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Abstract

As visualization as a �eld matures, the discussion about the development of a
theory of the �eld becomes increasingly vivid. Despite some voices claiming that
visualization applications would be too di�erent from each other to generalize,
there is a signi�cant push towards a better understanding of the principles un-
derlying visual data analysis. As of today, visualization is primarily data-driven.
Years of experience in the visalization of all kinds of di�erent data accumulated
a vast reservoir of implicit knowledge in the community of how to best repre-
sent data according to its shape, its format, and what it is meant to express.
This knowledge is complemented by knowledge imported to visualization from
a variety of other �elds, for example psychology, vision science, color theory,
and information theory. Yet, a theory of visualization is still only nascent. One
major reason for that is the �eld's too strong focus on the quantitative aspects
of data analysis. Although when designing visualizations major design deci-
sions also consider perception and other human factors, the overall appearance
of visualizations as of now is determined primarily by the type and format of
the data to be visualized and its quantitative attributes like scale, range, or
density. This is also re�ected by the current approaches in theoretical work on
visualization. The models developed in this regard also concentrate primarily
on perceptual and quantitative aspects of visual data analysis. Qualitative con-
siderations like the interpretations made by viewers and the conclusions drawn
by analysts currently only play a minor role in the literature. This Thesis con-
tributes to the nascent theory of visualization by investigating approaches to
the explicit integration of qualitative considerations into visual data analysis.
To this end, it promotes qualitative visual analysis, the explicit discussion of
the interpretation of artifacts and structures in the visualization, of e�cient
work�ows designed to optimally support an analyst's reasoning strategy and
capturing information about insight provenance, and of design methodology
tailoring visualizations towards the insights they are meant to provide rather
than to the data they show. Towards this aim, three central qualitative prin-
ciples of visual information encodings are identi�ed during the development of
a model for the visual data analysis process that explicitly includes the antic-
ipated reasoning structure into the consideration. This model can be applied
throughout the whole life cycle of a visualization application, from the early
design phase to the documentation of insight provenance during analysis using
the developed visualization application. The three principles identi�ed inspire
novel visual data analysis work�ows aiming for an insight-driven data analysis
process. Moreover, two case studies prove the bene�t of following the quali-
tative principles of visual information encodings for the design of visualization
applications. The formalism applied to the development of the presented theo-
retical framework is founded in formal logics, mathematical set theory, and the
theory of formal languages and automata. The models discussed in this Thesis
and the �ndings derived from them are therefore based on a mathematically
well-founded theoretical underpinning. This Thesis establishes a sound theoret-
ical framework for the design and description of visualization applications and
the prediction of the conclusions an analyst is capable of drawing from working
with the visualization. Thereby, it contributes an important piece to the yet
unsolved puzzle of developing a visualization theory.
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Organization

Chapter 1 identi�es important limitations in the currently predominant data-
centric purely qualitative approach to visual data analysis. Based upon these
�ndings, it motivates the concept of qualitative visual analysis and derives the
three fundamental research questions to be addressed in this Thesis. Chapter
2 introduces a theoretical framework for the qualitative visual analysis process
based on a formal treatment of domain information, data, the visualization, and
the mental model determining an analyst's reasoning strategy. The �ndings in
the �rst two chapters also yield the three qualitative principles of visual infor-
mation encodings central to this Thesis. In chapter 3, work�ows inspired by
qualitative visual analysis are discussed. In particular, these are a tight inte-
gration of insight provenance information with the data installing a feedback
mechanism making the results of previous analysis steps accessible to further
analysis and a feasibility proof together with an algorithm for the automatic
generation of visual analytics pipelines based on queries for insight rather than
for views on data. Chapter 4 discusses the in�uence of qualitative considera-
tions on visualization design. Two case studies prove the bene�t of following the
identi�ed principles for visualization design. Chapter 5 concludes this Thesis
with a summary of the achievements made and a brief prospect of potential
further developments in the direction of the work discussed in thes Thesis.

This Thesis is based upon a number of scienti�c articles published during the
time of the author's PhD-candidateship that started in June 2016. Whereever
it is not explicitly stated otherwise, the work presented in this Thesis is either
original to the Thesis or extracted from one of the author's scienti�c publications
cited as core references at the end of each chapter.
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Chapter 1

Insight Beyond Numbers

Motivating the major research questions in focus of this thesis, the �rst chapter
reviews some well-known and discusses some more implicit limitations of the
current standard approach to data analysis focusing only on measurable and
quantitative aspects of the data. It is pointed out that those limitations can be
alleviated by explicitly taking into account the qualitative aspects of data anal-
ysis, especially the reasoning process executed by the analyst and the knowledge
about the general context the data is investigated in. Qualitative visual analysis
is proposed as an addition to the currently dominant purely quantitative anal-
ysis. It does not focus on qualitative data but rather on the qualitative aspects
of data analysis, explaining visualization from the perspective of the viewer's
reasoning and interpretations rather than only by the data displayed. The dis-
cussion concludes with the derivation of three major research questions to be
answered in the remaining chapters: How to formally capture the interconnec-
tion and interweaving of quantitative and qualitative aspects and considerations
in visualization and visual analytics, what kind of work�ows need to be imple-
mented to support or perform qualitative visual analysis, and how qualitative
visual analysis can be integrated into visual analytics solutions for information
and scienti�c visualization.

1.1 Introduction

The support of data analysis is one of the earliest applications of visualization.
When computers became powerful enough to allow the generation of graphical
data representations from available digital data, early applications were domi-
nated by science and engineering. Although these �elds have been joined by a
myriad of other applications, science and technology are still major drivers for
the �eld. It is perhaps due to this historical development that there is a cer-
tain tendency among visualization scientists to prefer measurable quantitative
characterizations of data and analysis results over nonmeasurable qualitative
considerations. Numbers are being trusted as unbiased, exact, neutral, and
objective. Human reasoning instead is conisered imprecise and prone to error.
Quite remarkably, the very fact of recognizing the risk of misinterpretation and
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error already emphasizes the importance of qualitative considerations for data
analysis. There is indeed a collection of work showing that this is actually a
concern. However, the discussion either remains implicit or focuses only on cer-
tain aspects of the analysis process. This work advocates the open and explicit
consideration of qualitative aspects from a holistic perspective as necessary and
integral component of the visual data analysis process. In its investigation of
qualitative aspects of the analysis process as a general principle rather than a
necessary adaptation to domain- or task-speci�c requirements, this work follows
a di�erent approach than, for example, design studies. The focus on general ap-
plicability rather than �nding individual problem-speci�c solutions also sets the
proposed ideas clearly apart from application- or purpose-driven visualization.
The discussion reveals that an open and explicit consideration of qualitative as-
pects is a necessary component of a holistic perspective on the visualization and
data analysis process. Towards such a more holistic perspective, this chapter
attempts to identify qualitative aspects of signi�cant in�uence on the analysis
result and subsumes them under the term qualitative visual analysis. Being an
addition to the currently predominant data-centric perspective on data analysis,
qualitative visual analysis has a solid embedding in both empirical �ndings and
theoretical models about reasoning with visualization.

The discussion is founded in three core ideas determining the major compo-
nents of the notion of qualitative visual analysis presented in this Thesis. The
�rst concept is concerned with the interpretation of data. Di�erent perspec-
tives on the same data will yield di�erent analysis results. There is no absolute
meaning to the data since every analysis result at some point requires evaluation.
Evaluation in turn either implies human judgment or an automatic inference of
meaning. In the former case, the interpretation is inherently subjective. In the
latter case, the interpretation is predetermined by a programmer with respect
to the programmer's background and by derivation schemes either implicitly or
explicitly de�ned by the domain context. In both cases, the conclusions drawn
and thus the analysis result will di�er between individuals, especially between
di�erent domains. Therefore, qualitative analysis makes a di�erence in practice.
Domains do not only have their own interpretations of data but also bring their
own deduction and inference principles and mechanisms. Supporting analysis
within a domain thus does not only mean to re�ect the data based on its shape
and structure, but also to support the reasoning. Reasoning is not reading o�
information. Too often, it is assumed that insight is obtained as soon as a cer-
tain structure is identi�ed in the visualization. Yet, studies show that there
is much more to this process. Artifacts and structures in the display do not
only need to be recognized but also to be combined and understood correctly,
and to be evaluated in the analysis context. Insight therefore is an emergent
property of the viewer's cognitive processing rather than a feature of the data
that can be mined or otherwise extracted. Consequently, qualitative analysis is
about reasoning, not about perception. In many applications, the insights to
be obtained have to be inferred or derived by reasoning about the data rather
than just reading o� the result from the graphical representation. Capturing
the reasoning process is an aspect of information provenance. Since conclusions
depend on interpretations, supporting the deduction of insight is a qualitative
consideration. The knowledge necessary to infer insight about the domain is not
part of the data and di�ers between viewers and between domains. The same
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holds for the inference structures and reasoning systems applied to interpret
the data. The knowlede outside the data thus has a signi�cant impact on the
interpretation of data. It does not only determine what is read from a visual-
ization but also how it is understood. To render analysis work�ows comparable,
detailed provenance information is required to document the reasoning process
and to identify the in�uence of outside knowledge. Qualitative Analysis relates
the insight to the outside. The idea of qualitative analysis is to explicitly relate
the information to be found inside the data to the ouside knowledge applied to
obtain it by reasoning about the data.

1.2 State of the Art

Because the interpretation of data is subject to the analysis context, the re-
sults obtained from data analysis are automatically subject to qualitative con-
sideration. It is therefore not surprising that there is a variety of work already
considering qualitative aspects. Yet, these aspects are often only applied implic-
itly or even abstracted away by attempts to measure visualization performance.
The following discussion lists a variety of of applications of qualitative visual
analysis based on work that either implicitly or explicitly employs qualitative
considerations.

It is widely accepted in the community that visualizations should be tai-
lored to the domain context [118, 128]. As a result, there is a plethora of tech-
niques trying to incorporate the domain's perspective into the design. Tory and
Möller point out expert interviews to be useful especially in the early phase
of design but also remark that they should be complemented by user studies
evaluating the resulting application against the design goals [138]. Understand-
ing of the domain context can be obtained for example from involving users in
participatory design, applying structured interviews [128, 131] or by �eld stud-
ies [47, 64, 67]. Domain-analysis is a speci�c technique useful when working in
environments with existing software solutions [50]. Task-oriented design aims at
the characterization of analysis tasks and their decomposition into interaction
work�ows [4, 149]. Being directly concerned with the solution of speci�c low-
level or high-level analysis questions, task-based design primarily captures the
analysis context. In this regard, a recent crowdsourcing study reports that the
same visualization performs di�erently in the contexts of di�erent tasks [122].
From the opposite perspective, this is re�ected by di�erent interaction patterns
users of visual analytics applications show while performing di�erent tasks [57].
These �ndings suggest to dynamically adapt the visualization not only to the
domain context but also to the analysis and the user context. In this direction,
Golemati et al. proposed a context-adaptive visualization environment extend-
ing the typical focus of automatic visualization on the domain and data by an
explicit consideration of user pro�les and preferences [55]. In the intelligence
sector, user models for adaptive visualization have been reported to support
improving the distinguishing of relevant and non-relevant information which in
turn allows optimizing relevance-based visualizations [1].

Derived information can only be as trustworthy as the data it is derived from.
Da Silva et al. point out the problem for automatically inferred data in the se-
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mantic web [36, 37]. From the perspective of visualization, insight provenance
has been addressed from di�erent angles. Two major directions are automatic
tracking of user interaction (e.g. [4,12,61]), and manual documentation of anal-
ysis decisions and interpretation steps (e.g. [60, 83]). Gotz and Zhou combine
these approaches and organize them around a taxonomy of provenance aspects
with di�erent granularity [58]. Based on this taxonomy, they introduce HAR-
VEST [56], a versatile visual analysis framework that can be applied for example
in collaborative analysis, where a group of analysts can share insights with each
other or with other groups. The visualization used to obtain an insight is ob-
tained is combined with an action trail to make the insight comprehensible for
other users who might then apply these insights (i.e. extend the trail) to develop
their own. A similar approach but with a focus more on the inference aspect
is followed by ProveML [146], an extension of the open provenance model [95].
A survey by Hall et al. identi�es guidelines for the implementation of prove-
nance in geospatial visualization by reviewing the corresponding literature with
respect to a model for human reasoning about spatiotemporal data [65]. Al-
though the paper is focused on geospatial visualization, the derived guidelines
are general enough to be adapted for other applications. The review can thus
serve as a starting point for more research in this direction. If cooperation across
domains is to be established, each domain might introduce its individual lan-
guage and interpretations. For such semantically heterogeneous environments,
a graph-based visualization has been proposed allowing the viewer to navigate
through the multiple possible interpretations [73].

Studies report that global tasks, involving inference from a number of obser-
vations are harder to perform then local tasks where information can be read
directly from the depiction [62, 115]. Casner applies a similar argument to mo-
tivate the transformation of cognitive tasks into perceptive tasks that provably
yield the same results but are substantially easier to perform [23, 24]. Rather
then directly optimizing the visualization towards insight emergence a viewer
can also be provided with proper guidance. In this regard, Demiralp et al. pro-
pose a tool for what they call insight-queries [39]. Although their de�nition of
insight based on purely quantitative properties is rather unusual, their approach
enables the search for abstract information with a focus on data correlation.

1.3 Motivation and Approach

The aim of this chapter is to outline the importance of qualitative considerations
like possible interpretations of data, the general analysis context, and applied
reasoning procedures for the discussion of visual information encodings. A re-
view of the currently predominant purely quantitative approach to data analysis
reveals several limitations resulting from an insu�cient consideration of quali-
tative aspects. From these observations, the de�nition and scope of qualitative
visual analysis are derived which is presented as an additional perspective on
the visualization and visual data analysis process. The third section re�ects
the role of qualitative visual analysis in the general reasoning process based on
�ndings reported in the literature. Qualitative visual analysis addresses a gap
in the existing work concerning the combination of several qualitative aspects
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of analysis towards a holistic perspective on visual data analysis. This gap
motivates the three major research questions to be addressed in this Thesis:
visualization validation, work�ows supporting reasoning, and the in�uence of
qualitative considerations on visualization design.

1.4 Related Work

One of the early attempts to study the actual process of reasoning with graphics
is the work of Scaife and Rogers. In their 1996 article on external cognition,
they discuss research questions in the cognition of data visualization, regard-
ing the analysis of data (external structure) with respect to a mental model
(internal structure) [123]. Today, more than twenty years later, some of the
research questions they ask are still open. For example, the actual processes
of data (mis-)interpretation and integrating the understanding of observations
with knowledge are not well understood. Getting a better understanding of
these issues is one aim of qualitative analysis. Cleveland and McGill de�ne
graphical perception as the act of decoding the quantitative and qualitative in-
formation encoded in visual data representations [34]. Quantitative information
covers the measurable aspects of data � its numerical or otherwise deterministic
values and the measuarable properties that can be derived from this informa-
tion. Qualitative observations cannot be completely captured based only on
numerical and nominal data. Due to this fact, they are often regarded as less
exact than numbers or otherwise deterministic data values [102]. Yet, this is
a grave misunderstanding. Traditionally, science is driven by theory model-
ing behavioral properties of a system. This theory has to be validated against
observations in a controlled experimental environment. Although the theory's
formulas will often be applied to predict numerical values or estimates, the ac-
tual description is obtained from the values' qualitative characteristics. The
prediction is only correct, if the model reproduces the relations and dependen-
cies between the parameters and variables correctly. Qualitative analysis thus is
not an imprecise comment but rather a precise and deterministic prediction of
observations determined by the functions and predicates of the corresponding
domains' applied logics and deduction techniques.

Anscombe's quartet is a popular example demonstrating how visualization
can aid the formulation of an initial theory or descriptive model for the data [6].
Discussing the value of visualization for practitioners, Fekete et al. emphasize
the value of visualization's capability to support identifying models as a starting
point for analysis [51]. They propose a combination of automatic data analy-
sis and visualization, arguing that automatic analysis and (exploratory) visual
analysis answer di�erent analysis questions and thus should attempt to support
each other rather than establish concurrency. Their arguments are in line with
the notion of qualitative analysis proposed below. The combination of visual
and automatic data analysis is the central idea of visual analytics [74]. A holis-
tic perspective on data analysis bene�ts from synergies between data-centric
and user- or task-centric considerations [112]. While the added value of such
a holistic perspective is signi�cant, the qualitative aspects of data analysis are
underrepresented in the discussions of visualization performance.
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Determining the e�ectiveness of visualization remains a challenge. There is
some consensus within the community that design bene�ts from expert reviews
while evaluation should be performed by user studies [138]. However, there is
less agreement on whether user studies should be quantitative or qualitative.
Quantitative studies are restricted to the assessment of measurable variables,
limiting them to benchmark tasks. These benchmark tasks, however, tend to
be rather low-level [110]. Qualitative user studies ask open questions providing
the users with the opportunity to �nd their own answers and to report their
own insight. On the downside, the insights reported from qualitative studies
are generally hard to compare. In this regard, it has been proposed to identify
coding schemes transforming the qualitative results to quantitative data [102].

Regarding general qualitative considerations, Kosslyn identi�es a set of ac-
ceptability criteria allowing to evaluate how well visualization conveys informa-
tion on the semantic level [82]. Ratwani, Trafton, and their colleagues remark
that these �ndings do not generalize to situations involving the inference of
meaning where it cannot simply be read o� from the depiction [116,140]. Stud-
ies performed by Guthrie et al. also account for this observation [62]. Petre
and Green report evidence, that obtaining information from visualization also
depends on experience [107]. These results emphasize the importance of qualita-
tive aspects of data analysis for the reasoning process. Only few models for the
processes underlying the inference of meaning from graphical representations ex-
ist for cases where it cannot be read o� directly. Examples are the prediction of
visual saliency for di�erent regions of a visualization and attempts to estimate
the amount of mutual information that can be established between a visual-
ization and a viewer based on visual reproducibility [71, 72]. In combination,
quantitative and qualitative models allow the simultaneous consideration of op-
timal data representation and reasoning support. It is therefore a concern of
qualitative visual analysis to promote additional research in this direction. The
explicit consideration of qualitative aspects regarding the inference of meaning
and information by data interpretation requires precise but intuitive models to
reason about this process. It is therefore also a concern of qualitative visual
analysis to encourage deeper investigation of these processes and to promote
the development of additional models to capture domain-speci�c closure and
reasoning schemes.

In his �Views on Visualization�, VanWijk proposes di�erent high-level models
for the visualization process [143]. One of his key �ndings is that the visualiza-
tion itself � not only the interpretation by its viewer � is subjective: It does not
only depend on the data but also on the algorithms and data structure used as
well as other factors determined by the programmer. Remarkably, this �nding
generalizes to automatic analysis. Qualitative analysis as proposed in this The-
sis recognizes this inherent limitation of all algorithmic quantitative treatment of
data and alleviates it by requiring the provision of provenance information that
at least allows the analyst to comprehend the motivation and consequences of
the programmer's choice of a speci�c algorithm. Bresciani and Eppler review 51
papers to identify pitfalls in visualization design [21]. Among these issues they
remark that accuracy is a general problem of visualization because graphical
representations are less exact than for example numbers or tables. Other than
a lack of accuracy in the direct depiction, there is also an interpretative inac-
curacy which might mislead the viewer or analyst to false conclusions although
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the visualization actually contains all necessary information. This problem is
even more severe if the information cannot just be read o� but has to be in-
ferred or derived from the depiction. In this case, the fact that information is
inferable or derivable does not automatically determine the viewer to actually
apply the rules revealing it. The standard work in this direction are the books of
Hu� and Tufte on �How to lie with Statistics� and �Visualization Lies� [69,141].
Extending the consideration and discussion by the qualitative aspects causing
these problems, these issues can be resolved � or at least mitigated.

1.5 The Limits of Quantitative Data Analysis

Quantitative approaches have always dominated the development of new data
analysis techniques. Quantitative data analysis is well suited for all problems
that only require only limited qualitative understanding and are commonly in-
terested primarily in a quantitative characterization of the domain based on
measurement and valuation. Rather than to derive a set of models and the-
ories, their aim is to obtain descriptions. The focus is more on the system's
appearance than on its behavior. Visualization, in contrast, is typically con-
cerned with the derivation of insight from observations made in some domain
and thus focused on the generation of theories and models. This discrepancy re-
sults in certain limitations of a purely quantitative perspective on visualization
which are discussed in the following.

1.5.1 Foundational Considerations

All data is expressed in terms of mathematics and logics. There is a set of sym-
bols or numbers and a collection of combining operations as well as a precise
framework determining how to apply these operations in order to implement
transformations between symbols or even between operations. Interestingly
enough, the mathematics applied to the description of the data is not always
capable of describing the knowledge an analyst is interested in learning from
data analysis. Informally speaking, the attempt to obtain an image of an ob-
servation in terms of data might very well loose relevant information about the
surrounding environment � just like a photograph focusing on a single object
looses detail about the object's surrounding. Thus, just like looking at this pho-
tograph will not reveal the complete picture, it appears that the same applies
to analyzing data since, essentially, data is just a snippet of some limited view
on an observation. In some sense, just like what is in the picture is an interface
to connect the viewer with the depicted scene, the context spanned by the data
and the information it provides is an interface connecting the analyst to the ob-
servation. The speci�cation of this interface is encoded by the relations between
the outside domain context and the inside data context. Analysis of the inside
of some data context more often than not requires information from the outside
domain context to obtain meaningful results. Even worse, there also are cases
where the outside domain context actually dominates the analysis, rendering an
approach only focusing on the data completely infeasible. An example for this
would be the analysis of crime scene information during the �rst response to a
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crime that has just been reported. In this situation, available reliable data is
sparse and will only gradually be aggregated during the investigation process.
The initial considerations therefore have to rely more on general domain knowl-
edge than on available data. Summarizing and generalizing these considerations
indicates the following principle:

Principle: Inside-Outside Principle of Data Analysis

Towards the extraction of meaningful information from data, it is neces-
sary to consider both, the data context as a coherent unity of of quanti�-
able or otherwise expressible encoded information and its surrounding
domain and general context determining the system's behavioral aspects
and the viewer's capability of understanding and interpreting data anal-
ysis results based on knowledge outside the data.

Within the visualization community, it is commonly agreed that a quali-
tative perspective on the data is a good way to derive information, relations,
and �nally obtain insight and knowledge about the domain. This is also rec-
ognized by widely known visualization models such as in Bertin's distinction
between presentation and layout [16] and Rensink's triadic architecture for the
description of visual data representations [117]. Both agree on the distinction
between information that can simply be read o� from a graphical representa-
tion and information needing to be inferred involving a reasoning process. While
the former represents the answers presented by quantitative data analysis, the
latter category involves a qualitative reasoning process. Yet, the discussion in
most articles concentrates almost entirely on quantitative aspects of the analy-
sis. The central proposition of this chapter hence is to establish an explicit link
between the inside and the outside of the data context by adding a qualitative
component to the discussion of the visual data analysis work�ow. Further moti-
vating this idea, the following discussion investigates some limitations of purely
quantitative data analysis.

1.5.2 Scales and Units

Depending on the chosen scale, the appearance of the data can change entirely,
potentially misleading to wrong interpretations [52, 87]. Improper scaling can
cause apparent correllations to appear in the data where actually there are
none. Even worse, this can be achieved quite easily by proper data manipu-
lations [69]. Especially for complex high-dimensional systems, there is a risk
of implying observable but actually non-present correllations in the visualiza-
tion [145]. Another well-known issue with high-dimensional data is what is often
called the curse of dimensionality. Distance and similarity measures that are
very intuitive and descriptive in low dimensions, quickly lose their discriminative
power in higher dimensions [17, 66]. Many techniques for dimension-reduction
also tend to summarize dimensions by variance rather than by units. Con-
sequently, the meaning of distances in the lower-dimensional representation is
ambiguous or even totally unclear. Besides this fact, multidimensional distance
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measures are a popular method to group data into clusters for further analysis.
It can be questioned, whether the structures found this way are actually mean-
ingful, especially since there are cases where a semantically meaningful measure
capturing all data dimensions simultaneously might not even exist at all [77].
Perhaps even worse, the application of measures without proper respect to the
units they operate on might again imply structure in the visualization where
there actually is none and thus yield misinterpretations.

1.5.3 Features vs. Entities

Much less often than scaling or unit issues, the problem of comparability be-
tween the investigated data objects is addressed directly. Although similarity
measures are a popular approach to structure data sets for visualization, their se-
mantic interpretation is rarely discussed explicitly in visualization applications.
However, although this is typically implied, not everything that appears closer
in the visualization is automatically more similar. First, distance and similarity
measures often combine multiple dimensions without regarding the units they
represent. This mixture of units renders the actual distance meaningless if the
units are not compatible, no matter whether proper scaling is applied or not.
The reason is that for incompatible units, the summary of features implied by
the distance or similarity measure introduces ambiguity to the interpretation.
As a simple three-dimensional example, consider a data set of objects of di�er-
ent color at di�erent positions, say tra�c lights at certain crossings in a city.
Now, let any distance measure be applied to this data set. The question now
is, what exactly some distance x between two tra�c lights reveals about them.
The same distance might be measured for tra�c lights because they show the
same color or because they are close to each other. Consequently, the tra�c
lights showing opposing colors at the same crossing may well appear unrelated
while the tra�c lights at another crossing might appear more similar only be-
cause they show the same color. While such an interpretation might actually
be useful, it is a result of a certain semantic ambiguity rather than of a careful
choice of features to compare the di�erent entities.

Visualization often tends to compare entities by the totality of their features
rather than by the discriminative property determined by the analysis question.
The very fact that visualization is about entities and objects rather than about
features is neglected if the visualization is only computed on the features rather
than on the entities. A scatterplot matrix, for example, is not a comparison of
entities in di�erent features but rather a comparison of the variation of di�erent
features among a set of entities. Consequently, it is unsuitable for the compari-
son of entities simply because in their representation as points in a scatterplot,
it is very hard to identify the same entity in the di�erent plots. Proper rep-
resentations of similarities and di�erences determining the comparison between
di�erent entities and objects in the data hence need to be designed with careful
consideration of the analysis question and general domain context rather than
only by statistical properties of the data features.
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1.5.4 Context-Sensitivity of Interpretations

The meaning of data is not absolute but bound to di�erent levels of context. Dif-
ferent domains and even di�erent users will obtain completely di�erent results
from analyzing the exact same data set. For example, an ecologist working
for an environment-protection agency will interpret data on the mileage and
motorization of cars di�erently than a mechanical engineer analyzing trends in
motorization for the automobile industry, just because of their individual profes-
sion (individual context). Although the example is �ctional, it is plausible that
in the same data set other aspects are relevant for the environment-protection
agency than for the automobile industry. These general perspectives determine
the analysis' focus and hence in�uence its results (domain context). Assuming
both analysts are tasked with �nding structure in the data, both will likely ap-
ply similar techniques. For example, they might both attempt to classify the
data based on its values (data context). Assuming the ecologist analyzes the
data with a focus on pollution, di�erent classes will be obtained than from the
mechanical engineer's classi�cation with respect to motorization features. The
di�ering motivation behind the classi�cation yields di�erent results (analysis
context). Figure 1.1 illustrates the example. Even though both analysts in-
vestigate the same data and apply the same techniques for classi�cation, the
obtained results are di�erent ((A) and (B)). Note that this is not a result of
an ambiguity in the graphical representation. Di�erent domains will likely in-
terpret the same data di�erently. Overlaying the ecologist's classi�cation with
the subspace considered by the mechanical engineer shows an interesting cor-
relation between low motorization and high pollution (red) as well as strong
motorization and low pollution (green) (C). Showing all �ve dimensions con-
cerned by the two analysis (D) and highlighting the correlation to low weight
(orange crosses), it turns out that this is due to two speci�c choices in the class
de�nitions. The ecologist excluded heavy-weight cars from the high-pollution
category since their stronger engines naturally show higher combustion. The
mechanical engineer considered the speci�c power (the quotient of horsepower
and displacement) for the class de�nition and distinguished between necessarily
(brown) and unnecessarily strong (green) motorization. Due to these considera-
tions, the relative pollution of heavy-weight vehicles with strong motors is only
considered to be among the medium group (cf. A and C).

In practice, incomplete or incorrect qualitative context thus provokes misun-
derstanding or misinterpretation of the data.Without knowledge of the ground
truth � the data and the class de�nitions � a third analyst matching cars be-
tween the two classi�cations, would not be able to resolve the aforementioned
observations and probably be misled to the conclusion that heavier cars or cars
with stronger motors cause less relative pollution compared to smaller cars with
weaker motors. While to some extend the data reveals this to actually be the
case, this information is unreliable as it is a result of the distortions applied to
the class de�nitions.
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Figure 1.1: The analysis result depends on the general context. In the example, the
auto-mpg dataset [88] capturing di�erent features of cars from the 1970's
has been investigated through the perspectives of an ecologist interesting in
relative pollution caused by the cars and a mechanical engineer interested
in their motorization. Despite being �ctional, the example illustrates the
e�ects of di�erent analytical foci due to di�erent domain contexts. Both
analysts classify the data in the subspaces re�ecting their respective analy-
sis context (marked checkboxes). Classes are obtained by nearest-neighbor
matching according to the Euclidean distance to seed points characteristic
for each class as de�ned by the analysts. Although the method is the same,
the ecologist (A) and the mechanical engineer (B) obtain di�erent classes.
For comparison, the engineer's perspective is overlayed with the ecologist's
clustering (C) and all dimensions considered by the two analysis are shown
with an emphasis on the correlation by weight as the common dimension
between the two classi�cation de�nitions (orange marks in (D)).
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1.5.5 Locality and Complexity

The interpretation of data becomes signi�cantly harder if comparisons are to
be made and where di�erent parts of the visualization need to be related. As
a simple example, consider a pie chart. By simple read-o�, the viewer can
determine the contribution of each indivdual group to the total. Comparing the
contributions of di�erent groups however requires to compare diagram slices that
might not be neighbors. In cases where the di�erence is not entirely obvious,
instead of a simple size comparison, the two sectors need to be evaluated by
their contribution to the whole to make them comparable. This becomes even
more complex when the aggregation of several sectors is considered. If those
sectors are not neighbors, the aggregation requires to relate objects from across
the depiction to the whole in order to obtain their combined in�uence. If those
sections are neighbored, the sectors can instead simply be interpreted as one.

This problem is actually well known in visualization and solutions to the
problem described here appear quite obvious. One possibility would be to allow
the viewer to reposition the pie chart's slices to enable more direct comparison
between slices and accumulation of values over a number of slices. However,
even this simple example points out the quickly increasing complexity of analy-
sis if the analysis requires the combination of components localized in di�erent
parts of the visualization. Despite the common awareness of this problem, the
e�ciency of visualizations is rarely discussed explicitly on a theoretical basis re-
viewing the analyst's anticipated reasoning procedures. The common approach
to the assessment of visualization e�ectiveness and e�ciency is to conduct user
studies. Yet, the validation by typically small scale user studies can hardly ac-
count for the optimality of the visualization. At best, those studies show that
a well-de�ned and typically small group of participants performs a given task
more or less well. Surprisingly, complete descriptions of the anticipated reason-
ing involved with the solution of tasks are quite rare in the literature. Without
such a clear description of the anticipated reasoning structure to be applied by
the viewer to interpret the visualization, it is hard to predict the complexity for
the viewer to solve a given task with a given visualization. As a consequence,
it is considerably hard to assess whether some visualization technique can be
applied to a di�erent problem than the one it has originally been developed for.

1.5.6 Uncertainty

Limited measurement precision is a common source for uncertainty in the data.
This type of uncertainty typically takes the forms of tolerances and measure-
ment error and is commonly characterized by an interval indicating the range of
possible values around the measured value. In multiple dimensions, each dimen-
sion has its own interval width. This interval width is independent of statistic
e�ects and is therefore usually �xed. Due to the nature of this type of uncer-
tainty, e�ects involving the passing of thresholds may occur slightly sooner or
later than suggested by the data. Nevertheless, no matter where exactly within
the interval an event occurs, the resulting e�ects � and thus their interpretation
� are the same. A dependency between exact value and occurring event would
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require the kind of statistical analysis that is performed in ensemble visualiza-
tion. However, to evaluate the observed scenario qualitatively, the measurement
error is only of minor relevance as long as no value within the tolerance interval
exceeds the threshold. In other words: As long as all values within the intervals'
boundaries show the same behavior, a single or few representatives are su�cient
to completely describe the observation on a qualitative level. For example, even
the worst, average, and best case of a path of an asteroid crossing the course
of Earth can be depicted as simple lines as long as no other uncertainty than a
tolerance is involved. Qualitatively, the line will cross the Earth's course in all
cases. The uncertainty only needs to be made explicit if the intervals indicate
that a collision cannot be ruled out. Even then, explicit depiction of uncertainty
would only be necessary close to where a collision can be expected. For the rest
of the asteroid's path, the uncertainty does not add information relevant for
the potential collision event. In conclusion, from the qualitative perspective,
measurement error and tolerance only become relevant if they indicate multiple
alternative interpretations of the results. Even then, it is su�cient to show the
uncertainty only in those regions where it actually makes a di�erence.

Incomplete or erroneous input data can be considered to introduce uncer-
tainty in the missing or wrong entries taking the form of local discontinuities
or holes in the data. Especially if this problem only a�ects a single dimension
in a vector, ignoring the whole vector potentially results in a loss of important
information. On the other hand, �lling the hole or replacing an obviously erro-
neous value introduces an estimation error. Many algorithms are only stable if
there are no missing data entries. The uncertainty here results from the problem
that if the exact values are not known, the estimation can be arbitrarily wrong.
While the assumptions being made to generate the estimation typically yield
sound results, especially where sampling is sparse the obtained results cannot
be trusted with perfect con�dence. At the same time, it is hard to estimate the
potential error if there is no additional information available for the estimated
data. As a consequence of this uncertainty, the results obtained from analysis
are unreliable if conclusions are drawn from within regions a�ected by such an
estimation. Highlighting the corresponding regions in the visualization indicates
them as uncertain and therefore less trustworthy.

Combinations of these e�ects occur when approximating or interpolating
continuous �elds based on discrete samples. Even if theoretically the sampling
is dense enough to perfectly reconstruct the continuous signal, the estimate will
be uncertain due to the in�uence of measurement error on the sampled data. For
example, depending on the data and the estimation method, multiple stationary
values of some function will be introduced where there should be only one such
value. Yet, from the qualitative perspective, the relevance of this uncertainty
depends on the analysis situation and task. If the exact position of a stationary
value is not important, the uncertainty is not relevant. If instead, for example,
potential collisions between two objects need to be analyzed, the e�ects of an
uncertain shape of each estimated object and the sampling tolerance accumulate.
The prediction is not perfectly reliable due to the estimation and the tolerances
might indicate possible collisions at di�erent places than the measurement may
suggest. Again, combining these uncertainties and highlighting them only in
those regions where the prediction is uncertain or a critical event like the collision
occurs guides the attention towards the important information.

26



1.5.7 Subjectivity and Provenance

Probably the most important part of data analysis is the actual process of
drawing conclusions resulting in the construction of a model explaining the ob-
servation. Assumptions, presuppositions, and assertions are often implicit and
not directly communicated or documented. Yet, their in�uence on the analy-
sis result is decisive. Especially in interactive analysis setups involving human
interpretation of observations, documentation of results often does not cover
the deduction steps taken to obtain them. The major problem here is that all
data analysis is inherently subjective. There is nothing like neutral or objective
data because data alone do not provide an interpretation by themselves. Thus,
the interpretation is either the result of the analysis conducted by the viewer
or hardcoded into the visualization to be read o� directly from the display. In
either case, it is important to document the provenance information for a given
interpretation such that the reasoning behind the interpretation can be recon-
structed and veri�ed. As a result of this inherent subjectivity, the conclusions
drawn from visualizations can change drastically with di�erent contexts. As a
simple example consider a bar chart showing the calories of certain dishes from
which a diet is to design for some patient. If the task is to evaluate which is
the best dish for the patient, the choice will be di�erent for a patient su�ering
from obesity than for a patient su�ering from starvation. As another example,
consider a data set of performance values measured for a number of entities ca-
pable of performing some task. In this example, a number of entites performes
signi�cantly less than the others. The available options are a relatively low
cost solution removing the weak performing entities and replacing them by the
other type or to apply costly measures to attempt to increase the performance
of the weaker group. Given only this information without further context, the
solution appears to be quite straight forward. For a number of machines in a
production complex, replacement might actually be a good solution. If, instead,
the performance data was gathered for the workers rather than the machines
or for a set of school children, the decision is likely to be entirely di�erent even
though the raw, uninterpreted numerical data is exactly the same. In order
to reproduce the �ndings and the external knowledge applied by the analyst to
draw the conclusions resulting in those �ndings, careful documentation of prove-
nance information is crucial. This provenance information is also a neccessary
prerequisite for the reconstruction of an analysis result by a di�erent user who
might only be looking at the data visualization but is not informed about the
context.

1.5.8 Contingency, Coherence, and Emergence of Insight

Contingency of information as a qualitative attribute is not necessarily re�ected
inside the data context. Figure 1.2 shows an example for such a situation. The
images have been transformed until the data alone does not allow recognizing
them as faces. The lack of contingency is in this case compensated by the human
perception's closure capabilities.

The example illustrates that insight is not some set of objects in data that
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Figure 1.2: Example data from Mooney's visual closure experiment [94]. The pictures
have been manipulated until a viewer without knowledge about characteris-
tics of human facial expressions cannot identify the shapes clearly as faces.
Mooney's experiment shows that viewers are capable of mapping their men-
tal image of faces to the shapes, enabling them to correctly determine es-
timates of age, sex, and even the emotion shown by the facial expression.
The performance in this closure is almost equal over a wide range of ages.
Contingency of information in visual data analysis is thus not limited by
what is actually depicted but can also be achieved by projecting coherent
structures from the viewer's mental model to the displayed information �
an aspect commonly not covered by quantitative characterizations of the
information conveyed by visualization.

can be extracted or mined in some way. Instead, it is an emergent property � a
qualitative interpretation of the structure of relations between di�erent objects
in the data. Emergent properties are attributd to the observation made in the
data in its entirity and cannot be found in single elements or explained as a
combination of components. Thereby, emergent properties are properties whose
encoding requires combining outside general context information and data with
respect to the observed scaling. Consequently, they require qualitative analy-
sis of data relations and general context and cannot be captured by the local
considerations analyzing single data items or local patterns under purely quanti-
tative considerations. Beyond that, coherent structures in the data indicate the
contingency of implications or dependencies. Reasoning about the data in order
to infer complex information with respect to the general context goes beyond
what is explicitly displayed or measured. Hence, information entropy or other
statistical quantitative estimates do not capture actual contingency or emergent
attributes.

1.5.9 The Need for an Additional Perspective

Despite its inherent limitations, the importance of quantitative data analysis
should be no means be degraded. Its strengths render it suitable for a wide
range of tasks, including, but not limited to, clustering and classi�cation, di-
rect representation of raw data or derived measures, or statistical information.
Among the applications are the identi�cation of structure and patterns or other
interesting data subsets or the estimation of an observation's signi�cance. In
general, quantitative analysis performs well where the information can be read
directly from the data. Where this is not the case, an additional perspective is
needed to capture those properties of the data analysis result that are obtained

28



from analytical reasoning and interpretation. To install a holistic perspective
on reasoning about visualization, the scope of discussion has to be extended by
the re�ection of the analysis process itself. Not only the presentation of data
is important but also how well this presentation serves the actual analysis and
how it supports the emergence of insight. Such an extension requires the explicit
consideration of the qualitative aspects of data analysis.

Concerning the reasoning with visualizations, the sources of subjectivity in
data analysis need to be identi�ed and included into the discussion along with
the prede�ned interpretations of displayed artifacts and structures determined
by the visualization's designer. Towards a discussion what kind of conclusions
can and should be drawn from reasoning about the visualization, a stronger
focus on the semantics of graphical displays is required. Displays and interaction
should be provided according to the intended purpose for reasoning rather than
due to the shape of the data. Ideally, proper modelling of anticipated reasoning
strategies should allow the exclusion of potentially misleading design decisions
at an early stage during the design process.

To make analysis results comparable and reproducible, better documenta-
tion of the actual analysis process is needed. This kind of insight provenance
needs to capture not only the data an insight has been derived from but also the
outside knowledge applied to draw the conclusions leading to the insight. An
explicit discussion of the reasoning process and the chains of consecutive con-
clusions followed by analysts also allows to evaluate the anticipated reasoning
against the reasoning actually applied by analysts working with the visualization
and to re�ne the visualization accordingly where the work�ows di�er. Prove-
nance information can also be applied to develop novel work�ows based on the
knowledge about well-established reasoning strategies or validating and reusing
insights already found by other analysis in collaborative setups.

The complexity of analysis should be assessed from a holistic perspectve in-
cluding both reading the graphical display and reasoning about the recognized
artifacts and structures. Towards higher e�ciency for reasoning, mechanisms
are needed to properly embed the visualization into the analysis context by
adapting the work�ows and the graphical representation to the reaoning strate-
gies expected to be applied by the analysts working with the visualization. This
requires an extension of the existing methods of predicting the complexity of
visualizations by an assessment of the reasoning complexity as the qualitative
component of the data interpretation and analysis proces.

1.6 Qualitative Visual Analysis

The requirements identi�ed for an extension of quantitative data analysis by
qualitative aspects aim at the installment of a holistic perspective on the visualization-
based data analysis process. All of the limitations of quantitative analysis dis-
cussed above are concerned with aspects of reasoning about the data. To clearly
distinguish them from the quantitative aspects related directly to the data, the
following de�nition should be applied:
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De�nition: Qualitative Visual Analysis

Qualitative Visual Analysis captures all aspects of the visual data anal-
ysis process concerned with the interpretation of data, the provenance
of insight including its derivation from knowledge outside the data, and
the complexity of reasoning about the graphical data representation.

To enable the discussion of interpretations, qualitative visual analysis needs
to explicitly model the semantics of artifacts and structures in the graphical dis-
play. The documentation of insight provenance requires a formal representation
of the viewer's mental model of the visualization, including outside knowledge
and the applied reasoning structure. Proper methods for the assessment of com-
plexity of drawing conclusions within such a structure is required to enable the
optimization of graphical data representations and provided interaction methods
towards e�cient reasoning about the data.

Qualitative visual analysis captures aspects of the analysis process that are
usually not directly supported by the data but need to be derived from data
interpretations. The explanation of phenomena ideally directly carries over to
comparable data from another source. However, just like purely quantitative
treatment of data is not su�cient to explain observations and phenomena due
to the lack of interpretation, purely qualitative models only explain abstract
phenomena without an obvious connection to evidence supporting this expla-
nation. Qualitative visual analysis therefore is by no means a replacement of
quantitative techniques. It is an addition, broadening the perspective towards
a more holistic view on the analysis process, encouraging the consideration of a
"big picture" when analyzing data or designing data analysis applications.

It is important to emphasize that being primarily concerned with those prop-
erties of data that cannot be read o� or computed directly does not mean to in-
troduce ambiguity or arbitrariness. Interpretations can be subjective, especially
when made by human analysts. Yet, they are still bound to the context of the
data, the task, and the domain. Drawing conclusions requires the application of
logics. Where quantitative analysis considers the measurable and quanti�able
properties of data, qualitative visual analysis is concerned with the deduction,
derivation, induction, and inference of information. In this sense, qualitative
visual analysis is an additional perspective on visualization. Focusing on the
reasoning processes applied to obtain insight from data visualization, it asks
how these processes can be optimally supported � by re�ecting the domain-
speci�c interpretation and reasoning techniques and proper documentation of
conclusion provenance to foster the emergence of insight. Interpretation, prove-
nance, and emergence all are valuable �elds of study in their own right. While
there is a growing interest in these topics, they need to be combined to reach
their full potential. Qualitative Visual Analysis aims to provide the conceptual
framework to add the explicit consideration of data relations and dependencies
to the quantitative approach based on structure and values. Although it is
neither a design paradigm nor an analysis technique, shifting the discussion of
visualization towards a more holistic perspective has certain implications on the
design and analysis processes that can be leveraged to derive powerful analysis
work�ows.
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Figure 1.3: Data analysis and context. The traditional evaluation of experiments
(purple arrows) analyzes the observation either by quantitative means or
by qualitative reasoning towards a model explaining the observation. Quan-
titative analysis yields descriptive models that are included into the quali-
tative consideration as the objects of discourse. Qualitative analysis may
apply additional knowledge that might even be rooted outside the domain.
It yields an explanatory model explaining the observation from a behav-
ioral perspective. Consequently, its validation requires the design of new
experiments against whose outcomes the model's prediction is to be com-
pared. Data analysis (green arrows) instead is performed only on a subset
of the actual observation, namely the sample obtained from data acqui-
sition. Within the data context, quantitative analysis yields describing
models similar to the classical analysis process. These results can be vali-
dated against the data by statistical techniques. However, being of purely
descriptive nature, these models cannot predict the outcome of other exper-
iments and thus can only reveal knowledge about the sample but not about
the complete observation or even the experiment. Just like in the clas-
sical work�ow, deduction of knowledge about the experiment � and hence
the domain � necessarily requires an analyst interpreting the data and the
models obtained from quantitative analysis from outside the data context.
The central aim of qualitative visual analysis is to support this process by
establishing an explicit link between the descriptive models inside and the
behavioral model outside the data context.

1.7 Qualitative Visual Analysis in the Reasoning Pro-
cess

To understand the interplay between the di�erent levels of context in data anal-
ysis, it is necessary to re�ect the very process of analysis itself. The model
illustrated in Figure 1.3, serves as a working hypothesis the remainder of this
chapter is based on. For each level of context, its respective in�uence on the
analysis result is discussed along the air-tra�c surveillance example shown in
Figure 1.4. Concentrating mainly on the practice aspects, some of the �ndings
may appear rather trivial from a theoretical perspective. Yet, this impression is
deceiving. The example has been chosen since the discussed factors in�uence its
graphical appearance drastically. Although the visual e�ect will be much more
subtle in many applications, the in�uence on the analysis results is still just as
decisive.
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Figure 1.4: Additional context changes the interpretation. Without any further con-
text, any conjecture about the meaning of a set of curves would be purely
speculative (A). Adding domain context in terms of geospatial (B) and se-
mantic (C) information reveals that the paths are air-tra�c routes over
central Europe and the visualization shows airplanes traveling them. Let
the task be to monitor the air tra�c for critical deviations from the dis-
played routes. Without the task context, this involves active comparison of
the airplanes' actual paths to the routes. Embedding this additional task
context into the visualization, the insight about a violation is immediately
emergent (D). Interpretations with respect to the general context in�uence
the analysis performance decisively. These qualitative aspects should there-
fore be considered carefully and thoroughly and the general mechanisms
underlying them should be discussed explicitly.

Data is always sampled from an observation. Sampling is performed under
certain conditions which for the purpose of this discussion are summarized as
the context of an experiment. Experiment here refers to every process resulting
in an observation from which data can be sampled. Data only samples parts of
the observation and only re�ects the observation itself. Sometimes it contains
additional parameters but usually not the consideration behind the experiment's
design. Hence, the data will typically not describe the system completely. In this
sense, data is a snippet taken from the inside view of an observation, ignorant
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of further knowledge of the world surrounding it.

For this discussion, the notion of context assigns every object of discourse to
the most local applying context. For example, every result obtained from per-
forming analysis or executing operations only on the data remains completely
inside a data context. Hence quantitative analysis and validation are completely
contained inside the data context as long as they do not incorporate any infor-
mation that is not part of the data. This also applies if the algorithms and
procedures take into account additional knowledge about the observation, since
the observation is also completely inside the data context. To see the impor-
tance of this inclusion, consider the example shown in Figure 1.4 (A). Without
further information, this data can literally be anything � given only the data
one cannot distinguish a �ock of birds from a set of fathoms composing a fabric.
Adding the subset of the experiment context describing the actual observation
it is revealed that these paths are actually trajectories over central Europe (B).
Still, this does not re�ect an analysis question. Adding the analysis context,
it turns out that the visualization is about airplane trajectories to be moni-
tored (C). This is the minimum of information required to perform analysis.
Depending on education, cultural background, personal motivation, and other
factors contributing to the viewer's background user context, a skilled analyst
can now detect that the airplane in the southeastern corner of the displayed re-
gion deviates from its intended �ight path. However, this information has been
inferred from considerations that are not part of the data. The evaluation of
trajectories with respect to the �ight routes and the identi�cation of a deviation
as an air tra�c anomaly requires nontrivial domain-knowledge. Visualization
can highlight deviation and additional domain context like no-�ight zones (D).
Note that automatic classi�cation of anomalies also involves outside knowledge
that has been implemented by the programmer. The inference rules applied to
interpret the data are not part of the data itself.

Indeed, the consideration of information outside the data context is neces-
sary for reasoning. Cleveland and McGill de�ne the nonmeasurable outside fea-
tures as qualitative information and already account that data analysis concerns
learning both quantitative and qualitative information [34]. Quantitative con-
siderations can be performed completely inside the data context. User studies
reveal that embedding the results of quantitative considerations into qualitative
considerations to infer domain insight is substantially harder for viewers than
reading information o� the display [62]. Trafton et al. describe three di�erent
kinds of insight to be obtained from data visualization, requiring increasingly
complex reasoning [139, 140]. One category is insight about the visualization
which is basically understanding the data's visual representation. The second
category reveals insight about the data such as relations, patterns, or trends.The
third and most abstract category is concerned with insight about the analysis
domain, answering the analysis question by inferring the inquired information
from the depiction. In this formulation the three categories match the three-
level model proposed by Ware [148]. Regarding the mapping of high-level tasks
to these categories, Nazemi and Kohlhammer associate the �rst level with search
tasks, the second with exploration, and the third with the actual analysis pro-
cess [98]. Where the �rst and second category are concerned, Smuc et al. report
results from a user study revealing that while insight about the data can only
be obtained after insight about the visualization, viewers only need to under-
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stand those parts of the visualization that are relevant for the insights they are
interested to obtain [132]. This observation emphasizes Kosslyn's remark on the
importance of pragmatics in visualization: visualization performance depends
on its purpose [82]. Remarkably, all of these models have in common that rea-
soning about the data with respect to outside information is regarded as the
most complex part of the analysis process. These considerations complete the
model shown in Figure 1.3. The green arrows indicate information �ows in data
analysis and the purple ones indicate the classical observation-evaluation known
from science and engineering. Note that combining these two work�ows actu-
ally yields a structure similar to Daniel Keim's visual analytics pipeline [74].
Still, the link between the models obtained from quantitative analysis and the
behavior-focused explanations resulting from qualitative considerations is only
established by the viewer since it requires the extraction of information from
inside the data context to its outside.

Since, being a subsample of the actual observation, data is typically ignorant
of the conditions that lead to its creation, it is reasonable to consider two sys-
tems of reference when reasoning about data interpretation and analysis. These
systems are the data context and the domain context it is embedded in � the
central components of the analysis model shown in Figure 1.3. Note that this
is actually common best practice: together, the purple and green arrows in Fig-
ure 1.3 are actually just a slight alteration of Daniel Keim's visual analytics
pipeline [74]. Re�ecting on the aforementioned limitations of the currently pre-
dominant analysis approaches focusing mostly on quantitative considerations,
the key idea of qualitative visual analysis is to establish an explicit link between
the inside and the outside of the data context by adding a qualitative component
to the analysis work�ow.

The result of qualitative analysis is a descriptive model of the observation,
re�ecting the data's behavior. It is based on rules and predictions rather than on
measured facts and observations. The insights obtained in such a model de�ne
an adequate and accurate description of the analyzed data and its interpretation
with respect to the data's inherent context, the analysis context determined by
the task, the analyst's individual expertise, and the general domain background.
Being derived from data, this model cannot be veri�ed against the data itself.
Hence, attempts to re�ect on the fundamental truth underlying such a model
from within the model are futile. As a consequence, the evaluation of a model
obtained from qualitative analysis involves the development of a qualitative
meta-model as a necessary step. In the analysis model shown in Figure 1.3, this
is included as the design of new experiments. Note that this includes logical (and
thus qualitative) reasoning about the soundness of conducted analysis steps.
To support this veri�cation, qualitative analysis is not only concerned with
the interpretation of data and the emerging insights, but also with capturing
information provenance and documenting the analysis process.

Summarizing these considerations, there are three substantial observations
being made. First, the interpretation of data depends on the context. Data that
is free of context is also free of meaning. To support reasoning, the representa-
tion should also consider the domain and the task. This requires the extraction
of information from inside the data context to the domain context's qualitative
behavioral models and thus emphasizes the importance of qualitative consider-
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ations for the analysis process. The model building process also reveals that
the essence of qualitative consideration is not perception but reasoning about
the data. Since qualitative considerations take place in the domain context, the
generation of knowledge or decision competence � and, hence, any data analysis
� requires the consideration of outside information. The inside-outside princi-
ple speci�ed in Section 1.5.1 hence is a central property of qualitative visual
analysis.

1.8 Core Research Questions Inspired by Qualitative
Visual Analysis

Summarizing the discussion, it is evident that some aspects in�uencing the re-
sult of data analysis are not well re�ected in today's dominant data-centric
quantitative approach to data analysis. Relying on only those aspects of data
that are measureable or otherwise expressible in a quanti�able way, quantitative
data analysis is inherently limited by data's structure and values. Although this
kind of analysis is a purely empirical evaluation of data organized in a prede-
�ned �xed structure, the impression of objectivity is misleading. Without its
context and an appropriate scale level, quantitative data is meaningless. How-
ever, context is not an intrinsic property of the data. The interpretation of
data will thus di�er between contexts. Similarly, the capability to detect and
understand observations in the visualization is an individual skill and thus every
analysis result subjective. Of course, due to conventions within the respective
domains, analysis from the same domain will come to similar conclusions when
investigating the same data. Still, the di�erences between their individual ap-
proaches to obtain this information and the di�erences in the actual analysis
results need to be documented to enable comparison of results and explanation
of deviations between obtained models. Being an emergent property, insight
itself is inherently subjective. If visualization is meant to support insight, one
aspect central to a theory of visualization is how insight in terms of domain
understanding can be obtained from data analysis. In conclusion, it is apparent
that quantitative analysis alone will not answer this question but needs to be
extented by qualitative considerations. Qualitative visual analysis provides this
extension.

Qualitative visual analysis asks for the interpretation of artifacts and struc-
tures in graphical displays, the reasoning strategies applied to draw conclusions
and obtain insights from the graphical representation, and the complexity of
those reasoning processes. Answering those central research questions requires
systems that adequately capture the analysis domain's semantics, document the
provenance of insight including its roots in knowledge external to the data, and
foster the emergence of insight by optimally �tting the display and interaction
to the reasoning mechanisms anticipated to be applied by viewers. This exten-
sion to the data-centric quantitative perspective on analysis �nds three major
�elds of application: validation and theoretical evaluation of visualization sys-
tems, the speci�cation of e�cient work�ows, and �nding visualization designs
that optimally support the reasoning process.
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Concerning validation and evaluation, an explicit discussion of semantics
mitigates many of the well-known problems with purely quantitative descrip-
tions, including scale and unit problems. For example, exploring the semantics
of a distance or similarity measure in order to assign proper meaning to the
closeness of elements in the depiction provides a better assessment of visualiza-
tion plausibility by preventing ambiguity in the interpretation of distance and
hence increases the validity of analysis results. Such a model is introduced in
chapter 2.

Work�ows inspired by qualitative visual analysis focus on the reasoning pro-
cess rather than on the data features. To enable the speci�cation of such work-
�ows, a decription of the reasoning process is needed that captures not only the
data transformations applied by the visualization itself and the analyst's inter-
action but also the viewer's interpretations made in the context of the analysis
question and the viewer's outside knowledge about the domain. Such mod-
els also allow capturing insight provenance incorporating the documentation of
reasoning as an integral part into the analysis process. In chapter 3, analysis
work�ows derived from qualitative visual analysis are proposed.

The explicit consideration of reasoning in the assessment of visualization
complexity results in increased accuracy in the tailoring of visualization designs
towards the needs of the domain, the analysis application, and the individual
analyst. Proper models allow to even predict the e�ciency of visualizations
with respect to an anticipated reasoning strategy. Design aspects of qualitative
visual analysis are discussed in chapter 4.

Core References
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Chapter 2

Reasoning and Interpretations

Qualitative visual analysis requires a di�erentiation between what is perceived
and interpreted and what is investigated and analyzed. Current models of vi-
sualization and visual data analysis work�ows usually either focus on the phe-
nomenon being investigated or on its graphical representation. Data is only a
sample of the actual observation and studying visualizations means to study
representations of the data rather than the data itself. Consequently, it cannot
be expected that a mental model describing the analysis results automatically
yields a correct description of the investigated domain. This chapter discusses
the analysis of data utilizing visualizations as encodings of information is in-
vestigated. A model for the analysis process is proposed capturing the repre-
sentation of data in terms of visual encodings and the process of interpreting
those encodings in order to obtain information about the domain being inves-
tigated. Further formalization yields a theoretical framework allowing to study
how di�erent viewers and analysts read and interpret a given visualization.

To close the gap between reasoning about the visualization and inferring
insight about the domain, semantic aggregation is introduced as a theoretical
concept formalizing the understanding of visualizations as the inferece of se-
mantics by the interpretation of structures displayed in the visualization. Those
structures can be as simple as individual graphical elements or as complex as
large contextual views. The consecutive execution of two formal automata en-
ables to compute a prediction of the possible and applicable interpretations
given a visualization and a reasoning system anticipated to be applied by the
viewer. Visualizations and their interpretations can thereby be formalized in a
graph-based representation being interpretable by both humans and machines.
Extending the descriptive scope of the common cost-based approach to deter-
mine the complexity of visual data analysis, determining the complexity of those
formal languages additionally considers the complexity of the reasoning process.
The extended complexity model predicts �ndings reported in literature on user
studies on the complexity of reasoning about visual data representations. The
qualitative visual analysis cycle and the concept graph introduced in this chaper
therefore are not only descriptive models to reason about the formation of men-
tal models from visualizations but can also be applied as generative models
allowing to tweak the design of visualizations towards optimal support of antic-
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ipated reasoning chains.

2.1 On the Qualitative Visual Analysis Process

Every information to be found in graphical representations is subject to the
viewer's ability to perceive, recognize, and interpret what is depicted. Although
this question is of quite philosophical nature, it also has practical implications.
Viewers with di�erent interests and backgrounds will interpret the same data dif-
ferently and draw di�erent conclusions. Conceptual models of visualization and
interaction usually concentrate on one of two foci: reading and understanding
visualization for reasoning about the represented data or interaction to navigate
the visualization and steer the content of a given view. Models taking a holistic
perspective on both aspects typically do not provide formal descriptions for the
respective model's individual elements or the transition between them. Another
common observation among theoretical descriptions of working with visualiza-
tion and visual analytics applications is that the di�erence between the visual
data representation and the investigated domain is only considered implicitly.
Notably this also applies to more formal models of visualization content and
the encoding of messages to be communicated by the visualization and also to
models for the complexity of working with visualizations. Consequently, every
insight into the visualization is considered an insight into the data domain � a
rather bold statement considering that the visualization is only a representation
of data and even more so considering that visualization rarely shows raw data
and and that the visualization in fact is a data transformation itself. Of course,
there are certain requirements to this representation, for example that it should
not distort the information to be expressed by the visualization or that it should
attempt to avoid misunderstandings leading to false conclusions. However, such
requirements are hard to prove formally, especially if the information to be
obtained from the visualization is not to be found directly in the graphical rep-
resentation but requires reasoning about what is to be seen. The more complex
this reasoning, the harder it is to determine whether the visualization su�ces
those requirements to the quality of the data representation. Consequently, a
thorough discussion of the complexity and correctness of visualization requires
a detailed formal treatment of the qualitative aspects of visualization and visual
analytics.

For a theoretical framework enabling this kind of reasoning about visual-
ization, a model is needed that is capable of describing the whole process of
generating the graphical representation of data, reading and understanding this
representation, inferring an understanding of the investigated data domain from
this understanding and possibly generating new questions to the domain from
this understanding. Towards such a theoretical framework, this chapter intro-
duces a model for the visualization and qualitative visual analysis process. The
qualitative visual analysis cycle introduced in this chapter considers the whole
cycle of sampling data from a domain of interest with regards to a certain anal-
ysis question, visualizing this data, reading and understanding the messages to
be conveyed by the di�erent structures in the visualization, interpreting those
messages and reasoning about them, and generating a mental model of the
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viewer's understanding of the visualization from which insight into the domain
of interest is to be derived. For the transition between individual steps, the
model relies on the established theory of generating visualizations from data by
expressing them in terms of graphical languages and applying information the-
ory for the description of structures to be found and interpreted when viewing
the visualization and reasoning about its content.

The second central contribution of this chapter is semantic aggregation, a
formalism re�ning the models developed for the qualitative visual analysis cy-
cle enabling the computation of semantics applicable to the displayed artifacts
and structures in a visualization with respect to a viewer's anticipated rea-
soning structures. Semantic aggregation assumes that the meaning of compo-
nents in graphical displays is not static but assigned dynamically within the
viewer's mental model of the visualization in order to satisfy the requirements
of reasoning structures to be applied to the graphical display's interpretation.
This �exible reinterpretation mechanism is combined with the idea of extract-
ing interpretations applicable to the actually observed situation from a universe
of possible interpretations for hypothetically possible observations. Combined
with the work�ows and ideas of the qualitative visual analysis cycle, seman-
tic aggregation for example allows to asses whether a viewer will be capable of
reading the depiction correctly, to predict the kind of conclusions an analyst will
draw from the display, and the complexity of the qualitative reasoning process
yielding those conclusions.

2.2 State of the Art

Graphical displays communicate information by encoding them into structures
that can be perceived by the human visual system. To be recognized and
understood by the viewer, these structures need to match some pattern in a
repository of information on how to interpret visual stimuli. In the case of visu-
alization, these visual stimuli encode data generated from some commensurable
phenomenon, often but not necessarily a sample obtained from simulation or
measurement in an experiment. The assignment of meaning in human visual
information processing is performed in short-term memory by mapping the ob-
servation to learned structures in long-term memory [82]. In general, deriving
global information such as trends and patterns from the data triggers di�er-
ent and more complex cognitive processes in the human brain and is harder
than locating information that can simply be read o� [62]. This is already re-
�ected in Bertin's distinction between presentation and layout and Rensink's
triadic architecture for the description of visual data representations [16, 117].
The three-level model is supported by experimental data gathered by Ratwani,
Trafton, and their collegues in a series of experiments [116,139,140]. In a num-
ber of user studies on information visualization, they found three categories of
insight to be obtained according to the di�culty users experienced in obtaining
these insights. The �rst level is concerned with understanding the presentation
itself. The second level reveals relations, patterns, and trends depicted in the
visualization and � if the depiction re�ects the data correctly � already pro-
vides insights into the phenomenon the data describes. The third category is
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the inference of additional information based on reasoning about the obtained
information with the help of user knowledge external to the visualization. In
this formulation, the three categories match Ware's model [148]. From a task
perspective, Nazemi and Kohlhammer associate the �rst category with search
tasks, the second with exploration, and the third with the actual analysis pro-
cess [99]. A particularly interesting �nding in this direction has been reported
by Smuc et al. who found in a user study regarding the �rst two categories
that although insight about the data could only be generated after the viewers
obtained insight about the visualization, they only needed to understand those
parts of the visualization they actually applied for their reasoning [132].

In their analysis of visualization's purpose, Chen et al. qoute a collection
of di�erent characterizations of what actually de�nes visualization is towards
�nding an answer on what insight actually is [27]. The de�nition they develop
agrees with their references in that visualization is used to infer information
about some more or less abstract structure, either the data or the phenomenon
it samples. Yet, the factors they derive as the variables governing the time to
perform a visualization task also imply that this information is directly found.
The observation of Smuc et al. contradicts this assumption. If users were ca-
pable of directly reasoning about the phenomenon the visualized data has been
generated from, they would not need to understand the visualization before this
reasoning could be performed. This is also supported by Petre and Green who
report evidence that understanding visualization is unlikely a native ability of
humans but can be learned [107]. Findings like this indicate that cognitive load
and other human factors might actually be the expressions of the process un-
derlying the understanding of graphical displays and the reasoning about them.
Hence, there must be a collection of mappings between the graphical display,
how it is understood by a viewer, the viewer's toolset for reasoning about the
presentation, and � in the case of visualization for analysis purposes � the data
and phenomenon being represented by the graphical display. Towards this direc-
tion, Vickers et al. propose a theoretical framework for the process of reasoning
with visualizations based on category theory and semiotics [144]. Explicitly tak-
ing into account perceptive and cognitive abilities as well as knowledge, they are
capable of describing a number of e�ects commonly observed in visualization
applications. Among these e�ects are the possibilities that two viewers with
di�erent reasoning strategies will interpret the same visualization entirely dif-
ferently and come to entirely di�erent conclusions even if they read it exactly
the same way and that - likewise, two viewers might read the same visualization
entirely di�erently but still come to the same conclusion.

Information theory has been discussed as a model to mediate the transport
of data and information between the graphical display and the viewer [29]. In-
vestigating the de�nition of data, information, and knowledge in visualization,
Chen et al. contribute a de�nition attempt motivated by perceptual and cogni-
tive spaces by a model de�ning data, information, and knowledge to be di�erent
types of data in the computational domain [26]. Yet, information theory only
covers the transport of information and is not directly concerned with its pro-
cessing. As a consequence modeling the actual reasoning process requires a
higher-level structure. Such a structure is provided by Keim's visual analyt-
ics models and the knowledge generation cycle proposed by Sacha et al. as a
reasoning model for visual analytics [120]. However, these models typically as-
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sume a unidirectional �ow of information, accumulating the knowledge obtained
from data analysis in the user's mental model. Yet, the experimental results
referenced above actually contradict such an assumption.

Although this Thesis is mainly concerned with modeling reasoning processes,
this requires a model of visualization structure and content to de�ne the struc-
tures this reasoning is actually performed on. Theory on the design and for-
mation of visualizations can roughly be categorized into two groups. Low-level
approaches operate close to the data. Work in this direction often assesses the
quality or performance of a visualization with respect to certain criteria. Typi-
cally they apply algebraic, information theoretic, or other formal constructions
to describe visual encodings. Examples date back to Mackinlay's presentation
tool and Wilkinson's grammar of graphics [92,150]. More recent representatives
of this category are the visual embedding of Demiralp et al. [40], the algebraic
design process by Kindlmann and Sheidegger [76], and Tominski's event-based
approach [137]. The theory presented in this Thesis follows this direction by
formalizing a model of information content and how this information is mapped
to the graphical elements composing the visualization. Otto and Schumann pro-
pose a model similar to the one presented here in that it attempts to combine
data wrapping them into information objects [104]. Doleisch et al. develop a
feature description language to interactively de�ne features of high-dimensional
data based on the user's interest [43]. The combination of these two perspectives
is a key aspect of the theory proposed below. A dualism is established between
the data encoded by graphical elements and its interpretations. A strong focus
on the semantics of graphical elements also allows weighting their presentation
based on their relevance as proposed by Kosara et al. [81]. Similarly, graphical
elements can be emphasized due to di�erent semantic contexts. This empha-
sis can, for example, be achieved by the de�nition of relevance functions [70].
Yet, the theoretical framework introduced below follows a di�erent approach:
Rather than de�ning relevance functions, it leverages its graph-based nature to
formalize relevance by reachability in an ontology-like structure.

The second direction of theory is the development of general frameworks
of visualization design. Typical representatives of this direction are high-level
models that either aim to support the visualization expert directly by providing
feedback or guidance (e.g. [5, 125, 135]) or model the design process as a whole
(e.g. [96,135]). The theory proposed in this Thesis is more low-level but can also
be applied as a design tool. Examples for possible applications are the identi�-
cation of misconceptions prior to implementation or a formalized discussion of
design ideas with other designers and application partners.

2.3 Approach

The discussion follows three steps. First, an abstract model is outlined ex-
plaining the formation of a mental model from exploring visualizations and
performing tasks. It also describes the switching between exploration and task
formation and execution. The model draws directly from existing work, com-
bining descriptions of di�erent aspects of the analysis process into a common
model. The second step provides a formal foundation for the di�erent steps and
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the transitions between them. The formal theoretical treatment focuses on the
messages being conveyed by the visualization and those processed by the viewer's
cognition. The result is a theoretical underpinning for the abstract model devel-
oped in the �rst part of the discussion, formalizing the interpretations of data
being displayed in graphical representations. This theoretical underpinning is
�nally reviewed and extended to a formalism for the assessment of possible in-
terpretations and conclusions to be drawn given a visualization of a speci�c
data set. This is achieved by introducing the idea of semantic aggregation de-
scribing a dynamic assignment of meaning to elements in the graphical display
such that the same elements can contribute to multiple di�erent interpretations.
Formalizing this idea into a theoretical model in which interpretations can be
computed yields the concept graph, a versatile formalism for the speci�cation
of mental models of visulizations.

2.4 Related Work

The discussion of the qualitative visual analysis cycle primarily draws directly
from results discussed in the introduction of qualitative visual analysis. An
exception here is the consideration of information foraging theory for the deter-
mination of an analysis strategy inspiring the model.

The formulation of semantic aggregation and the concept graph extend work
on a graphical representation of information from semantically heterogeneous
environments in order to display its several di�erent possible interpretations [73].
This work is loosely inspired on Situation Semantics and Situation Theory as in-
troduced by Barwise and Perry [8,10]. Situation theory additionally introduces
logics to allow reasoning within the system [9,11]. However, for the sake of gen-
erality, no speci�c restrictions are made to the logics and formalism to be applied
within the framework discussed below other than that properties and relations
are described in terms of predicates and functions bound to variables specifying
entities or observations. The design of the concept graph's graphical repre-
sentation is based on VOWL, a graphical representation of the Web Ontology
Language which is used to model ontologies in the semantic web [7,14,90,100].
The semantic web has been applied in combination with reasoning frameworks
(e.g. [63, 78, 105]). Yet, although both formalisms are in principle compatible
with the ideas intoduced in this chapter, the discussion reveals that certain ex-
tensions and adaptations are necessary to capture the actual reasoning process
from within the model rather than requiring the addition of outside structure.

2.5 A High-Level View on the Qualitative Visual Anal-
ysis Workflow

Qualitative visual analysis explicitly takes into account the interpretation and
reasoning processes involved with the analysis of data. Existing models for
the description of working with visualizations tend to focus on the problem of
obtaining predetermined information from the visualization. This is the question

43



commonly asked when discussing visual search, the ability to �nd information in
visualization, cost-bene�t approaches to assess the complexity of visualization,
or the role of interaction to solve a given task. More complex models, especially
those on explorative visual analysis, tend to consider a cyclic process in which
new questions are generated from the �ndings made before. The classical visual
analysis pipeline already expresses this idea by a feedback arch ranging back
from the obtained knowledge to the original data. However, this arc is widely
ignored and there is a strong tendency to consider visual analytics as a form
of knowledge extraction implying a unidirectional �ow from data to knowledge
along the pipeline. Models speci�cally treating the topic of explorative visual
analytics typically consider an evolutionary knowledge model and consequently
contain one or multiple loops from the model generation back to the visualization
or the data. Evolutionary models automatically incorporate the feedback loop
of visual analytics.

Following the more general approach, the discussion in this chapter takes
over the idea of an evolutionary knowledge model. However, it extends this
perspective by adding a clear adding a clear distinction of what is shown in the
visualization and how this information is identi�ed. On the one side, there is the
visualization which is a structured representation of data sampled from some
observation, for example the result of an experiment or a survey. The formation
of the visualization and its content is based on quantitative analysis and includes
the results of data aggregation and processing, especially those results obtained
from automatic data analysis steps like clustering or classi�cation. From the
qualitative perspective, structures in the visualization are identi�ed, interpreted
and processed on the conceptual and semantic level to obtain a mental model of
the visualization. This includes local reasoning about individual structures and
global reasoning considering several structures and taking into account outside
knowledge that is not shown in the visualization but part of the analyst's context
knowledge. This clear structural decomposition of the syntax-oriented structural
processing of data on the one side and semantics-oriented content-analysis on
the other side provide a suitable basis for the formalization of processes in
quantitative and qualitative data analysis. Indeed, this separation is well present
in collaborative data analysis work�ows and even in visualization design studies,
where data preparation, aggregation, and visualization is performed by another
group of experts than the actual data analysis.

2.5.1 Information Foraging as Analysis Strategy

Qualitative visual analysis assigns an active role to the analyst. Actively search-
ing for information and reasoning about observations rather than only consum-
ing the presentation implies the existence of a processing pipeline similar to the
processing of data for the generation of the visualization. To enable reasoning,
visualization needs to transform data into sets of messages that can be inter-
preted by the analyst to obtain a mental model which is then mapped back to
insights into the domain from which the data has been sampled. Towards a
better idea of the actual transitions between the individual steps in the process,
the analyst's role needs to be reviewed.
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Information Foraging is a theory predicting human behavior during the pro-
cess of gathering information from abstract information representations or dur-
ing general investigative procedures such as internet recherché [108, 109]. The
theory is applied to predict the behavior of a human consumer of information
in static information displays and also to predict the interaction conducted by
a user of an interactive system. The classical example to describe the behavior
predicted by information foraging theory is the behavior of a bird searching for
food in various bushes growing berries. Depending on its experience and taste
the bird will scout for bushes that provide a large amount of its preferred berries
and especially for those nourishing the bird at best. Once a suitable bush is
found, the bird will start to feed from this bush. Note that this bush is not
necessarily optimal in any way, it is usually the �rst bush found and likely the
easiest to reach. Due to the bird feeding from the bush, the support of berries
gradually descends, making it harder for the bird to feed. At some point, the
bird will again scout for bushes in the surrounding. At this point, the bird will
start to evaluate whether the expected cost of further exploiting the current
bush will exceed the cost of moving to another bush. If so, the bird will move
on to the next bush. Information foraging theory is based on the observation
that humans show similar strategies when working with information sources.
For example, the theory explains the surprising observation that instead of us-
ing the native search function provided by an internet shop, some users prefer
to switch back to the original search engine that brought them to the shopping
portal as they �nd it more convenient to re�ne their search there. This behavior
becomes more frequent the harder it is to �nd the online shop's search function.

Information foraging theory predicts that an analyst performing a task will
�rst scout for a suitable portion of easily accessible data and attempt to extract
as much information from there as possible. The information is already further
processed by local reasoning. If the information is found to be insu�cient for
the solution of the task, the analyst will attempt to access di�erent information.
Depending on the task, di�erent kinds of information are interesting. The ana-
lyst will attempt to access detail information if the task requires to do so. If the
task is to obtain an overview, the analyst's focus will move between di�erent
bits of information more frequently. However, if the information still is insu�-
cient for the solution of the task or if the analyst is convinced to be unable to
extract further information from the current view navigating interaction will be
applied to move on to another portion of the data. For tasks involving global
reasoning, at least two di�erent portions of the provided information need to be
focused at and to be reasoned about in conjunction. Tasks can change on the �y
meaning that even if the task is to obtain an overview of the data, some detail
information might be consumed if it is relevant for the kind of overview the user
is interested in. For example, rather than in the general connections in a public
transportation network, the analyst might be interested in an overview over the
connections between certain points at certain times, for example to transition
between a hotel, a conference venue, an airport or railway station, and a place
where a social event being part of the conference program is located. Note that
the actual strategy executed by the analyst depends on various factors, only
one of which being the task to be solved. Others are personal experience of the
analyst, the shape of the display and the complexity to extract certain informa-
tion, as well as the interaction functionality provided by the system being used.

45



The strategy followed in the example is based on the search for single-direction
transport options between two points. Consequently, accessing a source of in-
formation means to obtain the set of connections between two points and then
�nding the optimal connections best suiting the expected time frame for the
actual transit. The obtained result is a transit schedule with an optimal option
and some alternatives for each transit to be made. In this speci�c example, it is
assumed that the transit routes are served by di�erent companies with di�erent
pricing systems. The prices are provided together with each line. Hence, the
user's task changes frequently between identifying connections and comparing
prices. For simplicity, it is assumed that no company o�ers a suitable pricing
model for multiple transits such as time-based tickets. Notably, the changing
task does not necessarily induce a change of the view. It only changes the focus
on the information provided within the same view. Even for connections where
lines of multiple companies are used, only the total amount to be paid is relevant
for the optimization task of �nding the best transportation. The question being
more relevant here is whether it appears more convenient to switch lines, which
means to buy a new ticket at the intermediate station, or to take the probably
more expensive or slower line that does not require to switch lines during transit.
Just like the task being performed switches frequently over time, the relevance
and importance of di�erent parts of the information does. Hence, the criteria
for the evaluation of the amount of further information to be gathered from a
certain source change along with the task. As a direct consequence, the analyst
might frequently return to some source of information after having left it if the
reason to leave was a change of interest due to a change of the task rather than
a result of being unable to extract further information for the solution of the
di�erent tasks.

Di�erent levels of tasks and subtasks might be described simultaneously in
information foraging theory, where the same strategies applying for the solution
of the more general task also are applied for solving individual subtasks. From
this perspective, explorative analysis can be described as the task to obtain an
overview or an impression of the data by aggregating the relevant information
into a descriptive mental model of the observation domain. Tasks directed to-
wards the answering of more or less precisely formulated questions or regarding
hypotheses to be tested against the data then can be described as attempts to
con�rm or disprove assumed structures in this mental model. Where visualiza-
tion is concerned, exploration and task-solving both require the translation from
structure in the visualization to cognitive structures in the mental model, repre-
senting the interpretation of the structures being shown in the visualization in
terms of their assumed relations and respective meaning. This necessity can be
leveraged to map the information foraging strategy to the high-level qualitative
visual analysis work�ow described before in order to obtain a more �ne-grained
model.

2.5.2 The Qualitative Visual Analysis Cycle

Bringing together the user behavior predicted by information foraging theory
with the decomposition of the qualitative visual analysis process into a struc-
tural and a semantics part results in the model model shown in Figure 2.1. To
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Figure 2.1: An illustraion of qualitative ideas underlying the qualitative visual analy-
sis cycle. The six di�erent sections along the cycle denote the various states
in the process. The arrows indicate the transition between the individual
steps. Colored arrows categorize three pairs of antipodal transformations.
The blue arrows indicate visualization and interpretation, the green ar-
rows query and response, and the red arrows model explorative analysis. A
closed circle can only be achieved by combining transitions from mulitple
categories.
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enable the visual investigation of information for information foraging, a visual
representation of the data has to be generated from data that in turn needs
to be sampled from the domain of interest. Since the aim is to learn about
the domain rather than the data or its representation, both data and visual-
ization need to be considered as variables that can be changed if the task or
the analysis require the analyst to do so. Although in many applications they
will be �xed due to practical restrictions, especially the �exibility to change the
visualization is sometimes important for the investigation of di�erent aspects of
the data. Since information foraging assumes that information is consumed in
some way, the process of consummation also has to be modeled. Visualizations
communicate information by forming structures and patterns in the graphical
representation. Those structures and patterns can be read and interpreted by a
viewer and generate a mental model of the graphical representation. Combining
this mental model with outside knowledge about the general domain of interest,
personal experience, or other forms of knowledge about information not con-
tained in the visualization, an analyst is capable of enriching this mental model
by further reasoning and ultimately enabled to map this mental model back
to the original domain of interest in order to obtain insight about the domain
rather than only about the data or its graphical representation.

Information foraging now implies di�erent actions to be performed in or-
der to work with visualizations along the identi�ed steps. Interestingly, these
actions form antipodal relations, each spanning three of the six steps and trans-
forming the �rst to the third leveraging the intermediate step. The collection of
transitions is indicated by the arrows in Figure 2.1. For example, the domain is
represented by a visualization formed using the data sampled from it. Likewise,
the mental model is formed by comprehending the messages to be conveyed by
the visualization depending on which messages the viewer is able to perceive.
This pair of relations describes the classical perspective on visualization genera-
tion and the analysis of a viewer's understanding of visualizations, including for
example considerations on visual search. Interactive and explorative setups can
be described by an antipodal pair of relations where the visualization is to be
explored by perceiving the information being displayed in terms of the messages
conveyed and the data being investigated is sampled from the domain based on
the information inquired to express some part of the mental model, for example
an hypothesis or a scenario. This kind of analysis is typical for what-if scenario
analysis where di�erent parameters a�ect the outcome of an experiment or sim-
ulation and hence need to be tested in order to �nd optimal results. Flood
analysis for decision support is a typical example for this kind of application
of visualization for decision support. The third pair of antipodal relations re-
�ects exactly the high-level model of qualitative visual analysis proposed before.
Data is expressed in terms of messages to be communicated to the user and the
visualization is the medium enabling this communication. Understanding the
messages perceived results in insight into the domain of interest if an analyst is
capable to structure the perceived information in a mental model and to apply
reasoning to map this mental model of the graphical representation back to the
actual domain model.

Interestingly, each of the three antipodal transition pairs leave out an in-
between transition between two of the steps in the model. For the strategy sug-
gested by information foraging theory, however, a full cycle is implied: Scouting

48



for information means �nding the right data to sample and the right visualiza-
tion to represent it. The visual data representation needs to be consumed and
processed further to evaluate whether or not the focus should be changed at a
given point in time. This loop, combining the transitions �represent� � �explore�
� �understand�, models the process of explorative data analysis and other tasks
aiming at the generation or extension of the mental model. The other possible
combination of three consecutive transitions, �inquire� � �express� � �compre-
hend�, models the execution of tasks that can be formalized as tests of structures
in the mental model against the data. An example for the former type would
be the task to obtain an overview over the domain of interest. Another example
would be to form a hypothesis based on the observation and by applying reason-
ing involving contextual knowledge from outside the visualization. Validating
this hypothesis would be an example for the second type of task. Qualitative
visual analysis aims to take a holistic perspective on the visual data analysis
process, including the reasoning performed on the data. Consequently, a formal
model of qualitative visual analysis should follow the closed loops of transitions
between steps.

2.6 Towards A Formal Representation of Qualitative
Visual Analysis

The qualitative visual analysis cycle as introduced above is only a high-level
description of the analysis process. Being derived from information foraging,
it re�ects the expected behavior of an analyst navigating the data to interpret
it and draw conclusions from it. By the explicit inclusion of an interpreta-
tion process generating a mental model of the visualization, it implements the
inside-outside principle introduced in Chapter 1. For a model for the process
of obtaining insight about the domain from data sampled from the domain, a
more sophisticated theoretical framework is needed. Such a model is developed
in the following.

2.6.1 Formalizing the Qualitative Visual Analysis Cycle

Before the individual steps and transitions in the qualitative visual analysis cycle
can be discussed in detail, the overall process has to be formalized. Figure 2.2
shows the cycle applying the formalization introduced below. Where it is not
stated otherwise, the formalism discussed in this chapter is applied consistently
throughout the remainder of this Thesis.

Data is assumed to be a �nite set D of qualitative or quantitative entities
obtained from descriptions or measurement sampling some potentially in�nite
set of information I. I describes commensurable observations and entities. It is
given in terms of predicates and functions in logics adequate for the description
of the domain of interest. Unary predicates and functions denote intensional
properties of entities and observations. Intensional properties are those prop-
erties that describe an entity or observation independently of any other entity
or observations. Higher arity either denotes extensional relations describing the
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in�uence an entity or observation has on another entity or observation or the
states of a�airs between observations and entities within an observation. In this
sense, I can be understood as a semantics model of the domain, modeling what
is known about the domain and how this knowledge is to be interpreted and un-
derstood. To structure I, the functions and predicates are bound to higher-order
predicates modeling commensurable entities and observations. The valuation of
variables for an entity or observation determines its state. To better distinguish
between stateless and stateful objects of discourse, valuated entities are called
are called objects, valuated observations are called situations, and their unval-
uated prototypes are called types, following the notion introduced by situation
semantics.

Observations and entities are mapped to data by a representation relation ρ :
I→ D establishing a partial map from the space I of semantic information to the
space D of sampled data. More precisely, ρ : I→ D is a partial map expressing
sets of known facts about an entity or observation I ∈ I that is sampled by data
D ∈ D. Higher order elements like sets of entities or sets of observations are
captured by establishing a surrounding observation featuring the information
about the contained observations and entities. Likewise, sets of data sets again
form data sets in D. There is no further restriction to the shape of D other than
that every element is in some way related to some information in I. Because
data analysis attempts to learn about I from D, the relation ρ is generally not
known completely. This does not only apply to the entities and observations but
also their respective predicates and function. Nevertheless, ρ plays an important
role in hypothesis tests where the hypothesis can be formalized as an extension
of ρ yielding some hypothetical map ρ′. Because ρ′ is a hypothetical map from
the information to data, it can be invalidated by the data or shown to hold at
least for the data.

In most cases, the partial inverse of ρ, the sampling relation σ : D → I is
known much better. Yet, σ is commonly also only known only up to a certain
extent, making it only a partial inverse of ρ. After all, σ maps the data to
the information it encodes. Finding this information is the actual aim of the
analysis. One aim of data analysis hence is to complete the knowledge about
σ as best as possible. Because σ is a partial inverse of ρ, this automatically
means to obtain knowledge about the snippet of the domain information that
is represented by the data. The reconstruction of σ, however, only provides
insight about the data but not directly about the domain. Reasoning about
the domain, especially about general principles expected to hold there, hence
in most cases requires additional knowledge outside the data. Visualization
provides an analyst with an interface to the data. This interface allows the
analyst to connect the information sampled by the data and encoded by the
visual display with the available outside knowledge in order to draw conclusions
about the domain.

A necessary precondition for such an application of information to problem
solution is the characterization of the problem by collecting data about it and the
identi�cation of a mapping between data and a repository of known information.
In the context of visual data analysis, this repository is commonly referred
to as a viewer's mental model. The viewer's knowledge about how to read a
visualization correctly would then be the availability of an interpretation relation
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Figure 2.2: A formalized version of the qualitative visual analysis cycle. The states
have been replaced by sets of information entities and observations repre-
senting the domain information I and the mental model M and by sets
of objects and situations representing the data D and the visualization V .
The transitions are now given in terms of formal mappings.

ι : V → M matching the observed graphical elements in the visualization V to
corresponding structures in the mental model M and its partial inverse, the
anchoring relation α : M → V , formalizing the viewer's visualization literacy as
the ability to externalize structures in the mental model by mentally mapping
them onto structures displayed in the visualization.

In an ideal world,M and V behave exactly like I and D. However, this is not
to be expected in actual applications since the graphical representation is usu-
ally obtained by aggregating and reorganizing data. Likewise, the mental model
is not just a re�ection of information learned about speci�c data but rather a set
of inference and derivation rules being applicable to a certain range of graphical
data representations in order to infer information. In this sense, M can be said
to re�ect I if the elements in M are equipped with similar predicates and for-
mulas as the entities and obsevations in I. In this case, a mapping ref : M → I
can be established by matching corresponding predicates. The visualization V
is an encoding of data D ∈ D with the aim to convey the information sampled
by D. V hence is not a direct view on the data but only a representation of
either the raw data directly sampled from I or the result of a series of transfor-
mations applied to this raw data. Note that � being a transformation itself �
the visualization never provides a completely undistorted view on the data. The
transformations applied to the data to generate the visualization are collected in
an encoding-relation enc : D→ V . Other than the representation of D, V o�ers
additional functionality like, for example, interaction mechanisms. The actual
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view on the data consists of a set of artifacts and structures being displayed in
the visualization, encoding messages to be conveyed to the viewer.

The language determining the displayed messages is the graphical language
LV , a concept well known from from literature on the composition of graphical
displays such as Mackinlay's APT andWilkinson's grammar of graphics [92,150].
The perception and correct interpretation of symbols arranged by the graphical
language is neither guaranteed nor does it directly yield any sort of insight.
The ability to perceive artifacts and structures depends on the viewer's visu-
alization literacy � the knowledge about how to correctly read a visualization.
This ability together with the cognitive ability to convert and interpret per-
ceived artifacts and structures into the structures applied for reasoning de�nes
a reading language LR. The conveyance of messages in visualization is governed
by two factors: by the successfull transmission and receipt and by the correct
translation from LV to LR. The theoretical treatment of message conveyance
in the visualization literature is dominated by approaches based on information
theory. Information theory is commonly applied to discuss the transmission of
messages and the likelihood that words of LV appear and can be recognized
by the viewer. Other approaches concentrate more on the translation between
the two languages along the transmission. While the transmission is primarily
a problem of appearance and visibility of symbols, the successful translation
between LV and LR is not only a matter of literacy and recognition but also
of perception. This work, however, is concerned with the general reasoning
mechanisms involved with the cognitive processing of those messages and not
with perception. Although those topics are highly interesting, the discussion of
the actual transmission and translation process is left to the literature and this
work instead concentrates on the identi�cation and formation of LV and LR.
Throughout this Thesis it is therefore assumed that viewers will only reason
about those words in LR they are actually able to read from the visualization
by perceiving them in the visualization and mapping them to a corresponding
concept in their mental model of the visualization. In fact, the words in LR
deterimine substructures µ in the viewer's mental model M of the visualiza-
tion. M is a representation of the viewer's understanding of the visualization.
It re�ects the reasoning structure along which artifacts and structures denot-
ing words in LV are mapped to entities and observations that are combined
and reinterpreted to draw conclusions of di�erent complexity. To this end, the
mental model relates the concepts being read from the graphical display to the
viewer's outside knowledge according to the inside-outside principle introduced
in chapter 1. The combination of the outside knowledge with the information
represented by the data and the messages conveyed by the visualization ideally
forms structures in M that re�ect the domain information I. If so, domain in-
formation can be inferred from the construction of proper structures in M by
the combination of the graphical display with the viewer's outside knowledge
about how to interpret and what to conclude from the structures and artifacts
found in the display. This kind of �nding insight about the domain by establish-
ing a map ref : M → I back to the domain information closes the qualitative
visual analysis loop. In summary, qualitative visual analysis is concerned with
the cognitive process generating LR from LV by �nding proper structures in
the mental model M . The following discussion illuminates this process in more
detail.
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2.6.2 Transforming Data into Messages Conveyed by Visualiza-
tion

Visualization does not show the data directly. It displays a representation allow-
ing to draw conclusions about the data and � if combined with outside knowledge
� about the domain of interest the data has been sampled from. Similarly, the
data is only a snippet of the actual observation being made in the domain of
interest which is why the domain cannot be understood by only reading the
data without further reasoning � up to the exception of very simple domains.
Reading a visualization, a viewer does not directly look at the data but rather
at a representation attempting to aid the viewer in making sense of the data.
Hence, there must be some form of mapping from what the viewer perceives in
the visualization to the actual data being represented and to the facts about
the domain the data witnesses.

For modeling the generation of visualizations from data, the idea of graphical
languages has proven useful in the context of automatic visualization genera-
tion. This approach dates back to the pivotal work of Mackinlay's APT and
Wilkinson's Grammar of Graphics [92, 150]. The authors explained models to
translate formatted input data structures into visualizations. Depending on the
input data format, an automatic choice of visualization type is possible. For
example, such a system can map data being marked as parts of a common total
to a pie chart and absolute values to a bar chart. Similarly, the bar chart can be
translated to the pie chart by invoking the computation of percentages from the
absolute values and feeding the new data back into the visualization generation
process. In the theory of formal languages and their computation, this can be
achieved by calling a so-called oracle, which is basically the invocation of an
algorithm assumed or known to correctly apply the intended transformation.
Assuming the data is formatted as a comma-separated list of formatting data
determining which output state is being accessed, this can be modeled by a
�nite state automaton. This automaton's output states are interpreted as those
states that actually draw something to the display. More precisely, output states
are interpreted as oracles taking a list of key-value pairs and processing them
to be displayed on the screen. If the automaton accepts the data string the
visualization generated by the output states is considered a valid representation
of the input data. Note that although the output elements already indicate the
type of element, the data does not determine their actual shape or position.
Shaping, scaling, positioning, as well as all other details about the appearance
of a given portion of data on the display are up to the drawing mechanism being
implemented in the oracle. Strictly speaking, this is already a deviation from
the classical approach which is actually concerned with how to place marks and
signs in a visualization and not only what marks and signs should be placed
there. Yet, on the data-side, the focus of this Thesis is not how exactly the vi-
sualization is generated from the data but what the representation reveals about
the data and about the domain of interest. Note that the type of automaton de-
scribed above can only recognize regular languages, which means that the input
string is necessarily formatted by a regular expression. An example of what this
kind of automaton cannot do is the sequence of operations of drawing a number
of items, then drawing something else, and only then drawing the same number
of items as before. This would require remembering the number of items drawn
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in the �rst part of the execution, something that cannot be expressed by regu-
lar expressions. A more sophisticated automaton model is discussed in a later
section of this Thesis.

Generating the visualization is only one step. When designing visualizations,
an important question to answer is how to map the data to artifacts and struc-
tures that will be recognized and understood by the viewer. Perhaps the most
in�uential work on this question to this date is Bertin's Semiology of Graph-
ics [16]. In his consideration of visual variables, visual signs and symbols, and
their arrangement, Bertin established the foundation of modern theory on vi-
sualization design � although his work was focused on the design of graphical
representations to be printed on paper rather than rendered on screens. The
focus of qualitative visual analysis � and, hence, this Thesis � however, is not on
the generation of recognizable and meaningful structures but much more on how
those structures are being interpreted and processed once they are recognized.
Consequently, the question how visual artifacts are structured and aligned and
which visual variables are applied to determine their shape and general ap-
pearance in the presentation is only of minor importance for this work. Much
more important to the scope of qualitative visual analysis is the question what
information the viewer is expected to read and what an analyst is expected to
conclude from a graphical representation of data. Depending on the information
to be conveyed and on the complexity of the reasoning process being applied,
di�erent parts of the visualization will be considered. Especially global reason-
ing involves the simultaneous consideration of several artifacts and structures
in the display. Indeed, although the elementary artefacts are the same symbols,
the graphical structures being read and interpreted from visualizations di�er
from those being drawn.

Essentially, communication is always about understanding. Consequently,
there can be no treatment of visually conveyed messages without considering
the viewer's expected or intended interpretation. Qualitative visual analysis
thus asks for the interpretation and cognitive processing of structures recognized
in the visualization and hence is only indirectly concerned with semiology and
semiotics. Instead, the focus is much more on syntax and semantics. Translating
graphical representations into messages to be conveyed to the viewer involves
more than the reproduction of the signs and visual variables being used to repre-
sent the data. Once the structures are perceived and recognized, the cognitive
processes governing reasoning and interpretation have to be considered. Al-
though the current state of the discussion does not enable the characterization
of those processes yet, their structure and shape can already be determined �
even though this determination only considers the perspective of the presenta-
tion.

Consider any given visualization. The artifacts and structures it displays are
composed of marks and symbols whose appearance and alignment is determined
by a set of rules. Those rules de�ne how a program generates the visualization
from a given set of properly formatted input data. For this part of the dis-
cussion, it is only of minor importance how exactly this transformation can be
modeled � this question is discussed in more detail in a later section. The result
of this transformation process � the visualization � can be described in terms of
a graphical language LV . Every graphical language is generated as the words
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being produced by a suitable formal grammar G(LV ) = (N,T, P, S). The gram-
mar generates the visualization by constructing a word in LV by following a
set of production rules P that, starting in some initial states S processes those
states along sets of nonterminal symbols N until the artifact to be drawn on
screen for the visualization is obtained as a terminal symbol T . The words of
LV are the individual marks and symbols together with the rendering informa-
tion determining their appearance and position. Taking multiple words of LV
and following a set of syntax rules yields sentences and contexts as higher order
structures on the graphical language. The composition of those structures is
determined by the viewer reading the visualization. Understanding this mech-
anism is essential for the discussion of qualitative visual analysis as only the
identi�cation of structures in the visualization enables the inference of infor-
mation from further processing. Therefore, the remainder of the discussion in
this Section focuses on obtaining a technique for the construction of a model
generating those structures over LV . Because this Thesis is concerned with the
generation and processing of artifacts and structures being read from a visual-
ization rather than their generation, the construction of LV is not discussed in
detail here. In fact, pocedures for this construction are actually well discussed
in the literature. Perhaps the most widely known examples are Mackinlay's
presentation toolkit and Wilkinson's grammar of graphics [92,150].

2.6.3 Determining Structures over the Graphical Language

Although on the technical level the construction of sentences and contexts is
arbitrary, a viewer will only be able and interested to interpret a subset of
what is theoretically possible to construct from the words in LV . The rules
determining the structures a viewer will perceive and process are determined
by factors as diverse as the viewer's personal and professional experience, the
analysis question, the context in which the analysis is performed, and even on
sentiment and mood. The set of artifacts and structures recognizable by a viewer
can be collected in another formal language, the reading language LR. LR is
constructed on top of the graphical language LV determining the appearance of
the visualization. It is the language denoting what a speci�c viewer will read in
the visualization. It is important to note that LR does not denote all structures
that can be perceived by the user. Structures can indeed be recognized but
remain unconsidered, for example, due to lack of relevance or interest. Even if a
speci�c viewer is unable to recognize and interpret a certain artifact or structure
in the display, it is still there and can be perceived. On the other hand, only
those structures can be interpreted that the viewer is actually able to recognize
and read.

Before the question how a structure readable by the viewer is formed in
a visualization can be discussed, the question needs to be answered how those
structures are actually being read. Not quite surprisingly, the structure of words
in the reading language follows the levels of complexity discussed in Chapter 1.
The �rst and most basic level is simple recognition or reading o� of artifacts in
the visualization. As an example, consider a bar chart. The viewer recognizes a
bar as a bar, an axis as an axis, a mark as a mark, a label as a label, and so forth.
Yet, to do so, the viewer must be capable of recognizing those elements as such,

55



meaning that the viewer must be able to read the visualization properly. This
capability to read and understand visualizations correctly is commonly referred
to as visualization literacy. Reading the chart means to form a sentence of words
over the graphical language LV determining the chart's appearance. For the bar
char, this is achieved by combining an axis and a bar by some rule stating that
the height of the bar along the axis is marked by the mark and that this height
determines a value to be associated with the bar. A second rule then tells the
viewer to associate the bar with an object being identi�ed by the bar's label
and yet another rule then makes the viewer associate the bar's value with this
object. This kind of processing knowledge is not part of the visualization but
part of the viewer's outside knowledge. An analyst might additionally attempt
to draw conclusions from the depiction, for example by comparing the heights of
multiple bars. To this end, a context must be formed in which this comparison
can be executed. This again is achieved by applying rules determining that the
heights of multiple bars now are compared to evaluate multiple objects while
reading the value from each bar follows the same rule set as before. The resulting
knowledge about the data is of the second level of complexity according to the
three levels discussed in Chapter 1. The third level involves an interpretative
transition of this knowledge to the answer of a question being phrased in the
domain of interest and thus relies heavily on outside knowledge. For example,
one bar being taller than the other might persuade some viewer without any
additional outside knowledge about the visualization's general context to value
the entity represented by the one bar higher than the one represented by the
other. If the bars show pro�t to be made from selling di�erent products, this
interpretation would appear fairly obvious and certainly be correct. If it is
the calories of di�erent sorts of food to be combined to form a diet for di�erent
patients in a clinic, the interpretation will di�er between a diet for an overweight
person and a diet for an underweight person. It is thus clear that sentences
and contexts in the reading language LR contains parts not in the graphical
language LV . How exactly LR is formed from LV thus depends on the viewer's
or analyst's rule set serving as a reasoning system to be applied for reading the
visualization. This reasoning system does not only determine the composition
of structures from displayed artifacts but also determines the relations between
those structures. In many � if not most � cases, sentences and contexts to
be read from the visualization are constructed with the purpose to obtain quite
speci�c information from reading the words, sentences, and contexts in a certain
manner. Consequently, in order to determine production rules for a reading
language LR, the viewer's ability to recognize, combine, and relate artifacts
displayed in the visualization has to be modeled.

In the following, several relations need to be represented that further down
in the discussion are combined into a graph-structure. This graph structure is
later applied to infer the words of the reading language. The notation for those
relations is inspired by Cypher, a database programming language used for the
neo4j graph data base [53,101]. This notation is chosen for convenience, because
it has been designed to re�ect the graph-characteristics of the relations being
represented while still being well-readable in text. In this notation, relations are
binary and follow a simple subject-predicate-object logic where the subject and
object are indicated by parentheses and the predicate by brackets. In a graph
structure, the subject and object are nodes, and the predicate is the label of a
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directed edge connecting the subject to the object.

Sentences over LV require their words to be recognized by LR and a re-
lation combining them. Relations are transitive and can thus combine sen-
tences to larger sentences. For example, (mark)− [on]→ (axis) and (height)−
[of ] → (bar) determine two simple relations over words in LV , namely mark,
axis, height, and bar. Strictly speaking, height is actually a property of bar
and thus a subword. Since those sentences are also part of the visualiza-
tion's generation, they are considered native to LV . Similarly, the sentence
(mark) − [determines] → (height) is native to LV , because the visualization
is constructed this way, including the sentence as part of its syntax. Inference
from a legend instead denotes a graphical context over LV as now two syntacti-
cally separate structures have to be combined based on some rule known to the
viewer. The outside information about how to apply the legend with the local
depiction and how to interpret the combination of both is part of the viewer's
visualization literacy, which is either a skill acquired previous to viewing the
visualization or to some extent learned from reading the visualization's legend,
if provided. The viewer's literacy determines how sentences are formed and
combined. Following a strict subject-predicate-object structure, the sentences
described here can be mapped to the Resource Description Framework (RDF),
the data exchange format underlying the semantic web [7, 14, 90, 100]. In this
Chapter, the semantic web is applied to combine the di�erent sentences being
formed by the construction introduced here to a graph. The concatenation of
simple sentences is one possible operation to obtain higher complexity. It allows
to construct sentences like (mark)− [determines]→ ((height)− [of ]→ (bar)).
Concatenation is a special case of a more powerful formalism allowing the nest-
ing of sentences by replacing the subject or object of a sentence by the subject
of the sentence being nested. The nested sentence is then treated as the new
subject or object of the sentence is it embedded in. Adding sentences like
(bar) − [represents] → (object) to the above example, this additional outside
knowledge allows constructions like

(mark)− [on]→ (axis)− [determines]→
(height)− [of ]→ ((bar)− [represents]→ (object))

Outside knowledge can also include full sentences over LR that determine a
context combining two or more sentences of LV , for example

((height)− [of ]→ (bar))− [denotes]→ ((value)− [of ]→ (object))

Sentences like this allow to model simple interpretations in the reading language
LR, although those interpretations only consider the syntax component of the
visualization and are ignorant of the semantics. As an example, consider the
sentence

(mark)− [on]→ (axis)− [determines]→
((height)− [of ]→ ((bar)− [represents]→ (object))− [denotes] →
(value)− [of ]→ (object))

It states that a mark on an axis denotes a value for an object being represented
by a bar. However, in this syntax, there is no way to express that the two ref-
erences to object in this sentence actually refer to the same entity. Notice that
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this is not self-evident. Although violating the expectation that both instances
of object refer to the same entity might not seem intuitive, it actually applies
in cases where di�erent properties of the object are represented by di�erent vi-
sual variables determining the bar's appearance. Consider a bar whose height
encodes a number of sales and whose width encodes the price of a product. By
this encoding, the area determines the pro�t made from selling the product.
Whether this is a good choice for the visual variables or not is not important
here � the point is that in the above sentence, the height now refers to only the
price while the bar refers to the whole product. Hence, in this example, the two
instances of object actually refer to di�erent entities. The consideration whether
the instances refer to the same entity or not is of purely interpretative nature.
The structures reviewed thus far constrain the recognition of combinations of
words in the graphical language to sentences that can be read and processed
by the viewer. Those sentences over LV appear as words in LR and the con-
texts over LV often appear as sentences in LR according to the combination
rules determined by the outside knowledge being part of the nonterminals and
production rules of the grammar generating LR. Note that the combination of
elements in LV into structures in LR is an interpretation. Similarly, matching
structures in the reading language to what is actually depicted and thus declared
by the graphical language is an anchoring operation. This kind of rules forming
structures in LR based on combinations of structures in LV thereby constraints
the way the viewer is reading the visualization. Therefore, this kind of rule is
called a constraint for the remainder of this Thesis.

There is a second type of relation forming structures in LR which deter-
mines the formation of contexts over LV . This relation is called an interpre-
tation. It summarizes displayed artifacts and structures and maps them to a
semantic entity the viewer can process cognitively. Note that the equal termi-
nology to the interpretation operation in the qualitative visual analysis cycle is
on purpose. It is essentially the same operation since, strictly speaking, even
the direct translation of a single word in LV to a word in LR is the mapping
of a collection of artifacts to a semantic entity that can be processed by the
viewer's cognition. In the semantic web, this can be modeled by a blank node
collecting multiple incident relations and relating them to a single adjacent el-
ement. For example, the collection (A) − [in the context of ] → (_blank01),
(B)−[in the context of ]→ (_blank01), (C)−[in the context of ]→ (_blank01),
and (_blank01)− [involves]→ (D) maps the combined words in the sentences
A, B, and C to the sentence D. D is a result of the viewer's interpretation
and hence part of LR but not of LV . It may also be processed di�erently than
the individual sentences A, B, and C if the are processed out of context. An
interpretation can, for example, mark the two instances of object in the above
example as representatives of the same entity or the one instance as representa-
tion of a property of the other, depending on the viewer's understanding of the
visual encoding.
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2.6.4 A Qualitative Principle of Minimal Graphical Overhead

The totality of possible messages being conveyed by the visualization is the
power set over the words in the graphical language,

LtotV = {w|w ∈ (LV ∪ SentenceV ∪ ContextV )} = P(LV )

This total graphical language LtotV consisting of all possible words, sentences,
and contexts that can be built by arbitrary combinations of words over LV
contains a large overhead of words that are not useful for the viewer. In an
ideal world, every viewer's speci�c reading language only contains structures
over LV that are actually bene�cial for the analysis, meaning that it only con-
tains structures that can be processed in the viewer's cognitive reasoning model
and that neither induce misunderstandings nor wrong interpretations. In such a
setup, an ideal visualization would contain minimal possible overhead. The to-
tal graphical language would thus ideally be exactly the union of every possible
viewer's individual reading language. Since this would require the consideration
of the individual reading languages of theoretically in�nitely many viewers and
all viewers would need to be perfect in the sense that neither misunderstand-
ings nor misinterpretations are made, this approach to characterize LtotV at a
�rst glance appears rather pointless. However, keeping the overhead minimal
for a selected set of viewers is an interesting approach to determine a rule for
visualization optimization, the principle of minimal graphical overhead:

Principle: Minimal Graphical Overhead

For a given group X of viewers x ∈ X, the complexity for reading a
visualization is minimized if |LtotV \

⋃
x∈X α(LxR)| → min

In essence, this principle means that a visualization should try not to display
more information than its viewers are able to read and process. Although this
seems fairly obvious, it is important to point out the semantic component being
considered by applying the anchoring of the reading languages to the graphical
language. It it noteworthy that considerations in this direction usually do not
address the semantic component but only the displayed content and thus sug-
gest to minimize over LV . Typically, visualizations are engineered to address
multiple di�erent analysis questions. Yet, minimizing over LV would restrict
them to convey only the answers to speci�c questions. Characterizing graphical
overhead in terms of LR instead of LV means to reduce the depiction to what
di�erent viewers can read, understand, and interpret in general rather than re-
ducing LV to what users need to answer only a speci�c question. This allows
the visualization explicitly to include elements supporting the reasoning pro-
cess on a qualitative level. Information reduction paradigms only considering
the structural composition of visualizations and being ignorant of the viewer's
actual or anticipated reasoning procedures instead bear the risk of destroying
possibly valuable sentences and contexts.

Interestingly, minimal graphical overhead does not exclude additional graph-
ics that are not part of the visualization and are thus often disregarded as chart-
junk, because they usually do not serve informative purposes but rather distract
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the viewer from actually important information. Yet, if this so-called chart-junk
actually conveys relevant information, it might indeed be valuable for the user.
For example, it could symbolize the content of a chart and thus allow the user
to directly interpret the information without reading the image caption. Some
�ndings and considerations in this direction are reported by Vickers et al. in
their discussion on one of the relations in their approach to formalize visual
analytics in terms of category theory [144].

2.6.5 The Reading Language’s Descriptive Scope

In an ideal world, the total graphical language LtotV of a visualization V is the
union of the anchoring of all viewers' individual reading languages in the graph-
ical display. Although in practice the closest to this situation is a visualization
with minimal overhead information in its interpretation, this ideal reveals the
scope of the reading language LR. Central to this consideration is the idea are
linked to each other by the interpretation and anchoring relations introduced
above. Recall that the reading language is de�ned as the collection of words,
sentences, and contexts over LV , where the construction follows a set of rules
involving outside knowledge. Consequently, if LxV is the subset of the total
graphical language a given viewer x can interpret, then LxR = ι(LxV ). In an ideal
world, the interpretation ι and anchoring α hence are the two directions of a bi-
jective map since by de�nition LxV = α(LxR) ⊆ LtotV . In the real world, there can
be misunderstandings and misinterpretations of artifacts and structures in the
visualization. Even if those are not considered explicitly, they are still part of
the total graphical language. Hence, the principle of minimal overhead remains
valid. Yet, misunderstandings and misinterpretation lead to misconceptions and
wrong conclusions and therefore are much to the detriment of the analysis re-
sult. Their consideration thus is an important component of qualitative analysis
in general and qualitative visual analysis in particular. The reading language's
descriptive scope and purpose is exactly to enable this consideration.

The reading language LxR of a given viewer x reading visualization V is com-
posed of the part LxV of the total graphical language LtotV over V that the viewer
understands and the viewer's outside knowledge Lxout. The outside knowledge
formalizes the complete mental model and thereby the viewer's capabilities to
read and interpret the visualization. Understanding here refers to the viewer's
ability to read structures over LV . As explained above, this is modeled by
the anchoring of the mental model Lxout to the graphical language (which is
essentially a projection). The reading language can thus be computed as:

LxR = ι(LxV )

= ι(α(Lxout))
= (LxV ∩ Lxout) ∪ Lxout

The size di�erence between LxV and Lxout indicates whether the majority of
insight can be obtained from reading the visualization, whether the viewer is
actually able to read o� this information correctly, or whether interpreting the
visualization involves large amounts of outside knowledge. Note that this does
not make the di�erence between the viewer and the analyst: The question here
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is not whether or not much reasoning is applied to obtain insight about the vi-
sualization. Comparing the sizes of LxV and LoutV rather is an indicator whether
the visualization plays a supportive or central role in the reasoning process.
The former is characterized by much larger Lxout while the latter case ranges
from about equal size of both languages to much larger LxV . In many if not
most visualization applications, the latter situation will be the case. Note that
if LxV ∩ Lxout is small compared to LxV , this indicates that although the visual-
ization is important, the viewer lacks the visualization literacy to read o� the
entire information being o�ered. This does not mean that the results to be
inferred are not part of the viewer's reading language LxR as they might still be
derivable from what the viewer can read and the available outside knowledge.
Nevertheless this is an indicator that the viewer will not be able to pro�t from
the visualization's full potential. However, it can also mean that the principle of
minimal graphical overhead is violated and the visualization is overly detailed
or provides unneccessary information. Especially in applications of small multi-
ples or when detail information is provided by an additional small visualizations,
this addendum is commonly of supportive character and should thus not con-
tain more information than is necessary to communicate and contextualize the
additional information. If this indication does not agree with the visualization's
intended role, the visualization has to be re�ned to either incorporate more
outside knowledge or towards reducing the redundancy with other sources of
information.

Visualizations are not random constructions of graphical elements but are
designed to be read in a certain way. This is captured by de�ning an intended
graphical language LpossV ⊆ LtotV over LV . LpossV collects all structures over LV
that the designer expects the viewer to be literate enough to read and to be able
to interpret within an anticipated reasoning structure. Every conclusion about
the visualization and the data that cannot be drawn from within this reasoning
structure cannot be guaranteed to be sound in the sense of not being based
on a misinterpretation or misconception. Therefore, LpossV can be said to be
the collection of all possible words, sentences, and contexts over the graphical
language. Again, the language of all possible readings is LpossR = ι(LpossV ). Its
outside knowledge component Lpossout is the collection of all outside knowledge
required to read and interpret the visualization completely and correctly in the
sense of its design. Of course, not every deviation from LpossR is automatically an
error. The viewer is equipped with a di�erent set of outside knowledge than the
visualization's designer and might thus be able to draw additional conclusions.
However, the visualization is based on the designer's understanding of matters.
Hence, the conclusions drawn from analysis based on any collection of outside
knowledge can only be guaranteed to be sound if for the analyst LxV ⊆ L

poss
V .

The set of possible readings LpossR is useful to reason theoretically about vi-
sualization techniques. Given not only the technique but also a speci�c data
set to be visualized, LpossR is instead too powerful because it states what infor-
mation the visualization could show rather than what the visualization actually
does convey about the data. As an example, consider a bar chart and let LpossR

contain the sentence

((height)− [of ]→ (bar))− [greater than]→ ((height)− [of ]→ (bar))

The bar entities are actually di�erent and the [greater than]-relation only ap-
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plies if two di�erent bars are inserted. In the proposed formalization of the
reading language's constraints and interpretations in terms of the semantic web
and RDF, this condition is implicitly ful�lled since RDF is constructed over
actual instances rather than abstract concepts of objects. Hence, the two bars
are actually di�erent instances of bar objects, each identi�ed by its own unique
identi�er. To emphasize their belonging to the same class of object, extensions
of RDF like RDF-Schema or OWL can be applied [7,90,100]. Those extensions
allow to de�ne classes of objects in terms of a so-called schema, essentially an
additional label for the class type. The details are not important for the con-
sideration here. For the remainder of this section, indexed variable names refer
to instances to be distinguished. The visualization of actual data is a speci�c
collection of words of the graphical language and hence a subset LD

V ⊆ LV .
Consequently, the structures over LD

V that are available for viewers to read are
only a subset of LpossV . The set LapplV of words, sentences, and contexts actually
applicable to the data D being visualized by construction also reduces the pos-
sible reading language to a collection of actually possible readings, LapplR . Just
like before deviations in reading from LpossV indicated potential misconceptions
and misunderstandings on the level of basic understanding of the visualization,
deviations from LapplV now indicate wrong readings of actual data.

The major di�erence between the possible and the applied languages is that
only the latter represent the actual data and thus the appearance of the visu-
alization and the obtained information inferred in the mental model. For an
analyst working with a visualization, it is hence enough to understand what is
actually being shown in the graphical display to reason about the data repre-
sentation. Following the principle of minimal graphial overhead, this implies,
for example, that legends in visualization should not attempt to explain any-
thing that is not shown. One interpretation of minimal graphical overhead is
that no structures should be shown that do not map to corresponding struc-
tures in the reading language. For a legend, it only makes sense to interpret
the relations between symbol and meaning shown in combination with corre-
sponding elements to be found in the graphical display. If such an element is
not present, there is nothing to be interpreted that is to convey the meaning
indicated by the legend and hence there is neither a conclusion to be drawn
nor domain knowledge to be found based on the particular interpretation rule
speci�ed by the legend. Consequently, showing entries in the legend that do not
correspond to anything that can actually be seen in the visualization violates
the principle of minimal graphical overhead. More formally, any sentence of the
form λ := (X)− [means]→ (Y ) being part of the legend is automatically part
of LpossV and thus also of LtotV , because it is also part of LpossR along with every
possible interpretation of the element if it actually appears in the visualization.
If an instance of (X) is shown in the display, it is associated with λ in a graphical
sentence Σ by an interpretation of the form

Σ = (A)− [involves]→ (λ)

= (A)− [involves]→ ((X)− [means]→ (Y ))

Of course, Σ is always part of the possible readings LpossR . However, if there is
no object (A) in the display, (A) is not part of LapplV and therefore Σ is not part
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of LapplR . Consequently, if λ is shown in the legend nevertheless, then(
(A) /∈ LapplV ∧ λ ∈ LapplV

)
⇒Σ /∈ LapplR

⇒λ ∈
(
LtotV \ α(LapplR )

)
⇒¬

(
|LtotV \ α(LapplR )| → min

)
Because the possible and applicable languages denote the intended graphical
and reading languages this actually holds for every reader and by the formal
proof the remark is promoted to a lemma derived from the principle of minimal
graphical overhead:

Lemma: Concise Legends

A visualization's legend should never show symbolds that are not to be
found in the display.

Indeed, this kind of over-explanation can be quite misleading guiding viewers
towards looking for structures that cannot be found in the display. Note that al-
though this remark appears quite obvious, it is actually a consequence formally
deduced from the theoretical model of qualitative visual analysis discussed in
this Thesis.

2.6.6 Constructing the Mental Model

In general, it will be hard to determine a speci�c viewer's exact reading lan-
guage. Instead, it is much more convenient to formalize the intended reading
language and then capture a viewer's readings and an analyst's considerations
by installing proper provenance mechanisms allowing to evaluate the actual
readings and considerations against those intended by the visualization's de-
signer. If the structures do not match, especially if α(LxR) = LxV contains an
element that is not in LapplV or even not in LpossV , the viewer should at least be
informed about this situation. Such a procedure helps preventing errors for at
least two levels of the reasoning process, namely insight about the visualization
and insight about the data. Concerning insight about the domain, there is no
mechanism preventing an analyst from erring. After all, this would require to
answer an analysis question before it has even been asked. To enable the ef-
�cient identi�cation of potential errors, the mechanisms behind the formation
of words in the reading, the grammar producing the reading language needs to
be found. Interestingly, this grammar can be read o� directly from the viewer's
mental model of the visualization.

The reading language LR essentially de�nes a set of rules determining the
formation of sentences and contexts over the graphical language LV of some
visualization V . Constructing the reading language over LV therefore means to
reproduce a viewer's or an analyst's reasoning process. Two necessary relations
have been identi�ed for the construction of words in LR: constraints, and inter-
pretations. Constraints combine multiple interpretable words or sentences over
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LV into a subject-predicate-object structure determining a relation between the
subject and the object that constraints the total set of possible combinations
of artifacts and structures in the display to those that can be processed by the
viewer's cognition. Interpretations combine words, sentences, and contexts over
LV and bind them to a concept the viewer is able to reason about. The fact that
this relation has the same name as the interpretation relation ι translating the
graphical representation to the interpreted information is not a coincidence. In-
deed, every word in LV that the viewer can understand either has a one-by-one
correspondence to a concept in the viewer's cognition or has an interpretation
in combination with other words. For simplicity, one-by-one correspondence is
treated implicitly and the corresponding elements simply appear as words in
both languages LV and LR. Applying the semantic web to model the structure
in terms of a directed graph, reading the constraints and interpretations in the
direction they point reveals the interpretations of artifacts and structures in the
graphical language. More precisely, for every word v ∈ LV , the set of possible
interpretations involving this word is determined by the upwards closure ι↑(v)
of v's direct interpretation over the constraints and interpretations determining
LR. The upwards closure of v's interpretation collects all words in LR that are
in the re�exive and transitive hull over the productions of ι(v) in the mental
model. More intuitively, it collects all words in LR that can be derved from
ι(v) by the contraints and interpretations forming the mental model de�ning
LR. Hence, the constraints and interpretations compose the mental model M
representing the viewer's cognitive reasoning about the visualization. For every
word v in the visualization, there is a substructure µ ⊆M in the mental model
for which µ = ι↑(v). Consequently, for every substructure µ ⊆ M , there must
be a subset of words in the graphical language, v = α(µ↓) which is exactly the
collection of words in the downwards projection of µ to its contained elements
corresponding directly to artifacts and structures in the visualization. Let µ be
a single node in the semantic web. To construct µ↓, one needs to follow the
possible chains of constraints and interpretations backwards. This means to
replace the subject or object of a sentence by the yet to construct subtree such
that the resulting word in LR is constructed by a tree rooted in µ and whose
leafs are either words of LV or of the outside knowledge Lout. If µ consists of
multiple nodes, the construction follows a similar procedure. Where multiple
choices are possible, all possible paths have to be followed to construct µ↓ com-
pletely. The result of this construction are sentences over the reading language
LR. Therefore, constructing the mental model means to construct the grammar
producing the reading language. To construct the mental model, one needs to
collect all constraints and interpretations and structure them in a semantic web.

Once the mental model is complete, the grammar generating the words in LR
can be read o� as follows: Let G(LR = (N,T, P, S) be the grammar generating
the reading language. Its terminal symbols t ∈ T are those nodes in the semantic
web that do not have any incident predicate. Every other node in the semantic
web denotes a nonterminal symbol n ∈ N . The starting symbols s ∈ S are
all symbols that are related to some entity in the domain of interest I. Note
that this is a non-standard construction for a formal grammar since usually it is
assumed that grammars only have a single starting symbol. However, this can
easily be achieved if one allows a blank transition along an imaginary constraint
connecting a single meta-node to each node representing a starting symbol. In
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the semantic web, this can be achieved by adding a blank node as the meta-state
and an empty relation connecting it to every node corresponding to a starting
symbol. For the production rules, the constraints are considered to be of the
form

c⇒ (x)− [constraint name]→ (y)

where x ∈ N is a nonterminal symbol being the subject or object of a constraint
rule c and y can be a terminal or a nonterminal symbol. For interpretations,
the construction is adapted by combining the interpreted elements using the
constraint rules applying an imaginary and-constraint and connecting it to the
actual interpretation applying a constraint named involves:

x⇒ (x)− [involves]→ ((A)− [and]→ (B)) where

A,B ⇒ x ∈ N |x ∈ T | (A)− [and]→ (B)

A special case is the production scheme x ⇒ y projecting each remaining non-
terminal symbol x to a directly referring terminal symbol y.

Thus far, the discussion only considers the principle of constructing the men-
tal model from a given sets of outside knowledge, constraints, and interpretations
being applied to formulate the reasoning strategy. For a given set of data, the
model additionally needs to be reduced from the possible interpretation to the
ones applicable to the data. One approach to achieve this would be to instanti-
ate the model by generating an entity in the semantic web for each occurrence
of a speci�c node in the data. For a bar chart, this could mean to generate a
bar-entity for each bar in the visualization. Although this is the way the data
is supposed to be treated in the semantic web being a web of instances rather
than schemas or concepts, this method has two signi�cant drawbacks. First, it
causes the network's complexity to explode. This would be bearable if there
was a mechanism to determine the di�erence between the individual objects.
However, without the ability to assign truth values that witness whether the
relations and attributes actually hold for a speci�c instance or entity, such a
distinction cannot be made and every instance is merely a copy of its prototype
in the possible reading language. The second drawback is also a result of the
semantic web's inability to assign truth values to relations but extends this to
the problem that in the semantic web interpretations and constraints cannot
be made conditional. Due to this fact, every relation that is syntactically cor-
rect is essentially a valid interpretation of the data. For example, consider the
sentences

((value)− [of ]→ (bar1))− [greater_than]→ ((value)− [of ]→ (bar2))

((value)− [of ]→ (bar2))− [greater_than]→ ((value)− [of ]→ (bar1))

Both sentences are absolutely correct in the construction as described before,
even though this relation can actually only hold in one direction. The semantic
web describes the state of instances and the relations between them but is not
equipped with a reasoning mechanism. Reasoning about semantic web data re-
quires to construct instances of objects from the web and to evaluate them in
a logical structure completely external to the web. As a consequence, there is
no way to associate truth values to relations and instance state information. In
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the qualitative visual analysis cycle this is captured for the domain information
by binding valuated entities and observations to higher order predicates repre-
senting the objects and situations instantiated by the valuation. However, the
construction of the mental model thus far relies only on the semantic web and
hence cannot re�ect this complexity directly. Towards a convenient treatment of
reasoning about domain information within the mental model, a more complex
model than the semantic web is needed to adequately describe the mental model
and the semantics being associated with data. Such a model is introduced in
the next section.

Because the mental model determines the grammar generating the reading
language, mental models for di�erent viewers or analysts can be applied to
compare their individual interaction and reasoning when working with the vi-
sualization. The structural composition of the mental models directly reveals
deviations in the work�ows and reasoning processes, possible short cuts, or po-
tential reasons for the emergence of di�erent opinions. Although the semantic
web is somewhat limited for the discussion of the actually applicable readings
for a given data set, it can indeed be applied to compare mental models at the
level of possible readings. Note that the model for possible readings can always
be obtained from a model of actual readings by documenting the interpretations
and constraints applied by a viewer or an analyst during the interpretation and
reasoning process and combining instances of the same type into a single node
representing the type of object in the semantic web. Hence, the construction of
the mental model described above can be applied to determine the mental mod-
els for di�erent viewers or analysts and to compare them to each other as well
as to the mental model determining the reading and reasoning structure as in-
tended by the visualization's designer. For this comparison, one has to construct
the corresponding mental models and to compare their topology. Assuming the
semantic webs to be compared apply the same vocabulary for their nodes and
predicates, this can be done automatically by parsing the RDF-triples listing the
(subject) − [predicate] → (object)-relations the semantic web is composed of.
Note that by the construction using blank nodes, this also includes the interpre-
tations. The di�erent topology of the individual mental models reveals possible
di�erences of the interpretation of a visualization. The explicit consideration of
the reasoning process hence reveals whether the visualization will be interpreted
similarly by all viewers and analysts. If this is not the case for a part of the
visualization that is central to the reasoning process, the visualization probably
needs to be re�ned as this might be a potential source for misconceptions and
misunderstandings. In order to prevent such deviations between interpretations
of di�erent viewers or analysts, the mental model can be constructed for di�er-
ent anticipated reasoning strategies during the design process. For example, the
di�erent strategies can re�ect the di�erent professional backgrounds of viewers
in a collaborative setup. Such an explicit consideration of the reasoning pro-
cess as a qualitative property of visual data analysis hence allows to identify
potential pitfalls in the visualization design early in the design process.
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2.6.7 From the Mental Model to Domain Information

The mental model is only an image of the conclusions drawn from the visual-
ization about the visualization itself and about the data. The highest level of
reasoning, drawing conclusions about the information domain of interest I is
not part of the mental model. Although it would be needed to close the circle
of reasoning introduced in the qualitative visual analysis cycle, the re�ectance
map ref : M → I from the mental model to the domain of interest cannot
be provided at the current state of the discussion. Even if the domain is also
described in terms of the semantic web, the formulation of connections only
models associations, not actual mappings. Objects in I require a more complex
description than the semantic web can provide, especially since I does not only
contain entities and their relations but also knowledge about rules and princi-
ples being applied to them or characterizing their behavior. The next section
therefore proposes a re�ned construction for the languages introduced above
and a theoretical framework enabling the mapping of mental model information
back to the domain of interest.

2.6.8 Structuring Visualizations

Descriptive theories of the composition of visualizations and other graphical
displays often apply the concept of a graphical language to formalize the infor-
mation to be conveyed. Mackinlay, Wilkinson, and others explained the cre-
ation and reading of visualizations as an encoding-decoding-mechanism where
the encoding maps data to its graphical representation and the decoding is the
capability of viewers to properly understand what they see in the graphical
display (e.g. [92, 136, 151]). Casner presented similar ideas for task-e�cient vi-
sualization, where an optimal encoding is found by translating cognitive tasks
into perceptual tasks for which proper visualizations are known [23]. This The-
sis adapts these ideas. The encoding is understood as a visualization pipeline
mapping the data to a visualization that might be altered by interaction during
the analysis process. The decoding is the interpretation of the visualization's
components, matching them to the proper elements of the mental model.

Once again, note that the discussion in this Thesis is not directly concerned
with the de�nition of proper encodings but still needs to consider the shape
of a graphical representation as the basis of reasoning about semantic infor-
mation. By the programming, the data has already been translated into a
language. A formalism structuring the visualization's components with respect
to the data being visualized hence only has to re�ect how the visualization is
generated given a speci�c set of data D. However, reasoning about structures
in the graphical display V requires to actually know those structures. Rather
than only determining the depicted elements forming the words in the graphical
language LV , those structures also construct graphical sentences and contexts
over LV , yielding exactly the total graphical language LtotV as de�ned in Sec-
tion 2.6.4. Note the di�erence between graphical sentences being part of LV
and the sentences and contexts being generated over LV as part of the reading
language LR. Where the former are a result of the visualization's construction
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Figure 2.3: Example concept graphs for a scatter plot, a pie chart, and a bar chart.
The blue nodes and edges denote the syntax part modeling the automaton
for the visualization V , the orange nodes and edges model the automaton
describing the processing of information in the mental model M .

from the data, the latter are determined by the viewer's understanding of the
visualization in combination with available outside knowledge. Hence, graphical
contexts over LV determined by a speci�c viewer x's reading language LxR are
likely to be combined from parts of LV that are not combined syntactically dur-
ing the visualization's encoding. For example, an axis in a scatterplot forms a
graphical sentence whereas the association of a point in the plot with a mark on
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the axis usually does not (if the mark and the point are drawn independently).
Yet the combination of mark and point still forms a graphical context over LV
being part of the reading language LR of a viewer who is able to interpret the
scatterplot correctly. In LR this is produced by combining the two sentences
(y − value) − [of ] → (point) and (mark) − [on] → (y − axis) in LV by out-
side knowledge stating that the mark determines the value as formalized by the
statement

((mark)− [on]→ (y − axis))− [determines]→ ((y − value)− [of ]→ (point))

An automaton re�ecting the encoding enc : D → V of data into structures in
LtotV should hence not only be a test-system accepting correct candidates and
rejecting structures not in LtotV but should rather reveal how the structures in
LtotV emerge from the data such that the corresponding graphical sentences are
available to be combined by the production rules for the reading language. In the
scatterplot example, this would mean that not only individual axes and marks
are recognized as being part of LV but also the complete sentence formalizing the
axis' composition containing several marks. This can be achieved by expressing
the graphical encoding in a top-down approach by a transduction automaton.
From here on, the visualization V is interpreted as a �nite state transducer
translating data into to structures in the graphical representation.

The visualization V is composed of sentences of a formal language LV . LV is
in turn is generated by a grammar G(LV ) = (N,TV , SV ,

A−→) where the nonter-
minal symbols N are tuples N = (A×(D∪∆)) of a type identi�er a ∈ A together
with an element of the input data D or additional data ∆ used to steer the vi-
sualization. The type identi�er re�ects an access relation in the data structure
underlying D. In code, the tuple (position, (0, 1)) in the state "point" would
appear as the variable "point.position" where the value stored in the variable
is (0, 1). The single start symbol, SV , is the visualization itself. The nonter-

minals N are processed by a production relation A−→: (N,TV )
A−→ (N,TV ) with

the condition that any production can only be followed if the data identi�er in
the left-hand nonterminal matches the identi�er of the production. Finally, the
set TV consists of terminal symbols that actually describe the visualization's
compositional structure.

By this formulation, the grammar's start symbol, terminals, and productions
directly de�ne a graph that can be interpreted as an automaton consuming a
word w ∈ N∗ over the input alphabet N . Transitions (w−1, t0)

a−→ (w−2, t1) can
only be executed if w is not empty and for the last letter w−1 = (a, x) ∈ N
in w the variable identi�er a matches the transition. Executing the transition
consumes the last letter of w. Where necessary, transitions back to a parent state
can be executed without consuming a letter by adding an ε-edge that takes the
empty word ε as the data. This feature is useful if multiple elements of the same
type are to be added to a higher-order element like the points in a scatterplot
or multiple bars in a bar chart as shown in Figure 4.10. For simplicity, the
notation assumes that there is an implicit ε-edge going in the opposite direction
of any edge in the automaton.

One can already determine the elementary components of the visualization
as nodes without outgoing edges other than ε-edges leading back to their parent
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elements to install siblings of a given representation. These graphical elements
are the symbols of lowest complexity, directly shown in the graphical represen-
tation, for example as bars in a bar-chart or segments of a pie-chart. Combina-
tions of graphical elements being held by higher order elements form graphical
sentences. For example the segments of a pie chart denote graphical elements
and the chart itself is a sentence consisting of a set of arranged words. Yet,
visualization also needs to consider context.

Being based on formal languages and grammars, it makes sense to apply
Chomsky's complexity hierarchy to describe the complexity of the grammars
discussed [31]. It divides the formal languages into four categories of complex-
ity of which the model thus far can only emulate the two lowest ones � the
regular and the context-free languages. Brushing+Linking is a genuine exam-
ple for a context-sensitive visualization (cf. Figure 2.5). The appearance of one
part of the visualization depends on the user's interaction with another part. An
example for Chomsky's Type-0 languages is the change of appearance of some
volume rendering if a change is made to a transfer function steering the render-
ing. This can be achieved by adding two additional special types of transitions
� operations modeling transformations and �lters selecting data subsets. Both
transition types are assigned some code for the computation performed within.
The functions they execute can take multiple input parameters from all over the
graph � given these states have already been parsed by the automaton. Oper-
ations are executed like any other transition, by providing a letter in the input
word calling the transition and containing the input parameters as its data. The
output of a �lter or transformation is an additional word to be concatenated to
the current input word. An example run of an automaton featuring �lters and
transformations is shown in Figure 2.4. The context-sensitive and type-0 con-
structions model the basis for global reasoning where the interpretation depends
on the combination of graphical elements or sentences into graphical contexts
acoording to a literate viewer's reading language LR. The total graphical lan-
guage LtotV of a visualization V hence is the collection of graphical elements,
sentences, and contexts. Again, note di�erence between the graphical sentences
and contexts and the sentences and contexts formed by the reading languae LR
over the words or elements of the graphical language LV . The reading language
formalizes the structures a viewer is capable of reading in the visualization uti-
lizing outside knowledge. In contrast, the total graphical language LtotV extends
the graphical language LV by combining the words w ∈ LV into sentences and
contexts based on the syntax de�ned by the visualization automaton V . Still,
the total graphical language and the reading language are de�ned on top of the
graphical language and are likely to share a large intersection. Also note that,
as a power set, the total graphical language LtotV = P(LV ) necessarily contains
all of LV , LtotV , and αLR but is yet another language.

2.6.9 Processing the Graphical Representation

In summary, the automaton V representing the visualization's syntax structure
allows to read o� graphical elements, sentences, and contexts as the substruc-
tures containing certain patterns in the automaton that have been parsed by
the chain of state transitions when processing a valid input data word. These
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Figure 2.4: An example run of the visualization automaton V for a simple plot of data
points adding an edge between points if they meet a certain neighborhood
criterion. The input word needs to guarantee that all data for a �lter
or transformation has been provided prior to its execution. The graph
reveals right away that the viewer will be able to read graphical elements
and sentences like points and edges reaching from one point to another in
the depiction. After running the automaton on the example input, it is
clear that there is such an edge ranging from a point A to a point B.

elements are the foundation for reasoning about meaning. Their interpretation
is the input for the processing of semantic information in the mental model M
which is described in the following. Prior to this discussion, it is necessary to
analyze what actually are the smallest carriers of meaning in graphical descrip-
tions. This Thesis discusses the visualization and the mental model as structures
re�ecting the relation between information about some commensurable object
of discourse and the data sampled from it to generate the visualization. As a
consequence, all data must be linked to some information. Because the men-
tal model should re�ect this for the visualization, every syntactic structure in
the visualization must also represent some semantic information in the mental
model. Hence, the smallest graphical element is an element in the visualization
that cannot be subdivided into further units that still can be mapped to ele-
ments of the mental model. Typically, these are the elements re�ecting single
data items like representations of points in a scatter plot or the bars in a bar
chart. Attributes like the color or size of such objects are not graphical elements
as long as they do not specialize the meaning in the mental model, for example
by making an explicit di�erence between red and green points. If the color only
indicates the points belong to di�erent clusters, this will not map them to states
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in the mental model and hence the color is no graphical element on its own. If,
instead, the fact of being a red point or a green point can be mapped to states
in the mental model independently of the object's property of representing a
point, the point's color is a graphical element. However, a minor adjustment
makes the graphical language explicitly distinguish red points and green points
in terms of di�erent states in the visualization automaton and thus again re-
serves the property of being a graphical element to objects rather than their
attributes. Hence, despite the small number of exceptions to this rule of thumb,
the smallest carriers of meaning commonly are those objects in the graphical
display that directly re�ect single data items.

Similar to the visualization, the mental modelM is also identi�ed as a trans-
duction automaton. Its input is a word of the reading language LR over the
graphical language LV of the visualization V and its output is any semantic
information that can be derived from the interpretation ι↑(α(v)) of some word
v ∈ LV by following the derivation and inference rules specifying the production
rules of the mental model automaton M . Similar to the automaton V re�ecting
the visualization's syntax structure, there are two kinds of transitions in M .
The constraints C model direct semantic relations between situation and object
types, just like in situation theory. (Re-)Interpretations R are the semantic
counterpart of transformations on data and thus follow the same application
principle. Both constraints and reinterpretations can be subject to additional
background conditions. Essentially, the mental model is constructed as dis-
cussed above in Section 2.6.6. However, instead of being based on the semantic
web, the states in the model are now associated with entities and observations
being described by logical predicates and functions just like the domain knowl-
edge I. Interpretations in this structure thereby link the information about
entities and observations directly to the intensional and extensional semantic
information characterizing them. This establishes a dualism between syntactic
and semantic information. Just like for the grahical language, the annotation
for the semantics is again adopted from a model for the description of semantics
in heterogeneous data structures [73].

The possible interpretations ι↑(v) involving some word v ⊆ LV do not nec-
essarily follow a linear structure. As a consequence, multiple starting states will
be initiated simultaneously in M . The transitions are being executed nondeter-
ministically and asynchronously and the computation might stop at any time.
Note that if multiple graphical elements of the same kind are considered, for
example the points in a scatterplot, this also induces multiple interpretations of
di�erently valuated objects of the same semantic type. To model this parallel
processing of multiple objects, each state in M is assigned a token holding the
semantics for each element under consideration, much like in a Petri net. The
map matching the tokens to he automaton's state then denotes the automaton's
current con�guration. Every transition within M may be executed if there is
a token for which its potential background condition holds. Yet, the transition
does not have to be executed and the token might just remain in its current
state. For reinterpretations, the multiple inputs accumulate until a set of in-
put parameter objects supports the background condition. As soon as this is
the case, the reinterpretation can be executed for the aggregated input. The
computation might stop at any point in time or if no further transitions are
executable. The result then is the situation supporting the semantics of the
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automaton's current con�guration. To capture the momentary semantics for
reasoning, especially where data or appearance attributes matter, the interpre-
tation maps states within the automaton's current con�guration to a semantic
structure as follows:

De�nition: Direct Semantics

The direct semantics associated with a set of states S ∈ µ in a
subsructure µ ⊆ M of the mental model M is given as the tuple
D(µ) = (S,C,R) containing the types represented by the states S, the
constraints C, and the reinterpretations R directly connected to them
by either an incoming or outgoing edge.

If the mental model M with substruture µ is aligned with a visualization V
and the graphical element, sentence, or context aligned to µ is w = α(S) ∈ LV ,
the attributes of w also contain semantic information about the immediate struc-
ture. Likewise, potential �lters on w add semantics by assigning w to a category
based on the �lters' respective truth values. Those data relations and �lters in-
cident or adjacent to any state v ∈ α(S) ⊆ V are encoded by the valuation
of the extensional and intensional predicates and functions associated with the
state S in µ and are thus part of the direct semantics. By this formalism, the
graph can be applied to reason about the generally possible interpretations and
the actually applicable relations alike. However, this does not apply to trans-
formations. Excluding transformations from the de�nition of direct semantics
is a consequence of modeling transformations as actual processes to be executed
on data. Although they thereby establish a map between data items of pos-
sibly di�erent semantics, the ability to be processed is not an actual attribute
of data. Instead, the ability to process data is a property of the transforma-
tion. The semantics of transformations is hence properly captured by adding
an interpretation mapping the situation containing all of the transformation's
input but not the output data to the situation explicitly containing only the
output data. This procedure can, for example, be applied to model user inter-
action triggering a change of state of the visualization, altering the displayed
content. Explicitly re�ecting interaction in the mental model is useful for mod-
eling interaction-based reasoning like the provision of details on demand where
demand is indicated by a certain zoom level.

2.6.10 The Concept Graph

Thus far, the discussion focused on the output of M . While the output is
characterized by now, the input requires some further consideration. The com-
binations of states in M to be selected as starting points for processing are not
arbitrary if the model is meant to be applied for reasoning about a speci�c vi-
sualization. Although, technically speaking, the viewer can combine arbitrary
graphical elements to contexts, the visualizations structure and its resulting
demands to the viewer's visual literacy constraint this choice in certain ways.
For example, a viewer of a scatterplot will not attempt to relate the position
of the points to the axes' labels rather than their scales � at least this will not
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Figure 2.5: Brushing+Linking is a genuine example for context-sensitive visualiza-
tion. In the example, brushing ranges along axes marks points in a projec-
tion of multidimensional data. The data shows features of a series of cars
� which is correctly interpreted by the mental model applied. Some of the
features denoted by the axes are associated with motorization. Note that
this does not include the displacement. Another viewer might apply a dif-
ferent de�nition, interpreting the displacement as a motorization feature.
If it cannot be guaranteed that two viewers will apply the same de�nition
for their interpretations, this is a potential source for misunderstanding
between viewers because of their di�erent iterpretation of the exact same
data. (Data: auto-mpg [88])

provide information useful for the analysis. On the other hand, the assumption
that the viewer would implicitly run the visualization on some data and cor-
rectly reconstruct the structures representing these data does not re�ect reality.
Instead, the viewer will construct the sentences or structures over the graphi-
cal language as connected subgraphs of the visualization automaton following
the transitions between states forwards and backwards alike. Going forwards
indicates the interpretations of artifacts and structures being read in the visual-
ization, whereas going backwards organizes elements in sentences and contexts
de�ning the reading language LR over the graphical language LV . Sometimes
the viewer will also be aware of a need for some information to be read o� the
visualization. In these cases, the mental model's reasoning structure will be
followed backwards until a mapping to some structure in the visualization can
be established. This is exactly the construction of the reading language LR
originally introduced in Section 2.6.3. Figure 2.5 shows an application of brush-
ing+linking. In this visualization of car data, a viewer can highlight points in
the displayed scatter plot by specifying range intervals in the individual data
dimensions using a brushing interaction. Such an interaction can, for example,
determine all the axes related to motorization. In the example, this results in
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the following sentence over LV :(
motorization

)
− [involves]→((

(axis)− [named]→ (cyliner)
)
− [and]→(

(axis)− [named]→ (hp)
)
− [and]→(

(axis)− [named]→ (displacement)
))

Although the condition associated with the interpretation lists more possible
names for axes contributing to motorization, the data only provides those three
and hence only those three axes are found to be applicable to the description of
motorization in the example data set.

Towards a more simple treatment of such an alignment, the automata model-
ing the visualization V 's syntactic structure and the mental model M 's seman-
tic information are merged into a new structure, the concept graph G(V,M)
by aligning the nodes representing the words of the graphical language and
those of the reading language following the anchoring and interpretation rela-
tions α : LR → LV and ι : LV → LR. The resulting graph contains V and M
completely and both of them can be evaluated as before. The concept graph
contains three kinds of nodes: Syntax nodes represent the states of V that do
not have a counterpart inM . Semantics nodes represent the states ofM that do
not have a corresponding state in V . The nodes for which such a correspondence
can be established, are called concept nodes or simply concepts. The edges of V
and M are copied into the new graph. The graph has initially been proposed to
describe the di�erent interpretations of data in semantically heterogeneous en-
vironments [73]. Figure 2.6 is an overview over the symbols used in the concept
graph.

In addition to modeling the structure of the visualization and the mental
model, the concept graph has another interesting property: Interpreting the
complete structure as the collection of all possible assignments and derivations
of data to graphical elements and semantic information as a universe of possible
semantics, the concept graph allows to assess the applicable semantics actually
supported by the data by eliminating nodes and edges in the graph that are
never traversed by either the data processing in the visualization or the pro-
cessing of graphical elements, sentences, or structures in the mental model. In
essence, this means to determine the words of the reading language that can
actually be produced by the words of the graphical language obtained from the
actual input data. Especially in very complex visualization systems and rea-
soning structures or, if only subsets of the data are investigated, computing the
applicable semantics prior to the study of paths in the reasoning structure can
reduce the complexity of further computations on the remaining parts of the
visualization and mental model automata.

2.6.11 Semantic Aggregation and Meaning

In philosophy, semiology, and linguistics, meaning is the relation between a
sign, symbol or other commensurable entity and the information it represents.

75



Figure 2.6: Overview over the conept graph's notation. The concept nodes establish
the mapping between the visualization and the mental model. They thus
represent the interpretation and anchoring relations. The blue subgraph
actually is the automaton V modeling the visualization. The graphical
elements, sentences, and contexts that can be read as collections of com-
ponents in V serve as the input to be processed in the mental model M
represented by the orange subgraph of the concept graph. By merging V
and M , the concept graph re�ects both syntax and semantics of the visu-
alization with respect to the viewer's mental model.

Other than the interpretation relation, the meaning does not only relate data
to some directly associated semantics but instead covers all semantics inferable
and derivable from the given data following the constraints and reinterpretation
operations. For a visualization, this means that, depending on the mental model
provided, di�erent aspects of meaning can be assessed. By the inside-outside
principle discussed in Chapter 1, these aspects include the user's personal and
general context. The former captures human factors such as perceptual and
cognitive capabilities, cultural and individual background, personal preferences
and education. The general context provides encyclopedic knowledge, domain
knowledge and other context not directly related to the individual. As described
above, in a concept graph G(V,M) of a visualization V and a mental model M ,
the interpretation ι↑(α(r)) ⊆M maps a word r of the reading language LR to a
substructure µ in M . Because the reading language considers structures rather
than just elements in the visualization, it would be insu�cient, to consider only
elements v ∈ LV in order to determine the interpretation of a structure rec-
ognized by viewer in a visualization. However, by its construction, the total
graphical language LtotV = P(LV ) neccessarily contains all structures a viewer
can recognize in the visualization anf thereby contains the complete part of the
graphical language that can be mapped back to the visualization by the anchor-
ing relation. As α(LR) ⊆ LtotV , the anchoring w = α(r) of any word r ∈ RL must
also be inside LtotV . Now, applying the interpretation directly to the graphical
element, sentence, or context given in terms of w = α(r), the meaning within
the interpretation system determined by the mental model M can be assessed
for any word w in the total graphical language LtotV by computing the transitive
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hull ι↑(w) over the constraints and reinterpretations in M :

De�nition: The Meaning of Graphics

The meaning of any word w in the total graphical language LtotV over the
graphical language LV of some visualization V with associated mental
model M is exactly the language

Lι↑(w) = {x|x ∈ LR ∧ ι(w)⇒∗C,R x} ⊆ LR

collecting all words in the reading language LR that can be derived in
M from w's interpretation ι↑(w).

Expressing this idea in the concept graph G(V,M), the language Lι↑(w) for
some w ∈ LtotV can be computed by aggregating the direct semantics of all nodes
reachable from any component of w's immediate interpretation ι(w) following
the constraints and reinterpretations in G. The equivalence is established by
recognizing that following the constraints and reinterpretations in the applica-
ble semantics of G induced by w by a parallel breadth-�rst search with multiple
seed nodes and aggregating the direct semantics of each semantic node or con-
cept reached along the computation into a surrounding situation. This situation
necessarily supports all situations being words of LR that can be derived from
the input w. Its result models an aggregation of semantics, A(w) of w ⊆ V :

De�nition: Aggregate Semantics

The aggregate semantics A(w) of some word w of the total graphical
language LtotV over some graphical language LV for a visualization V
aligned with the mental model M by the concept graph G(V,M) is
obtained as the set A(w) = (S↑, C↑, R↑) = BFSC∪RG (w) of all semantic
nodes S in G traversed by the parallel breadth-�rst search BFSC∪RG (w)
over the constraints C and interpretations R in G(V,M), starting in the
elements v ∈ LV that w is composed of.

Again, note that α(LR) ⊆ LtotV . The computation of the aggregate semantics
can therefore also be applied to every structure a viewer or analyst is capable
of recognizing and interpreting in the visualization V given the mental model
M . Being the situation under which every direct semantics of every reachable
combination of nodes in BFSC∪RG (w) can become a fact, the following theorem
holds for the aggregate semantics:
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Theorem: Aggregate Semantics and the Meaning of Graphics

Given a visualization V , a mental model M , and the concept graph
G(V,M) combining them, the aggregate semantics supports all possible
interpretations of any word w ∈ LtotV � and hence its meaning. Thereby,
the following holds for the aggregate semantics A(ι(w)) of some word,
sentence, or context w ⊆ LtotV :

∀w. w ∈ Lι↑(v) → w ∈ A(v)

where Lι↑(w) = {x|x ∈ LM ∧ ι(w)⇒∗ x}.

For the proof, recall that by the de�nition applied for the construction of
the mental model, M is the collection of all direct semantics derivable from
all words of the reading language of LR. The reading language in turn deter-
mines all words, sentences, and concepts over the graphical language LV for
which an interpretation actually exists. The direct semantics are contained in
the breadth-�rst-search result by construction and thus must be part of the
aggregate semantics. �

Unfortunately, the converse does not hold, because A(ι(w)) aggregates direct
semantics along whole paths whereas the meaning Lι↑(w) only considers direct
semantics of reachable node sets in the mental model. A simple example of this
discrepancy is that A(ι(w)) theoretically allows multiple reinterpretations to
hold in parallel, whereas Lι↑(w) forces a decision. Note that this is actually an
e�ect oberved in optical illusions where sometimes two possible interpretations
exist simultaneously and the human brain � while being totally aware of the
simultaneous coexistance of both sructures � can only switch between either
one for interpretation. In arts, this e�ect is alled bistability and is only one
example for a larger class of e�ects leading to semantic instability in graphical
depictions [97]. Nevertheless, the aggregate semantics serve as an e�cient way
to test whether some combination of direct semantics is a candidate of being
part of the meaning. The problem is that due to the necessary distinctions of
what can and cannot be combined in Lι↑(w), the computation of the language
determining the meaning of w is extremely costly. The problem can be reduced
to �nding the set of reachable states given some start con�guration in a petri net
� which can be shown to be at least NP-hard for all relevant problems (cf. [49]).
The computation of A(w) instead is bound by the size of M as the largest
possible direct semantics of any node set. The aggregate semantics can hence
be computed in polynomial time and is bound by O(|N |2 + |C|2 + |R|2) if the
mental model M consists of the nodes N , constraints C, and reinterpretations
R. The squares are a consequence of the requirement that the sets in A(w) are
de�ned as disjoint unions of the sets contained in the direct semantics of nodes
passed while executing the breadth-�rst search.
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2.6.12 An Application Example

Towards an example applying the concept graph in conjunction with the quali-
tative visual analysis cycle, consider a relatively simple example from �ow visu-
alization where the visualization is to be used for the investigation of 2d vector
�elds in order to �nd vortices in those �elds. The information I about the in-
vestigated phenomenon hence is known to contain information about a vector
�eld and its behavior. From an interview with a domain expert, a visualiza-
tion designer learns that vortices are the result of vortical motion of particles
over time. Even though it is not entirely clear what this vortical motion might
be, the information that vortices are identi�ed if vortical motion is found is
de�netely part of I. The available data D, however, only contains a set of 2d
vectors sampling particle positions X, masses M , and impulses P over a time
interval T as the result of a simulation run.

The mental modelM shown in Figure 2.7 reveals that the viewer will be able
to identify a vortex in a �eld of particle traces by investigating their rotation.
Note that this is a qualitative consideration so the viewer will be able to assign
this interpretation to traces without exact computations on the data. Indeed,
this amount of detail is su�cient to assess whether the viewer will in principle
be able to make a correct inference this amount of detail is su�cient. However,
the information about the phenomenon only contains state information. The
visualization V thus has to close the gap between momentary state and trace
over time. This is achieved by computing the particle trace information by
integrating the particle state over time. Aligning the mental model M with
V now shows that the viewer is indeed capable of concluding the existence of
vortices from within the visualization. For the proof, assume that D actually
contains a vortex which is correctly depicted by the path traces generated in
V . The aggregate semantics A(w) of any trace being part of the vortex now
contains a state where w ∈ LtotV is identi�ed as being part of the vortex. Since
the pathline has a corresponding structure pline ∈ LR, the viewer can recognize
the it as w = α(pline) and apply those interpreations inside A(α(pline)) that
yield the interpretation as being part of the vortex within the mental model.
Therefore, the viewer is able to detect the vortex.

The second application is to reason about what else the viewer might �nd in
the visualization. Note thatM also contains the information that the viewer can
determine whether a vortex has a source or sink by additionally reasoning about
the parallelism of lines shown in V � which is also part of the aggregate semantics
A(w) for the corresponding structure w ∈ LtotV . If such an interpretation is
applicable to any part of the data, this is valuable insight into the data.

However, it is not yet guaranteed that the viewer's predictions about the
occurence of a vortex are correct. Assume that an interview with a domain
expert reveals that vortices are characterized by nonzero vorticity in the �eld.
The computation of vorticity can be added to the visualization V . However, the
mental model M does not yet contain any structure capable of processing this
additional information. Adding a legend to V that explains how the vorticity
is related to �nding vortices in the �eld allows the viewer to adjust the mental
model M to process this additional information � that is, to add additional
states with the proper direct semantics. Such an improved understanding of
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key features of the visualization and added methods for their processing allow
the viewer to draw more accurate conclusions.

Figure 2.7: Example concept graph for a visualization designed for the identifaction
of vortices in vector �elds. The data is a set of particle con�gurations
listing the mass, impulse vector, and current position for a �xed set of
particles moving in the �ow �eld over some time. The mental model rep-
resents domain knowledge and implicit user experience and indicates that
the property of being a vortex can be derived for path lines rather than pont
clouds. Hence, a visualization like a series or animation of hedgehog plots
would not be compatible with the mental model. The designer thus needs to
add a transformation computing the path lines from the simulation steps
in order to provide the viewer with a data representation from which the
inquired information on vortices can be found by processing the graphical
display in the viewer's mental model.

2.7 On the Complexity of Reasoning with Visualiza-
tions

Determining the complexity of the di�erent transformations in the qualitative
visual analysis cycle reveals insight into the complexity of the reasoning process.
In the following, the theoretical models introduced above are discussed with
respect to aspects that contribute to the complexity of reasoning about and with
visualization. To this end, the quantitative and qualitative factors contributing
the the complexity of the computation of the di�erent transitions between steps
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in the qualitative visual analysis cycle are identi�ed and mapped to the three
categories of insight derived from the literature in Chapter 1. The complexity
model re�ects the �ndings reported there and extends them by identifying the
actual factors contributing to the complexity of the individual insight category.
This discussion results in a third fundamental principle of qualitative visual
analysis serving as a general design guideline.

The qualitative visual analysis cycle features two transitional relations en-
coding the data into the visualization and re�ecting the information encoded in
the mental model in the observed information domain. In addition to that, two
transitional states consist of pairs of relations translating between the domain
information and the data as well as between the the mental model and the visu-
alization. Insights are obtained by constructing those mappings. Hence, deter-
mining the complexity of the reasoning process requires to assess the complexity
of the generation of the four mappings. Each complexity has a quantitative and
a qualitative component, the former of which is concerned with the number of
elements to be transformed, the latter with the complexity of the translation
between the formal languages or data formats involved. As it turns out, for
each of the mappings one component dominates the complexity while the other
either cancels out or contributes only little to the overall complexity. Based on
the function of the respective mapping in the qualitative visual analysis cycle,
the following four complexities are identi�ed:

The sampling complexity is the complexity of the construction of the pair
σ/ρ linking the domain information I with the data D. Since ρ is the partial in-
verse of σ and every addition to σ is automatically re�ected by ρ, the complexity
reduces to that of the reconstruction of σ. σ is reconstructed from the mental
model by assigning information resulting from reasoning about the visualization
to the data. The assignment itself is a trivial operation assigning a number of
logical formulas to a number of data elements. The actual reconstruction is thus
dominated by the number of the objects and situations providing the additional
information and the size of the data contributing those objects and observations.
The sampling complexity is thus governed by quantitative considerations.

The graphical complexity is the complexity of the encoding relation enc :
D→ V generating the visualization from the data. Its qualitative component is
the complexity of the concept graph's syntax part. Although this computation
can be arbitrarily complex, the complexity is dominated by the quantitative
part which is determined with the number of data items to be processed.

The reasoning complexity determines the complexity of the relation pair
α/ι translating between the graphical language and the reading language. As
long as the visualization remains unchanged, the number of graphical elements
remains the same. Hence, the quantitative component of this complexity is
constant for every moment in which reading the momentary state of the visu-
alization triggers the reasoning process. Its complexity is thus dominated by
qualitative considerations, namely the complexity of the mental model and the
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Figure 2.8: Information �ow in the qualitative visual analysis cycle for the three
di�erent categories of insight. Remarkably, insight into the domain is the
only type of insight for which the �ow is unidirectional.

computation of the applicable semantics in the formalism of semantic aggrega-
tion.

The information complexity is the complexity of the re�ection relation
ref : M → I mapping the mental model back to the domain information. Like
for the reasoning complexity, the number of entities and observations in the
mental model to be mapped back to corresponding entities and relations in the
domain information remains constant during each execution of the relation. The
qualitative part of this complexity is determined by the complexity of the pred-
icates and functions to be matched between entities and observations in M and
I. Although proper naming conventions can simplify this process signi�cantly,
its complexity in essence depends on the logics applied to describe the infor-
mation to be mapped between M and I. Therefore, this complexity measure is
also dominated by qualitative considerations.

Figure 2.8 provides an overview over how the di�erent kinds of complexity
identi�ed above contribute to the three categories of insight discussed in Chapter
1. Insight about the visualization involves the mental model and the data. Its
complexity is hence determined by the graphical and the reasoning complexity.
Insight about the data is obtained from the reconstruction of σ. Since this
requires to map the artifacts and structures in the visualization back to the
data that created them, the contributing complexities are the graphical and
the sampling complexity. Insight about the domain is obtained from reasoning
about the graphical display and mapping the interpretations back to the domain
information. Hence, the contributing complexities are the reasoning and the
information complexity. In the following, the three types of insight are reviewed
in further detail regarding their respective complexity.
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2.7.1 The Complexity of Insight into the Visualization

Despite being the most fundamental form of insight according to the literature
cited in the discussion of the three categories in Chapter 1, insight about the
visualization can be surprisingly complex to obtain due to its mixed character
featuring quantitative and qualitative contributions. The quantitiy of artifacts
and structures in a graphical display can be quite overwhelming. Too much
detail can hinder the understanding of the visualization by making the viewer
process too complex de�nitions of objects, especially if this requires to consider
a large number of conditions on the constraints and interpretations. Shnei-
derman's mantra of overview and detail is a very popular strategy of coping
with this problem [129]. However, there are scenarios where this strategy is not
applicable, because an overview is not directly available but rather has to be
constructed by carefully collecting and combining available hints. An example
is digital forensics where the evidence yields the understanding of the case and
not vice versa. Of course, overview and detail is again a good strategy to present
the results of the investigation. Applications where overview and detail is an
appropriate choice of the presentation strategy are typically relatively �xed in
their structure. In those applications, interaction is mainly o�ered for naviga-
tion and �ltering. Understanding the visualization in this kind of application
thus primarily depends on the graphical complexity and is hence dominated
by quantitative concerns. The bottom-up strategy is instead required in cases
where visualization applications are characterized by the aggregation of data
from various previously unconnected data sources, probably across separate
views. They commonly o�er powerful interaction mechanisms to change the de-
piction and the data alike. In such a setup, analysis usually su�ers from the fact
that at least in the beginning understanding is dominated by outside knowledge
rather than by what can be read o� in the visualization. This kind of visual-
ization application is hence dominated by qualitative complexity considerations
in the beginning although this gradually shifts to quantitative considerations
during the analysis process as the visualization becomes more complex due to
the interaction extending the data and the display.

2.7.2 The Complexity of Insight into the Data

Both components of the complexity of �nding insight into the data are domi-
nated by quantitative considerations. It is thus not surprising that this is the
complexity best reviewed in the state of the art given the literature's focus on
quantitative considerations. The complexity of this kind of insight is commonly
assessed by cost-based approaches (e.g. [28,143]). In the qualitative visual anal-
ysis cycle, the complexity of insight into the data is governed by the number
of objects and situations found in the visualization about which the additional
information is to be mapped to the data in order to reconstruct σ and by the
number of data items a�ected by this mapping. The actual insight about the
data is a consequence of establishing the connection between the visualization
and the mental model which allows to associate knowledge from outside the
data with the data by associating it with words, sentences, and contexts over
the graphical language and mapping it back to the data used to generate those
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parts of the grahical display. The actual mapping is rather trivial since it only
assigns the functions and predicates describing the outside knowledge to the
corresponding data. Even if this requires the creation of an additional set or
class inside the data, the complexity is still governed by the collection of the
data in the corresponding class rather than by adding the description. Since ρ
is the inverse of σ its reconstruction does not add additional complexity to the
�nding of insight into the data. In the next chapter, an explicit augmentation
of the data by insight about the data is discussed as a work�ow amplifying
the obtainment of new insight by making the results of previous analysis steps
accessible to further analysis.

2.7.3 The Complexity of Insight into the Domain

Insight about the domain is the only one of the three categories that follows
a unidirectional path along the transformation arcs in the qualitative visual
analysis cycle. This actually matches the current standard model of visual
analytics which also implies a unidirectional �ow of information from data to
knowledge [74]. Interestingly, it consists only of the complexities dominated
by qualitative considerations. This brings up the question whether cost-based
approaches as they are applied for the complexity of �nding insight into the
data are actually capable of appropriately assessing the complexity of �nding
domain insights. In fact, when reasoning about components of visualizations,
the components are �xed during the actual reasoning process. Large numbers
of elements are abstracted into observations simplifying the reasoning. This is
either achieved explicitly with the help of interaction or implicitly by interpre-
tations inside the mental model. The implicit variant can actually be observed
when analysts comment on their reasoning strategy. Rather than re�ecting
vague or ambiguous de�nitions, characterizations like �this number of points� or
�that structure over here� actually refer to an observation that is clearly de�ned
within the analyst's mental model. What makes this description appear unclear
or ambiguous is the fact that mental models and hence the de�nitions di�er
between di�erent analysts. Further research into the direction of this kind of
qualitative reasoning is duely needed to make the potential of reasoning with
and about qualitatively de�ned objects and situations accessible to visualiza-
tion applications. It should be pointed out once more that the notion of being
qualitative in qualitative visual analysis does not refer to qualitative data but
is to be understood as the explicit consideration and discussion of the qualita-
tive aspects of data analysis contributing to the analysis results. In particular,
those aspects are the interpetation of data, the complexity of reasoning, and the
provenance of insights. Qualitative characterizations of objects and situations
in the visualization are obtained from reasoning within the mental model M
associated with a visualization V to obtain the reading language LR over the
graphical language LV that in turn determines the depiction of artifacts and
structures in the display. The qualitative descriptions are a result of the com-
bination of the visual data representation with outside knowledge constructing
the words in LR. Furthe research should not try to avoid such a scenario but
instead explore techniques to allow analysis to embed their outside knowledge
into the visualization, for example by proper annotations of the anchoring α(v)
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of a word v ∈ LR in the visualization. Enabling analysts to share their outside
knowledge when working with visualizations is especially important for collab-
orative setups where the exchange of knowledge between viewers with di�erent
backgrounds is likely to yield better analysis results or more informed decisions.

2.7.4 A Qualitative Design Principle

The above discussion of the three categories of insight and how they map to the
di�erent kinds of complexity associated with the transitions in the qualitative
visual analysis cycle reveals some remarkable observations. Recall that the lit-
erature referenced in the discussion of the three categories of insight in Chapter
1 reports �ndings about an ordering of the insight by ascending complexity,
namely insights about the visualization, about the data, and about the domain.
Combined with those �ndings, the discussion in this section indicates that at
least by the di�erenct kinds of complexity identi�ed in the discussion of the qual-
itative visual analysis cycle, qualitative reasoning in general seems to be harder
than quantitative reasoning. Interestingly, the studies and models referenced in
Chapter 1 report insight into the visualization to be the least complex kind of
insight. Yet, the theoretical model developed in this chapter partly contradicts
those �ndings because insight about the visualization combines qualitative and
quantitative complexity. Indeed, it is not hard to imagine a visualization that is
extremely hard to decipher but might be quite e�ective in supporting insights
about the data or even about the domain once the viewer learned to read it
correctly and �uently. Still, this should rather be prevented by visualization
design since learning how to work with an overly complex visualization is likely
going to provoke more frustration than the bene�t of �nding insight thereafter
can compensate.

In any case, it appears that the visualization should attempt to support
reasoning by representing the data in a way �tting the mental model and by
displaying only what is necessary and relevant for the analyst to obtain the
inquired knowledge. Note that this does not mean to focus on solving individ-
ual tasks without paying attention to any other information probably relevant
for further analysis and potentially yielding interesting insight. However, the
question is whether the analyst is actually interested in this additional infor-
mation, whether it is relevant for the question at hand. For example, when
analyzing email tra�c to identify the message exchange about �nance trans-
actions in some sort of fraud analysis, it might be an interesting insight that
one of the communicating persons received also quite a lot of advertisement, for
example for medication. Yet, this insight is not immediately relevant for the
analysis and indeed distracts the analysis from the actual task at hand which
is to �nd the emails regarding the �nance transactions. It therefore can safely
be ommitted from the display. Note, however, that this information should
never be deleted completely as it can indeed become relevant in a later step
of the analysis process. For example, the analysis of the �nance transactions
could reveal that the bank account information for the transactions was hidden
in the advertisement emails. Even if so, this is another part of the analysis
and the advertisements are still not relevant for the initial task. Although it
should be carefully considered whether or not data should be ommitted from

85



the generation of a visualization, asking this question is necessary to follow the
principle of minimal graphical overhead. Since the information complexity and
the sampling complexity cannot be in�uenced by the visualization, the graph-
ical and the reasoning complexity should be minimized. In fact, minimizing
those two complexities actually reduces the complexity of �nding insight for all
three categories. The graphical and the reasoning complexity are the complex-
ities associated with the execution of the syntax and the semantics parts of the
concept graph. The concept graph therefore is not only a descriptive model to
reason about the formation of mental models from visualizations but can also
be applied as a generative model allowing to tweak the design of visualizations
towards optimal performance with respect to anticipated reasoning chains. Yet
a complete treatment of the complexity of executing the syntax and seman-
tics parts of the concept graph requires a deeper understanding of the mental
models applied by analysis and therefore has to be left to future work. The
rationale behind this is that even though the complexity of the mental model
can be minimized theoretically, there is no reason to assume that an analyst
would automatically apply this optimal mental model. Therefore, studies about
the formation of mental models should be preferred over a purely theoretical
consideration and the design of visualizations should be adapted to the reason-
ing strategies actually applied by viewers rather than attempting to form those
strategies. In fact, the designer of a visualization cannot shape the way an
analyst is going to reason about the graphical representation. Even if the an-
ticipated mental model is theoretically optimal, the visualization will be harder
to use the more the analyst's actual mental model di�ers from the anticipated
reasoning structure. This conclusion is more than just a guideline but actually
installs a third fundamental principle of qualitative visual analysis:

Principle: Design for Reasonig

Visualization should support the way analysts think, not attempt to
shape it. The visualization design thus must be adapted to the mental
model, not the mental model to the visualization.

2.8 Discussion and Prospect

Towards a theoretical framework for qualitative visual analysis respecting the
inside-outside principle, this chapter proposes a formal model for explorative and
task-based reasoning with visualizations. Further formalization of the model's
individual steps and the transitions between them results in a generally appli-
cable theoretical model for the structures actually being read in a visualization
given a predetermined set of rules to be applied to understand and interpret the
artifacts and structures displayed in the visualization. Applying the qualitative
visual analysis cycle to describe the visualization process guarantees that the
qualitative aspects of the analysis process are explicitly considered in the discus-
sion. Other than most existing theoretical descriptions for the analysis process,
the qualitative visual analysis cycle does not take the obtainment of insight for
granted once the corresponding structure is found in the visualization. Instead,
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it asks explicitly for the exact composition of structures to be perceived and
how they are meant to be processed by the viewer's cognition. This description
is achieved by the more detailed model describing the individual steps along the
analysis cycle. Applying formal languages and grammars for the construction,
the theoretical framework �ts well into the currently dominant approach to the-
oretical reasoning about visualization being based on modeling the perception
of artifacts and structures in terms of messages to be evaluated by information
theory. For example, information can be applied to determine the likelihood of a
word of the reading language to occur in the visualization or to be perceived by
the viewer. This of course requires to apply the methodology described above to
determine the graphical language and the reading language de�ned on top of it
and thereby de�ne the messages to be exchanged between the visualization and
a viewer or analyst. Although this is an interesting direction for further work,
it exceeds the scope of this Thesis which is the investigation of the reasoning
and cognitive processing rather than the chance to identify a given structure.
However, it should not go unnoticed that the perspective presented here is in
some way as incomplete as the work focusing only on perception. Where other
work assumes insight to be found as soon as the corresponding structures are
perceived, this work assumes structures to be perceived as soon as they appear.
In the future, both perspective will have to be combined towards a holistic per-
spective of the reading and reasoning process. However, this Thesis is concerned
with the reasoning process as this is an actual gap in the liteature whereas issues
of reading and perception are covered more widely, especially in literature on
the human factor in visual data analysis. For this reason, perception issues are
widely omitted in the discussion. The model introduced in this chapter provides
the basis for the discussion throughout the remainder of this Thesis.

Formalizing the qualitative visual analysis cycle aims at establishing a the-
oretical framework for the description of the di�erent steps along the work�ow
modeled by the cycle and the transitions between them. Such a formalization
allows to reason about an analyst's interaction with visualization applications
and about the reasoning behind the conclusions drawn from working the vi-
sualization applying formal logics to de�ne predicates and formulas describing
the procedures followed by the analyst. This includes proving the ability of
the analyst to solve certain tasks using the visualization in conjunction with a
certain mental model de�ning the inference rules that will be applied by the
analyst to reason about the graphical representation of data and hence enables
researchers to investigate and prove hypotheses and theorems on the correctness
and completeness of the results obtained if the visualization is studied by a spe-
ci�c analyst or group of analysts. Applying general reasoning and perception
principles like the well-known Gestalt laws as the rules underlying the reason-
ing process and combining them with abstract representations of visualization
components, universal theorems can be formulated, proven, and applied to de-
rive further theory about the readability of visualizations and the visualization
literacy of viewers as well as the inferences an analyst is able to make.

Applications of the model require at least two of I, V , and M to be known
in order to obtain results about the respective third one. The most common
case is that the analysis asks for yet unknown domain infomation being part
of I. This scenario is the initial situation of exploratory analysis and other
analysis setups asking an open analysis question. In such a setup, every addition
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to I can be considered an insight. If M is the unknown model, the focus is
not on drawing conclusions but on obtaining an understanding of a scenario.
Typical examples are situational awareness and other applications centering
on the communication of overviews and detail information about the object of
discourse to the user � often as the preparation for subsequent analysis. If V
is unknown, the available domain knowledge determines the known parts of I
and D that in turn allows tailoring the visualization to a speci�c user or, for
example if M actually represents encyclopedic domain knowledge, even a class
of users. This is actually the common setup in visualizaion design studies and
describes the derivation of optimal graphical representations from knowledge
about the general domain (I) and the speci�c application (M). In general, a
mixed form of these problems will be encountered and the focus will gradually
change over time. Starting with the design, the focus is on determining a good
visualization. Getting an overview over the situation then puts the focus on
extendingM to match the visualization and subsequent analysis reveals insights
extending I. Depending on the type of insight to be predicted, di�erent parts
of the qualitative visual analysis cycle need to be considered. According to the
three levels of insight complexity discussed in Chapter 1, those levels are insights
about the visualization, insights about the data, and insights about the domain
in ascending complexity. Insights about the visualization require to identify the
concepts determining the entry points of the reasoning process by establishing
the direct link between the graphical language LV and the reading language LR.
This requires knowledge ofM and V . Insights about the data are formalized by
the reconstruction of the representation relation η from extending the sampling
relation σ : D → I by knowledge obtained from interpeting the visualization.
This essentially means to map the available outside knowledge to the artifacts
and structures in the visualization and to additionally associate this information
with the data encoded into those structures and artifacts by following the enc-
relation mapping the data to the visualization backwards. Again, this requires
the knowledge of M and V , but also some information about the raw data and
the information it is meant to sample from the domain. The most advanced
type of insights, insights about the domain require establishing the re�ectance-
relation ref : M → I linking the mental model to the domain information. To
achieve this, the mental model needs to be equipped with a more sophisticated
de�nition of entities and observations than in the other cases. Because this
requires knowledge about the predicates and functions formalizing the domain
knowledge, establishing this kind of relation requires the knowledge of both
M and I. Interestingly, the formation of this kind of insight can be described
completely without knowledge about V . This opens interesting opportunities
for visualization design enabling the tailoring of visualizations towards a mental
model M that is constructed exactly towards answering a question about the
domain by re�ecting a respective hypothesis. Of course, this kind of hypothesis
has to be tested against the data. However, data does not form entities and
observation but rather instantiates them as a collection of objects and situations.
Validating the hypothesis against the data hence means to predict the applicable
interpretations of the visualization based on the mental model and the available
data. This is achieved by the notion of semantic aggregation.

The proposed formalism of semantic aggregation has been shown to be ap-
plicable to the description of interpretations of a wide range of graphical repre-
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sentations and to be especially useful to assess the possible conclusions viewers
are able to draw from analyzing data using visualizations. Its modularity and
extensibility allow to tailor the model to a given problem, such that � while
maintaining its general applicability � its predictions remain accurate even for
extremely problem-speci�c questions. Together with the concept graph as a
model for the structural composition of graphical displays and the closure ca-
pabilities and strategies applied in the mental model used to understand, inter-
pret, and analyze the depicted information, semantic aggregation is capable of
describing insight as the gain of information previously unassociated with the
graphical representation both qualitatively as the reconstruction of a mapping
from the data to the new information that has been derived from it and quan-
titatively by the number of graph elements contained in the new information's
direct and aggregate semantics as indicators for the new information's direct
complexity and total in�uence on further information inference.

The concept graph provides only one way to establish a formalism allowing to
reason within the framework of semantic aggregation. Although it is replaceable
as the underlying model, it comes with an appealing set of features. First, it
allows to process syntax and semantics in a single model and to directly link se-
mantics to complex interpretations. Second, its graphical representation makes
it comparably easy to apply. The visualization part re�ects the visualization's
design while the semantics part re�ects association chains and the possibility
to combine semantic ideas into other ideas. In this form, it appears much like
a mental map with an additional classi�cation feature. However, the model's
descriptive power depends on the logics applied to specify the semantics.

Although the concept graph's original form [73] does not provide the for-
malism added in this work, it already introduces another appealing feature:
The idea that the data carve out a set of actually applicable semantics from a
universe of possible semantics allows to formalize the formation of observations
made by experiment within the realm of a theory and to dynamically adapt
the interpretation and conclusions that can be made within the theory to the
experimental observation. The third major property of the concept graph as it
has been formalized in this Thesis is the formalism's scalability. While mod-
eling the structure of graphics rather than the elements contained, it does not
scale in the data but in the complexity of the graphical display. Likewise, the
semantics model scales in the complexity of the theory applied for the analysis.
As a consequence, the representation remains compact even if large amounts of
data are being displayed and processed. Traversing the concept graph yields the
possible or applicable semantics that can in principle be derived from the data.
By the rede�nition of the concept graph's syntax and semantics components to
automata, actual data and structures observable in the visualization can still be
processed explicitly by running the respective automaton.

In the current form, semantic aggregation and the concept graph still have
some limitations. A quite obvious issue is that even though the model directly
re�ects the structure of graphical representations or closure strategies of the
mental model, strategies are needed for e�cient modeling of these procedures,
especially for very complex structures. The heuristics applied to the generation
of this chapter's content were to start with lower complexity and to add the
�lter, transformation, and reinterpretation operations only later. This allows to
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quickly get an idea of how the �nal model will look like but the late addition of
complex structures sometimes requires adaptations. Although identifying the
need for such adaptations during modeling rather than during programming is
actually quite useful, there must be strategies how to e�ciently generate the
model � especially regarding the formulation of complex domain knowledge and
adapting the visualization to this context as it is a task often encountered in
visualization design. Moreover, as of now, quantitative reasoning can only be
modeled by the installation of �lters and pre�ltering the data. A simple �x
to this problem is to slightly relax the de�nitions and allow the mental model
to process the results of �lters as data attributes. After all, these results are
already included in the direct semantics associated with a concept. However
it is still a challenge to model relative de�nitions like a set being much larger
than another. This becomes more challenging the more the perception of such
a feature is speci�c to a speci�c person's interpretation. Currently, this can be
achieved by exploiting the nondeterminism of the automaton representing the
mental model and simply adding interpretations modeling these states. Which
interpretation is applied depends on the user. In the future it might be necessary
to add some additional determinism to the mental model to solve this problem.
Such an additional determinism is also relevant for the constraints since as of
now they merely model associations than conclusions and background conditions
on constraints � other than evaluating �lters � are more of theoretical relevance
than of actual use in the model.

Towards more detailed descriptions of the mental model, future work on the
theory will investigate the dynamic addition of logical reasoning by installing a
mechanism for the invocation of oracles to determine semantic properties of the
situations being processed in the mental model. Akman and Surav [2] success-
fully applied such a model to information retrieval. An advanced version of their
technique, resolving some limitations of their approach, should be applicable to
the theoretical framework of semantic aggregation. Although the model scales
well in its descriptive capabilities and the execution of the automata � after
all the visualization and mental model can be parallelized to a large extend �
computational e�ciency is likely to be an issue for very large data sets. To this
end, suitable data structures and computation methods have to be identi�ed
to allow quick computation of situations even for large data sets. Interactive
computation times will enable new forms of interaction based on the seman-
tics and on the information to be found in data rather than on the data or its
graphical representation. Demiralp et al. have proven such attempts to be use-
ful on a limited set of information to be found proposing what they call insight
queries [39]. It will certainly be interesting to investigate an extension of their
�ndings to general information.

2.9 Summary and Conclusion

In this chapter, a model of the qualitative visual analysis process is introduced
along with a formal treatment of the individual steps in the model. The result is
a theoretical description of the structures viewers are expected to read in visual-
izations based on the required input for the reasoning processes determining how
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viewers interpret the displayed information. Being based on the notion of for-
mal languages and the exchange of messages between the visualization and the
viewer or analyst interpreting it, the formalism is well compatible with the cur-
rently dominant direction in visualization theory describing the reading process
in terms of information theory. However, where the focus of the information the-
oretic approach is on the occurrence and perception of messages, the discussion
here focuses on the interpretation of messages after they have been perceived
and on the construction of the messages a viewer or analyst actively tries to
perceive in the visualization. The theoretical considerations yield four central
results. The qualitative visual analysis cycle provides a scheme for a description
of visual information analysis explicitly considering a major qualitative aspect
of visual information analysis, namely the reasoning to be applied to the data.
The principle of minimal graphical overhead is a direct consequence of the dis-
cussion about which messages can theoretically be read from the visualization
and which messages actually make sense to be read. The third major result
is the relation between the mental model and the reading language allowing
to formalize the interpretation of the graphical display in a structure enabling
the comparison between the models of di�erent viewers. This comparison is
not only important for the understanding of how di�erent viewers and analysts
work with visualizations but also reveals potential sources of misunderstanding
or ambiguous interpretation by comparing the reasoning and interpretations of
users applying di�erent sets of outside knowledge to understand the visualiza-
tion. The formalism of semantic aggregation denotes the fourth major result,
providing a computable prediction of the domain information an analyst is able
to conclude from the graphical presentation based on the mental model. It gen-
erates a language of the possible semantic information being associated with
graphical representations of data as the semantic information the graphics are
intended to convey. Together, the qualitative visual analysis cycle, semantic ag-
gregation and the concept graph close a gap in visualization theory, combining
theory on the structure and organization of graphics with reasoning strategies,
knowledge, and other human factors determining the information an analyst
can obtain from a graphical depiction.
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Chapter 3

Work�ows Inspired by

Qualitative Visual Analysis

The second question in focus of this work is the �nding of e�cient work�ows
for qualitative visual analysis processes. In the �rst part of this chapter, a
structured work�ow streamlining the �ow of information along a cycle of data
mining, visual analytics, and machine learning steps is presented. Insights found
during any step of the analysis are captured as additional information that can
be processed during further analysis, resulting in an ampli�cation of insight to-
wards an increasingly rich source of semantically meaningful views on the data
being aggregated during analysis. An explicit augmentation of the data with
insights about the data makes the interpretations of artifacts and structures in
the visulization accessible for further analysis. Thereby, semantic information
is included into the data analysis process which is why the proposed method
stands apart from similar approaches. Interacting not only directly with the
data but also with meaningful substructures featuring clear and documented
semantics allows a more intuitive support for reasoning than abstract interac-
tion on the data level would. Towards maximizing the e�ciency of such an
analysis work�ow, the second part of this chapter discusses the feasibility of
automated generation of visual analytics pipelines based on qualitative con-
siderations. Where insight provenance reports the reasoning strategies being
applied by viewers and analysts, automatic visualization generation relies on
�nding representations enabling to draw the conclusions needed to answer the
analysis question. The tight binding of visual data encodings and their seman-
tics discussed in this Thesis inspires the idea to determine paths of consecutive
transformations for the generation of visualizations by the information to be
obtained from those visualizations rather than only by the structure of the
available data. The discussion yields an algorithm that allows to ask for visual-
izations supporting complex reasoning processes in order to foster the �nding of
inquired insight. Those visualizations are to be composed from a set of available
data transformations and visualization components.
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3.1 Related Work

The integration of automated data analysis and visualization is the fundamental
idea behind visual analytics. The classical visual analytics pipeline as proposed
by Daniel Keim [74] is well re�ected in existing systems for interactive data anal-
ysis. A survey conducted in 2016 reveals that most visual analytics pipelines
follow this principal scheme and specialize certain aspects [147]. Here, an al-
teration of the pipeline is proposed, merging the knowledge and data models
and thereby augmenting the data being analyzed by the insights found during
analysis.

There is a variety of tools o�ering to combine Data Mining and Visualization.
Some of them also include Machine Learning algorithms. KNIME and Orange
are only two of the more well-known examples [15, 41]. These tools typically
o�er a graphical interface for the speci�cation of data processing pipelines and
visualization to study the results of pipeline executions. However, they do not
feature the direct reintegration of obtained insights into the data that is pro-
posed here. A recent survey reviewed 19 open source tools for data mining with
respect to their quality and their features [3]. While most of the tools provide
a visualization of the resulting model, less than half of them o�er to visualize
the data. Only about half of the tools (10/19) allow saving and reloading the
results and only �ve can export the obtained results to common exchange for-
mats like XML. Since the work�ows in these tools are typically implemented as
unidirectional linear or tree-like structures, saving and reusing obtained models
is a necessity to implement an iterative approach like the one proposed in this
chapter. Most of the reviewed tools are focused on the construction of data pro-
cessing pipelines. This work instead focuses on the data itself, especially on the
metainformation obtained by the user who interprets the visualization. Putting
the focus on reintegrating obtained insights into the data increases the resource
requirements. For this kind of scaling problems, Stari£ et al. recommend to
work with light-weight visualizations supporting the parallel and asynchronous
execution of algorithms [133].

The most relevant related work to the proposed work�ow is the human-
centered Machine Learning framework proposed by Sacha et al. [119]. Similarly
to the approach proposed here, an iterative work�ow based on Keim's Visual
Analytics model is discussed, where the analyst applies domain knowledge to
steer machine learning algorithms to support the analysis process. The paper
also provides a good overview over existing approaches implementing parts of
such a pipeline along with an in-depth discussion of tasks and analysis steps to
be performed in such a setup. In their discussion, Sacha et al. focus on interac-
tion for model building and parameter re�nement to improve the performance of
machine learning algorithms by leveraging the user's domain knowledge. In con-
trast, the approach proposed here is focused on restructuring and augmenting
the data. Altering the analysis pipeline as illustrated in Figure 3.1 directly inte-
grates the analyst's mental model with the available data. Taking into account
insights obtained from previous analysis steps e�ectively extends the capabilities
of the framework proposed by Sacha et al.

Taking a closer look at the automatic generation of visualizations, of course
Jock Mackinlay's seminal work on a presentation toolkit has to be mentioned
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Figure 3.1: Daniel Keim's model of visual analytics (top), the modi�cation proposed
here (center), and the proposed analysis work�ow (bottom). Most existing
visual analytics applications follow the classically assumed unidirectional
�ow of knowledge from the visualization and a data model to the viewer.
Merging the knowledge and the data model implements an augmentation of
the data being analyzed by the insights obtained from prior analysis steps.
Leveraging this augmentation mechanism, an iterative work�ow combin-
ing methods from data mining, visualization, and machine learning, im-
plements a resonance loop fostering the obtainment of new insights from
previously obtained results.
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[92]. Mackinlay was among the �rst researchers to interpret visualization sys-
tems as formal languages generated by grammars. Other authors followed this
idea, although focusing on various di�erent aspects, like covering di�erent types
of data [151], a strong focus on tasks [23, 126], a focus on the content of linked
data [136], or perception-oriented embedding [40], to mention only a few ex-
amples. The aim of this discussion is not to reinvent the wheel. The focus is
rather on how to combine models for automatic data analysis and visualization
design to deliver optimal data representations to the viewer. All of the models
listed here are of a constructive nature, describing the structure of visualiza-
tion. In principle, all of them can be combined with the methods discussed in
this chapter to cover di�erent aspects of the properties the viewer needs the
representation to feature. The necessary condition is that a set of visualization
techniques is available that has been evaluated with respect to the qualitative
aspects of their representations of data so the necessary predictions about the
qualitative properties of the resulting visualization can be inferred.

Indeed such systems exist. VisIRR, for example, is a semiautomatic visu-
alization toolkit for information retrieval [32]. Being heavily data-centric, it
lets the user query for data and proposes visualizations hat are predicted to
provide presentations of su�cient quality. A similar approach, although more
on the construction side, is followed by the idea of a form-semantics-function
coming from the �eld of visual data mining [130]. Here, the composition of
visualization systems is derived from the semantics of the data to be visualized.
This approach is quite appealing as it attempts to steer the visualizations shape
by the information it is meant to convey. Again, the intention here is not to
automatically de�ne only the visualization but rather the whole data prepara-
tion and processing pipeline. However, the information model of the qualitative
visual analysis cycle introduced in Chapter 2 is applied to steer this process.

From the information-oriented perspective, interesting work has been done
composing visualizations by the semantics of the displayed artifacts and struc-
tures rather than the data to be visualized [93]. Very appealing is the idea to
let the analyst de�ne search queries based on examples. By the focus on seman-
tics, the viewer can specify a query based on content based similarity. Thereby,
an analyst can literally ask for �something like this� and point at some data.
Perhaps the most popular technology in this domain is the semantic web [14]
along with its data exchange format RDF [85], providing a simple, graph based
representation of basic facts about the relations between data. An example for
a more sophisticated formalisms for ontologies based on the semantic web is the
web ontology language (OWL) [90]. From the perspective of this work, a bet-
ter candidate to represent the information associated with data and algorithms
would, however, be the concept graph in conjunction with the qualitative visual
analysis cycle. After all, the focus here is not on querying for existing data and
semantics but for information supported by data that can be algorithmically
derived from the available data. In essence, the data supporting the answer to
the information query is not directly available. What is available is a number of
tools that probably allow transforming the available data into a form support-
ing the information sought. The intention of the discussion of the possibility
of automatic visual analytics pipeline generation hence is to assess whether the
algorithmic construction of such a chain of transformations is possible and com-
putationally feasible. Because this ultimately asks for semantic information
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rather than only data transformation, inference tools from the semantic web or
other domains are not directly applicable to this task.

Being interested in the design of visual analysis pipelines, it is necessary to
investigate their shape. A well-written survey on the development of visual an-
alytics pipelines found that up to specializations, Daniel Keim's original model
of the visual analytics pipeline is well established and adaptations only deviate
slightly from it [147]. The idea is thus adapted here for the principal construc-
tion, assuming that data is visualized either directly or after being transformed
by data mining or machine learning procedures. Note that this essentially deter-
mines the encoding-relation in the qualitative visual analysis cycle and hence is
compatible with the model. Machine learning methods are deliberately allowed
to be incorporated due to their great potential and increasing in�uence in the
�eld which is well described in a recent survey [48]. Concerning the de�nition
of data transformation pipelines to be executed prior to analysis, graphical pro-
gramming languages for the arrangement of transformations like the one o�ered
by KNIME have been developed to control the process [15]. Such languages can
be applied by the user to steer or correct the proposed automatic approach if
necessary. An example work�ow using some of the tools mentioned here could
be to de�ne the transformation paths and load the result into AutoVis [151].
Once set up, the pipeline is executed automatically. Yet, there still is some space
left for further automatization. An algorithm for automatic pipeline generation
would attempt to derive a complete cover of the information inquired by the
user as some formal representation of the analysis goals.

3.2 Towards Tight Integration of Quantitative and Qual-
itative Visual Analysis

Driven by advances in data mining, machine learning, and visualization, decen-
tralized data collection, aggregation, integration, and analysis became almost
ubiquitous. The advantage of making the results of automated data analysis
accessible for human interpretation is well documented by the success of visual
analytics. Yet, the obtained insights commonly remain entirely with the human
analyst. Therefore, the mental model of the visualization necessary to apply the
qualitative visual analysis cycle is typically not directly available. To exploit the
implicit knowledge that is with the analysts, it needs to be made explicit. One
possible approch to obtain an unkown mental model is to extract it from the
documentation of the analysis process in the form of insight provenance informa-
tion. Properly encoded, this enables the reintegration of obtained insight into
the further analysis process. The mental model de�ned this way di�ers from the
concept graph and from the one introduced for the qualitative visual analysis
cycle in Chapter 2 in that it is based on individual objects and instances rather
than on abstract entities and observations. Yet, this is necessary as rather than
de�ning an abstract model top-down, provenance necessarily constructs a men-
tal model bottom-up starting with the initial graphical data representation. To
achieve this, an improved visual analytics pipeline is developed.

The focus of this chapter is an interative work�ow merging the data model
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and a model of the insights about the visualization and about the data aggre-
gated during analysis. This allows performing analysis directly in this model
rather than only on the data's graphical representation. Insight can thus not
only be obtained from analyzing the data directly but also from the interpre-
tation and inferred information obtained from previous analysis steps since by
the uni�cation of the data and the knowledge model insights found in previ-
ous steps become available for automatic analysis. Machine learning is applied
to make the analysis feasible for large data sets by quickly rolling out insights
found locally for some structure to similar structures in the data.

3.2.1 Searching for Insight and Panning for Gold

If data is too large to be processed at once or analysis is to be performed in
an online setup constantly generating new data, the analysis is often limited to
comparably small subsets of data being streamed through the system. Having
to decide on which subset of the data is to be evaluated, one could claim that
insight is only worth as much as the added value it generates. For the search of
valuable information in streaming data, the metaphor of searching for a needle
in a haystack often applied in big data contexts in some sense translates to
panning for gold in a river.

Data Mining, Visualization, and Machine Learning each have their own ap-
proaches to �nding information. Using explorative visualization, the user would
attempt to �nd a spot along the river where the yield of panning for gold is max-
imized. This could very well require to explore the whole river. Data mining
would try to analyze and cluster particle patterns in the stream. The interpre-
tation where to �nd the gold and how to extract it from the stream is left to the
user. Sophisticated machine learning algorithms would �nd an e�cient strategy
to extract large amounts of gold � if they were trained properly. If the training
data is not of su�cient quality, the algorithm might as well just extract tons of
sand.

A combination of the three approaches could for example proceed as follows:
The data mining's clustering is interpreted by the user by means of visual ana-
lytics. The most promising streams are bundled by canals and led into a cycle
to increase the potential yield even further. The gold to be extracted has a spe-
ci�c shape and �oating behavior. Panning for some gold and labeling particles
accordingly yields training data for machine learning. In some sense, learning
to keep the gold and let the other particles pass in an optimal manner can be
thought of as optimizing the pan. The result is an optimized gold extraction
procedure to be applied to the water stream. Feeding the gold obtained from
panning back into the system thus results in an accumulation of more gold and
better yield. A larger gold yield means an improved return on invest. For data
analysis, this means an improved e�ciency of insight obtainment.
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3.2.2 A Resonance Loop Amplifying Insight

In the classical model of visual analytics proposed by Daniel Keim (cf. Figure
3.1), the user applies interactive visualization and data mining to build, verify
and re�ne a data model. The additional information o�ered by the model
generates an added value for the interpretation of the visualization providing
insight into possibly hidden relationships and dependencies in the data. Like
in the thought experiment outlined above, this process can be seen as a �ow of
data (particles) along a stream where di�erent means of analysis (the pans) are
applied to extract valuable insight (gold). Although Keim's model includes the
notion of a feedback loop from knowledge to data, this loop is only of conceptual
nature and indicates the idea that users may choose to concentrate on di�erent
data based on the knowledge obtained from previous analysis [75]. The obtained
insight remains out of system, rendering the extraction of knowledge essentially
unidirectional.

It is not uncommon that the information cannot be read o� directly but
has to be inferred by reasoning about multiple data elements. Being aware
of this problem, visual analytics applies data mining to obtain data models in
which the information can be found more easily than from studying only the
raw data. Finding the information might induce a new analysis question. An
unsuccessful viewer instead could apply interaction to edit parameters steering
the preprocessing, or decide to investigate di�erent portions of the data or an
entirely di�erent data set. This is the feedback loop in Keim's model. Patterns,
redundancies, or other interesting observations might not only be hidden in the
data's values but also in the interpretation. Sometimes, the information to be
found within the data but is hard to detect. This is the case, for instance, if
the information is to be derived from transformed data, for example from the
derivatives of a scalar �eld rather than from the �eld itself. If the derivatives
are not part of the data, the feedback loop proposed here instead allows to
evaluate the derivatives in local neighborhoods and to label the resulting new
data accordingly. Investigating the derivatives and identifying the interesting
information, the viewer can now select and label the respective derivative data.
Machine learning can be applied to roll out these �ndings to the rest of the
derivative data and the parameters steering this process can be optimized by a
work�ow similar to the one proposed by Sacha et al. [119]. Each derivative value
can be mapped back to the original data points which can now be evaluated with
respect to the insights found in the derivatives. Rather than only considering
di�erent data, the analyst thus concentrates on di�erent qualitative information
associated with the data which is made possible by including the knowledge
obtained about the derivatives into the data and aligning it with the original
data.

The visual analytics pipeline is thereby transformed into a resonance loop,
amplifying the generation of new insight. An illustration of this model compared
to Keim's model is shown in Figure 3.1. In the analogy of panning for gold,
the feedback loop maps to the application of data mining to �nding promis-
ing data sources (rivers with high yield) and integrating them properly in a
preprocessing step (channeling the �ow). The analyst infers insights from in-
terpreting a visualization (the gold obtained from manual panning) and feeds
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the results back into the system as metadata. Machine learning is applied to
iteratively re�ne the data and knowledge model (optimizing the pans). With
the assistance of automated procedures to mine and analyze previously obtained
knowledge and apply it to the data, new insight can be derived from previous
results (amplifying insight).

Optimal results require a tight integration between the three domains in
a work�ow leveraging each �eld's speci�c strengths and alleviate each other's
weaknesses. The purpose of data mining is the detection of previously unknown
patterns in the data. Their interpretation is left to a human analyst. Visu-
alization is an interface for humans to make sense of data. Yet, �nding and
interpreting structure requires a skilled user and often also considerable amount
of time. In direct comparison to data mining, the focus of machine learning
is more on the identi�cation of patterns already known. Its results, however,
rely heavily on the proper choice of training data. Assigning roles to the three
domains according to these strengths and weaknesses implements the work�ow
illustrated at the bottom of Figure 3.1. While on the global scale the pro-
posed work�ow implements a loop of applications of data mining, visualization,
and machine learning, each executed procedure is based on an individual linear
transformation pipeline. There is a variety of open source tools available for the
creation of such pipelines [3].

The metadata to be edited can take multiple forms. Perhaps the simplest
method to map analysis results back to the data is the assignment of labels.
There are no strict restrictions to the data's shape other than that it needs to
be compatible with the applied data mining and machine learning algorithms.
Since the metadata is meant to formalize insights found during analysis and
these insights will typically be of a qualitative, descriptive nature, it makes
sense to apply a data structure explicitly mapping sets of data items to seman-
tic information. The transformations applied during data processing and user
interaction organize this structure in a graph allowing the navigation of analy-
sis results obtained thus far. If in such a setup the applicable data mining and
machine learning procedures o�ered by the system are known for every set of
data items, pipelines processing the data to serve complex information queries
can be generated automatically. This is discussed in further detail below. In its
most simple form, the metainformation is simply a set of labels applied to the
respective set of data items. However, more complex structures like a semantic
web or other kind of ontology de�ned on top of the data are feasible and allow
more sophisticated analysis and inference structures operating directly on the
knowledge model. From such a model, the reading language can be constructed
as described in Chapter 2. Once the reading language is known, a concept graph
generating this reading language for the given visualization can be constructed.

To make the assignment of labels or other metainformation feasible for large
data sets, a semiautomatic distribution of metainformation can be achieved
by searching for data patterns to be labelled rather than for individual data
items. Depending on the shape of the data patterns, suitable machine learning
algorithms can be trained using the labeled data to roll out the labels to cor-
responding structures in the remaining data. As an example, consider a point
cloud obtained from scanning, for example, an asteroid's surface. Due to mea-
surement errors, there is some noise in the data and the surface is not smooth.
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While the analyst would be interested in studying craters, the measurement
errors induce false local critical values. Simply smoothing or averaging the sur-
face could, however, result in the loss of important detail. Data mining can be
applied to categorize local neighborhoods of points with respect to the points'
position relative to an averaging surface. The clusters will reveal bumps, dents,
ridges, and other structures. For the analysis of craters, too small neighbor-
hoods result in a large number of erroneously found crater-structures whereas
the cluster criterion does not yield reliable results for too large neighborhoods.
A simple application of machine learning would be to �nd craters by searching
for the largest structures whose similarity to a local bump or dent does not fall
below a certain threshold.

3.2.3 Example Use Case

Irregular in�uences on air-tra�c patterns like thunderstorms do not follow spa-
tial patterns. Their in�uence on air-tra�c routes can thus not be accurately
predicted based on historical data. Nevertheless, historical data can be con-
sidered to identify possible evasion routes. The following discussion shows how
the proposed work�ow could be applied to solve this problem by mapping each
analysis steps to the domains of data mining (DM), visualization and visual
analytics (VA), and machine learning (ML).

If a storm warning is announced, historical data is mined for past storms in
the same region (pattern recognition, DM, channeling streams). The analyst
assigns grades to the trajectories of representative planes evading the storm in
order to assign them to equivalence classes re�ecting their quality (�nd and
evaluate structures, VA, manual panning for gold). Those grades are now rolled
out to the other evasion routes by a classi�cation algorithm (classi�cation, ML,
optimizing pans). Quality measures determine how well each path �ts into its
class (cluster quality assessment, DM, determine yield quality). Where neces-
sary, the identi�ed classes are subdivided into two or more subclasses by as-
signing proper labels (evaluate quality and detect subclasses, VA, increase the
gold yield). These adjustments to the classi�er's de�nitions improve the re-
sults during reclassi�cation (reinforcement learning, ML, optimizing the pans).
The controller identi�es the best-graded routes for every relevant direction and
reevaluates their embedding into the actual surveillance data (VA, panning for
gold). The planes can then be assigned to the evasion routes according to the
classi�er trained before (ML, increase yield). Storing the routes for future refer-
ence, candidates can be obtained directly from the collection rather than having
to be extracted them from historical data (amplify insight).

3.2.4 Avoiding Credibility and Reliability Issues

Feeding back the results of visual analytics to into the data to make it accessible
for machine learning and data mining enables the derivation of new insight from
previously obtained results. With the bene�ts, there also come pitfalls and risks.
In visual analytics work�ows, uncertainty usually only propagates between the
data and the obtained model from the data and the model to the visualization
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[20]. Feeding back analysis results into the data and the model introduces two
additional types uncertainty: a quantitative uncertainty in the classi�cation
obtained from machine learning and a qualitative uncertainty regarding the
credibility and reliability of the results obtained from human data analysis.

Other than the human analyst, the computer does not re�ect on the data it
receives as input. Thus, errors in the analysis will not be detected by the com-
puter and propagate through further computation. When attempting to roll out
analysis results to the whole data set, misclassi�cation errors can be corrected
by re�ning the classi�cation schemes. Still, there is a risk of an �analyst-induced
oscillation� where continued optimization attempts eventually result in an over-
�tting detrimental to the classi�er's performance.

To assess the credibility of metadata de�ned in previous analysis, provenance
information must be stored along with the metadata. Without such informa-
tion, errors made in previous steps or assumptions inapplicable to the current
investigation might yield false analysis results. Note that, being part of the
metainformation added to the original data, the provenance information can be
accessed and processed like any other data.

To test the model's reliability, it can be tested against the addition of new
(arti�cial) data and against assertions. The metadata and de�nitions together
de�ne a model for the observation. If the model is accurate, it should predict
the metadata of newly added data points correctly by applying the de�nitions
obtained from previous analysis. Assertion checks can be performed by spec-
ifying a condition that has to hold under the model. This assertion is then
evaluated on each relevant data item generating a label with the evaluation's
result. The labels can then be used for further analysis to check whether the
assertion holds on the correct data elements.

3.3 Motivating Automatic Visual Analysis Pipeline Gen-
eration

Combining automatic data analysis with human reasoning based on visualiza-
tion, visual analytics has become an integral component of modern data analysis
applications. While individual advances in visualization, data mining, and ma-
chine learning contribute to this success, the key element of visual analytics is
the e�cient combination of the di�erent techniques to obtain solutions foster-
ing the derivation of new insight. The work�ow introduced above supports this
kind of analysis by structuring the process and explicitly leveraging the ability
to reintegrate insights obtained back into the data. Yet, this integration can still
be quite challenging. While tools have been developed to support the e�cient
generation of data preparation and processing pipelines, �nding a combination
of algorithms that reveals the insight an analyst is aiming to obtain still de-
pends on the analyst's understanding of the algorithms' e�ects on the data and
experience in their application.

Towards a more e�cient process of generating data preparation and process-
ing pipelines for visual analytics, propose a partial automatization of the process
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is proposed in the following. The key idea is to let the computer reproduce in-
formation inquired by the analyst. To achieve this aim, the computer needs
to �nd a sequence of transformations that derive data supporting the inquired
information from the available raw data. Yet, there is a twist. The algorithm
would necessarily decide whether it is actually possible to derive this informa-
tion as the interpretation of the result of a sequence of transformations applied
to the raw data. This is an instance of the halting problem � and therefore
impossible to solve. Fortunately, there are special cases, in which a restricted
version of the problem is decidable. A second problem is that information refers
not to the data itself but rather to its interpretation with respect to the analysis
question. An example would be treating distance as an indicator for neighbor-
hood. Therefore, an analyst can only query for information that is already part
of the mental model � and thus already known. As it turns out, the trick is
to specify the characteristics of the results of data analysis and visualization
algorithms. The analyst then asks for a view on the data that has speci�c prop-
erties and for interpretations that are explicitly associated with the results of
data transformations as properties of the transformation's algorithm. Ideally,
this view allows an e�cient evaluation of conjectures and hypotheses against
data but can still be explored easily.

The following discussion introduces an approach to the automatic design of
visual analytics pipelines driven by the information being part of the interpre-
tation of data after a number of transformations. To this end, it is investigated
under which conditions it is decidable whether some information can be derived
from the raw data by sequences of data transformations. The actual algorithm
treats the transformation procedures as building blocks in a directed graph of
possible transformation sequences. It is shown how this graph can be generated
from a schematic description of the data transformation and how the resulting
change of information associated with the data taking place in each transfor-
mation procedure can be obtained. The discussion proceeds as follows:

1. It is proven that the problem whether it is possible to derive information
from raw data is in general undecidable but can be decided for special
restrictions which are typically the case for real world applications.

2. The discussed model is extended to visualization and the conditions for
the ability of a visualization system to present inquired information are
derived.

3. An algorithm scheme for the automatic generation of visual analytics
pipelines covering the whole span from raw data to visualization is out-
lined.

3.3.1 Information and Data Transformations

This chapter is concerned with details of the encodes-relation enc : D → V
discussed as the transformation of data D sampling the domain information
I into a graphical representation V . Therefore, a more �ne-grained notation
than in Chapter 2 is required for the discussion. Like before, data refers to
to qualitative or quantitative variables. Now, there is a distinction between
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raw and re�ned data, the former being the data provided �as is�, the latter
the result of data transformations. For information, the de�nitions apply as
before. Yet, an additional demand is that facts are comparable within the
same set of information, meaning that it is decidable whether two entities or
observations are equal. The representation of information is often based on
logics, predicate logic to be precise. However, the details are domain- and
application speci�c. For example, modal logic can be applied to model systems
with several alternatives and (linear) temporal logic allows to model processes.
Another way to represent information is the semantic web [14], where data
semantics are modeled in terms of a graph given as a set of triples encoding
edges between graph nodes. The relationship between data and information is
still de�ned by the partial functions ρ : I→ D and σ : D→ I. For the remainder
of this chapter, D and I are considered global objects demanding that they
contain all data and all information that is either directly available or can be
computed or otherwise obtained from other data and information. In contrast,
D ⊆ D and I ⊆ I refer to sets of known data and information. Note the slight
di�erence that D and I are now subsets rather than elements.

The question of containment is a natural consequence of organizing infor-
mation in sets. Recall that in Chapter 2, the domain information has been
introduced as predicates and functions bound to higher-order predicates mod-
eling entities and observations. Similarly, the objects and situations observed
in actual data consist of valuated predicates and functions. For �nite informa-
tion sets I ⊆ I, decidability of set containment thus follows trivially from the
comparison of the contained predicates and functions based on the valuation of
the contained variables. Concerning the possibility to derive certain informa-
tion from the raw data, the situation is, however, quite a bit more complex: A
map between sets of information has not been introduced thus far and for the
sake of generality it remains so. Instead, an indirect approach is applied. Let
τ : d0 → d1 be a transformation transforming some data d0 ∈ D into some data
d1 ∈ D. The change of data resulting from the application of τ can result in a
change of the associated information � although this is not necessarily the case.
An indirect mechanism for information transformation is thus given by following
the data: Let i0 and i1 be the information associated with d0 and d1 respec-
tively. Since in this case the relation between data and information is explicit, it
is evident that the representation and sampling operations are de�ned in both
directions and cover the respective sets completely as inverses. Therefore, the
transformation θ : i0 → i1 of information i0 ∈ I into i1 ∈ I can be expressed
indirectly by the transformation of data as θ(i0) = σ(τ(ρ(i0))). Because data
transformations (if applicable to the data) can be chained, the derivability of
information can now be de�ned as the existence of a sequence of data trans-
formations from the source data to some data whose interpretation covers the
target information. That is, information i ∈ I ⊆ I is derivable from some data
d ∈ D ⊆ D if and only if there is some transformation θ∗ := i0 →∗ i, such that
there is a sequence of data transformations τ∗ := ρ(i0) →∗ ρ(i). In particular,
this means ∃τ∗.i = σ(τ∗(ρ(i0))). Extending this notion to the derivability of
information I from some data D, yields that I is derivable from D if and only
if for the elements dk ∈ D, one obtains

∃θ∗.
(
∀dk ∈ D.

(
∃θ∗k.

(
θ∗k(i0) = σ(dk)

)))
105



For single elements, data transformations and θ∗ are transitive, the latter being
a direct consequence of the former. As before, the upward closure of contained
information I↑ is thus all information that is directly assigned with or can be
derived from some data D. In Chapter 2 it has indirectly been mentioned
that for some information I = σ(D), I↑ is precisely the transitive hull of the
information associated with the data along every transformation path starting
in D = ρ(I). The di�erence here is that in Chapter 2 this has been considered
for the interpretation in the mental model whereas here the re�ection-function
ref : M → I mapping the mental model back to the domain information is
assumed to be applied implicitly. By this construction, some information i is
derivable from I if and only if i ∈ I↑. Of course, the question remains whether
containment in I↑ is actually decidable. The answer to this question determines
under which conditions one can prove information to be derivable from raw data
and thus available for visualization.

3.4 Information Derivability

The idea of a visualization system in which the containment of information
can be proven is quite appealing for multiple reasons. Not only does it allow
inferring the completeness and correctness of depicted information for solving a
given task but it also can enable the user to specify information patterns that
would be derived automatically by the system. Unfortunately, it turns out that
information derivability is, in general, undecidable. However, there are certain
special cases where it is indeed possible to prove information derivability � and
even to do so automatically. In the following, the details of those observations
are discussed.

3.4.1 Foundational Considerations on Decidability

In principle, the proof that information can be derived from some data is simple.
One may just stop searching if a solution is found. Unfortunately, it is in gen-
eral not possible to prove the opposite, namely that some information cannot be
derived from a data set. Intuitively speaking, if the inquired information cannot
be derived from the data, a data analyst blessed with in�nite creativity could
literally spend eternity trying to �gure out a solution with no way to prove that
the e�ort is ultimately futile.

Theorem: Undecidability of Information Derivability

The information derivability problem is in general undecidable.

Information I is derivable from some data D if there is a continuous path
of transformations linking the data of the source with some data whose in-
terpretation function supports I. If the intention is to check algorithmically
whether this is the case, allowing arbitrary transformations to be applied would
allow to apply a potentially in�nite set of operations to assess whether I can
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be derived directly from the raw data. Hence, the general problem of deciding
whether information is derivable is an instance of the halting problem and thus
undecidable [142]. �

Still, at least partial success can be achieved. If an algorithm �nds a trans-
formation path generating data that supports the inquired information, it ter-
minates and returns a correct result.

Lemma: Positive Semi-Decidability of Derivability

The information derivability problem is positively semi-decidable.

For the proof, consider an algorithm that tries every possible transformation
and checks whether the result supports the inquired information, for example
by evaluating semantic aggregation in the mental model given in terms of the
concept graph like it is discussed in Chapter 2. Because information containment
is decidable, a positive result will be identi�ed correctly once it is found. If the
information is derivable, such a result exists and the algorithm will eventually
�nd and correctly return it. �

Figure 3.2: Automaton of transformation sequences. This �nite state automaton links
the applicable transformations t by the data formats they exchange when
being executed sequentially. Every state is an accepting state. Thus, given
any sequence of data formats recognized by the automaton, the sequence of
transformations generating the last data entry can be read from the nodes
along the path.

Restricting the problem to a limited set of �nitely many transformations,
things become a lot easier. With only �nitely many decisions which transfor-
mation apply to each set of data, the tree of all transformation sequences can
only branch �nitely in any node. By König's Lemma [79], this reveals that if the
tree should be in�nite, there must be a branch of in�nite depth. However, along
such an in�nite path, at least one transformation has to occur twice because
the number of available transformations is less than the path length. In fact,
by the same argument, at least one transformation has to occur in�nitely often.
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The execution chains of transformations de�ne a regular language. Assuming
the possible combinations are known, an automaton linking each transforma-
tion to its possible successors can easily be constructed. Every state in this
automaton is accepting. An example of such an automaton is shown in Figure
3.2. In automata theory, there is a construction extending regular languages to
words of in�nite length called a Büchi Automaton [22]. It recognizes words that
pass a certain state in the automaton in�nitely often. For the transformation
sequences, this means that some transformation occurs in�nitely often which is
the case if and only if an in�nite transformation chain is found. Hence, Büchi
automata decide whether in�nite paths occur. From here, one obtains:

Lemma: Properties of the Restricted Derivability Problem

The following properties hold for the restricted problem of information
derivability with only a limited number of applicable transformations:

1. It is decidable whether transformation chains of in�nite length can
occur.

2. If no transformation chains of in�nite length are possible, infor-
mation derivability is decidable.

3. If such chains can occur, the problem is still semi-decidable.

The third proposition is probably the easiest to prove since it follows trivially
from the semi-decidability of the general problem. Where in�nite sequences are
concerned, the possibility of such a chain does not even require the full power of
the Büchi Automaton. Because the interest is only in the existence, it su�ces
to check the �nite state automaton of transformation sequences for the presence
of loops. If no loops occur, the automaton is a directed acyclic graph which can
be turned into a tree by separating joins of paths into di�erent branches. Since
there are only chains of �nite length and only a �nite number of transformations
to branch in each node, by König's Lemma, the tree must be �nite. If so, an
algorithm simply needs to follow all transition chains and check whether the
data corresponding to the respective nodes supports the inquired information
which is decidable by de�nition. �

As it turns out, not allowing any cycles at all is restricting the problem a
little too far. Recall that in the de�nition transformations are bound directly to
the data they are applicable to. Let this restriction be integrated into the lan-
guage of possible transformation chains. The resulting automaton is sketched in
Figure 3.3. Loops can now only occur if the data admits it. At a �rst glance, this
renders the problem harder since some of the in�nite transformation chains that
before necessarily were loops are now open paths. However, these open paths
can still be detected in the non-constrained automaton. Considering that the
description of a loop is a �nite sequence of transformations, it is even possible
to distinguish them from the ones in the constrained construction by comparing
the transformation sequences. From here, it is only needed to require that cycles
must be compatible with the data.
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Figure 3.3: The transformation graph. Black nodes indicate starting states. Every
state is accepting. This automaton provides the data and therefore the
information passed when executing a sequence of transformations. The
data transformation or information derivation graph is the dual of the
automaton of transformation sequences with the additional condition the
state's data format must now be compatible with the transformation's for
the edge to be allowed in the graph. Data D and, by the interpretation
function, information ∆(D) are derivable from the raw data D0 if and
only if a path in this graph connects the raw data node D0 with the node
for D.

Theorem: Decidability of the Restricted Problem

If, in a graph of transformation sequences, the applicability of a transfor-
mation is determined by compatibility with the data in the transforma-
tion's source and target states, in�nite sequences are either open paths
or closed loops. For graphs with no in�nite open paths, the restricted
information derivability problem is decidable.

For the proof, it su�ces to show that cycles can be contracted into a single
state merging all the cycle's states into a single one that is also the combined
source for all transformations leaving the original cycle and the target for all
transformations reaching any node in the original cycle. To see this, consider an
arbitrary node in the cycle, let D be its data and I its associated information.
Whether some Information J is derivable from D can be assessed by attempting
to �nd J in I↑, the upward closure of I, containing all information derivable
from D. Obviously, every node in the cycle is reachable via transformations
starting at D. Therefore, I↑ contains the information of every data node in
the cycle. Indeed, it even contains every upward closure of these information
sets. Since this applies to every node in the cycle, I↑ is identical for all of
them. Therefore, the cycle can be contracted into a single node that serves as a
uni�ed source and target for all transformations entering or leaving the original
cycle and represents the contained information by either computing the upward
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closure of the information contained in any of the cycle nodes or by computing
the union IC ⊆ I↑ of the information sets of the nodes along the original cycle.
From the latter, the complete upward closure can be computed by following the
original cycle's outgoing edges. �

The above derivability theorem is indeed quite remarkable because these
cases are still covered if the length of transformation sequences after contrac-
tion of every cycle in the graph is limited. The idea behind contracting cycles
is illustrated in Figure 3.4. Within an upper bound to the length of trans-
formation sequences, the derivability problem is decidable with respect to the
bound. Thereby, the further consideration can be restricted accordingly. Next,
an automatic solution to assess derivability of information and return proper
transformation chains to compute the data supporting this information is de-
veloped.

Figure 3.4: Contraction of cycles (upper) and fork-chain-structures (lower). Cycles
are contracted into a single node holding their internal structure and their
individual knowledge and access to transformations internally. The same
applies to fork-join-structures with the essential di�erence that the actual
fork and join nodes remain unchanged. Figure 3.5 shows a complete run
of the contraction procedure on an arti�cial example.

3.4.2 Automatic Extraction of Information

The aim here is to �nd an algorithm enabling the automatic extraction of infor-
mation from available raw data. To this end, it has to be assessed whether the
inquired information can be derived from the data and whether the data can be
transformed into a form supporting the information. It has been observed that
this is decidable if a maximum number of consecutive transformations is given
and if there is only a �nite number of transformations available for application.
For real-world applications, both requirements can safely be assumed to be met.
Applying too many transformations to the data is infeasible, especially for large
data sets and the number of applicable transformations is limited by the func-
tionality o�ered by the analysis software. Even if additional custom algorithms
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can be implemented on demand, the number of applicable transformations is
still �nite for any given point in time. However, it is actually intended to in-
clude iterative procedures converging towards asymptotic results, for example
as a solution towards optimization problems. The procedures executed along
an iteration de�ne a loop. If the information to be represented by the data
is chosen properly, the change of data along the iteration does not a�ect the
information. In this case, the upward closure I↑ of the information associated
with any state of the data along such an iteration cycle is �nite. Recall that I
denotes a subset of known domain information which in real-world applications
would have to be re�ected by some sort of mental model and typically have to
be mapped to the data a priori.

In the following, it is assumed that the partial map σ : D → I describing
the information sampled by any data found during the process to some subset
in the possibly in�nite set I of information hypothetically derivable from D, is
already de�ned for the known data states. It is further assumed that a set of
transformations T ⊆ {τ |τ := D→ D} linking di�erently formatted sets of data
is known beforehand. T is a �nite subset of the set of all hypothetically possible
data transformations over D. T induces a graph G = (D↑ ⊆ D, T ), where D↑ is
the set of all results of transformation sequences τ∗ ⊆ T applied to a set D0 of
raw data that is to be analyzed. If the length of the sequences τ∗ is restricted to
some k ∈ N and the cycles in G are contracted as described in the proof of the
decidability of the restricted derivability problem, it is decidable whether some
information can be derived from the raw data within an upper bound of k steps.
In the following, a simpli�cation procedure is introduced that enables e�cient
algorithms to assess derivability and infer proper transformation sequences.

3.4.2.1 Simplification by Contraction

In the proof for the decidability of the restricted derivability problem, a simpli-
�cation procedure is found that contracts cycles in the graph into a single node
representing all the contained states and associated information. Of course,
when applying this type of contraction, it is necessary to keep track of the
transformation paths within the cycle. However, if each transformation is la-
beled with a unique identi�er, this is trivial to achieve. The procedure itself is
illustrated in Figure 3.5. Once all cycles have been removed from the graph,
there are two other useful contraction mechanisms. The second step is to con-
tract forks and joins of paths into a single node given that all transformation
paths branching from a given node (the fork) meet in the same target node (the
join). Fork-join-structures can easily be assessed by applying cycle detection in-
terpreting the graph's edges as undirected after all cycles in the directed graph
have been contracted. Any cycle detected this way is a candidate for being part
of a fork-join-structure. Of course, one still has to check whether all branches
actually meet the join node. Therefore, it makes sense to start with contracting
small fork-join-structures and to gradually increase the size during contraction.
By reducing the branching within nested fork-join-structures, this also reduces
the task's overall complexity. The result of applying these steps is a tree rooted
in a single starting node representing the raw data. Note that a simple union
of data structures into a single object can create this node in the case the raw
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Figure 3.5: Example of a contraction procedure applied to a transformation graph.
Starting with the smaller cycles the algorithm �rst contracts two cycles
in the initial graph (a), followed by a third cycle containing one of the
previously contracted nodes (b). Now that no cycles are found anymore,
a fork-join-structure is identi�ed and merged (c). The result of the con-
traction procedure (d) is a directed acyclic graph of nodes that cannot be
further contracted by either of the de�nitions provided in Figure 3.4.

data stems from multiple sources. Therefore, it can be assumed that the raw
data can always be represented by a single data node. The last step, although
optional, is to contract the simple paths between branching nodes. Since the
sampling map σ has been restricted to map the data dk ∈ D represented by
any node to �nite sets Ik of information, the unions ICk ⊆ I↑k of information
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sets computed as part of the contraction procedures are also �nite sets. There-
fore, information containment is decidable and derivability can be assessed by
traversing the resulting tree and checking containment for the information sets
associated with each individual node. Performing the assessment for each ele-
ment of a set of inquired information also directly provides the percentage of
how much inquired information can indeed be derived from the data.

3.4.2.2 Assessing Derivability

In principle, information derivability can be directly assessed from the upwards
closure I↑0 =

⋃
Dk∈D↑

0
σ(Dk) of the information contained in the raw data. How-

ever, in order to obtain an e�cient procedure to obtain transformation sequences
to be applied to transform the data into a form supporting the inquired infor-
mation, one should keep track of the applicable transformations for each node
in the original graph G = (D,T ) of data and transformations. This is exactly
what is done during contraction.

When contracting data and computing the union IC of information assigned
to the corresponding nodes in the original graph, each subset I that has been
merged into IC is associated with the transformation path needed to derive it
from some starting point in the data. For cycles, this set is the same for every
node and since for every node Dk in the cycle, all reachable nodes are in D

↑
k, any

node quali�es as the starting node. For fork-join-structures, the starting point
is the fork, and for simple paths, the starting point is the path's �rst point. The
contraction of simple paths yields a hierarchy of derived information. The edges
are labelled with transformation sequences and the data is associated with tuples
of information as well as the further transformations that need to be applied to
obtain this information. Instead of collapsing this tree, it is directly applied as
the data structure in which information containment is inferred. If the sets of
information are implemented as lists, the lists of each remaining data node can
be connected, resulting in a single large information set which is exactly I↑0 , the
set of all information derivable (within k steps) from the raw data. Assessing
the derivability of information from the raw data with respect to the available
algorithms therefore reduces to checking whether the inquired information is
contained in I↑0 . From the tree structure, the transformation paths can be
inferred by following the tree's edges backwards until the root is reached once
the information has been found. The actual transformation sequence is then a
concatenation of the tree's edge labels. The remaining transformations to be
applied to obtain the actual shape as it was prior to contraction are stored in
each node along with the corresponding set of data.

The algorithm terminates and returns the correct information and transfor-
mation if a solution is found. If not, the algorithm also terminates since the
length of transformation paths to be checked is restricted. However, the result
obtained in general is only whether it was possible to derive the information
from the raw data in up to k transformation steps. A negative answer is reli-
ably correct if and only if the original structure does not permit in�nite chains
of consecutively applied transformations. Fortunately, this is decidable since as
has been shown in the discussion of the lemma on the properties of the restricted

113



derivability problem, such in�nite paths map to in�nite words in a regular lan-
guage and can thus be recognized by a Büchi Automaton. Therefore, if such a
situation is encountered, the user has to be informed about the unreliability of
a negative result.

3.4.2.3 Considerations on Runtime Complexity

Where runtime complexity is concerned, three categories of algorithms need to
be distinguished. The �rst one is the computation of the actual transformations.
This is highly speci�c to the data and the applied algorithm and thus not in
the scope of this work. It should be noted, however, that the procedure can be
rather time consuming, especially if translations between data structures have
to be applied before the subsequent algorithm can be executed.

The second category is the assessment of derivability and the inference of the
corresponding transformation path. Finding the correct path actually depends
on the length of the longest branch in the tree obtained from the contraction
procedures. Considering that before contraction the maximum path length was
bounded either by a number k ∈ N or, in presence of in�nite open paths, limited
to k, this is an upper bound for the tree depth. Since the format of information
and therefore the equals-relation depends on the application, no assumptions
can be made on the runtime needed to compare two sets of information. There-
fore, it is just assigned the function R. In the worst case, every transformation
is applicable to every data set and yields data with globally unique information.
In this case, the derivation graph with respect to n applicable transformations
becomes an n-ary tree of depth k. Observe that even for comparably small
chains of applicable transformations the runtime complexity skyrockets if pow-
erful toolsets are provided for the analysis. The worst case runtime complexity
for assessing information derivability is O(kn · R). Even for only 10 algorithms
and an upper bound of �ve consecutive transformations, even if only one in-
formation item is searched and the largest set contains only �ve items, this
amounts to the comparison of 500,000 individual information elements. As it
seems, the worst case upper bound quickly skyrockets to ridiculous amounts
of runtime complexity even for comparably simple examples. However, this is
unlikely to happen, especially in visualization. While there are algorithms like
sorting and searching that may be almost universally applicable, the majority
of the algorithms is not. For example, in a visualization system, a wide variety
of visualization techniques may be o�ered. However, these options are applied
only once, drastically reducing the complexity. Assume that the hypothetical
example is a classi�cation task o�ering two �lters for outlier detection as pre-
processing, two distance measures, two classi�cation techniques, one color map
showing the ground truth, and three di�erent visualization techniques. To solve
the classi�cation task, data must be preprocessed, compared, classi�ed, colored,
and rendered to the screen � a total of �ve steps. Counting the possibilities,
the �ve consecutive computations yield 24 di�erent states for the worst case
runtime. Note that there still is a maximum path length of �ve and there are
still ten applicable transformations. If it is again assumed that the analyst com-
pares one information item to sets of �ve items, only 100 comparisons need to
be performed.
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From the considerations on the hypothetical visualization task, it is conjec-
tured that in real world applications, the derivation graph can safely be assumed
to be rather sparse and the upper bound of runtime complexity is far from be-
ing met in actual applications. Note that this claim is more bold than it may
appear at a �rst glance. While, for example, a human programmer will usu-
ally not invoke a sequence of several sorting algorithms immediately after each
other, a computer only looking at the compatibility of data formats will de�-
nitely consider this a valid option. Therefore, the information about what kind
of transformations should be combined with each other should be added to the
system, probably as part of the information associated with the transformation
itself. The hypothetical example reveals that grouping of the algorithms into
steps and implementing rules for their proper combination can already reduce
the theoretically possible complexity tremendously.

The last category are the algorithms for contraction. Contraction consists
of three steps: contracting cycles in the directed graph, contracting fork-join-
structures, and contracting the remaining simple paths. The runtime complexity
of connecting the linked storing of the remaining information sets is negligible
since connecting to linked lists can be performed in O(1) and the other steps'
complexity is more than linear in the number of graph nodes. Towards the
detection of cycles in the graph G, recall that the graph actually models D↑0 , i.e.
all data sets D that can be computed from the raw data D0 by transformations
τ ∈ T . Cycles can therefore be detected by computing the topological ordering
of the nodes starting in the node representing the raw data D0. If the derivation
graph is not acyclic, the algorithm will eventually detect a cycle to be contracted.
Since the topological order can be established using depth-�rst search (DFS) , it
can be established in O(|D↑0 |+ |T |). This means the computation is linear in the
number of graph nodes and edges. Note that if the graph contains cycles, the
number of edges can be signi�cantly larger than for an acyclic graph. In general,
|D↑0 | + |T | � kn. Because the actual sparsity of the derivation graph depends
on the domain and application, no restricting assumptions can be made without
sacri�cing the generality of the discussion. Since DFS logs visited nodes as part
of its execution, the transformation paths describing cycles are obtained together
with the cycle. Hence, contracting a cycle is linear in the number of its nodes
since the union of their information sets can be computed by concatenating the
linked lists storing the sets of information. If a cycle is found, it is immediately
contracted and the DFS is continued from the new node, dropping the results
of the former search. The procedure is continued until no cycles are left. In the
worst case, the data is aligned along a long line where D0 is a starting node and
DFS identi�es the �rst cycle as being the cycle containing the tree's single leaf
and its immediate parents. If the new node is again part of a cycle of two nodes,
this cycle is also merged. Continuing this procedure up to the root requires as
many steps to go down until the leaf is reached as it requires to contract the
cycles on its way back up. The worst case is therefore linear in the number
of nodes and the upper bound obtained is O(|D↑0 | + |T |). For the detection
of fork-join-structures, the procedure is similar but one needs to either apply
breadth �rst search (BFS) or interpret G to be an undirected graph. While the
latter method is again based on cycles and can apply the same algorithm as
before, it requires an additional reconstruction step to obtain the actual paths
contributing to the structure. BFS not only reveals those paths directly but
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also covers complex branching situations. The runtime complexity is the same
as for the contraction of cycles.

After contraction, a tree structure is reached again and the remaining upper
runtime bound for assessing derivability in the graph is, again overestimated,
O(kn · R). Contraction thus allows to asses derivability of information more
e�ciently, speeding up the process especially in applications like business intel-
ligence or process control monitoring.

3.5 Automatic Pipelines for Visual Analytics

In the qualitative visual analysis cycle, visualizations are generated by the graph-
ical language LV which in turn is the language generated by applying an au-
tomaton implementing a corresponding formal grammar to the input data. The
information to be found from reasoning about the visualization depends on the
outside knowledge and can be inferred from evaluating a mental model that also
determines a grammar generating the reading language LR, the viewer's coun-
terpart to the graphical language. Specifying the automaton for the graphical
language, a hierarchy can be de�ned, de�ning structures like the points in a
scatterplot or the arrangement of scatterplots in a matrix. Connecting those
structures to the corresponding elements in the reading language links them to
the information they convey to the viewer.

The capability of a visualization to depict certain information depends on
whether this information is derivable from the raw data and that it is contained
in the upward closure of the information directly associated with at least one
visualization element. Since only visualization systems o�ering �nitely many
options to represent data are considered and number of consecutive transfor-
mations is limited, this setup satis�es the preconditions for decidability of the
restricted derivability problem. A direct consequence of this is:

Lemma: Decidability of Information Conveyance

Let V be a visualization system with k algorithms for data representa-
tion or transformation. The ability of V to convey certain information
after a sequence of not more than n consecutive data transformations is
decidable.

Derivability is a necessary condition for the ability of a visualization sys-
tem to convey inquired information. However, it is not su�cient since not all
derivable information is necessarily encoded by some visualization element that
is actually rendered to the screen. There are two cases of such non-explicit
information derivability in visualization systems which here is referred to as in-
trinsic and extrinsic inferability. Intrinsic inferability does not expose the
information to the user. Typically the viewer is shown a consequence of the
actual information. A trivial example for this case is a progress bar. Although
the system does no expose to the viewer what action it is currently performing,
the consequence, namely the progress made so far, is visualized and provides
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the user with useful information. Likewise, extrinsic inferability involves the
viewer into the process. This information is indeed encoded by visualization
elements but not by the basic ones. Hence, it is not presented explicitly and the
viewer has to infer it from the data context. This is typically the case when the
information is encoded by a history of states or by relations between explicitly
depicted items. An example is the trajectory of a driving car or tasks where the
viewer has to infer abstract properties from Gestalt principles.

3.5.1 Interchangeable Pipeline Blocks

Now that it is known that the one can seamlessly integrate visualization into
the theory developed thus far in this section, building blocks of dynamically
adjustable visual analytics pipelines can be de�ned. De�ning transformation
graphs for each technique to be applied during data preparation and for data
visualization, one can construct pipelines by highlighting not only the raw data
nodes but also distinguished output nodes marking data that is exposed to
the outside. Connecting the output of one graph to the raw data input of an-
other, this e�ectively concatenates the applicable transformation paths and thus
merges the information stored in both graphs. For example, a visualization tech-
nique can be attached to a data preparation step like Figure 3.6 demonstrates it
for the visualization of a projection obtained from principle components analysis
(PCA) as points in a scatterplot.

Figure 3.6: Results of Principal Components Analysis (PCA), visualized as a scatter-
plot. Grey �elds indicate an informal representation of the interpretation-
function where entries are of the format (data:information). The output of
PCA is a set of points in a plane which are passed to the scatterplot visu-
alization module. This determines the scatterplot's raw data and thereby
applies the visualization to the computed data. The diamond shape is a
blank node used as a shortcut for functions taking multiple input parame-
ters.
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Towards more sophisticated analysis, consider an example where an analyst
tries to identify and highlight clusters in some multivariate data set. Using
parallel coordinates, the analysis expert infers discriminating features based
on the distribution of lines along the di�erent axes and projects the data to
these dimensions. Using some distance measure, the analyst runs a clustering
algorithm, subdividing the data into k subsets in an iterative procedure. Feeding
the cluster distribution back into the original data as an additional dimension,
a new axis indicates the clusters which proves that in this setup, a parallel
coordinate plot is capable of visualizing the inquired information which data
item belongs to which cluster. However, the addition of an additional axis
makes it hard to infer the clusters when scrolling sideward through the diagram.
Therefore, the analyst chooses to extend the visualization by a color coding for
the classes. The whole interaction and the corresponding transformation graphs
are shown in Figure 3.7.

Figure 3.7: Parallel Coordinates plots can visualize class membership. To prove
that a visualization is possible, it does not su�ce to provide the example
� one has to prove the information is actually there. Here, the plot and
an arbitrary clustering method are needed, for example k-means. For the
proof, the clusters are fed back into the visualization system as part of the
raw data. This is equivalent to adding another table entry to the original
data and thus interpreted by the plot as an additional axis. With the new
axis the visualization supports the inquired information about (computed)
class compositions.

In the example, the algorithms behind the di�erent operations are simpli�ed
and much information is hidden in the transformations. However, it would be
unsound to model every detail of the procedure, especially the sequential parts.
Apart from the fact that this would not provide any further information, the
sequences would be consumed by contraction anyway. In the example, apply
contraction has not been applied yet so the the algorithms could be shown in de-
tail. It is observed that the whole graph actually consists of four blocks, namely
the parallel coordinates as the applied visualization technique, the projection,
the clustering procedure, and the color map. These blocks are essentially inde-
pendent of each other with the only restriction that blocks can only be connected
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if the output data format of the one block �ts the raw data format of the other.
It is assumed that this is the case for real world applications of visual ana-
lytics suites � or achievable through the invocation of translation procedures.
For example, there are tools to de�ne data preprocessing pipelines by graphical
programming like KNIME [15] in which this obviously has to be the case as
otherwise, the constructed pipeline would not be executable. The major dif-
ference between the approach discussed here and these tools is that here, it is
actually not intended to ask the analyst to de�ne the paths manually. Instead,
the analyst asks for nontrivial information patterns which the system extracts
and visualizes automatically. Figure 3.8 shows an example of a more powerful
collection of analysis and visualization techniques. Although the collection is
still rather small, it can already serve nontrivial requests like the demand for
a visualization technique which optimally preserves some feature that is only
present in derived data, for example cluster membership or the alignment of
scatterplots in a scatterplot matrix. This is possible because the visualization
blocks hold information not only about their general properties but also about
their applicability and speci�c advantages.

3.5.2 Towards Automatic Pipeline Generation

Prior to the de�nition of the algorithm, the relationships between the previ-
ously obtained results should be summarized and it should be discussed how
they enable an automatic generation of visual analytics pipelines which always
terminates and provides correct results. A result is de�ned as being correct if
it either returns that the inquired information is not derivable or it derives the
information completely and correctly and presents it in a suitable visualization
with respect to the information to be conveyed and the analyst's additional
requirements.

Since each block is a set with only �nitely many data transformations and
only a �nite number of blocks is available, the conditions for decidability of the
restricted derivability problem apply if it is also required that a �nite upper
bound for the length of sequences of connected blocks exists. Alternatively,
one can demand each sequence of blocks to eventually contain a visualization
and the computation to stop there until further processing is manually invoked
by the user. Since this also guarantees termination of the computation, the
conditions for the decidability of the restricted derivability problem are still met
and derivability of information is decidable. Since this implies that the lemma
on the decidability of information conveyance also holds, the system's ability to
visualize information � be it explicitly or by intrinsic inference � is also decidable.
Note that extrinsic inference is never decidable since it depends on the viewer's
understanding of the data. The fact that it is possible to infer the correct
information does not necessarily prevent misinterpretation. Since functionality
can be wrapped into blocks which can be aligned in transformation sequences,
a variety of di�erent views on the data can be computed. The theorem on
the decidability of the restricted derivability problem and the lemma on the
decidability of information conveyance trivially hold across execution blocks if
one chooses to connect the blocks by sets of identity transformations. Since
the amount of data is �nite, the transformations also terminate. Because every
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visualization block supports information about its own applicability and quality,
the algorithm terminates, is capable of deriving the visualization correctly, and
to visualize it with the most proper available method. The �nal piece in the
puzzle is the contraction procedure. Being applied to each block, it ultimately
reduces the representation to the form of the system shown in the upper left
corner of Figure 3.8, representing each process by a single node after abstracting
away the implementation. Therefore, existing software suites can be applied
to the actual computation of the transformation sequences obtained by the
algorithm � as long correct descriptions of the information being derivable in
the respective modules are provided.

For a visualization system with a set of data transformation blocks and a
set of visualization blocks, the algorithm �rst computes the contraction for each
of the transformation graphs constituting the several blocks. In a second step,
it establishes the links between the blocks by checking for each pair of blocks
whether the information in the output nodes is contained in the information
of the other block's input node. The algorithm assumes that data formats are
compatible if the information matches. The resulting graph is exposed to the
viewer as a means to communicate the transformation paths applied towards
visualizing the data. This way, the procedure is transparent to an analyst who
can manually readjust transformation paths if needed. This preprocessing is
only needed while setting up the program. As long as no new blocks are added
to the system, its results can actually be saved in a con�guration �le. The last
preparation step is to execute contraction on the graph of blocks as illustrated in
Figure 3.8. Recall that contraction gathers all information in a linked list under
a tree of transformation paths connecting contracted data nodes. To infer the
correct visualization for some set of information, the algorithm �rst veri�es the
derivability of each item in the set using the algorithm outlined in the section on
automatic extraction of information. If the item is derivable, the corresponding
path is also available. For each of the inferable elements, the corresponding
subset of the linked list is scanned for contained information about visualizations
applicable to this information. Again, the transformation paths are known
since they have been preserved by the contraction procedure. Traversing the
tree, the algorithm �nds the sections in the linked list of information items
that correspond to the respective visualization techniques and traverses them
for information to which kind of data they apply best. With this information,
a ranking is computed which part of the derived data should be visualized
with which technique. Note that if additional criteria on the visualization have
been inquired by the analyst, the corresponding techniques have already been
detected as part of the �rst steps and are ranked higher than the remaining
techniques. Also note that visualizations themselves can also be treated as
data allowing for aligned and nested visualizations if the analyst requires them.
Actual implementations of the models for data and information as well as the
ranking procedure are application speci�c. One solution for the ranking is to
apply the e�ectiveness criterion Mackinlay proposes for APT [92]. Some other
applicable data and information models are mentioned in this chapter's related
work section.
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3.5.3 An Example

For a more intuitive access to how the system works, an example is discussed
in the following. Assume an analysis of the well-known Iris �ower data set con-
taining measurements of the petals of 150 Iris �owers of three di�erent species
in four dimensions. Further assume an application of the analysis system shown
in Figure 3.8. As a preprocessing step, the system's graph would be collapsed
just like it is shown in the �gure. A �rst query to the analysis system could
now be to ask for a single-projection overview that minimizes the projection
error. The system recognizes that it can load data, does not need to apply
any preprocessing and that among the information associated with PCA as a
projection techniques, there is are predicates formalizing that PCA optimizes
variance and minimizes the projection error. Since the output of PCA is data
points, it would then opt for the scatterplot as the visualization technique of
choice. Because the collapsing collects the transformation paths and stores them
for each collapsed cell, the computer can retrieve the transformation algorithms
directly. The path obtained by connecting the blocks would this be exactly the
graph depicted in Figure 3.6. Starting from this overview, the analyst would be
interested in investigating local neighborhoods of similar items. Going through
the collapsed graph immediately reveals that the system is capable of providing
this information because neighborhood graphs are included in the toolset and
node-link diagrams have the information associated that they can show neigh-
borhoods. The computer selects to compute the k nearest neighbors for each
node since the analyst asked for local neighborhoods and applies the scatterplot
from before to position the graph's nodes. From this image, the analyst gets
the impression that there must be three groups among the �owers. The next
question thus is to somehow group the �owers by their similarity. Clustering
algorithms are associated with the information that they group elements, so
the computer attempts to �nd a suitable path through the derivation graph
containing a clustering algorithm. k-means is chosen since it is based on local
similarities. As a result, the �owers are tagged with their class names and the
tags are passed to the scatterplot together with a colormap for the groups. The
three groups of �owers in the dataset have thus been identi�ed. With a more
sophisticated system than the one applied in this szenario, the analyst could for
example ask to re�ne the clustering based on local cluster outliers. Given the
necessary information in some nodes, the system could derive strategies like �l-
tering outliers in each single cluster and attempt to rematch them to the cluster
they best in the best.

3.6 Summary and Discussion

This chapter proposes an extension of the visual analytics pipeline achieving
a tight integration of data mining, visualization, and machine learning and
a feasibility proof for the information-driven automatic construction of visual
analytics pipelines along with an algorithm for its realization. Where in the
original work�ow the information obtained from automatic analysis is available
for the human analyst but the insights obtained are not meant to be processed
by the computer, the new work�ow applies machine learning to close this gap.
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Figure 3.8: Collapsing applied to a set of transformation and visualization algorithms.
To indicate that the algorithms have already been contracted and to empha-
size their role in the visualization system, di�erent icons are applied for
their visualization. The diagram is to be read clockwise; the entries to the
left are the original state and the �nal state when no further contraction is
possible. Determination of fork-join-structures is based on a breadth �rst
search starting in a given center. Blue edges denote states already covered
but without success, yellow denotes paths of the graph that are candidates
to which contraction has not yet been applied due to the orange structures
containing less nodes or being closer to the original data. Whenever some-
thing changes, the algorithm starts to check the corresponding entries.

The resulting iterative work�ow leverages the three domains' respective speci�c
strengths to foster the obtainment of new insights from previous results. Imple-
mentations of this work�ow can be expected to increase the e�ciency of data
analysis, yielding more sophisticated insight in less time.

Focusing on insight provenance means to emphasize the documentation of
the analysis process and its results. A detailed provenance structure requires
a mechanism to protocol analysis results in the visualization � for example
highlighting structure in the data and tagging this structure with semantically
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meaningful labels.

To support this kind of work�ow, the automatic generation of visual analysis
pipelines is considered. To this end, the problem of deriving information from
raw data is investigated. The encountered reachability problem can be solved
for almost all real world applications. A schematic for an algorithm for the au-
tomatic generation of visual analytics pipelines is outlined based on the �ndings
discussed. The obtained decidability results motivate the outline of an algorithm
for the automatic derivation and visualization of data with respect to inquired
information. Being independent from speci�c data and information models, the
technique is generally applicable. However, this comes at the cost of a certain
vagueness in the descriptions of the algorithms whenever the data structure or
the organization of information becomes important for the discussion. The re-
sults are of a general nature, leaving the de�nitions of the applied models for
information and data to the implementation. Yet, the models discussed in this
Thesis are perfectly compatible with the mechanism.

The execution of a sequence of data transformations is organized in com-
binable building blocks. Each of them is associated with its own information,
allowing the system to leverage this information to derive insights about the
data. Again, keeping the system general means that this information is not
data-speci�c. Therefore, in a plug-and-play scenario where some data is passed
to an analyst who then intends to use the system for data analysis, only general
information about the respective algorithm's e�ect on the data can be inquired.
In contrast, data speci�c information can be added in analysis environments
where the information associated with data does not change frequently, allowing
for more sophisticated information inquiries tailored to the speci�c application.
During the discussion of the framework, the necessity to add additional infor-
mation directly to the data has been avoided since this requires an information
model and thus limits the discussion's generality. However, the potential of
interactive feedback of analysis results into the data and transformation model
should not be underestimated. For example, reintegration of information can
help to iteratively optimize information derivation procedures or to quickly re-
produce analysis results on other data. The structured work�ow introduced in
the �rst part of this chapter can be applied to achieve this.

One weak point of automatic visualization is the ranking of the di�erent
methods to be applied for di�erent tasks. It could be expected this to become
even worse if the automatization is extended to the whole pipeline, for exam-
ple when multiple algorithms for clustering or classi�cation are applicable to
the same data. Fortunately, this is only partially true. Indeed, problems occur
wherever a ranking of the performance of methods is involved. However, the
mathematical toolset applied for automatic analysis and data preparation can
be measured or at least compared relative to the individual algorithms' perfor-
mance on representative test data whereas the performance of visualization has
to be evaluated based on human perception and cognition The latter can be
achieved applying the concept graph to construct an expected domain-speci�c
mental model whose concepts can be determined for each visualization. Based
on this construction, the decision whether the inquired knowledge is supported
by the visualization is obtained by the computation of the applicable semantics
in the semantic aggregation formalism proposed in Chapter 2 by computing the
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semantic aggregation of the data under the assumption a speci�c visualization
was applied to the data. It is concluded that in most applications the uncer-
tainty bottleneck in �nding optimal solutions will remain with the identi�cation
of the proper visualization technique. Combined with a system implementing
the work�ow described in the �rst part of this chapter, insights found during
analysis can be reintegrated into the system. This includes general insights
about visualization obtained from evaluating visualization techniques. Based
on this information associated with the algorithms instead of having to inquire
the optimization of statistical or numerical properties like �the least amount of
clutter� or �best preservation of distances�, an analyst could literally ask for �the
best view on my data�.

Making the �nal transformation procedure transparent to the user is crucial
for the reproducibility of results, especially because it explains the visualization.
In this section, this documentation of the program's performance is established
by presenting the graph of linked blocks to the user. The graph also serves as
an interface for interaction and exploration, allowing to recursively unfold or
collapse the nodes to investigate the transformation procedures they represent
and the transformation sequences chosen by the algorithm. Interaction for edit-
ing or extending transformation sequences allow the user to improve and extend
the presentation if needed.

There are some open questions left where the implementation of the algo-
rithm for automatic information derivation is concerned. However, one could
also replace the automatic approach by a semiautomatic one, where the com-
puter only proposes viable transformation paths rather than deciding between
them. Because the optimal solution depends partly on the viewer, a semiauto-
matic implementation letting the viewer decide between the alternatives avoids
the necessity to provide measures and rankings for optimal data representation.
On the other side, the fully automated approach is easier to use, especially for
novice users. The main concern to propose the fully automatic algorithm was to
show that it is actually possible to de�ne a structure of data and its associated
information in which it is � even if further restrictions have to apply � derivabil-
ity and the ability to visualize certain facts are decidable. This possibility yields
that there is a formalism in which every visualization can be expressed (by its
pipeline) and in which it is decidable or at least positively semi-decidable for
visualizations whether the information they are intended to convey is derivable
and can be visualized. Indeed, this is achieved by the computation of applicable
semantics in the concept graph based on semantic aggregation.
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Chapter 4

Qualitative Considerations for

Visualization Design

This chapter is concerned with the third major research question addressed
in this Thesis, the in�uence of qualitative considerations on visualization de-
sign. The discussion starts with an excursion on lessons learned during several
years of cooperating with the German police in a project to design a visual
interactive system for the support of manhunts in the vicinity of crime scenes
as part of the early response to a crime incident. As the discussion reveals,
qualitative considerations indeed in�uence the design work�ow positively. To
further investigate this, the chapter continues with two case studies. The �rst
case study is concerned with the in�uence of qualitative considerations on the
general design process. To this end, it discusses the solution approach to the
problem of limited domain information in the project with the German police.
In this project, limited access to classi�ed information on the intention behind
necessary interaction steps hindered the design of an e�cient interaction and
overview visualization supporting the task. The solution is based on the explicit
discussion of qualitative information implicitly formalizing the reading language
without explicit construction of the mental model. Compared to information
visualization, the correlation between the data's structure and its graphical rep-
resentation is much stronger in scienti�c visualization. Typically, this binding
determines the geometry of the resulting representation. For this reason, the ge-
ometric representation ideally re�ects the viewer's anticipated reasoning. If this
reasoning is based on the shape, this means that the geometry should properly
re�ect this shape. The second case study therefore discusses the development of
a geometric representation of thin inextensible elastic surface strips that re�ects
local reasoning based on the bending and twisting behavior to encode impor-
tant properties of the strip into semantically meaningful parameters with an
unambiguous interpretation.
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4.1 Practice Lessons – Learned the Hard Way

The design process of visualization applications typically follows a linear work-
�ow of establishing an understanding of the problem and application domain,
designing and implementing the solution, and verifying it with feedback from
domain experts. High-quality solutions to application problems typically re-
quire a considerable e�ort to tailor the visualization to the application domain's
special demands. This requires designers of visualizations to acquire an in-depth
understanding of the domain, the data, and the analysis process to be applied.
However, even though visualization experts are well used to working in inter-
disciplinary projects, there are cases where it is hard or even impossible for
the visualization expert to acquire the necessary amount of domain insight to
deliver solutions tailored to the application's domain-speci�c needs. Perhaps
among the hardest examples are projects where major aspects of the domain
knowledge are con�dential and therefore inaccessible to the visualization expert.
Establishing a fruitful cooperation in such a constrained scenario is challenging
since it demands visualization experts to design a solution to a problem they can
hardly develop an in-depth understanding for. Still, they need to provide high-
quality solutions while respecting concerns for privacy and security, especially
in the public sector.

This section is a report of some experiences made in a long-term project with
the German police. It presents how the issues emerging from limited communi-
cation and domain understanding have been resolved and how the project has
project became a success. Therefore, the focus is not on the project's actual
results but how they were achieved despite not knowing the details of the ongo-
ing processes. The project's aim was to improve the performance of manhunts
in the close vicinity of a crime scene as an immediate response to the crime
incident. Since the details behind the organization of manhunts are con�den-
tial, the designers were forced to optimize the solution towards a problem they
would never be able to understand thoroughly. It should be emphasized that
the tactics themselves are secret. User studies with sanitized data, for exam-
ple on �ctional manhunts, would still have revealed the tactics to the scientists
conducting the experiment. As a replacement for such studies, close contact
with an experienced practitioner was established. His role was to evaluate the
approaches from the domain experts' perspective and to steer the development
into a direction generating an added value for the practitioners without reveal-
ing classi�ed information. What began as a pragmatic decision to provide at
least some means to incorporate domain knowledge into the development process
eventually became a success model. The occurrences reported here in�uenced
the project's fate decisively: If those issues had not been overcome, the project
would have failed.

4.1.1 Dealing with Confidential Domain Information

A manhunt in an area surrounding a crime scene can roughly be described as
a number of patrol cars searching a number of sectors around the crime scene
or place of an accident for a person or an object. Problems occur from sub-

129



optimal search patterns resulting from the fact that the search paths of the
individual units are not coordinated. Coordinating these paths, however, is also
not possible since it would likely bind too much attention to following the route
rather than observing the surrounding. However, the decision which sectors to
apply or how many units to send there is up to the police o�cer in charge,
the dispatcher. The dispatcher's role is to coordinate the measures taken to
counter a crime. Being in charge of the operation, the dispatcher must main-
tain an overview over a possibly highly complex situation while coordinating
numerous forces and making quick decisions considering a maximum of possible
alternatives for the fugitive's behavior.

The initial project description asked to improve the performance of manhunts
in an area surrounding a crime scene by visual communication of a somehow
optimized spatial distribution of sectors on a map. The �rst question of the
designers was, of course, how this process actually worked. The idea: If the
process is understood, tasks can be identi�ed and the visualization can be op-
timized towards those tasks. However, the tactical details were con�dential.
Hence the only thing known to the designers was that a few patrol cars were
driving in sectors close to a crime scene.

In the �rst attempt, Voronoi-Diagrams were mapped around a number of
seed points in the street network such that the resulting sectors were bounded
by a cycle in the graph given by the street network. This �rst solution was
not dynamic enough and needed to better adapt to the situation, especially
if additional units became available. As it turned out, the requirements had
changed in the meantime due to the complexity of new potential situations:
A system was needed that could dynamically adapt to the development of the
situation. Eventually the obvious had to be admitted: one cannot optimize an
unknown process.

The conclusion: If the application work�ows are secret but the visualization
and interaction need to support them, they should be designed in close cooper-
ation with the application domain. More precisely: They should be designed by
practitioners from the application domain. With the police's help, tasks have
been de�ned independently of their context within the manhunt. Those tasks
were the de�nition of an area of action to be subdivided, the number of sectors,
the dispatch of available units, and the subdivision or deletion of existing sectors
to react to the dynamics of the situation. The close cooperation with a par-
ticular practitioner (a dispatcher) as a direct contact provided further insight
into how the sectors would be communicated � without the need to reveal con�-
dential information. This information was applied to de�ne a better re�nement
criterion for the algorithm identifying the sectors on the map and soon report
a substantial gain in the quality of the developed prototype was achieved.

4.1.2 Clear Requirements despite Communication Limitations

When the project started, only little information was available but a few func-
tional requirements, a very rough idea of the processes going on and the re-
quirement that the solution would have to be intuitive. The task to decipher
what �intuitive� meant was � for the moment � left to the designers. For some
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reason, the requirement for an intuitive design is still a common task visual-
ization experts are expected to easily achieve. In the �rst follow-up meeting,
the application partners already asked to put more emphasis on intuition. The
construction was reviewed to achieve an even more simple description of the
search spaces and a graphical user interface was implemented based on local-
ized context menus that would work on touch-interfaces and desktop systems
alike. The devastating remark in the next meeting came directly from a police
o�cer who would apply the software as dispatcher: �That's too much clicking
for me�.

Yet, the progress made in the meantime in optimizing the subdivision of the
search space fortunately convinced the police to continue the project. A re�ned
list of requirements for the user interface was promised to be provided. As a
direct reaction to the meeting, it was also decided to change the development
paradigm to prototype-driven tests. From now on, mockups and demonstrators
would be integrated into the development of further interaction methods in close
collaboration with the police o�cer who would eventually be the user of the �nal
application.

This incident made the domain experts aware that the requirement for in-
tuitive software was by far not as clear as they had been convinced it was. To
counter the problem, a close collaboration with this expert was established in
order to provide the necessary information of how the dispatcher would work
with the developed software. Of course, con�dential details could still not be
revealed but by using conceptual sketches to discuss and plan the interaction
process, mockups to demonstrate new ideas early, and prototypes to iteratively
approach �intuitive� solutions, the expert's process and domain knowledge could
be exploited to design an e�cient work�ow. On the other side, this close collab-
oration enabled a quick extension of the prototype to meet the demands of the
police for additional features. With the demonstrators being easy to adapt and
extend, entire system for unit dispatch was mocked within a few hours (that is,
within a single night shift at the police department) after reviewing and re�n-
ing a sketch provided by the police o�cers and adapting it to the application.
The system is actually working within the framework. It only lacks access to a
service providing the actual police data � again con�dential information.

4.1.3 Reducing the Gravity of Inevitable Changes

Throughout the course of the project, the designers were frequently faced with
changing requirements and the need to incorporate additional use cases. Al-
most every time a new iteration was presented to the application partners, new
potential was found that would cause the requirements to change so drastically
at least one module of the software would have to be redeveloped from scratch.
Had the designers known and understood the details of the problems they were
to solve, they could possibly have foreseen this. Yet, in applications where these
details need to be kept secret, such events seem inevitable and should be ex-
pected when designing the software's architecture. In particular, the software
needs to be quickly adjustable to drastic changes. This requires a highly mod-
ular structure of independent software packages. Fortunately, an early design
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decision was to implement a service oriented architecture where the visualiza-
tion would be deployed as a web service that could access a number of services
providing data and functionality via a service broker. Di�erent modules could
therefore be developed in parallel and independent of each other. Within the
structure of the �nal development work�ow, this also allowed to focus on sin-
gle components without having to worry about the �big picture� of the whole
software system.

Especially in the �rst minutes after a crime has been committed, available
validated information is sparse. There are many alternatives and possibilities
but only few reliable facts to base a decision on. Still, the dispatcher has to act
quickly. Yet, given the sparsity of reliable information, statistical predictions
or extrapolation of ongoing movement would most likely deliver wrong results.
While technically it is possible to provide such simulations, it would be unreliable
and therefore unsound to do so. The designers hence proposed to instead provide
context-sensitive additional information for decision support. For example, the
positions of bus stops or parks could be highlighted or added as a map overlay
if the dispatcher considers them relevant for the de�nition of sectors or for
unit dispatch. The decision, however, should be left with the dispatcher rather
than the computer since being in charge of the operation, the dispatcher is also
accountable for failure.

4.1.4 Breaking the Ice

Having given a number of invited talks for numerous audiences, from potential
users to decision makers close to politics, the reactions were just as diverse as
the audiences. Probably the most critical question has been asked in a talk
for practitioners: �Is your tool meant to replace the experienced police o�cer
at the local police station?�. Of course, it is not. However, this question is
symptomatic for an acceptance problem that is not depending on the domain of
application but simply the result of an understandable reluctance of practition-
ers to accept the ideas of a non-domain-expert without further evidence of the
proposed solution's quality. One frequent comment among the audiences of the
invited talks was that practitioners would su�er from poor usability of software
products not developed towards e�cient interaction. Especially in the time-
critical situation of a manhunt, e�cient interaction with the dispatch system
is a self-explaining necessity. Therefore it is not very surprising that in some
talks there were members of the audience who only were convinced of the de-
veloped tool's quality after a live-demonstration of the software was presented.
Eventually, the live-demonstration became an integral part of the invited talks
� with all the risks coming with a potentially not completely bugfree software.
Despite an initial fear that bugs in the software would ruin the presentation, the
surprising experience was made that even if an error occurred the trust built up
by the demonstration exceeded the doubt emerging from the occurrence of the
bug.

Since the police o�cer the designers directly collaborated with was so deeply
involved in the design of the user interface, it was only natural to invite him to
accompany the talks and discuss the aspects more relevant to the application
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domain. The rationale behind that is simple: If the domain experts are the
ones who can de�ne best what they need to solve their problems, they are
also the ones who are best at explaining the identi�ed solutions to their fellow
practitioners. The designers' role in the talks was reduced to the discussion
of relevant technical aspects and operating the demonstration scenario which
the domain expert would comment from the police's point of view. Indeed,
audiences were much less reluctant to accept the solution if the application
aspects were explained by the domain expert rather than the developers of the
system.

4.1.5 Iterative Development Workflows for Design Projects

During the course of the project, not only the requirements changed but also
the focus of the project itself. Additionally, the fact that important domain
information was con�dential had to be compensated throughout the project. As
a consequence, traditional linear software development models were inapplicable
and a dynamic and agile development work�ow had to be implemented that
would incorporate the expertise of the application domain into the design and
re�nement process.

Because the developed visualization was meant to improve an existing pro-
cess the help of a domain expert was needed to de�ne the visualization's features.
While it was clear that practitioners' perspective and knowledge had to be in-
corporated into the design process, it soon became clear that a feature-oriented
development paradigm like Scrum [127] would be hard to implement. The prob-
lem was that, not being a visualization expert, the practitioner would be forced
to de�ne features during the design phase of which he did not know they would
be useful later. What the practitioner could provide was information about
the shortcomings of existing work�ows and where improvement was necessary
� as long as this would not reveal too much about the tactics. Therefore, the
development-work�ow that eventually emerged is following a process-oriented
paradigm rather than focusing on software features.

In retrospect, while � as intended � the actual implementation phases became
much shorter the further the development paradigm approached the iterative
work�ow, getting the required feedback from the domain experts took consid-
erably more time than initially expected. The explanation is that initially not
enough time had been scheduled to compensate for the limited availability of
the stakeholders. Their great dedication to the project has to be emphasized.
Still, even making meetings possible on short notice when it was necessary, the
higher in rank the participating stakeholders are, the harder it is to arrange
an appointment, especially since due to security restrictions not all of them are
allowed to receive phone calls or emails from outside the police. Fortunately,
the cooperation partners o�ered to coordinate the meetings themselves. The
iteration cycles were shortened by decomposing the project into smaller parts
which could be developed asynchronously. This way, the direct contact among
the practitioners could take over the meetings on the low level alone and larger
stakeholder meetings only had to be arranged when milestones had been reached
or directional decisions were to be made. Due to the better availability and the
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practitioners' dedication, development time of individual work packages reduced
from about a year to roughly four months, including testing, �xing bugs, and
necessary changes demanded by the stakeholders.

4.1.6 Summary: Qualitative Considerations Influence Design

All the issues reported above are of qualitative nature and although the report
concentrates on a speci�c project, the �ndings are not speci�c to the project's
restrictions and hence can be generalized to other design projects. Thereby,
the report already points out that qualitative considerations are useful for the
design of applications. It is remarkable that these qualitative considerations
are rarely pointed out explicitly as such. Instead they implicitly become part
of the design in the form of design choices or design requirements. A closer
look into the literature also reveals that the three aspects of interpretation,
provenance, and design are commonly not considered in combination. Like any
other design work�ow, a work�ow focusing on qualitative visual analysis would
attempt to �rst identify and implement the domain perspective. Deviating from
the purely data-centric perspective, the second step would be the identi�cation
of the reasoning and inference mechanisms typically applied in the domain.
This would prepare the design of proper analysis processes to be implemented
along with the visualization. The visualization would then be designed towards
re�ecting the interpretation on the domain's reasoning and inference techniques.

The bene�t in development e�ciency can be assessed from the timeline shown
in Figure 4.1. The further the development work�ow evolved into the �nal form,
that is the further it developed from a data-driven approach to a work�ow guided
by qualitative considerations, the shorter the development cycles became due
to an increasing in�uence of the practitioners on the visualization's design.
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Figure 4.1: Timeline illustrating the bene�t in development speed due to the de-
sign work�ow's evolution over time. Without access to important domain
information, early versions of the space partition and its visualization re-
quired time-consuming readjustments. Involving a domain expert into the
conceptualization of the user interface reduced the necessity for subsequent
changes and therefore the development time signi�cantly.
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4.2 Case Study: Designing Interactive Visualizations
Despite Sparse Availability of Domain Information

Con�dential information is an important issue when developing visualization
applications for the security sector. The visualization and user interface often
need to be optimized towards the task to be performed. Such an optimization
requires an understanding of the application domain's processes and procedures.
In policing, an example for such a processes is a manhunt initiated as part of
the �rst response to a crime reported to the police. Information about the
police's tactics is not publicly available but would be needed to optimize a
visual interactive system for managing manhunts.

Especially if relevant and important domain information is con�dential, the
development of an optimal solution needs to consider this information with-
out explicitly communicating it. The following discussion introduces such an
approach. In particular:

1. A process-oriented approach to the development of visual interactive sys-
tems is explained. The problems of sparse domain information are circum-
vented by deriving implicitly communicated design goals from discussions
with practitioners.

2. Two implementations of this approach applying di�erent software devel-
opment project management paradigms are described. Both examples are
presented together with an example from a project with the German po-
lice. Sparsity of domain information results from con�dential tactics and
unclear design goals.

3. The approach's performance for the two examples and its applicability to
other projects su�ering from sparse availability of domain information is
discussed.

The development approach discussed here is the result of a series of adaptations
to challenges encountered during an ongoing project with the German police
that started in 2013. The discussion is primarily concerned with the derivation of
design goals in environments where access to domain information important for
design considerations is severely limited, for example because it is con�dential.
For the project, this means that police o�cers were able to express and specify
important properties of the �nal solution's design without the need to reveal
tactical considerations behind the design decisions.

4.2.1 Context: Manhunts in the Vicinity of Crime Scenes

This section discusses a case study based on a project with the german police. Its
initial aim was to improve a sector-based technique for manhunts in the vicinity
of crime scenes. This speci�c kind of manhunts is typically executed immediately
after a crime incident has been reported. Hunting a fugitive criminal in this
early phase of a situation is hard since due to its immediate nature, typically
only few information about the situation is available. Hence, sparsity of domain
information in this case results from two problems: First, the exact tactics are
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con�dential information so the interaction system has to be tailored towards
processes not revealed to the visualization experts. Second, there is no complete
description of the situation to be handled and therefore no complete de�nition
of the information to be visualized.

Speed is the key to a successful response to the situation. Therefore, the
dispatcher has to be enabled to quickly identify the situation and the known
facts, identify the available units, and to dispatch them according to the tactics
related to the kind of manhunt the dispatcher decides for. Additionally, this
decision has to be easy to communicate to ensure e�cient unit dispatch. In the
following discussion, two di�erent approaches are considered, namely sector-
and ring-based manhunts in the vicinity of a crime scene.

4.2.1.1 Sector-based Manhunts

The sector-based approach to manhunts in the vicinity of a crime scene is based
on a subdivision of the area to be searched for a fugitive criminal into a collection
of sectors used to coordinate the dispatched units. The sectors' boundaries are
known to the police o�cers and additionally made available aboard the patrol
cars. An ideal sector is convex with respect to the street map's topology, which
means that every street inside the sector is reachable following a shortest path
without leaving the sector. Note that convexity in the street map's topology
does not necessarily geometric covexity on the street map. Additionally, a sector
boundary should be closed and simple to describe. The latter requirement can be
achieved by minimizing the number of street names involved in the description.
Figure 4.2 shows the evolution of the sector shapes applied in the developed
project prototype over the years and reveals how they came closer to reach these
design requirements. Note that these requirements are not the requirements the
police imposes to actually de�ne the sectors but serve as a good functional basis
to develop a prototype with. The actual speci�cations are con�dential.

4.2.1.2 Ring-based Manhunts

The idea behind the ring-based approach is to intercept a fugitive by covering
so-called neuralgic spots with patrols. The neuralgic spots are selected by a
certain de�nition of centrality and positioned relative to a ring de�ned around
the crime scene � hence the method's name. In the developed prototype solu-
tion, the de�ning ring is intersected with the paths of higher-level roads and
crossings closest to these intersections are found along these roads. Like for
the sector-based approach, the actual set of properties de�ning the neuralgic
spots is con�dential and only present a �working model� that helps designing
the prototype.

4.2.2 Related Work

In general, visualization design frameworks o�er high-level guidance or process
steps to support visualization design. The most widely used standardized ap-
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Figure 4.2: Evolution of the subdivision over the years. Starting with Voronoi di-
agrams it quickly became obvious that the sectors would better be bound
to the street network. This would simplify communication via radio and
better relate the sector boundaries to the actual operation space. The de-
tails behind the system currently in action are con�dential and thus not
accessible to the visualization designers. Therefore, new criteria had to be
derived indirectly from discussions with practitioners.
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proach to developing visualizations is the visualization pipeline [64]. It roughly
describes four separate stages: data analysis of the given raw data, �ltering
of its result, the mapping to graphical primitives best suited to convey the
data's information, and rendering the result to the display. Many models for
visualization design follow the pipeline approach and its several extensions and
alterations.

Developing linearly along the pipeline can result in a failure of the whole
project as a consequence of potentially fatal misconceptions in the design of
the data processing or rendering steps. To alleviate this risk, newer model
speci�cations attempt to better manage the requirement for changes and to fre-
quently update the design during the course of development, for example by
following an incremental approach to development [125]. Another approach is
to add veri�cation steps to the pipeline, similar to the V-model's extension of
the Waterfall paradigm. Tamara Munzner's Nested Model for Visualization,
for example, introduces four layers to be implemented incrementally and pro-
poses proper evaluation techniques for each development layer, [96]. The Five
Design-Sheets methodology (FdS) is a relatively recent addition to the visual-
ization design literature [118]. It outlines an e�cient design work�ow applying
sketches to foster re�ection on ideas and reconsideration of decisions during the
design phase. Although the method discussed here is based on implementing
prototypes, sketches are applied during discussions with domain experts. To be
applicable, FdS requires the designer to understand the task and � even more
important � to access real-world data. The authors explicitly mention privacy
reasons as a factor preventing the application of FdS. Indeed, a major challenge
speci�c to con�dential domain information is that in some projects designers are
permanently confronted with the need to develop a solution without ever being
granted access to real-world data. While more work is needed in this direction,
the results discussed below indicate that, in combination with the presented
process-oriented iterative approach, there are projects where FdS can actually
be applied even if domain information is sparse due to access restrictions.

Concerning the general feasibility of visualization application development,
Sedlmair et al. identify a list of 32 pitfalls posing a risk of failure to visualization
projects [128]. Some of these pitfalls are contradicted by the �ndings reported
below. A more detailed discussion follows in Section 4.2.7.

The methodology presented here is related to participatory design, letting
potential end users take part in the development process [19]. Yet, the end users
are no experts for interaction or visualization and, due to con�dentiality, are
not allowed to openly reveal their domain knowledge or allowing the desigers to
study the tasks and processes in their actual application contexts. Without these
limitations, derived the requirements could have been derived by �eld research
methods, such as contextual inquiry [47, 67]. This particular method has been
reported to be e�ective in geovisualization design [89]. Since the application
is based upon a geospatial visualization of situations in crime �ghting, this
approach would certainly have been useful. The common factor between these
methods is that they rely heavily on an open exchange of domain knowledge and
real-world data, a requirement that cannot be met if the availability of domain
information is limited by con�dentiality.

To take advantage of the practitioners' domain knowledge, an idea related
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to Schön's re�ective practitioner [124] is followed, attempting to let designers
learn from an experienced practitioners' re�ections on existing applications and
processes. The limitations imposed by con�dentiality, however, restrict the
applicability of this approach to the extraction of domain information from the
implicit communication between practitioners. To this end, a dialog setup is
established where practitioners comment and share ideas proposed and re�ned
by designers. For such discussion setups, it has been proposed to involve at least
one participant in the role of a translator or liaison to bridge the communication
gap between domain and visualization experts [128, 131]. If available domain
information is sparse but important for the design, this is in general a good
idea. Since the special restrictions of con�dentiality essentially prohibit the
communication gap from ever being bridged, the only option would be to install
a so-called interdisciplinary liaison, a person with knowledge in visualization as
well as in the domain [131]. Not being allowed to pass domain knowledge to the
designers, the liaison's role would require expert knowledge in both domains.
It can be expected that such an expert is rarely available, especially if general
availability of domain information is sparse.

Although only single prototypes have been implemented in the project, the
proposed discussion setup implements aspects of parallel prototyping [44]. Mul-
tiple visualization and interaction designers propose their ideas independently
but work on the same design and consider the other designers' changes to the
design in their ideas. Towards a more e�cient design process, the discussions
are, however, based on sketches. In some sense, this particular component of the
approach to the derivation of design goals can be interpreted as a combination
of parallel prototyping and the FdS methodology. However, both techniques ac-
tually require domain knowledge to yield high quality results. Embedding the
discussion in an iterative work�ow aiming at continuous improvement of the
obtained solution rather than the instant obtainment of perfect results partly
alleviates the sparsity of available domain information.

Figure 4.3: The reasons for projects to su�er from sparse availability of domain
information can be split into three major non-disjoint categories.
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4.2.3 Sparse Domain Information

Sparsity of available domain information hinders the designer of a visualization
and interaction system in tailoring the developed solution towards the speci�c
needs of the application and the system's eventual users. Without access to
detailed domain knowledge, the challenge to create a system well-supporting its
users in their tasks becomes signi�cantly harder.

There are many reasons for domain information to be sparse. For this work's
considerations, they can roughly be categorized into three classes, as listed in
Figure 4.3. The focus here is on limited availability of domain information in
the public sector. To be precise, the access to background information concern-
ing the procedures and tactics for manhunts in the vicinity of crime scenes is
restricted, the corresponding documents are con�dential.

In a linear development work�ow, the software development process would
start with the identi�cation of functional requirements which would then be
translated into technical speci�cations of the software to be implemented. Of
course, the police knows their processes and therefore could specify functionality
aspects to be met by a software solution. However, de�ning such requirements
becomes harder for the police where aspects are concerned that are speci�c
to the software itself rather than the requirements directly re�ecting policing
tasks. Visualization and interaction are two important representatives of such
requirements. Being no visualization experts, the police initially only required
the interface to be �intuitive�. The police acknowledged that deriving tasks from
the procedures executed during a manhunt would be a reasonable approach to
identify what factors rendered an interaction intuitive for them. Yet, they had to
deny access to this information because it is con�dential. Specifying functional
requirements to the visualization and interaction based on tasks and processes
was therefore not an option.

4.2.4 Deriving Design Goals from Implicit Information

Instead of formalizing design goals for the interaction as functional software
requirements, a process-oriented perspective was eventually taken over. This
choice might seem counter-intuitive at a �rst glance considering that the infor-
mation about the tactics underlying the processes is con�dential. However, the
incorporation of domain knowledge into the interaction design only requires the
participation of at least one person having this knowledge. This person does
not need to be a visualization designer but can also be from the application
domain.

Visualization and interaction techniques can be openly discussed with prac-
titioners. If potential designs are discussed and analyzed by experienced appli-
cation experts, emphasis on certain elements of the design can be derived from
their valuation of certain alternatives. An open discussion allowing domain ex-
perts to exchange opinions integrates their experience as implicit knowledge into
the design process. The role of the designers of a visual interactive system is
to propose solution alternatives and to tailor these solutions to the application
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Figure 4.4: Illustration of the process-centric dialog for the derivation of design goals
from implicit information. Based on an initial concept for the interac-
tion developed by experienced practitioners (left), designers (right) propose
changes to the visualization and interaction. The practitioners discuss
these propositions. Focusing on the interaction process, the practitioners
do not need to reveal background information about the considerations and
tactics underlying processes and tasks. Implicit information like a focus
on certain features indicate importance. Qualitative comments, especially
�liking� or �disliking� ideas, reveal optimization criteria. Interpreting this
information, the designers derive design goals and re�ne their proposition-
for the solution.

experts' qualitative remarks.

Discussing interaction scenarios for di�erent aspects of situation manage-
ment, the police can comment on positive and negative aspects of di�erent
propositions. These discussions can be understood as an exploration of the de-
sign space, attempting to optimize a number of design aspects. The principle
is illustrated in Figure 4.4. The discussion starts with an example work�ow de-
�ned by an experienced practitioner, ideally a potential end user. This draft also
de�nes the functional requirements related to policing. Care has to be taken to
focus the discussion on individual tasks to prevent tactics from being communi-
cated accidentally. For example, rather than discussing the process �manhunt�,
a possible topic for the discussion could be �dispatch units into sectors�. The
software designers then propose di�erent ideas for the re�nement of the initial
draft under di�erent aspects. These propositions combine the explanations of
ideas with sketches of potential information displays, user interfaces, and inter-
achtion techniques. The police comments on these propositions based on their
experience. Rather than actively thinking about the potential work�ow being
applied to their tasks, they just comment on the quality. The visualization
designers note observations, paying special attention to the implicit valuations
of the proposed ideas. Formulations like �for me, this needs too many mouse
clicks� (overly complex), �that would mean I could act much faster� (speed is
an issue), or �I actually use to place these widgets next to each other� (these
aspects are related) translate to optimization criteria and therefore to design
objectives. Ideally, the ideas proposed for the solution are directly applied to
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iterate the discussion towards a potentially optimal solution. This solution is
implemented and the resulting prototype is the basis for a discussion of further
improvements.

4.2.5 Process-Orientation in the V-model XT

The V-model XT is the standard model for software development in projects
in the German public sector [80]. It is less focused on the tools applied for the
actual development process than on the result to be obtained. The bene�t of
this approach is an increased �exibility, allowing to tailor the design process
towards closer involvement of stakeholders or practitioners and to incorporate
incremental and agile development techniques. When domain information is
sparse, misconceptions and changing requirements are likely to occur. Proper
implementation of the V-model XT allows to adapt to such events.

Due to these properties, the model was chosen as the initial project manage-
ment paradigm for the project with the German police. The adaptation of the
V-model XT is depicted on top of Figure 4.5. The idea is to loop the implemen-
tation step until the solution reaches su�cient quality. To assess this quality,
practitioner interviews would be conducted to extract the implicit information
about design aspects of the visual interactive system to be developed.

However, the V-model XT in its essence is still oriented towards functional-
ity. It should be noted hat in the beginning of the project, the user-interviews
were intended to identify functional requirements. As a result, the project man-
agement approach had been tailored towards user interaction but the developed
solution failed to ful�ll demands of the processes executed by the user. Only
later, the quality of the solution could be improved, due to a change of the style
of the interviews were conducted. In particular, the focus of the discussion was
shifted from asking what kind of interaction the practitioners needed to hypo-
thetical discussions of potential bene�ts and problems resulting from di�erent
means of interaction. Later, the use of sketches and mockups was added to
improve the discussion of the interaction work�ow. This gradual improvement
of the interviewing technique eventually resulted in the open discussion setup
described above.

4.2.5.1 Application: Sector-Based Manhunts

Sector-Based manhunts apply space partitions to distribute the units taking
part in a manhunt over the search area. Sectors are available on maps acces-
sible to a dispatcher. When initiating a sector-based manhunt, the dispatcher
picks the sectors from the map and assigns each sector a number of available
units, typically patrol cars. The task is to use visualization to communicate the
assignment more easily, displaying the sectors on a map, and to design a proper
interaction system that allows the dynamic de�nition of sectors depending on
the situation. This system has to be �exible enough to cover di�erent move-
ment directions and speeds of the fugitive but still be intuitive to use for the
dispatcher to allow for an e�cient � and quick � assignment of sectors.
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Figure 4.5: Top: The implementation of the V-model XT applied in this work is tai-
lored towards close collaboration with practitioners. Boxes with double-line
boundaries indicate development milestones. The edges marked in blue on
the left form a loop modeling the iterative design approach followed in the
implementation of this model. This segment also integrates the process-
centric approach deriving design goals from implicit information obtained
from dialogues with practitioners. Bottom: PDCA for visualization ap-
plications. Each iteration starts with the discussions with practitioners,
preferably potential users of the software to be developed. This discussion
implements the focus on the interaction process and the derivation of de-
sign goals from implicit information (Plan). A prototype is developed based
on the derived design goals (Do). This prototype is evaluated in another
discussion round together with practitioners (C). If corrections are neces-
sary, the system is adapted accordingly (Act).

144



4.2.5.2 Development History

One major problem in designing the software was that the actual tactics and
processes going on during the selection of sectors could not be revealed to the
designers. Not only are those processes secret but also was the dynamic def-
inition of sectors a novel tweak to the technique so the application partners
could not tell immediately what would be the functionality of a proper interac-
tion technique. The expectation was that a design towards maximum �exibility
would allow for adjustment at a later point, adding any missing functionality.
This approach was derived from an early discussion between project stakehold-
ers who exchanged their opinions about di�erent application scenarios and their
respective requirements to the software's functionality. As it turned out, the
assumption that the provided �exibility was needed was a crucial error. With-
out any domain knowledge, the user interface had been over-engineered o�ering
settings for things of only minor importance for the de�nition of sectors, such
as the means of transportation used by the fugitive. Of course, they had to
be considered in the dispatcher's decision but it would have been enough to
just size the area accordingly. This excessive detail in controlling the initiation
of a manhunt caused an experienced practitioner to comment that the interac-
tion would be �too much clicking for me�. Simplicity and speed were the key
factors identi�ed in the further discussion, rather than �exibility and general
applicability as it had been derived from the �rst discussion.

As a consequence of the false design decisions derived from the stakeholder
discussion, the designers asked to get in contact directly with practitioners who
would be potential users for the system to be developed. Unfortunately, in
the initial attempts to do so, the designers unintentionally asked for con�den-
tial information, which of course could not be made available for them. The
workaround was to reduce the interview to a description of potential work�ows
for the sector de�nition which a police o�cer could comment on as a practi-
tioner. This way, experienced dispatchers could apply their knowledge without
having to reveal it. Once a suitable work�ow had been de�ned, it was further
simpli�ed and then implemented. The �nal work�ow for the de�nition of sectors
is outlined in Figure 4.6. Reporting is cut to a minimum and can be performed
after the actual unit dispatch step. The interaction aims at a quick de�nition of
sectors to which available units can be deployed. The new interaction scheme
allows to de�ne a set of sectors tailored to the situation within seconds, covering
the consideration of the position of the crime scene, the time since the incident
occurred, the means of transportation used by the fugitive (if any), and the
movement direction (if known).

4.2.6 PDCA for the Design of Visualization Applications

The visual interactive system designed for sector-based manhunts did not only
simplify the management of situations. Its �nal implementation showed poten-
tial to optimize the whole process by mitigating some limitations inherent to the
original process. This motivated a more holistic approach to the development
of further software modules. To this end, it was decided to lean from the Con-
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Figure 4.6: Interaction for the de�nition of sectors for the sector-based approach to
manhunts in the vicinity of a crime scene. The dispatcher determines a
center, usually the crime scene, and a circle determining the search radius
(A). If it is known, the fugitive's direction of movement can also be speci�ed
and the circle can be reduced to a cone for a more �ne-grained positioning
of sectors (B). It can also be turned into a ring segment if the dispatcher
wishes to exclude an area in the direct vicinity of the crime scene. The
sectors are then computed and mapped to the street network (C). With only
a few mouse clicks, the dispatcher can tailor he manhunt speci�cally to the
situation within seconds.

tinual Improvement Process, a concept well-known in industry. This technique
considers all aspects of the process, not only the software. However, since the
project aimed for an IT-solution, the discussion focuses only on the aspects of
interacting with the system. Other than before, the designers would not only
attempt to optimize the interaction towards the needs of currently implemented
procedures. Instead, they would also discuss potential optimizations of the dis-
patch process itself to optimize the work�ows leveraging the full potential of
the developed visual interactive system. To this end, the �Plan, Do, Check,
Act�-paradigm (PDCA) was adapted, an iterative method for managing process
optimization projects well known in industry [38].

The traditional PDCA-model aims to constantly improve industrial processes
by iterating a four-phase loop: Plan, Do, Check, Act. In the Plan-phase, the
process is analyzed and formalized, the parameters steering the process are
identi�ed, and their in�uence on the process is determined. Once these factors
are known, problems or potential improvements are identi�ed and a concept
is designed how an improvement can be achieved. This improvement is imple-
mented in a small-scale experimental environment in the Do-phase and veri�ed
by experimental evaluation during the Check -phase. Necessary adjustments to
the model are made during the Act-phase, where it is also decided whether the
process needs another iteration through the improvement loop.

Installing PDCA as a short-cycled iterative work�ow, rapid prototyping was
combined with mockups of several features. The advantage is an early available
demonstrator whose design is driven by the application expert and that for
each iteration cycle is re�ned in two steps: a functional step driven by the
application domain and a technical re�nement driven by the designers' expertise
in visualization and user interface design. The identi�ed re�nements are passed
to the next iteration. After the last iteration of a four-step loop, the results are
presented to a wide audience to obtain additional comments and to advertise
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the software in order to establish general agreement among the police. The aim
was to approach a �nalizing standardization step to provide the basis to hand
the developed demonstrator over to the police as a basis for the public request
for proposals for the implementation into their software systems. The bottom
half of Figure 4.5 illustrates the implemented adaptation of PDCA formalizing
the implemented development-work�ow.

The cooperation between the designers and practitioners is closest during
the Plan- and Check-phases. The Plan-phase serves to identify processes, re-
quired visualization features, and proper interaction techniques. The software
meeting these requirements is developed during the Do-phase. The Check-phase
involves the practitioners to assess whether the implemented visualization and
interaction techniques suit the practitioners' needs or adaptations have to be
made. Like in the standard PDCA model, these adaptations are made in the
Act-Phase. For each module to be developed, the loop is iterated until a direct
contact from the application domain � ideally an experienced user � agrees that
the solution is su�cient.

4.2.6.1 Application: Ring-Based Manhunts

The ring de�nition is available to the dispatcher on a map, along with a set of
prede�ned neuralgic spots. The task is to design an interaction system allowing
to tailor the ring to the situation that triggers the manhunt, especially if a
fugitive's movement direction is known.

4.2.6.2 Development History

During the development of this module, the designers were able to draw from
the experiences made in the design of the interaction scheme for the sector-
based approach. Unfortunately, the problems also carried over: Since the exact
procedure to be executed is con�dential information, it was hard to identify
a design goal. Additionally, the dynamic and interactive de�nition was new,
even to the dispatcher. The dynamics allow additional tactical considerations,
especially concerning the combination of ring- and sector-based methods. Of
course, these considerations could not be the topic of a discussion between
practitioners and visualization experts. Yet, they somehow had to be included
into the design of the developed solution.

Applying PDCA, the dialog between an experienced dispatcher and the de-
signers of the visualization was established early during the development of this
module. In the Plan-phase, one of the �rst decisions made was to integrate
the interaction for the circle de�nition into the existing interaction scheme for
de�ning the sectors. This design decision was agreed upon because practitioners
felt that the familiar work�ow for the similar task would render the tool easier
to handle while the two di�erent actions were still well distinguishable. How-
ever, rings and sectors would be treated separately, even if this would require
to execute the interaction work�ow twice if both methods were to be applied
simultaneously. This has the advantage that mixed forms are only implicit,
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Figure 4.7: Interaction for the ring-based approach to manhunts in the vicinity of
a crime scene. The ring-based approach to manhunts aims to identify
points on the map where due to the tra�c �ow it is likely to intercept
a fugitive. The user interaction is integrated into the system for sector-
based manhunts. Switching to the ring de�nition is triggered by sizing the
inner radius equal to the outer radius (A, B). The ring on the map can
be reduced to a segment to concentrate available forces in the movement
direction of a fugitive criminal (C). The system automatically computes
optimal interception points (D).

simplifying the log �les for reporting. In the discussions, practitioners explic-
itly expressed that mixed forms would likely be too complicated to de�ne in
short time and repeatedly remarked that simple actions would be easier to in-
clude into reports, especially as part of the live-report that has to be prepared
during the actual course of events. The work�ow for initiating a ring-based
manhunt is illustrated in Figure 4.7. Basically, the dispatcher uses the resizing
feature covering the consideration of the time since the occurrence of an incident
to determine the ring's radius. The ring-shaped area for the sector de�nition
is reduced to a circle � or circle segment if the fugitive's movement direction
is known. According to the dispatcher's setting, a number of neuralgic spots
is identi�ed automatically by weighting all available neuralgic spots along the
de�ned circle segment and picking the ones with the highest score.

This interaction is not yet the perfect solution. The Check-phase revealed
that the dispatcher would need the means to readjust the selection of neuralgic
spots in case the heuristic provided suboptimal results. This requirement was
derived from the observations that practitioners participating in the discussion
asked many �What if�-questions, for example �What if I do not have su�ciently
many units in range?� or �What if I suspect the fugitive to avoid large street
crossings?�. Still, without access to the actual de�nition of neuralgic spots,
it will be hard to optimize the automatic procedure. To allow the police to
keep this exact de�nition secret, the solution agreed upon is that they will
eventually be provided with the means to de�ne their own weight functions for
the heuristics. The Act-phase of this module thus consisted of the addition of
an interaction step allowing to either accept the proposed spots or to move them
to other available spots by some sort of drag and drop interaction. Since there
can be a large number of candidate positions along a circle segment, the exact
visualization and interaction for this step was chosen to be the subject of an
additional iteration of the PDCA cycle, once the initial solution is implemented
as a basis for further discussion.
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4.2.7 Comments on Design Study Methodolgy

The paper of Sedlmair et al. on design study methodology is one of the few works
summarizing the observations of several experienced scientists collected over a
number of projects, including success but also failures [128]. They identify 32
pitfalls posing a threat to a visualization project's success. The circumstances
forced us to �nd solutions to some of these problems that might also be bene�cial
for other projects.

Con�dential domain information is an instance of not being provided with
data or getting access to domain information, a situation that Sedlmair et al.
recommend �should be considered as a red �ag for design studies�. The results
reported here contradict such a strict judgement � at least for the cases where
data actually exists but cannot be made available to the designers due to access
restrictions. If practitioners participate in the discussion of potential solutions
with respect to their expected performance, their experience is considered in
the design.

Letting practitioners discuss solutions rather than problems is also consid-
ered a pitfall by Sedlmair et al. The results reported above suggest that this
can be partly allevieated by careful moderation. The designs discussed by the
practitioners were proposed by designers. While practitioners were not allowed
to explicitly reveal the problems with the existing solution, they could openly
talk about problems with the proposed designs.

A third pitfall suggested by Sedlmair et al. is the relevance of an engineering
project to a researcher. Technically, the project's interaction component is an
engineering problem. Viewing the added value to science as a return on invest
by solving a project's central research question, an engineering project will likely
not be a pro�table endeavour. Yet, this kind of project can indeed have an added
value for science. First, reports about such projects provide the community with
evidence on whether the theoretical design tools actually work. Such reports
are needed to verify the success of design methodology in a number of projects.
This case study contributes the observation that embedding iterative, prototype
driven development implementing aspects of participatory design into classical
project management frameworks can be successful even if access to domain
information is limited. Second, the methodology to solve visualization problems
is a research question on its own. Independent of a solution to a research
question, engineering problems can be considered a sandbox to test new design
methodologies or to evaluate the result against solutions found using established
methodology. Considering that domain information in the reported project was
con�dential, the developed prototype could not be compared to an approach
where practitioners could openly communicate their problems. Still, a method
for the development of an engineering solution for an interaction problem is
contributed, even if the engineering question itself remains open due to sparse
availability of domain information.
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4.2.8 Comments on Confidential Domain Information

In the development of the module for sector-based manhunts, the derivation
of implicit design goals yielded good results well accepted among practitioners.
However, care has to be taken to �nd the right discussion partners. Stakeholders
who are not potential end users of the system may focus on components less
relevant for the actual work�ow than they suspect. Experienced practitioners
will potentially focus on other aspects. Ideally, an experienced practitioner who
is also a potential user of the system to be developed should be part of every
discussion round.

If the tasks and processes are con�dential, a holistic perspective designing
work�ows without consideration of existing techniques is unavoidable. The
PDCA-based approach formalizes such a holistic perspective. An interesting
feature of this approach is that it scales well with di�erent complexity. It can
be applied to the design of individual modules as well as the design of larger
components consisting of multiple modules. The scope depends on the exper-
tise of the practitioners participating in the discussion. However, this approach
also requires a careful choice of those practitioners. An important mechanism
is PDCA's check-phase as its application on the module level allows an early
correction of misconceptions.

Discussing the design with an experienced practitioner, domain knowledge
can still be considered during the design process but is combined with the
methodological knowledge of visualization and interaction designers to �nd an
optimal solution. Focusing on implicit information being communicated by prac-
titioners, the actual tasks and work�ows do not need to be communicated. For
example, the work�ow for de�ning sectors for manhunts is only one alternative
of a set of possible interactions and thus can be openly discussed. In contrast,
the work�ows and processes to de�ne the number of sectors and dispatch of
available units are con�dential. This tactical information is not required to
be communicated explicitly if practitioners can instead comment on how they
would like the interaction to be designed.

4.2.9 Comments on General Sparse Domain Information

Some observations applying to the case of con�dential domain information are
transferable to other projects su�ering from sparse availability of domain in-
formation. For sparsity of domain information due to access restrictions, the
observations should apply almost seamlessly. The case of con�dential tactics
and considerations behind work�ows is an example of this category.

If access to domain information is not restricted, the necessary information
can likely be obtained from domain experts. However, sometimes this informa-
tion is not explicitly available. One example is the implicit knowledge prac-
titioners obtain about processes as part of their experience. Based on their
experience, practitioners tend to interact with systems in di�erent ways. Tai-
loring interaction to the users' work�ows means to optimize it based on this
experience. In domains where information is not con�dential, observations in
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user studies or experiments with simulations can help to understand the tasks
and to extract the implicit knowledge. On the other hand, education is based
on explanation. An adaptation of the informal discussion setup for con�dential
information would let practitioners exchange and discuss their experiences.

If the domain is too complex for a visualization's designer to obtain a thor-
ough understanding, the discussions can be applied with a focus on aspects the
designer might not understand properly. However, if the domain experts know
what is important to them, they can just tell the designer directly. If the em-
phasis is unclear, for example in advanced scienti�c experiments, the interviews
are not transferable since in these cases it might not even be clear whether the
domain experts' focus is the correct one to apply.

If domain information important to the design of a visual interactive system
is not clearly de�ned, it is also unlikely to be retrievable as implicit information.
In such a setup, emphasis on di�erent aspects of the interaction work�ow is likely
to change frequently. The interviews might, however, hint the direction of such
a change. Embedded into PDCA, they can potentially be applied to navigate
the design space from a holistic perspective on the whole work�ow.

4.2.10 Conclusion: Qualitative Considerations Support the De-
sign Process

The above case study reports observations on the performance of a technique
to derive design goals for visual interactive systems in projects that su�er from
sparse availability of domain information. A process-centered perspective in-
volves stakeholders and potential users in the discussion about alternative in-
teraction work�ows. In these discussions, the participants emphasize certain as-
pects of the visualization and interaction. Design goals can be derived from the
implicit information provided by this emphasis and the participants' reactions
to di�erent propositions made by the visualization and interaction designers.
The approach is embedded into two di�erent project management paradigms
being applied to the development of modules of a system for the management of
manhunts in a policing application. The discussions enable the police to com-
municate the emphasis on di�erent aspects of the interaction design without the
need to reveal con�dential information about tactics or chains of actions. Deriv-
ing implicitly de�ned design goals enables the development of high-quality visu-
alization and interaction solutions tailored to the practitioner's domain-speci�c
requirements even if available domain information is sparse.

In the beginning of the project, the design aimed towards a maximum of �ex-
ibility. Yet, the original data driven approach aiming for providing a maximum
of simultaneously conveyed information and o�ered functionality resulted in an
overly complex design. Redesigning the system following the principle of mini-
mal graphical overhead resulted in a simpli�ed information display and a much
more focused interacion. Interaction has been reduced to a necessary minimum
of tools. Its design is primarily determined by the purpose of the interaction
gesture rather than by the functionality to be o�ered. For example, the inter-
action sequences for subdividing the area into sectors and for de�ning neuralgic
points on an approximate ring around a crime scene are triggered by the same
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button indicating the purpose to start a manhunt. The motivation to start a
ring-based manhunt is indicated by setting the inner radius to the same size as
the outer radius of the area to be searched, clearly showing that the purpose is
not to highlight an area on the map but rather a ring. Designing interaction
sequences by their purpose rather than only by the result they are meant to
achieve also makes the work�ow more intutive for the user as it implements the
principe of design for reasoning. Design for reasoning was also the central idea
behind the installation of PDCA as a development work�ow. However, due to
the limited access to domain information, this principle was particularly hard
to follow. Describing the project setup in terms of the inside-outside principle,
the outside knowledge was almost completely left with the practitioners and the
designers only had access to a minimum of necessary concepts provided to them
as some kind of interface to adapt the visualization and interaction work�ow
to. Yet, the installed close cooperation enabled the practitioners to guide the
designers towards providing a system whose conveyed messages optimally �t the
available outside knowledge without having to reveal it.

In conclusion, a purely data-driven design approach did not solve the chal-
lenges posed by the project. In the beginning, the display was not of su�cient
quality and the interaction was not e�cient enough. Only the explicit consider-
ation of qualitative aspects such as designing e�cient purpose-driven work�ows
turned the tables. The qualitative principles of visual information encodings in-
spired a development work�ow that eventually led the project to success despite
the limited access to valuable domain information. In this poject, the qualita-
tive considerations did not only contribute to the design itself but also to the
implementation of an adequate development process. Qualitative considerations
hence a�ect not only the actual design but also the general collaboration with
practitioners.

4.2.11 Addendum: Opinions of a Collaborating Police Officer

The following interview was conducted with a police o�cer participating in the
project this case study is based on. The questions were asked in an informal
setting and the answers were noted by the interviewer who later translated
the questions and answers from German to English. The statements are not
commented and no further explanation is added.

1. Q: Please describe your role in the project

A: User, consultant for the police's requirements to the management sys-
tem for manhunts.

2. Q: Please describe your professional background, including your role in
the organization and its relation to the project.

A: Role: Polizeiführer vom Dienst (PvD), within the operations center,
responsible for the �rst response to every kind of crime, ranging from
small to major incidents. Relation to the project: Experienced user of the
software currently in use, profound experience in managing di�erent kinds
of situations. Multiple ideas for the improvement of the state of the art
application.
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3. Q: Where did/does communication...

a ...function well in the beginning?

A: Quickly agreed on principal direction for the solution. Issues with
di�erent domain-speci�c language and expectations have been solved
quickly.

b ...need to be improved in the beginning?

A: In the beginning, it was unclear which information could be passed
to the designers. Di�culties were encountered in the attempt to artic-
ulate requirements without revealing con�dential information. Find-
ing simple examples for explanations while holding back con�dential
information could be challenging.

c ...function well as of now?

A: Over the years, a common ground with the designers has been
established. Communication thus became much easier. Close contact
to the designers improved communication and mutual understanding.

d ...need to be improved as of now?

A: Sometimes, there are still misunderstandings due to lacking knowl-
edge of the respective other domain on both sides.

4. Q: If applying: Please provide reasons for:

a 3.b)

A: The police was not aware of the technology's full potential. It
was not clear which ideas could be implemented. The requirements
to the design were also not completely clear.

b 3.d)

A: Because the necessity to reveal con�dential information has been
circumvented, the designers do not know this information. On the
other hand, the application side did not acquire additional compe-
tence in the design of visualization and interaction systems.

5. Q: On a scale from 1 (unimportant) via 3 (neutral) to 5 (very important):
How important do you consider secrecy in the context of this project?

A: 5

6. Q: Please comment: How di�cult do you �nd it to specify functional
requirements to the interaction with the software (work�ows, processes,
chains of actions, chains of events, reaction to events, ...) without the
explicit consideration of (con�dential) tactical aspects?

A: Not very di�cult. Examples can be taken from television. Still, ex-
planations need to be fragmentary to prevent revealing tactics and other
information that is indeed con�dential and not known from movies or
other popular culture.
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7. Q: Please comment: How much experience do you have with the process-
centric, discussion-based approach to the derivation of design goals? How
many discussions did you attend?

A: Almost every discussion since May 2015. More than 20.

8. Please comment: What are, from your personal perspective, the (dis-
)advantages of the discussions' focus on the interaction process? Please
focus your consideration primarily on secrecy of con�dential information
and quality of achieved results.

A: Getting to know each other better, the quality of results improves
and they tend to be tailored better to the police's requirements. Dis-
cussions are more time-consuming than providing lists with requirements.
However, they allow to immediately resolve potential questions or misun-
derstandings. Discussions also allow both sides to identify the potential
and limitations from the perspectives of policing and computer science.
In the discussions, the practitioners' focus on policing aspects sometimes
prevents the explicit discussion of aspects considered obvious. The devel-
opers' attention in following the discussion captures this information and
considers it for the solution's development.

9. Q: In retrospect: What are the advances you observed in the collabora-
tion with designers during the project, especially where communication
is concerned? Can you specify events that could be considered a turning
point in the project's history? If so, can you specify the changes?

A: Two turning points:
May 2015: Presentation of a �rst mockup. Misunderstandings have been
identi�ed and resolved. As a consequence, close contact between designers
and practitioners has been established. This contact primarily served the
purpose of providing feedback to the designers. From here on, development
proceeded in smaller steps with frequent iterations.
June 2016: Prototype. From now on, the prototype was demonstrated to
a wider range of practitioners and domain experts. This broad audience
introduced new ideas and impulses for further development.

10. Q: On a scale from 1 (unimportant) via 3 (neutral) to 5 (very important):
How important do you consider the close collaboration between the police
and experts for IT solutions in general for police IT applications?

A: 5

154



4.3 Case Study: Surface Strip Geometry Design

Continuum mechanics studies the kinematics of materials based on continu-
ous mass models. Applications of this theory are often concerned with rod-
or shell-like elastic structures subject to bending and twisting. While models
for these shapes are well established, the special case of thin elastic strips re-
mains a challenge since neither the models for rods nor the models for plates
and shells directly apply to these surfaces. Being de�ned as the envelope of a
set of straight lines smoothly transitioning along a space curve, ruled surfaces
directly re�ect the shape of thin elastic strips. Among these, the developable
surfaces are of special interest since many applications are concerned with the
bending of planar sheets of material, for example plywood or metal. Unfortu-
nately, in most surface models applied in this context, developability cannot be
guaranteed trivially. A rather rigorous but still common approach to this is to
explicitly model the surface as the isometric deformation of a planar reference
con�guration. For continuum mechanics in general and engineering purposes
especially, it is more convenient to work with a model for arbitrary ruled sur-
faces that covers isometric deformation and developability as special cases with
simple constraints.

Models for thin and narrow inextensible elastic surface strips answer ques-
tions like whether the bending behavior of a ribbon cable will cause friction by
contact with surfaces in the cable's way if the object the cable is plugged into is
moved. The description of such properties is based on the surface strip's local
behavior. Following the principle of design for reasoning it is thus important
to provide a local formulation of the geometry that allows to infer important
local properties of the surface and its deformation directly from a set of easily
accessible features with clearly de�ned semantics.

Motivated by this kind of local perspective a new method for modeling ruled
surfaces is introduced that is more tailored to engineering applications than
comparable techniques, especially where reasoning is based on the local shape of
the surface. The surface is described by two coupled moving frames of reference
that are chosen deliberately such that their transition equations are governed by
a minimal and complete system of invariants for ruled surfaces. This system of
invariants has the following properties particularly appealing to modeling and
design applications:

1. It is completely de�ned in the arc length of the centerline as the single
parameter.

2. It supports arbitrary shapes of ruled surfaces.

3. It guarantees developability by a trivial constraint.

4. It guarantees isometry of deformations by a trivial constraint.

5. It provides a concise formulation of the bending energy for thin inexten-
sible elastic ribbons of arbitrary but �nite and nonin�nitesimal width.

The method directly reproduces results from the literature. Perhaps the most
remarkable contribution of this work is a simple functional for the bending
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energy of arbitrarily shaped ruled surfaces based on an analytically exact yet
easily discretizable surface de�nition.

The remainder of this section is structured as follows: After a brief discussion
of related work, the system of coupled frames is introduced and a bending energy
functional for arbitrary ruled surfaces is developed. The discussion then re�ects
on the model's descriptive power and limitations focusing on the physical inter-
pretation of the model and the constraints imposed by actual real materials.

4.3.1 State of the Art

In recent years, new applications like the simulation of molecules in (bio-)chemistry
or ribbon-shaped nanostructures in material science increased the interest in
mathematical models for the mechanics of thin, inextensible elastic surface
strips. Since for these applications one is typically interested in the e�ect of
applied forces and equilibrium states, a substantial part of this recent work is
originated in continuum mechanics. For example, certain polymers can be de-
scribed by a generalization of the Frenet-Serret equations for space curves to
the description of surface strips [114]. Being the surfaces that can be obtained
by bending a �at piece of some material, the developable surfaces are of special
interest to continuum mechanics. These surfaces are also relevant in contem-
porary architecture [54,86]. Nondevelopable surfaces, on the other hand, are of
their own interest due to their higher stability [91]. Closing the loop back to
material science, a recently proposed model for the interatomic bonds in carbon
structures applies nondevelopable surfaces and their elastic behavior to describe
the elastic properties of graphene and diamond [13].

For the description of the mechanical properties of surface strips, rod- or
shell-based models are commonly applied. Yet, the approaches di�er in the
de�nition of the underlying geometry. One can roughly classify these attempts
into three groups. The �rst one applies implicit surfaces, usually expressed in
terms of B-Splines or NURBS [25,59,113]. More direct approaches try to exploit
the vast theory of di�erential geometry [46]. The third group applies theory
dating back to the 1920's, combining line geometry with Plücker coordinates or
similar formalisms to describe ruled surfaces, [18].

In continuum mechanics, it is common to model ruled surfaces by construc-
tions similar to a material frame directly following the structure of the thin
sheet of material along a dedicated centerline and the surface normal along this
line [42]. While these models are capable of describing arbitrary ruled surfaces,
properties like developability have to be enforced by nontrivial constraints. Con-
structive approaches attempt to guarantee this property by explicitly modeling
the desired shape as an isometric deformation of a planar reference geometry.
Any ruled surface obtained this way is developable but the �at reference con�g-
uration for a given deformed surface is not arbitrary. This point is emphasized
here as it appears that it is an actually quite often encountered misconcep-
tion [30].

Modeling ruled surfaces by surface invariants provides simpler constraints for
properties like developability or freedom of twist. For example, line geometry
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models ruled surfaces by transporting the generators along the line of stric-
tion [18, 68, 106, 111]. While this surface de�nition is intuitive, strictly binding
the surface to the line of striction reduces the degrees of freedom for modeling
signi�cantly. The reason is that while for a given line of striction the surface
is not unique, there is a unique line of striction for each ruled surface. Hence,
changes to the surface either require the identi�cation of a new line of striction
or impose constraints on the correct deformation with respect to the line of
striction's bending. Introducing the striction as a design parameter, arbitrary
centerlines can be de�ned. This approach is known as the �natural parameteri-
zation� of ruled surfaces [84]. However, there are certain degenerate cases which
cannot be modeled in this framework, including certain developable surfaces or
segments of these, especially cylinders and conoids.

From the perspective of continuum mechanics, it is especially important to
know the deformation energy applied to a piece of material. For a thin strip,
this reduces to the bending energy. A common approach to guarantee the
modeled shapes to be physically sound is to minimize the bending energy. An
equation for the bending energy of an in�nitesimally narrow ribbon has been
introduced in 1930 [121]. It has later been applied to the bending energy of
a Möbius strip [152]. For narrow strips, generalizations of these functionals to
nondevelopable surfaces have been proposed [45]. The problem of computing
the bending energy of an arbitrarily wide Möbius strip has only recently been
solved [33, 42, 134]. However, the energy functionals proposed in this context
again depend on the comparison of the investigated shape to a planar reference
geometry that is not necessarily known in an actual application. For modeling
and design purposes, it is much more convenient to be provided with a functional
independent of the knowledge of a reference con�guration. The bending energy
does not involve any process quantity and thus is a function of state.

4.3.2 Ruled Surfaces

A ruled surface S = L(t) + s · E(t) is de�ned as a family of straight lines E(t)
transitioning smoothly along a space curve L, the centerline, such that L inter-
sects every generator E(t) exactly once. The tangent planes along a generator
E(t) rooted in some point L(t) on the centerline are either constant along E(t)
or rotate smoothly around the generator such that for in�nite distance s to the
centerline, the surface normal covers all possible directions except the one of
the shortest connection between E(t) and its direct neighbors. This behavior
distinguishes the developable from the nondevelopable ruled surfaces. For the
remainder of this discussion, L is assumed to be parameterized by its arc length
t and the angle σ = ^(L̇(t), E(t)) is called the striction.

4.3.3 Drall-Based Modeling

Consider a straight centerline L and �x the striction to σ = π
2 , which means

the generators are orthogonal to the centerline. Letting the generators rotate
around L with unit speed and �xing a distance s to the centerline, the curve
Cs(t) = L(t) + s · E(t) is a helix. The direction of the tangent Ċs(t) to this
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curve along E(t) for �xed t varies with the distance s. For the angle ϕ =
^(Ċs(t), L̇(t)), one obtains:

tanϕ = −sd (4.1)

for some constant d. Exploiting this proportionality and applying d to parame-
terize the screwing of the surface's tangent plane around the generators E(t) in
distance s relative to its orientation along the centerline, this screwing de�nes
a curve Cs(t). Due to the resemblance of the traces of the curves Cs(t) to the
ri�ing of a gun barrel and in appreciation of the pivotal work on the theory
of ruled surfaces developed during the �rst half of the 20th century, d is from
here on referred to as the drall. The discussion of the drall follows closely the
explanation in Blaschke's Lectures on Di�erential Geometry [18]. Yet, other
than in Blaschke's work, Cartesian rather than Plücker coordinates are applied.
The description of the tangent plane's rotation around the generator requires
knowledge about its angular velocity:

δ =
d

ds
ϕ =

d

ds
arctan−ds =

−d
1 + s2d2

(4.2)

To apply the drall for modeling the surface, it is de�ned by the angle ϕ at
distance 1 to the centerline, which means that d = − tanϕ|s=1. The angular
velocity δ at each point along a generator is computed by integrating the angular
acceleration

δ′ =
d

ds
δ =

2sd3

(1 + s2d2)2
(4.3)

provided that an initial value for δ is known at some point. From (4.2), it
directly follows that in the centerline δ0 = −d. Therefore, the surface can be
modelled applying

δ = tanϕ|s=1 (4.4)

The importance of the drall for the model lies in its close connection to devel-
opability:

Theorem: Developability and Drall

A ruled surface is developable if and only if δ vanishes identically along
the centerline.

Proof Towards a proof, it has to be shown that the drall � and therefore δ
� is invariant under reparametrization. A change of drall necessarily causes a
change of the surface metric. To see this, consider the trapezoid formed by two
in�nitesimally close neighboring generators, their direct connection in distance s
to the centerline, and the in�nitesimally short section of the centerline between
the two generators. The drall rotates the tangent plane around one of the
generators. Therefore, any change of drall induces a change of the direction of
the connection between the two generators. Because the surface is smooth, at
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least one of its generators also has to change its direction. Since neighboring
generators do not intersect, this necessarily induces a change of the length of the
direct connection between the generators at some distance s to the centerline.
Therefore, a reparameterization either does not a�ect the drall or it changes the
surface's metric. Since reparameterizations do not deform the surface, the drall
has to remain constant under reparameterization. Because of the connection
δ = −d0, for the drall d0 at the centerline, the same applies to δ �.

The proof contains another result:

Corollary: Deformations and Drall

A deformation is path-isometric if and only if it does not change δ at
any point along the centerline.

Path-isometric deformations only preserve the arc lengths of curves on the sur-
face. The positions of points on the surfaces given by the surface parameters
s and t may change. This corollary is especially relevant for a more thorough
discussion of deformations following below.

Swapping the roles of the centerline and the generators in the above con-
struction yields a similar, drall-like, parameter for the rotation of the tangent
surface around the centerline. Since the centerline is not straight, the construc-
tion is considerably harder. However, for modeling purposes it is desirable to
have direct control over the shape of the centerline and therefore expect it can
be expected to be known a priori. In this case, the angular velocity ω can be
computed as the rate of change of the direction of the surface normal along the
centerline. Since ω determines the twisting of the normal around the centerline,
it is a measure for the surface's geodesic torsion. The invariance of ω under sur-
face reparameterizations can be proven analogously to the invariane of δ. In the
literature on the kinematics of elastic strips, strictly isometric deformations are
sometimes referred to as �pure bending� since they also do not allow a change
of the twist. In combination with the above corollary, one obtains:

Theorem: Parameter Invariance of Pure Bending

A transformation is a �pure bending transformation�, meaning that it
is strictly isometric, if and only if neither ω nor δ change in any point
along the centerline.

4.3.4 The System of Coupled Frames

In this work, the angular velocities δ and ω are applied to model the ruled
surface by a system of two moving frames of reference that share the surface
normal N along the centerline as their common direction. Given the centerline
L together with its tangent L̇ and a generator E, one can locally compute N
by taking the cross product N = [L̇, E]. To complete the frames, two auxiliary
directions are introduced: K = [L̇, N ] and T = [E,N ]. The frame {L̇, N,K}
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Figure 4.8: The system of coupled frames. The centerline (green) is given by any
surface curve that does not intersect any generator (grey) more than once.
The {E,N, T}-frame (red) describes the generators' movement along the
centerline's tangent and therefore determines the surface's geometry. The
{L̇, N,K}-frame (blue) capture the physical properties of an actual mate-
rial. The two frames are coupled by sharing the one of the directions, the
surface normal N = [L,E], and both contribute to the surface's parameter-
ization which is given in the centerline's arc length t and the distance s to
the centerline at the respective generator E(t). Their transition along the
surface is described by the angular velocities ω, δ, γ, and λ, although the
latter two can be expressed in terms of the formers' derivatives applying
the striction, i.e. angle between L̇ and E.

is then applied to model the surface transformation along the centerline. Being
a material frame, it describes the physical properties of an actual thin strip
made of elastic material whereas the {E,N, T} determines the geometry into
which the surface is embedded. If the centerline is the line of striction, the
{E,N, T}-frame is in some literature also referred to as the Sannia frame [103].
Note, however, that allowing the centerline to be an arbitrary surface curve that
intersects each generator exactly once it is explicitly not required to be the line
of striction. The system is illustrated in Figure 4.8. The distinction between a
frame modeling the physical properties of some actual material and the frame
de�ning the geometry the material is embedded in already indicates that the
frames are not necessarily aligned. Indeed, the striction, the angle between L̇
and E may change during deformation. However, the focus in this discussion is
on the e�ects this induces to an actual physical surface strip. For the discussion
here, it is enough to keep in mind that there is a di�erence between an actual
physical surface and the geometry it is embedded in. The only remark to be
made regarding the mechanical perspective is that this setup allows a geometri-
cal treatment of the deformation problem and therefore to impose geometrical
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constraints rather than mechanical ones on aspects important for modeling such
as guaranteeing developability or the isometry of deformations � resulting in a
treatment much easier than the optimization-based approach common in con-
tinuum mechanics.

Being coupled by the surface normal, the transition of the one frame di-
rectly a�ects the other. In what follows, this connection is used to derive the
transformation of the one frame from the transformation of the respective other
frame. Linking the frames by the surface normal and applying the striction
angle σ = ^(L̇, E), the following connections are obtained:

cosσ = 〈E, L̇〉 = 〈K,T 〉 = sin(π2 − σ) (4.5)

sinσ = 〈L̇, T 〉 = −〈K,E〉 = cos(π2 − σ) (4.6)

L̇ = E cosσ + T sinσ = 〈E, L̇〉E + 〈L̇, T 〉T (4.7)

K = T cosσ − E sinσ = 〈E, L̇〉T − 〈L̇, T 〉E (4.8)

E = L̇ cosσ −K sinσ = 〈E, L̇〉L̇− 〈L̇, T, 〉K (4.9)

T = K cosσ + L̇ sinσ = 〈E, L̇〉K + 〈L̇, T 〉L̇ (4.10)

The connections between the surface normal, K, and the centerline's principal
normal and binormal N and B are useful for simpli�cation. They are given by

N = 〈N , N〉N + 〈B, N〉B
K = 〈N , N〉B − 〈B, N〉N

With these equations, transformation equations in t-direction along the center-
line and in s-direction along the generators can be derived. Figure 4.9 shows the
principle behind the procedure for both directions. Because the considerations
are almost identical, only the transformation in t-direction is discussed in detail
and only a brief overview is provided for the s-direction.

Let L(t) be a space curve parameterized by its arc length. In addition to the
curvature κ and torsion τ of L, de�ne four functions are de�ned in t:

• the angular velocity ω of N rotating around L

• the angular velocity δ of N rotating around E

• the rotation γ of E around N while moving along L

• the rotation λ of the geodesic parallels to L around N while moving along
E

Moving along L, {L̇, N,K} is adjusted �rst. After that, the {E,N, T}-frame
is rotated around the new centerline tangent L̇ according to ω and around the
surface normal N according to the value of γ (cf. Figure 4.9). If the surface
normal does not rotate around the centerline in t, N and K transform like
the centerline's principal normal N and binormal B. The actual rotation may
thus be decomposed into two steps, namely applying the transformation of the
centerline's Frenet-Serret-frame to {L̇, N,K} and rotating both frames with
angular velocity ω around the transformed centerline tangent L̇. Equations
(4.7) and (4.8) are applied to express E, N , and T in terms of L̇ and K and the
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Figure 4.9: Illustration of the frames' transformation along the centerline in t-
direction (top), and along a generator in s-direction (bottom). The surface
normal is colored in black, L̇ and K in blue, and E and T in red. The tri-
angle between L̇ and E shows the orientation of the surface. Faded arrows
denote the directions of the last step and are shown for comparison. From
upper left to lower right for t: Initial con�guration (1), transformation of
{L̇, N, T} along with the centerline's Frenet frame (not shown) and adjust-
ment of E and T (2), rotation of E, N , T , and K around L̇ with velocity
ω (3), and the rotation of E and T around N with velocity γ (4). From
left to right for s: initial con�guration (1), rotation of N and T around E
with angular velocity δ and adjustment of L̇ and K (2), and rotation of L̇
and K around N with angular velocity λ (3).

respective new values ˆ̇L and K̂ are inserted into the equation. Particularly, one
computes

ˆ̇L = L̇ = L̇+ κNdt
N̂ = N +KdΩ

K̂ = K −NdΩ

Ê = 〈E, L̇〉 ˆ̇L− 〈L̇, T 〉K̂
T̂ = 〈E, L̇〉K̂ + 〈L̇, T 〉L̂

where dΩ denotes the integral of the rotation around L with velocity ω along
the in�nitesimal distance dt.

In the second part of the transformation, the {E,N, T}-frame is rotated
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around N with velocity λ, setting

Ẽ = Ê − T̂ dΓ

Ñ = N̂

T̃ = T̂ + ÊdΓ

where dΓ is de�ned analogously to dΩ before. This rotation does not a�ect
L̇ and K. After this transformation, the original vectors are subtracted from
each term and both sides are divided by the in�nitesimal interval dt. Letting dt
approach zero, this yields the frame axes' derivatives in t-direction. Applying
dΩ
dt = ω and dΓ

dt = γ, one obtains:

L̈ = κN (4.11)

Ṅ = −κL̇+ τB (4.12)

Ḃ = −τN (4.13)

Ṅ = τK − 〈N , N〉κL̇+ ωK (4.14)

K̇ = −τN + 〈B, N〉κL̇− ωN (4.15)

Ė = −γT + 〈E, L̇〉κN + 〈L̇, T 〉N(τ + ω)

− 〈B, N〉〈L̇, T 〉κL̇ (4.16)

Ṫ = γE + 〈L̇, T 〉κN − 〈E, L̇〉N(τ + ω)

+ 〈B, N〉〈E, L̇〉κL̇ (4.17)

For the generators, the transformation equations can be derived analogously.
First, the {E,N, T}-frame is rotated around E in order to obtain the trans-
formed {L̇, N,K}-frame by applying equations (4.9) and (4.10) inserting the
new directions {Ê, N̂ , T̂}. After that, the {L̇, N,K}-frame is rotated around N
with velocity λ. Similar to before, these two steps introduce angles d∆ and dΛ
as the integrals of the angular velocities δ and λ over a distance s along the gen-
erator. Again, the derivatives are computed, applying d∆

dt = δ and dΛ
dt = λ and

the terms with the remaining di�erentials that vanish for dt → 0 are canceled
out. The resulting equations for the transformation in generator direction are:

L̇′ = −〈L̇, T 〉δN − λK (4.18)

N ′ = δT (4.19)

K ′ = −〈E, L̇〉δN + λL̇ (4.20)

E′ = 0 (4.21)

T ′ = −δN (4.22)

4.3.5 The Fundamental Forms

Having introduced the coupled frames along the centerline, the discussion now
turns to the description of the transverse characteristics of the surface. Given
two generators E(t0) and E(t1), the geodesic parallel to the centerline in distance
s along the generators will become longer for larger values of s. Since the frame
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axes should be normalized, this behavior needs to be captured as part of the
metric.

Let Xs(t0) and Xs(t1) be two points on the surface in equal distance s along
the generators E(t0) and E(t1) to the centerline L at parameter values t0 < t1.
The transition from Xs(t0) to Xs(t1) along the connecting longitudinal line with
constant s is then given as:

Xs(t1)−Xs(t0) =(L0(t1) + s · E(t1))

− (L0(t0) + s · E(t0)) (4.23)

where the index denotes the distance of a point to the centerline. This equa-
tion can be expressed entirely in terms of the derivatives of L0(t0) and E(t0) in
t-direction. To this end, one sets t1 = t0 + dt for some in�nitesimal interval dt
and for each variable at t1, one applies the ansatz ◦(t1) = ◦(t0) + ◦̇dt, where ◦
is a placeholder for the di�erent variables. This allows inserting the derivative
equations (4.11) � (4.17) and applying the connections (4.5) � (4.10) for sim-
pli�cation. The equations are rather bulky but their computation is straight
forward. Hence, the details are skipped here for the sake of brevity. After sim-
pli�cation, the derivative with respect to t can be taken. In this step, almost
all remaining terms cancel out. Letting dt→ 0, what remains is

d(Xs(t1)−Xs(t0))

dt
= L̇s(t) = L̇0(t) + sĖ0(t) (4.24)

For the distortion in t-direction in distance s along the generators, this yields:

l = ‖L̇0 + sĖ0‖ (4.25)

With this equation, the coe�cients of the �rst fundamental form become:

g11 = 1; g12 = g21 = l〈E, L̇〉; g22 = l2 (4.26)

The second derivatives Xst = Ė and Xts = L̇′, are given by equations (4.16)
and (4.18). Since the generators are straight lines, one has Xss = E′ = 0.
Employing the Frenet-Serret-equations for L̇ yields Xtt = L̈ = κL̇. Note that
the derivative equations only hold for normalized vectors. The vectors thus
have to be multiplied by their lengths, which in the case of l = ‖L̇‖ (cf. eqn.
(4.25)) depends on both parameters, s, and t. The coe�cients of the second
fundamental form then become:

h11 = 〈Xss, N〉 = 0 (4.27)

h12 = 〈Xst, N〉 = 〈1 · Ė,N〉
= κ〈E, L̇〉〈N , N〉+ 〈L̇, T 〉(τ + ω) (4.28)

h21 = 〈Xts, N〉 = 〈 dds l · L̇, N〉 = 0 + 〈L̇′, N〉
= −lδ〈L̇, T 〉 (4.29)

h22 = 〈Xtt, N〉 = 〈 ddt lL̇, N〉 = 0 + 〈lL̈, N〉
= κl〈N , N〉 (4.30)
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By the symmetry of the second fundamental form, h12 = h21 provides a con-
nection between the striction angle σ and the invariants κ, τ , ω, and δ:

h12 = h21

−lδ〈L̇, T 〉 = κ〈E, L̇〉〈N , N〉+ 〈L̇, T 〉(τ + ω)

1

tanσ
= −τ + ω + lδ

κ〈N , N〉
(4.31)

As it turns out, equation (4.31) is central to the system of coupled frames
proposed here. Therefore, before turning to the derivation of the bending energy
equations, this result is discussed in more detail.

4.3.6 A Minimal and Complete System of Invariants for Arbitrary
Ruled Surfaces

First, the following generality theorem should be proven:

Theorem: Generality

Given the surface invariants κ, τ , ω, and δ, the system of coupled frames
described above completely de�nes all possible ruled surfaces.

For the proof, note that the system of coupled frames completely contains
the skew frame of E. Kruppa's natural parameterization [84]. Thus, the model
is at least as powerful as Kruppa's frame. Since this only excludes a few ex-
amples, a direct proof is attempted, explicitly modeling the missing classes of
surfaces in the framework. Those are the cylinders, the cones, and the tangent
plane surfaces. Examples of these surfaces can be found in Figure 4.10. All of
these surfaces are developable and thus constrained by δ = 0 identically along
the centerline. For the cones and the cylinders, a closed centerline with ω = 0 is
applied and the angle between the centerline's principal normal and the surface
normal is chosen such that the generators constitute the required shape, which
means they are parallel for the cylinders and intersect in a single point at a cer-
tain distance to the centerline for the cones. For the tangent plane surfaces, the
solution is a little tricky, since the striction angle σ must be guaranteed to vanish
identically to let the generators fall together with the centerline tangents. Since
σ is not among the modeling parameters, equation (4.31) needs to be solved for
σ = 0 to obtain the space of possible solutions. Towards an example, require
ω = 0 and de�ne the surface normal to be orthogonal to the centerline's principle
normal. Equation (4.31) now reduces to σ = arctan −κτ · 0, and the centerline is
almost arbitrary. Almost, because for a straight centerline, forcing σ = 0 results
in the surface's degeneration to a straight line. However, the system remains
stable in this case if the centerline's torsion τ is set to 0, allowing to pass through
such degenerate points or sections along the surface. However, this comes at
the price that one has to take care not to run into such physically unsound
cases when applying the technique to model real surface strips. Being able to
model the cones, the cylinders, and the tangent planes, it is straight forward to
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also model their combinations by simply connecting corresponding ruled surface
sections with properly aligned �rst and last generators and smoothly connected
centerlines. Since ω and δ are angular velocities and therefore derivatives, their
smooth transition along the centerline su�ces to establish a smooth connection
of two surface segments along the common generators. Therefore, one can not
only construct all combinations of developable segments but generally all sorts
of combinations between developable and nondevelopable surface segments. In
other words, arbitrary ruled surfaces can be de�ned. �

Linking the striction angle to four of the six parameters used to determine
the surface thus far, equation (4.31) gives rise to a number of interesting obser-
vations:
The invariance of δ and ω has already been proven and it is clear that being the
invariants of the centerline κ and τ also need to be surface invariants. Since for
γ and λ, one actually has γ = dσ

dt and λ = dσ
ds , equation (4.31) can be applied

to express γ and λ in terms of (the derivatives of) the other four parameters
used to de�ne the surface. By this connection, the surface can be described
completely in the four invariants κ, τ , ω, and δ.
It can easily be seen that omitting κ and τ in the invariant system would limit
the descriptive scope of the model by restricting the shapes of possible center-
lines. Similar applies for δ, because it distinguishes the developable from the
nondevelopable ruled surfaces. Without ω, only model twist-free surfaces could
be modelled. An example for a surface for which neither δ nor ω vanish is shown
in Figure 4.11. It is therefore concluded that the system of four invariants is
also minimal:

Theorem: Minimality of the Invariant Set

{κ, τ, ω, δ} is a minimal and complete system of invariants for arbitrary
ruled surfaces.

4.3.7 Curvature and Bending Energy

The system of coupled frames is now applied to the derivation of the bending
energy for arbitrary ruled surfaces of arbitrary width. To this end, one needs
to express the Gaussian and Mean Curvatures in the model.

The expressions for the surface's principal curvatures are obtained by com-
puting the eigenvalues of the shape operator. Inverting the matrix of the �rst
and applying the second fundamental form, the shape operator L can be ex-
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Figure 4.10: A cone (left), a cylinder (center), and a tangent plane surface (right)
rendered using the presented model. These surfaces and their combina-
tions span the class of developable surfaces. Therefore, δ = 0 identically
along the centerline for all of them. For the examples, one also sets ω = 0
although this is not necessary for a tangent plane surface. Other than de-
velopable surfaces, the system can describe nondevelopables applying the
natural parameterization and is thus complete in the sense that arbitrary
ruled surfaces can be described. For the tangent plane surface, the center-
line is chosen to be one of the boundary curves. Note that this choice does
not require any adjustment to the formalism describing the surface since
the model allows choosing an arbitrary centerline on the surface. While the
cylinder and the cone can be modeled directly, the tangent plane surface
requires to solve equation 4.31 for σ = 0. For the example, the surface
normal is �xed to be orthogonal to the centerline's principle normal at all
points along the centerline, resulting in a free choice of the centerline's
shape.

pressed in terms of the following coe�cients:

h1
1 = − 1

l2〈L̇, T 〉2
(
κl〈E, L̇〉2〈N , N〉+ l〈E, L̇〉〈L̇, T 〉(τ + ω)

)
(4.32)

h2
1 =

1

l2〈L̇, T 〉2
(
κ〈E, L̇〉〈N , N〉+ 〈L̇, T 〉(τ + ω)

)
(4.33)

h1
2 = −lδ〈L̇, T 〉 − l3δ〈L̇, T 〉〈E, L̇〉

l2〈L̇, T 〉2
− κl2〈N , N〉〈E, L̇〉2

l2〈L̇, T 〉2
(4.34)

h2
2 =

l2δ〈L̇, T 〉〈E, L̇〉
l2〈L̇, T 〉2

+
κl〈N , N〉
l2〈L̇, T 〉2

(4.35)

The principal curvatures κ1 and κ2 are then given by the eigenvalues of L:

κ1, κ2 =
1

2

(
TrL ±

√
Tr2 L − 4 detL

)
(4.36)

For the determinant, one obtains:

detL = −δ (4.37)

Note that by the de�nition of δ, along the centerline the trace of L is exactly
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the drall. For the trace, three equivalent representations can be derived:

TrL =
δ

tanσ
+
κ〈N , N〉
l〈L̇, T 〉2

− κ〈N , N〉〈E, L̇〉2

l〈L̇, T 〉2
− τ + ω

l tanσ

=
κ〈N , N〉

l

(
1 +

1

tan2 σ

)
(4.38)

=
κ2〈N , N〉2 + (τ + ω + lδ)2

lκ〈N , N〉
(4.39)

=
2δ

tanσ
+
κ〈N , N〉
l sin2 σ

(4.40)

In this discussion, TrL generally refers to (4.38). The representations (4.39)
and (4.40) are listed here for completeness since they are closer to the results
typically found in the literature.

Using the determinant and trace of the shape operator, equations for the
Gaussian curvature K and the mean curvature H can be provided:

K = κ1 · κ2 = −(detL)2 = −δ2 (4.41)

H =
1

2
(κ1 + κ2) =

1

2
TrL =

κ〈N , N〉
2l

(
1 +

1

tan2 σ

)
(4.42)

Prior to the construction of the bending energy integral, it is important to
mention that this is the �rst time the discussion's generality is limited. While
the model can describe the stretching and shearing of ruled surfaces under de-
formation, for the bending energy this discussion is only concerned with the
special case of unshearable inextensible elastic strips. Unshearability and inex-
tensibility require that only deformations are allowed that do not change the
length of any arbitrarily chosen surface curve, which means, the deformations
need to be path-isometric.

Given a surface element da and the principal curvatures, a common ansatz to
the derivation of a bending energy function is E =

∫
S
κ2

1 + κ2
2da. For the devel-

opable surfaces, this energy functional becomes
∫
S
H2da with H being the mean

curvature. However, this functional does not cover the additional longitudinal
bending induced by the drall on nondevelopable surfaces. To achieve general-
ity, an energy functional motivated by mathematical physics is proposed [35].
It describes the energy of a surface-like body that is planar at rest and whose
potential energy is determined by the integral over the quadratic form of the
principal curvatures of the surface obtained from bending:

E =

∫
S

A(H2 − 2K) + 2BKda (4.43)

for the mean curvature H, the Gaussian curvature K and material constants A
and B.

The mean curvature and Gaussian curvature in the model do not depend on
a reference geometry. Therefore, the bending energy may be computed directly
using equation (4.43). For developable surfaces, this additionally yields a trivial
constraint for energy minimization. Typically this problem is solved leveraging
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the elasticity by applying variational calculus to derive the equilibrium equations
[42, 134]. For a developable surface with �xed centerline, inserting (4.39) as
the expression for the mean curvature into (4.43), the only degree of freedom
remaining is ω, since its value also determined 〈N , N〉. It directly follows that
for a developable surface the bending energy is minimal if ω vanishes identically
along the centerline and the surface normal is equal to the centerline's principle
normal1.

Letting the surface strip become in�nitesimally narrow, one observes that
the angle between the centerline normal N and the surface normal N becomes
less signi�cant until it vanishes completely (That is, for nonvanishing σ) Since
along the centerline, one always has l = 1 because of the assumption of arc
length parameterization, as the width approaches 0, l approaches 1 globally
along the surface's generators. At the same time, the δ and ω become more and
more insigni�cant since in an in�nitesimally narrow setting, the surface appears
locally �at. The only invariants remaining are κ and τ . Inserting equation
(4.39) into H in the bending energy then results in:

E =
A

4

∫
S

(κ2 + τ2)2

κ2
da (4.44)

which is exactly the functional Sadowsky proposed in his investigation of the
Möbius strip in 1930 [121]. In some literature, the functional can be found
in another formulation more similar to the usage of equation (4.38) for the
de�nition of the mean curvature H [33]. In this case, one obtains:

E =
A

4

∫
S

κ2

(
1 +

1

tan2 σ

)2

da (4.45)

4.3.8 Computing the surface

Considering the implementation, there are essentially two approaches to de�ning
the surface. One way is to directly integrate the invariants and transport the
frames accordingly similar to the computation of a space curve using the Frenet
frame. Another approach allows to specify the drall and the geodesic curvature
explicitly while the centerline is provided directly from outside the system, for
example as a Bézier curve.

Direct integration requires the de�nition of all four invariants in the center-
line's arc length parameter t, a starting point, an initial tangent, and an initial
surface normal. Note that for the computation, the de�nitions of the invariants
need to be at least C1-continuous. The whole surface can then be computed by
solving the initial value problem using the transition equations for the frames of
reference. Where needed, the centerline's normal and binormal can be obtained
from its Frenet frame using the invariants κ and τ . While more sophisticated
methods can be implemented, experiments show that integration by the Euler
method already yields good results. Note that computing the bending energy
density along the centerline on the �y produces almost no overhead since the

1for 〈N , N〉 → 0, only τ
κ〈N ,N〉 remains and approaches in�nity.

169



components of the mean curvature are also needed to obtain the striction angle
and therefore need to be computed anyway.

Figure 4.11: A Möbius strip. Since its centerline is a circle, the strip is not devel-
opable. In the model discussed here, developability is characterized by the
vanishing of the invariant δ.

If the centerline (and thus κ and τ) is determined by other means, e.g. as
a Bézier curve, and the invariants ω and δ are again given as C1-continuous
function in the centerline's parameter t, the frame directions can be computed
directly for arbitrary values of t. For the transverse direction, the respective
direction of the centerline's geodesic parallel is obtained from equation (4.24)
and frame can therefore be computed directly given that N = [L,E]. Since Ė is
given by equation (4.16) and thus computed for any generator constructed, this
allows the computation of an arbitrarily dense net of surface points in two passes
on the GPU, where the �rst one computes the generators along the centerline
and the second one samples the frames long the generators.

In case of high centerline curvatures and geodesic torsion, the density of
generators available to tessellate the surface can quickly decrease with further
distance to the centerline. Rather than computing more generators, equation
(4.24) can be applied to obtain geodesic parallels to the centerline.

4.3.9 Physical Interpretation of the Generators

Pure bending describes the idea of deforming a surface based only on bend-
ing, which means that deformations may neither change the geodesic torsion
nor the drall since both parameters together determine the surface's twist. For
the special case of inextensible materials, one additionally needs to guaran-
tee that the centerline does not change its length. Techniques to describe the
length-preserving bending of space curves exist and can be applied to de�ne the
centerline and introduce this behavior. While restrictions on the shape of the
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surface can be enforced trivially, the e�ort of guaranteeing conditions to hold
on the transformations depends on the application.

The transformations that can be described by pure bending are exactly the
ones that preserve the distances between two �xed points on the surface as
well as their positions in the surface parameters s along the generators and
t along the centerline. Since these transformations are obviously isometric,
they are of special interest to modeling surface strips from planar sheets of
material: Isometric transformations preserve developability. While in the model
discussed here this is equivalent to the invariant δ vanishing identically along the
centerline, other models commonly need additional side conditions to achieve
developability. Constructive approaches that explicitly model a given shape as
an isometric deformation of a planar strip of material therefore often restrict
the set of allowed deformations to those de�ned by pure bending. However,
while pure bending �xes the drall and the geodesic torsion ω, the latter does
not in�uence developability, indicating that this restriction might be too strict
when judging it from a purely geometrical perspective. Indeed, by equation
(4.41), the Gaussian curvature does not depend on ω and therefore δ is the only
variable whose value needs to be preserved in an isometric deformation. It can
be observed that although two points marked on the surface may change their
s- and t-coordinates during deformation, the metric is preserved as long as δ
does not change along the centerline. This notion of isometry, the preservation
of the arc lengths of any curve on the surface, is sometimes referred to as path
isometry.

An experiment shows that indeed path isometry adequately describes the
bending behavior of ruled surfaces. Consider a long and narrow rectangular strip
of paper where several lines parallel to the short edge are marked as generators
of the surface. Bending this strip into a looping as shown in Figure 4.12 and
pulling apart the edges carefully so the strip does not buckle, one can observe
that the lines that originally denoted the generators are now curved. However,
this deformation was actually achieved by pure bending: At no time has a twist
been introduced. The apparent torsion is only due to the curvature and torsion
of the centerline and is a consequence of the fact that the angle between the
centerline's principal normal and the surface normal is preserved during the
deformation.

If the paper strip is stretched after forming the looping,
∫
L
ωdt approaches

π

2
along the centerline. Since δ cannot change its value as otherwise the paper

would tear, the striction σ has to compensate the deformation induced by the
potential change of δ. Since σ = arccos〈L̇, E〉, points aligned along the material
frame's K-axis not change their positions in the surface's parameters s and t,
since s is determined by the generators E and by the coupling of the frames
{L̇, N,K} and {E,N, T}, every change of the striction also changes the angle
between K and E. As a result, the lines drawn on the paper strip seen in Figure
4.12 do not share the same generator anymore. Still, their geodesic distance to
the centerline must have been preserved by the isometry of the transformation
since otherwise the paper would have torn apart. For the same reason, the
applied deformation must have preserved the metric. This yields the conclusion
that the transformation must be path isometric; even if individual points on
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Figure 4.12: A bent paper strip. One can observe that the formerly parallel straight
black lines are now curved. Since the transformation is built without chang-
ing the parameterδ the surface remains torsal. Hence, the striction has
changed and strict isometry does not provide a correct transformation for
this phenomenon.

the surface do not maintain their coordinates given in the surface parameters,
the preservation of ω and δ during the deformation of the centerline has been
achieved by a change of the striction angle σ.
Generalizing this experiment yields four important observations:

1. The developability-preserving deformation between two physically sound
shapes of inextensible elastic strips is adequately described by path iso-
metric transformations of a ruled surface.

2. The generators do not directly represent physical properties.

3. The path isometric deformations that can be applied to a developable
ruled surface are neither necessarily free of twist nor restricted to pure
bending.

4. The converse to (1.) does not hold: While path isometry preserves van-
ishing Gaussian curvature and thus developability, additional constraints
are needed to guarantee the resulting shape to be physically sound.

It is important to point out that path isometry is a much weaker notion than
strict isometry since it does not necessarily preserve the positions of points in
the coordinates induced by the surface's parameters s and t. One also has to
be cautious of the fact that such a deformation may introduce self-intersections.
As another remark, note that while one could expect that for a planar sheet
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the direction of the generators and therefore the striction σ would be arbitrary,
the proposed model indeed requires the generators of a �at rectangle to be
orthogonal to the centerline if the centerline is straight and parallel to the long
surface edge. The reason is that since if all invariants vanish, by equation (4.31)

1
tanσ also needs to vanish, which in the limit holds for σ = π

2 .

4.3.10 Deformations of Actual Materials

For a real, nonin�nitesimal surface, thickness restricts the possible deformations.
While for thin surfaces like plywood or paper the degrees of freedom remain the
same, the boundary surfaces now have to be considered because the transfor-
mations can induce self-intersections and buckling in these surfaces, even if this
does not occur in the surface in the center. Additionally, transformations can
induce a shear of the boundary surface relative to the one in the center. In its
current form, the model does not consider those restrictions. With a focus on
the geometry of ruled surfaces, the model does not yet include a description of
the forces acting on a material during deformation. Thus, although the model
is able to accurately describe arbitrary shapes of ruled surfaces, the transfor-
mation between two surfaces is currently only restricted by the geometry. Yet,
since the surface's geometry is completely described by the invariant system,
physical correctness can be achieved by introducing additional side conditions
restricting the values of the invariants. Equipping the model with equations
capturing the forces acting on the surface during deformation is one of several
extensions to the model that seem promising directions for further work.

4.3.11 Conclusion: Qualitative Considerations Help to Adapt the
Design to the Reasoning Structure

In this case study, an analytically exact model for ruled surfaces of arbitrary
shape is developed to enable reasoning about thin and narrow surface strips
from the perspective of the local bending behavior. A minimal and complete
system of invariants determines the surface in a single parameter � the center-
line's arc length. Other than its simple formulation fostering intuitive surface
modeling, a particularly appealing property of the model is its independence of
planar reference geometries typically needed to guarantee important properties
important to engineering applications. This is achieved by coupling a moving
frame of reference describing the mechanical properties of a surface strip with
a frame describing the space into which this material strip can be embedded,
allowing to treat the deformation problem purely geometrically. Although the
exact embedding of the physical surface into the geometrical description is yet
open, the presented model describes arbitrarily shaped ruled surfaces and their
bending behavior and yields a bending energy integral for arbitrarily shaped
ruled surfces of arbitrary width.

The construction implements the principle of design for reasoning. Impor-
tant local features identi�ed are the drall and the geodesic torsion determining
the surface's twising and the centerline's curvature and torsion characterizing
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the its bending. The parameterization has been chosen accordingly. Exam-
ples for important drived properties are the developability of the surface and
the isometry of surface deformations. The local surface description based on
the identi�ed features and their interpretation can be described by the con-
cept graph. In the developed surface model, important local surface properties
can be concluded directly from qualitative considerations rather than having to
be derived from complex optimization procedures. For the visualization, the
concept graph indicates that developabity can either be inferred by the local
depiction of the drall or of the gaussian curvature map. For the deformation
of a strip, the di�erence of the drall should instead be shown explicitly and it
should especially be highlighted where the drall's value does not change as this
indicates local isometry of the deformation.

In conclusion, the concept graph can be utilized along with the developed
description of the surface's geometry to determine visualizations following the
principle of design for reasoning. Designing visualizations this way yields graph-
ical representations of the strip allowing to conclude important local properties
directly from the depiction without the requirement for complex reasoning com-
bining multiple variables or relating the displaye surface to a planar reference
con�guration as it is necessary in the related work de�ning the current state of
the art of representing inextensible surface strips.

4.3.12 Implications of Qualitative Visual Analysis for the Design
Process

Qualitative considerations not only improve the design itself but also support
the design process. In this chapter, two case studies show the in�uence of qual-
itative considerations on design decisions. The qualitative principles of visual
information encodings found in Chapters 1 and 2 motivate the design decisions
that led the respective project to success. The principle of design for reasoning
has the most signi�cant in�uence on both case studies. In the project with the
police it motivated the introduction of PDCA as the development work�ow and
for the surface strip model it motivated the design of a local description of the
geometry. The principle of minimal graphical overhead is of general relevance
for the design and is well re�ected in the di�erent visualizations developed for
the project with the police. The same holds for the inside-outside principle that
a�ects both projects at least implicitly describing the data space and the space
of possible interpretations. Thereby it establishes the basis necessary for the
design to follow the principle of design for reasoning. In conclusion, qualitative
considerations signi�cantly in�uence the design and the development of visu-
alization applications. Therefore, they should always be explicitly considered
when discussing the rationale behind design decisions.
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Chapter 5

Summary and Conclusion

As core topics of qualitative visual analysis, interpretation mechanisms, insight
provenance, and analysis complexity inspire the three fundamental research
questions treated in this Thesis: The question for qualitative visual analysis
models for validation and analysis of visualization techniques, the question for
qualitative visual analysis work�ows, and the question for the implications of
qualitative visual analysis on visualization and interaction design. This conclud-
ing chapter summarizes the achievements reached and discusses their relation
to each other.

5.1 Achievements

The discussion of qualitative visual analysis as an additional perspective to the
data-centric quantitative view on data analysis reveals three central qualitative
principles of visual information encodings. As a direct consequence of the em-
phasis on the reasoning process, the inside-outside principle promotes the idea
to discuss visualization and interaction with respect to the reasoning structure
anticipated to be applied by the viewer to a general principle rather than a rule
of thumb. The development of a visualization and visual data analysis model
implementing this principle yields the principle of minimal qualitative graphical
overhead and the principle of design for reasoning. The former inspires e�cient
analysis work�ows and the latter allows to evaluate design choices against the
anticipated reasoning models.

In this Thesis, three fundamental questions inspired by the idea of qualitative
visual analysis are treated. A model for the qualitative visual analysis process
is developed, allowing to formally express the reasoning structures anticpiated
to be applied by analysts working with the visualization. A sophisticated model
of visualization content and the artifcats and structures being read from visual-
ization is developed, allowing a formal speci�cation of a viewer's mental model
of the visualization, including the outside knowledge determining the interpre-
tation of structures recognized in the display. Based on those considerations,
work�ows are de�ned, extending the classical approach of visualizing the data
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by an insight provenance mechanism allowing to reintegrate insight found dur-
ing analysis into the data and thus making it accessible for further analysis
steps, e�ectively implementing an insight ampli�cation mechanism. Towards
work�ows optimally supporting reasoning structures, a feasibility proof for the
automatic information-driven design of visual analytics pipelines extends the
idea of insight ampli�cation by a technique to determine data transformation
and visualization sequences by mapping available algorithms to the anticipated
reasoning structure. A review of a long-term project with the German police
motivates questions for the in�uence of qualitative visual analysis on the visual-
ization design process. Two case studies demonstrate how qualitative consider-
ations can be incorporated into the design process of visual interactive systems
and how the choice of the representation can be adapted to the anticipated
reasoning structure.

Combining the models and techniques discussed in this Thesis, a qualitative
discussion of the design and application of visualization techniques becomes
feasible. The formalism for the speci�cation of the mental model enables the
comparison of vsualization techniques based on their mapping to an anticipated
reasoning structure. Applying this idea during the design phase thus allows
to choose an optimal visualization design based on the available information
about the reasoning mechanisms to be applied during analysis. The formal
treatment of analysis strategies enabled by the qualitative visual analysis cycle
and the concept graph allows to evaluate visualization techniques from a the-
oretical perspective, validating the design choices against formal requirements
posed by the reasoning process. Analysis work�ows can be optimized towards
the reasoning process by aligning sets of available transformation and visualiza-
tion techniques with the mental model. Combining the structured work�ow for
insight ampli�cation discussed in this Thesis with the formslism for the spec-
i�cation of the mental model allows to continuously extend the mental model
during analysis. Since the concept graph is interpretable by machines and hu-
mans alike, this implements a mechanism for insight provenance that can also
be leveraged for the continuous adaptation and extension of the visualization
towards optimal support of reasoning during further analysis steps. Formalizing
the design process based on the qualitative visual analysis cycle allows to tailor
visualization and interaction towards anticipated interpretation and reasoning
structures. The concept graph can be applied to validate design decisions on a
theoretical base and to infer predictions about the performance of visualizations
that can serve as theoretically motivated hypotheses to be tested in user studies
when evaluating the visualization. Applying the concept graph to document
insight provenance in experimental user studies reveals hints for the adaptation
and improvement of visualization based on the di�erence between the antici-
pated and the oberserved reasoning structures. Combined with a development
work�ow based on an iterative improvement process like the ones discussed in
this Thesis, this kind of formal validation enables to prove the e�ectiveness of
design choices.

In summary, the techniques and models discussed in this Thesis enable the
formal and provable assessment of visualization performance. Being a direct
consequence of the explicit consideration of the reasoning process into the dis-
cussion of visualizations, this kind of theoretical study and evaluation of visual-
ization is not possible with the purely quantitative data-centric perspective on
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visualization being the state of the art prior to this Thesis.

5.2 Prospect

Thinking further in the direction of the existing and potential application of
qualitative visual analysis reveals some promising directions for future work.
Models and mechanisms for the embedding of data visualization into its gen-
eral context will support the abstraction of context-speci�c interpretations by
decomposing the requirements into the kinds of context they re�ect. Combined
with e�orts to formalize task-speci�c and domain-speci�c interpretation conven-
tions, explicit treatment of qualitative design aspects will provide new work�ows
extending the existing methodology for the assessment of design requirements.
For example, multi-stage work�ows could attempt to tailor a visualization design
to the domain context in an early stage and to apply �ne-tuning to capture the
analysis and user contexts later. The formal decoupling of di�erent contexts in
the formal model will allow cross-domain applications dynamically tailoring the
output to the corresponding viewers' individual backgrounds. Observing the on-
going trend to integrate data across domains in semantically heterogeneous en-
vironments, such techniques will become increasingly important. Based on these
techniques, dynamic assignment of interpretations adds qualitative features to
existing methods for analysis based on dynamic feature de�nition. Navigating
the qualitative feature space and adjusting the visual presentation accordingly
will empower domain experts to �ne-tune the visualization dynamically by inter-
acting with prototypes pre-tailored to the domain context. Making the implicit
bonds between visual encodings and their context-speci�c interpretation explicit
and studying the mechanisms underlying this connection will reveal insight into
the very process of visualization-based data analysis itself. Models determining
data interpretation with respect to the given domain will enable the characteri-
zation of visualization techniques by the kind of information they convey rather
than the data they represent. More generally, the ability to collect all informa-
tion necessary to solve a task is important for user guidance, automatic visu-
alization, and visualization propositions. Especially generic applications where
the visualization is created by the analyst rather than a visualization expert
will bene�t from endeavors in this direction. The qualitative mechanisms and
principles underlying visualization-based data analysis will also provide a new
perspective on evaluation. Insights into information emergence and provenance
will allow to re�ect on the complexity of the reasoning process and how well it
is supported by the visual representation. Endeavors in this direction will yield
insight-driven design paradigms, oriented directly towards the analysis result.

5.3 Concluding Remarks

The numbers do not lie. The numbers do not err. Yet, the numbers also do
not tell. Whatever conclusions are drawn from data analysis, at some point the
data has to be interpreted with respect to its general context. Hence, in order
to obtain knowledge or to generate decision competence by data analysis, it is
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necessary to go beyond the limited perspective of quantitative analysis operat-
ing only inside the data context and to take into account the data's surrounding
context. Analyzing data concentrating only on measurable, quantitative prop-
erties is limited by the very nature of data and the restrictions of the domain
and general context. Qualitative visual analysis overcomes those limitations by
focusing on the reasoning rather than on the data. The qualitative principles
of visual information encodings derived from qualitative visual analysis inspire
a powerful set of formal technqies to be added to the available toolset for the
design and discussion of visualization methodology, interaction, and analysis
work�ows. The major contribution of this Thesis is to be seen in the devel-
opment of a formal theoretical framework applicable throughout the whole life
cycle of a visualization application, from the tailoring of the design towards the
domain to the documentation of insight provenance by analysts working with
the visualization. By its focus on the reasoning process, rather than on the
data and features, this formalization allows to provably predict and validate the
e�ectiveness and e�ciency of visualization. Properly applied, the models and
techniques proposed in this Thesis render qualitative visual analysis a powerful
extension to purely data-related considerations towards a holistic perspective
on the design and application of visualization for data analysis.
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