


2. roblem Definition and learnin 

The precise problem to consider is the construction and training of a dynamic neural- 
like network whose aim is to “reconfigure” in order to replicate an arbitrary periodic 
signal r(t) of a signal class RN , whose elements are of the form: 

7-(t) = k,l A4 sin (wkt + 6) , w # wj for i # j (2.1) 

1 5 i, j _< IV, Wj E Et+, dj E [O, 2T) ) 0 < Aj E IR (2.2) 

The network is initially taken to be described by a state space model of the form 

F = A(w(t))z(t) t  h(t) P-3) 

where x(t) E IR’” and u(t) E R is an input to be defined. The network has the 
output 

y(t) = cTx(t) (2.4) 

where fT denotes transpose of the vector f and w(t) = (wr(t), . . ..~~.(t))~ E lRnW 
is a vector of time dependent “weights” to be adjusted continuously to achieve the 
certain objectives. The model can be regarded as a, “linea.riza,tion” of models of 
the form described in [3], f or example, where the state dynamics have the typical 
structure 

y = o(A(w(t))z(t) + h(t)) (2.5) 

where o(.) represents a vector-valued sigmoid function. The motivation for the use of 
the linear version is ma.nifold and includes: the potential for the introduction of linear 
systems theory methods for performance and stability evaluation, the argument that 
an algorithm that does not work for the linear systems is unlikely to work for the 
nonlinear case and the periodic signals (2.1) are solutions of a linear differential 
equation. Although not conclusive, these motivations are sufficient to make study of 
the case described of interest. 

The approach consists of two phases, one of learning and one of replication of the 
learned responses: 

Phase One (THE LEARNING PHASE): 
The input IL(~) is set equal to the desired output signal I E RN and the weights 
are adjusted in real time to ensure the success of the second phase. In effect, the 
objective is that during the system is excited by the required output, an (implicit) 
identification t,akes pla,ce and the output y(t) asymptotically tracks the stimulus: 

i&r( r( t) - y(t)) I- 0 (2.6) 
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hase Two (THE REPLICATI ASE): 

network: 
i(f) =f: ‘4(d(f))J-(f) +- h/(f) 
,l/ = c?‘.r( t) 

-0 1 () I) . . . . . . () 

0 -0 1 () I.. I.. () 

* . . . . * 



MRAC-approach 

Defining t,he symbols e(t) = x(t) - .2(t), t.he state error, ep(l) = w(t) - w*, the 
pa,ra.meter error, then leads to the error dynxnics 

i(t) = ‘4 (w*) e(t) + CxT(t)Rep(t) (2.10) 

where 

RT = [J2N, 02N,Il * 

The approach to the problem uses the Liapunov function candidate 

V (e, ep) = eTP, $ e$Q-‘ep (2.11) 

where 0 < Q = Q’ E IR2Nx2N is arbitrary and P = PT > 0 is the unique solution 
of the Liapunov equation 

AT(w*)P f PA(w*) = -S (2.12) 

with S E m(2N+‘)X(‘N+‘) arbitrarily, symmetric positive definite. With the adaption 
/learning law: 

k(t) = -Ql&(t)c?Pe (2.13) 

the following result is proved [cf. Ill]] : 

Theorem 2.1: 

Let Q E lR2Nx2N and S E @2~v+lb0v+l) 1 ,e positive definite symmetric matrices 
and p E @“+‘b(2’~+1) be t-, e unique solution of Liapunov equation (2.12). Then 
the combined error system of (2.10) and (2.13) 



I 1 
e(t) 
f>p( t) (2.14) 



More precisely as above the averaged function fiL,,(x) is defined by: 

Definition 3.1: 
A function f(t, CC, 0) h as the average faU(z) iff there exists a function y(Y) : IRf --+ 
R”, continuous and strong monotonically decreasing with ,llW r(T) = 0 such that 

for all t, 2 0,T > 0 and L E {.1: E IR”, j:c] < 12) =: L3h 

y(T) is called convergence function. 

In Fu et al [7] the following theorem is proved: 

Theorem 3.2: 
The system (3.1) h as an exponentially stable equilibrium point 0 for all c sufficiently 
small if the following conditions are satisfied: 

(i) f and g are piecewise continuous in t and there exist constants f!r, !2, !a, e4 and 
eav 2 0 such that 

Ig(t,%Y*) - g(o2,Yz)l 5 e3 1x1 - 221 + e4 IYI - Y2I (3.6) 

for all xi,22 E Bh, ~1, y2 E Bh and t >_ 0. 

(ii) The function d (t, x) := f(t, CC, 0) - fa,,(z) is continuously differentiable with 
respect to 2, has mean value 0 with convergence function r(T) e 1~1 and y 
is bounded with mean value 0 and convergence function y(T). 

Cl 

System (3.1) h as two seperate time scales in the sense that (3.lb) is independent 
of (3.la) if % -+ 0. However the dynamics (2.14) considered in this paper have two 
mixed time scales, They can be considered as a special case of: 

6 





with 

to+T 
fau(x) = - ,jin; + J Qv(t)c’PL(t)zdt (3.15) 

to 

(3.16) 

Obviously we have f(t, 0,O) = 0 and g(t, 0,O) = 0, h ence (e, ep) = 0 is an equilibrium 
point of (3.13) and (3.14) and A (w’) is asymptotically stable. Furthermore: 

Lemma 3.3: 

The error systetn (3.13) and (3.14) satisfies the conditions (i) and (ii) of theorem 
3.2 for all h. > 0. 

Proof: 

u(t) and L(t) are bounded and the partial derivatives in 

are continuous and bounded, which implies the first two Lipschitz conditions in (i). 
Furthermore f,,,(O) = 0 and 

is continuous and bounded, hence the third Lipschitz condition in (i) is satisfied and 

is continuous and bounded too. The convergence function y(T) of 9 is the 

convergence function of v. v(-t) and L(T) are generated by filtering of the 

periodic signal r( t ) with an asymptotically stable linear system, hence * af(w,o) 
1s up 

to an asymptotically vanishing term identical to a finite sum of periodic fur%ion. By 
a, lemma in Sanders and Verhulst [la] this implies that the convergence function r(T) 
is of order 0 ($) . From f(t, CE, 0) = &J(t, 0,. ) T .r we conclude that the convergence 
function of f(t, x, 0) is of the form y(T) * 1x1 q 

From (3.11~) we obtain for the averaged system the representation: 

ep,,, = --E v Aau - ep,,, ep,,,(0) = e,(O) (3.17) 
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(i) 7~ is stationary with a.utocovariance 

Cou,(t) = 7 ‘7 h(rI)Cou,(t + rl - Q) = hT (7;~) dr1dr2 
--M-CQ 

and spectral mea.sure 
S,(dw) = H(iw)S,(dw)H*(itu). 

(ii) Cou,,,(t) = 7 h(r,)Cou,(t + q)dq 

S,,(dw) = H(;:).s,,(dw). cl 

Based on the above notations the dynamic matrix A,, of the averaged system can 
be expressed as: 

A,, = & . Coe,,,,(O). 

Lemma 3.6: 

(T (CO2),,;(0)) E cf (3.19) 

Proof: 

(3.18) lea,ds to: 

with 

and 

However 

where 

Z(s) = M(s) . C(s) 

M(s) = cTP(sI - A(w))-% = z 

C(s) = R%(S) 
= RT(sl - A@*))-‘b . r(s) 
= H(s) * T(S) 

H(s) = [ (s+&-l 7 (s+&2 7 a.. & 1 T 

The linear filter lemma implies: 

Cov,JO) = y H(iw)S,.(du)H*(iw)M*(iw). 
-C-Q 

The covariance of T (.) is: 

Co?&(r) = 5 $ COS(WjT) J=I 

with associated spectral measure: 
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(ii) and (iii) 



i.e. there exists a constant m > 0, s.t. 

le(t), e,(t)1 5 rr~e-Yau(~-~o). 

Given this result, the following strategy for the selection of the positive definite design 
matrix Q leads to a fast convergence speed of the learning algorithm: Select Q in 
such a way, that the reals parts of QCov,,;(O) are approximately all the same. 

For the selection Q = I the real parts of the eigenvalues of Cov,,,(O) determine the 
convergence rate. However the sizes of these eigenvalues differ strongly for large 
netdimensions. A better selection is 

Q = CO~U,(O)-~ 

Consider for example the simplest net dimensions n = 3 and n = 5 : 

(i) k: = 1, ?L - 1 = 2, 7’ = sin (wt + 53). Then 

T = Cou,,(O)-‘Cou,,;(O) 

(ii) k = 2, n - 1 = 4, r = sin (wrt + ~1) + sin (wgt + 92). Then 

T= 

Without proof we 

Claim 4.1: 

j =1,2 . 
1 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

(i) (7 (COV,(O)~~COV,,,; (0)) = {ReM(iiwJ + i * Aj21mM (ztiwj), 1 < j 2 k) where 





with Q(t) from (4.1). 

Applica.tion of the averaging method then leads to the following result: 

Theorem 4.2 

Given the net structure (2.S) with input u = T = 5 Aj sin (wjt + $j) E RN, E > 0 
j=l 

sufficiently small, then for the accelerated Liapunov learning rule: 

LL = --I&-*RTx(t)(y(t) - r(t)), w(O) = w, 

Q(t) = 
0, Q(O) = 1 ) ost<t, 
-+Q(t) + ;RT:C(t)xT(t)TR , t 2 t, 

(4.2) 

(4.3) 

the conclusions of theorem 2.1 remain true. 

Proof: 

Analogous to (3.13) a.nd (3.14) the averaged system becomes 

with 

ep,, = -hvepau , epav(O> = e,(O) 

and 

A,, = ,“rnW + “:fTQ-‘(t)yit)c’f’ j ,A(w*)(t-‘)cvT(7)n7.dt 
to to 

implies 

j+yg Q(t) = Cozy, 

A,, = Cov,(O)-lCov,,,(0). 

q 

Remark 4.3: 

An alternative adaption law with a nonsingular right hand side is 

C&t) = -p&(t) + pRTx(t)xT(t)R, Q(0) = I, p > 0. P-4) 

(4.4) can be interpreted as a filtering every component signal of RTx(t)xT(t)R with 
the stable linear filter -&. The stationary state of (4.4) is an oscillation around the 

DC-part of R”s(t)z”(t)R, which is Cov,(O). 
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5 Simulation Results 

In order to demonstrate the convergence of the algorithms and the typical form of 
results obtained in practice, consider t,he problem of teaching a network to replicate the 
simple illustrative signal 

r(t) = sin t 4 sin 2t (1) 

consisting of iV = 2 distinct frequency components of roughly equal significance. The 
network chosen consists of the model in lR5 with network parameter cu = 1 : 

c -1 1 0 0 0 
0 -1 1 0 0 

2(t) = 0 0 -1 1 0 
0 0 0 -1 0 

11,3 202 W3 Ulq - 1 

y(t) = [ 0 0 0 0 

The initial St.&e z(O) is specified by z(O) = 0. 

(2) 

(3) 

The subject of this simulation is the application of the base algorithm (2.12) on the 
above example. It shows the influence of the learning rate parameter Q on the speed 
of convergence and demonstrates exponential convergence of the net output and of the 
weights towar-ds the ideal weights. The result of a simulation of the learning phase with 
Q = 100 I are shown in figures 1 a-c. 

(i) Practical convergence is achieved at the output in effectively t = 400(s) (i.e. in 
130 periods of 7’) (Fig. la) and of the weight,s in t = 700(s) (Fig. lb). 

(ii) The linear decrease of the output and the parameter error e1 and eP in a loga- 
rithmic scale substantiates the analytical result of exponential convergence given 
in theorem 3.6 (Fig. lc). Note that the errors stop decreasing at t = 1600(s) due 
only to the fixed precision of the numerical calculation. 

The result of a simulation of the learning phase with Q = 1 is shown in figure %a: 
Again the convergence is exponential, however, the rate of convergence is distinctly less 
in this case, hence confirming Q as a parameter for influencing convergence rates in a 
systematic way. 

In figure 2b-c the weight errors of the original system e,,(t) and the averaged system 
ep,,, (t), i = 1,. . . ,4 are compared. The simulations demonstrate for Q = I t,he good 
approximation of the original system by the averaged system. This is confirmed by the 
following table which contains Y~,, for Q = rl, 6 = 1,100, and the true exponent,ial 
convergence rate y determined numerically from the simulation data. 
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Net output and reference signal 
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Figure 1 a: Basic learning rule with Q = 1001 
-- y(f), - - - r(f) 

- 18 - 



60t 
I 

Net weights 
--- I I ----“.‘-‘-T 

Net weiqhts 

600 650 700 ‘750 
-6 I I I I 1 / 

300 350 400 450 500 550 
t 



1 o! , 
Modulus of output error 

I 1 r I 

10" 

10-l 

1o‘2 

~ d 

$4 

% 
1o-5 

1 o-6 

lo-' 

1o-8 

I I I I 1 I 1 
500 1000 1500 2000 2500 3000 

t 

Modulus of wxameter errors 
lo2 

i 
loo 

1o‘2 

1 oA4 

1 o-6 

. 
1 o-l0 I I I ! I I 

0 500 * 1000 1500 2000 2500 3000 
t 

Figme 1 c: Basic learning rule with & = 1001 
ahove: le,(t)j. blow: j&(t)\ 
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Figure 2b: Basic learning rule with Q = I, weight errors for the 
original system e,,(t) (fat) and averaged system ePau, (t) 
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net, output and reference signal 
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Figure 2d: Learning rule with adaptive Q. 

above: -y(t), - - - I, below: u);(t) 



loo 

10" 

lo‘* 

?lObS 
% 
';r $jlO -4 

1O‘6 

lo6 

1o‘7 

1 o.e 
20 40 60 

t 

IV I 1 
0 20 40 60 80 100 130 



net outpu and reference signal 

50 
t . 

net output and reference signal 

511 -r I I-- - 1 

650 660 670 680 690 700 71 
t 

Figure 3a: Learning rule with adaptive &. 
-y(t),- - - r(t) 
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Figure 3b: Learning rule with adaptive Q. 

w* = (-442000,749000, -759400,458524. -216260,67650, 
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Figure 3c: Learning rule with adaptive &. 
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