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Abstract - The paper describes the concepts and background theory of the analysis
of a neural-like network for the learning and replication of periodic signals containing
a finite number of distinct frequency components. The approach is based on a two
stage process consisting of a learning phase when the network is driven by the
required signal followed by a replication phase where the network operates in a
autonomous feedback mode whilst continuing to generate the required signal to a
desired accuray for a specified time.

The analysis focusses on stability properties of a model reference adaptive control
based learning scheme via the averaging method. The averaging analysis provides
fast adaptive algorithms with proven convergence properties.

Key Words - Periodic signals, neural-like networks, learning, replication, exponen-
tial stability. averaging

1. Introduction

The problem to be considered arises [6] in the development of models of learning of
the repetitive motion of walking. However, in the paper a more general approach is
taken to permit the application to the develc pment of training algorithms for any pe-
riodic action such as met in control requirements for robotic manufacturing systems.
In previous studies [10], emphasis has been placed on the use of systems theoreti-
cal concepts in the development of algorithms with provable convergence properties.
Techniques included the use of appropriate canonical forms, Lyapunov stability the-
ory and aspects of adaptive control convergence theory.

In this paper the proposed learning schemes (cf. [11]) are analyzed with the help
of the averaging method in order to get estimates for the exponential convergence
rates of the algorithms and improve the convergence properties by suitable selection
ot certain design parameters in the adaptive learning algorithms.




2. Problem Definition and learning rules

The precise problem to consider is the construction and training of a dynamic neural-
like network whose aim is to "reconfigure” in order to replicate an arbitrary periodic
signal r(t) of a signal class Ry , whose elements are of the form:

N

r(t) = ¥ Agsin(wpt + @i), wi Fw; fore #j (2.1)
k=1

1<i,j <N, w; € R", ¢,€[0,2r), 0< A; ¢ R (2.2)

The network is initially taken to be described by a state space model of the form
0 = A(w(t))z(t) + bu(t) (2.3)

where z(t) € IR and u(t) € IR is an input to be defined. The network has the
output ;

y(t) = Ta(t) (2.4)

where f7 denotes transpose of the vector f and w(t) = (wy(t),...,wn, (¢))T € IR™
is a vector of time dependent ”weights” to be adjusted continuously to achieve the
certain objectives. The model can be regarded as a "linearization” of models of
the form described in [3], for example, where the state dynamics have the typical
structure

) = o(A(w(t))2(t) + bu()) (2:5)

where o(-) represents a vector-valued sigmoid function. The motivation for the use of
the linear version is manifold and includes: the potential for the introduction of linear
systems theory methods for performance and stability evaluation, the argument that
an algorithm that does not work for the linear systems is unlikely to work for the
nonlinear case and the periodic signals (2.1) are solutions of a linear differential
equation. Although not conclusive, these motivations are sufficient to make study of
the case described of interest.

The approach consists of two phases, one of learning and one of replication of the
learned responses:

Phase One (THE LEARNING PHASE):

The input u(?) is set equal to the desired output signal r(¢) € Ry and the weights
are adjusted in real time to ensure the success of the second phase. In effect, the
objective is that during the system is excited by the required output, an (implicit)
identification takes place and the output y(t) asymptotically tracks the stimulus:
lim (r(¢) — y(¢)) =0 (2.6)
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Phase Two (THE REPLICATION PHASE):

After a suitable period of time T, u(t) is switched /replaced by the network output
y(t), the weight vector w(t) is frozen at its value at ¢ = 7™ and the resultant time
invariant (positive feedback closed loop) system tracks the (decoupled) stimulus to
the desired acccuracy for the desired period T,. i.e. in the time interval [T, T + T,] .
More precisely the requirement for the replication phase is:

For every time period T, > 0 and replication accuracy ¢ > 0 there exists a switching
time T™(s. 1) < > sucht that the reponse of the frozen system

[ %7
P
g

() = (A((T)) + beDa(t), y(t) = cTa(t) (2.
satisfies:
() = ()] < e forall t € [T, T+ T,].

(2.6) is required for all (-} € Ry and the adjustment of the weights have to be
formed under the restricted knowledge of the particular signal »(-) itself, the fre-
quences w;. amplitudes A4; and phase shifts ¢, are unknown, hence not available for
the adaptation procedure.

In [10] is is shown that this objectives can be achieved with a linear network of the

form:

network: 2(t) = Alw(t))e(t) + bult)
Ty e

where
[ -1 o 0 e 0

0 —a L 0 e 0

: . . : a > 0
Aw)=| : b= [0,..,0,1,0]" (2.8)

v o " 1 7‘
: L 0 ¢ = [0,..,0,1]
0 —a 0
\ XN
‘*"1 [N [N P PN u’}n»l e (Y ]

and state dimension n = 2N + 1.
The learning scheme 1s based on a model reference adaptive control approach (cf.
Fig. 1), where for every r() € Ry the model is given by the equations:

"""""""""" y = c1(t)

model: I(f) = Ayt +bult)y L 2(0) = a2 (2.9)

are chosen s.t. the output of (2.9)
bhecomes identifical to its input for u(#) = r(¢) and for all ¢ > 0.

where the fixed ideal parameters ™ and a*

o]




L5
I
Modell

wt

ey

Netzwerk

w(t)

e

MRAC-approach

Defining the symbols e(t) = z(t) — #(t), the state error, ep(t) = w(t) — w*, the
parameter error, then leads to the error dynamics

é(t) = A(w*)e(t) + caT(t)Rey(t) (2.10)
where
RT = [Iyn, Oan 1] -
The approach to the problem uses the Liapunov function candidate
V(eep) = TP+ epQ lep (2.11)

where 0 < Q = QT € IR*V*?V s arbitrary and P = PT > 0 is the unique solution
of the Liapunov equation

AT(w)P + PA(w*) = =S (2.12)

with § € RGN+DXENHY 4 hitrarily, symmetric positive definite. With the adaption
/learning law:

w(t) = —QRTz(t)cT Pe (2.13)

the following result is proved [cf. [11]]
Theorem 2.1:

Let Q € R*X?N and § € REVFDXEN+Y he positive definite symmetric matrices
and P e IRGN+DXEN+) he the unique solution of Liapunov equation (2.12). Then
the combined error system of (2.10) and (2.13)
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[ t“p(f) J B [ *"QH.’IT('K)C'I“[? 0 J [ (3,)(t) :' (2.14)

is exponentially stable, in particular for all initial conditions 2(0) and w(0) we have:

Iime(t) =0 and limw(t)=w"

fomr 0 T—00

with exponential convergence. .

Simulations show (c.f. section 4) that the convergence speed, hence the exponential
convergence rate of (2.14) heavily depends on the selection of the matrix (). The
purpose of the following two sections is an estimation of this convergence rate and
the development of a procedure for suitable selection of ) which results in fast
learning algorithms.

3. Averaging
Averaging is a method for the analysis of differential equations of the form
T o= s f(tx)

with the aim. to relate the solutions of (3.1) for ¢ suffiently small with the solutions
of the averaged system

to+T
Loy = SA/‘u v (‘(lau) s WhPI‘G f:‘u'(‘l‘) = ,Ilml _} j f( Ty ;I})dT
=00 T gy

This method was introduced by Bogoliub»ff and Mitropolskii [4] and developed
further by Volosov [14], Sethna [13], Balachandra and Sethna [2], Hale [9] and
Sanders and Verhulst [12]. More geometrically oriented formulations can be found
in Arnold [1] and Guckenheimer and Holmes [8].

Here we consider systems of differential equations of the form

e=cf(tyayy), o(0) =a, (3.1a)
v=Ay+egtoay), y(0) =y, (3.1b)

where 2 € IR", y € IR™, 0 < = < 2, and f(£,0,0) = 0 and ¢(¢,0,0) = 0 for all t > 0,
re. (x.y) = (0,0) is an equilibrium point of (3.1). Furthermore we assume that the
matrix of the fast dynamies (3.1b) is asymptotically stable.

The aim of the averaging method is to relate the slow dynamics (3.1a) with the
dynamics of an averaged system




Tav = €fav (Tav)y Taw(0) = 2. (3.2)

More precisely as above the averaged function f,,(z) is defined by:

fanl@) = lim £ T f(r, 2, 0)dr (3.3)

Definition 3.1:
A function f(t,z,0) has the average f,,(z) iff there exists a function ¥(T) : IR* —
IR*, continuous and strong monotonically decreasing with ]lim ¥(T) = 0 such that

+T
| f(r2,0)dr ~ fa(2)] <9(T) (3.4)
forallt, > 0,7 >0and z € {x € IR", |z] < h} =: By
y(T') is called convergence function.

In Fu et al [7] the following theorem is proved:

Theorem 3.2:
The system (3.1) has an exponentially stable equilibrium point 0 for all ¢ sufficiently
small if the following conditions are satisfied:

(i) f and g are piecewise continuous in ¢ and there exist constants ¢y, {5, €3, 4 and
£,, > 0 such that

|t @1, p1) = f(B 22, y2)| < b fan — 2y + €2 |y1 — y2 (3.5)
lg(t, z1,y1) — 9(t, T2, y2)| < s loy — 2| + Ly |y1 — ya (3.6)
'fau(xl) - fav($2>' g gau Izl - 1‘21 (37)

for all zy, 29 € Bx, y1,y2 € By and t > 0.

(ii) The function d(t,z) := f(t,2,0) — fa,(z) is continuously differentiable with
respect to z, has mean value 0 with convergence function y(7") - |z| and Q‘%Z—“’l
is bounded with mean value 0 and convergence function v(7').

O
System (3.1) has two seperate time scales in the sense that (3.1b) is independent
of (3.1a) if ¢ — 0. However the dynamics (2.14) considered in this paper have two
mixed time scales. They can be considered as a special case of:




=cef (t,z,y), v(0) =,

]) == ‘(/ + h(,ﬂ ‘l‘) + f(\](f\ T, !))- !}(0) = Yo

(3.8a)

(3.8b)

In order to apply theorem 3.2 this system has to be transformed into the form (3.1).

For this A(t,2) is transformed into

1
{(t.z) = [ e h(r x)dr

0
and then in (3.3) the modified mean value function

to+T

+
faolx) = lim = Loy / (7, 2))dr

Tbﬂ!)\') t)
is selected. Via the L-transformation
yo=g - te)
(3.8) admits the form (3.1) with:
fltoey) = ftey+ 6t x))
and
gltyavy) = —2E e ooy 4 0 2)) + g(t 2,y + (@)
3.1 Analysis of the error system (2.13) by the averaging-method
In order to apply the averaging method to our error system
ép(t) = ==Quit)e! Pe(t)
e(t) = A(we(t) 4+ evl (t)ep(t)
with v(t) = RTx(t) we identify 2 = ep and § = e and obtain:
flt e y) = =Qu(t)e" Ply + L(t)r)
glt.z,y) = L(O)Qu(t)c Ply + L(t)z)
where
l
(t,e) = L(t)a = [ NN epT(r)dr -
0
The averaged system of (3.13) and (3.14) 1s:

Tov = 2 faul2an)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)




with

o+ T R
fuula) = = lim & J Qo Lz (3.15)
o+T
Tlm:o}tf Qu( )fpfe DT (7)drdt. (3.16)

Obviously we have f(,0,0) = 0 and ¢(¢,0,0) = 0, hence (e, ep) = 0 is an equilibrium
point of (3.13) and (3.14) and A (w*) is asymptotically stable. Furthermore:

Lemma 3.3:

The error system (3.13) and (3.14) satisfies the conditions (i) and (ii) of theorem
3.2 for all A > 0.

Proof:

v(t) and L(t) are bounded and the partial derivatives in

( e ) ~ ( ~Qu(t)cTPL(1)  —Qu(t)cTP )
22 %2 )7\ L(HQu(t)"PL(1) L()Qu(t)cTp

Az

are continuous and bounded, which implies the first two Lipschitz conditions in (i).
Furthermore f,,(0) = 0 and

tot T
grzz = ——1111;{.10% tf Qu(t) TPfe =) ey T (r)drdt

is continuous and hounded, hence the third Lipschitz condition in (i) is satisfied and

2] 3 favlx

g-d(t z) = f(trr» 0) _ faz( )
is continuous and bounded too. The convergence function 4(T') of ?%ij—rl is the
convergence function of —f@-“i—ol v(t) and L(T) are generated by filtering of the

periodic signal r(¢) with an asymptotical]y stable linear system, hence -f—%f—gl is up

to an asymptotically vanishing term identical to a finite sum of periodic function. By
a lemma in Sanders and Verhulst [12] this implies that the convergence function y(1")

is of order O (%) . From f(¢,2,0) = aa—zf(t, 0,x)z we conclude that the convergence
function of f(¢,2,0) is of the form v(T) - |z| 0

From (3.1b) we obtain for the averaged system the representation:

épau = =& AQU ’ epav’ epav,V(()) = ep(o) (3'17)



with

vo+7‘ e { .
b = Q- lim 3 [ o(0)el P [ eAWED ey T (1) drdt, (3.18)
Fsoo to to

However, () is positive definite and therefore the averaged system (3.17) is exponen-
tially stable iff the eigenvalues of the linear operator

B 1 tot T ; ST
Tlgr}O 7 tf e(t) - ot (t)dr

where

Tty =cTp f( e (1) dr

Ly

belong to C*.

For the analysis of this operator we need some concepts of Generalized Harmonic
Analysis.

Definition 3.4:

(1) A function u: IR* — IR" is called stationary if the limit
41

T
Covy(r) = %irll%: [ u(s)ul (7 + s)ds
—_— ¢

exists uniformly with respect to t. Cov,(7) is called autocovariance of u(-).
(1) If Covy(+) is continuous then
Cor(r) f e S, (dw)

where S, (dw) is called the spectral measure of u( ). The integral (-) exists by

Bochners theorem (cf. Bochner [3]), because Cov, (+) is a positive semidefinite
function.

(i) Ifw: IR" — R™ and y : RY — R? are stationary, then the limit

; +T
Covyu(r) = lim 5 [ y(s)ul(r + 5)ds
Teno Ty
exists uniformly in 7" and is called the covariance of u and y. .

The relation between the auto- and covariances of the input and output signals of
a stable time-invariant linear system is described by the linear filter lemma of Boyd
and Sastry [5] :

Lemma 3.5: (Linear filter lenmuma)

Let [{(s) be a stable, strictly proper rational transformmatrix with impuls response
h{t)y € IRP™, (s) = H(s)a(s) and let u(-) be stat 1onary. Then



(i) y is stationary with autocovariance

Cov,(t) = T T h(m)Covy(t + 7 ~ 1) - AT (1) drydry
and spectral measure “

Sy(dw) = H(iw)S,(dw) H*(1w).
(i) Covy u(t) = _?’ h(r1)Covu(t + 7 )dm
Syu(dw) = H(1w)S, (dw). 0

Based on the above notations the dynamic matrix A,, of the averaged system can
be expressed as:

Ay = Q- Cov, 5(0).
Lemma 3.6:

o (Cov, 3(0)) € € (3.19)

Proof:

(3.18) leads to:

with
M(s) = P(sI — A(w)) le = brn
and
Pan > 0.
However
B(s) = RT#(s)
= RT(s] — A(w*)) 1b-r(s)
= H(s) r(s)
where -
H(s) = |gay=r Grapr - i)

The linear filter lemma implies:
Covys(0) = [ H(iw)S,(dw)H*(iw)M*(iw).
The covariance of r () is:

"
— cos(w;7)

Cov, (1) =

k 2
i=

1

with associated spectral measure:



ko 42
So(dw) = 32 S0, + 4.
| P
Hence:
k42 .
Clovy :(0) = 52 ‘—:L(]%[(--m:j)H"‘(»szj)&\1“(-i;¢'_,-)+l1"(iwj)H*(vszj)zW“(z'w_,')) e [Rr-ixn-l
J=1

(3.20)
Every summand in (3.20) satisfies:

Fliw)) = H(=iw;)H* (=iw;) M*(=iw;) + H(iw;) H* (iw; ) M*(iw;)

= 2Re{H (1w, )H"(iw;)} Re {M(iw;)} + 2Im {H(iw;)H*(10;) } Im {M (1)}
(1) rkF(ww;) =2,

(i)

Fliw)) + FT(iw;) = H(=iw;)H*(~iw; )M (iw;) + H(iw;) H* (iw;) M(~iw;)
(iif) FH (foy Y H (i, Y M (1) + H (=iw, Y H* (—1w; ) M (—~iw;)
= dRe {H(iw;)H(iw;)} Re {M(iw;)}.

Il

Fliw;) + F1w;) is positive semidefinite because Re {M(iw)} > 0. H(iw;) and
H(1w;) are linear independent for w; # wy, j # ¢. This together with (ii) and (iii)
implies:

rk Covy :(0) = min(n - 1,2k)
hence (o, 5(0) + C‘i‘ov;{:i,(O) 1s positive definite for n = 2k + land
o(Cov, 35(0)) < CF. 0
Now note that by theorem 3.2 the original system (3.13) and (3.14) is exponentially

stable for ¢ > 0 sufficiently small, i.e. for a sufficiently slow adaption rate.

4. Approximation of exponential convergence rate
and selection of design parameter Q

From the proof of theorem 3.2 ¢f. Fu et al.([7]) it is easy to verify that if the
convergence function (7' is of 0(77"), 0 < r < 1 and the exponential convergence
rate of the averaged system is £ o, then the convergence rate of the original system
1s at least =« vy, (1 -0 (51/3 + 5")) - In particular for ¢ — 0 this convergence rate
becomes identical to = - a,,, the convergence rate of the averaged system,

This implies that for ¢ > 0 small enough the convergence rate ~ of our error systems
1s approximated by

Yoo = & Re («"\min<C{,)(:l‘q(”-"zuf'(())) y



i.e. there exists a constant m > 0, s.t.
le(t), ep(t)] < me=vau(t=to),
Given this result the following strategy for the selection of the positive definite design

matrix @ leads to a fast convergence speed of the learning algorithm: Select @ in
such a way, that the reals parts of QCov,;(0) are approximately all the same.

For the selection ) = I the real parts of the eigenvalues of Couv, ;(0) determine the
convergence rate. However the sizes of these eigenvalues differ strongly for large
netdimensions. A better selection is

Q = Cov,(0)~!
Consider for example the simplest net dimensions n = 3 and n = 5 ;

(i) k=1, n—1=2, r =sin(wt 4+ ). Then
T = Cov,(0)"1Cov,;(0)

o[
s 0

w2 +a?

U(T) = {wziaz + iuﬂiaQ}

(i1) k=2, n—1=4, r=sin(wt+ @)+ sin(wet + ¢3). Then

A
201! 207 tw? pw? }
(wf+a2)(w§+a2)
_ 602+w21 +w22
T=| (ei+e?)(wi+e?)
4o

() ()
1

- (w%—{-az)(w%-ka?)

[a—

0
1

o o O
<
[ " =]

Without proof we
Claim 4.1:
(i) o (Cov,(0)"1Cov,;:(0)) = {ReM(zi:iwj) i A7 ImM (Fiw;), 1 <5 < k} where

M(s) = bn,

12



(1) Forp,, =1

g e Sy - o oy
Tav =& ""Srnx-*"'yz P tmax T ln';\/ljdéﬁ u”J

The effect of the selection of Q = Cov,(0)! instead of Q = I is demonstrated by
the following example.

Example 4.2:

Let k=2, n =5 «a=1andr = sint+sin2t. The eigenvalues of Cov, ;(0) are
{0.1287 +0.1037:, 0.0015, 0.0005} , however the eigenvalues of Cov,(0)~'Cov,.+(0)
are {0.5 £ 0.5:, 0.2 4 0.4/}, which leads to an approximation of the convergence rate
¥~ 0,00053 in the first case and v ~ 0,2 in the second case. Hence in this case a
substantial convergence acceleration can be expected. This is demonstrated by the
simulations in section 5.

An apriori selection of ) as Cor,(0)" requires knowledge of the amplitudes and
frequencies of the signal (), which are assumed to be not available for the network
design. However C'ov,(0)7! can be computed adaptively from the available signal
v = RTxr. This is possible because C'ov,(0) satisfies the matrix differential equation

Q) = —1Q(1) + LRT2(1)aT(t)R

which is in this form not suitable for the computation of C'ov,(0) because of the
pole at f = 0 of the right hand side.

However the modification

Sy — ) 0 Q0) =1 0t <t n
Qi) w{ Q) + TRty TR |t >, (4.1)

has the solution

t t
tol= [ RTx(r) T S)Rir+ [ RT ()27 (r)Rd~r
0

Q) = —

with
Q(t) % Cow rr(0).

The error [Q(1) ~ Covpr,(0)] is of order 0 <i> and @(t) is positive definite for all
> 0.

This leads to the accelerated adaption law:
w= =@ R (O (1) - r(1)

13




with Q(t) from (4.1).
Application of the averaging method then leads to the following result:

Theorem 4.2
N

Given the net structure (2.8) with input v =r = ¥ Ajsin(w;t 4+ ¢;) € Ry, € > 0
J=1

sufficiently small, then for the accelerated Liapunov learning rule:

& = Q1) R (1)(y(t) = r(1)), w(0) = w, (4.2)
: 0, Q(0) L 0<t<t,
Q“)‘{ (01 LR 0sTOTR | ot (4:3)

the conclusions of theorem 2.1 remain true.
Proof:

Analogous to (3.13) and (3.14) the averaged system becomes

pas = —EA0Cpyy s €pa(0) = €,(0)

with
to+T
Awy = Jim 2T QHOOETP [ A (1)
- OO to
and
tlim Q(t) = Cov,(0)
implies

Ay = Cov,(0)"1Cov, 5(0).

Remark 4.3:

An alternative adaption law with a nonsingular right hand side 1s
O(1) = —pQt) + pRTx()aT ()R, Q0) = I, p> 0. (4.4)

(4.4) can be interpreted as a filtering every component signal of R z(t)a7(t) R with

the stable linear filter pewt The stationary state of (4.4) is an oscillation around the

DC-part of RTz(t)zT(t)R, which is Cov,(0).

14



The setthng of this oscillation towards the stationary state decreases as p increases,
but at the same time the amplitude of the oscillation increases. This causes the
instability of the overall svstem for large p. For sufficiently small amplitudes, i.e. for
small p > 0 a similar behaviour as for (4.1} can be expected.



5 Simulation Results

In order to demonstrate the convergence of the algorithms and the typical form of
results obtained in practice, consider the problem of teaching a network to replicate the
simple illustrative signal

r(t) = sint + sin 2t (1)
consisting of N = 2 distinct frequency components of roughly equal significance. The
network chosen consists of the model in R® with network parameter o = 1 :

(-1 1 0 0 0 ] [0 ]
0 -1 1 0 0 0
zt)=1 0 0 =1 1 0 [z(®)+ |0 |w(t) (2)
0 0 0 -1 o0 1
| w2 w2 wy wy —1 | | 0]

y(t)=10 00 0 1]
The initial state z(0) is specified by z(0) = 0.

The subject of this simulation is the application of the base algorithm (2.12) on the
above example. It shows the influence of the learning rate parameter Q on the speed
of convergence and demonstrates exponential convergence of the net output and of the
weights towards the ideal weights. The result of a simulation of the learning phase with
() = 100 I are shown in figures 1 a-c.

(i) Practical convergence is achieved at the output in effectively ¢ = 400(s) (i.e. in

130 periods of r) (Fig. la) and of the weights in ¢ = 700(s) (Fig. 1b).

(ii) The linear decrease of the output and the parameter error e; and e, In a loga-
rithmic scale substantiates the analytical result of exponential convergence given
in theorem 3.6 (Fig. 1c). Note that the errors stop decreasing at ¢ = 1600(s) due
only to the fixed precision of the numerical calculation.

The result of a simulation of the learning phase with @ = 1 is shown in figure 2a:
Again the convergence is exponential, however, the rate of convergence is distinctly less
in this case, hence confirming () as a parameter for influencing convergence rates in a
systematic way.

In figure 2b-c the weight errors of the original system e,,(¢) and the averaged system
€pay, (t), 2 = 1,...,4 are compared. The simulations demonstrate for Q = I the good
approximation of the original system by the averaged system. This is confirmed by the
following table which contains 7., for @) = €/, € = 1,100, and the true exponential
convergence rate v determined numerically from the simulation data.

€ Y Yav
1 4.4628-10~* | 4.9511-10~*
100 | 7.9551-1073 | 4.9511-102

- 16 -



Furthermore the adaptive computation of Q based on formula (4.1) and (4.2) leads to
the expected acceleration of the convergence. This is demonstrated by the simulations
in figure 2d-e. For ¢ = | the accelerated algorithm practical convergence is achieved at
the output ahmd\ i = 25(s) (e, 4 perods of r) and for the weights in ¢ = 40(s)
(Figure 2d). Figure 2e shows in comparison with figure Lc the substantial acceleration
of the exponential error decrease.

For a further simulation another reference signal consisting of .V = 5 distinct frequency
components was selected:

5

r(t) = Z sin wt

w]

The network chosen consists of a minimal net of dimension n = 11. The corresponding
ideal weight vector is

w" = (=442000. 719000, ~759400, 458524, ~216260, 67650, ~ 18260, 2827, —440,0)7

All'initial states are again 0. The smallest real part of the eigenvalues of Cov, ;(0) in
this example is 3.8854-107"% The averaging method predicts for () = ¢ [ an estimation
of the necessary length of the learning phase of +* = Esgf:%%ﬁ(s) to achieve a relative
precision of 107% in the weights. This gives i* ~ 3.6 - 10" (s) for @ = 1007. Obviously
a simulation r)f the learning phase doesn’t make sense in this case.

However, the adaptive Liapunov learning rule (4. 1) and (4.2) provides for the above
example an estimation of the exponential convergence rate TR Ve = o = (.0385 and
t ~ ﬂ‘ﬂ)— ~ 3.45(s) for the length of the learning phase for ¢ = 1. The simulations
confirm this estimations.  Figures 3a-c¢ contain the simulation results for the above
example with p = 0.04 and € = 1.

Practical convergence is achieved at the output in effectively ¢ = 700(s) (i.e. in 110
periods of 7) and of the weights in ¢ = 800(s ) (Fg. 3b). Opp(mte to the case of 2
frequencies the simulations show a transient piase of 600(s) before rapid exponential
convergence is achieved. The length of this second phase of about 300(s) 1s in good
accordance with the above estimation of the length of the lear ning phase. This obser-
vation is quantitatively confirmed by the estimated rate v,, = 0.0385 and the actual
exponential convergence rate computed from the simulation data as v = 0.0414.
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