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Summary

In the representation theory of �nite groups there are many longstanding open problems,
one of the oldest of which is Brauer's k(B)-conjecture. Let H be a �nite group and let
` be a prime dividing |H|. If B is an `-block of H with defect group D, then Brauer's
k(B)-conjecture states that

k(B) ≤ |D|,

where k(B) denotes the number of irreducible characters in B. Recently, Malle and
Robinson proposed a modular version of this conjecture [34, Conjecture 1]. The Malle�
Robinson conjecture states that

l(B) ≤ `s(D),

where l(B) denotes the number of irreducible Brauer characters in B and s(D) denotes
the sectional `-rank of D. Using the solution of the k(GV )-problem [21], both of these
conjectures have been proved for the blocks of p-solvable groups. However, apart from a
few other relatively speci�c cases, not much else is known. We are concerned with the
blocks of quasi-simple �nite groups. Malle and Robinson proved their conjecture for the
blocks of many of these groups, and all outstanding cases are blocks of �nite groups of
Lie type in non-de�ning characteristic. The overall goal of this thesis is to show that the
quasi-simple �nite groups of exceptional Lie type do not yield minimal counterexamples
to the Malle�Robinson conjecture.

Let G be a simple, simply connected group of exceptional Lie type de�ned over Fq
with Frobenius endomorphism F : G→ G. The quasi-simple �nite groups of exceptional
Lie type that we are interested in are the groups of the form GF/Z where Z ⊆ Z(GF )
is a central subgroup of GF , along with the triality groups 3D4(q). Let H be one of
these groups. Thanks to groundbreaking results of Bonnafé�Rouquier [4] and Bonnafé�
Dat�Rouquier [2], the task of showing that no block of H is a minimal counterexample
to the Malle�Robinson conjecture, is reduced to proving the conjecture itself for the so-
called quasi-isolated blocks of H. The general theory splits into two cases depending on
whether ` is good or bad for G. In both cases we have a �rm grasp on the right side of the
conjectured inequality. The crux of the issue is therefore to determine l(B) (good primes)
or at least an upper bound on l(B) that is bounded from above by `s(D) (bad primes).

Recall that E(GF , s) denotes the Lusztig series associated to a semisimple element
s ∈ G∗F . Furthermore, recall that if s is an `′-element, then a certain union of Lusztig
series, denoted by E`(GF , s), is a union of `-blocks of GF (see [7]).

First, suppose that ` is a good prime for G. Then we have the following important
result of Geck.

Theorem (Geck, [18, Theorem A]). Suppose that ` is good for G. Let s ∈ G∗F be a
semisimple `′-element. Then E(GF , s) is a basic set for E`(GF , s)

It follows from this result that l(B) = | Irr(B) ∩ E(GF , s)| for every block B contained
in E`(GF , s). To determine this cardinality, we use so-called e-cuspidal pairs. If B is an
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`-block parametrized by (the GF -conjugacy class of) the e-cuspidal pair (L, λ), we write
B = bGF (L, λ). There is a natural relation "≤e" on the e-cuspidal pairs. The following
theorem builds on results of Cabanes�Enguehard (see [10], [9] and [8]), Enguehard (see
[16]) and Malle�Kessar (see [29]), and allows us to determine | Irr(B) ∩ E(GF , s)|. Let

e`(q) := multiplicative order of q modulo

{
` if ` > 2,

4 if ` = 2.

Theorem A. Suppose that G is a simple, simply connected group of exceptional type
de�ned over Fq with Frobenius endomorphism F : G→ G or that G is simple of type D4

de�ned over Fq with Frobenius endomorphism F : G → G such that GF = 3D4(q). Let
` be a prime not dividing q. Let s ∈ G∗F be a quasi-isolated semisimple `′-element. Let
e = e`(q). Then

E(GF , s) =
⋃

(L,λ)/GF

{χ ∈ Irr(GF ) | (L, λ) ≤e (G,χ)},

where (L, λ) runs over the GF -conjugacy classes of e-cuspidal pairs of G with s ∈ L∗F and
λ ∈ E(LF , s). In particular, if B = bGF (L, λ), then Irr(B) ∩ E(GF , s) = {χ ∈ Irr(GF ) |
(L, λ) ≤e (G,χ)}.

It follows that for every quasi-isolated `-block B = bGF (L, λ),

l(B) = |{χ ∈ Irr(GF ) | (L, λ) ≤e (G,χ)}|.

The cardinality |{χ ∈ Irr(GF ) | (L, λ) ≤e (G,χ)}| can then be determined with the help of
Chevie [36]. After that, the proof of the Malle�Robinson conjecture for the quasi-isolated
blocks is straightforward.

Now, suppose that ` is a bad prime for G. In this case, there is no general result equiv-
alent to Geck's Theorem on basic sets. However, apart from four stubborn exceptions,
we prove a result similar to Geck's for the quasi-isolated blocks of quasi-simple groups of
exceptional Lie type for bad primes. This gives us an upper bound c(B) for l(B) for every
quasi-isolated block B of H. In fact we show the following even stronger inequality:

l(B) ≤ c(B) ≤ `s(D),

where D is a defect group of B.

Theorem B. Suppose that G is a simple, simply connected group of exceptional type
de�ned over Fq with Frobenius endomorphism F : G→ G, or that G is simple of type D4

de�ned over Fq with Frobenius endomorphism F : G→ G such that GF = 3D4(q). Let ` be
a prime not dividing q and let B be a non-unipotent, quasi-isolated `-block of GF . Then
the Malle�Robinson conjecture holds for B unless possibly if B is of one of the following
types.
(i) GF = E6(q) or 2E6(q) and B is the 3-block numbered 13 in Table 13, or
(ii) GF = E7(q) and B is either the 2-block numbered 1 or the 2-block numbered

2 in Table 15.
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Finally, we come back to the minimal counterexamples to the Malle�Robinson conjec-
ture. Theorem C shows that most blocks of the quasi-simple �nite groups of exceptional
Lie type are not minimal counterexamples, and if there are any at all, they only occur for
the primes 2 and 3 in very speci�c situations.

Theorem C. Let H be a �nite quasi-simple group of exceptional Lie type. Let ` be a prime
and let B be an `-block of H. Then B is not a minimal counterexample to the Malle-
Robinson conjecture for ` ≥ 5. More precisely, (H,B) is not a minimal counterexample,
unless possibly if (H,B) is of one of the following types.

(i) H = E6(q)/Z(E6(q)) or 2E6(q)/Z(2E6(q)) and B is the 3-block dominated
by the 3-block numbered 13 in Table 13.

(ii) H = E7(q)/Z(E7(q)) and B is the 2-block dominated by either the 2-block
numbered 1 or the 2-block numbered 2 in Table 15.

(iii) ` = 3 and H = E6(q) or 2E6(q) (respectively H = E6(q)/Z(E6(q)) or
2E6(q)/Z(2E6(q))) and B is a non-principal unipotent 3-block of H (respec-
tively dominated by such a 3-block).

(iv) ` = 2, H = E7(q) (respectively H = E7(q)/Z(E7(q))) and B is a non-
principal unipotent 2-block of H (respectively dominated by such a 2-block).

(v) ` = 2, H = E8(q) and B is a non-principal unipotent 2-block.

We begin with an introduction to the various objects and statements needed in this
thesis in Section 1. In Section 2 we prove Theorem A. The proof of this result relies heavily
on information on the relevant e-cuspidal pairs which were determined with Chevie [36]
and can be found in Section 2. In Section 3 we study the quasi-isolated `-blocks when `
is a bad prime. Considering that the assertion of [18, Theorem A] does not hold in this
case, Section 3 is mainly concerned with proving analogues of this result. The �nal result
of that section is Theorem B. In Section 4 we apply the methods developed in Section
3 to unipotent blocks. This leads to an extension of a result of Malle�Robinson (see [34,
Proposition 6.10]). In Section 5 we combine all of these results to then prove Theorem
C.
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1 Prerequisites

1.1 Preliminaries on the representation theory of �nite groups

Let K be a �eld and let G be a �nite group. A K-representation ρ of G is a group
homomorphism

ρ : G→ GL(V ),

where V is a �nite dimensional K-vector space. The dimension of V is called the degree
of the representation ρ. Fixing an isomorphism V ∼= Kn, where n = dim(V ), we get

ρ : G→ GLn(K).

There are several equivalent ways to de�ne representations of groups, which themselves
introduce di�erent tools. Set KG := {

∑
g∈G agg | ag ∈ K for all g ∈ G}. We de�ne a

product on KG by linearly extending the product of G. With this KG becomes a K-
algebra, called the group algebra of G. Let ρ be a K-representation as above. Then ρ
can be linearly extended to an algebra homomorphism

ρ̃ : KG→ End(V ).

This yields a KG-module structure on V by setting av := ρ̃(a)(v) for every a ∈ KG and
every v ∈ V . Conversely, every KG-module V yields a K-representation of G, because
left multiplication by any element g of G, v 7→ gv gives rise to automorphisms of V .

Two K-representations ρ1 and ρ2 are called similar if there exists an invertible matrix
M ∈ GLn(K) such that ρ1(g) = Mρ2(g)M−1 for every g ∈ G. In this case we write
ρ1 ∼ ρ2. Now, we have a bijection

{K-representations}/ ∼ ←→ {KG-modules}/ ∼= .

The most natural way to de�ne the important objects in representation theory is via the
module theoretic approach. A nice introduction to the module theoretic approach can be
found in [1]. We just need the very basics for our purposes. Let R be a K-algebra and let
M be an R-module. We callM 6= 0 simple ifM has no non-trivial proper R-submodules
and we call it semisimple if it is a direct sum of simple modules. A K-representation ρ is
said to be irreducible if the corresponding KG-module is simple. If ρ is not irreducible,
we say it is reducible.

The representation theory of �nite groups highly depends on the base �eld K, as
shown by the following theorem.

Theorem 1.1 (Maschke, [1, I 3, Theorem 3]). Let K be an algebraically closed �eld of
characteristic p and G be a �nite group. Then every KG-module is semisimple if and
only if p - |G|.

Let A be a �nite-dimensional K-algebra and de�ne rad(A) = {a ∈ A | aM =
0 for every simple A-module M}; the Jacobson radical of A.

De�nition 1.2. Let A be a �nite dimensional K-algebra. We say that the algebra A is
semisimple if rad(A) = 0.
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The following theorem illustrates why these algebras are of interest.

Theorem 1.3 ([38, (1.13) Theorem]). Let A be a �nite-dimensional K-algebra. Then A
is semisimple if and only if every A-module is semisimple.

Hence KG is a semisimple algebra if and only if |G| is not divisible by char(K). It follows
that every C-representation ρ of G is similar to a block-diagonal representationρ1 · · · 0

...
. . .

...
0 · · · ρs

 ,

where the ρi's are irreducible C-representations of G. The situation is di�erent if K is
an algebraically closed �eld whose characteristic divides the group order. In this case the
theory is much more intricate. However, because KG is a �nite dimensional K-algebra (in
particular, KG is artinian and noetherian), everyKG-module V has a �nite composition
series

V = V0 ≥ V1 ≥ · · · ≥ Vs = 0

such that Vi/Vi+1 is a simpleKG-module. Let ρ be the representation corresponding to V .
By choosing an appropriate basis of V , we see that ρ is similar to a block upper-triangular
representation ρ1 · · · ∗

...
. . .

...
0 · · · ρs

 ,

where the ρi's correspond to the simple KG-modules Vi/Vi+1. By a Jordan-Hölder-type
theorem for modules we know that these simple representations ρi are uniquely determined
by ρ up to isomorphism and we call them the irreducible constituents of ρ.

Let ρ : G→ GLn(K) be a K-representation. The corresponding trace function

χ : G→ K, g 7→ tr(ρ(g))

is called the K-character of G a�orded by ρ. The number n is called the degree of
χ. By properties of the trace function, it is clear that characters are class functions (i.e.
constant on conjugacy classes) and that similar representations a�ord the same character.
We say a K-character χ is irreducible if the representation a�ording it is irreducible.
Due to the fact that every K-representation is similar to one in block upper-triangular
form where the representations on the diagonal correspond to simple KG-modules, every
K-character is a sum of irreducible K-characters. It follows that a non-zero character is
irreducible if and only if it can not be written as the sum of two non-zero characters.

1.2 Ordinary characters

Let K = C throughout this section. The C-characters of G are normally referred to
as ordinary characters or just characters. We let Irr(G) denote the set of irreducible
characters of G. The character 1G a�orded by the trivial C-representation (G→ C×, g 7→
1) is called the principal character of G.

2



Theorem 1.4 ([27, (2.7) Corollary]). Let G be a �nite group. The number of irreducible
characters of G is equal to the number of conjugacy classes of G.

Clearly a lot of structural information is lost when we go from representations to their
characters. But in the case where K = C, Maschke's theorem suggests that most of the
relevant information can actually be recovered from the characters.

Theorem 1.5 ([27, (2.9) Corollary]). Let G be a �nite group. Two representations are
similar if and only if they a�ord the same character.

Let cl(G) denote the C-vector space of class functions of G.

Theorem 1.6 ([27, (2.8) Theorem]). Let G be a �nite group. The set Irr(G) is a basis of
cl(G).

Given a character ψ, we can write

ψ =
∑

χ∈Irr(G)

aχχ,

for some non-negative integers aχ. If aχ 6= 0 we call χ a constituent of ψ and aχ its
multiplicity. Let χ, θ be two characters of G and set

〈χ, θ〉 :=
1

|G|
∑
g∈G

χ(g)θ(g),

where the bar denotes complex conjugation. If χ, θ ∈ Irr(G) then

〈χ, θ〉 = δχθ,

by the First Orthogonality Relation (see [27, (2.14) Corollary]). Hence the set Irr(G) is
an orthonormal basis of cl(G) with respect to the inner product 〈 , 〉.

A lot of information on the characters of G is given by the characters of subgroups of
G. If ϕ is a class function of a subgroup H ⊆ G, then the restriction ϕH of ϕ to H is a
class function of H. In particular, if ϕ is a character of G, then ϕH is a character of H.
Conversely, given a class function θ of H we de�ne the induced class function θG by

θG(g) =
1

|H|
∑
x∈G

xgx−1∈H

θ(xgx−1),

for g ∈ G, which, as the name suggests, is itself a class function. In fact, if θ is a character,
then θG is also a character (see [27, (5.3) Corollary]). The two concepts � restriction and
induction � are closely related.

Theorem 1.7 ([27, (5.2) Lemma], Frobenius reciprocity for �nite groups). Let G be a
�nite group. If ϕ is a class function of G and θ is a class function of a subgroup H ⊆ G,
then 〈ϕ, θG〉 = 〈ϕH , θ〉.

Restriction and induction can also be de�ned at the level of KG- and KH-modules
(actually even as functors on the corresponding module categories) and this reciprocity
phenomenon carries over to these more general settings.
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1.3 Brauer characters

Let R be the ring of algebraic integers in C. For the rest of this section we �x a prime `
and choose a maximal ideal m of R containing `R. The quotient F = R/m is a �eld of
characteristic `. Let

∗ : R→ F

denote the natural projection. Furthermore, let S = Rm be the localization of R at m.
We can extend ∗ to S by setting (r

s

)∗
= r∗(s∗)−1

for every r
s
∈ S. Now, set U = {ξ ∈ C | ∃m ∈ N such that ξm = 1 and ` - m}; the

multiplicative group of `′-roots of unity.

Lemma 1.8 ([38, (2.1) Lemma]). The restriction of ∗ to U de�nes an isomorphism
U → F× of multiplicative groups. Moreover, F is the algebraic closure of its prime �eld
Z∗ ∼= F`.

We say that an element g ∈ G is `-regular if its order is not divisible by `. We denote
by G◦ the set of `-regular elements of G. Let ρ : G → GLn(F ) be an F -representation
of G. By Lemma 1.8, we have that for every g ∈ G◦ the eigenvalues of ρ(g) are of the
form ξ∗1 , . . . , ξ

∗
n for some uniquely determined elements ξ1, . . . , ξn ∈ U. Then the Brauer

character ϕ : G◦ → C of G a�orded by ρ is de�ned by

ϕ(g) = ξ1 + ...+ ξn.

We call n the degree of ϕ. We say ϕ is irreducible if ρ is irreducible and denote the set
of irreducible Brauer characters of G by IBr(G). Similar to the ordinary case, we de�ne
the principal Brauer character 1G◦ to be the one a�orded by the trivial F -representation.
The space of complex class functions de�ned on G◦ is denoted by cf(G◦). We observe
that every Brauer character ϕ of G is in cl(G◦): let ρ be the F -representation a�ording
the Brauer character ϕ. Since ρ(hgh−1) = ρ(h)ρ(g)ρ(h)−1 and similar matrices have the
same eigenvalues, we have ϕ(hgh−1) = ϕ(g). By the block upper triangular form of
F -representations, we also have the following result.

Theorem 1.9 ([38, (2.3) Theorem]). A class function ϕ ∈ cf(G◦) is a Brauer character
of G if and only if ϕ is a non-negative integral linear combination of elements of IBr(G).

As one would expect, in the case that ϕ is a Brauer character this non-negative linear
combination is uniquely determined by ϕ.

Theorem 1.10 ([38, (2.10) Corollary]). The set IBr(G) is a basis of cf(G◦).

If ψ =
∑

ϕ∈IBr(G) aϕϕ is a Brauer character, we call aϕ the multiplicity of ϕ in ψ.

Given an ordinary character χ of G, we denote its restriction to G◦ by χ◦. The
following theorem describes the relationship between ordinary and Brauer characters.
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Theorem 1.11 ([38, (2.9) Corollary]). If χ is an ordinary character of G, then χ◦ is a
Brauer character of G.

For an irreducible character χ ∈ Irr(G) we therefore have

χ◦ =
∑

ϕ∈IBr(G)

dχϕϕ

for uniquely determined non-negative integers dχϕ. The matrix

D = (dχϕ)χ∈Irr(G),ϕ∈IBr(G)

is called the decomposition matrix of G and the entries are called the decomposition
numbers of G.

Proposition 1.12 ([38, (2.11) Corollary]). The decomposition matrix D has rank | IBr(G)|.

We call the elements of

Z Irr(G) = {
∑

χ∈Irr(G)

aχχ | aχ ∈ Z}

generalized characters of G. Similarly, we de�ne

Z IBr(G) = {
∑

ϕ∈IBr(G)

aϕϕ | aϕ ∈ Z}.

Theorem 1.13 ([38, (2.16) Corollary]). Let G be a �nite group. The set {χ◦ | χ ∈ Irr(G)}
generates Z IBr(G) as a Z-module.

This generating set is in general not a Z-basis. A re�ned version of Theorem 1.13 that
we introduce in the next section plays a major role in this work.

1.4 Blocks of �nite groups

Let K be any �eld and let A be a K-algebra. We say that A is indecomposable if it
is nonzero and cannot be written as a direct sum of proper K-subalgebras. Similarly, we
say an A-module is indecomposable if it is nonzero and cannot be written as a direct
sum of proper A-submodules. We have the following important decomposition

Theorem 1.14. [1, IV 13, Theorem 1] Let A be a �nite dimensional K-algebra. Then A
has a unique decomposition into a direct sum of subalgebras each of which is indecompos-
able.

We want to decompose the set Irr(G)∪ IBr(G) further into subsets which give us more
information. In order to do this, we switch to a more general framework.

We call K a splitting �eld for G if V ⊗K L is a simple LG-module for every simple
KG-module V and every �eld extension K ⊆ L. Let O be a complete rank one valuation
ring with �eld of fraction K of characteristic 0 and unique maximal ideal m. Then

5



(K,O, k) is called a splitting `-modular system for G if k ∼= O/m has characteristic `
andK and k are splitting �elds for G. From now on (K,O, k) will be a splitting `-modular
system for G that is su�ciently large, that is, (K,O, k) is also a splitting moudlar system
for all subgroups of G.

Let

kG = B1 + ...+Br

be the unique decomposition of kG into indecomposable subalgebras. Then we call the
Bi's the `-blocks of G. If the prime ` is �xed, we will omit the ` and just call them
blocks. Given a kG-module M , we say that M lies in the block Bi if BiM = M and
BjM = 0 for all j 6= i. If M is simple then for every i we either have BiM = M or
BiM = 0 and since M is nonzero, there is at least one i such that BiM = M . Let Bj be
another block such that BjM = M . Then BiBjM = BiM = M , but BiBj ⊆ Bi∩Bj = 0;
a contradiction. It follows that every simple kG-module lies in a unique block. With this
we are able to partition the set IBr(G). We say a Brauer character ϕ lies in a block B
of G if any simple kG-module a�ording ϕ lies in that block. We denote the set of Brauer
characters lying in a block B by IBr(B).

Corresponding to the block decomposition of kG, we have a central primitive idem-
potent decomposition of the identity of KG (see [37, Section 8.2])

1 = e1 + ...+ er

such that Bi = eikG for 1 ≤ i ≤ r. Now, a kG-moduleM lies in Bi if and only if eiM = M
and ejM = 0 for j 6= i. For a block B, we call the corresponding central primitive
idempotent, denoted by eB, the block idempotent of B. We now want to partition the
set Irr(G) into blocks. We can lift the central primitive idempotent decomposition of the
identity of kG above to a central primitive idempotent decomposition of 1 in OG (see e.g
[37, Theorem 4.10])

1 = c1 + ...+ cr

such that c∗i = ei. Let V be a simple KG-module a�ording an irreducible character χ.
We say that χ lies in the block Bi if ciV = V and cjV = 0 for j 6= i. We denote
the set of irreducible characters lying in a block B by Irr(B). It follows that blocks can
be seen as subsets of Irr(G) ∪ IBr(G). The number of irreducible Brauer (respectively
ordinary) characters lying in a block B will be denoted by l(B) (respectively k(B)) and
either computing or bounding l(B) is the main focus of this thesis.

De�nition 1.15. If U is a union of blocks (regarded as subsets of Irr(G) ∪ IBr(G)) we
set Irr(U) =

⋃
B⊆U Irr(B) and IBr(U) =

⋃
B⊆U IBr(B). Moreover, we de�ne

Z IBr(U) = {
∑

ϕ∈IBr(U)

aϕϕ | aϕ ∈ Z} and

Q IBr(U) = {
∑

ϕ∈IBr(U)

aϕϕ | aϕ ∈ Q}.
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A subset A ⊆ Z IBr(U) is called a generating set for U if it generates Z IBr(U) as a
Z-module and it is called a basic set for U if it is a basis of Z IBr(U) as a Z-module. A
subset C ⊆ Irr(G) is called an ordinary generating (respectively basic) set for U if the
set C◦ = {ψ◦ | ψ ∈ C} consisting of the restrictions of the irreducible characters in C to
G◦ is a generating (respectively basic) set for U .

Note that every basic set of a block B has cardinality l(B). The cardinality of an arbitrary
generating set is greater than or equal to l(B). The following is a generalization of
Theorem 1.13 to blocks.

Theorem 1.16 ([38, (3.16) Lemma]). Let B be a block of a �nite group G. Then {χ◦ | χ ∈
Irr(B)} is an ordinary generating set for B.

A large share of this thesis is concerned with �nding suitable, small generating sets which
yield useful upper bounds on l(B). This is accomplished by �nding small (enough) subsets
of the generating set of Theorem 1.16.

Let M be a kG-module and H ⊆ G a subgroup of G. We say that M is relatively
H-free if there is a kH-submodule X of M such that any kH-homomorphism of X
to any kG-module V , extends uniquely to a kG-homomorphism of M to V . This is a
generalization of the notion of a free module; M is a free module if M is relatively H-free
for H = 1. With this we can also generalize the notion of projective modules. We say M
is relatively H-projective if M is a direct summand of a relatively H-free module.

Theorem 1.17 ([1, III 9, Theorem 4]). Let M be an indecomposable kG-module. Then
there is an `-subgroup Q of G, unique up to G-conjugacy, such that M is relatively H-
projective, for a subgroup H of G, if and only if H contains a conjugate of Q.

Every subgroup in the conjugacy class of Q is called a vertex of M . Let δ denote the
diagonal homomorphism of G into G×G, sending g ∈ G to (g, g).

Theorem 1.18 ([1, IV Theorem 4]). Let B be a block of a �nite group G. Then B,
considered as a k[G×G]-module, has a vertex of the form δD for D an `-subgroup of G
which is uniquely de�ned up to G-conjugacy.

The `-subgroups of G conjugate to D are called defect groups of B. If the order of D
is `d, we de�ne the defect d(B) of B to be d.

If K E H ⊆ G are two subgroups of G, we call the quotient H/K a section of G.
The sectional `-rank s(G) of a �nite group G is then de�ned to be the maximum of the
ranks of elementary abelian `-sections of G. Note that s(H) ≤ s(G) for every subgroup
H ⊆ G. We are �nally able to state the Malle�Robinson conjecture, which is the primary
motivation for this thesis.

Conjecture 1 ([34, Conjecture 1]). Let B be an `-block of a �nite group G with defect
group D. Then

l(B) ≤ `s(D).

7



If strict inequality holds, we say that the conjecture holds in strong form. Since the defect
groups of a given block B are conjugate and therefore isomorphic to each other, we often
write s(B) instead of s(D).

This thesis is concerned with establishing the Malle�Robinson conjecture for an im-
portant class of blocks of the quasi-simple exceptional groups of Lie type. Apart from
arguments stemming from the geometric nature of the character theory of �nite reductive
groups, we also need some block-theoretic results.

Remark 1.19. One argument we will use later on involves another description of the defect
of a block (see e.g. [38, (3.15) De�nition]). Let B be an `-block of a �nite group G with
|G|` = `a. Then

`a−d(B) = min{χ(1)` | χ ∈ Irr(B)}.

Let N E G be a normal subgroup of G. There is a natural action of G on kN given
by

(
∑
n∈N

ann)g =
∑
n∈N

ann
g.

The conjugate of an indecomposable subalgebra of kN is still indecomposable, so the
action of G on kN induces an action on the blocks of N . Let b = b1 be a block of N . If
{b1, b2, ..., bt} is the G-orbit of b, then the idempotent

∑t
i=1 ebi lies in Z(kG). In particular,∑t

i=1 ebi decomposes into a sum of primitive central idempotents of kG. Hence

t∑
i=1

ebi =
s∑
i=1

eBi ,

where the Bi's are uniquely determined blocks of G. In this case, we say that the Bi's
cover b. Whether or not a given block of G covers a given block of N can easily be
determined by character theoretic arguments.

Theorem 1.20 ([38, (9.2) Theorem]). Let N E G be a normal subgroup of a �nite group
G. Let b be a block of N and B be a block of G. The following statements are equivalent:
(a) B covers b;
(b) if χ ∈ Irr(B), then every irreducible constituent of χN lies in a G-conjugate

of b;
(c) there is a χ ∈ Irr(B) such that χN has an irreducible constituent lying in b.

Set Ḡ = G/N and let ¯: G→ Ḡ denote the projection of G onto Ḡ. If χ̄ is a character
of Ḡ, we can de�ne a character χ of G by setting χ(g) = χ̄(ḡ). In this way, every character
of Ḡ can be seen as a character of G with N in its kernel. Furthermore, if χ̄ is irreducible,
then χ is irreducible as well. The same also holds for Brauer characters. This means that
we can regard Irr(Ḡ) (respectively IBr(Ḡ)) as a subset of Irr(G) (respectively IBr(G)).
The canonical projection ¯: G→ Ḡ induces a k-algebra homomorphism kG→ kḠ. This
homomorphism sends central elements to central elements. So, if B is a block of G, then
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the image of its idempotent ēB is either 0 or an idempotent in Z(kḠ). In the latter case,
we have

ēB =
r∑
i=1

eB̄i ,

for uniquely determined blocks B̄1, ..., B̄r of Ḡ. We then say that B dominates the blocks
B̄1, ..., B̄r. It is easy to show that domination of blocks is the same as inclusion of blocks,
where we then think of blocks of G as subsets of Irr(G)∪ IBr(G). The following theorems
are crucial for the proof of the Malle�Robinson conjecture for simple groups of Lie type.

Theorem 1.21 ([38, (9.9) Theorem]). Let N E G be a normal subgroup of a �nite group
G and write Ḡ = G/N .
(a) Suppose that B̄ ⊆ B, where B̄ is a block of Ḡ and B is a block of G. If D̄ is a

defect group of B̄, then there is a defect group D of B, such that D̄ ⊆ DN/N.
(b) If N is an `-group, then every block B of G contains a block B̄ of Ḡ such that every

defect group of B̄ is of the form D/N , where D is a defect group of B.
(c) If N is a `′-group and B̄ ⊆ B, then Irr(B) = Irr(B̄), IBr(B) = IBr(B̄) and every

defect group of B̄ is of the form DN/N , where D is a defect group of B.

Theorem 1.22 ([38, (9.10) Theorem]). Suppose that G has a normal `-subgroup P such
that G/CG(P ) is an `-group. Let Ḡ = G/P . If B̄ is a block of Ḡ and B is the unique
block of G containing B̄, then IBr(B̄) = IBr(B) and every defect group D̄ of B̄ is of the
form D/P for a defect group D of B.

1.5 Connected reductive groups

From now on let K = Fp be an algebraic closure of the �nite �eld Fp with p elements.
Recall that the additive group (K,+) and the multiplicative group (K \ {0}, ∗) are both
algebraic groups, which we denote by Ka and Km respectively. Many arguments in this
thesis use the fact that reductive algebraic groups can be classi�ed by combinatorial data.

Let G be a connected reductive algebraic group de�ned over K. Let T0 be a �xed
maximal torus of G and let B0 be a �xed Borel subgroup of G containing T0. Set X(T0) =
Hom(T0, Km) and Y (T0) = Hom(Km, T0), where the elements are homomorphisms of
algebraic groups. If χ ∈ X(T0) and ψ ∈ Y (T0), then the composite map χ ◦ ψ is an
endomorphism of Km and is therefore of the form y 7→ yn for some n ∈ Z. This yields a
pairing 〈−,−〉 : X(T0)× Y (T0)→ Z de�ned by 〈χ, ψ〉 = n.

The most important object attached to a connected reductive group is its Weyl group,
which we introduce now. Let U be a one dimensional connected unipotent subgroup of
G that is normalized by T0. First of all, we have Ka

∼= U (see for example [25, Chapter
20]). We call an isomorphism Ka → U , t 7→ x(t) a parametrization of U . From the
structure of Ka, it follows that every other parametrization of U is of the form t 7→ x(ct),
for c ∈ K \ {0} (see for example [22, Proposition 1.3.5]).

Proposition 1.23 ([22, Proposition 1.9.2]). If U is a one-dimensional connected unipo-
tent subgroup of G normalized by T0, then there is a unique α ∈ X(T0) such that for any
parametrization x(t) of U , x(t)s = x(α(s)t) for t ∈ K and s ∈ T0.
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This α is called a root of G. Furthermore, it can be shown that each root α is associated
to a unique one-dimensional unipotent T0-invariant subgroup U called a root subgroup,
which we therefore denote by Uα (see [22, Theorem 1.9.5 (b)]). The set of roots of G will
be denoted by Φ(T0) or just Φ. All of this �ts into a more general framework which we
outline now.

Let V be a �nite dimensional euclidean vector space. Recall that a re�ection of V
is a linear map on V which sends some nonzero vector α to its negative while �xing the
hyperplane Hα orthogonal to α pointwise. We denote the linear map corresponding to α
by sα. A root system in V consists of a subset Φ of V satisfying the following axioms:

(R1) Φ is �nite, generates V and does not contain 0;
(R2) if α ∈ Φ and cα ∈ Φ, for a c ∈ R, then c ∈ {1,−1};
(R3) if α ∈ Φ, then sαΦ = Φ;
(R4) if α, β ∈ Φ, then sα(β)− β is an integral multiple of α.

We call dim(V ) the rank of Φ. The �nite group W generated by the sα's is called
the Weyl group of the root system and is a group of permutations of Φ by (R3).

A subset Π = {α1, ..., αt} of Φ is called a base if it is a basis of V and if, for α ∈ Φ, the
coe�cients of α expressed as a linear combination of α1, ..., αt have the same sign. It is a
nontrivial fact that bases exist (see [26, 1.3 Theorem]) and that W permutes the collec-
tion of bases simply transitively (see [26, 1.8 Theorem]). We call the elements of a given
base Π the simple roots. The roots which are non-negative (respectively non-positive)
combinations of Π comprise the set Φ+ (respectively Φ−) of positive (respectively neg-
ative) roots. Hence every base yields a set of positive roots. On the other hand we can
equip V with a total ordering < as in [26, Section 1.3] and set Φ+ := {α ∈ Φ | 0 < α};
the corresponding set of positive roots. We then call an element of Φ+ simple if it
can not be decomposed into a sum of two or more positive roots. The set of simple roots
as de�ned here is then a base of Φ. In particular, there is a one-to-one correspondence
between bases and positive systems.

A root system is called irreducible if it cannot be partitioned into a union of two
mutually orthogonal proper subsets. Every root system is the disjoint union of uniquely
determined irreducible root systems (in suitable subspaces of V ) and, up to isomorphisms,
these irreducible root systems correspond to the following Dynkin diagrams (see [26,
Chapter 2]):

An
α1 α2 α3 αn−1 αn

Bn (n ≥ 2)
α1 α2 α3 αn−1 αn

Cn (n ≥ 2)
α1 α2 α3 αn−1 αn

Dn (n ≥ 4) α1

α2

α3 α4 αn−1 αn
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F4
α1 α2 α3 α4

G2
α1 α2

E6
α1

α2

α3 α4 α5 α6

E7
α1

α2

α3 α4 α5 α6 α7

E8
α1

α2

α3 α4 α5 α6 α7 α8

Theorem 1.24 ([15, 0.31 Theorem]). Let G be a semisimple algebraic group and let T0

be a maximal torus of G. Then Φ(T0) is a root system in R ⊗Z X(T0) whose rank is
dim(T0) and whose Weyl group is isomorphic to W (T0) = NG(T0)/T0. Furthermore, the
Borel subgroups containing T0 are in one-to-one correspondence with the bases of Φ.

The theorem implicitly talks about the action of W (T0) on X(T0), so let us recall that
W (T0) acts on X(T0) and Y (T0) as follows:

(w.χ)(t) = χ(tw) for all w ∈ W, χ ∈ X(T0), t ∈ T0;

(w.γ)(c) = γ(c)w
−1

for all w ∈ W, γ ∈ Y (T0), c ∈ Km.

Let Φ be a root system. A subset Ψ ⊆ Φ is said to be closed if
(C1) for all α, β ∈ Ψ we have sαβ ∈ Ψ, and
(C2) for α, β ∈ Ψ with α + β ∈ Φ, we have α + β ∈ Ψ.

De�nition 1.25. Let Φ be a root system. A prime r is called bad for Φ if ZΦ/ZΨ has
r-torsion for some closed subsystem Ψ ⊆ Φ. Let G be a connected reductive group. Then
a prime r is called bad for G, if it is bad for the root system of G and we denote the set
of bad primes of G by γ(G). Every prime that is not bad for G is called good for G.

There are just a few bad primes and they are given in the following table for the simple
types.

Φ bad primes
An −
Bn (n ≥ 2) 2
Cn (n ≥ 3) 2
Dn (n ≥ 4) 2
G2, F4, E6, E7 2, 3
E8 2, 3, 5
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The distinction between good and bad primes is crucial in the theory of algebraic groups
and in the theory of �nite reductive groups. Many general results simply do not hold for
bad primes. This problem arises in various di�erent ways, as can be seen in Sections 3
and 4.

Next, we want to classify the connected reductive algebraic groups. Since the derived
subgroup [G,G] of a connected reductive group G is semisimple and G = Z(G)◦[G,G]
(see [25, 19.5, Lemma]), it is enough to classify the semisimple algebraic groups.

Lemma 1.26 ([35, Lemma 8.19]). Let G be a semisimple algebraic group and let T0 be a
maximal torus of G. Let α ∈ Φ = Φ(T0). Then we have the following:
(a) for each root α ∈ Φ there exists a unique α∨ ∈ Y (T0) such that sα.χ =

χ− 〈χ, α∨〉α for all χ ∈ X(T0). In particular 〈α, α∨〉 = 2;
(b) sα.γ = γ − 〈α, γ〉α∨ for all γ ∈ Y (T0).

For a root α, we call α∨ ∈ Y (T0) the coroot corresponding to α and set Φ∨ = Φ∨(T0) :=
{α∨ | α ∈ Φ}. It can be shown that Φ∨ is a root system in R⊗Z Y (T0), which we call the
dual root system of Φ.

Everything about reductive algebraic groups is encoded in the following combinatorial
structure.

De�nition 1.27. A quadruple (X,Φ, Y,Φ∨) is called a root datum if
(RD1) X ∼= Y ∼= Zn with a perfect pairing 〈−,−〉 : X × Y → Z;
(RD2) Φ ⊆ X, Φ∨ ⊆ Y are abstract root systems in ZΦ⊗Z R and ZΦ∨ ⊗Z R

respectively;
(RD3) there exists a bijection Φ → Φ∨ such that 〈α, α∨〉 = 2 for all α ∈ Φ;

and
(RD4) the re�ections sα of the root system Φ, respectively s∨α of Φ∨ are given

by
sα.χ = χ− 〈χ, α∨〉α for all χ ∈ X,
sα∨ .γ = γ − 〈α, γ〉α∨ for all γ ∈ Y.

Since the pairing 〈−,−〉 is perfect we have X ∼= Hom(Y,Z) and Y ∼= Hom(X,Z). Let
(X ′,Φ′, Y ′,Φ∨

′
) be another root datum. For every group homomorphism φ : X ′ → X the

perfect pairing yields a dual group homomorphism φ∨ : Y → Y ′. A homomorphism of
root data is a group homomorphism φ : X ′ → X that maps Φ′ bijectively to Φ and such
that the dual homomorphism φ∨ maps φ(α)∨ to α∨ for every α ∈ Φ′.

If G is a semisimple algebraic group with a maximal torus T , then we observe that
(X(T ),Φ, Y (T ),Φ∨) is a root datum. With this we are at last able to state Chevalley's
Classi�cation theorem.

Theorem 1.28 ([35, Theorem 9.13]). Two semisimple algebraic groups are isomorphic if
and only if they have isomorphic root data. For each root datum there exists a semisimple
algebraic group which realizes it. This group is simple if and only if its root system is
irreducible.

The groups with root systems of type An, Bn, Cn, Dn, are called groups of classical
type and the groups of type G2, F4, E6, E7, E8 are called groups of exceptional type.
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Let G be a semisimple algebraic group with root datum (X,Φ, Y,Φ∨). By Theorem
1.24, ZΦ is of �nite index inX and ZΦ∨ is of �nite index in Y . Furthermore, we can lift our
perfect pairing 〈−,−〉 : X×Y → Z to a non-degenerate bilinear map R⊗ZX×R⊗ZY → R,
which we will still denote by 〈−,−〉. Set

Ω = {x ∈ RΦ | 〈x,Φ∨〉 ⊂ Z}.

Then Ω is a lattice with ZΦ ⊆ X ⊆ Ω. We call Ω the weight lattice. For a given Φ we
see that there are only �nitely many possibilities for X. We call G adjoint if X = ZΦ
and simply connected if X = Ω. The �nite abelian group ∆ := Ω/ZΦ is called the fun-
damental group of G. Chevalley's Classi�cation Theorem says that G is characterised
by its root system and the image of X in ∆. For a given root system Φ, we denote the
associated simply connected groups by Gsc and the adjoint groups by Gad.

A surjective homomorphism φ : G→ H of algebraic groups with �nite kernel is called
an isogeny. It should be noted that this kernel lies in the center of G.

Proposition 1.29 ([35, Proposition 9.15]). Let G be a semisimple group with root system
Φ. Then there exist natural isogenies

Gsc → G→ Gad

from a simply connected group Gsc and to an adjoint group Gad, each with root system Φ.

The following well-known results are used in the proofs in later sections.

Proposition 1.30 ([35, Proposition 14.1]). Let G be a connected reductive group, s ∈ G
semisimple, T ≤ G a maximal torus with corresponding root system Φ. Let s ∈ T and
Ψ := {α ∈ Φ | α(s) = 1}. Then we have the following.
(a) C◦G(s) = 〈T, Uα | α ∈ Ψ〉, and
(b) CG(s) = 〈T, Uα, ẇ | α ∈ Ψ, w ∈ W with sw = s〉, where ẇ denotes a representative

of w ∈ W in NG(T ).
Moreover, C◦G(s) is reductive with root system Ψ and Weyl group W (s) = 〈sα | α ∈ Ψ〉.

Theorem 1.31 (Steinberg, [35, Theorem 14.16]). Let G be a connected reductive group
such that the derived subgroup [G,G] is simply connected, and let s ∈ G be a semisimple
element. Then CG(s) is connected.

Let G be a connected reductive group and let T be a maximal torus with corresponding
root system Φ and Weyl group W . Furthermore, let Π be a base of Φ. If I ⊆ Π we
write WI := 〈sα, α ∈ I〉 for the subgroup of W generated by the simple re�ections
corresponding to the simple roots in I. It turns out that this group is itself again a Weyl
group corresponding to the root system ΦI = Φ ∩

∑
α∈I Zα.

Proposition 1.32 ([35, Proposition 12.2]). Let G be connected reductive. Let Φ be the
root system of G with respect to a maximal torus T ⊆ B of G and let Π be the set of
simple roots corresponding to B. Then we have the following.
(a) Let I ⊆ Π. The group PI := BWIB =

⋃
w∈WI

BẇB is a closed, connected, self-
normalizing subgroup of G which contains B.

(b) PI = 〈T, Uα | α ∈ Φ+ ∪ ΦI〉.
Moreover, all closed subgroups containing B arise in this way.
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The groups PI which arise in this way are called standard parabolic subgroups of
G. A subgroup of G is said to be parabolic if it is conjugate to a standard parabolic
subgroup. For I ⊆ Π we set

UI := 〈Uα | α ∈ Φ+ \ ΦI〉

and

LI := 〈T, Uα | α ∈ ΦI〉.

It can be shown that UI = Ru(PI) and that LI is complement to UI in PI , i.e. PI = UIoLI .
Moreover, LI is a connected reductive group with root system ΦI (see [35, Proposition
12.6]).

De�nition 1.33. LI is called the (standard) Levi complement of PI . A subgroup is
said to be a Levi subgroup of G if it is conjugate to a standard Levi complement LI of
a standard parabolic PI for some I ⊆ Π.

It follows that every parabolic subgroup P of G has a decomposition P = Ru(P ) o L for
some Levi subgroup L of G. As in the case of the standard parabolic subgroups, we say
that L is a Levi complement of P .

We call a connected reductive subgroup H ⊆ G a subsystem subgroup if its root
system is a closed subsystem (see Section 1.5) of Φ, where Φ is the root system of G with
respect to some maximal torus T of G. We will repeatedly make use of the following
fundamental fact about bad primes.

Proposition 1.34. If H ⊆ G is a subsystem subgroup of a connected reductive group G,
then γ(H) ⊆ γ(G).

Proof. We denote the root systems of H and G by Ψ and Φ respectively. By the de�nition
of bad primes, to prove the assertion we just need to show that every closed subset Θ of
Ψ is a closed subset of Φ. Since Θ is a closed subset of Ψ, (C1) is automatically satis�ed.
Now let α, β ∈ Θ be such that α+ β ∈ Φ. Since Θ ⊆ Ψ and Ψ is a closed subset of Φ, we
have α + β ∈ Ψ. In turn this yields α + β ∈ Θ as Θ is a closed subset of Ψ.

Observe that the connected components of centralizers of semisimple elements in G and
the Levi subgroups of G are examples of subsystem subgroups of G.

Next, we want to know what happens when you intersect Levi subgroups.

Proposition 1.35 ([15, 2.1 Proposition]). Let P and Q be two parabolic subgroups of G
with unipotent radicals U and V respectively. Let L and M be Levi complements of P and
Q respectively, sharing a common maximal torus of G. Then the group (P ∩ Q).U is a
parabolic subgroup of G with Levi complement L ∩M .

In other words, the intersection of two Levi subgroup is again a Levi subgroup if they
contain a common maximal torus of G.

14



Proposition 1.36 ([15, 1.21 Proposition, 1.22 Proposition]). Let G be a connected re-
ductive group. For any torus S of G, the group CG(S) is a Levi subgroup of G. Con-
versely, every Levi subgroup L occurs as the centraliser of a torus of G. In particular,
L = CG(Z◦(L)).

Corollary 1.37. Let L ⊆ G be a Levi subgroup of a connected reductive group G. If
M ⊆ L is a Levi subgroup of L, then M is a Levi subgroup of G.

Proof. Since M is a Levi subgroup of L, we have M = CL(Z◦(M)) by Proposition 1.36.
Similarly, we have L = CG(Z◦(L)). Furthermore, Z◦(L) ⊆ Z◦(M) because M ⊆ L are
both connected reductive groups and the center of a connected reductive group is the
intersection of all of its maximal tori. In conclusion, we have

M = CL(Z◦(M)) = CCG(Z◦(L))(Z
◦(M)) = CG(Z◦(L) ∪ Z◦(M)) = CG(Z◦(M)).

Hence, M is a Levi subgroup of G by Proposition 1.36.

Proposition 1.38 (Geck�Hiss, [19, Proposition 2.1]). Let G be a connected reductive
group and let s ∈ G be a semisimple element such that o(s) is only divisible by primes
which are good for G. Then C◦G(s) is a Levi subgroup of G.

Proof. Let L ⊆ G be the smallest Levi subgroup of G containing C◦G(s). Let Φ be the
root system of G with respect to a maximal torus T of G. Denote the root system of L
by Ψ and the root system of C◦G(s) by Φ(s). We have Φ(s) = {γ ∈ Φ | γ(s) = 1}. By
the minimality of L, Φ(s) ⊆ Ψ have the same rank. In particular, ZΨ/ZΦ(s) is a �nite
group and by de�nition of bad primes, its order, say n, is a product of bad primes for L
and therefore of G by Proposition 1.34. We show that Ψ ⊆ Φ(s). Let α ∈ Ψ. We have
nα =

∑
γ∈Φ(s) aγγ. Evaluating both sides at s yields

α(s)n =
∏

γ∈Φ(s)

γ(s)aγ = 1.

It follows that o(α(s)) | n and because α is a group homomorphism, we also have
o(α(s)) | o(s). Hence o(α(s)) | (n, o(s)). But (n, o(s)) = 1, by the assumption on o(s).
Therefore, α(s) = 1, i.e. α ∈ Φ(s).

1.6 Finite groups of Lie type

Finite reductive groups or �nite groups of Lie type arise as �xed point groups of certain
endomorphisms of connected reductive algebraic groups. The theory of �nite groups of
Lie type is therefore strongly connected to the theory of algebraic groups. To get to the
�nite groups of Lie type we need to discuss Fq -structures (q a power of p) on algebraic
groups, Frobenius endomorphisms and the relationship between them.

We denote the a�ne space of dimension n by An.
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Example Let V ⊆ An be an a�ne variety over an algebraically closed �eldK. Assume its
vanishing ideal I(V ) ⊆ K[X1, ..., Xn] is generated by polynomials in Fq[X1, ..., Xn]. In par-
ticular, I(V )0 := I(V )∩Fq[X1, ...Xn] is an ideal in Fq[X1, ..., Xn] such that I(V )0K[X1, ..., Xn] =
I(V ). Then

K[V ] = K[X1, ..., Xn]/I(V )0K[X1, ..., Xn] ∼= Fq[X1, ..., Xn]/I(V )0 ⊗Fq K.

Set A0 := Fq[X1, ..., Xn]/I(V )0. The isomorphism above yields a natural endomorphism
F : V → V given by the endomorphism F ∗ : A0 ⊗K → A0 ⊗K, a⊗ λ 7→ aq ⊗ λ.

With this in mind, we say that an a�ne variety X is de�ned over Fq or is endowed
with an Fq-structure if its coordinate ring K[X] can be written as K[X] = A0 ⊗ K
for a �nitely generated Fq-algebra A0. We call A0 an Fq-structure on X. Every Fq-
structure is accompanied by an endomorphism as in the example above. The Frobenius
endomorphism F : V → V associated to a given Fq-structure is the endomorphism of
V de�ned by the endomorphism of K[X] = A0⊗FqK that sends a⊗λ to aq⊗λ. We have
the following general result.

Proposition 1.39 ([15, 3.6 Proposition]). Let V be an a�ne variety over K de�ned over
Fq with corresponding Frobenius endomorphism F : V → V .
(a) Let ϕ be an automorphism of V such that (ϕF )n = F n for some positive

integer n. Then ϕF is a Frobenius endomorphism associated to some Fq-
structure.

(b) If F ′ is another Frobenius endomorphism of V corresponding to an Fq-
structure , there exists a positive integer n such that F ′n = F n.

(c) F n is the Frobenius endomorphism corresponding to some Fqn-structure on
V .

(d) The set of rational points of V , V F := {v ∈ V | F (v) = v}, is a �nite set.

Now, an algebraic group over K is said to be de�ned over Fq if it has an Fq-rational
structure such that the corresponding Frobenius endomorphism is a group homomor-
phism. If G is a connected reductive group de�ned over Fq with Frobenius endomorphism
F : G → G, then by Proposition 1.39 the group GF := {g ∈ G | F (g) = g} of F -stable
points of G is a �nite group. Groups that arise in this way are called �nite reductive
groups or �nite groups of Lie type.

Theorem 1.40 ([35, Theorem 24.15 + Theorem 24.17]). Let G be a simple, simply-
connected group de�ned over Fq with Frobenius endomorphism F : G→ G. Then, unless
GF is one of the groups

SL2(2), SL2(3), SU3(2), Sp4(2), G2(2),2B2(2),2G2(2),2F4(2),

GF is quasi-simple.

The following theorem allows us to use geometric arguments when studying �nite
groups of Lie type.
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Theorem 1.41 (Lang-Steinberg Theorem, [35, Theorem 21.7]). Let G be a connected
algebraic group de�ned over Fq with Frobenius endomorphism F : G → G. Then the
morphism

L : G→ G, g 7→ F (g)g−1,

is surjective.

We collect some immediate consequences of this theorem in the following corollary.

Corollary 1.42 ([35, Section 21.2]). Let G be a connected reductive group de�ned over
Fq with Frobenius endomorphism F : G→ G.
(a) If H is a closed connected F -stable subgroup of G, then (G/H)F = GF/HF .
(b) There exists a pair T ⊆ B consisting of an F -stable maximal torus T in an

F -stable Borel subgroup B of G. All such pairs T ⊆ B are GF -conjugate.
(c) Any F -stable conjugacy class of G contains an F -stable element.
(d) In the abstract semidirect product G o 〈F 〉, the coset G.F of F consists of

a single conjugacy class, that is, G.F = FG. In particular, GgF and GF are
G-conjugate and hence isomorphic for any g ∈ G.

Let G be a connected reductive algebraic group with Frobenius endomorphism F . Let
T be an F -stable maximal torus contained in an F -stable Borel subgroup B of G (which
exists by the previous Corollary). As T is F -stable, so is NG(T ). As such F acts on
the Weyl group W = NG(T )/T and we have W F = NG(T )F/T F by Corollary 1.42 (a).
Furthermore, F acts naturally on X(T ) and Y (T ) via

F (χ)(t) := χ(F (t)) for χ ∈ X(T ), t ∈ T,
F (γ)(c) := F (γ(c)) for γ ∈ Y (T ), c ∈ K×.

We write Φ ⊂ X(T ) for the root system of G with respect to T and choose isomorphisms
uα : Ka → Uα onto the root subgroups Uα. Then we have the following result.

Proposition 1.43 ([35, Proposition 22.2]).
(a) There exists a permutation ρ of Φ+ and, for each α ∈ Φ+, a positive integral

power qα > 1 of p and aα ∈ K× such that F (ρ(α)) = qαα and F (uα(c)) =
uρ(α)(aαc

qα) for all c ∈ K.
(b) There exists a d ≥ 1 such that F d

∣∣
X(T )

= rdidX(T ) and F = rφ on X(T )⊗Z

R, for some positive integer power r of p and some φ ∈ Aut(X(T )⊗Z R) of
order d inducing ρ−1 on Φ+.

If φ is a nontrivial automorphism of X(T )⊗ZR, we call GF twisted and otherwise we call
GF split. Note that the original statement in [35] is slightly stronger and also includes
endomorphisms of algebraic groups leading to Suzuki and Ree groups, i.e endomorphisms
F such that an integer power F d is a Frobenius endomorphism corresponding to an Fpe-
structure for a positive integer e. Since we are not interested in Suzuki and Ree groups,
we stick to Frobenius endomorphisms throughout this thesis.

Next, we brie�y discuss the existence of Fq-structures on algebraic groups overK = Fp.
Since we normally assume G to be a simple algebraic group in this thesis, the following
existence theorem is su�cient.
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Theorem 1.44 ([35, Theorem 22.5]). Let G be a simple, simply connected algebraic group
de�ned over Fq with Frobenius endomorphism F : G→ G. Then F is uniquely determined,
up to inner automorphisms of G, by q and the Dynkin diagram automorphism ρ

∣∣
∆

in
Proposition 1.43. Conversely, for every pair (q, ρ) with q an integral power of p and ρ a
Dynkin diagram automorphism of ∆ there exists an Fq-rational structure on G yielding a
Frobenius F such that the corresponding permutation of Φ+ (see Proposition 1.43) is ρ.

To go from algebraic groups of simply connected type to arbitrary isogeny types we need
the following lifting result.

Proposition 1.45 ([35, Proposition 22.7]). Let G be semisimple and let π : Gsc → G be
the natural isogeny from a simply connected group of the same type. Then every isogeny
σ : G→ G can be lifted to a unique isogeny σsc : Gsc → Gsc such that π ◦ σsc = σ ◦ π.

A general existence result can for example be found in [39]. The �nal result of that
book is an existence theorem for structures over arbitrary �elds instead of just �nite ones,
so the proofs are more complex than they would need to be for our purposes. For a more
�tting treatment see [20, Example 1.4.15].

In light of this, we always assume the existence of Frobenius endomorphisms as in
Theorem 1.44 for all connected reductive groups in the following sections.

De�nition 1.46. Let G be a simple algebraic group de�ned over Fq with Frobenius en-
domorphism F : G→ G. If G is of type A, D or E6 we have non-trivial Dynkin diagram
automorphisms. GF is said to be of classical type if GF ∈ {An(q), 2An(q), Bn(q), Cn(q),
Dn(q), 2Dn(q)} (for some n ∈ N) and is said to be of exceptional type if GF ∈
{G2(q), 3D4(q), F4(q), E6(q) 2E6(q), E7(q), E8(q)}, where the superscript on the left of the
type indicates the order of the Dynkin diagram automorphism induced by F .

Next we introduce a generalization of root data which allows us to classify the �nite
groups of Lie type using combinatorial structures. Let G be a semisimple group de�ned
over Fq with Frobenius endomorphism F : G→ G. Let T be an F -stable torus a�ording
the root datum (X,Φ, Y,Φ∨). SinceW = NG(T )/T is F -stable we can de�ne a semidirect
product W 〈F 〉. Every element wF in the coset W.F �xes T and therefore �xes X, Φ,
Y and Φ∨. By Corollary 1.42 (d) we have GwF ∼= GF . Hence the isomorphism type of
GF is determined by the root datum and the coset Wφ, where φ is the automorphism
associated to F by Proposition 1.43. Every �nite group of Lie type therefore de�nes a
combinatorial structure of the following form.

De�nition 1.47. A tuple G = (X,Φ, Y,Φ∨,Wφ) is called a complete root datum if
the tuple (X,Φ, Y,Φ∨) is a root datum and φ is an automorphism of this root datum of
�nite order.

Conversely, every prime power q together with a complete root datum G yields a �nite
group of Lie type up to isomorphism. This can be seen by combining Theorem 1.24 and
Theorem 1.44. We have to be careful though. It is not true that groups with di�erent
complete root data are necessarily non-isomorphic (see [35, Remark 24.9] for a list of
examples).

Given a power of a prime q and a complete root datum G = (X,Φ, Y,Φ∨,Wφ) corre-
sponding to an algebraic group G de�ned over Fq with Frobenius endomorphism F , then
we sometimes write G(q) instead of GF in this section.
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De�nition 1.48. Let G = (X,Φ, Y,Φ,Wφ) be a complete root datum. Its Ennola dual
is then de�ned as G− := (X,Φ, Y,Φ∨,W (−φ)). If GF corresponds to G together with a
prime power q, we call the group corresponding to G− together with q its Ennola dual.

Note that G = G− if − id ∈ W . Ennola duality is used and referred to repeatedly in order
to save computing time and to half the number of tables needed in this thesis.

The fact that �nite groups of Lie type are determined by combinatorial structures
indicates some kind of generic behaviour. One example of this is the order formula. Its
most generic form relies on a result of Shephard�Todd on �nite re�ection groups.

Theorem 1.49 (Shephard�Todd, [35, Theorem 24.4]). Let W ⊆ GL(V ) be a �nite re-
�ection group on a real vector space V of dimension n. Then we have the following.
(a) The invariants S(V )W of W in the symmetric algebra S(V ) of V form a

polynomial algebra.
(b) Let f1, ..., fn denote algebraically independent generators of S(V )W , homoge-

neous of degrees di := deg(fi). Then the multiset {di | 1 ≤ i ≤ n} is uniquely
determined by W .

(c) We have d1 · · · dn = |W | and d1 + · · · + dn = N + n, where N denotes the
number of re�ections in W .

LetG be a connected reductive group de�ned over Fq with Frobenius endomorphism F .
Set V = X(T )⊗R where T is an F -stable maximal torus of G. Now, by Proposition 1.43,
F acts on V as a scalar times an automorphism φ of V that normalizesW . Therefore φ acts
on S(V )W and the generators fi can be chosen to be eigenvectors of φ. The corresponding
eigenvalues are denoted by εi. Given a complete root datum G corresponding to G, we
de�ne the order polynomial of this datum to be

|G| := X |Φ
+|

rank(G)∏
i=1

(Xdi − εi) ∈ Z[X].

Proposition 1.50 ([35, Corollary 24.6]). Let G be a complete root datum. Then |G(q)| =
|G|(q) for every integral power q of p.

It follows that the order of a �nite group of Lie type is generic in q. More importantly,
we see that the order of �nite groups of Lie type does not depend on the isogeny type of
the group. We even have a generic version of Lagrange's theorem.

Proposition 1.51 ([35, Corollary 24.7]). Let G be a connected reductive group de�ned
over Fq with Frobenius endomorphism F : G → G and let H ⊆ G be a closed connected
reductive F -stable subgroup of G. Let G and H denote complete root data corresponding
to GF and HF respectively. Then |H| divides |G| in Z[X].

Many important objects can be de�ned via the order polynomial alone. Let G =
(X,Φ, Y,Φ∨,Wφ) be a complete root datum. We observe that the eigenvalues εi appearing
in the order polynomial of G are roots of unity. Furthermore, their orders divide the order

19



of φ. In other words, the zeros of |G| ∈ Z[X] are roots of unity. Hence we can decompose
the order polynomial into a product of cyclotomic polynomials

|G| = X |Φ
+|

rank(G)∏
i=1

(Xdi − εi) = X |Φ
+|
∏
d≥1

Φd(X)a(d),

where, for every d ≥ 1, a(d) is a nonnegative integer and Φd denotes the d-th cyclotomic
polynomial.

De�nition 1.52. Let e ≥ 1 be an integer. Suppose that S is an F -stable torus of G with
complete root datum S. Then S is called an e-torus if |S| = Φe(X)a for some nonnegative
integer a.

Theorem 1.53 ([35, Proposition 25.7]). Let S be an e-torus of G of dimension r. Then
S is a direct product of r/ϕ(e) F -stable tori with order polynomial Φe(X), where ϕ(e) =
deg(Φe).

De�nition 1.54. A Levi subgroup L of G is called e-split if L = CG(S) is the centralizer
of an e-torus S of G.

Proposition 1.55. If L is an e-split Levi subgroup of G, then L = CG(Z◦(L)Φe), where
Z◦(L)Φe denotes the Φe-part of the torus Z◦(L).

Proof. Since L is e-split, there exists an e-torus S such that L = CG(S). Clearly, S ⊆
Z◦(L)Φe . Since L = CG(Z◦(L)) (see Proposition 1.36), we have

L = CG(S) ⊇ CG(Z◦(L)Φe) ⊇ CG(Z◦(L)) = L.

Hence, L = CG(Z◦(L)Φe).

The e-split Levi subgroups are strongly connected to the block theory of groups of Lie
type, as was established in multiple articles by Broué�Malle�Michel [6] and Cabanes�
Enguehard [8], [9], [10].

1.7 Harish-Chandra induction and restriction

Harish-Chandra induction is a generalized induction functor for groups of Lie type intro-
duced by Harish-Chandra in [23]. This functor is strongly related to combinatorics via
Howlett-Lehrer theory (see for example [12, Chapter 10]).

Let G be a connected reductive group de�ned over Fq with Frobenius endomorphism
F : G → G. Let P = U o L be an F -stable parabolic subgroup of G and let L be an
F -stable Levi complement of P . Since P is F -stable the unipotent radical U of P is F -
stable as well. As L normalizes U , there is a (GF , LF )-bimodule structure on C[GF/UF ].
We call the functor

RG
L⊆P : C[LF ]-mod→ C[GF ]-mod, V 7→ C[GF/UF ]⊗C[LF ] V

20



Harish-Chandra induction (from L to G). The adjoint functor is called Harish-
Chandra restriction and is denoted by ∗RG

L⊆P . For our purposes it is enough to work
with the induced map on the class functions. For f ∈ cl(LF ) and g ∈ GF we have (see
[15, 4.5 Proposition])

RG
L⊆P (f)(g) =

1

|LF |
∑
l∈LF

Trace((g, l−1)|C[GF/UF ])f(l).

Proposition 1.56 ([15, 4.4 Proposition]). Let P be an F -stable parabolic subgroup of G
and let L be an F -stable Levi complement of P . Let Q be an F -stable parabolic subgroup
of P and let M be an F -stable Levi complement of Q contained in L. Then

RG
L⊆P ◦RL

M⊆L∩Q = RG
M⊆Q.

One key property of Harish-Chandra induction and restriction is the validity of an
analogue of the classical Mackey formula. For x ∈ GF we de�ne adx to be the map that
sends a character to its conjugate under x.

Theorem 1.57 (Mackey Formula, [15, 5.1 Theorem]). Let P and Q be two F -stable
parabolic subgroups of G, and let L and M be F -stable Levi complements of P and Q
respectively. Then

∗RG
L⊆P ◦RG

M⊆Q =
∑
x

RL
L∩xM⊆L∩xQ ◦∗RL∩xM⊆P∩xM ◦ adx,

where x runs over a set of representatives of LF \ S(L,M)F/MF with

S(L,M) = {x ∈ G | L ∩ xM contains a maximal torus of G}.

An immediate consequence of Theorem 1.57 is that Harish-Chandra induction and restric-
tion are independent of the chosen parabolic subgroup (see [15, 6.1 Proposition]). We will
therefore omit the parabolic subgroup from the subscript.

The reason Harish-Chandra induction and restriction are so important is that they
yield a natural decomposition of Irr(GF ). We can de�ne a partial order on the set of pairs
(L, λ), where L is an F -stable Levi complement of an F -stable parabolic subgroup of G
and λ ∈ Irr(LF ), by putting (L′, λ′) ≤ (L, λ) if L′ ⊆ L and 〈λ,RL

L′λ
′〉 6= 0. If (L, λ) is

minimal for this partial order, then we call (L, λ) a cuspidal pair of GF .
It follows from the adjointness of induction and restriction that we can also characterize

cuspidality using Harish-Chandra restriction.

Proposition 1.58 ([15, 6.3 Proposition]). The following are equivalent.
(i) The pair (L, λ) is cuspidal.
(ii) For any F -stable Levi complementM of an F -stable proper parabolic subgroup

of L, we have ∗RL
Mλ = 0.

Theorem 1.59 ([15, 6.4 Theorem]). Let χ ∈ Irr(GF ). Then there exists a unique cuspidal
pair (L, λ) up to GF -conjugacy such that (L, λ) ≤ (G,χ). In particular,

Irr(GF ) =
⋃̇

(L,λ)
{χ ∈ Irr(GF ) | 〈χ,RG

Lλ〉 6= 0},

where (L, λ) runs over a set of representatives of GF -conjugacy classes of cuspidal pairs
of GF .
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It then remains to classify the cuspidal pairs. As they are already the minimal objects
of Harish-Chandra theory, we need something else to get information on them. This
can be done by generalizing Harish-Chandra induction and restriction which are only
de�ned for F -stable Levi complements of F -stable parabolic subgroups to F -stable Levi
complements of parabolic subgroups that are not necessarily F -stable.

1.8 Lusztig induction and restriction

Let Qr be the �eld of r-adic numbers for a prime r di�erent from p. From now on when
we refer to ordinary representations, characters and class functions we will mean repre-
sentations, characters and class function over Qr. This is unproblematic as Qr and C are
isomorphic in a way that identi�es complex conjugation in C with a given involution of
Aut(Qr) that sends roots of unity in Qr to their inverse.

Let P be a parabolic subgroup of G (not necessarily F -stable) and let L be an F -stable
Levi complement of P . Let U denote the unipotent radical of P and let L be the Lang
map as de�ned in Theorem 1.41. We de�ne the Lusztig induction RG

L⊆P : Z Irr(LF )→
Z Irr(GF ) on generalized characters by

RG
L⊆P (χ)(g) =

1

|LF |
∑
l∈LF

Trace((g, l)|H∗c (L−1(U),Qr))χ(l−1),

and Lusztig restriction ∗RG
L⊆P : Z Irr(GF )→ Z Irr(LF ) by

∗RG
L⊆P (λ)(g) =

1

|LF |
∑
g∈GF

Trace((g, l)|H∗c (L−1(U),Qr))λ(g−1),

where H∗c (L−1(U),Qr) =
∑

i(−1)iH i
c(L−1(U),Qr) denotes the alternating sum of the

groups of r-adic cohomology with compact support H i
c(L−1(U),Qr) associated to L−1(U).

For a short list of properties of these cohomology groups with the appropriate references
see Chapter 10 of [15]. These groups can be given a (GF , LF )-bimodule structure. There-
fore H∗c (L−1(U),Qr) is a virtual (GF , LF )-bimodule. In particular, RG

L⊆P (χ) is in general
not a character even if χ is a character of LF . It can be shown that Lusztig induction
and restriction coincide with Harish-Chandra induction and restriction respectively if the
parabolic subgroup P is F -stable. Thus these new induction and restriction maps prop-
erly generalize the old ones and it makes sense to use the same notation.

Even though we are working with generalized characters where cancellation can occur,
Lusztig induction and restriction are still transitive.

Proposition 1.60 (Transitivity, [15, 11.5]). Let Q ⊆ P be two parabolic subgroups of G
and let M and L be F -stable Levi complements of Q and P respectively. Suppose that
M ⊆ L. Then RG

L⊆P ◦RL
M⊆L∩Q = RG

M⊆Q.

The Mackey formula as proved for Harish-Chandra functors is still just conjectural for
Lusztig induction and restriction. But if one of the occuring Levi subgroups is a maximal
torus, the Mackey formula has been shown to hold (see [13]).
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Theorem 1.61. The Mackey formula as in Theorem 1.57 holds for Lusztig induction and
restriction if either L or M is an F -stable maximal torus. In particular, Lusztig induction
from an F -stable maximal torus T is independent of the Borel subgroup B that contains
it.

Using completey di�erent (computational) arguments, Bonnafé�Michel proved an even
stronger result in [3].

Theorem 1.62. Let G be a connected reductive group de�ned over Fq with Frobenius
endomorphism F : G→ G. Let P and Q be parabolic subgroups of G and let L and M be
F -stable Levi complements of P and Q respectively. Then the Mackey formula holds in
the following cases.

(i) q > 2, or
(ii) GF does not contain an F -stable quasi-simple component of type 2E6, E7 or

E8.

We say the Mackey formula holds for GF , if the Mackey formula

∗RG
L⊆P ◦RG

M⊆Q =
∑
x

RL
L∩xM⊆L∩xQ ◦∗RL∩xM⊆P∩xM ◦ adx,

holds for every pair of parabolic subgroups P and Q of G with F -stable Levi complements
L and M respectively. Since we are only interested in quasi-simple groups, the only cases
where the Mackey formula does not hold are 2E6(2), E7(2) and E8(2) by Theorem 1.62.
As for the Harish-Chandra functors, we therefore omit the parabolic subgroup in RG

L⊆P
and write RG

L throughout this work. Misunderstandings can not arise as we have to study
these exceptions separately anyway; using slightly di�erent methods.

De�nition 1.63. Let T be an F -stable maximal torus of G and let θ ∈ Irr(T F ). Then
RG
T (θ) is called a Deligne�Lusztig character.

Let (T, θ) be a pair where T is an F -stable maximal torus of G and θ ∈ Irr(T F ). For
g ∈ GF we write g(T, θ) for (gT,gθ). It can be shown (using either the character formula
[15, 12.2 Proposition] or properties of r-adic cohomology directly) that RG

T (θ) = RG
T ′(θ

′),
if (T ′, θ′) = g(T, θ) for some g ∈ GF . The converse of that statement is also true and
easily follows from the Mackey formula.

Corollary 1.64 ([15, 11.15 Corollary]). Let (T, θ) and (T ′, θ′) be two pairs as above. Then

〈RG
T (θ), RG

T ′(θ
′)〉GF =

1

|T F |
|{g ∈ GF | gT = T ′ and gθ = θ′}|.

In particular, RG
T (θ) = RG

T ′(θ
′) if and only if (T ′, θ′) = g(T, θ) for some g ∈ GF .

We are interested in Deligne�Lusztig characters mainly due to the following result.

Proposition 1.65 ([15, 13.1 Proposition]). For any χ ∈ Irr(GF ) there exists a pair (T, θ)
such that 〈χ,RG

T (θ)〉GF 6= 0.
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Many important class functions such as the trivial character and the character of the
regular representation, are linear combinations of Deligne�Lusztig characters (see [15, 12.
Proposition, 12.4 Corollary]).

De�nition 1.66. A class function on GF is called uniform if it can be written as a linear
combination of Deligne�Lusztig characters.

Proposition 1.67 ([15, 12.12 Proposition]). The orthogonal projection onto the subspace
of uniform class functions is given by

πuni =
1

|GF |
∑
T∈T

|T F |RG
T ◦ ∗RG

T ,

where T denotes the set of F -stable maximal tori of G.

By Lusztig's work on Deligne�Lusztig characters and their decomposition into irreducible
constituents in [32], we are easily able to compute the projection of any character onto
the subspace of uniform class functions of every character using the formula above.

Next we want to establish a decomposition of Irr(GF ) using Deligne�Lusztig charac-
ters. To be able to parametrise the irreducible characters nicely, we have to introduce
dual groups.

De�nition 1.68. Let G be a connected reductive group and let T be a maximal torus of
G. If (X(T ),Φ, Y (T ),Φ∨) is the root datum of G, we know that (Y (T ),Φ∨, X(T ),Φ) is
also a root datum. By Theorem 1.24, we know that there is a connected reductive group
G∗ together with a maximal torus T ∗ such that its root datum (X(T ∗),Φ∗, Y (T ∗),Φ∗∨)
is isomorphic to (Y (T ),Φ∨, X(T ),Φ). We call G∗ the dual group of G.

Let G and G∗ be de�ned over Fq with corresponding Frobenius endomorphisms F and
F ∗ respectively. If T and T ∗ are F -stable and F ∗-stable respectively and the isomorphism
δ from X(T ) to Y (T ∗) given by the isomorphism of root data above is compatible with
the action of F and F ∗ (i.e. δ(F (χ)) = F ∗(δ(χ)) for all χ ∈ X(T )), then we say that the
pair (G∗, F ∗) is dual to the pair (G,F ).

Remark 1.69. By the de�nition of duality we see that the dual of a semisimple adjoint
group is simply-connected and vice versa.

Let ∇(G,F ) denote the set of pairs (T, θ) where T is an F -stable maximal torus of G
and θ ∈ Irr(T F ). Moreover, let ∇∗(G,F ) denote the set of pairs (T ∗, s), where T ∗ is an
F ∗-stable maximal torus of G∗ and s ∈ T ∗F ∗ .

Proposition 1.70 ([15, 13.13 Proposition]). Let (G,F ) and (G∗, F ∗) be dual pairs. There
is a one-to-one correspondence

∇(G,F )/GF ↔ ∇∗(G,F )/G∗F
∗
.

If (T, θ) corresponds to (T ∗, s) via the bijection above, we write RG
T ∗(s) instead of RG

T (θ).
Furthermore, we de�ne∇∗(G,F, s) to be the subset of∇∗(G,F ) consisting of the elements
(T ∗, s′) such that s′ and s are G∗F

∗
-conjugate.

As is common practice, we write F instead of F ∗ for the Frobenius endomorphism of
G∗ from now on.
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De�nition 1.71. Let s ∈ G∗F be a semisimple element. We de�ne the (rational)
Lusztig series associated to s to be the set

E(GF , s) := {χ ∈ Irr(GF ) | 〈χ,RG
T ∗(s

′)〉 6= 0 for some (T ∗, s′) ∈ ∇∗(G,F, s)}.

Remark 1.72. There is also a notion of geometric Lusztig series associated to s, of which
the rational Lusztig series associated to s is a subset.

Theorem 1.73 ([15, 14.41 Proposition]). The set of irreducible characters of GF is par-
titioned as follows.

Irr(GF ) =
⋃̇

[s]
E(GF , s),

where [s] runs over all G∗F -conjugacy classes of semisimple elements of G∗F . In particular,
E(GF , s) = E(GF , s′) if and only if s and s′ are G∗F -conjugate

The Lusztig series corresponding to s = 1 is of special importance. We call the elements
of E(GF , 1) the unipotent characters of GF . Lusztig used the unipotent characters of
certain subgroups to parametrize Irr(GF ). This parametrization uses the classi�cation
of the unipotent characters of connected reductive groups �nished by Lusztig in [32] and
another one of Lusztig's results which we introduce now.

Let G̃ be a connected reductive group and let ι : G→ G̃ be a homomorphism. We say
ι is a regular embedding if G̃ has connected centre, ι restricts to an isomorphism of G
with a closed subgroup of G̃ and [ι(G), ι(G)] = [G̃, G̃] (see [30]). In this case we identify
G with its image ι(G).

Let G̃ be de�ned over Fq with Frobenius endomorphism F̃ : G̃→ G̃ and let ι : G→ G̃
be a regular embedding compatible with F̃ and F (i.e. ι(F (g)) = F̃ (ι(g)) for every g ∈ G).
We observe that GF is normal in G̃F . Hence G̃F acts on Irr(GF ) by conjugation. Since the
subgroup GFZ(G̃)F acts trivial, we may consider the initial action to be an action of the
quotient G̃F/GFZ(G̃)F . It can be shown that this action leaves Lusztig series invariant.
Thus G̃F/GFZ(G̃)F acts on E(GF , s) for every semisimple s ∈ GF (see [11, Proposition
15.6]).

Let AG∗(x) := (CG∗(x)/C◦G∗(x))F for x ∈ G∗. The group AG∗(s) acts on Irr(C◦G∗(s)
F )

by conjugation. It can be shown that this action restricts to an action on E(C◦G∗(s)
F , 1).

Theorem 1.74 (Jordan decomposition, [11, Corollary 15.14]). Let s ∈ G∗F be a semisim-
ple element. There exists a bijective map between the sets of orbits

Ψ : E(GF , s)/(G̃F/GFZ(G̃)F )→ E(C◦G∗(s)
F , 1)/AG∗(s)

with the following properties.
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(i) If Ω 7→ Θ, then the number of elements in the orbit Ω equals the order of
the stabilizer in AG∗(s) of any λ ∈ Θ.

(ii) If ρ ∈ Ψ−1(Θ) and T ∗ is an F -stable maximal torus of G∗ containing s,
then

〈ρ,RG
T ∗(s)〉GF = εGεC◦

G∗ (s)

∑
ρ̄∈Θ

〈ρ̄, RC◦
G∗ (s)

T ∗ (1)〉C◦
G∗ (s)F ,

where εG = (−1)Fq- rank(G) and εC◦
G∗ (s) = (−1)Fq−rank(C◦

G∗ (s)) (see [15, 8.3
De�nition] for a de�nition of Fq-rank).

The map Ψ above is often just called the Jordan decomposition (of characters) as it
parametrizes irreducible characters of GF by pairs consisting of a semisimple element and
an orbit of unipotent characters of its centraliser.

Remark 1.75. (a) Let G be a connected reductive group de�ned over Fq with Frobenius en-
domorphism F : G→ G. Suppose that every simple factor of [G,G] is of type A. Then the
number of unipotent characters of GF coincides with the number of GF -conjugacy classes
of maximal tori. By Corollary 1.64 we know that the set {RG

T (1) | T ∈ ∇(G,F )/GF}
consists of linearly independent class functions. Hence it is a basis of QrE(GF , 1). In
short, every unipotent character of GF is uniform.
(b) Let s ∈ G∗F be semisimple with connected centraliser. Then the map Ψ in Theorem
1.74 is a bijection

Ψ : E(GF , s)→ E(CG∗(s)
F , 1).

In particular, Theorem 1.74 (ii) implies that Ψ induces a one-to-one correspondence be-
tween the uniform irreducible characters on both sides. In light of the remark above about
groups of type A, it follows that every character of E(GF , s) is uniform if the centraliser
CG∗(s) is connected and of type A.

De�nition 1.76. Let s ∈ G∗F be a semisimple element (such that CG∗(s)
F/C◦G∗(s)

F 6= 1).
An irreducible character of CG∗(s)

F is said to be unipotent if every constituent of its
restriction to C◦G∗(s)

F is a unipotent character of C◦G∗(s)
F . The set of unipotent characters

of CG∗(s)
F is denoted by E(CG∗(s)

F , 1).

By Cli�ord theory, the bijection of orbits in Theorem 1.74 therefore becomes a bijection

Ψ : E(GF , s)→ E(CG∗(s)
F , 1)

of characters.

1.9 Block theory of �nite groups of Lie type

Let G be a connected reductive group de�ned over Fq with Frobenius endomorphism
F : G → G. From now we assume that ` does not divide q. This is often referred to as
working in non-de�ning characteristic or cross-characteristic.

There is a very strong and rather surprising connection between Lusztig series on the
geometric side and block theory on the algebraic side.
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Theorem 1.77 ([7, 2.2 Théorème], [24, Theorem 3.1]). Let s ∈ G∗F be a semisimple
`′-element. Then we have the following.
(a) The set E`(GF , s) :=

⋃
t∈CG∗ (s)F`

E(GF , st) is a union of `-blocks.
(b) Any `-block contained in E`(GF , s) contains a character of E(GF , s).

We can say even more about E`(GF , s). Let χ be an ordinary irreducible character of
GF . Recall that we denote the restriction of χ to `-regular elements by χ◦. We de�ne
Ê(GF , s) := {χ◦ | χ ∈ E(GF , s)}.

Theorem 1.78 ([18, Theorem A]). Assume that ` is a good prime for G not dividing
the order of (Z(G)/Z◦(G))F (the largest quotient of Z(G) on which F acts trivially). Let
s ∈ G∗F be a semisimple element of order prime to `. Then E(GF , s) is an ordinary basic
set for the union of blocks E`(GF , s).

Let B be an `-block contained in E`(GF , s) for some semisimple `′-element s ∈ G∗F . It
follows that a basic set for B is then given by Irr(B) ∩ E(GF , s). In particular, we have
l(B) = | Irr(B) ∩ E(GF , s)|. Fortunately, the blocks are parametrised in a way that gives
us an idea of what Irr(B) ∩ E(GF , s) looks like. This leads us to the study of e-cuspidal
pairs (see Sections 2 and 3).

2 Quasi-isolated blocks for good primes

In this section we prove Theorem A. Let G be a simple, simply connected algebraic group
of exceptional Lie type de�ned over Fq with a Frobenius endomorphism F : G→ G. Let
` be a good prime for G not dividing q.

Recall that an element s of a connected reductive group G is called quasi-isolated if
CG(s) is not contained in any proper Levi subgroup L ( G. If even C◦G(s) is not contained
in any proper Levi subgroup L ( G then s is called isolated. For the reader's convenience
we recall the classi�cation of the quasi-isolated elements here (see [5, Proposition 4.3 and
Table 3]).

Proposition 2.1 (Bonnafé). Let G be a simple, exceptional algebraic group of adjoint
type. Then the conjugacy classes of non-trivial semisimple, quasi-isolated elements, their
orders, the root system of C◦G(s), and the group of components A(s) := CG(s)/C◦G(s) are
as given in Table 1.

The order of s is denoted by o(s).

Table 1: Quasi-isolated elements in exceptional groups

G o(s) C◦G(s) A(s) isolated?

G2 2 A1 × A1 1 yes
3 A2 1 yes

F4 2 C3 × A1, B4 1 yes
3 A2 × A2 1 yes
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4 A3 × A1 1 yes
E6 2 A5 × A1 1 yes

3 A2 × A2 × A2 3 yes
3 D4 3 no
6 A1 × A1 × A1 × A1 3 no

E7 2 D6 × A1 1 yes
2 A7 2 yes
2 E6 2 no
3 A5 × A2 1 yes
4 A3 × A3 × A1 2 yes
4 D4 × A1 × A1 2 no
6 A2 × A2 × A2 2 no

E8 2 D8, E7 × A1 1 yes
3 A8, E6 × A2 1 yes
4 D5 × A3, A7 × A1 1 yes
5 A4 × A4 1 yes
6 A5 × A2 × A1 1 yes

De�nition 2.2. (a) The `-blocks contained in E`(GF , s) for a semisimple, quasi-isolated
`′-element s ∈ G∗F are called quasi-isolated.
(b) Let H = GF/Z, for some subgroup Z ⊆ Z(GF ). A block of H is said to be quasi-
isolated if it is dominated by a quasi-isolated block of GF . Furthermore, it is said to be
unipotent if the block dominating it is unipotent.

The reason we focus on these blocks are the results of Bonnafé�Rouquier [4] and more
recently Bonnafé�Dat�Rouquier [2]. We use their reduction to quasi-isolated blocks to
prove Theorem C later.

In order to parametrize the blocks of �nite groups of Lie type we introduce the fol-
lowing generalization of cuspidality.

We say an irreducible character χ of GF is e-cuspidal if ∗RG
L⊆P (χ) = 0 for every e-split

Levi subgroup L contained in a proper parabolic subgroup P ⊆ G. Let λ ∈ Irr(LF ) for
an e-split Levi subgroup L ⊆ G. Then we call (L, λ) an e-split pair. We de�ne a binary
relation on e-split pairs by setting (M, ζ) ≤e (L, λ) if M ⊆ L and 〈∗RL

M⊆Q(λ), ζ〉 6= 0.
Since the Lusztig restriction of a character is in general not a character, but a generalized
character, the relation ≤e might not be transitive. We denote the transitive closure of ≤e
by �e. If (L, λ) is minimal for the partial order �e, we call (L, λ) an e-cuspidal pair
of GF . Moreover, we say (L, λ) is a proper e-cuspidal pair if L ( G is a proper F -stable
Levi subgroup of G.

These e-cuspidal pairs yield a re�nement of Theorem 1.77. Let e`(q) denote the mul-
tiplicative order of q modulo `.

Theorem 2.3 ([10, Theorem 4.1]). Let G be a connected reductive group de�ned over Fq
with Frobenius endomorphism F : G → G. Let ` be a good prime for G not dividing q.
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Furthermore assume that ` is di�erent from 3 if GF has a component of type 3D4(q). Let
s ∈ G∗F be a semisimple `′-element. If e = e`(q), then we have the following.

1. There is a natural bijection

bGF (L, λ)←→ (L, λ)

between the `-blocks of GF contained in E`(GF , s) and the e-cuspidal pairs (L, λ),
up to GF -conjugation, such that s ∈ L∗F and λ ∈ E(LF , s), where bGF (L, λ) is the
unique block containing the irreducible constituents of RG

L (λ).

2. If B = bGF (L, λ), then Irr(B) ∩ E(GF , s) = {χ ∈ Irr(GF ) | (L, λ)�e (G,χ)}.

Next we will introduce a notion that is meant to generalize standard Harish-Chandra
theory.

For a pair (L, λ) of GF we set NF
G (L, λ) := {g ∈ NGF (L) | λ(gxg−1) = λ(x) for all x ∈

LF}. The following de�nition can be found in [16, 2.2.1 De�nition]. Let s ∈ G∗F be
semisimple. We say that generalized e-Harish-Chandra theory holds in E(GF , s) if,
for any χ ∈ E(GF , s) there exists an e-cuspidal pair (L, λ) of GF , uniquely de�ned up to
GF -conjugacy, and an integer a 6= 0 such that

∗RG
L⊆Pχ = a

 ∑
g∈N

GF
(L)/N

GF
(L,λ)

λg


for every parabolic subgroup P ⊆ G containing L.

In this Section we will work under the following core assumption.

Assumption 2.4. G is connected reductive, de�ned over Fq with Frobenius endomorphism
F : G→ G, ` - q is odd and good for G and e = e`(q). If GF has a component of type 3D4

then ` ≥ 5. Furthermore, let s ∈ G∗F be a semisimple `′-element.

The following proposition shows how the notion of generalized e-Harish-Chandra theory
holding in a Lusztig series is related to the parametrisation of blocks by the e-cuspidal
pairs. Let E(GF , (L, λ)) := {χ ∈ Irr(GF ) | (L, λ) ≤e (G,χ)} be the e-Harish-Chandra
series associated to (L, λ).

Note that, even though the statements about e-cuspidal pairs and e-Harish-Chandra
theory in this section seem like they do not depend on `, the proofs of these statements
heavily rely on ` satisfying the conditions in Assumption 2.4 as can be seen in the proofs
of the results cited in this section.

Proposition 2.5. [17, Proposition 2.2.2] Suppose Assumption 2.4 holds. Then gener-
alized e-Harish-Chandra theory holds in E(GF , s) if and only if, for any e-cuspidal pair
(L, λ) of GF with λ ∈ E(LF , s), we have

E(GF , (L, λ)) = {χ ∈ Irr(GF ) | (L, λ)�e (G,χ)}.
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Corollary 2.6. Suppose Assumption 2.4 holds. Then generalized e-Harish-Chandra the-
ory holds in E(GF , s) if and only if

E(GF , s) =
⋃̇

(L,λ)/GF
E(GF , (L, λ)),

where (L, λ) runs over the GF -conjugacy classes of e-cuspidal pairs of G with s ∈ L∗F

and λ ∈ E(LF , s).

Proof. By Theorem 2.3 we have

E(GF , s) =
⋃̇

(L,λ)/GF

(
Irr(bGF (L, λ)) ∩ E(GF , s)

)
=
⋃̇

(L,λ)/GF
{χ ∈ Irr(GF ) | (L, λ)�e (G,χ)},

where (L, λ) runs over the GF -conjugacy classes of e-cuspidal pairs of G with s ∈ L∗F

and λ ∈ E(LF , s). Since E(GF , (L, λ)) is contained in {χ ∈ Irr(GF ) | (L, λ) �e (G,χ)}
by de�nition, the assertion follows from Proposition 2.5.

The following result by Enguehard yields the assertion of Theorem A for the groups
of type F4 and the groups of type E8 as long as we assume q > 2.

Theorem 2.7 ([17, 2.2.4 Proposition]). Suppose that Assumption 2.4 holds. In addition
suppose that the centre of G is connected and that the Mackey formula holds for every LF

where L is an F -stable Levi subgroup of G. Then generalized e-Harish-Chandra theory
holds in E(GF , s).

By results of Kessar�Malle [29], the assertion of Theorem A also holds when e = 1 or
e = 2 (unless G = E6 or E7 and s is semisimple, quasi-isolated of order 6). Thus, we
can focus our attention on the situation where GF = E6(q), 2E6(q), E7(q) or E8(2) and
e ≥ 3. The proof of Theorem A follows a case-by-case approach. However, since we need
to tweak our argument slightly when q = 2, we put that part of the proof at the end of
Section 3.

For the computation of the e-cuspidal pairs we need the following results.

Theorem 2.8 ([10, Theorem 4.2.]). Suppose that Assumption 2.4 holds. Then an element
χ ∈ E(GF , s) is e-cuspidal if and only if it satis�es the following conditions.

1. Z◦(C◦G∗(s))Φe = Z◦(G∗)Φe and

2. χ corresponds to a CG∗(s)F -orbit of an e-cuspidal unipotent character of C◦G∗(s)
F

by Jordan decomposition (see Theorem [11, Corollary 15.14]).

Using this result we can show that the assertion of Theorem A is immediate for certain
numbers e∈N.

De�nition 2.9. For a semisimple element s ∈ G∗F we de�ne δ(GF , s) := {e ∈ N | ∃ a
proper e-cuspidal pair (L, λ) of GF with λ ∈ E(LF , s)}. We say an integer e is relevant
for a semisimple element s ∈ G∗F if it occurs in δ(GF , s).
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The following easy conclusion justi�es this terminology.

Proposition 2.10. Let G be a connected reductive group de�ned over Fq with Frobenius
endomorphism F : G→ G. Let s ∈ G∗F be semisimple. If e is not relevant for s, then an
e-Harish-Chandra theory holds in E(GF , s).

Proof. If e is not relevant for E(GF , s), then, by de�nition, every character in E(GF , s) is
e-cuspidal. In other words, if (L, λ) is an e-cuspidal pair of G with λ ∈ E(LF , s), then
L = G. Since, clearly

E(GF , s) =
⋃̇

χ∈E(GF ,s)
E(GF , (G,χ))

the assertion follows by Corollary 2.6.

Next we will show that we can determine the relevant integers for the Lusztig series
associated to quasi-isolated elements by using only unipotent data.

Proposition 2.11. Let G be a connected reductive group, s ∈ G a semisimple element
and L ⊆ G a Levi subgroup of G containing s. Then L ∩ C◦G(s) is a Levi subgroup of
C◦G(s) and every Levi subgroup of C◦G(s) is of that form. In particular, L∩C◦G(s) ⊆ C◦G(s)
is e-split if and only if L ⊆ G is e-split.

Proof. As a semisimple element, s lies in at least one maximal torus S of L, which then
is a maximal torus of G. Now, Z(L) lies in every maximal torus of L. In particular,
Z(L) lies in S. In other words, we have Z(L) ⊆ S ⊆ C◦G(s). As L = CG(Z◦(L)) (see [15,
1.21 Proposition]), we have L ∩ C◦G(s) = CC◦G(s)(Z

◦(L)). Since Z◦(L) is a torus of C◦G(s),
CC◦G(s)(Z

◦(L)) is a Levi subgroup of C◦G(s), proving the �rst part.
LetM be a Levi subgroup of C◦G(s). ThenM=CC◦G(s)(Z

◦(M)). Now, L = CG(Z◦(M))
is a Levi subgroup such that M = L ∩ C◦G(s). The second part follows from Proposition
1.55.

Proposition 2.12. Suppose that Assumption 2.4 holds with s ∈ G∗F a semisimple, quasi-
isolated `′-element. Then δ(GF , s) = δ(C◦G∗(s)

F , 1).

Proof. Let (L, λ) be a proper e-cuspidal pair of G with λ ∈ E(LF , s). Let L∗ denote the
dual of L in G∗. To prove the assertion we show that Jordan decomposition yields a
CL∗(s)

F -orbit of proper unipotent e-cuspidal pairs.
By [9, Proposition 1.4], L∗ is e-split. Hence L∗ = CG∗(Z

◦(L∗)Φe) by Proposition 1.55.
Since s ∈ G∗ is quasi-isolated, we know that C◦G∗(s) 6⊂ L∗. It follows that C◦L∗(s) =
L∗ ∩C◦G∗(s) ( C◦G∗(s) is a proper subgroup of C◦G∗(s). Furthermore, by Proposition 2.11,
C◦L∗(s) is an e-split Levi subgroup of C◦G∗(s). Moreover, λ corresponds to a CL∗(s)

F -orbit
of e-cuspidal unipotent characters of C◦L∗(s)

F by condition (ii) of Theorem 2.8. Hence,
δ(GF , s) ⊆ δ(C◦G∗(s)

F , 1).
Conversely, let (M,χ) be a proper e-cuspidal pair of C◦G∗(s) with χ ∈ E(C◦G∗(s), 1).

By Proposition 2.11, there is a proper e-split Levi L∗ ⊆ G∗ such that L ∩ C◦G∗(s) = M .
If λ is the character in E(LF , s) mapped to χ by Jordan decomposition, then (L, λ) is an
e-cuspidal pair by Theorem 2.8.
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2.1 The tables

Let G be a simple, simply connected algebraic group of exceptional type de�ned over
Fq with Frobenius endomorphism F : G → G or let G be simple, simply connected of
type D4 de�ned over Fq with Frobenius endomorphism F : G→ G such that GF = 3D4(q).

The tables in this section are the key ingredient in the proof of Theorem A. The layout
of the Tables 2, 4, 6, 8 and 10 is based on the layout of the tables in [29].

Note that we do not include tables for every relevant integer e. However, the missing
tables are Ennola duals of the ones in this section and they can be obtained fairly easily.
This follows from the fact that Ennola duality of �nite groups of Lie type interacts nicely
with Lusztig induction and restriction (see [6] and especially [6, 3.3 Theorem]). The En-
nola dual cases are e = 1 ↔ e = 2, e = 3 ↔ e = 6, e = 5 ↔ e = 10, e = 7 ↔ e = 14,
e = 9↔ e = 18, e = 15↔ e = 30.

In addition to the Tables 2, 4, 6, 8 and 10, Tables 3, 5, 7 and 9 contain the decompo-
sition of RG

L (λ) into its irreducible constituents for every e-cuspidal pair (L, λ) for which
RG
L (λ) is not uniform. These constituents are parametrized via Jordan decomposition

(see [11, Corollary 15.14]). Since the semisimple element will always be clear from the
context, we omit it from the parametrization and denote every irreducible constituent by
the corresponding unipotent character. Except for the unipotent characters of classical
groups (where we use the common notation using partitions and symbols), we use the
notation of Chevie [36].

Remark 2.13. The e-cuspidal pairs of GF for e = 1↔ e = 2 were already determined by
Kessar and Malle in [29] and [28] except for the pairs associated to quasi-isolated elements
of order 6 when GF = E6(q), E7(q).

2.1.1 e-cuspidal pairs of F4

Let G be simple, simply connected of type F4 de�ned over Fq with Frobenius endo-
morphism F : G → G. In this case, e is relevant for some quasi-isolated semisimple
1 6= s ∈ G∗F if and only if e ∈ {1, 2, 3, 4, 6}. By Remark 2.13 and Ennola duality, it
remains to determine the e-cuspidal pairs for e = 3 and e = 4.

Theorem 2.14. Let 1 6= s ∈ G∗F be semisimple and quasi-isolated. Let e = e`(q) ∈ {3, 4}
be relevant for s. Then the e-cuspidal pairs (L, λ) of G with λ ∈ E(LF , s) (up to GF -
conjugacy), and the order of their relative Weyl groups W = WGF (L, λ) are as indicated
in Table 2. In particular, generalized e-Harish-Chandra theory holds in E(GF , s) for every
quasi-isolated semisimple element 1 6= s ∈ G∗F .

Table 2: Quasi-isolated blocks in F4(q)

No. CG∗(s)
F e LF CL∗(s)

F λ |W |
1 A2(q)A2(q) 3 Φ2

3 Φ2
3 1 9

2 B4(q) 3 Φ3.Ã2(q) Φ1Φ3.Ã1(q) φ11, φ2 6
3 3 GF CG∗(s)

F 13 chars. 1
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4 C3(q)A1(q) 3 Φ3.A2(q) Φ1Φ3.A1(q) φ11, φ2 6
5 3 GF CG∗(s)

F 12 chars. 1

6 A3(q)Ã1(q) 3 Φ3.A2(q) Φ1Φ3.Ã1(q) φ11, φ2 3
7 3 GF CG∗(s)

F 4 chars. 1

1 B4(q) 4 Φ2
4 Φ2

4 1 14
2 4 Φ4.B2(q) Φ4.B2(q) (12, 0), (01, 2) 4
3 4 GF CG∗(s)

F (13, 1), (013, 13), 1
(014, 12)

4 C3(q)A1(q) 4 Φ4.B2(q) Φ4.A1(q)A1(q) φ11 ⊗ φ11, φ11 ⊗ φ2, 4
φ2 ⊗ φ11, φ2 ⊗ φ2

5 4 GF CG∗(s)
F 8 chars. 1

6 A3(q)A1(q) 4 Φ4.B2(q) Φ2Φ4.Ã1(q) φ11, φ2 4
7 4 GF CG∗(s)

F φ22 ⊗ φ11, φ22 ⊗ φ2 1

8 2A3(q)Ã1(q) 4 Φ4.B2(q) Φ1Φ4.Ã1(q) φ11, φ2 4
9 4 GF CG∗(s)

F φ22 ⊗ φ11, φ22 ⊗ φ2 1

Let πuni denote the projection from the space of class functions onto the subspace of
uniform functions (see [15, 12.11 De�nition]). The image of a class function under πuni
can be explicitly computed using [15, 12.12 Proposition].

Proof. The e-cuspidal pairs can be determined with Chevie [36] using Theorem 2.8 and
Proposition 2.11. To prove that generalized e-Harish-Chandra theory holds in E(GF , s)
we use Corollary 2.6.

Let e = 3. By Table 2, we see that every 3-cuspidal pair (L, λ) is of the form (G,χ),
or L is a proper Levi subgroup of G of type A and λ is a uniform character. Since Lusztig
induction is transitive (see Proposition 1.60) and λ is uniform, RG

L (λ) is uniform as well.
Hence, we can determine the decomposition of RG

L (λ) using the formula for the uniform
projection. For any semisimple, quasi-isolated element 1 6= s ∈ G∗F , we �nd that the
constituents of RG

L (λ) for the 3-cuspidal pairs (L, λ) with λ ∈ E(LF , s) given in Table 2
exhaust E(GF , s). Thus, a generalized 3-Harish-Chandra theory holds in E(GF , s).

Let e = 4. Let (L, λ) be a 4-cuspidal pair in Table 2. Then λ is a uniform character,
except for the two 4-cuspidal pairs in the line numbered 2. So the decomposition of
RG
L (λ) can be determined using the formula for the uniform projection again, except for

the two exceptions, for which we need to use a di�erent method. For further reference
we will explain this method in detail in the case (L, λ) = (B2, (12, 0)). In this case
πuni(R

G
L (λ)) = 1

4
[(1234, 012)− (123, 02) + (023, 12)− (0124, 123) + (0123, 124)− (23, 0) +

(14, 0)− (02, 3) + (01, 4) + (023, )− (014, ) + (0123, 2)]− 3
4
[(03, 2)− (012, 23)− (04, 1)−

(01234, 12)] ∈ 1
4
ZE(GF , s). Since RG

L (λ) is a generalized character, there exists an element
γ ∈ QE(GF , s) which is orthogonal to the space of uniform class functions of GF , such that
RG
L (λ) = πuni(R

G
L (λ)) + γ ∈ ZE(GF , s). A basis for the subspace of QE(GF , s) orthogonal

to the space of uniform class functions is given by

ϕ1 =
1

4
((1234, 012)− (0124, 123) + (0123, 124)− (01234, 12)) ,

ϕ2 =
1

4
((123, 02)− (023, 12) + (012, 23)− (0123, 2)) ,
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ϕ3 =
1

4
((124, 01)− (014, 12) + (012, 14)− (0124, 1)) ,

ϕ4 =
1

4
((23, 0)− (03, 2) + (02, 3)− (023, )) ,

ϕ5 =
1

4
((14, 0)− (04, 1) + (01, 4)− (014, )) .

By the Mackey formula we know that ‖RG
L (λ)‖2 = |WGF (L, λ)| = 4 and since ‖RG

L (λ)‖2 =
‖πuni(RG

L (λ))‖2 +‖γ‖2, it follows that γ = −ϕ1 +ϕ2 +ϕ4−ϕ5. Hence, R
G
L (λ) = −(03, 2)+

(012, 23) + (04, 1) + (01234, 12). The same method yields the decomposition of RG
L (λ) for

(L, λ) = (B2, (01, 2)). With this we have established the decomposition for every 4-
cuspidal pair in Table 3. We �nd that the constituents of RG

L (λ) for the 4-cuspidal pairs
associated to a given semisimple, quasi-isolated element s ∈ G∗F exhaust E(GF , s).

Table 3: Decomposition of non-uniform RG
L (λ)

No. e λ ±RG
L (λ)

2 4 (12, 0) −(03, 2) + (012, 23) + (04, 1) + (01234, 12)
(01, 2) −(023, 12) + (0124, 123) + (23, 0) + (014, 0)

2.1.2 e-cuspidal pairs of E6

Let G be a simple, simply connected algebraic group of type E6 de�ned over Fq with
Frobenius endomorphism F : G → G. Then GF = E6,sc(q) or 2E6,sc(q). We start with
GF = E6,sc(q). Here, e is relevant for some quasi-isolated 1 6= s ∈ G∗F if and only if
e ∈ {1, 2, 3, 4, 5, 6}. Since the center of G is disconnected, the situation is slightly more
complicated.

In the tables, we write CG∗(s)
F = C◦G∗(s)

F .(CG∗(s)
F/C◦G∗(s)

F ) to indicate whether or
not a given centraliser is connected. A star in the �rst column next to the number of
the line indicates that the quotient CG∗(s)

F/C◦G∗(s)
F acts non-trivially on the unipotent

characters of C◦G∗(s)
F . To demonstrate the adjustments, we take line 4 of Table 4 for

e = 3 as an example.
First, the star indicates that the F -stable points of the component group act non-

trivially on the 14 unipotent character of C◦G∗(s)
F = Φ2

1.D4(q). It can be shown that
there are two orbits of order 3, and 8 trivial orbits. Thus, by Jordan decomposition,
|E(GF , s)| = 26. Now, CL∗(s)

F/C◦L∗(s)
F obviously acts trivially on the only unipotent

character (which is the trivial character) of the torus C◦L∗(s)
F = Φ4

1Φ3. Hence the induc-
tion of that character to CL∗(s)

F yields 3 irreducible constituents. We denote them by
1(1), 1(2) and 1(3).

In general, if CG∗(s)
F/C◦G∗(s)

F acts trivially on a given unipotent character of C◦G∗(s)
F ,

the induction of that character always yields 3 irreducible characters of CG∗(s)
F . In Table

4, we indicate this by adding a superscript from 1 to 3 to that unipotent character.

Theorem 2.15. Let 1 6= s ∈ G∗F be semisimple and quasi-isolated. Let e = e`(q) ∈
{1, 2, 3, 4, 5, 6} be relevant for s. Further, assume that e ∈ {3, 4, 5, 6} if s is not of order

34



6. Then the e-cuspidal pairs (L, λ) of G with λ ∈ E(LF , s) (up to GF -conjugacy), and
the order of their relative Weyl groups W = WGF (L, λ) are as indicated in Table 4. In
particular, generalized e-Harish-Chandra theory holds in E(GF , s) for every quasi-isolated
semisimple element 1 6= s ∈ G∗F .

Table 4: Quasi-isolated blocks in E6(q)

No. CG∗(s)
F e LF CL∗(s)

F λ |W |
1∗ Φ2

1.A1(q)4.3 1 Φ6
1 Φ6

1 1 48
2 Φ3.A1(q)A1(q3).3 1 Φ2

1.A2(q)2 Φ2
1Φ2

3 1 12
3 Φ1Φ2.A1(q)2A1(q2) 1 Φ4

1.A1(q)2 Φ4
1Φ2

2 1 8

1∗ Φ2
1.A1(q)4.3 2 Φ2

1Φ4
2 Φ2

1Φ4
2 1 48

2 Φ3.A1(q)A1(q3).3 2 Φ2
2.A2(q2) Φ2

2Φ3Φ6 1 12
3 Φ1Φ2.A1(q)2A1(q2) 2 Φ2

1Φ4
2 Φ2

1Φ4
2 1 8

1∗ A2(q)3.3 3 Φ3
3 Φ3

3 1 81
2 A2(q3).3 3 Φ2

3.A2(q) Φ2
1Φ2

3 1 18
3 2A2(q)A2(q2) 3 Φ3.

3D4(q) Φ3Φ6.
2A2(q) φ111, φ21, φ3 3

4∗ Φ2
1.D4(q).3 3 Φ3.A2(q)2 Φ4

1Φ3.3 1(1), 1(2), 1(3) 6
5∗ 3 GF CG∗(s)

F 8 chars. 1
6 Φ3.

3D4(q).3 3 Φ3
3 Φ3

3 1 72
7 3 Φ3.

3D4(q) Φ3.
3D4(q) 3D4[−1] 3

8 Φ1Φ2.
2D4(q) 3 Φ3.A2(q)2 Φ2

1Φ2
2Φ3.3 1(1), 1(2), 1(3) 6

9 3 GF CG∗(s)
F 4 chars. 1

10 A5(q)A1(q) 3 Φ2
3.A2(q) Φ1.Φ3.A1(q) φ11, φ2 18

11 3 GF CG∗(s)
F 4 chars. 1

1 A5(q)A1(q) 4 Φ1Φ4.
2A3(q) Φ1Φ2Φ4.A1(q)2 4 chars. 4

2 4 GF CG∗(s)
F 6 chars. 1

3∗ Φ2
1.D4(q).3 4 Φ2

1Φ2
4 Φ2

1Φ2
4 1 48

4∗ 4 GF CG∗(s)
F 12 chars. 1

5 Φ1Φ2.
2D4(q) 4 Φ1Φ4.

2A3(q) Φ1Φ2Φ4.A1(q)2 φ11 ⊗ φ11, 4
φ2 ⊗ φ2 4
φ11 ⊗ φ2 2

1 A5(q)A1(q) 5 Φ1Φ5.A1(q) Φ1Φ5.A1(q) φ11, φ2 5
2 5 GF CG∗(s)

F 12 chars. 1

1 A5(q)A1(q) 6 Φ3Φ6.
2A2(q) Φ2Φ3Φ6.A1(q) φ11, φ2 6

2 6 GF CG∗(s)
F 10 chars. 1

3∗ Φ2
1.D4(q).3 6 Φ6.A2(q2) Φ2

1Φ2
2Φ6.3 1(1), 1(2), 1(3) 6

4∗ 6 GF CG∗(s)
F 8 chars. 1

5 Φ3.
3D4(q).3 6 Φ3Φ2

6 Φ3Φ2
6 1 72

6 6 GF CG∗(s)
F φ2,1 1

7 Φ1Φ2.
2D4(q) 6 Φ6.A2(q2) Φ2

1Φ2
2Φ6 1 6

8 6 GF CG∗(s)
F 4 chars. 1

Proof. For q = 2 the assertion will follow from Proposition 2.20. Suppose q > 2. As
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for F4(q), the key step is to determine RG
L (λ) for the e-cuspidal pairs (L, λ) in Table 4.

Except for the pairs given in Table 5, λ is uniform, so RG
L (λ) can be determined using the

formula for the uniform projection. For the 3-cuspidal pairs (Φ3.A2(q)2, 1(i)) (i = 1, . . . , 3)
and the 6-cuspidal pairs (Φ6.A2(q2), 1(i)) (i = 1, . . . , 3), we are not able to determine
RG
L (λ) (see Remark 2.16). However the methods used in the proof of Theorem 2.14

give enough information to prove that an e-Harish Chandra theory holds in the Lusztig
series related to the e-cuspidal pairs above. For the 3-cuspidal pair (Φ3.

3D4(q),3D4[−1])
we use a slightly di�erent argument. Let s ∈ G∗F be semisimple and quasi-isolated
with CG∗(s)

F = Φ3.
3D4(q).3. By Table 4 and Theorem 2.8, E(GF , s) decomposes into

two blocks, namely bGF (Φ3, 1), which contains E(GF , (Φ3, 1)) and bGF (Φ3.
3D4(q),3D4[−1])

which contains E(GF , (Φ3.
3D4(q),3D4[−1])). Since any two di�erent blocks, seen as subsets

of Irr(GF ) ∪ IBr(GF ), are disjoint, we have

E(GF , (Φ3.
3D4(q),3D4[−1]) ⊆ E(GF , s) \ E(GF , (Φ3, 1))

and the latter is equal to {3D4[−1](0),3D4[−1](1),3D4[−1](2)}. Since RG
Φ3.3D4(q)(

3D4[−1]) has

norm 3, it follows that RG
Φ3.3D4(q)(

3D4[−1]) = 3D4[−1](0) +3D4[−1](1) +3D4[−1](2). Hence,

an e-Harish-Chandra theory holds in E(GF , s).

Remark 2.16. The reason we are not able to determine RG
L (λ) in the cases numbered

4∗ and 3∗ in Table 5 is the following. Every constituent of RG
L (1(i)) in those lines is an

element of an orbit of order 3. However, we are not able to determine which element of
this orbit is the right constituent. We only know that it has to be one of the three. This
is indicated by adding an superscript (i) to the constituents.

Table 5: Decomposition of the non-uniform RG
L (λ)

No. e λ ±RG
L (λ)

4∗ 3 1(i) (013, 123)(i)+(0123, 1234)(i)+(02, 13)(i)+(01, 23)(i)+(1, 3)(i)+(0, 4)(i)

7 3 3D4[−1] 3D4[−1](0) +3D4[−1](1) +3D4[−1](2)

3∗ 6 1(i) (013, 123)(i)+(0123, 1234)(i)+(12, 03)(i)+(1, 3)(i)+(0, 4)(i)+(0123, )(i)

The analogue of Table 4 for 2E6(q) can be obtained as follows. The e = 3 part of the
table for 2E6(q) is the Ennola dual of the e = 6 part of Table 4 and vice-versa. The e = 10
part is the Ennola dual of the e = 5 part and the e = 4 part is the Ennola dual of the
e = 4 part of Table 4. Similarly, the analogue of Table 5 for 2E6(q) can be obtained via
Ennola duality. Thus, the assertion of Theorem 2.15 holds for 2E6,sc as well.

2.1.3 e-cuspidal pairs of E7

Let G be a simple, simply connected group of type E7 de�ned over Fq with Frobenius
endomorphism F : G → G. In this case, e is relevant for some quasi-isolated semisimple
1 6= s ∈ G∗F if and only if e ∈ {1, 2, 3, 4, 5, 6, 7, 9, 12, 14, 18}. By Remark 2.13 and Ennola
duality, it remains to determine the e-cuspidal pairs for e = 3, 4, 5, 7, 9, 12. Since the
center of G is disconnected, we encounter the same issues as in Section 2.1.2.
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Theorem 2.17. Let 1 6= s ∈ G∗F be semisimple and quasi-isolated. Let e = e`(q) ∈
{1, 3, 4, 5, 7, 9, 12} be relevant for s. Further, assume that e ∈ {3, 4, 5, 7, 9, 12} if s is not
of order 6. Then the e-cuspidal pairs (L, λ) of G with λ ∈ E(LF , s) (up to GF -conjugacy),
and the order of their relative Weyl groups W = WGF (L, λ) are as indicated in Table 6. In
particular, generalized e-Harish-Chandra theory holds in E(GF , s) for every quasi-isolated
semisimple element 1 6= s ∈ G∗F .

Table 6: Quasi-isolated blocks of E7(q)

No. CG∗(s)
F e LF CL∗(s)

F λ |W |
1∗ Φ1.A2(q)3.2 1 Φ7 Φ7 1 432

2 Φ2.A2(q)A2(q2).2 1 Φ4
1.A1(q)3 Φ4

1Φ3
2 1 36

3 2A2(q)A2(q2).2 1 Φ4
1.A1(q)3 Φ4

1Φ3
2 1 12

4 1 Φ3
1.D4(q) Φ3

1Φ2
2.

2A2(q) φ21 6

1 A7(q).2 3 Φ1Φ2
3.A2(q) Φ2

1Φ2
3.A1(q) φ11, φ2 36

2 3 Φ3.A5(q) Φ1Φ3.A4(q) φ311 6

3 3 GF CG∗(s)
F φ

(1,2)
4211 1

4 2A7(q).2 3 Φ3.A2(q)A1(q3) Φ1Φ2Φ3Φ6.A1(q).2 φ
(1,2)
11 , φ

(1,2)
2 6

5 3 GF CG∗(s)
F 16 chars. 1

6 Φ1.E6(q).2 3 Φ1Φ3
3 Φ1Φ3

3 1 1296

7 3 Φ1Φ3.
3D4(q) Φ1Φ3.

3D4(q) 3D4[−1] 6

8 3 GF CG∗(s)
F 6 chars. 1

9 Φ2.
2E6(q).2 3 Φ2

3.A1(q3) Φ2Φ2
3Φ6.2 1(1,2) 72

10 3 GF CG∗(s)
F 18 chars. 1

11∗ A3(q)2A1(q).2 3 Φ1Φ2
3.A2(q) Φ2

1Φ2
3.A1(q) φ11, φ2 18

12∗ 3 Φ1Φ3.A5(q) Φ1Φ3.A1(q)A3(q) 4 chars. 3

13∗ 3 GF CG∗(s)
F 10 chars. 1

14 A3(q2)A1(q).2 3 Φ1Φ3.
3D4(q) Φ1Φ2Φ3Φ6.A1(q) φ11, φ2 6

15 3 GF CG∗(s)
F 8 chars. 1

16∗ Φ1.A2(q)3.2 3 Φ1Φ3
3 Φ1Φ3

3 1 54

17 Φ2.A2(q)A2(q2).2 3 Φ2
3.A1(q3) Φ2Φ2

3Φ6 1 18

18 Φ1.
2A2(q)A2(q2).2 3 Φ1Φ3.

3D4(q) Φ1Φ3Φ6.
2A2(q) φ111, φ21, φ3 6

19∗ Φ1.D4(q)A1(q)2.2 3 Φ3.A5(q) Φ3
1Φ3.A1(q)2.2 5 chars. 6

20∗ 3 GF CG∗(s)
F 28 chars. 1

21 Φ2.
2D4(q)A1(q2).2 3 Φ3.A5(q) Φ1Φ2

2Φ3.A1(q2).2 φ
(1,2)
11 , φ

(1,2)
2 12

22 3 GF CG∗(s)
F 8 chars. 1

23∗ Φ2.D4(q)A1(q)2.2 3 Φ3.A5(q) Φ2
1Φ2Φ3A1(q)2.2 5 chars. 6

24∗ 3 GF CG∗(s)
F 28 chars. 1

25 Φ1.
2D4(q)A1(q2).2 3 Φ3.A5(q) Φ2

1Φ2Φ3.A1(q2).2 φ
(1,2)
11 , φ

(1,2)
2 12

26 3 GF CG∗(s)
F 8 chars. 1

1 A7(q).2 4 Φ2
4.A1(q)3 Φ1Φ2

2Φ2
4.2 1(1,2) 32

2 4 Φ4.
2D4(q)A1(q) Φ2

2Φ4.A3(q).2 φ
(1,2)
22 4

3 4 GF CG∗(s)
F 4 chars. 1

4 2A7(q).2 4 Φ2
4.A1(q)3 Φ2

1Φ2Φ2
4.2 1(1,2) 32

5 4 Φ4.
2D4(q)A1(q) Φ1Φ2Φ4.

2A3(q).2 φ
(1,2)
22 4

6 4 GF CG∗(s)
F 4 chars. 1

7 Φ1.E6(q).2 4 Φ2
4.A1(q)3 Φ3

1Φ2
4.2 1(1,2) 96
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8 4 Φ4.
2D4(q)A1(q) Φ2

1Φ4.
2A3(q).2 φ

(1,2)
22 4

9 4 GF CG∗(s)
F 20 chars. 1

10 Φ2.
2E6(q).2 4 Φ2

4.A1(q)3 Φ3
2Φ2

4.2 1(1,2) 96

11 4 Φ4.
2D4(q)A1(q) Φ2

2Φ4.A3(q).2 φ
(1,2)
22 4

12 4 GF CG∗(s)
F 20 chars. 1

13∗ A3(q)2A1(q).2 4 Φ2
4.A1(q)3 Φ2

2Φ2
4.A1(q) φ11, φ2 32

14∗ 4 Φ4.
2D4(q)A1(q) Φ2Φ4.A3(q)A1(q) φ22 ⊗ φ11, 4

φ22 ⊗ φ2 4

15∗ 4 GF CG∗(s)
F 4 chars. 1

16 A3(q2)A1(q).2 4 Φ2
4.A1(q)3 Φ1Φ2Φ2

4.A1(q) φ11, φ2 16

17∗ 2A3(q)2A1(q).2 4 Φ2
4.A1(q)3 Φ2

1Φ2
4.A1(q) φ11, φ2 32

18∗ 4 Φ4.
2D4(q)A1(q) Φ1Φ4.

2A3(q)A1(q) φ22 ⊗ φ11, 4

φ22 ⊗ φ2 4

19∗ 4 GF CG∗(s)
F 4 chars. 1

20 Φ2.A2(q2)A2(q).2 4 Φ4.
2D4(q)A1(q) Φ1Φ2

2Φ4.A2(q) φ111, φ21, φ3 4

21 4 GF CG∗(s)
F 6 chars. 1

22 Φ1.
2A2(q)A2(q2).2 4 Φ4.

2D4(q)A1(q) Φ2
1Φ2Φ4.

2A2(q) φ111, φ21, φ3 4

23 4 GF CG∗(s)
F 6 chars. 1

24 A5(q)A2(q) 4 Φ4.
2D4(q)A1(q) Φ1Φ2Φ4.A2(q)A1(q) 6 chars. 4

25 4 GF CG∗(s)
F 9 chars. 1

26 2A5(q)2A2(q) 4 Φ4.
2D4(q)A1(q) Φ1Φ2Φ4.

2A2(q) 6 chars. 4

27 4 GF CG∗(s)
F 9 chars. 1

28∗ Φ1.D4(q)A1(q)2.2 4 Φ2
4.A1(q)3 Φ1Φ2

4.A1(q)2 φ11 ⊗ φ11, 32

φ11 ⊗ φ2, 32

φ2 ⊗ φ2 32

29∗ 4 GF CG∗(s)
F 18 chars. 1

30 Φ2.
2D4(q)A1(q2).2 4 Φ2

4.A1(q)3 Φ2Φ2
4.A1(q)2 φ11 ⊗ φ11 16

4 φ2 ⊗ φ2 16

4 φ11 ⊗ φ2 8

31∗ Φ2.D4(q)A1(q)2.2 4 Φ2
4.A1(q)3 Φ2Φ2

4.A1(q)2 φ11 ⊗ φ11, 32

φ11 ⊗ φ2, 32

φ2 ⊗ φ2 32

32∗ 4 GF CG∗(s)
F 18 chars. 1

33 Φ1.
2D4(q)A1(q2).2 4 Φ2

4.A1(q)3 Φ1Φ2
4.A1(q)2 φ11 ⊗ φ11 16

4 φ2 ⊗ φ2 16

4 φ11 ⊗ φ2 8

1 A7(q).2 5 Φ1Φ5.A2(q) Φ1Φ5.A2(q) φ111, φ21, φ3 10

2 5 GF CG∗(s)
F 14 chars. 1

3 Φ1.E6(q).2 5 Φ1Φ5.A2(q) Φ2
1Φ5.A1(q) φ11, φ2 10

4 5 GF CG∗(s)
F 40 chars. 1

1 A7(q).2 7 Φ1Φ7 Φ1Φ7 1 14

2 7 GF CG∗(s)
F 30 chars. 1

1 Φ1.E6(q).2 9 Φ1Φ9 Φ1Φ9 1 18

2 9 GF CG∗(s)
F 42 chars. 1

1 Φ1.E6(q).2 12 Φ12.A1(q3) Φ1Φ3Φ12 1 24

2 12 GF CG∗(s)
F 36 chars. 1

1 Φ2.
2E6(q).2 12 Φ12.A1(q3) Φ2Φ6Φ12 1 24
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2 12 GF CG∗(s)
F 36 chars. 1

Proof. Similar to the proof of Theorem 2.15.

Table 7: Decomposition of the non-uniform RG
L (λ)

No. e λ ±RG
L (λ)

4 3 φ11 φ
(i)

18 + φ
(i)

2311 + φ
(i)
3221 + φ

(i)
422 + φ

(i)
62 + φ

(i)
71

3 φ2 φ
(i)

216 + φ
(i)

2214 + φ
(i)
3311 + φ

(i)
431 + φ

(i)
53 + φ

(i)
8

7 3 3D4[−1] D4 :3(0) +D4 :3(1) +D4 :111(0) +D4 :111(1) −D4 :21(0) −D4 :21(1)

9 3 1 φ
(i)
1,0 + φ

(i)
1,24 − φ

′′(i)
2,4 − φ

′(i)
2,16 + φ

′′(i)
1,12 + φ

′(i)
1,12 − 2φ

(i)
4,1 − 2φ4,13 + 2φ

′(i)
8,3 +

2φ
′′(i)
8,9 − φ

′(i)
2,4 − φ

′′(i)
2,16 + φ

(i)
4,8 + 3 2E6[1](i) − 2φ

′′(i)
4,7 − 2φ

′(i)
4,7 + 2φ

′′(i)
8,3 +

2φ
′(i)
8,9 − 2φ

(i)
16,5 − 3 2E6[θ](i) − 3 2E6[θ2](i)

19∗ 3 φ2 ⊗ φ2 ((013, 123)⊗ φ2 ⊗ φ2)(i) + ((0123, 1234)⊗ φ2 ⊗ φ2)(i)+
((02, 13)⊗φ2⊗φ2)(i) + ((01, 23)⊗φ2⊗φ2)(i) + ((1, 3)⊗φ2⊗φ2)(i) +
((0, 4)⊗ φ2 ⊗ φ2)(i)

3 φ11 ⊗ φ2 ((013, 123)⊗ φ11 ⊗ φ2)(i) + ((0123, 1234)⊗ φ11 ⊗ φ2)(i)+
((02, 13)⊗ φ11 ⊗ φ2)(i) + ((01, 23)⊗ φ11 ⊗ φ2)(i)+
((1, 3)⊗ φ11 ⊗ φ2)(i) + ((0, 4)⊗ φ11 ⊗ φ2)(i)

3 φ11⊗φ11 ((013, 123)⊗ φ11 ⊗ φ11)(i) + ((0123, 1234)⊗ φ11 ⊗ φ11)(i)+
((02, 13)⊗ φ11 ⊗ φ11)(i) + ((01, 23)⊗ φ11 ⊗ φ11)(i)+
((1, 3)⊗ φ11 ⊗ φ11)(i) + ((0, 4)⊗ φ11 ⊗ φ11)(i)

21 3 φ11 ((123, 0) ⊗ φ11)(i) + ((01234, 123) ⊗ φ2)(i) + ((13, ) ⊗ φ11)(i) +
((0123, 13)⊗ φ11)(i) + ((04, )⊗ φ11)(i) + ((012, 3)⊗ φ11)(i)

3 φ2 ((123, 0)⊗ φ2)(i) + ((01234, 123)⊗ φ2)(i) + ((13, )⊗ φ2)(i)+
((0123, 13)⊗ φ2)(i) + ((04, )⊗ φ2)(i) + ((012, 3)⊗ φ2)(i)

1 4 1 φ
(i)

18 − φ
(i)

216 + 2φ
(i)

24 + φ
(i)

315 − 2φ
(i)
3221 + 2φ

(i)
332 − φ

(i)

414 + 2φ
(i)
4211 − 2φ

(i)
431 +

2φ
(i)
44 − φ

(i)

513 + φ
(i)
611 − φ

(i)
71 + φ

(i)
8

2 4 φ22 −φ(i)

2214 + φ
(i)

2311 − φ
(i)
53 + φ

(i)
62

4 4 1 φ
(i)

18 + φ
(i)

216 + 2φ
(i)

24 − φ
(i)

315 + 2φ
(i)
3221 − 2φ

(i)
332 − φ

(i)

414 − 2φ
(i)
4211 + 2φ

(i)
44 −

φ
(i)

513 − φ
(i)
611 + φ

(i)
71 + φ

(i)
8

5 4 φ22 −φ(i)

2214 − φ
(i)

2311 + φ
(i)
53 + φ

(i)
62

7 4 1 φ
(i)
1,0 +φ

(i)
1,36 +2φ

(i)
10,9 +2φ

(i)
6,1 +2φ

(i)
6,25 +φ

(i)
15,5 +φ

(i)
15,17−3φ

(i)
15,4−3φ

(i)
15,16 +

4φ
(i)
80,7 + 2φ

(i)
90,8 − 3φ

(i)
81,6 − 3φ

(i)
81,10 − 2 D4 :3− 2 D4 :111− 4 D4 :21

8 4 φ22 φ
(i)
20,2 − φ

(i)
20,20 − φ

(i)
60,5 + φ

(i)
60,11

10 4 1 φ
(i)
1,0 + φ

(i)
1,24 − 2φ

′(i)
6,6 − φ

(i)
9,2 − φ

(i)
9,10 + 3φ

′′(i)
1,12 + 3φ

′(i)
1,12 + 2φ

′(i)
8,3 + 2φ

′′(i)
8,9 −

2φ
′(i)
2,4 − 2φ

′′(i)
2,16 − 4 2E6[1](i) − 2φ

′′(i)
6,6 − 3φ

′′(i)
9,6 − 3φ

′(i)
9,6 + 4φ

(i)
16,5

11 4 φ22 φ
(i)
4,1 − φ

(i)
4,13 − φ

′′(i)
4,7 + φ

′(i)
4,7
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2.1.4 e-cuspidal pairs of E8

Let G be a simple, simply connected algebraic group of type E8 de�ned over Fq with
Frobenius endomorphism F : G→ G. Here, e is relevant for some quasi-isolated 1 6= s ∈
G∗F if and only if e ∈ {1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 18, 20}. By Remark 2.13 and Ennola
duality, it remains to determine the e-cuspidal pairs for e = 3, 4, 5, 7, 9, 12, 20.

Theorem 2.18. Let 1 6= s ∈ G∗F be semisimple and quasi-isolated. Let e ∈ {3, 4, 5, 7, 9, 12,
20} be relevant for s. Then the e-cuspidal pairs (L, λ) of G with λ ∈ E(LF , s) (up to GF -
conjugacy), and the order of their relative Weyl groups W = WGF (L, λ) are as indicated
in Table 8. In particular, generalized e-Harish-Chandra theory holds in E(GF , s) for every
quasi-isolated semisimple element 1 6= s ∈ G∗F .

Table 8: Quasi-isolated blocks of E8(q)

No. CG∗(s)
F e LF CL∗(s)

F λ |W |
1 E7(q)A1(q) 3 Φ3

3.A2(q) Φ1Φ3
3.A1(q) φ1, φ22 1296

2 3 Φ3.
3D4(q)A2(q) Φ1Φ3.

3D4(q)A1(q) 3D4[−1]⊗ φ11 6

3 3D4[−1]⊗ φ2 6

3 3 Φ3.E6(q) Φ3.A5(q)A1(q) 4 chars. 6

4 3 GF CG∗(s)
F 20 chars. 1

5 E6(q)A2(q) 3 Φ4
3 Φ4

3 1 1944

6 3 Φ2
3.

3D4(q) Φ2
3.

3D4(q) 3D4[−1] 9

7 3 Φ3.E6(q) Φ3.E6(q) φ81,6, φ81,10, 3

3 φ90,8 3

8 D5(q)A3(q) 3 Φ3.A2(q)2 Φ2
1Φ2

3A1(q)2 φ11 ⊗ φ11, 18

3 φ2 ⊗ φ2 18

9 3 φ11 ⊗ φ2 9

10 3 Φ3.E6(q) Φ1Φ3.A3(q)A1(q)2 4 chars. 6

11 3 4 chars. 3

12 3 Φ1Φ3.D5(q) 5 chars. 3

13 3 GF CG∗(s)
F 4 chars. 1

14 2D5(q)2A2(q) 3 Φ3.E6(q) Φ1Φ3.
2A3(q)A1(q2) 10 chars. 6

15 3 GF CG∗(s)
F 40 chars. 1

16 A4(q)2 3 Φ2
3.A2(q)2 Φ2

1Φ2
3.A1(q)2 4 chars. 9

17 3 Φ3.E6(q) Φ1Φ3.A4(q)A1(q) 4 chars. 3

18 3 GF CG∗(s)
F φ311 ⊗ φ311 1

19 A5(q)A2(q)A1(q) 3 Φ3
3.A2(q) Φ1Φ3

3.A1(q) φ11, φ2 54

20 3 Φ3.E6(q) Φ3.A5(q)A1(q) 4 chars. 3

21 A7(q)A1(q) 3 Φ2
3.A2(q)2 Φ2

1Φ2
3.A1(q)2 4 chars. 18

22 3 Φ3.E6(q) Φ1Φ3.A4(q)A1(q) φ11 ⊗ φ311, 3

3 φ2 ⊗ φ311 3

23 3 GF CG∗(s)
F φ4211 ⊗ φ11, 1

3 φ4211 ⊗ φ2 1

24 A8(q) 3 Φ3
3.A2(q) Φ2

1Φ3
3 1 162

25 3 Φ3.E6(q) Φ1Φ3.A5(q) φ42, φ2211 3

26 3 GF CG∗(s)
F φ32211, φ531 1
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27 D8(q) 3 Φ2
3.A2(q)2 Φ2

1Φ2
3.A1(q)2 φ11 ⊗ φ11, 72

3 φ2 ⊗ φ2, 72

28 3 φ11 ⊗ φ2 36

29 3 Φ3.E6(q) Φ1Φ3.D5(q) 5 chars. 6

30 3 GF CG∗(s)
F 18 chars. 1

1 E7(q)A1(q) 4 Φ2
4.D4(q) Φ2

4.A1(q)4 4 chars. 96

2 4 4 chars. 32

3 4 GF CG∗(s)
F 32 chars. 1

4 E6(q)A2(q) 4 Φ2
4.D4(q) Φ2

1Φ2
4.A2(q) φ111, φ21, φ3 96

5 4 Φ4.
2D6(q) Φ1.Φ4.

2A3(q)A2(q) φ22 ⊗ φ111, 4

4 φ22 ⊗ φ21, 4

4 φ22 ⊗ φ3 4

6 4 GF CG∗(s)
F 30 chars. 1

7 2E6(q)2A2(q) 4 Φ2
4.D4(q) Φ2

2Φ2
4.

2A2(q) φ111, φ21, φ3 96

8 4 Φ4.
2D6(q) Φ2Φ4.A3(q)2A2(q) φ22 ⊗ φ111, 4

4 φ22 ⊗ φ21, 4

4 φ22 ⊗ φ3 4

9 4 GF CG∗(s)
F 30 chars. 1

10 D5(q)A3(q) 4 Φ3
4.A1(q2) Φ1Φ2Φ3

4 1 128

11 4 Φ2
4.D4(q) Φ1Φ2

4.A3(q) φ22 32

12 4 Φ2
4.D4(q) Φ2Φ2

4.
2A3(q) φ22 16

13 4 Φ4.
2D6(q) Φ4.

2A3(q)A3(q) φ22 ⊗ φ22 4

14 4 Φ4.
2D6(q) Φ2Φ4.D5(q) (12, 04), 4

4 (123, 014) 4

15 4 GF CG∗(s)
F 2 chars. 1

16 2D5(q)2A3(q) 4 Φ3
4.A1(q2) Φ1Φ2Φ3

4 1 128

17 4 Φ2
4.D4(q) Φ2Φ2

4.
2A3(q) φ22 32

18 4 Φ2
4.D4(q) Φ1Φ2

4.A3(q) φ22 16

19 4 Φ4.
2D6(q) Φ4.

2A3(q)A3(q) φ22 ⊗ φ22 4

20 4 Φ4.
2D6(q) Φ1Φ4.

2D5(q) (014, 2), 4

4 (0134, 12) 4

21 4 GF CG∗(s)
F 2 chars. 1

22 A4(q)2 4 Φ2
4.A1(q2)2 Φ2

1Φ2
2Φ2

4 1 16

23 4 Φ4.
2D6(q) Φ1Φ2Φ4.A4(q) 6 chars. 4

24 4 GF CG∗(s)
F 9 chars. 1

25 2A4(q)2 4 Φ2
4.A1(q2)2 Φ2

1Φ2
2Φ2

4 1 16

26 4 Φ4.
2D6(q) Φ1Φ2Φ4.

2A4(q) 6 chars. 4

27 4 GF CG∗(s)
F 9 chars. 1

28 A4(q2) 4 Φ4
4 Φ4

4 1 120

29 A5(q)A2(q)A1(q) 4 Φ4.
2D6(q) Φ1Φ2Φ4.A2(q)A1(q)2 12 chars. 4

30 4 GF CG∗(s)
F 18 chars. 1

31 2A5(q)2A2(q)A1(q) 4 Φ4.
2D6(q) Φ1Φ2Φ4.

2A2(q) 12 chars. 4

32 4 GF CG∗(s)
F 18 chars. 1

33 A7(q)A1(q) 4 Φ2
4.D4(q) Φ1Φ2

2Φ2
4.A1(q) φ11, φ2 32

34 4 Φ4.
2D6(q) Φ1Φ2Φ4.A3(q)A1(q) φ11 ⊗ φ22, 4

φ2 ⊗ φ22 4

35 4 GF CG∗(s)
F 8 chars. 1
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36 2A7(q)A1(q) 4 Φ2
4.D4(q) Φ2

1Φ2Φ2
4.A1(q) φ11, φ2 32

37 4 Φ4.
2D6(q) Φ1Φ2Φ4.

2A3(q)A1(q) φ11 ⊗ φ22, 4

φ2 ⊗ φ22 4

38 4 GF CG∗(s)
F 8 chars. 1

39 A8(q) 4 Φ2
4.A1(q2)2 Φ2

1Φ2
2Φ2

4 1 32

40 4 Φ2
4D6(q) Φ1Φ2Φ4.A4(q) φ2111, φ311, φ41 4

41 4 GF CG∗(s)
F 8 chars. 1

42 2A8(q) 4 Φ2
4.A1(q2)2 Φ2

1Φ2
2Φ2

4 1 32

43 4 Φ4.
2D6(q) Φ1Φ2Φ4.

2A4(q) φ2111, φ311, φ41 4

44 4 GF CG∗(s)
F 8 chars. 1

1 E7(q)A1(q) 5 Φ5.A4(q) Φ1Φ5.A2(q)A1(q) 6 chars. 10

2 5 GF CG∗(s)
F 92 chars. 1

3 E6(q)A2(q) 5 Φ5.A4(q) Φ1Φ5.A2(q)A1(q) 6 chars. 5

4 5 GF CG∗(s)
F 60 chars. 1

5 D5(q)A3(q) 5 Φ5.A4(q) Φ1Φ5.A3(q) 5 chars. 5

6 5 GF CG∗(s)
F 75 chars. 1

7 A4(q)2 5 Φ2
5 Φ2

5 1 25

8 5 Φ5.A4(q) Φ5.A4(q) 4 chars. 5

9 5 GF CG∗(s)
F chars. 1

10 A5(q)A2(q)A1(q) 5 Φ5.A4(q) Φ1Φ5.A2(q)A1(q) 6 chars. 5

11 5 GF CG∗(s)
F 36 chars. 1

12 A7(q)A1(q) 5 Φ5.A4(q) Φ1Φ5.A2(q)A1(q) 6 chars. 5

13 5 GF CG∗(s)
F 14 chars. 1

14 A8(q) 5 Φ5.A4(q) Φ1Φ5.A3(q) 5 chars. 5

15 5 GF CG∗(s)
F 5 chars. 1

16 D8(q) 5 Φ5.A4(q) Φ1Φ5.A3(q) 5 chars. 10

17 5 GF CG∗(s)
F 70 chars. 1

1 E7(q)A1(q) 7 Φ1Φ7.A1(q) Φ1Φ7.A1(q) φ11φ2 14

2 7 GF CG∗(s)
F 124 chars. 1

3 A7(q)A1(q) 7 Φ1Φ7.A1(q) Φ1Φ7.A1(q) φ11, φ2 7

4 7 GF CG∗(s)
F 30 chars. 1

5 A8(q) 7 Φ1Φ7.A1(q) Φ1Φ7.A1(q) φ11, φ2 7

6 7 GF CG∗(s)
F 16 chars. 1

7 D8(q) 7 Φ1Φ7.A1(q) Φ2
1Φ7 1 14

8 7 GF CG∗(s)
F 104 chars. 1

1 E7(q)A1(q) 8 Φ8.
2D4(q) Φ8.A1(q)2A1(q2) 8 chars. 8

2 8 GF CG∗(s)
F 88 chars. 1

3 E6(q)A2(q) 8 Φ8.
2D4(q) Φ1Φ2Φ8.A2(q) φ111, φ21, φ3 8

4 8 GF CG∗(s)
F 66 chars. 1

5 2E6(q)2A2(q) 8 Φ8.
2D4(q) Φ1Φ2Φ8.

2A2(q) φ111, φ21, φ3 8

6 8 GF CG∗(s)
F 66 chars. 1

7 D5(q)A3(q) 8 Φ8.
2D4(q) Φ2Φ8.A3(q) 5 chars. 8

8 8 GF CG∗(s)
F 60 chars. 1

9 2D5(q)2A3(q) 8 Φ8.
2D4(q) Φ1Φ8.

2A3(q) 5 chars. 8

10 8 GF CG∗(s)
F 60 chars. 1

11 2A4(q2) 8 Φ1Φ2Φ4Φ8 Φ1Φ2Φ4Φ8 1 4
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12 8 GF CG∗(s)
F 3 chars. 1

1 E7(q)A1(q) 9 Φ9.A2(q) Φ1Φ9.A1(q) φ11, φ2 18

2 9 GF CG∗(s)
F 116 chars. 1

3 E6(q)A2(q) 9 Φ9.A2(q) Φ9.A2(q) φ111, φ21, φ3 9

4 9 GF CG∗(s)
F 63 chars. 1

5 A8(q) 9 Φ9.A2(q) Φ3Φ9 1 9

6 9 GF CG∗(s)
F 21 chars. 1

1 E7(q)A1(q) 12 Φ12.
3D4(q) Φ12.A1(q)A1(q3) 4 chars. 12

2 12 GF CG∗(s)
F 124 chars. 1

3 E6(q)A2(q) 12 Φ12.
3D4(q) Φ3Φ12.A2(q) φ111, φ21, φ3 12

4 12 GF CG∗(s)
F 54 chars. 1

5 2E6(q)2A2(q) 12 Φ12.
3D4(q) Φ6Φ12.

2A2(q) φ111, φ21, φ3 12

6 12 GF CG∗(s)
F 54 chars. 1

7 2A4(q2) 12 Φ12.
2A2(q2) Φ4Φ12.A1(q2) φ11, φ2 3

8 12 GF CG∗(s)
F φ311 1

9 D8(q) 12 Φ12.
2A2(q2) Φ4Φ12.A1(q2) φ11, φ2 12

10 12 GF CG∗(s)
F 96 chars. 1

1 2A4(q2) 20 Φ20 Φ20 1 5

2 20 GF CG∗(s)
F φ221, φ32 1

Proof. Similar to the proof of Theorem 2.15.

Table 9: Decomposition of the non-uniform RG
L (λ)

No. e λ ±RG
L (λ)

2 3 3D4[−1]⊗ φ11 D4: .111⊗φ11−D4: .21⊗φ11 +D4: .3⊗φ11 +D4:111.⊗φ11−
D4:21.⊗ φ11 +D4:3.⊗ φ11

3 3D4[−1]⊗ φ2 D4: .111⊗ φ2 −D4: .21⊗ φ2 +D4 : .3⊗ φ2 +D4 :111.⊗ φ2 −
D4 :21.⊗ φ2 +D4 :3.⊗ φ2

6 3 3D4[−1] D4 : 3⊗ φ111 −D4 : 3⊗ φ21 +D4 :3⊗ φ3 +D4 :111⊗ φ111 −
D4 :111⊗φ21 +D4 :111⊗φ3−D4:21⊗φ111 +D4 :21⊗φ21−
D4 :21⊗ φ3

12 3 (013, 124) (013, 124)⊗ φ1111 − (013, 124)⊗ φ22 + (013, 124)⊗ φ4

3 (02, 14) (02, 14)⊗ φ1111 − (02, 14)⊗ φ22 + (02, 14)⊗ φ4

3 (0124, ) (0124, )⊗ φ1111 − (0124, )⊗ φ22 + (0124, )⊗ φ4

3 (01234, 1) (01234, 1)⊗ φ1111 − (01234, 1)⊗ φ22 + (01234, 1)⊗ φ4

29 3 (013, 124) (0234, 1235) + (012346, 123457) − (124, 034) − (013, 145) +
(124, 016) + (013, 127)

3 (02, 14) (1234, 0136) + (01235, 12347)− (013, 235) + (14, 05) + (02, 17)
3 (0124, ) (1234, )+(0123457, 123)−(012346, 13)−(0145, )+(01235, 3)+

(0127, )
3 (01234, 1) (01345, 1) + (01234567, 1234) − (01246, 1) − (012345, 23) +

(01237, 1) + (01234, 4)

14 4 (12, 04) −(12, 04)⊗φ1111 +(12, 04)⊗φ211−(12, 04)⊗φ31 +(12, 04)⊗φ4

43



4 (123, 014) −(123, 014) ⊗ φ1111 + (123, 014) ⊗ φ211 − (123, 014) ⊗ φ31 +
(123, 014)⊗ φ4

20 4 (014, 2) −(014, 2)⊗φ1111−(014, 2)⊗φ211 +(014, 2)⊗φ31 +(014, 2)⊗φ4

4 (0134, 12) −(0134, 12)⊗ φ1111 − (0134, 12)⊗ φ211 + (0134, 12)⊗ φ31 +
(0134, 12)⊗ φ4

2.1.5 e-cuspidal pairs of G2(q) and 3D4(q)

Let G be a simple, simply connected algebraic group of type G2 or D4 de�ned over Fq
with Frobenius endomorphism F : G → G such that GF = G2(q) or GF = 3D4(q). Here,
e is relevant for some quasi-isolated 1 6= s ∈ G∗F if and only if e ∈ {1, 2, 3, 6}. It remains
to determine the e-cuspidal pairs for e = 3.

Theorem 2.19. Let e = 3. For any quasi-isolated semisimple element 1 6= s ∈ G∗F , the
e-cuspidal pairs (L, λ) of G with λ ∈ E(LF , s) (up to GF -conjugacy), and the order of
their relative Weyl groups W = WGF (L, λ) are as indicated in Table 10. In particular,
generalized e-Harish-Chandra theory holds in E(GF , s) for every quasi-isolated semisimple
element 1 6= s ∈ G∗F .

Table 10: Quasi-isolated blocks of G2(q) and 3D4(q)

No. GF CG∗(s)
F e LF CL∗(s)

F λ |W |
1 G2(q) A2(q) 3 Φ3 Φ3 1 3

2 3D4(q) A1(q)A1(q3) 3 Φ1Φ3.A1(q) Φ1Φ3.A1(q) φ11, φ2 2

Proof. Similar to the proof of Theorem 2.14.

2E6(2), E7(2) and E8(2)

Note that these groups do not have semisimple elements of even order. Furthermore,
note that the Mackey Formula holds for e = 1 regardless of q since 1-split Levi subgroups
are contained in F -stable parabolic subgroups. In this case, Lusztig induction is just
ordinary Harish-Chandra induction. Consequently, the proofs of the previous section still
hold for e = 1 for these groups.

Proposition 2.20. The assertion of Theorems 2.15, 2.17 and 2.18 are still valid when
q = 2.

Proof. 2E6(2): In this case it remains to prove the assertion for the Lusztig series corre-
sponding to semisimple quasi-isolated elements with centralizers of type A3

2 and D4. Let
(L, λ) be an e-cuspidal pair for a semisimple, quasi-isolated element with centralizer of
type A3

2. From the tables it follows that either L = G or that λ is uniform. Hence the
decomposition of RG

L (λ) can be determined without using the Mackey formula, so the
proof of Theorem 2.15 still works.

Now, let (L, λ) be an e-cuspidal pair corresponding to a quasi-isolated element s ∈ G∗F
with CG∗(s)

F = Φ2
2.D4(2)3.3. If e = 2 there are two 2-cuspidal pairs (L1, λ1) = (Φ6

2, 1) and
(L2, λ2) = (Φ2

2.D4(2), (02, 13)). Since λ1 is uniform, we can decompose RG
L1

(λ1) without
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using the Mackey formula. For the second pair we use the following argument. We
observe that πuni(R

G
L2

(λ2)) ∈ 1
4
ZE(GF , s). Since RG

L2
(λ2) ∈ ZE(GF , s) is a generalized

character, there exists an element γ ∈ QE(GF , s) which is orthogonal to the space of
uniform class functions of GF , such that πuni(R

G
L2

(λ2)) + γ ∈ ZE(GF , s). Furthermore,
we know that RG

L1
(λ1) and RG

L2
(λ2) do not have any irreducible constituents in common

because their constituents lie in di�erent blocks by Theorem 2.3 (a). In this particular case
this already determines the constituents of γ. Without knowing the norm of RG

L2
(λ2), we

are unfortunately not able to determine the multiplicities of the individual constituents.
However, it is enough for our purposes to know the constituents.

A similar argument is needed for e = 3 (and e = 6). There are four 3-cuspidal pairs
(Li, λi), i = 1, . . . , 4 with L := L1 = L2 = L3 = Φ3.

2A2(2) and L4 = GF . Again, we are
able to determine the constituents of RG

Li
(λi) for i = 1, 2, 3 (the case i = 4 being trivial).

In addition to the arguments used for e = 2 above, we know that λ1 + λ2 + λ3 is uniform.
Therefore, RG

L (λ1 + λ2 + λ3) is also uniform by transitivity of Lusztig induction (see [15,
11.5 Transitivity]). The same arguments as for e = 2 yield that a generalized e-Harish
Chandra theory holds.

For the quasi-isolated elements s ∈ G∗F with CG∗(s)
F = Φ6.

3D4(2).3 we argue the
same way: either λ is uniform; λ is an e-cuspidal character of GF already; or we can
determine the constituents of RG

L (λ) without using the Mackey formula, as for the other
3-cuspidal pairs.

E7(2): Here, we only need to consider the e-cuspidal pairs corresponding to centralizers
of type A5 × A2. Let (L, λ) be one of those e-cuspidal pairs. Checking the tables we see
that either λ is uniform or L = G and λ is an e-cuspidal character of GF . Thus we can
determine RG

L (λ) without the Mackey formula and the proof of Theorem 2.17 works.
E8(2): The only cases to consider are the ones corresponding to centralizers of type A8,

A4×A4 and E6×A2. For every e-cuspidal pair (L, λ) corresponding to the �rst or second
centraliser type, λ is uniform. Hence, we can determine the decomposition of E(GF , s)
without the Mackey-formula. For the last centraliser type we use the same arguments as
for the troublesome cases of 2E6(2).

Proof of Theorem A

Proof. Suppose that ` is either a bad prime for G or that ` = 3 and GF = 3D4(q). If
s = 1, then the asserted partition follows from work of Enguehard (see [16]). If 1 6= s is
quasi-isolated, then the asserted partition of E(GF , s) follows from [29, Theorem 1.4].

Now suppose that ` is good and that ` 6= 3 if GF = 3D4(q). If s = 1, the assertion
follows from [6] and [8]. If 1 6= s ∈ G∗F is semisimple and quasi-isolated, then the assertion
follows from Theorems 2.14, 2.15, 2.17, 2.18, 2.19 and Proposition 2.20.

3 Quasi-isolated blocks for bad primes

Let G be a simple, simply connected algebraic group of exceptional type de�ned over Fq
with Frobenius endomorphism F : G → G or let G be simple, simply connected of type
D4 de�ned over Fq with Frobenius endomorphism F : G → G such that GF = 3D4(q).
From now on we assume that ` - q is a bad prime for G. Further we assume ` ∈ {2, 3}
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if GF = 3D4(q). In theses cases the parametrization of blocks in Theorem 2.3 has to be
tweaked. Moreover, except for the case where ` = 3 and GF = 3D4(q), the assertion of
Theorem 1.78 does not hold (see section 1.2 of [19] for a counterexample). We can replace
Theorem 2.3 by results of Kessar and Malle (see [29]). The crux of this section is therefore
to prove a replacement for Theorem 1.78.

Let E(GF , `′) :=
⋃
`′-elements s∈G∗F E(GF , s) denote the union of Lusztig series corre-

sponding to `′-elements of G∗F .

De�nition 3.1. Let χ ∈ E(GF , `′). We say that χ is of central `-defect if |GF |` =
χ(1)`|Z(G)F |`. We say that χ is of quasi-central `-defect if some constituent of χ[G,G]F

is of central `-defect.

We set

e = e`(q) := order of q modulo

{
` if ` > 2,

4 if ` = 2.

Since ` is assumed to be a bad prime (in particular ` is small), the only cases that occur
are e ∈ {1, 2, 4}.

Using characters of quasi-central `-defect, we are able to parametrise the quasi-isolated
blocks for bad primes. The following replaces Theorem 2.3 for quasi-isolated `-blocks when
` is a bad prime for G.

Theorem 3.2 ([29, Theorem 1.2]). Let G be a simple, simply connected group of excep-
tional Lie type de�ned over Fq with Frobenius endomorphism F : G → G or let G be
simple of type D4 de�ned over Fq with Frobenius endomorphism F : G → G such that
GF = 3D4(q). Suppose that ` is a prime not dividing q. If GF = 3D4(q) then let ` ∈ {2, 3}
otherwise let ` be bad for G. Suppose that 1 6= s ∈ G∗F is a quasi-isolated semisimple
`′-element. Then we have the following.
(a) There is a bijection

bGF (L, λ)↔ (L, λ)

between `-blocks of GF contained in E`(GF , s) and GF -conjugacy classes of
e-cuspidal pairs (L, λ) such that s ∈ L∗F and λ ∈ E(LF , s) is of quasi-central
`-defect.

(b) There is a defect group D ≤ NF
G (L, λ) of bGF (L, λ) with a normal series

Z(L)F` E P := CD(Z(L)F` ) E D,

where D/P is isomorphic to a Sylow `-subgroup of WGF (L, λ) and P/Z(L)F`
is isomorphic to a Sylow `-subgroup of LF/Z(L)F` [L,L]F .

(c) If ` 6= 2, then P = Z(L)F` and D is a Sylow `-subgroup of the extension of
Z(L)F` by WGF (L, λ).
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De�nition 3.3. Let (L, λ) be an e-cuspidal pair of GF . We say that RG
L satis�es an

e-Harish-Chandra theory above (L, λ) if there exists a collection of isometries

IM(L,λ) : Z Irr(WMF (L, λ))→ ZE(MF , (L, λ)),

where M runs over all e-split Levi subgroup of G containing L such that the following
holds.
(1) For every M , we have

RG
M ◦ IM(L,λ) = IG(L,λ) ◦ Ind

W
GF

(L,λ)

W
MF (L,λ) .

(2) The collection (IM(L,λ)) is stable under the conjugation action by WGF (L, λ).

(3) IL(L,λ) maps the trivial character of the trivial group WLF (L, λ) to λ.

Note the di�erence of this de�nition to the notion of a generalized e-Harish-Chandra the-
ory holding in a Lusztig series used in Section 2. However, it can be shown that De�nition
3.3 implies the latter (see [29, Proposition 2.10]).

The following result was already mentioned in the proof of Theorem A. We state it
here because of how important it is for some of the proofs in this section (see the proofs
of Theorems 3.9, 3.22, 3.33, 3.39 and 3.42).

Theorem 3.4 ([29, Theorem 1.4]). Let G be a simple, simply connected group of excep-
tional Lie type de�ned over Fq with Frobenius endomorphism F : G → G or let G be
simple of type D4 de�ned over Fq with Frobenius endomorphism F : G → G such that
GF = 3D4(q). Suppose that ` is a prime not dividing q. If GF = 3D4(q) then let ` ∈ {2, 3}
otherwise let ` be bad for G. Suppose that 1 6= s ∈ G∗F is a quasi-isolated `′-element.
Then we have the following.
(a)

E(GF , s) =
⋃

(L,λ)/GF

E(GF , (L, λ)),

where (L, λ) runs over the e-cuspidal pairs of G up to GF -conjugacy with
s ∈ L∗F and λ ∈ E(LF , s).

(b) RG
L satis�es an e-Harish-Chandra theory above each e-cuspidal pair (L, λ)

with s ∈ L∗F and λ ∈ E(LF , s).

As is often the case in the representation theory of �nite groups of Lie type, results are
stronger if we assume the center of the underlying algebraic group to be connected. The
same is true for the results in this thesis; mostly because of the following.

Lemma 3.5. Let G be a connected reductive group de�ned over Fq with Frobenius endo-
morphism F : G → G. Suppose that Z(G) is connected. Let s ∈ G∗F be a quasi-isolated
`′-element and t ∈ CG∗(s)F` such that st is not quasi-isolated. If L∗ is the minimal Levi
subgroup containing CG∗(st), then t ∈ Z(L∗) if one of the following conditions is satis�ed:
(a) ` is good for L∗, or
(b) ` is good for CG∗(s) and the order of s is not divisible by any bad primes

for L∗.
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Proof. Assume condition (a) to be satis�ed. We have

CG∗(st) ⊆ L∗ ∩ CG∗(t) ⊆ CG∗(t).

By Theorem 1.31 and our assumption on Z(G), CG∗(t) is connected. In particular,
CL∗(t) = L∗ ∩ CG∗(t) is connected, as it is a Levi subgroup of CG∗(t) by Proposition
2.11. By Proposition 1.38, CL∗(t) is a Levi subgroup of L∗. By Corollary 1.37 CL∗(t) is
therefore a Levi subgroup of G∗. Since CG∗(st) ⊆ CL∗(t), the minimality of L∗ implies
L∗ = CL∗(t); in other words t ∈ Z(L∗).

Assume condition (b) to be satis�ed. We claim that L∗ = CG∗(st). Since s and t are
commuting elements of coprime order, we have

CG∗(st) = CCG∗ (s)(t) = CCG∗ (t)(s).

In particular, CCG∗ (s)(t) and CCG∗ (t)(s) are connected. By our assumption on the order of
s, CG∗(st) = CCG∗ (s)(t) is a Levi subgroup of CG∗(s) (see Proposition 1.38). Additionally,

CG∗(st) ⊆ L∗ ∩ CG∗(s) ( CG∗(s),

where the last inclusion is proper because s is quasi-isolated and L∗ is a proper Levi
subgroup of G∗. By Proposition 2.11 and our assumption on the order of s, L∗ ∩ CG∗(s)
is a Levi subgroup of CG∗(s) and the minimality of L∗ yields CG∗(st) = L∗ ∩ CG∗(s) =
CL∗(s). Applying Proposition 1.38 again, we see that CL∗(s) is a Levi subgroup of L∗ and
from Proposition 1.35 it follows that CL∗(s) is a Levi subgroup of G∗ as well. Now, the
minimality of L∗ implies L∗ = CL∗(s) = CG∗(st) which proves the claim. In particular,
t ∈ Z(L∗).

3.1 The quasi-isolated blocks of F4(q)

Let G be simple, simply connected of type F4 de�ned over Fq with Frobenius endomor-
phism F : G → G. Recall that simple algebraic groups of type F4 are both simply
connected and adjoint. We will therefore omit any speci�cation of the isogeny type. Let
` be a bad prime for G not dividing q.

Recall that the bad primes for G are just 2 and 3. Checking Table 1, we see that GF

has no quasi-isolated elements of order greater than 4. Let 1 6= s ∈ G∗F be a semisimple,
quasi-isolated `′-element and let 1 6= t ∈ CG∗(s)F` . Clearly, the order of st is greater than
4. Hence there exists a proper Levi subgroup M∗ of G∗ containing CG∗(st). Let L∗ be
the minimal such Levi subgroup of G∗. It is easy to see that L∗ = CG∗(Z(CG∗(st))

◦) and
since st is F -stable, L∗ is also F -stable.

Proposition 3.6. Let G be simple, simply connected of type F4 de�ned over Fq with
Frobenius endomorphism F : G→ G. Let ` - q be a bad prime for G. Let 1 6= s ∈ G∗F be
a quasi-isolated semisimple `′-element and let 1 6= t ∈ CG∗(s)F` . If L∗ ≤ G∗ is the minimal
Levi subgroup containing CG∗(st), then t ∈ Z(L∗).

Proof. The proper Levi subgroups of G are of classical type. Hence, the only possible bad
prime for L∗ is 2. If ` = 3, the assertion therefore follows from Lemma 3.5 (a).

If ` = 2, then o(s) = 3 and CG∗(s) is of type A2 × A2 (see Table 1). Hence, the
assertion follows from Lemma 3.5 (b).
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The following result is our aforementioned replacement for Theorem 1.78.

Theorem 3.7. Let G be simple, simply connected of type F4 de�ned over Fq with Frobenius
endomorphism F : G → G. Let ` - q be a bad prime for G. Let 1 6= s ∈ G∗F be a quasi-
isolated semisimple `′-element. Then E(GF , s) is an ordinary generating set for E`(GF , s).
In particular, the number of irreducible Brauer characters in E`(GF , s) is less than or equal
to |E(GF , s)|.

The proof of this follows the proof of [19, Theorem 3.1]. Since we are working with bad
primes, we have to tweak the arguments slightly. We denote the characteristic function
of the set of `-regular elements of GF by γ`′ .

Proof. By Theorem 1.16 it su�ces to show that χ◦ ∈ ZÊ(GF , s) for every χ ∈ E`(GF , s).
Let t ∈ CG∗(s)F` and let χ ∈ E(GF , st). If t = 1, then χ◦ ∈ Ê(GF , s) and we are done.
Hence, assume t 6= 1. Let L∗ ⊆ G∗ be the minimal Levi containing CG∗(st) and let L be a
Levi subgroup of G dual to L∗. By [11, Theorem 9.16] there is a character π ∈ E(LF , st)
such that χ = εGεLR

G
L (π). Since t ∈ Z(L∗)F by Proposition 3.6, there exists a character

θt of L
F , dual to t, such that π = θtλ, where λ ∈ E(LF , s) (see [15, 13.30 Proposition]).

The order of θt is equal to the order of t and is therefore a power of `. Thus, θ◦t = 1◦LF .
We have

χγ`′ = εGεLR
G
L (θtλ)γ`′

= εGεLR
G
L (θtλγ`′) ([14, Proposition 3.8])

= εGεLR
G
L (θ̂tλ̂)

= εGεLR
G
L (λ̂)

= εGεLR
G
L (λ)γ`′ .

By [31, Corollary 6] every irreducible constituent of RG
L (λ) lies in E(GF , s). Since χ◦ =

(χγ`′)GF
`′
, it follows that χ◦ ∈ ZÊ(GF , s).

If we want an ordinary generating set for a block B contained in E`(GF , s), we can take
Irr(B)∩E(GF , s). Let c(B) := | Irr(B)∩E(GF , s)| denote the cardinality of this generating
set.

To prove the Malle�Robinson conjecture for the quasi-isolated blocks B of GF , we
show that

l(B) ≤ c(B) < `s(B).

For this, we need the classi�cation of quasi-isolated blocks of GF in [29].

Theorem 3.8 ([29, Proposition 3.2, Proposition 3.5]). Let G be simple, simply connected
of type F4 de�ned over Fq with Frobenius endomorphism F : G → G. Let ` - q be a bad
prime for G. Let e = e`(q) = 1. For any quasi-isolated semisimple `′-element 1 6= s ∈ G∗F ,
the `-block distribution of E(GF , s), the decomposition of E(GF , s) into e-Harish-Chandra
series, and the relative Weyl groups of the e-cuspidal pairs are as indicated in Table 11.
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Table 11: Quasi-isolated blocks of F4(q)

No. CG∗(s)
F (`, e) LF λ WGF (L, λ)

1 A2(q)Ã2(q) (2, 1) Φ4
1 1 A2 × A2

2 2A2(q) 2Ã2(q) (2, 1) Φ2
1.A1(q)2 1 A1 × A1

Φ1.B3(q) φ21 A1

Φ1.C3(q) φ̃21 A1

GF φ21 ⊗ φ̃21 1

3 B4(q) (3, 1) Φ4
1 1 B4

4 Φ2
1.B2(q) B2[1] B2

5 C3(q)A1(q) (3, 1) Φ4
1 1 C3 × A1

6 Φ2
1.B2(q) B2[1] A1 × A1

7 A3(q)Ã1(q) (3, 1) Φ4
1 1 A3 × A1

8 2A3(q)Ã1(q) (3, 1) Φ3
1.Ã1(q) 1 C2 × A1

2b (2, 2) Φ4
2 1 A2 × A2

Note that line 2b does not yield a new block. This line is only needed in the proof of
Theorem 3.9. The table for e = 2 is the Ennola dual of this one. For a few remarks on
how to interpret this table, see the beginning of Section 2.

Theorem 3.9. Let G be simple, simply connected of type F4 de�ned over Fq with Frobenius
endomorphism F : G → G. Let e = e`(q) = 1. Then Table 3 gives c(B) and a lower
bound for s(B) for every `-block B of Table 2. Moreover, the Malle�Robinson conjecture
holds in strong form for these blocks.

Table 12: c(B) and lower bounds on s(B) for the quasi-isolated blocks of F4(q)

B CG∗(s)
F ` c(B) s(B) ≥

1 A2(q)Ã2(q) 2 9 4
2 2A2(q) 2A2(q) 2 9 4
3 B4(q) 3 20 4
4 3 5 2
5 C3(q)A1(q) 3 20 4
6 3 4 2

7 A3(q)Ã1(q) 3 10 4

8 2A3(q)Ã1(q) 3 10 3

Proof. Let B be a quasi-isolated block associated to a line in Table 11 and let (L1, λ1), ...,
(Lr, λr) be the e-cuspidal pairs associated to that block. By Theorem 3.7 and Theorem
3.4 we conclude that

c(B) =
r∑
i=1

|E(GF , (Li, λi))|.
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Since RG
L satis�es an e-Harish-Chandra theory above each (Li, λi) by Theorem 3.4,

|E(GF , (Li, λi))| = |Irr(WGF (Li, λi))|,

and this cardinality can easily be determined using Chevie [36]. Let (L, λ) now be the
unique pair parametrising B = bGF (L, λ) by Theorem 3.2. Let D be a defect group of B.
Since Z(L)F` ≤ D, we have s(Z(L)F` ) ≤ s(D). We prove the Malle�Robinson conjecture
by establishing the stronger inequality

l(B) ≤ c(B) < `s(Z(L)F` ) ≤ `s(B).

Checking Table 11, we see that Z(L)F = Φk
e is an e-torus in every case.

Let ` = 3 and let B be a quasi-isolated 3-block. If Z(L)F = Φm
e , then s(Z(L)F` ) = m by

Proposition 1.53. The m's can be read o� from Table 11 and we see that c(B) < `s(Z(L)F` )

in every case.
Let ` = 2. Let B = bGF (L, λ) be the block corresponding to line 1 of Table 11. To

prove the conjecture it is enough to take s(Z(L)F` ) again. Let B = bGF (L, λ) now be the
block corresponding to line 2 of Table 11. Unfortunately, s(Z(L)F` ) is not large enough to
establish the conjecture for B in this case. We have to use line 2b of Table 11. As seen
in the proof of [29, Proposition 3.5], the 1-Harish-Chandra series corresponding to line 2b
actually lies in B. By [29, Proposition 2.17], Z(M)F2 = (Φ4

2)2 ⊆ D where (M, ζ) is the
pair of line 2b. Note that Φ2 is always divisible by 2 unless q is a power of 2 and since
we are working in cross-characteristic and assume ` = 2, this can not be the case. Hence,
Z(M)F2 = Φ4

2 yields an elementary abelian 2-subgroup of D of rank 4. It follows that

l(B) ≤ c(B) < `s(Z(L)F` ) ≤ `s(B).

If e = 2, then the Ennola dual of line 2b gives a 1-split torus Φ4
1 which yields an elementary

abelian 2-subgroup of rank 4. The rest of the proof did not depend e. Hence, the assertion
is proved.

3.2 The quasi-isolated blocks of E6(q) and
2E6(q)

Let G be a simple, simply connected group of type E6 de�ned over Fq with Frobenius
endomorphism F : G→ G. Then GF = E6,sc(q) or

2E6,sc(q) and the dual group G∗ (which
is of adjoint type) contains semisimple elements whose centralisers are disconnected as
Z(G) is disconnected.

Remark 3.10. For the proof of Theorem 3.7 to work, our setup had to satisfy the following
conditions.
(1) To go from Ê(GF , st) to Ê(LF , st) (see [11, Theorem 9.16]), we need

C◦G∗(st)CG∗(st)
F ⊆ L∗,

where L∗ is an F -stable Levi subgroup of G∗, and

(2) to go from Ê(LF , st) to Ê(LF , s), we need

t ∈ Z(L∗)F` .
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Both of these can fail for GF = E6,sc(q) and
2E6,sc(q). The failure of the �rst condition is

not a big deal and only leads to slightly bigger generating sets. The failure of the second
condition, however, creates problems that we are not able to resolve in all cases.

Apart from conditions (1) and (2) failing in certain cases, many other things that were
true for F4(q) are not necessarily true for GF . This creates very intricate problems. For
example, given a semisimple element s ∈ G∗ we do not have an explicit description of the
minimal Levi subgroup L∗ of G∗ containing CG∗(s) as in Section 3.1. However, we still
know that L∗ is F -stable.

Lemma 3.11. Let G be a connected reductive group de�ned over Fq with Frobenius en-
domorphism F : G → G. Let s ∈ G∗F be a semisimple element and let L∗ ⊆ G∗ be the
minimal Levi subgroup containing CG∗(s). Then L∗ is F -stable.

Proof. Since s is F -stable and F is an isomorphism of abstract groups we have

CG∗(s) = CG∗(F (s)) = F (CG∗(s)) ⊆ F (L∗).

By the minimality of L∗ it follows that L ⊆ F (L∗) and therefore L∗ = F (L∗).

Since we are working with simple algebraic groups, we know a great deal about the
Levi subgroups of G.

Lemma 3.12. Let L∗ ⊆ G∗ be a proper Levi subgroup of G∗. Then [L∗, L∗] is simply
connected unless L∗ is of type A2

2, A
2
2 × A1 or A5.

Proof. This can be checked with Chevie [36].

We try to follow the idea of section 3.1 as much as possible but because of the compli-
cations addressed in the beginning of this section, this is not always possible. For example
condition (1) fails if st is quasi-isolated.

Remark 3.13. Let 1 6= s ∈ G∗F be quasi-isolated and let t ∈ CG∗(s)F . Then st is quasi-
isolated if and only if t = 1 or st is of order 6 with CG∗(st) = A4

1 (see Table 1). It can be
shown that every quasi-isolated element z ∈ G∗ of order 6 is of the form z = st where s
is quasi-isolated of order 3 with C◦G∗(s) of type D4, and t is quasi-isolated of order 2 with
CG∗(t) of type A5 × A1 (or vice-versa).

If q ≡ 1 mod 3, the G∗-conjugacy classes of s and z each split into three G∗F -conjugacy
classes (see e.g. [22, Theorem 2.1.5 (b)]) and we have the following.
(i) If CG∗(z)F = Φ2

1.A1(q)4.3, then CG∗(s)
F = Φ2

1.D4(q).3.
(ii) If CG∗(z)F = Φ3.A1(q)A1(q3).3, then CG∗(s)

F = Φ3.
3D4(q).3.

If q ≡ 2 mod 3, then the G∗-conjugacy classes of semisimple elements do not split and we
have CG∗(z)F = Φ1Φ2.A1(q)2A1(q2) and CG∗(s)

F = Φ1Φ2.
2D4(q).

Proposition 3.14. Let s ∈ G∗F be a quasi-isolated semisimple element of order 3 with
C◦G∗(s) = A3

2 and let t ∈ CG∗(s)F2 . If L∗ ⊆ G∗ is the minimal Levi subgroup containing
CG∗(st), then t ∈ Z(L∗).

Proof. Since st ∈ G∗ is not quasi-isolated by Remark 3.13, its centraliser inG∗ is contained
in a proper Levi subgroup. Note that the proper Levi subgroups of G∗ are either of type D
or a product of groups of type A (or maximal tori, in which case t ∈ Z(L∗) is immediate).

52



Let L∗ be of type A. Then 2 is not a bad prime for L∗. We have

CG∗(st) ⊆ L∗ ∩ CG∗(t) ⊆ CG∗(t).

Since t is a 2-element, CG∗(t) is connected by [35, Proposition 14.20]. By Theorem 1.38,
CL∗(t) = L∗ ∩ CG∗(t) is a Levi subgroup of G∗. The minimality of L∗ yields L∗ =
L∗ ∩ CG∗(t). In other words, L∗ ⊂ CG∗(t) which implies that t ∈ Z(L∗).

Now, let L∗ be of type D. By Lemma 3.12, [L∗, L∗] is simply connected. Hence,
CG∗(st) = CL∗(st) is connected by Theorem 1.31. With the same arguments as in the
proof of Lemma 3.5(b), it can be shown that L∗ = CG∗(st). Hence, t ∈ Z(L∗).

Corollary 3.15. Let ` = 2 not dividing q. Let s ∈ G∗F be semisimple and quasi-isolated
of order 3 with C◦G∗(s) = A3

2. Then E(GF , s) is an ordinary generating set for E`(GF , s).
In particular, the number of irreducible Brauer characters in E`(GF , s) is less than or
equal to |E(GF , s)|.

Proof. The result follows from the fact that condition (1) and (2) of Remark 3.10 are
satis�ed by Proposition 3.14.

To be able to state the results in a concise way we focus on GF = E6(q)sc. This is
unproblematic as the analogous results for 2E6(q)sc can be proved using the same type of
arguments.

Theorem 3.16 ([29, Proposition 4.1, Proposition 4.3]). Let ` - q be a bad prime for
G. For any quasi-isolated semisimple `′-element 1 6= s ∈ G∗F the `-block distribution of
E(GF , s), the decomposition of E(GF , s) into e-Harish-Chandra series, and the relative
Weyl groups of the e-cuspidal pairs are as indicated in Table 13.

See Section 2.1.2 for an explanation of how the corresponding Table for 2E6(q)sc is ob-
tained.

Table 13: Quasi-isolated blocks in E6(q)

No. CG∗(s)
F (`, e) LF λ WGF (L, λ)

1 A2(q)3.3 (2, 1) Φ6
1 1 A2 o 3

2 A2(q3).3 (2, 1) Φ2
1.A2(q)2 1 A2

3 A2(q2).2A2(q) (2, 1) Φ3
1.A1(q)3 1 A2 × A1

Φ2
1.D4(q) φ21 A2

4 Φ2
1.D4(q).3 (2, 1) Φ6

1 1 D4.3
Φ2

1.D4(q) D4[1] 3
5 Φ1Φ2.

2D4(q) (2, 1) Φ4
1.A1(q)2 1 B3

6 Φ3.
3D4(q).3 (2, 1) Φ2

1.A2(q)2 1 G2

GF 3D4(q)[±1] 1

7 A2(q)3.3 (2, 2) Φ2
1Φ3

2.A1(q) 1 A1 o 3
Φ1Φ2

2.A3(q) φ21 A1 × A1

Φ2.A5(q) φ21 ⊗ φ21 A1

GF φ21 ⊗ φ21 ⊗ φ21 1
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8 A2(q3).3 (2, 2) Φ2.A2(q2)A1(q) 1 A1

GF φ, φ21 1
9 A2(q2).2A2(q) (2, 2) Φ2

1Φ4
2 1 A2 × A2

10 Φ2
1.D4(q).3 (2, 2) Φ2

1Φ4
2 1 D4.3

GF φ, φ′, φ′′ 1
11 Φ1Φ2.

2D4(q) (2, 2) Φ2
1Φ4

2 1 B3

12 Φ3.
3D4(q).3 (2, 2) Φ2

2.A2(q2) 1 G2

GF φ2,1, φ2,2 1

13 A5(q)A1(q) (3, 1) Φ6
1 1 A5 × A1

14 A5(q)A1(q) (3, 2) Φ2
1Φ4

2 1 C3 × A1

15 Φ2.A5(q) φ321 A1

Remark 3.17. (a) The numbers in the �rst column do not count the blocks of GF . Unlike
Table 11, where every numbered line corresponds to one block, lines 2, 6, 8 and 12 of
Table 13, each yield 3 blocks. We therefore either say that a quasi-isolated block B is of
type k, where k is the number to which it corresponds, or we indicate this ambiguity by
saying that B is numbered k, k′ or k′′ . If k /∈ {2, 6, 8, 12} we still say that B is numbered
k.

We want to study the blocks of type 4, 5, 6, 10, 11, 12 next. Recall that every quasi-
isolated element z of order 6 is of the form z = st, where s ∈ G∗ is quasi-isolated of order
3 with C◦G∗(s) of type D4, and t is quasi-isolated of order 2 with CG∗(t) of type A5 × A1

(or vice-versa).

Theorem 3.18. Let ` = 2 not divide q. Let 1 6= s ∈ G∗F be a quasi-isolated semisimple
element of order 3. Then we have the following.
(a) If CG∗(s)F = Φ2

1.D4(q).3, then Ê(GF , s) ∪ Ê(GF , st) is a generating set of
Q IBr(E2(GF , s)) where t ∈ CG∗(s)F2 such that CG∗(st)F = Φ2

1.A1(q)4.3.
(b) If CG∗(s)F = Φ3.

3D4(q).3, then Ê(GF , s) ∪ Ê(GF , st) is a generating set of
Q IBr(E2(GF , s)) where t ∈ CG∗(s)F2 such that CG∗(st)F = Φ3.A1(q)A1(q3).3.

In particular, the number of irreducible Brauer characters in E2(GF , s) is less than or
equal to |E(GF , s)|+ |E(GF , st)| in both cases.
(c) If CG∗(s)

F = Φ1Φ2.
2D4(q), then Ê(GF , s) is a generating set of

Q IBr(E2(GF , s)). In particular, the number of irreducible Brauer characters
in E2(GF , s) is less than or equal to |E(GF , s)|.

Note that Theorem 3.18 is about generating sets of vector spaces over Q and not about
generating sets as in De�nition 1.15.

Proof. (a) and (b): There exist elements t ∈ CG∗(s)
F
2 such that st is quasi-isolated.

Clearly, condition (1) in Remark 3.10 fails in these cases, which is why the Lusztig series
corresponding to quasi-isolated elements of the form st are included in the proposed
generating sets.

Assume that t ∈ CG∗(s)F` such that st is not quasi-isolated. Let L∗ be the minimal
Levi subgroup of G with respect to CG∗(st) ⊆ L∗. Note that proper Levi subgroups in E6

are either of type A or type D, but not mixed.
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Let L∗ be of type A. We show that t ∈ Z(L∗). Note that CG∗(t) is connected since t
is a 2-element (see [35, Proposition 14.20]). We have

CG∗(st) ⊆ L∗ ∩ CG∗(t) ⊆ CG∗(t).

Now, L∗ ∩CG∗(t) = CL∗(t) is a Levi subgroup of L∗ (and therefore of G∗) by Proposition
1.38. The minimality of L∗ yields L∗ = CL∗(t). Hence, t ∈ Z(L∗). Therefore, we can
apply the methods used in the proof of Theorem 3.7 to show that every χ◦ ∈ Ê(GF , st) is
an integral linear combination of the Brauer characters in Ê(GF , s).

Now, let L be of type D. We claim that L∗ = C◦G∗(s). Since L∗ is of type D the
derived subgroup of L∗ is of simply-connected type. By Theorem 1.31, CL∗(st) = CG∗(st)
is therefore connected. We have

CG∗(st) ⊆ L∗ ∩ C◦G∗(s) ⊆ CG∗(s)
◦.

Now, L∗ ∩ C◦G∗(s) is a Levi subgroup in L∗ (and therefore in G∗), by Proposition 1.38
again. From the minimality of L∗ it follows that L∗ = L∗∩C◦G∗(s) ⊆ C◦G∗(s). Since C

◦
G∗(s)

is of type D4, it follows that L
∗ = C◦G∗(s) by our assumption on L∗.

We observe that CG∗(st) = CL∗(st) = CL∗(t) because s ∈ Z(L∗). In other words t is
quasi-isolated in L∗. Using Chevie [36], we see that CL∗(t) is of type A

4
1. By Lemma 3.11,

L∗ is F -stable . Let L ⊆ G be an F -stable Levi subgroup of G dual to L∗. Then there is
a natural bijection

E(GF , st)→ E(LF , st),

induced by Lusztig induction (see [15, 13.25 Theorem]). As CL∗(st) = CL∗(t) is connected
and of type A, every irreducible character in E(LF , st) is uniform (see Remark 1.75).
Thus, all irreducible characters in E(GF , st) are uniform as well. If χ ∈ E(GF , st), we can
therefore write

χ =
∑

T ∗⊆C◦
G∗ (st)

αT ∗R
G
T ∗(st),

where T ∗ runs over the F -stable maximal tori of C◦G∗(st). If we restrict χ to the `-regular
elements of GF , we see that

χ◦ =
∑

T ∗⊆C◦
G∗ (st)

αT ∗R
G
T ∗(s)

◦

because RG
T ∗(st)

◦ = RG
T ∗(s)

◦ by [24, Proposition 2.2]. Since αT ∗ ∈ Q for every F -stable
maximal torus T ∗ ⊆ C◦G∗(st) (see Proposition 1.67), it follows that χ◦ is a Q-linear
combination of the characters in Ê(GF , s). This proves the assertion.

(c) The arguments from (a) and (b) also apply to this case, so we only need to study
the series corresponding to the quasi-isolated elements. Let t ∈ CG∗(s)F2 be such that st
is quasi-isolated. Observe that CG∗(st)

F = C◦G∗(st)
F . Since CG∗(st) is of type A, every

irreducible character in E(GF , st) is uniform by Remark 1.75 (b). Let χ ∈ E(GF , st).
With the same arguments we used for uniform characters above, we can show that χ◦ is
an integral linear combination of characters in Ê(GF , s).
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Thus far the only `-blocks for which we do not have a nice generating set are the
blocks numbered 13, 14 and 15, corresponding to the centralizers of type A5(q)A1(q).
The methods developed so far all fail in this case. There are t ∈ CG∗(s)F3 such that st is
not quasi-isolated and t /∈ Z(L∗), where L∗ is the minimal Levi subgroup of G∗ containing
CG∗(st). Therefore we can not use the methods from the proof of Theorem 3.7. On top
of that, not all irreducible characters in E(GF , st) are uniform for these t's, so we can not
apply the methods used in the proof of Theorem 3.18 either. We were unfortunately not
able to resolve these issues for the block numbered 13 so far. But for the blocks 14 and 15
we can bypass all of these issues using elementary facts on F -stable points of centralisers.

Proposition 3.19. Let s ∈ G∗F and q be the prime power corresponding to F . If
(a) GF = E6,sc(q) and 3 - (q − 1), or
(b) GF = 2E6,sc(q) and 3 - (q + 1),

then C◦G∗(s)
F = CG∗(s)

F .

Proof. (a) By [19, Proposition 2.5], (CG∗(s)/C
◦
G∗(s))

F is isomorphic to a subgroup of
Z(G)/(F − 1)Z(G). It is known that, if p 6= 3, then Z(G) = C3, where C3 is a cyclic
group of order 3, and Z(G) = {1} when p = 3 (see [22, Theorem 1.12.5]). Furthermore,
|Z(GF )| = gcd(3, q − 1) (see [35, Table 24.2]). Hence,

Z(G)/(F − 1)Z(G) =

{
{1} if 3 - q − 1

C3 if 3 | q − 1

and the assertion follows. The proof of (b) is analogous.

Theorem 3.20. Let ` - q be a bad prime for G and let 1 6= s ∈ G∗F be a semisimple,
quasi-isolated `′-element.
(a) If 3 - (q − 1), then E(GF , s) is an ordinary generating set for E`(GF , s). In

particular, the number of irreducible Brauer characters in E`(GF , s) is less
than or equal to |E(GF , s)|.

(b) If 3 - (q + 1) the analogous statement holds for 2E6,sc(q).

Proof. (a) For blocks corresponding to centralisers of type A3
2 the assertion follows from

Corollary 3.15 (which is in fact true for all q). Now suppose that the centraliser of s is of
type D4. By the assumption on q we have CG∗(s)

F = Φ1Φ2.
2D4(q) (see the remark before

Theorem 3.18). Thus we are done by Theorem 3.18 (c).
Now suppose that the centraliser of s is of type A5×A1. Let t ∈ CG∗(s)F3 such that st is

not quasi-isolated in G∗ and let L∗ be the minimal Levi subgroup of G∗ containing C◦G∗(st).
By Proposition 3.19, C◦G∗(st)

F = CG∗(st)
F . Therefore condition (1) of Remark 3.10 is

satis�ed, as C◦G∗(st)CG∗(st)
F = C◦G∗(st) ⊆ L∗. If L∗ is of type A, then C◦G∗(st) = C◦L∗(st)

is a Levi subgroup of G∗. It follows that L∗ = C◦G∗(st) by the minimality of L∗. Hence,
t ∈ Z(L∗) and therefore condition (2) of Remark 3.10 is also satis�ed. Now, assume that
L∗ is of type D. Since the derived subgroup of these Levis are of simply-connected type
by Lemma 3.12, all centralisers of semisimple elements in L∗ are connected. Hence, CL∗(t)
is connected. As t is a 3-element, CL∗(t) is a Levi subgroup of L∗ (and therefore of G∗).
By the minimality of L∗, we have L∗ = CL∗(t). Thus, t ∈ Z(L∗). Since condition (1) and
(2) are satis�ed for every possible Levi subgroup, the assertion follows.

(b) Similar to part (a).
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Now we need to know the size of the Lusztig series appearing in the generating sets.
We determine the size of the following series as an example.

Proposition 3.21. Let z ∈ G∗F .
(a) If CG∗(z)F = Φ2

1.A1(q)4.3, then |E(GF , z)| = 16.
(b) If CG∗(z)F = Φ3.A1(q)A1(q3).3, then |E(GF , z)| = 12.

Proof. (a) The quotient group N := CG∗(st)
F/C◦G∗(st)

F acts on CG∗(st)
F by permuting

3 of the A1(q) factors (can be seen using Chevie [36] for example). Since unipotent
characters are trivial on the center, the unipotent character of CG∗(st)

F can be understood
as elements in {1, St}4 where St denotes the Steinberg character for A1(q). Let the �rst
A1(q) factor be the one �xed by the action of N . Now we check the orbits of {1, St} under
the action of N . A system of representatives for the action of N on CG∗(st)

F is given by
1× 1× 1× 1 (orbit of length 1), 1× 1× 1× St (orbit of length 3), 1× 1× St× St (orbit
of length 3), 1×St×St×St (orbit of length 1) and the same again where we change the
�rst factor from 1 to St. The assertion now follows from Jordan decomposition.

(b) The connected version Φ3.A1(q)A1(q3) has only 4 unipotent characters with pair-
wise di�erent degrees (can be seen with Chevie, for example). Now, CG∗(st)

F/C◦G∗(st)
F =

C3 acts on E(C◦G∗(st)
F , 1) by conjugation which �xes the degrees. In particular, the irre-

ducible characters in E(C◦G∗(s)
F , 1) are invariant under the given operation. The assertion

now follows either by Cli�ord theory or Theorem 1.74 again.

As before, the following result also holds for 2E6(q) and the proof is similar. We only
have to keep in mind how Ennola duality acts on Table 13.

Theorem 3.22. Let G be simple, simply connected of type E6 de�ned over Fq with Frobe-
nius endomorphism F : G→ G such that GF = E6(q). Let e = e`(q) = 1. Then Table 14
gives an upper bound for c(B) and a lower bound for s(B) for every `-block B given in
Table 13, except for the block numbered 13. In particular, the Malle�Robinson conjecture
holds in strong form for these blocks and the corresponding blocks of GF/Z(GF ).

Table 14: Upper bounds for l(B) of quasi-isolated blocks of E6(q)

B o(s) (`, e) CG∗(s)
F c(B) ≤ ≤ s(B) Proof for c(B)

1 3 (2,1) A2(q)3.3 16 6 Prop. 3.15
2, 2′, 2′′ 3 (2,1) A2(q3).3 3 2 Prop. 3.15

3 3 (2,1) 2A2(q)A2(q2) 9 6 Prop.3.15/Thm 3.20
4 3 (2,1) Φ2

1.D4(q).3 26 + 16 6 Thm 3.18
5 3 (2,1) Φ1Φ2.

2D4(q) 10 4 Thm 3.18/Thm 3.20
6, 6′, 6′′ 3 (2,1) Φ3.

3D4(q).3 8 + 4 4 Thm 3.18

7 3 (2,2) A2(q)3.3 16 6 Prop. 3.15
8, 8′, 8′′ 3 (2,2) A2(q3).3 3 2 Prop. 3.15

9 3 (2,2) 2A2(q)A2(q2) 9 6 Prop. 3.15/Thm 3.20
10 3 (2,2) Φ2

1.D4(q).3 26 + 16 6 Thm 3.18
11 3 (2,2) Φ1Φ2.

2D4(q) 10 6 Thm 3.18/Thm 3.20
12, 12′, 12′′ 3 (2,2) Φ3.

3D4(q).3 8 + 4 4 Thm 3.18

14 2 (3,2) A5(q)A1(q) 20 4 Thm 3.20
15 (3,2) 2 1
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Proof. We start by proving the conjecture for GF . In this case, the proof is similar to the
proof of Theorem 3.9. The entries in the c(B)-column were again obtained with the help
of Chevie [36]. Except for the cases 3, 5, 7, 10, we get a su�cient lower bound on s(B)
by using the normal series

Z(L)F` E P := CP (Z(L)F` ) ED,

from Theorem 3.2. For the block B numbered 7 we use the 1-cuspidal pair (L, λ) in line
1 (see the proof of [29, Proposition 4.3]). We have L = C◦G(Z(L)F` ) and λ is of central
`-defect. By combining [29, Proposition 2.13 (a)] and [29, Proposition 2.16 (3)], the pair
(L, λ) satis�es the conditions of [29, Proposition 2.12]. Hence, (Z(L)F2 , b) is a B-Brauer
pair where b is the block of L containing λ. In particular, Z(L)F2 = Φ6

1 ⊆ D where D is a
defect group of B. For case 3 we use the 2-cuspidal pair from case 8. The cases 6, 6′, 6′′

and 12, 12′, 12′′ have to be proved using completely di�erent methods (see Proposition
3.25).

Let B̄ now be a quasi-isolated block ofH = GF/Z(GF ) with defect group D̄ dominated
by a quasi-isolated block B of GF .

If ` = 2, we use the same line of arguments we used (in the case where ` = 3) in the
proof of Theorem 3.9.

If ` = 3, then l(B̄) = l(B) and D̄ = D/Z(GF ) for a defect group D of B by Theorem
1.22. We can not say whether or not s(D̄) = s(D). In the worst case, we might have
s(D̄) = s(D)−1. In the case of block 14 we are still able to establish the conjecture, even
if s(D̄) = s(D)−1, as 20 < 33. Let B be the block numbered 15. As can be seen from the
proof of [29, Proposition 4.3], the defect groups of B are cyclic. Hence the defect groups
of B̄ are cyclic as well. In this case the conjecture for B̄ follows from [34, Proposition
3.1].

Now we want to show the conjecture for the remaining blocks 6, 6′, 6′′ and 12, 12′, 12′′.

Let G be a connected reductive algebraic group (only for this exposition) and let G∗

be a dual group. Let W and W ∗ be the Weyl groups of G and G∗ respectively. By [12,
Proposition 4.2.3] there is a natural isomorphism W ∼= W ∗. This isomorphism yields
a canonical isomorphism between NG∗(L

∗)/L∗ and NG(L)/L. Now, �x a semisimple `′-
element s ∈ G∗F and let L∗ = CG∗(Z

◦(C◦G∗(s))) be the minimal Levi subgroup of G∗

containing C◦G∗(s). Furthermore set N∗ = CG∗(s)
F .L∗ and let L be a dual of L∗ in G.

De�ne N to be the subgroup of NG(L) containing L such that N/L corresponds to N∗/L∗

via the canonical isomorphism between NG∗(L
∗)/L∗ and NG(L)/L.

Let ` - q be a prime. We denote the sum of the block idempotents of the `-blocks
contained in E`(GF , s) and E`(LF , s) by eG

F

s and eL
F

s respectively.

Theorem 3.23 (Bonnafé�Dat�Rouquier, [2, Theorem 7.7]). Let the notations be as above.
Then there exists a Morita equivalence

OGF eG
F

s ∼ ONF eL
F

s

together with a bijection b 7→ b′ between the `-blocks of both sides, preserving defect groups
and such that OGF b is Morita equivalent to ONF b′.
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Let G now be a simple, simply connected algebraic group of type E6 again. Let s ∈ G∗F
be a quasi-isolated semisimple element of order 3 with CG∗(s)

F = Φ3.
3D4(q).3 and let B

be of type 6 or 12 from Table 13. We see that L∗ = CG∗(s)
◦. Furthermore, N/L is cyclic

of order 3. Hence, we are in the situation of [2, Example 7.9]. Thus, there exists a Morita
equivalence OGF eG

F

s ∼ ONF eL
F

1 together with a bijection as in Theorem 3.23 between
the blocks on both sides that preserves defect groups and such that corresponding blocks
are Morita equivalent. So every block contained in E`(GF , s) is Morita equivalent to a
block of NF which itself covers a unipotent block of LF .

Remark 3.24. Let H be a �nite group and KEH. If B is a block of H covering a block b
of K, then B has a defect group D such that D ∩K is a defect group of b (see [38, (9.26)
Theorem]. We use this fact in the case where H = NF and K = LF .

Proposition 3.25. Let s ∈ G∗F be a quasi-isolated semisimple element of order 3 such
that CG∗(s)F = Φ3.

3D4(q).3. Let B be of type 6 or 12. Then c(B) ≤ 12 and 4 ≤ s(B).
In particular, the Malle�Robinson conjecture holds in strong form for the blocks of type 6
and 12.

Proof. We demonstrate the proof for case 6 as all other cases (6′, 6′′, 12, 12′, 12′′) are done
the same way. Let B be the block numbered 6. The Lusztig series E(GF , s) correspond-
ing to s decomposes into three 2-blocks and each of those blocks contains eight out of
the twenty-four irreducible characters of this Lusztig series. To get an upper bound on
c(B), we also need to know the decomposition of E(GF , z) into 2-blocks where z ∈ G∗

with CG∗(z)F = Φ3.A1(q)A1(q3).3, since the corresponding Lusztig series is part of the
generating set for E2(GF , s). This series decomposes into the three 2-blocks from above;
each one containing 4 out of the 12 irreducible characters of E(GF , z). Hence, c(B) ≤ 12.

For the lower bound on s(B) we use Theorem 3.23 and the classi�cation of unipotent
blocks in bad characterstic obtained by Enguehard [16]. Let D be a defect group of B.
We are interested in elementary abelian 2-sections of D. By Theorem 3.23 we can reduce
this to the study of defect groups of the Bonnafé�Dat�Rouquier correspondent block of
NF which itself covers a unipotent block of LF . By Remark 3.24, we are done if we
can �nd a su�ciently large elementary abelian 2-section in the defect groups of those
unipotent blocks. We can furthermore reduce this to the study of the defect groups of the
unipotent blocks of the group 3D4(q) = [L,L]F as can be seen as follows. Restriction of
characters gives a bijection E(LF , 1)→ E([L,L]F , 1) (see e.g. [15, 13.20 Proposition]). By
the character-theoretic characterization of covering blocks (see Theorem 1.20), we know
that the unipotent blocks of LF cover the unipotent blocks of [L,L]F . By the classi�cation
of unipotent blocks in [16], the only unipotent 2-block of 3D4(q) is the principal block.
So it is enough to show that the Sylow 2-subgroups of 3D4(q) have an elementary abelian
section of order 16. Checking [22, Table 4.5.1], we see that there is a subgroup C (the
p′-part of the centralizer of an involution of 3D4(q)) of type (A1(q)×A1(q3))/S such that
Z(A1(q)) = Z(A1(q3)) = 〈m〉 and S := {(1, 1), (m,m)}. The Sylow 2-subgroups Q and Q′

of the two A1-factors are generalized quaternion. Clearly, m is contained in both of them
and is moreover also contained in their commutator subgroups. Hence, S is contained in
Q×Q′ and in [Q,Q]× [Q′, Q′]. In particular (Q×Q′)/S is a Sylow 2-subgroup of C and
is therefore contained in a Sylow 2-subgroup of 3D4(q). The following yields the asserted
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lower bound on s(B).

((Q×Q′)/S)/([Q,Q]× [Q′, Q′]/S) ∼= (Q×Q′)/([Q,Q]× [Q′, Q′])
∼= Q/[Q,Q]×Q′/[Q′, Q′]
∼= C2 × C2 × C2 × C2,

where the last isomorphism is a general property of generalized quaternion groups. With
this Theorem 3.22 is proved.

3.3 The quasi-isolated blocks of E7(q)

Let G now be a simple, simply-connected group of type E7 de�ned over Fq with Frobenius
endomorphism F : G→ G. Since the center of G is disconnected, we encounter the same
intricacies we encountered for E6.

Let ` be a bad prime for G not dividing q. Let 1 6= s ∈ G∗F be a semisimple, quasi-
isolated `′-element and let t ∈ CG∗(s)F` . Checking Table 1, we see that elements of order 6
are not isolated and elements of order greater than 6 are not quasi-isolated in G∗. Hence,
if 1 6= t, then st can not be isolated. Thus there exists a proper minimal Levi subgroup
M∗ of G∗ containing C◦G∗(st).

Remark 3.26. Contrary to the E6-case, we gain nothing from this since we do not have an
analogue of Proposition 3.19. To have C◦G∗(st)

F = CG∗(st)
F in general, we need 2 - (q−1).

In other words, q would have to be a power of 2. Bear in mind that, since ` is a bad
prime for G, either ` = 2 and s is a semisimple 3-element, or ` = 3 and s is a semisimple
2-element. The �rst case is in de�ning characteristic, for which Conjecture 1 has been
proved (see [34, Theorem 3 (b)]) already and the latter case can not occur because there
are no semisimple 2-elements in E7(2r).

Lemma 3.27. Let L∗ ⊆ G∗ be a proper Levi subgroup of G∗. Then [L∗, L∗] is simply
connected unless L∗ is of one of the following types: D6, A5 × A1, A3 × A2 × A1, D5 ×
A1, A5, D4 × A1, A3 × A2

1, A2 × A3
1, A3 × A1, A

4
1, A

3
1.

Proof. This can be checked using Chevie [36] for example.

Proposition 3.28. Let s ∈ G∗F be a quasi-isolated semisimple element of order 4, i.e.
C◦G∗(s) is of type A2

3 × A1 or D4 × A2
1. Let 1 6= t ∈ CG∗(s)F3 . If L∗ is the minimal proper

Levi subgroup of G∗ containing CG∗(st), then t ∈ Z(L∗). In particular, E(GF , s) is an
ordinary generating set for E3(GF , s)

Proof. First of all, the order of st is greater than 6 so st is not quasi-isolated. Hence,
there exists a minimal proper Levi subgroup L∗ of G∗ containing CG∗(st). The order of t
is good for C◦G∗(s) in both cases. Hence, C◦G∗(st) is a Levi subgroup of C◦G∗(s).

Assume that L∗ is of type E6. By Lemma 3.27, [L∗, L∗] is of simply connected type.
Thus CG∗(st) = CL∗(st) is connected. Since L

∗ is minimal, st is quasi-isolated in L∗. By
[5] (or using [36]) we can determine the quasi-isolated, semisimple elements of L∗. Either
st is in Z(L∗), or CG∗(st) = CL∗(st) is of type A

3
2 or A5 ×A1. As it is a Levi subgroup of

C◦G∗(s), the centralizer of st can not be of those types. Hence, L∗ can not be of type E6.
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Assume L∗ to be of classical type now. Then 3 is not a bad prime for L∗. Further
note that centralizers of 3-elements are connected in G∗. Therefore we have

CG∗(st) ⊆ L∗ ∩ CG∗(t) ⊆ CG∗(t).

Now, CL∗(t) = L∗ ∩ CG∗(t) is a Levi subgroup of G∗ by Proposition 1.38 and Corollary
1.37. The minimality of L∗ then yields L∗ = L∗ ∩ CG∗(t). Hence, t ∈ Z(L∗).

Consequently, conditions (1) and (2) of Remark 3.10 are satis�ed in every case which
proves the assertion.

Remark 3.29. Let z be a quasi-isolated element of order 6 in G∗. It can be shown (using
Chevie for example) that z = st where s is quasi-isolated of order 2 with [C◦G∗(s), C

◦
G∗(s)] =

E6, and t is quasi-isolated of order 3 with CG∗(t) = A5 × A2 (or vice-versa).

Proposition 3.30. Let s ∈ G∗F be a semisimple, quasi-isolated 2-element such that
C◦G∗(s) is either of type A7 or of type A1×D6. Let 1 6= t ∈ CG∗(s)F3 . If L∗ is the minimal
proper Levi subgroup of G∗ containing CG∗(st), then t ∈ Z(L∗). Furthermore, E(GF , s) is
an ordinary generating set for E3(GF , s). In particular, the number of irreducible Brauer
characters in E3(GF , s) is less than or equal to |E(GF , s)|.

Proof. We can handle both cases at once. By Remark 3.29, st is not quasi-isolated. Hence,
there exists a minimal proper Levi subgroup L∗ of G∗ containing CG∗(st).

If L∗ is of classical type, then t ∈ Z(L∗) by similar arguments as in the proof of
Proposition 3.28.

Now supposes that L∗ is non-classical, i.e L∗ is of type E6. Since [L∗, L∗] is simply
connected by Lemma 3.27, CG∗(st) = CL∗(st) is connected. Recall again that since L∗ is
minimal, st is quasi-isolated in L∗. Therefore CG∗(st) is either of type A1 × A5 or type
A2×A2×A2. It can not be of the latter type since CG∗(st) is a Levi subgroup of C◦G∗(s)
by Proposition 1.38. Hence, CG∗(st) = A1 × A5. Since CG∗(st) is connected, we know
that L∗ = CG∗(Z

◦(CG∗(st))). In particular, Z(L∗) = Z◦(CG∗(st)). Checking the tables
of Lübeck [33], we see that Z(CG∗(st))

F/Z◦(CG∗(st))
F = 2. Now, t ∈ Z(CG∗(st))

F
3 which

therefore implies t ∈ Z◦(CG∗(st)) = Z(L∗). The second part of the assertion follows since
conditions (1) and (2) of Remark 3.10 are satis�ed.

For the following statements to make sense, we cite the classi�cation of quasi-isolated
blocks for E7(q) from [29] before proceeding.

Theorem 3.31 ([29, Proposition 5.1, Proposition 5.3]). Let ` - q be a bad prime for G.
Let e = e`(q) = 1. For any quasi-isolated semisimple `′-element 1 6= s ∈ G∗F , the `-block
distribution of E(GF , s), the decomposition of E(GF , s) into e-Harish-Chandra series, and
the relative Weyl groups of the e-cuspidal pairs are as indicated in Table 15.

Table 15: Quasi-isolated blocks of E7(q)
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No. CG∗(s)
F (e, `) LF CL∗(s)

F λ WGF (L, λ)

1 A5(q)A2(q) (2, 1) Φ7
1 Φ7

1 1 A5 ×A2

2 2A5(q)2A2(q) (2, 1) Φ4
1.A1(q)3 Φ4

1Φ3
2 1 C3 ×A1

Φ3
1.D4(q) Φ3

1Φ2
2.

2A2(q) φ21 C3

Φ1.D6(q) Φ1Φ2.
2A5(q) φ321 A1

GF CG∗(s)
F φ321⊗φ21 1

3 D6(q)A1(q) (3, 1) Φ7
1 Φ7

1 1 D6 ×A1

4 Φ3
1.D4(q) Φ3

1.D4(q) D4[1] B2 ×A1

5 A7(q).2 (3, 1) Φ7
1 Φ7

1 1 A7.2

6 2A7(q).2 (3, 1) Φ4
1.A1(q)3 Φ4

1Φ3
2.2 1 C4

7 Φ1.D6(q) Φ1Φ2.
2A5(q).2 φ321 A1

8 Φ1.E6(q).2 (3, 1) Φ7
1 Φ7

1 1 E6.2
9 Φ3

1.D4(q) Φ3
1.D4(q) D4[1] A2.2

Φ1.E6(q) Φ1.E6(q) E6[θ±1] 2

10 Φ2.
2E6(q).2 (3, 1) Φ4

1.A1(q)3 Φ4
1Φ3

2.2 1 F4

GF CG∗(s)
F 2E6[θ±1], 1

2E6[1]
11 Φ1.D6(q) Φ1Φ2.

2A5(q).2 φ321 A1

12 A3(q)2A1(q).2 (3, 1) Φ7
1 Φ7

1 1 A3 o 2×A1

13 2A3(q)2A1(q).2 (3, 1) Φ5
1.A1(q)2 Φ5

1Φ2
2 1 B2 o 2×A1

14 A3(q2)A1(q).2 (3, 1) Φ4
1.A1(q)3 Φ4

1Φ3
2.2 1 A3 ×A1

15 Φ1.D4(q)A1(q)2.2 (3, 1) Φ7
1 Φ7

1 1 (D4 ×A2
1).2

16 Φ3
1.D4(q) Φ3

1.D4(q) D4[1] A1 o 2
17 Φ2.D4(q)A1(q)2.2 (3, 1) Φ6

1.A1(q) Φ6
1Φ2 1 (D4 ×A2

1).2
18 Φ2

1.D4(q)A1(q) Φ2
1Φ2.D4(q) D4[1] A1 o 2

19 Φ1.
2D4(q)A(q

2).2 (3, 1) Φ5
1.A1(q)2 Φ5

1Φ2
2 1 (B3 ×A1).2

20 Φ2.
2D4(q)A1(q2).2 (3, 1) Φ4

1.A1(q)3 Φ4
1Φ3

2.2 1 B3 ×A1

2b (2, 2) Φ7
2 Φ7

1 1 A5 ×A2

Proposition 3.32. Let s ∈ G∗F be a quasi-isolated semisimple element of order 2 with
CG∗(s)

F = Φ1.E6(q).2 (respectively CG∗(s)F = Φ2.
2E6(q).2). Then Ê(GF , s)∪ Ê(GF , st) is

a generating set of Q IBr(E3(GF , s)) where t ∈ CG∗(s)F3 such that:
(a) CG∗(st)

F = Φ1.A2(q)3.2 (respectively CG∗(st)F = Φ2.A2(q)A2(q2).2) if e = 1.
(b) CG∗(st)

F = Φ2.
2A2(q)3.2 (respectively CG∗(st)F = Φ1.

2A2(q)A2(q2).2) if e = 2.
In particular, the number of irreducible Brauer characters in E3(GF , s) is less than or
equal to |E(GF , s)|+ |E(GF , st)|.

Proof. There exist elements t ∈ CG∗(s)F3 such that st is quasi-isolated. Clearly, condition
(1) in Remark 3.10 fails in these cases, which is why the Lusztig series corresponding to
quasi-isolated elements of the form st are included in the asserted generating sets. Now
suppose that st is not quasi-isolated and let L∗ be the minimal Levi subgroup of G∗

containing CG∗(st).
Assume L∗ to be of type E6. Hence, L

∗ = C◦G∗(s) and CG∗(st) = CL∗(st) = CL∗(t). By
the minimality of L∗, t is a quasi-isolated element of L∗ The centralisers of semisimple,
quasi-isolated 3-elements of L∗ are of type A3

2 (see [5]). Thus we can apply the methods
of the proof of Theorem 3.18 for the case where CG∗(st) is connected and of type A.
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Now assume L∗ to be of classical type. In this case we can show that t ∈ Z(L∗) as in
the proof of Proposition 3.30.

With this we are able to prove the Malle�Robinson conjecture for the quasi-isolated blocks
of GF except for the ones numbered 1 and 2 in Table 15. In these cases we encounter the
same issues we encountered for the block numbered 13 in Table 13.

Theorem 3.33. Let ` - q be a bad prime for G. Let e = e`(q) = 1. Then Table 16 gives
an upper bound for c(B) and a lower bound for s(B) for every block of Table 15, except
for the blocks numbered 1 or 2. In particular, the Malle�Robinson Conjecture holds in
strong form for these blocks and the corresponding blocks of GF/Z(GF ).

As before the table for e = 2 is the Ennola dual of Table 16.

Table 16: Upper bounds for l(B) for quasi-isolated blocks of E7(q)

B o(s) (`, e) CG∗(s)
F c(B) ≤ ≤ s(B)

3 2 (3,1) D6(q)A1(q) 74 7
4 10 3
5 2 (3,1) A7(q).2 44 7

6, 6′ 2 (3,1) 2A7(q).2 20 4
7, 7′ 2 1
8 2 (3,1) Φ1.E6(q).2 50 + 27 7
9 10 3

10, 10′ 2 (3,1) Φ2.
2E6(q).2 28 + 9 4

11, 11′ 3 (l(B) = 2) 1
12 4 (3,1) A3(q)2A1(q).2 40 7
13 4 (3,1) 2A3(q)2A1(q).2 40 5

14, 14′ 4 (3,1) A3(q2)A1(q).2 20 4
15 4 (3,1) Φ1.D4(q)A1(q)2.2 104 7
16 5 2
17 4 (3,1) Φ2.D4(q)A1(q)2.2 104 6
18 5 2
19 4 (3,1) Φ1.

2D4(q)A1(q2).2 40 5
20, 20′ 4 (3,1) Φ2.

2D4(q)A1(q2).2 20 4

Proof. We start by proving the conjecture for GF . We determine c(B) as in the proof of
Theorem 3.9. Except for the blocks numbered 8, 9, 10/10' and 11/11', s(Z(L)F` ) su�ces
to establish the Malle�Robinson conjecture where (L, λ) is the e-cuspidal pair associated
to the given block.

To prove the conjecture for the blocks of type 8, 9, 10 or 11 in Table 15, we need to
determine how the Lusztig series corresponding to the quasi-isolated elements of order 6
(see Proposition 3.32) decompose into 3-blocks. Recall that

|GF | = q63Φ1(q)7Φ2(q)7Φ3(q)3Φ4(q)2Φ5(q)Φ6(q)3Φ7(q)Φ8(q)Φ9(q)Φ10(q)Φ12(q)Φ14(q)Φ18(q)

By the assumption on e, the only Φi(q), appearing in the expression above, which are
divisible by 3 are Φ1,Φ3 and Φ9. While Φ1(q) can be divisible by higher powers of 3
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(depending on q), Φ3(q) and Φ9(q) are only divisible by 3 and no higher powers of 3.
Hence,

|GF |3 = |Φ1(q)|73 |Φ3(q)|33 |Φ9(q)|3 = 34 |Φ1(q)|73.

Let B = bGF (L, λ) be a block of type 8, 9, 10 or 11 (see Table 15) and let D be a defect
group of B. By Theorem 3.2 we know that D is a Sylow 3-subgroup of the extension of
Z(L)F3 by WG(L, λ). Hence, |D| = |Z(L)F3 ||WG(L, λ)|3. By Remark 1.19,

|GF |3/|D| = min{χ(1)` | χ ∈ B}. (1)

These cardinalities can be determined easily.

B |D| |GF |3/|D|
8 34 |Φ1(q)|73 1
9 3 |Φ1(q)|33 33 |Φ1(q)|43
10 32 |Φ1(q)|43 32 |Φ1(q)|33
11 |Φ1(q)|3 34 |Φ1(q)|63

We start with the blocks numbered 8 and 9. By Proposition 3.32, Ê(GF , s)∪Ê(GF , st)
is an ordinary generating set for the union of the blocks numbered 8 and 9, where s ∈ G∗F
with CG∗(s)

F = Φ1.E6(q).2 and t ∈ CG∗(s)F3 such that CG∗(st)
F = Φ1A2(q)3.2. We claim

that the series E(GF , st) is contained in the block numbered 8. In this case, s(Z(L)F3 )
(see lines 8 and 9 of Table 16) is enough to establish the Malle�Robinson conjecture 1 for
these blocks. Let Ψst denote the Jordan decomposition associated with st (see Theorem
1.74). Let χ ∈ E(GF , st). By [15, 13.24 Remark] we have

χ(1)3 =
|GF |3

|CG∗(st)F |3
Ψst(χ)(1)3.

The right side of this equation can easily be computed and we observe that χ(1)3 <
33|Φ1(q)|43 for every χ ∈ E(GF , st). Now, it follows from (1) that E(GF , st) is fully con-
tained in the block numbered 8.

We argue similarly for the blocks of type 10 and 11. It can be shown that the Lusztig
series corresponding to the quasi-isolated element of order 6 (appearing in the generating
set for the union of the blocks of type 10 and 11) is contained in the blocks of type
10. Unfortunately our approach does not prove the strong form of Conjecture 1 for
the blocks of type 11. Let B = bGF (L, λ) be a block of type 11. Let q be such that
|Z(L)F3 | = Φ1(q) = 3. Then we have equality:

3 = c(B) = 3s(Z(L)F3 ) = 3.

Since the defect groups of the blocks of type 11 are cyclic (of order |Φ1(q)|3) by Theorem
3.2 (c), the strong form of Conjecture 1 holds by [34, Proposition 3.1].

For the quasi-isolated blocks of GF/Z(GF ) we use the arguments of the proof of
Theorem 3.22.
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Remark 3.34. The proof of Theorem 3.33 yields another example as to why the assumption
on the primes is necessary in Theorem 1.78. Let s ∈ G∗F be a quasi-isolated element
associated with the `-blocks of type 11 in Table 15. Let B be such a block. We saw that
there exist q's such that | Irr(B) ∩ E(GF , s)| = `s(B). Since the conjecture holds in strong
form, we have l(B) < `s(B) for these blocks. Hence, l(B) < | Irr(B) ∩ E(GF , s)| for these
q's.

3.4 The quasi-isolated blocks of E8(q)

Let G be simple, simply connected of type E8 de�ned over Fq with Frobenius endomor-
phism F : G → G. Recall that simple algebraic groups of type E8 are both simply
connected and adjoint. We will therefore omit any speci�cation of the isogeny type as we
did in Section 3.1.

Let ` - q be a bad prime for G. Let 1 6= s ∈ G∗F be a semisimple, quasi-isolated
`′-element and let 1 6= t ∈ CG∗(s)F` . Table 1 shows that there are quasi-isolated elements
of order 6 in G∗F . As before, we know exactly what these elements look like.

Remark 3.35. Let z ∈ G∗F be a quasi-isolated element of order 6. It can be shown (e.g.
using Chevie [36]) that z = st where s is of order 2 such that CG∗(s) = E6 × A2 and t is
of order 3 such that CG∗(t) = E7 × A1 (or vice-versa).

Evidently, st is not quasi-isolated if either CG∗(s) or CG∗(t) is of classical type.

Theorem 3.36 ([29, Proposition 6.1, Proposition 6.4]). Let e = e`(q) = 1. For any quasi-
isolated 3- or 5-element (respectively 2- or 5-element) of G∗F , the 2-block (respectively
3-block) distribution of E(GF , s), the decomposition of E(GF , s) into e-Harish-Chandra
series and the relative Weyl groups of the e-cuspidal pairs are as indicated in Table 17
(respectively Table 18).

Table 17: Quasi-isolated 2-blocks of E8(q)

No. CG∗(s)
F e LF CL∗(s)

F λ WGF (L, λ)

1 A8(q) 1 Φ8
1 Φ8

1 1 A8

2 2A8(q) 1 Φ4
1.A1(q)4 Φ4

1Φ4
2 1 B4

Φ3
1D4(q)A1(q) Φ3

1Φ3
2.

2A2(q) φ21 B3

3 E6(q).A2(q) 1 Φ8
1 Φ8

1 1 E6 × A2

Φ4
1.D4(q) Φ4

1.D4(q) D4[1] G2 × A2

4 Φ2
1.E6(q) Φ2

1.E6(q) E6[θ±1] A2

5 2E6(q).2A2(q) 1 Φ5
1.A1(q)3 Φ5

1Φ3
2 1 F4 × A1

Φ4
1.D4(q) Φ4

1Φ2
2.

2A2(q) φ21 F4

Φ2
1.D6(q) Φ2

1Φ2.
2A5(q) φ321 A1 × A1

Φ1.E7(q) Φ1.
2A5(q)2A2(q) φ321 ⊗ φ21 A1

Φ1.E7(q) Φ1Φ2.
2E6(q) 2E6[1] A1

GF CG∗(s)
F 2E6[1]⊗ φ21 1

6 Φ1.E7(q) Φ1Φ2.
2E6(q) 2E6[θ±1] A1

GF CG∗(s)
F 2E6[θ±1]⊗ φ21 1
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7 A4(q)2 1 Φ8
1 Φ8

1 1 A2
4

8 2A4(q2) 1 Φ2
1.A3(q)2 Φ2

1Φ2
2Φ2

4 1 B2

Φ1.D7(q) Φ1Φ2Φ4.
2A2(q2) φ21 A1

9 2A4(q)2 1 Φ4
1.A1(q)4 Φ4

1Φ4
2 1 B2

2

Φ3
1.D(q)4A1(q) Φ3

1Φ3
2.

2A2(q) φ21 (2 x) B2 × A1

Φ2
1.D6(q) Φ2

1Φ2
2.

2A2(q)2 φ21 ⊗ φ21 A2
1

5b 2E6(q).2A2(q) 2 Φ8
2 Φ8

2 1 E6 × A2

Table 18: Quasi-isolated 3-blocks of E8(q), q ≡ 1 mod 3

No. CG∗(s)
F LF CL∗(s)

F λ WGF (L, λ)

1 D8(q) Φ8
1 Φ8

1 1 D8

2 Φ4
1.D4(q) Φ4

1.D4(q) D4[1] B4

3 E7(q)A1(q) Φ8
1 Φ8

1 1 E7 × A1

4 Φ4
1.D4(q) Φ4

1.D4(q) D4[1] C3 × A1

Φ2
1.E6(q) Φ2

1.E6(q) E6[θ±1] A1 × A1

5 Φ1.E7(q) Φ1.E7(q) E7[±ξ] A1

6 D5(q)A3(q) Φ8
1 Φ8

1 1 D5 × A3

7 Φ4
1.D4(q) Φ4

1.D4(q) D4[1] A3 × A1

8 2D5(q).2A3(q) Φ6
1.A1(q)2 Φ6

1Φ2
2 1 B4 × C2

9 A7(q)A1(q) Φ8
1 Φ8

1 1 A7 × A1

10 2A7(q)A1(q) Φ5
1.A1(q)3 Φ5

1Φ3
2 1 C4 × A1

11 Φ2
1.D6(q) Φ2

1Φ2.
2A5(q) φ321 A2

1

12 A4(q)2 Φ8
1 Φ8

1 1 A2
4

13 2A4(q2) Φ2
1.A3(q)2 Φ2

1Φ2
2Φ2

4 1 B2

14 Φ1.D7(q) Φ1Φ2Φ4.
2A2(q2) φ21 A1

15 2A4(q)2 Φ4
1.A1(q)4 Φ4

1Φ4
2 1 B2

2

16 Φ3
1.D4(q)A1(q) Φ3

1Φ3
2.

2A2(q) φ21 (2x) B2 × A1

17 Φ2
1.D6(q) Φ2

1Φ2
2.

2A2(q)2 φ21 ⊗ φ21 A2
1

Since no real intricacies occur for the 5-blocks of GF , we refer to the classi�cation of the
quasi-isolated 5-blocks in [29, Tables 7 and 8] without recalling the tables here. Note that
these tables do not include the quasi-isolated 5-blocks corresponding to the quasi-isolated
elements of order 6. For these blocks we refer to [28].

Proposition 3.37. Let ` - q be a bad prime of G. Let 1 6= s ∈ G∗F be a quasi-isolated
semisimple `′-element and let 1 6= t ∈ CG∗(s)F` . If
(i) ` = 5, or
(ii) CG∗(s) is classical and ` ∈ {2, 3},
then t ∈ Z(L∗) where L∗ is the minimal proper Levi subgroup of G∗ containing CG∗(st).
In particular, E(GF , s) is an ordinary generating set for E`(GF , s). Therefore, the number
of irreducible Brauer characters in E`(GF , s) is less than or equal to |E(GF , s)|.

Proof. (i) Since 5 is a good prime for every proper Levi subgroup L∗ of G∗, the �rst
part follows from Lemma 3.5 (a). The second part follows since conditions (1) and (2) of
Remark 3.10 are satis�ed.
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(ii) Note that s, t ∈ Z(CG∗(st))
F . Set n =| Z(CG∗(st))

F/Z◦(CG∗(st))
F |. Now, n can

be read o� from [33] for every centralizer (of semisimple elements). It can be seen that
n = 2, 3, 4 or 5 in every case except for the centralizer of the quasi-isolated element of
order 6 (where n = 6). By the assumption on CG∗(s) and Remark 3.35, it follows that
st is not quasi-isolated. Thus, either (o(t), n) = 1 or (o(s), n) = 1. In the �rst case,
t ∈ Z◦(CG∗(st)). Hence, t ∈ Z(L∗) and we are done. If (o(s), n) = 1, then s ∈ Z(L∗).
In particular, L∗ ⊆ CG∗(s) and it follows that L∗ is of classical type. In every case
CG∗(st) = CL∗(t) is a Levi subgroup of G∗ by Proposition 1.38 and Corollary 1.37. By
the minimality of L∗ we therefore have CG∗(st) = L∗. Thus, t ∈ Z(L∗). The second part
follows since conditions (1) and (2) of Remark 3.10 are satis�ed in every case.

Proposition 3.38. Let ` - q be a bad prime for G. Let s ∈ G∗F be a quasi-isolated
semisimple `′-element with CG∗(s) = E6 ×A2 or E7 ×A1. Then Ê(GF , s) is a generating
set of Q IBr(E`(GF , s)). In particular, the number of irreducible Brauer characters in
E`(GF , s) is less than or equal to |E(GF , s)|.

Proof. In both cases there exist elements 1 6= t ∈ CG∗(s)F` of order 3 or 2 respectively such
that st is quasi-isolated of order 6. Since the centralizer of such an element is connected
of type A5 × A2 × A1, we can proceed as in the proof of Theorem 3.18 and show that
χ◦ ∈ QÊ(GF , s) for every χ ∈ E(GF , st) in that case.

Now assume that st is not quasi-isolated. Let L∗ = CG∗(Z
◦(CG∗(st))) be the minimal

Levi subgroup ofG∗ containing CG∗(st). Recall that Z(L∗) = Z◦(CG∗(st)). As in the proof
of Proposition 3.37, we conclude that either s or t lie in Z◦(CG∗(st)). If t ∈ Z◦(CG∗(st))
we are done since conditions (1) and (2) are satis�ed for these t. Thus, suppose s ∈
Z◦(CG∗(st)). In other words L∗ ⊆ CG∗(s) and CG∗(st) = CL∗(st) = CL∗(t).

First, suppose CG∗(s) = E6 × A2 (i.e. o(s) = 3 and t is a 2-element). If L∗ is of type
A, it follows from Theorem 3.5 that t ∈ Z(L∗). For the Levi subgroups E6 × A1, E6,
D5 × A1, D4 × A2, D4 × A1 or D4 we can determine the quasi-isolated 2-elements (e.g.
using Chevie) and observe that their centralisers are all of type A. Thus, we can apply
the methods used in the proof of Theorem 3.18 for connected centralisers of type A again.

Now suppose that CG∗(s) = E7 × A1 (i.e. o(s) = 2 and t is a 3-element). If L
is of classical type, it follows from Theorem 3.5 that t ∈ Z(L∗). As above, it can be
shown (using Chevie) that the centralisers of the semisimple, quasi-isolated 3-elements
of the non-classical Levi subgroups of type E7, E6 × A1 or E6 are of type A. Hence, we
can apply the methods used in the proof of Theorem 3.18 as before. In conclusion, the
assertion is proved.

Theorem 3.39. Let G be simple, simply connected of type E8 de�ned over Fq with Frobe-
nius endomorphism F : G → G. Let e = e`(q) = 1. Then the Tables 19, 20 and 21
give c(B) and a lower bound for s(B) for every non-unipotent quasi-isolated `-block B of
GF . In particular, the Malle�Robinson conjecture holds for these blocks. Moreover, for
the non-unipotent quasi-isolated 2- and 3-blocks of GF the strong form of the conjecture
holds.

The numbering in the Tables 19 and 20 below is taken from the Tables 5 and 6 in [29].
Similarly, the numbering of the �rst 44 entries of Table 21 agrees with the numbering of
the Tables 7 and 8 in [29]. However, the entries 45 to 51 correspond to blocks that were
not included in [29] but will be included in [28].
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Table 19: Upper bounds for l(B) for quasi-isolated 2-blocks of E8(q)

B o(s) CG∗(s)
F c(B) ≤ s(B)

1 3 A8(q) 30 8
2 3 2A8(q) 30 8
3 3 E6(q)A2(q) 84 8
4 3 3 2
5 3 2E6(q)2A2(q) 84 8
6 3 3 2
7 5 A4(q)2 49 8
8 5 2A4(q2) 7 4
9 5 2A4(q)2 49 8

Table 20: Upper bounds for l(B) for quasi-isolated 3-blocks of E8(q)

B o(s) CG∗(s)
F c(B) ≤ s(B)

1 2 D8(q) 100 8
2 2 40 4
3 2 E7(q)A1(q) 120 8
4 2 28 4
5 2 2 1
6 4 D5(q)A3(q) 90 8
7 4 10 4
8 4 2D5(q).2A3(q) 100 6
9 4 A7(q)A1(q) 44 8
10 4 2A7(q)A1(q) 40 5
11 4 4 2
12 5 A4(q)2 49 8
13 5 2A4(q2) 5 2
14 5 2 1
15 5 2A4(q)2 25 4
16 5 10 3
17 5 4 2

Table 21: Upper bounds for l(B) of quasi-isolated 5-blocks of E8(q)

B o(s) e CG∗(s) c(B) ≤ s(B)

1 2 1 D8(q) 100 8
2 20 4
3 2 1 E7(q)A1(q) 120 8
4 20 4
5 4 2
6 2 1
7 4 1 D5(q)A3(q) 90 8
8 10 4
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9 4 1 2D5(q).2A3(q) 100 6
10 4 1 A7(q)A1(q) 44 8
11 4 1 2A7(q)A1(q) 40 5
12 4 2
13 3 1 A8(q) 30 8
14 3 1 2A8(q) 20 4
15 10 3
16 3 1 E6(q)A2(q) 75 8
17 18 4
18 3 2
19 3 1 2E6(q).2A2(q) 50 5
20 25 4
21 4 2
22 2 1
23 2 1
24 1 0
25 2 4 D8(q) 60 4
26 14 2
27 1 0
28 2 4 E7(q)A1(q) 16 2
29 14 2
30 1 0
31 4 4 D5(q)A3(q) 56 3
32 14 2
33 16 2
34 4 1
35 1 0
36 4 4 A7(q)A1(q) 14 2
37 4 1
38 1 0
39 3 4 A8(q) 14 2
40 4 1
41 1 0
42 3 4 E6(q)A2(q) 16 2
43 4 1
44 1 0

45 6 1 A5(q)A2(q)A1(q) 66 8
46 6 1 2A5(q)2A2(q)A1(q) 40 5
47 20 4
48 4 2
49 2 1
50 6 4 A5(q)A2(q)A1(q) 4 1
51 1 0
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Proof. First, assume that ` = 2. Let B = bGF (L, λ) be a quasi-isolated 2-block of GF .
Except for the blocks of type 2, 8 and 9 in Table 19, s(Z(L)F2 ) su�ces to establish the
Malle�Robinson conjecture. For the blocks 2, 8 and 9, s(Z(L)F2 ) is not enough (e.g.
c(B2) = 30 but 2s(Z(L)F2 ) = 24 = 16 in this case). Let B = bGF (L, λ) be one of those
blocks. Recall that we have a normal series

Z(L)Fl E P := CP (Z(L)Fl ) ED,

where D is a defect group of B. Furthermore, by [29, Proposition 2.1 + Proposition 2.7],
P is a defect group of the block of LF containing λ. Now, in all cases (2, 8 and 9) CL∗(s)
is a maximal torus of L∗. Let M ⊆ G be an F -stable torus dual to CL∗(s). There is a
Morita equivalence

OLF eLFs ∼ OMF eM
F

1 ,

(see Theorem 3.23) with a bijection between the blocks on both sides preserving defect
groups. In particular, s(D) = s(D′) where D′ is a defect group corresponding to D by this
bijection. Since M is a torus, there is only one block on the right side of the equivalence,
namely the principal block ofMF . Every defect group of that block is a Sylow 2-subgroup
of MF . The structure of MF can be read o� from Table 17. Hence we can determine
s(D) and �nd that c(B) ≤ 2s(D).

Now suppose that ` = 3 or 5. Let B = bGF (L, λ) be a quasi-isolated ` block of GF . In
this case s(Z(L)F` ) su�ces to establish the conjecture.

Note that 1 = l(B) = `s(D) = 1 for blocks of defect zero. Hence, the conjecture can not
hold in strong form for the quasi-isolated 5-blocks of GF .

3.5 The quasi-isolated blocks of G2(q) and
3D4(q)

Both of these groups have been studied in great detail. As a result the character tables
are known. Furthermore, the Malle�Robinson conjecture is known to hold for all blocks of
these groups by [34, Proposition 6.5]. However, in order for this thesis to stay somewhat
self-contained, we prove the conjecture for the quasi-isolated blocks of these groups using
the methods that were established so far.

It might seem strange that we have to check the conjecture for the 3-blocks of 3D4(q)
even though 3 is not a bad prime for the underlying algebraic group. Note that through-
out Section 2 we assumed ` to be di�erent from 3 if GF has a component of type 3D4(q).
The reason for this can be found in the proof of [8, Theorem 1.5].

Let G be simple, simply-connected of type G2 or D4 de�ned over Fq with Frobenius
endomorphism F : G→ G such that GF = G2(q) or GF = 3D4(q) respectively. Note that
there are no semisimple, quasi-isolated elements of order 6 in both cases (for D4 check [5,
Table 2]). Note that D4 has no quasi-isolated semisimple element of order bigger than 2.

Theorem 3.40 ([29, Lemma 6.13]). Let ` ∈ {2, 3} not dividing q. Let e = e`(q) = 1.
For every quasi-isolated semisimple `′-element 1 6= s ∈ G∗F , the `-block distribution of
E(GF , s), the decomposition of E(GF , s) into e-Harish-Chandra series, and the relative
Weyl groups of the e-cuspidal pairs are as indicated in Table 22.
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Table 22: Quasi-isolated blocks of G2(q) and 3D4(q)

GF No. CG∗(s)
F ` LF λ WGF (L, λ)

G2 1 A2(q) 2 Φ2
1 1 A2

2 2A2(q) 2 Φ1Φ2 1 A1

GF φ21 1
3 A1(q)A1(q) 3 Φ2

1 1 A1 × A1

3D4(q) 1 A1(q)A1(q3) 3 Φ2
1Φ3 1 A1 × A1

Proposition 3.41. Let ` ∈ {2, 3} not dividing q. Let 1 6= s ∈ G∗F be a quasi-isolated
semisimple `′-element and let 1 6= t ∈ CG∗(s)F` . If L∗ ⊆ G∗ is the minimal Levi subgroup
containing CG∗(st), then t ∈ Z(L∗). In particular, E(GF , s) is an ordinary generating set
for E`(GF , s). Therefore, the number of irreducible Brauer characters in E`(GF , s) is less
than or equal to |E(GF , s)|.

Proof. Since the simple groups of type G2 or D4 do not have quasi-isolated elements of
order greater than 3, st is not quasi-isolated. Thus, there exists a minimal proper Levi
subgroup L∗ of G. The proper Levi subgroups of simple groups of type G2 or D4 are of
type A. By Theorem 3.5, t ∈ Z(L∗). Therefore, the assertion follows since conditions (1)
and (2) of Remark 3.10 are satis�ed.

Theorem 3.42. Let e = e`(q) = 1. Then Table 23 gives an upper bound for c(B) and a
lower bound for s(B) for every quasi-isolated `-block B of GF as in Table 22. Moreover,
the Malle�Robinson conjecture holds in strong form for these blocks.

Table 23: Upper bounds for l(B) for quasi-isolated blocks of G2(q) and 3D4(q)

GF B CG∗(s)
F ` c(B) ≤ ≤ s(B)

G2 1 A2(q) 2 3 2
2 2A2(q) 2 2 2
3 A1(q)A1(q) 3 4 2

3D4(q) 1 A1(q)A1(q3) 3 4 2

Proof. For every quasi-isolated block B = bGF (L, λ) as in Table 23, s(Z(L)F` ) is enough
to establish the strong form of the conjecture.

The proof of Theorem B

Theorem B. Let G be a simple, simply connected group of exceptional type de�ned over
Fq with Frobenius endomorphism F : G → G or let G be simple of type D4 de�ned over
Fq with Frobenius endomorphism F : G → G such that GF = 3D4(q). Let ` be a prime
not dividing q. Let B be a non-unipotent, quasi-isolated `-block of GF . Then the Malle�
Robinson conjecture holds for B unless possibly if B is of one of the following types.
(i) GF = E6(q) or 2E6(q) and B is the 3-block numbered 13 in Table 13, or
(ii) GF = E7(q) and B is either the 2-block numbered 1 or the 2-block numbered

2 in Table 15.
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Proof. Suppose that ` is a either good prime for G and further assume that ` 6= 3 if
GF = 3D4(q). The Malle�Robinson conjecture holds for the unipotent blocks of GF and
GF/Z(GF ) by [34, Proposition 6.10]. Suppose B = bGF (L, λ) is a non-unipotent, quasi-
isolated block of GF and let q > 2 when GF is of type 2E6, E7 or E8. By the results in
Section 2 and Theorem 1.78, we conclude that l(B) = |E(GF , (L, λ))|. These cardinalities
can be read o� from the tables in Section 2 (see the Tables 2, 4, 6, 8 and 10). In every
case s(Z(L)F` ) is enough to establish the conjecture and its structure can be read o� from
the tables in Section 2. We �nd that l(B) ≤ `s(Z(L)F` ) in every case, which proves the
conjecture for these cases. When q = 2 and GF is of type 2E6, E7 or E8 then the assertion
follows from Proposition 2.20 with similar arguments as the ones used above.

Suppose that B̄ is a non-unipotent, quasi-isolated block of H = GF/Z(GF ) with defect
group D̄. Let B be the quasi-isolated block of GF that dominates B̄. The order of Z(GF )
is either 1 or a bad prime for G. Thus, Z(GF ) is an `′-subgroup by our assumption on `.
By [38, (9.9) Theorem], l(B̄) = l(B) and D̄ is of the form DZ(GF )/Z(GF ), for a defect
group D of B. Note that DZ(GF ) is a direct product since the two groups commute and
D ∩ Z(GF ) = {1}. It follows that DZ(GF )/Z(GF ) ∼= D, i.e. s(D̄) = s(D). Thus, the
conjecture holds for B̄ since it holds for B.

Lastly, if ` is either a bad prime for G or ` = 3 and GF = 3D4(q) then the assertion
follows from Theorems 3.9, 3.22, 3.33, 3.39 and 3.42.

4 Some notes on unipotent blocks

In [34], Malle and Robinson already proved their conjecture for many unipotent blocks for
quasi-simple groups of Lie type. The only cases missing are the unipotent (non-principal)
`-blocks of quasi-simple groups of Lie type of exceptional type for bad primes.

In this section we apply the methods used for the quasi-isolated blocks, to study the
unipotent blocks for bad primes and see how far these methods take us. As before, we
�rst need a parametrisation of these blocks that allows us to extract the information
needed to establish the Malle�Robinson conjecture. The right parametrisation was found
by Enguehard in [16].

Theorem 4.1 ([16, Théorème A]). Let G be a simple, simply connected group of excep-
tional Lie type de�ned over Fq with Frobenius endomorphism F : G→ G or let G be sim-
ple, simply connected of type D4 de�ned over Fq with Frobenius endomorphism F : G→ G
such that GF = 3D4(q). Suppose that ` is a prime not dividing q. If GF = 3D4(q) then let
` ∈ {2, 3} otherwise let ` be bad for G. Let e = e`(q). Then we have the following.

(a) There is a bijection

bGF (L, λ)←→ (L, λ),

between the unipotent `-blocks of GF and the e-cuspidal pairs (L, λ) of GF , up to
GF -conjugation, such that λ ∈ E(LF , 1) is of central `-defect.
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(b) We have the following partition of E(GF , s).

E(GF , 1) =
⋃

(L,λ)/GF

E(GF , (L, λ))

where (L, λ) runs over the e-cuspidal pairs of G, up to GF -conjugacy, with
λ ∈ E(LF , 1).

Enguehard also describes the defect groups in a way that gives enough information to get
su�cient lower bounds on their `-sectional ranks.

Theorem 4.2. Let G be a simple, simply connected group of exceptional type de�ned over
Fq with Frobenius endomorphism F : G→ G or let G be simple, simply connected of type
D4 de�ned over Fq with Frobenius endomorphism F : G → G such that GF = 3D4(q).
Suppose that ` is a prime not dividing q. If GF = 3D4(q) then let ` ∈ {2, 3} otherwise
let ` be bad for G. Then Ê(GF , 1) is a generating set of Q IBr(E`(GF , 1)) if one of the
following holds.
(i) GF = G2(q), 3D4(q),
(ii) ` = 3 and GF = F4(q),
(iii) ` = 2 and GF = E6(q) or 2E6(q),
(iv) ` = 3 and GF = E7(q), or
(v) ` = 5 and GF = E8(q).
In particular, the number of irreducible Brauer characters in E`(GF , 1) is less than or
equal to |E(GF , 1)|.

Proof. Recall that it su�ces to prove that χ◦ ∈ QÊ(GF , 1) for every χ ∈ E(GF , 1)`. Let
t ∈ G∗F be a semisimple `-element and let χ ∈ E(GF , t). We claim that χ◦ ∈ QÊ(GF , 1).
The claim is clearly true for t = 1, which is why we suppose that 1 6= t from now on.

(i) If t is quasi-isolated, checking Table 22, we see that CG∗(t) is of type A. Hence, the
claim follows by the argument of the proof of Theorem 3.18. If t is not quasi-isolated, there
exists a proper Levi subgroup L∗ containing CG∗(t). Since the proper Levi subgroups of
G2 and D4 are of type A, CG∗(t) is of type A as well and the claim follows by the proof
of Theorem 3.18 again.

(ii) If t is quasi-isolated, checking Table 11, we see again that CG∗(t) is of type A. Let
t be semisimple and not quasi-isolated and let L∗ be the minimal Levi subgroup of G∗

containing CG∗(t). Since t is a 3-element by assumption, and the proper Levi subgroups
of F4 are of classical type, it follows from Proposition 1.38 and the minimality of L∗ that
CG∗(t) = L∗. In particular, t ∈ Z(L∗). The claim follows since conditions (1) and (2) of
Remark 3.10 are satis�ed.

(iii) Checking Table 13, we observe that CG∗(t) is a connected reductive group of type
A (the connectedness follows since t is a 2-element) if t is quasi-isolated. Suppose t is not
quasi-isolated and let L∗ be the proper minimal Levi subgroup containing CG∗(t). Thus,
t is quasi-isolated in L∗. It can be shown (using Chevie [36]) that every centralizer of a
quasi-isolated 2-element of L∗ is of type A. Hence, the claim follows.

For (iv) we argue as in (iii) and for (v) we argue as in (ii).
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Proposition 4.3. Let G be a simple, simply connected group of type F4 de�ned over Fq
with Frobenius endomorphism F : G → G. Let ` = 2. Then Ê(GF , 1) ∪ Ê(GF , t1) ∪
Ê(GF , t2) is a generating set of Q IBr(E2(GF , 1)), where t1, t2 ∈ G∗F are quasi-isolated
semisimple 2-elements with CG∗(t1)F = B4(q) and CG∗(t2)F = C3(q)A1(q).

Proof. Let 1 6= t ∈ G∗F2 be semisimple. If t is quasi-isolated, we see that CG∗(t) is either of
type A and we are done or CG∗(t) = B4(q) or C3(q)A1(q) in which case we can not use any
of our tools. Therefore, the series corresponding to these types are part of our generating
set. Now suppose that t is not quasi-isolated. Let L∗ be the minimal Levi subgroup of G∗

containing CG∗(t). Using Chevie again, we observe that the centralisers of quasi-isolated
elements of L∗ are of type A. Hence the assertion follows from the argument of the proof
of Theorem 3.18 again.

Proposition 4.4. Let G be a simple, simply connected group of type E8 de�ned over
Fq with Frobenius endomorphism F : G → G. Let ` = 3. Then Ê(GF , 1) ∪ Ê(GF , t1)
is a generating set of Q IBr(E3(GF , 1)), where t1 ∈ G∗F is a quasi-isolated semisimple
3-element with
(i) CG∗(t1)F = E6(q)A2(q) if q ≡ 1 mod 3, or
(ii) CG∗(t1)F = 2E6(q)2A2(q) if q ≡ 2 mod 3.

The reason for the distinction in Proposition 4.4 can be found in [22, Table 4.7.3A].

Proof. The proof is essentially the same as the proof of Proposition 4.3. Let 1 6= t ∈ G∗F3
be semisimple. It can be shown that CG∗(t) is either of type A, type E6×A2, or a proper
Levi subgroup of G∗. Hence, the assertion follows.

Corollary 4.5. Let (GF , `) be a pair as in Theorem 4.2, Proposition 4.3, or Proposition
4.4. Then the Malle�Robinson conjecture holds in strong form for the unipotent `-blocks
of GF and GF/Z(GF ).

Proof. For the generating sets in Propositions 4.3 and 4.4 we can show that the series
corresponding to the non-trivial quasi-isolated elements are contained in the principal
block by applying the argument of the proof of Theorem 3.33. Let B = bGF (L, λ) for some
pair (L, λ) as in Theorem 4.1. Except for the principal 2-block of F4(q), the conjecture
can be established using s(Z(L)F` ). Recall that the defect groups of principal `-blocks
of a �nite group are the Sylow `-subgroups of that group. (For the structure of Sylow
subgroups of groups of Lie type in cross characteristic see [22, Section 4.10]). By Table [22,
Table 4.10.6], F4(q) contains a central product of 4 commuting A1-type subgroups. An
argument similar to the one in the proof of Proposition 3.25 yields an elementary abelian
2-subgroup of rank 8 which is enough to prove the strict form of the Malle�Robinson
conjecture for the principal 2-block of F4(q). For the second part of the assertion see the
proof of Theorem 3.22.

5 On minimal counterexamples

In this section we prove Theorem C on minimal counterexamples to the Malle�Robinson
conjecture. A pair (G,B) is called a minimal counterexample to the conjecture if
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1. the conjecture does not hold for B, and

2. the conjecture holds for all `-blocks B′ of groups H with |H/Z(H)| strictly smaller
than |G/Z(G)| having defect groups isomorphic to those of B.

We also say that B is a minimal counterexample if the group G is understood.

Theorem 5.1. Let G be a simple, simply connected group of exceptional Lie type de�ned
over Fq with Frobenius endomorphism F : G→ G, or let G be simple, simply-connected of
type D4 de�ned over Fq with Frobenius endomorphism F : G→ G such that GF = 3D4(q).
Let ` be a prime and let 1 6= s ∈ G∗F be a semisimple `′-element. Let B be an `-block
of GF contained in E`(GF , s). Then (GF , B) is not a minimal counterexample to the
Malle�Robinson Conjecture.

Proof. Suppose that B is a minimal counterexample to the Malle�Robinson conjecture.
By [34, Proposition 6.1], ` does not divide q. Hence, by Theorem 3.23, B is Morita
equivalent to an `-block b of a subgroup N of GF and their defect groups are isomorphic.
In particular, l(B) = l(b) and s(B) = s(b). If s is not quasi-isolated, then N is a proper
subgroup. By the minimality of B, B is therefore a quasi-isolated block of GF . Now, by
the results in Section 3 (see Theorem 3.9, Theorem 3.22, Theorem 3.33, Theorem 3.39
and Theorem 3.42), either GF = E6(q) or 2E6(q) and B is the 3-block numbered 13 in
Table 13 or GF = E7(q) and B is the block numbered 1 or 2 in Table 15. However, then
B is not minimal by [34, Lemma 3.2]. In conclusion, the assertion is proved.

Theorem C. Let H be a �nite quasi-simple group of exceptional type. Let ` be a prime
and let B be an `-block of H. Then B is not a minimal counterexample to the Malle-
Robinson conjecture for ` ≥ 5. More precisely, (H,B) is not a minimal counterexample,
unless possibly if (H,B) is of one of the following types.

(i) H = E6(q)/Z(E6(q)) or 2E6(q)/Z(2E6(q)) and B is the 3-block dominated
by the 3-block numbered 13 in Table 13.

(ii) H = E7(q)/Z(E7(q)) and B is the 2-block dominated by either the 2-block
numbered 1 or the 2-block numbered 2 in Table 15.

(iii) ` = 3 and H = E6(q) or 2E6(q) (respectively H = E6(q)/Z(E6(q)) or
2E6(q)/Z(2E6(q))) and B is a non-principal unipotent 3-block of H (respec-
tively dominated by such a 3-block)

(iv) ` = 2 and H = E7(q) (respectively H = E7(q)/Z(E7(q))) and B is a non-
principal unipotent 2-block of H (respectively dominated by such a 2-block)

(v) ` = 2 and H = E8(q) is a non-principal unipotent 2-block.

Proof. Suppose that (H,B) is a minimal counterexample to the Malle�Robinson conjec-
ture. Let D be a defect group of B. By [34, Proposition 6.4], H is not an exceptional
covering group of a �nite group of exceptional Lie type. By [34, Proposition 6.5], H is
not of Lie type 2B2,

2G2, G2,
3D4 or 2F4. Hence, H = GF/Z, where G is a simple, sim-

ply connected group of exceptional type (F4, E6, E7 or E8), F : G → F is a Frobenius
endomorphism and Z ⊆ Z(GF ) is a central subgroup. By [34, Proposition 6.1], ` does
not divide q. Let B′ be the unique block of GF that dominates B and let D′ be a defect
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group of B′. In particular, l(B) = l(B′) and s(D) = s(D′). By [2, Theorem 7.7], B′

is Morita equivalent to an `-block b of a subgroup N of GF and their defect groups are
isomorphic. In particular, l(B′) = l(b) and s(B′) = s(b). If s is not quasi-isolated, then N
is a proper subgroup. By the minimality of (H,B), B is therefore a quasi-isolated block
of H. Moreover, ` < 5 by Theorem 3.39 and Corollary 4.5. Suppose that B is a unipotent
block of H. Then (H,B) can only be of the types (iii), (iv) and (v) by Corollary 4.5. If
we suppose that B is non-unipotent and quasi-isolated, then (H,B) can only be of types
(i) and (ii) by the results in Section 3 (see Theorem 3.9, Theorem 3.22, Theorem 3.33,
Theorem 3.39).
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