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1 Introduction

The first points on the re—entry trajectory of a space vehicle into the atmosphere
of the earth or other planets are characterized as the rarefied gas regime. For a
deeper understanding of the important physical and chemical effects in this first
critical phase, it is necessary to develop more realistic models and powerful numer-
ical methods.

The modelling has to include electric as well as magnetic effects by external and self-
consistent fields, the energy exchange between translational and internal degrees of
freedom and chemical reactions, especially ionization and recombination reactions.
Extenstions of the kinetic theory of gases to the case of a plasma — a mixture of
ionized gases including all these phenomena — can be found in various books (i.e.
[7]). But, for example, a concrete formulation of the ionization and recombination
collison terms are rather rare and we use here the notations of [24].

Two typical properties of plasmas lead to stiff numerical problems:

First, the characteristic time scale for the electrons is much smaller than the time
scale of the ions or neutrals. This is due to the small mass of the electrons com-
pared to the heavy particles — the ions and neutrals. Other different time scales
arise due to different reaction rates, i.e., for ionization and recombination reactions.
The problem of the different time scales can be treated by an appropriate scaling of
the underlying equations [10]. The use of asymptotic methods yields mathematical
models, which are valid on different physical scales. The interesting model for the
re-entry problem is the heavy particle scale (see also [24]). This leads to a coupled
system of macroscopic equations for the electron density and temperature and ki-
netic equations for the ions and neutrals.



The second difficulty arises from the small ionization rates of plasmas in the re—
entry phase. But, due to the resulting electro-magnetic fields and chemical reac-
tions, the small concentrations of charged particles cannot be neglected. If we use
particle methods — and we have to use them by other reasons — the numerical
difficulty arises from an appropriate representation of these small concentrations. A
well-known modification is the use of variable weights, which we apply here to the
different species only. Other applications lead to the same problem, e.g., dissocia-
tion of molecules in a rarefied flow where the atom concentration is very small, or
evaporation and sputtering processes.

The paper concentrates on these weighted particle methods for systems of coupled ki-
netic and macroscopic equations with strongly different concentrations. The treated
systems can be result from the extended kinetic theory as well as from simplification
by asymptotic methods.

In the next chapter, we explain the idea of a weighted particle method and ap-
ply this method to the general form of a kinetic equation. Here, we derive the
measure—valued formulation of the kinetic system, which cannot be obtained di-
rectly. Therefore, we first split the equation into three fractional steps; a Vlasov
equation, describing the drift of the particles by the flow, a Boltzmann equation,
representing the collisions and reactions of the particles, and the macroscopic equa-
tions. Then, well-known results for both typs of kinetic equations can be extended
and result in a convergent weighted particle method coupled with a finite element
method for the Poisson equation.

Conservation of mass, charge, momentum and energy on the discrete level of descrip-
tion is necessary to avoid numerical instabilities. Charge and energy conservation
for the drift term is obtained by a consistent choice of the mollifier and the ansatz
function for the finite element method. Due to the different weights, momentum and
energy conservation in the collision step can be no longer satisfied using a symmetric
collision process. Hence, we develop a new algorithm to choose collision parame-
ters which guarentees momentum and energy conservation. The mass conservation
is violated during a reactive collisions when using the standard weighted particle
approach. A suitable transformation of the equations makes it possible to derive a
mass conserving particle method such that weights are at each time proportional
to the concentrations. Finally, we present some numerical results and give some
concluding remarks.



2 Weighted particle methods for kinetic equations

2.1 Kinetic equations for dilute ionized gases

In this paper we consider kinetic equations of the general form

Oif + dive o(DIf]f) = SIS - (2.1)

Here, f is the probability density of the gas ensemble at time ¢ € IR, at position
z € A in the state z € I'; therefore, f : IR, x Il — IR, with the phase space
II = A xI. In classical kinetic theory the state z coincides with the velocity v € IR3
of the particle. But in realistic applications one has to add internal energy variables
e which can be discrete and/or continuous [21] and the sorting index s € II of the
particle (II is index set of the species). Here, we assume z = (v,e,s) with one
internal energy variable e € IR, representing rotational degrees of freedom, s € II
and I' = IR® x IR, x II.

Macroscopic quantities like the mass, charge, momentum and energy densities of
species s and the mixture are given by moments of the density function f. A
moment of f with respect to ¢ : I' — IR is defined by

./\/l[go](t,m):/@(z)f(t,x,z)dz:z:/ /go('v,e,s)f(t,x,v,e,s)dedv. (2.2)
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For example, the number density v of the species s is the moment of f with respect
to ¢ = (0,...0,1,0,...0) and the number density v of the mixture is given by v =
M[(1,...,1)].

The evolution equation (2.1) consists of the drift of particles given by the flux
D[f] = (v,a) (ais the acceleration of a particle) and the instantaneous interactions
between two particles like collisions and reactions described by the collision operator
J.

For an ionized gas, the acceleration a of a particle is determined by the Lorenz force

msa = qs(E[f]+ v x B[f])

where my (gs) is the mass (charge) of a particle of species s. The electric field £
and the magnetic induction B are the sum of external forces and selfconsistent fields
given by Maxwell equations.

In the following, we assume that magnetic effects can be neglected. Furthermore, we
introduce the potential U = U[f] by £ = —VU which satisfies Poisson’s equation

AU = Lr, (2.3)
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where 7 = M[(¢s)scx] denotes the charge density of the mixture. In the noncollisio-
nial case (J[f] = 0) the system (2.1), (2.3) reduces to the Vlasov—Poisson system.
The component J; of the collision operator J is the sum of reactive and nonreactive
Boltzmann like collision operators of the form

JJﬂﬂ2%=//biﬁYEw¢w5{Cﬁﬁ&i)?@ﬁﬂ%ﬂ—nﬂﬂf@ﬂ}dwﬂf,

’msl’msl*
I A
(2.4)
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where OF 1% is the scattering kernel for the reaction
k)
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* are the postcollisional states of the pair (z,2z*) due to the collision

parameter w’. In the case s = s’ and s™* = s a nonreactive collision occur. In the
following, it is not necessary to know the detailed form of J;. The only essential
property is the principle of detailed balance connecting the forward and backward

and z' and 2/

collision processes via
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Here, £ and E’ are the total collision energies before and after tllle, reaction and
s,8% :,;i*(272*7w/) =

(7,2, w) for the forward process. The detailed balance relation (2.5) is the fun-

damental equation to prove the so—called H-theorem (see [6]), which implies the

irreversibility of the system. A detailed description and the extension to ionization

and recombination reactions is given in [24].

The complete system under consideration can be written as a system of kinetic

equations for each phase space density fs (fs(t,z,v,e)= f(t,z,v,e,5))

j(Csl’s/*) denotes the Jacobian of the collision transformation C

atfs‘l’v'vmfs_%VU[f]'VUfS:JS[f]fsv SEHa (26)

coupled with the Poisson equation (2.3) and therefore, is called Boltzmann—Vlasov—
Poisson system.

The system has to be completed by initial as well as boundary conditions. By fs(o) we
denote the initial densities for species s. Realistic boundary conditions in the case of
rarefied ionized flows are only modeled in few special cases [11] and totally unknown
for re—entry problems. Here, we use specular reflecting boundary conditions for each
[s and fixed Dirichlet conditions for the potential U.

In the case of a plasma the index set II consists of the electrons e and different kinds
of ions and neutrals (denoted by ¢ respectively o). We only remark that a scaling of



the Boltzmann—Vlasov—Poisson system with the mass ratio of electrons and heavy
particles yields several plasma models valid on different physical time scales. This
scaling was suggested by the work of P. Degond and B. Lucquin—Desreux [9, 10]
and is treated in detail in [24]. The resulting systems belongs to the class of kinetic
systems coupled with macroscopic equations and can be solved numerically using
the methods developed in this paper.

2.2 Weighted particle methods

The common idea of all particle methods is the interpretation of the density f
as a continuous measure f(¢,p)dp varying in time. Therefore, every nonnegative
integrable function f can be approximated in the sense of measures by a sum of
weighted Dirac-measures [20]

N
[, p)dp =Y ai()é(p — pi(t)) =: 67, (2.7)
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where p; is the position in the phase space Il and a; > 0 the weight of particle 2.
A particle approximation of f(¢,-) is determined if the evolution equations for the
positions and the weights of all particles are known. The aim of the next sections
is to derive a particle method for the Boltzmann—Vlasov—Poisson system.

First, we explain in which way we want to determine the weights in our particle
method. Nearly all particle methods use identically weighted particles, since the
evolution equation of these identically weighted particles roughly coincide with the
physical trajectories. Sometimes there is need for a weighting in the position space,
i.e., in axisymmetric geometries [26] or in high density regions [22].

In the case of a weakly ionized plasma there are strong differences in the concentra-
tions of the charged particles and the neutrals. A identical weighting of all particles
causes a large number of particles, if we assume that a minimal number of particles
per cell is necessary to represent the distribution adequately. For example, in a
single plasma with 1% degree of ionization and a minimal local particle numer of 10
leads to a total particle number of about 1000 per cell.

A quite natural way to overcome these large particle numbers is the use of weights
proportional to the local concentrations. Then, the total particle number per cell
is of the order of the minimal local particle number multiplied by the number of
different species. Therefore, we want to ensure the relation

N _ ﬁ/s(t) _
a;' (1) = N for s; =3, (2.8)

where 7, is the concentration and Ng the number of particles of species s. For the
rest of the paper we assume that the weights of particles of one species are equal,



but may differ between the species. Therefore, the weights may be different locally
in space which leads to the serious problem of discrete conservation discussed in
chapter 3.

2.3 Time splitting

To obtain the evolution equations for the positions and weights we need a measure—
valued formulation of our system (2.1). In general, a measure form of a kinetic
system can not be obtained directly, especially when the system involves nonlinear
terms. A typical example is the inhomogeneous Boltzmann equation. The quadratic
collision term can only be viewed as a measure defined on I' with parametrical
dependence on either z or ¢ [1, 3]. For the Vlasov—Poisson system, the singularity of
the kernel has to be smeared out to obtain a corresponding measure—valued equation
[17].

The first step in our approach is a splitting of the complete kinetic equation (2.1)
into three partial systems — a system of Vlasov equations, a homogeneous Boltzmann
system and the Poisson equation. For a fixed time interval [0,7] and a partition
into intervals Ty = %T, k=1,...,n,n € IN of size AT = %T, we define the splitting
scheme of (2.6) by

Ok = —v Vgt + %VJCUIH V.95, 95 (Te) = fF71(T), (2.9)
0S¥ = TS I, S5 (Tr) = g5 (Ther) . (2.10)
1
—ALUF = —Z/qsfskd.z, T="T;, (2.11)
€0 S
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where U° is the solution of (2.11) with f°(0,p) = f©(p). The ordering of the
splitting scheme is arbitrary. The charge conservation of the collision operator

implies
Z/@s‘gfdz = Z/Qstde7 (212)
s I, s I,

which allows the computation of the potential by (2.11) before the Boltzmann step
(2.10). The convergence of the splitting scheme can be shown using the results of
[12] and [13].

Now, we can seperately derive measure—valued forms of the Vlasov and Boltzmann
systems leading to a particle method which iterates the drift of the particles with
fixed forces and the collisions between the particles. The forces have to be updated
after each time step AT by solving the Poisson equation.



2.4 Vlasov equation

We may study the Vlasov equation separately for each species and neglect the
internal energy variables without loss of generality. The force F is defined by
F(z) = qFE(x) with the electric field E at a fixed time.

We can solve the Vlasov equation along the characteristics

d
d—;m(t) = (1), 1 2(0) = 2o, (2.13)
500 = alz(t)) = —F(a(1)), v(0) = vo,

using, e.g., specular reflection at the boundary of the domain A, i.e.,

o(ty) = v(l-) = 2(0(t-) - np(e_y) Rae) (2.14)

for all z(t-) € A, v(1-) - nge_y > 0.

If we assume that E is Lipschitz continuous then (2.13) has a unique global solution
denoted by ®¢o(zo,v0) = (z,v)(t). ®¢, : II — II is a measure preserving group
homomorphism [17] (®++ = Id and <I>t77_1 = &,;) and, with continuous initial
conditions ¢(® € C(Il), we obtain the solution of the Vlasov equation by

g(t,z,0) = (g 0 B )(z,v). (2.15)

Now, we interprete ¢(,-) as a density of a continuous measure p; (see (2.7)). Then,
for every Borel set M C I,

pe( M) = /(9(0) o ®o,¢)(p)dp = / 9g)dg = p(®407 (M)
M Do,: (M)

With the definition of the image of a measure g under the mapping ® by ®(u)(M) =
w(®~1(M)) we get the measure form of the Vlasov equation

e = Beo(n). (2.16)

In [17] it is shown that (2.16) has a unique solution for every probability measure
which coincides for a continuous measure with the weak solution.
In the case of a discrete measure ¥ = (55]9, p = (z,v),it is easy to see that ®; (")
is also a discrete measure with the same weights and the evolution of the points given
by the characteristic equations (2.13)

(N, M) (1) = (I)w(xN o). (2.17)

1 0 Yg 0 Y

Moreover, the solution is unique if F is at least continuous [8].



Due to relation (2.17) it is only necessary to solve the ordinary differential equa-
tions (2.13) over a time interval [0, AT]. Therefore, we approximate ®;q by some
difference operator ®~* and obtain the time discretized measure form of the Vlasov
equation

pae = 05 (n) - (2.18)

Convergence is proved under the assumption of a uniform convergent difference
scheme ®2! and a Lipschitz—continuous force F' [17, 24].

A simple and convergent method is the so—called leap—frog scheme [4], which is ex-
plicit, symmetric and second order in time, and belongs to the class of symplectic
methods for hamiltonian systems [14].

The simulation scheme for the Vlasov equation using the leap—frog scheme for a
given initial approximation uV = (a™;(z,v)V) reads

(V) SIMULATION SCHEME FOR THE VLASOV EQUATION:
For every time step t, = kAL, k=0,1,....

qu
o (b)) = 0" () + A —— B (] (1))

K3

N
Si

e (tep1) = & (1) + At o) (Leg)

o (tea1) = o (1)

2.5 Boltzmann equation

Equation (2.10) is a homogeneous Boltzmann system with, in general, inhomoge-
neous initial condition. In the next section we show how to discretize (2.10) in
position space A and assume here locally homogeneous initial conditions. There-
fore, we can restrict our considerations to the phase space II = I

Different from the approach of the last section, we first discretize the Boltzmann
system in time by a simple explicit Euler step

Tre41(2) = fu(2) + AL [fr] fr(2) (2.19)
where fi(z) = f(tk, 2) and t = kAL

In recent publications [5, 28] it is also shown how to derive implicit and second order
particle methods for the Boltzmann equation.

In the following, we explain the principle of the derivation of the measure form of the
time discretized homogeneous Boltzmann system (2.19) using the detailed balance



relation (2.5) for each collision process. A detailed description can be found in [24].
For simplicity we only consider one collision process (2.1) — reactive or nonreactive
— with the corresponding inverse process

S/+S/*__>S+S*

satisfying relation (2.5).
For any test function ¢ : I' — IR we can transform the collision operator into the
following form:

[onse = [ [ [ 01 (Ewies) (1 IE) - 1))} d='d=ds
r

r ra

/// {o(2') — o(2)} @z:;i/*(E,w;w’)dw’f(z*)dz*f(z)dz
r
The last step is obtained by a coordinate transformation of the postcollisional vari-
ables in the gain term with the collision transformation (2/, 2", w) = Cj:;i/* (z,2%,0)
and the use of the detailed balance relation (2.5).
Then the weak form of the time discretized Boltzmann equation reads

/qb 2) fet1(z dz_///( At@ﬁ SS* (E,w;w’) (2.20)

r

+ ¢(z) (1 - At@i o (E,w;w’)))dw’fk(z*)dz*fk(z)dz
where we have used the property that f; is the density of a normalized measure for
all £ € IN. Under the restriction that

/At@s S E,wiw)de' <1, (2.21)

QI
which is a consequence of the explicit time discretization, (2.20) leads to the mea-
sure-valued form of the time discretized Boltzmann equation replacing fr(z)dz by

dpy. Introducing an additional variable A € [0; 1], first proposed in [25], the measure
equation 2.19) can be written in a closed form

/qb 2)dptry1 = //// ( [0,at0(B,wiw)](A)(2")

r

+X[At®(E,w;w'),1](A)qﬁ(Z)) dMdw'dpidp

//// ¢ o War( AW, 2%, 2)dNd'dpsdy .

r af



The mapping Waz : [0,1] x Q' x ' x I' = T' is defined as

2, Ae [O,AtGS,’S,*(E,w;w’)]

s,5%

VoA W' 2% 2) =
z, A€ [At@i:;ﬁl*(E,w;w’), 1]

Applying the transformation theorem for measures gives the time discretized mea-
sure form of the Boltzmann equation

fierr = Yar(A@ @' @ pf @ pr) . (2.22)

The question of the construction of a discrete product measure ,ufgv ® ,ufgv with N
particles is a serious problem first solved in [3] for identical weighted particle ap-
proximations and extensively studied in [25] for arbitrary weights. Here we use this
results which lead to the following

(B) SIMULATION SCHEME FOR THE BOLTZMANN SYSTEM:

For every time step ty = kAL, k=0,1,....

— choose for every particle with index ¢ a collision partner with index ¢(7) due
to the target weight distribution.

— choose a identically weighted particle approximation (A,w )N € [0,1] x Q' of
AR w.

— define the postcollisional state (2¥)(tx4+1) by
(ZZN)(tk-H) = \IjAt(’\fvvwz{Nv Zi\(fi)v Zsz )(tk) (2.23)

oN(tar) = o (1)

The weights are kept constant in both simulation schemes but the index of a particle
may change during a reactive collision. This distroys the identical weights in the
species as far as not all weights are identical. The problem is discussed in section
3.4 in connection with the question of mass conservation.

The convergence of the simulation scheme (B) is proved in the case of a general
reactive system in [24] assuming that the scattering kernel is bounded.

10



2.6 Space—discretization: Mollifiers

To complete our numerical method we have to answer several question arising from a
necessary discretization in position space A. First, the solution of the homogeneous
Boltzmann equation by scheme (B) assumes the homogenity of the initial distribu-
tion. Second, the Poisson solver is defined on a grid on A to avoid the N2-effort for
the direct solution of the N-body problem. Therefore, one has to interpolate the
forces from the grid points to the particle positions and the charge of particles to
the grid. Another question related to the latter one is the definition of macroscopic
quantities like the charge density. All these problems may be handled by the concept
of a mollifier in position space only.

For a discrete measure p¥ = 6£Xp on the phase space I = A X I' we define the
mollified measure %N by the convolution with a kernel 347(-,-)

N
pAeN = [ 525 dul = 3 ol B (e, Mo A, (2.24)
A =1

Therefore, p®*" is a continuous measure with respect to z and discrete in z. The
kernel %% : A x A — IR, also called mollifier, is assumed to be continuous,
bounded, symmetric, normalized and decaying in the following sense: There exists
a constant Cg, such that

/ |z — z.||32 (2, 2. )da. < CpAz forall z € A. (2.25)
A

AnN converge to u/V in the weak sense of measures

Then it is easy to prove that p
if Az goes to zero [24].
Typical examples are constructed by symmetric, continuous, bounded, normalized

generating functions G : IR® — IR, with compact support:

1 — z,
85" (w, ) = .Y (xmx ) : (2.26)

The connection to standard discretization techniques on a mesh can be seen by the
following mollifiers. Let (¢ g Z2% = A be a triangulation with tetrahedrons Z5%,
diam(ZkAm) < Az, and corresponding nodes y;,5 = 1,..., M. Then the charactristic
function XZkAz on a cell as well as the piecewise linear ansatz functions yﬁz(x)

defined on the nodes by yff(yk) = 6i; generate mollifiers by

Xpnz ()X gas (2.
B850,z = Y L (2) X700 (2.)

2.27




and

M, YR (o) ()

B5%(x, xs) = - (2.28)
Y ; J YR (y)dy
Meaningful discrete moments can be defined by the mollified measure as
Az,N ol
META ) = [ou@dt™ = 3 al g3 e )R (1) (2.29)
r =1
Since the kernel is normalized the discrete moments are globally exact, i.e.,
[ M7l 2)de = [ Mgt 2)do (2.30)
A A

Moreover the mollifiers ﬁﬁz and ﬁfﬁ produce locally exact moments on each cell
respectively each node, which can be seen by the decomposition of the moments in
the basis of the ansatz functions. For example,

M
M)t @) = 3 M;le] Vi (a) (2.31)

J=1

with
N Ae( N
Ml = 3 V(N ()2 D)

AL (2.32)

the moment defined on node j.

Due to the convergence of "N to u" we can replace discrete measures in the
simulation schemes (V) and (B) by mollified measures without changing the con-
vergence properties [24].

The substitution of the target measure uY in (2.22) by a mollified measure ,u*Az’N
answers the first question. The use of mollifier ﬁ%’” results in local homogeneous
particle approximations and simulation scheme (B) can be directly applied. With
an additional step distributing the particles to the nodes y; the mollifier ﬁJA,x leads
to a generalized Boltzmann scheme. Mollifiers ﬁgAI produce grid free simulation
schemes. For details see [24].

The second problem depends on the Poisson solver. For a finite element method
with linear ansatz functions we show in section 3.2 that a mollification with the
kernel ﬁf,’” is the right way to obtain a consistent method.

12



3 Discrete conservation laws

3.1 Introduction

Kinetic systems of the general form (2.1) as well as the reduced asymptotic systems
[24] are conservative physical systems with constant total mass, charge, momentum
and energy at least in the interior of the domain A. The Boltzmann—Vlasov—Poisson
system together with the boundary conditions above specified satisfies mass and
charge conservation, in other words,

d—i/./\/l[up]dx =0 (3.1)
A

with ¢ = (ms)ser respectively ¢ = (gs)sex. Moreover, the total energy is conserved,

[ (s e [ersanarad o o
AT A

It is a well-known principle in doing numerics that properties of the original system
have to take over to the discrete algorithm. Discrete N—particle systems arising from
a particle approximation can show totally different behavior if one pays no attention
on the conserved quantities. In the case of the classical Boltzmann equation, Green-
gard and Reyna [15] have proved that the nonconservative Nanbu scheme always run
into the zero temperature state, although that it conserves momentum and energy
in the mean. In collisionless plasma simulation schemes it is well-known [4] that a
consistent interpolation between the particle positions and the grid of the electric
field is necessary to neclect purely numerical instabilities.

In the next sections modifications and extensions of the algorithms (V) and (B) are
discussed which fulfill exactly the conservation equations for fixed particle number.

i.e.,

3.2 Conservation for Vlasov—Poisson systems

During the drift step, kinetic and electric energy is exchanged which makes a com-
mon analysis of the particle scheme for the Vlasov equation and the Poisson solver
necessary. In this section we also answer the question how to interpolate between
quantities defined on the grid and the particle positions. The resulting method is
an extension of well-known schemes to unstructured meshes.

Let (U;es ZZ-AI be a triangulation of A with nodes y;,7 = 1,..., M and linear ansatz
functions yjAlf as in (2.28). We use a Galerkin method, e.g the test functions coin-
cide with the ansatz functions, and obtain the well-known finite element form (for

13



details see [16, §4])

Z/ukv ) VYR (2)dr = €5 /y“ Vi=1,..,M, (3.3)

k=1

where the potential is defined by U2%(z) = 3, wp VA% ()
In the discrete case we substitue the right hand side of (3.3) by the discrete charge
density 7V = YN aNg,.6_~ and obtain

/yfxdr Za qsl;)/AI /y“ )dz 7; (3.4)
A

where 7; denotes the total charge evaluated at the node y; (compare with (2.31)).
Then, the charge density on the grid is

M
SENAO) (3.5)

which is consistent with the charge density given by the particles, i.e.,

/TAz(x)dx = //qd,uN. (3.6)
A AT

Moreover, the total charge in the discrete system is conserved.
The electric field £ is obtained for all # € A by the negative gradient of the potential

M
E(z)= =Y u; VY (), (3.7)

i=1

and therefore constant on each tetrahedron. A separate interpolation to the coor-
dinates of the particles is not necessary.

Moreover, the energy conservation is valid in discrete form, if we neglect the error of
the time discretization of the simulation scheme for the Vlasov equation. We have

d m o2 Nyl NN _
7 { // <?|v| + e) du’ + 5/60 ‘VIL (x)‘ dx} =0, (3.8)
AT A

which is shown using the properties of the simulation scheme, of the mollifier and
the finite element method.

For a rectangular grid the prescribed method reduces to the area—weighted method
by Lewis (see [4, §X-3]).

14



3.3 Conservation for Boltzmann equations

The simulation scheme (B) is of Nanbu type, which means that in every collision
only one particle state is changed. Therefore, it conserves momentum and energy
only in the mean and produces the wrong stationary state for finite particle numbers
[15]. In [2], Babovsky derived a symmetric scheme conserving exactly momentum
and energy in every pairwise collision and therefore, during the hole collision step.
This pairwise collisions change the state of both collision partners due to the collision
transformation and reduce the numerical effort by a factor two. But, the weights
are assumed to be identical. An extension of the Babovsky method to particles with
different weights seems to be the simplest way to achieve conservation. Why this is
impossible can be seen by the following arguments.

The change of momentum AJ; and energy AFs during a collision of two particles
with velocity v and v*, with different weights a and a*, is

Al := amv' + oa*m*v™* —amv — a*m*v*,
(3.9)
AE;:=al(2)+a*8(2") — a&(z) — a*E(2Y)

with particle energy £(z) = Z|v|* + e. For an elastic collision the internal energies
e are constant and the collision transformation C : IR3 x IR® x S — IR® reads
o' = C(v,v*,w"), where

m
2

C(v,v*,w') = G(v,v*) + ﬁ|v —v*w’, (3.10)
m
with reduced mass p = ™ and center of mass velocity G = M From

this we find the relations v = C(v,v*,w"™), v = C(v,v*,w) and v* = C(v,v*, —w)
_ *

with the direction of the relative velocity w = Then the change of momen-

o —o*|’
tum and energy (3.9) can be written as

Al = am(C(v,v*,w") — C(v,v*,w)) + om*(C(v, v*,w™) — C(v,v*, —w)) (3.11)

= plv — v*| (' 4+ ¥ + (a* — a)w)

and

X

n; (C(v,v*,w™)? = C(v,v*, —w)?)

AEQ = a%(c(?}, U*,WI)Q - C(Ua T)*,W)Z) + a”

= plv —v*| G(v,v*) - (' + a*w™ + (a* — a)w).
(3.12)
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Therefore, Al; = 0 and AF,; = 0, if and only if
aw' + a*w™ = (a - a"w, (3.13)

which implies w’ = —w™ and therefore, by (3.13), w’ = w, if @ # a*. Hence, no
collision occurs and extending Babovsky’s method is impossible.

To guarentee conservation of momentum and energy it is not necessary to impose
the restrictions Al = 0 and AFy = 0. It is rather sufficient to fulfill

N N

Aly = Z a;m;vl — E a;mv; = 0, (3.14)
N N

AFBEN = Zaimi|v2’»|2 - Zaimi|vi|2 =0, (3.15)

with v = C(?thz(i),w;) fori=1,...,N.
Now, the problem can be formulated as follows: Is it possible to choose collision
parameters w! € S%, which, e.g., are uniformly distributed (for an isotropic collision
law), such that (3.14) and (3.15) holds?

The answer is yes and we sketch here the derivation of the algorithm for the energy
equation only. For extensions to the momentum equation, to the energy equations
with internal energy exchange and the convergence results we refer to [19, 24].

The energy equation (3.15) can be written in the form

N N

> oipigiGi-wi = Ey =) aiig; G -w; (3.16)
where g; = |v; — vy(;)| is the magnitude of the relative velocity. Equation (3.16) is
linear in G; - w!. If we choose a local orthonormal system (e}, e?, e?) with polar axis

e? = G;/|G;], we can represent w! by

w! = sin Bl(cos ¢} e} + sin @l e?) + cos bl €7 (3.17)
with polar angle 8! € [0, 7] and azimut angle ¢! € [0, 27]. Hence, the energy equation
(3.16) reduces to a linear equation in the cosine of the polar angle ¢} = cos#,

N
D bici=En (3.18)

=1

with strict positive coefficients b; = a;u;9;|G;|. Especially, En can be written in the
form En = Ef\;l b; c; with ¢; = n; - €3.

k3
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Therefore, the problem is replaced by finding uniform distributed points ¢}, ¢ =
1,..,N in [—1;1] which fulfill equation (3.18). Equation (3.18) has at least one
solution: the trivial one with ¢; = ¢;, such that no collision occur.

Moreover, it is obvious that it is not possible to find uniform distributed points on
a hyperplane given by (3.18) in [—1; 1]V for arbitrary, but fixed coefficients b; and
right hand side Fy. E.g., one may choose b; = 1, ¢ =1,..., N, und Fny = 1. Then,
all N-dimensional unit vectors e*, i = 1, ..., M are solutions and consequently all c
must be nonnegative and cannot be uniform distributed in [—1,1]. But, varying
the right hand side Fy, we can impose the correct distribution by the following
recursive algorithm:

(E) ALGORITHM CONSERVING ENERGY:

Recursively for k= 1,...,N:
choose ¢ in [Ly; Ry] C [—1;1] uniformly distributed where [Lj; Ry] is the maxi-
mal interval such that the reduced constraint equation for the remaining variables

! !
Chq1s-CN

M k
Z b; C;- = Fy_i with  Fpyr_p = Ep — sz C;- (3.19)
i=k+1 1=1

is solvable.

Due to the linearity of the constraint equation (3.18) the interval [Ly; Ry] is uniquely
determined. In the N-th step algorithm (E) stops with

1 N-1

dy = . (EM - > b c;-) : (3.20)

N i=1
which implies the constraint energy equation AEy = 0 (3.15). The proof of the
uniform distribution of ¢} in [—1;1] and hence the convergence of the simulation
scheme (B) with algorithm (E) is shown in [24]. There are some modifications in
algorithm (E) necessary to prove the convergence, which also improve the algorithm
from a numerical point of view.
As mentioned above the momentum and energy equations in the inelastic case can
also be satisfied by transforming the system of constraint equations to a linear one
of form (3.18). For details and numerical tests of algorithm (E) compare [19, 24].

In the last section we present some applications of algorithm (E) for the reduced
plasma system as discussed in the next section.
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3.4 Conservation in reactive systems

In this section we answer the remaining problems questioned in this paper. We
explain how to derive weighted particle methods for reactive systems, which change
the weights of the particles in such a way that they are always proportional to the
concentrations and also conserve mass and charge. The idea is shown by means of
the following reduced plasma system

0C = —C (kr(T)C* = ky(T)(1 - C)) , (3.21)
O,T = <T + %1) (k(1)C? = k(1)1 = O)) | (3.22)
O fi = Jiglfi1fi + Tiol fol fi + [okr(T)C = fikp(T)C?, (3.23)
Oufo = Joolfolfo + Joilfilfo + [ikr(T)C? = [oki(T)C . (3.24)

This space homogeneous kinetic system for the ions ¢ (3.23) and neutrals o (3.24) is
coupled with macroscopic equations for the electron density C' (3.21) and tempera-
ture 7' (3.22). J.. denote the nonreactive Boltzmann collision operators, k; and kr
the rate constants for the ionization and recombination reaction

Ate— AT +ete. (3.25)

The derivation of this reduced plasma system as an asymptotic limit for the mass
ratio of electrons and heavy particles going to zero is described in [24].

For the numerical solution of the plasma system we point out that the equations
for the electron density and temperature can be solved first — independent of the
kinetic equations. Then it is possible to discretize the kinetic system by an explicit
Euler step in time and to write down the measure-valued form analogeous to (2.22)
(see [24]). It is not surprising that the corresponding particle method causes the
same disadvantage as mentioned in section 2.5. The weights are always constant
and therefore mixed through the different species if a reaction occurs and the pro-
portionality of the weights and the concentrations is distroyed, which is the essential
point of our weighted particle method.

To derive evolution equations for the particle positions in the phase space, such that
at every time step the weights are proportional to the concentration of the species,
we write the phase density fs of species s as a product of the concentration 5 and

a remaining density gs:
1

gs = 2—75]‘5, s=1,0. (3.26)

The factor 2 is choosen such that normalization of f implies normalization of g.
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Integration of the kinetic equations (3.23), (3.24) with respect to the state variable
z result in equations for the concentrations in the form

0rvi = kr(T)C(T )y, — kr(T)C(T )y,

(3.27)
87?70 = kR(T)C(T)QﬁM - kl(T)C(T)ﬁ/o .
Using (3.27) yields the kinetic equations for g
0rgi = 27iQ1,ilgilgi + 270Qi olg0)gi + k1 (T)C(T) (g0 — gi)
/i (3.28)

Dhgo = 276Qo.0l90100 + 27 Qo990 + kR(T)C(T)* L (gi — g,).
o

Next, we write the kinetic system (3.28) for ¢ in measure form and derive a corre-
sponding particle algorithm, again in the way described above. If we now choose all
weights identical then we obtain a particle method solving system (3.28) with con-
stant weights. This equiweighted particle approximation of g may be transformed to
a particle approximation for f multiplying the weights by the concentrations which
are known from system (3.27). Therefore, the weights evolve due to equations (3.27).
The simulation scheme in detail is of no interest here and can be found in [24]; nev-
ertheless several nice properties of the resulting particle algorithm for the kinetic
system (3.23) and (3.24) should be mentioned in the following. First, the weights
are by construction at every timestep proportional to the concentrations. Second,
the particle number of each species and consequently the total particle number is
constant in time. Hence the total mass and charge are conserved; i.e., the discrete
mass pY (1) of species s at time ¢ is

PN = 3 maa (1) = maya(t) = ps(1), (3.20)

TilM=

where we have used the proportionality relation (2.8) between weights and concen-
trations.

These properties are the main reasons why the factorization of the phase density f
into the concentrations and a remainder is the right way to find conservative nu-
merical methods for arbitrary reactive systems.
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3.5 Numerical examples

In this section we solve the reduced plasma system for one species of ions and neu-
trals with the weighted particle method derived in the last section. The conservation
of momentum and energy is guarenteed by the generalization of algorithm (E) (see
section 3.4). As initial condition we choose to different Maxwellians with parameters

Yi = 0.2 Yo = 0.8
ui = (2.2,0.0,0.0) y = (—0.55,0.0,0.0)
7, =1.0 T,=0.5

The input data are chosen such that the stationary state is at temperature 77° =
and mean velocity u5° = 0 for s = ¢, 0. The concentrations and the electron temper-
ature 7" are obtained by Saha’s equation with values €' = 7 =1 — 7> = 0.249
and T = 0.403.

The calculations denoted by C1 — C3 are done for different total particle numbers
as shown in the table. The calculation C0 is a simulation using a standard parti-
cle method with identically weighted particles and pairwise collisions. Hence, the
partition of the particle numbers per species is due to the concentrations.

N N; N, CPU

C0 || 1000 200 800 1.00

C1 200 100 100 0.45
C2 500 250 250 1.04
C3 || 1000 500 500 2.15

Comparison of particle numbers and CPU-times

The computatonal effort for CO is only half compared to the weighted particle
method with the same total number of particles because of the pairwise collisions.
In figure 1 the evolution of the ion concentrations for C0O and C1 are compared with
the electron concentration C'. Ion and electron concentrations should be the same
due to the neutrality of the plasma. The results with the weighted particle method
agree exactly. The standard method runs into troubles if the reaction rate per time
step is less than 1/N.
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Figure 1 Time evolution of ion concentrations

Other macroscopic quantities like the mean velocity or the temperature are not sen-
sitive to the error in the concentrations for C0. On the other hand, the weighted

schemes show no instabilities since momentum and energy are conserved. Figure
2 shows the good agreement of the temperatures for CO and C1 on a logarithmic

scale.
T T T T
CO: lons —
C1: lons <
CO: Neutrals -----
C1: Neutrals +
1 ¢
et
e
e
z ]
#
¥
f
o 0.2 0.4 0.6 0.8 1
Figure 2: Temperature of ions and neutrals in time
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Differences can be seen in the fluctuations of the macroscopic quantities. The vari-
ances of the temperature calculated using 1000 independent runs are shown in fig-
ure 3. The dotted lines correspond to the computations with the weighted particle
method (C1 — C3) and the straight line to C0. With the same computational effort
and half number of particles (see table) the variance for C2 is slightly lower than

for CO.

0.01 T T T T T T T T T

0.001 |/ L o 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Neutrals

- o m

0.001 |,

0.0001 e e e ]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Variance of the temperature in time (above: ions, below: neutrals)

22



The standard particle method for realistic small concentrations of ions (about 1%)
leads to extreme high particle numbers. Then, the advantage of the weighted par-
ticle method is obvious.

4 Conclusion

During the four year research project founded by the DFG we have developed two
main approaches to solve kinetic systems arising in the simulation of plasma effects
during the re—entry of a space vehicle.

The first tool is the use of asymptotic methods to handle the problem of different
time scales for electrons and heavy particles. Different reduced kinetic systems are
found, which are valid on different characteristic scales. These results are presented
in [24].

The second tool is the weighted particle method explained in this paper. The weights
are chosen proportional to the concentrations of the species, which allow the use of
less particles. The problems arising from the nonconservative form of the collision
scheme are solved, and the convergence of the method, including the modifications
in the collision step, is proved. Numerical tests show the advantages of the weighted
particle method in comparison to equiweighted methods, if strong differences in the
concentrations occur.
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