
Scalable Consistency in the
Multi-core Era

Thesis approved by

the Department of Computer Science

of the Technical University of Kaiserslautern

for the award of the Doctoral Degree

Doktor der Naturwissenschaften (Dr.rer.nat)

to

Deepthi Devaki Akkoorath

Date of oral defense : March 26, 2019

Dean : Dr. habil. Bernd Schürmann

PhD committee

Chair : Prof. Dr. Ralf Hinze

Reviewers : Prof. Dr. Arnd Poetzsch-Heffter

Prof. Paulo Sérgio Almeida

D 386

Abstract

The advent of heterogeneous many-core systems has increased the spectrum

of achievable performance from multi-threaded programming. As the pro-

cessor components become more distributed, the cost of synchronization and

communication needed to access the shared resources increases. Concurrent

linearizable access to shared objects can be prohibitively expensive in a high

contention workload. Though there are various mechanisms (e.g., lock-free

data structures) to circumvent the synchronization overhead in linearizable

objects, it still incurs performance overhead for many concurrent data types.

Moreover, many applications do not require linearizable objects and apply

ad-hoc techniques to eliminate synchronous atomic updates.

In this thesis, we propose the Global-Local View Model. This program-

ming model exploits the heterogeneous access latencies in many-core systems.

In this model, each thread maintains different views on the shared object: a

thread-local view and a global view. As the thread-local view is not shared,

it can be updated without incurring synchronization costs. The local updates

become visible to other threads only after the thread-local view is merged

with the global view. This scheme improves the performance at the expense

of linearizability.

Besides the weak operations on the local view, the model also allows strong

operations on the global view. Combining operations on the global and the

local views, we can build data types with customizable consistency semantics

on the spectrum between sequential and purely mergeable data types. Thus

the model provides a framework that captures the semantics of Multi-View

Data Types. We discuss a formal operational semantics of the model. We

also introduce a verification method to verify the correctness of the implemen-

tation of several multi-view data types.

Frequently, applications require updating shared objects in an “all-or-

nothing” manner. Therefore, the mechanisms to synchronize access to in-

dividual objects are not sufficient. Software Transactional Memory (STM)

is a mechanism that helps the programmer to correctly synchronize access to

multiple mutable shared data by serializing the transactional reads and writes.

But under high contention, serializable transactions incur frequent aborts and

limit parallelism, which can lead to severe performance degradation.

Mergeable Transactional Memory (MTM), proposed in this thesis, al-

lows accessing multi-view data types within a transaction. Instead of aborting

and re-executing the transaction, MTM merges its changes using the data-type

specific merge semantics. Thus it provides a consistency semantics that allows

for more scalability even under contention. The evaluation of our prototype

ii

implementation in Haskell shows that mergeable transactions outperform se-

rializable transactions even under low contention while providing a structured

and type-safe interface.

iii

Acknowledgments

First and foremost, I can’t thank Dr. Annette Bieniusa enough for guiding

me through out the research and supporting me when I most needed. With

out her help and support, this thesis would not have become the way it is

now.

I am so grateful to Prof. Dr. Arnd Poetzsch-Heffter for his continuous

support through out the work. I also thank Prof. Paolo Sérgio for being the

co-reviewer. The interest you showed in the topic was a great encouragement

for me. Thank you Prof. Carlos Baquero for the brain storming sessions that

resulted in one of our co-authored paper.

My time at university would not have been so memorable with out the

amazing people I have met there. Many thanks to Peter Zeller, Mathias

Weber, Ilham Kurnia, Malte Brunnlieb, and Sebastian Schweizer for being

great colleagues. Thank you Marc Shapiro for introducing me to SyncFree

project that finally lead me to take up this PhD position and able to work with

some great people: Nuno Preguiça, Valter Balegas, Carla Ferreira, Gonçalo

Tomás and João Leitão. I had a great time hacking AtindoteDB with Manuel

Bravo, Alejandro Tomsic, Zhongmiao Li and Christopher Meiklejohn. Thank

you José Brandão for working together with me to implement the prototype.

My research was supported by EU H2020 LightKone project (732505)

and European FP7 project SyncFree (609551). These projects gave me the

opportunity to work with several expert researchers from around the world.

I would like to thank my friends and family. Thank you Sajith and Vidya

for supporting me from the other side of the world.

Finally, thank you Vipin for pushing me to reach my goals.

Contents

List of Figures vii

List of Algorithms viii

1 Introduction 1

1.1 Contribution of this thesis . 4

1.2 List of publications . 4

1.3 Overview . 6

2 Concurrency, Consistency and Scalability 7

2.1 System model . 7

2.2 Shared mutable objects . 8

2.2.1 Correctness conditions 8

2.3 Transactional memory . 10

2.3.1 Correctness conditions 11

2.4 Eventual consistency . 12

3 Multi-view Data Types 15

3.1 Global-Local View Model . 16

3.2 Use cases . 19

3.3 Specification of Multi-view Data Types 22

3.4 Abstract execution model . 26

3.4.1 Common language syntax 26

3.4.2 Operational semantics 28

3.5 Implementation . 34

3.5.1 Properties . 35

3.5.2 A portfolio of MDTs 36

3.6 Correctness . 46

3.6.1 Verification of mergeable counter 50

3.6.2 Verification of AW-set 52

3.7 Discussion . 62

vi Contents

4 Mergeable Transactional Memory 65

4.1 Mergeable transactions . 67

4.2 Operational semantics . 68

4.2.1 Properties of MTM 71

4.3 Algorithm . 72

4.3.1 MTM in Haskell . 74

4.4 Relation to MDTs . 77

4.4.1 Extensions to Global-Local View Model 78

4.4.2 Impact on the implementation 78

4.5 Discussion . 80

5 Evaluation 83

5.1 Multi-view Data Types . 83

5.1.1 Implementation . 83

5.1.2 Evaluation . 89

5.2 Mergeable Transactional Memory 98

5.2.1 Implementation . 98

5.2.2 Evaluation . 99

5.3 Discussion . 102

6 Related Work 103

6.1 Scalable concurrent data structures 103

6.2 Relaxed consistency models 105

6.3 Software transactional memory 106

6.4 Transactional data structures 107

6.5 Monotonic and mergeable data structures 107

6.6 Programming models . 109

6.7 Distributed systems . 110

7 Conclusion 111

Bibliography 113

List of Figures

2.1 Example: Expected behavior in Serializability and Snapshot

Isolation . 12

2.2 Evolution of the state of a CRDT counter 13

3.1 A multi-view object o . 17

3.2 Expected semantics of an integer in the global-local view model 18

3.3 Expected semantics of a counter in the global-local view model 18

3.4 Specification of Multi-view counter 24

3.5 Specification of Multi-view hybrid queue 25

3.6 Specification of Multi-view Grow-only Bag 25

3.7 Specification of Multi-view Add-wins Set 25

3.8 Syntax of Amdt . 27

3.9 A program in Amdt accessing a Mcounter 28

3.10 Operational Semantics of Amdt: Evaluation contexts 30

3.11 Operational Semantics for Amdt: Thread Evaluation � 30

3.12 Operational semantics for Amdt: Evaluation of expressions and

statements (Stmtimp and Expimp) 31

3.13 Operational semantics for Amdt: Evaluation of expressions and

statements (Stmtgl and Expgl) 33

3.14 Mergeable grow-only bag . 40

3.15 Hybrid Mergeable Queue . 41

3.16 Invariants of AW-set . 55

4.1 Evolution of snapshots in MTM 68

4.2 Syntax of Λmtm . 69

4.3 Λmtm: State-related definitions 69

4.4 Operational Semantics for Λmtm 70

4.5 Interface for MTM in Haskell 75

4.6 Mergeable objects in Haskell 76

4.7 A multi-view object with multi-versioned global view 78

4.8 Extended global-local view model 79

viii List of Figures

4.9 Multiple global versions in Add only bag 80

5.1 Code for lock-free merge in MLF-queue 85

5.2 Code for ParallelBFSIterator using mergeable queue 88

5.3 Throughput vs Overshoot of mergeable counter 90

5.4 Throughput of mergeable counter vs linearizable counter . . . 90

5.5 Throughput of hybrid mergeable counter vs linearizable counter 91

5.6 Comparison to CRDT Counter 92

5.7 Evaluation of Queue . 93

5.8 Performance of linearizable queue when running on same core

vs different core . 94

5.9 Percentage speedup of mergeable queue with merge interval 64

compared to linearizable queue 95

5.10 Throughput of AW-set compared to linearizable sets 95

5.11 Speed up of parallel breadth-first traversal on a graph 97

5.12 Throughput of work-stealing queue 98

5.13 MTM microbenchmark 1 . 99

5.14 MTM microbenchmark 2 . 100

5.15 K-means: High contention . 101

5.16 K-means: Low Contention . 101

List of Algorithms

3.1 Mergeable Counter . 39

3.2 AW-set: state definition . 42

3.3 AW-set: pull and lookup . 43

3.4 AW-set: weak add and remove 44

3.5 AW-set: merge . 45

3.6 AW-set: Auxiliary functions 46

3.7 Concrete program for a shared counter 47

3.8 Abstract program for a shared counter 48

3.9 Lookup operation annotated with predicates 57

3.10 Invariants in merge operation of AW-set 61

3.11 Algorithm 3.10 continued . 62

4.1 Pseudocode for parallel K-means clustering algorithm using STM 66

4.2 MTM Algorithm . 73

4.3 Versioned read and write operations in MTM 74

Chapter 1

Introduction

For years, applications were observing regular performance gains owing to the

steady increase in processor clock speed. The manufacturers have hit the phys-

ical limits of improving single processor performance; instead, they gravitate

towards hyperthreading and multicore processors [1, 4]. Today, multicores

are everywhere - from mobile phones, laptops, high-end servers, and special

purpose processors. This trend is so pervasive that it is near impossible to

find a single-core processor nowadays. With the availability of 100s of cores

in a processor, the primary focus of application design now is to exploit paral-

lelism: utilizing parallel threads running on multiple processors to accomplish

a single task.

Concurrent programming aids programmers to improve speed-up of the

applications by exploiting multicore processors efficiently. However, more

threads do not imply unconditionally better performance always. Amdahl’s

law [13, 76] states that the proportion of sequential execution limits the speed-

up of the application. Thus a significant effort in parallelizing an application

must be to reduce the amount of such non-parallelizable program segments.

A shared-memory concurrent program consists of a set of processes com-

municating via shared memory by manipulating a set of shared objects. Unlike

in a single-threaded program, we need to guarantee safety when there are con-

current accesses to a shared object. Linearizability [55] has turned out to be

a fundamental notion on simplifying the reasoning about the correctness of

shared objects for programmers. This consistency model formalizes the notion

of atomicity for high-level operations. In an execution, every method call is

associated with a linearization point, a point in time between its invocation

and its response. The call appears to occur instantaneously at its linearization

point, behaving as specified by its sequential definition.

Linearizability is the strongest as well as the most used correctness con-

dition because it is composable and easy to reason about the correctness of

the application owing to its closeness to the sequential specification of the

data structure. Several concurrent data structure design methodologies [71]

attempt to improve the scalability of concurrent access while maintaining

linearizability. These designs use various synchronization mechanisms such

2 Chapter 1. Introduction

as locks, compare-and-swap, custom lock-free algorithms, and transactional

memory to protect the shared locations during concurrent access. The coor-

dination needed for the synchronization contribute to the non-parallelizable

segment of the execution [37]. As Amdahl’s law recommends, we must di-

rect our efforts to reduce this coordination to extract as much parallelism as

possible.

The strict ordering requirement of linearizability hampers the possibility

of reducing the synchronization. With the rapid growth of the number of cores

and the adoption of NUMA architectures with heterogeneous access latencies,

the communication and synchronization cost between the components keeps

growing. Thus, restricting to the sequential specification as in linearizability

will reach the limits of scalability of concurrent data structure designs.

In practice, programming patterns are emerging that attempt to limit the

associated cost of the necessary synchronization on the memory accesses. For

example, in the widely-used messaging library ZeroMQ, adding messages to

the queue is at the core of the application. While lock-free linearizable queues

are fast, the developers observed that enqueuing each new message atomically

was affecting the overall performance, especially in high contention workloads

[85]. However, only the relative order of messages from a single thread is

relevant for the semantics of the message queue; it is not necessary to maintain

a strict order of enqueue operations when two independent threads try to

insert messages concurrently into the queue. To overcome the performance

penalty, the developers re-engineered their message queue such that multiple

messages are added as a batch, using only one single atomic operation.

For another example, consider a shared counter that is concurrently up-

dated by several threads. The final value of the counter must include all

increments performed, but the order of increments is not relevant since all

increments are commutative. If each increment executed by each thread is an

atomic operation made visible to all other threads, it can become a bottleneck

limiting the performance of the program [19]. In many cases, it is sufficient to

execute the increment on some thread-local variable and to apply a combined

update to the shared object.

Thus the trends of processor architectures, as well as the requirement for

many applications, indicate the need for better scalable concurrent object

design methodologies. As a result, many new relaxed objects semantics [81]

that favor better scalability of concurrent data structures are widely studied.

These models, in general, allow flexible reordering of operations that deviate

from linearizability thus enabling better optimizations on the data structure

designs.

3

There are similar concerns in distributed systems, as the network latency

between the servers results in higher cost of synchronization. These concerns

led to the development of conflict-free replicated data types (CRDTs) [80, 79].

CRDTs are data types with specific semantics that allow concurrent updates

on different replicas to execute without any coordination. The updates are

propagated to other replicas asynchronously. The properties of CRDTs ensure

that all updates are incorporated resulting in a consistent state across all

replicas. This property is called Strong Eventual Consistency [79], which is

now a widely accepted alternate semantics to linearizability for replicated

objects.

CRDTs allow development of replicated systems that limit global syn-

chronization and operate locally when possible thus achieving near linear

scalability. At the same time, the multicore architecture is advancing to-

wards a more distributed architecture, where the distance between resources

is heterogeneous. The natural question that follows is whether we can apply

the synchronization-free techniques from distributed systems in the design of

shared-memory concurrent objects.

This thesis explores a novel model for concurrent objects in shared-memory

that exploits a relaxed semantics to achieve scalability. The Global-Local View

Model exploits the heterogeneous access latencies in many-core systems. In

this model, each thread maintains different views on the shared object: a

thread-local view and a global view. As the thread-local view is not shared,

it can be updated without incurring synchronization costs. The local updates

become visible to other threads only after a thread merges its thread-local

view with the global view. This scheme improves the performance at the ex-

pense of linearizability. Besides the weak operations on the local view, the

model also allows strong operations on the global view. Combining operations

on the global and the local views, we can build data types with customizable

consistency semantics on the spectrum between sequential and purely merge-

able data types. Thus, the model provides a framework that captures the

semantics of Multi-View Data Types.

Linearizability and other relaxed semantics we have discussed so far is used

to reason about the correctness of individual objects. In many cases, applica-

tions require updating multiple shared objects in an “all-or-nothing” manner.

Therefore, the mechanisms to synchronize access to individual objects are not

sufficient. Transactional Memory [45] is a mechanism that helps the program-

mer to synchronize access to multiple mutable shared data correctly. Akin

to linearizability of individual objects, the correctness condition that is often

applied to TM is serializability. Serializability [78] guarantees that two con-

current transactions behave as if they are executed sequentially one after the

4 Chapter 1. Introduction

other. An optimistic algorithm executes the operations in a transaction with-

out coordinating with others and buffers the modifications locally. During

the commit, it checks for conflicting operations, which are concurrent updates

that modified the same objects that it has accessed. In case of conflicts, the

transaction is aborted and re-executed. Even with transactions with relaxed

semantics, conflicts and hence aborts can still arise when updates cannot be

serialized leading to degradation of performance.

We propose a novel semantics for Transactional Memory exploiting the

“mergeable” semantics of Multi-view Data Types. Instead of aborting and

re-executing the transaction, Mergeable Transactional Memory merges its

changes using the data-type specific merge semantics. It provides a relaxed

consistency semantics that allows for more scalability even under contention.

1.1 Contribution of this thesis

In this thesis, we study how relaxing the strong consistency requirement (lin-

earizability) of concurrent objects helps to achieve better scalability in con-

current shared-memory programs. As a result, the contributions of this thesis

are:

• Global-Local View Model, a novel model that serves as a base frame-

work to design concurrent objects with relaxed semantics.

• Multi-view Data Types (MDT), a set of concurrent data types de-

signed based on the Global-Local View Model.

• A proof method to verify the correctness of data type implementations.

• Mergeable Transactional Memory (MTM), a Software Transac-

tional Memory that allows better scalability than serializability lever-

aging the properties of Multi-view Data Types.

• An evaluation that shows the scalability of the proposed MDT designs

and MTM.

1.2 List of publications

Publications directly contributed to the thesis:

• Deepthi Devaki Akkoorath and Annette Bieniusa. Transactions on

mergeable objects. In Programming Languages and Systems - 13th

1.2. List of publications 5

Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 -

December 2, 2015, Proceedings, pages 427–444, 2015.

• Deepthi Devaki Akkoorath and Annette Bieniusa. Highly-scalable con-

current objects. In Proceedings of the 2nd Workshop on the Princi-

ples and Practice of Consistency for Distributed Data, PaPoC@EuroSys

2016, London, United Kingdom, April 18, 2016, pages 13:1–13:4, 2016.

• Deepthi Devaki Akkoorath, José Brandão, Annette Bieniusa, and Car-

los Baquero. Multi-view data types for scalable concurrency in the

multi-core era. In Proceedings of the Workshop on Programming Mod-

els and Languages for Distributed Computing, PMLDC ’17, New York,

NY, USA, 2017. ACM.

• Deepthi Devaki Akkoorath, José Brandão, Annette Bieniusa, and Car-

los Baquero. Global-local view: Scalable consistency for concurrent

data types. In Euro-Par 2018: Parallel Processing - 24th International

Conference on Parallel and Distributed Computing, Turin, Italy, August

27-31, 2018, Proceedings, pages 492–504, 2018.

Other relevant papers published during the PhD:

• Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhong-

miao Li, Tyler Crain, Annette Bieniusa, Nuno M. Preguiça, and Marc

Shapiro. Cure: Strong semantics meets high availability and low latency.

In 36th IEEE International Conference on Distributed Computing Sys-

tems, ICDCS 2016, Nara, Japan, June 27-30, 2016, pages 405–414,

2016.

• Deepthi Devaki Akkoorath, Viktória Fördós, and Annette Bieniusa. Ob-

serving the consistency of distributed systems. In Proceedings of the

15th International Workshop on Erlang, Nara, Japan, September 18-22,

2016, pages 54–55, 2016.

• Gonçalo Tomás, Peter Zeller, Valter Balegas, Deepthi Devaki

Akkoorath, Annette Bieniusa, João Leitão, and Nuno M. Preguiça.

Fmke: a real-world benchmark for key-value data stores. In Proceedings

of the 3rd International Workshop on Principles and Practice of Con-

sistency for Distributed Data, PaPoC@EuroSys 2017, Belgrade, Serbia,

April 23 - 26, 2017, pages 7:1–7:4, 2017.

6 Chapter 1. Introduction

1.3 Overview

In Chapter 3, we describe the global-local view model and present the oper-

ational semantics of an abstract execution model. We discuss the design of

several multi-view data types and outline the correctness proof. We present

the novel mergeable transactional memory in Chapter 4. We discuss the op-

erational semantics of MTM and provides an algorithm. We also discuss the

implementation of MTM in haskell defining a structured and type-safe inter-

face. In Chapter 5, we present several experiments to evaluate the performance

and scalability of MDT and the global-local view model. Further, Chapter 6

discusses several related works. We conclude the thesis in Chapter 7.

Chapter 2

Concurrency, Consistency and

Scalability

Concurrent programming has reached all programmers and programs. It is

inevitable when providing responsive GUIs, non-blocking HW drivers, and

parallelizing network connections. Further, the advent of multi-core systems

has made concurrent programming wide-spread in order to utilize additional

computing capacity. The benefits of concurrent programming are shadowed

by the difficulties that arise to reason about the correctness of concurrent

programs, in particular when managing shared memory access. Classical lock-

based synchronization relies on the programmer’s expertise to avoid deadlock

and livelocks, in particular when access to multiple shared objects is required

simultaneously. Transactional Memory (TM) [45] provides an abstraction

for concurrent access to multiple objects, akin to transactions in a database

systems. Several consistency models have been defined to reason about the

correctness of shared objects in the presence of concurrent access.

In this chapter, we discuss the commonly used correctness conditions of

concurrent objects and transactional memory such as linearizability, serial-

izability and snapshot isolation. These semantics are categorized as strong

consistency because they have strict restrictions on the allowed behavior of

a concurrent object. We also discuss weaker consistency semantics named as

Eventual Consistency, widely used in distributed systems to achieve better

scalability.

2.1 System model

We assume a system of n threads independently executing at arbitrary speeds.

Each thread executes a single sequential program. Multiple threads can ex-

ecute concurrently. Communication between the threads is done exclusively

via shared memory objects; we assume that there are no side channels.

8 Chapter 2. Concurrency, Consistency and Scalability

2.2 Shared mutable objects

A shared object has a state and supports a set of operations to read or update

its state. Concurrent threads can read and update the shared object using

these operations. However, to ensure that concurrent access does not lead

to incorrect state, the threads may have to use additional synchronization

mechanisms. A concurrent object is a shared object that guarantees that

concurrent access to the object is “correct”. We explain in the next section

what correctness means in this context.

2.2.1 Correctness conditions

A sequential specification of an object defines, given a particular state of the

object, what will be the resulting state after executing an operation and its

return value. Given an initial state, and a sequence of operations, we can

determine the resulting state when the operations are executed in sequential

order. Unfortunately, for a concurrent object, following the sequential spec-

ification may not give its correct behavior because multiple threads might

be invoking operations on the object concurrently. Sequential specification

needs to be adapted to cover concurrent, i.e. non-sequential, execution of

operations.

To specify the correctness of the concurrent object, several consistency

models have been defined. The consistency models are typically defined on a

history of the concurrent system. A history consists of a sequence of method

invocations (inv(m, obj, t)) and response events (res(m, obj, t)). In a concur-

rent history, method invocations and response from different threads may be

interleaved. A history is sequential if every method invocation is immediately

followed by its matching response event. A response matches an invocation if

they have the same object and thread. A method call is a pair consisting of

an invocation and the next matching response.

Sequential Consistency A history is sequentially consistent if it is equiv-

alent to a history S, where 1) S is a sequential history, and 2) the method

invocations in S follow the program order, i.e. the order in which they appear

in the program.

Sequential consistency specifies that the result of the execution is the same

as if the operations of all the processes were executed in some sequential order,

and the operations of each individual process appear in the order specified by

its program [64]. In sequential consistency, the ordering restrictions are only

2.2. Shared mutable objects 9

between the operations within a thread. The operations from different threads

may occur in any order disregaring their real time order.

Linearizability A history H, is linearizable if it is equivalent to some se-

quential history S, and if method calls m0 precedes method call m1 in H,

then the same is true in S, i.e., if one method call precedes another, then the

earlier call must have taken effect before the later call. If two methods are

concurrent, they can be ordered in any suitable way.

Unlike sequential consistency, linearizability considers the real-time order

of the operation. Informally, every method call is associated with a lineariza-

tion point, a point in time between its invocation and its response. The call

appears to occur instantaneously at its linearization point.

Hardware vendors and most programming languages do no guarantee se-

quential consistency or linearizability. Traditional hardware and compilers

designed for sequential programs perform a number of transformations, such

as re-ordering memory read/write operations, to improve the performance

of the program. In case of a multi-threaded program, the threads can ob-

serve this out-of-order execution. Hence, enforcing sequential consistency or

linearizability restricts these transformations, thus significantly reducing the

opportunities for performance optimizations. Besides, processors usually have

multiple layers of cache to improve the speed of accessing objects by serving

the access requests locally without contending the shared memory bus. The

processors that provide strong consistency (e.g. sequential consistency) guar-

antee that all cached copies have the same value at any point in time. Other

processors that provide weaker consistency models offer special memory bar-

rier instructions to make the local updates visible to each other.

Programming languages also offer relaxed consistency for normal opera-

tions and provide special “synchronization” operations when stronger consis-

tency is needed. For example, in the Java memory model, all threads have

access to a common memory, where the shared objects are stored [41]. Be-

sides, conceptually, each thread has its local memory area, where it caches

objects. The thread is guaranteed to propagate the updates to cached objects

to the common memory immediately only when an explicit synchronization

operation happens. The synchronization operation has the effect of flushing

the (hardware) cache to main memory and/or invalidating the cache so that

the objects in main memory and local cache are up-to-date. Depending on

the underlying processor architecture, these synchronization operations may

execute a memory barrier operation in order to make the updates by the

processors visible to each other.

10 Chapter 2. Concurrency, Consistency and Scalability

In Java, there are different mechanism to coordinate access to shared data.

• Intrinsic locks [41]. Java provides a built-in locking mechanism via syn-

chronized blocks implemented using monitors. A synchronized block

specifies an object that will serve as the lock and a code fragment to be

guarded by the lock. When a thread executes a synchronized block, the

lock on the monitor associated with the object is automatically acquired

and automatically released when exiting the block. The intrinsic locks

act as mutual exclusion locks, thus executing the code within atomically.

• Explicit locks. Java provides explicit locking mechanism via the Lock

interface and Reentrant locks. Reentrant locks provide similar mutual

exclusion semantics as synchronized blocks.

• Volatile fields [41]. Java memory model guarantees that all accesses

to volatile fields are totally ordered. However, a simple volatile vari-

able cannot provide read-modify-write atomicity. Java provides atomic

wrappers for the primitive types in java.util.concurrent.atomic

that implements atomic compare-and-set in addition to the properties

of the volatile fields.

Since linearizability must guarantee that the events are observed in a spe-

cific order, it demands some kind of synchronization for each operation. Using

any of the above synchronization mechanisms would result in overhead due

to the execution of memory barriers or flushing caches, thus affecting the

performance of the application.

2.3 Transactional memory

A transaction is a sequence of actions that appears to execute instantaneously

[45]. Transactions were initially introduced in databases to exploit paral-

lelism of hardware with relatively simple programming model when executing

database queries. Database transactions provides four properties known as

ACID properties. Atomicity requires that either all actions in a transaction

execute successfully or none of them execute. Consistency relates to the cor-

rectness of the state as a result of executing the operations. Isolation says how

two concurrent transactions interfere with each other. The strongest isolation

guarantee that they do no interfere with each other. Durability requires that

the result of a committed transaction is persistently stored.

Inspired by the simplicity of transaction abstractions in database, Trans-

actional Memory (TM) was introduced in concurrent programming to ensure

2.3. Transactional memory 11

the consistency of objects shared among multiple threads. With out TM,

programmers has to use synchronization mechanisms such as locks, mutexes

etc. to protect the shared object during concurrent access. These low level

synchronization primitives are often error-prone and difficult to compose. Pro-

gramming languages that support TM allow programmers to wrap a piece of

code in

atomic {
//code to read, modify, write shared objects
read var
...
write var

}

to execute the operations as a single unit of operation with out the need

for explicitly acquiring locks. When two transactions concurrently access the

same memory locations, with atleast one thread updating the location, the

operations conflict. The TM implements various mechanisms to detect and

resolve such conflicts.

A pessimistic TM prevents any conflicting access to the same data by

acquiring locks for all objects that are accessed with in the transaction prior

to its execution.

In an optimistic approach, multiple transactions can access an object con-

currently. When the transaction commits, it checks for conflicts. In case of

conflicts, it is aborted and re-executed; otherwise its modifications will be

written to memory.

2.3.1 Correctness conditions

Akin to linearizability for concurrent objects, the basic correctness condition

for concurrent transactions is serializability. Serializability requires that the

result of executing a group of concurrent transactions must be equivalent

to some serial execution of them [78]. With serializability, two transactions

conflict if they access the same object and atleast one of them modifies the

object. These conflicting transactions must be executed serially.

Snapshot Isolation [75] is a correctness condition weaker than serializabil-

ity. In snapshot isolation, two operations conflict only if both of them modify

the same object. Snapshot isolation requires that all operations in the trans-

actions see a consistent snapshot, taken at the start of the transaction. A

transaction is successfully committed when there are no write-write conflict.

In STM, snapshot isolation is often implemented by maintaining multiple ver-

12 Chapter 2. Concurrency, Consistency and Scalability

sions of the objects [26]. Multi-versioning is a way to increase the concurrency

and performance by allowing transactions to read from several last versions

of the object. Unlike serializability, in snapshot isolation, read-only transac-

tions never conflict and thus improve the concurrency of application that have

transactions with high read-write ratio.

The code snippet in Figure 2.1 demonstrates the difference between seri-

alizability and snapshot isolation. Snapshot Isolation is weaker than serializ-

ability as it allows more observable behavior than serializability.

Thread 1 Thread 2

atomic{
if(x == 0)

y = 1;
}

atomic{
if(y == 0)

x = 1;
}

Serializability: x = 0, y = 1 or

x = 1, y = 0.

Snapshot isolation: x = 0, y = 1 or

x = 1, y = 0 or

x = 1, y = 1

Figure 2.1: Example: Expected behavior in Serializability and Snapshot Iso-

lation.

2.4 Eventual consistency

The PACELC theorem [7], which is an extended form of CAP theorem [40],

states that there is a trade-off between consistency and latency in a distributed

system. In order to provide strong consistency in a replicated database,

the system requires communication and coordination between participating

servers that are located across the globe. The round-trip communication

time as well as the delays due to network interruptions add to the latency

perceived by the user for a single operation. Thus many modern databases

[5, 2, 3] provide Eventual Consistency [87]. With eventual consistency, it is

not guaranteed that an update to an object in one replica is immediately visi-

ble at others; but when all updates are delivered to all replicas (in any order),

the replicas converge to the same state. Concurrent updates may conflict.

The systems implement various conflict resolution mechanism; Conflict-free

2.4. Eventual consistency 13

r1: +1 m

r2: +1 m

r3: m m

r1 : 1 r1 : 1, r2 : 1

r2 : 1 r1 : 1, r2 : 1

r2 : 1 r1 : 1, r2 : 1

Figure 2.2: Evolution of the state of a CRDT counter in presence of concurrent

updates. +1: increment, m: merge, ri: replica i. The states shown in rectangle

boxes converges on all replicas.

Replicated Data Types (CRDT) [80] being one of them.

Conflict-free Replicated Data Types are data types with simple math-

ematical properties that ensure eventual consistency. An update to a CRDT

requires no synchronization, and converges to a same correct state. A state-

based CRDT grows over a monotonic semi-lattice. Two states of the same

objects are merged by taking the least upper bound in the semi-lattice. A

replicated data store that uses state-based CRDTs executes an update on the

CRDT object locally and store the resulting state; it eventually communi-

cates the new state to other replicas asynchronously. When a replica receives

a value from a remote replica, it merges the new value with the local value.

Since the merge is commutative and transitive, it guarantees that both repli-

cas converge to the same value when both of them receives all modified states

in any order. For example, a state based CRDT counter consists of a map,

where each replica id is associated with an integer representing the number of

increments it executed. The value of the counter is the sum of all integers in

the map. The merge takes the maximum value of each entry; thus the result-

ing states assume values from a monotonic semilattice. Figure 2.2 shows an

example execution timeline.

Op-based CRDTs, on the other hand, exploit commutativity of updates to

deterministically converge the states of two replicas. A replicated data store

that uses op-based CRDTs requires reliable broadcast communication with a

well-defined delivery order.

While eventual consistency is now well studied and a popular choice in

distributed and replicated systems, similar relaxed consistency semantics are

not well explored in the multi-core programs. This thesis proposes a model for

designing and implementing CRDT like mergeable types for a shared memory

concurrent program.

Chapter 3

Multi-view Data Types

Concurrent programming on shared-memory architectures is notoriously dif-

ficult. A concurrent system consists of a set of processes communicating

implicitly through shared data structures. The visibility of updates on these

data structures depends on the intricate interplay of synchronization mecha-

nisms as defined by the memory model. Linearizability [55] has turned out to

be a fundamental notion on simplifying the reasoning about the correctness

of shared data structures for programmers. This consistency model formal-

izes the notion of atomicity for high-level operations. In an execution, every

method call is associated with a linearization point, a point in time between

its invocation and its response. The call appears to occur instantaneously at

its linearization point, behaving as specified by the sequential semantics.

While linearizability is very useful for reasoning about the correctness of

concurrent data structures, its implementation can be prohibitively expensive.

As the number of cores increases in a multi-core system, the synchronization

cost becomes more apparent that it favors the relaxation of the concurrent

objects semantics for scaling the programs [81]. In practice, programming

patterns are emerging that attempt to limit the associated cost of the required

synchronization on the memory accesses. For example, in the widely-used

messaging library ZeroMQ, adding messages to the queue is at the core of

the application. While lock-free linearizable queues are fast, the developers

observed that enqueuing new messages were affecting the overall performance,

especially in high contention workloads [85]. However, only the relative order

of messages from a single thread is relevant for the semantics of the message

queue; it is not necessary to maintain a strict order of enqueue operations

when two independent threads try to insert messages concurrently into the

queue. To overcome the performance penalty, the developers re-engineered

their message queue such that multiple messages are added as a batch, thus

using only one single atomic operation.

For another example, consider a shared counter that is concurrently up-

dated by several threads. The final value of the counter must include all

increments performed, but the order of increments is not relevant since all

increments are commutative. If each increment executed by each thread is an

atomic operation made visible to all other threads, it can become a bottleneck

16 Chapter 3. Multi-view Data Types

limiting the performance of the program [19]. In many cases, it is sufficient to

execute the increment on some thread-local variable and to apply a combined

update to the shared object.

In this chapter, we introduce the Global-Local View Model that serves

as a base framework for designing concurrent objects. The model leverages

the fast local state and distant global state to allow concurrent operations to

execute in parallel. We also introduce Multi-View Data Types (MDT) that

are concurrent data types whose design is based on the Global-Local View

Model.

Overview

• We begin with an informal discussion of the global-local view model in

Section 3.1.

• In Section 3.2, we identify several applications that can benefit from the

use of the global-local view model and MDTs.

• In Section 3.3, we discuss the specification of several MDTs.

• Section 3.4 gives a formal execution model and the operational seman-

tics.

• In Section 3.5, we discuss the implementations of several MDTs and

identify the properties of MDTs that provide guidelines on how to design

other types.

• In Section 3.6, we discuss a proof method to validate the correctness of

MDT implementations.

3.1 Global-Local View Model

The Global-Local View Model is a novel model for concurrent shared objects

that leverages different views of an object. In this section, we give an informal

description of the model and its properties.

In the global-local view model, an object has multiple copies of its own

state, which are called views. The object has a global view accessible by all

threads. Each thread sees a local view of the object which is not accessible by

other threads. Such an object is called a multi-view object. Figure 3.1 shows

the multiple views on a shared object accessed by concurrent threads.

3.1. Global-Local View Model 17

og

o1l o2l o3l
t1

t2

t3

Figure 3.1: A multi-view object o, og is the global view, thread Ti sees its

local view oil.

In this model, an operation issued by a thread is executed on its local view

without changing the global view or other local views. The local updates,

though visible in the local view, are made visible on a global view only after

the local view is merged to the global view. The other threads observe these

changes once they synchronize their respective local view with the global view.

A merge must incorporate the local changes while not overriding the con-

current updates merged to the global view. For example, consider an integer

that has a global view of value 0, and two local views of value 0 each (See

Figure 3.2). Thread t1 sets its local view to 1. Concurrently, thread t2 also

sets its local view to 1. Thread t1 merges its local view to obtain a global

view of value 1. After thread t2 merges, the global view remains 1.

What should be the global view if the object type was a counter instead

of an integer? Instead of setting to a specific value, a counter provides an

increment operation. The result of executing two set(1) operations are dif-

ferent from two inc(1) operations. In Figure 3.3, threads t1 and t2 execute

an increment resulting in local views of value 1. If the merge just overwrites

the value, the global view will be 1 after t2 merges. As it is a counter, it is

meaningful if the merge results in value 2 because there were two increments

executed in total. Hence, the merge must be a type-specific operation which

can incorporate concurrent updates to the global view in a semantically mean-

ingful way. In Section 3.3 and Section 3.5, we discuss the specification and

18 Chapter 3. Multi-view Data Types

t1 : 0 t1 : 1 t1 : 1 t1 : 1

t2 : 0 t2 : 1 t2 : 1 t2 : 1

g : 0 g : 0 g : 1 g : 1

t1 : set(1)

t2 : set(1)

t1 : merge

t2 : merge

Figure 3.2: Expected semantics of an integer in the global-local view model.

ti - local view of thread ti. g - global view.

t1 : 0 t1 : 1 t1 : 1 t1 : 1

t2 : 0 t2 : 1 t2 : 1 t2 : 2

g : 0 g : 0 g : 1 g : 2

t1 : inc(1)

t2 : inc(1)

t1 : merge

t2 : merge

Figure 3.3: Expected semantics of a counter in the global-local view model.

ti - local view of thread ti. g - global view.

the implementation of several types.

As the local view is private, the operations on it can be performed without

any coordination among the threads. Coordination is required only when the

global view is accessed. Threads can execute many local updates without

synchronizing with the global view or coordination with other threads, thus

enabling better performance, albeit at the expense of linearizability [55].

In addition to the local operations, the model also provides synchronous

operations on the global view. Consider, for example, a queue where the

enqueue operations have been executed on the local view. To guarantee that

the elements are dequeued only once, dequeues are executed atomically on

the global view. We call the operations that perform only on local view weak

operations and those on global view strong operations. Combining operations

on the global and the local views, we can build data types with customizable

semantics on the spectrum between sequential and purely mergeable data

types.

List of operations. The global-local view model defines the following op-

erations that are executed on a multi-view object.

• pull updates the local view of the executing thread with the global view.

• weakRead q returns the result of a type-specific query q on the local

view.

• strongRead q returns the result of a type-specific query q on the global

view.

3.2. Use cases 19

• weakUpdate u applies an update operation u on the local view without

any coordination.

• strongUpdate u applies an update operation u on the global view. This

operation may require coordination.

• merge incorporates the local updates to the global view using a type-

specifc merge operation and updates the local view.

While weakRead and weakUpdate act exclusively on the local copy,

strongRead and strongUpdate act on the global state. The combination of

these two operations supports flexible optimizations on each data type. For

example, a queue can guarantee that an element is dequeued only once

by executing dequeues in strongUpdate. At the same time, enqueues can

be applied as weakUpdate and merged later for better performance (See

Section 3.5 for full specification and implementation). For a counter, we may

want to enforce a weak limit on the maximum value, i.e., its value should

not diverge arbitrarily from the defined maximum value. Such a counter can

use a strongRead to check the global value to adapt the merge interval or to

switch to a fully synchronized version.

A multi-view data type (MDT) is a data type designed using the global-

local view model that defines a merge operation in addition to other

operations. A mergeable data type is a multi-view data type where

are all updates and reads are weak operations. A hybrid mergeable

data type is a multi-view data type where some updates and/or reads

are strong operations. The types with only strong operations offer a

sequential semantics and define neither the local views nor the merge

operation.

3.2 Use cases

We identified several applications where linearizable data types are not re-

quired for the correctness of the application. In this section, we discuss sev-

eral such applications in which using the global-local view model is better

regarding programmability and/or scalability.

20 Chapter 3. Multi-view Data Types

A work-stealing queue.

A task queue is used to distribute tasks among threads running in parallel.

The threads produce new tasks and push them into the task queue. When

a thread is out of work, it gets a new task from the task queue. A typical

implementation of a task queue uses a linearizable queue, where the push is

implemented by enqueue on the queue and pop by dequeue. However, such

a task queue requires synchronization for each push and pop operation. In

most cases, a linearizable queue is not needed for task distribution because the

order of task execution is not critical as long as the tasks are done eventually.

Task queues are used in many work schedulers. As an example, consider

the Cilk language [18]. Cilk is a multithreaded language for parallel pro-

gramming that generalizes the semantics of C. The programs written for Cilk

employ fork-join parallelism. A pool of threads, called workers, is available to

execute the tasks. A worker, when it encounters the keyword spawn, creates a

new child task and adds it to the task queue. The child task can be immedi-

ately executed if resources are available. The worker can continue executing

the parent task without waiting for the child task. If the parent needs a result

from the child, it uses the sync keyword which suspends the parent task; the

worker thread then retrieves more tasks from the task queue.

The task queue in Cilk is implemented using a work-stealing queue [39].

Each thread has a deque (a double ended queue), which has the following

operations: popBack, pushTop, popTop. A thread uses it as a stack, adding

newly created tasks using pushTop, and retrieving more work when the current

task completes using popTop. If a worker’s queue is empty when it looks for

more work, it will attempt to steal a task from other queues, using popBack.

The Cilk runtime uses a lock-free protocol to handle concurrent access to the

queue by the owner and the thief.

A work stealing queue with this semantics is a natural fit to the global-local

view model. Instead of a queue per thread, we have a multi-view queue with

a global view and a local-view per thread. Workers can add and retrieve tasks

using pushTop and popTop that execute on the thread-local views without

any concurrency control, and remote threads can steal tasks from the shared

global view.

One disadvantage of this design is that it may prevent threads from stealing

tasks when the global view is empty even if there are unmerged tasks in the

local views. To avoid this, we may set a minimum number of items in the

global view. The threads periodically check the global view and merge their

local view when the number of tasks in the shared queue drops below this

threshold.

3.2. Use cases 21

In-memory multi-core databases.

One way to exploit the parallelism of a many-core system is by partitioning the

data among the processes running in each core. Non-overlapping partitions al-

low executing requests to different partitions in parallel. However, concurrent

requests to the same partition or objects will be executed sequentially by the

process responsible for the partition. An in-memory database with or with-

out a partitioning system employs various concurrency control mechanisms

to guarantee serializable executions of concurrent conflicting transactions. A

high number of conflicting transactions may impact the performance of such

systems. Unfortunately, as reported in [72], such high contention workloads

are common.

In high contention workloads, we can achieve high performance by al-

lowing concurrent conflicting transactions to proceed in parallel on different

cores. Instead of serializing the access to the objects, the transactions can

update a per core copy of the object and merge them later. Doppel [72] uses

a phase reconciliation mechanism that automatically parallelizes high con-

tention transactions. When the system detects high contention on data items

in-memory databases, it switches to a split phase where the transactions up-

date a local per-core copy of the contended data in parallel. After the split

phase, the per-core copies are merged, and the transactions proceed to ex-

ecute using classical concurrency control techniques. Whether transactions

can be executed in the split phase, is decided based on the commutativity of

operations, thus preserving sequential consistency.

A multi-view data type implemented in the global-local view model is a

natural fit for a system that uses phase reconciliation. MDTs supports the per-

core copy of the objects through its local views. During the normal execution,

it can use the strong operations of the MDT that updates the shared global

view. During the split phase, it switches to using the weak operations that

update the local view. The MDT implements the merge operation which is

immediately available for the reconciliation phase. The design of MDTs is

tuned to avoid the use of any concurrency control while accessing per-core

copies. The merge executes faster in comparison to executing the operations

in sequence, thus fully exploiting the benefits of phase reconciliation.

Message queues.

In the widely-used messaging library ZeroMQ [6], adding messages to the

queue is at the core of the application. While lock-free linearizable queues are

fast, the developers observed that enqueuing new messages were affecting the

22 Chapter 3. Multi-view Data Types

overall performance, especially in high contention workloads [85]. However,

only the relative order of messages from a single thread is relevant for the

semantics of the message queue; it is not necessary to maintain a strict order

of enqueue operations when two independent threads try to insert messages

concurrently into the queue. To overcome the performance penalty, the de-

velopers re-engineered the message queues such that multiple messages are

added as a batch, thus using only one single atomic operation for a batch of

messages.

Message queues where multiple messages can be batched together and

added to the shared queue is a direct application of the hybrid queue described

in Section 3.5.2. The fast merge provides the expected performance as well as

the desired semantics required by the messaging library.

Aggregation counters and other statistical data types

The applications that use aggregation counters that are computed by parallel

threads are amenable to using the mergeable counter. Similarly, the objects

that store statistical measures such as sums, min, max etc. that are computed

by parallel threads will benefit from the global-local view model. The commu-

tativity and associativity properties of these computations allow threads to

do computations on thread-local view and later aggregate the results during

the merge without re-computing.

Software Transactional Memory.

In software transactional memory, we can use mergeable objects to avoid

unnecessary aborts where the conflicting updates can be meaningfully merged

[11]. A detailed semantics and implementation of such a transactional memory

algorithm are described in Chapter 4.

3.3 Specification of Multi-view Data Types

Multi-view Data Types (MDT) define a subset of the basic operations from

the global-local view model, depending on the semantics needed. A purely

mergeable MDT defines only the weak operations and merge, while a hybrid

MDT defines strong operations in addition to the weak operations and merge.

In this section, we define an abstract specification of multi-view data types in

relation to the corresponding sequential data type.

3.3. Specification of Multi-view Data Types 23

A sequential data type τ is specified by a tuple

Sτ = (Uτ ,Qτ , queryτ , applyτ ,Rτ)

where Uτ is a set of update operations,Qτ is a set of query operations, queryτ is

an evaluation function that evaluates the query operation. Given a sequence

of update operations σ and a query q ∈ Qτ , queryτ (q, σ) returns a result

r ∈ Rτ . Given a sequence of update operations σ, applyτ (σ) returns the

result of applying the operations in σ on the initial state of the object with

type τ .

Given a sequential specification for type τ , we can define a multi-view

specification by defining a merge operation. A multi-view data type τ is

specified by a tuple

Mτ = (Sτ ,Uwτ ,Qwτ ,U sτ ,Qsτ ,mergeτ)

where

• Sτ is the sequential specification of the data type

• Uwτ ⊆ Uτ defines the set of weak updates.

• Qwτ ⊆ Qτ defines the set of weak reads.

• U sτ ⊆ Uτ defines the set of strong updates.

• Qsτ ⊆ Qτ defines the set of strong reads.

• mergeτ (σc, σl) defines the semantics to merge the concurrent updates

σc and σl. It returns a sequence of updates σr which can be appended

to the sequence of operations in global view σgthat already included σc.

(See abstract execution semantics in Figure 3.13 to see how this function

is used by the global-local view model.)

Following the above specification method, we discuss the specification of

several multi-view data types in relation to the sequential specification of the

corresponding sequential data types.

Counter Figure 3.4 gives the specification for the sequential counter and the

specifications for purely mergeable counter and hybrid counter. A sequential

counter defines updates inc (increment by 1) and dec (decrement by 1), and

query getValue (returns the current value). The specification of mergecounter
given by the multi-view specification returns the sequence of local operations

24 Chapter 3. Multi-view Data Types

Sequential Counter:

Scounter = (Ucounter,Qcounter, querycounter,Rcounter)

Ucounter = {inc, dec}
Qcounter = {getValue}
Rcounter = Z

querycounter(getValue, σ) =
∣∣{op ∈ σ|op = inc}

∣∣− ∣∣{op ∈ σ|op = dec}
∣∣

Multi-view Counter:

Mcounter = (Scounter,Qwcounter,Uwcounter,Qscounter,U scounter,mergecounter)
mergecounter(σc, σl) = σl

Purely Mergeable Counter Hybrid Counter

Uwcounter = {inc, dec}
Qwcounter = {getValue}
U scounter = ∅
Qscounter = ∅

Uwcounter = {inc, dec}
Qwcounter = {getValue}
U scounter = {inc, dec}
Qscounter = {getValue}

Figure 3.4: Specification of Multi-view counter.

(σl) which can be appended to the global view as defined in Rule Merge in

Figure 3.13. Since all update operations of the counter are commutative, we

can simply append the local operations to the global sequence.

The specification of a purely mergeable counter differs from that of a hybrid

counter in that the former defines only weak operations and the later defines

bother weak and strong operations. The applications using a hybrid counter

can choose weak or strong operations dynamically based on desired semantics.

For example, an application that uses weak increments initially can switch to

use strong increments when it observes that the value reached a threshold.

Queue The queue data type has operations enqueue(e) (enqueues an item

e) to the queue), and dequeue (dequeues an item from the queue). A hybrid

mergeable queue is defined with a weak enqueue and strong dequeue (Fig-

ure 3.5). The weak enqueues can be executed concurrently on the local-view

and merged later for better performance. At the same time, strong dequeues

guarantee that an item is dequeued only once. In the above semantics, if

the global copy is empty, dequeue returns null even if there are local enqueue

operations by the same thread which have not been merged yet.

A queue with weak enqueue and weak dequeue may be useful if a redundant

3.3. Specification of Multi-view Data Types 25

mergequeue(σc, σl) = σl
Uwqueue = {enqueue(e)|∀ e}
U squeue = {dequeue}

Figure 3.5: Specification of Multi-view hybrid queue.

dequeue is semantically acceptable for the application. A queue with only

strong enqueue and strong dequeue behaves as a linearizable queue.

Grow-only Bag A grow-only bag is a set that provides only an add oper-

ation, and allows duplicate elements. A purely mergeable bag implements a

weak add, weak lookup and merge (Figure 3.6).

mergebag(σc, σl) = σl
Uwbag = {add(e)|∀e}
U sbag = ∅
Qwbag = {lookup(e)|∀e}
Qsbag = ∅

Figure 3.6: Specification of Multi-view Grow-only Bag.

Add-wins set Add-wins set (AW-set) is a set that allows both add and

remove operations. When there are concurrent add and remove of the same

item, the add wins during the merge, i.e., the resulting set after the merge

contains the item.

mergeawset(σc, σl) = σ′
l, where

σ′
l ={m | m ∈ σl∧

(m = add(a)∧ 6 ∃m′ ∈ σl : m′ = rem(e) ∧m m′)

∨ (m = rem(a) ∧ (6 ∃m′ ∈ σc : m′ = add(a)

∧ ∃m′′ ∈ σl : m′′ = add(a) ∧m m′′))}
m m′ =⇒ index(σl,m) < index(σl,m)

Uwawset = {add(e), remove(e)|∀e}
U sawset = ∅
Qwawset = {lookup(e)|∀e}
Qsawset = ∅

Figure 3.7: Specification of Multi-view Add-wins Set.

26 Chapter 3. Multi-view Data Types

3.4 Abstract execution model

The system we consider is built upon a classical shared-memory architecture

as supported by specifications such as the C++ or Java memory models. We

assume that the system consists of a dynamic number of threads. Any thread

can spawn new threads that may outlive their parent thread. The system

distinguishes two types of memory: local memory is associated with a single

thread and can only be accessed by this thread; any thread can access the

shared memory. Communication and coordination between the threads are

done exclusively via shared-memory objects. We assume that there are no

side channels. In particular, spawned threads do not inherit local objects

from their parents.

The state of the objects are modeled as sequence of updates (σ). A se-

quence σi can be concatenated with another sequence σj, denoted by σi · σj.
The global view of a multi-view object is a sequence of updates represented as

σg. The local view is a tuple 〈σs, σl〉, where σs, the local snapshot, is the state

of the global view when this thread last synchronized with the global view

through a merge or pull operation, and σl is the sequence of local operations

that have not been merged yet.

In later sections, we describe the language (Section 3.4.1) for the global-

local view model and its execution semantics (Section 3.4.2). The semantics

assumes the abstract specification of multi-view data types defined in Sec-

tion 3.3.

3.4.1 Common language syntax

We define a high-level language Amdt in which the programs using the global-

local view model are written. We use Amdt to define the abstract operations

of the global-local view model and to express their semantics. Later, we use

the same language to express the implementations of MDTs.

Figure 3.8 shows the syntax of Amdt. Amdt is defined as an imperative

language extended with the operations defined by the global-local view model.

To facilitate the use of the same language for the abstract execution model and

the MDT implementations, we distinguish the expressions and the statements

common to both as Expimp and Stmtimp. Expgl and Stmtgl are the expressions

and the statements that define the abstract operations in the global-local view

model.

We use the following naming conventions: V is a variable name, e an ex-

pression, v a value, s a statement, M a method name, S a C-like structure

3.4. Abstract execution model 27

with multiple fields and F a field name in this structure. A value is either

a reference r, a number n, a sequence σ of MDT operations op, a tuple of

values 〈v1, v2〉 or unit (). Expimp are expressions defined in a common imper-

ative language, given as values, variables, numerical expressions, field access,

method invocation, and object creation. Expgl denote the expressions which

are part of the global-local view model operations. The expressions marked in

gray do not appear in source programs but represent dynamically generated

locations and intermediate system states. Statements comprise variable as-

signment, field assignment, conditional statements, loops, method invocation,

return statement, lock access, thread fork, and skip. The operations from the

global-local view model are defined in Stmtgl. weakUpdate and strongUpdate

can be used both as expression and statement because the update operations

may return values which can be used in other expressions or statements. For

example, dequeue on a queue is an update operation that returns an item.

Statements can be sequentially composed as s1; s2.

V ∈ Var

r ∈ Ref

n ∈ Number

op ∈ Qτ ∪ Uτ , for all multi-view types τ

σ ∈ Sequence of operations op

〈v1, v2〉 ∈ Tuple

τ ∈ Multi-view Types

e ∈ Expimp ∪ Expgl
s ∈ Stmtimp ∪ Stmtgl

Val ::= r | n | σ | true | false | 〈v1, v2〉 | ()
Expimp ::= v | V | e+ e | e ∗ e | ... |

e.F |M(ē) | new τ
Stmtimp ::= s; s | V := e | e1.F := e2 |

if e then s1 else s2 endif |
while e do s end |M(ē) | return e |
lock e | unlock e | fork(V){s} | skip

Expgl ::= weakRead op e | strongRead op e |
weakUpdate op e | strongUpdate op e

Stmtgl ::= weakUpdate op e | strongUpdate op e |
pull e | merge e

Figure 3.8: Syntax of Amdt.

An Amdt program is a list of state definitions, a list of method definitions

and a list of statements. A state definition defines a structure with a type

28 Chapter 3. Multi-view Data Types

name and a list of field definitions. A method definition consists of a method

name, parameter types and names, and the method body which consists of

statements.

Figure 3.9 is a program in Amdt with two threads that access a shared

multi-view counter (Mcounter). The program does not have additional state

definitions or method definitions. It consists of only a sequence of statements.

Here, inc (increments the counter by one) and getValue (returns the value

of the counter) are the operations defined by the counter data type. At the

end of the execution of this program, the value of the counter can be either

2 or 3 depending on the scheduling of steps from the two concurrent threads.

If the second thread executes the strongRead after the first thread’s merge,

the value of b is not 0 and the thread 2 skips the merge. A formal operational

semantics that leads to this behavior is explained in the next section.

c := new Counter; . instantiate a counter
fork (c) { . increment by 2 and merge.

pull c;
weakUpdate inc c;
weakUpdate inc c;
merge c;

};
fork (c) { . increment by 1, then read its value and merge.

pull c;
weakUpdate inc c;
b := strongRead getValue c;
if b=0 then

merge c;
else

skip;
end if

};

Figure 3.9: A program in Amdt accessing a Mcounter.

3.4.2 Operational semantics

Memory Model The memory model distinguishes three types of memory:

1. a global heap Γ : Ref ⇀ Val accessible by all threads,

2. a local heap Λ : Ref ⇀ Val for every thread t, and

3. a local stack Θ = ϑ̄ for every thread, ϑ : Var ⇀ Val.

3.4. Abstract execution model 29

A reference r corresponds to a location allocated in heap Γ or Λ. Γ(r) returns

the value on the global heap associated with the reference r. Γ[r 7→ v] returns

a heap identical to Γ, except that it maps r to v. Λ(r) and Λ[r 7→ v] behaves

similarly.

Θ is a stack of memory blocks represented as ϑ; ϑ̄, where ϑ is the top of

the stack and ϑ̄ represents the rest of the memory blocks. ϑ represents the

memory block of the current method incarnation and ϑ̄ the rest of the blocks

from the parent methods. ϑ(V) denotes the value associated with the variable

V and ϑ[V 7→ v] returns an identical block to ϑ, but with the mapping of V

updated to v.

State. The state of the system is represented by a pair Π;Γ. Π is a thread

system of active threads, and Γ represents the global heap. The state of a

thread t is a pair 〈s,Θ,Λ〉, where s is the statements to evaluate and Λ is the

local heap accessible only by thread t. The thread system Π maps a thread

identifier t to the state of the thread.

t ∈ ThreadIds

Π ∈ ThreadIds ⇀ 〈Stmt,Θ,Λ〉

Evaluation Figure 3.10 introduces the evaluation contexts that the lan-

guage constructs define. ⊕ is a placeholder for binary operators such as +, ∗,
etc.

The evaluation of a program with body s starts with an initial state

Π{0 7→ 〈s, [], []〉}; [], with an empty global heap and a main thread with

id 0 and empty local heap and local stack, and ends when there are no more

statements to be evaluated in any thread (Π{∀t : t 7→ 〈skip,Θt,Λt〉}; Γ).

Figure 3.11 shows the evaluation steps of the thread. Each reduction step

� non-deterministically selects a thread from Π, thus modeling an arbitrary

thread scheduling.

Rule Spawn shows the steps to fork a thread. There are no global vari-

ables. If a thread needs to access any variables defined in the parent, the

parent thread must explicitly pass the values of the variables to the child at

the time of child’s creation. Hence the first argument of fork is V which is

a list of variables to be passed to the new thread. The fork creates a new

local heap ϑ′ with the variables V mapped to its values from ϑ (ϑ|V). The

second argument is a statement s to be evaluated by the new thread. A new

thread-id t′ maps to the state of the new thread which consists of ϑ′, an empty

30 Chapter 3. Multi-view Data Types

Evaluation Contexts:

E = [·]⊕ e | v ⊕ [·] | [·].F | M [·] |

[·]; s | V := [·] | r.F := [·] |

if [·] then s1 else s2 endif | while [·] do s end |

return [·] | lock [·] | unlock [·] |

weakUpdate op [·] | weakRead op [·] |

strongUpdate op [·] | strongRead op [·] |

pull [·] | merge [·]

Figure 3.10: Operational Semantics of Amdt: Evaluation contexts.

t′ fresh Θ = ϑ; ϑ̄ ϑ′ = ϑ|V Θ′ = ϑ′; Θ

Π{t 7→ 〈E[fork (V){s}],Θ,Λ〉}; Γ� Π{t 7→ 〈E[()],Θ,Λ〉, t′ 7→ 〈E[s],Θ′, []〉}; Γ
Spawn

〈E[s], (Θ,Λ,Γ)〉 ↪→ 〈E[s′], (Θ′,Λ′,Γ′))〉
Π{t 7→ 〈E[s],Θ,Λ〉}; Γ� Π{t 7→ 〈E[s′],Θ′,Λ′〉}; Γ′ ThreadStmt

〈E[e], (Θ,Λ,Γ)〉 ↪→ 〈E[e′], (Θ′,Λ′,Γ′))〉
Π{t 7→ 〈E[e],Θ,Λ〉}; Γ� Π{t 7→ 〈E[e′],Θ′,Λ′〉}; Γ′ ThreadExp

Figure 3.11: Operational Semantics for Amdt: Thread Evaluation �

local heap and s.

All other statements (and expressions) are evaluated by ↪→. A statement

or expressions can modify the local heap and/or the global heap given by the

state transformation

〈s, (Θ,Λ,Γ)〉 ↪→ 〈s′, (Θ′,Λ′,Γ′))〉

as shown in Rules ThreadStmt and ThreadEval. The reduction rules ↪→
for evaluating expressions (Expimp) and statements (Stmtimp) are defined in

Figure 3.12, and expressions (Expgl) and statements (Stmtgl) in Figure 3.13.

Figure 3.12 shows the evaluation steps of expressions and statements. Rule

Seq show sequential composition. Rule BinOp shows the steps for the evalu-

3.4. Abstract execution model 31

〈E[v; s], (Θ,Λ,Γ)〉 ↪→ 〈E[s], (Θ,Λ,Γ)〉
〈E[skip; s], (Θ,Λ,Γ)〉 ↪→ 〈E[s], (Θ,Λ,Γ)〉 Seq

〈E[v1 ⊕ v2], (Θ,Λ,Γ)〉 ↪→ 〈E[binop(⊕, v1, v2)], (Θ,Λ,Γ)〉 BinOp

Θ = ϑ; ϑ̄ ϑ(V) = v

〈E[V], (Θ,Λ,Γ)〉 ↪→ 〈E[v], (Θ,Λ,Γ)〉
VarAccess

Θ = ϑ; ϑ̄ ϑ′ = ϑ[V 7→ v] Θ′ = ϑ′; ϑ̄

〈E[V := v], (Θ,Λ,Γ)〉 ↪→ 〈E[skip], (Θ′,Λ,Γ)〉
Assign

Γ(r) = S S(F) = v

〈E[r.F], (Θ,Λ,Γ)〉 ↪→ 〈E[v], (Θ,Λ,Γ)〉
FieldAccess

Γ(r) = S S ′ = S[F 7→ v] Γ′ = Γ[r 7→ S ′]

〈E[r.F := v], (Θ,Λ,Γ)〉 ↪→ 〈E[skip], (Θ,Λ,Γ′)〉
FieldAssign

newaddr(Γ) = r

〈E[new τ], (Θ,Λ,Γ)〉 ↪→ 〈E[r], (Λ,Γ[r 7→ ∅])〉
Alloc

s =

{
s1, if v = true

s2, if v = false

〈E[if v then s1 else s2 endif], (Θ,H)〉 ↪→ 〈E[s], (Θ,H)〉
Conditional

w = while e do s end

〈E[w], (Θ,Λ,Γ)〉 ↪→ 〈E[if e then s;w else skip endif], (Θ,Λ,Γ)〉
Loop

fundef(M) = (pn, s)

length(pn) = length(v̄) ϑ = mapall[pn 7→ v̄]

〈E[M(v̄)], (Θ,Λ,Γ)〉 ↪→ 〈E[s], (ϑ; Θ,Λ,Γ)〉
MethodCall

〈E[return v], (ϑ : Θ,Λ,Γ)〉 ↪→ 〈E[v], (Θ,Λ,Γ)〉 Return

Γ(lock(r)) = false Γ′ = Γ[lock(r) 7→ true]

〈E[lock r], (Θ,Λ,Γ)〉 ↪→ 〈E[skip], (Θ,Λ,Γ′)〉
Lock

〈E[unlock r], (Θ,Λ,Γ)〉 ↪→ 〈E[skip], (Θ,Λ,Γ[lock(r) 7→ false])〉 Unlock

Figure 3.12: Operational semantics for Amdt: Evaluation of expressions and

statements (Stmtimp and Expimp).

32 Chapter 3. Multi-view Data Types

ation of binary operations such as +, ∗ respectively. Rules Conditional and

Loop show conditional statements and while loops.

Variable Access and Assignment A variable V is always stored in the

local stack. The scope of a variable is limited to the stack of the current

method, which is ϑ. Evaluating a variable access V returns a value v from

ϑ (Rule VarAccess). Evaluating an assignment of a value to a variable v

updates the local stack memory (Rule Assign).

Field Access and Assignment To access a field, first, we look up the

structure in the global heap. Next, the value of the field is looked up in the

structure (Rule FieldAccess). S(F) returns the value associated with the

field F in the structure S. The assignment is done similarly, which updates

the structure in the global heap (Rule FieldAssign). S[F 7→ v] returns a

structure identical to S except the value of F updated to v.

Allocation Rule Alloc shows the steps for creating a new object.

newaddr(Γ) returns an unused reference in Γ. The heap is updated with refer-

ence r mapping to an empty value denoted by ∅. The result of the expression

is the newly allocated reference r.

Method Call The definition of method M is retrieved by an auxiliary func-

tion fundef, which is a pair consisting of a list of parameter names pn and a

method body consisting of statements s to be executed. An auxiliary function

mapall maps the parameter names to parameter values, which is then assigned

to a new memory block ϑ. ϑ is added to the local stack (Rule MethodCall).

When a method execution finishes, and it returns, the local memory block

ϑ is removed from the stack. The result of the evaluation is the return value

v.

Locks lock(r) returns a location in the heap that represents the lock asso-

ciated with r. Rule Lock and Rule Unlock shows the evaluation of lock and

unlock operations.

The global-local view operations Figure 3.13 shows the evaluation steps

for the operations defined by the global-local view model.

The operation pull synchronizes the local view with the global view (Rule

Pull). The global view referenced by r in the global heap is σg. The local

3.4. Abstract execution model 33

Γ(r) = σg

〈E[pull r], (Θ,Λ,Γ)〉 ↪→ 〈E[skip], (Θ,Λ[r 7→ 〈σg, ∅〉],Γ)〉
Pull

Λ(r) = 〈σs, σl〉
type(r) = τ q ∈ Qwτ v = queryτ (q, σs · σl)
〈E[weakRead q r], (Θ,Λ,Γ)〉 ↪→ 〈E[v], (Θ,Λ,Γ)〉

WeakRead

Λ(r) = 〈σs, σl〉
type(r) = τ op ∈ Uwτ v = applyτ (σs · σl, op)

〈E[weakUpdate op r], (Θ,Λ,Γ)〉 ↪→ 〈E[v], (Θ,Λ[r 7→ 〈σs, σl · op〉],Γ)〉
WeakUpdate

Γ(r) = σs · σc Λ(r) = 〈σs, σl〉
type(r) = τ mergeτ (σc, σl) = σr σg = σs · σc · σr

〈E[merge r], (Θ,Λ,Γ)〉 ↪→ 〈E[skip], (Θ,Λ[r 7→ 〈σg, ∅〉],Γ[r 7→ σg])〉
Merge

Γ(r) = σg type(r) = τ q ∈ Qsτ v = queryτ (q, σg)

〈E[strongRead q r], (Θ,Λ,Γ)〉 ↪→ 〈E[v], (Θ,Λ,Γ)〉
StrongRead

Γ(r) = σg
type(r) = τ op ∈ U sτ v = applyτ (σg, op)

〈E[strongUpdate op r], (Θ,Λ,Γ)〉 ↪→ 〈E[v], (Θ,Λ,Γ[r 7→ σg · op])〉
StrongUpdate

Figure 3.13: Operational semantics for Amdt: Evaluation of expressions and

statements (Stmtgl and Expgl).

34 Chapter 3. Multi-view Data Types

view referenced by r in the local heap is set to the tuple 〈σg, ∅〉, updating the

local snapshot with global state and overwriting all the local updates.

weakRead returns the result of a type-specific read-only operation q on the

state obtained by applying local updates on the local snapshot (queryτ (q, σs ·
σl)). Rule WeakRead evaluates the weakRead operation. q ∈ Qwτ is a query

operation defined as weak read on the type τ of the reference r. The query q

is evaluated according to the type specification (see Section 3.3). The result

of this expression is the result of the query operation. Since this is a weak

read operation, it uses only the local heap. The local and global heaps remain

unchanged.

weakUpdate applies the update method on the local view by appending the

update operation op to σl (Rule WeakUpdate). op ∈ Uwτ is a weak update

operation on type τ of reference r (Section 3.3). The local view referenced by

r in local heap Λ is updated. Weak updates do not modify the global view.

The merge operation merges the local state 〈σs, σl〉 to the global state

σs · σc (Rule Merge). σs is the snapshot seen by the thread when it last

executed merge or pull. σc is the sequence of concurrent operations merged

to the global view. σl is the list of updates executed on the local view that are

not yet merged. σg is the result of type specific merge operation as defined

by its specification (see Section 3.3). Merge updates the reference r in the

global heap to σg and the local heap with 〈σg, ∅〉. The merge operation thus

atomically merges the local view to the global view and updates the local view

with the result.

Similar to weakRead, strongRead evaluates a query q on type τ (Rule

StrongRead). However, q ∈ Qsτ is a query operation defined as strong

read. Instead of using the local view, Rule StrongRead evaluates q on the

global view σg referenced by r in the global heap. The expression returns the

result of queryτ (q, σg). Neither the global view nor the local view is modified.

Similarly Rule StrongUpdate evaluates the strongUpdate operation.

It applies the update operation op on the global view by appending op to

σg and updates the reference r in global view. op ∈ U sτ is a strong update

operation on type τ defined by the type specification of τ (Section 3.3).

3.5 Implementation

The abstract model expresses the high level semantics of the global-local view

model. The MDT implementations define the concrete state in terms of the

underlying data structures and the algorithms to modify those data structures.

3.5. Implementation 35

First, we discuss the properties that we need to consider when implementing

an MDT. Then, we present the implementations of several MDTs.

3.5.1 Properties

Exploiting object semantics to define the merge function has been successfully

applied in Conflict-free Replicated Data Types (CRDTs) [80] in the context

of distributed database systems. State-based CRDTs rely on lattice-based

monotonic data values where the merge computes the least upper bound.

Operation-based CRDTs re-execute updates that were issued on the local

object instance against the global object, therefore requiring commutativity

of concurrent updates to achieve consistency despite different orders of update

application at the different replicas.

In general, CRDTs employ various mechanisms to achieve deterministic

results for objects with non-commutative operations, e.g., maintaining tomb-

stones for sets where elements can be added and removed. While CRDTs have

been successful in avoiding costly synchronization in replicated data stores,

employing the known specifications of CRDTs in multi-/many-core programs

seems prohibitively expensive. In this section, we identify two main proper-

ties for MDTs - persistence and mergeability, that is critical for efficient and

scalable implementations of MDTs.

Persistence A multi-view object maintains multiple versions: thread-local

versions which reflect the modifications done by the threads and a global

version updated by merge. Threads concurrently access and modify these

versions. Thus, multiple thread-local versions and global versions must co-

exist. This property is called persistence (as used in the domain of functional

data structures [35]). A data structure is said to be persistent if multiple

versions of it are accessible. It is partially persistent if only some versions are

accessible, and fully persistent if all versions are accessible [35]. Persistence is

an essential property for MDTs because it allows concurrent access to multiple

versions.

There are different mechanisms to achieve persistence, such as copy-on-

write or path copying [35]. Depending on the data type semantics, their

implementations may use specific techniques to make them efficiently persis-

tent. Hence, it is essential to make persistence a property of the MDT rather

than a universal mechanism implemented by a generic version manager.

Typically, not all versions have to be persisted. Old versions that are

known not to be required and never be reaccessed can be garbage-collected.

36 Chapter 3. Multi-view Data Types

For example, a local version which is already merged to the global view will

never be read again.

Mergeability A shared object may be concurrently accessed and updated

by multiple threads resulting in different versions of the object. These versions

must be merged together to create a new version. Extending the Abstract

Data Type definitions that specify their semantics, MDTs must be mergeable.

This means that the MDT must define the semantics of concurrent updates

on different versions and the semantics of the merge of two versions.

Which versions must be mergeable? In our case, every thread-local version

of an object must be mergeable with the latest global version. On the other

hand, local versions from different threads do not have to be mergeable. In our

setting, all thread-local versions are branched of the global version and merged

back to it. This requirement is in contrast to state-based CRDTs [80, 79] in

eventually consistent systems where all versions residing on different replicas

must be mergeable.

There are two aspects of mergeability, namely semantic mergeability and

structural mergeability.

Semantic mergeability tackles the semantics of the data type operations

with respect to the merge operation; i.e., whether the objects behave “as

expected” after merging. Recall the illustrations in Figure 3.3 and Figure 3.2.

We do not want to lose the local increments to the counter when merging.

Similar to CRDTs, thread-local updates should be reflected semantically in

the merged version. A deterministic merge guarantees that any concurrent

updates can merge their results and obtain a consistent deterministic state.

Structural mergeability is related to how efficiently two versions can be

merged. This property refers to the low-level implementation details of the

data structure. Copy-on-write for large data structures such as lists, trees,

and sets is not efficient regarding run-time and memory usage. Hence, it

is essential to share parts of the data structure from multiple versions and

only keep distinct parts which are required to distinguish different versions.

Several mechanisms are employed in persistent data structures in functional

programs [73]. Our notion of structural mergeability is inspired by these

implementations but having an efficient merge as an additional requirement.

3.5.2 A portfolio of MDTs

The implementation of an MDT τ consists of a set of state definitions to

define the underlying data structure that captures the state, and a list of

3.5. Implementation 37

method definitions. Each method implements the operations given in the type

specification. To specify which abstract operation from the global-local view

model it implements, each method definition is annotated using @ notation.

The state of multi-view data types consists of two parts – an object

variable for the local view and another for the global view. Local view and

global view may or may not have the same representation. A generic pattern

for implementing a mergeable data type MDT is given by the following

pseudocode:

type MDT = {ThreadLocal T1 localview, T2 globalview}

function OP1(MDT mdt) @weakUpdate op1
lv := getLocalObject(localview);
//update lv

end function

function OP2(MDT mdt) @weakRead op2
lv := getLocalObject(localview);
//read lv

end function

function OP3(MDT mdt) @strongUpdate op3
atomic { //update globalview }

end function

function MERGE(MDT mdt) @merge
lv := getLocalObject(localview);
atomic {

merge(globalview, lv)
//update localview

}
end function

The types of local view and global view (T1, T2) may or may not be the

same. Local views are thread-local instances as identified by ThreadLocal.

A variable specified as ThreadLocal exists per thread in the thread’s pri-

vate storage. getLocalObject returns the reference to the thread-local ob-

ject. Many programming languages support some form of thread-local storage

(TLS) without the need for explicitly calling getLocalObject. A mergeable

data type can also implement its thread local storage by mapping thread ids

to different instances of the object.

38 Chapter 3. Multi-view Data Types

atomic refers to any synchronization mechanism such as using a mutex

or lock-free techniques such as compare and swap or transactional memory

that atomically executes the code block within. op1, op2, op3 refers to

the methods implementing the object’s update or query operations. Each of

them is annotated using @ to specify if it implements a weakRead, strongRead,

weakUpdate or strongUpdate together with the operation defined by its type.

weak operations are executed on the local view. The ThreadLocal de-

scriptor guarantees that each thread is accessing its private view.

For some data types, local views are isolated from each other and the

global view, by maintaining a full copy of the object in each view. For large

data structures, such as list or trees, keeping a full copy is not efficient. Thus

the local views may contain references to parts of the data structures that are

shared by other local views or global view. In most cases, the shared parts

are not directly updated by the weak updates but only read. For example,

a lookUp on a list may first traverse the locally added items and then the

shared parts of the list which are conceptually part of its local view. The

mechanisms to make sure that an update on the global view does not change

the local views, if it is updating the shared part, depends on the data type

semantics and the underlying data structure. We show designs of a few data

types where this can be done efficiently and correctly without copying the

entire data structure.

Counter The global view of a mergeable counter is an integer g. The local

view consists of a pair of integers (s, l). The weak increments are collected

in the variable l and added to g during the merge. This design is inspired

by sloppy counters [19], while using a local counter per thread instead of per

core. Algorithm 3.1 shows the implementation of the mergeable counter.

It is easy to extend this implementation to allow decrements, explicit

arguments for increments/decrements, and generalize to other commutative

monoids.

Grow-only bag While the merge operation for the counter can be imple-

mented in a simple and efficient way, we have to employ different strategies

for larger, composed data structures such as lists and sets. We adapt tech-

niques that have been developed in the context of persistent data structure

[30]. A persistent data structure is a mutable data structure that offers access

to multiple versions. This technique is widely used to implement purely func-

tional data structures efficiently, in particular, linked data structures such as

lists and trees. When multiple threads modify the data structure, each thread

3.5. Implementation 39

Algorithm 3.1 Mergeable Counter.

1: type Counter = {int gcntr, ThreadLocal CounterLocal
lcntr, Lock l}

2: type CounterLocal = {int s, int l}
3:

4: function WEAKGETVALUE(Counter cntr) @weakRead getValue
5: lcntr := getLocalObject(cntr); . get reference to the

threadlocal object of CounterLocal
6: v := lcntr.s + lcntr.l;
7: return v;
8: end function
9:

10: function WEAKINC(Counter cntr) @weakUpdate inc
11: lcntr := getLocalObject(cntr); . get reference to the

threadlocal object of CounterLocal
12: x := lcntr.l + 1;
13: lcntr.l := x;
14: end function
15:

16: function STRONGINC(Counter cntr) @strongUpdate inc
17: lcntr := getLocalObject(cntr); . get reference to the

threadlocal object of CounterLocal
18: lock(cntr.l);
19: gcntr := gcntr + 1;
20: unlock(cntr.l);
21: end function
22:

23: function MERGE(Counter cntr) @merge
24: lcntr := getLocalObject(cntr); . get reference to the

threadlocal object of CounterLocal
25: lock(cntr.l);
26: gcntr = gcntr + lcntr.l;
27: lcntr.l := 0;
28: lcntr.s = gcntr;
29: unlock(cntr.l);
30: end function

40 Chapter 3. Multi-view Data Types

head

T1

T2

(a) Two threads with different local views.

T1

T2

head

(b) After T1’s local view is merged.

T1

T2

head

(c) After T2’s local view is merged.

Figure 3.14: Mergeable grow-only bag.

executes updates on a thread-local version of the object, without the need

for copying the entire data structure into thread-local storage. The merge

operation is then reduced to adjusting pointers in the local and global ver-

sion to incorporate the updates in the global version. The merge operation

must preserve the semantics of the abstract data type by resolving potential

semantic conflicts due to concurrent updates.

A bag is a set that allows duplicate elements. A grow-only bag is a bag

that allows only add operation. Here, threads can concurrently add elements

without violating its semantical correctness. A grow-only bag is implemented

as a persistent linked list. An implementation of the bag is illustrated in

Figure 3.14. The head points to the first node of the global version accessible

to all threads. Adding an element to the bag adds a new node at the head

of the linked list local to the thread. This results in a multi-headed list.

Figure 3.14a shows the bag after threads T1 and T2 have added two and

three elements, respectively, and before merging. The list pointed to by T1
represents the view of the bag to thread T1, similarly for T2. Both versions

share the nodes of the elements that have been added before the threads

started. A lookup that traverses the list starting from the local head will

never see an item that is concurrently added or merged. When merging T1, it

updates the global head to point to T1 (Figure 3.14b). When merging T2, it

has to update both the global head and the local tail of T2 to include changes

of T1 in the merge (Figure 3.14c). The merge of an add-only bag is efficient

because it requires manipulation of only two pointers.

3.5. Implementation 41

head

tail
lhead(t1)

ltail(t1)

lhead(t2)

ltail(t2)

(a) Two threads with local unmerged enqueues.

head

tail

lhead(t1)

ltail(t1)

lhead(t2)

ltail(t2)

(b) Thread 1 merges its local queue.

Figure 3.15: Hybrid Mergeable Queue.

Queue A hybrid mergeable queue can be implemented using a singly-linked

list similar to a linearizable queue. The global view consists of a singly-linked

list where the items enqueued are added to the tail of the list and dequeue is

performed from the head. The local view also consists of a singly-linked list,

which collects the items enqueued by the thread that are not yet merged (See

Figure 3.15a). A mergeable queue instance contains a global view – (head,
tail), which points to the head and tail nodes respectively of the global list

and local view – (ThreadLocal lhead, ThreadLocal ltail), which

are the head and the tail of the local list of each thread. The merge atomically

appends the local list to the global list (Figure 3.15b). The time needed to

merge a group of nodes is the same as the time needed to enqueue a single

node. By batching the enqueues, we can reduce the number of synchronization

operations, thus improving the overall throughput.

The dequeue operation directly updates the shared part of the list. For

some data types, an update on the shared part of the data structure should

preserve the old version, because local views may be keeping a reference to

it. However, there is no weakRead, such as a weak lookup, defined on a queue

that must observe a version before a concurrent dequeue. Hence, there is no

need to keep those versions, which simplifies the implementation.

Add-wins set Add-wins set (AW-set) is a set in which if there are concur-

rent add and remove operation of the same item, the resulting set after the

merge contains the item. i.e. in a concurrent add and remove, add wins. In

this section, we discuss the implementation of an add-wins set. Unlike the

other types that we have seen in this chapter, AW-set has conflicting opera-

42 Chapter 3. Multi-view Data Types

tions that need to be resolved during the merge.

The AW-set is implemented using a binary search tree as the underlying

data structure. A node of the binary search tree stores one item that was

added. No two nodes have the same item. Similar to the bag, the thread-

local views and the global view share a single tree structure. In order to allow

multiple-local versions and global version to share the internal binary-search

tree structure, each node keeps meta-information about the versions of the

set that the item belongs to.

The structure of the AW-set is defined in Algorithm 3.2. The complete

algorithm implementing the AW-set operations is given in Algorithm 3.3 - 3.6.

Algorithm 3.2 AW-set: state definition

1: type GSet = {Node root, Vid vid}
2: type LSet = {Node root, Vid vid, List(<Node, Val>) added,

List(<Node, Vid>) removed}
3: type Node = {Val item, List(VersionInfo) vinfo, Node

left, Node right}
4: type Vid = int
5: type VersionInfo = {Vid first, Vid last, Vid removed}
6: type AWSet = {GSet setg, ThreadLocal LSet setl}

The global view setg consists of a pointer to the root of the binary search

tree and a version id vid that denotes the version number generated by the

last merge operation. The local view setl consists of a pointer to the root

of the tree and version id that denotes the version of the global view it has

observed when it last synchronized with the global view, either by a merge or

pull operation. The local view also keeps a information about the items that

are added and removed locally, but not yet merged.

A nodes VersionInfo consists of three elements: first denotes the ver-

sion when the item was first added, last denotes the version id when the

item was last added, removed denotes when the item was removed. An item

is contained in all versions between first and removed. When an item is

re-added after a removal, a new record of VersionInfo is added to the list.

A lookup (Algorithm 3.3) on the thread local view returns true if item is

added locally or the snapshot version setl.vid contains the item. When the

item is not present in the local added list, lookup traverses the tree to find

the node containing the item. When the node is present, it iterates over the

version info list to find one record with first ≤ setl.vid < removed. If

such a record is present, the version setl.vid contains the item, and the

lookup returns true.

3.5. Implementation 43

Algorithm 3.3 AW-set: pull and lookup (Algorithm 3.2 continued).

7: /* AW-set functions*/
8: function PULL(AWSet set)
9: setl := getLocalObject(set.setl);
10: setl.root := set.setg.root;
11: setl.vid := setg.vid ;
12: setl.localadded := [];
13: setl.localremoved := [];
14: end function
15:

16: function LOOKUP(AWSet set, Val item) @weakRead
lookup(item)

17: setl := getLocalObject(set.setl);
18: if item is in setl.removed then
19: x:= false
20: else if item is in setl.added then
21: x:= true
22: else
23: node := FINDNODE(item, setl.root)
24: if node = null then
25: x := false
26: else
27: x := false
28: k := node.vinfo.length()
29: while k > 0∧ x = false do
30: k:=k-1
31: v := node.vinfo[k] . item at index k
32: if v.removed = 0 ∧ v.first ≤ setl.vid then
33: x := true;
34: else if v.first ≤ setl.vid < v.removed then
35: x := true;
36: else if setl.vid > v.first then
37: k := 0
38: end if
39: end while
40: end if
41: end if
42: return x;
43: end function
44:

44 Chapter 3. Multi-view Data Types

Algorithm 3.4 AW-set: weak add and remove (Algorithm 3.2 continued).

45: function ADD(AWSet set, Val item) @weakUpdate add(item)
46: setl := getLocalObject(set.setl);
47: p := FINDPARENT(item, setl.root) ;
48: LISTADD(〈item, p〉, setl.added);
49: DELETEREMOVED(item, setl.removed)
50: end function
51:

52: function REMOVE(AWSet set, Val item) @weakUpdate
remove(item)

53: setl := getLocalObject(set.setl);
54: p := FINDNODE(item, setl.root) ;
55: if p 6= null then
56: LISTADD(〈p, setl.vid〉, setl.removed);
57: end if
58: DELETEADDED(item, setl.added);
59: end function

When a thread executes a weak add operation (Algorithm 3.4), it traverses

through the tree to find a potential parent node where the item can be inserted.

It records this information in the list setl.added. During the merge, it can

start traversing from this node rather than from the root.

When a thread executes a weak remove operation (Algorithm 3.4), it tra-

verses through the tree to find the node that the item belongs to. It records

the reference to the node in the list setl.removed.

The merge (Algorithm 3.5) acquires a lock on the tree, and generates a

new version number by incrementing the current version number. Each merge

thus produces a monotonic version number. It uses this version number to

mark if an item was added or removed during this merge operation.

The merge first merges the local adds (Lines 66 - 89). For each added

item, it tries to insert the item as the child of the potential parent which

was recorded during the weak add operation. If the potential parent already

has children, it traverses down the tree to find the right place to insert the

item. If a node corresponding to the item already exists, it only updates the

version info of that node vinfo.last to the new version number. Otherwise,

it inserts a node as a leaf. The property of binary search tree guarantees that

there is a unique node corresponding to an item.

During the merge of removed items, if there was any concurrent add of

the same item, (i.e if vinfo.last > the snapshot that the thread observed

setl.vid), then the remove operation takes no effect. Otherwise, the item

3.5. Implementation 45

Algorithm 3.5 AW-set: merge (Algorithm 3.2 continued).

60: function MERGE(AWSet set) @merge
61: setg := set.setg;
62: setl := getLocalObject(set.setl);
63: lock setg
64: newvid := setg.vid+1;
65: /* Merge adds */
66: for 〈item,parent〉 in setl.added do
67: if setg.root = null then
68: n := NEWNODE(item)
69: LISTADD(n.vinfo, 〈 newvid, newvid, 0 〉)
70: setg.root := n
71: else
72: if parent = null then
73: parent := setg.root
74: end if
75: n := FINDNODE(item, parent)
76: if n 6= null then
77: if LASTNODE(n.vinfo).removed > 0 then
78: LISTADD(n.vinfo, 〈newvid, newvid, 0〉)
79: else
80: LASTNODE(n.vinfo).last := newvid
81: end if
82: else
83: n := NEWNODE(item)
84: LISTADD(n.vinfo, 〈newvid, newvid, 0〉)
85: INSERTNODE(n, parent)
86: end if
87: end if
88: end for
89:

90: /* Merge removes */
91: for 〈n,obvid〉 in setl.removed do
92: v := LASTNODE(n.vinfo)
93: if v.removed = 0 ∧ v.last ≤ obvid then
94: v.removed := newvid
95: end if
96: end for
97: setg.vid := newvid
98: unlock setg
99: end function

46 Chapter 3. Multi-view Data Types

Algorithm 3.6 AW-set: Auxiliary functions (Algorithm 3.2 continued).

100: /* Auxiliary functions */
101: function FINDPARENT(VAL item, NODE root): NODE
102: //starts traversal from node ‘root’, use binary

search tree traversal
103: //returns the node which will be the parent of ‘item’

if it is added, or null if root is null
104: end function
105:

106: function FINDNODE(VAL item, NODE root): NODE
107: //starts traversal from node ‘root’, use binary

search tree traversal
108: //returns the node which contains ‘item’ or null if

the node doesnot exist.
109: end function
110:

111: function LISTADD(x, LIST list)
112: //Append x to list
113: end function
114:

115: function DELETEADDED(VAL item, LIST list)
116: //delete 〈item, 〉 from list
117: end function
118:

119: function DELETEREMOVED(VAL item, LIST list)
120: //remove 〈node, 〉 from list, where node contains item
121: end function
122:

is marked as removed by setting the vinfo.removed to the new version

number.

3.6 Correctness

The implementations of the operations of an MDT have more fine-grained

steps for each atomic operation in the abstract model, resulting in execu-

tions with steps of an operation from a thread interleaved with the steps of

operation from other threads. In the presence of the interleaved steps, the im-

plementation must guarantee the semantics of the global-local view model as

defined by its abstract execution. In this section, we outline a proof method

to verify the implementations of purely mergeable MDTs. We refrain from

3.6. Correctness 47

proving the correctness of hybrid MDTs.

Concrete and Abstract programs A concrete program Cp is an Amdt

program that consists of MDT implementations in addition to the other state

and method definitions. A concrete program does not contain any of the

statements from Stmtgl, i.e., it does not have any of the abstract operations

defined by the global-local view model. A concrete program is valid only if

it accesses the instances of multi-view types τ only through the method calls

defined in its implementation.

An abstract program Ap corresponding to a concrete program Cp is ob-

tained by replacing the method calls defined in the MDT implementation

with the corresponding operations from the global-local view model. Every

method definition in an MDT implementation is annotated with its corre-

sponding operation in the global-local view model (Section 3.5.2). Thus, there

is a one-to-one translation from a concrete program to its corresponding ab-

stract program.

For example, Algorithm 3.7 shows a concrete program that accesses a

shared counter whose implementation is given in Algorithm 3.1. Algorithm 3.8

shows its corresponding abstract program. Each method call (such as weak-

inc, merge) in the concrete program is replaced by the equivalent abstract

operations (such as weakUpdate inc, merge), with out modifying any other

expressions or statements in the program.

Algorithm 3.7 Concrete program for a shared counter.

c := new Counter;
fork (c) {

WEAKINC(c);
WEAKINC(c);
MERGE(c);

};
fork (c) {

INC(c);
b := WEAKGETVALUE(c);
MERGE(c);

};

Concrete and Abstract execution An execution is a sequence of steps

of the form

Π; Γ� Π′; Γ′� Π′′; Γ′′� ...

48 Chapter 3. Multi-view Data Types

Algorithm 3.8 Abstract program for a shared counter.

c := new Counter; . instantiate a counter
fork (c) {

weakUpdate inc c;
weakUpdate inc c;
merge c;

};
fork (c) {

weakUpdate inc c;
b := weakRead getvalue c;
merge c;

};

obtained by evaluating the program as defined by the operational semantics of

Amdt. EAmdt(Ap) denotes the set of all valid executions of Ap according to the

reduction steps defined in Section 3.4.2. AE denotes a valid abstract execution.

Similary, CE denotes a valid concrete execution of a concrete program.

Correctness The implementation of an MDT is correct if the concrete pro-

grams using the MDT do not have any additional observable behavior com-

pared to the corresponding abstract program. In our case, the observable

behavior is the return value of a data type operation. To capture the re-

turn values to be used in the verification, we use an auxiliary variable rval .

The read operations (weakRead) in the abstract and concrete program are

annotated with the assignment to the rval .

We establish a simulation ensuring that for every externally observable

behavior made by the concrete program execution, there is a corresponding

one in the abstract execution. To that end, we define the equivalence relation

between CE and AE in the following way.

• An Inv relation relates the concrete low-level representation of the data

structure to the corresponding abstract representation.

• Starting from Inv-related states, each step of the concrete program cor-

responds to zero or one step of the abstract program and resulting in

states that are again Inv-related.

• rval captures the observable behavior in abstract and concrete execu-

tion. At each step, the value of rval in abstract state and concrete state

must be same.

3.6. Correctness 49

The abstract and concrete states, Astate and Cstate, are obtained from global

heap (Γ), thread-local heaps (Λ) and stacks (Θ) of the abstract execution and

the concrete execution, respectively.

Definition 3.1. A concrete execution is equivalent to an abstract execution,

CE ∼= AE , iff for each step of concrete execution,

Πc{t 7→ 〈e,Θc,Λc〉}; Γc� Πc{t 7→ 〈e′,Θ′
c,Λ

′
c〉}; Γ′

c

if Inv(Astate, Cstate) holds before the step, then there exists a step in the ab-

stract execution

Πa{t 7→ 〈e,Θa,Λa〉}; Γa� Πa{t 7→ 〈e′,Θ′
a,Λa〉}; Γ′

a

or an empty transition

Πa{t 7→ 〈e,Θa,Λa〉}; Γa
ε
� Πa{t 7→ 〈e,Θa,Λa〉}; Γa

such that Inv(A′
state, C ′state) ∧ Γa(rval) = Γc(rval) holds after each step.

Definition 3.2. A concrete program Cp is equivalent to an abstract program

Ap, if for every concrete execution CE ∈ EAmdt(Cp), there exists an AE ∈
EAmdt(Ap) such that CE ∼= AE .

Definition 3.3. An MDT implementation is correct if all concrete programs

using the MDT are equivalent to their corresponding abstract programs.

Thus, to prove the correctness of an MDT implementation, we proceed as

follows.

1. We define an Inv relation between the abstract and concrete state.

2. We show that the concrete implementation of an operation is correct

with respect to the abstract operation semantics using the simulation.

3. The challenge here is to show that the interleaving of the steps from

operations in concurrent threads does not affect the correctness of this

operation. To prove the correctness of one operation, we assume that no

other concurrent step violates Inv. Then, we show that this assumption

is valid for each operation.

The simulation, thus, shows that for all executions of a concrete program,

there is an equivalent abstract execution. Thus we can show that the given

implementation of the MDT is correct.

50 Chapter 3. Multi-view Data Types

Additional Definitions. We assume the program that we are verifying

accesses only one shared object referenced by r.

Given the global and local memories of the abstract execution (Γa,∀t : Λt
a),

the state of an abstract execution is defined as

Astate = (σg, La)

where σg = Γa(r) and La[t] = Λt
a(r). La[t] is a tuple of sequence of updates

〈σs, σl〉.
Similarly, given the global and local memories of the concrete execution

(Γc,∀t : Λt
c,Θ

t
c), we define the state of a concrete execution as

Cstate = (gc, Lc)

where gc = Γc(r) is the global view and Lc[t] = Γc(lref(r, t)) refers to the

local copies. lref(r, t) is the dereferencing function that yields the reference

to a local copy.

We also annotate each operation in a sequence σg (and σs) with a version

number. Two operations have the same version number iff they were merged

in the same merge operation. A version of a state is defined as the version of

the last operation in sequence v(σ · op) = v(op).

It follows from the abstract execution model that the local snapshots (σs)

are always a prefix of the global snapshot. Hence ∀〈σs, σl〉 ∈ La, σs � σg ∧
v(σs) ≤ v(σg).

3.6.1 Verification of mergeable counter

The concrete state of a counter is Cstate = (gcntr, Lc) where gcntr is an integer,

and Lc is the set of thread-local counter objects.

Given the concrete state of the counter as

type Counter = {int gcntr, ThreadLocal CounterLocal lcntr}
type CounterLocal = {int s, int l}

we define the invariant Inv(Astate, Cstate) as follows:

Invg := gcntr = |σg|
Invl(t) := La[t] = 〈σs, σl〉 ∧ Lc[t] = lcntr

⇐⇒ lcntr.s = |σs| ∧ lcntr.l = |σl|
Inv(Astate, Cstate) :=

(
unlocked(gcntr) =⇒ Invg ∧ ∀t : Invl(t)

)
∧
(
locked(gcntr) ∧ lock owner(gcntr) 6= t =⇒ Invl(t)

)

3.6. Correctness 51

To simplify the predicates, we assume that we can only increment a

counter, but not decrement it1. The predicate locked(gcntr) yields true iff

a thread has acquired the lock on gcntr and unlocked(gcntr) yields true iff

no thread has acquired the lock. lock owner(gcntr) returns the thread id of

the thread that has acquired the lock.

Algorithm 3.1 shows the implementation of the counter. From the abstract

execution model, we can assume the following:

• Two threads cannot concurrently invoke inc/getValue on the same

lcntr, because lcntr is a thread-local object.

• Two threads can concurrently execute merge. However, in the given

implementation, the merge operation is protected using locks. Hence,

we can ignore the effects of the interleaving of steps from concurrent

merges.

This simplifies the proof because we only need to show that for each op-

eration (inc, value, merge), there is a valid simulation between an abstract

execution and the concrete execution as defined in Definition 3.1. That is

we need to show that the invariant Inv is maintained after each step in the

operation. (Note that we use Inv without the parameters Astate and Cstate to

make the predicates less verbose.)

getValue: This is a read-only operation. Hence, we have to show that the

value returned is the same as for a weakRead getV alue r. Let us assume that

Inv holds before the start of the execution of this operation. Then, we know

that lcntr.s = |σs| ∧ lcntr.l = |σl|. Thus v = |σs|+ |σl| is the return value in

both abstract and concrete execution.

increment: First, we assume that Inv holds before the start of the incre-

ment operation. We need to show that Inv holds after each step and at the

end of the execution. Following Hoare-style notation, we can annotate the

implementation of inc with the predicates that hold before and after each

step. t denotes the thread-id of the thread that is executing this operation.

Inv ∧ La[t] = 〈σs, σl〉 ∧ lcntr.l = |σl|
x := lcntr.l + 1;
Inv ∧ x = |σl|+ 1

1We can extend the invariant with decrement operation by defining the equivalence

relation between σ and an integer n as, n = (the number of increments in σ- the number

of decrements in σ). This does not modify the proof method discussed in this section.

52 Chapter 3. Multi-view Data Types

lcntr.l := x; weakUpdate inc cntr
lcntr.l = |σl|+ 1 ∧ La[t] = 〈σs, σl · inc〉 ∧ Inv

At the second step, where x is assigned to lcntr.l, the abstract program

also executes one increment operation modifying the predicate to La[t] =

〈σs, σl · inc〉 after this step. Thus the invariant holds after the step. As

discussed before, no other concurrent threads modifies lcntr.l or lcntr.s.

Hence the correctness of this operation is not affected by the presence of any

concurrent steps.

merge: Similarly, we need to show that Inv holds after each step in the

merge. Assuming Inv holds before the merge, we can annotate the code for

merge with the predicates that hold before and after each step. The predi-

cate unlocked(gcntr) ∧ Inv indicates that immediately before the successful

execution of lock gcntr, gcntr is unlocked and the invariant holds.

unlocked(gcntr) ∧ Inv

lock gcntr;
locked(gcntr) ∧ Inv ∧ La[t] = 〈σs, σl〉 ∧ gcntr = |σg| ∧ lcntr.l = |σl|
gcntr = gcntr + lcntr.l;
locked(gcntr) ∧ Inv ∧ gcntr = |σg|+ |σl|
lcntr.l := 0;
lcntr.s = gcntr;
unlock gcntr; merge cntr
unlocked(gcntr) ∧ Astate = 〈σg · σl, 〉 ∧ La[i] = 〈σg · σl, ∅〉∧
gcntr = lcntr.s = |σg · σl| ∧ lcntr.l = |∅| ∧ Inv

Thus we proved that the implementation of the mergeable counter as given

in Algorithm 3.1 is correct.

3.6.2 Verification of AW-set

The implementation of AW-set consists of a binary search tree whose nodes

are in the global heap. The tree can be accessed and updated by all threads.

Each thread has a local object that has references to the shared tree in the

global heap. Thus the implementation of AW-set differs from that of the

counter in that the counter has no references to the shared object in its local

view. The proof for the correctness of the AW-set is hence more complex.

The concrete state of the tree is given by:

type GSet = {Node root, Vid vid}
type LSet = {Node root, Vid vid, List(<Node, Val>) added,

List(<Node, Vid>) removed}

3.6. Correctness 53

type Node = {Val item, List(VersionInfo) vinfo, Node left,
Node right}

type Vid = int
type VersionInfo = {Vid first, Vid last, Vid removed}
type AWSet = {GSet setg, ThreadLocal LSet setl}

The binary search tree that stores the item in the set is shared by the global

view setg and the local objects setl (of each thread). The full pseudocode

of the operations is given in Section 3.5.2.

We can assume the following:

• Two threads can concurrently invoke the merge function. However, the

merge operation is protected using locks. Hence, we can ignore the

interleaving of steps from two concurrent merges.

• Concurrent lookup and merge can happen. While lookup is traversing

the tree, the concurrent merge can modify it. We must prove that

lookup returns a correct result even in the presence of a concurrent

merge. To show that lookup returns the correct result, we assume that

Inv is maintained at each step. Later, we prove that the merge does

not violate the invariant.

• The update operations, add and remove, traverse the shared tree, but

never modify it. They only modify the thread-local objects, which are

not shared with other threads. Hence the update operations do not

affect any concurrent lookups and update operations in other threads.

A concurrent merge may affect the state observed during the traversal

in add and remove operations.

• A node is inserted into a binary search tree only during the merge. By

the property of the binary search tree, there is a unique node for an item

that can be found by the traversal on the tree. We do not prove this

property but assume this from the underlying tree implementation.

Definitions Similar to the counter, abstract state Astate consists of global

state σg and a local state La[t] per thread t. To simplify the notations in the

predicates, we use (σ̄s[t], σ̄l[t]) to represent the local state La[t]. We annotate

each operation in σg and σ̄s[t] with a version number. Two operations have the

same version number when they were merged in the same merge operation.

The operations in σl do not have version numbers. A version of a snapshot is

defined as the version of the last operation in the sequence. v(σ · op) = v(op).

The local snapshot σ̄s[t] is always a prefix of the global state σg.

54 Chapter 3. Multi-view Data Types

Concrete state Cstate consists of global object setg and for each thread t, a

local view setl.

Proof We define an Invariant Inv which is a predicate over the abstract

state and concrete state. First, we assume that Inv holds at every point in

the concrete execution. With that assumption, we can prove that any read

operation (here lookup) returns the correct result. Then we prove that no

step in the concrete execution of the operations that modify the state violates

Inv.

Figure 3.16 shows the invariants defined for the AW-set.

The invariant Inv consists of two predicates Invg, a predicate over global

states σg and setg, and Invls, a predicate over local states. Inv1..5 are param-

eterized with σ and root, which are instantiated in Invg and Invls.

Informally, Inv1(σ, root) and Inv1a(σ, root), establish a relation between

existing nodes in the tree in the concrete state to the corresponding opera-

tions in the abstract state. It says, if there is a node for item e in the tree

representing the set, then for every version info {f, l, r} of node, there exists

an add(e) operation at version f and version l in the abstract state, and if

r = 0, then there is no rem(e) after version l. If r 6= 0, there is rem(e) at

version r.

Similarly, Inv2 and Inv3 say that, if there is an add(e) or a rem(e) in

the abstract state, then there is a node with item e and version info {f, l, r}
corresponding to those operations. Inv4 defines a property of the version info

list of a node.

Correctness of lookup Algorithm 3.9 shows the lookup function with an-

notated predicates that hold before and after each step. We assume that Inv

holds before the start of the lookup and after each step. Later we show that

the operations that modify the state maintains the Inv after each step. Thus,

the concurrent operations do not affect the correctness of the lookup. Since

lookup does not modify the state, it does not violate the invariant Inv.

setl represents the local view of the current thread t that executes the

operation.

By Inv we know that setl.vid = v(σs). We have to show that

P (σs, σl) ⇐⇒ x = true, where x is the result of the lookup(e) and

P (σs, σl) ,
(
∃m1 ∈ σs · σl : m1 = add(e)∧
6 ∃m2 ∈ σs · σl : m2 = rem(e) ∧m1 m2

)

3.6. Correctness 55

Inv1(σ, root) , ∀node / root :node.item = e =⇒
∀{f, l, r} ∈ node.vinfo :

f ≤ l ∧ (r = 0 ∨ l < r) ∧(
f ≤ v(σ) =⇒ ∃m1 ∈ σ : f = v(m1) ∧m1 = add(e)

)
∧(

l ≤ v(σ) =⇒ ∃m2 ∈ σ : l = v(m2) ∧m2 = add(e)
)
∧(

r = 0 ∧ f ≤ v(σ) =⇒
6 ∃m3 ∈ σ : f < v(m3) ≤ v(σ) ∧m3 = rem(e)

)
∧(

r 6= 0 ∧ r ≤ v(σ) =⇒
∃m4 ∈ σ : v(m4) = r ∧m4 = rem(e)

)
∧(

r 6= 0 =⇒ 6 ∃m5 ∈ σ : f < v(m5) < r ∧m5 = rem(e)
)

Inv1a(σ, root) , ∃m1 ∈ σ : m1 = add(e) =⇒
(∃node / root :node.item = e∧
∃{f, l, r} ∈ node.vinfo : f ≤ v(m1) ≤ v(l))

∃m4 ∈ σ : v(m4) = r ∧m4 = rem(e)
)
∧(

r 6= 0 =⇒ 6 ∃m5 ∈ σ : f < v(m5) < r ∧m5 = rem(e)
)

Inv2(σ, root) , ∃m1 ∈ σ : m1 = add(e) =⇒
(∃node / root :node.item = e∧
∃{f, l, r} ∈ node.vinfo : f ≤ v(m1) ≤ v(l))

Inv3(σ, root) , ∃m2 ∈ σ : m2 = rem(e) =⇒
(∃node / root : node.item = e∧
∃{f, l, r} ∈ node.vinfo : f ≤ l < r ∧ r ≤ v(m2)∧
6 ∃{f ′, l′, r′} : l < f ′ ≤ v(m2))

Inv4(root) ,∀node / root : i < j ∧ {f, l, r} = node.vinfo[j]∧
{f ′, l′, r′} = node.vinfo[i] =⇒ f ′ ≤ l′ < r′ < f ≤ l

Inv5(σ, root) , Inv1(σ, root) ∧ Inv1a(σc, root) ∧ Inv2(σ, root)∧
Inv3(σ, root) ∧ Inv4(σ, root)

Invg(σg, setg) , v(σg) = setg .vid ∧ Inv5(σg, setg .root)

Invl(σl, setl) ,(∀m ∈ σl : m = add(e)∧ 6 ∃m′ ∈ σl : m′ = rem(e)∧
m m′ ⇐⇒ 〈e, 〉 ∈ setl .added)∧

(∀m ∈ σl : m = rem(e)∧ 6 ∃m′ ∈ σl,m′ = add(e)∧
m m′ ⇐⇒ 〈node, 〉 ∈ set .removed ∧ node.item = e)

Invls(σ̄s, σ̄l, setl) , ∀t : setl [t].vid = v(σ̄s[t])∧
Inv5(σ̄s[t], setl [t].root) ∧ Invl(σ̄l[t], setl [t])

Inv(Astate, Cstate) , Invg(σg, setg) ∧ Invls(σ̄s, σ̄l, setl)

Figure 3.16: Invariants of AW-set. node / root denotes node exists in the

subtree with root node root. m m′ shows that the operation m precedes

the operation m′ in the given sequence.

56 Chapter 3. Multi-view Data Types

We can rewrite the predicate to consider different cases as follows:

When the item was removed in the local updates.

P1(σs, σl) , ∃m2 ∈ σl : m2 = rem(e)∧
6 ∃m1 ∈ σl : m1 = add(e) ∧m2 m1

When the item was added in the local updates.

P2(σs, σl) , ∃m1 ∈ σl : m1 = add(e)∧
6 ∃m2 ∈ σl : m2 = rem(e) ∧m1 m2

When the item was neither added nor removed in the local updates, then

lookup the item in the snapshot.

P3(σs, σl) , ∃m1 ∈ σs : m1 = add(e)∧
(6 ∃m2 ∈ σs : m2 = rem(e) ∧ v(m1) < v(m2)

P (σs, σl) ⇐⇒ x = true ∼=

(P1(σs, σl) =⇒ x = false) ∧ (P2(σs, σl) =⇒ x = true)∧
((¬P1(σs, σl) ∧ ¬P2(σs, σl) =⇒ (P3(σs, σl) ⇐⇒ x = true)))

Case 1: Algorithm 3.9 Line 2-3. By Invl(σl, setl), P1 implies the item is in

setl.removed. Thus P1 =⇒ x = false.

Case 2: Similarly, following Invl(σl, setl), P2 implies the item is in setl.

added. Thus P2 =⇒ x = true.

Case 3: At line 7 (¬P1 ∧¬P2) holds. Hence, we need to show P3 ⇐⇒ x =

true. When there is no node for an item, the lookup returns false (Line 11).

By Inv2

6 ∃node : node.item = item =⇒ ¬P3

Case 4: At line 17, by Inv2(σs, setl.root)∧Inv3(σs, setl.root), the following

predicate holds.

(∃m1 = add(e) ∈ σs =⇒ ∃{f, l, r} ∈ node.vinfo[0..n− 1]

∧ f ≤ v(m1) ≤ l) ∧
(∃m2 = rem(e) ∈ σs =⇒ ∃{f, l, r} ∈ node.vinfo[0..n− 1]

∧ l < r ≤ v(m2))

3.6. Correctness 57

Algorithm 3.9 Lookup operation annotated with predicates. We assume

Inv holds at each step, but not included in the predicates.
1: function LOOKUP(AWSet set, Val item)
2: setl := getLocalObject(set.setl);
3: if item is in setl.removed then
4: x:= false
5: else if item is in setl.added then
6: x:= true
7: else
8: node := FINDNODE(item, setl.root)
9: if node = null then
10: 6 ∃node : node.item = item

11: x := false
12: ¬P3 ∧ x = false

13: else
14: x := false
15: k := node.vinfo.length()
16: ¬B1 ∧ ¬B2 ∧ x = false

17: while k > 0∧ x = false do
18: ¬B1 ∧ ¬B2 ∧ x = false

19: k:=k-1
20: v := node.vinfo.at(k) . item at index k
21: if v.removed = 0 ∧ v.first ≤ setl.vid then
22: x := true;
23: B1 ∧ x = true

24: else if v.first ≤ setl.vid < v.removed then
25: x := true;
26: B2 ∧ x = true

27: else if setl.vid > v.first then
28: ¬(B1 ∨B2)

29: k := 0
30: ¬(B1 ∨B2) ∧ k = 0 ∧ x = false

31: end if
32: (B1 ∨B2) ⇐⇒ x = true

33: end while
34: (B1 ∨B2) ⇐⇒ x = true

35: end if
36: (6 ∃node : node.item = item ∧ x = false ∧ ¬P3)∨
37: ∃node : node.item = item ∧ ((B1 ∨B2) ⇐⇒ x = true))

38: end if
39: return x; rval = weakRead lookup e
40: end function
41: P ⇐⇒ x = true

58 Chapter 3. Multi-view Data Types

The above condition is maintained for any concurrent modification because

we assume Inv holds at each step. Thus we can safely iterate over the list of

vinfo.

Let

B1 , ∃{f, l, r} ∈ node.vinfo[k..N − 1] : r = 0 ∧ f ≤ vid

B2 , ∃{f, l, r} ∈ node.vinfo[k..N − 1] : f ≤ vid < r

We can show that k = 0 =⇒ (B1 ∨B2 ⇐⇒ P3).

By Inv1:

B1 =⇒ ∃m1 : m1 = add(e) ∧ v(m1) ≤ v(σs)∧
6 ∃m2 : m2 = rem(e) ∧ v(m1) < v(m2) ≤ v(σs)

Thus B1 =⇒ P3. Similarly by Inv1 B2 =⇒ P3.

To prove P3 =⇒ B1 ∨B2, we show that ¬(B1 ∨B2) =⇒ ¬P3

¬(B1 ∨B2) =⇒ 6 ∃{f, l, r} : (r = 0 ∧ f ≤ vid) ∨ (f ≤ vid < r)

=⇒ 6 ∃{f, l, r} : (r = 0 ∧ f ≤ vid)∨
(r 6= 0 ∧ v ≤ vid ∧ vid < r)

By Inv2 ∧ Inv3

¬(B1 ∨B2) =⇒ ¬P3

Algorithm 3.9 shows the predicates that hold after each step of execution in

the lookup operation. At the end of the execution of the while loop, it has been

shown that B1∨B2 ⇐⇒ x = true. Thus we show that P ⇐⇒ x = true. We

consider the execution point of the lookup operation in the abstract execution

at line 39, where the result x is returned.

Thus we proved that the correctness of lookup operation. Next, we show

that the operations that modify the states, such as add, remove and merge,

maintain the invariant Inv at every step in their concrete execution.

Correctness of merge The merge operation is executed by a thread to

merge its local operations to the global set. While the thread executes merge,

the other threads can execute any operation concurrently, including merge.

However, as shown in Algorithm 3.10, the thread acquires the lock on global

set before executing the steps in the merge. Hence we can ignore the inter-

leaving of two concurrent merges.

3.6. Correctness 59

However, the merge is modifying the shared tree, while other threads con-

currently execute a lookup or traversal on the tree. Hence we must show that

Inv is maintained by each step in the merge. Since merge does not modify

the local objects (setl.added and setl.removed) of the other threads, we have

to consider only the predicates of Inv that affect the snapshots (σs and the

shared tree). Thus, we show that Invg ∧∀t : Inv5(σs[t], setl[t]) is maintained.

Since no other thread modifies the global state concurrently, we can safely as-

sume that this predicate is true at the start of the merge, and is not affected

by the concurrent threads.

There are four lines, where the tree is modified during the merge of adds.

Case 1: root is null. Hence, by Inv2 the tree is empty. Thus all existing

snapshots (∀t : σs[t]) are empty. At line 11, after a new node is added with

vinfo {newvid, newvid, 0}, ∀t : Inv1(σs[t], setl[t]) remains unchanged, because

newvid > v(σ̄s[t]).

Case 2: There exists a node for item. At line 21, a new tuple is

added to vinfo. Since the existing vinfo tuples are not modified, ∀t :

Inv2(σs[t], setl[t])∧ Inv3(σs[t], setl[t]) is maintained. Since newvid > v(σ̄s[t]),

Inv1(σ̄s[t], setl[t]) is also maintained.

Case 3: There exists a node for item. At line 24, an existing vinfo tuple

{f, l, 0} is modified to {f, newvid, 0}. By Inv1, {f, l, 0} indicates that there

exists an operation add(item) at version l. Since newvid > l, we can see that

Inv2 is maintained. Other existing vinfo tuples are not modified. Hence Inv3

and Inv1 are maintained.

Case 4: A node for the item does not exist. Thus by Inv2, there is no

add(e) operation in any snapshot σs, where v(σs ≤ v(σg)). Adding a new

node with vinfo {newvid, newvid, 0} does not affect the invariants on existing

snapshots because newvid > v(σs[t]).

In all the 4 cases, we can see that Inv4 is also maintained.

Similarly, during the remove, the only modification is to update the last

vinfo tuple {f, l, 0} to {f, l, newvid}, which maintains the invariant.

Now, we must show that the merge follows the specification of the AW-set

merge operation. We assume that the methods FINDNODE and INSERTNODE

follows the properties of Binary Search Tree, thus ensuring unique nodes for

the items added to the tree.

60 Chapter 3. Multi-view Data Types

The merge operation is specified as

mergeawset(σs · σc, (σs, σl)) = σs · σc · σ′
l

where

σ′
l ={m | m ∈ σl∧

(m = add(a)∧ 6 ∃m′ ∈ σl : m′ = rem(e) ∧m′follows m)

∨ (m = rem(a) ∧ (6 ∃m′ ∈ σc : m′ = add(a)

∧ ∃m′′ ∈ σl : m′′ = add(a) ∧m′′follows m))}

A rem(e) is included in σ′
l only if there is no concurrent add(e). The

specification also eliminates multiple operations on the same item e and only

takes the last operation. If add(e) is followed by rem(e), add(e) is eliminated

and vice-versa.

First, we define two predicates.

Q1 ,∀e ∈ itemsadded : ∃node : node.item = e

∧ {f, l, r} ∈ node.vinfo ∧ l = newvid ∧ r = 0

Q2 ,∀e ∈ itemsremoved : ∃node : node.item = e

∧ {f, l, r} ∈ node.vinfo ∧ r ≤ newvid∧
6 ∃{f ′, l′, r′} ∈ node.vinfo : l < f ′

We define two abstract variables itemsadded, itemsremoved to keep track

of the operations processed during the merge. The predicate Q1 says that

for each add(item) that is merged, there is a node for the item with vinfo

{f, newvid, 0} to reflect the fact the last add(item) so far is at the version

newvid.

After processing each item in setl.added, we add the item to itemsadded.

At the end of the for loop, we can see that itemsadded contains all the items

in setl.added and the predicate Q1 is true. By Invl(σl[t], setl[t]) and the

specification of orset, itemsadded includes all items added in σ′
l.

The predicate Q2 says that for each item removed, the item is marked

as removed at version newvid, by modifying the vinfo. At the end of the for

loop, Q2 is true. By Invl(σl[t], setl[t] and the specification of σ′
l, itemsremoved

consists of all items removed in σ′
l.

We can see that Q1 ∧ Q2 =⇒ Inv5(σg · σ′
l, setg). At line 55, when we

update setg.vid to newvid, we also execute the merge in the abstract execution.

Thus Invg holds on the updated global states.

3.6. Correctness 61

Algorithm 3.10 Invariants in merge operation of AW-set.

1: function MERGE(AWSet set)
2: setg := set.setg;
3: setl := getLocalObject(set.setl);
4: lock setg
5: newvid := setg.vid+1;
6: /* Merge adds */
7: itemsadded = ∅ ∧Q1

8: for 〈item,parent〉 in setl.added do
9: if setg.root = null then
10: n := NEWNODE(item)
11: LISTADD(n.vinfo, 〈 newvid, newvid, 0 〉)
12: setg.root := n
13: itemsadded := itemsadded ∪ {item} ∧Q1

14: else
15: if parent = null then
16: parent := setg.root
17: end if
18: n := FINDNODE(item, parent)
19: if n 6= null then
20: if LASTNODE(n.vinfo).removed > 0 then
21: LISTADD(n.vinfo, 〈newvid, newvid, 0〉)
22: itemsadded := itemsadded ∪ {item} ∧Q1

23: else
24: LASTNODE(n.vinfo).last := newvid
25: itemsadded := itemsadded ∪ {item} ∧Q1

26: end if
27: else
28: n := NEWNODE(item)
29: LISTADD(n.vinfo, 〈newvid, newvid, 0〉)
30: INSERTNODE(n, parent)
31: itemsadded := itemsadded ∪ {item} ∧Q1

32: end if
33: end if
34: end for
35: itemsadded = setl.added ∧Q1

36: itemsadded = {e|add(e) ∈ σ′l, σg · σ′l = mergeorset(σg, (σs[t], σl[t]))}
37:

38: /* Continued in Algorithm 3.11 */

62 Chapter 3. Multi-view Data Types

Algorithm 3.11 Algorithm 3.10 continued.

39: /* Merge removes */
40: itemsremoved = ∅ ∧Q2

41: for 〈n,obvid〉 in setl.removed do
42: v := TAIL(n.vinfo)
43: if v.removed 6= 0 then
44: itemsremoved = itemsremoved ∪ n.item ∧Q2

45: else if v.last > obvid then
46: ∃m ∈ σg : m = add(n.item) ∧ v(m) > setl.vid

47: else
48: v.removed := newvid
49: itemsremoved = itemsremoved ∪ n.item ∧Q2

50: end if
51: end for
52: itemsremoved = {e|rem(e) ∈ σ′l, σg · σ′l = mergeorset(σg, (σs[t], σl[t]))}
53: Q2

54: Inv5(σg · σ′l, setg)

55: setg.vid := newvid merge set
56: Invg
57: unlock setg
58: end function

Correctness of add and remove Since add and remove operations do not

modify the shared tree, they do not affect the invariant on the snapshots or

the global view. It is easy to show that Invl(σl, setl) is maintained at the end

of add and remove methods.

3.7 Discussion

In concurrent programs with shared-memory synchronization, data structures

are in general mutable and updates are executed in-place. The correctness

condition that is traditionally applied to these objects is linearizability [55].

Linearizability induces restrictions on possible parallelism and imposes high

cost due to coordination and synchronization. In contrast, replicated data

types for distributed systems [79, 23, 22] guarantee convergence while avoiding

coordination and facilitating asynchronous replication.

Akin to conflict-free replicated data types (CRDTs) in distributed systems,

we, therefore, proposed Multi-view Data Types which is designed based on the

global-local view model. In this model, a thread updates its private view of

an object and later merges its changes to the shared global view.

3.7. Discussion 63

The CRDTs designs used for geo-replicated distributed systems tend to

be too inefficient for our purpose because of their relatively expensive merge

operation. In geo-replicated systems, the cost of merge operation is negligible

compared to the high synchronization cost. Hence CRDTs are not designed

to keep the merge efficient. However, in shared memory concurrent programs,

since the merge is executed synchronously, it is essential to reduce the cost

of it. We identified important properties of multi-view objects that can be

employed for efficient implementations in shared memory systems. We dis-

cussed the implementation of several MDTs that guarantee these properties

thus providing scalable implementations.

Chapter 4

Mergeable Transactional

Memory

Destructible updates on shared objects require careful handling of concur-

rent accesses in multi-threaded programs. Paradigms such as Transactional

Memory (TM) [82] support the programmer to correctly synchronize access

to mutable shared data by serializing the transactional reads and writes. All

operations within a transaction are executed atomically and isolated from con-

current threads, thus providing a consistent view of the state. When transac-

tions concurrently operate on the same memory locations, with at least one

thread updating the variable, the operations conflict. Transactions thus fail

their serializability certification check and have to re-execute [78].

Semantically, serializability is unnecessarily strict for a multitude of ap-

plications. For example, Algorithm 4.1 shows the code snippet for K-means

clustering from the STAMP benchmark suite [70]. The K-means algorithm

partitions n data points (given as x,y coordinates) into k clusters such that

the total distance for the data points to their respective cluster center is min-

imized. In each iteration, a thread picks up a data point p, finds its nearest

cluster center and updates the cluster center. Classical TMs serialize all trans-

actions that access the same cluster center. However, the only requirement

for the correctness of the algorithm is that, after all the points have been

processed, cluster.points and cluster.count must contain the sum of

all points and the number of points that belong to that cluster, respectively.

Even with relaxed transactions [75, 74, 26], conflicts and hence aborts can still

arise when updates cannot be serialized.

In this chapter, we discuss Mergeable Transactional Memory (MTM) which

implements a consistency semantics that allows for more scalability even un-

der contention. Instead of aborting and re-executing, object versions from

conflicting updates are merged using data-type specific semantics.

66 Chapter 4. Mergeable Transactional Memory

Algorithm 4.1 Pseudocode for parallel K-means clustering algorithm using

STM.
function KMEANS(k, points, numIterations)

chunks = divide points into N chunks
for i in 0..k do

clusters[i].center = a random point from points
end for
for loop in 1..numIterations do

In Parallel
for n in 1..N do

thread[n].CLUSTER(clusters, chunks[n])
end for

for i do in 0..k
clusters[i].center = cluster.points/cluster.count;

end for
end for
return clusters

end function

function CLUSTER(clusters, points)
for p in points do

cluster = findNearestCluster(clusters, p)
beginTxn

cluster.count++;
cluster.points += p; //add x,y coordinates

endTxn
end for

end function

Overview

• We introduce MTM in Section 4.1, and discuss the semantics of MTM

informally.

• We define a call by need core calculus for MTM and discuss the opera-

tional semantics of MTM in Section 4.2.

• In Section 4.3, we describe an algorithm that implements MTM seman-

tics.

• In Section 4.4, we discuss how to use multi-view objects in MTM.

4.1. Mergeable transactions 67

4.1 Mergeable transactions

MTM allows to compose operations on shared mergeable objects. Akin to

Software Transactional Memory (STM), MTM guarantees atomicity, isola-

tion and (weak) consistency for dynamic transactions operating on mergeable

objects. A mergeable object is an instance of a data type that defines a merge

operation. Two versions of a mergeable object can be merged to get a new ver-

sion. In Section 4.4, we discuss the relation between Multi-view Data Types

and the mergeable objects used in MTM.

Similar to snapshot isolation [75], MTM transactions read from a consis-

tent snapshot and operate concurrently on shared objects. Instead of aborting

and re-executing in case of conflicts, transactions commit their changes by

merging states of concurrently updated objects. All updates from a transac-

tion become visible together. An efficient merge operation enables MTM to

execute multiple updates in parallel to other threads and execute the merge

inside the critical section.

Semantics of Execution The shared objects are available in a global mem-

ory. At any (logical) time, the global state is a consistent snapshot that in-

cludes all updates from transactions that have committed. A snapshot is

created when a transaction commits.

When a transaction starts, it sees a consistent snapshot of the global state

which was created before the start of the transaction. The transaction then

creates a local copy of this consistent snapshots. A transaction always exe-

cutes the reads and writes on its local snapshot. Thus, no updates that were

committed after the snapshot was created are visible to the transaction. For

each update operations, the transaction modifies its local snapshot. At the

commit, it merges its local snapshot to the global state to create a new snap-

shot. The merge incorporates all the local updates into the global state using

the type-specific merge operation of the shared objects.

The snapshots evolve linearly, similar to snapshot isolation [75] and seri-

alizability [78]. Figure 4.1 gives an example. The states (numbered 0-5) are

snapshots. Snapshot s0 is the initial state. Transaction t1 reads from s0. It

executes updates on its local copy of the snapshot and buffers the modified

state in st1 . Concurrently, another transaction t2 reads from s0 and buffers

its updates in st2 . During the commit, t1 merges its changes to the latest

snapshot s0 to create a new snapshot s1. Then, t2 merges its changes with

the latest snapshot, which is s1, to get s2. While t2 is committing, t3 reads

snapshot s1. Any number of concurrent transactions may execute on a par-

68 Chapter 4. Mergeable Transactional Memory

ticular snapshot. However, the commits are serialized so that the snapshots

are totally ordered.

s0

s1

s2

s3

s4

s5

st1

st2

st3 st4

st5

Figure 4.1: Evolution of snapshots in MTM. si: snapshot i. sti : state of

transaction ti.

4.2 Operational semantics

To specify the consistency semantics of MTM transactions, we introduce a call-

by-need core calculus, Λmtm, with an operational semantics based on transition

rules. Figure 4.2 shows the syntax of Λmtm. It relies on disjoint sets of variables

(V ar) and references (Ref). A value is either a reference r, a mergeable value

m, a function, a monadic return, an integer i, or unit ().

Expressions are given as values, variables, function application, monadic

bind, thread fork, MTM transactions, operations on objects, and arithmetic

expressions. The expressions marked in gray do not appear in source programs

but represent dynamically generated locations and intermediate system states

arising during commits.

4.2. Operational semantics 69

x ∈ Var, r ∈ Ref

v ∈ Val ::= r | m | λx.e | return e | i | ()
e ∈ Exp ::= v | x | e e | e >>= e | forkIO e |

eventually e | commit Θ e | new e |
read e | write e | e+ e | e ∗ e | ...

Figure 4.2: Syntax of Λmtm.

t ∈ThreadId

Θ∈Heap = Ref ⇀ Exp

P ∈ThreadPool = ThreadId ⇀ Exp

Figure 4.3: Λmtm: State-related definitions.

A program state P ; Θ is a pair consisting of a thread pool P (partial

mapping of thread identifiers to expressions) and a heap Θ (Figure 4.3). A

reference l corresponds to an object allocated on the heap Θ. Dereferencing

Θ(l) yields the associated object, while a heap update Θ[l 7→ e] returns a heap

that is identical to Θ, but maps l to e. Similarly, we denote updates in the

thread pool P by P{t 7→ e}.
The evaluation of a program starts in an initial state {t0 7→ e}; ∅ with an

empty heap and the main thread t0. The evaluation stops when the program

reaches a final state of the form {t0 7→ v0, . . . , tn 7→ vn}; Θ. The reduction

rules in Figure 4.4 define the semantics of the language constructs. Each

global reduction step � nondeterministically selects a thread from P , thus

modeling an arbitrary thread scheduling.

The IO Monad is the top-level evaluation context. Rule IO-Monad en-

ables the execution of reductions within the current context. Spawning a

thread (rule Spawn) adds a new entry with a fresh thread identifier to the

thread pool and returns unit to the parent thread. A transactional expression

is evaluated against a copy of the current heap (rule Txn), possibly using

multiple transactional transitions denoted by ⇒.

Within a transaction, reading an object returns the value referenced in

the heap (rule Read). Similarly, after applying the updates, the resulting

value is written back to the heap (rule Write), replacing the previous value.

When allocating a new object, rule New ensures that the heap is extended

using a fresh reference (i.e. one that has not been used in the heap or in

concurrently running threads). The initial value of the object is then added

to the transaction-local heap instance under the new reference.

Finally, an evaluated transaction is represented as a commit record con-

70 Chapter 4. Mergeable Transactional Memory

Evaluation contexts:

E ::= [] e | []>>= e | [] + e | v + [] | [] ∗ e | ...

Expression evaluation →:

(λx.e) e′ → e[e′/x]
e→ e′

E[e]→ E[e′]
i+ j → i⊕ j i ∗ j → i⊗ j

return e′ >>= e→ e e′

Thread evaluation �:

t′ fresh

P{t 7→ E[forkIO m]}; Θ� P{t 7→ E[return ()], t′ 7→ m}; Θ
Spawn

e; Θ⇒ return e′; Θ′

P{t 7→ E[eventually e]}; Θ� P{t 7→ E[commit Θ′ e′]}; Θ
Txn

P{t 7→ E[commit Θ′ e]}; Θ� P{t 7→ E[return e]}; Θ dΘ′ Commit

e→ e′

P{t 7→ E[e]}; Θ� P{t 7→ E[e′]}; Θ
IO-Monad

Evaluation steps in transaction ⇒:

Θ(r) = m

E[read r]; Θ⇒ E[return m]; Θ
Read

Θ(r) = m

E[write r]; Θ⇒ E[return ()]; Θ[r 7→ m]
Write

r fresh

E[new m]; Θ⇒ E[return r]; Θ[r 7→ m]
New

e→ e′

E[e]; Θ⇒ E[e′]; Θ
MTM-Monad

Figure 4.4: Operational Semantics for Λmtm.

4.2. Operational semantics 71

sisting of the local heap copy, containing possible modifications, and the ex-

pression to be returned. Rule Commit then applies the heap modifications

atomically to the globally shared heap and returns. The changes from the

local heap copy Θ′ are propagated to the current globally shared heap Θ

by merging the individual entries with the thread-local ones. The function

d :: Heap× Heap→ Heap defines the heap merge:

(Θ dΘ′)(r) =


merge m n if Θ(r) = m,Θ′(r) = n

m if r /∈ dom(Θ),Θ′(r) = m

n if r /∈ dom(Θ′),Θ(r) = n

4.2.1 Properties of MTM

Based on the operational semantics for Λmtm, we can now further characterize

MTM transactions.

MTM allows non-serializable transactions. By rule Txn, the heap-modifying

side-effects of a transaction eventually e are not immediately applied

to the shared global state but deferred to another reduction step under

rule Commit. Depending on the scheduling, other transactions may also

execute without committing their changes yet. If there are read-write

dependencies between the transactions, it is not possible to construct a

reduction sequence yielding the same final state.

All updates are eventually applied to the shared state. The type-specific merge

during the commit ensures that concurrent updates are merged deter-

ministically into a consistent state of the object.

All updates performed by a transaction are made visible atomically. By

rule Commit, all updates from a transaction are merged to the globally

shared heap in one step, which guarantees atomicity.

All reads performed by a transaction appear to be executed at a single point

in time. In addition to publishing the updates atomically, transactions

are executed on a consistent snapshot; i.e., a snapshot in which either all

updates from some transaction that committed before the snapshot time

are visible or none. All read operations within a transaction are guaran-

teed to see the state of objects from a consistent snapshot taken at the

time when the transaction started. Rule Txn shows that all operations

inside a transaction are executed against the same state Θ. Although

there could be concurrently executing transactions, their updates are

not globally visible.

72 Chapter 4. Mergeable Transactional Memory

4.3 Algorithm

An algorithm for implementing the semantics of MTM transactions is given in

algorithm 4.2. To guarantee that a transaction never tries to read an object

that has been modified by another transaction while executing (leading to a

read-write conflict), we apply a multi-versioning scheme for mergeable objects.

As previous studies have shown [75, 74, 26], multi-versioning of objects can

be efficiently employed to achieve permissive transactions.

A shared mutable reference to a mergeable object which can be accessed in

a MTM transaction is represented by var. A var references a list of versions.

Each version contains a value of the object and its version identifier.

A transaction txn maintains a snapshot id sid in addition to a read set

and a write set which are represented as maps. When the transaction starts,

its sid is assigned to be the current value of a globalclock. The globalclock is

expected to generate unique monotonic numbers so that versions are totally

ordered. The operations of the transaction are executed on the snapshot

identified by this sid, which includes updates from all transactions committed

before this time.

A var is accessed using the READ and WRITE methods. When reading, if

the write set or read set contains a local copy of var, it is returned. Otherwise,

the version corresponding to the transaction’s snapshot-id (sid) is obtained

and inserted in the read set. A new value of the object is written back to

var using method WRITE, which inserts the value in the write set. Reading

an object does not necessarily pass over the entire object. Depending on the

actual representation of the object, a read might only be reading a reference.

When committing, the transaction acquires a lock on all objects in its

write set. This ensures atomicity when two transactions try to commit to the

same object. To prevent deadlocks, locks are obtained in a predefined order.

Next, a new version id is generated from the current global clock value. The

objects updated in the transaction are then merged with the latest version

available, using the objects’ merge method, thereby creating new versions.

Algorithm 4.3 shows the versioned read and write functions. The func-

tion WRITENEWVERSION adds the new value with its vid to the head of list

of versions. Since globalclock is incremented during commit, the sid of a

transaction always denotes the version id of a committed transaction or a

concurrently committing transaction. When reading from the list of versions

of a var, if the required version is not available, a concurrent transaction

might be committing that version. Hence, it waits for the lock to be released

before retrieving a version with an id equal to or smaller than its sid. If

4.3. Algorithm 73

Algorithm 4.2 MTM Algorithm.
1: Transaction : {VersionId sid, Map writeset, Map readset}
2: Var : {Versions versions, Lock lock}
3: Versions : [{Value val, VersionId vid}]
4: VersionId : int
5: function BEGINTRANSACTION(Transaction txn)
6: txn.sid ← globalclock
7: txn.writeset ← ∅
8: txn.readset ← ∅
9: end function
10:

11: function READ(Var var,Transaction txn)
12: if txn.writeset.contains(var) then
13: val ← txn.writeset.lookup(var) . read your own

writes
14: else if txn.readset.contains(var) then
15: val ← txn.readset.lookup(var)
16: else
17: val ← READVERSION(var, txn.sid)
18: txn.readset.add(var,val)
19: end if
20: return val
21: end function
22:

23: function WRITE(Var var, Value val, Transaction txn)
24: txn.writeset.insert(var,val)
25: end function
26:

27: function COMMIT(Transaction txn)
28: lockAll(txn.writeset)
29: versionid ← ++globalclock
30: for all (var,val) ∈ txn.writeset do
31: v’ ← READLATESTVERSION(var)
32: newval ← merge(v’,val)
33: WRITENEWVERSION(var, newval, versionid)
34: end for
35: unlockAll(txn.writeset)
36: end function

74 Chapter 4. Mergeable Transactional Memory

Algorithm 4.3 Versioned read and write operations in MTM.
1: function READVERSION(Var var, VersionId versionid)
2: v ← var.versions
3: if v.head.versionid ≥ vid then
4: // Required version is available
5: vr ← v.head
6: else
7: //Wait for a concurrent committer to write required

version
8: waituntil (not locked(var))
9: vr ← var.versions.head
10: end if
11: while vr.versionid > versionid do
12: vr ← vr.next
13: end while
14: return vr.val
15: end function
16:

17: function READLATESTVERSION(Var var)
18: return var.versions.head.val
19: end function
20:

21: function WRITENEWVERSION(Var var, Value val, VersionId
versionid)

22: v ← newVersion(val, versionid)
23: var.versions.addHead(v)
24: end function

the lock is released, it means that there is no other transaction which could

potentially commit a version required by this transaction. This guarantees

that a transaction always reads from a consistent snapshot identified by its

sid.

4.3.1 MTM in Haskell

We implemented a prototype of MTM in Haskell. Harris et al. [46] have

highlighted the benefits of Haskell’s monadic type system for composing STM

actions and restricting access to transactional variables to the STM monad.

MTM is implemented analogously to the STM monad, though with different

semantics.

For the MTM programming model, we provide an MTM monad (Fig-

4.3. Algorithm 75

data MTM a = ...
data CVar a = ...

-- MTM Functions
eventually :: MTM a -> IO a
newCVar :: Mergeable a => a -> MTM (CVar a)
readCVar :: Mergeable a => CVar a -> MTM a
modifyCVar :: Mergeable a => CVar a -> (a -> a) -> MTM a

-- Mergeable Objects
class Mergeable a where

merge :: a -> a -> a

Figure 4.5: Interface for MTM in Haskell.

ure 4.5). The shared mergeable objects used in MTM transactions are of

type CVar; CVar1 stands for convergent variables indicating that concur-

rent versions converge into a consistent state. Every operation executed on a

CVar must be an MTM action. These actions can be sequentially combined

using monadic bind. The function

eventually :: MTM a -> IO a

takes an MTM action, executes it, and returns the result. Using function

modifyCVar to update a CVar guarantees that the mergeable values does

not escape a transaction’s scope.

The type specification ensures that mergeable objects are accessed only

inside a MTM transaction. These objects must be of class Mergeable
and define a merge function. Figure 4.6 shows the implementation of two

mergeable objects. The Counter contains two integers, one representing

the global value and the other the thread-local increments. The merge adds

the local increments to the global value g and resets the local increments to

0. The LWWRegister implements a last-writer-wins register, where the last

merge overwrites the previous value.

Example The following example shows how to program with CVars and

the MTM monad in Haskell.

addToBag :: Int -> CVar (Bag Int) -> CVar (Counter) -> MTM [
Int]

addToBag e bag size = do {

1The name MVar for mergeable variables is already used in Haskell.

76 Chapter 4. Mergeable Transactional Memory

-- Mergeable Counter
data Counter = Counter Int Int
instance Mergeable Counter where
merge (Counter g _) (Counter _ i) = Counter (g+i) 0

newCounter::Counter
newCounter = Counter 0 0
value :: Counter -> Int
value Counter g l = g+l
incrBy :: Int -> Counter -> Counter
incrBy i (Counter g l) =
Counter g (l+i)

-- LWWRegister
type LWWReg = Int
instance Mergeable LWWReg where

merge g l = l

-- Mergeable Bag
data Bag a = Bag [[a]] [a]
instance CRDT (Bag a) where
merge (Bag g _) (Bag _ i) =
Bag (i:g) []

newIntBag :: Bag Int
newIntBag = Bag [[]] []
add :: a -> Bag a -> Bag a
add e (Bag g l) = Bag g (e:l)

Figure 4.6: Mergeable objects in Haskell.

4.4. Relation to MDTs 77

; b <- modifyCVar bag (add e)
; s <- modifyCVar size (incrBy 1)
; return (toList b)

}

The function addToBag inserts an element to some bag and increments a

counter representing the size of the bag. It then returns the elements from

the bag in a list, including the added element e, but excluding elements that

have been concurrently added. When calling the function using

eventually addToBag x b s

with a bag b and size counter s, the library guarantees that both shared

objects are atomically updated and have consistent values.

4.4 Relation to MDTs

Multi-view Data Types define a merge operation and provide an efficient im-

plementation that can handle multiple versions (views) and the merge oper-

ation. A question that naturally follows is whether we can use multi-view

objects (pure mergeable) in MTM.

To support multi-versioned snapshots, multi-view objects must provide

multiple versions of the global view. However, the global-local view model

defines only one global view. There are two ways to use multi-view objects in

MTM.

1. MTM transaction handle the version management.

MTM algorithm described in Section 4.3 does version management

within the transaction. The object versions are treated as immutable

values that are cloned to create new versions. We can use multi-view

objects similarly in MTM. However, treating them as black boxes would

not let us exploit their efficient designs to handle multiple versions.

2. MDT does versioning of its global view.

Although it was not a property of the global-local view model, most

of the MDT implementations (Section 4.4.2) are suitable for support-

ing a multi-versioned global view. Hence, we argue that extending the

MDT model to support multiple versions of the global view and make

the multi-view objects do their version management would enable us to

exploit the performance benefit of MTM fully.

Figure 4.7 shows a multi-view object extended to support MTM. Com-

pared to Figure 3.1, the global view in Figure 4.7 is multi-versioned. Each

78 Chapter 4. Mergeable Transactional Memory

vn ... v1 v0

o1l o2l o3l

Figure 4.7: A multi-view object with multi-versioned global view. vi: version

i of the global view. oil: thread-local view of thread i.

merge creates a new version of the global view. An MTM transaction reads

from a specific version from the list of global versions. Thus the local view of

each transaction(thread) is derived from a specific version of the global view.

4.4.1 Extensions to Global-Local View Model

We extend the global-local view model to support the use of MDTs in MTM.

The modifications of the abstract model from Figure 3.13 is shown in Fig-

ure 4.8. The global view is now a map of version id to a version ([vid 7→ σ]).

The version ids are totally ordered. The initial version of the object consists

of version 0 mapping to an empty sequence of operations (Rule Alloc). The

pull operation provides a version id to get a specific version (Rule Pull).

The merge operation executes the type-specific merge on the latest version of

the global view (Rule Merge). The weak read and weak update operations

execute on the local view and hence not affected by these extensions.

MTM assumes that updates to all shared mutable objects are weak updates

that can be merged at the time of commit. Strong operations can result in

conflicts which cannot be merged or serialized at the time of commit. Hence

we consider only purely mergeable MDTs and do not discuss MDTs with

strong operations.

4.4.2 Impact on the implementation

Although not intended for the design of multi-view objects, most of the im-

plementations discussed in Section 3.5.2 can support a multi-versioned global

4.4. Relation to MDTs 79

newaddr(Γ) = r

〈new τ, (Λ,Γ)〉 ↪→ 〈r, (Λ,Γ[r 7→ [0 7→ ∅]])〉
Alloc

vid 7→ σg ∈ Γ(r)

〈E[pull vid r], (Θ,Λ,Γ)〉 ↪→ 〈E[skip], (Λ[r 7→ 〈σg, ∅〉],Γ)〉
Pull

lastvid 7→ σs · σc ∈ Γ(r)

Λ(r) = 〈σs, σl〉 type(r) = τ mergeτ (σs · σc, 〈σs, σl〉) = σg

〈merge r, (Λ,Γ)〉 ↪→ 〈(), (Λ[r 7→ 〈σg, ∅〉],Γ[r[lastvid+ 1 7→ σg]])〉
Merge

Figure 4.8: Operations in GL model extended to support multi-versioned

global view.

view. We discuss how the implementations of the counter, the bag and the

add-wins set can be used in MTM.

Counter The global view of the counter is represented by an integer. To

support multiple versions of the global view, the counter replaces the integer

by a map of version ids to integers. Thus the state of the new MTM-enabled

counter is defined as follows:

type Counter = {
Map<VersionId, int> gcntrmap,
ThreadLocal CounterLocal lcntr

}

The operations that access the global view also must be adapted to operate

on the required version.

Bag As we discussed in Section 3.5, copying the entire object for each ver-

sion is only suitable for objects that are small in size, such as the counter.

Fortunately, the add only bag implementation (Section 3.5.2) already provides

a multi-versioning scheme in the form of a multi-headed list. To keep multiple

versions of the global view, the bag can store a map of version ids to the heads

of the list resulting from each merge. Figure 4.9 shows a map of version ids

to the lists resulting from the merge operation of two threads as shown in

Figure 3.14.

80 Chapter 4. Mergeable Transactional Memory

T1

T2

head

v3 7→ • | v2 7→ • | v1 7→ •

Figure 4.9: Multiple global versions in Add only bag. Each version vi points

to the head of the list resulting from a merge operation. The dotted boxes

represents the the thread-local heads before the merge.

AW-set The implementation of AW-set has a version management system

internally. Each node stores the metadata regarding the versions in which the

item was added or removed. It keeps the entire history of the versions; thus all

the global versions are immediately available without any modification to the

design. This information is already used in the lookup operation that looks

up an item on a particular version.

4.5 Discussion

MTM provides a novel semantics as an alternative to the often too strict

semantics of serializable transactions. The relaxed semantics together with

mergeable semantics embedded in the data types prevents unnecessary aborts

and thus improves the overall performance.

Despite the scalable semantics, MTM comes with its overhead. MTM

needs additional memory for storing multiple versions of each object as well

as the metadata related to each version. A long-running transaction must

traverse the entire list of versions to find an old version that it requires.

As in any other multi-versioning algorithm, MTM implementations must

also remove old versions to limit the memory consumption. The garbage col-

lection mechanism must ensure when it is safe to remove a version so that

versions required by long running transactions are still reachable. The pro-

cessing needed for garbage collection would thus be an additional overhead

compared to traditional STMs. Nevertheless, it will be an exciting future

work to find an efficient garbage collection algorithm tailored for MTM.

Current MTM semantics allows only weak operations within the trans-

action. To allow other multi-view objects with strong operations or other

non-mergeable traditional data types, we must extend the semantics of MTM.

4.5. Discussion 81

This extension will broaden the applicability of MTM to more programs that

may exploit the mergeability of some data types while keeping the traditional

serializable semantics for others.

Chapter 5

Evaluation

To evaluate the performance and scalability of Multi-view Data Types (MDT)

and MTM, we provide several microbenchmarks and application benchmarks.

In Section 5.1.1, we describe the implementation of the MDTs and the

reference implementation of the corresponding linearizable data type. We im-

plemented and evaluated counter, queue, and AW-set. The microbenchmarks

in Section 5.1.2 shows that MDT implementations perform and scale better

compared to the linearizable implementations. We also discuss some of the

application benchmarks that use MDTs. We evaluated a breadth-first traver-

sal on a graph using the MDT queue, and work stealing queue implemented

using the global-local view model. These application benchmarks show the us-

ability of MDTs in common algorithms and evaluate the scalability compared

to using linearizable data types.

In Section 5.2.1, we discuss the implementation of MTM in Haskell. We

evaluated MTM using several microbenchmarks and an application, as pre-

sented in Section 5.2.2.

5.1 Multi-view Data Types

5.1.1 Implementation

We implemented the MDTs in Java. The implementation followed the generic

pattern described in Section 3.5.2. Each MDT is represented by a class. The

local view is defined as a nested class and instantiated in the MDT as a

ThreadLocal object. An object with ThreadLocal descriptor has a thread-

local copy of the object independently initialized.1 Thus, it allows each thread

to maintain its own independent thread-local view.

1Many programming languages support some form of thread-local storage (TLS). Java

has a ThreadLocal class that provides thread-local variables. In C++, one can have

thread local variables with the help of thread_specific_ptr from the boost library.

A mergeable data type can also implement its own thread local storage by mapping thread

ids to different instances of the object.

84 Chapter 5. Evaluation

Counter The global view of the counter is an AtomicLong that provides

atomic update methods. The local view is a class that consists of two in-

tegers: one for the snapshot and one for the local increments. The merge

uses the atomic addAndGet method of the AtomicLong. The access to the

AtomicLong object is the only point where any synchronization is needed.

The strong operations such as strongInc and strongDec also use the atomic

methods of the AtomicLong global view.

To compare the performance of the Mergeable Counter, we also imple-

mented a linearizable counter. The linearizable counter is an AtomicLong

object and uses its atomic methods to increment and decrement.

We also implemented the counter in C++ using the boost library. The

global view is an atomic integer and the snapshot and the local increments

in the local view, similar to java implementation are thread-local variables

defined using thread_specific_ptr of the boost library.

Queue To evaluate the scalability of the hybrid mergeable queue (referred

to as mergeable queue), we implemented four different queues in Java. All

four designs implement the queue as a single-linked list with a head pointing

to the first node and a tail pointer pointing to the last node. The enqueues

add items to the end of the list and dequeues removes items from the head.

The four implementations differ in their semantics (linearizable vs. mergeable)

and the concurrency control mechanism (lock-based vs. lock-free).

1. Lock-based linearizable (LL) queue based on Michael and Scott’s 2-lock

queue [69]: This implementation relies on two locks: a head lock and

a tail lock. A thread acquires the tail lock when it enqueues an item.

The head lock is acquired during a dequeue. The head always points

to a dummy node, so that an enqueue and a dequeue can be executed

concurrently without taking each other’s locks.

2. Lock-based mergeable (ML) queue: Similar to the LL-queue, it has a

head lock and tail lock, and the global queue’s head points to a dummy

node. The local view consists of a linked list that accumulates all locally

enqueued items. The merge acquires the tail lock and appends the local

linked list to the tail of the global list. The process is similar to the

enqueue in LL-queue except that the merge adds more than one item at

once instead of one item during the enqueue. The dequeue is similar to

the LL-queue where it acquires the tail lock.

3. Lock-free linearizable (LLF) queue based on the Michael and Scott’s

lock-free queue algorithm [69]: This implementation, similar to the LL-

5.1. Multi-view Data Types 85

private transient volatile Node<T> head =
new Node<T>(null, null);

private transient volatile Node<T> tail = head;
ThreadLocal<LocalQ> localView;

public void merge(){
Node<T> localhead = localView.get().head;
if(localhead == null){

//nothing to merge;
return;

}
Node<T> localtail = localView.get().tail;
Node<T> curtail;
while(true){
curtail = tail;
Node<T> next = curtail.getNext();
if(curtail == tail){

if(next == null){
if(curtail.casNext(next, localhead)){

casTail(curtail, localtail);
break;

}
}
else {

casTail(curtail,next);
}

}
}
//Remove all merged items from local view.
localView.get().reset(null);

}

Figure 5.1: Code for lock-free merge in MLF-queue.

86 Chapter 5. Evaluation

queue, has a head that always points to a dummy node. It uses compare

and swap to handle concurrent accesses to head and tail pointers. This

is a widely used algorithm to implement a concurrent linearizable queue

and is used to implement the ConcurrentLinkedQueue of the Java

Concurrent Collections in OpenJDK (jdk7)2.

4. Lock-free mergeable queue (MLF): This variant uses a similar algorithm

as the LLF-queue. The merge adapts the algorithm of enqueue in the

LLF-queue to incorporate insertion of multiple nodes at once. Figure 5.1

shows the lock-free merge using compare and set adapted from the lin-

earizable queue.

Add-Wins Set We compared the performance of Add-Wins Set (AW-set)

with two versions of linearizable sets. All three implementations use a bi-

nary tree as the underlying data structure. The first linearizable imple-

mentation acquires exclusive access to the tree for each operation using the

synchronized primitive provided in Java. The second linearizable imple-

mentation is a non-blocking concurrent binary search tree presented in [32].

In this implementation, modifications to different parts of the tree do not in-

terfere with one another, resulting in less contention. The implementation of

AW-set follows the algorithm presented in Section 3.5.2.

Applications

We also implemented and evaluated two applications that can leverage the

global-local view model.

Breadth First Search on a graph Breadth First Search (BFS) is an algo-

rithm for traversing a graph data structure. It is used to solve many problems

in graph theory such as finding the shortest path or connected components.

The sequential BFS algorithm starts from a vertex and adds it to a traversal

queue which is initially empty. At each step, the algorithm dequeues a vertex

from the queue, processes it, marks it as processed and adds it neighbors to

the queue. The traversal finishes when the queue is empty.

The parallel BFS algorithm uses two queues: one for the current level and

one for the next level. At each step, the threads dequeue a vertex from the

current level to process and add its neighbors to the next-level queue to be

processed later. When the current-level queue is empty, the threads execute a

2http://openjdk.java.net/

5.1. Multi-view Data Types 87

barrier and wait until all threads have finished on the current level. The next

iteration uses the next-level queue as the current-level queue.

Since in each iteration parallel threads are accessing both queues, we need

to use thread-safe concurrent queues. Typically, a linearizable queue will be

used. However, the algorithm does not require linearizable enqueues. At the

same time, if an item is dequeued twice, it will lead to redundant work in

the best case (if the processing computation is idempotent), or it will lead to

incorrect results in the worst case. Hence, we can use our hybrid mergeable

queue to speed up the parallel BFS algorithm. In this version, the threads

merge the next-level queue at the end of each level so that the local enqueues

are visible to the other threads.

We implemented a sequential BFS algorithm to calculate the sum of the

numerical label of the vertices in the graph. We implemented the parallel

versions using linearizable queues and hybrid mergeable queues. We used

JGraphT3, a free Java graph library, to implement graph objects. The se-

quential BFS algorithm uses the BreadthFirstIterator provided by the

library. The library does not provide parallel algorithms. Hence, we im-

plemented a ParallelBFSIterator that uses two-level queues. Figure 5.2

shows the code of ParallelBFSIterator using mergeable lock-free queues. The

threads use the iterator’s next function to traverse the graph. The implemen-

tation using linearizable queue is similar except that the levelDone method

do not execute a merge. In the real implementation, ParallelBFSIterator is

an abstract class that defines the common methods, and we have subclasses

for the iterator with linearizable and mergeable queues.

Work-stealing Queue We further implemented the work-stealing queue

designed using the global-local view model. The implementation uses a

double-linked list for the global queue and the local queue. Similar to the

hybrid mergeable queue, it uses two locks, a head lock and a tail local to

protect the global queue during concurrent dequeues and merges. The access

to the local queue does not require any concurrency control primitive as it is

only accessed by the owner thread.

To compare its scalability, we also implemented the work-stealing queue

of the Cilk runtime, that has a queue per thread. This version also uses a

linked list for its queues. Accesses to the local queues are protected by locks

to handle concurrent access by the owner thread and the thieves.

3http://jgrapht.org/

88 Chapter 5. Evaluation

public class ParallelBFSIterator<V, E> {
protected Graph<V, E> graph;
protected V startVertex;
private ConcurrentHashMap<V,V> seen;
private MQueue<V> currentLevel;
private MQueue<V> nextLevel;

public V next(){
V nextVertex = currentLevel.dequeue();;
if(nextVertex == null){

levelDone();
}
else {

addNeighboursOf(nextVertex);
}
return nextVertex;

}
private void addNeighboursOf(V vertex){

for(V n: Graphs.neighborListOf(graph, vertex)){
V vseen = seen.putIfAbsent(n, vertex);
if(vseen == null){

nextLevel.enqueue(n);
}

}
}
protected void levelDone(){
nextLevel.merge();

}
public boolean hasNext(){
return !(currentLevel.isEmpty() && nextLevel.isEmpty());

}
public void nextLevel(){
MQueue<V> q = nextLevel;
nextLevel = currentLevel;
currentLevel = q;

}
}

Figure 5.2: Code for ParallelBFSIterator using mergeable queue. Constructor

and other less significant private methods are not shown.

5.1. Multi-view Data Types 89

5.1.2 Evaluation

The evaluations have been performed on a 12 core 2.40GHz Intel(R) Xeon(R)

CPU E5-2620 processor (2 NUMA nodes) with 2-way hyper-threading, under

linux 4.4.0-62 Ubuntu x86 64 and openjdk version 1.8.0 121, clang version

4.0.0-svn297204-1, boost 1.58.0.1ubuntu1.

Counter We provide and compare two variants of a mergeable counter with

a linearizable counter. 1) a mergeable counter with only weak operations and

merge, 2) a hybrid mergeable counter where application switches to strong

operations when needed. This experiment shows the result of the counter

implemented in C++.

In the first version, threads increment a shared mergeable counter and

periodically merge with the global view. In the experiment, we allow threads

to increment the shared mergeable counter until a target value is reached.

Since the threads might not know about non-merged increments from other

threads, they typically end up overshooting the target. For this experiment,

the target is set to 5× 106 increments.

We evaluated several merge intervals and measured their throughput and

the overshoot from the target. A merge interval of m means that a thread

executes m weak increments between two merges. Figure 5.3 shows that the

throughput scales with the number of threads and with the merge interval.

At the same time, the overshoot increases. However, the percentage of the

overshoot is small. (Notice that the overshoot is upper bound by the number

of threads multiplied by the merge interval, as this reflects at any given time

the number of increments not yet accounted for.) Points in the lines are

labeled with the number of threads employed. As expected, the system does

not scale beyond the point where the number of threads exceeds the number

of cores (i.e., at 24 threads). Also, note that for a single thread, overshoot is

zero and thus the value is outside the logarithmic scale.

Figure 5.4 shows the throughput of the mergeable counter compared to

a linearizable counter. The linearizable counter never overshoots the target,

but since the threads are always competing on the increment, performance

is inadequate, and no speedup is obtained from multi-threading. In contrast,

the mergeable counter can scale linearly up to a good fraction of the available

concurrency, in particular with merge interval from 4096.

While some applications could tolerate an overshoot, in general, applica-

tions will require strong target enforcement. To address this, we provide a

variant of the mergeable counter that makes a hybrid use of initial weak local

90 Chapter 5. Evaluation

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0 5x107 1x108 1.5x108 2x108 2.5x108

O
ve

rs
h
o
o
t

(%
)

Throughput ops/sec

m-1
m-8

m-64
m-512

m-4096
m-327682

4
8
1216
202432

2

4
8

1216
2024

32
2

4

8
12

16 20 24
32

2

4

8
12

16 20 24
32

2

4

8
12

16 20 24
32

2

4

8
12

16 20 24
32

Figure 5.3: Throughput vs Overshoot of mergeable counter with different

merge interval.

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 3x108

 0 4 8 12 16 20 24 28 32 36

T
h
ro

u
g
h
p
u
t

o
p
s/

se
c

No. of threads

m-1
m-8

m-64
m-512

m-4096
m-32768

atomic

Figure 5.4: Throughput of mergeable counter vs linearizable counter. atomic:

linearizable counter. m-i: mergeable counter with merge interval i.

5.1. Multi-view Data Types 91

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 0 4 8 12 16 20 24 28 32

T
h
ro

u
g
h
p
u
t

o
p
s/

se
c

No. of threads

m-1
m-8

m-64
m-512

m-4096
m-32768

atomic

Figure 5.5: Throughput of hybrid mergeable counter (overshoot free) vs lin-

earizable counter. atomic: linearizable counter. m-i: hybrid counter with

merge interval i.

increments and later switches to strong increments when approaching the tar-

get. The first thread that, upon the periodic merges, detects that it is close

to the target, initiates a barrier synchronization to ensure that all threads

have switched to strong operations. (We found that all threads must switch

in tandem upon this phase transition.)

Figure 5.5 shows that under this approach, overshoot is eliminated while

the performance is almost identical to the mergeable counter. In general,

the hybrid approach is efficient as long as the target is much larger than the

merge interval since this limits the proportion of the execution done under

synchronized execution. Note that the strategies to decide when to use weak

or strong operations is application dependent and not part of the global-local

view model.

Comparison to CRDT Counter. In this experiment, we demonstrate

that CRDT designs have significant overhead in performance when used in

a shared memory program. This experiment uses the counters implemented

in Java. We implemented a CRDT counter on the global-local view model,

where each local view and global view are a CRDT replica. We implemented

the G-counter [79] using 1) a HashMap that maps thread-id to an integer, 2)

an array where the array index corresponds to a thread id. Figure 5.6 shows

92 Chapter 5. Evaluation

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 3x108

2 4 8 12 16 20 24

T
h
ro

u
g

h
p

u
t

(o
p

s/
se

c)

No.of threads

array-1
map-1

s-1
m-1

array-64
map-64

m-64

Figure 5.6: Comparison to CRDT Counter using array and map; m - merge-

able counter with merge-interval 1,16. sync - atomic counter.

the throughput for the two versions, compared to an atomic counter and a

mergeable counter. It shows that the array scales better when the merge-

interval is large. However, the size of the array must be fixed to the number

of threads. The map implementation does not scale well because 1) there is an

overhead in accessing the map entries, 2) merge requires an iteration over the

entire map resulting in longer critical section.Thus, the cost of merge operation

is negating the benefit achieved by the asynchronous local increment.

Queue We evaluated the four implementations of the queue: lock-based lin-

earizable, lock-free linearizable, lock-based mergeable and lock-free mergeable.

We measured the time to perform a total of 5 × 106 enqueues and dequeues

by a group of concurrent threads. In the experiment, we divided the group

of threads into two halves: one group of producers which only enqueue items

to the queues and the second group of consumers that consume items by de-

queuing from the queue. We forced half of the producers (and consumers) to

run on one NUMA node and the other half on the second NUMA node.

Figure 5.7 shows the total time needed to perform 5 × 106 enqueues and

dequeues by the linearizable queues and the mergeable queues with different

merge intervalm (a thread performs a merge afterm enqueues). For both lock-

based and lock-free versions, the mergeable queue is faster than its linearizable

counterpart. Since this is a high-contention workload, the lock-based version

performs better than the lock-free version. Unlike the mergeable counter,

5.1. Multi-view Data Types 93

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 4 8 12 16 20 24

Ti
m

e
 in

 s
e
c

(l
o
w

e
r

is
 b

e
tt

e
r)

No.of threads

LL
LLF

ML-1
MLF-1

ML-8
MLF-8

ML-64
MLF-64

Figure 5.7: Evaluation of Queue. LL: linearizable lock-based, LLF: lineariz-

able lock-free, ML: mergeable lock-based, MLF: mergeable lock-free. 1,8,64 -

merge interval for mergeable queues.

increasing merge interval from 8 to 64 does not improve the performance

significantly. This is because dequeue is always executed in a serial way,

which shadows the performance gain from asynchronous enqueues

In the previous results, half of the threads were running on one core, and

the other half were running on the second core. We ran the same experiment

with all of the threads running on the same core and compared them with the

previous result. Figure 5.8 shows the time taken for the linearizable queues

when threads are running on the same core and different cores. It is evident

that there is a significant performance overhead when the threads have to

synchronize across different cores.

Figure 5.9 shows the speed up of the mergeable queue compared to the

linearizable queues when using same core and different cores. In this exper-

iment, we used the mergeable queue with merge interval 64. The speed-up

when all the threads running on the same core is maximum 40% for lock-based

implementations and 50% for lock-free implementations. On the other hand,

the mergeable queues yield around 57% and 67% speedup, respectively, when

the threads are running on different cores. With different access latencies in

NUMA architectures, the cost of synchronization with distant cores is higher.

Thus the global-local view model becomes more relevant in such many-core

architectures where reducing the number of synchronization operations im-

94 Chapter 5. Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

4 8 12

Ti
m

e
 i
n
 s

e
c

(l
o
w

e
r

is
 b

e
tt

e
r)

No.of threads

LL-same LL-diff LLF-same LLF-diff

Figure 5.8: Performance of linearizable queue when running on same core vs

different core.

proves the performance significantly.

Add wins set We evaluated the mergeable AW-set and two versions of

linearizable set implemented over binary trees. The first linearizable version

(sync) acquires exclusive access to the tree using locks for each operation.

The second linearizable version (lf) is a lock-free implementation. In the

experiment, each thread adds and remove items from a set of 107 item chosen

using a uniform distribution.

Figure 5.10 shows the throughput of the two linearizable implementations

and the AW-set at different merge intervals. The throughput of the synchro-

nized tree (sync) is very low and does not scale. The mutual exclusion for

each operation limits their concurrency, resulting in such low performance.

On the other hand, the performance of AW-set is higher compared to the

synchronized version. AW-set with merge interval 8 performs better than the

synchronized version, but does not scale well with the number of threads.

AW-set with merge interval 64 scales better than the lower merge interval.

However, the lock-free concurrent binary search tree (lf) scales better com-

pared to the other implementations. The lock-free implementation does not

block concurrent operations that modify different parts of the tree. This re-

sults in less contention and better scalability. The AW-set requires exclusive

access to the tree during the merge, which prevents concurrent merges to

5.1. Multi-view Data Types 95

 35

 40

 45

 50

 55

 60

 65

 70

4 8 12

%
 s

p
e
e
d

u
p

No.of threads

L - same LF - same L - diff LF - diff

Figure 5.9: Percentage speedup of mergeable queue with merge interval 64

compared to linearizable queue.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

2 4 8 12 16 20 24

T
h
ro

u
g

h
p

u
t

(1
0
6
 o

p
s/

se
c)

No.of threads

m-8 m-64 sync lf

Figure 5.10: Throughput of AW-set compared to linearizable sets. lf - lock-free

concurrent BST. sync - synchronized tree. m-i - AW-set with merge interval

i.

96 Chapter 5. Evaluation

progress in parallel. On the other hand, the atomic merge operation and

access to atomic snapshots in AW-set makes it a good candidate to use in

software transactions. A transaction cannot exploit the scalability of lock-free

BST.

Breadth-First Traversal We evaluated four versions of the parallel BFS

implementation using the four different queue implementations. In this eval-

uation, each implementation traversed a randomly generated graph having 2

×106 vertices and 2× 107 edges. Unlike the micro-benchmark for the queue,

there is no fixed merge frequency. Instead, the threads merge their local queue

at the end of processing each level.

Figure 5.11 shows the speedup of each version compared to a single-

threaded implementation. Mergeable queues scale better than their lineariz-

able counterparts. The speedup of the lock-free mergeable queue is signif-

icantly higher than that of the others and scales almost linearly until 16

threads. Beyond 16 threads, the number of vertices processed by each thread

at each level is reduced, as they are divided among the threads, leading to

smaller merge interval. We believe the abrupt drop in the speedup of lock-

based queues after 12 threads is due to the additional cost in synchroniza-

tion to the second NUMA core. Compared to the high-contention micro-

benchmark from Figure 5.7, this is a low-contention workload because a sig-

nificant amount of time is spent in processing the nodes rather than updating

the queue.

Work-stealing Queue We evaluated two different versions of work-stealing

queues: one implemented on the global-local view model (mv-queue), and

another one implemented based on the Cilk runtime’s work stealing queue

(ll-queue) (see Section 3.2). In this evaluation, each thread executed 107

operations. There is no fixed merge interval; instead, the mv-queue executes

a merge operation when it observes that the number of items in the global

view is below a threshold (In our experiments, we kept the threshold to 2).

We ran the benchmarks with different workloads and a varying number

of threads. In the first workload, each thread generates enough tasks for

itself such that no thread has to steal tasks generated by others. This is the

ideal scenario for a work-stealing queue, in which the task-generation and

consumption are uniformly distributed among the threads. However, in real

programs, this is hardly the case. In the second workload, half of the threads

are generating the tasks and the other half is consuming them. This is the

worst-case scenario, where half of the threads are always pushing tasks to

5.1. Multi-view Data Types 97

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 12 16 20 24

S
p
e
e
d
 u

p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

No.of threads

LL LLF ML MLF

Figure 5.11: Speed up of parallel breadth-first traversal on a graph using

different queue implementations compared to a sequential implementation.

LL: linearizable lock-based, LLF: linearizable lock-free, ML: mergeable lock-

based, MLF: mergeable lock-free.

the queue while the other half is always stealing. It is an extreme case and

rarely happens in real applications. The third workload simulates real-world

scenarios, where all threads push and get tasks and sometimes steal from

others.

Figure 5.12 shows the throughput for the queues for different workloads.

Workload 1 has better throughput for both queues because there is no con-

tention in accessing the queue. The mv-queue performs better than ll-queue

and scales better because it never has to execute any synchronization opera-

tion. On the other hand, the ll-queue has to acquire the locks when updating

its local queue for protecting against concurrent access from the thieves even

though no threads have to steal in this workload.

Workload 2 has the worst throughput for both queues. Half of the threads

are continually trying to steal from other threads resulting in high contention.

Hence the throughput does not scale with the number of threads. Even though

the thieves are distributed among the threads in the ll-queue, the throughput

of multi-view queue is slightly better. This is due to the smaller number of

synchronization operation needed for mv-queue.

In workload 3, we observed that around 5% of the task retrieval operations

resulted in stealing. In this case, similar to workload 1, the throughput of both

queues is scaling. As expected, mv-queue scales better because of the smaller

number of synchronization operations.

98 Chapter 5. Evaluation

 0

 5

 10

 15

 20

 25

 30

2 4 8 12 16 20 24

T
h
ro

u
g
h
p
u
t

1
0
6
 o

p
s/

s

No.of threads

ll-w1
mv-w1

ll-w2
mv-w2

ll-w3
mv-w3

Figure 5.12: Throughput of work-stealing queue.

5.2 Mergeable Transactional Memory

5.2.1 Implementation

We implemented MTM as a library in Haskell. To compare it with traditional

serializable transactions, we use the GHC’s STM. GHC supports serializable

transactions where multiple memory locations can be read and updated with

in a atomically combinator. GHC’s STM is tightly integrated with the run-

time system and employs a number of optimization techniques with respect

to GC interaction and scheduling. To approximate the runtime overhead

incurred by implementing MTM as a library, we implemented an STM algo-

rithm based on 2-phase-commit (2PC) similar to TL2 [28]. We use the 2PC

implementation as another point of comparison.

Both MTM and 2PC implementations use spin locks for locking the re-

sources during the commit phase. 2PC aborts and restarts the transactions,

if the spin lock fails to guarantee serializability, while MTM retries until it ac-

quires the locks and merges its changes. MTM and 2PC use a global counter

that is used to generate monotonic unique ids for the versions.

5.2. Mergeable Transactional Memory 99

 0

 10

 20

 30

 40

 50

1 2 4 8 16

Ti
m

e
(s

e
c)

No.of threads

GHC-Counter
2PC-Counter

MTM-Counter
GHC-Bag

2PC-Bag
MTM-Bag

Figure 5.13: MTM micorbenchmark 1: Every thread updates once the same

shared object in a transaction.

5.2.2 Evaluation

To evaluate the applicability of MTM we ran microbenchmarks, comparing

our MTM implementation as Haskell library with a 2PC library implementa-

tion and GHC’s STM implementation. All experiments were run on a Quad-

core 2.4GHz Intel Xeon processor with two-way hyperthreading, under Linux

2.6.32-64-server Ubuntu x86 64 and GHC version 7.8.3. The results given are

the averages taken over 10 runs for each benchmark.

Microbenchmarks: Counter and Bag In a first experiment, we com-

pared the performance of a shared counter and bag under high contention. The

STM variants implement the counter as a TVar Int and TVar [Int],

while MTM relies on a mergeable counter and bag, as introduced in Sec-

tion 4.1. For the experiment, each thread repeatedly increments the same

shared counter. In total, there were 2 × 106 increments distributed over the

available number of threads.

As Figure 5.13 shows, the performance of the library version of STM de-

grades quickly while both MTM and GHC’s STM handle the contention more

gracefully.

To evaluate the throughput, we chose a workload where each transaction

updates m randomly selected objects from a pool of n objects: the larger the

pool (n), the lower the probability of contention; the larger the transaction size

100 Chapter 5. Evaluation

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

 1x106
 1.1x106

1 2 4 8

T
h
ro

u
g
h
p
u
t(

o
p
s/

se
c)

No. of Objects per transaction

GHC-Counter
2PC-Counter

MTM-Counter

GHC-Bag
2PC-Bag

MTM-Bag

Figure 5.14: MTM microbenchmark 2 : Every thread updates M objects in a

transaction

(m), the higher the probability of conflicts as it is more likely that transaction

executions overlap. For n = 8 and various transaction size, MTM yields

better performance than the STM implementations, even under low contention

(Figure 5.14).

Application: K-means: To see how actual applications benefit from the

MTM programming model, we reimplemented the K-means benchmark from

the STAMP benchmark suite [70] in Haskell described in Algorithm 4.1.

For the version running GHC’s STM and MTM a cluster centre is updated

inside a transaction after processing every data point (here: 106 points). We

also derived an alternative implementation to exploit the semantics of MTM,

MTM-Opt, where all points assigned to some thread are processed together,

and cluster centers are updated atomically. This version runs longer transac-

tions, but has less frequent updates to cluster centers.

Both under high contention (Figure 5.15) and low contention (Figure 5.16),

MTM-Opt outperforms GHC and MTM. In particular, MTM-Opt is scalable

even under high contention in contrast to the other versions. The reason is

that GHC’s STM and MTM are blocking during commit, which prohibits

scalability when the number of concurrent transactions is high. In the opti-

mized version, commits are less frequent and transactions can run in parallel

without the need for serializing the updates to shared memory.

5.2. Mergeable Transactional Memory 101

 0

 50

 100

 150

 200

 250

1 2 4 8 16

Ti
m

e
(s

e
c)

No.of threads

GHC 2PC MTM MTMopt

Figure 5.15: K-means: High contention.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16

No.of threads

GHC 2PC MTM MTMopt

Figure 5.16: K-means: Low Contention.

102 Chapter 5. Evaluation

5.3 Discussion

Linearizable implementations of data types like counters and queues are not

scalable because all operations content on the same memory location and

hence must be executed serially. Multi-view data types, on the other hand,

allow to extract more parallelism by reducing the need to synchronize on each

operation; instead they allow to operate on the local copy asynchronously. As

the experiments demonstrate, the less need for synchronization has a massive

impact on the scalability of multi-threaded programs. On the other hand,

the global-local view model does not improve the scalability of data types

compared to their linearizable implementations where concurrent operations

do not contend. The operations on a set data type, even in their linearizable

implementations, result in less contention and can be executed in parallel

because in most cases they modify different memory locations.

Chapter 6

Related Work

Improving the scalability of shared memory synchronization is a widely stud-

ied topic in theory and practice. The literature spans across different areas

from finding scalable synchronization mechanisms to relaxing the semantics

of the data types. In this section, we summarize the related work in the areas

of scalable concurrent data structures, software transactional memory, and

relaxed consistency semantics.

6.1 Scalable concurrent data structures

Scalable designs of concurrent linearizable data structures have been an active

area of research.

Michael et al. [69] proposes a non-blocking lock-free algorithm using a

compare and swap synchronization primitive, and an algorithm that uses two

locks for implementing practical queues. The lock-free queue algorithm is

widely used including the concurrent queue in jdk1. Similary, there are nu-

merous literature that explores lock-free and scalable algorithms for various

data structures including linked-list [38], skip-list [53], priority queue [29], bi-

nary search tree [20] and so on. Some of these techniques can be adapted to

implement lock-free merge and strong operations in MDT. We incorporated

techniques of the lock-free enqueue operation from the Michael-Scott queue

to implement lock-free merge operation in MDT queue.

Herlihy et al. [51] introduced a generic method for constructing wait-free

data structures by applying universal constructions. The wait-free mecha-

nisms are further explored in [86, 61]. Other generic synchronization mecha-

nisms such as Flat combining and RCU to implement concurrent data struc-

tures are described below.

Flat combining (FC) [49] is a synchronization paradigm for implementing

linearizable data structures using coarse locking instead of traditionally ap-

plied fine-grained locking technique. In flat combining, a data structure has

1java.util.concurrent.ConcurrentLinkedQueue

104 Chapter 6. Related Work

an associated global lock and a publication list. A thread publishes its read-

/update requests to its record in the publication list and checks if the global

lock is free. A thread that acquires the lock becomes a combiner and processes

all pending requests in the publication list, and writes the responses in the

corresponding thread-local record. The threads that could not acquire the

lock spin on their publication record until a combiner writes the response to

the record. FC thus improves the performance of a concurrent data structure

access by reducing the contention on the lock and improving cache locality. A

thread that acquires a lock processes all pending requests similar to the helper

mechanisms in wait-free algorithms. FC is an effective approach for many, but

not all, linearizable data structures. MDT, in contrast, allows executions of

a large number of mergeable operations in parallel, thus effectively reducing

the contention on the shared data structure. On the other hand, the strong

operations and the merge of MDTs can employ FC mechanisms to mitigate

the performance degradation due to the synchronization needed to access the

global view. The techniques from FC-based queues [50] can be easily applied

to our multi-view queue.

Read-copy-update (RCU) [68, 42] is a synchronization mechanism to al-

low processes to read a shared object while a concurrent modification is in

progress. Similar to our model, multiple versions of the object are maintained

so that readers observe a consistent state while a modification is in progress.

However, RCU is suited only for a single writer-multiple readers scenario.

Read-log-update (RLU) [67] is an improvement over RCU that allows con-

current writers. Unlike our model, concurrent writes are serializable which is

achieved by serializing the writes or by fine-grained locking.

Distributed Queues (DQ) [44], on the other hand, relax the sequential

specification of the data structure to implement a relaxed queue semantics.

DQ consists of multiple FIFO queues and uses a load balancer or a Least

Recently Used mechanism to distribute enqueue/deqeue operations among

the partial queues to improve the overall performance.

The idea of using a per-core copy of a counter is exploited in sloppy coun-

ters [19]. Distributed Shared Objects [14] emphasize the need for non-shared

local objects per processor to avoid expensive communication and contention,

and propose locality-aware objects to improve cache locality.

Scalable NonZero Indicators (SNZI) [33] is a scalable linearizable imple-

mentation of counters with weak semantics. Instead of returning the exact

value of the counter, an SNZI counter returns a boolean indicating whether

the value is non-zero. They are more scalable than traditional counters and

useful for specific use cases such as reference-counting garbage collectors where

the exact value is not necessary.

6.2. Relaxed consistency models 105

6.2 Relaxed consistency models

Many models attempt to relax the strict semantics of linearizability [55] to

achieve better performance. Quasi-linearizability [9] allows each operation to

be linearized at a different point at some bounded distance from its strict lin-

earization point. For example, a queue that dequeues in a random order, but

never returns empty if the queue is not empty, is a quasi-linearizable queue.

Quasi-linearizability allows more parallelism by allowing flexible implementa-

tions.

k-linearizability [59, 10] allows upto k operations to be re-ordered. Similar

to the linearizability, k-linearizability requires that the history is equivalent to

a k-serializable history S, where the responses to a call in S can be delayed up

to the next k operations. For example, a dequeue operation on a k-linearizable

queue returns one of the k oldest items.

Other models, such as quiescent consistency [54, 27] also define the correct-

ness based on some sequential history, possible reordered, of the operations.

Weak and medium future linearizability [60] apply to the data types im-

plemented using futures [58]. A call to an operation returns a future which

can be later evaluated. For example, the following code depicts the invocation

of two enqueue operations by a thread.

Future fx = queue.enq(x);
Future fy = queue.enq(x);
fx.eval();
fy.eval();

In weak future linearizability (weak-FL), the operation takes effect at some in-

stant between the future creation and the return from the future’s evaluation.

Weak-FL thus allows re-ordering of operations from the same thread violat-

ing the program-order guarantees offered by many other relaxed consistency

models including the guarantees provided by the global-local view model. In

the above example, the two enqueues may be seen in different order by other

threads. Medium future linearizability (medium-FL), in addition to the guar-

antees provided by the weak-FL, requires that the operations issued by the

same thread to the same object take effect in the same order as their future

creation. Similar to MDT queues, the implementations of both weak-FL and

medium-FL queues allow optimizations by batching operations.

Local linearizability [43] requires that each thread-induced history (a sub-

set of each thread operations) is linearizable. The implementation of a local

linearizable dequeue resembles that of the work-stealing queue described in

Section 3.2. Local linearizability applies only to container-type data structures

106 Chapter 6. Related Work

such as pools, queues, and stacks.

Our work is complementary to these models, allowing a flexible combina-

tion of strong and weak updates to achieve different consistency semantics.

Moreover, the notions like k-linearizability are not straightforward to extend

to transactions.

6.3 Software transactional memory

Relaxing strong guarantees such as serializability has been considered by dif-

ferent STMs. Multi-versioned STMs [26] and Snapshot Isolation in STMs [75]

allow read-only transactions to proceed without any conflicts. However, there

may be aborts in case of write-write conflicts. Different approaches have been

proposed to avoid abort or restarting of whole transactions by delaying some

computations [77] to commit time and re-executing parts of transactions [26].

Twilight STM [17] allows transaction-specific conflict handling when incon-

sistencies are detected in commit phase.

Elastic Transactions [34] avoid aborts due to conflicts that do not affect

the correctness. Elastic Transactions are useful in large data structures like

linked lists where insertion/deletion on two different locations that induce an

abort in traditional serializable transactions. Similar to Elastic Transactions,

composable partitioned transactions [88] avoid unnecessary aborts by a model

in which programmers can highlight the data the transaction needs by splitting

a transaction into a planing phase and an update phase. SemanticTM [15] is

yet another mechanism to avoid unnecessary aborts due to conflicts between

readers and writers.

Unlike the above mechanisms, MTM focuses on introducing the conflict

handling mechanisms at the object level.

Composable Memory Transactions [47] provide primitives for making se-

rializable transactions composable in Haskell. The authors describe the bene-

fits of Haskell’s type system and monads to achieve safety and composability

of transactions. We have adopted these techniques to implement the MTM

monad. However, as MTM transactions never abort, we restrain from pro-

viding additional operations that support composability such as retry and

orElse.

6.4. Transactional data structures 107

6.4 Transactional data structures

In most cases, Transactional Memory (TM) cannot exploit the design of exist-

ing concurrent linearizable data structures. Research in Transactional Data

Structures aims for scalable data structures to use within a TM.

Transactional Boosting [52] is a method which allows operations on highly

concurrent linearizable objects to execute using concurrent transactions, with-

out the need for acquiring an exclusive lock on the object. A method’s ab-

stract lock issues a conflict only if two concurrent method invocations are

non-commutative; therefore, concurrent commutative operation on an object

can execute without aborting the transaction. Transactional boosting is a

pessimistic approach by eagerly acquiring locks on the objects. Optimistic

Transactional Boosting [48] is yet another methodology for transforming con-

current data structures to transactional objects. Both approaches take com-

mutativity of operations as the base for detecting conflicts and thus achieving

serializability. In contrast, MTM relies on object-specific conflict resolution

which may allow non-commutative operations to occur in parallel.

Software Transactional Objects (STO) [56] implement parts of the trans-

actional commit protocol within the object, that enables the data types to

use semantic conflict detection rather than conflicting access to low-level un-

typed memory. STO thus prevents aborts due to false conflicts improving

the overall performance. Transactional Data Structure Libraries [84] intro-

duce transactional awareness to concurrent data structures to achieve scalable

transactions.

Using Consistency Oblivious Programming (COP) [8], operations on a

concurrent data structure can be designed to work efficiently with STM. Sim-

ilar to the partitioned transactions, the idea is to split the code into multiple

parts, where one part is safe to execute without any consistency check and

a second part that validates the result from the first part before committing

any updates.

6.5 Monotonic and mergeable data structures

The idea of concurrent updates to the replicas of an object and merging them

to a convergent state was formalized by Conflict-free Replicated Data Types

(CRDTs) [79, 80], which are now widely used in distributed replicated data

systems. The properties of CRDTs, such as commutative operations and/or

a semi-lattice structure, guarantee that concurrent updates can be safely ex-

ecuted on different replicas and later merged to get a consistent state on

108 Chapter 6. Related Work

all replicas. A state-based CRDT takes its values from a semi-lattice. Two

states of the same objects are merged by taking their least upper bound in

the semi-lattice. Op-based CRDTs, on the other hand, exploit commutativity

of updates to converge the states of two replicas deterministically. The high

network latency and possible reordering of messages in distributed systems

resulted in properties of CRDTs much different from what is required in a

shared memory system. In this thesis, we show implementations of mergeable

data types that are tailored for shared memory concurrent programs.

LVars [62, 63] are lattice-based data structures used for deterministic par-

allel programming in Haskell. The put operation changes an LVar’s state in

such a way that it monotonically increases in the lattice structure. Updates

from concurrent threads on an LVar result in the same state, irrespective of

which order they occur, thus guaranteeing determinism. The merge function

always computes the least upper bound according to the lattice. LVars focus

on deterministic and efficient execution for parallel programming models to

support producer/consumer-like application.

We believe that lattice-based data structures such as LVars and CRDTs

are beneficial for deterministic merging and verifying the correctness of appli-

cations. However, it is not trivial how to construct efficient merge operations

in order to be useful in an optimistic transactional model to improve perfor-

mance. In this thesis, we have discussed mergeable data structures which are

not lattice structures.

Confluent persistent data structures [31, 36] allow operations on multiple

versions of a data structure. These operations (e.g., concatenation, union) are

constructed in a way such that previous versions are still accessible. Confluent

persistent data structures are designed to perform these operations efficiently,

in space and time. The applicability of these techniques in mergeable objects

is an interesting topic for future work.

Even though no consolidated theory on mergeable data types exists in

the shared memory ecosystem, there have been systems that use such types

with restricted properties. Doppel [72] is a multi-core database that uses a

mechanism called phase reconciliation to parallelize conflicting transactions.

When a high contention workload is detected, Doppel switches to a split

phase where the transaction updates the per-core copy of the objects of the

contended data in parallel. After the split phase, the per-core copies are

merged, and the transactions proceed to execute using classical concurrency

control techniques. Whether transactions can be executed in the split phase, is

decided based on the commutativity of operations, thus preserving sequential

consistency.

6.6. Programming models 109

6.6 Programming models

Maintaining per-thread replicas and performing updates on them has been

considered by different programming models in the literature.

Burckhardt et al. [21, 65] propose a programming model for concurrent

programs using revisions and isolation types. Each revision is considered a

unit of concurrency. It executes operations on its local copy of the shared

data concurrently to other threads. The modified data is visible to the main

thread only after the revision is explicitly joined. The conflicts occurring due

to concurrent updates are resolved using custom merge operation for cumu-

lative types and a joinee-wins strategy for versioned types. Though MTM

and the revisions model share similar semantics in executing operations on

consistent snapshots and merging conflicting updates, they target different

settings. The revisions programming model is a fork-join model and is suit-

able for short-running threads that operate mostly in isolation. MTM targets

long-running threads which need to share data with other threads using trans-

actional semantics periodically.

Global Sequence Protocol (GSP) [25] is a model for replicated and dis-

tributed data systems. Similar to our model, GSP has a global state which

is represented as a sequence of operations. Each client stores a prefix of this

global sequence. The updates by a client are first appended to the local se-

quence of pending operations and then broadcast to other replicas using a

reliable total order broadcast protocol which enforces a single order on the

global sequence. Since GSP addresses a distributed system’s system model,

with no bounds on message delays, there is much less control on replica diver-

gence and liveness of the global sequence evolution. In contrast, we address

a shared-memory concurrent architecture that allows to reason about bounds

on divergence and stronger progress guarantees on the evolution of the shared

state.

Distinguishing thread-local memory and shared memory within hardware

memory models is explored in Acoherent Shared Memory (ASM) [57]. Instead

of providing strong cache-coherence, the ASM model provides an abstraction

based on software revision control, where threads can checkout data to their

private memory and checkin to publish their updates to the shared memory.

By allowing programs to control when to synchronize their cache, ASM re-

duces unnecessary communication between processors resulting in low energy

and high-performance systems. However, ASM cannot handle type-specific

merge that incorporates semantic conflict resolution. It would be interesting

to see further applicability of the global-local view model at the hardware

level.

110 Chapter 6. Related Work

6.7 Distributed systems

Weak consistency models, such as eventual consistency and causal consis-

tency, are being widely researched and used in distributed systems. Many

modern datastores (Cassandra [3], DynamoDB [83] etc.) provides eventual

consistency with last-writer wins conflict resolution strategy. Other databases

such as Riak [5] and Antidote [2] uses CRDTs to merge conflicting updates.

The protocol, Cure [12], implemented in Antidote supports mergeable trans-

actions with Transactional causal+ consistency semantics. SwiftCloud [89]

is another system that supports client-side replication and uses CRDTs to

deterministically merge conflicting updates, while supporting Transactional

causal+ consistency. The semantics provided by mergeable transactions in

these systems are different from MTM. In a distributed setting, providing a

single global snapshot similar to MTM is expensive in terms of synchroniza-

tion. The systems must consider the faults, network delays, and re-ordered

message delivery to implement meaningful semantics correctly. While inspired

by the development of weakly consistent distributed systems, the global-local

view and MTM provides a solution that is suitable for a shared memory sys-

tem.

Burckhardt et al. [24] present the idea of eventually consistent transactions

and an implementation technique which provides this semantics. The Global

Sequence Protocol [25] provides a programming model for replicated data

stores and a weak consistency model relying on a global total order of updates.

Though many recent works have studied eventual consistency in distributed

database systems, few have addressed its applicability in multi-core programs.

Chapter 7

Conclusion

An ever-increasing number of cores in combination with heterogeneous access

latencies at different cache levels have advanced the spectrum of attainable

performance from multi-thread programming. At the same time, this breaks

the transparency concerning data locality. As processor components become

more numerous and spatially distributed, the cost of synchronization and

communication among distant components will keep increasing in comparison

to ones that are more closely located. When building internet-scale distributed

systems, similar concerns lead to the design of scalable systems that limit

global synchronization and operate locally when possible [66, 16].

Incorporating more information about the respective datatype semantics

is crucial for datatype designs that are more parsimonious regarding syn-

chronization. CRDTs succeed in capturing datatypes with clear concurrency

semantics and are now standard components in internet-scale systems. How-

ever, they do not migrate trivially to shared-memory architectures due to high

computational costs from merge functions, which becomes apparent once net-

work communication is removed.

Inspired by CRDT, in this thesis we studied if relaxing strong consistency

requirement helps to achieve scalability by avoiding synchronization. As a

result, we presented the global-local view model as a base for a framework

that allows capturing the semantics of multi-view datatypes. The global-local

view distinguishes between local fast state and distant shared state where

operations need to be synchronized. This distinction allows the Multi-view

data types to explore the trade-offs in the design when using weak or strong

operations. Multi-view Data Types in shared memory concurrent programs

can be considered analogously to CRDTs in replicated distributed systems.

However, it is important to notice that the implementations of these two data

types must be adapted to the specific system at hand. We identified two

important properties of MDTs that determine the actual efficiency of an im-

plementation: persistence and mergeability. Our approach enables speedups

in order of magnitudes while preserving the datatypes target behavior.

The mergeable semantics of multi-view data types enables the develop-

ment of software transactions with relaxed semantics. Mergeable Transac-

112 Chapter 7. Conclusion

tional Memory provides an alternative to the often too strict semantics of

traditional serializable transactions. Instead of aborting and re-executing the

transactions, MTM merges its changes using the type-specific merge opera-

tion. Thus it extends the relaxed, but the scalable semantics of MDTs into

composable transactions.

Future Work

Usability Our approach helps in scaling the applications, albeit at the loss

of linearizability for individual data types and serializability for software trans-

actions. However, it is not trivial for application developers to decide if the

new semantics is correct for their applications.

Tools that help developers to analyze their programs to verify the correct-

ness when using these relaxed semantics would be exciting to study in the

future. There has been much research in verifying if geo-replicated applica-

tions meet their specification when using relaxed consistency together with

CRDTs [90].

Data types We believe that the examples shown here are just the tip of the

iceberg regarding applicable datatypes. It is essential to develop more data

types with better implementations that benefits a wide range of applications.

It is entirely possible that further increments of the number of components

involved will lead to a multi-tier model with more levels than the current

binary, local vs. global, scheme.

Bibliography

[1] 40 years of microprocessor trend data. https://www.karlrupp.
net/2015/06/40-years-of-microprocessor-trend-data/.

Accessed: 2018-05-25. (Cited on page 1.)

[2] Antidote DB. http://antidotedb.org/. Accessed: 2018-06-20.

(Cited on pages 12 and 110.)

[3] Apache Cassandra. http://cassandra.apache.org/. Accessed:

2018-06-20. (Cited on pages 12 and 110.)

[4] The free lunch is over. http://www.gotw.ca/publications/
concurrency-ddj.htm. Accessed: 2018-08-08. (Cited on page 1.)

[5] Riak KV. http://basho.com/products/riak-kv/. Accessed:

2018-06-20. (Cited on pages 12 and 110.)

[6] ZeroMQ. http://zeromq.org/. Accessed: 2018-06-20. (Cited on

page 21.)

[7] Daniel Abadi. Consistency tradeoffs in modern distributed database sys-

tem design: CAP is only part of the story. IEEE Computer, 45(2):37–42,

2012. (Cited on page 12.)

[8] Yehuda Afek, Hillel Avni, and Nir Shavit. Towards consistency oblivious

programming. In Principles of Distributed Systems - 15th International

Conference, OPODIS 2011, Toulouse, France, December 13-16, 2011.

Proceedings, pages 65–79, 2011. (Cited on page 107.)

[9] Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability:

Relaxed consistency for improved concurrency. In Principles of Dis-

tributed Systems - 14th International Conference, OPODIS 2010, Tozeur,

Tunisia, December 14-17, 2010. Proceedings, pages 395–410, 2010. (Cited

on page 105.)

[10] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. On the avail-

ability of non-strict quorum systems. In Distributed Computing, 19th

International Conference, DISC 2005, Cracow, Poland, September 26-

29, 2005, Proceedings, pages 48–62, 2005. (Cited on page 105.)

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
http://antidotedb.org/
http://cassandra.apache.org/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://basho.com/products/riak-kv/
http://zeromq.org/

114 Bibliography

[11] Deepthi Devaki Akkoorath and Annette Bieniusa. Transactions on merge-

able objects. In Programming Languages and Systems - 13th Asian Sym-

posium, APLAS 2015, Pohang, South Korea, November 30 - December

2, 2015, Proceedings, pages 427–444, 2015. (Cited on page 22.)

[12] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhong-

miao Li, Tyler Crain, Annette Bieniusa, Nuno M. Preguiça, and Marc

Shapiro. Cure: Strong semantics meets high availability and low latency.

In 36th IEEE International Conference on Distributed Computing Sys-

tems, ICDCS 2016, Nara, Japan, June 27-30, 2016, pages 405–414, 2016.

(Cited on page 110.)

[13] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In American Federation of Informa-

tion Processing Societies: Proceedings of the AFIPS ’67 Spring Joint

Computer Conference, April 18-20, 1967, Atlantic City, New Jersey,

USA, pages 483–485, 1967. (Cited on page 1.)

[14] Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Marc A. Auslander,

Michal Ostrowski, Bryan S. Rosenburg, Amos Waterland, Robert W.

Wisniewski, Jimi Xenidis, Michael Stumm, and Livio Soares. Experi-

ence distributing objects in an SMMP OS. ACM Trans. Comput. Syst.,

25(3):6, 2007. (Cited on page 104.)

[15] Hillel Avni, Shlomi Dolev, and Eleftherios Kosmas. Proactive contention

avoidance. In Transactional Memory. Foundations, Algorithms, Tools,

and Applications - COST Action Euro-TM IC1001, pages 228–241. 2015.

(Cited on page 106.)

[16] Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen

Clement, Sérgio Duarte, Carla Ferreira, Johannes Gehrke, João Leitão,

Nuno M. Preguiça, Rodrigo Rodrigues, Marc Shapiro, and Viktor

Vafeiadis. Geo-replication: Fast if possible, consistent if necessary. IEEE

Data Eng. Bull., 39(1):81–92, 2016. (Cited on page 111.)

[17] Annette Bieniusa, Arie Middelkoop, and Peter Thiemann. Brief an-

nouncement: actions in the twilight - concurrent irrevocable transactions

and inconsistency repair. In Proceedings of the 29th Annual ACM Sym-

posium on Principles of Distributed Computing, PODC 2010, Zurich,

Switzerland, July 25-28, 2010, pages 71–72, 2010. (Cited on page 106.)

[18] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient

Bibliography 115

multithreaded runtime system. J. Parallel Distrib. Comput., 37(1):55–69,

1996. (Cited on page 20.)

[19] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey

Pesterev, M. Frans Kaashoek, Robert Tappan Morris, and Nickolai Zel-

dovich. An analysis of linux scalability to many cores. In 9th USENIX

Symposium on Operating Systems Design and Implementation, OSDI

2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings, pages

1–16, 2010. (Cited on pages 2, 16, 38 and 104.)

[20] Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Oluko-

tun. A practical concurrent binary search tree. In Proceedings of the 15th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, PPOPP 2010, Bangalore, India, January 9-14, 2010, pages

257–268, 2010. (Cited on page 103.)

[21] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concur-

rent programming with revisions and isolation types. In Proceedings of the

25th Annual ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA 2010, October

17-21, 2010, Reno/Tahoe, Nevada, USA, pages 691–707, 2010. (Cited on

page 109.)

[22] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P.

Wood. Cloud types for eventual consistency. In ECOOP 2012 - Object-

Oriented Programming - 26th European Conference, Beijing, China, June

11-16, 2012. Proceedings, pages 283–307, 2012. (Cited on page 62.)

[23] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Za-

wirski. Replicated data types: specification, verification, optimality. In

The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’14, San Diego, CA, USA, January 20-

21, 2014, pages 271–284, 2014. (Cited on page 62.)

[24] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sa-

giv. Eventually consistent transactions. In Programming Languages and

Systems - 21st European Symposium on Programming, ESOP 2012, Held

as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Pro-

ceedings, pages 67–86, 2012. (Cited on page 110.)

[25] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel

Fähndrich. Global sequence protocol: A robust abstraction for repli-

cated shared state. In 29th European Conference on Object-Oriented

116 Bibliography

Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic,

pages 568–590, 2015. (Cited on pages 109 and 110.)

[26] João P. Cachopo and António Rito Silva. Versioned boxes as the basis

for memory transactions. Sci. Comput. Program., 63(2):172–185, 2006.

(Cited on pages 12, 65, 72 and 106.)

[27] John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan, Oleg

Travkin, and Heike Wehrheim. Quiescent consistency: Defining and ver-

ifying relaxed linearizability. In FM 2014: Formal Methods - 19th In-

ternational Symposium, Singapore, May 12-16, 2014. Proceedings, pages

200–214, 2014. (Cited on page 105.)

[28] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Dis-

tributed Computing, 20th International Symposium, DISC 2006, Stock-

holm, Sweden, September 18-20, 2006, Proceedings, pages 194–208, 2006.

(Cited on page 98.)

[29] Kristijan Dragicevic and Daniel Bauer. A survey of concurrent priority

queue algorithms. In 22nd IEEE International Symposium on Parallel

and Distributed Processing, IPDPS 2008, Miami, Florida USA, April

14-18, 2008, pages 1–6, 2008. (Cited on page 103.)

[30] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert En-

dre Tarjan. Making data structures persistent. In Proceedings of the 18th

Annual ACM Symposium on Theory of Computing, May 28-30, 1986,

Berkeley, California, USA, pages 109–121, 1986. (Cited on page 38.)

[31] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert En-

dre Tarjan. Making data structures persistent. J. Comput. Syst. Sci.,

38(1):86–124, 1989. (Cited on page 108.)

[32] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.

Non-blocking binary search trees. In Proceedings of the 29th Annual

ACM Symposium on Principles of Distributed Computing, PODC 2010,

Zurich, Switzerland, July 25-28, 2010, pages 131–140, 2010. (Cited on

page 86.)

[33] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. SNZI: scal-

able nonzero indicators. In Proceedings of the Twenty-Sixth Annual ACM

Symposium on Principles of Distributed Computing, PODC 2007, Port-

land, Oregon, USA, August 12-15, 2007, pages 13–22, 2007. (Cited on

page 104.)

Bibliography 117

[34] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic transac-

tions. In Distributed Computing, 23rd International Symposium, DISC

2009, Elche, Spain, September 23-25, 2009. Proceedings, pages 93–107,

2009. (Cited on page 106.)

[35] Amos Fiat and Haim Kaplan. Making data structures confluently per-

sistent. In Proceedings of the Twelfth Annual Symposium on Discrete

Algorithms, January 7-9, 2001, Washington, DC, USA., pages 537–546,

2001. (Cited on page 35.)

[36] Amos Fiat and Haim Kaplan. Making data structures confluently per-

sistent. J. Algorithms, 48(1):16–58, 2003. (Cited on page 108.)

[37] Faith Ellen Fich, Danny Hendler, and Nir Shavit. Linear lower bounds on

real-world implementations of concurrent objects. In 46th Annual IEEE

Symposium on Foundations of Computer Science (FOCS 2005), 23-25

October 2005, Pittsburgh, PA, USA, Proceedings, pages 165–173, 2005.

(Cited on page 2.)

[38] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists.

In Proceedings of the Twenty-Third Annual ACM Symposium on Princi-

ples of Distributed Computing, PODC 2004, St. John’s, Newfoundland,

Canada, July 25-28, 2004, pages 50–59, 2004. (Cited on page 103.)

[39] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-

tation of the cilk-5 multithreaded language. In Proceedings of the ACM

SIGPLAN ’98 Conference on Programming Language Design and Imple-

mentation (PLDI), Montreal, Canada, June 17-19, 1998, pages 212–223,

1998. (Cited on page 20.)

[40] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. SIGACT News,

33(2):51–59, 2002. (Cited on page 12.)

[41] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.

The Java language specification, Java SE 8 edition. 2015. (Cited on

pages 9 and 10.)

[42] Dinakar Guniguntala, Paul E. McKenney, Josh Triplett, and Jonathan

Walpole. The read-copy-update mechanism for supporting real-time ap-

plications on shared-memory multiprocessor systems with linux. IBM

Systems Journal, 47(2):221–236, 2008. (Cited on page 104.)

118 Bibliography

[43] Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M.

Kirsch, Michael Lippautz, Hannes Payer, Ali Sezgin, Ana Sokolova, and

Helmut Veith. Local linearizability for concurrent container-type data

structures. In 27th International Conference on Concurrency Theory,

CONCUR 2016, August 23-26, 2016, Québec City, Canada, pages 6:1–

6:15, 2016. (Cited on page 105.)

[44] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer,

Ana Sokolova, Christoph M. Kirsch, and Ali Sezgin. Distributed queues

in shared memory: multicore performance and scalability through quan-

titative relaxation. In Computing Frontiers Conference, CF’13, Ischia,

Italy, May 14 - 16, 2013, pages 17:1–17:9, 2013. (Cited on page 104.)

[45] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Memory,

2nd edition. Synthesis Lectures on Computer Architecture. Morgan &

Claypool Publishers, 2010. (Cited on pages 3, 7 and 10.)

[46] Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy.

Composable memory transactions. Commun. ACM, 51(8):91–100, 2008.

(Cited on page 74.)

[47] Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy.

Composable memory transactions. In Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP

2005, June 15-17, 2005, Chicago, IL, USA, pages 48–60, 2005. (Cited on

page 106.)

[48] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. Optimistic

transactional boosting. In ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA,

February 15-19, 2014, pages 387–388, 2014. (Cited on page 107.)

[49] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining

and the synchronization-parallelism tradeoff. In SPAA 2010: Proceedings

of the 22nd Annual ACM Symposium on Parallelism in Algorithms and

Architectures, Thira, Santorini, Greece, June 13-15, 2010, pages 355–

364, 2010. (Cited on page 103.)

[50] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Scalable flat-

combining based synchronous queues. In Distributed Computing, 24th

International Symposium, DISC 2010, Cambridge, MA, USA, September

13-15, 2010. Proceedings, pages 79–93, 2010. (Cited on page 104.)

Bibliography 119

[51] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.

Syst., 13(1):124–149, 1991. (Cited on page 103.)

[52] Maurice Herlihy and Eric Koskinen. Transactional boosting: a method-

ology for highly-concurrent transactional objects. In Proceedings of the

13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPOPP 2008, Salt Lake City, UT, USA, February 20-23,

2008, pages 207–216, 2008. (Cited on page 107.)

[53] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A prov-

ably correct scalable concurrent skip list. In Conference On Principles of

Distributed Systems (OPODIS). Citeseer, 2006. (Cited on page 103.)

[54] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming.

Morgan Kaufmann, 2008. (Cited on page 105.)

[55] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness

condition for concurrent objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, 1990. (Cited on pages 1, 15, 18, 62 and 105.)

[56] Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie

Kohler, Barbara Liskov, and Liuba Shrira. Type-aware transactions for

faster concurrent code. In Proceedings of the Eleventh European Con-

ference on Computer Systems, EuroSys 2016, London, United Kingdom,

April 18-21, 2016, pages 31:1–31:16, 2016. (Cited on page 107.)

[57] Derek R Hower. Acoherent shared memory. PhD thesis, The University

of Wisconsin-Madison, 2012. (Cited on page 109.)

[58] Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic

computation. ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

(Cited on page 105.)

[59] C Kirsch, Hannes Payer, and Harald Röck. Scal: Non-linearizable com-

puting breaks the scalability barrier. Technical report, Technical Report

2010-07, Department of Computer Sciences, University of Salzburg, 2010.

(Cited on page 105.)

[60] Alex Kogan and Maurice Herlihy. The future(s) of shared data structures.

In ACM Symposium on Principles of Distributed Computing, PODC ’14,

Paris, France, July 15-18, 2014, pages 30–39, 2014. (Cited on page 105.)

[61] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free

data structures. In Proceedings of the 17th ACM SIGPLAN Symposium

120 Bibliography

on Principles and Practice of Parallel Programming, PPOPP 2012, New

Orleans, LA, USA, February 25-29, 2012, pages 141–150, 2012. (Cited

on page 103.)

[62] Lindsey Kuper and Ryan R. Newton. Lvars: lattice-based data structures

for deterministic parallelism. In Proceedings of the 2nd ACM SIGPLAN

workshop on Functional high-performance computing, Boston, MA, USA,

FHPC@ICFP 2013, September 25-27, 2013, pages 71–84, 2013. (Cited

on page 108.)

[63] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and

Ryan R. Newton. Freeze after writing: quasi-deterministic parallel pro-

gramming with lvars. In The 41st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’14, San

Diego, CA, USA, January 20-21, 2014, pages 257–270, 2014. (Cited on

page 108.)

[64] Leslie Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Trans. Computers, 28(9):690–691,

1979. (Cited on page 8.)

[65] Daan Leijen, Manuel Fähndrich, and Sebastian Burckhardt. Prettier

concurrency: purely functional concurrent revisions. In Proceedings of

the 4th ACM SIGPLAN Symposium on Haskell, Haskell 2011, Tokyo,

Japan, 22 September 2011, pages 83–94, 2011. (Cited on page 109.)

[66] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M.

Preguiça, and Rodrigo Rodrigues. Making geo-replicated systems fast

as possible, consistent when necessary. In 10th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2012, Hollywood,

CA, USA, October 8-10, 2012, pages 265–278, 2012. (Cited on page 111.)

[67] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier.

Read-log-update: a lightweight synchronization mechanism for concur-

rent programming. In Proceedings of the 25th Symposium on Operating

Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015,

pages 168–183, 2015. (Cited on page 104.)

[68] Paul E. Mckenney and John D. Slingwine. Read-Copy Update: Using

Execution History to Solve Concurrency Problems. In Parallel and Dis-

tributed Computing and Systems, pages 509–518, Las Vegas, NV, October

1998. (Cited on page 104.)

Bibliography 121

[69] Maged M. Michael and Michael L. Scott. Simple, fast, and practical

non-blocking and blocking concurrent queue algorithms. In Proceedings

of the Fifteenth Annual ACM Symposium on Principles of Distributed

Computing, Philadelphia, Pennsylvania, USA, May 23-26, 1996, pages

267–275, 1996. (Cited on pages 84 and 103.)

[70] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-

tun. STAMP: stanford transactional applications for multi-processing.

In 4th International Symposium on Workload Characterization (IISWC

2008), Seattle, Washington, USA, September 14-16, 2008, pages 35–46,

2008. (Cited on pages 65 and 100.)

[71] Mark Moir and Nir Shavit. Concurrent data structures. In Handbook of

Data Structures and Applications. 2004. (Cited on page 1.)

[72] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Tappan Mor-

ris. Phase reconciliation for contended in-memory transactions. In 11th

USENIX Symposium on Operating Systems Design and Implementation,

OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages 511–524,

2014. (Cited on pages 21 and 108.)

[73] Chris Okasaki. Purely functional data structures. Cambridge University

Press, 1999. (Cited on page 36.)

[74] Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple

versions in STM. In Proceedings of the 29th Annual ACM Symposium on

Principles of Distributed Computing, PODC 2010, Zurich, Switzerland,

July 25-28, 2010, pages 16–25, 2010. (Cited on pages 65 and 72.)

[75] Torvald Riegel. Snapshot isolation for software transactional mem-

ory. In In Proceedings of the First ACM SIGPLAN Workshop on Lan-

guages, Compilers, and Hardware Support for Transactional Computing

(TRANSACT06, 2006. (Cited on pages 11, 65, 67, 72 and 106.)

[76] David P. Rodgers. Improvements in multiprocessor system design. In

Proceedings of the 12th Annual International Symposium on Computer

Architecture, ISCA ’85, pages 225–231, Los Alamitos, CA, USA, 1985.

IEEE Computer Society Press. (Cited on page 1.)

[77] Wenjia Ruan, Yujie Liu, and Michael F. Spear. Transactional read-

modify-write without aborts. TACO, 11(4):63:1–63:24, 2014. (Cited on

page 106.)

122 Bibliography

[78] Michael L. Scott. Sequential specification of transactional memory se-

mantics. In Proceedings of the First ACM SIGPLAN Workshop on Lan-

guages, Compilers, and Hardware Support for Transactional Computing.

Jun 2006. (Cited on pages 3, 11, 65 and 67.)

[79] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A

comprehensive study of Convergent and Commutative Replicated Data

Types. Rapport de recherche RR-7506, INRIA, January 2011. (Cited on

pages 3, 36, 62, 91 and 107.)

[80] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.

Conflict-free replicated data types. In Stabilization, Safety, and Secu-

rity of Distributed Systems - 13th International Symposium, SSS 2011,

Grenoble, France, October 10-12, 2011. Proceedings, pages 386–400, 2011.

(Cited on pages 3, 13, 35, 36 and 107.)

[81] Nir Shavit. Data structures in the multicore age. Commun. ACM,

54(3):76–84, 2011. (Cited on pages 2 and 15.)

[82] Nir Shavit and Dan Touitou. Software transactional memory. In Pro-

ceedings of the Fourteenth Annual ACM Symposium on Principles of

Distributed Computing, Ottawa, Ontario, Canada, August 20-23, 1995,

pages 204–213, 1995. (Cited on page 65.)

[83] Swaminathan Sivasubramanian. Amazon dynamodb: a seamlessly scal-

able non-relational database service. In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, SIGMOD 2012,

Scottsdale, AZ, USA, May 20-24, 2012, pages 729–730, 2012. (Cited on

page 110.)

[84] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. Transactional

data structure libraries. In Proceedings of the 37th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI

2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 682–696, 2016.

(Cited on page 107.)

[85] Martin Sstrik. ZeroMQ. In The Architecture of open source applications,

Volume 2, 2012. (Cited on pages 2, 15 and 22.)

[86] Shahar Timnat and Erez Petrank. A practical wait-free simulation for

lock-free data structures. In ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA,

February 15-19, 2014, pages 357–368, 2014. (Cited on page 103.)

Bibliography 123

[87] Werner Vogels. Eventually Consistent. ACM Queue, 6(6):14–19, 2008.

(Cited on page 12.)

[88] Lingxiang Xiang and Michael L. Scott. Software partitioning of hardware

transactions. In Proceedings of the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2015, San

Francisco, CA, USA, February 7-11, 2015, pages 76–86, 2015. (Cited on

page 106.)

[89] Marek Zawirski, Nuno M. Preguiça, Sérgio Duarte, Annette Bieniusa,

Valter Balegas, and Marc Shapiro. Write fast, read in the past: Causal

consistency for client-side applications. In Proceedings of the 16th An-

nual Middleware Conference, Vancouver, BC, Canada, December 07 - 11,

2015, pages 75–87, 2015. (Cited on page 110.)

[90] Peter Zeller. Testing properties of weakly consistent programs with

repliss. In Proceedings of the 3rd International Workshop on Princi-

ples and Practice of Consistency for Distributed Data, PaPoC@EuroSys

2017, Belgrade, Serbia, April 23 - 26, 2017, pages 3:1–3:5, 2017. (Cited

on page 112.)

Deepthi Devaki Akkoorath
 dd.thekkedam.org |  deepthidevaki |  deepthidevaki

Education
Technical Univerisity of Kaiserslautern Kaiserslautern, Germany
PHD. IN COMPUTER SCIENCE Feb. 2014 - Oct. 2018

University of Amsterdam Amsterdam, The Netherlands
M.SC. IN COMPUTER SCIENCE Sep. 2010 - Aug. 2012

Amrita University Kollam, India
B.TECH. IN COMPUTER SCIENCE AND ENGINEERING Aug. 2005 - Jul. 2009

Work Experience
Camunda Services Gmbh Berlin, Germany
SOFTWARE ENGINEER Dec. 2018-

Multicoreware. Inc Chennai, India
SOFTWARE ENGINEER Feb. 2013 - Dec. 2013

Publications
PEER REVIEWED
GLOBAL-LOCAL VIEW: SCALABLE CONSISTENCY FOR CONCURRENT DATA TYPES. Aug. 2018
24th International European Conference on Parallel and Distributed Computing (EuroPar).

FMKE: A REAL-WORLD BENCHMARK FOR KEY-VALUE DATA STORES. Apr. 2017
Workshop on Principles and Practice of Consistency for Distributed Data (PaPoC).

OBSERVING THE CONSISTENCY OF DISTRIBUTED SYSTEMS. Sep. 2016
Proceedings of the 15th International Workshop on Erlang.

CURE: STRONG SEMANTICS MEETS HIGH AVAILABILITY AND LOW LATENCY. Aug. 2016
36th IEEE International Conference on Distributed Computing Systems (ICDCS).

HIGHLY-SCALABLE CONCURRENT OBJECTS. Apr. 2016
Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for Distributed Data (PaPoC).

TRANSACTIONS ON MERGEABLE OBJECTS. Dec. 2015
13th Asian Symposium on Programming Languages and Systems (APLAS).

WHITE PAPER
ANTIDOTE: THE HIGHLY-AVAILABLE GEO-REPLICATED DATABASE WITH STRONGEST GUARANTEES. Aug. 2016
SyncFree Project.

DEEPTHI AKKOORATH · CURRICULUM VITAE

	List of Figures
	List of Algorithms
	Introduction
	Contribution of this thesis
	List of publications
	Overview

	Concurrency, Consistency and Scalability
	System model
	Shared mutable objects
	Correctness conditions

	Transactional memory
	Correctness conditions

	Eventual consistency

	Multi-view Data Types
	Global-Local View Model
	Use cases
	Specification of Multi-view Data Types
	Abstract execution model
	Common language syntax
	Operational semantics

	Implementation
	Properties
	A portfolio of MDTs

	Correctness
	Verification of mergeable counter
	Verification of AW-set

	Discussion

	Mergeable Transactional Memory
	Mergeable transactions
	Operational semantics
	Properties of MTM

	Algorithm
	MTM in Haskell

	Relation to MDTs
	Extensions to Global-Local View Model
	Impact on the implementation

	Discussion

	Evaluation
	Multi-view Data Types
	Implementation
	Evaluation

	Mergeable Transactional Memory
	Implementation
	Evaluation

	Discussion

	Related Work
	Scalable concurrent data structures
	Relaxed consistency models
	Software transactional memory
	Transactional data structures
	Monotonic and mergeable data structures
	Programming models
	Distributed systems

	Conclusion
	Bibliography

