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Abstract

A survey on continuous, semidiscrete and discrete well-posedness and
scale-space results for a class of nonlinear diffusion filters is presented. This
class does not require any monotony assumption (comparison principle) and,
thus, allows image restoration as well. The theoretical results include exis-
tence, uniqueness, continuous dependence on the initial image, maximum-
minimum principles, average grey level invariance, smoothing Lyapunov
functionals, and convergence to a constant steady state.

Keywords. scale-space, nonlinear diffusion, discrete smoothing transformations.

1 Introduction

In the last years nonlinear diffusion filtering has been established as a successful
tool for image smoothing and restoration. Strict scale-space results have been
found recently for the continuous case [16]. The goal of the present paper is to
outline how they can be extended to the semidiscrete and discrete setting. This
is of significant practical importance, since a scale-space representation cannot
perform better than its discrete realization.

The paper is organized as follows: Section 2 reviews well-posedness and scale-
space results in the continuous framework and interprets the meaning of the ob-
tained results. Section 3 introduces the requirements that we need in order to
establish similar properties in a semidiscrete setting. Finally, Section 4 gives re-
lated results for the fully discrete framework which utilizes a finite number of
scales. We conclude with a summary in Section 5.
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2 Continuous Case

We are concerned with a class of nonlinear diffusion processes using a diffusion
tensor D. This symmetric positive definite matrix can be adapted to the lo-
cal image structure by means of the so-called structure tensor (scatter matrix,
second-moment matrix) J,(Vu,) := K, x (Vu, Vul), where Vu, := VK, xu, K,
denotes a Gaussian with standard deviation o, and * is the convolution product
[17]. Matrices of this type play an important role in the local structure ana-
lysis of textures, corners and T-junctions, shape cues and spatio-temporal images
[14, 3, 12, 8, 11, 2]. The regularization parameter o > 0 makes the structure
tensor insensitive to noise of order o, while the integration scale p gives the win-
dow size over which the orientation information is averaged. The structure tensor
generalizes the edge detector Vu,, and provides us with additional information, for
instance about corners and coherent structures. Its use for steering nonlinear diffu-
sion filters in order to enhance coherent flow-like structures has been demonstrated
in [17].

Let us consider an open rectangle Q C IR? as image domain and let a (monochro-
matic) image be represented by a function fe€L (). The initial boundary value
problem we are concerned with is as follows (n denotes the normal vector and (., .)
is the Euclidean scalar product):

Assume that feL>®(Q), p>0, and 0,7 >0. 3
Let a:=essinfq f, b := esssupq f, and consider the problem

Oyu = div (D(J,(Vues)) Vu) on Qx (0,7,
u(z,0)=f(z) on
(D(J,(Vug))Vu, n) =0 on o0 x (0,71,

where the diffusion tensor D = (d;;) satisfies e ()
(C1) Smoothness:
D € C®(R***,R**?).
(C2) Symmetry:
dy2(J)=d21 (J) for all symmetric matrices JeR?*2,
(C3) Uniform positive definiteness:
For all w e L>°(Q,1R?) with |w(z)| < K on §, there exists a
positive lower bound v(K) for the eigenvalues of D(J,(w)).

We observe that (P.) may comprise linear diffusion filters [9] as well as certain
nonlinear models [5, 19, 15, 16, 17]. This class reveals the subsequent properties
([18], see also [5] for a proof of the major part of (a)):

Theorem 1 (Properties of the continuous filter class)
For the continuous filter class (P.) the following statements are valid:

(a) (Well-posedness and regularity results)
For any T > 0, the problem (P.) has a unique solution u(z,t) in the distri-
butional sense. This solution satisfies u € C([0,T];L%(Q)) N L%(0,T; HY(Q))



and Oyu € L2(0,T; (H*(Q))"). Moreover, u € C*(Q x (0,T]), and it depends
continuously on f with respect to the L2(Q) norm.

(b) (Extremum principle)
Let a := essinf,cq f(x) and b := esssup,cq f(x). Then, a < u(z,t) < b on
Q % [0, 00).

(c) (Average grey level invariance}
The average grey level p := |Q‘ fQ x) dz is not affected by nonlinear diffu-

sion filtering: |Q| Jou(z,t)de =p for allt > 0.

(d) (Lyapunov functionals}
V(t) := ®(u = [ r(u(z,t)) dx is a Lyapunov function for all r € C?[a,b]
with "' > 0 on [a bl: V (t) is decreasmg and bounded from below by ®(Mf),
where (Mf)(y) := u for all y € Q.

(e) (Convergence to a constant steady state)
Jim {lu(t) = Mfllze@) = 0 for 1 < p < co.

The well-posedness results in (a) have significant practical impact, as they
guarantee the stability with respect to perturbations of the initial images. This
is of importance when considering stereo images, image sequences or slices from
medical CT or MRT sequences, since we know that similar images remain similar
after filtering.

Many smoothing scale-space properties are closely related to extremum princi-
ples: Hummel [7] for instance shows that under certain conditions the maximum
principle for parabolic operators is equivalent to the property that the correspond-
ing scale-space never creates additional level-crossings for ¢ > 0.

Average grey level invariance is a property which distinguishes diffusion filters
from morphological scale-spaces. In addition to this invariance it is evident that
(Py) satisfies classical scale-space invariances like grey level shift invariance, re-
verse contrast invariance, translation invariance and isometry invariance (see [1]
for precise definitions). Usual architectural properties of scale-spaces (e.g. the
semi-group property) are satisfied as well.

The Lyapunov functionals introduced in (d) show that the considered evo-
lution equation is a simplifying, information-reducing transform with respect to
many aspects: Indeed, special choices for r immediately imply that all L? norms
with 2 < p < oo are decreasing (e.g. the energy ||u(t)||ig(9)), all even cen-
tral moments are decreasing (e.g. the variance), and the entropy Sfu(t)] =
— Jou(z,t) In(u(z,t)) dr is increasing with respect to ¢ [16].

The result (e) tells us that, for ¢t— oo, this simplifying scale-space represen-
tation tends to the most global image representation that is possible: a constant
image with the same average grey level as f.

Interestingly, (P.) does not need any monotony assumption (comparison prin-
ciple) [1]. This is in contrast to linear diffusion and morphological scale-spaces
and allows nonlinear diffusion scale-spaces to reveal contrast-enhancing properties
leading to segmentation-like results (see [16, 18] for examples). In this sense we



have a scale-space framework which does not contradict certain image restoration
demands.

3 Semidiscrete Case

Let us now establish conditions under which comparable well-posedness and scale-
space results can be proved for the semidiscrete framework. This case is of special
interest since it involves the spatial discretization which is characteristic for digital
images but it keeps the scale-space idea of using a continuous scale parameter. It
leads to nonlinear systems of ordinary differential equations.

A discrete image can be regarded as a vector f € RY, N >2, whose components
fj» j=1,...,N represent the grey values at the pixels. We denote the index set
{1,...,N} by J. The semidiscrete problem class (P;) we are concerned with is
defined as follows:

Let f € RY. Find a function u € C'([0,00), RY) which satisfies )
the initial value problem

du
g
T = AW,
where A = (a;;) has the following properties: 0 (Ps)

(S1) Lipschitz-continuity of A € C(RY,RY*Y) for every
bounded subset of RY,

(S2) symmetry: aij(u) = aji(u) Vi,j€J, YueRY,
(S3) vanishing row sums: . ;a;j(u) =0 Vi€ J Vue RY,
(S4) nonnegative off-diagonals: a;;(u) >0 Vi#j, Vue€ RY,
(S5) irreducibility for all u € R".
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Under these prerequisites we obtain the subsequent well-posedness and scale-space
results [18]:

Theorem 2 (Properties of the semidiscrete filter class)
For the semidiscrete filter class (Ps) the following statements are valid:

(a) (Well-posedness)
For every T > 0 the problem (P,) has a unique solution u(t) € C*([0,T],RY).
This solution depends continuously on the initial value and the right-hand
side of the ODE system.

(b) (Extremum principle)
Let a := minjcy f; and b := maxjcy f;. Then, a < u;i(t) < b for alli € J
and t € [0,T].

(c) (Average grey level invariance)
The average grey level p := % Zje.] f;i is not affected by the semidiscrete
diffusion filter: + > jeswi(t) = p for allt > 0.



(d) (Lyapunov functionals)
V(t) == ®(u(t)) := Y ;c; r(ui(t)) is a Lyapunov function for all v € C'[a,d]
with increasing v’ on [a,b]: V(t) is decreasing and bounded from below by
®(c), where ¢ := (p,...,pn)" € RY.

(e) (Convergence to a constant steady state)
lim u(t) = c.
t—o0

These results allow the same interpretation as their continuous counterparts.
Not all of the requirements (S1)—(S5) are necessary for each of the theoretical
results above. (S1) is needed for well-posedness, the proof of a maximum—minimum
principle involves (S3) and (S4), while average grey value invariance uses (S2)
and (S3). The existence of Lyapunov functionals can be established by means of
(S2)—(S4), and convergence to a constant steady state requires (S5) in addition to
(S2)-(S4).

It can be shown [18] that there exist finite difference approximations of (P.)
fulfilling the requirements (S1)—(S5) of (Ps). However, (P.) is not the only family
which leads to semidiscrete filters satisfying (S1)—(S5): Interestingly, a semidis-
crete version of the Perona—Malik filter [13] (which is claimed to be ill-posed in
the continuous setting [5]) on a fixed grid also satisfies (S1)—(S5) and, thus, reveals
all the beforementioned well-posedness and scale-space properties. This is due to
the fact that the extremum principle limits the modulus of discrete gradient ap-
proximations. Hence, the spatial discretization implicitly causes a regularization.

4 Discrete Case

In practice, scale-spaces are always approximated with a finite number of scales.
This corresponds to the fully discrete case which shall be treated now. In this
setting we impose the subsequent requirements:

Let feIRY. Calculate a sequence (u(*¥)) e, of processed versions )
of f by means of
u® = f,

oD = Q(u(k)) u(k), Vk € INg,
where ) = (g;;) has the following properties: S (Py)
(D1) continuity in its argument: Q € C(RN,RN*M),
(D2) symmetry: ¢i;(v) = ¢;i(v) Vi,j€J, YveRY,
(D3) unit row sum: Yjes@ij(v) =1 VieJ Vve RY,
(D4) nonnegativity: gij(v) >0 Vi, jeJ VYve RY,
(D5) irreducibility for all v € RY,
(D6) positive diagonal: ¢ii(v) >0 VieJ YveRN. )

This gives similar results as in the continuous and semidiscrete case [18]:



Theorem 3 (Properties of the discrete filter class)
For the discrete filter class (Py) the following statements are valid:

(a) (Continuous dependence on initial image)
For every k > 0 the unique solution u'® of (P;) depends continuously on
the initial image f.

(b) (Extremum principle)
Let a := minjey f; and b := maxjcy fj. Then, a < ugk) <bforallieJ and
k € INg.

(¢) (Average grey level invariance)
The average grey level p := % Z]EJ f; is not affected by the discrete diffusion

filter: % ZjEJu;k) = pu for all k € Ny.

(d) (Lyapunov functionals)
vk = @) = ZiEJr(ugk)) is a Lyapunov sequence for all convex

r € Cla,b]: V® s decreasing and bounded from below by ®(c), where
c:= (.., p)T € RV,

(e) (Convergence to a constant steady state)

lim u®) = ¢.

k—o0
It can be shown [18] that the semi-implicit scheme

WD) (B
T

with A satisfying (S1)—(S5) fulfils the prerequisites (D1)—(D6) for discrete diffu-
sion models for every positive time step size 7. Hence, (P;) arises in a natural way
from (P,).2 On the other hand, the assumptions (S1)—(S5) are sufficient condi-
tions for the semi-implicit scheme to fulfil (D1)-(D6), but they are not necessary:
Nonnegativity of Q(u(*)) may also be achieved using spatial discretizations where
A(u®) violates nonnegativity (see [4] for examples).

= A@u®) D)

5 Summary and Conclusions

We have investigated a complete scale-space framework for nonlinear diffusion
filtering in the continuous, semidiscrete and discrete setting. This is of special
importance, since besides a few exceptions [10, 6] the practically relevant problem
of how to design (semi-)discrete scale-spaces has hardly been addressed in the
literature.

We have established conditions under which one can prove well-posedness and
scale-space results for nonlinear diffusion filtering. In all three settings we have
used similar assumptions: smoothness ((C1), (S1), (D1)), symmetry ((C2), (S2),

3Explicit and a-semi-implicit schemes satisfy (D1)—~(D6) as well, provided that some time step
size restrictions are imposed (see [18] for more details).



(D2)), nonnegativity ((C4), (S4), (D4)), requirements ensuring a nonvanishing
diffusion at all locations ((C3), (S5), (D5)—(D6)) and assumptions expressing the
conservation of the average grey level (divergence form and boundary condition in
the continuous case, (S3), (D3)). However, it should be observed that the smooth-
ness assumptions can be weakened during the transition from the coontinuous to
the discrete framework. This is also true for the convex function r which generates
the smoothing Lyapunov functionals.
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