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Abstract

This thesis investigates how smart sensors can quantify the process of learning. Tra-

ditionally, human beings have obtained various skills by inventing technologies.

Those who integrate technologies into daily life and enhance their capabilities are

called augmented humans. While most existing augmenting human technologies

focus on directly assisting specific skills, the objective of this thesis is to assist learn-

ing – the meta-skill to master new skills – with the aim of long-term augmentations.

Learning consists of cognitive activities such as reading, writing, and watching.

It has been considered that tracking them by motion sensors (in the same way as

the recognition of physical activities) is a challenging task because dynamic body

movements could not be observed during cognitive activities. I have solved this

problem with smart sensors monitoring eye movements and physiological signals.

I propose activity recognition methods using sensors built into eyewear com-

puters. Head movements and eye blinks measured by an infrared proximity sensor

on Google Glass could classify five activities including reading with 82 % accuracy.

Head and eye movements measured by electrooculography on JINS MEME could

classify four activities with 70 % accuracy. In a wild experiment involving seven

participants who wore JINS MEME more than two weeks, deep neural networks

could detect natural reading activities with 74 % accuracy. I demonstrate Wordome-

ter 2.0, an application to estimate the number of rear words on JINS MEME, which

was evaluated in a dataset involving five readers with 11 % error rate.

Smart sensors can recognize not only activities but also internal states during the

activities. I present an expertise recognition method using an eye tracker which per-

forms 70 % classification accuracy into three classes using one minute data of reading

a textbook, a positive correlation between interest and pupil diameter (p < 0.01), a

negative correlation between mental workload and nose temperature measured by

an infrared thermal camera (p < 0.05), an interest detection on newspaper articles,

and effective gaze and physiological features to estimate self-confidence while solv-

ing multiple choice questions and spelling tests of English vocabulary.

The quantified learning process can be utilized for feedback to each learner on

the basis of the context. I present HyperMind, an interactive intelligent digital text-

book. It can be developed on HyperMind Builder which may be employed to augment

any electronic text by multimedia aspects activated via gaze.

Applications mentioned above have already been deployed at several labora-

tories including Immersive Quantified Learning Lab (iQL-Lab) at the German Re-

search Center for Artificial Intelligence (DFKI).
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Chapter 1

Introduction

One of the roles of technology is to extend human abilities relating to different as-

pects. For instance, optical eyeglasses make it possible to see objects clearly regard-

less of their individual differences. Bicycles, automobiles, ships, and airplanes en-

able people to travel far away quickly. Computers support cognitive tasks including

memory and calculation. The general motivation underlying my research is to in-

vent such technologies that augment the abilities of human beings and make our

daily lives comfortable.

Researchers in the field called Augmented Human have demonstrated that hu-

man beings and technologies perform better when they collaborate rather than when

working individually [52]. However, there are still several scenarios in which tech-

nologies are of no help to people (e.g., for social activities, tasks requiring special

attention, and those outside of radio waves or batteries). The reality is that the more

people depend on technologies, the more their original performances may deterio-

rate over time [56]. This thesis concerns this problem and solves it by proposing a

concept of Meta-Augmented Human. Compared to the general augmented human, it

aims to amplify the ability of the human, not only temporarily, while using external

devices, but permanently even if when there are not any direct supports.

This chapter presents the basic concepts of Meta-Augmented Human and intro-

duces a summary of the research problems/contributions addressed in the thesis.
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1.1 Basic Concepts

Creating and using a tool is not a limited ability for human beings. Many animals

know that it is possible to augment their abilities with tools. For instance, sea otters

break shellfish with stones. Chimpanzees hunt ants by stirring a twig in a nest.

Green herons drop leaves into a pond to catch fish by making them believe the leaves

are food. Then, how does the use of tools differ in human begins and animals? The

answer is meta-creation, the ability to create more complex and advanced tools by

combining existing tools [168]. As Arthur C. Clarke said in his book [34], “The old

idea that Man invented tools is therefore a misleading half-truth; it would be more

accurate to say that tools invented Man”. Human beings have invented several tools

and gradually developed their abilities.

For physical examples, ancient human beings learned how to use tools from lithic

reduction. The inventions of automobiles, ships, airplanes, and spacecraft made it

possible to connect widely distant places. For moving with perfect freedom, recent

researchers have proposed an artificial arm that traces the movement of a leg [154]

and a wearable flying device [169].

Tools have also contributed to improving human cognitive abilities. It is not too

much to say that the character is one of the greatest inventions. By using characters,

human beings have obtained deep insights. Characters have also enabled them to

communicate with each other beyond time and place. Typographical printing con-

tributes to spreading knowledge widely. By using computers and network technolo-

gies, we can access the latest news all over the world. Computers also play an impor-

tant role as a delegation of cognitive tasks [25]. Much of the office work that human

beings have done so far can be performed by computers faster and more accurately.

Artificial intelligence using deep learning techniques in recent years has been out-

performing human performances even in recognition and learning tasks [160].

1.1.1 Influences of the Augmentations to Human Minds

Andy Clark insists that we are already Natural-Born Cyborgs even if we do not embed

any mechanical parts in our bodies [33]. We have obscured the boundary between

our own bodies and tools by delegating confidence in abilities to instruments such as

paper and pen. When we suddenly lose the tools, the ability fails as though we lost

a part of our body. Due to the invention of various cognitive assistants, this trend

is accelerating year by year. As a result of these dependencies, we are gradually

losing abilities including memorization, mental map-making, and so on. Nicholas

Carr summarized such examples of degeneration as Glass Cage [56]. Hundreds of

notifications on smartphones have decreased the ability to concentrate. According
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to recent surveys, it takes 20 minutes to recover the concentration aborted by a notifi-

cation, and 28 % of office hours are used for browsing social media. In order to avoid

such problems, Apple and Google have released a function to track the usage time

of applications and limit the use as a new function on their latest operating systems.

On the other hand, tools may influence us in a positive way. According to Maryanne

Wolf, we do not have specific parts of the brain that correspond to reading when we

are born, but we obtain these advanced abilities by combining multiple functions in

the brain through reading [187].

1.1.2 Meta-Augmented Human: Augmented Reading and Learning

On the basis of the positive and negative influences mentioned above, I believe that

researchers should not only develop technologies which make our lives more conve-

nient, but also investigate the impact of these technologies on our bodies and minds.

Then, what kind of assistance leads us in a good direction, for instance? Through

my doctoral study, I have come up with an idea that assistance systems improving

reading habits and learning experiences could have a great potential and usefulness

in the daily life.

A good habit makes humans healthier and smarter. It contributes to accurate

decision-making and high productivity. Therefore, there are many applications and

services that motivate people to stay physically fit. However, the approaches relating

to cognitive activities have been investigated/implemented to a lower extent com-

pared to physical activities. Since the relationship between cognitive benefits (e.g.,

vocabulary, academic scores, critical thinking) and reading habits, especially the in-

creased reading volumes, has been well-explored [71, 137, 143], I focus on reading

activity and propose a system that encourages people to read more. I believe that

quantifying daily reading activities and giving feedback to people improve their

cognitive habits and make them more intelligent.

Learning – the act of acquiring new knowledge, skills, abilities, and expertise

– is one of the vital behaviors of human beings. In particular, people in the mod-

ern world are always required to learn new situational skills. The reason is that

advances in technology are constantly changing their lifestyles and the ways they

work. However, technology does not only require an acquisition of new skills; it can

also provide an assistance by acquisition of these skills [43]. I propose an intelligent

learning assistant that recognizes learners’ behaviors and affective states according

to several sensors and offers individual support for each learner.

Reading and learning are skills to master new skills, i.e., meta-skills. I believe

that assisting them can augment in the long-term or permanently. Compared to the

existing Augmented Human System, which extends abilities only when worn on
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the body, I define technologies assisting meta-skills as Meta-Augmented Human. One

of the critical requirements towards the Meta-Augmented Human System in both

reading and learning is recognition of behaviors by using sensors enough affordable

to be worn at everywhere and everyday. I define such sensors as smart sensors and

present several approaches and evaluations discussed in the next section.

1.2 Research Questions

I propose a research hypothesis: “Meta-skills can be quantified by smart sensors.”

Understanding human behavior is an especially important issue for which to de-

velop systems supporting humans. It resembles the problem of grasping the hidden

bottom shape of an iceberg. I propose the Iceberg Model of Activity Recognition (see

Figure 1.1) and address following three research problems to claim my hypothesis.

FIGURE 1.1: Iceberg Model of Activity Recognition

How can smart sensors quantify reading activities in daily life? This problem

is similar to when part of an iceberg is under the water and is invisible. To un-

derstand the shape, an underwater camera is required. As such, researchers have

utilized advanced sensors to recognize cognitive activities. However, advanced sen-

sors sometimes prevent users’ natural behaviors and cannot be used in the wild.

One of the problems addressed in this thesis is to investigate whether it is possible

to quantify reading activities with sensors designed for everyday use.

How can smart sensors quantify affective states of learners? Affective states

involving attention, interest, self-confidence, and cognitive load play important roles

in the process of learning, and they are more difficult to recognize than activities.
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This thesis proposes several affective state recognition methods through sensors that

can be utilized in a classroom geared toward intelligent learning assistants.

How can a system augment reading/learning experiences? The last problem

is about interventions. If we change documents dynamically/statically while read-

ing, how will reading behaviors be influenced? By designing an intelligent digital

textbook that displays contents dynamically for each reader, this thesis presents ob-

servations on reading behaviors of several conditions.

1.3 Contributions

In summary, contributions of this thesis include:

• An overview of state-of-the-art activity recognition and intervention

• Methods to recognize daily activities by using eyewear computers

• An application which quantifies reading to improve our cognitive abilities

• Methods to recognize learners’ affective states using various sensors

• Development of an intelligent digital textbook and its ecosystem

Applications proposed in this thesis are deployed in several laboratories includ-

ing Immersive Quantified Learning Lab (iQL-Lab) at the German Research Center

for Artificial Intelligence (DFKI), Smart Sensor Room at Osaka Prefecture Univer-

sity (OPU), Ubiquitous Computing Systems Laboratory (UBI-Lab) at Nara Institute

of Science and Technology (NAIST), StudySapuri Lab at Recruit Marketing Partners

Co., Ltd., and THINK FUTURE English Academy in Risshikan Seminar Co., Ltd.

1.4 Outline of Thesis Chapters

Chapter 2 presents an overview of existing sensing methodologies, activity recog-

nition, and interventions. Chapter 3 reports recognition of cognitive activities in-

cluding reading in wearable devices which are designed for everyday use. Wor-

dometer 2.0, a prototype of a reading tracker, is also demonstrated in this chapter.

Chapter 4 presents quantified learning systems, which measure affective states of

learners using several sensors. An eye tracker, an infrared thermal camera, and a

physiological sensing wristband are utilized to recognize comprehension, interest,

mental workload, and self-confidence. Chapter 5 presents HyperMind, an intelligent

digital textbook, and the evaluation and a building tool. A negative influence of

reading on digital media is also discussed in this chapter. Finally, Chapter 6 summa-

rizes conclusions and future work.
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Chapter 2

Background and Related Work

Since Douglas Carl Engelbart proposed the framework of Augmenting Human Intel-

lect [52] and Mark Weiser created the terms Ubiquitous Computing [182] and Calm

Technologies [183], many researchers have investigated the recognition of human ac-

tivities by using several sensors for giving proactive assistance.

This chapter presents a literature survey about what types of sensors are utilized

to recognize what types of activities and affective states. The survey starts from an

overview of Activity Recognition research (Section 2.1). Then, details of eye track-

ing (Section 2.2) and physiological sensing (Section 2.3) are presented in separate

sections because they are potential approaches that do not prevent activities of a

user. Finally, Section 2.4 summarizes the applications.
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2.1 Overview

The starting point of the research field of Activity Recognition was to recognize what

a user is doing. As summarized in the survey by Lara and Labrador [115], several

physical activities (e.g., walking, running, cycling, sleeping) can be recognized by

motion sensors on the body [11, 26, 59, 184] or a smartphone [44]. On the other

hand, recognition of cognitive activities (e.g., reading, writing, talking) is consider-

ably restricted to the extent of the body movements. Frequently, cognitive activities

occur without or with minimal bodily activity. In this case, additional sensors are

required to recognize the activities that are taking place. One of the interesting ap-

proaches for solving this is to use eye movements. Eyewear computers hang in the

balance between pervasiveness and potential [5]. For instance, Bulling et al. clas-

sified tasks including cognitive activities by using electrooculography sensors [21].

Shiga et al. recognized daily activities by mobile eye tracking glasses [159]. Biedert

et al. presented a robust differentiation between reading and skimming [16].

The more sensors developed, the more researchers became interested in recog-

nizing the context of human activities (i.e., when, where, by whom, and why the activity

is performed). For example, first-person vision is utilized in the context recognition.

Through an egocentric camera attached to the head or the body, activities and the

contexts can be estimated from objects in front of the person [121]. The recognition

of social interactions is also a key factor in understanding the context of talking ac-

tivities [54]. Instead of the on-body sensors mentioned above, remote sensors (e.g.,

fixed cameras [45], microphones [163]) have also been employed to recognize con-

texts because they can record the interactions between humans and the environment.

The most abstract subject of recognition is how the activity is performed. An

obvious approach to get inside how cognitive activities are performed is to use sen-

sors that provide spatial or temporal resolutions of the brain activities. Magnetic

resonance imaging (MRI) [37], electroencephalography (EEG) [62] and near-infrared

spectroscopy (NIRS) [88] can be candidates, if we can accept the limitation of the

recording environment. These limitations can be partly solved by an inclusion of

physiological sensing. For instance, the autonomic nervous system (ANS) provides

a good insight into the hidden mental processes [153]. Some of affective states (e.g.,

concentrations, mental workload, boredom) can be measured by changes in pupil

diameter [100], nose temperature [1, 112], and Electrodermal activity (EDA) [19].

One of the critical issues in this research field is how to conduct experiments in

natural settings for proposing robust methods. One major problem is the lack of un-

obtrusive technology to make long-term tracking possible. There are some datasets

contributed by computer vision researchers working on egocentric vision, which are

mostly camera recordings [40, 63]. Few datasets include eye gaze data [165].
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2.2 Eye Tracking

Since readers use their eyes to understand text, measuring eye movements is a

promising approach to understanding readers’ behavior. Figure 2.1 shows an exam-

ple of eye movements on text. Experiments conducted during the 19th century re-

vealed that eye movements while reading are not always smooth but a series of rapid

movements (saccade) and short stops (fixation) [181]. Small movements in a fixation

(drift/tremor and micro-saccade) were observed by precise eye tracking methodolo-

gies in the 20th century. A micro-saccade is an involuntarily movement to keep vi-

sion stable during a fixation [122] and reflect attention [69]. Around 10 % of saccades

while reading are moving in a direction opposite to the direction of reading (called

as regression or re-reading) in order to understand the content of the text [104]. A

blink – semi-autonomic rapid closing of the eyelid – has several strengths and fre-

quencies depending on the activity, tiredness, and concentration [192]. In addition,

a smooth pursuit occurs when a person tracks a moving object with a slow speed.

However, this metric has not been considered in reading behavior analysis because

most of the documents have static layouts.

FIGURE 2.1: Eye movements on text

2.2.1 Eye Tracking Methodologies

Several eye tracking methodologies have been proposed for several purposes (see

Figure 2.2). This subsection explains the characteristics from the left to the right.

The search coil eye tracker requires a user to wear a contact lens with an elec-

tromagnetic coil, and the orientation of the eye boll is calculated by electrodynam-

ics [147]. An advantage of this methodology is that it can measure highly precise

movements. Although it has a long history, it has not been used in modern experi-

ments because of the high demand for participants and experimenters. However, it

is in the spotlight again with an appearance in virtual reality headsets [186].
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FIGURE 2.2: Eye tracking methodologies

The electrooculography (EOG) uses electrodes attached around an eye and mea-

sures voltages on the skin. It measures the corneo-retinal standing potential that

exists between the front and the back of an eyeball. Traditional setups required four

electrodes around an eye to recognize vertical and horizontal eye movements [22].

But recent sensing devices have revealed that signals from three electrodes on each

nose pad and the forehead are enough for reading analysis [89, 90]

The corneal reflection eye tracker uses a light source to illuminate the eye, caus-

ing highly visible reflections, and a camera to capture an image of the eye, showing

these reflections. It is integrated in mobile eyeglasses with a first-person perspective

camera, and it projects the eye gaze of a user to the scene image. This metrology is

used in several experiments because of its versatility and usability [139].

The remote (stationary) eye tracker that is attached to a display is a good option

by which to analyze reading behaviors. The technical background of remote eye

tracking is the same as the corneal reflection on glasses. However, it is attached to a

display so that the researcher does not need to project eye gaze to a document (eye

gaze is measured with a coordinate on a screen). Some vendors produce several re-

mote eye trackers from 60 Hz to 2,000 Hz, depending on their purpose, which ranges

from gaming to research.

The software-based (camera-based) eye tracking, i.e., estimating eye gaze with-

out such specific hardware, is a challenging and hot topic in computer vision re-

search. Researchers estimated the gaze on a mobile tablet by using a regression

model [91], appearances of eyes [166, 194], and convolution of the neural network

(CNN) with a crowdsourced dataset [106] or synthesized eye images [167, 195].
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2.2.2 Eye Tracking while Reading

The relationship between cognitive tasks and eye movements have been well known

in the field of cognitive science and psychology [161]. For example, Kliegl et al.

explored eye movements in relation to cognitive tasks [104]. There are interesting

findings in this line of research, including assessing expertise and other cognitive

tasks using fixation features [32]. Rudmann et al. presented an extensive review of

affective state detection using visual behavior [149].

Saccade speed and length with other measures achieved high accuracy in mea-

suring human performance. On the other hand, Manuel et al. suggested a decrease in

saccade speed indicated tiredness and an increase in the same indicated task com-

plexity [12]. According to Rudmann et al., the direction of saccades indicates re-

peated interest in an area and the importance of the area of interest in the current

activity [149].

Fixation duration and fixation rate are indicators of an increase in attention on the

current task [31]. They delved into the relevance of saccades in interpreting human

mental effort in solving a task. They also found that an increase in blink interval and

a decrease in blink rate indicated high mental effort and that studying the diameter

of the pupil helps to realize the task difficulty and the cognitive effort.

The pattern of blinks is also one of the important features in recognizing ac-

tivities. Bentivoglio et al. studied the relation between sitting activities and blink

rates [13]. They described that the blink rate changes when participants are reading,

talking, and resting. Acosta et al. presented the case that working with computers

causes a reduction of blinks [3]. Haak et al. described that emotion, especially stress,

affects blink frequency [68]. Orchard et al. also assessed the mental workload during

reading by analyzing blinking patterns [136].

2.2.3 Eye Tracking while Learning

The behavior of a student who does not understand the contents of a document is

characterized by low reading speed and frequent regressions [144]. Thai et al. proved

that comprehension of a question by a student appears in his/her eye movement, for

example, in the case of regressions of a question [175]. Okoso et al. investigated the

relation between gaze patterns on difficult words [61] or difficult parts [135] of a

document and comprehension.

Chen et al. collected students’ responses to computer-based physics concept ques-

tions that were presented as either pictures or text. They guaranteed that students’

eye movement behavior can predict computer-based assessment performance [30].

Martínez-Gómez et al. presented a formal framework to recognize the reader’s level

of understanding and language skill and gave measurements of reading behavior
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via eye gaze data [123]. Oliver et al. estimated the English skill of non-native En-

glish speakers from his/her eye behaviors in English test [8]. Klein et al. studied

students’ understanding and cognitive processing while they are solving multiple

representation problems [102]. Daniel et al. recorded eye movements of students

studying e-learning to investigate specific gaze patterns for predicting their concen-

tration [41].

Moreover, about the relation between the behavior of eyes and self-confidence,

it has been proved that low self-confidence is characterized by a frequent regres-

sions of questions and long gaze on choices [105]. Yamada et al. estimated whether

students answered confidently or not on multiple-choice questions [188].

2.3 Physiological Sensing

Another interesting approach to understand affective states is physiological sens-

ing. Especially, the autonomic nervous system (ANS) controls smooth muscle and

glads and its activity is largely unconsciously [153] and can be observed as several

reactions including the heart rate, digestion, respiratory rate, pupillary response,

urination, and sexual arousal (see Figure 2.3). This section focuses on some of the

reactions that can be measured by sensors without affecting a user’s behavior.

2.3.1 Pupil diameter

When the sympathetic nervous system is more active than the parasympathetic ner-

vous system (e.g., when a person experiences a high workload), the diameter of

the pupils increases. It can be measured with an eye tracker or a camera facing a

user. Kucewicz et al. investigated a relationship between pupil diameter and mem-

ory [107]. In their experiment, they asked participants to memorize words displayed

on a screen and found that pupil diameter was significantly larger while successfully

recalled words were displayed than in other situations. Porta et al. observed that a

decrease in pupil diameter at the end of the task indicated tiredness [141].

2.3.2 Nose Temperature

When the sympathetic nervous system is more active than the parasympathetic ner-

vous system, blood vessels constrict and the temperature of the nose drops. It can

be measured by an infrared thermal camera [86]. Abdelrahman et al. recorded tem-

peratures of the nose and the forehead under different task difficulties and found

significant changes [1]. The temperature can also be recorded by a small thermome-

ter module attached to the nose. Yasufuku et al. developed glasses involving the

module in order to detect stresses in daily life [190]. Kunze et al. measured the nose
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FIGURE 2.3: Autonomic nervous system. Image credit: [153]

temperature and classified engagements while reading into two classes (feeling in-

teresting or boring) by combining it with eye blinks [112].

2.3.3 Electrodermal activity (EDA)

Electrodermal activity (EDA), also known as galvanic skin response (GSR), electro-

dermal response (EDR) and psychogalvanic reflex (PGR), is an electrical conduc-

tance of the skin and a sensitive physiological index of changes in ANS. It can be

measured by electrodes on an arm or fingers (see Figure 2.4). Figure 2.5 shows an

example of the sensor signal recorded while reading. EDA can be decomposed into

two signals: the tonic component and the phasic component [38, 65, 67].

The tonic component, known as skin conductance level (SCL), refers to the base-

line skin conductance level and spontaneous fluctuations in the component. Lazarus

et al. showed that the SCL and the heart rate increased significantly during the pre-

sentation of violent films [116]. Nomikos et al. showed that even the expectation of

an unpleasant event could cause a similar reaction in SCL as the event itself [133].

Multiple studies investigating the effect of the anticipation of electrical stimulation

conversely assume that the rising of the SCL reflects an increased cognitive activity

related to the avoidance of aversive events rather than an emotional component.
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(A) Electrodes on an arm (B) Electrodes on fingers

FIGURE 2.4: Experimental settings recording EDA

FIGURE 2.5: Decomposition of a raw EDA signal

The phasic component, also known as skin conductance response (SCR), is a high

frequency phasic component reflecting the short-time response to the stimulus. The

frequency of the non-specific SCRs reveals the emotional component of the stress

reaction. Further studies used experimental settings that were closer to a real-life

office environment than simple electrical stimuli. Several authors investigated how

involuntary interruptions in the workflow due to long-system response times influ-

enced the EDA. An increase of non-specific SCRs for long-system response times

could be demonstrated. Jacobs et al. also showed that an increase in skin conductiv-

ity correlated with level of the mental stress [97]

Implicit emotional responses that may occur unconsciously (e.g., threat, anticipa-

tion, salience, novelty) can be examined using EDA. Setz et al. showed that the EDA

peak height and the instantaneous peak rate depict the person’s stress level [158].

Boucsein provides an extensive summary of EDA research in relation to stress [19].

He showed that the SCL and the non-specific SCRs are sensitive, valid indicators

of stress, whereas other physiological measures (e.g., heart rate) do not show equal

sensitivity [51].
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2.3.4 Blood Volume Pulse (BVP)

Blood volume pulse (BVP) is the change in volume of blood over a given period of

time. Certain emotions can trigger the release of hormones such as epinephrine and

norepinephrine, which will increase blood flow to bring more oxygen to the muscles.

BVP can be monitored using photoplethysmography (PPG), which is a non-invasive

technique that relies on light absorption and reflection. The signals detected form

a wave that represents the change in blood volume relative to heart rate. Adjacent

local peaks in the wave indicate heartbeats, and the time interval between these

peaks is the inter-beat interval (IBI). Heart rate variability (HRV), IBI, and the raw

signal of BVP have been associated with frustration and anxiety [113].

The E4 wristband1 has often been used in recent studies because both EDA and

PPG sensors are integrated. In the context of reading behavior analysis, Matsubara

et al. recognized emotional arousal while reading a comic [126], and Sanches et al.

classified the categories (comedy, romance, or horror) [152].

2.4 Intervention and Applications

Researchers in Human-Computer Interaction (HCI) have proposed applications to

change the behavior of a user based on the activities recognized by sensors.

The initial interactive eye tracking application in reading was implemented for

entertainment [17] and the real-time usage in education has not been considered ex-

plicitly for long. The first gaze-oriented application focusing on educational aspect

was iDict by Hyrskykari et al. [79]. It provides translations for comprehension prob-

lems detected in the reader’s gaze patterns. Then Biedert et al. introduced an appli-

cation for assisted and augmented reading called the eyeBook [14]. The idea behind

the eyeBook is to create an interactive and entertaining reading experience which

helps the reader to understand the text better. Biedert et al. created a framework to

construct gaze-responsive real-time interactions to enhance the reading experience

(e.g., displaying images, translations, footnote, and bookmarks) as Text 2.0 [15].

Eye gaze has also been used in adaptive scrolling algorithms [108], for example,

for continuous reading of newspaper articles in large public displays by Lander et

al [114]. They used head-mounted eye trackers in a multi-user scenario to study

the effect of this approach on the user’s reading speed. Lee et al. proposed building

a virtual tutor to support a student’s learning [117]. This work proved that eye

communications with a virtual tutor enhance the efficiency of learning.

Reading experiences are getting more and more interactive. For instance, Yannier

et al. proposed haptic feedback to enhance reading experiences [189]. Gaze-oriented

1https://www.empatica.com/en-int/research/e4/
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interventions have also a high potential in the virtual reality [27, 49]. But it is re-

quired to design and adapt reading experiences for this new environment again.

According to an experiment by Dingler et al., a majority of participants preferred

white text on a black background as opposed to black text on a white background in

the virtual reality [46].

The visual attention measured by eye gaze is useful to select which information

should be shown to a user. Toyama et al. proposed Attention-Aware Systems includ-

ing a gaze guided object recognition using a head-mounted eye tracker [174], an

augmented reality reading assistant combining document retrieval and eye track-

ing [172], and a gaze-oriented personal assistant for museums and exhibits [173].

Presenting information to users changes their behavior not only voluntary but

also involuntary. Futami et al. proposed Success Imprinter presenting a stimulus a

reminding success using psychological conditioned information improves the men-

tal performance [60]. Researchers in their group also demonstrated that if a system

displays a false heart rate lower than an actual value, a user believes the value and

it starts decreasing.
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Chapter 3

Cognitive Activity Recognition

This chapter presents work towards a cognitive activity tracker aiming for making

people smarter by motivating them to read more in their daily lives. The cognitive

benefits of reading (e.g., better vocabulary skills) and the benefits of increased read-

ing volumes, are well explored in the fields of education and cognitive science [39].

As people can be physically fit by monitoring step counts [128], tracking the volume

of reading can be a starting point to improve their reading habits. Following three

steps are required to realize such an application.

The first step is a classification. Classifying reading from other daily activities

is challenging compared to classifying walking because reading does not always re-

quire a lot of body movements. In order to solve this problem, Section 3.1 proposes

a blink detection algorithm using an infrared proximity sensor equipped on Google

Glass and an activity recognition method with features from eye blinks and head

motions [93]. Section 3.2 proposes an activity recognition method on JINS MEME:

commercial electrooculography glasses. JINS MEME is light, visually familiar, rela-

tively inexpensive compared to other wearable devices, and has a sufficient battery

for all-day use [89, 90].

The second step is a reading detection in the wild environment. There is a strong

gap between controlled reading designed carefully in the laboratory and natural read-

ing without any limitations in the wild. Section 3.3 reports results of an experiment

in the wild asking participants to wear JINS MEME more than two weeks (seven

participants, 880 hours recording in total) to investigate the difficulty. This section

proposes deep learning based approaches using the large scale dataset [85].

The last step is an estimation of the number of read words. Section 3.4 demon-

strates word count estimation algorithm using JINS MEME [83, 87].

In addition, Section 3.5 demonstrates a quick labeling interface on Google Glass

to correct ground truth labels of activities in the wild experiment as a late-breaking

work toward large scale recording [94].
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3.1 Eye Blink Based Activity Recognition on Google Glass

This section proposes a method to recognize cognitive activities by using Google

Glass. While it is well known that eye movement is correlated with user activi-

ties [23], the aim of this section is to show that (1) eye blink frequency data from

an unobtrusive, commercial platform which is not a dedicated eye tracker is good

enough to be useful and (2) adding head motion patterns improves the recognition.

We adopt Google Glass for the first step to recognize cognitive activities. It has

four sensors that could potentially be used: a camera, a microphone, an inertial mea-

surement unit (IMU), and an infrared proximity sensor facing towards the users’ eye

as shown in Figure 3.1 (a), which can be used for blink detection. This section focus

on the latter two (IMU and blink detection), which we argue to be most characteristic

to the Google Glass platform.

There is also a lot of existing work on head mounted cameras [80]. However, one

problem with computer vision approach is that it requires a lot of processing and

thus might be impractical due to battery constraints. The motion sensors and the

proximity sensor seem to be the most promising modalities. Especially, combining

eye blink frequency and head motion patterns for daily activity recognition has so

far not been studied in much detail.

Regarding a blink detection, Chau et al. applied an image processing [29] and

Bulling et al. proposed eye tracking approaches [21, 23]. However, the situations

of these existing blink detectors are limited. We focus on another approach which

doesn’t distract the user by bulky hardware. As far as we know, we are the first

to use a simple proximity sensor embedded in a commercial wearable computing

system for activity recognition and to combine it with head motion patterns.

(A) Device overview (B) Glass Logger

FIGURE 3.1: Infrared proximity sensor built into Google Glass



3.1. Eye Blink Based Activity Recognition on Google Glass 19

3.1.1 Approach

Figure 3.2 shows the overview of the proposed method. Our blink frequency based

activity recognition is based on two stages. The first stage is the pre-processing blink

detection which extracts the time stamps of blinks. Secondly, the main part of our

algorithm calculates features based on the detected blinks.

Note that Google Glass doesn’t have an official application programming inter-

face (API) to provide the raw data of infrared proximity sensor. We obtain a root-

permission of Google Glass on the basis of Glass hacking tutorial1 and implement

our own logging application2 shown in Figure 3.1 (b) for the data recording.

FIGURE 3.2: The overview of proposed activity recognition method

1https://developers.google.com/events/io/sessions/332704837
2https://github.com/shoya140/GlassLogger
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Blink detection

Blinks are detected based on the raw infrared proximity sensor signal. A sliding

window is moved on the sensor data stream and monitors whether the center point

of each window is a peak or not by following definition. The distance from one

sensor value of the center point in the window (p5 in Figure 3.3) to the average value

of other points (p1, p2, p3, p7, p8 and p9) is calculated. The preceding and subsequent

points of the center (p4 and p6) are excluded from the average calculation because

their sensor values are often affected by the center point. If the distance is larger

than a threshold, the center point is a peak. Peaks in one second are combined and

defined as a blink because one blink sometimes contains some peaks.

FIGURE 3.3: Blink detection based on the peak calculation

As the shape of the face and eye location vary, the best threshold for the peak de-

tection varies for each user. Figure 3.4 with the same scale for each sub-graphic also

demonstrates different signal variations for different users. The best threshold (in 0.1

steps ranging from 3.0 to 7.0) is calculated by evaluating the accuracy based on the

ground truth information. This approach can be applied only in off-line evaluation.

In on-line usage, the blink detecting application needs a few seconds for calibration

before detection. During the calibration term, Google Glass urges the user to blink

as matching some timing. The application gets sensor values and actual blink timing

from calibration and evaluate the best threshold.

Blink Frequency Based Activity Recognition

As an output of the blink detection, timestamps of blinks are extracted. To recognize

activities, a three-dimensional feature vector is computed by the timestamps. One

is the mean blink frequency which describes the number of blinks during a period

divided by the length of a period. Two other features are based on the distribution of

blinks. Graphically, this can be understood as the histogram of the blink frequency.

Figure 3.5 shows a histogram with a period of 60 seconds. The x-axis describes the

mean blink frequency (0.0 - 1.0 Hz) and the y-axis describes the blink counts of each
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FIGURE 3.4: Proximity sensor values and ground truth of two participants.

frequency. The number of specified bins per histogram is 20 having a resolution of

0.05 Hz. The frequency value is calculated as inverse value of the interval between

two blinks. The second and third features are defined as the x-center of mass and

the y-center of mass of the histogram.

FIGURE 3.5: A histogram of blink frequencies during a period.

Head Motion Based Activity Recognition

The user’s head motion pattern varies for different activities. A feature from head

motion pattern is based on the degree of the head movement. It is computed as the

averaged variance of the three-dimensional accelerometer sensor signals. Figure 3.6

shows the calculation process. Accelerometer sensor signals of three-dimension (x,

y and z) in a period are recorded and each variance is calculated. The average value

of three variances is computed and used as a feature.
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FIGURE 3.6: Calculation process of a feature from head motion

Combination of Blink Frequency and Head Motion

The advantage to use Google Glass is that we can easily get and combine several

sensor signals for our activity recognition task. In the approach combining blink

patterns and head motion we use the following four features: variance value of ac-

celerometer, the mean value of blink frequency and the x-center and y-center of mass

value of blink frequency histogram. We combine these features and compare the im-

pact on activity recognition accuracy.

3.1.2 Experimental Design

We evaluated three different classification methods (using only eye blink frequency,

using only head motion patterns and using all features from eye blink and head

motion) on a data set containing five class activities and compared them.

We recruited eight participants to perform five activities each lasting five minutes

while wearing the Google Glass. All of the participants were male. Five of them had

unaided vision and three (participants 2, 3, and 4) were using contact lenses. The

activities were defined as watching a movie on a Laptop, reading a book on an ebook

reader, solving mathematical problems on paper (entrance examination for graduate

school), sawing cardboard and talking with another person. Solving was intended

as an example of mental tasks and sawing was selected as a physical task. The

location and light condition was fixed for all experiment participants. The display

of Google Glass was always turned off and did not attract the participant’s attention

during the experiment. We collected values of the infrared proximity sensor and

the accelerometer. Each activity was recorded separately because activity spotting

and segmentation is not yet implemented. Feature extraction and classification were

applied to the data containing a single activity.
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We also recorded the video of experimental scenes. Figure 3.7 shows the overviews

of five different users performing five different activities. After the experiments, one

person labeled all blinks by using the videos.

At the recognition part a sliding window was moved and each data in the win-

dow are classified. The window size was defined as 60 seconds with a step size of

10 seconds. The window size should be longer than max interval in dataset. The

longest blink interval through all participants was 50 seconds (see Table 3.1 for de-

tails). We trained a user dependent J48 decision tree classifier which is implemented

on Weka3 and evaluated the classification accuracy by confusion matrices based on

10-fold cross validation.

TABLE 3.1: Dataset overview from ground truth

Experiment Participants

1 2 3 4 5 6 7 8 Avg.

Total blink counts 230 161 420 313 381 309 207 414 304

Min frequency (Hz) 0.02 0.02 0.03 0.06 0.02 0.04 0.02 0.02 0.03

Max frequency (Hz) 0.96 0.96 0.99 0.99 0.99 0.98 0.99 0.99 0.98

3.1.3 Results and Discussion

Blink Detection

Figure 3.8 shows one participant’s five different histograms based on the blink fre-

quency distribution during five minutes for each activity. We evaluated the blink

detection according to actual blink timestamps from ground truth videos. The aver-

age precision was 80 % with 78 % recall (see Table 3.2 for details). Each participant’s

blink detection results are based on the average value of five activities.

TABLE 3.2: Pre-processing blink detection results

Experiment Participants

1 2 3 4 5 6 7 8 Avg.

Precision (%) 92 48 76 98 87 80 71 86 80

Recall (%) 64 71 72 98 89 86 72 74 78

Activity Classification

Solely based on blink frequency features and an experimental complexity of eight

participants and five activity classes we achieved an average classification accuracy

3http://www.cs.waikato.ac.nz/ml/weka/
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FIGURE 3.7: Video-based ground truth image excerpts of the experiment scenes
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FIGURE 3.8: One participant’s blink frequency histograms during five minutes recording.
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of 67 % (see Table 3.3 for an overview of all participants) individually ranging from

52 % to 82 %. Solely motion feature based recognition underperformed with 63 %

classification accuracy. When we combine the blink frequency based features with

the motion based feature we achieve an average classification accuracy of 82 % (in-

creased by 15 % compared to blink frequency based recognition). Figure 3.9 shows

the individual confusion matrix results of eight experiment participants. These con-

fusion matrices show correctly classified instances on the diagonal and wrongly clas-

sified instances in other areas.

The training duration per class and per person was only five minutes long. In

future the input of the correct activity might be given during daily usage of Google

Glass learning constantly from the user’s activities and improving the classification

constantly. We evaluated ten minutes of recordings of six participants (1, 4, 5, 6, 7

and 8) again. The classification based on blink frequency improved by 7 % an in

combination with the motion feature improved by 9 % compared to the five minute

long recording.

TABLE 3.3: Activity classification results

Experiment Participants

1 2 3 4 5 6 7 8 Avg.

Blink frequency based classification (%) 70 52 82 76 70 54 69 64 67

Head motion based classification (%) 75 56 66 83 57 56 58 50 63

Combination based classification (%) 92 81 87 91 82 74 74 74 82

FIGURE 3.9: Confusion matrices of all participants.
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Feature Visualization

Figure 3.10 represents all participant’s feature plot. Talking and watching is easily

distinguished by other activities. But it is difficult to classify sawing, reading and

solving by only blink patterns. Head motion feature helps to distinguish especially

those classes. Conversely, reading and watching can not be distinguished easily only

by head motion. The dispersion of head motion during solving is larger than other

activities because solving contains 2 statuses, concentrating to write the answer and

looking at the assignment on another paper.

3.1.4 Conclusion

This section proposed a method to recognize high-level activities by using eye blink

frequency and head motion patterns delivered from Google Glass. The method was

evaluated on a data set containing five activities (reading, watching, solving, saw-

ing, talking) of eight participants showing 67 % recognition accuracy for eye blink

only and 82 % when extended with head motion patterns. We have shown how

the infrared proximity sensor from the standard Google Glass can be used to acquire

user’s eye blink statistics and how such statistics can be combined with head motion

pattern information for the recognition of high-level activities.
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FIGURE 3.10: Feature representation of eight participants and five different activity classes.
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3.2 EOG Based Activity Recognition on JINS MEME

Research and industry get more and more interested in Eyewear Computing, from

Google Glass, over Epson Moverio, the Oculus Rift to the Sony Smart Glasses. How-

ever, most of these designs still look a bit clunky and emphasize displays (aug-

mented or virtual reality), not the sensing aspect. This section focuses on a device

which is really designed for everyday use and can be used for daily activity tracking.

We define a smart eyewear as a device which doesn’t require much load to a user

and has an enough long-life battery for all day use (see Figure 3.11). While high spec

head-mounted wearable devices are suitable for specific scenarios such as entertain-

ment, industrial, educational and medical field [131, 185], smart eyewears are better

for tracking daily activities.

The aim of this section is to investigate the potential of smart eyewear. We show

the feasibility of JINS MEME commercial electrooculography (EOG) glasses to de-

tect simple eye movements and apply them to activity recognition involving read-

ing. Contributions of this section are two-fold: (1) motivating that smart eyewear

is interesting for ubiquitous computing applications, as it enables to track activities

that are hard to observe otherwise, especially in regard to cognitive tasks and (2)

evaluating specific smart glass, a prototype of JINS MEME for their use for activity

recognition tasks. We show a signal level evaluation and simple classification task

of four activities (two participants five minutes per activity). Both indicate that the

device can be used for more complex scenarios.

FIGURE 3.11: Definition of a smart eyewear in this thesis.
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3.2.1 Approach

Figure 3.12 (a) shows the overview of JINS MEME. It is unobtrusive and looks close

to normal glasses. It is equipped with 3 electrodes to detect eye movements and in-

ertial measurement unit (IMU), as well as a Bluetooth Low Energy module to stream

the data to a computer or smartphone. The electrodes sample data with 100 Hz, the

motion sensor with over 50 Hz. It has a long-life battery which runs over 16 hours.

As shown in Figure 3.12 (b), one ground electrode (B in the figure) and two active

electrodes (R and L in the figure) are equipped on JINS MEME. The EOG vertical

component is calculated as the difference between B and an average of L and R, and

the horizontal component is calculated as the difference between L and R.

(A) Overview of the hardware (B) Three electrodes measring eye movements

FIGURE 3.12: JINS MEME

(A) MEMELogger for macOS (B) MEMELogger for Android

FIGURE 3.13: MEMELogger
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We record sensor signals by using applications developed by us shown in Fig-

ure 3.13. Figure 3.13 (a) represents EOG vertical (the top part of figure) and horizon-

tal (the bottom part of figure) component including some eye blinks and left/right

eye movements. They are detected as peaks on the sensor signals.

From recorded data, we create a six second sliding window (overlap: two sec-

ond) and calculate seven features shown in Table 3.4 in the window. Then K-Nearest

Neighbor classifier (k-NN; k=5) is applied to classify the activity for each window.

TABLE 3.4: Features for k-NN activity classification

No. Feature
1-2 {mean, variance} of vertical EOG component
3-4 {mean, variance} of horizontal EOG component
5 variance of acceleration x
6 variance of acceleration y
7 variance of acceleration z

3.2.2 Experimental Design

We evaluated if the sensor data from the glass can distinguish more complex activity

recognition tasks. We assume that modes of locomotion etc. can easily be recognized

by the motion sensors alone. Therefore we concentrated on tasks performed while

sitting in a common office scenario. We included four activities: typing a text in a

word processor, eating a noodle dish, reading a book and talking to another person.

Two participants were asked to wear JINS MEME and perform the four activ-

ities, each activity for five minutes two times, in total 80 minutes. Before starting

recording, we adjusted the electrodes on the device toward the facial features of the

user to be sure to capture a clean EOG signal. This initial setup step needs need to

be done only once per user. We applied the windowed feature extraction and a user-

independent classification, i.e., training with the data of one user and evaluating

with the another user.

3.2.3 Results and Discussion

We reached classification rates of 58 % by using only EOG signals and 70 % if IMU

signals are integrated. The confusion matrices are given in Figure 3.14. Strengthened

by the good performance distinguishing the four activities for two users in a user-

independent approach. One interesting finding from the results is that there are a

lot of confusions between typing and talking when we utilize only EOG signals but

they were classified by the combination of EOG and IMU. This might be because

both activities contain frequent vertical eye movements.
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(B) EOG and IMU (acc.: 70 %)

FIGURE 3.14: Confusion matrixes of activity recognitions using EOG and IMU

Based on previous work in Section 3.1, it is possible to classify different activi-

ties offline using just blink detection and head motion. We extend this work, and

implement an online reading/talking detection using JINS MEME. We tested a pro-

totype of our reading/talking detection system on 12 people. They performed 15

instances of each reading and talking as well as a 5-6 instances of other unrelated

activities (drinking water, eating etc.). By using the same features, only 16 instances

were wrongly classified leaving us with 91 % of accuracy. No instances of other ac-

tivities were classified wrongly, indicating that our online system works as well as

the offline classifier implemented on Google Glass data.

3.2.4 Conclusion

This section presented interaction and recognition demonstrations using an unob-

trusive EOG glasses prototype. The applications are meant to show the potential of

the device category. We show the feasibility of detecting eye movements with our

prototype. Our pilot study with two participants and four activity tasks (reading,

typing, eating, and talking) have shown that the EOG and IMU signals can classify

the four activities with 70 % accuracy. We have not designed application cases and

suitable eye gestures people might want to use, this is left for future work.
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3.3 Reading Detection in the Wild by Deep Neural Networks

Reading in real life occurs in a variety of settings, involving various devices and

document layouts that would result in irregular eye movements. Our assumption is

that there is a substantial difference between controlled reading and natural reading,

meaning that the reading detection methods that work in labs may not necessarily

be usable in the wild.

We believe that developing less obtrusive optical eye trackers is key to achiev-

ing reading quantification in real life settings. In this regard, using commercially

available electrooculography (EOG) glasses seems promising since they are rela-

tively light, visually familiar (looking like conventional eyewear) and have sufficient

battery life for all-day use. Their cost is also relatively low, making them suitable for

conducting large-scale data recording [5]. In this work, we record natural reading

activities using commercial EOG glasses (see Figure 3.15) and evaluate the accuracy

of the detection algorithm in the wild.

FIGURE 3.15: The recording setup. Participants wore JINS MEME, Narrative Clip, Fitbit
Charge HR and a smartphone every day for more than two weeks.

FIGURE 3.16: An overview of the sensor signals exported by JINS MEME. The ground truth
is annotated by the participant at the end of the day with reviewing images.
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3.3.1 Approaches

We propose three types of reading detection approaches. The first is a manual fea-

ture extraction based approach. In this approach, we analyze the data obtained from

the devices to find characteristic sensor patterns during reading, and select the fea-

tures for manual classification. The second and third approaches are automatic fea-

ture extraction based. We designed a convolutional neural network (CNN) and re-

current neural network with Long short-term memory (LSTM) for classifying the

raw data. They extract best features by training with large-scale data.

We utilize JINS MEME4 for the sensing. The device is equipped with three elec-

trodes for eye movement detection and a 6-axis inertial measurement unit (IMU)

for head movement detection. It is developed by JIN CO., LTD. The company has

released two models of the device: the developer’s version and the academic ver-

sion. We used the former for this research, as it’s widely available to consumers.

JINS MEME calculates basic eye movements (blink speed, blink strength, two-step

strength of up/down/left/right eye movements) internally on the device itself as

shown in Figure 3.16, and stream them with IMU data to a smartphone via Blue-

tooth Low Energy. The sampling rate is 20 Hz. Battery run time is 18 hours, which

is sufficient for gathering data all day during the day. Data are recorded on the iOS

application, MEMELogger5 and sent to a hosted server every day.

FIGURE 3.17: Histograms of horizontal eye movements.
Positive values represent movements to the right.

FIGURE 3.18: Histograms of blink frequencies

4https://jins-meme.com/en/
5https://itunes.apple.com/en/app/memelogger/id1073074817
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SVM Based Reading Detection

We employ 16 statistical features from the sensor signals of JINS MEME (10 features

from eye movements and 6 from head movements) as shown in Table 3.5. The fre-

quencies of eye blinks and eye movements are calculated as inverse values of the

duration between two blinks or eye movements. Acceleration x, y and z are raw

signals. We create samples with the window size of 60 seconds. After the data were

normalized and whitened, we calculate the mean and standard deviation for each

of the sensor values in the window. A Support Vector Machine (SVM) with a radial

basis function kernel (RBF) kernel is used for the learning. After the classification,

we applied a majority vote for 5 minutes’ worth of data to smooth out the results.

TABLE 3.5: Features for the SVM based reading detection approach

No. Feature
1-2 {mean, SD} frequency of eye blinks
3-4 {mean, SD} frequency of eye move up
5-6 {mean, SD} frequency of eye move down
7-8 {mean, SD} frequency of eye move left
9-10 {mean, SD} frequency of eye move right
11-12 {mean, SD} raw signal of acceleration x
13-14 {mean, SD} raw signal of acceleration y
15-16 {mean, SD} raw signal of acceleration z

CNN Based Reading Detection

An overview of the CNN architecture is shown in Figure 3.19. The network receives

raw sensor values from JINS MEME as inputs, and classifies the gaze activity as

either reading or not reading. For the input layer, 6 maps with a size of 400×1

were created from 400 frames of 6 sensors’ values, including blink speed, vertical

eye movement, horizontal eye movement, acceleration x, y, and z. To increase the

number of training samples, we employed different input window size (20 seconds)

compared to SVM. There is no overlap between windows. The network has two

convolution layers, each followed by a pooling layer. For the first convolution layer,

the approach utilize a filter with size 12×1 with step 2 that exports 8 maps. Since the

convolution is done without zero-padding, the window goes from 400 to 195. Then

the approach utilize an max pooling with a stride of 3 to the 8 maps, thus maps with

size 65×1 are exported. The same process with filtering size 11×1 and max pooling

stride 2 are applied for the second convolution and pooling. Finally, 10 maps with

size 14×1 are fully linked to 100 units, and fully linked to the output channel with 2

units: reading or not reading. Activation functions are rectified linear units (ReLU).

We employ dropout with dropping rate 0.5 in each pooling and full connecting.
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FIGURE 3.19: The CNN architecture for the reading detection

LSTM Based Reading Detection

By utilizing the advantage of the characteristics of time series data, we have also de-

signed the network architecture including LSTM [76]. The input shape and parame-

ters of the architectures are described in Figure 3.20. The parameters of the network

were selected by random search. Since our purpose is to quantify reading activities

and give feedback to a user later in the same way with physical activity tracker, a real

time analysis is not necessarily required. Therefore Bidirectional LSTM is utilized to

precede high accuracies.

After the both of classifications, we apply majority voting for 5 minutes of data

(as we did in the SVM approach) to smooth the results.

FIGURE 3.20: The LSTM architecture for the reading detection

3.3.2 Experimental Design

We evaluated the reading detection approaches on our long-term dataset with user-

independent and user-dependent learning. This section presents procedures of the

evaluation and classification results.

Data Recording

We asked 7 participants to record their habits using the following commercial sen-

sors: JINS MEME, Fitbit Charge HR, Narrative Clip and Tobii eyeX (see Figure 3.15).

Note that Fitbit Charge HR and Tobii eyeX are not used in this experiment. All of the
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participants were college students studying computer science, who worked on com-

puters most of time. They used the tracking/recording devices during the day and

charged them while they slept for more than two consecutive weeks. The dataset

contains 22 hours of controlled reading, 427 hours of natural reading, 156 hours of

social interactions and 375 hours of other activities.

We did not place any limit on the participants’ activities. Therefore various types

of reading activity are included in the dataset. Participants, for example, read texts

on computers, smartphones, e-book readers, as well as paper. Browsing web pages

and typing on a computer were also labeled as natural reading.

To record enough labeled reading activities, we also conducted a controlled ex-

periment. We prepared 60 documents and asked the participants to read them from

beginning to end. They read 15 English documents on paper, 15 English documents

on a screen, 15 Japanese documents on paper, and 15 Japanese documents on a

screen. Reading on paper was recorded with JINS MEME, and reading on a screen

was recorded with JINS MEME and Tobii eyeX. We did not prohibit them from read-

ing back during the recording, but most of them read documents continuously with-

out vertical movements. Figure 3.21 represents the example of the difference of eye

movements while natural reading and controlled reading.

FIGURE 3.21: Eye gazes during a minute of (a) controlled reading and (b) natural reading.
Data were collected by Tobii eyeX and classified into fixations (circles) and saccades (lines).

For the purpose of collecting ground truth, the participants added annotations

to all data as shown in Figure 3.22. They were asked to apply one of the three labels

(reading, talking, and other activities) to every 1 minute of data from 0:00 to 23:59. To

help with the labeling tasks, we provided each participant with a Narrative Clip 6,

a small life-logging camera which can be clipped to one’s clothing. Narrative Clip

takes a picture every 30 seconds. Participants reviewed the pictures at the end of

each day and manually labelled their activities. In order to reduce ambiguities of

the labels among participants, we asked them to label activities if pertinent objects

(e.g. book, display, person) appeared in more than two consecutive pictures (= one

minute). They submitted the annotated pictures after removing some of them for

6http://getnarrative.com/
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privacy reasons. The reason we asked them to label their activities at the end of

each day instead of during the recording is to make the dataset wild as much as

possible. Regularly asking participants to provide ground truth labels leads to a

well annotated dataset but might change their regular behaviors.

FIGURE 3.22: Activity labels of last seven days. Each row represents one day’s activities.
Periods filled in red are reading, blue are talking, and white are other. Periods participants

were wearing JINS MEME are under lined in black.

Evaluation Design

For user-independent learning, training and testing data were separated by leave-

one-participant-out cross validation. Samples of one participant were utilized as

testing data, and samples of others were utilized as training data.

For user-dependent learning, training and testing data consist of samples from

one participant. During our experiment, a new CSV file was created every time

when a participant started recording. We shuffled the order of files and divided them

to two groups equally. Samples in one groups were utilized as training data and

the other were utilized as testing. The reason we employed this way is to prevent

carelessly mixing training and testing samples. Applying cross validation with all

samples is the easiest way. But it might lead to incorporation of very similar samples

into training and test folds in the analysis of time series data [70].

The mean and standard deviation value of results were calculated over all 7 par-

ticipants. Because the number of samples in each class is unbalanced, class weight

functions implemented in machine learning frameworks (scikit-learn for SVM based

and Keras with TensorFlow for CNN and LSTM based) were utilized during training

the model.
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3.3.3 Results and Discussion

Classification Performance

Table 3.6 shows results comparing the SVM, CNN, and LSTM based approaches.

The SVM based approach is more accurate than other two approaches to detect con-

trolled reading. Although the differences are small, deep learning approaches per-

formed better to detect natural reading.

TABLE 3.6: Means and standard deviations of classification accuracies over seven
participants (controlled/natural reading vs. not reading)

controlled reading detection natural reading detection

user-independent user-dependent user-independent user-dependent

SVM 80.7±8.0 % 92.2±7.2 % 68.5±7.2 % 73.1±5.3 %

CNN 66.2±20.6 % 80.2±12.3 % 69.6±7.1 % 70.0±5.4 %

LSTM 74.3±17.5 % 90.4±5.8 % 67.1±10.1 % 73.8±6.0 %

Confusion matrices of the natural reading vs. not reading classification on the

user-independent approach are shown in Figure 3.23. For most of the participants,

except for Participant c, the results show high precision (true positives divided by

true positives + false positives) and low recall (true positives divided by true posi-

tives + false negatives). This result indicates that there are some reading activities

that are still difficult to be detected by the three approaches.
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FIGURE 3.23: Confusion matrices of natural reading vs. not reading on the
user-independent approaches over seven participants.
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Observation of the Classified Samples

By reviewing the pictures taken by Narrative Clip, we identified some cases in which

an activity can be misclassified. For example, while all the participants labeled Web

browsing (see Figure 3.24 (a)) as reading, this activity was sometimes misclassified by

the CNN and LSTM as not reading. This may have been caused by the combination

of multiple factors, such as the web page layout that combines structured and non-

structured texts (e.g., short text passages, banners, ads, etc.) as well as the actions

that accompany web browsing, such as clicking on the embedded URIs. An inter-

esting case of false positive occurred when one of the participants was watching a

video (see Figure 3.24(b)). The participant himself labeled this activity as not reading,

but our CNN and LSTM based user-independent approach classified it as reading.

The participant was watching the video on www.nicovideo.jp, a popular video shar-

ing service in Japan, which famously shows many floating subtitles in the videos.

This has likely provided some irritations for the classifier.

FIGURE 3.24: Samples of errors in natural reading detection. (a) false negative: a user is
browsing web pages. (b) false positive: a user is watching a video.

A major problem we found through this experiment is in labeling ground truth

accurately for natural reading. Because the act of reading differs in kind (e.g. reading

a paper book, browsing web pages, skimming texts, etc.), classifying activities into

the simple two classes (reading vs. not reading) can be difficult even for humans.

3.3.4 Conclusion

In this work, we recorded natural activities in a daily life setting with unobtrusive,

commercially available devices. By sacrificing accuracy to a degree, the amount data

reached to more than 980 hours. The recorded data revealed that natural reading is

a complex activity that includes many factors, as reading plain texts and browsing

websites for instance involve different kinds of eye movements. We proposed three

approaches to reading detection and found that the deep learning based approaches
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are superior to the SVM-based approach to detect natural reading activity. By in-

vestigating error samples, we have uncovered some of the challenges in detecting

natural reading, including how to collect large-scale data with ground truth.

We continue exploring on data we gathered but did not use for the purpose of

the present study in future work. Such data include recordings of the eye gaze while

reading on a screen with Tobii eyeX and the heart rates while reading with Fitbit

Charge HR. It should be interesting to see the relationship between JINS MEME’s

data and the data obtained by other sensors, and estimate the user’s affective state

such as the level of attention, concentration, and understanding of the contents.
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3.4 Wordometer 2.0: Estimating the Number of Read Words

Among several cognitive activities, reading is especially important activity because

most of knowledge we have is from what we read. This section focuses on reading

activity and proposes the method to quantify daily reading habits by using com-

mercial electrooculography (EOG) glasses. The tracking result will be summarized

and visualized as shown in Figure 3.25 (b). Because it is well known that increased

reading volume is associated with numerous cognitive benefits including improved

vocabulary skills [39], tracking and visualizing the amount of reading can help peo-

ple improve their cognitive lifestyle.

The idea of estimating the number of read words by tracking eye movements has

already been proposed by Kunze et al. as Wordometer [111]. They have introduced

word counting algorithms based on mobile eye tracking glasses and medical EOG

sensors. However, although the goal is to track daily reading habits, their setups

are too bulky to be worn regularly (e.g., the devices are expensive; batteries are not

enough long to cover a whole day; and cables prevent a user from moving naturally).

Compared to the their work, this research aims to quantify reading activities

with technologies that are completely affordable. We utilize commercial EOG glasses

because they are inexpensive, do not require significant user load, and have an long

enough battery life for all-day use [89]. Additionally, there is no limitation to use the

device from the viewpoint of privacy because it doesn’t equip a camera. Features

for the estimation are optimized for the device. We define our new word counting

system which is designed for everyday use as Wordometer 2.0.

The contribution of this section is to show that: (1) Sensor signals from JINS

MEME are good enough to detect specific eye movements during reading (forward-

and backward-saccades). (2) The number of read words can be estimated by features

from the forward- and backward-saccades.

(A) A user wearding JINS MEME (B) A web dashbord

FIGURE 3.25: Overviews of Wordometer 2.0
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3.4.1 Approach

The word counting method consists of three processes: obtaining a user’s eye move-

ments, detecting forward- and backward-saccades, and estimating the number of

words he/she read.

One reference electrode and two active electrodes are equipped on JINS MEME.

In order to simplify the problem, we limit the subject of quantification to English text

and utilize only a horizontal component. Figure 3.26 shows an overview of the EOG

horizontal component in a one-minute recording that includes reading activity. Neg-

ative values represent eye movement right to left, and positive values represent left

to right. Regular patterns of eye movement appear during reading activity because

of line breaks.

Figure 3.27 shows outputs of the algorithm of detecting forward- and backward-

saccades. Peak detection for forward-saccades is applied after applying a median

filter to remove noises. Backward-saccades are detected if the sensor value is lower

than a threshold. The threshold is calculated dynamically as the difference between

the mean and variance of sensor values in a small window. The window size is one

second, which was decided experimentally.

The number of words a user read is estimated by support vector regression. Four

features are calculated for the regression: the total number of forward-saccades,

the mean EOG signal value of forward-saccades, the total number of backward-

saccades, and the mean EOG signal value of backward-saccades.

FIGURE 3.26: EOG sensor signal in one-minute recording including reading activity.

FIGURE 3.27: EOG sensor signal during reading activity. Circle and triangle markers are
outputs of forward- and backward-saccades detection.
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3.4.2 Experimental Design

Because it is hard to collect accurate ground truth in the wild experiment, the method

was evaluated in the controlled experiment. We asked five participants to read En-

glish essays on an iPad wearing JINS MEME (see Figure 3.28). We developed an iPad

reader app which highlights each paragraph of the essays on the basis of the scroll

position. By using this hughlight function, participants informed the begging and

ending time of reading each paragraph to the application. Every participant read

38 paragraphs, so the total amount of paragraphs in the dataset was 190 (minimum:

27 words; maximum: 120 words; average: 60 words in one paragraph). Because we

used a prototype device, the sampling frequency of the EOG signal was 11 Hz.

Training and testing were done by leave-one-participant-out as a user-independent

approach. We evaluated errors in the estimations with two measurements. One is

an average of absolute error rates for each paragraph. This evaluation is valid for

short-term recordings involving reading speed estimation. The other is an absolute

error through all paragraphs, which is calculated as the total error of all recordings.

This evaluation is valid for long-term recordings including a total count of words

read in a day.

FIGURE 3.28: Experimental condition with JINS MEME and iPad

3.4.3 Results and Discussion

The estimation errors are shown in Table 3.7. An average error of five participants

with user-independent training for each paragraph was 18 % and decreased to 11 %

when extended with all 38 paragraphs. The discussion focuses on participant b and

participant c to find the reasons of their inaccurate estimations.
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TABLE 3.7: Word count estimation errors

User-independent User-dependent

Participant Each paragraph All paragraph Each paragraph All paragraph

a 17 % 11 % 14 % 2.2 %

b 24 % 9.5 % 25 % 6.4 %

c 24 % 18 % 15 % 2.4 %

d 15 % 7.5 % 15 % 1.8 %

e 15 % 11 % 12 % 2.4 %

Average 18 % 11 % 16 % 3.0 %

Figure 3.29 represents estimation results of each recordings with user-independent

training. Plots of participant b is dispersed and this is the reason why estimation

error for each paragraph is high. However a regression line of all plots looks so

accurate. Participant b’s estimation error with combining all paragraph is low. It

represents the truth that this system doesn’t work well for the user whose reading

style is not stable, but it works well with a scenario of long-term recording.

For participant c’s case, most of predicted word counts are higher than actual

word counts and it means participant c’s eye movement during reading is unique.

Figure 3.29 shows that estimation errors will decrease by user-dependent training.

It means that estimation for the first use is not so accurate, but the accuracy will be

increased with adapting to a user’s behavior as he/she uses the system every day.

3.4.4 Conclusion

This section has described the method to quantify the amount of reading with JINS

MEME. The estimation accuracies increase with extending recordings and could also

be improved by applying user-dependent training. Because JINS MEME is designed

for everyday use, we should follow the condition and create better estimating algo-

rithm with long-term recordings.
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FIGURE 3.29: Plot of estimations on user-dependent approach
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FIGURE 3.30: Plot of estimations on user-independent approach
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3.5 Quick Activity Labeling Tool using Swipe Gestures

Collecting large data of daily activities with ground truth is necessary for better

recognition. Eyewears which can be performed fast and do not disturb a user so

much during the activities are perfect platform for ground truth labeling. This sec-

tion proposes an interface for quick activity labeling on Google Glass with multi

touch swipe gestures. The contributions of this section are: (1) Presenting an UI de-

sign concept targeting quick data entry during situations with a high cognitive load.

(2) Evaluating the UI design in a prototype implementation.

The default interface of Google Glass works very well for many types of tasks.

An exception is the selection of items from larger lists, in particular when voice in-

teraction is not desired and the user is moving (e.g. walking through a shop or an

office). The default interface involves hitting the right item through a controlled ana-

logue motion (the selected item depends on how fast/far the finger moves) on the

touch pad. Such analogue motions are difficult to perform exactly when the user is

moving and require a degree of concentration. As an alternative we propose a digi-

tal interface that codes the item selection through hierarchical combinations of multi

touch gestures (number of fingers, number of swipes, direction of swipe) supported

by appropriate representation of the choice on the screen. The advantage of this

approach can be explained by Fitt’s law. It makes one dimension of the target size

infinite. The user does not need to scroll to the right card, but makes his selection

over the number of fingers and swipe direction.

There is some related work on wearable interaction focusing on gestures and

multi touch [129]. Harrison et al. show how to use a depth sensor to enable multi

touch interaction on everyday surfaces [72]. Complementary to our work, Thomas

et al. evaluate the usefulness of touch pad interactions for wearable computers [171].

FIGURE 3.31: A user labeling his activity by using the proposed interface
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3.5.1 Approach

Given these considerations, we came up with the following requirements. The user

should not necessarily need to look at the screen to select an activity. The selection

process should be done with a quick gesture only, as fast as possible. We emphasis

that un-obtrusiveness and speed are preferred over accuracy regarding the selection.

Lacking accuracy can be filtered out by mere numbers. However, we believe at once

a wearable application is just a small hindrance, people will avoid using it.

Based on this discussion we designed the following interface as shown in Fig-

ure 3.32 (and using in Figure 3.31). The upper screen displays the categorical overview

with hints how to access them (one dot = one finger, ...). As soon as one, two or three

fingers touch the touch pad on the right side of Google Glass the corresponding la-

bel selection matrix appears. To select a label the user keeps his fingers on the touch

pad and swipes to the front, back, up or down. Therefore a user can select out of 3 x

4 customizable activities using swipe gestures. More are currently not feasible due

to the size of the Google Glass touch pad.

3-finger gesture1-finger gesture
2-finger gesture

FIGURE 3.32: Google Glass swipe gesture input method screenshots.

3.5.2 Experimental Design

We asked 11 participants to use both input methods subsequently. 7 of 11 partici-

pants are employed in the area of computer science and 4 were employed in other

areas and were not familiar with wearables. We studied the hierarchical (Google

Glass card style) input method as shown in Figure 3.33 and ours referred to the

multi touch swipe gesture input.
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The experimental evaluation measures the time needed for an entry and the ac-

curacy of a selected label with the given input-method. We first introduced the par-

ticipant to Google Glass with focus on touch pad interactions. We then always pre-

sented the classic input method to the current participant first. The participant was

only told how to use the Google Glass touch pad but was not familiarized with the

set of labels (elements to select) before. We considered the main target of Google

Glass: Performing quick look ups and input while underway, especially while walk-

ing: The participant was instructed to continuously walk during the experiment to

achieve a natural environment with distractions i.e. watching their steps to avoid

obstacles (the experiment area covered 10 by 5 meters). While the participant was

in motion the experiment observer communicated one label after another to be in-

serted with the classic method. We repeated this 40 times with random labels. The

experiment observer was automatically notified by the application when the input

was accomplished and then communicated an automatically randomly selected la-

bel. After the first run the swipe-gesture user interface application was started with

the same experimental conditions than on the run before. The labels were again

communicated fully randomized one after another for 40 iterations.

During our experiment we ran a server application (1) generating a new label

on demand, storing the label and timestamp and (2) logging the receiving label to-

gether with the timestamp of the selected label and the type of input (classic or swipe

method) on Google Glass. The Google Glass applications we created established a

TCP connection to our server and transmitted each label input. The server script

allowed to retrieve a randomly chosen label which could then be communicated by

voice to the participant. The observer monitored the status on a laptop connected to

the server and was informed automatically when the current input was finished.

FIGURE 3.33: Screenshots of default hierarchical input method on Google Glass
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3.5.3 Results and Discussion

Table 3.8 shows the experimental results. Figure 3.34 displays the reaction time vs

the correctness of the input. For all participants the reaction time is decreased signif-

icantly (p < 0.05). The reaction time was reduced by 1.7 seconds on average. But, the

mean accuracy decreases to 75 % (leaving out the worst 78 %) for the swipe interface

versus 95 % on average for the classic interface. Figure 3.35 shows the change of an-

notation speed with training The finding from this result is that users could perform

quicker and quicker with the proposed system by iterated practices.

TABLE 3.8: Experimental data set and results overview

Participant id 1 2 3 4 5 6 7 8 9 10 11
Classic (card based) input method:
Average duration of response (sec) 5.7 8.2 7.7 6.1 7.7 5.7 5.2 5.7 5.4 8.0 5.3
Annotation Accuracy 97 % 95 % 98 % 100 % 92 % 93 % 95 % 95 % 98 % 100 % 96 %
Duration slope +1.6 -142.8 -66.9 -94.7 -137.4 -56.7 -6.7 -124.8 -50.9 -89.7 -16.8
Swipe gestures input method:
Average duration of response (sec) 3.9 4.7 5.4 5.4 5.4 5.5 4.8 5.0 3.8 5.4 4.1
Annotation Accuracy 82 % 64 % 68 % 42 % 95 % 85 % 86 % 93 % 67 % 64 % 75 %
Duration slope -3.4 -31.1 +15.5 +6.2 -27.5 -47.7 +23.8 -47.6 -13.0 -29.5 -82.3

FIGURE 3.34: The diagram displays the reaction time vs the correctness of the input.
Each symbol depicts one experiment run (40 samples).

3.5.4 Conclusion

This section presented a multi touch swipe interface for activity labeling on Google

Glass. It is significantly faster compared to the standard interface. The speed in-

creases in encouraging although we need to improve the accuracy. The current task

walking might not so complex and does not require a lot of attention. We should eval-

uate our interface during more demanding tasks. We assume that the time decrease

in selection will outweigh the accuracy decrease for challenging activities. We could

observe a potential learning effect, as we are using the interface now for a longer

time, it seems the accuracy increases and it’s possible to select tasks without looking

on the HMD. However, this needs to be evaluated in a larger study.
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FIGURE 3.35: The change of annotation speeds with iteration
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Chapter 4

Affective State Recognition

Quantified learning – sensing learning behaviors for giving effective feedback based

on the contexts to each learner – has a high potential in the era of digitalized educa-

tion [43]. This chapter presents qualifications on several media including textbook,

video lecture, news article, multiple-choice questions, vocabulary spelling tests.

The starting point of this research field is comprehension recognition because im-

proving the performance of learning should be a clear objective among all students.

Section 4.1 presents comprehension recognition methods on a textbook: one of the

most major learning materials [81, 82]. Section 4.2 presents investigation on a video

lecture: a modern material [134].

Section 4.3 presents results of a pilot study finding correlations between sensor

signals and affective states collected by a subjective survey after reading a textbook

in Physics [86]. In order to create estimation models, it is essential to collect large

data with distributed conditions. Therefore we selected an activity of reading news-

paper articles to collect various reading behaviors. In Section 4.4, reading behaviors

are classified into four class of levels by using an eye tracker [95] and a physiological

sensing wristband [96].

Sections 4.5 and 4.6 present self-confidence estimation on multiple-choice ques-

tions [92] and handwriting vocabulary spelling tests [124]. Self-confidence is one

of the most important affective states because if there is a gap between their confi-

dence and level of understanding, they lose chance to re-cap a subject correctly. On

the other hand, a high self-confidence in a learning subject causes positive learning

feedback loops.

The following sections in this chapter are based on collaborative work with stu-

dents. Section 4.2: Yuya Ohbayashi, Section 4.3: Apurba Roy, Section 4.4: Soumy

Jacob, Section 4.5: Kent Yamada, and Section 4.6: Takanori Maruichi.
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4.1 Comprehension Recognition on a Textbook

Reading a textbook is an important way to obtain new knowledge. We investigate

students’ reading behavior on a textbook in order to find specific patterns which are

related to the context including situations and comprehensions. For this purpose,

we prepared a document on “Basic Phenomena in Acoustics” including both, text

and related exercises. In addition, we recorded their eye gaze during the period

when only the text page is shown and subsequently when both, texts and exercises,

are shown on a display.

There is a whole bunch of research investigating efficient visualizations and rep-

resentations to improve students’ skills of understanding and solving in Physics Ed-

ucation Research [127, 179]. However, most of them obtain students’ insights from

only answering sheets afterwards and do not care about their learning process while

reading texts and solving tasks.

We follow preliminary research from Mozaffari et al. [130], where students’ eye

gaze is recorded while solving tasks of physics by using a remote eye tracker mounted

to a tablet computer. The authors have revealed that students prefer different rep-

resentations (vector, table and diagram) depending on their skill level. We follow

their basic idea. But compared to their work, we are interested in students’ natural

reading behavior on a textbook. We do not optimize the text and tasks so much for

the recording.

The contributions of this section are two-fold. (1) We find rough relations be-

tween levels of students’ expertise and their reading behavior on a textbook. (2) We

recorded the data from 6-grade students at school. It realized some limitations to

using eye-tracking devices in a realistic educational scenario.

4.1.1 Approach

We believe that extracting the part where students pay attention is the first step to

investigate their reading behavior. We propose a method to extract attention by

using an eye tracking device. The method consists of three steps.

Mapping Eye Gaze Coordinates on a Document

We utilize mobile eye tracking glasses and record a student’s reading behavior. Be-

cause the output of the device are coordinates of eye gaze on a scene camera, we

need to map them to the document under consideration. As shown in Figure 4.1,

we detect the position of the document in a frame of the camera by using SIFT fea-

tures [120], and calculate a homograph to map the gaze point to the document.
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FIGURE 4.1: One of the results of gaze mappings. Red circles of both scene and document
image represents feature points of SIFT. The documents is extracted as white rectangle on a

scene image. The gaze point on document is estimated as a black circle.

Detecting Fixations

The raw gaze data on the document is classified into fixations and saccades. Fix-

ations appear, when the gaze pause in certain position – normally lasting between

200 and 400 ms. Saccades are the jumps of the gaze between two fixations taking

10-20 ms. We apply the fixation-saccade detection algorithm proposed by Buscher et

al. [24]. Figure 4.2 shows input and output. The radius of each circle corresponds to

the fixation, and the line between two circles represents a saccade. Noises and drifts

on raw data are also filtered in this step.

(A) Raw gaze (B) Fixations and saccades (C) Fixation duration heatmap

FIGURE 4.2: Eye gaze on the document while a student read a textbook.
Colors in (a) and (b) represent the order of eye gaze (red to blue)
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Calculating Features for Each Area of Interest

We divide a text beforehand based on the roll (e.g., the introduction, definitions,

applications on the document shown in Figure 4.3.) We focus on the period of time

a student needs to reads the content to obtain knowledge. Thus, for each area a

sum of fixation durations is calculated, which is divided by the size of area to be

normalized.

AOI Based Attention Extraction

We believe that extracting the part where students pay attention is the first step to in-

vestigate their reading behavior. We divide a text beforehand based on the roll (e.g.,

the introduction, definitions, applications on the document shown in Figure 4.3.),

then focus on the period of time a student needs to reads the content to obtain knowl-

edge. Thus, for each area of interest (AOI) a sum of fixation durations is calculated,

which is divided by the size of area to be normalized.

FIGURE 4.3: A document with text and tasks in physics. These two figures are in one page
on a display (text on the left and tasks on the right) during the experiment.

AOI Based Expertise Prediction

We apply a support vector machine (SVM) in order to predict students’ expertise.

According to AOI based fixation duration described as above, each duration in AOI

is calculated as feature of the training and the testing. From the document in Fig-

ure 4.3, for example, three features (durations on the introduction, definition, and

application) are used. Note that since the this method requires a student’s reading
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behavior from the beginning to the end of a document, it can only be applied as an

offline analysis.

Subsequence Based Expertise Prediction

On the other hand, an online analysis is required in order to change the content

dynamically while reading. Therefore, we also investigate whether a subsequence

(e.g., 1 minute of reading) is enough useful to predict students’ expertise In this

approach, we calculate four features (mean and standard deviation of fixation du-

rations and saccade lengths) in a subsequence and apply SVM based classification.

These features are selected according to some work investigating eye movements as

reflections of comprehension processes [135, 145].

4.1.2 Experimental Design

We asked 8 participants to wear eye-tracking glasses, to read a physics textbook

and to solve respective exercises. The participants were 6-grade students at a Ger-

man high school (around 12 years old). The document we prepared is shown in

Figure 4.3. It consists of three parts: the introduction, itemized definitions, and ap-

plications. To analyze the students’ natural behavior while acquiring knowledge,

we selected content that they had not yet learned in class.

Only an explanation of about the content (the left page in Figure 4.3) was dis-

played at first. After they understood the content, they could make tasks appear by

pressing the space-key on a keyboard. They could go back to read the content to

help them in their solving tasks. In this section, we define these two steps as reading

and solving.

Figure 4.4 shows the overview of the experiment. To evaluate whether our pro-

posed method works with different eye tracking devices, two types of eye tracking

glasses were used during the experiment. We used Tobii Pro Glasses 2 with five partic-

ipants (a, b, d, e, f ). The glasses record eye gaze at a sampling frequency 100 Hz and

a scene video at 25 Hz. We applied one-point calibration with a marker before start-

ing each recording. The data of the other three participants (c, g, h) were recorded

with SMI Eye Tracking Glasses 2. The glasses record eye gaze at a sampling frequency

60 Hz and a scene video at 30 Hz. We apply three-point calibration with this device.

4.1.3 Results and Discussion

Attention Extraction

Table 4.1 shows the percentages of time students paid attentions for the introduction,

definitions, and the applications on the document. The sum of these three values is
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FIGURE 4.4: An overview of the experiment. A participant is
solving questions on a display with wearing Tobii Pro Glasses 2.

100 %. We calculated the percentage depending on the each situation while reading

a text and solving tasks. Note that the data in Table 4.1 is sorted by the number

of correct answers. We categorized the eight participants to three comprehension

levels according to the score: novice (the score is four or less), intermediate (the

score is five), and expert (the score is six or more).

TABLE 4.1: Percentages of time students paid attentions

Participants Score Expertise While reading text [%] While solving tasks [%]
(out of 14) Intro. Def. Appl. Intro. Def. Appl.

a 3 Novice 14 49 37 13 59 28
b 4 Novice 17 43 40 17 48 35
c 5 Intermediate 7 51 42 4 44 52
d 5 Intermediate 31 41 28 21 49 30
e 5 Intermediate 23 37 40 27 40 33
f 6 Expert 16 47 37 12 60 28
g 7 Expert 34 50 16 25 56 19
h 7 Expert 28 64 8 22 70 8

By calculating mean values for each comprehension level as shown in Figure 4.5,

it has become obvious that students with high-level comprehension do not pay at-

tention to the applications part while both reading and solving tasks compared to

other levels. They understand that the applications part is useful for understanding

the content, yet there is not much information that can be used as hints for solving

tasks. They preferred to read definitions part because there are direct hints (princi-

ples, formulas, etc.). Intermediates and novices spend much time to paying attention

to the application part while both reading and solving.
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intro. def. appl. intro. def. appl.

intro. def. appl. intro. def. appl.

intro. def. appl. intro. def. appl.

Expert

Intermediate

Novice

reading solving

reading solving

reading solving

FIGURE 4.5: Histograms of the time students paid attentions [%].
Error bars represent standard deviations.

While percentages of attention in the reading and solving phase are similar for

all levels, their reading behavior is deferent for each situation. Figure 4.6 represents

average fixation-based heat maps from novice, intermediate, and expert while read-

ing and solving. High-attention part during reading is almost same for all three skill

levels, while the participants spend much time to read left side of the definitions

part. Note that novices and intermediates look graphics carefully while solving, and

this is one of the reasons their attention for this application is higher than for experts.
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FIGURE 4.6: Fixation duration based heat maps while reading and solving

Expertise Predictions

By using the categories (novice, intermediate, and expert) as ground truth, we esti-

mated participants’ expertise. Figure 4.7 represents confusion matrices of the esti-

mation results. The AOI based approach succeeded to estimate all expertise of par-

ticipants. The estimation accuracy of the subsequences based approach was 70 %.

(A) AOI based (B) subsequence based

FIGURE 4.7: Confusion matrices of the expertise prediction

Figure 4.8 shows all participants’ feature plot in subsequences based approach.

The higher the participant’s expertise is, the larger mean saccade length is measured.

Novice students read a textbook with large fixation duration and small saccade
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length, and intermediate students read with small fixation duration and large sac-

cade length. It cleared that novice students read a textbook slowly with small steps.

The distribution of data plot from experts is larger than others. They sometimes skip

their eyes on the text, focus on the content they are interested in.

FIGURE 4.8: Feature representation of all participants’ data in subsequences based
approach. Each dot represents a data segment of one minute.

Sensing Modalities

There is another option to use remote eye tracker (device which is attached to a

display) instead of mobile eye tracking glasses. Compared to a remote eye tracker,

mobile eye tracking glasses have the advantage that the device can record eye gaze

not only on display but everything on a scene camera. However, the big issue during

this experiment was that students touched glasses unconsciously, and lose an accu-

racy of eye tracking adjusted during calibration. We actually recorded data with

help of 10 students, but data from two of them are too noisy to analyze. Therefore

using remote eye tracker may be better than mobile glasses for young participants.

Compared to a remote eye tracker, mobile eye tracking glasses have the advan-

tage that the device can record eye gaze not only on display but everything on a

scene camera. However the big issue during this experiment was that students

sometimes touch glasses unconsciously, and lose an accuracy of eye tracking ad-

justed during calibration. Therefore using remote eye tracker might be better than

mobile glasses for young participants.
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4.1.4 Conclusion

In this section, we present an initial method to extract students’ attention by using

gaze data. By applying the approach to activities including reading a text and solv-

ing tasks, it is revealed that reading behavior is related to students’ comprehension.

Expert students, for example, tend to pay attention on definition part to understand

the content. We also predicted students’ expertise (ground truth was calculated by

the score of tasks) by two approaches. One is attentions on AOI based, and the other

is features from gaze subsequence based prediction. The former one works better

than the later one, but it requires the recording of reading from beginning to end.

We found that features from sub pattern of gaze data in one minute can enough

classify students’ expertise into three classes with 70 % accuracy.

There are roughly divided two feature work. One is a more detailed analysis

of cognitive students while reading. Eye tracking can measure students’ attention,

but it is still difficult to distinguish it is because of their interest or confusing. To

use other sensing modalities (e.g., heart rate, face temperature) may work to recog-

nize them. The other is to apply dynamic changing. We are going to implement

some dynamic changing as described in the basic concept section of this section, and

investigate whether the changing helps students learning ability significantly.
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4.2 Comprehension Recognition on a Video Lecture

Recently, video lecture based e-learning has become popular [176]. Compared to tra-

ditional human-to-human lectures, there are many advantages in this lecture style.

For instance, students can select when, where, which subject, and by whom to learn

by themselves. They can also pause and replay lecture videos anytime on the basis

of the level of understanding. However, as a disadvantage, it is hard to keep their

attention and motivations because teachers are not in front of students. Students

may continue to learn inefficiently without enough understanding subjects.

One of the solutions to the problem is to delegate the observation task to sen-

sors [81]. For example, there is extensive research in cognitive science and pervasive

computing utilizing eye movements to recognize daily activities including reading

and watching [23] and affective states involving comprehension and attention [99,

144]. The motivation of our work is to build Comprehension-aware learning assistant

that gives students feedback in real-time with a comprehension estimation based

on tracking their watching behaviors with sensors. It saves students’ times to solve

exercises, motivates students to visualize daily statistics scores calculated automati-

cally, and identifies which part of videos students should watch again or skip.

Most of the comprehension estimation work is sensing reading behaviors on a

static document [191], and watching behavior analysis on multimedia such lecture

videos is still challenging task. Thus we involve other sensors to increase the perfor-

mance in addition to eye tracking. For the first step, we survey what type of sensors

are used in cognitive science. Then we propose methods to identify effective features

and comprehension estimation. Finally, we report experimental results on a dataset

involving 10 participants watching video lectures and answering exercises.

Contributions of this section are two-fold. (1) Enhancing the range of compre-

hension estimation from static documents to multimedia such as video lectures. (2)

Investigating which sensor signals are correlated with comprehension.

FIGURE 4.9: A student is watching a video lecture with wearing sensors
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4.2.1 Approach

We utilize Tobii eye tracker 4C, E4 wristband, and JINS MEME to measure students’

learning behaviors. In the following, we present the specifications of the devices,

feature calculations, and classification methods.

Feature Calculations

TABLE 4.2: List of features from an eye tracker

No. Feature Name Description
1-2 FIX_{X, Y}_VAR variance of {X, Y} axis of gaze point of fixation
3-7 FIX_D_{SUM, AVE, SD, MAX, MIN} {sum, ave, std, max, min} of duration of fixation
8-12 SAC_L_{SUM, AVE, SD, MAX, MIN} {sum, ave, std, max, min} of length of saccade

13-17 SAC_D_{SUM, AVE, SD, MAX, MIN} {sum, ave, std, max, min} of duration of saccade
18-22 SAC_V_{SUM, AVE, SD, MAX, MIN} {sum, ave, std, max, min} of velocity of saccade

23 FIX_COUNT the number of fixation
24 FIX_RATIO percentage occupied by fixation duration
25 SCREEN_DURATION duration for which Tobii caught the subject’s eyes

TABLE 4.3: List of features from a physiological wristband

No. Feature Name Description
26-29 TEMP_{AVE, SD, MAX, MIN} {ave, std, max, min} of subject’s temperature
30-33 EDA_{AVE, SD, MAX, MIN} {ave, std, max, min} of electrodermal activity
34-36 EDA_DIFF_{SD, MAX, MIN} {std, max, min} of difference of electrodermal activity

37 EDA_DIFF_PEAK the number of peaks of difference of electrodermal activity
38-40 E4_ACC_{X, Y, Z}_SD std of {X, Y, Z} axis of acceleration
41-43 E4_ACC_{X, Y, Z}_LPF_PEAK the number of peaks of {X, Y, Z} axis of acceleration low path filtered
44-47 HR_{AVE, SD, MAX, MIN} {ave, std, max, min} of heart rate

TABLE 4.4: List of features from EOG glasses

No. Feature Name Description
48-50 JINS_ACC_{X, Y, Z}_SD std of {X, Y, Z} axis of acc.
51-53 JINS_ACC_{X, Y, Z}_LPF_PEAK the number of peaks of {X, Y, Z} axis of low path filtered acc.
54-56 JINS_GYRO_{X, Y, Z}_SD std of {X(pitch), Y(roll), Z(yaw)} axis of angular acc.
57-59 JINS_GYRO_{X, Y, Z}_LPF_PEAK the number of peaks of {X, Y, Z} axis of low path filtered angular acc.
60-61 EOG_{H, V}_SD std of {horizontal, vertical} axis of ocular potential

Features No. 1 - 25 shown in Table 4.7 are calculated by Tobii eye tracker 4C.

The device extracts raw gaze coordinates on a screen (px) with 90 Hz frequency. By

utilizing an approach proposed by Buscher et al. [24], we pre-process raw gaze into

fixations and saccades.

Features No. 26 - 47 shown in Table 4.8 are from the E4 wristband. TEMP (human

temperature), EDA (electrodermal activity), ACC (acceleration) and HR (heart rate)

are raw signals from the device.

Head movements and EOG signals obtained from JINS MEME are also used for

features as shown in Table 4.4. The reason why we use JINS MEME in addition to
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Tobii eye tracker 4C is to record eye movements while students are not watching a

video. Students usually take notes with a pen and they don’t look at a screen while

note taking. Features No. 37, 41 - 43, 51 - 53 and 57 - 59 are calculated on signals

low-pass filtered by SciPy because they include many noises.

Classification

We apply binary classification of whether incorrect or correct for each participant.

We use SVM and random forest and compare their performances. Regarding SVM,

penalty parameter C of the error term is 1, kernel is rbf, and class weight is bal-

anced. Also, regarding random forest, the number of trees in the forest is 10, the

function to measure the quality of a split is gini, and class weight is balanced. These

are default parameters in scikit-learn. We train the model for each participant, i.e.,

user-dependent approach.

Statistical Analysis

We could infer that the samples are drawn from different distributions. From the 61

features, we apply Welch’s t-test for investigating significant features between two

classes (correct answer and incorrect answer). We calculate p-values individually

in each participant and utilize the mean. In this section, features whose the mean

p-value is less than 0.05 are selected and visualized.

4.2.2 Experimental Design

We asked 10 participants to watch lecture videos with sensors as shown in Figure 4.9.

We prepared a Tobii eye tracker 4C and a display on the desk. Participants wore

JINS MEME EOG glasses, and wear the E4 wristband. After all of the devices are

switched on, we start a recording session.

Participant watched video lectures on Study Sapuri, one of the most popular e-

learning services in Japan. While watching videos, we permitted them to take notes

of a blackboard. Every time they finished to watch one lecture, the participant solved

related performance exercise. One exercise has 2-6 questions, and all of the questions

have already explained how to solve by teachers in the lectures.

After finishing recording session, we scored the exercise. As previously men-

tioned, one exercise has 2-6 questions. If for one question, both of the answer pro-

cedure and the final answer are correct, we regarded this question as correct. For

each question, we associated the question with a part of lecture videos which is the

basis of answer for subjects to take the exercise. In fact, one video has about 10-

30 minutes, and one question has about 2-6 minutes. Also, the participants took
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6-19 videos and 19-60 questions on exercise. The number of videos and questions

is different depending on subjects because the learning progress speed is different

for each student. Another reason is that even if the participants have already taken

some lectures, there are several missing data due to inadequate of the experiment

like device malfunction.

To increase the number of samples, we divided the questions into windows

shown as Figure 4.10. For one question, we let one window size be 30 seconds.

The start of the first window is the start of the question. After that window, we make

overlap for 10 seconds. Since one question is not necessarily a multiple of 10 seconds,

we discarded the last remaining part of the question in this case. As the results, we

gained about 400-600 windows as an instance. Our methods were evaluated in both

of leave-one-video-out cross-validation and leave-one-question-out cross-validation.

FIGURE 4.10: The process of separating data into training and testing samples

4.2.3 Results and Discussion

Classification accuracies using SVM and Random Forest are shown in Figure 4.11.

On both of them, leave-one-video-out cross validation is slightly lower, and leave-

one-question-out cross validation is slightly higher than chance rate.

(A) Support Vector Machine (B) Random forest

FIGURE 4.11: User-dependent classification accuracies
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Figure 4.12 shows six features those mean p value are less than 0.05. EDA_AVE

was selected with p < 0.01 but this might be because baselines of EDA in two par-

ticipants were strongly higher somehow. Thus we should exclude this from signif-

icant features. According to the differences of SCREEN_DURATION, FIX_COUNT,

and FIX_D_AVE, participants attract more attention to video lectures in the correct

class. This difference has also appeared in EOG_V_SD and JINS_GYRO_Y_SD. Par-

ticipants moved their head and eyes vertically to take a note frequently in the in-

correct class. There are two possibilities on the results: students watching difficult

lectures desperately take notes to understand, or the high attention on note taking

make students miss important points in the lectures.

FIGURE 4.12: Mean and standard deviation values calculated for each participant and each
class. The six features out of 61 features are selected as p < 0.05.

4.2.4 Conclusion

As discussed above, we have obtained five significant features out of 61 features.

However, we couldn’t get a much higher accuracy of classification than chance rate.

There, we have two strategies to raise accuracy. The first strategy is to add fea-

tures of not only content independent but also content dependent. Namely, it is con-

ceivable to use new features made by using both human behaviors while watching

e-learning and the actual content. Compared with using only human behavior, there
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is a new possibility of that. The second strategy is to label experimental data not ob-

jectively but subjectively. In this experiment, the binary class is objectively labeled

by whether subjects can correctly or incorrectly answer the exercise. Instead, we can

also make subjects response whether they can understand content after watching it

in such as a questionnaire. By doing so, labeling is more suitable for the state of the

subjects, so improvement of accuracy will be expected.

After improving the classification accuracy, we are going to implement interven-

tions on video lectures (e.g., suggesting students to watch specific parts in lectures

again to eliminate their misunderstandings, preparing exercises students will not be

able to solve according to their behaviors, etc). Evaluating whether the interventions

can improve learning performance or not is also in future work.
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4.3 Affective State Recognition on a Textbook

This section presents a pilot study, finding correlations between sensor signals and

affective states collected by a subjective survey after reading a textbook on physics.

We select the combination of eye tracking and thermal image analysis to measure

affective states because they can be sense without bothering readers and do not in-

terfere with each other. As a learning material, we prepare “Basic Phenomena in

Acoustics and Pendulum” The specific contributions of our work are two-folds: (1)

Demonstrating that the combination of commercial infrared thermal camera and fa-

cial landmark detection is accurate enough to measure students’ nose temperatures

(2) Investigating effective features measured by an eye tracker and an infrared ther-

mal camera which are related to affective states collected as self-assessments.

Competent handling of multiple representations is supposed to be significant

for learning and problem solving in physics [4, 47]. A psychological model for un-

derstanding the cognitive processes while working with multiple representations

is offered by the Cognitive Theory of Multimedia Learning (CTML; [157]) and the

Cognitive Load Theory (CLT; [28]). Referred to as CTML, the generation of a men-

tal model of the learning content requires an active part in information processing.

The presentation format of the learning material is essential and can be structured

into text/picture or classified according to dynamics and interactivity [64]. Students’

learning is improved by presenting text/equations and pictures/graphs/videos in-

stead of learning with text/equations alone. While using the pictorial and ver-

bal/auditory channels simultaneously, sensory and representational differentiations

are connected. As a result, cognitive load is reduced. Therefore, greater capacity of

working memory is available for forming mental representation models according

to CTML and, therefore, learnability is increased.

Besides enhancing cognitive variables, our approach involves that students read

textbooks actively through personalized feedback to learn in their way. Therefore,

they experience autonomy, which is said to foster motivation in general [150, 151] as

well as curiosity, as special features of motivation, in particular [156, 180].

4.3.1 Approach

Eye Tracking

We utilize a remote eye tracker which can attached to a display to track eye move-

ments. Eye gaze data is composed of two metrics - fixations and saccades. A fixation

occurs when the gaze falls on something of interest to the screen area and usually

lasts for about 100 - 150 ms. The rapid movement of the eye between fixations is

called a saccade. As preprocessing, we filter raw eye movements to fixations and
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saccades on the basis of the approach proposed by Buscher et al [24]. Figure 4.13

shows one of the examples of the filtering.

The average of left and right pupil diameters at any time instant is used as the

pupil diameter feature for this work. The duration of each fixation during each

question is aggregated to get the fixation duration feature. The length of a saccade

is derived from the known values of fixation duration of the eye at a particular two-

dimensional coordinate on the screen, at a given timestamp. Similar to the fixation

duration feature, the summation of the saccade length corresponding to each partic-

ipant for each question is used to obtain the feature value. The mean and standard

deviation of fixation durations and saccade lengths are calculated as features.

FIGURE 4.13: Fixations on a display during solving a task. The colors represent the order
(from red to blue) and the durations are visualized as radiuses.

Nose Temperature Tracking

We utilize FLIR One for iOS, a commercial thermal camera which can be attached to a

smartphone or a mobile tablet to measure face temperatures (shown in Figure 4.14).

We have developed the sensor logging application of the device by ourselves and

record the changing of temperatures as a video. Positions of the face and the nose

on each frame are detected by using a method proposed by Baltrusaitis et al. [10].
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The temperature data consists of the nose temperature of each participant at a

given time during the experiment. From an initial analysis, we have found that gen-

erally, the temperature increases when the students read the textbook and decreases

when they start solving exercises (see Figure 4.15). From this data, the slope and the

standard deviation of the participant’s temperature during the process of solving

each question are calculated. Finding out the slope and standard deviation serves to

measure the ascend/descend and the fluctuations in temperature.

(A) FLIR One for iOS (B) RGB image (C) Thermal image

FIGURE 4.14: An overview of nose temperature sensing

FIGURE 4.15: Examples of changing of nose temperature of two participants
(top: low workload, bottom: high workload) during they are reading the textbook

(red) and solving the tasks (orange). The x-axis represents timestamps (sec.).
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4.3.2 Experimental Design

Figure 4.20 shows an overview of the experimental setup. The SMI 60 Hz remote eye

tracker was set up alongside a normal computer desktop to record the eye gaze data

and FLIR One for iOS was set to capture the thermal energy from the face. The eye

tracker uses a reflection of infrared light to measure eye gaze. We made sure that

there is no significant affect in thermal images before starting the experiment. We

asked fourteen sixth-grade students (11 or 12 years old) to participate in the experi-

ment. They read a Physics textbook on a screen and solved eight exercises related to

the content. As shown in Figure 4.16, the content textbook was displayed on the left

page on the screen, and exercises were displayed on the right page. Participants are

allowed to use a calculator while solving the exercises. Eye movements on the cal-

culator were excluded in the analysis. Note that seven participants read the text first

and other seven participants read questions first. But we treat them as the same con-

dition because there are no significant differences in their performances calculated

by the score of the exercises.

FIGURE 4.16: An experimental setup using an eye tracker and a thermal camera.

To collect ground truth of affective states, we asked participants to answer sur-

veys on a paper form after the recording. We prepared the surveys as shown in

Table 4.5 from the viewpoint of Physics education research. They can be catego-

rized with two indexes: the type and the scope. We asked three types of subjective

affective states (interest, confidence, workload) plus one objective measurement (ex-

pertise). Some of the surveys are general questions about Physics learning (macro)

and the others are specific questions about the content (micro). The survey brought

to light the interest these students had in learning and researching about physics.
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The ratings ranged from one to six, six being “I agree completely and wholly” and

one being “I do not agree with it at all”. Note that there are two differences about

the survey between the original form used in the experiment and reported in this

section. (1) The order of the surveys in the form during the experiment was s7, s3,

s8, s6, s12, s11, s1, s10, s4, s2, s9, s5, and s13. In this section, they are sorted by their

semantic. (2) The surveys were written in German during the experiment. They are

translated into English in the table for readers of this section.

We reluctantly exclude two of 14 participants’ data as outliers. Their reading and

solving time were too fast than other participants, they seemed to select the answers

randomly, and their score of exercises were zero. They could not be attentive enough

or understand the purpose of the experiment.

TABLE 4.5: Thirteen surveys

No. type scope survey
s1 interest macro I enjoy solving physics problems.
s2 interest macro I am concerned about homework with topics

dealing with physics.
s3 interest micro I like the content of the textbook.
s4 interest micro I am interested in learning more about the subject

of the textbook as well as lectures and homework.
s5 interest micro I would like to know more on the topic of

textbook in school.
s6 confidence macro I am good at physics more than other subjects.
s7 confidence micro The textbook text was easy to understand.
s8 confidence micro I knew what I had to answer during solving the tasks.
s9 workload micro I had to make an effort to solve the questions.

s10 workload micro It was difficult to find the right information to solve
the questions in the text.

s11 workload micro I needed more assistance while reading the textbook.
s12 workload micro The textbook made me curious to know more about

vibration and acoustics.
s13 expertise macro My physics record is about....

4.3.3 Results and Discussion

Table 4.6 represents the Pearson correlation and p-values (in brackets) between the

features and surveys. High correlations with p-values less than 0.05 are highlighted

as bold fonts. From these values, we have found three insights. First, surveys related

to workload including s10 “It was difficult to find the right information to solve the

questions in the textbook.” and s9 “I had to make an effort to solve the questions.”

can be measured by a decrease of the nose temperature during solving exercises (p

= 0.001 and p = 0.012). Second, increase of pupil diameter represents a student’s
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interest including s3: “I like the content of the textbook.” and s1 “I enjoy solving

physics problems.” (p = 0.008 and p = 0.030 during reading; p = 0.006 and 0.013 dur-

ing solving). Third, students who read a textbook and exercises with small saccades

felt high confidence in their understandings reflected in s7 “The textbook was easy

to understand” and s8 “I knew what I had to answer during solving the tasks” (p =

0.025 and p = 0.035).

TABLE 4.6: Pearson Correlation and p-values features and thirteen surveys.

interest confidence workload expertise

feature s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

nose slope reading -0.0 (.97) 0.3 (.37) 0.4 (.23) 0.0 (.88) 0.0 (.89) 0.2 (.60) -0.2 (.49) 0.1 (.75) 0.1 (.73) -0.5 (.09) -0.2 (.50) 0.2 (.53) -0.2 (.61)

nose slope solving -0.3 (.39) 0.3 (.40) -0.4 (.25) -0.0 (.96) 0.2 (.53) 0.6 (.04) 0.1 (.74) 0.4 (.22) -0.7 (.01) -0.8 (.00) -0.2 (.48) 0.3 (.41) -0.4 (.16)

nose std reading 0.0 (.92) 0.3 (.38) 0.4 (.18) 0.1 (.73) 0.1 (.84) 0.0 (.88) -0.2 (.55) 0.3 (.40) 0.2 (.51) -0.4 (.15) -0.1 (.76) -0.1 (.73) 0.1 (.85)

nose std solving 0.6 (.04) -0.4 (.22) 0.0 (.90) -0.1 (.76) -0.3 (.42) -0.2 (.58) -0.4 (.19) -0.6 (.03) 0.1 (.73) 0.3 (.29) 0.2 (.57) 0.1 (.70) 0.1 (.71)

pupil mean reading 0.6 (.03) -0.6 (.03) 0.7 (.01) 0.1 (.72) 0.5 (.14) 0.1 (.80) 0.1 (.88) -0.7 (.01) 0.3 (.39) 0.5 (.10) 0.5 (.08) -0.0 (.99) -0.2 (.50)

pupil mean solving 0.7 (.01) -0.6 (.06) 0.7 (.01) 0.1 (.80) 0.5 (.12) 0.1 (.76) 0.1 (.77) -0.7 (.02) 0.3 (.27) 0.5 (.12) 0.5 (.10) -0.2 (.63) -0.1 (.71)

pupil std reading 0.4 (.16) -0.4 (.23) 0.8 (.00) 0.4 (.22) 0.5 (.14) -0.1 (.67) -0.0 (.92) -0.4 (.20) 0.5 (.07) 0.5 (.09) 0.4 (.25) 0.0 (.99) -0.1 (.69)

pupil std solving 0.2 (.57) -0.4 (.21) 0.6 (.03) 0.6 (.06) 0.4 (.25) -0.3 (.40) -0.0 (.99) -0.2 (.47) 0.5 (.13) 0.6 (.03) 0.3 (.40) 0.0 (.91) -0.2 (.57)

fixation mean reading -0.4 (.25) 0.3 (.36) -0.4 (.18) -0.1 (.87) -0.1 (.80) 0.0 (.97) 0.3 (.42) 0.5 (.08) -0.1 (.85) -0.1 (.83) -0.2 (.58) -0.5 (.14) 0.3 (.37)

fixation mean solving -0.3 (.29) 0.0 (.91) -0.4 (.16) 0.0 (.99) -0.2 (.51) -0.2 (.44) 0.5 (.14) 0.4 (.19) 0.1 (.81) 0.3 (.32) -0.4 (.24) -0.3 (.33) 0.2 (.59)

fixation std reading -0.3 (.30) 0.2 (.63) -0.3 (.40) -0.1 (.86) -0.0 (.89) -0.0 (.97) 0.2 (.51) 0.4 (.24) -0.1 (.73) -0.1 (.87) 0.1 (.76) -0.3 (.31) 0.2 (.63)

fixation std solving -0.4 (.26) -0.1 (.84) -0.1 (.83) -0.1 (.83) -0.1 (.68) -0.2 (.44) 0.5 (.11) 0.1 (.70) 0.2 (.52) 0.4 (.26) -0.2 (.53) 0.1 (.84) -0.1 (.75)

saccade mean reading 0.1 (.81) -0.6 (.05) -0.1 (.82) 0.2 (.50) -0.1 (.75) -0.0 (.93) -0.6 (.02) -0.5 (.14) -0.5 (.12) -0.0 (.95) 0.6 (.05) 0.7 (.02) -0.4 (.23)

saccade mean solving 0.3 (.28) -0.3 (.41) 0.4 (.22) -0.3 (.41) -0.3 (.29) -0.3 (.42) -0.5 (.10) -0.6 (.03) 0.3 (.43) 0.1 (.74) 0.3 (.41) 0.2 (.50) 0.2 (.60)

saccade std reading 0.0 (.96) -0.5 (.10) -0.1 (.80) 0.3 (.28) -0.1 (.68) -0.1 (.87) -0.7 (.01) -0.3 (.29) -0.4 (.26) -0.0 (.94) 0.5 (.10) 0.7 (.01) -0.4 (.24)

saccade std solving 0.3 (.35) -0.2 (.61) 0.4 (.18) -0.0 (.96) -0.2 (.49) -0.2 (.50) -0.5 (.11) -0.5 (.12) 0.3 (.42) 0.1 (.85) 0.1 (.64) 0.4 (.24) -0.1 (.87)

The temporal resolution of sensing is a remaining issue. Although the change

in the nose temperature is an effective feature to understand a student’s effort, it

requires a long time to be observed (see Figure 4.15). In the application scenario,

it can be used for the measurement on each learning unit or page. But it seems

difficult to apply our measurements on small parts such as each paragraph, image,

or sentence. We need to investigate how much the time resolution can be minimized.

4.3.4 Conclusion

This section demonstrated the affective state analysis by using an eye tracker and an

infrared thermal camera. We have developed an application to retrieve the change

in the nose temperature from a commercial infrared thermal camera (FLIR ONE). We

asked 12 high school students to read/solve learning materials in Physics and inves-

tigated the relation between sensor signals and surveys about their affective states.

The changing of the pupil diameter was highly correlated with interest. Although

the temporal resolution was not enough high for a real time application scenario,

the changing of the nose temperature represented their efforts for reading/solving

learning materials.



4.4. Interest Recognition on Newspaper Articles 75

4.4 Interest Recognition on Newspaper Articles

Interest in reading can be motivated by concentration, curiosity, and demand. It

may not rise out of habit but it motivates the habit and subsequently the learning

process. According to Ibrahim Bafadal, “Reading is a process of capturing or acquir-

ing the concepts intended by the author, interpret, evaluate the author’s concepts,

and reflect, or act as intended of those concepts”. Hence it not only depends on the

ability to interpret and evaluate the contents but also the will to do the same for

comprehensive understanding [74, 142, 162].

This urge in reading, if recognized, can be used to improve the data made avail-

able to the reader and also help in better human-document interaction and the de-

sign. Predicting a reader’s interest can help to make document more interactive

or dynamic [15]. Research done on dynamically changing text shows that read-

ing dynamic text is much smoother and faster than reading static text [177]. Eye

gaze, if used to predict a user’s interest, comprehension and difficulty, can influence

his/her interaction with the learning environment and thereby affect the learning

process [36]. This can further assist teaching techniques and promote understand-

ing and active interest in students.

As shown in Figure 4.17, the reading behavior should reflect how much a reader

is interested in the document. We propose an interest detection method by utilizing

sensors. Following two research questions addressed in this section. (1) How accu-

rately can sensing devices estimate a reader’s interest? (2) Since reading behaviors

are different for each reader, which measurement can be used as a common feature?

(A) on a document labeled as interesting (B) on a document labeled as boring

FIGURE 4.17: Examples of eye gaze of one reader (circle: fixation, line: saccade)
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4.4.1 Approach

Eye Tracking

Figure 4.18 shows an example of the gaze events while reading an article. Eye move-

ments while reading are composed of three basic metrics: fixations, saccades and

blinks. A fixation occurs when the gaze falls on something of interest to the screen

area and usually lasts for about 100 - 150 ms. The rapid movement of the eye be-

tween fixations is called a saccade. A blink is a semi-autonomic rapid closing of the

eyelid. Pupil diameters can be also obtained from an eye tracker. We detect the gaze

events by following steps.

FIGURE 4.18: Gaze events calculated by a signal of an eye tracker

As preprocessing, we filter raw eye movements to get fixations and saccades on

the basis of the approach proposed by Buscher et al. [24]. The midpoint of the left

and the right gaze coordinates is taken as the gaze point, only if both values are non-

zero, else the (left or right) non-zero coordinates is taken as the gaze point. A fixation

typically consists of more than six successive gaze locations grouped in succession.

This makes the minimum fixation duration 100 ms as mentioned earlier for data

recorded at a rate of 60 Hz. The successive gaze points making a new fixation should

fit inside a threshold rectangle of 30×30 pixels. All further gaze points falling inside

a 50×50 pixel rectangle is considered to belong to the current fixation. This is done

so that noise and small eye movements are tolerated. If the gaze point does not fall

in the rectangle, it is either an outlier or the start of a new fixation, which further

merges with six other points. The fixation is considered to have ended if at least six

successive gaze points cannot be merged.
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The movement or transition from one fixation to the other is recorded as a sac-

cade. Saccades are further divided into forward saccades and backward saccades.

The x-coordinate of successive fixations denotes the direction of the saccade. For-

ward saccades imply regular reading behavior, while backward saccades can either

be regressions or line breaks. Regressions are backward eye movements which allow

re-reading of the text [18]. Line breaks are separated from regressions by analyzing

the length of the backward saccade. If the length is equal to or greater than the length

of a line, then they are categorized as line breaks (observed as peaks in the saccade

length in Figure 4.18).

Further, we use pupil diameter obtained from raw gaze data, which is the aver-

age of left and right pupil diameter, if both are non-zero. Another characteristic eye

behavior we record is blink. The average duration for a blink of a human eye is 100

- 400 ms. Hence, 6 - 24 consecutive zeroes in the left and the right gaze coordinates

are considered as one blink in our approach. The average latency of two consecutive

blinks is one second and blinks detected in between are considered as noise.

TABLE 4.7: List of features from an eye tracker

No. feature
1-2 {mean, SD} of fixation duration
3-4 {mean, SD} of forward saccade length
5-6 {mean, SD} of forward saccade speed
7-8 {mean, SD} of regression length
9-10 {mean, SD} of regression speed

11-12 count of {forward saccades, regressions}
13 regression ratio

14-15 {mean, SD} of pupil diameter
16 blink frequency
17 SD of blink interval

On the basis of the gaze events, we extracted seventeen features for further analy-

sis, as listed in Table 4.7. Fixation duration is the time taken for each fixation. Forward

saccade length is the distance between the two consecutive fixations that make the

saccade. Forward saccade speed or Regression speed is the length of the saccade divided

by the time taken for the saccade. Regression ratio describes the fraction of regressions

out of the total number of saccades (i.e., (No.11 / (No.11 + No. 12)). Regression length

is the distance between the two fixation coordinates that makes the regression. Pupil

diameter is the diameter of the right pupil obtained from the raw gaze data, provided

the x and y gaze coordinates are non-zero else taken as zero. Since pupil diameter

is user and environment dependent, it was taken as a relative value compared to

the pupil diameter during the questionnaire which was taken as a baseline. Blink
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frequency is the number of blinks divided by the total time taken by the reader (for

each document). Blink interval is the time lag between two consecutive blinks.

Physiological Sensing

We utilize E4 wristband for to measure a user’s behavior. It is used for the acqui-

sition of real-time physiological data with the help of sensors designed to gather

high-quality data. It has a photoplethysmography (PPG) sensor which measures the

blood volume pulse (BVP), an electrodermal activity (EDA) sensor to measure electri-

cal properties of the skin, an infrared thermopile to measure skin temperature.

We decompose a raw EDA signal to the phasic and tonic component as shown

in Figure 4.19 by utilizing cvxEDA algorithm [67]. Then the following 6 features

are calculated from the components. (1) the slope of the tonic part of the signal for

which the slope of the line of best fit was used (Linear Regression), (2) EPC - sum

of all positive EDA changes, (3) Minimum peak amplitude of the phasic signal, (4)

Maximum peak amplitude of the phasic signal, (5) Mean amplitude of the phasic

signal and (6) Number of phasic responses [118].

0 200 400 600 800 1000 1200 1400

0.6

0.8

EDA raw signal

0 200 400 600 800 1000 1200 1400
0.0

0.1

0.2

0.3
EDA phasic component

0 200 400 600 800 1000 1200 1400
0.0

0.5

1.0

1.5
EDA phasic peaks

0 200 400 600 800 1000 1200 1400
0.5

0.6

0.7

0.8

EDA tonic component

FIGURE 4.19: A decomposition of an EDA raw signal

Features relevant to heart rate (HR), inter-beat interval (IBI) and BVP are ex-

tracted from the data. The features used are - (7, 8) mean and standard deviation

of BVP, (9, 10) mean and standard deviation of HR, (11, 12) difference in mean and

standard deviation of HR amplitude during task and baseline, (13) standard devia-

tion of IBI normalized by baseline (data recorded 5 seconds before start), (14) square

root of the mean of the square (RMSSD) of the successive differences between IBI.

Features from skin temperature recorded by the wearable are also included namely,

(15, 16) mean and standard deviation of skin temperature, (17) difference in mean of

temperature during task and baseline, and (18) slope of temperature.
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TABLE 4.8: List of features from a wristband

No. feature
1 slope of the tonic component
2 the number of positive EDA changes (EPC)

3-4 {min, max} peak amplitude in the phasic component
5 mean amplitude of the phasic component
6 the number of phasic responses

7-8 {mean, SD} of BVP
9-10 {mean, SD} of HR
11-12 {mean, SD} of HR amplitude normalized by baseline

13 SD of IBI normalized by baseline
14 RMSSD between IBI normalized by baseline

15-16 {mean, SD} of the arm temperature
17 mean of the arm temperature normalized by baseline
18 slope of the arm temperature

Classification

We utilize Support Vector Machine (SVM) to estimate the interest of a reader. Hyper

parameters of the SVM classifier (C, kernel and gamma) are optimized by 3-fold grid

search cross-validation. It searches exhaustively through a manually defined set of

parameters and finds those that achieved the highest score in the validation proce-

dure. We separate training data into training for parameter optimization and the

evaluation for each classification.

4.4.2 Experimental Design

Figure 4.20 shows an overview of the experimental setup. We displayed documents

on a computer desktop and recorded reading behaviors. To capture the reader’s

interest, we prepared newspaper articles with a wide range of topics from different

platforms like technology, politics, sports, cooking etc. Thirteen university students

(mean age: 25, std: 3, male: 6, female: 7, 2 of them are familiar with an eye tracker

and a physiological sensing wristband) participated in the experiment where each of

them was asked to read eighteen newspaper articles comprising of 403 - 649 words

each (mean: 555, std: 70) as shown in Figure 4.17.

After reading each document, participants answered three questions. (1) the

level of interest they had in the article, which was used as ground truth (from 1

to 4, where 1 indicated “very boring” and 4 indicated “very interesting”), (2) a self-

assessment about how much of the content the reader understood (subjective com-

prehension, from 1 to 4, where 1 indicated “I could not understand the article” and
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FIGURE 4.20: An overview of the experimental setup. A participant is reading a news
article on a display with SMI REDn Scientific 60 Hz remote eye tracker.

4 indicated “I could understand the article”), and (3) one multiple-choice question

about of the article (i.e., objective comprehension).

In order to avoid eye-fatigue, the recordings were done in two sessions of one

hour each. The experimental setup was maintained in a stable position from the first

until the last recording. The lighting of the room was set so as not to affect the gaze

data (pupil diameter). A calibration of an eye tracker was performed before reading

every document.

We followed three different approaches to separate the train-test data before clas-

sification. Leave-one-recording-out uses each recording (data of each participant on

each document) as test data, the rest as training and the average of the accuracy in

all cases together is taken as the classification accuracy. Similar to this approach,

leave-one-document-out approach exempts the data of a document completely from

the training set and uses it for testing. Leave-one-participant-out approach uses one

the data from all participants except one as training and uses the data from the left-

out participant as testing. It is quite significant as, in a realistic scenario; the system

does not have training data from a new user.

4.4.3 Results and Discussion

Table 4.9 represents the classification accuracies using SVM. The most frequently se-

lected hyper parameters were C: 32, gamma: 0.125, kernel: Radial Basis Function.

Note that we preliminary considered Random Forest Classifier. But we found that

SVM performs better in our classification task. We also incorporated feature reduc-

tion techniques like Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA), but there was no commendable improvement in the classification.
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We included non-eye related measures like reading speed and the level of sub-

jective/objective comprehension of the user. The accuracies are summarized in Ta-

ble 4.9. Figure 4.22 shows the Pearson’s correlation of the features for each partici-

pant with the level of interest. The level of subjective comprehension of a person can

be seen to have a very high effect on a person’s level of reading interest (denoted by

red-high and blue-low). We got an accuracy of 50 % when features from eye tracking

or physiological sensing were used for classification (Table 4.9).

TABLE 4.9: Accuracies of four-class classifications [%]

leave-one- leave-one- leave-one-
participant-out document-out recording-out

1. reading speed 25 32 35
2. subjective comprehension 59 60 58
3. objective comprehension 34 34 34
4. eye tracking 32 47 50
5. physiological sensing 37 46 50
combination 2 and 4 50 66 64

combination 2 and 5 47 54 53

The distribution of the predicted classes are observed as confusion matrixes shown

in Figure 4.21. The overall correlation between the various features used and the

labels are still quite small. However, when individual participants were consid-

ered, from correlations between features and interests shown in Figure 4.22 and Fig-

ure 4.23, we found that there was (1) a negative correlation between mean/standard

deviations of fixation duration with the interest labels, (2) a considerably small pos-

itive correlation existed for the standard deviation of regression speed, (3) also with

the number of forward saccades. But this was observed for only half the number of

participants or less, the rest having no or very slight correlations with the features.
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FIGURE 4.21: Confusion matrices of the leave-one-recording-out condition
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Although the accuracies were not as high as expected, this research threw light

on using a remote eye tracker for affective state measurement. We found that mean

forward-saccade speed, mean fixation duration and mean regression speed plays a

vital role in predicting a reader’s interest. And that SVM with an RBF kernel is best

to classify gaze-based features.

However, a higher correlation of the features to the labels was expected, though

it was observed to be quite small. The correlation was quite different in the case

of each participant for all features except for ones earlier mentioned. This led us

to believe that cognitive predictions are user-dependent and not just document-

dependent. For example, pupil diameter may not undergo the same changes in

every user during the same psychological process. These features are dependent

on the user and his/her affective state. We also found that the collection of ground

truth related to interest and understanding are widely prone to human error and

individual behavior.

Subjective comprehension of a person has a very high correlation to the level

of interest while reading, which makes sense, since interest can only be realized if

the person truly understands the text. But using eye measures while reading is an

added advantage to understand this and should be deeply explored, since it can be

realistically collected while reading without reader intervention.
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FIGURE 4.22: Pearson correlations between interests and features for each participant
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FIGURE 4.23: Pearson correlations between interests and features without sensing

4.4.4 Conclusion

This research demonstrated that eye measures from a remote eye tracker can be suc-

cessfully used to predict a reader’s interest. We obtained data from experiments

conducted with 13 students, who read 18 newspaper articles each. We extracted sev-

enteen features from raw gaze data obtained from the tracker and used it for further

classification of the data into different levels of interest. Although the correlation of

the features with the interest labels were not as high as expected, forward-saccade

speed, fixation duration and regression speed were significant.

This work can be extended to include data from other sensors like an infrared

thermal camera to measure nose temperature and a physiological wristband to mea-

sure heart rate and skin electrical conductance. Data acquisition could also be im-

proved by controlling the environment to present a stress-free or at-home experience

for the reader. Also, unsupervised learning could be used for data classification to

avoid human error in the ground truth.

Although the accuracies were not as high as expected, this research threw light

on the features that could be extracted from the physiological data from a wearable

device and its role in predicting the affective state of the reader. The collection of

ground truth related to interest and understanding are widely prone to human error

and individual behavior, which is also a reason for the low accuracies.
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4.5 Confidence Recognition on Multiple-Choice Questions

Self-confidence is a base of meta-cognitive judgments and the most common paradigm

in meta-cognitive domains ranging from decision making and reasoning [2, 58] to

perceptual judgments [57, 138] and memory evaluations [50, 55]. It is a manifesta-

tion of meta-cognitive assessing of own knowledge or scholastic ability, and affected

by proficiency, achievement, cognitive anxiety and difficulty of a task [35]. Self-

confidence can benefit a student’s engagement and learning outcome [119]. More-

over, previous research has proved that self-confidence enhancement is significantly

correlated to learning progress [77]. From the above, measuring self-confidence can

be helpful for checking learning progress and states of students.

One of the most critical cases that self-confidence plays an important role is on

Multiple-Choice Questions (MCQ). MCQ is a type of question asking to select the

most appropriate choice from given ones for a question. Since the information ob-

tained from MCQ is only the correctness of answers, it is hard to distinguish the

case that students answered with high confidence or randomly without confidence.

Actually, the following two cases are serious: (a) the case that students answered in-

correctly with confidence and (b) the case that students answered correctly without

confidence. In the case (a), they have the wrong knowledge, which may cause other

misunderstandings. In the case (b), they just answered correctly by chance, and lose

a chance to correct knowledge.

This section presents a solution to such serious cases. We propose a system that

estimates self-confidence while solving MCQ. We employ eye movement data, be-

cause of our assumption that eye movement with confidence is different form that

without it. On the basis of the estimation result, our system generates a report about

which question should be reviewed again after solving (see Figure 4.24).

We conducted two data recordings in order to evaluate the performance. In the

first recording, we created a small but well-designed dataset in the laboratory (11

Japanese university students solved 880 questions in English). On this laboratory

dataset, we investigated effective features, the accuracy, and user-dependency. Then,

we trained a classification model by the laboratory dataset and demonstrated the

system in a cram school. During the five-weeks demonstration, we obtained real

solving behaviors (72 Japanese high school students solved 145,489 questions in En-

glish and 14,302 of them are labeled by themselves). On this wild dataset, we real-

ized the limitations and problems of our system. The number of training samples

required for the self-confidence estimation is also investigated by using this large

dataset. Our contributions are as follows: (1) On the laboratory dataset, we have

succeeded to estimate self-confidences on MCQ in practical accuracies: 76.1 % on a

user-independent training. (2) On the wild dataset, we have evaluated our proposed
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system on real solving behaviors and discussed limitations and potentials.

Many types of research have mentioned correlations between self-confidence or

other affective states and behaviors of people in specific tasks including achievement

test of learning [98, 164], cognitive test [103, 170] and cooking [140].

Roderer et al. have gathered participants in several ages and have found a cor-

relation between self-confidence of participants and their age. Junior participants

have tended to get higher self-confidence than senior participants [148]. In contrast

to this research, we gathered participants in almost the same age so as to investigate

self-confidence with only information in answering. The researches referred above,

however, only have proved the correlations. On the other hand, our work is not only

to find correlations but also to estimate self-confidence for practical applications.

The closest to our work is work by Yamada et al. They have estimated self-

confidences on MCQ by utilizing an eye tracker and SVM with a user-dependent

training [188]. Compared to their work, we have investigated two training ap-

proaches (an user-dependent and an user-independent) and demonstrated in the

real environment. Assuming that we implement a real application, it is hard to ask

all new users to record their behaviors for training the system before using it. Provid-

ing an option of a user-independent method is necessary for practical applications.

FIGURE 4.24: Confidence-aware learning assistant (CoaLA). After solving some
Multiple-Choice Questions, it recommends questions which should be checked again on the
basis of not only the correctness but also the self-confidence estimated by eye movements.
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4.5.1 Approach

We hereby explain our proposed method. Our method has the following three steps.

Firstly, we display an English question and record the eye gaze. Secondly, we extract

features from the recorded data. Finally, we estimate the self-confidence of the an-

swer as a classification task.

Data Recording and Pre-processing

The eye gaze of a user is recorded by a remote eye tracker attached at the bottom of

a display. The output of an eye tracker includes coordinates of the gaze on a display

and their timestamps.

Eye movements while solving MCQ are composed of three metrics: fixations,

saccades, and blinks. A fixation indicates an event when the gaze pause in a certain

position over a certain period usually minimum 100 ms. A rapid movement between

fixations is called a saccade. We classify raw eye gaze into fixations and saccades by

utilizing an algorithm proposed by Buscher et al. [24].

A blink – semi-autonomic rapid closing of the eyelid – is measured as a coor-

dinate (0, 0) in the output of an eye tracker. But it is not analyzed in our method

because a time required to solve one question (from 10 seconds to one minute) is too

short to calculate statistical features. In addition, a smooth pursuit occurs when a

person tracks a moving object with slow speed. But this metric is not considered in

this method because all information on a display is fixed.

Feature Calculation

We define Areas of Interest (AOIs) as rectangles covering a question and each choice

in order to recognize deep behaviors (e.g., a ratio of reading-times on a question and

choices, a process of the decision with comparisons of choices, etc.) Fixations and

Saccades are automatically associated to the corresponding AOIs in this step.

We extract features from the fixations and saccades. Table 4.10 shows the 30

extracted features. Features No. 1-14 are related to fixations and the features No.

15-28 are related to saccades. We also use the reading-time and the correctness of the

answer as features.

Feature Selection

As the common behavior of users, we select effective features from 30 features to

estimate self-confidence. We apply a forward stepwise for the selection. We create a

subset of features. At the initial state, the subset is empty. We calculate average pre-

cision scores of estimations using each feature, and insert one with the best feature
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TABLE 4.10: List of features from an eye tracker

No. Feature

1-2 fixation {count, ratio} on Choices

3-4 fixation {count, ratio} on Question

5-8 {sum, mean, max, min} of fixation durations on Choices

9-12 {sum, mean, max, min} of fixation durations on Question

13-14 variance of {x, y} coordinate of fixations

15-16 {sum, mean} of saccade length

17-20 saccade count: {all, on Question,

between Choices, between Question and Choices}

21-24 {sum, mean, max, min} of saccade durations

25-28 {sum, mean, max, min} of saccade speeds

29 reading-time

30 correctness of the answer

to the subset. Then performances of estimations with features in the subset and one

new feature are calculated and keep the best combination again. These processes

are repeated until the new subset performs better than the old subset. We utilize

two-fold cross-validation for the each estimation. Note that this step is proceeded

only while training. Preliminary selected features are used to classify an unknown

sample.

Classification

We estimate self-confidence of answers with a Support Vector Machine (SVM) by

using the selected features. RBF kernel with penalty parameter: C = 1 and how

far the influence of a single training example reaches: gamma = 0.125 were selected

experimentally and are used for the SVM. As a preliminary experiment, we tested

other machine leaning techniques including Random Forest, and it has been found

that SVM performs the best overall in our classification task.

4.5.2 Experimental Design

Recording in the Laboratory

We asked 11 participants (male: 9, female: 2) to solve 80 MCQ about English vocab-

ularies and grammars. All the participants were Japanese university students. As

shown in Figure 4.25a, they answered the most appropriate word for a blank in a
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question from choices. After answering each question, they answered a question-

naire “Do you have a confidence in your decision?” with “Yes” or “No”. The results

of questionnaires were used as ground truth labels. We utilized Tobii eyeX which is

a kind of stationary eye tracker to measure eye movements of participants. The eye

tracker was calibrated to a participant at the beginning of the experiment.

(A) Recording in the laboratory (B) Recording in the wild

FIGURE 4.25: Examples of questions for the recordings

One of the advantages of this controlled dataset is that we corrected data with

the same number of samples from all participants. By using this balanced data, we

evaluated our method with a user-dependent training and user-independent train-

ing. The performance of the model is evaluated by leave-one-document-out cross-

validation. In the user-dependent training, a model was built for each participant

(i.e., 79 samples of the participant were used for training to predict the remaining

one sample). In the user-independent method, a model was built for each partic-

ipant and each document (i.e., 79×10 samples excluding the participant and the

document were used for training to predict one sample). In the user independent

training, the model was built in the document independent manner.

Recording in the Wild

We collaborated with a cram school and installed our system in the school. Stu-

dents solved MCQ about vocabularies in English on the system. Then they printed

out a list of words involving incorrect answers and correct answers with low self-

confidence. The questions were prepared by the cram school. The main purpose

of this installation was not recording data but demonstrating the system in the real

environment. Therefore, unlike the recording in the laboratory, we did not prevent

students’ natural behaviors. A calibration of an eye tracker was performed once be-

fore a student starts using the system. We asked their self-confidence (ground truth)

once every five questions. Each student has own username in order to track who
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solved which question with or without confidence. The number of solved questions

depends on the students. We utilized Tobii 4C remote 90 Hz eye tracker for this

recording. Note that an upgrade key provided by Tobii is applied to use it for the

scientific purpose. The duration of this demonstration was around five weeks. 83

students used our system and we collected 145,489 solving behaviors in total.

Since real recordings included many noisy behaviors, following filterers were

applied to obtain a reliable dataset. (1) We decided to analyze labeled data in this

work. (2) Data with invalid usernames (e.g., guest) are ignored in the analysis. (3)

Data with only few eye gaze (a ratio of valid gaze coordinates is less than 80 % of

one recording) are also ignored. Finally, the wild dataset consists of 14,302 valid

samples from 72 students. We evaluated our proposed self-confidence estimation

on this dataset with 10-fold cross-validation.

TABLE 4.11: Distributions of samples in the datasets

(A) Laboratory dataset

Confident Unconfident

Correct 131 89

Incorrect 408 252

(B) Wild dataset

Confident Unconfident

Correct 10,529 2,125

Incorrect 656 992

4.5.3 Results and Discussion

Table 4.11 shows distributions of samples. Characteristics of questions in the two

datasets are different. Questions in the laboratory dataset seem to be difficult for

participants, and there are more incorrect answers than correct answers. On the

other hand, most of the answers in the wild dataset were correct. Accuracies and

average precisions (AP) of each condition are summarized in Table 4.12.

TABLE 4.12: Summary of the evaluations

Training Testing
Classification Detection (AUC)

(Accuracy) Confident Unconfident

Lab. Lab. 0.76 0.89 0.78

Lab. Wild 0.78 0.49 0.30

Wild Wild 0.82 0.60 0.42
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User-Dependency

On the laboratory dataset, we have compared the performances with two types of

base lines: reading-time only, and prior probability. The former is an estimation result

of the SVM using reading-time only as the feature, and the latter is a proportion of

confident answers in the experiment.

Results of performances by the user-dependent training are displayed in Fig-

ure 4.26 (a). The average accuracy of the SVM is 75.6 %. According to Welch’s t-test,

it is significantly better than the prior probability (p < 0.01). Results of performances

by the user-independent training are displayed in Figure 4.26 (b). The average accu-

racy of the SVM is 76.1 % significantly better than the prior probability (p < 0.01).

In participant F, the accuracy was lower than a prior probability. It implies that be-

haviors of the participant in answering were different from others. Therefore, it was

sometimes estimated wrongly due to be affected by other participants’ data.

(A) user-dependent training (B) user-independent training

FIGURE 4.26: Accuracies of the confidence estimation by (a) user-dependent and (b)
user-independent training. The average accuracies of each method are 75.6 %, 77.6 % and

63.5 % in user-dependent and 76.1 %, 77.3 % and 63.5 % in user-independent.

In almost of all participants, we could obtain higher accuracy than prior prob-

ability. However, our proposed method could not outperform another base line

(reading-time only). One assumption about this result is that the lack of the number

of training samples. Especially on user-dependent training, 79 samples might be too

small to find characteristics of eye movements representing confidence. The user-

independent training using 790 samples performed better although each participant

should have individual reading preferences. In summary, there was not significant

user-dependency on our proposed system according to the evaluation of the labora-

tory dataset.

Limitation of Eye Tracking in the Wild

In a real learning scenario, we are not able to ask students to calibrate an eye tracker

many times. They frequently move a head and change a seat position. Therefore
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eye gaze in the wild dataset was not precise compared to data in the laboratory.

Figure 4.27 shows examples of shifted eye movements. It causes problems in our

feature calculation because AOIs are predefined as absolute coordinates on a display.

However, an interesting finding from scan path images is that a relative positional

relationship between gazes on a question and choices is still correct even if they are

shifted. In order to solve this issue, we decided to define AOIs with a new approach.

From all fixations in one recording, we calculate the maximum and the minimum x

and y coordinates. Then AOIs are defined on the basis of relative positions in this

space. In our question format, an area of question is the 34 % top part of the space,

and areas of questions are divided into a cross of the remaining 66 % bottom part.

FIGURE 4.27: Calibration problems in the wild dataset

Effective Features

Figure 4.28 shows a list of features selected on the laboratory and wild recordings.

In both conditions, f29: reading-time has the highest correlation with self-confidence,

and was selected as a feature. f4: fixation ratio on Question was also selected in both

dataset. However, there is not more overlap between the two selections. One hy-

pothesis about this difference is because of the gap of questions. For instance, f30:

correctness of the answer is an effective feature in the wild dataset but it has the lowest

correlation in the laboratory dataset. This is because of the difficulty of the ques-

tions (see Table 4.11 (a) and find there are many samples of high self-confidences on

incorrect answers).
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Most of the calculated features are negatively correlated with self-confidence.

This is because the longer a student takes time to consider, the more fixations and

saccades on a question and choices are observed. It is interesting that a feature which

is highly correlated with self-confidence is not necessarily selected in a classifier.

Furthermore, a feature which is not correlated individually (e.g., f4: fixation ratio on

Question and f16: mean saccade length) can play an important role in a combination

with other features.
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(A) Laboratory dataset
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FIGURE 4.28: Pearson correlations between self-confidence and each feature. Features
selected by the forward stepwise are highlighted as red color. (circle: positive, triangle:

negative correlation; sorted by the absolute value)

Valid Metrics for the Evaluation

We are not able to evaluate our proposed method by using an accuracy on the

wild dataset because the number of samples in each class is unbalanced (see Ta-

ble 4.11 (b)). By considering use cases of the system, we decided to measure the

performance as detection tasks of critical conditions in learning mentioned in the

Introduction: high self-confidences on incorrect answers and low sef-confidences on

correct answers. Figure 4.29 shows the performances of the two conditions. Correct

answers and incorrect answers are used for training one classifier, but predictions

were applied individually on correct answers and on incorrect answers. Users can

adjust a parameter for their purpose by referring to the results.

According to Figure 4.29 (a), there is a contribution of our feature selection, and
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it performed better than training with all features and reading time only. This re-

sult proves the benefit of our system because at least it can detect the worst condi-

tion in learning, i.e., overconfidence or misunderstanding. On the other hand, Fig-

ure 4.29 (b) shows more improvements are required towards precise unconfidence

detection.
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(A) Confidence detection on incorrect answers
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(B) Unconfidence detection on correct answers

FIGURE 4.29: Precision-Recall Curves of the self-confidence estimation
trained/tested on the wild dataset.

The Number of Training Samples

Figure 4.30 shows the relation between the number of training samples and the per-

formance. Regarding the confidence detection, the average precision increased till

the number of training samples reached to 6000. Increments more than 6000 did not

contribute to the improvement, but the more training samples we had, the less stan-

dard deviation of the result was obtained. Scores of unconfidence prediction were

almost the same on the all condition.
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FIGURE 4.30: Average precision scores on different number of samples
randomly selected from the wild dataset.
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Observation of the Classified Samples

We describe differences of eye gaze between the case a participant answered with

confidence and without confidence. We display on Figure 4.31 some examples of

the estimation results in the laboratory dataset. The circles represent the fixations

and the diameter of the circle is proportional to fixation duration. Hence the longer

a participant looked at a point, the larger the diameter of the fixation is. The lines

between circles represent the saccades.

(A) True confident estimated as confident (B) True confident estimated as unconfident

(C) True unconfident estimated as confident (D) True unconfident estimated as unconfident

FIGURE 4.31: Examples of eye gaze on each classification result

Figures 4.31 (a) and 4.31 (d) are examples of correct estimations. We can find

that the confidence in answering is characterized by the fewer eye movements and

smaller diameter of the fixations, on the other hand, the unconfidence is character-

ized by the complex eye movements and the longer fixation durations.

In Figure 4.31 (b), a participant answered without confidence, but the classifier

estimated as a confident decision. We assume that he gave up to answer correctly

to this question because he did not have the necessary knowledge. In such a case,

we can find that the number of fixations is small and the participant took short time

to answer. These characteristics are common to Figure 4.31 (a), which represents a

confident decision. Therefore, the classifier estimated as a confident decision.

In Figure 4.31 (c), a participant answered with confidence, but the classifier esti-

mated as he answered without confidence. We assume that this participant decided
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his answer carefully by eliminating irrelevant choice one by one. In such a case, we

find more fixations and frequent transitions of eyes between rectangles. This char-

acteristic is common to Figure 4.31 (d), which represents an unconfident answer.

4.5.4 Conclusion

We have proposed a method to estimate a self-confidence of a student in answering

Multiple-Choice Questions (MCQ) by eye tracking. The method was evaluated on

the laboratory dataset and the wild dataset. As results, we observed the following

findings. Classifiers trained by both dataset are significantly performed better than

prior probabilities. There is a contribution of eye gaze in the confidence detection

on incorrect answers. Our method is not significantly user-dependent. Effective

features for self-confidence estimation depends on the task, but reading-time and the

fixation ratio on a question were selected on both conditions. Depending on a task,

AOIs based on relative coordinates solves calibration issues. The average precision

increased until the number of recorded learning behaviors reached to 6000.

As future work, we will apply our method to different kinds of subjects involv-

ing Mathematics, Science, Society and so on. We expect successful estimation of

self-confidence in an MCQ which a student can answer just looking a display and

thinking about a question. Moreover, we aim to apply our method to questions

which do not include choices. In this work, designing AOIs for a question and each

choice has been related to obtaining some effective features. We need to find new

features to solve this problem.
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4.6 Confidence Recognition on Spelling Tests

This section proposes a method estimating self-confidence on vocabulary spelling

tests. Many learners memorize words in their non-native language by complet-

ing spelling tests repeatedly. In this approach, learners typically solve tests, check

the correctness of their responses, create a list of unacquired words, and complete

tests of the words in the list again. However, this approach may not be sufficiently

comprehensive, and it may be helpful for learners to review words that were an-

swered correctly to prevent the incremental forgetting of the correct spelling over

time. We believe that self-confidence provide an fruitful information for selecting

which words should be reviewed in addition to unacquired word.

Yu et al. asked participants to solve the questions which have different work-

load and estimate their workload by handwriting behavior. They extracted speed,

pressure and stroke length of each stroke as the features. Ugurlu et al. analyzed the

user’s emotional change by collecting the written characters in solving homework

questions and exam questions [178]. Since the features extracted by written charac-

ters or the stroke lengths may depend on the questions, we use only the stroke-level

features. Kishi et al. proposed a weak point detection algorithm by using writing

interval features [101]. Asai and Yamana estimated the user’s frustration and to-be-

forgotten items based on the stroke-level handwriting analysis [6, 7]. Although the

feature we use is similar to theirs, the task is totally different from ours.

The closet to this research topic is work by Maruichi et al. [125]. They estimated

self-confidence on spelling tests by analyzing typing. We follow their research and

extend the sensing approach closer to natural learning behavior: hand writing.

We propose an algorithm that is question independent, specialized with self-

confidence estimation of vocabulary questions, and only with the stroke-level hand-

writing logs. Since handwriting recognition has been already investigated by many

researchers [48, 132, 155], detecting the correctness of an answer by recognizing writ-

ten characters are not included in our research.

4.6.1 Approach

The proposed method consists of the following four steps: data recording, feature

extraction, feature selection and classification.

Recording

We record four types of information by using a stylus pen and a computer: event

type (press, release or move), timestamp of the event, the x-y coordinates of the

event, and the function of the event (writing or erasing).
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Feature Extraction

We extract five categories of features about answering time, writing interval, writing

speed, writing pressure and erasing ratio. The detail of the features is shown in

Table 4.13. In this approach, one stoke is defined as a series of action from a user

touches a screen with a pen until releases the pen from the screen. The writing

intervals refer to the latency between each stroke. The writing speeds are calculated

by average speeds of each stroke.

TABLE 4.13: The list of extracted features

Category No. Features

Ans. time f1 answering time / total stroke length
Interval f2-f8 {ave, var, max, min, med, first, last} interval

f9-f11 {first, last, sum} interval / answering time
Speed f12-f16 {ave, var, max, min, med} speed
Pressure f17-f21 {ave, var, max, min, med} pressure
Erase f22 the number of erases / the number of strokes

Feature Selection

Using many features does not always increase classification performance. We use

forward stepwise selection to select effective features. We divide training samples

into five sections and conduct cross-validation by adding a feature and calculating

the average accuracy. We then select the feature set associated with the highest ac-

curacy of all average accuracy values. This step is conducted only for the training

data. Preliminarily selected features are used to classify unknown samples.

Classification

We utilize a Support Vector Machine (SVM) with a radial basis function kernel and

hyper parameters: (C = 1.0, gamma = 0.045) to classify each sample into two classes:

confident or unconfident.

4.6.2 Experimental Design

We recruited 11 university students studying in Germany as participants (three males

from Japan, seven males from China, and two females from China). Participants

were presented with a Japanese or Chinese word (depending on their primary lan-

guage), and completed the English translation into the designated blanks, as shown

in Figure 4.32 with lower case characters. We instructed participants to write one
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character in each blank with a block letter if possible, so that we could recognize

the characters easily. Participants could skip the problem if they did not know

the answer. In such cases, we were not able to record the handwriting behaviors

for the question. Participants solved as many questions as possible within 1 hour.

Questions were selected from a pool of vocabulary terms frequently used in Test of

English for International Communication (TOEIC), as in the typing condition. The

number of characters was between 3-12 for each question. Microsoft Surface Studio

was used to display questions and record solving behaviors.

After solving each question, participants reported their self-confidence about

their answer. They had the following three options: (1) Feeling unconfident about

both the spelling and the answer, (2) Feeling unconfident about the spelling but con-

fident about the answer, (3) Feeling confident about both the spelling and the answer.

We considered both (1) and (2) as unconfident and (3) as confident for the ground

truth label of the self-confidence estimation. We did not estimate self- confidence for

spelling (i.e., the classification between (1) and (2)) because the number of samples

labeled as (2) was too small, compared with the others, for training the model.

FIGURE 4.32: A screenshot of the handwriting vocabulary test

We compared the performance of the proposed method by using two different

evaluation methods: user-dependent and user-independent. For the user-dependent

evaluation, a part of the users’ data was used for training and the other part was

used for testing the performance. We selected the features in a user-dependent man-

ner, then conducted 10-fold cross-validation. For the user-independent evaluation,

data from one user were used for testing and data from all other users were used for
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training. We selected features user-independently, then ran a leave-one-participant-

out cross-validation. Questions in the testing data were excluded from the training

data to prevent over fitting. In both cases, we calculated an average accuracy among

all participants, which is weighted by the number of questions. Since the dataset

is not balanced, we applied to undersample with balanced bagging algorithm [75].

We report both performances with the undersampled and the non-undersampled

classifier in order to evaluate the importance of the undersampling.

4.6.3 Results and Discussion

TABLE 4.14: Self-confidence estimation results

Training Sampling
Classification Detection (AUC)

(Accuracy) Confident Unconfident

baseline 0.66 ± 0.10 0.66 0.34
user-dependent unbalanced 0.80 ± 0.06 0.90 0.64

balanced 0.79 ± 0.04 0.91 0.73

user-independent unbalanced 0.74 ± 0.07 0.87 0.62
balanced 0.74 ± 0.03 0.88 0.65
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(B) Low confidence detection

FIGURE 4.33: Precision-Recall curve

The average and standard deviation of accuracy and the Area Under the Curve

(AUC) of each class is shown in Table 4.14. The baseline is defined as the ratio

of the majority class. The user-dependent used unbalanced dataset achieved the

highest performance of all methods. However, our dataset is too much unbalance

in some participants. Thus, we also have drawn the precision-recall curve for each
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method and each class in Figure 4.33. Comparing the two methods, the AUC of

high confident detection not so much changed. However, the AUC of low confident

detection is better when using balanced training dataset. We think we had better use

balanced training dataset.

For the user-independent method, the performance is not drastically changed

compared with the user-dependent method. Since the dataset is basically balanced,

there is not so much difference between balanced and unbalanced training.

Selected Features

Table 4.15 shows selected features in the user-independent method. The number 1

refers selected feature while 0 represent the unselected feature. Figure 4.34 refers cor-

relation between self-confidence and each feature in the user-independent method.

We find there is a weak negative correlation between writing interval and confi-

dence. In other words, lower confidence leads longer writing interval. The number

of erasing has the same tendency. The features are effective to self-confidence es-

timation. Speed and pressure do not have so much correlation to self-confidence.

However, some of them are selected. We assume that since they are no strong cor-

relation with interval or the number of erasing, they may work effective combined

with interval or the number of erasing.

TABLE 4.15: Selected features in user-independent method

sampling f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f 14 f15 f16 f17 f18 f19 f20 f21 f22

unbalanced 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1
balanced 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0
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FIGURE 4.34: Pearson correlation between self-confidence and
each feature in user-independent method



4.6. Confidence Recognition on Spelling Tests 101

The Number of Training Samples

For the user-independent method, we tried to regulate the number of training sam-

ples to make it clear how much samples required for the good estimation. The result

is shown in Figure 4.35. The performance of the system gets higher as the number

of samples increases. The impact is smaller than we have expected. We find 200-400

will be enough since the accuracy is stable over 200-400 in both methods.

FIGURE 4.35: The number of training samples and the accuracy

Observation of the Classified Samples

We visualize some of the classified samples in Figure 4.36 to discuss the reason for

the classification errors. The horizontal axis has normalized by the answering time.

The string shown at the bottom of each figure is the actual word that the participant

wrote. Note that the number of stroke is not equal to the number of character if the

participant used an erasing function while writing.

In Figure 4.36 (b), the user felt unconfident with the answer in actual. Since the

behavior became similar to confident case in Figure 4.36 (a), the classifier predicted

the questions as high confident. In Figure 4.36 (c), the user was thinking or might

take a short rest before solving and the interval got too long. Therefore the classifier

predicted the questions as low confident.

These kinds of classification errors were caused due to our method highly de-

pends on the writing behavior, especially on the writing interval (for instance f 4 in

Table 4.13 and Table 4.15). It is hard to solve these by current features. Therefore, we

have to find another feature which is as effective as the writing interval features.
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(B) True unconfident estimated as confident
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(C) True confident estimated as unconfident
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(D) True unconfident estimated as unconfident

FIGURE 4.36: Examples of stroke intervals in each class

4.6.4 Conclusion

We have proposed a self-confidence estimation method based on the stroke-level

handwriting analysis. The accuracy of our method is 80 % in an user-dependent

case, and 74 % in an user-independent prediction. Our method uses only question-

independent features. We found that self-confidence is negatively correlated with

writing interval and the number of erases. Limitations of this study are the unbal-

anced dataset and the high dependency on writing interval. Future work includes

increasing the number of participants, applying our method to other types of ques-

tions, and evaluating the performance of confidence-aware review feedback.
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Chapter 5

Intervention in Reading and

Learning

Every human has different preferences in reading. For example, some people need

details about a background for further understanding while the others do not re-

quire. It depends on who reads what. However, documents have traditionally been

static. We believe that reading experiences should become more immersive and in-

teresting if documents behave differently for each individual reader. The combi-

nation of an digital document and activity recognition (e.g., recognizing interest,

workload, and comprehension) makes it possible to provide dynamically-generated

content individually optimized for each reader and context.

This chapter presents work towards realizing such an interactive document. Sec-

tion 5.1 demonstrates HyperMind: the interactive digital textbook as an application

utilizing affective states measured by the sensors [81]. This thesis includes an eval-

uation of an early prototype but it improved reading experiences of students. Sec-

tion 5.2 presents a graphical user interface to create the textbooks [84]. Digitalizing

reading materials should effect in both positive and negative way. Section 5.3 re-

ports how reading activities are influenced by media: paper or screen. Comprehen-

sion tests, an eye tracker, and a physiological sensing wristband were used for the

assessment [20].

The following sections are based on collaborative work with students. Section 5.2:

Ko Watanabe and Section 5.3: Iuliia Brishtel.
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5.1 HyperMind Reader: Intelligent Digital Textbook

Various school subjects are aligned with contents which are captured in textbooks.

Although curiosity is an important factor for learning, every student has a different

way of learning based on individual speed and preferences, textbooks have tradi-

tionally been found to be static and consistently dull for a variety of learners. There-

fore, students sometimes avert their eyes from reading a textbook because it is bor-

ing. One of the solutions to this problem is to apply Human-Document Interaction

in textbook reading, i.e., to develop a digital textbook which can make the materi-

als for learning and instruction dynamic and anticipating on display. For instance,

in Physics, it is highly efficient to show phenomenon, experiments, representations

and 3D models as dynamic contents using multi medias.

The idea of making texts dynamic has been originally proposed by Biedert et al.

as Text 2.0 [15]. They have created a framework to construct gaze-responsive real

time interactions to enhance the reading experience (e.g., displaying images, trans-

lations, footnote, and bookmarks). But even if the various interactions are actuated

by each reader’s reading behavior, the augmentations are same among all readers.

The motivation of our study is to make texts not only dynamic but also anticipating.

We measure the affective states of learners including their interests, workloads, and

comprehensions, then augment the text by providing individualized information to

enhance their learning abilities.

This section demonstrates the architecture and a initial study investigating posi-

tive and negative effects of the augmentation to students’ learning experiences.

FIGURE 5.1: An overview the intelligent digital textbook: HyperMind
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5.1.1 Architecture

We utilize sensors to recognize affective states and to give feedback to students (in-

tervention) and teachers (visualization). This subsection explain the details of the

technical background.

Intervention

As a prototype, we have implemented a system which displays supplemental learn-

ing materials on a textbook on the basis of eye movements. When, what, and how

should be displayed are important problems. When and what are investigated as af-

fective states recognition mentioned in Chapter 4. Therefore we focus on how the

additional learning materials should be shown on the limited space of the display.

We consider a case a video will be displayed when a student has trouble to under-

stand a figure or a description. Initially we developed the following two interfaces:

replace and popup. Replace is an idea overwriting an original content by a supporting

material. The advantage of this idea is that an additional space is not required. How-

ever, those who could or was trying to understand do not satisfy this idea. Even if

the system asks students whether the content should be replaced, it disturbs natural

reading behaviors. Popup is an approach overlaying a supporting material but not

on an original content. Students can read both contents side-by-side. In this case, we

need to discuss on which place the material should be displayed. Overlaying on the

center of the display hides other contents. Keeping one space (e.g., the corder edge

of a page) as blank and displaying all popups on the space does not disturb reading

but it causes a split attention effect.

FIGURE 5.2: A gaze-oriented interaction on a textbook

Finally we designed a sliding popup approach shown in Figure 5.2. When the

system finds a demand of an assistant, it shows a thumbnail image of the video on

the margin of the textbook. If a student keeps watching the thumbnail, the size of

the material will be increased enough to be read. If the material involves a video or
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sound, it starts automatically. While the material is displayed, the original contents

are shifted horizontally to create a space for the augmentation. If the attention of

the student moves to parts not related to the supporting material, the textbook shifts

again to the original position.

Visualization

Affective states of a student is visualized in real time as shown in the right screen

in Figure 5.1. Therefore teachers can monitor the process and find anomalies while

reading. Figure 5.3 shows some heat maps generated by eye movements and nose

temperature for examples. The fixation duration based heat map represents on

which part of the textbook the student read with high attention. The regression

based heat map give insights about the potion hard to understand. The nose tem-

peratures can be visualized as not only a time-series signal but also as a heat map by

synchronizing with eye gaze using the time stamp.

FIGURE 5.3: Combining eye tracking and thermography to recognize affective states

5.1.2 Experimental Design

We evaluated an early prototype of the proposed system. We asked 32 high school

students in Germany (14±1.2 years old) to participate in an experiment. In order to

distribute expertise, we recruited them from two grades: 12 of them are 8th grade

and 20 students are 10th grade. They were separated into two groups reading fol-

lowing two textbooks and answering exercises and surveys.
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We prepared two textbooks in Physics (Kinematics as an easy subject and Elec-

tromagnetism as relatively difficult subject) in two conditions (static and dynamic).

The static textbooks did not have any interactions, and the dynamic textbooks had

interactions mentioned above. Participants read one subject on a static textbook and

another subject on a dynamic textbook. The order of subjects and conditions were

randomized in all recordings. The time limit of one reading was 7 minutes. Tobii

4C 90 Hz remote eye tracker was used for interactions. We calibrated the eye tracker

before each reading.

After reading a textbook, participants solved exercises related to the content and

answered to surveys shown in Table 5.1. We compared their performances and feel-

ings in the two conditions by analyzing the answers.

TABLE 5.1: Twelve surveys

No. Survey

s1 I could follow the text well.

s2 I could reproduce the main contents of the text.

s3 The reading of the text ran smoothly.

s4 The illustrations were helpful to understand the text.

s5 The tables were helpful to understand the text.

s6 The design of the text page was appealing.

s7 The design of the text page made it easier to understand the text.

s8 I could well imagine what was described in the text.

s9 The textbook was difficult.

s10 Understanding the textbook has created problems for me.

s11 I needed more time to read the textbook text.

s12 I had to make an effort to understand the content of the text.

5.1.3 Results and Discussion

Figure 5.4 shows distributions of scores of exercises in the two conditions. On a

Kinematics page, there is a small increase of the mean score in the dynamic condi-

tion. The distribution moved to higher score. On an Electromagnetism page, the

minimum score was increase in the dynamic condition. However, the mean value

was decreased and scores were distributed widely compared to the static condition.

According to this result, the dynamic assistant does not always improve the perfor-

mance of learning significantly.

We discuss the reason by analyzing answers of surveys shown in Figure 5.5. The

most interesting finding from the answers was about s11. Some of the participants

reported that they did not enough time to finish reading a textbook in the time limit.
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FIGURE 5.4: Distributions of scores on the static and dynamic textbook.
The box plot represents the minimum, 25 %, 75 %, and maximum score in each condition.
The median is highlighted as a blue line and the mean is displayed as a triangle marker.

This is because the dynamic textbook included videos and most of students watched

the videos from begging to the end, furthermore, some of them watched several

times. Therefore they might needed to hurry in reading the last minutes or might

not be able to finish reading.

On the other hand, according to s2, s9 and s12 (meanings of the questions are al-

most same), self-confidence about the understanding increased in the dynamic con-

dition. This improvement does not appears in a short-term evaluation but it should

motivate students to read a textbook with positive feelings.

5.1.4 Conclusion

This section demonstrated the technical overview of the intelligent digital textbook

and reported a pilot study using the prototype. Although it takes longer time to

read than a static textbook, a dynamic textbook has a potential to improve both of

the learning performance and the learning experience.

Future work includes evaluating of the next prototypes involving other sensing

modalities. The investigation about learning materials, i.e., what should the system

as a supporting material display is still remaining as an important problem.
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FIGURE 5.5: Distributions of survey answers asked after reading textbooks
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5.2 HyperMind Builder: GUI to Create Interactive Documents

Since the appearance of human sensing technologies including eye tracking, real-

time collection of reading behavior has been getting more affordable in several en-

vironments [86, 112]. These technologies have enabled researchers to design intel-

ligent interactive documents as presented in Section 5.1. Furthermore, Text 2.0 [15],

a framework to create gaze-oriented dynamic documents in HTML and JavaScript,

has helped software developers to implement interactive documents.

However, implementing interactions on documents is difficult especially for those

who need it (e.g., teachers, publishers, and researchers in education). They still need

helps of a person who can write programs to create interactive documents. In such

a case, there is a possibility of having a discrepancy on the understanding of each

other. It is difficult for teachers to explain their ideas completely, and software de-

velopers may misunderstand them.

In order to give everyone an opportunity to create intelligent interactive docu-

ments, we propose HyperMind Builder – Graphical User Interface (GUI) for creating

intelligent interactive documents without requiring any programming skills. This

section presents an overview of our proposed system, application scenario, and an

initial observation to investigate further improvements. Towards our vision of the

ecosystem shown in Figure 5.6, this section presents HyperMind Builder and an ini-

tial observation.

The closest concept to our system is the visual programming languages appli-

cation like Scratch [146]. Scratch is an open-source media-rich programming envi-

ronment. This application allowed many users to learn the concept of programming

with an intuitive drag and drop method. It motivates many users and lowered the

startup hurdle of programming. Our GUI toolkit has a similar concept, which is to

lower the hurdle of creating an interactive document.

FIGURE 5.6: Overview of a work-flow in an educational scenario
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5.2.1 Approach

We focus on designing a system with no programming and allowing intuitive opera-

tion for users. In our system, the screen is divided into three columns. In the central

column, we provide an open source rich text editor. Since it is a WYSIWYG edi-

tor, a user can easily write texts and modify the styles or copy-and-paste texts from

other shared contents. On each side of the editor, we arrange columns of material

container. A user puts additional materials (e.g., images and videos related to the

content) into the container by drag-and-drop. Providing columns on each side of the

editor allows a user to add materials anywhere close to the context. After inserting

materials, a user draws a hidden rectangle on the main content and creates relations

between inserted materials and rectangles. After creating a document, a user can

export and share the data with a format of HyperMind Reader [81]. In summary, our

system requires only the writing of the content, drag-and-drop, and mouse clicks.

(A) One column layout (B) Double column layout

(C) A document including music scores (D) A document including programming codes

FIGURE 5.7: Examples of intelligent interactive documents created on our system.
Document sources are from OpenStax, MILINE Library, and Twitter Bootstrap (CC license).
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Figure 5.7 presents examples of documents created on our system. The most

promising use-case is for textbooks. Additional materials which will be displayed

when a student is interested in (or has troubles to understand) the content should

improve the learning experience. In addition, the gaze-oriented interaction is useful

in several scenarios including reading a musical score or programming codes.

The additional materials around the main content will be displayed when they

are required. The current implementation supports an activation based on a reader’s

attention. In other words, it utilizes an eye tracker and the related materials will be

displayed if a reader’s eye gaze is on a hidden rectangle longer than a threshold. We

can register other activation rules (e.g., interest, comprehension, mental workload)

if we utilize additional sensors.

5.2.2 Experimental design

In order to explore how simple and useful our system is for users, we conducted a

small study. Following subsections describe the condition and the analysis results.

We asked 10 college students with an age between 20 - 29 to participate in our

study. We provided sample texts, supporting materials (videos and images), and

multiple-choice questions related to the text for measuring the comprehension. Tasks

for the participants were (1) to create an interactive document, (2) to read a document

created by another participant, and (3) to solve multiple-choice questions. Before

starting the tasks, we gave an instruction of our system to the participants. After the

task, they answered surveys of NASA-TLX [73] and two free-writing questions.

5.2.3 Results and Discussion

Participants put 5.4 ± 2.1 supporting materials on a document. Figure 5.8 shows

the result of NASA-TLX. From the result, we calculated weights by pair comparison

on each factors as shown in Figure 5.9. This figure infers that higher the weight of

factor, it corresponds to a cause of a high work-load on each participant during the

task. For instance, for Participant 9, Performance was the highest weight recorded.

Hence, our system must improve Performance according to this participant. Overall

result infer that Mental Demand, Effort, and Temporal Demand are factors that can be

improved, and Physical Demand seems to be lower.

Regarding a free-writing question: “How was the usage of our system?”, we

obtained some answers like “I was a bit confused until I saw the example” or “Drag

and drop were a bit confusing”. We utilized the drag-and-drop because it is an

intuitive function but we should consider preparing other options such as selecting

from a list. But overall, we received several positive feedback including “It was

really intuitive and useful” or “The usage of the system was straightforward and
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easy”. We also asked participants about improvements: “Do you have any idea of

the additional function for the system?” but there was any feedback related to the

concept of the system.

FIGURE 5.8: Results of NASA-TLX

FIGURE 5.9: Weight of factors

5.2.4 Conclusion

We have implemented HyperMind Builder: GUI for to create intelligent interactive

documents. From the observation, we overall proof the friendliness of a toolkit. Our

next aim is to identify an effective activation rules for interactions. Thereby, we can

add a new function of allowing creators to design not only what but also when and

how supporting materials are be displayed.
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5.3 Mental Workload Assessment on Digital Media

According to Global Market Insights, market for Learning Management System (LMS)

grows every year at a 5 % and is expected to reach approximately 240 billion USD

by 2030. In order to provide appropriate means for knowledge transfer, the design

of e-learning environment plays the key role in educational process [53]. However,

previous research pointed on considerable differences in information processing on

paper and electronic surfaces [78]. The results have shown significant advantages

for learning processes on printed media comparing to its digital counterpart. For

the user interface design, this fact means a demand for deeper understanding of

more specific cognitive processes by users on the one hand and implementation of

new evaluation methods to access these processes on the other hand.

In this section, we conduct an experiment assessing cognitive workload of partic-

ipants by using four different measures: result of multiple-choice questions, average

pupil size and fixation duration, which were found to be reliable indicators of cog-

nitive workload [193] and tonic component of electrodermal activity (EDA), which

is relatively new approach in this research area. In summary, we could obtain signif-

icant differences by comparing these four variables in paper and screen conditions.

(A) Sensors (B) Procedures

FIGURE 5.10: An overview of an experimental setup.
After calibrating an eye tracker, participants read documents on screen and paper.
We avoided order effects of the two tasks by dividing participants into subgroups.

5.3.1 Experimental Design

Figure 5.10 shows an overview of the experiment. Two types of sensors were used

to measure cognitive workload: E4 wristband and Pupil Labs wearable eye tracker.

E4 wristband with recording rate of 4 Hz was placed on a non dominant hand of

participants and switched on at the begin of each reading task. The binocular Pupil

Labs eye tracker with recording rate of 120 Hz collected fixation duration and and
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average pupil size. For the reading task on screen, we used a 15-inch retina dis-

play. Lightness both in the room and on the screen was kept in the same state. The

standardized distance between the used media and participants was 30 cm.

Eighteen computer science students from France, Japan, Ireland and Italy with

intermediate to fluent English level and an age between 21 and 27 years participated

in our study. Four of them used contact lenses to correct vision. For participation,

they received a compensation in value of 1,000 JPY.

For the experiment, two passages with six related multiple choice questions were

taken from two scientific texts with the same difficulty level and length. The order

of passages was randomized between participants. We randomly divided partici-

pants into two groups (nine participants per group) to avoid any order effects of the

used media as following. Participants in the paper first group started with a printed

document and after reading solved a multiple-choice test presented on paper (paper

condition). Then, the second document with subsequent multiple-choice question

was presented on the screen (screen condition). The screen first group followed the

same procedure in the reversed order as shown in Figure 5.10 (b). The instruction

was to read documents as quick and as attentive as possible. The time limit for each

document was 7 minutes and 30 seconds and no time limit for solving tests.

5.3.2 Data Analysis Approach

Multiple-Choice Question for Understandably Measurement

We combined all answers from paper and screen conditions into two groups. Con-

sequently, group means were calculated and analyzed with the Wilcoxon-Mann-

Whitney since the data did not satisfy requirements of t-test.

Average Pupil Size and Fixation Duration Processing

Average pupil size and fixation duration were extracted by Pupil Labs software.

In the preprocessing stage, raw data was filtered by 10 Hz low-pass filter and then

controlled for outliers. In the next step, we calculated individual means for both

variables in paper and screen conditions and run t-test on individual level in both

groups. Finally, average pupil size and fixation duration from paper conditions were

taken as a baseline for calculation of relative changes in these variables in related

screen conditions.
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EDA Processing

Electrodermal activity (EDA) relates to the Sympathetic Nerve System (SNS) and in-

crease in physical, emotional or affective state can be obtained in rising of EDA sig-

nal. Tonic component is one of electrodermal measures which activity is associated

with internal information processing [42]. It was processed by the method proposed

by Greco et al. [66]. The data was filtered by 2 Hz low-pass forward-backward dig-

ital filter and then tonic component was extracted. In the next step, we inspected

data for outliers. Then, individual mean of tonic component for each condition was

calculated and analyzed by t-test. Finally, EDA signal in paper conditions was taken

as a baseline for calculation of relative changes in EDA signal screen conditions.

5.3.3 Results and Discussion

The rate of correctly given answers in the multiple-choice question was 72.2 % while

after reading documents the results were at 13.9 % worse (p < 0.05).

TABLE 5.2: Relative changes of variables in screen condition comparing to paper condition

Variables The paper first group The screen first group
Relative Diff. SD Sig. Relative Diff. SD Sig.

Average Pupil Diameter +10.71 % 0.52 .01 +10.91 % 0.60 .01
Fixation Duration +11.64 % 1.53 .01 +11.07 % 1.60 .01
EDA (Tonic Component) +73.38 % 23.18 .01 +74.49 / -32.90 % 7.78/18.10 .01

(A) Pupil diameter (B) Fixatoin duration (C) EDA tonic component

FIGURE 5.11: Differences in each index. Yellow: screen, navy: paper

Table 5.2 (and Figure 5.11 for clear visualizations for the comparison) shows the

relative changes of the variables and p-values of t-test in the screen condition versus

paper condition in both groups. In both groups the average fixation duration while

reading on screen was significantly higher compared to reading on the paper. The

same significantly increase was obtained with the pupil diameter. In the section first

group, tonic component by reading on screen significantly increased in average to

73.38 % compared to the paper condition. In the screen first group, two tendencies in
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changes of magnitudes in tonic component were obtained: by four participants, the

magnitude of tonic component by reading on screen increased in average to 74.49 %,

while for five participants this magnitude decreased in average at 32.90 % comparing

to the reading on paper.

The results of multiple-choice questions show significantly better performance

in test solving after reading the documents on paper than on screen, which is con-

sistent with a number of several studies [78]. The findings in pupil diameter size

and fixation duration in our study are consistent with previous studies: in response

to rising cognitive workload pupil diameter and fixation duration significantly in-

crease [193]. This result is interesting in the way of natural response of pupil on the

back light from computer screen: since the pupil size decreases in response on light

source we obtained here an opposite effect comparing it with response on paper.

Another interesting found was done in the screen first group where some par-

ticipants had significantly higher level of tonic component while reading on paper.

This could be explained by the order effect: fatigue from the screen conditions could

trigger an increase of EDA magnitude by reading on paper.

5.3.4 Conclusion

We have presented two contributions in the field of designing intelligent user in-

terfaces. First, the results of this study show a significant difference in cognitive

workload by treating the same information either on screen or paper. Thus, this

issue should be considered by creating of user interface design, making e-learning

environment less demanding for users. Secondly, our experiment shows that there

are new opportunities to assess mental workload using non-expensive, simple and

pervasive devices like EDA wristband.
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Chapter 6

Conclusion

This chapter presents a summary of the research findings and discusses future work.

Section 6.1 highlights the contributions of this thesis by recapitulating the main re-

search problems and answers. Limitations of this work are discussed in Section 6.2

in order to design future research directions and to propose new potential questions.

6.1 Summary of the Thesis

In Chapter 1, I proposed a research hypothesis: “Meta-skills can be quantified by

smart sensors" towards realizing Meta-Augmented Human Systems. In order to

assist meta-skills based on the context of each user, it is necessary to understand

how the activities are performed. In addition, sensing approaches should be smart,

which can be utilized in daily life or in a classroom. I have proven the hypothesis by

answering the following three questions, with experiments summarized in Table 6.1.

TABLE 6.1: Activities and internal states recognized in this thesis

Section Sensor Input Output Pub.

3.1 Google Glass eye blink, head motion activity classification [93]

3.2 JINS MEME prototype eye movement, head motion activity classification [89, 90]

3.3 JINS MEME eye movement, head motion reading detection [85]

3.4 JINS MEME prototype eye movement word count [83, 87]

4.1 SMI/Tobii eye tracking glasses eye gaze comprehension [81, 82]

4.2 Tobii 4C, JINS MEME, Empatica E4 eye gaze, EDA, BVP, arm temp. comprehension [134]

4.3 SMI REDn, FLIR One for iOS eye gaze, nose temp. interest, mental workload [86]

4.4 SMI REDn, Empatica E4 eye gaze, EDA, BVP, arm temp. interest [95, 96]

4.5 Tobii 4C eye gaze self-confidence on MCQ [92]

4.6 Surface Studio hand writing log self-confidence on spelling [124]
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6.1.1 How can smart sensors quantify reading activities in daily life?

Chapter 3 claimed that eye movements and head movements measured by sensors

on eyewear computers are able to detect daily reading activities and, furthermore,

to track the amount of reading.

Section 3.1 proposed a blink detection algorithm using an infrared proximity

sensor equipped on Google Glass. By combining features from eye blinks to head

movements measured by an inertial measurement unit (IMU), five activities (read-

ing, watching, solving, sowing, and talking) were classified with 82 % accuracy. The

combination improved the performance. For instance, talking and watching were

relatively easily distinguished by other activities by eye blinks and features from

head movements helped to classify sawing, reading, and solving.

Section 3.2 proposed an activity recognition method on JINS MEME, commercial

Electrooculography (EOG) glasses, which is more suitable for daily activity recog-

nition than Google Glass. Although it was a pilot study involving only two partic-

ipants, four activities (reading, typing, eating, and talking) could be classified with

70 % accuracy by using statistical features from signals from EOG and IMU.

Section 3.3 proposed natural reading detection using JINS MEME (developer ver-

sion) and deep neural networks. In order to investigate the difference between con-

trolled reading designed carefully in the laboratory and natural reading without any

limitations in the wild, a large-scale experiment asking seven participants to wear

sensors for more than two weeks (880 hours recording in total) were conducted. A

Long-Short-Term Memory (LSTM) based network trained by the data could classify

natural reading and not reading with 74 % accuracy. Since controlled reading and not

reading were able to be classified with 93 % accuracy, this research highlighted the

limitation of activity recognition research in a controlled environment.

Section 3.4 proposed a method estimating the number of read words by analyz-

ing EOG signals on JINS MEME. Forward- and backward-saccades while reading

were detected as peaks on the signals. With the cooperation of five participants as

an experiment, the number of read words was able to be estimated with a 16 % word

count error in a user-dependent training. An interesting finding from this research

is that the estimation error decreases if results on some documents were summa-

rized (to 3.0 % by summarizing results of 38 documents) because some of them were

estimated more than the ground truth while the others were less.

6.1.2 How can smart sensors quantify affective states of learners?

Chapter 4 introduced the potential of eye tracking and physiological sensing in

quantifying affective states while learning. The performances were not enough, but

interesting features with high correlations to affective states were observed.



6.1. Summary of the Thesis 121

Section 4.1 presented comprehension recognition methods on a textbook. By

analyzing the reading behaviors of high school students on a textbook in Physics,

participants’ scores on related exercises could be classified into three classes with

100 % accuracy using an AOI-based approach and 70 % using a subsequence-based

approach (statistical features in a one-minute recording).

Section 4.2 presented an investigation on a video lecture. In the experiment,

features observed by Tobii 4C, JINS MEME, and E4 wristband could not estimate

whether a learner solves related exercises correctly with enough accuracy. However,

this work revealed a significant correlation between the ratio of watching duration

(the duration while gaze is on the screen divided by the total duration of a video)

and comprehension. Learners could often answer correctly when the ratio was high.

Section 4.3 presented the results of a pilot study, finding correlations between

sensor signals and affective states collected by a subjective survey after reading a

textbook on physics. This work revealed a positive correlation between interest and

pupil diameter (p < 0.01) and a negative correlation between mental workload and

nose temperature measured by an infrared thermal camera (p < 0.05).

Section 4.4 proposed an interest recognition method while reading by utilizing

SMI REDn Scientific 60 Hz remote eye tracker and E4 wristband. Features from both

sensors could classify the level of interest in newspaper articles into four classes with

50 % accuracy. In this experiment, which included surveys, the most effective feature

was subjective comprehension. Indeed, readers cannot find interest in a document

that is difficult to understand. The mean value of fixation was small while reading

interesting documents for most of the participants.

Section 4.5 proposed a method to estimate self-confidence when answering multiple-

choice questions about English vocabulary and grammar using eye gaze. The method

was evaluated through laboratory and wild datasets. On the laboratory dataset, the

binary classification accuracy achieved 76 % on a user-independent training. Since

samples in the wild dataset are unbalanced, the performance in the wild dataset

could not be evaluated as an accuracy, but it could detect high confidence on incor-

rect answers (the worst case that a learner has wrong knowledge and he/she did not

realize it) with 60 % average precision. The reading-time and the fixation ratio on a

question were selected as effective features in both conditions.

Section 4.6 proposed a method self-confidence estimation spelling English vo-

cabulary tests by analyzing the log of handwriting. It could classify self-confidence

with 80 % accuracy on user-dependent learning and 74 % on user-independent learn-

ing. It is understandable that features related to intervals between each stroke were

effective for the estimation. Furthermore, this work revealed that the pressure of a

pen was negatively related to the self-confidence against my expectation.



122 Chapter 6. Conclusion

6.1.3 How can a system augment reading/learning experiences?

This thesis demonstrated applications giving feedback to a user by using the estima-

tion results of cognitive activities and affective states.

Wordometer 2.0 presented in Section 3.4 motivates people to improve daily read-

ing habits by quantifying the amount of reading. Although a word-counting algo-

rithm using mobile eye tracking glasses [110] and medical EOG sensors [109] have

been proposed [9], this work was the first attempt to implement the algorithm on a

smart device and give feedback on a real-time monitoring view or a dashboard view.

Confidence-Aware Learning Assistant (CoALA) presented in Section 4.5 lets learners

review the results on multiple-choice questions on the basis of self-confidence in

their answers. This system has been deployed in a cram school in Japan and used

by more than 70 students. In this cram school, students print out a list of words

involving incorrect and correct answers regarding low self-confidence.

HyperMind Reader presented in Section 5.1 is an intelligent digital textbook dis-

playing information based on gaze, i.e., utilizing an eye tracker to measure visual

attention and to employ it for vivid interaction.

HyperMind Builder presented in Section 5.1 enables everyone to create their own

intelligent interactive documents without any programming skills. It is on the con-

text pioneered by Text 2.0 [15] and HyperMind Builder that have extended the range

of users to those who need it, including teachers and researchers in education.

As presented in Section 5.3, paper is still comfortable media for reading com-

pared to screen, and digitalizing learning media may not always effect reading ex-

periences in a positive way. The fixation duration, the pupil diameter, the EDA tonic

component while reading on screen were higher than on paper. The learning media

should be designed carefully not to increase cognitive load.

6.2 Limitations and Future Work

There are some limitations in the presented work. In particular, there is still room

for improvement or new research ideas around the following topics.

Performances of the estimations. While this thesis tried to solve challenging

recognition tasks, accuracies 74 % into two classes (Section 3.3), 70 % into three classes

(Section 4.1), 50 % into four classes (Section 4.4), 76 % into two classes (Section 4.5)

might not be enough to claim the approaches can recognize them sufficiently.

Deep learning in learning analytics. Deep learning techniques have rapidly

accelerated research in the field of image, audio and natural language processing.
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However, affective state recognition are not sufficiently based on the benefits tech-

nology offers. One hypothesis of the reason is that collecting a large amount of data

for training with annotations is more difficult than it is in other research fields.

Ground truth labeling. A common problem in the studies with low estimation

results was the difficulty of collecting ground truth labels. Subjective labels depend

on the participants. Labels answered with low self confidence may become noise

while training a model. The more participants are asked to answer their states fre-

quently, the more their activities become unnatural. Asking participants to wear a

camera and labeling by others sometimes causes a privacy issue.

Evaluation of the interventions. Investigations about the performance of inter-

ventions (e.g., how many more books did people read and how much more students’

academic scores did increase by proposed systems) require large-scale experiments.

Due to the time constraints of the doctoral research, such long-term evaluations are

out of the scope for the time being and reluctantly left for future work.

Learner as a sensor. This thesis investigated a learner by using sensors. But a

learner can also be a sensor of an environment. Measuring behaviors and perfor-

mances of learners for the assessment of textbooks, lectures, and classrooms should

be an interesting topic. Since expensive advanced sensors cannot be utilized be-

cause of limitations of the time, the place, and the number of participants, I believe

that smart sensors play important role in this field.

In this thesis, I proposed Meta-Augmented Human Systems, which amplify skills to

acquire new skills. Wordometer, Confidence-Aware Learning Assistant, and Hyper-

Mind were demonstrated as examples of the systems. The common philosophy be-

hind the applications is that understanding physical, cognitive, and affective states

is the first step for giving appropriate feedback on skill acquisition. Furthermore,

sensors should be designed for everyday use to track long-term improvements. By

presenting several recognition algorithms utilizing devices in the market, this the-

sis verified the hypothesis: meta-skills can be quantified by smart sensors. My next

interests are in interaction research that includes designing effective interventions.
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