-synchronized cells from the fermenter at the 

start of LOC, before and 30 mins after t-BOOH treatment. I then assessed roGFP2 fluorescence via the 

plate-reader method. This assay works on the principle that if the Tsa2ΔCR moiety of the sensor was still 

functional after t-BOOH addition to cells during the YMC, further oxidation of roGFP2 should be achieved 

upon exogenous addition of H2O2 to cells in a 96-well plate, in a concentration dependent manner. On the 

contrary, if the Tsa2ΔCR moiety of the sensor becomes inactivated upon t-BOOH addition to cells during 

the YMC, roGFP2 becomes unresponsive independent of the amount of exogenous H2O2 added to cells in 

the plate. In line with this reasoning, sensor-expressing cells collected after 30 mins of 0.1 and 0.5 mM t-

BOOH addition to YMC-synchronized cultures were responsive to external H2O2 in a concentration 

dependent manner (Fig. 2.11A-B(ii)). On the other hand, sensor-expressing cells collected after 30 mins of 

1 mM t-BOOH addition to YMC-synchronized cultures were unreactive to any concentration of external 

H2O2 (Fig. 2.11C(ii)). These observations confirmed that the peroxiredoxin of the biosensor was inactivated 

upon 1 mM t-BOOH addition to YMC-synchronized cells. Furthermore, the steady-state OxD of roGFP2 

was rendered more reduced in 1 mM t-BOOH samples (Fig. 2.11D). Since the roGFP2-Tsa2ΔCR biosensor 

represented a reconstituted thiol peroxidase redox relay, I imagined that endogenous peroxiredoxin 

inactivation and subsequent reduction of the redox state of endogenous peroxiredoxin substrate(s) could be 

responsible for premature LOC-to-HOC transition upon high peroxide. 
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Figure 2.11: LOC-to-HOC transition upon high peroxide correlates with peroxiredoxin hyperoxidation. (A-C) 

Representative responses of a roGFP2-Tsa2ΔCR probe in YMC-synchronized cultures treated with either 0.1 mM, 0.5 
mM or 1 mM t-BOOH. (i) Left panels represent traces of dissolved oxygen and roGFP2 fluorescence before and after 
treatment with t-BOOH in the fermenter at the indicated concentrations. (ii) Right panels represent sensor response to 

exogenous addition of the indicated concentrations of H2O2 in a plate-reader format, 30 mins after t-BOOH boli in the 
fermenter. (D) The steady-state oxidation of roGFP2 (substrate) was measured in a plate reader format. Data represent 
average of three independent experiments, while error bars represent standard deviation. (E) Western blot for 
hyperoxidized endogenous Tsa1 and Tsa2 following application of t-BOOH to continuous cultures at the indicated 

concentrations. 

 

To test whether endogenous peroxiredoxins were hyperoxidized upon t-BOOH addition to YMC-

synchronized cultures, the cell samples collected before and 30 mins after t-BOOH addition were assayed 

for endogenous peroxiredoxin hyperoxidation by Western blot. The antibody I used for this assay was raised 

against a Keyhole limpet hemocyanin (KLH)-coupled sulfonylated peptide corresponding to the active site 

sequence of human Prdx I to IV (AbFrontier, LF-PA004). This antibody was also shown to be specifically 

reactive towards yeast typical 2-Cys peroxiredoxins, Tsa1 and Tsa2 (Fig. 2.13, [90]). Intuitively, after 

assaying cells collected before and after addition of 0.1, 0.5 and 1 mM t-BOOH to YMC-synchronized 

cultures, I observed that the hyperoxidation of endogenous yeast typical 2-Cys peroxiredoxins, Tsa1 and 

Tsa2, occurred slightly in 0.5 mM and strongly in 1 mM t-BOOH treated samples (Fig. 2.11E). In addition, 

the pattern of endogenous peroxiredoxin hyperoxidation, as visualized on the Western blot, precisely 

mimicked the biosensor peroxiredoxin response observed with the plate-reader (compare Fig. 2.11C(ii) and 
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Fig. 2.11E). In sum, I have demonstrated that peroxide prematurely triggers LOC-to-HOC transition only 

when added at concentrations high enough to induce hyperoxidation of typical 2-Cys peroxiredoxins, a 

phenomenon that leads to reduction of the redox state of peroxiredoxin target protein(s). Although this 

concentration of peroxide is non-physiological, these observations suggest that peroxiredoxins have an 

important role in regulating LOC-to-HOC transition. Consequently, peroxiredoxins and peroxiredoxin 

target protein(s) constitute a molecular switch that regulate LOC-to-HOC transition and thus the YMC. 

 
 
Figure 2.12: Scheme explaining sensor behavior after t-BOOH boli in fermenter. At steady state, the sensor 

remains mostly in the reduced thiolate state. Upon encountering basal H2O2, the ratio of oxidized to reduced probe 
levels change depending on the amount of H2O2, as depicted by the cyclical changes during the YMC. RoGFP2 acts 
as substrate to receive oxidizing equivalents from H2O2 with the CP of the Tsa2∆CR acting as the transducer. In this 
state, Tsa2∆CR remains very active in this role. Upon exogenous addition of 0.1 or 0.5 mM t-BOOH, the oxidized levels 
of the sensor increase and more oxidizing equivalents passed onto roGFP2 by an active Tsa2∆CR. RoGFP2 stays 
more oxidized until peroxide is diluted out of the culture to basal levels, and thereafter reversed to a reduced thiolate 
state by Grxs using GSH. Upon excess peroxide (e.g. 1 mM t-BOOH), the sensor becomes only transiently oxidized 
and remains reduced thereafter. This is because the CP of the Tsa2∆CR becomes overwhelmed by the amount of 
peroxide and therefore is inactivated by hyperoxidation. Subsequently, the transduction of oxidizing equivalents to 
roGFP2 is hindered, resulting immediately in the return to a more reduced thiolate roGFP2 via the action of Grxs using 
GSH.  

 

 

Figure 2.13: Antibody detection of peroxiredoxin hyperoxidation is Tsa-specific. Western blot showing specificity 

of Prx-SO(2/3)H antibody towards the yeast typical 2-Cys peroxiredoxins, Tsa1 and Tsa2. Key: WT - wildtype CEN.PK 
cells, WT T2∆CR - genomic sensor-expressing cells, ∆tsa1∆tsa2 - cells deleted for TSA1 and TSA2. 
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In fact, it was instructive to observe an apparent reduction of roGFP2 redox state upon 1 mM t-

BOOH since peroxides function as oxidants. Therefore, I ascertained whether the thiol oxidant diamide 

caused a reduction in roGFP2 redox state under similar conditions. In contrast, by monitoring sensor 

response in real-time, diamide could only induce roGFP2 oxidation when added at the start of LOC. LOC-

to-HOC transition was only achieved after diamide was removed from the culture vessel by dilution and 

roGFP2 redox state reduced to ‘normal’ levels (Fig. 2.14). Thus, unlike high levels of peroxides, diamide 

only induced roGFP2 oxidation, which was not required for LOC-to-HOC transition, suggesting that LOC-

to-HOC transition is regulated by thiol reduction. This thiol reduction is achieved either via low signaling 

H2O2 levels under physiological conditions or upon high non-physiological peroxide levels that 

hyperoxidize and inactivate peroxiredxins, a phenomenon explainable by the ‘relay’ hypothesis. 

 

Figure 2.14: The oxidant diamide does not induce roGFP2 reduction as well as rapid LOC-to-HOC transition. 
Representative graphs showing YMC response to (A) 0.5 mM (B) 1 mM and (C) 2 mM diamide addition at start of LOC 

together with the response of the genomically integrated roGFP2-Tsa2ΔCR probe. All experiments were repeated at 
least twice with completely independent YMC-synchronized cultures. 
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2.5 Cytosolic peroxiredoxins are essential for YMC regulation 

 

Given that peroxiredoxin hyperoxidation correlated with the switch to HOC from LOC, I asked 

whether loss of peroxiredoxins would affect the YMC per se, as well as the response of YMC-synchronized 

cells to the levels of t-BOOH needed to induce LOC-to-HOC switching. 

 

2.5.1 Loss of cytosolic 2-Cys peroxiredoxins is associated with 

decreased YMC period 

To address the above question, I performed single and double deletions of peroxiredoxins in yeast 

cytosol or mitochondria. Loss of the mitochondria 1-Cys peroxiredoxin, PRX1, had no observable effect on 

YMC shape and period. However, a single deletion of the cytosolic atypical 2-Cys peroxiredoxin and 

alkylhydroperoxidase, AHP1, significantly affected YMC shape and decreased YMC period to 

approximately 2.7 hours. Similarly, double deletion of the cytosolic typical 2-Cys peroxiredoxins, TSA1 

and TSA2 significantly affected YMC shape and decreased YMC period to approximately 2.5 hours  (Fig. 

2.15). Taken together, these observations suggest that cytosolic 2-Cys peroxiredoxins may be essential for 

YMC regulation. 

 
 
Figure 2.15: Effect of peroxiredoxin deletion on the YMC. Representative oxygen traces to show the YMC for (A) 
Wildtype CEN.PK113-1A, (B) Cells deleted for the mitochondrial 1-Cys peroxiredoxin PRX1, (C) Cells deleted for the 
cytosolic atypical 2-Cys peroxiredoxin AHP1 and (D) Cells deleted for the cytosolic typical 2-Cys peroxiredoxins TSA1 

and TSA2. All experiments were repeated at least twice with completely independent YMC-synchronized cultures. 
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2.5.2 Multiple peroxiredoxins function to mediate peroxide–induced 

metabolic switch to HOC 

Next, I sought to understand how loss of peroxiredoxins might modulate response to the peroxide 

levels needed to induce switch to HOC in wildtype cells, if any. To do this, I added 1 mM t-BOOH at points 

of the YMC described in Fig. 2.10A. At this concentration of t-BOOH, I observed induction of HOC in 

∆prx1 cells in a manner synonymous to wildtype cells (Fig. 2.16). However, this concentration was lethal 

to ∆tsa1∆tsa2 cells and resulted in loss of oxygen consumption and metabolic cycles, probably due to the 

strongly diminished antioxidant capacity of these cells (Fig. 2.17A). Nonetheless, with 0.5 mM t-BOOH, 

HOC could still be induced similar to wildtype and ∆prx1 cells (Fig. 2.17B). 

 

 

 
 
Figure 2.16: High peroxide induces switch to HOC in PRX1-deleted cells. Representative oxygen traces showing 
YMC response of ∆prx1 cells to 1 mM t-BOOH. Thick black arrow indicates sequence of YMC phase of t-BOOH addition 

as depicted in Fig. 2.10A. 
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Figure 2.17: High peroxide induces switch to HOC in ∆tsa1∆tsa2 cells. Representative oxygen traces showing 
YMC response of ∆tsa1∆tsa2 cells to (A) 1 mM and (B) 0.5 mM t-BOOH. Thick black arrow indicates sequence of YMC 
phase of t-BOOH addition as depicted in Fig 2.10A. 
 

 

It was instructive to note that YMC-synchronized cultures of ∆tsa1∆tsa2 cells could exhibit LOC-

to-HOC switching upon high amounts of t-BOOH, suggesting that peroxiredoxin hyperoxidation might 

have still occurred. This reasoning is not far-fetched since thiol peroxidases exhibit functional redundancy 

in their response to peroxides [129]. Given that ∆ahp1 cells displayed YMC with shape and period similar 

to ∆tsa1∆tsa2 cells, I asked whether endogenous Ahp1 might have been hyperoxidized and inactivated in 

wildtype as well as ∆tsa1∆tsa2 cells to mediate peroxide-induced switch to HOC during the YMC. 

However, there was no easy and direct way to answer this question since there was no known antibody for 

detection of hyperoxidized Ahp1 levels by Western blot. Meanwhile, we had developed a sensor similar to 

roGFP2-Tsa2ΔCR, by fusing Ahp1 to the C-terminus of roGFP2 [90]. I therefore tested whether it was 
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possible to hyperoxidize the Ahp1 moiety of this biosensor in the BY4741 or BY4742 yeast backgrounds, 

using the plate reader assay. The principle behind this assay is that if Ahp1 becomes hyperoxidized upon 

peroxide, roGFP2 would be reduced. On the other hand, roGFP2 would stay oxidized in the absence of 

Ahp1 hyperoxidation upon peroxide (Fig. 2.18A). Interestingly in the BY4741 background, the roGFP2-

Ahp1 sensor was rapidly reduced in a ∆ahp1 compared to a wildtype strain, upon 1 mM t-BOOH (Fig. 

2.18B). In a BY4742 ∆tsa1∆tsa2 strain, the sensor could increasingly be oxidized with 0.5 and 1 mM t-

BOOH. However, it was briefly oxidized and quickly reduced with 2 mM t-BOOH, an indication of rapid 

roGFP2 reduction upon Ahp1 hyperoxidation and inactivation (Fig. 2.18C). In a separate experiment, 

hyperoxidation of the roGFP2-Tsa∆CR sensor could be achieved with 0.75 mM t-BOOH in the wildtype 

background of these strains (data not shown). Summarily, these observations suggest that during the YMC, 

Tsa1 and Tsa2 are preferentially inactivated upon high peroxide, after which Ahp1 could take over such 

role. Interestingly, contributions of Ahp1 toward YMC regulation had not been considered in previous 

studies.  

 

 
 
Figure 2.18: RoGFP2 fluorescence measurements reveal possible Ahp1 hyperoxidation upon high peroxide. 
(A) Scheme showing mechanism of an Ahp1 coupled roGFP2 sensor. Ahp1 acts as the transducer of oxidizing 
equivalents from peroxide to roGFP2. (ii) All cysteine residues of the roGFP2-Ahp1 sensor remain in a reduced thiolate 
state in the absence of peroxide. (iii) Upon encountering peroxide, oxidizing equivalents are transferred via the CP of 
Ahp1, resulting ultimately in the formation of an intramolecular Ahp1 and roGFP2 disulfide bonds. (i) In the presence 

of excess peroxide, the CP of Ahp1 becomes hyperoxidized and inactivated, rendering the transfer of oxidizing 
equivalents non-functional. Thus, Grxs return the cysteine residues of roGFP2 to a more reduced thiolate state using 
GSH. The presence of the CR of Ahp1 in this sensor, unlike in the roGFP2-Tsa2∆CR sensor, leads to competition 
between roGFP2 oxidation and intramolecular Ahp1 disulfide bond reduction by thioredoxins. (B) Degree of sensor 
oxidation in a BY4741 wildtype and ∆ahp1 backgrounds upon 1 mM t-BOOH. (C) Degree of sensor oxidation in a 
BY4742 ∆tsa1∆tsa2 background upon 0.5, 1 and 2 mM t-BOOH. Data represent mean of at least three independent 
experiments.  
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2.5.3 Combined loss of TSA1 and AHP1 in prototrophic yeast leads to 

non-viability 

Previous works have demonstrated that yeast thiol peroxidases are functionally redundant; hence, 

it was possible to delete all eight thiol peroxidases in the BY4742 background and still have a viable yeast 

strain [129]. I therefore sought to ascertain the consequence on the YMC of deleting all three cytosolic 2-

Cys peroxiredoxins together (i.e. TSA1, TSA2 and AHP1). To do this, I intended to delete AHP1 from the 

∆tsa1∆tsa2 background by the same homologous recombination-based gene deletion approach. 

Surprisingly, I was unable to generate either Δtsa1Δahp1 or Δtsa1Δtsa2Δahp1 mutants in the CEN.PK 113-

1A background upon several attempts (data not shown). Similarly, I could not obtain a Δtsa1Δahp1 strain 

by deleting AHP1 in a ∆tsa1 background using the same approach. Meanwhile, I could obtain the 

∆tsa1∆ahp1 and ∆tsa1∆tsa2∆ahp1 strains in the BY4742 background by homologous recombination (data 

not shown). 

To ensure that the supposed failure was not due to technical challenges, but perhaps, a biological 

phenomenon peculiar to the CEN.PK background, I sought to obtain the desired strains via mating, 

sporulation and tetrad dissection experiments as described in Materials and Methods. I crossed ∆tsa1∆tsa2 

from the CEN.PK113-1A (Mat-α) background with ∆ahp1 from the CEN.PK113-7D (Mat-a) background 

(Fig. 2.19A). Interestingly, I could not obtain any viable ∆tsa1∆ahp1 or ∆tsa1∆tsa2∆ahp1 spores from any 

of the 33 tetrads dissected (Fig 2.19B-D). These observations suggest that combined loss of TSA1 and AHP1 

is lethal in the CEN.PK background, an observation that is in sharp contrast with the common lab yeast 

strain BY4742. 

The main difference between the CEN.PK and BY4742 is that the former is a prototrophic strain 

capable of synthesizing all its amino acids, whilst the latter is an auxotrophic strain that is incapable of 

synthesizing all of its amino acids and thus must be supplied in the media for growth. I therefore asked 

whether the difference between the two strains, with respect to the deletion of 2-Cys peroxiredoxins, could 

be explained by the differences in their auxotrophic markers. To answer this question, I transformed 

BY4742 ∆tsa1∆ahp1 cells, as well as their wildtype counterparts with a pHLUK plasmid to replace all 

auxotrophic markers in order to assume a ‘CEN.PK-like’ state. I also independently transformed these cells 

with pHUK, p415 and p416 plasmids as controls. The pHUK plasmid replaced all auxotrophic makers 

except leucine, whilst the p415 and p416 plasmids replaced leucine and uracil, respectively. I then grew the 

transformed cells on Hartwell Complete (HC) agar plates lacking either leucine (L) or uracil (U) for 

selection. Interestingly, cells transformed with pHLUK were fully viable; suggesting that absence of viable 

∆tsa1∆ahp1 or ∆tsa1∆tsa2∆ahp1 spores in the CEN.PK background could not be due to their amino acid 

prototrophy (Fig 2.20). 

It is plausible that in the CEN.PK background, TSA1 and AHP1 may be essential for spore 

formation or viability although I do not have direct evidence for this. It is also possible that peroxiredoxins 

will have a much broader role for the survival of CEN.PK yeast, independent of antioxidant defense, 

although this is yet to be proven. Furthermore, another difference between CEN.PK and most laboratory 
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strains, such as BY4742 and W303, is that the latter are known to be unable to establish synchronized 

metabolic oscillations [47, 56]. Based on the above reasoning, it is tempting to speculate that the differential 

requirement for peroxiredoxins in typical laboratory strains versus ‘less domesticated’, prototrophic yeast 

strains, such as CEN.PK is related to the ability to establish synchronized metabolic cycles. 

 
 
Figure 2.19: Double deletions of TSA1 and AHP1 leads to loss of viability in prototrophic yeast. (A) Scheme 
illustrating the mating, sporulation and tetrad dissection procedure. (B) Images of tetrad dissection plates for all 33 
tetrads dissected. (C) Images showing growth of cells from all recovered viable spores on media containing the 
indicated antibiotics to assess for the presence of the antibiotic resistance cassettes used for gene deletion. (D) Table 

showing the eight possible genotypes and the number of spores recovered with each genotype. 
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Figure 2.20: Non-viability of ∆tsa1∆ahp1 cells in a CEN.PK background is not due to prototrophy. Images of 

colonies of BY4742 wildtype and Δtsa1Δahp1 cells formed on indicated selective plates following transformation with 
the indicated plasmids. BY4742 cells are uracil and leucine auxotrophs. Therefore, cells transformed with p416 and 
pHUK plasmids, which both harbor URA3 as a selective marker, would not be expected to grow on media lacking 
leucine. Likewise, cells transformed with p415 (LEU2 as selective marker) should not grow on plates lacking uracil. 
These conditions therefore serve as controls. Cells transformed with a pHLUK plasmid to replace all four auxotrophic 
markers grow well on media lacking either leucine or uracil. Key: H – histidine, L – leucine, U – uracil, K – lysine. 
 

 

2.5.4 An auxin-inducible degron system reveals toxicity of Ahp1 

degradation in a Δtsa1 background 

Since I could obtain neither a viable Δtsa1Δahp1 nor Δtsa1Δtsa2Δahp1 strain by both homologous 

recombination and tetrad dissection experiments, I genomically fused AHP1 with an auxin regulable degron 

(AID) in a Δtsa1Δtsa2 background. This approach was used in order to first, verify the viability phenotype 

due to the combined loss of TSA1 and AHP1 in the CEN.PK background, and second, to assess the effect 

on the YMC of the combined loss of TSA1 and Ahp1. This technique allows for rapid degradation of AID-

fusion proteins upon supplementation with the auxin hormone indole-3-acetic acid (IAA) [133, 134]. The 

Arabidopsis thaliana F-box protein, AtTIR1, which is coupled to the AID construct functions as part of the 

ubiquitin ligase system to ubiquitinylate and deliver AID-fusion proteins to the proteasome for degradation 

(Fig. 2.21A). I obtained the AID/AtTIR1 construct on a plasmid from the lab of Prof. Blanche Schwappach 

(Göttingen, Germany). I amplified this construct by PCR and transformed it into yeast for genomic 

integration and fusion to the N-terminus of AHP1 (Appendix A3). After successful strain construction, I 

tested the effect of this technique in a drop dilution growth assay, performed on YPD plates supplemented 

with either 0.2 mM IAA or 0.1% DMSO as vehicle control. Interestingly, Δtsa1 and Δtsa1Δtsa2 strains 
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harboring the Ahp1 degron exhibited decreased viability on plates supplemented with IAA, as compared 

with their wildtype or Δtsa2 counterparts (Fig. 2.21B). This result demonstrates that depletion of Ahp1 in 

a CEN.PK Δtsa1 or Δtsa1Δtsa2 background is detrimental for growth. 

 
 
Figure 2.21: Conditional depletion of Ahp1 is lethal in ∆tsa1 cells and severely perturbs the YMC. (A) Scheme 
illustrating the mechanism of Ahp1 depletion by the AID system. Both AtTIR1 and AID-Ahp1 are expressed from the 
genome of prototrophic yeast. Auxin binding to AtTIR1 promotes the interaction between AtTIR1 and AID-Ahp1. 
Subsequently, AtTIR1 acts as an E3 ubiquitin ligase to recruit an E2 ligase resulting in polyubiquitylation of AID-Ahp1 
(not shown). Ahp1 is then delivered to the proteasome for degradation. (B) Drop dilution assay showing the growth of 

the indicated yeast strains on YPD plates containing either 0.1% DMSO as a vehicle control or 0.2 mM indole-3-acetic 
acid (IAA). Growth inhibition was monitored by incubation at 30 oC for 48 h. (C) Representative oxygen traces showing 
the effect of treating YMC-synchronized cultures of wildtype cells or wildtype and Δtsa1Δtsa2 cells expressing Ahp1 
genetically fused to an auxin inducible degron, with 0.1 mM indole-3-acetic acid (auxin). (D) Table illustrating effect of 
IAA on YMC period. (E) Western blot of Ahp1 degradation after IAA treatment. Samples were taken at 0, 0.5, 1, 2, 5, 
10 and 24 h after treatment to test for Ahp1 degradation by Western blot. (F) Schematic explaining effect of IAA on the 
YMC of the cell types used. WT YMC remains unaffected whilst YMC of AID-Ahp1/AtTIR1 expressing cells are severely 

perturbed upon IAA, due to gradual Ahp1 degradation. All experiments were repeated at least twice with completely 
independent YMC-synchronized cultures. 
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2.5.5 Repression of Ahp1 in a ∆tsa1∆tsa2 background perturbs the 

YMC 

Further, I tested the effect of auxin on the YMC of wildtype- and ∆tsa1∆tsa2- AID-AHP1/AtTIR1 

expressing cells in comparison with their wildtype non-construct expressing counterpart. I cultured these 

cells under metabolic cycling conditions and added IAA at a final concentration of 0.1 mM at the start of 

LOC. The cycles of wildtype and ∆tsa1∆tsa2 cells expressing the AID construct had periods remarkably 

shortened from 5.7 to 3.4 hours and 3.5 to 2.5 hours respectively, upon 0.1 mM IAA. The YMC of non-

construct expressing wildtype cells was barely affected, maintaining periods of about 6 hours before and 

after 0.1 mM IAA (Fig. 2.21C-D). The reduction of YMC period in the AID-construct expressing cells was 

consistent with Ahp1 protein degradation as visualized by Western blot (Fig. 2.21E). The cycles could not 

be completely abolished as I anticipated. This was explainable by the incomplete removal of Ahp1 upon 

film visualization at long exposure. In short, these observations taken together demonstrate that cytosolic 

2-Cys peroxiredoxins, especially Tsa1 and Ahp1, regulate the YMC and are important for the yeast 

timekeeping mechanism (Fig. 2.21F). 

 

2.6 Peroxiredoxin-mediated YMC regulation is thioredoxin 

dependent 

Thioredoxins (Trxs) are evolutionarily conserved proteins that facilitate protein thiol-disulfide 

reduction on specific target proteins, including peroxiredoxins [135]. Budding yeast harbors three 

thioredoxins; two in the cytosol, Trx1 and Trx2, and one in the mitochondria, Trx3. Thioredoxins and the 

NADPH-dependent thioredoxin reductase (TrxR) form a protein reductive system that mediate 

maintenance of cellular redox homeostasis and repair of oxidatively modified proteins, such as PTPs and 

STAT3 [69, 73]. Active peroxiredoxin catalysis requires disulfide reduction by thioredoxins. Similarly, 

active recycling of peroxiredoxins via the Trx/TrxR system is essential for hyperoxidation since the 

peroxiredoxin disulfide is protected from further oxidation [136]. 

I imagined two mechanisms by which thioredoxins could be important during the YMC: first, 

thioredoxins may reduce/repair/recycle target protein(s) oxidatively modified by peroxiredoxins, and 

second, they might directly reduce oxidized peroxiredoxins to limit oxidation of target protein(s). These 

plausible mechanisms could be affected in the absence of thioredoxins and possibly perturb the YMC, 

especially if peroxiredoxin relay(s) that regulate YMC oscillation become modulated. Therefore, I asked 

whether loss of thioredoxins (especially Trx1 and Trx2) could affect the YMC. I tested the impact of loss 

of TRX2 on the YMC per se, and in response of the YMC to t-BOOH. Remarkably, TRX2 deletion shortens 

YMC period similar to combined loss of TSA1 and TSA2 or loss of AHP1 alone (Fig. 2.22A). Moreover, 

0.5 mM t-BOOH was enough to trigger “hyperoxidation-based” LOC-to-HOC transition (Fig. 2.22B). In 
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contrast to wildtype and ∆tsa1∆tsa2 cells, 1 mM t-BOOH only triggered transient HOC and an immediate 

return of the YMC to a prolonged LOC phase that lasted more than 6 hours (Fig. 2.22B). 

Having earlier observed that an oxidative process (e.g. diamide) was required to keep cells in the 

LOC phase, I hypothesized that the prolonged LOC in ∆trx2 cells upon 1 mM t-BOOH could be due to 

direct oxidation of protein thiols by t-BOOH. This situation is plausible because ∆trx2 cells may have a 

diminished ‘reductive capacity’ occasioned by the loss of TRX2, thus, frustrating their ability to facilitate 

effective removal of t-BOOH. Furthermore, unlike H2O2 that is largely dependent on peroxiredoxins to 

effectively oxidize protein thiols [72]; t-BOOH on the other hand can directly oxidize protein thiols in the 

absence of peroxiredoxins. To test the latter claim, I collected samples from the YMC of wildtype cells 

expressing the genomic roGFP2-Tsa∆2CR sensor, 30 mins after 1 mM t-BOOH-mediated hyperoxidation-

based LOC-to-HOC transition. Samples were processed for fluorescence measurements in a plate-reader 

format, and further treated with either 1 mM H2O2 or 1 mM t-BOOH (Fig. 2.23A). Interestingly, 1 mM t-

BOOH could directly oxidize roGFP2 despite Tsa2∆CR inactivation, whilst 1 mM H2O2 could not (Fig. 

2.23B-C). 

 
 
Figure 2.22: Loss of TRX2 affects the YMC per se, as well as YMC response to t-BOOH upon peroxiredoxin 
hyperoxidation during the YMC. (A) Representative oxygen traces to show the YMC for ∆trx2 cells. (B) 
Representative oxygen traces showing the effect of t-BOOH on YMC-synchronized cultures of a ∆trx2 strain at the 

indicated concentrations. 
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To test the consequence of loss of both cytosolic TRXs on the YMC, I sought to delete TRX2 in a 

∆trx1 background or vice versa, by the homologous recombination-based gene deletion approach. This 

attempt was unsuccessful; however, the ∆trx1∆trx2 strain could be obtained by subsequent mating, 

sporulation and tetrad dissection (Shamala Riemann, data not shown). That notwithstanding, the ∆trx1∆trx2 

culture could only grow in a batch phase without the ability to consume the levels of dissolved oxygen in 

the culture vessel, hence, could not establish synchronized metabolic cycles (Fig. 2.24). Taken together, 

these observations indicate that thioredoxins are important for YMC regulation. These results further speak 

in favor of function(s) for the peroxiredoxin and thioredoxin systems in the yeast metabolic clock. 

 

 
 
Figure 2.23: Unlike H2O2, t-BOOH mediates direct protein thiol oxidation upon peroxiredoxin hyperoxidation. 
(A) Schematic describing procedure by which sensor-expressing cells treated with t-BOOH during the YMC were 
processed to test for further peroxide response by the plate reader method. (B) Sensor expressing cells respond 
differently to t-BOOH and H2O2 after peroxiredoxin hyperoxidation in the fermenter. (C) Schematic explaining 
hyperoxidized probe response upon further t-BOOH or H2O2. Note: Unlike H2O2, t-BOOH can bypass the inactivated 
Tsa2∆CR and react directly with roGFP2 to keep it oxidized. Therefore, in the absence or decreased levels of reducing 
equivalents from cellular thioredoxins, t-BOOH mediates hyperoxidation of peroxiredoxins during the YMC to induce 

switch to HOC, which is only short-lived, and immediately returned to a prolonged LOC phase possibly via direct 
oxidation of endogenous peroxiredoxin target protein(s). 
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Figure 2.24: ∆trx1∆trx2 cells do not generate synchronized metabolic cycles. Representative oxygen trace 
showing that ∆trx2∆trx2 cells only grow in a batch phase and could not effectively consume dissolved oxygen to 

generate synchronized metabolic cycles. 
 
 
 
 
 

2.7 Peroxiredoxins couple metabolic oscillations in yeast to 

the cell division cycle (CDC) 

Circadian and ultradian clocks are coupled to the cell division cycle (CDC) in a variety of species 

[50, 53-55]. In cyanobacteria, algae, fungi and mammals, the circadian clock gates the CDC such that cell 

cycle events are arrested at checkpoints during prohibitive circadian phases [53, 55, 137-139]. It has also 

been suggested that DNA replication and cell division are synchronized to, and temporally regulated by the 

YMC [49]. In other words, metabolism gates the decision to undergo division, as such; cells lacking 

essential metabolites will not bypass the ‘committed step’ to cell division [111, 140-142]. 

However, the mechanistic details on how metabolic changes may temporally be coordinated with 

the CDC remains unresolved. Moreover, some evidence point to the existence of a regulatory redox cycle 

within the cell cycle [143, 144]. This proposition is strengthened by the presence of redox-sensitive motifs 

in a variety of cell cycle regulatory proteins, suggesting that periodic oscillations in intracellular redox state 

could play a significant role in regulating cell cycle progression [119, 123]. However, it is not completely 

clear whether peroxiredoxins are involved in cell cycle regulation. I hypothesized that oscillations in the 

intracellular redox state (e.g. H2O2 levels) during the YMC could represent a fundamental mechanism 

linking cell metabolism to cell cycle regulation. If so, this mechanism might rely on peroxiredoxins as 

transducers of H2O2. 
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2.7.1 Oscillatory metabolism is coordinated with cell division 

To explore the relationship between the YMC and the CDC, I monitored the progression of DNA 

replication throughout the YMC, by performing propidium iodide (PI) staining of ethanol-fixed cells 

collected from YMC-synchronized cultures. I then subjected these samples to flow cytometry analysis. By 

sampling cells at specific phases of the YMC of wildtype cells, I observed that nuclear DNA replication 

was initiated during HOC, with increasing proportion of cells acquiring twice (2N) their DNA content 

before the LOC phase. The proportion of cells with 2N DNA content then decreased gradually towards the 

end of LOC and into the next HOC (Fig. 2.25A-C). This increase and decrease in DNA replication during 

the YMC correlated precisely with the increase and decrease in cellular H2O2 levels as well as roGFP2 

oxidation demonstrated earlier (see Fig. 2.7B,D), suggesting a communication between the redox and cell 

division cycles. Thus, it appears that increasing cellular H2O2 levels may be required for DNA synthesis 

and cell cycle entry, whilst decreasing H2O2 levels permit cell division and cell cycle exit. This reasoning 

aligns with the suggestion by Chen et al. that H2O2 might regulate cell cycle entry [49]. 

 
 
Figure 2.25: Coupling of YMC and CDC during the YMC. (A) Representative flow cytometry histograms showing 
DNA content in samples harvested from a culture of YMC-synchronized wildtype cells. (B) Illustration showing how flow 
cytometry histograms were assessed for DNA content. (C) Change in DNA content during the YMC for wildtype cells, 
determined based on the histograms in (A). (D) Representative graph showing the budding index determined in 
samples of wildtype yeast cells collected at the indicated time points from YMC-synchronized cultures. (E) Scheme 

summarizing mode of coupling between the YMC and CDC. 
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To verify this supposed YMC-CDC coordination, I collected samples from an independent YMC-

synchronized culture of wildtype cells, fixed them in 70% ethanol and determined cell budding index by 

microscopy, in collaboration with Dr. Galal Metwally (Molecular Genetics, TU Kaiserslautern). 

Interestingly, I observed that the proportion of budding cells increased and decreased in correlation with 

the proportion of cells acquiring 2N DNA content (Fig. 2.25D). I therefore opined that redox/H2O2 changes 

during the YMC might in part be coupled to modulate target-protein activity to regulate the cell division 

cycle (Fig. 2.25E). In other words, under physiological conditions DNA replication might not necessarily 

be restricted to the non-respiratory phase of the YMC in order to prevent oxidative DNA damage as 

previously suggested [47, 49], rather, increasing H2O2 levels may be necessary to trigger DNA synthesis 

and entry into the CDC. Alternatively, redox/H2O2 changes might control the metabolic state of cells, which 

in turn gates the CDC. 

 

 

2.7.2 Temporary inactivation or loss of peroxiredoxins leads to 

decoupling of CDC from YMC 

Next, I sought to ascertain whether peroxiredoxins might be essential to the synchrony between the 

YMC and CDC. To do this, I collected samples from YMC-synchronized cultures of wildtype cells before 

and after treatment with 1 mM t-BOOH at the start of LOC. I then analyzed the DNA content by flow 

cytometry as described earlier. I observed once again that the proportion of cells with 2N DNA content 

peaked before entry to LOC; however, upon 1 mM t-BOOH and peroxiredoxin hyperoxidation, the 

proportion of cells with 2N DNA content began to decrease and correlated with switch to HOC. The 

proportion of cells with 2N DNA content remained low on the next immediate cycle, suggesting a 

temporary loss of coupling between the YMC and CDC. Synchrony between the YMC and CDC returned 

upon the second next cycle, presumably when active peroxiredoxin catalysis was restored (Fig. 2.26A,B). 

To ascertain what the combined loss of TSA1 and TSA2 could mean for YMC-CDC synchrony, I 

further collected samples from YMC-synchronized cultures of ∆tsa1∆tsa2 cells and analyzed their DNA 

content by flow cytometry. Interestingly, nuclear DNA replication stayed constant over the two metabolic 

cycles sampled, suggesting a decoupling of CDC from the YMC (Fig. 2.26C,D). Subsequently, I collected 

samples from an independent YMC-synchronized culture and fixed them in 70% ethanol for budding index 

determination. Here, I also observed equal number of budding cells at every stage of the YMC from which 

samples were taken (Fig. 2.26E). Taken together, these data suggest that peroxiredoxins may be crucial in 

coupling metabolic/redox changes during the YMC to regulate DNA replication and cell division 

 

 

 

. 
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Figure 2.26: Coupling of YMC to CDC is mediated by peroxiredoxins. (A) Representative flow cytometry 

histograms showing DNA content in samples harvested from a culture of YMC-synchronized wildtype cells before and 
after 1 mM t-BOOH. (B) Change in DNA content during the YMC for wildtype cells treated with 1 mM t-BOOH, 
determined based on the histograms in (A). (C) Representative flow cytometry histograms showing DNA content in 
samples collected from a culture of YMC-synchronized Δtsa1Δtsa2 cells at the indicated time points. (D) Change in 
DNA content during the YMC for Δtsa1Δtsa2 cells, as determined based on the data in (C). (E) Graph showing the 

budding index determined in samples of Δtsa1Δtsa2 yeast cells collected at the indicated time points from YMC-
synchronized cultures. All experiments were repeated at least twice with completely independent YMC-synchronized 
cultures. 

 

 

 

 

 

 

 

 

 

 

 



 

49 

 

2.8 Chemical redox purtabations of the YMC modulate entry 

into and exit from the cell division cycle 

Given that, I could predictably manipulate switching between LOC and HOC of the YMC by 

applying thiol redox compounds such as diamide and DTT: i.e. diamide delays switch to HOC, whilst DTT 

promotes switch to HOC, I asked what the consequence would be of these molecules, on the coordination 

of the YMC to the CDC. 

 

2.8.1 Induction of HOC upon thiol disulfide reduction promotes cell 

cycle entry 

To address this question, I first treated YMC-synchronized cultures of wildtype cells with 5 mM 

DTT at the start of LOC to induce switch to HOC. Subsequently, I collected cell samples at defined time 

points before and after, and analyzed their DNA content by flow cytometry (Fig. 2.27A,B). Strikingly, upon 

DTT addition to induce LOC-to-HOC transition and a prolonged HOC phase for more than 10 hours, I 

observed a consistent increase in the proportion of cells with 2N DNA content. Interestingly, nearly 4 hours 

after DTT treatment, I also observed the presence of cells that appear to contain more than 2N DNA content 

(Fig. 2.27A,B). 

To confirm the above observation, I setup an independent YMC-synchronized wildtype culture, 

collected samples in similar fashion as before and fixed them in 70% ethanol for microscopic analysis and 

budding index determination. Upon determination of budding index, I observed a consistent increase in the 

proportion of cells with one bud after DTT treatment. Surprisingly, I also saw cells with more than one bud 

appearing nearly 4 hours after DTT addition (Fig. 2.27C-D). Upon DAPI staining of nuclear DNA and 

microscopic analysis, I could show that cells with more than one bud possessed more than 2N DNA content 

(Fig. 2.27E). Importantly, in budding yeast the occurrence of a new bud is timed with initiation of DNA 

replication [145]. Thus, the above observations suggest that artificially inducing YMC-synchronized cells 

to remain in a prolonged HOC phase compels them to trigger DNA synthesis and start a new cell cycle 

irrespective of whether the previous cell division had been fully accomplished. This therefore results in the 

accumulation of cells with increasing DNA content and more than one bud. Consequently, switching to 

HOC appears to be a prerequisite for initiation of cell division. 
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Figure 2.27: Effect of thiol reduction on DNA replication and cell budding. (A) Representative flow cytometry 

histograms showing change in cellular DNA content before and after addition of 5 mM DTT to YMC-synchronized 
cultures of wildtype cells. (B) Graph showing the impact of 5 mM DTT treatment on the YMC as assessed by monitoring 

of oxygen consumption as well as the impact on cell cycle based upon cellular DNA content determined from the 
histograms in (A). (C) Graph showing the change in budding index of YMC-synchronized wildtype cells before and after 
the addition of 5 mM DTT. (D) Representative microscopy images of yeast cells before and ~10 h after 5 mM DTT 
addition to YMC-synchronized wildtype cells. (E) Representative microscopy images of DAPI stained cells with 2 buds, 

isolated from YMC-synchronized cultures ~10 h after addition of 5 mM DTT. Scale bar is 2 µm. 

 

2.8.2 Prolongation of LOC upon thiol disulfide oxidation delays cell 

cycle entry 

Similarly, I treated YMC-synchronized wildtype cells with 2 mM diamide towards the end of LOC 

and collected samples at defined time points for DNA content analysis by flow cytometry (Fig. 2.28A,B). 

In contrast to DTT, addition of 2 mM diamide towards the end of LOC of YMC-synchronized wildtype 

cells delayed LOC-to-HOC transition as well as start of DNA replication by nearly 2 hours (Fig. 2.28A,B). 

I then subjected these samples to microscopic analysis to determine their budding index. Strikingly, the 

proportion of budding cells stayed low during the period of LOC extension and into the next HOC (Fig. 

2.28C). 

During cell division, proteins that control the activity of cyclin-dependent kinases (Cdks) regulate 

cell cycle entry and exit. For example, Sic1 is a Cdk inhibitor that blocks initiation of S-phase and must be 

degraded at the G1-S transition to facilitate cell cycle entry [146, 147]. Likewise, Clb2 is a B-type cyclin 

that accumulates during G2 and M phases of the cell cycle and repressed by the end of mitosis; it activates 

Cdc28p to promote the transition from G2 to M phase [148, 149] (Fig. 2.28D). 
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To ascertain what was happening to these regulatory protein levels during the YMC and upon 

diamide treatment, I performed Western blot analysis against Sic1 and Clb2 in collaboration with Galal, 

using the above cells. I observed that upon diamide treatment, Sic1 levels increased whilst Clb2 levels that 

were diminished shortly before treatment did not reappear over the duration of the experiment (Fig. 2.28E). 

Taken together, these observations suggest that switching to LOC seems to be a pre-requisite for completion 

of cell division, as such; a prolonged LOC phase upon diamide treatment appears to trap cells that have 

exited mitosis in the G1 phase, unable to initiate a new cell cycle. 

 

 

 
 
Figure 2.28: Effect of thiol oxidation on DNA replication and cell budding. (A) Representative flow cytometry 

histograms showing change in cellular DNA content before and after addition of 2 mM diamide to YMC-synchronized 
cultures of wildtype cells. (B) Graph showing the impact of 2 mM diamide treatment on the YMC as assessed by 

monitoring of oxygen consumption, as well as the impact on cell cycle based upon cellular DNA content determined 
from the histograms in (A). (C) Graph showing the change in budding index of YMC-synchronized wildtype cells before 

and after the addition of 2 mM diamide. Dotted blue lines in (B) and (C) represent an overlay of the YMC cycle 
immediately prior to the one indicated with the continuous blue line. (D) Scheme showing some proteins involved in 
regulating cell cycle progression. (E) Western blot using anti-Sic1 and anti-Clb2 antibodies. Rpl9 was used as a loading 
control. Samples were collected as indicated by (*) in (C). 
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3 DISCUSSION 

The aim of this study was to investigate whether peroxiredoxins are active players in the cellular 

timekeeping mechanism, using the yeast metabolic clock as a model. I utilized the reconstituted 

peroxiredoxin redox relay, roGFP2-Tsa2∆CR, and performed genetic manipulations and biochemical assays 

to show that yeast 2-Cys peroxiredoxins are crucial for regulating the yeast metabolic clock. This, I propose 

they do by coupling cyclical changes in H2O2 during the yeast metabolic cycle (YMC) to regulate the redox 

state of redox-regulated proteins. I have also shown that metabolic oscillations are coupled with the cell 

division cycle, an important feature of circadian and ultradian metabolic clocks. As such, perturbation of 

cell metabolism with thiol redox modifiers influences entry into and exit from the cell division cycle. More 

importantly, I demonstrate that 2-Cys peroxiredoxins are essential for coordinating metabolic changes to 

the cell division cycle. In this section, I discuss the above findings and summarize this novel role for 

peroxiredoxins in the cellular clockwork. 

3.1 The YMC is a redox clock that is regulated by thiol 

switch(es) 

I have engineered prototrophic yeast to genomically harbor a genetically encoded biosensor that 

allows real-time, dynamic monitoring of the flux of oxidation through a peroxiredoxin redox relay during 

the YMC. My observations principally reveal that: (1) oscillations in basal H2O2 levels accompany 

oscillatory metabolism, (2) there exist in the yeast metabolic clock, changes in the flux of oxidation through 

a peroxiredoxin redox relay, (3) these flux changes are large enough to induce changes in the oxidation 

state of peroxiredoxin target protein(s). The yeast metabolic clock is characterized by two phases dependent 

upon the rate of oxygen consumption, namely; a high oxygen consumption (HOC) phase in which dissolved 

oxygen levels decrease and a low oxygen consumption (LOC) phase where the levels of dissolved oxygen 

are high (Fig 1.7). My observations indicate that H2O2 levels rise during ‘decreasing’ HOC and peak before 

HOC-to-LOC transition thereby inducing peroxiredoxin and peroxiredoxin target protein(s) oxidation. 

H2O2 then decreases gradually during LOC to levels that render peroxiredoxin and peroxiredoxin target(s) 

more reduced to trigger LOC-to-HOC switching. A decrease in HOC is triggered once again by 

accumulating H2O2 levels and subsequent peroxiredoxin and peroxiredoxin target protein(s) oxidation (Fig. 

2.7 and 3.1). 

In N. crassa and cyanobacteria, the daily expression pattern of clock and clock-controlled genes 

involved in coordinating photosynthesis is influenced by H2O2 [96-98]. It has also been shown that visible 

light alters the YMC by inhibiting respiration [150]. In cultured mouse, monkey and humans cells, light 

stimulates H2O2 production via photoreduction of flavin-containing enzymes such as peroxisomal acyl-

coenzyme A (CoA) oxidase [151]. Recent evidence suggests that yeast peroxisomal flavin-containing fatty 

acyl CoA oxidase, Pox1, converts visible light into H2O2 signal that is sensed by the peroxiredoxin Tsa1 

and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation [152]. Additionally, 
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Tu et al. demonstrated that the levels of POX1 transcripts oscillate during the YMC [47]. Moreover, 

zebrafish circadian clock is coupled to light signals via H2O2 [95]. Thus, it is tempting to speculate that by 

oscillating during the YMC, H2O2 acts as a signal to entrain the yeast metabolic clock. The oscillations in 

H2O2 levels that underlie the yeast metabolic clock as I have demonstrated, may not only be unique to this 

clock model, but rather, represent an important feature of all circadian and ultradian metabolic clocks. In 

support of this reasoning, recent studies by Liu and colleagues suggest that oscillations in H2O2 levels occur 

in single N2a murine neuroblastoma and human U2OS cells in a circadian manner [153]. They also 

observed diurnal oscillations in H2O2 levels in the liver of mice [153]. I envisage that these observations 

would be replicated in several metabolic clock models in the near future. 

Furthermore, I note that oscillations in H2O2 levels during the YMC serve a causative role, rather 

than being just a by-product of cell metabolism. I propose that this causative function may be intrinsic to 

each yeast cell, but the outcome may be orchestrated on the population level to achieve metabolic 

synchrony. Although it has been suggested that population synchrony of budding yeast in low-glucose 

bioreactors could arise from signaling between cells due to secreted metabolites such as ethanol, 

acetaldehyde and dihydrogen sulfide [58, 59], secreted H2O2 molecules do not play a role in such 

intercellular communications. This reasoning was confirmed by catalase-mediated H2O2 scavenging 

activity in the culture vessel, which had no observable effect on the YMC (Fig 2.8). Like H2O2, oscillations 

in other redox metabolites such as GSH/GSSG, NAD+/NADH and NADP+/NADPH accompany the YMC 

[56, 154, 155]. Moreover, transcript levels of redox proteins and enzymes oscillate during the YMC [47]. 

These observations, taken together, affirm that the YMC is indeed a redox clock. 

Although I could report oscillations in H2O2 levels during the YMC using two different approaches, 

i.e. thiol-based NEM-trapping technique and real-time measurements with a flow cell (Fig 2.7), the 

amplitude of change was small. Nonetheless, an ≈ 5 % oscillation in basal H2O2 levels or physiological 

oxidations during the YMC, as I have demonstrated herein, is not trivial. Sobotta et al. showed that in the 

PRDX2-STAT3 redox relay in mammalian cells, only a very small subpopulation of STAT3 is oxidatively 

modified to compromise STAT3 transcriptional activity, in response to cytokines [73]. Therefore, it is 

conceivable that an ≈ 5 % change in the redox state of yet to be identified peroxiredoxin redox relay(s) may 

be enough to regulate the YMC. 

 
 
Figure 3.1: The YMC is a redox clock. Scheme describing events occurring at each phase of the yeast metabolic 

cycle as observed in this study. 
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On the other hand, the observed “small” amplitude of change in physiological oxidations could be 

explained with respect to cellular physiology and technical/experimental conditions. First, the biosensor 

used to monitor cellular H2O2 was localized to the cell’s cytoplasm. Oscillations in cytoplasm-localized 

H2O2 levels could most likely be counteracted by the high reducing capacity of the cytoplasm. Reducing 

molecules such as GSH and NADPH are highly abundant within the cytoplasm of cells to mitigate any 

significant rise in physiological oxidations. Nonetheless, this reductive capacity does not completely 

eliminate signaling H2O2 levels that could be detected and transduced by peroxiredoxins to regulate protein 

thiols, as observed with the biosensor. Secondly, during real-time biosensor fluorescence measurements, 

experimental conditions such as the distance or time it takes for cells to travel from the culture vessel into 

the spectrofluorimeter, as well as air bubbles arising from culture aeration and stirring could frustrate 

‘actual’ fluorescence signals. Thirdly, although I tried to immediately ‘trap’ the redox state of the biosensor 

after collecting cell samples from the fermenter, it is plausible that the NEM-trapping technique might not 

have been effective as envisaged, to monitor fluctuations in basal H2O2 levels on such a huge time-scale. It 

is also plausible that some thiol alkylation might have been lost during sample processing. Since this is the 

first study utilizing the flow cell technique to measure oscillations in basal H2O2 levels in real-time, it could 

be improved upon and standardized for future studies. These notwithstanding, the ≈ 50% oxidation state of 

roGFP2 as observed with the NEM-trapping technique accurately reflects the steady-state degree of 

oxidation of the roGFP2-Tsa2∆CR biosensor under physiological conditions in wildtype cells, as have been 

previously reported [90]. The real-time flow cell measurements also qualitatively reveal ≈ 50% roGFP2 

oxidation ratio. 

An outstanding question that remains to be fully answered is how these H2O2 oscillations are 

generated and sustained. In other words, how is H2O2 produced during the YMC? Are the observed 

oscillations due to H2O2 production or consumption? While these questions could be the subject of future 

investigations, some explanations can be attempted. First, I note that when the sensor redox state of 

genomically engineered yeast cells grown in glucose batch culture was trapped with NEM and roGFP2 

fluorescence measured, the oxidation state of roGFP2 decreased with culture density (Fig. 2.5D). This 

suggests that once glucose became limiting, H2O2 production gradually decreased and roGFP2 consistently 

became reduced. Secondly, in a comparative measurement of roGFP2 fluorescence in wildtype BY4742 

yeast cells transformed with a plasmid expressing the roGFP2-Tsa2∆CR sensor and grown in media 

supplemented separately with three different carbon sources (i.e. glucose, galactose and glycerol/ethanol); 

I could observe only in glucose media, change in roGFP2 oxidation state with respect to culture duration. 

The sensor was almost 80% oxidized in fresh glucose and gradually reduced to about 60% oxidation over 

time, probably when glucose was depleted. This nearly 60% oxidation state was what was consistently 

achieved in galactose and glycerol/ethanol media over the duration of the experiment (Fig 3.2A). Similarly, 

by growing the plasmid expressing cells in glucose to mid-log phase, harvesting, diluting and further 

growing them separately in the three media described above, for NEM trapping experiments over a period 
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of 1 hour, I observed a consistent increase in the degree of roGFP2 oxidation only in glucose media (Fig. 

3.2B). Based on these observations, I concluded that 

glucose stimulated H2O2 production. 

Consequently, the controlled but consistent 

supply of glucose during continuous culture could be 

responsible for the generation of H2O2 that underlie the 

YMC. This reasoning is also supported by the fact that 

interference with cellular H2O2 generation systems 

inhibits the generation of, or perturbs the YMC. For 

instance, deletion of yeast cytosolic Cu-Zn superoxide 

dismutase 1 (SOD1) – an enzyme that catalyzes the 

breakdown of superoxide radical to molecular oxygen and 

H2O2 – inhibits respiratory growth and YMC generation 

(Fig. 3.3A). Moreover, deletion of yeast superoxide-

generating NADPH oxidase, YNO1, strongly perturbs the 

YMC (Fig. 3.3B).  

Figure 3.2: Glucose stimulates H2O2 production. WT 

BY4742 cells expressing the roGFP2-Tsa2∆CR plasmid were 
(A) cultured in the respective media at OD600 = 0.25 and trapped 

with NEM to monitor steady-state roGFP2 oxidation over the 
stated duration. (B) grown in 2% glucose media to OD600 = 3.5, 

diluted in the respective media and trapped in NEM at specific 
time intervals for 1 h. Data represent at least three independent 
replicates and error bars represent standard deviation. 
 

Another important source of  H2O2 within the cell 

is the mitochondria. Mitochondrial ROS are mainly 

generated at complexes I and III of the ETC in the form 

of superoxide, which is then converted to H2O2 by the 

superoxide dismutase Sod2 [156]. In mammalian cells, 

the protein product of an mRNA isoform of the 

mitochondrial SHC1 gene, p66Shc, has been implicated in 

the generation of H2O2 that oxidizes the circadian clock 

protein, CLOCK [153]. It is believed that p66shc functions 

as an oxidoreductase to transfer electrons from cytochrome c to molecular oxygen, leading to the generation 

of mitochondrial H2O2 [157]. Liu and colleagues showed that both p66Shc mRNA and protein products are 

expressed in a circadian manner, and that knockout of p66Shc compromises circadian H2O2 oscillations in 

hepatocytes and SCN neurons [153]. The significance of a functional ETC in the generation of H2O2 is also 

underscored by the fact that loss of a subunit of yeast cytochrome c oxidase (complex IV) of the ETC, 

COX6, decreases the starting OxD of roGFP2 and eliminates the H2O2 dynamics observed in 2% glucose 

batch culture of wildtype BY4742 cells (Fig 3.4). 
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Conversely, culture aeration and glucose supply remained constant during the YMC, although 

dissolved oxygen levels changed. It is plausible that H2O2 is constantly produced during the YMC. It is also 

conceivable that the oscillations in H2O2 during the YMC is underscored by H2O2 consumption or removal, 

rather than production. One major enzyme involved in H2O2 removal or transduction in budding yeast is 

the peroxiredoxin Tsa1. Strikingly, I observed that the levels of endogenous Tsa1 protein peaked during 

phases of decreasing H2O2 levels (Fig. 3.5A). In line with this observation, Tu et al. reported changes in 

TSA1 transcript levels during the YMC, which levels peaked during the ‘reductive charging’ phase [47] 

(Fig. 3.5B). The ‘reductive charging’ phase described by Tu et al. is the phase of decreasing H2O2 levels in 

this study. Furthermore, the study by Tu et al. also showed that the transcription factor Yap1 translocated 

into and accumulated in the nucleus during the ‘oxidative’ phase of the YMC [47]. Nuclear translocation 

of Yap1 leads to elevated expression of genes encoding most antioxidants and components of the cellular 

thiol-reducing pathways [158, 159]. These elevated antioxidant defense mechanisms during the so-called 

‘oxidative’ phase, I propose, was responsible for the decreased H2O2 and roGFP2 oxidation levels I 

observed in this study during this phase of the YMC. Therefore, in contrast to their characterization, I 

propose a YMC consisting of two phases – oxidative and reductive – based on the mode of H2O2 changes 

(Fig. 3.1). 

 
 
Figure 3.3: Interference with H2O2 generating pathways affect the YMC. (A) Representative oxygen trace showing 
that ∆sod1 cells only grow in a batch phase and could not effectively consume dissolved oxygen to generate 
synchronized metabolic cycles. (B) Representative oxygen trace showing that loss of YNO1 perturbs the YMC. 

 

 
Figure 3.4: Glucose-stimulated H2O2 dynamics is eliminated in ∆cox6 cells. BY4742 ∆cox6 cells expressing the 

roGFP2-Tsa2∆CR plasmid were cultured in glucose media at OD600 = 0.25 and trapped with NEM to monitor steady-
state roGFP2 oxidation over the stated duration. Data represent at least three independent replicates and error bars 
represent standard deviation. 
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The YMC has historically been studied in low-glucose chemostats. Burnetti et al. propose that this 

is so because the budding yeast population self-synchronizes in low-glucose conditions [115]. I propose 

that such self-synchronization in low-glucose chemostats may be achieved in part via glucose stimulated 

H2O2 generation. On the other hand, it has also been proven that yeast metabolic oscillations can occur on 

the population level, outside chemostat conditions and in non-glucose media. For instance, metabolic 

oscillations occurred in a batch culture upon diauxic shift to pure respiration on ethanol from aerobic 

fermentation [160]. Moreover, batch-grown and phosphate-starved yeast cells with ethanol as a sole carbon 

source exhibited metabolic oscillations [161]. 

The causative role for H2O2 during the YMC was reinforced by exogenous addition of non-

physiological peroxide levels that was enough to trigger phase shifting of the YMC from LOC to HOC (Fig 

2.9). Interestingly, this observation was independent of the phase of peroxide addition (Fig 2.10). More 

importantly, hyperoxidation and inactivation of endogenous typical 2-Cys peroxiredoxins as well as the 2-

Cys peroxiredoxin of the H2O2 biosensor accompanied the switch from LOC to HOC, upon high peroxide 

(Fig 2.11). This peroxide-induced peroxiredoxin hyperoxidation was also reflected in the reduction of the 

redox state of the peroxiredoxin target reporter, roGFP2, and in extension, endogenous peroxiredoxin 

protein target(s), although I did not provide direct evidence for the latter. 

 

 
 
Figure 3.5: Tsa1 protein and transcript levels peak during the LOC phase, before entry to HOC. (A) 

Representative oxygen trace (top) and Western blot (bottom) indicating points of sampling and Tsa1 protein levels, 
respectively, as observed in this study.  (B) Representative oxygen trace (top) and TSA1 mRNA levels (bottom) as 
reported by Tu et al. [47]. 
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Based on the above observations, I concluded that the YMC is regulated by thiol redox switch(es) 

that are controlled by peroxiredoxins. In other words, cyclical H2O2 changes are transduced by 

peroxiredoxins to regulate the redox state of protein target(s) that control oscillatory metabolism. I opined 

that if this hypothesis held true, then two predictions could easily be tested: Firstly, the addition of thiol 

oxidants and reductants should predictably perturb the YMC. Meaning, a thiol oxidant should directly 

oxidize protein thiols and thus prolong the LOC phase, whilst, a thiol reductant should directly reduce 

protein thiols and trigger HOC. This prediction works independent of peroxiredoxin activity. Secondly, 

peroxiredoxin deletion should strongly affect the YMC. 

The first prediction was tested by separate additions of 0.5, 1 and 2 mM diamide to independent 

wildtype YMC-synchronized cultures at the start of LOC, which extended the duration of LOC in a 

concentration dependent manner. Strikingly, addition of 2 mM diamide just before the switch from LOC to 

HOC extended the duration of LOC and profoundly delayed switch to HOC (Fig 2.4). Furthermore, DTT 

at 1, 2 and 5 mM shortened time in LOC and mediated rapid switch to HOC in a concentration dependent 

manner when added at the start of LOC in independent wildtype YMC-synchronized cultures. Importantly, 

5 mM DTT profoundly extended the duration of HOC beyond 10 hours – the time needed to complete two 

metabolic cycles (Fig 2.3). Hence, by applying thiol redox modifiers, the YMC could be switched between 

LOC and HOC metabolic states. 

In conclusion, I could demonstrate that redox processes that include thiol disulfide exchanges or 

switches regulate the yeast metabolic clock (Fig. 3.6). Identification of the specific thiol switch(es) involved 

could be an interesting subject for future investigations. 

 
 
Figure 3.6: Peroxiredoxin-mediated thiol-disulfide exchanges regulate the yeast metabolic clock. Scheme 

describing the effect of chemical redox perturbations on the yeast metabolic cycle. 
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3.2 Peroxiredoxins and thioredoxins are crucial for stable 

metabolic clock function 

The second prediction stated above was tested by deleting one or more peroxiredoxins from the 

yeast genome by homologous recombination of an antibiotic resistance cassette. By this method, I 

successfully generated cells lacking the mitochondrial matrix 1-Cys peroxiredoxin – i.e. ∆prx1, cells 

lacking the cytosolic atypical 2-Cys peroxiredoxin – i.e. ∆ahp1, and cells lacking both cytosolic typical 2-

Cys peroxiredoxins – i.e. ∆tsa1∆tsa2. In comparison to wildtype YMC-synchronized cultures, cells lacking 

the cytosolic 2-Cys peroxiredoxins displayed YMCs with shortened periods and diminished shapes, whilst 

∆prx1 YMC remained virtually unaffected (Fig 2.15). In other words, loss of one or more cytosolic 2-Cys 

peroxiredoxin(s) profoundly affects the stability of the yeast metabolic clock. 

The importance of peroxiredoxins for yeast metabolic clock function could further be deduced from 

the observation that combined loss of TSA1 and AHP1 leads to non-viability of the CEN.PK strain (Fig. 

2.19). In fact, conditional depletion of Ahp1 in a Δtsa1Δtsa2 strain further affects YMC stability (Fig. 2.21). 

Peroxiredoxin-mediated YMC regulation was mirrored in the behavior of the YMC upon temporary 

inactivation of peroxiredoxins with excess peroxide. Of note, is the correlation between peroxiredoxin 

hyperoxidation and immediate switch from LOC to HOC upon 1 mM t-BOOH or 5 mM H2O2 (Fig. 2.9 and 

Fig. 2.11). Meanwhile, this peroxide-induced HOC could also occur in a Δprx1 or Δtsa1Δtsa2 strain, 

although at different peroxide concentrations (Fig. 2.16 and Fig. 2.17). Thus, it is possible that multiple 

peroxiredoxins were hyperoxidized simultaneously during the peroxide-induced HOC in wildtype cells. To 

buttress this point, I have shown that the endogenous cytosolic typical 2-Cys peroxiredoxins, Tsa1 and 

Tsa2, were hyperoxidized via Western blots (Fig. 2.11D). Additionally, the hyperoxidation of the Tsa2∆CR 

and Ahp1 moieties of the biosensors upon excess peroxide, could be demonstrated (Fig. 2.11C(ii) and Fig. 

2.18). Therefore, it was not surprising that similar peroxide-induced HOC could be achieved in Δprx1 and 

Δtsa1Δtsa2 cells. It would be interesting to test in future studies, the contribution of the nuclear 

peroxiredoxin, Dot5, to YMC regulation. Additionally, raising antibodies against the hyperoxidized forms 

of other peroxiredoxins could augment our understanding of the contributions of each enzyme to the 

observed phenomenon. Taken together, these results confirm the functional redundancy between the 

different peroxiredoxins with respect to YMC control, and support the conclusion that peroxiredoxins and 

peroxiredoxin redox relays are crucial for YMC regulation. 

I have proposed that peroxiredoxins control thiol switch(es) that mediate YMC regulation. By using 

roGFP2 as a substrate, I have demonstrated that: (1) roGFP2 reduction in a ‘normal’ metabolic cycle 

correlates with switch to HOC, and (2) hyperoxidation of peroxiredoxins leads to reduced roGFP2, which 

correlates with switch from LOC to HOC. Next, I asked if indeed peroxiredoxin redox relays are crucial 

for YMC regulation, what might the target proteins of these relays be? Although numerous targets of 

peroxiredoxin relays have been identified in other organisms, only a few have so far been described in 

yeast. These include the transcription factor Yap1, which is oxidized by the glutathione peroxidase homolog 
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Orp1 [74], and the transcription factor Cad1, which was suggested to be oxidized by Ahp1 [162]. Indirect 

evidence suggests that there are many more unidentified targets of peroxiredoxin redox relays. For instance, 

a study from the lab of Vadim Gladyshev showed that about 50% of all yeast transcripts respond to H2O2 

in a manner that is almost completely dependent on the presence of peroxiredoxins [129]. Interestingly, it 

was recently reported that Tsa1 can regulate redox modifications on the yeast protein kinase A (PKA) 

subunit, Tpk1 [163]. The general stress responsive transcription factor, Msn2, is a target of PKA, and Msn2 

deletion has been shown to strongly disrupt the YMC, particularly the switching from LOC to HOC [164]. 

Other targets of PKA include the general heat shock response transcription factor, Hsf1, and metabolic 

enzymes, such as Pfk2, encoding phosphofructokinase. Thus, it is possible that peroxiredoxins, via redox 

regulation of PKA, enable cells to regulate a wide range of transcriptional and metabolic processes in 

response to changing H2O2 levels. Elucidating the mechanistic underpinnings and their relevance, for 

example, in coupling metabolic changes with the cell cycle, would be an interesting subject of future 

investigations. 

Active peroxiredoxin catalysis endogenously require thioredoxins – enzymes that facilitate the 

reduction of proteins by catalyzing cysteine thiol-disulfide exchange reactions [165]. Thus, in place of the 

artificial roGFP2, thioredoxins represent endogenous substrates of peroxiredoxins. Although I did not 

directly identify in this study, the specific thiol switch(es) involved in regulating the yeast metabolic clock, 

I opined that thioredoxins could be of interest if indeed peroxiredoxin relay(s) was/were crucial for YMC 

regulation. Mechanistically, thioredoxins contain two conserved cysteines that either exist in a reduced (-

SH) or an oxidized (S-S) form. They donate electrons from their active site dithiol to protein disulfide 

bonds, which are then reduced to dithiols. The resulting oxidized thioredoxin disulfide is reduced by 

thioredoxin reductase with electrons donated by NADPH [165]. I imagined that this catalytic mechanism 

could be important for regenerating oxidized peroxiredoxins to mediate the oscillatory H2O2 signaling 

phenomenon observed during the YMC. Consequently, loss of either cytosolic thioredoxins, ie. TRX1 or 

TRX2 should have an effect on the YMC. Intuitively, a Δtrx2 strain exhibited cycles similar to that of 

Δtsa1Δtsa2 and Δahp1 strains, suggesting that loss of TRX2 affects YMC regulation (Fig. 2.22A). More 

importantly, a Δtrx1Δtrx2 strain could not generate metabolic cycles (Fig. 2.24). 

Furthermore, loss of TRX2 affected hyperoxidation-based LOC-to-HOC switching in a significant 

way. I noted that unlike wildtype YMC-synchronized cultures, 0.5 mM t-BOOH was enough to induce 

rapid LOC-to-HOC transition in Δtrx2 cultures. Strikingly, 1 mM t-BOOH induced a short LOC-to-HOC 

and immediately returned the YMC to a prolonged LOC phase spanning more than 6 hours (Fig. 2.22B). 

This observation is explainable as follows: unlike wildtype cells, loss of TRX2 diminishes the cellular 

‘reductive capacity’; hence, 0.5 mM t-BOOH was enough to achieve peroxiredoxin hyperoxidation. This 

concentration of t-BOOH however does not overwhelm Trx1-mediated reduction of protein thiols, hence 

HOC induction occurred ‘normally’ and the YMC was returned to ‘normal’ wildtype behavior. On the other 

hand, 1 mM t-BOOH overpowers rapid Trx1-mediated thiol reductions, as such, LOC-to-HOC transition 

is short-lived and cells are returned to a prolonged LOC phase, possibly due to direct oxidation of 
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peroxiredoxin-regulated thiol switch(es) by t-BOOH (Fig. 3.7), in ways similar to diamide. Indeed, unlike 

H2O2, which essentially depends on peroxiredoxins to mediate protein thiol oxidations [72, 166]; t-BOOH 

can directly react with protein thiols with or without peroxiredoxins. This was revealed in the response of 

roGFP2 to further addition of either 1 mM H2O2 or t-BOOH upon hyperoxidation of the Tsa2∆CR moiety 

of the biosensor (Fig. 2.23). 

 

 
 
Figure 3.7: Scheme explaining YMC behavior in wildtype and ∆trx2 cells upon peroxide. Loss of TRX2 decreases 

cellular reductive capacity and facilitates a prolonged LOC phase upon peroxiredoxin hyperoxidation due to direct target 
protein oxidation by excess t-BOOH. 

 

A conceivable role for thioredoxins in circadian clock function was occasioned by the observation 

that mammalian AMP-activated protein kinase (AMPK), the master regulator of metabolism, is a direct 

target of Trx1 – i.e. Trx1 regulates the redox state and activation of AMPK during energy metabolism [167]. 

AMPK has been shown to regulate the circadian metabolic clock in mammals via cryptochrome (Cry) 

phosphorylation and degradation [168]. Snf1 is the yeast homolog of mammalian AMPK. In budding yeast, 

Snf1 is important for increased transcription of genes required for metabolic adaptation in low-glucose or 

non-glucose media [169]. Snf1 activation requires phosphorylation by Sak1/Elm1/Tos3 kinases, of a 

threonine residue (Thr210) in the activation loop of the kinase domain [170, 171]. Inside the kinase domain 

are four cysteine residues; Cys168, Cys212, Cys238 and Cys247, two of which directly flank Thr210 (Fig. 

3.8A). Shao et al. showed that AMPK forms oxidative aggregates in response to energy stress, via 

intermolecular disulfide bonds at the conserved Cys130 (Cys168 in S. cerevisiae) and Cys174 (Cys212 in 

S. cerevisiae) residues, which inhibit activating phosphorylation of AMPK. Consequently, AMPK 

activation by phosphorylation is restored by Trx1-mediated reduction of these cysteine residues [167]. 

Crystal structure analysis shows that formation of Snf1 dimer involves segments around Thr210 and 
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Cys212, predominantly via hydrophobic interactions [172]. Based on their results, Shao et al. suggested 

that disulfide bond formation might be involved in both Snf1 and AMPK dimerization [167]. Upon 

dimerization, the activation loop and substrate-binding site of Snf1 are buried inside the dimer, resulting in 

an inactive protein [172]. I imagined that such a disulfide bond could modulate Snf1 function as shown 

(Fig. 3.8B). 

 

 

Figure 3.8: Snf1 could potentially be redox regulated. (A) Annotated sequence of Snf1. Sequence was obtained 
from the Yeast Genome Database. (B) Inter- or intra-molecular disulfide bond formation at Cys168 and/or Cys212 

under high physiological H2O2 or high glucose could inhibit Snf1 activation by phosphorylation. Consequently, 
expression of genes required for respiration and HOC could be suppressed. 

 

It is plausible that Snf1 function may be required for metabolic cycling in low-glucose chemostats, 

since a ∆snf1 strain could not grow in batch culture to establish the YMC (Fig. 3.9). Such a function could 

probably be mediated via thiol redox modifications at Cys168 and/or Cys212, in response to changing 

metabolic states, which ultimately affect activating phosphorylation at Thr210. During the YMC, these 

Snf1 thiol disulfide modifications might occur in a cyclical manner in response to oscillations in H2O2, and 

possibly be regulated by the peroxiredoxin and thioredoxin systems. Consequently, shuttling of Snf1 in and 

out of the nucleus would influence changes in expression of genes that are needed for respiration, as well 
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as to mediate LOC and HOC metabolic states of the YMC (Fig 3.10). It would be interesting to pursue this 

hypothesis in the future and test the impact of Snf1 cysteine mutants on YMC oscillation. 

 

 

Figure 3.9: Loss of SNF1 affects generation of the YMC. Representative oxygen trace showing that ∆snf1 cells only 

grow in a batch phase and could not effectively consume dissolved oxygen to generate synchronized metabolic cycles. 
 
 
 
 

 

Figure 3.10: Redox regulation of Snf1 could be essential for YMC oscillation. Scheme illustrating a possible mode 

of Snf1 regulation in low-glucose or low signaling H2O2 conditions (left), as well as in high-glucose or high signaling 
H2O2 conditions (right). Under low-glucose, Snf1 stays reduced due to low signaling levels of H2O2. Consequently, Snf1 
could be activated by phosphorylation to translocate into the nucleus to induce expression of genes required for 
respiration and HOC. Under high-glucose, Snf1 becomes oxidized due to high signaling levels of H2O2. Consequently, 
phosphorylation of Snf1 is inhibited and Snf1 stays in the cytoplasm. Sod1-mediated stabilization of Yck1p1/Yck2p 
under high signaling levels of H2O2 leads to repression of respiration [173]. 



 

64 

 

3.3 The cellular redox/metabolic state regulates the cell 

division cycle 

Herein, I have shown that during the YMC, levels of H2O2 begin to rise at the height of oxygen 

consumption (i.e. trough of the YMC) and peak just before the entry into LOC. During LOC, H2O2 levels 

begin to decrease and is lowest at LOC-to-HOC transition. Simultaneously, accumulation of 2N DNA 

content was observed to begin in correlation with rising H2O2 levels and peaked just before the entry into 

LOC. Thereafter, the proportion of cells with 2N DNA content decreased and was lowest during LOC-to-

HOC transition. Furthermore, cell budding was highest before entry to LOC and cell division was 

completed before entry into HOC (Fig. 2.25 and Fig. 3.1). These observations suggest that changes in H2O2 

signals during oscillatory metabolism is required to synchronously drive cells through the cell division 

cycle. I therefore hypothesized that initiation of DNA synthesis might require input signals from H2O2. For 

a successful completion of cell division however, signaling levels of H2O2 must decrease.  

In line with this reasoning, it was suggested that oscillations in the intracellular redox state during 

cell cycle progression represents a fundamental mechanism that may link oxidative metabolism to cell cycle 

regulation [119]. The idea that redox changes may regulate the cell division cycle is supported by evidence 

from Tu et al. who demonstrated that several DNA replication and cell cycle regulatory genes are expressed 

during a reductive non-respiratory phase of the YMC (i.e. LOC) whilst cell cycle initiation occurs very late 

during a respiratory oxidative phase (i.e. peak of HOC or trough of the YMC) [47]. Although it is not 

entirely clear which redox half-reactions control either cell cycle entry or exit, it has been suggested that 

transient increase in oxidation early in G1 is necessary for G1-to-S phase transition and thus inhibiting this 

transient increase in oxidation causes cell cycle arrests in the G1 phase [122].  Similarly, GSH levels were 

reported to be significantly higher in the G2 and M phases of the cell cycle compared to G1, suggesting that 

cells in the G2 and M phases are at a more reduced redox state compared to G1 phase cells [125] 

The plausibility of periodic oscillations in the intracellular redox state playing a crucial role in 

regulating cell cycle progression is not far-fetched since several cell cycle regulatory proteins harbor redox-

sensitive motifs [125]. These proteins include but not limited to cyclins, Cdks and Cdk inhibitors. For 

instance, the activity of the 20S proteasome in S. cerevisiae is inhibited by S-glutathionylation following 

H2O2 treatment, meanwhile, proteasomal degradation of cyclins is central to cell cycle regulation [174]. In 

line with this, it has been shown in Her14 fibroblasts that exposure to H2O2 leads to accumulation of cyclin 

D1 at G1 phase, due to the inhibition of cyclin D1 protein degradation [175]. Moreover, direct redox 

modification of cyclin D1 itself has been proposed as an alternative mechanism for its regulation. Cyclin 

D1 contains two phosphorylation sites – Thr286 and Thr288 – that can be phosphorylated by glycogen 

synthase kinase (GSK-3ß) and Mirk/dyrk kinase, for proteasomal degradation [176, 177]. It is suggested 

that redox thiol modification of cyclin D1 at Cys285 could induce a conformational change that might 

influence degradation phosphorylation at Thr286 and/or Thr288 [119]. Furthermore, Cdc25, an activator of 

cyclin–Cdk complex kinase activity could be inhibited either by the thiol-alkylating agent NEM or via 
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mutation of a single conserved cysteine residue [178, 179]. In addition, H2O2 induced degradation of 

Cdc25c proteins via formation of intramolecular disulfide bond at Cys377 and Cys330, whilst double 

mutants of Cys377 and Cys330 were resistant to H2O2-induced degradation [180]. 

Recent observations suggest that metabolic cycles are crucial for regulating cell cycle entry and 

exit [114, 115]. I imagined that the redox state per se might not only be necessary to modulate cell cycle 

regulatory proteins and thereby controlling the cell cycle, rather, the redox state may influence the metabolic 

state that eventually determines whether cells are ready to initiate the cell cycle or not. In other words, cell 

cycle initiation is dictated by the metabolic state, which in itself is controlled by the cellular redox 

environment (Fig 3.11). I have shown that HOC is a trigger for DNA synthesis, and LOC-to-HOC transition 

is characterized by low H2O2 (or oxidation) levels under physiological conditions. Intriguingly, inducing a 

reducing environment with DTT is enough to artificially maintain a prolonged HOC phase and cause 

multiple rounds of DNA synthesis and cell cycle initiation even though a previous cell division cycle 

remains uncompleted (Fig. 2.27). Conversely, a LOC phase was critical for cell cycle completion and exit, 

and entry into LOC was triggered by high H2O2 (or oxidation) levels under physiological conditions. 

Accordingly, temporarily prolonging the LOC phase and delaying LOC-to-HOC transition with diamide 

delays initiation of DNA synthesis and start of a new cell cycle (Fig. 2.28). 

It has been shown that more than 50% of yeast metabolome changes during cell cycle progression 

downstream of Start, causally linking global metabolism changes to cell division [181]. The mechanistic 

details on how metabolic changes might regulate cell division or vice versa remains to be fully explored. 

Cell division in itself is suggested to involve several coupled, but nonetheless independent oscillators, in 

addition to the classic and well understood cyclin-Cdk system. Recent observations suggest that Cdk1 

directly modulates metabolism of storage carbohydrates via activation of trehalase, Nth1, and glycogen 

phosphorylase, Gph1, thus coordinating carbohydrate metabolism and the cell cycle in yeast [181, 182]. I 

have proposed earlier that peroxiredoxins might regulate PKA to trigger a wide range of transcriptional and 

metabolic processes in response to changing H2O2 levels. Interestingly, it has been shown that Gph1 and 

Nth1 are not only targets of Cdk1, but also of PKA [182, 183]. Moreover, some studies have identified 

Bcy1, the regulatory subunit of PKA, as a Cdk substrate [184, 185]. More importantly, PKA has been 

shown to regulate the activity of Cln-Cdc28 at G1 and multiple G1 cyclins (i.e. Cln1, Cln2, and Cln3) harbor 

consensus PKA phosphorylation sites [182, 186]. It is plausible that Cdk and PKA not only interact with 

similar substrates, but also regulate each other. This believe stems from the observation that PKA and Cdk 

activity peak at the same time during cell cycle Start [187]. Thus, peroxiredoxins, PKA, Cdk and their 

substrates might form a regulatory circuit that mediate the coordination of metabolism with cell division in 

the yeast metabolic cycle. 
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3.4 Peroxiredoxins couple changes in cell metabolism to cell 

division 

My own observations, as well as previous reports show that metabolic clocks are coupled to cellular 

programs such as transcription/translation and cell division [47, 49, 56]. Intriguingly, I find that temporary 

inactivation or loss of the cytosolic typical 2-Cys peroxiredoxins, Tsa1 and Tsa2, do not only affect the 

yeast metabolic cycle, but also profoundly upsets coordination of the metabolic cycle with the cell division 

cycle (Fig. 2.26). Consequently, the mechanism by which the metabolic state controls cell division might 

be governed by peroxiredoxins. 

I propose that under physiological conditions in the yeast metabolic cycle, peroxiredoxins sense 

oscillations in H2O2 levels to regulate cellular metabolism [188] and possibly the redox state of cell cycle 

modulators. During periods of low signaling H2O2 levels, peroxiredoxins become less oxidized and their 

target(s) stay(s) reduced. Reduced peroxiredoxin target(s) induce(s) a HOC state, which is a pre-requisite 

for DNA synthesis and cell cycle entry. Upon high signaling H2O2 levels, peroxiredoxins become oxidized 

and transfer oxidizing equivalents to their target(s). Oxidized peroxiredoxin target(s) induce(s) a LOC state, 

which is a pre-requisite for cell division and cell cycle exit. By artificially modulating the redox state of 

peroxiredoxin target(s) directly or indirectly either via peroxiredoxin hyperoxidation with excess t-BOOH, 

oxidation with diamide or reduction with DTT, a HOC or LOC metabolic state can be achieved to trigger 

entry into or exit from the cell division cycle (Fig. 3.11). Importantly, a prolonged LOC phase prolongs 

duration of cell cycle exit and inhibits entry, whilst a prolonged HOC phase favors DNA replication and 

cell cycle entry and inhibits cell cycle exit. 

The involvement of peroxiredoxins in regulation of cell cycle processes may represent a novel and 

exciting area of scientific research. Recent observations suggest this ‘new’ role for peroxiredoxins may 

either be achieved indirectly via endogenous substrates such as thioredoxins or through direct redox 

modulation of cell cycle regulators. For instance, the rate-limiting enzyme of deoxyribonucleotide 

triphosphate (dNTP) biogenesis – ribonucleotide reductase (RNR) – relies on electrons from thioredoxins 

or glutaredoxins for recycling during DNA replication and repair in the cell cycle [189, 190]. Boronat and 

colleagues demonstrated that the cytosolic thioredoxin, Trx1, is the primary electron donor for the RNR 

large subunit, Cdc22, in S. pombe. Genetic depletion of TRX1 and TRX3 leads to severe replication stress 

that is partially overcome by activation of the Rad3-Cds1 DNA replication checkpoint to induce 

transcription of Cdc22. However, loss of the peroxiredoxin Tpx1, a major substrate of Trx1, in a Δtrr1Δgrx1 

strain favored the reduction and functionality of RNR to allow DNA synthesis, cell cycle progression and 

cell growth [191]. 

Furthermore, it has been proposed that the replication of DNA requires coordination between 

replication fork progression and metabolic pathways involved in dNTP biogenesis. In the absence of such 

coordination or during adverse metabolic conditions such as elevated ROS production, replication fork 

integrity might be compromised, thereby undermining the fidelity of genome duplication [49, 192]. 
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Perturbation of RNR leads to elevated ROS levels and an imbalance of dNTPs in human cells, which can 

affect genome integrity by inducing replication fork stalling, DNA breaks and impairment of polymerase 

proofreading activity [193]. Somyajit et al. proposed a mechanism by which redox signaling couples 

fluctuations of dNTP biogenesis with replisome activity to reduce stress during genome duplication. This 

mechanism is mediated by the interaction between a component of the replisome, TIMELESS and 

peroxiredoxin 2 (PRDX2). In low ROS levels, PRDX2 binds TIMELESS to accelerate the replication fork 

and enable timely genome duplication. In elevated ROS levels, PRDX2 oxidization disrupts this binding 

and compels the displacement of TIMELESS from the replisome leading to replication fork slowdown 

[193, 194]. 

Cell cycle progression through mitosis depends upon the activation of the Cdk1-cyclin B complex 

in early mitosis [195]. This activation occurs first at the centrosome during prophase and amplified via 

multiple feedback loops involving kinases such as cyclin B, Cdc25 and Aurora A [196-198]. The activity 

of these kinases are in turn regulated by anaphase-promoting complex/cyclosome (APC/C)-mediated 

ubiquitination and subsequent degradation in the proteasome. Meanwhile, APC/C activation is dependent 

upon Cdh1, whose phosphorylation by Cdk1 inhibits this interaction [199, 200]. Cdk-opposing 

phosphatases such as Cdc14B, PP1 and PP2A restore Cdh1 activation via de-phosphorylation [201-203]. 

It is suggested that the intracellular concentration of H2O2, especially at the centrosome, increases 

as the cell cycle progresses. Recent reports show that this local accumulation of H2O2 results from Cdk1-

mediated inhibition of PrxI oxidase activity via phosphorylation [204, 205]. At the centrosome, H2O2 is 

believed to oxidatively inhibit Cdk1-opposing phosphatases such as Cdc14B at Cys228 and Cys314, 

leading to the accumulation of phosphorylated Cdh1 [205]. Accordingly, by Cdk1-mediated 

phosphorylation and inhibition of PrxI at the centrosome, H2O2 locally accumulates to control the activity 

of Cdk1 regulators to promote mitotic entry. My observation that H2O2 levels peak just before entry into 

LOC, a phase characterized by cell division, underscores the above reports. It will be interesting to elucidate 

the exact mechanisms involved during the YMC. 

My observations also show that the YMC persisted, albeit in a perturbed manner, upon deletion of 

the genes encoding the two cytosolic typical 2-Cys peroxiredoxins, Tsa1 and Tsa2. The mutant cells divide 

completely asynchronously from the metabolic cycles and from each other. Although the consequence of 

the loss of YMC-CDC coupling in 2-Cys peroxiredoxin-deleted cells remains to be fully elucidated, this 

loss of synchrony could explain why for example, thiol peroxidase-deficient (e.g. ∆tsa1) cells exhibit 

decreased growth fitness and are prone to spontaneous genetic mutations and gross chromosomal 

rearrangements, compared to their wildtype counterparts [206-208]. More so, deletion of peroxiredoxins is 

associated with an increased incidence of cancer in higher organisms [207, 209]. These phenotypes are 

typically attributed to supposedly higher levels of ROS in peroxiredoxin deficient cells. However, an 

attractive alternative hypothesis arising from this study is that in the absence of peroxiredoxins, the 

uncoupling of cell division from metabolism allows cells to divide at ‘inappropriate’ times, with respect for 

example to metabolite availability and prevailing metabolic conditions. 
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Figure 3.11: Model illustrating the role of peroxiredoxins in the YMC. A proposed role for peroxiredoxins in 

regulation of metabolic cycling and the coordination of metabolism with cell division. Red arrows indicate non-
physiological treatments that have been used in this study to test the model. 
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4 OUTLOOK 

In this study, I have demonstrated that peroxiredoxins and peroxiredoxin redox relays are important 

for metabolic clock function, and in coupling of metabolism to the cell division cycle. I was able to 

demonstrate that 2-Cys peroxiredoxins, especially Tsa1 and Ahp1, are crucial for this function, loss of both 

being detrimental for prototrophic yeast viability. 

I could not in this study identify specific redox relays important for YMC control and CDC 

coupling, although previous reports provide some insights into this [74, 162, 164]. It would therefore be 

interesting for future studies to use high throughput approaches to identify some of these relays. Protein-

protein interaction techniques such as proximity biotinylation could be helpful in this regard. Fusion and 

coexpression of Tsa1 with the biotin affinity tag and biotin-ligase BirA*, for instance, and treating a YMC-

synchronized culture of the tagged yeast strain with appropriate amounts of commercially available biotin 

would lead to promiscuous biotinylation of Tsa1 interacting partners [210-212]. By phase-specific sampling 

and proteomic analysis, it would be possible to analyze in an unbiased manner, phase-specific expression 

changes of such relays or interactions. An alternative strategy would be to trap the thiol redox state of 

samples collected at specific phases of the YMC and subject them to redox proteomic analysis techniques 

such as OxICAT [213, 214] or SICyLIA [215]. 

Changes to cellular transcript levels during the YMC have been investigated [47]. One subject that 

would be interesting to explore in the future would be to compare transcriptomic profiles to proteomic 

profiles during the same YMC. It is plausible that oscillatory changes in transcript levels are reflected at 

the proteomic level, or not. However, this is yet to be demonstrated. It would also be interesting to know 

how these transcriptome and proteome profiles are altered in response to the concentrations of peroxides 

used in this study. A proper experimental protocol would be to extract both mRNAs and proteins 

simultaneously from same cell aliquots in an assay and subject them to transcriptomics and non-targeted 

proteomic analysis. The GenElute™ RNA/DNA/Protein Purification Plus Kit (RDP300) from Sigma-

Aldrich would be helpful for this purpose. 

The requirement of Tsa1 and Ahp1 for prototrophic yeast viability is a novel observation that 

warrants further interrogations in the future. It would be interesting to know if the differential requirement 

for Tsa1 and Ahp1 is idiosyncratic of all prototrophic yeast strains that undergo metabolic cycling. It is also 

plausible that the more domesticated lab strains, such as BY4742 and W303, might have lost other 

important biological features that are essential for understanding cellular mechanisms on the systems 

biology level (e.g. Proteostasis). The challenge for yeast biologists, which is worthy of debate, is whether 

before drawing conclusions from experiments performed in auxotrophic yeast strains, it would be necessary 

to confirm same in their prototrophic counterparts, in similar fashion as cell culture experiments are verified 

in primary cells or animal models. 

The importance of thioredoxins in redox processes and ribonucleotide biosynthesis position these 

enzymes at the interface of YMC-CDC coupling. My ‘biased’ selection of TRX2 for scrutiny of its impact 
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in YMC regulation revealed an important finding that is worth pursuing. The requirement of thioredoxins 

for peroxiredoxin recycling was reflected in the effect on the YMC, of the loss of TRX2. It is possible that 

∆trx2 cells will exhibit CDCs decoupled from the YMC, although yet to be proven. In their review, Chen 

and McKnight argued as follows: “Based on the redox nature of cell cycle gating by the YMC, the 

regulatory factor(s) might possess the following attributes: (1) redox sensitivity; (2) expression and/or 

activity that is switched on or off at the oxidative-reductive transition point; and (3) direct or indirect 

interaction with key factors controlling DNA replication” [216]. It is my view that thioredoxins meet these 

criteria. A careful dissection of the contributions of thioredoxins and thioredoxin reductases to YMC 

regulation is worth pursuing. Moreover, the mechanisms that underlie YMC-CDC coupling as well as 

impacts of the loss of such coupling on cell physiology could become clearer upon identification of the 

redox relays that govern such process using the techniques aforementioned. 

Although other redox metabolites such as NADP(H) and GSH/GSSG have been shown to oscillate 

during the YMC [56], the approach used to interrogate H2O2 dynamics in this study is novel and less prone 

to direct human manipulations. Real-time measurements provide high resolution, second to second interval 

snapshots of redox metabolite dynamics. During the course of this study, I have also engineered CEN.PK 

yeast strain expressing a genomically integrated roGFP2-Grx1 biosensor, capable of monitoring in real-

time, oscillations in the GSH/GSSG couple during the YMC. It would be good to use this strain in the future 

to monitor GSH/GSSG dynamics during the YMC. While expression of plasmids in the CEN.PK 

background was assumed impossible due to the inability for plasmid selection, I devised a technique, by 

deleting the HIS3 gene from the CEN.PK genome and supplementing this with a HIS3 plasmid. By so 

doing, it was possible to develop a ∆his3 CEN.PK strain expressing a HIS3 plasmid and capable of 

generating synchronized YMCs just like a wildtype strain (data not shown). I am aware that plans are 

advanced by the Morgan lab to develop plasmid-based genetically encoded biosensors to monitor cellular 

NADP(H) in yeast. Such plasmids, when ready, can be expressed in the ∆his3 CEN.PK strain to monitor 

cycling changes in this metabolite during the YMC, if any. Such NADPH oscillations are expected to run 

anti-phasic to H2O2 changes, owing to the antioxidant role of NADPH. It would be interesting to see how 

this turns out in the future. The source of H2O2 during the YMC, as well as the mechanisms by which their 

oscillations are generated and maintained is worth following up on. 
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5 MATERIALS AND METHODS 

This section contains methods that are standard protocols in the Morgan lab. Methods that were 

developed by me as part of this project are described in details. Methods modified from other publications 

are duly cited and referenced. 

 

5.1 Molecular Biology Methods 

5.1.1 Plasmid DNA isolation from Escherichia coli (E. coli) 

I isolated plasmid DNA from E. coli cells after cloning of vectors. To do this, I inoculated 5 ml of 

selective LB-media with a single bacteria colony and incubated at 37 °C with shaking at 140 rpm overnight. 

I harvested and extracted DNA from 2 ml of E. coli culture using the NucleoSpin Plasmid-Kit (Macherey-

Nagel, #740609.250) according to the manufacturer’s instructions. 

 

5.1.2 Determination of DNA concentration 

I used the NanoDropTM 1000 Spectrophotometer (Thermo Fisher Scientific) to evaluate DNA 

concentration and purity. This was done with 1 µl of DNA after cleaning and blanking of instrument with 

milliQ-H2O. I measured absorbance at 280, 260 or 230 nm. The ratios of 280/230 and 260/230 were used 

to determine contamination by proteins, RNA and organic compounds. For low contamination, a ratio of 

around 2 was sufficient. 

 

5.1.3 Polymerase chain reaction for DNA amplification 

I performed polymerase chain reaction (PCR) to amplify DNA for homologous recombination, 

plasmid construction and successful clone verification. For homologous recombination and plasmid 

construction, the PCR reaction volume was 50 µl, consisting of 100 ng template DNA, 40 pmol each of 

forward and reverse primers, 0.2 mM dNTPs, 1 U polymerase and 1x reaction buffer, and made up with 

milliQ-H2O. For verifications after cloning, the PCR reaction volume was scaled down to 25 µl. 

Successful integration of antibiotic resistance cassette by homologous recombination was 

confirmed by colony PCR. To do this, one colony of yeast was dissolved in 30 µl of 0.2 % SDS and boiled 

for 10 min at 95 °C. Afterwards, cell debris and intact cells were pelleted using a small tabletop centrifuge 

at 17,000g for 1 min. Thereafter, 1 µl of the supernatant was used as template DNA for PCR. 

All reactions were performed with the Phusion High-Fidelity DNA Polymerase kit (New England 

BioLabs or NEB, #M0530L). The PCR was run under the following conditions: initial denaturation at 98°C 

for 3 min, 30 cycles of denaturation at 98 °C for 30 s, followed by annealing at 60 °C for 20 s and extension 
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at 72 °C for 1 min/kb. The final extension of PCR product was carried out at 72 °C for 10 min and cooling 

to 4 °C. 

 

5.1.4 Restriction digestion of DNA 

Restriction digestion was used to confirm plasmid construct before and after cloning. PCR products 

or plasmids were digested in a  50 µl reaction volume containing 15 U of restriction enzyme and 1x reaction 

buffer (CutSmart, NEB, #B7204S) as recommended by the manufacturer. To avoid self-ligation, 1 U of 

calf intestinal phosphatase (CIP, NEB, #M0290S) was added to the reaction where necessary. The reaction 

mixture was incubated at 37 °C for 2 h and analyzed in agarose gel electrophoresis. The respective DNA 

fragment was purified after electrophoresis or directly after the digestion reaction using the NucleoSpin® 

PCR Clean-up kit (Macherey-Nagel) according to the manufacturer’s instructions. For analytic purposes, 

500 ng of plasmid DNA was digested for 30 min at 37 °C in a 20 µl reaction volume and analyzed by 

agarose gel electrophoresis. 

 

5.1.5 Ligation of DNA fragments with vectors 

Insert fragments were ligated into vector plasmid DNA in a 3:1 ratio in a reaction volume of 20 µl. 

This consisted of 100 ng of vector, 2 µl of T4 DNA ligase (NEB, #M0202S), 2 µl of 10x ligase reaction 

buffer (NEB, #E6289), and made up with milliQ-H2O. The reaction was performed at 16 °C overnight and 

2 µl of the ligation reaction was transformed into E. coli cells. 

 

5.1.6 Agarose gel electrophoresis 

Agarose was used for verification of DNA fragments after restriction digest and cloning. The gel 

was prepared at 1% (w/v) in 1x TAE buffer (40 mM Tris, 1.14% acetic acid, 10 mM EDTA pH 8.0) by 

heating in a microwave. The gel was casted into a slide and 0.5 µg/ml ethidium bromide was added to 

visualize DNA under ultra violet (UV) light. Samples were mixed with 6x loading dye (60 mM Tris/HCl 

pH 7.5, 30 mM sodium acetate, 12 mM EDTA, 60% (v/v) glycerol, 0.36% (w/v) orange G) and loaded onto 

wells in the gel. The electrophoresis was performed in 1x TAE buffer at 10 V/cm. The gels were analyzed 

under UV light. 
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5.1.7 Chemical transformation of E. coli cells 

Chemo competent E. coli cells were transformed for the amplification of plasmid DNA. Cells were 

thawed slowly on ice and mixed with either 2 µl of a ligation reaction or 20 ng of plasmid DNA. The 

mixture was further incubated on ice for 30 min followed by a 45 s heat shock at 42 °C and incubation on 

ice for another 1 min. Afterwards, 100 µl LB-media was added and the suspension incubated further at 

37°C for 1 h on 750 rpm shaking. The cell suspension was immediately plated onto LB agar plates 

supplemented with 100 µg/ml Ampicillin and incubated at 37 °C overnight until colonies appeared. The E. 

coli cells used in this study are described in Table 5.1. 

 

5.1.8 One-step transformation of S. cerevisiae cells 

One milliliter of log phase yeast cells were harvested at 900g for 3 min. For homologous 

recombination to genomically integrate a DNA cassette, cell pellet was washed with 1 ml sterile milliQ-

H2O and re-suspended in 200 µl of one-step buffer (0.2 M Li-Acetate, 40 % PEG 3350, 100 mM DTT), 

10µl of 100 mg/ml single strand DNA from Salmon sperm (denatured at 95 °C for 5 min) and 500 ng of 

PCR product. In case of transformation with plasmid DNA for sensor expression, cell pellet was washed 

with 1 ml sterile milliQ-H2O and re-suspended in 100 µl one-step buffer, 5 µl Salmon sperm DNA and 

100ng of plasmid DNA. The mixture was vortexed briefly and incubated at 45 °C for 30 min on 750 rpm 

shaking. 

With plasmid transformations, the suspension was immediately spread onto HC agar plates lacking 

the respective amino acid for selection. For homologous recombination, cells were pelleted at 900g for 

3min, re-suspended in 1 ml of fresh YPD media and transferred into flasks containing 4 ml of fresh YPD 

media. The cell suspension was then incubated overnight in a shaking incubator at 30 °C. Thereafter, cells 

were harvested at 900g for 3 min and re-suspended in 200 µl of fresh YPD media. The cells were then 

plated onto the appropriate selective media as follows: 180 µl of the immediate suspension was spread on 

a YPD agar plate (90% plate), and the remaining 20 µl suspension was further diluted with 180 µl of fresh 

YPD media and plated onto another agar plate (10% plate). All plates were incubated at 30 °C for 2-3 days 

until colonies appeared. 

 

5.1.9 Plasmids and primers 

Plasmids used in this thesis are described in Table 5.2, whilst primers used in plasmid and strain 

construction are listed in Table 5.3. Plasmids were designed for expression in yeast. In some instances, 

primer names are denoted by the yeast strain they were used to construct and confirm. 
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5.2 Cell Biology Methods 

5.2.1 Yeast strains 

The CEN.PK 113-1A strain background was used to perform all experiments using the fermenter. 

Most deletion mutants were created in this background, unless otherwise stated. The BY4741 and BY4742 

backgrounds were also used for some experiments. Gene deletion strains were created using a standard, 

homologous recombination-based gene deletion approach (Table 5.4). All deletion strains were confirmed 

by PCR on isolated genomic DNA using primers designed to anneal 100–200 base pairs up- and 

downstream of the gene of interest (Table 5.3). 

 

5.2.2 Construction of a genomically integrated roGFP2-Tsa2∆CR 

expressing yeast strain 

The peroxiredoxin-based H2O2 sensor, roGFP2-Tsa2∆CR, was modified for integration and 

expression from the yeast genome. Briefly, the coding sequence for roGFP2-Tsa2∆CR was genetically fused 

to the KanMX4 resistance cassette and a strong constitutive promoter, GPD, both derived from a pYM-

N14 plasmid [217]. The KanMX4-GFP fragment was amplified by PCR using primers P1 and P2, which 

possess a NheI restriction site to enable annealing to the XbaI restriction site of the p415TEF roGFP2-

Tsa2∆CR plasmid. The complete construct was assembled in a p415TEF plasmid and confirmed by 

sequencing. The entire KanMX4-GPD-roGFP2-Tsa2∆CR construct was then amplified by PCR using 

primers P3 and P4, which were designed to have overhangs complementary to a non-coding genome region 

between the HXT6 and HXT7 genes. The PCR product was transformed into yeast for homologous 

recombination, positive colonies were selected on YPD agar plates supplemented with G-418 antibiotic, 

and confirmed by PCR of the genomic DNA using primers P5 and P6 (see Appendix A1). 

 

5.2.3 Construction of yeast strains capable of conditional genomic 

Ahp1 depletion via an auxin-inducible degron (AID) system 

A plasmid construct (AP2099) of both the auxin-inducible degron and Arabidopsis thaliana F-box 

protein, transport inhibitor response 1 (AtTir1), was a generous gift from Prof. Dr. Blanche Schwappach 

(Göttingen, Germany). The construct was modified and amplified by PCR for genomic integration and 

fusion to the N-terminus of AHP1, using primers P7 and P8. Positive clones were selected on YPD agar 

plates supplemented with G-418 antibiotic and verified by PCR using primers P9 and P10 or P9 and 

KanMX4 REV (see Appendix A3). Sensitivity to auxin was determined by spotting serial dilutions of 

exponentially growing yeast cultures on YPD plates containing 0.2 mM of auxin. 
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5.2.4 Yeast mating, sporulation and tetrad dissection 

A CEN.PK113-1A ∆tsa1∆tsa2 strain was crossed with CEN.PK113-7D ∆ahp1 strain on YPD agar 

plate. The resultant diploid cells were selected and enriched by growth on YPD plates supplemented with 

G418, nourseothricin and hygromycin antibiotics. These cells were subsequently inoculated into 10 ml of 

fresh YPD media and incubated overnight with shaking at 140 rpm, 30 °C. Next, 500 µl of YPD culture 

was harvested by centrifugation at 900g for 3 min and re-suspended in 10 ml of sporulation media (10 g/l 

Potassium acetate, 1 g/l yeast extract, 0.5 g/l glucose). The cell suspension was further incubated at 30 °C 

for 4 days to allow for sporulation. About 500 µl of sporulated cell suspension was harvested by 

centrifugation at 900g for 3 min and re-suspended in 100 µl of 1.2 M sorbitol buffer supplemented with 

zymolyase and incubated for 15 min at room temperature (RT). Zymolyase-treated cells were further diluted 

1:50 in 1.2 M sorbitol buffer and a few microliters of the suspension transferred onto the side of a dried 

YPD plate under sterile conditions. The plate was dried for a further 10 min and tetrads dissected using a 

tetrad dissection microscope (Nikon ECLIPSE 50i). Dissected tetrads were incubated at 30 °C for 48 h and 

characterized by growth on appropriate antibiotic containing media. 

 

5.2.5 Media for E. coli cultivation 

Bacteria was cultivated in liquid culture or on agar plates. LB medium (1% bacto-tryptone, 0.5% 

yeast extract, 1% sodium chloride, pH was adjusted to 7.5 with NaOH) supplemented with 100 µg/ml 

ampicillin was used for liquid culture and plasmid selection. For agar plates, 2% bacto-agar (w/v) was 

dissolved in LB medium and autoclaved. After cooling of the agar solution, 100 µg/ml of ampicillin was 

added prior to pouring in plates. 

 

5.2.6 Media for S. cerevisiae cultivation 

Yeast cells were cultured in full YP-media (1% yeast extract, 2% peptone, pH was adjusted to 5.5 

with HCl) supplemented with 2% glucose as carbon source. YPD agar plates were prepared by mixing 2% 

agar, 1% yeast extract and 2% peptone, adjusted to pH 5.5 with HCl and autoclaved. Autoclaved media 

was supplemented with 2% of glucose and 100 µg/ml of G418, Nourseothricin or Hygromycin B solution 

for selection where necessary. The mixture was poured into petri dishes. 

Yeast strains were streaked onto YPD agar plates for growth before culture in liquid media. Cells 

streaked on agar plates were grown in a stationary incubator, whilst cells cultured in liquid media were 

grown in a shaking incubator (140 rpm) at 30 °C. Yeast transformed for gene deletion by homologous 

recombination was grown on YPD agar plates supplemented with the respective antibiotic for selection. 

Backgrounds transformed with plasmids were grown in Hartwell’s complete (HC) media lacking the 

appropriate amino acids for plasmid selection, with 2% glucose as carbon source. The composition of HC 

media is described in Table 5.5. All media components were sterile filtered before use. 
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5.2.7 Establishment of continuous culture 

A Biostat® A fermenter (Module BB-8822002, Serial # 00337/16, Sartorius Stedim Systems, 

Guxhagen, Germany) was used for all continuous culture experiments. Fermenter runs were initiated by the 

addition of a 20 ml starter culture, which had been grown to stationary phase in YPD media at 30 °C.  The 

culture working volume was 800 ml. The fermenter was run at a constant temperature of 30 °C, with a 

constant pH of 3.4 maintained by automated addition of 10% (w/v) NaOH. The culture was continuously 

aerated at 1 L/min with stirring at 530 rpm. After growth to stationary phase as a batch culture, continuous 

culture was initiated by the addition of growth media at a constant dilution rate of 0.05 h-1. 

Growth media consisted of 10 g/l glucose, 1 g/l yeast extract (SERVA, #24540.03), 5 g/l 

(NH4)2SO4, 2 g/l KH2PO4, 0.5 g/l MgSO4.7H2O, 0.1 g/l CaCl2.2H2O, 0.02 g/l FeSO4.7H2O, 0.01 g/l 

ZnSO4.7H2O, 0.005 g/l CuSO4.5H2O, 0.001 g/l MnCl2.4H2O, 2.5 ml 70% H2SO4 and 0.5 ml/l Antifoam 

204 (Sigma). Media components and trace metals were separately prepared, sterilized and re-constituted to 

a total volume of 5L. Briefly, a solution consisting of 1 g/l yeast extract (SERVA), 5 g/l (NH4)2SO4, 2 g/l 

KH2PO4, 0.5 g/l MgSO4.7H2O, 0.1 g/l CaCl2.2H2O was prepared to the appropriate volume and autoclaved. 

To this solution were added the appropriate amounts of separately autoclaved 100 g/l glucose solution and 

70 % H2SO4 solution. ZnSO4.7H2O, CuSO4.5H2O and MnCl2.4H2O were prepared as a 1000x trace metal 

stock and separately autoclaved. Finally, FeSO4.7H2O was dissolved to 10 mg/ml in water, sterile filtered, 

and the appropriate amount added to the media mix, together with the appropriate volume of antifoam 204. 

 

5.2.8 Online monitoring or roGFP2-Tsa2ΔCR 

To enable the continuous ‘on-line’ monitoring of roGFP2-Tsa2ΔCR fluorescence, I developed an 

in-house system. Briefly, a peristaltic pump was used to continuously pump culture from the fermenter, 

through a flow-cell (Type 71-F, Starna GmbH, Göttingen) inserted into a JASCO FP-6500 

spectrofluorimeter. Fluorescence was measured at fixed excitation wavelengths of 425 nm and 488 nm with 

emission monitored at 510 nm. The excitation and emission bandwidths were set to 5 nm. A measurement 

was recorded every 30 s. RoGFP2 oxidation was qualitatively determined by computing the ratio between 

fluorescence intensities at 425 nm and 488 nm 

 

5.2.9 NEM-based alkylation for degree of oxidation of roGFP2-

Tsa2ΔCR determination 

To monitor changes in roGFP2-Tsa2ΔCR oxidation during the YMC an NEM-based probe 

oxidation ‘trapping’ method was used. Briefly, cells were removed from the culture vessel at the indicated 

time points. Aliquots of 450 µl were immediately added to separate Eppendorf tubes containing either 50µl 

1 M NEM (i.e. 100 mM final), 50 µl 1 M DTT (i.e. 100 mM final) or 50 µl 0.2 M diamide (i.e. 20 mM 

final). The samples were incubated at RT for 10 mins. Cells were subsequently harvested by centrifugation 
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at 900g for 3 min and re-suspended in 100 mM MES-Tris buffer (pH 6.0) containing 10 mM NEM. Cells 

were then transferred to a 96-well plate and probe oxidation was measured using a BMG Labtech 

CLARIOstar fluorescence plate reader. The degree of sensor oxidation was determined according to 

Equation 1, as previously described, based on the fluorescence emission intensity at 510 nm with excitation 

at both 405 nm and 488 nm for the fully oxidized, fully reduced and control samples respectively [90, 93, 

218]. 

 

Equation 1 

OxDroGFP2 = 
(𝐼405𝑠𝑎𝑚𝑝𝑙𝑒∗𝐼488𝑟𝑒𝑑) − (𝐼405𝑟𝑒𝑑∗𝐼488𝑠𝑎𝑚𝑝𝑙𝑒) 

(𝐼405𝑠𝑎𝑚𝑝𝑙𝑒∗𝐼488𝑟𝑒𝑑 − 𝐼405𝑠𝑎𝑚𝑝𝑙𝑒∗𝐼488𝑜𝑥) + (𝐼405𝑜𝑥∗𝐼488𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐼405𝑟𝑒𝑑∗𝐼488𝑠𝑎𝑚𝑝𝑙𝑒) 
 

 

5.2.10 Flow cytometry analysis of DNA content 

Aliquots of 1.0 OD600 units of fermenter cultures (~1 x 107 cells) were harvested at 6,000g for 1min. 

Cells were re-suspended and fixed in 1 ml 70 % (v/v) ethanol at 4 °C overnight. Fixed cells were then 

pelleted at 6,000g for 1 min and washed with milliQ-H2O. Cells were subsequently re-suspended in 250 µl 

FxCycle™ PI/RNase staining solution (Life Technologies, #F10797), incubated at RT in the dark for 30min 

and then stored at 4 °C for 72 h. Samples were sonicated at 30 % amplitude for 20 s and run on an Attune™ 

Flow Cytometer. Data analyses was performed using the FlowJo™ software (v.10). Samples were gated 

for single cells and a histogram of cell count against PI intensity plotted. The percentage of cells with 1N 

DNA and 2N DNA content were determined as follows: 1N; area under the histogram from 2.7 to 4.5 x 105 

PI intensity and 2N; area under the histogram from 4.5 to 7 x 105 PI intensity. Cell populations with PI 

intensity greater than 7 x 105 were considered to have more than 2N DNA content. 

 

5.2.11 Budding index determination and DNA visualization by DAPI 

staining and microscopy 

Fermenter culture samples were harvested at the indicated times and fixed with 70% (v/v) ethanol 

at 4 °C for 30 min. Cells were washed twice with 1x phosphate-buffered saline (PBS). Budded and non-

budded cells in several random fields were scored to calculate budding index. To visualize DNA 4,6-

diamidino-2-phenylindole (DAPI) was added to the harvested cells at a final concentration of 1 µg/ml in 

PBS and incubated in the dark for 10 mins. Cells were then washed and re-suspended in PBS for 

visualization. Cells were visualized with a fully automated Zeiss inverted microscope (AxioObserver Z1) 

equipped with the CSU-X1 spinning disk confocal head (Yokogawa). Image acquisition was performed 

using a CoolSnap HQ camera (Roper Scientific) and a 40x air or 63x oil objective under the control of the 

Slidebook software (Intelligent Imaging Innovations, Denver, CO). 
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5.2.12 Fluorescence Microscopy 

Genomically integrated sensor-expressing strains were grown to mid-log phase in YPD. About 1µl 

of the culture was placed on a microscopic slide and covered with a cover slip. Cells were viewed using a 

Nikon ECLIPSE E600 fluorescent microscope. Images were acquired with a 100× oil immersion lens and 

Nikon equipped camera using NIS-Elements D 4.50.00 software. Images were then transferred to 

PhotoScape (version 3.7) or ImageJ (version 1.52a) for processing. 

 

 

5.3 Protein biochemistry methods 

5.3.1 Protein extraction 

For detection of hyperoxidized peroxiredoxin proteins, 2.0 OD600 units of cells were collected from 

the fermenter 30 min after t-BOOH treatment and immediately treated with 100 mM NEM for 10 min at 

RT. Subsequently, cells were isolated by centrifugation at 900g for 3 min, re-suspended in 100 μl of 100 

mM NaOH and incubated for 10 min at RT. Cells were then centrifuged at 900g for 3 mins, re-suspended 

in 15 μl of lysis buffer (50 mM HEPES, pH 8.0, 50 mM NaCl, 1% SDS, 10 μM EDTA, 20 mM NEM) and 

mixed with 15 µl of 2× non-reducing SDS-PAGE sample loading buffer (50 mM Tris-HCl pH 6.8, 10% 

glycerine, 2% SDS, 0.01% bromophenol blue).  

For western blots against Myc-, FLAG- and His- tagged proteins, 1.0 OD600 units of cells were 

harvested at the indicated time points, re-suspended in lysis buffer and mixed with an equal volume of 2 x 

SDS-PAGE sample loading buffer. 

To control for specificity of anti-Prx-SO2/3H antibody towards Tsa, CEN.PK113-1A wildtype, 

∆tsa1∆tsa2 and sensor-expressing cells were grown to mid log phase (OD600 of 3-3.5) in fermenter media 

at 30 °C in a shaking incubator. About 2.0 OD600 units of cells were aliquoted into eppis containing a final 

of 0 and 1 mM t-BOOH or 0 and 5 mM H2O2. 

 

5.3.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins by 

their size. In this method, proteins are denatured and assume a negative charge due to the SDS detergent. 

This allows protein migration through an electric field towards the anode of the gel chamber. The network 

of acrylamide fibers leads to a slow migration of unfolded and large proteins whereas small or partially 

folded proteins run faster through the gel. Gels were casted in-house using the components shown in Table 

5.6. Samples were mixed with appropriate sample buffer prior to loading in gels. Protein sizes were 

determined with the aid of an unstained marker from peQLab or PageRuler™ Prestained Protein Ladder 

from ThermoFisher Scientific. Each gel was run at 25 mA for 2 h in SDS running buffer (25 mM Tris-HCl 

pH 8.3, 190 mM glycine, 0.1% SDS).  
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5.3.3 Western blot transfer and detection 

Proteins separated in SDS-PAGE were transferred onto a cellulose membrane using the semi-dry 

method. Two whatman papers (sized 17 cm x 12 cm) were briefly incubated in blotting buffer (20 mM Tris, 

150 mM glycine, 0.08% SDS, 20% methanol) and placed in the blotting chamber. Nitrocellulose membrane 

(sized 15 cm x 10 cm) and the SDS-gel were also incubated in the blotting buffer. The cellulose membrane 

was placed on top of the whatman paper followed by the gel. An additional Whatman paper was placed on 

top of the gel and the chamber was tightly closed. All processes were performed to avoid air bubbles. 

Proteins were transferred onto the membrane at 200 mA for 1.5 h. Membrane-transferred proteins were 

visualized by staining in Ponceau S solution (0.2% (w/v) Ponceau S, 3% (w/v) acetic acid) for 2 – 5 mins. 

Next, membranes were incubated reeling for 30 min in 5 % milk or BSA in 1x TBS buffer (10 mM 

Tris/HCl pH 7.5, 150 mM NaCl) to prevent unspecific binding of antibodies. Afterwards, the membranes 

were incubated with the primary antibody (as indicated below) overnight reeling at 4°C. The membranes 

were washed three times for 10 mins with TBS buffer. Afterwards, the membranes were incubated for at 

least 30 min, reeling at RT with horse reddish peroxidase-coupled secondary antibodies (anti-mouse or anti-

rabbit, 1:10,000 in 5 % milk or BSA in TBS). Membranes were thereafter washed again thrice for 10 mins. 

Membranes were then visualized by chemiluminescence using a 1:1 ratio of ECL 1 (100 mM Tris/HCl pH 

8.5, 0.044% (w/v) luminol, 0.0066% p-coumaric acid) and ECL 2 (100 mM Tris/HCl pH 8.5, 0.03% H2O2) 

solutions. The primary antibodies used include rabbit polyclonal α-Prx-SO3 (LF-PA0004, AbFRONTIER, 

1:1000 in 5 % Milk), mouse monoclonal α-FLAG M2 (F3165, SIGMA, 1:500, 5 % Milk), mouse 

monoclonal α-Myc Tag (9E11) (MAI-16637, Invitrogen, 1:500 in 5% Milk) and rabbit polyclonal α-His 

(Herrmann lab, 1.000 in 5% BSA). 

 

5.3.4 Autoradiography 

Luminescent membranes were detected by autoradiography, by placing radiosensitive films (Fuji 

Medical X-Ray Film Super RX or Kodak BioMax MR Film) on top of the dried cellulose membrane. After 

the desired exposure time, the films were developed using the Optimax TR (MS Laborgeräte) machine. 
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Table 5.1: Genotypes of the different E. coli strains used in this study 

Strain Genotype Use Reference 

MH1 MC1061 derivative; araD139, lacX74, 

galU, galK, hsr, hsm+, strA  

Plasmid 

amplification 

[219] 

DH5 K12 derivative; F- φ80dlacZ∆M15, 

∆(lacZYA-argF)U169, deoR, recA1, 

endA1, hsdR17(rk- mk+), phoA, 

supE44, λ -, thi-1, gyrA96, relA1 

Plasmid 

amplification 

[220] 

 

 

Table 5.2: List of plasmids used in this study 

Name Resistance/ 

Selection marker 

Backbone Insert Reference 

pYM-N14 AmpR/kanMX4 p413-GPD KanMX4-GPD [217] 

pYM46 AmpR/kanMX4 pYM1 MYC-7His [217] 

p415GPD 

roGFP2-Tsa2∆CR 

AmpR/LEU2 p415-GPD roGFP2-Tsa2∆CR This study 

p415TEF 

roGFP2-Tsa2∆CR 

AmpR/LEU2 p415-TEF roGFP2-Tsa2∆CR [90] 

p415TEF 

roGFP2-Ahp1 

AmpR/LEU2 p415-TEF roGFP2-Ahp1 [90] 

AP2099 AmpR/kanMX4 pCEV-Nop1 mycAID-AtTir1-Flag Blanche, 

Göttingen 

pFA6α-natNT2 AmpR/natNT2 pEG202 natNT2 [217] 

pFA6α-hphNTI AmpR/hphNTI p425-GalI hphNTI [217] 

pFA6α-kanMX4 AmpR/kanMX4 pYM3 kanMX4 [221, 222] 

PHUK AmpR N/A HUK Addgene 

PHLUK AmpR N/A HLUK Addgene 
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Table 5.3: List of primers used in this study 

Primer name 5' → 3' Sequence 

P1 GGTCCCGCGGCTAGCCGTACGCTGCAGGTCG 

P2 GGCAAAGGGCTAGCCATCGATGAATTCTCTGTCG 

P3 CCATTTAATTCCACCTTCGGATTTTTTTGCATAAACTCTCAATTT

CCCCGCGATCCATCTGCCGAATGCGTACGCTGCAGGTCGAC 

P4 CGTTCCTGTCAATCTAAGACTTGAAGATTACAGGACTTTTTTTTT

TCTTACTGTATTTTTCCGTAGAGTGGTACCGGCCGCAAATTAAA

G 

P5 CGATTTGTTGATTCCTATCCCAAGATTGAG 

P6  CTCTTTCAGCCTTGTTTGATGGTGTAGATAAAACC 

P7 GAAATTTCAACAAACCAGAACAACACAAGTACTACCAATAACC

ACAACAAAACATGCTTCGAGCGTCCCAAAACC 

P8 GCAATGTATTGGAATTTGTAGTCGCCAGCTGGGAATTTCTTGTT

AACTAAGTCAGAACCTGATACCTTCACGAACGC 

P9 TTTCTGATTTGTAATTATACGGGGA 

P10 ATTTTGTTCGAAACGCATATAATGT 

KanMX4 confirm FWD TGATTTTGATGACGAGCGTAAT 

KanMX4 confirm REV CTGCAGCGAGGAGCCGTAAT 

HphNTI confirm FWD GGCTTGTATGGAGCAGCAGAC 

HphNTI confirm REV CAAAGCATCAGCTCATCGAGAG 

natNT2 confirm FWD GCGCTCTACATGAGCATGCC 

natNT2 confirm REV CATCCAGTGCCTCGATG 

Tsa1-S1 CTCGTTCAATTGCTCACAACCAACCACAACTACATACACATACA

TACACAATGcgtacgctgcaggtcgac 

Tsa1-S2 CGTAAAGAGTGAATTTTAAATAAGTAGTCATTTAGACAACTCTG

CAAGCGTCTTAATCGATGAATTCGAGCTCG 

Tsa1-S3 CCATCAAGCCAACCGTTGAAGACTCCAAGGAATACTTCGAAGC

TGCCAACAAACGTACGCTGCAGGTCGAC 

Tsa1 confirm FWD TGCGTTTAAGGTGTACGAAAACCC 

Tsa1 confirm REV GGTTTACGCGTTTTAGAGCCAGAC 

Tsa2-S1 CACTATTACTGTTTTTTGCTCAAGAATATATTAGCCTTACAAGA

ACGTAAAAAACCAATCATG cgtacgctgcaggtcgac 

Tsa2-S2 CATATATAGGGTGATGTATTTTTAATTATTTAATAGGGCCTAGC

GTTATCGTGCGAAGATTAatcgatgaattcgagctcg 

Tsa2 confirm FWD GTTACCCGAGTAATCAAGGATCAACTATGG 
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Tsa2 confirm REV GGTCATTTGCGTCTTCTGGATATAAAGATG 

Ahp1-S1 CGAAATTTCAACAAACCAGAACAACACAAGTACTACCAATAAC

CACAACAAAACATGcgtacgctgcaggtcgac 

Ahp1-S2 CCTTGTACAGAATCGTTTTCTATTTTGAATTTTTTTTATATAAAC

ATGGTTTTATTGTCTATTACATAGCATCTAatcgatgaattcgagctcg 

Ahp1 confirm FWD TTTCTGATTTGTAATTATACGGGGA 

Ahp1 confirm REV ATTTTGTTCGAAACGCATATAATGT 

Prx1-S1 GTGCTTCTAGATTCTCGCAGTAGGATGAGATAAATTTCAAAGA

AGCAGGAAGCAAAGGATGCGTACGCTGCAGGTCGAC 

Prx1-S2 GATAAAAGTTTTAGTTAGAGATACTTCATATACCTGTATATAGT

AAAGTCGTTTATTTCAAAGCTTAATCGATGAATTCGAGCTCG 

Prx1 confirm FWD GTTTATCTTTATACAATATACAAAAGGTCACCCAG 

Prx1 confirm REV GGTCTTGGTCAGAATCTCGATTATC 

Sod1-S1 GGAAAAACAGGCAAGAAAGCAATCGCGCAAACAAATAAAACA

TAATTAATTTATAATGCGTACGCTGCAGGTCGAC 

Sod1-S2 GCGCTTACTACTTACTTACATACGGTTTTTATTCAAGTATATTAT

CATTAACATTAATCGATGAATTCGAGCTCG 

Sod1 confirm FWD GTTAAACCGGTGTGTCGGAATTAGTAAG 

Sod1 confirm REV CTGGAACCATCAAGACCGTTTTG 

Yno1-S1 ATATCTCGTCGCCAGAAACTTCTAATTTGGTAAGCCTTCCAATA

AATATGCGTACGCTGCAGGTCGAC 

Yno1-S2 ATTTCCGAGCATATTGCGTAAGACATTATTATTCTTTTCTTTTCC

CCTCAATCGATGAATTCGAGCTCG 

Yno1 confirm FWD GATCGCTGCTCCGTAATACCGATATAC 

Yno1 confirm REV CCGATTAATAATGCGTACAACCTGTCAAG 

Trx1-S1 CCCTGAAACTGCATTAGTGTAATAGAAGACTAGACACCTCGAT

ACAAATAATGCGTACGCTGCAGGTCGAC 

Trx1-S2 TATAACAAACACAGTATAGAAACACAATATATCGGTCATTGGG

TGAGTTTAATCGATGAATTCGAGCTCG 

Trx1 confirm FWD CGATATGTATATTCTTTTCGTTGGAAAAGATGTC 

Trx1 confirm REV CCTCTTGTGTGAAAAATTAATTGTTTCCTCC 

Trx2-S1 GAATTATACACGCACACATACACGAGAGTCTACGATATCTTTA

AATAACACATCAATAATGcgtacgctgcaggtcgac 

Trx2-S2 GTTTATTTAAACTGGTAAACATGATGTACTTTACGTAGCGTTAA

TATACCGGCAACTAatcgatgaattcgagctcg 

Trx2 confirm FWD CTCCCTACAAGGTGGCTCTTTTCTTACTAAGC 



 

83 

 

Trx2 confirm REV CAAAGGTGCAGAAAGCTGCACCTTGTAAG 

Cox6-S1 CGAACAATTGTATTTGACACATAAACTAATAAATATACAACAA

TGCGTACGCTGCAGGTCGAC 

Cox6-S2 ACAACAAATTACAGACGTTGTGTGGTAGCTTTTTCCTTATTATT

AATCGATGAATTCGAGCTCG 

Cox6 confirm FWD GCCAGATCTCAAGGTTACCTCATTTC 

Cox6 confirm REV TTCTGAGTGGATGAATATCCATAAAGGG 

 

Table 5.4: Genetic composition of yeast strains used in this study 

Strain Genotype References 

CEN.PK113-1A  MATα P. Kötter, Frankfurt 

CEN.PK113-7D  MATa P. Kötter, Frankfurt 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Euroscarf 

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Euroscarf 

∆prx1 CEN.PK113-1A ∆prx1::hphNT1 This study 

∆tsa1 CEN.PK113-1A ∆tsa1::hphNT1 This study 

∆tsa2 CEN.PK113-1A ∆tsa2::natNT2 This study 

∆tsa1∆tsa2 CEN.PK113-1A ∆tsa1::hphNT1 ∆tsa2::natNT2 This study 

∆tsa1∆tsa2 BY4742 Δtsa1::natNT2 Δtsa2::kanMX4 [90] 

∆ahp1 CEN.PK113-1A ∆ahp1::hphNT1 This study 

∆ahp1 CEN.PK113-7D ∆ahp1::kanMX4 This study 

∆ahp1 BY4741 ∆ahp1::kanMX4 Euroscarf 

CEN.PK T2-∆CR CEN.PK113-1A kanMX4-PGPD-roGFP2-Tsa2∆CR This study 

WT::AID-AHP1 
CEN.PK113-1A Af-Tir1-FLAG-Myc-kanMX4-

AID-AHP1 
This study 

∆tsa1::AID-AHP1 
CEN.PK113-1A ∆tsa1::hphNT1 Af-Tir1-FLAG-

Myc-kanMX4-AID-AHP1 
This study 

∆tsa2::AID-AHP1 
CEN.PK113-1A ∆tsa2::natNT2 Af-Tir1-FLAG-

Myc-kanMX4-AID-AHP1 
This study 

∆tsa1∆tsa2::AID-AHP1 
CEN.PK113-1A ∆tsa1::hphNT1 ∆tsa2::natNT2 

Af-Tir1-FLAG-Myc-kanMX4-AID-AHP1 
This study 

∆sod1 CEN.PK113-1A ∆sod1::hphNT1 This study 

∆yno1 CEN.PK113-1A ∆yno1::natNT2 This study 

∆cox6 BY4742 ∆cox6::kanMX4 [90] 

∆snf1 CEN.PK113-1A ∆snf1::kanMX4 This study 
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Table 5.5: Composition of Hartwell’s Complete (HC) media for growth of plasmid transformed yeast 

strains 

 

 

Table 5.6: Composition of SDS-PAGE gels 

Gel  Composition 

Running gel 16% acrylamide/14% acrylamide 

0.11% bisacrylamide 

375 mM Tris-HCl pH 8.8 

0.1% SDS 

0.1% ammonium persulfate (APS)  

0.03% N,N,N',N'-Tetramethylethylenediamine 

(TEMED) 

Stacking gel 5% acrylamide 

0.03% bisacrylamide 

60 mM Tris-HCl pH 6.8 

0.1% SDS 

0.05% APS 

0.1% TEMED 

Base gel 20% acrylamide 

0.13% bisacrylamide 

375 mM Tris-HCl pH 8.8 

0.1% SDS 

0.05% APS 

0.1% TEMED 

 

  

HC Media  Dropout mix (DOM) 

Component Amount/L (ml)  Amino acids 10x (g/l) 

10 x DOM 100  Methionine 0.2 

10 x YNB 100  Tyrosine 0.6 

ml 40% Glucose 50  Isoleucine 0.8 

1g/l Uracil 35  Phenylalanine 0.5 

1g/l Adenine 20  Glutamic acid 1.0 

10g/l Lysine 12  Threonine 2.0 

10g/L Tryptophan 8  Aspartic acid 1.0 

20g/l Leucine 4  Valine 1.5 

10g/l Histidine 2  Serine 4.0 

milliQ-H2O 669  Arginine 0.2 



 

85 

 

REFERENCES 

1. Johnson, C.H., Precise circadian clocks in prokaryotic cyanobacteria. Curr Issues Mol Biol, 

2004. 6(2): p. 103-10. 

2. Reddy, A.B. and G. Rey, Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu 

Rev Biochem, 2014. 83: p. 165-89. 

3. Halberg, F., et al., Transdisciplinary unifying implications of circadian findings in the 1950s. J 

Circadian Rhythms, 2003. 1(1): p. 2. 

4. Gardner, M.J., et al., How plants tell the time. Biochemical Journal, 2006. 397: p. 15-24. 

5. Zuccarelli, L., et al., Human Physiology During Exposure to the Cave Environment: A Systematic 

Review With Implications for Aerospace Medicine. Frontiers in Physiology, 2019. 10. 

6. Foer, J. and M. Siffre, CAVEMAN: AN INTERVIEW WITH MICHEL SIFFRE (Living beyond 

time). Cabinet Magazine, 2008(30). 

7. Aschoff, J., Circadian Rhythms in Man - a Self-Sustained Oscillator with an Inherent Frequency 

Underlies Human 24-Hour Periodicity. Science, 1965. 148(3676): p. 1427-+. 

8. Antle, M.C. and R. Silver, Neural basis of timing and anticipatory behaviors. European Journal 

of Neuroscience, 2009. 30(9): p. 1643-1649. 

9. Bruce, V.G. and C.S. Pittendrigh, Endogenous Rhythms in Insects and Microorganisms. 

American Naturalist, 1957. 91(858): p. 179-195. 

10. Pittendrigh, C.S., Temporal Organization - Reflections of a Darwinian Clock-Watcher. Annual 

Review of Physiology, 1993. 55: p. 16-54. 

11. Hardin, P.E., J.C. Hall, and M. Rosbash, Feedback of the Drosophila Period Gene-Product on 

Circadian Cycling of Its Messenger-Rna Levels. Nature, 1990. 343(6258): p. 536-540. 

12. Young, M.W. and S.A. Kay, Time zones: A comparative genetics of circadian clocks. Nature 

Reviews Genetics, 2001. 2(9): p. 702-715. 

13. Lakin-Thomas, P.L., Circadian clock genes frequency and white collar-1 are not essential for 

entrainment to temperature cycles in Neurospora crassa. Proceedings of the National Academy 

of Sciences of the United States of America, 2006. 103(12): p. 4469-4474. 

14. Konopka, R.J. and S. Benzer, Clock Mutants of Drosophila-Melanogaster. Proceedings of the 

National Academy of Sciences of the United States of America, 1971. 68(9): p. 2112-+. 

15. Pittendrigh, C.S., On Temperature Independence in the Clock System Controlling Emergence 

Time in Drosophila. Proceedings of the National Academy of Sciences of the United States of 

America, 1954. 40(10): p. 1018-1029. 

16. Bargiello, T.A. and M.W. Young, Molecular-Genetics of a Biological Clock in Drosophila. 

Proceedings of the National Academy of Sciences of the United States of America-Biological 

Sciences, 1984. 81(7): p. 2142-2146. 

17. Bargiello, T.A., F.R. Jackson, and M.W. Young, Restoration of Circadian Behavioral Rhythms 

by Gene-Transfer in Drosophila. Nature, 1984. 312(5996): p. 752-754. 

18. Zerr, D.M., et al., Circadian Fluctuations of Period Protein Immunoreactivity in the Cns and the 

Visual-System of Drosophila. Journal of Neuroscience, 1990. 10(8): p. 2749-2762. 

19. Reddy, P., et al., Molecular Analysis of the Period Locus in Drosophila-Melanogaster and 

Identification of a Transcript Involved in Biological Rhythms. Cell, 1984. 38(3): p. 701-710. 

20. Zehring, W.A., et al., P-Element Transformation with Period Locus DNA Restores Rhythmicity to 

Mutant, Arrhythmic Drosophila-Melanogaster. Cell, 1984. 39(2): p. 369-376. 

21. Darlington, T.K., et al., Closing the circadian loop: CLOCK-induced transcription of its own 

inhibitors per and tim. Science, 1998. 280(5369): p. 1599-1603. 

22. Allada, R., et al., A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms 

and transcription of period and timeless. Cell, 1998. 93(5): p. 791-804. 

23. Rutila, J.E., et al., CYCLE is a second bHLH-PAS clock protein essential for circadian 

rhythmicity and transcription of Drosophila period and timeless. Cell, 1998. 93(5): p. 805-814. 

24. Harmer, S.L., S. Panda, and S.A. Kay, Molecular bases of circadian rhythms. Annual Review of 

Cell and Developmental Biology, 2001. 17: p. 215-253. 

25. Hogenesch, J.B., et al., The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally 

active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A, 1998. 95(10): p. 

5474-9. 



 

86 

 

26. Preitner, N., et al., The orphan nuclear receptor REV-ERBalpha controls circadian transcription 

within the positive limb of the mammalian circadian oscillator. Cell, 2002. 110(2): p. 251-60. 

27. Scully, A.L. and S.A. Kay, Time flies for Drosophila. Cell, 2000. 100(3): p. 297-300. 

28. Merrow, M., et al., Circadian regulation of the light input pathway in Neurospora crassa. EMBO 

J, 2001. 20(3): p. 307-15. 

29. Bell-Pedersen, D., Understanding circadian rhythmicity in Neurospora crassa: from behavior to 

genes and back again. Fungal Genet Biol, 2000. 29(1): p. 1-18. 

30. Sweeney, B.M. and F.T. Haxo, Persistence of a Photosynthetic Rhythm in Enucleated 

Acetabularia. Science, 1961. 134(3487): p. 1361-3. 

31. Driessche, T.V., Circadian Rhythms in Acetabularia - Photosynthetic Capacity and Chloroplast 

Shape. Experimental Cell Research, 1966. 42(1): p. 18-+. 

32. Mergenhagen, D. and H.G. Schweiger, Effect of Different Inhibitors of Transcription and 

Translation on Expression and Control of Circadian-Rhythm in Individual Cells of Acetabularia. 

Experimental Cell Research, 1975. 94(2): p. 321-326. 

33. Nishiwaki, T., et al., Nucleotide binding and autophosphorylation of the clock protein KaiC as a 

circadian timing process of cyanobacteria. Proceedings of the National Academy of Sciences of 

the United States of America, 2000. 97(1): p. 495-499. 

34. Nakajima, M., et al., Reconstitution of circadian oscillation of cyanobacterial KaiC 

phosphorylation in vitro. Science, 2005. 308(5720): p. 414-415. 

35. Tomita, J., et al., No transcription-translation feedback in circadian rhythm of KaiC 

phosphorylation. Science, 2005. 307(5707): p. 251-254. 

36. Taniguchi, Y., et al., Three major output pathways from the KaiABC-based oscillator cooperate 

to generate robust circadian kaiBC expression in cyanobacteria. Proceedings of the National 

Academy of Sciences of the United States of America, 2010. 107(7): p. 3263-3268. 

37. O'Neill, J.S., et al., Circadian rhythms persist without transcription in a eukaryote. Nature, 2011. 

469(7331): p. 554-558. 

38. O'Neill, J.S. and A.B. Reddy, Circadian clocks in human red blood cells. Nature, 2011. 

469(7331): p. 498-U70. 

39. Edgar, R.S., et al., Peroxiredoxins are conserved markers of circadian rhythms. Nature, 2012. 

485(7399): p. 459-U65. 

40. Causton, H.C., et al., Metabolic Cycles in Yeast Share Features Conserved among Circadian 

Rhythms. Current Biology, 2015. 25(8): p. 1056-1062. 

41. Cornelius, G. and L. Rensing, Daily Rhythmic Changes in Mg-2+-Dependent Atpase Activity in 

Human Red Blood-Cell Membranes Invitro. Biochemical and Biophysical Research 

Communications, 1976. 71(4): p. 1269-1272. 

42. Radha, E., et al., Glutathione Levels in Human-Platelets Display a Circadian-Rhythm Invitro. 

Thrombosis Research, 1985. 40(6): p. 823-831. 

43. Goto, K., D.L. Lavalmartin, and L.N. Edmunds, Biochemical Modeling of an Autonomously 

Oscillatory Circadian Clock in Euglena. Science, 1985. 228(4705): p. 1284-1288. 

44. Feeney, K.A., et al., Daily magnesium fluxes regulate cellular timekeeping and energy balance. 

Nature, 2016. 532(7599): p. 375-+. 

45. Finn, R.K. and R.E. Wilson, Fermentation Process Control - Population Dynamics of a 

Continuous Propagator for Microorganisms. Journal of Agricultural and Food Chemistry, 1954. 

2(2): p. 66-69. 

46. Kaspar von Meyenburg, H., Energetics of the budding cycle of Saccharomyces cerevisiae during 

glucose limited aerobic growth. Arch Mikrobiol, 1969. 66(4): p. 289-303. 

47. Tu, B.P., et al., Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular 

processes. Science, 2005. 310(5751): p. 1152-1158. 

48. Tu, B.P., Ultradian Metabolic Cycles in Yeast. Methods in Enzymology, Vol 470: Guide to Yeast 

Genetics:, 2010. 470: p. 857-866. 

49. Chen, Z., et al., Restriction of DNA replication to the reductive phase of the metabolic cycle 

protects genome integrity. Science, 2007. 316(5833): p. 1916-1919. 

50. Klevecz, R.R., et al., A genomewide oscillation in transcription gates DNA replication and cell 

cycle. Proc Natl Acad Sci U S A, 2004. 101(5): p. 1200-5. 



 

87 

 

51. Kuenzi, M.T. and A. Fiechter, Changes in Carbohydrate Composition and Trehalase-Activity 

during Budding Cycle of Saccharomyces Cerevisiae. Archiv Fur Mikrobiologie, 1969. 64(4): p. 

396-+. 

52. Porro, D., et al., Oscillations in Continuous Cultures of Budding Yeast - a Segregated Parameter 

Analysis. Biotechnology and Bioengineering, 1988. 32(4): p. 411-417. 

53. Nagoshi, E., et al., Circadian gene expression in individual fibroblasts: Cell-autonomous and 

self-sustained oscillators pass time to daughter cells. Cell, 2004. 119(5): p. 693-705. 

54. Matsuo, T., et al., Control mechanism of the circadian clock for timing of cell division in vivo. 

Science, 2003. 302(5643): p. 255-9. 

55. Mori, T., B. Binder, and C.H. Johnson, Circadian gating of cell division in cyanobacteria 

growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A, 1996. 

93(19): p. 10183-8. 

56. Tu, B.P., et al., Cyclic changes in metabolic state during the life of a yeast cell. Proc Natl Acad 

Sci U S A, 2007. 104(43): p. 16886-91. 

57. Futcher, B., Metabolic cycle, cell cycle, and the finishing kick to Start. Genome Biol, 2006. 7(4): 

p. 107. 

58. Sohn, H. and H. Kuriyama, Ultradian metabolic oscillation of Saccharomyces cerevisiae during 

aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by 

sulphite reductase. Yeast, 2001. 18(2): p. 125-35. 

59. Wolf, J., et al., Mathematical analysis of a mechanism for autonomous metabolic oscillations in 

continuous culture of Saccharomyces cerevisiae. FEBS Lett, 2001. 499(3): p. 230-4. 

60. Robertson, J.B., et al., Real-time luminescence monitoring of cell-cycle and respiratory 

oscillations in yeast. Proc Natl Acad Sci U S A, 2008. 105(46): p. 17988-93. 

61. Eelderink-Chen, Z., et al., A circadian clock in Saccharomyces cerevisiae. Proc Natl Acad Sci U 

S A, 2010. 107(5): p. 2043-7. 

62. Holmstrom, K.M. and T. Finkel, Cellular mechanisms and physiological consequences of redox-

dependent signalling. Nat Rev Mol Cell Biol, 2014. 15(6): p. 411-21. 

63. Rhee, S.G., Cell signaling. H2O2, a necessary evil for cell signaling. Science, 2006. 312(5782): 

p. 1882-3. 

64. Stone, J.R. and S. Yang, Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal, 

2006. 8(3-4): p. 243-70. 

65. Sies, H., Hydrogen peroxide as a central redox signaling molecule in physiological oxidative 

stress: Oxidative eustress. Redox Biol, 2017. 11: p. 613-619. 

66. Marinho, H.S., et al., Hydrogen peroxide sensing, signaling and regulation of transcription 

factors. Redox Biol, 2014. 2: p. 535-62. 

67. Winterbourn, C.C. and A.V. Peskin, Kinetic Approaches to Measuring Peroxiredoxin Reactivity. 

Mol Cells, 2016. 39(1): p. 26-30. 

68. Winterbourn, C.C. and M.B. Hampton, Thiol chemistry and specificity in redox signaling. Free 

Radic Biol Med, 2008. 45(5): p. 549-61. 

69. Lee, S.R., et al., Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells 

stimulated with epidermal growth factor. J Biol Chem, 1998. 273(25): p. 15366-72. 

70. Woo, H.A., et al., Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) 

accumulation for cell signaling. Cell, 2010. 140(4): p. 517-28. 

71. Randall, L.M., G. Ferrer-Sueta, and A. Denicola, Peroxiredoxins as preferential targets in H2O2-

induced signaling. Methods Enzymol, 2013. 527: p. 41-63. 

72. Stocker, S., et al., A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. 

Nat Chem Biol, 2018. 14(2): p. 148-155. 

73. Sobotta, M.C., et al., Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat 

Chem Biol, 2015. 11(1): p. 64-70. 

74. Delaunay, A., et al., A thiol peroxidase is an H2O2 receptor and redox-transducer in gene 

activation. Cell, 2002. 111(4): p. 471-81. 

75. Veal, E.A., et al., A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a 

stress-activated MAP kinase. Mol Cell, 2004. 15(1): p. 129-39. 

76. Rhee, S.G. and H.A. Woo, Multiple functions of peroxiredoxins: peroxidases, sensors and 

regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid Redox 

Signal, 2011. 15(3): p. 781-94. 



 

88 

 

77. Ferrer-Sueta, G., et al., Factors affecting protein thiol reactivity and specificity in peroxide 

reduction. Chem Res Toxicol, 2011. 24(4): p. 434-50. 

78. Forman, H.J., M. Maiorino, and F. Ursini, Signaling Functions of Reactive Oxygen Species. 

Biochemistry, 2010. 49(5): p. 835-842. 

79. Brigelius-Flohe, R. and L. Flohe, Basic Principles and Emerging Concepts in the Redox Control 

of Transcription Factors. Antioxidants & Redox Signaling, 2011. 15(8): p. 2335-2381. 

80. Hall, A., et al., Structure-based insights into the catalytic power and conformational dexterity of 

peroxiredoxins. Antioxid Redox Signal, 2011. 15(3): p. 795-815. 

81. Rhee, S.G., et al., Peroxiredoxin functions as a peroxidase and a regulator and sensor of local 

peroxides. J Biol Chem, 2012. 287(7): p. 4403-10. 

82. Fisher, A.B., Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and 

phospholipase A(2) activities. Antioxid Redox Signal, 2011. 15(3): p. 831-44. 

83. Wood, Z.A., et al., Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci, 

2003. 28(1): p. 32-40. 

84. Chae, H.Z., et al., Cloning and sequencing of thiol-specific antioxidant from mammalian brain: 

alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant 

enzymes. Proc Natl Acad Sci U S A, 1994. 91(15): p. 7017-21. 

85. Hall, A., et al., Structural changes common to catalysis in the Tpx peroxiredoxin subfamily. J Mol 

Biol, 2009. 393(4): p. 867-81. 

86. Wood, Z.A., et al., Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine 

peroxiredoxins. Biochemistry, 2002. 41(17): p. 5493-504. 

87. Wood, Z.A., L.B. Poole, and P.A. Karplus, Peroxiredoxin evolution and the regulation of 

hydrogen peroxide signaling. Science, 2003. 300(5619): p. 650-3. 

88. Rhee, S.G., et al., Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys 

peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int Suppl, 

2007(106): p. S3-8. 

89. Gutscher, M., et al., Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J 

Biol Chem, 2009. 284(46): p. 31532-40. 

90. Morgan, B., et al., Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. 

Nat Chem Biol, 2016. 12(6): p. 437-43. 

91. Schwarzlander, M., et al., Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid 

Redox Signal, 2016. 24(13): p. 680-712. 

92. Roma, L.P., et al., Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-

Based Hydrogen Peroxide Probes. Antioxid Redox Signal, 2018. 29(6): p. 552-568. 

93. Morgan, B., M.C. Sobotta, and T.P. Dick, Measuring E-GSH and H2O2 with roGFP2-based 

redox probes. Free Radical Biology and Medicine, 2011. 51(11): p. 1943-1951. 

94. Rutter, J., et al., Regulation of clock and NPAS2 DNA binding by the redox state of NAD 

cofactors. Science, 2001. 293(5529): p. 510-4. 

95. Hirayama, J., S. Cho, and P. Sassone-Corsi, Circadian control by the reduction/oxidation 

pathway: catalase represses light-dependent clock gene expression in the zebrafish. Proc Natl 

Acad Sci U S A, 2007. 104(40): p. 15747-52. 

96. Yoshida, Y., et al., Cross-talk between the cellular redox state and the circadian system in 

Neurospora. PLoS One, 2011. 6(12): p. e28227. 

97. Gyongyosi, N., et al., Reactive oxygen species can modulate circadian phase and period in 

Neurospora crassa. Free Radic Biol Med, 2013. 58: p. 134-43. 

98. Qian, H., et al., The effects of hydrogen peroxide on the circadian rhythms of Microcystis 

aeruginosa. PLoS One, 2012. 7(3): p. e33347. 

99. Ivleva, N.B., et al., LdpA: a component of the circadian clock senses redox state of the cell. 

EMBO J, 2005. 24(6): p. 1202-10. 

100. Ishiura, M., et al., Expression of a gene cluster kaiABC as a circadian feedback process in 

cyanobacteria. Science, 1998. 281(5382): p. 1519-23. 

101. Avitabile, D., et al., Peroxiredoxin 2 nuclear levels are regulated by circadian clock 

synchronization in human keratinocytes. Int J Biochem Cell Biol, 2014. 53: p. 24-34. 

102. Ranieri, D., et al., Nuclear redox imbalance affects circadian oscillation in HaCaT keratinocytes. 

Int J Biochem Cell Biol, 2015. 65: p. 113-24. 



 

89 

 

103. Kil, I.S., et al., Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible 

inactivation of peroxiredoxin III in mitochondria. Mol Cell, 2012. 46(5): p. 584-94. 

104. Beaver, L.M., et al., Circadian regulation of glutathione levels and biosynthesis in Drosophila 

melanogaster. PLoS One, 2012. 7(11): p. e50454. 

105. Krishnan, N., A.J. Davis, and J.M. Giebultowicz, Circadian regulation of response to oxidative 

stress in Drosophila melanogaster. Biochem Biophys Res Commun, 2008. 374(2): p. 299-303. 

106. Lai, A.G., et al., CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative 

stress responses. Proc Natl Acad Sci U S A, 2012. 109(42): p. 17129-34. 

107. Kondratov, R.V., et al., Early aging and age-related pathologies in mice deficient in BMAL1, the 

core componentof the circadian clock. Genes Dev, 2006. 20(14): p. 1868-73. 

108. Pardee, A.B., A restriction point for control of normal animal cell proliferation. Proc Natl Acad 

Sci U S A, 1974. 71(4): p. 1286-90. 

109. Hartwell, L.H., et al., Genetic control of the cell division cycle in yeast. Science, 1974. 

183(4120): p. 46-51. 

110. Johnston, G.C., J.R. Pringle, and L.H. Hartwell, Coordination of growth with cell division in the 

yeast Saccharomyces cerevisiae. Exp Cell Res, 1977. 105(1): p. 79-98. 

111. Johnson, A. and J.M. Skotheim, Start and the restriction point. Curr Opin Cell Biol, 2013. 25(6): 

p. 717-23. 

112. Nyberg, K.A., et al., Toward maintaining the genome: DNA damage and replication checkpoints. 

Annu Rev Genet, 2002. 36: p. 617-56. 

113. Forsburg, S.L. and P. Nurse, Cell cycle regulation in the yeasts Saccharomyces cerevisiae and 

Schizosaccharomyces pombe. Annu Rev Cell Biol, 1991. 7: p. 227-56. 

114. Papagiannakis, A., et al., Autonomous Metabolic Oscillations Robustly Gate the Early and Late 

Cell Cycle. Mol Cell, 2017. 65(2): p. 285-295. 

115. Burnetti, A.J., M. Aydin, and N.E. Buchler, Cell cycle Start is coupled to entry into the yeast 

metabolic cycle across diverse strains and growth rates. Molecular Biology of the Cell, 2016. 

27(1): p. 64-74. 

116. Atzori, L., et al., Growth-associated modifications of low-molecular-weight thiols and protein 

sulfhydryls in human bronchial fibroblasts. J Cell Physiol, 1990. 143(1): p. 165-71. 

117. Davies, K.J., The broad spectrum of responses to oxidants in proliferating cells: a new paradigm 

for oxidative stress. IUBMB Life, 1999. 48(1): p. 41-7. 

118. Hirt, H., Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-

activated protein kinase pathway. Proc Natl Acad Sci U S A, 2000. 97(6): p. 2405-7. 

119. Menon, S.G. and P.C. Goswami, A redox cycle within the cell cycle: ring in the old with the new. 

Oncogene, 2007. 26(8): p. 1101-1109. 

120. Oberley, L.W., T.D. Oberley, and G.R. Buettner, Cell division in normal and transformed cells: 

the possible role of superoxide and hydrogen peroxide. Med Hypotheses, 1981. 7(1): p. 21-42. 

121. Pani, G., et al., A redox signaling mechanism for density-dependent inhibition of cell growth. J 

Biol Chem, 2000. 275(49): p. 38891-9. 

122. Menon, S.G., et al., Redox regulation of the G1 to S phase transition in the mouse embryo 

fibroblast cell cycle. Cancer Res, 2003. 63(9): p. 2109-17. 

123. Burhans, W.C. and N.H. Heintz, The cell cycle is a redox cycle: linking phase-specific targets to 

cell fate. Free Radic Biol Med, 2009. 47(9): p. 1282-93. 

124. Carpenter, G. and S. Cohen, Epidermal growth factor. J Biol Chem, 1990. 265(14): p. 7709-12. 

125. Conour, J.E., W.V. Graham, and H.R. Gaskins, A combined in vitro/bioinformatic investigation 

of redox regulatory mechanisms governing cell cycle progression. Physiol Genomics, 2004. 

18(2): p. 196-205. 

126. Kerk, N.M. and L.J. Feldman, A Biochemical-Model for the Initiation and Maintenance of the 

Quiescent Center - Implications for Organization of Root-Meristems. Development, 1995. 

121(9): p. 2825-2833. 

127. Richard, P., The rhythm of yeast. Fems Microbiology Reviews, 2003. 27(4): p. 547-557. 

128. Satroutdinov, A.D., H. Kuriyama, and H. Kobayashi, Oscillatory metabolism of Saccharomyces 

cerevisiae in continuous culture. FEMS Microbiol Lett, 1992. 77(1-3): p. 261-7. 

129. Fomenko, D.E., et al., Thiol peroxidases mediate specific genome-wide regulation of gene 

expression in response to hydrogen peroxide. Proc Natl Acad Sci U S A, 2011. 108(7): p. 2729-

34. 



 

90 

 

130. Cliften, P., et al., Finding functional features in Saccharomyces genomes by phylogenetic 

footprinting. Science, 2003. 301(5629): p. 71-6. 

131. Ozcan, S. and M. Johnston, Function and regulation of yeast hexose transporters. Microbiol Mol 

Biol Rev, 1999. 63(3): p. 554-69. 

132. Veal, E.A., A.M. Day, and B.A. Morgan, Hydrogen peroxide sensing and signaling. Mol Cell, 

2007. 26(1): p. 1-14. 

133. Nishimura, K., et al., An auxin-based degron system for the rapid depletion of proteins in 

nonplant cells. Nat Methods, 2009. 6(12): p. 917-22. 

134. Morawska, M. and H.D. Ulrich, An expanded tool kit for the auxin-inducible degron system in 

budding yeast. Yeast, 2013. 30(9): p. 341-51. 

135. Martin, J.L., Thioredoxin--a fold for all reasons. Structure, 1995. 3(3): p. 245-50. 

136. Cao, Z., S. Subramaniam, and N.J. Bulleid, Lack of an efficient endoplasmic reticulum-localized 

recycling system protects peroxiredoxin IV from hyperoxidation. J Biol Chem, 2014. 289(9): p. 

5490-8. 

137. Johnson, C.H., Circadian clocks and cell division: what's the pacemaker? Cell Cycle, 2010. 

9(19): p. 3864-73. 

138. Miyagishima, S.Y., et al., Translation-independent circadian control of the cell cycle in a 

unicellular photosynthetic eukaryote. Nat Commun, 2014. 5: p. 3807. 

139. Hong, C.I., et al., Circadian rhythms synchronize mitosis in Neurospora crassa. Proc Natl Acad 

Sci U S A, 2014. 111(4): p. 1397-402. 

140. Zaman, S., et al., How Saccharomyces responds to nutrients. Annu Rev Genet, 2008. 42: p. 27-

81. 

141. Broach, J.R., Nutritional control of growth and development in yeast. Genetics, 2012. 192(1): p. 

73-105. 

142. Wang, X. and C.G. Proud, Nutrient control of TORC1, a cell-cycle regulator. Trends Cell Biol, 

2009. 19(6): p. 260-7. 

143. Mauro, F., A. Grasso, and L.J. Tolmach, Variations in sulfhydryl, disulfide, and protein content 

during synchronous and asynchronous growth of HeLa cells. Biophys J, 1969. 9(11): p. 1377-97. 

144. Kawamura, N., Cytochemical and quantitative study of protein-bound sulfhydryl and disulfide 

groups in eggs of Arbacia during the first cleavage. Exp Cell Res, 1960. 20: p. 127-38. 

145. Williamson, D.H., The timing of deoxyribonucleic acid synthesis in the cell cycle of 

Saccharomyces cerevisiae. J Cell Biol, 1965. 25(3): p. 517-28. 

146. Schwob, E., et al., The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. 

cerevisiae. Cell, 1994. 79(2): p. 233-44. 

147. Schneider, B.L., Q.H. Yang, and A.B. Futcher, Linkage of replication to start by the Cdk 

inhibitor Sic1. Science, 1996. 272(5261): p. 560-2. 

148. Fitch, I., et al., Characterization of four B-type cyclin genes of the budding yeast Saccharomyces 

cerevisiae. Mol Biol Cell, 1992. 3(7): p. 805-18. 

149. Spellman, P.T., et al., Comprehensive identification of cell cycle-regulated genes of the yeast 

Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 1998. 9(12): p. 3273-97. 

150. Robertson, J.B., C.R. Davis, and C.H. Johnson, Visible light alters yeast metabolic rhythms by 

inhibiting respiration. Proc Natl Acad Sci U S A, 2013. 110(52): p. 21130-5. 

151. Hockberger, P.E., et al., Activation of flavin-containing oxidases underlies light-induced 

production of H2O2 in mammalian cells. Proc Natl Acad Sci U S A, 1999. 96(11): p. 6255-60. 

152. Bodvard, K., et al., Light-sensing via hydrogen peroxide and a peroxiredoxin. Nat Commun, 

2017. 8: p. 14791. 

153. Pei, J-F., et al., Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian 

clocks. Nat Cell Biol, 2019. 21: p. 1553-64 

154. Xu, Z. and K. Tsurugi, A potential mechanism of energy-metabolism oscillation in an aerobic 

chemostat culture of the yeast Saccharomyces cerevisiae. FEBS J, 2006. 273(8): p. 1696-709. 

155. Murray, D.B., M. Beckmann, and H. Kitano, Regulation of yeast oscillatory dynamics. Proc Natl 

Acad Sci U S A, 2007. 104(7): p. 2241-6. 

156. Balaban, R.S., S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging. Cell, 2005. 120(4): 

p. 483-95. 

157. Giorgio, M., et al., Electron transfer between cytochrome c and p66Shc generates reactive 

oxygen species that trigger mitochondrial apoptosis. Cell, 2005. 122(2): p. 221-33. 



 

91 

 

158. Kuge, S. and N. Jones, YAP1 dependent activation of TRX2 is essential for the response of 

Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J, 1994. 13(3): p. 655-

64. 

159. Lee, J., et al., Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. 

J Biol Chem, 1999. 274(23): p. 16040-6. 

160. Mochan, E. and E.K. Pye, Respiratory oscillations in adapting yeast cultures. Nat New Biol, 

1973. 242(119): p. 177-9. 

161. Slavov, N. and D. Botstein, Coupling among growth rate response, metabolic cycle, and cell 

division cycle in yeast. Mol Biol Cell, 2011. 22(12): p. 1997-2009. 

162. Iwai, K., A. Naganuma, and S. Kuge, Peroxiredoxin Ahp1 acts as a receptor for 

alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor. J Biol 

Chem, 2010. 285(14): p. 10597-604. 

163. Roger, F., et al., Peroxiredoxin promotes longevity and H2O2-resistance in yeast through redox-

modification of protein kinase A. bioRxiv, 2019: p. 676270. 

164. Kuang, Z., et al., Msn2/4 regulate expression of glycolytic enzymes and control transition from 

quiescence to growth. Elife, 2017. 6. 

165. Holmgren, A., Thioredoxin and glutaredoxin systems. J Biol Chem, 1989. 264(24): p. 13963-6. 

166. Stocker, S., et al., The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of 

Peroxiredoxins as Redox Relay Hubs. Antioxid Redox Signal, 2018. 28(7): p. 558-573. 

167. Shao, D., et al., A redox-dependent mechanism for regulation of AMPK activation by 

Thioredoxin1 during energy starvation. Cell Metab, 2014. 19(2): p. 232-45. 

168. Lamia, K.A., et al., AMPK regulates the circadian clock by cryptochrome phosphorylation and 

degradation. Science, 2009. 326(5951): p. 437-40. 

169. Celenza, J.L. and M. Carlson, A yeast gene that is essential for release from glucose repression 

encodes a protein kinase. Science, 1986. 233(4769): p. 1175-80. 

170. Hong, S.P., et al., Activation of yeast Snf1 and mammalian AMP-activated protein kinase by 

upstream kinases. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8839-43. 

171. Sutherland, C.M., et al., Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae 

SNF1 complex. Curr Biol, 2003. 13(15): p. 1299-305. 

172. Nayak, V., et al., Structure and dimerization of the kinase domain from yeast Snf1, a member of 

the Snf1/AMPK protein family. Structure, 2006. 14(3): p. 477-85. 

173. Reddi, A.R. and V.C. Culotta, SOD1 integrates signals from oxygen and glucose to repress 

respiration. Cell, 2013. 152(1-2): p. 224-35. 

174. Demasi, M., G.M. Silva, and L.E.S. Netto, 20 S proteasome from Saccharomyces cerevisiae is 

responsive to redox modifications and is S-glutathionylated. Journal of Biological Chemistry, 

2003. 278(1): p. 679-685. 

175. Munoz, C.M., et al., The effect of hydrogen peroxide on the cyclin D expression in fibroblasts. 

Cellular and Molecular Life Sciences, 2001. 58(7): p. 990-996. 

176. Diehl, J.A., et al., Glycogen synthase kinase 3 beta regulates cyclin D1 proteolysis and 

subcellular localization. Genes & Development, 1998. 12(22): p. 3499-3511. 

177. Zou, Y.L., et al., Mirk/dyrk1B kinase destabilizes cyclin D1 by phosphorylation at threonine 288. 

Journal of Biological Chemistry, 2004. 279(26): p. 27790-27798. 

178. Sebastian, B., A. Kakizuka, and T. Hunter, Cdc25m2 Activation of Cyclin-Dependent Kinases by 

Dephosphorylation of Threonine-14 and Tyrosine-15. Proceedings of the National Academy of 

Sciences of the United States of America, 1993. 90(8): p. 3521-3524. 

179. Dunphy, W.G. and A. Kumagai, The Cdc25 Protein Contains an Intrinsic Phosphatase-Activity. 

Cell, 1991. 67(1): p. 189-196. 

180. Savitsky, P.A. and T. Finkel, Redox regulation of Cdc25C. Journal of Biological Chemistry, 

2002. 277(23): p. 20535-20540. 

181. Ewald, J.C., et al., The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle 

Progression. Molecular Cell, 2016. 62(4): p. 532-545. 

182. Zhao, G., et al., Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell 

Cycle in S. cerevisiae. Molecular Cell, 2016. 62(4): p. 546-557. 

183. Veisova, D., et al., Role of individual phosphorylation sites for the 14-3-3-protein-dependent 

activation of yeast neutral trehalase Nth1. Biochem J, 2012. 443(3): p. 663-70. 



 

92 

 

184. Holt, L.J., et al., Global analysis of Cdk1 substrate phosphorylation sites provides insights into 

evolution. Science, 2009. 325(5948): p. 1682-6. 

185. Ubersax, J.A., et al., Targets of the cyclin-dependent kinase Cdk1. Nature, 2003. 425(6960): p. 

859-64. 

186. Tokiwa, G., et al., Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature, 

1994. 371(6495): p. 342-5. 

187. Muller, D., et al., Cyclic AMP mediates the cell cycle dynamics of energy metabolism in 

Saccharomyces cerevisiae. Yeast, 2003. 20(4): p. 351-67. 

188. Irokawa, H., et al., Redox-dependent Regulation of Gluconeogenesis by a Novel Mechanism 

Mediated by a Peroxidatic Cysteine of Peroxiredoxin. Sci Rep, 2016. 6: p. 33536. 

189. Laurent, T.C., E.C. Moore, and P. Reichard, Enzymatic Synthesis of Deoxyribonucleotides. Iv. 

Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia Coli B. J 

Biol Chem, 1964. 239: p. 3436-44. 

190. Holmgren, A., Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate 

reductase dependent upon glutathione. Proc Natl Acad Sci U S A, 1976. 73(7): p. 2275-9. 

191. Boronat, S., et al., Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron 

donors by channelling electrons to oxidized ribonucleotide reductase. Plos Genetics, 2017. 13(6). 

192. Lindahl, T., Instability and decay of the primary structure of DNA. Nature, 1993. 362(6422): p. 

709-15. 

193. Gomez-Gonzalez, B. and A. Aguilera, The need to regulate replication fork speed. Science, 2017. 

358(6364): p. 722-723. 

194. Somyajit, K., et al., Redox-sensitive alteration of replisome architecture safeguards genome 

integrity. Science, 2017. 358(6364): p. 797-802. 

195. Pines, J. and T. Hunter, Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein 

regulation in the cell cycle and for interaction with p34cdc2. Cell, 1989. 58(5): p. 833-46. 

196. Jackman, M., et al., Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell 

Biol, 2003. 5(2): p. 143-8. 

197. Bonnet, J., P. Coopman, and M.C. Morris, Characterization of centrosomal localization and 

dynamics of Cdc25C phosphatase in mitosis. Cell Cycle, 2008. 7(13): p. 1991-8. 

198. Lindqvist, A., V. Rodriguez-Bravo, and R.H. Medema, The decision to enter mitosis: feedback 

and redundancy in the mitotic entry network. J Cell Biol, 2009. 185(2): p. 193-202. 

199. Peters, J.M., The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat 

Rev Mol Cell Biol, 2006. 7(9): p. 644-56. 

200. Pesin, J.A. and T.L. Orr-Weaver, Regulation of APC/C activators in mitosis and meiosis. Annu 

Rev Cell Dev Biol, 2008. 24: p. 475-99. 

201. Bassermann, F., et al., The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response 

checkpoint. Cell, 2008. 134(2): p. 256-67. 

202. Mochida, S., et al., Regulated activity of PP2A-B55 delta is crucial for controlling entry into and 

exit from mitosis in Xenopus egg extracts. EMBO J, 2009. 28(18): p. 2777-85. 

203. Domingo-Sananes, M.R., et al., Switches and latches: a biochemical tug-of-war between the 

kinases and phosphatases that control mitosis. Philos Trans R Soc Lond B Biol Sci, 2011. 

366(1584): p. 3584-94. 

204. Chang, T.S., et al., Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J 

Biol Chem, 2002. 277(28): p. 25370-6. 

205. Lim, J.M., et al., Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for 

mitotic progression. Journal of Cell Biology, 2015. 210(1): p. 23-33. 

206. Kaya, A., et al., Thiol peroxidase deficiency leads to increased mutational load and decreased 

fitness in Saccharomyces cerevisiae. Genetics, 2014. 198(3): p. 905-17. 

207. Iraqui, I., et al., Human peroxiredoxin PrxI is an orthologue of yeast Tsa1, capable of 

suppressing genome instability in Saccharomyces cerevisiae. Cancer Res, 2008. 68(4): p. 1055-

63. 

208. Wong, C.M., K.L. Siu, and D.Y. Jin, Peroxiredoxin-null yeast cells are hypersensitive to 

oxidative stress and are genomically unstable. J Biol Chem, 2004. 279(22): p. 23207-13. 

209. Nystrom, T., J. Yang, and M. Molin, Peroxiredoxins, gerontogenes linking aging to genome 

instability and cancer. Genes Dev, 2012. 26(18): p. 2001-8. 



 

93 

 

210. Roux, K.J., et al., A promiscuous biotin ligase fusion protein identifies proximal and interacting 

proteins in mammalian cells. J Cell Biol, 2012. 196(6): p. 801-10. 

211. Choi-Rhee, E., H. Schulman, and J.E. Cronan, Promiscuous protein biotinylation by Escherichia 

coli biotin protein ligase. Protein Sci, 2004. 13(11): p. 3043-50. 

212. Cronan, J.E., Targeted and proximity-dependent promiscuous protein biotinylation by a mutant 

Escherichia coli biotin protein ligase. J Nutr Biochem, 2005. 16(7): p. 416-8. 

213. Leichert, L.I., et al., Quantifying changes in the thiol redox proteome upon oxidative stress in 

vivo. Proc Natl Acad Sci U S A, 2008. 105(24): p. 8197-202. 

214. Sethuraman, M., et al., Isotope-coded affinity tag (ICAT) approach to redox proteomics: 

identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J 

Proteome Res, 2004. 3(6): p. 1228-33. 

215. van der Reest, J., et al., Proteome-wide analysis of cysteine oxidation reveals metabolic 

sensitivity to redox stress. Nat Commun, 2018. 9(1): p. 1581. 

216. Chen, Z. and S.L. McKnight, A conserved DNA damage response pathway responsible for 

coupling the cell division cycle to the circadian and metabolic cycles. Cell Cycle, 2007. 6(23): p. 

2906-12. 

217. Janke, C., et al., A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent 

proteins, more markers and promoter substitution cassettes. Yeast, 2004. 21(11): p. 947-62. 

218. Meyer, A.J. and T.P. Dick, Fluorescent protein-based redox probes. Antioxid Redox Signal, 

2010. 13(5): p. 621-50. 

219. Casadaban, M.J. and S.N. Cohen, Analysis of gene control signals by DNA fusion and cloning in 

Escherichia coli. J Mol Biol, 1980. 138(2): p. 179-207. 

220. Meselson, M. and R. Yuan, DNA restriction enzyme from E. coli. Nature, 1968. 217(5134): p. 

1110-4. 

221. Wach, A., et al., New heterologous modules for classical or PCR-based gene disruptions in 

Saccharomyces cerevisiae. Yeast, 1994. 10(13): p. 1793-808. 

222. Knop, M., et al., Epitope tagging of yeast genes using a PCR-based strategy: more tags and 

improved practical routines. Yeast, 1999. 15(10B): p. 963-72. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 

 

ABBREVIATIONS 

°C Grade Celsius 

µg Microgram 

µl Microliter 

µM Micromolar 

AID Auxin inducible degron 

BSA Bovine serum albumin 

CDC Cell division cycle 

Cdk Cyclin dependent kinase 

CIP Calf intestinal phosphatase 

CP Peroxidactic cysteine 

CR Resolving cysteine 

Cry Cryptochrome  

Cyc Cytochrome  

Cys Cysteine 

DAPI 4,6-diamidino-2-phenylindole 

Diamide N,N,N′,N′-tetramethylazodicarboxamide 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxyribonucleotide triphosphate 

DTT Dithiothreitol 

E. coli Escherichia coli 

ECL Enhanced chemiluminescence 

EDTA Ethylene diamine tetraacetate 

ETC Electron transport chain 

Grx Glutaredoxin 

GSH Glutathione  

h Hours 

H2O2 Hydrogen peroxide 

HC Hartwell’s Complete 

HOC High oxygen consumption 

HEPES 4-(2-hydroxyethyl)-1-piperazine-ethane sulfonic acid 

IAA Indole-3-acetic acid 

kb Kilobase 

kDa Kilodalton 

L or l liter 
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LB Lysogeny broth media 

LOC Low oxygen consumption 

M Molarity 

mg Milligram 

milliQ-H2O Double distilled water 

min Minute 

ml Milliliter 

mM Millimolar 

NADH Nicotinamide adenine dinucleotide 

NADPH Nicotinamide adenine dinucleotide phosphate 

NEM N-Ethylmaleimide 

nm Nanometer 

OD600 Optical density at 600 nm 

OxD Degree of oxidation 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PEG Polyethylene glycol 

Per Period  

PKA Protein kinase A 

Prx Peroxiredoxin 

RNA Ribonucleic acid 

RNR Ribonucleotide reductase 

roGFP2 Redox sensisitve green fluorescent protein 2 

ROS Reactive oxygen species 

rpm Revolutions per minute 

RT Room temperature 

s Seconds 

S. cerevisiae Saccharomyces cerevisiae 

S. pombe Saccharomyces pombe 

SDS Sodium dodecyl sulfate 

SOD (or Sod)  Superoxide dismutatse 

t-BOOH tert-butyl hydroperoxide 

TAE Tris acetate EDTA 

TBS Tris buffered saline 

TEMED N,N,N´,N´-tetramethylethylenediamine 

Tim Timeless 
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Tpx Thioredoxin peroxidase 

Tris Tris-(hydroxymethyl)-aminomethane 

Trx Thioredoxin 

TrxR Thioredoxin reductase 

Tsa Thiol specific antioxidant 

TTFL Transcription-translation feedback loop 

U Units 

UV Ultraviolet 

w/v Weight per volume 

YMC Yeast Metabolic Cycle 

Yno1 Yeast NADPH oxidase 1 
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APPENDIX 

A1: Construction of a genomically integrated roGFP2-Tsa2∆CR expressing 

yeast strain 

 

A1.1: PCR amplifications, cloning and confirmation of engineered yeast 

 

Agarose gel showing: 

A. KanMX4-GPD PCR product amplified from the pYMN-14 plasmid. 

B. Digest of KanMX4-GPD PCR product and p415TEF roGFP2-Tsa2∆CR plasmid with appropriate 

restriction enzymes, for subsequent ligation. 

C. Step-by-step control of KanMX4-GPD roGFP2-Tsa2∆CR plasmid construction process. 

D. Confirmation of constructed KanMX4-GPD roGFP2-Tsa2∆CR plasmid by PCR. 

E. Confirmation by PCR, of yeast cells showing successful genomic integration of the KanMX4-GPD 

roGFP2-Tsa2∆CR biosensor construct. 

 

 

 



 

103 

 

A1.2: Sequence map of re-constituted p415 roGFP2-Tsa2∆CR plasmid for PCR and genomic 

integration (5' → 3') 

 

GACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTT

AGGACGGATCGCTTGCCTGTAACTTACACGCGCCTCGTATCTTTTAATGATGGAATAATTTG

GGAATTTACTCTGTGTTTATTTATTTTTATGTTTTGTATTTGGATTTTAGAAAGTAAATAAAG

AAGGTAGAAGAGTTACGGAATGAAGAAAAAAAAATAAACAAAGGTTTAAAAAATTTCAAC

AAAAAGCGTACTTTACATATATATTTATTAGACAAGAAAAGCAGATTAAATAGATATACATT

CGATTAACGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACA

AGATGAAACAATTCGGCATTAATACCTGAGAGCAGGAAGAGCAAGATAAAAGGTAGTATTT

GTTGGCGATCCCCCTAGAGTCTTTTACATCTTCGGAAAACAAAAACTATTTTTTCTTTAATTT

CTTTTTTTACTTTCTATTTTTAATTTATATATTTATATTAAAAAATTTAAATTATAATTATTTTT

ATAGCACGTGATGAAAAGGACCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTA

TTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAA

TGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATT

CCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAA

GATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTA

AGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGC

TATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACAC

TATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCAT

GACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTA

CTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCA

TGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGT

GACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACT

TACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCA

CTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGT

GGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTAT

CTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGT

GCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGAT

TTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACC

AAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGG

ATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCT

ACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCT

TCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTC

AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCC

AGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC

AGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACAC
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CGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAG

GCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCA

GGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG

ATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTT

TACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTC

TGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCG

AGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCC

CGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCA

GTGAGCGCAACGCAATTAATGTGAGTTACCTCACTCATTAGGCACCCCAGGCTTTACACTTT

ATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAG

CTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGAG

CTCATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCAT

CGCCGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTCCCCTCTTTCTTCCTCTAGG

GTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTT

TCTTCGTCGAAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAAAATTTTTTTTTTG

ATTTTTTTCTCTTTCGATGACCTCCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTCTCA

AGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCTTGCTCATTAGAAAGAAA

GCATAGCAATCTAATCTAAGTTTTCTAGAGGATCCACCATGGCTAGCCGTACGCTGCAGGTC

GACGGATCCCCGGGTTAATTAAGGCGCGCCAGATCTGTTTAGCTTGCCTCGTCCCCGCCGGG

TCACCCGGCCAGCGACATGGAGGCCCAGAATACCCTCCTTGACAGTCTTGACGTGCGCAGCT

CAGGGGCATGATGTGACTGTCGCCCGTACATTTAGCCCATACATCCCCATGTATAATCATTT

GCATCCATACATTTTGATGGCCGCACGGCGCGAAGCAAAAATTACGGCTCCTCGCTGCAGAC

CTGCGAGCAGGGAAACGCTCCCCTCACAGACGCGTTGAATTGTCCCCACGCCGCGCCCCTGT

AGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGTTCTTCTTTCATATACTTCCTTTTAAAA

TCTTGCTAGGATACAGTTCTCACATCACATCCGAACATAAACAACCATGGGTAAGGAAAAG

ACTCACGTTTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATG

GGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATG

CGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATG

GTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACT

CCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGCAAAACAGCATTCCAGGTATTAGA

AGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGC

ATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGC

AATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGG

CCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGT

CACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTAT

TGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCC

TCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTG
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ATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAATCAGTACTGACAATAA

AAAGATTCTTGTTTTCAAGAACTTGTCATTTGTATAGTTTTTTTATATTGTAGTTGTTCTATTT

TAATCAAATGTTAGCGTGATTTATATTTTTTTTCGCCTCGACATCATCTGCCCAGATGCGAAG

TTAAGTGCGCAGAAAGTAATATCATGCGTCAATCGTATGTGAATGCTGGTCGCTATACTGCT

GTCGATTCGATACTAACGCCGCCATCCAGTGTCGAAAACGAGCTCAGTTTATCATTATCAAT

ACTCGCCATTTCAAAGAATACGTAAATAATTAATAGTAGTGATTTTCCTAACTTTATTTAGTC

AAAAAATTAGCCTTTTAATTCTGCTGTAACCCGTACATGCCCAAAATAGGGGGCGGGTTACA

CAGAATATATAACATCGTAGGTGTCTGGGTGAACAGTTTATTCCTGGCATCCACTAAATATA

ATGGAGCCCGCTTTTTAAGCTGGCATCCAGAAAAAAAAAGAATCCCAGCACCAAAATATTG

TTTTCTTCACCAACCATCAGTTCATAGGTCCATTCTCTTAGCGCAACTACAGAGAACAGGGG

CACAAACAGGCAAAAAACGGGCACAACCTCAATGGAGTGATGCAACCTGCCTGGAGTAAAT

GATGACACAAGGCAATTGACCCACGCATGTATCTATCTCATTTTCTTACACCTTCTATTACCT

TCTGCTCTCTCTGATTTGGAAAAAGCTGAAAAAAAAGGTTGAAACCAGTTCCCTGAAATTAT

TCCCCTACTTGACTAATAAGTATATAAAGACGGTAGGTATTGATTGTAATTCTGTAAATCTAT

TTCTTAAACTTCTTAAATTCTACTTTTATAGTTAGTCTTTTTTTTAGTTTTAAAACACCAGAAC

TTAGTTTCGACGGATTCTAGAACTAGTGGATCCCCCCCGGACGACAGAGAATTCATCGATGG

CTAGCGAATTCTCAAAGGGTGAAGAATTGTTTACAGGTGTTGTTCCTATTTTAGTCGAATTGG

ACGGTGACGTTAATGGTCATAAGTTTAGTGTTAGTGGTGAAGGTGAAGGTGACGCAACATAC

GGTAAATTGACCTTGAAGTTTATTTCAACTACTGGTAAATTGCCAGTTCCTTGGCCAACTTTG

GTAACCACTTTAACATATGGTGTACAATGTTTCAGTAGATACCCTGATCATATGAAACAACA

CGACTTTTTCAAGTCTGCTATGCCAGAAGGTTACGTTCAAGAAAGAACTATTTTCTTTAAGG

ATGACGGTAACTACAAGACCAGAGCAGAAGTCAAATTTGAAGGTGACACTTTGGTTAACAG

AATCGAATTGAAGGGTATCGATTTCAAGGAAGACGGTAACATCTTGGGTCATAAATTGGAAT

ACAACTACAACTGTCACAATGTATACATAATGGCCGATAAGCAAAAGAATGGTATCAAAGT

CAACTTCAAGATCAGACATAACATCGAAGATGGTTCTGTTCAATTAGCTGACCACTATCAAC

AAAATACACCTATTGGTGACGGTCCTGTTTTGTTACCAGACAACCATTACTTGTCTACCTGCT

CAGCTTTATCCAAAGATCCAAATGAAAAGAGAGACCATATGGTATTGTTAGAATTTGTCACC

GCAGCAGGTATCACATTGGGTATGGATGAATTGTATAAAACTAGTGGTGGTTCAGGTGGTGG

TGGTTCAGGTGGTGGTGGTTCAGGTGGAGGAGGATCAGGAGGAGGAGGATCAGGAGGAGG

AGGATCAGGAGGAGAATTCGTAGCAGAAGTTCAAAAACAAGCCCCACCATTTAAGAAAACC

GCCGTAGTCGACGGTATCTTCGAGGAAATTTCACTGGAAAAGTATAAAGGTAAGTACGTTGT

TCTAGCTTTTGTCCCATTGGCTTTTTCATTTGTCTGTCCAACTGAGATTGTTGCGTTTTCCGAT

GCCGCCAAGAAATTCGAAGATCAGGGCGCCCAAGTTTTATTTGCCTCCACCGACTCTGAATA

TTCCTTACTGGCATGGACCAACCTTCCCAGAAAAGACGGTGGATTAGGTCCAGTTAAAGTTC

CTTTGCTTGCTGATAAGAATCATTCCTTATCCAGAGACTATGGCGTTTTGATTGAAAAAGAA

GGTATAGCTTTAAGAGGTTTGTTCATAATCGACCCGAAGGGAATCATTAGACATATCACTAT

CAATGATTTATCTGTTGGCAGAAACGTCAATGAAGCTTTGAGATTAGTCGAAGGTTTCCAGT
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GGACTGACAAAAATGGTACAGTTTTGCCATGCAACTGGACCCCAGGAGCCGCCACCATCAA

ACCTGACGTTAAAGATTCCAAGGAGTATTTCAAAAATGCCAATAATTAACTCGAGTCATGTA

ATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAG

GAGTTAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGTATTAAGAA

CGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGACGCGTGTACGCATGTAACATTAT

ACTGAAAACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCGGCCGGTACC

CAATTCGCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGA

CTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCT

GGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGG

CGAATGGCGCGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGC

AGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTT

CTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGA

TTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGG

GCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGG

ACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGG

GATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGA

ATTTTAACAAAATATTAACGTTTACAATTTCCTGATGCGGTATTTTCTCCTTACGCATCTGTG

CGGTATTTCACACCGCATATCGACGGTCGAGGAGAACTTCTAGTATATCCACATACCTAATA

TTATTGCCTTATTAAAAATGGAATCCCAACAATTACATCAAAATCCACATTCTCTTCAAAATC

AATTGTCCTGTACTTCCTTGTTCATGTGTGTTCAAAAACGTTATATTTATAGGATAATTATAC

TCTATTTCTCAACAAGTAATTGGTTGTTTGGCCGAGCGGTCTAAGGCGCCTGATTCAAGAAA

TATCTTGACCGCAGTTAACTGTGGGAATACTCAGGTATCGTAAGATGCAAGAGTTCGAATCT

CTTAGCAACCATTATTTTTTTCCTCAACATAACGAGAACACACAGGGGCGCTATCGCACAGA

ATCAAATTCGATGACTGGAAATTTTTTGTTAATTTCAGAGGTCGCCTGACGCATATACCTTTT

TCAACTGAAAAATTGGGAGAAAAAGGAAAGGTGAGAGGCCGGAACCGGCTTTTCATATAGA

ATAGAGAAGCGTTCATGACTAAATGCTTGCATCACAATACTTGAAGTTGACAATATTATTTA

AGGACCTATTGTTTTTTCCAATAGGTGGTTAGCAATCGTCTTACTTTCTAACTTTTCTTACCTT

TTACATTTCAGCAATATATATATATATTTCAAGGATATACCATTCTAATGTCTGCCCCTATGT

CTGCCCCTAAGAAGATCGTCGTTTTGCCAGGTGACCACGTTGGTCAAGAAATCACAGCCGAA

GCCATTAAGGTTCTTAAAGCTATTTCTGATGTTCGTTCCAATGTCAAGTTCGATTTCGAAAAT

CATTTAATTGGTGGTGCTGCTATCGATGCTACAGGTGTCCCACTTCCAGATGAGGCGCTGGA

AGCCTCCAAGAAGGTTGATGCCGTTTTGTTAGGTGCTGTGGGTGGTCCTAAATGGGGTACCG

GTAGTGTTAGACCTGAACAAGGTTTACTAAAAATCCGTAAAGAACTTCAATTGTACGCCAAC

TTAAGACCATGTAACTTTGCATCCGACTCTCTTTTAGACTTATCTCCAATCAAGCCACAATTT

GCTAAAGGTACTGACTTCGTTGTTGTCAGAGAATTAGTGGGAGGTATTTACTTTGGTAAGAG

AAAGGAAGACGATGGTGATGGTGTCGCTTGGGATAGTGAACAATACACCGTTCCAGAAGTG

CAAAGAATCACAAGAATGGCCGCTTTCATGGCCCTACAACATGAGCCACCATTGCCTATTTG
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GTCCTTGGATAAAGCTAATGTTTTGGCCTCTTCAAGATTATGGAGAAAAACTGTGGAGGAAA

CCATCAAGAACGAATTCCCTACATTGAAGGTTCAACATCAATTGATTGATTCTGCCGCCATG

ATCCTAGTTAAGAACCCAACCCACCTAAATGGTATTATAATCACCAGCAACATGTTTGGTGA

TATCATCTCCGATGAAGCCTCCGTTATCCCAGGTTCCTTGGGTTTGTTGCCATCTGCGTCCTT

GGCCTCTTTGCCAGACAAGAACACCGCATTTGGTTTGTACGAACCATGCCACGGTTCTGCTC

CAGATTTGCCAAAGAATAAGGTTGACCCTATCGCCACTATCTTGTCTGCTGCAATGATGTTG

AAATTGTCATTGAACTTGCCTGAAGAAGGTAAGGCCATTGAAGATGCAGTTAAAAAGGTTTT

GGATGCAGGTATCAGAACTGGTGATTTAGGTGGTTCCAACAGTACCACCGAAGTCGGTGATG

CTGTCGCCGAAGAAGTTAAGAAAATCCTTGCTTAAAAAGATTCTCTTTTTTTATGATATTTGT

ACATAAACTTTATAAATGAAATTCATAATAGAAACGACACGAAATTACAAAATGGAATATG

TTCATAGGGTAGACGAAACTATATACGCAATCTACATACATTTATCAAGAAGGAGAAAAAG

GAGGATAGTAAAGGAATACAGGTAAGCAAATTGATACTAATGGCTCAACGTGATAAGGAAA

AAGAATTGCACTTTAACATTAATATTGACAAGGAGGAGGGCACCACACAAAAAGTTAGGTG

TAACAGAAAATCATGAAACTACGATTCCTAATTTGATATTGGAGGATTTTCTCTAAAAAAAA

AAAAATACAACAAATAAAAAACACTCAATGACCTGACCATTTGATGGAGTTTAAGTCAATA

CCTTCTTGAACCATTTCCCATAATGGTGAAAGTTCCCTCAAGAATTTTACTCTGTCAGAAACG

GCCTTACGACGTAGTCGATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTA

AGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGC

ATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGT

CATCACCGAAACGCGCGA 

 

Colour codes: 

      KanMX4 marker 

      GPD promoter 

      roGFP2 domain 

      Linker domain 

      Tsa2∆CR domain 

      Binding sites for primers P3 and P4 

      Restriction sites 
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A2: Confirmation of functional roGFP2-Tsa2∆CR biosensor under continuous 

culture conditions in the fermenter 

 

 

RoGFP2-Tsa2∆CR biosensor expressing cells sampled from various phases of the YMC respond to H2O2 

in a concentration dependent manner. 

 

 

 

 

 



 

109 

 

A3: Construction of yeast strains capable of conditional genomic Ahp1 

depletion via an auxin-inducible degron (AID) system 

 

A3.1: PCR amplifications, cloning and confirmation of engineered yeast 

 

A. Map of AID/AtTIR1 plasmid. 

B. Agarose gel showing PCR product from amplification of the AID/AtTIR1 plasmid for genomic 

integration. 

C. Agarose gel showing confirmation by PCR, of various yeast strains showing successful genomic 

integration of the Ahp1-AID/AtTIR1 construct. 

D. Product map of the genomically integrated construct 
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A3.2: Sequence map of AP2099 (pCEVNop1prmycAID-Tir1-Kan) as provided by Prof. Dr. 

Blanche Schwappach (5' → 3') 
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Colour code: 

        Binding sites for primers P7 and P8  
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„Nature gave men two ends – one to sit on and one to think with. Ever since then man’s success or 

failure has been dependent on the one he used most.“  

George R. Kirkpatrick 


